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Abstract
The variety of information about users hidden in the details of interaction data is increasingly being uti-

lized for recognizing complex mental processes. Digital systems can correspondingly influence mental

processes of users, paving theway for new interactive systems that interfacewith the humanmind. This

thesis presents advances to such interfaces: through four papers I show how human affect and cognition

can be sensed and influenced computationally.

Paper 1 presents two studies that together show that affect influences mobile interaction, which allows

for binary discrimination between neutral and positive affect using sensor led machine learning classi-

fication. Paper 2 builds upon the methods presented in Paper 1 and extends the classification domain

to dishonesty, also using mobile interaction data. The paper shows across three studies how dishon-

esty and honesty vary in interactional details, and how this difference can be utilized for estimating the

veracity of user behavior based on features that are engineered by mobile interaction data.

Paper 3 presents a feasibility study of conducting virtual reality studies outside a laboratory, to increase

heterogeneity and power. The paper shows through two studies how a range of VR tasks can be con-

ductedwithout the use of an immediate experimenter, with participants carrying out experiments them-

selves. In Paper 4 I apply this methodology, and conduct a VR study withmore than 200 participants to

study how manipulations to avatars can influence affect responses. The paper presents evidence sup-

porting the link between affect and avatars, and additionally discusses the interplay between positive

affect and body ownership.
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Dansk Resumé
Mellem detaljerne i interaktionsdata er skjult information om brugere, som i stigende grad bliver ud-

nyttet til at genkende komplekse mentale processer. Digitale systemer kan samtidigt påvirke brugeres

mentale processer, hvilket baner vejen for nye interaktive systemer med grænseflader til det menneske-

lige sind. Denne afhandling præsenterer fremskridt for sådanne grænseflader. Gennem fire artikler

viser jeg, hvordan menneskelig affekt og kognition kan genkendes og påvirkes digitalt.

Artikel 1 præsenterer to studier, der sammen viser, at affekt påvirker mobil interaktion, hvilket muliggør

binær diskrimination mellem neutral og positiv affekt ved hjælp af sensordrevet maskinlæringsklassi-

fikation. I forlængelse af Artikel 1 udvider Artikel 2 klassifikationsdomænet til løgn, også her ved brug

af mobil interaktionsdata. På tværs af tre studier viser artiklen, hvordan løgn og ærlighed varierer i in-

teraktionsdetaljer, og hvordan denne forskel kan udnyttes til at estimere oprigtigheden af brugeradfærd

baseret på variabler, som er konstrueret af mobil interaktionsdata.

Artikel 3 præsenterer en gennemførlighedsundersøgelse i at udføre brugerstudier med virtual reality

uden for et laboratorium for at øge heterogenitet og styrkefunktion. Artiklen viser gennem to studier,

hvordan en række VR-opgaver, under hvilke deltagerne selv eksekverer opgaverne uden en tilgængelig

eksperimentator, kan udføres. I Artikel 4 anvender jeg dennemetode og gennemfører et VR-studiemed

mere end 200 deltagere for at undersøge, hvordan manipulationer af avatarer kan påvirke deltagernes

affekt. Artiklen fremlægger evidens for forbindelsen mellem affekt og avatarer, og diskuterer desuden

samspillet mellem positiv affekt og virtuelt kropsejerskab.
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2 Preface
The general rules and guidelines for the PhD programme at the Faculty of Science at University of

Copenhagen [62] defines the objective of the PhD study as the following:

The PhD programme is a research programme aiming to train PhD students at an international

level to independently undertake research [...] [62].

The PhD program is equivalent to 180 ECTS credits, which corresponds to three years of full-time

study. I initiated my PhD studies January 1st 2016, and submitted December 31st 2018. The inten-

tion with present thesis is to show that independent research at an international level was undertaken

throughout this period.

2.1 Structure of thesis
The thesis is organized in four parts: Introduction, Sensing, Influencing, and Perspectives. As indicated

in the title of the thesis, the main contribution of the presented research is in methods and applications

of using computer interaction to sense and influence mental processes, namely affect and cognition.

These are presented in the two middle parts; Sensing and Influencing. To prepare the reader for the

content of the thesis, the Introduction part provides some brief context and overview. The Perspectives

part is intended for zooming out a bit, and it considers methodological, ethical, and future directions of

the work.

2.2 Selection of papers
The thesis’ core content origins from four independent papers I have first-authored, of which three are

published [150, 153, 154], and one is currently in manuscript [152]. These papers are quite different,

both in terms of technology used (VR, mobile, web), methodology (crowdsourcing, laboratory study),

and analysis (machine learning, statistical hypothesis testing). There are however also similarities that

bind the individual work together. The papers all share the ideal of designing interactive systems that

interface with users’ thinking and feeling; the breadth of the research is a testament to the various

applications of cognitive aspects of both applied and theoretical HCI. I have also had the opportunity

to collaborate on several research projects that I have not spearheaded myself. Some of these works are

used to provide some other perspectives to the thesis.

2.3 Abstracts of papers

Paper 1: An Affect Detection Technique Using Mobile Commodity Sensors in the
Wild

Current techniques to computationally detect human affect often depend on specialized hardware, work

only in laboratory settings, or require substantial individual training. We use sensors in commodity

smartphones to estimate affect in the wild with no training time based on a link between affect and

4



2.3 Abstracts of papers

movement. The first experiment had 55 participants do touch interactions after exposure to positive

or neutral emotion-eliciting films; negative affect resulted in faster but less precise interactions, in ad-

dition to differences in rotation and acceleration. Using off-the-shelf machine learning algorithms we

report 89.1% accuracy in binary affective classification, grouping participants by their self-assessments.

A follow up experiment validated findings from the first experiment; the experiment collected naturally

occurring affect of 127 participants, who again did touch interactions. Results demonstrate that affect

has direct behavioral effect on mobile interaction and that affect detection using common smartphone

sensors is feasible.

Paper 2: Veritaps: Truth Estimation from Mobile Interaction

We introduce the concept of Veritaps: a communication layer to help users identify truths and lies in

mobile input. Existing lie detection research typically uses features not suitable for the breadth ofmobile

interaction. We explore the feasibility of detecting lies across all mobile touch interaction using sensor

data from commodity smartphones. We report on three studies in which we collect discrete, truth-

labelled mobile input using swipes and taps. The studies demonstrate the potential of using mobile

interaction as a truth estimator by employing features such as touch pressure and the inter-tap details of

number entry, for example. In our final study, we report anF1-score of .98 for classifying truths and .57

for lies. Finally we sketch three potential future scenarios of using lie detection in mobile applications;

as a security measure during online log-in, a trust layer during online sale negotiations, and a tool for

exploring self-deception.

Paper 3: Virtual Reality Studies Outside the Laboratory

Many user studies are now conducted outside laboratories to increase the number and heterogeneity

of participants. These studies are conducted in diverse settings, with the potential to give research

greater external validity and statistical power at a lower cost. The feasibility of conducting virtual reality

(VR) studies outside laboratories remains unclear because these studies often use expensive equipment,

depend critically on the physical context, and sometimes study delicate phenomena concerning body

awareness and immersion. To investigate, we explore pointing, 3D tracing, and body-illusions both

in-lab and out-of-lab. The in-lab study was carried out as a traditional experiment with state-of-the-

art VR equipment; 31 completed the study in our laboratory. The out-of-lab study was conducted by

distributing commodity cardboard VR glasses to participants; 57 completed the study anywhere they

saw fit. The effects found in-lab were comparable to those found out-of-lab, withmuch larger variations

in the settings in the out-of-lab condition. A follow-up study showed that performance metrics are

mostly governed by the technology used, where more complex VR phenomena depend more critically

on the internal control of the study. We argue that conducting VR studies outside the laboratory is

feasible, and that certain types of VR studies may advantageously be run this way. From the results, we

discuss the implications and limitations of running VR studies outside the laboratory.

Paper 4: Emotional Avatars: The Interplay between Affect and Ownership of a Vir-
tual Body

Human bodies influence the owners’ affect through posture, facial expressions, and movement. It re-

mains unclear whether similar links between virtual bodies and affect exist. Such links could present
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2 Preface

design opportunities for virtual environments and advance our understanding of fundamental concepts

of embodied VR.

An initial outside-the-lab between-subjects study using commodity equipment presented 207 partici-

pants with seven avatar manipulations, related to posture, facial expression, and speed. We conducted

a lab-based between-subjects study using high-end VR equipment with 41 subjects to clarify affect’s

impact on body ownership.

The results show that some avatar manipulations can subtly influence affect. Study I found that facial

manipulations emerged as most effective in this regard, particularly for positive affect. Also, body own-

ership showed a moderating influence on affect: in Study I body ownership varied with valence but not

with arousal, and Study II showed body ownership to vary with positive but not with negative affect.
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3 Background
While the individual chapters of this thesis aremeant to be understood on their own, Iwill in this chapter

briefly present some general research paradigms that the presented research builds upon.

3.1 Mental Processes
A mental process or mental function is an umbrella term for all the things individuals are capable of

doing with their minds, such as memory, perception, and emotions. The work presented in this thesis

relates to interactive systems that interface with the human mental processes affect and cognition.

What is Affect?

The concepts of emotion, mood, and affect are sometimesmistakenly used interchangeably. This thesis

proceeds from a view of affect inspired by Ekkekakis’s efforts to untangle the conceptualization and

measurement of affect [57]. He argued for distinguishing among three formsof affect: core affect,mood,

and emotion. The most fundamental of these is core affect, underpinning moods and emotions. This

is an evaluative feeling always available to the consciousness. Pleasure offers a clear example. Emotion,

in contrast, depends on appraisal, and involves an object toward which the emotion is directed. Anger

is one example. Finally, moods are long-term affective states in comparison to emotions; they are also

less intense. Irritation is an apt example of a mood. In addition to presenting these basic categories,

Ekkekakis argued that specificmetrics employed in studies must operate from a particular view of affect

(i.e., the entity composed of core affect, mood, and emotion). In particular, it must be clear whether

the researcher is interested in dimensional or in categorical measures of affect.

3.2 Ubiquitous Computing and Mobile Sensing
In the 1999 article The Computer for the 21st Century, Weiser [237] presented his vision of a next Ubiq-

uitous Computing paradigm. Weiser envisioned that computers move into the background, operating

without our explicit awareness:

[...] specialized elements of hardware and software, connected by wires, radio waves and infrared,

will be so ubiquitous that no one will notice their presence. [237]

A prevalent research agenda within ubiquitous computing is sensing. Sensing refers to the activity of

computationally inferring (often human) context from real life situations, such as assessing the amount

of people in a room based on sounds [244], or predicting how tired a person is based on their phone

activity [80]. Approaches vary in both sensing domains (e.g., physical activity, cognitive), sensor types

(e.g., accelerometer, microphone), time frames (e.g., real-time, weeks), active or passive sensing (e.g.,

direct manipulation, background sensing), as well as in modeling approaches (e.g., correlation, regres-

sion, classification). Many sensing approaches require only basic sensors and computing units to func-

tion. Because of the prevalence of smart phoneswith a range of embedded sensors, powerful CPUs, and

always-availability, mobile sensing have become the defacto standard sensing approach; notably being

referred to as ‘cognitive phones’ [32]:
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Because people carry their phone as they navigate through the day, phones are well situated to go

beyond simple inference of classes by building up knowledge of the user’s life patterns and choices.

What if a phone could not only build lifelogs but also predict outcomes and assist the user? We

argue the next step in the evolution of the phone is the cognitive phone. [32]

In 2014, Liu and colleages [133] reported on the development of the Ubiquitous Computing field, by

looking at author provided keywords in papers published at theUbiComp conference, which has existed

since 1999. The analysis showed, among other things, that UbiComp is increasingly focusing onmobile

devices [133].

To shed light on where the (increasing) UbiComp sub field of mobile sensing is heading, I have con-

ducted a small semi-automatic paper review. The intention is to create an overview of the sensing

domains (and their complexity) through all UbiComp sensing papers over time, thus showing large

scale changes throughout the field’s relative short history. The intention is not to make a comprehen-

sive review (instead see for instance [176], for a review on sensing affect with mobile devices), which

would require multiple paper venues, a stricter paper inclusion criteria, and a formal way of assessing

the complexity of these sensing domains.

The UbiComp conference was chosen, because novel sensing techniques often are presented at this

venue. Many other venues both within, and outside HCI, would be relevant for this exercise too, but

would make a succinct (and somewhat automated) review difficult.

From the ACM Digital Library, I scraped the titles of the 1671 papers (full and short, not posters or

demos) ever published at the UbiComp conference from 1999-2018. Note that the conference has had

many names throughout its existence, such asHandheld and Ubiquitous Computing, Ubiquitous Informa-

tion Management and Communication,Ubiquitous Intelligence and Computing, Joint conference on Pervasive

and ubiquitous computing, etc. In recent time, the publication format has changed to a journal (IMWUT )

which is also included in this analysis.

To find UbiComp papers about mobile sensing I searched paper titles for keywords. Any paper pub-

lished at UbiComp with two or more of the following string patterns within the title were included for

subsequent analysis: ‘wearable*’, ‘*phone*’, ‘mobile*’, ‘sens*’, ‘predict*’, ‘recogni*’, ‘classif*’, ‘de-

tect*’, ‘estimati*’, ‘distinguish*’, and ‘identif*’; yielding 185 papers. Obviously this is not guaranteed

to be the exhaustive list of mobile sensing papers at UbiComp, it should give a fair estimate, however.

These papers were manually checked to see if they were about mobile sensing, interpreted broadly as

any sort of data driven human context recognition using phones or equivalent sensors (thus exclud-

ing, e.g., capacitive sensing for interactional purposes, biometrics, device-device sensing, etc.). That

resulted in 73 UbiComp papers. The domain of sensing was also noted during this part of the process.

Last, I ranked the sensing domains from ‘cognitively simple’ (e.g., device position, walking) to ‘cog-

nitively complex’ (e.g., emotions, depression). The resulting plot is shown in Figure 3.1. The plot

shows how the domains that mobile sensing papers at UbiComp have targeted are increasing in cogni-

tive complexity over time. Where UbiComp historically has been a venue for presenting breakthroughs

to sensing techniques of simpler human activity, such as device pose, walking, running, or other physi-

cal activity; the field has seen a shift towards sensing domains relating to complex human thinking. The
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work presented in this thesis contributes to the latter ideal.

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

phys. activity [134] phys. activity [38]
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emotions [178]

energy use [5]
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device position [79]

device position [167]
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lung function [124]

emotions [46]

stress [135]

location [164]

dangerous driving [247]

appliance usage [251]

no. people [244]

firefighters [63]

walking [25]

heart rate [214] transport mode [193]

skin disease [77]

sleep [80]

car position [136]

tooth brushing [115]

running [88]

academic performance [232]

boredom [173]

nursing activity [100]
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alertness [1]

generic [243]

lung function [107]

blood [230]

emotions [150]

mental health [231]

alcohol [11]
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engagement [172]

heart rate [149]
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whereabouts [224]

app use [248]
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depression [234]

personality traits [235]
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phys. activity [245]

dog activity [121]

panic [183]

phys. activity [82]

blood [94]
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context [27]

hand [70]

mental health [177]

alcohol [108]
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cocaine [156] frustration [218]

eating [15, 39, 147, 148, 220]

car danger [130]

cognition [189]

year

cognitive complexity

Figure 3.1: The domains of mobile sensing papers published at UbiComp 1999-2018. The cognitive com-
plexity is a subjective assessment; overlaps have been handled by slightly moving domains with similar
complexities. The analysis shows that sensing domains are increasingly cognitive complex.

3.3 Affective Computing
Affective computing is computing that relates to, arises from, or influences emotions [171]. It is an interdis-

ciplinary field spanning computer science, psychology, neuroscience, engineering, linguistics and other

disciplines. Even within computer science, affective computing draws attention in various fields such

as human-computer interaction (HCI) and machine learning (ML). As such, it spans diverse research
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areas such as computerized simulation, recognition and induction of human emotions, as well as design

of systems that interpret and respond to human emotion.

The first computerized emotion detection systems saw the light in the early 70’s when Williams and

Stevens [239] presented emotion detection using vocal features. Notably Suwa and colleagues [217]

then presented an early attempt at inferring affect from facial features. Since, then numerous ap-

proaches to affect recognition have been pursued, mostly using audio and/or vision (see review by Zeng

et al. [250]). While facial and vocal features provide convincing accuracies for affect detection, they

pose privacy as well as availability issues.

Affect detection techniques that employ UbiComp methodologies have seen quite an increase within

the last decade (e.g., [46, 71, 150, 178, 252]). Instead of relying on problematic data sources such as video

or audio, there are increasingly more papers that report promising accuracies of affect detection using

off-the-shelf sensors from smart phones (that may be privacy invasive, too), from passive (e.g., battery

level) or active (e.g., touch force) interaction data. A recent review lists 42 of such studies [176]; across

different affect conceptualizations and sensor types, different accuracies have been reported, withmany

above 80%.

3.4 Crowdsourcing
Crowdsourcing in research context refers to obtaining user responses from unsupervised participants.

This practice is used extensively for surveys, online experiments, and data labeling. For many tasks,

crowdsourcing divides the work into smaller tasks, and distributes work between participants to achieve

an aggregate result. User studies are typically crowdsourced by giving participants small amounts of

payment for conducting experiments on online crowdsourcing platforms such as Amazon Mechanical

Turk [112]. Research shows that crowdsourcing, compared to laboratory studies, gives a higher diver-

sity of participants [140, 166, 181] and can be done low-cost [28, 112, 140], reliably [28, 49, 182], and

quickly [112].

With the rise of consumer-orientedAI systems, the need for throngs of labelled data has increased. With

the increase of focus on external validity with user studies, and because of the maturity of online micro

market platforms, crowdsourcing has received enormous attention within recent years. Papers at the

CHI conference referred to ‘crowdsourcing’ first time in 2008 (through three papers/1%); at CHI’ 18,

123 or 18% of papers mentioned the word ‘crowdsourcing’ (see Figure 3.2). This rapid increase in

interest in crowdsourcing is not isolated to HCI; many other fields from social sciences to economics

publish extensively with emperical data sourced from such models.

Crowdsourcing is a relatively broadly used term within HCI, that describe unsupervised study partici-

pation. Alternatives to micro market platforms include LabintheWild [179], which is a scalable way of

conducting unsupervised and uncompensated experimentation. LabintheWild is an online experimen-

tal platform that provides participants with information about themselves in exchange for participation

in experiments. In-the-wild mobile experiments have also been conducted. Henze et al. [91] showed

how to crowdsource user studies for mobile games, by carrying out mobile gaming-based experiments.

These games were distributed on the Android market store, and participation was thus unsupervised

anduncompensated. Lafreniere et al. [122] also showedhow fabrication can be crowdsourced, by having
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Figure 3.2: The percentage of papers at CHI including the term ‘crowdsourcing’. Year 2008 was the first
time at CHI where such a paper was published; in 2018 this amounted to 18.5% or 123 papers.

museum guests collaborative build structures as they visit an exhibition. Overall the use of crowdsourc-

ing has become vast within HCI, but the term is also diversifying in its use.
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4 Affect Detection from Mobile Interaction

An Affect Detection Technique using Mobile
Commodity Sensors in the Wild

Aske Mottelson & Kasper Hornbæk
Department of Computer Science, University of Copenhagen

Njalsgade 128, DK-2300 Copenhagen, Denmark
{amot, kash}@di.ku.dk

ABSTRACT
Current techniques to computationally detect human affect
often depend on specialized hardware, work only in laboratory
settings, or require substantial individual training. We use sen-
sors in commodity smartphones to estimate affect in the wild
with no training time based on a link between affect and move-
ment. The first experiment had 55 participants do touch inter-
actions after exposure to positive or neutral emotion-eliciting
films; negative affect resulted in faster but less precise inter-
actions, in addition to differences in rotation and acceleration.
Using off-the-shelf machine learning algorithms we report
89.1% accuracy in binary affective classification, grouping
participants by their self-assessments. A follow up experiment
validated findings from the first experiment; the experiment
collected naturally occurring affect of 127 participants, who
again did touch interactions. Results demonstrate that affect
has direct behavioral effect on mobile interaction and that
affect detection using common smartphone sensors is feasible.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g., HCI)

Author Keywords
Affective computing; affect detection; smartphone; touch;
crowdsourcing

INTRODUCTION
Affect influences cognitive abilities and motor skill; it also
influences human-human and human-computer interaction.
As a result thereof, the research field of how computers can
assess and respond to human affect has grown. Picard [29]
popularized this research field of Affective Computing, and
since then numerous systems that detect and respond to affect
have been proposed (e.g., [6, 12, 23, 26, 34]).

Contemporary techniques for detecting human affect, however,
have several limitations. Often these techniques are verified in
laboratory experiments with few participants equipped with
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costly hardware. Another approach has been to study partici-
pants in office-settings over long periods of time, resulting in
techniques that require long individual training to function.

This paper departs from findings in experimental psychology
that provide evidence for a link between affect and movement;
Coombes et al. [10] for instance found that exposure to un-
pleasant images caused greater error and faster performance
in a subsequent square-tracing task. We use these findings
to present an affect detection technique inspired by emotion
psychology theory using commodity sensors, that works in
the wild, without per-user training. We therefore address the
following limitations in current affect detection techniques:

Specialized Hardware: Several techniques for inferring af-
fect have been proposed, including audio/video approaches, or
using specialized hardware, for instance heart rate variability
or galvanic skin response (e.g., [27, 34, 36]). These techniques
are often either intrusive to user privacy or less suitable for
widespread adoption because of the need to acquire and wear
custom sensors. We propose an affect detection technique
using less invasive measurement methods, namely sensors
already present in most commercial smartphones.

Controlled Laboratory Experiments: Previous studies con-
cerning human affect and computer interaction have mostly
conducted experiments using artificial tasks in controlled labo-
ratory settings with relatively few participants (e.g., [4, 10, 18,
23]). The external validity of these studies makes it difficult
to reason about how effective the proposed techniques are in
more real-life settings. We present a crowdsourced method of
gathering touch interactions and affective assessments, thus
increasing generalizability.

Extensive Individual Training: Previous studies have used
commodity hardware sensors to detect affect, such as using
keystroke dynamics [14] or smartphone usage [26, 30]. How-
ever, these studies conducted extensive experiments lasting
weeks to months, resulting in idiosyncratic models that require
substantial per-user training to estimate affect effectively. We
present an approach that requires 140 seconds of user interac-
tion to assess affect, without any previous training with data
from that user.

We report findings from two experiments, where participants
recruited through crowdsourcing conducted general touch
tasks on their own devices after being emotionally primed
using video clips. The results show that the affective impact
on touch interaction corroborates psycho-motor theory: Speed
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This chapter is almost identical to the paper shown

to the left [150], presented at UbiComp ’16. The

paper was an immediate continuation of the work

presented in my Master’s thesis Detecting and un-

derstanding the impact of affect in touch-based com-

puter interaction (2015).

In this chapter, I present a technique to assess

smart phone users’ affect using only built-in sen-

sors. The raison d’être for the introduced approach

is to rely on non-specialized hardware sensors that

are available to most users, enabling affect detec-

tion as a commodity tool. The research presented

here draws on the literature from activity sensing,

that has seen an increase in complexity in recent

years; namely applying techniques and computa-

tional approaches that have previously been applied

for distinguishing between physical activities, to

foster predictions about cognitive activities.

In this chapter, I describe the data acquisition, setting up experiments, and making models for inferring

user affect. We did, however, also gather other labels from the participants including gender and hand-

edness. While neither of these ideally should be considered binary, the distribution of the data does

suggest that classifying participants in these categories is easier than for instance considering affect.

The biggest struggle with building the models that are presented in this chapter arose from differences

across participants’ devices. While two IMUs operating with completely different scales by definition

are incomparable, this work also did not result in comparable representations for swipes, touches, and

taps because of differences across touch screen sizes and phone form factors. Figuring out a reasonable

cross-device model representation of interaction thus presents itself as an open research opportunity,

specifically for normalization between screen estates.
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4 Affect Detection from Mobile Interaction

4.1 Abstract
Current techniques to computationally detect human affect often depend on specialized hardware, work

only in laboratory settings, or require substantial individual training. We use sensors in commodity

smartphones to estimate affect in the wild with no training time based on a link between affect and

movement. The first experiment had 55 participants do touch interactions after exposure to positive

or neutral emotion-eliciting films; negative affect resulted in faster but less precise interactions, in ad-

dition to differences in rotation and acceleration. Using off-the-shelf machine learning algorithms we

report 89.1% accuracy in binary affective classification, grouping participants by their self-assessments.

A follow up experiment validated findings from the first experiment; the experiment collected naturally

occurring affect of 127 participants, who again did touch interactions. Results demonstrate that affect

has direct behavioral effect on mobile interaction and that affect detection using common smartphone

sensors is feasible.

4.2 Introduction
Affect influences cognitive abilities andmotor skill; it also influences human-human andhuman-computer

interaction. As a result thereof, the research field of how computers can assess and respond to human

affect has grown. Picard [171] popularized this research field of Affective Computing, and since then

numerous systems that detect and respond to affect have been proposed (e.g., [36, 52, 109, 131, 190]).

Contemporary techniques for detecting human affect, however, have several limitations. Often these

techniques are verified in laboratory experiments with few participants equipped with costly hardware.

Another approach has been to study participants in office-settings over long periods of time, resulting

in techniques that require long individual training to function.

This paper departs from findings in experimental psychology that provide evidence for a link between

affect andmovement; Coombes et al. [44] for instance found that exposure to unpleasant images caused

greater error and faster performance in a subsequent square-tracing task. We use these findings to

present an affect detection technique inspired by emotion psychology theory using commodity sen-

sors, that works in the wild, without per-user training. We therefore address the following limitations

in current affect detection techniques:

SpecializedHardware: Several techniques for inferring affect have beenproposed, including audio/video
approaches, or using specialized hardware, for instance heart rate variability or galvanic skin response

(e.g., [135, 190, 215]). These techniques are often either intrusive to user privacy or less suitable for

widespread adoption because of the need to acquire and wear custom sensors. We propose an affect

detection technique using less invasive measurement methods, namely sensors already present in most

commercial smartphones.

Controlled Laboratory Experiments: Previous studies concerning human affect and computer inter-

action have mostly conducted experiments using artificial tasks in controlled laboratory settings with

relatively few participants (e.g., [30, 44, 71, 109]). The external validity of these studies makes it diffi-

cult to reason about how effective the proposed techniques are in more real-life settings. We present a

crowdsourced method of gathering touch interactions and affective assessments, thus increasing gen-
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eralizability.

Extensive Individual Training: Previous studies have used commodity hardware sensors to detect

affect, such as using keystroke dynamics [59] or smartphone usage [131, 173]. However, these studies

conducted extensive experiments lastingweeks tomonths, resulting in idiosyncraticmodels that require

substantial per-user training to estimate affect effectively. We present an approach that requires 140

seconds of user interaction to assess affect, without any previous training with data from that user.

We report findings from two experiments, where participants recruited through crowdsourcing con-

ducted general touch tasks on their own devices after being emotionally primed using video clips. The

results show that the affective impact on touch interaction corroborates psycho-motor theory: Speed

and precision ofmotor control varies with affective states. Using participants’ touch data it was possible

tomodel affect using 140 seconds of smartphone sensor data, with 89.1% accuracy for binary (high/low)

self-assessed affect, and 1.33 RMSE on a 1-7 positive-negative scale. An additional study using partici-

pants’ natural occurring affect showed a similar effect, although with less confidence; it was possible to

detect binary affect with 69.0% accuracy (1.32 RMSE, 1-7 positive-negative), binary valence with 81.7%

(1.61 RMSE, 1-9 SAM), and binary arousal with 67.5% (1.88 RMSE, 1-9 SAM).

4.3 Background and Related Work
Research on how emotions influence physical expression has been treated extensively, starting with

Darwin’s work in the 19th century [51]. Darwin proposed that emotions are products of evolution;

discrete emotions trigger actions that have been favorable to survival [51, 129]. This widely supported

view suggests that emotions are organized around a motivational base such that our state of mind mo-

tivates beneficial physical expression. For instance, when a negative or threatening situation occurs, a

fast reaction with less emphasis on precision optimizes chances of survival.

A multitude of emotional modalities and their respective physiological responses have been studied. It

has been shown that moods influence cognitive performance, general health and well-being, creativity,

decision-making processes, and social relationships [31, 102]. Most commonly studied is the relation

between emotions and facial expressions [31, 52], but studies have also shown that affect has a significant

impact on both motor skills [21, 44] and voice intonation [36, 65], in addition to body movements and

body postures [229].

Models of Affect

Popular models of emotions are Plutchik’s emotion wheel [174], that offers a hybrid between emo-

tional dimensions and discrete emotions, andRussel’s circumplexmodel of affect [184] which describes

linear combinations of two dimensions, valence and arousal, as varying degrees of stimulus (valence)

and intensity (arousal). Sometimes these two dimensions are extended by a third dimension (the PAD

model [143]), dominance, which describes the degree of control exerted by a stimulus.

The proposed emotional models are rather complex, and their respective self-assessment measures

are therefore extensive, making them less suitable for an in-the-wild mobile experiment. Also self-

assessment measures such as PANAS [236] or SAM [24] may reveal the purpose of the study to partic-

ipants filling them out, distorting the elicited affect [238]. In this study we are interested in the direct
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physiological response to affective stimuli, and we therefore employ the term affect, measured on a

positive-negative scale, as proposed by Isen et al. [102].

Motion and Emotion

Emotions change our physical behavior; we smile when we are happy and our bodies tremble when an-

gry. Drawing on the Darwinian view that emotions cause biological determined reactions, Ekman [58]

proposed his theory of basic emotions. From cross-cultural field studies he found six discrete emotions

to cause similar physical response in facial expressions across cultures. Body postures and movements

have in a similar way shown to be influenced by emotions [229], which is essential to the core theory

of the emergent field of embodied cognition; that cognition as well as affective aspects go beyond the

brain and manifest themselves physically in our bodies, such that emotions provide embodied informa-

tion. This paper draws upon this view: If motor behavior, including physical interaction with mobile

devices, encodes affective information, this should be detectable by analyzing the user behavior patterns

of interactions with mobile devices.

Previous studies also examined the affective aspects of computer interaction. Cairns et al. [30] studied

the influence of emotions on a simple number entry task. The preliminary study showed that par-

ticipants who were in a more positive emotional state were more accurate at entering numbers on a

touch-based number pad. A study investigating the impact of emotions on the performance of comput-

erized motor tasks was carried out by Coombes et al. [44]. The authors had 40 participants perform

a computerized square-tracing task after being exposed to affective imagery. The authors concluded

that exposure to affective pictures has direct behavioral consequences on speed and precision of per-

formance on motor control.

These studies together show the correlation between movements and emotions, and provide evidence

for the link between computer interaction and affect.

Affect Detection

Among real-time affective predictors, audio and vision-based techniques are by far the most common

and robust (see Zeng et al. [250] for a review). Emotional states can also be inferred using physiological

sensors; equipment measuring for instance heart rate variability or galvanic skin response have been

used to infer stress levels [135, 215] and emotional states [190].

These sensors may be disturbing to their users (such as common galvanic skin response sensors), and

the equipment is generally absent from home and office settings. Therefore, several studies have em-

ployed non-specialized equipment available at most home or office settings to detect affective states;

such as using keystroke dynamics [59], touch-based gameplay strokes [71], computer mouse tasks [215]

or smartphone usage [131, 173].

Gao et al. [71] studied mobile touch activity as an indicator of emotional states by extracting finger-

stroke features from 15 participants during a Fruit Ninja game. Self-assessed emotional states coupled

with touch strokes led to an 89.7% accuracy in binary arousal classification, with almost similar rates for

valence. The small sample size and the specific task studied limit the generalizability of the results, and

thus further work is needed to shed light on the implication of affect on general touch interaction.
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Another example of utilizing commodity computer equipment for affective computing was conducted

by Sun et al. [215] who inferred stress measurements through common computer mouse operations. In

a study with 49 participants, physiological measurements and stress self-reports were measured, and

the data collected were used to train a stress detection system with a stress rate detection accuracy of

70%.

LiKamWa et al. [131] leveraged smartphone usage to estimate participants’ affective states. Thirty-two

participants partook in a field study, where self-assessedmoodwas linked to phone activity. The authors

failed to create a generic robust affective model, but reported 93% accuracy in affective classification

using a personalized model with two months of training data.

By analyzing the rhythms of 12 participants’ typing patterns on a standard keyboard in a field study,

Epp et al. [59] reported the correlation between emotions and keyboard typings. The authors reported

77-88% binary classification accuracy for 15 emotional states.

Limitations of Earlier Work & Our Approach

Although the emotional influence on human motor aspects has been studied extensively, few studies

concern the influence of affect on human-computer interaction. Promising results in affective detection

depend on either specialized hardware or personalized models that require prolonged per-user training

to function. Also, a prevalent shortcoming of the previous work on affective modeling stems from the

use of relatively few participants in controlled experimental settings.

The intention of this paper is to study the affective impact onHCI onmore immediate use, inmore eco-

logically valid settings, using common sensing hardware, with more participants than related research.

To do so, we report findings from two crowdsourced user studies providing evidence for the feasibility

of in-the-wild affect detection frommobile interaction, in addition to an analysis of interaction patterns

and their relation to affect. The overall reasoning behind the experimental approach used is to increase

the external validity, and thereby the generalizability of the findings in comparison to previous affect

and HCI related papers. To do so, we designed a set of general purpose mobile touch tasks covering

the bulk of mobile interaction strategies employed in most touch based graphical user interfaces. To

increase quantity and representativeness of the participants, we did online recruiting; participants in-

stalled our experimental software on their own devices, and followed on-screen instructions.

4.4 Experiment I: Emotion Elicitation
Based on psycho-motor theory we envisioned that the physical properties of mobile interactions would

vary with affect. Tomanipulate emotion as an independent variable to study the contribution to mobile

interactionmade by affect, we employed emotion elicitation (seeCoan andAllen [41]). This waywe also

enforce a bigger variance in affect among participants. The purpose of the experiment was therefore

to gather information about participants’ mobile interactions and couple them to their elicited affective

states. The collected data was then used to train a classifier.

To gather data frommobile interactions in the wild, we developed amobile application that participants

installed on their own devices. The application collected demographic information, and elicited either

neutral or positive affect using video. Subsequent to elicitation, participants conducted three touch
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tasks. We refrained from eliciting negative affect, due to ethical concerns.

Participants

We crowdsourced 276 participants who partook in the experiment for US $1. Half of the participants

were from the USA, the rest were from other native English speaking countries or Western Europe.

Ages ranged from 18-70 (M = 30.5), with 54% males, and 92% right-handed.

Apparatus

The application was implemented as an Android application, targeting Android ≥ 4.0. The app sent

relevant user metrics over HTTP every 30 seconds to a server application created using the Python-

based web application framework webapp2 deployed at Google App Engine. The application forced a

full-screen landscape orientation.

Procedure

Participants installed our experimental application on their own smartphones, and followed the same

experimental procedure (see Figure 4.1). Half of the participants were placed in the positive group, and

the other half in the neutral. The order of the touch tasks was randomized.

Self-
Assessment

  3
Touch Tasks

Self-
AssessmentDemographics

RewardElicitationInstall app

Figure 4.1: Overview of study procedure.

Design

The experiment used a between-subject design where participants, after being elicited with either pos-

itive or neutral affect, conducted three touch tasks. We collected affective self-assessments following

both elicitation and touch tasks. Weemployed the self-assessment protocol proposed by Isen et al. [102]:

five affective differentials, measured on 7-point likert scales, with four filler items (refreshed vs. tired,

calm vs. anxious, alert vs. unaware, and amused vs. sober) and one deliberate item (positive vs. nega-

tive).

Emotion Elicitation

Emotion elicitation techniques ormood induction procedures (MIPs), aremethods that allow for scien-

tific investigations of emotions through experimentally controlling emotions [41]. A comparative study

of MIPs by Westermann et al. [238] found that showing movie clips had a larger effect size compared

to other procedures: Film/Story + Instruction is significantly more effective than all other MIPs [238]. It is

also fairly simple to include video content into a mobile application, making movie clips a suitable MIP

for this experiment.
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(a) (b) (c)

Figure 4.2: Three touch tasks: (a) Tapping, (b) Steering, and (c) Scaling.

Choice of Movies

Astudy by Schaefer et al. [188] reportedmean affective assessments followed bywatching a large variety

of movie clips. We conducted a small-scale between-subjects movie-survey (N = 43) surveying four

movie clips eliciting the highest mean positive affect from [188]. The results indicated that a scene

from There’s Something About Mary elicited the most positive affect (M = 6.13, SD = 1.13, on a 1-7 likert

scale, 1=negative, 7=positive), and that the neutral movie clips (two clips from Three Colors: Blue and

one from The Lover) scored significantly lower (M = 4.33, SD = 1.14), Cohen’s d = 1.40; consequently,

this movie configuration was chosen. The duration of the positive and neutral clips were 01:48 and

01:52, respectively. The neutral clips were shown with a 2 seconds black still in between. The order of

the neutral movies was randomized.

Tasks

We wanted to design tasks that characterize the bulk of common operations on touch devices. Studies

on human psycho-motor modeling using general computer mouse tasks include point-and-click, drag-

and-drop, and steering through straight, narrowing, and spiral tunnels [2, 67, 206, 215]. Touch differs

from mouse interaction as drag-and-drop is almost identical to steering and as touch interaction rarely

requires complex steering. In addition, touch interfaces commonly employ multi-finger interactions.

We therefore end up with three tasks: tapping [206], steering [2, 215], and scaling [222].

1. Tapping

This task (see Figure 4.2a) presented a series of circles one at a time, located at different locations in

a circular formation. The participant had to tap the circular targets as fast and accurately as possible.

The task is a common Fitts’s Law exercise described by ISO 9241-400 [103], used in numerous previ-

ous studies. The specific setup, such as order of sequence and number of targets, adhered to MacKen-

zie [206] who reported best practices for this task. This touch interactivity corresponds to regular taps,

frequent when users dial numbers using a number pad or enter text using a soft keyboard.

2. Steering

In this task participants were asked to draw a line through a straight tunnel from left to right (see Fig-

ure 4.2b), as fast and accurately as possible. The trajectory of the participant corresponds to a drag-

and-drop activity, as [215]. Steering behavior is used in mobile contexts for instance when reordering

home screen applications, panning in maps or scrolling web pages.
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3. Scaling

In this task (see Figure 4.2c) participants were asked to scale a circle as accurately and fast as possible.

Scaling was done by expanding the distance from the origin of the two fingers’ initial positions, similar

to [222]. Two-finger behavior is common when browsing the internet (zooming), or navigating maps

(rotating and zooming).

Task Repetitions

To ensure the same task difficulty for all participants regardless of phone size, we used Fitts’s Law [67]

to calculate appropriate target sizes using constant ID’s, hardcoded in the application. We used Fitts’s

Law settings as described by MacKenzie [206]. To use as much of the limited screen size as possible,

and thus also ensuring largest possible target widths, we maximized the distance, D, according to the

phones’ screen sizes. This means that we could calculate appropriate target width sizes, by solving the

Shannon formulation forW :

ID = log2

(
D

W
+ 1

)
⇒ W =

D

2ID − 1

To keep the experiment as short as possible, while ensuring validity we chose to present participants

for the same condition 15-16 times per task, as shown in Table 4.1.

Task IDs Targets Rep./ID Actions

Tapping 8 (2 - 4.1) 15 1 120

Steering 8 (2 - 4.1) 2 8 128

Scaling 8 (2 - 3.05) 2 8 128

Table 4.1: Summary of experimental settings used to ensure the same level of difficulty across devices.

Experimental Conditions

The independent variable was binary affect (positive, neutral), ensured through emotion elicitation.

While some previous studies proposed behavioral predictors trained on any available mobile data; such

as time of day, network-strength, battery-level and so on, we collected measurements related to the

physical properties of mobile device interactions, devised from the theoretical link between movement

and affect. We measured among other things speed and precision of participants’ touch tasks, see Ta-

ble 4.2 for a complete list of dependent variables.

Hypotheses

Coombes et al. [44] reported an effect of affective stimuli on both speed and precision in a square-tracing

task. Their findings suggest that negative valence causes greater haste and/or reduced precision in

motor tasks, which corresponds to Fitts’s Law [67]; that speed and precision are inversely proportional.

Taken above in to consideration in regards to the outcome of present experimentation, we hypothesize

the following:

H1: Exposure to positive affective stimuli will decrease participants’ speed when performing touch

tasks compared to exposure to neutral affective stimuli.
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Sensor Measurement Unit

Touchscreen Finger position (x, y)

Touchscreen Touch area mm2

Touchscreen Precision ]0, 1] ∈ R
Pressure sensor Pressure applied ]0, 1] ∈ R
Timer Duration of action ms

Accelerometer Acceleration m/s2

Gyroscope Change of orientation rad/s

Screen Width× height pixels

Phone Brand, model name

Questionnaire Age years

Questionnaire Handedness left/right

Questionnaire Gender male/female

Self-assessment 5 differentials 1-7 (×2)

Table 4.2: Data from mobile sensors collected during the experiment, as well as user-reported measures.

H2: Exposure to positive affective stimuli will increase participants’ precision when performing touch

tasks compared to exposure to neutral affective stimuli.

H3: Tasks completed immediately after exposure to affective stimuli cause bigger variance across the

experimental groups, than tasks conducted later in the experiment.

Due to the lack of previous studies in this field, it is difficult to hypothesize about whether, and to what

extent, mobile sensor data such as acceleration and rotation correlate with affect.

Analysis

Anomalies

We removed participants with zero variance in their self-assessments (i.e., all differentials were an-

swered the same). We also removed participants who due to technical issues spent unreasonable long

time watching the movies. After removing disqualified participants, 194 participants’ data remained.

Emotion Elicitation

The effect of the elicitation was less significant compared to our movie survey, but the positive group

did report higher positive-negative self-assessments (M = 5.10, SD = 1.48), than the neutral group (M

= 4.77, SD = 1.46); Cohen’s d = 0.22. Figure 4.3 depicts the variance in participants’ self-assessments

for every differential.

Participants’ self-assessments showed to differ immediately after elicitation, but ended up almost iden-

tical post experiment (about 10 minutes, see Figure 4.4), showing a relatively fast decrease of the emo-

tional effect after elicitation. The relative modest, although consistent, increase in self-assessments

compared to the positive group are attributable to the absence of a negative elicited group.
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Negative Positive

Positive elicitation

Tired Refreshed Anxious Calm Unaware Alert Sober Amused

Neutral elicitation

4  5

Figure 4.3: Self-assessments immediately after elicitation: The positive group reported higher assessments
for all five differentials (1-7). The width of the bars represent the percentage of participants who reported
the same value. The graph is fixed at the value 4 (mid of 1–7). The neutral group (striped) reported lower
values for all differentials, and in general had a larger percentage of self-reports at the value 4.

After elicitation After study
Positive induced
Neutral induced

Positive - Negative
Refreshed - Tired
Calm - Anxious
Alert  - Unaware
Amused - Sober

Figure 4.4: Temporal development of self-assessments: Difference between affective differentials (1=nega-
tive, 7=positive) immediately after elicitation, and after the task completion (with emphasis on the positive-
negative differential). The trend is that the groups on average self-report differently immediately after
elicitation, but have similar assessments towards the end of the study, showing the temporal equalization
to the affective base level.
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Feature Description Interpretation

speed Distance traversed divided by duration, in px/ms Higher values equal faster finger interactions

speedID Speed divided by index of difficulty Speed normalized by task difficulty

precision
Precision of activity: tap task uses distance to
center, steering task average distance to center
line, two fingers task distance to target scaling

1.0 equals perfect hit, 0.0 exactly on target edge,
and≤-1.0 completely off target

precisionID Precision divided by index of difficulty Precision normalized by task difficulty

accelerationY Horizontal acceleration force, inm/s2 Movements to left or right

accelerationX Vertical acceleration force, inm/s2 Up- and downward movements

∆acceleration ∆
√

x2 + y2 + z2
Difference in aggregated acceleration, high values
suggest constant shaking

rotationα Rotation around z-axis, in rad/s
Rotations around axis pointing towards
the participant

rotationβ Rotation around x-axis, in rad/s Rotations around the short edge of the phone

rotationγ Rotation around y-axis, in rad/s Rotations around the long edge of the phone

∆rotation ∆
√

α2 + β2 + γ2 Difference in aggregated rotation, high values
suggest constant rotation

pressure Applied finger pressure, from 0-1 High values indicate harder pressure

pressureDecline Difference in pressure between beginning and
end of interaction

Higher values indicate bigger pressure differences

devAngle Difference in angle between fingers and centroid
in beginning and end of interaction

Higher values indicate bigger differences in angles

centerAngle
Angle between horizontal line intersecting the
centroid and line intersecting centroid and tap,
⇒ cos−1(x/r)

0-180 indicates activity on top half of target, and
180-360 on lower half.

approachDirection Position of tap corrected for approach direction Same as centerAngle but corrected for direction
from last interaction

tapMovement Movement of finger during tap Usually very low, indicates slippage in pixels of
finger during tapping

fingerDistance Distance between two fingers Distance between the two fingers in pixels

Table 4.3: The best features selected using recursive feature elimination. Features may be represented by
theirmaximum,minimum, average,median and standarddeviationsmeasured throughout the experiment.
The above 18 feature types represent a total of 46 features, out of the initial 352.

Durations

The neutral group on average completed all three tasks slower than the positive group. There was a

close to significant difference in the task durations for the positive group (M = 420s, SD = 119s) and

neutral group (M = 472s, SD = 255s); t(190) = −1.859, p = 0.065.

Data Reduction

The data anomaly removal resulted in 194 participants out of initial 251. On this data set we were

able to achieve a binary classification accuracy of 67%. However, data analysis and visual inspection

led us to believe that differences in hardware among participants distorted the analysis because of non-

comparable scales and granularity of sensors. Another difficulty we encounteredwas normalizing touch

interactions between phones with difference in pixel depth and aspect ratios. We therefore limited the

data analysis to only include common phonemodels with similar sized screens, thus removing all tablets

and any phone used by less than 3% of the participants. The resulting data contained 55 participants

using seven phone manufacturers: Samsung, Asus, Google, LG, Motorola, and Sony. Whereas this

dramatically reduced the sample, it allowed us to comparemeasurements obtained from phone sensors.

25



4 Affect Detection from Mobile Interaction

Feature Selection

Participants accounted for roughly 6MB of raw data each, primarily because of the very comprehensive

capturing of motion, touch, and timing data. To facilitate the use of machine learning on this data,

every participant’s data needed to be represented by a number of features. The strategy was to include

features found in relatedwork, features derived from emotion theory, in addition to conceivable features

computable using the gathered data.

Some features are applicable for all three tasks (such as applied finger pressure or finger size), while

some only apply to a specific task (such as distance between fingers in the scaling task). Each feature is

represented by several sub-features: the minimum, maximum, average, and median value, with some

variation based on the applicability of the specific feature. Distances were normalized over screen sizes.

We extracted a total of 352 features, predominantly computed using motion sensor measurements.

We used the checklist for optimizing variable and feature selection provided by Guyon and Elisse-

eff [84], which amongst other things suggests normalization (using l2-norm), variable ranking, and

outlier detection.

Feature Relevance

There are several reasons to estimate the individual relevance of the set of features: To facilitate visual-

ization and understanding of the data, reduce storage requirements, reduce training time, and improve

prediction performance [84].

We used recursive feature elimination with five-fold cross-validation on a linear SVM to do automatic

tuning of the number of selected features. This yielded 46 as the optimal number of features. Table 4.3

lists the features with the highest discriminative powers.

Classifier Selection and Optimization

We tried a variety of classification methods; both linear, non-linear, and ensemble methods to clas-

sify affect. Specifically we compared k-Nearest Neighbor (k-NN), Support Vector Machines (SVM)

with Radial Basis Function (RBF) and Linear kernels, Decision Tree (DT), Random Forest (RF), Ad-

aBoost, Naive Bayes (NB), and Linear- and Quadratic Discriminant Analysis (LDA, QDA). The RBF

kernel SVM showed to be the most promising predictor of the inspected algorithms. To find optimal

parameter values, we used grid search on some bandwidth parameters calculated using the Jaakkola’s

heuristic [104]. The decision boundary created using the before-mentioned SVM can be seen in Fig-

ure 4.5.

Results

Classification

Table 4.4 shows the classification accuracies. We conducted three classifications: (1) a binary clas-

sification using the elicited affect, (2) a regression using the 7-point self-assessments protocol, and

(3) a binary classification grouping participants by their self-assessments. Using the assessed affect

(above/below median of assessment) results in a better accuracy than using the experimental groups.

That is not very surprisingly, since participants’ assessments should be closer to the actual affective
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Figure 4.5: Data reduced to two dimensions using PCAwith the decision boundary, created using an RBF-
kernel SVM. Red and blue dots represent neutral and positive elicited participants, respectively.

state, than due to the elicitation. Overall the results are rather promising, showing that mobile device

interactions are fairly efficient indicators of affect.

Variable Classes Chance Result

Elicited affect (P/N) 2 60.0 % 87.3 %

Self-assessment (1-7) 7 1.33 RMSE

Grouped by median 2 56.4 % 89.1 %

Table 4.4: Classification accuracies for participants with similar hardware, N = 55. Results are obtained
using an SVMwith an rbf-kernel (regression or binary classification, measured using RMSE or Leave-one-
out).

Affective Impact on Touch Performance

Analysis showed that 11 features had a significant difference among elicited groups, see Table 4.5. A

t-test showed that all tasks provided measures that are influenced by affect. These results are consis-

tent with the theoretically predicted directions of the parameters, specifically that speed decreases for

positive affect, and that precision increases (see Table 4.5).

Speed

The neutral elicited participants on average had faster interactions speeds for several tasks and mea-

sures (see Table 4.5). On the contrary, the neutral group on average finished all tasks slower than the

positive induced participants due to lower precision (and therefore an increased amount of repeated

interactions), most significant for the scaling task.
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Feature task t df p

speedID_min 3 3.556 39.748 .001

deltaAccelerationAgg_max 3 2.854 45.128 .006

rotationB_max 3 -2.669 38.076 .011

speed 3 2.618 45.192 .012

speedID_avg 3 2.518 43.919 .016

accelerationY_avg 3 2.313 34.883 .027

speedID_med 3 2.250 45.703 .029

accelerationY_med 3 2.233 39.937 .031

speedID_std_dev 1 2.080 21.431 .050

precision_avg 1 -2.077 21.497 .050

precision_min 2 -2.010 51.332 .050

Table 4.5: 2-tailed t-test results for features with significance at .05, with equal variances not assumed.

Acceleration

Neutral elicited, compared to positive elicited participants, performed tasks with higher aggregated

acceleration t(45) = 2.854, p = .006. This was particular dominating on the y-axis. This implies that

participants exposed to positive stimuli performed the tasks with smaller horizontal movements; that

is positive affect led to steadier control of the device.

Rotation

Positive elicited participants account for higher max values of β-rotations (roll), t(38) = −2.669, p =

.011. This means that the highest sudden rotational value around the x-axis for participants, were

higher on average for participants exposed to positive stimuli. Rotations around the other axes followed

same direction, but were not found significant.

Precision

Participants in the positive group performed tasks with higher precision than the neutral, most predom-

inant for the tapping task, t(21) = −2.077, p = .05.

Two fingers

Positive elicited participants performed scaling tasks with bigger distance between their fingers. The

angle between the two fingers and the center of the scaling target was also higher, although not statis-

tically significant, t(38) = 1.918, p = .063.

Taps

The amount of pixels the finger drifted while performing taps showed not to have a statistical significant

difference, t(28) = 1.057, p = .3. The position of the tap showed not to significantly differ, nor if it

was normalized for approach direction.
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Pressure

The data from force sensors showed no significant correlation to affect. The difference in decline of

force throughout experimentation was not significant either.

The above descriptions presented several significant differences of features caused by affect, with speed,

acceleration and precision as the most dominating affective indicators. The analysis showed that speed

and precision of mobile interaction follow psycho-motor theory; that positive stimuli cause slower and

more accurate motor behavior. Additionally, the results show that positive stimuli led to bigger move-

ment (although less change of orientation) with the devices.

Insights

To get insights into the contribution to classification accuracy of each task type and order of tasks, we

compared classification accuracies from predictors trained with different subsets of the data.

As evident in Figure 4.6a, all tasks individually provided classification accuracies over chance level, with

tapping as the most robust task of estimating affect, and steering the worst. The combination of data

from all tasks provided higher accuracy than any of the tasks alone.

Since the order of the tasks was randomized, each task was conducted at different times, relative to the

other tasks. Analysis showed that the first task regardless of type of task, contrary to the hypothesis

H3, scored relatively lower than the second and third (see Figure 4.6b). An explanation to this could

be that the first task imposed a bigger challenge since participants were not completely aware of the

application’s mechanics, and therefore caused noisier data.

The accumulated classification accuracy did not increase when increasing the number of tasks from two

to three, suggesting limiting the number of tasks for pragmatic affect detection.

Order of tasks
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Figure 4.6: The relative contribution to classification accuracy of (a) task order, and (b) type of task
(1.0=standardized classification accuracy of a predictor trained with data from all tasks combined).

A reduction in affect over time was evident, probably both due to the natural temporal reduction of the

elicited affect and because the tasks themselves influenced participants’ affective states (towards neu-

tral). It is therefore natural to questionwhich timewindow of data provides the optimal affectivemodel,

at least in terms of classification accuracy. Comparing classification accuracies of 80 different amounts

of aggregated participant data, showed the highest classification accuracy at 89.1% for 140 seconds of
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data (see Figure 4.7).
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Figure 4.7: Classification accuracy as a function of the temporal amount of data the predictor is trained
with. Classification accuracy peaks at 140 seconds with 89.1%.

4.5 Experiment II: Naturally Occurring Affect
The purpose of the second experiment was to understand the influence of naturally occurring affect on

touch interaction in the light of the insights from the first experiment, with more participants, in order

to validate the features used.

Design

The first experiment showed that an optimal classification accuracy was found using 140 seconds of

participant data, and that the tapping task accounted for the highest discriminative power among the

tasks; consequently this experiment employed only the Fitts’s Law tapping task. To study the detection

of participants’ natural occurring affective states, we ran this experiment without emotion elicitation.

We extended the affective assessments to also include valence and arousal assessment using the pictorial

9-point Self-AssessmentManikin (SAM) [24] to allow higher dimensional affective assessments. Also,

this assessment protocol would not sensitize participants to the study purpose because of the absence of

elicitation in this study design. Experiment II allowed only a specific list of comparable phone models,

ensured through strict settings at the Android app market. In summary Experiment II constituted the

following:

• Within subjects design

• 1 task: Fitts’s Law tapping task

• 140 seconds intended duration

• No induction; naturally occurring affect

• Removed demographics questions

• Five affective differentials and additionally SAM (9-point)
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• Only comparable devices

Participants

127 participants participated for US $0.5, of which 29 also participated in the first experiment 75 days

before. Seven were discarded because of zero variance in their self-assessments (5.5%), leavingN = 120.

Procedure

Because this experiment did not involve emotion elicitation and only contained one touch task, the

procedure was simpler than the first experiment (see Figure 4.8).

Self-
Assessment RewardTouch TaskInstall app

Figure 4.8: Overview of study procedure of Experiment II.

Results

Again an RBF-kernel SVM showed the most promising accuracies, with results over chance level for

all protocols. Table 4.6 shows the accuracies of classifying binary affect (≥ median) for the three pro-

tocols. This way, both groups are of approximately equal size in all classifications. Additionally results

from predicting affects on the full likert scales, using a RBF-kernel Support Vector Regression (SVR)

is shown. The best accuracy was found for valence detection, with 81.7%, or 1.61 RMSE for regression

(valence of 1-9).

Variable Classes Chance Result

Positive-negative (1-7) 7 1.32 RMSE

Valence (1-9) 9 1.61 RMSE

Arousal (1-9) 9 1.88 RMSE

Binary affect 2 54.2 % 69.0 %

Binary valence 2 51.7 % 81.7 %

Binary arousal 2 50.8 % 67.5 %

Table 4.6: Classification accuracies from Experiment II.

Kory and D’Mello [31] noted that affect detection using natural affect usually results in less accurate

models than those constructed from elicited affect; results from this study reflect this finding. It is

encouraging that it was possible to reach classification accuracies above chance level for all protocols,

when training the model on data only from self-assessments of non-elicited participants.

This follow-up study showed that a rather short generic mobile touch task can estimate human af-

fect with above chance-level accuracy, although less robustly than having a set of general tasks. It

also showed that natural occurring affect is detectable using measurements from mobile interaction,

although with less accuracy than elicited. We conclude that it is possible to design a generic affect
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detection task that detects affect above chance level, and that a standard Fitts’s law task with data col-

lection using mobile sensors is likely a good candidate for such a task.

4.6 Discussion
Experiment I showed that the way humans interact with mobile devices does encode affective informa-

tion. The affect is detectable by statistically analyzing features representing physical behavior, inspired

by the literature on psycho-motor theory [21, 44]; speed, acceleration, and precision of touch opera-

tions showed to be indicators of affective states. Using this informationwe developed an affect detection

technique that showed an 89.1% accuracy in binary classification of affect. Experiment II showed that

the insights fromExperiment I could be used to develop amore generic affect detectionmechanismwith

only one touch task. Without emotional elicitation we were able to link touch activity to participants’

self-assessed affective states with accuracies well above chance level for all assessed protocols.

Together the findings show that movement during mobile interaction corroborates psycho-motor the-

ory, and that in-the-wild and affordable affect detection can be implemented using already common

mobile sensors. The technique described in this paper differs from related research by training a model

on data gathered in the wild using commodity hardware, which in turn provides a more generic affect

detection protocol that does not require per-user training.

Hypotheses

Based on findings in experimental psychology (e.g., [21, 44]) we hypothesized that (1) positive affect

would decrease speed of touch tasks, and (2) positive affect would increase precision of touch tasks,

and (3) tasks completed immediately after elicitation would better indicate affect than tasks completed

later.

H1: Positive Affect Decreases Speed

Results corroborated this hypothesis: The speed of fingermovement was significantly slower for partic-

ipantswhowere exposed to positive eliciting stimuli. Normalizing the speedswith the index of difficulty

of the tasks resulted in better indicators of affect. We also found that the overall task completion times

for the positive elicited group were shorter than the neutral group; due to a higher tendency among

positive elicited participants in completing tasks in the first attempt.

H2: Positive Affect Increases Precision

Results corroborated this hypothesis: Precision of tasks (distance to ideal touch activities) was found

significantly higher for participants who were exposed to positive eliciting stimuli. This follows Dar-

winian emotion theory: That accuracy of movement decreases with more negative affect to rapidly

prepare the organism to respond to threatening behavior [129].

H3: Encoded Affect is Stronger Immediately after Stimuli

This hypothesis was not confirmed: Features computed from the first task conducted immediately after

exposure to emotion eliciting stimuli provided worse affective detection accuracies than data from the

two subsequent tasks. We believe this is likely caused by the effect of learning and the difficulty in

conducting tasks that are non-familiar.
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4.6 Discussion

Towards a Generic and Unobtrusive Technique

For generic affect detection we pursued a technique that ideally works independent of people, situa-

tions and devices. The participants we recruited showed a non-significant difference to the population

of the world: comparing age, gender, and handedness with The World Factbook [40], we find χ2 = 1.36,

p < .51, in line with crowdsourcing literature [66]. The proposed technique was verified using data

gathered from uncontrolled settings, such that the whereabouts of participants were unknown, sug-

gesting an at least wider situational applicability than the laboratory. By normalizing interactions for

screen size, and index of difficulty we envisioned that cross-device comparison of interactions would be

possible. Nevertheless we struggled to model affect robustly device-independently. Between devices

comparability of mobile interactions is highly dependent on themobile devices’ physical properties and

form factors. And since different sensing hardware offer different frequency and granularity ofmeasure-

ments, a device-independent affect model based on touch interactions is cumbersome to achieve. The

results from the studies presented in this paper suggest that obtaining high accuracies in affect detection

from mobile interaction requires predictors trained individually by phone model.

We employed established HCI practices [2, 67, 93, 206, 222] in designing the mobile tasks that worked

as affective indicators. We envision that the the proposed affect detection technique could be im-

plemented in virtually any mobile interface that offers different IDs: The validity of Fitts’s Law has

been verified at numerous occasions and interfaces both in experimentally controlled settings and in

the wild [37]. As the proposed technique uses interactions originating from artificial touch tasks, it is

uncertain to what extent the experimental tasks conducted by the participants in our study represent

the actual bulk of touch interactions performed on touch devices. Therefore, it would be interesting

to implement the affect detection technique proposed in this paper in the background of common ap-

plications such as text messaging or other popular applications such as social media or news applica-

tions, making the detection completely subtle. This way learning and boredom of conducting the tasks

would not influence results either, since the affect detection would run on top of existing interfaces

users are already engaging with. Work is still needed on the proposed affect prediction technique in or-

der to seamlessly and robustly provide applications with information about the user’s current affective

state, needed by most real-life applicative scenarios. Our technique showed to peak in accuracy at 140

seconds, although providing above chance-level accuracies from 15 seconds of touch interaction and

onwards (60% accuracy at 15 seconds, see Figure 4.7). While faster than existing models that employ

related subtle affective predictors (e.g., [59, 131]), the duration of the calibration is relatively long for

many real life scenarios. Ideally the technique would deliver instant affective predictions – further work

is needed to achieve this accurately.

Future Work

Experiment I showed that accelerations on the y-axis (horizontal in landscape) and rotations around

the x-axis (vertical in landscape) were significantly different across emotion elicitation. The reason

why activity at these axes stood out, and conversely – why the others did not – is still a question. There

is much room to deeper understand the mechanics of moving/shaking/rotating the devices and its at-

tribute to affect. Because the affective computing literature previously has not concerned movements

in these dimensions, the relation remains uncertain.
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Results fromExperiment II showed that valence classification resulted in a higher accuracy compared to

arousal classification (81.7% vs 67.5%), contrary to related work (e.g., [71, 114]), probably due to the pre-

vious studies’ domains being clearer indicators of arousal: Gao et al. [71] inferred arousal and valence

from touch strokes in a gaming context, and Kleinsmith et al. [114] recognized affect from body move-

ments and postures. Both studies reported classification accuracies contrary to the results presented in

this paper – arousal classifications rates were consistently higher than valence. Intuitively one would

also think that the level of arousal (intensity of emotion) would be stronger encoded in human move-

ment or device interaction than the level of valence (pleasure of emotion), and thus easier detectable.

Since previous work, contrary to this, confirmed this intuition, future investigations in the detectability

of the emotional dimensions are needed: Is this difference due to the boredom of the tasks studied or

the approach to the detection technique?

Out of an ethical concern we decided not to elicit negative affect in the wild, and Experiment I therefore

grouped participants by either positive or neutral elicitation. We believe that having the full spectrum

of affective elicitation would enforce a bigger discrepancy between mobile interaction behaviors, thus

likely providing better classification results.

4.7 Conclusion
This paper presented an affect detection technique departing from psycho-motor theory, that equip

smartphones with the ability to assess human affect, thereby allowing the devices to employ more

human-human like interaction styles. The presented technique addresses limitations in contempo-

rary affect detection techniques: (1) by using only commodity mobile sensors, the proposed technique

avoids requiring specialized hardware; (2) by doing experimentation in the wild instead of in a labo-

ratory with more participants, the external validity increases; (3) by employing a more generic affect

detection technique, we achieve a model that does not require per-user training. In this paper we re-

ported findings from two crowdsourced experiments that studied the implications of human affect on

general purpose touch-based mobile interaction. The results of the two empirical studies presented in

this paper, reflect findings in experimental psychology, and together confirm that affect has direct be-

havioral consequences for interactions with mobile devices. We show that it is possible to detect mobile

users’ affective states using off-the-shelf machine learning techniques. Results show encouraging affect

detection accuracies, revealing at most 89.1% accuracy for binary affect classification.
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ABSTRACT
We introduce the concept of Veritaps: a communication layer
to help users identify truths and lies in mobile input. Existing
lie detection research typically uses features not suitable for
the breadth of mobile interaction. We explore the feasibility of
detecting lies across all mobile touch interaction using sensor
data from commodity smartphones. We report on three studies
in which we collect discrete, truth-labelled mobile input using
swipes and taps. The studies demonstrate the potential of
using mobile interaction as a truth estimator by employing
features such as touch pressure and the inter-tap details of
number entry, for example. In our final study, we report an
F1-score of .98 for classifying truths and .57 for lies. Finally
we sketch three potential future scenarios of using lie detection
in mobile applications; as a security measure during online
log-in, a trust layer during online sale negotiations, and a tool
for exploring self-deception.
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INTRODUCTION
We frequently lie, whether to advance our own aims or to pro-
tect others [13]. Consequently, we are also subject to many lies.
Though this provides ample opportunity for practice, humans
are only slightly better than chance at detecting lies and exhibit
a positive bias in assessing the truth [3]. This deficiency has
led to a century-long interest in lie detection. Visual, vocal,
and physiological features of communication have all been
explored [25], but, to date, natural language processing leads
the way in identifying lies in digital communication. Through
linguistic, psychological, and personal features, research has
demonstrated success in classifying dishonest prose such as
spam and deceptive reviews [18].
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However, writing prose covers only a small part of our digital
input. As we increasingly use our mobile devices for digital
communication, our input also comes to include individual
taps and swipes, such as button clicks, checkbox selection,
and number entry. This leaves much digital activity open
for deceptive behaviour with our approximately chance-level
truth assessments. To this end, we explore a content-agnostic
approach to mobile lie detection, ignoring the content of the
input (i.e., input text), and enabling lie detection across a much
wider spectrum of input.

To enable content agnostic lie detection, we draw on research
demonstrating that a variety of information is hidden in the
details of mobile input, such as stress [14], boredom [19],
and affective states [16]. We explore whether dishonesty and
deception are similarly hidden. Research suggests the pres-
ence of physiological responses to lying, such as increased
hand/finger activity [25]. We hypothesize that these responses,
although subtle, can be identified through smartphone sensors.

We test this across three crowdsourced smartphone studies. In
Study I, we verify that lying on a smartphone exhibits similar
behavioural cues to lying in conversation, and that this can
support the separation of honest and dishonest responses. In
this study, following the paradigm of Williams et al. [26],
participants are instructed to tell the truth or lie, and the cues
are identified through response time. Visible trends in other
sensor data, such as input speed, motivate a second study using
a more natural, spontaneous lying paradigm. The results from
Study II show that acceleration, rotation, and inter-key-press
duration can drive lie classification with an F1-score of .77.
Finally, we validate this result with an additional study, where
we explore our identified features from Study II with a dice
paradigm. In Study III we show 98% precision, and 97% recall
for truths (F1 = .98), and 65% precision and 59% recall for
lies (F1 = .57).

Following the studies, we sketch the concept of Veritaps, an
additional layer of communication to assist mobile device
users in their own lie detection accuracy. Veritaps enables
users to automatically share a belief state indicator alongside
their input. With high accuracy, Veritaps can label truthful
input . We can also label inconclusive taps and swipes

, informing the user that they should use caution or seek
further information in assessing this input. We illustrate the
opportunities of Veritaps across a range of example scenarios,
including (i) automated lie analysis when completing online
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Upon publishing the paper on commodity sensor-

led affect prediction [150], I became interested in

whether ourmethodology could be applied to other

cognitive domains, as is an ongoing trend in Ubi-

Comp (e.g., towards boredom [173], stress [135],

moods [131]). It became clear from analyzing the

data from the affect study, that the specific cog-

nitive construct (e.g., affect dimensions; concep-

tualizations of affect) resulted in quite diverse de-

pendent outcomes (disregarding the task context,

or subject variability). Absolute metrics used in

the model that employed a two dimensional affect

conceptualization (e.g., valence and arousal), does

not necessarily generalize across a broader ‘Howdo

you feel’ from positive–negative conceptualization

(e.g., [102]).

The intention with this paper was thus not to de-

ploy a variation of the same model to predict other

cognitive aspects; rather we were interested if the content-agnostic approach (deploying an app that

generalizes touch interaction; crowdsourcing user studies; feature engineering based on touch data)

was reliant across multiple cognitive aspects. This would not only allow us to claim the methodology

as more robust (i.e., that it can be applied to multiple domains), but would also increase its application.

This chapter is identical to the paper shown to the left [154], presented at CHI’ 18. It presents the

extension of the previous chapter’s methods to prediction of lying, rather than affect. While lying is

obviously a different domain than affect, both are mental processes closely related to cognition; lying

has, for instance, consistently shown to require increased cognitive load, compared to telling the truth.

This stems from the cognitive pressure of creating a real-world consistent story in parallel to expressing

it.

Humans have a bias in assessing the veracity of an utterance, showing a sub-par 54% accuracy in classify-

ing truthful statements, and only 61% accuracy at classifying lies [23]. As this chapter shows across three

crowdsourced smartphone-based studies, lies are also harder than truths to accurately predict compu-

tationally. To emphasize that the approach works significantly better for classifying truthful behavior,

the paper employs the term truth estimation, rather than lie detection.
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5.1 Abstract

5.1 Abstract
We introduce the concept of Veritaps: a communication layer to help users identify truths and lies in

mobile input. Existing lie detection research typically uses features not suitable for the breadth ofmobile

interaction. We explore the feasibility of detecting lies across all mobile touch interaction using sensor

data from commodity smartphones. We report on three studies in which we collect discrete, truth-

labelled mobile input using swipes and taps. The studies demonstrate the potential of using mobile

interaction as a truth estimator by employing features such as touch pressure and the inter-tap details of

number entry, for example. In our final study, we report anF1-score of .98 for classifying truths and .57

for lies. Finally we sketch three potential future scenarios of using lie detection in mobile applications;

as a security measure during online log-in, a trust layer during online sale negotiations, and a tool for

exploring self-deception.

5.2 Introduction
We frequently lie, whether to advance our own aims or to protect others [128]. Consequently, we are

also subject tomany lies. Though this provides ample opportunity for practice, humans are only slightly

better than chance at detecting lies and exhibit a positive bias in assessing the truth [23]. This deficiency

has led to a century-long interest in lie detection. Visual, vocal, and physiological features of communi-

cation have all been explored [228], but, to date, natural language processing leads theway in identifying

lies in digital communication. Through linguistic, psychological, and personal features, research has

demonstrated success in classifying dishonest prose such as spam and deceptive reviews [163].

However, writing prose covers only a small part of our digital input. As we increasingly use our mobile

devices for digital communication, our input also comes to include individual taps and swipes, such

as button clicks, checkbox selection, and number entry. This leaves much digital activity open for de-

ceptive behaviour with our approximately chance-level truth assessments. To this end, we explore a

content-agnostic approach to mobile lie detection, ignoring the content of the input (i.e., input text),

and enabling lie detection across a much wider spectrum of input.

To enable content agnostic lie detection, we draw on research demonstrating that a variety of informa-

tion is hidden in the details ofmobile input, such as stress [135], boredom[173], and affective states [151].

We explore whether dishonesty and deception are similarly hidden. Research suggests the presence of

physiological responses to lying, such as increased hand/finger activity [228]. We hypothesize that

these responses, although subtle, can be identified through smartphone sensors.

We test this across three crowdsourced smartphone studies. In Study I, we verify that lying on a smart-

phone exhibits similar behavioural cues to lying in conversation, and that this can support the separation

of honest and dishonest responses. In this study, following the paradigm of Williams et al. [240], par-

ticipants are instructed to tell the truth or lie, and the cues are identified through response time. Visible

trends in other sensor data, such as input speed, motivate a second study using a more natural, sponta-

neous lying paradigm. The results from Study II show that acceleration, rotation, and inter-key-press

duration can drive lie classification with an F1-score of .77. Finally, we validate this result with an ad-

ditional study, where we explore our identified features from Study II with a dice paradigm. In Study

III we show 98% precision, and 97% recall for truths (F1 = .98), and 65% precision and 59% recall for lies
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5 Truth Estimation from Mobile Interaction

(F1 = .57).

Following the studies, we sketch the concept of Veritaps, an additional layer of communication to assist

mobile device users in their own lie detection accuracy. Veritaps enables users to automatically share a

belief state indicator alongside their input. With high accuracy, Veritaps can label truthful input . We

can also label inconclusive taps and swipes , informing the user that they should use caution or seek

further information in assessing this input. We illustrate the opportunities of Veritaps across a range

of example scenarios, including (i) automated lie analysis when completing online forms, (ii) increased

richness of trust in mobile messaging, and (iii) as a prompt to prevent self-deception.

We present the following contributions:

1. An exploration of lie detection across mobile devices, regardless of the input content.

2. Results from three studies, showing dishonesty affects user interaction with mobile devices.

3. Convincing classification rates of lies in mobile entry, potentially improving a user’s ability to

judge the veracity of others’ mobile input.

4. Veritaps: a concept that allows users to share their belief states with other users and applications.

5.3 Related Work
Our work explores lie detection in mobile input. Specifically, we are interested in classifying lying

through sensor data, rather than actual user input, in order to make lie detection available for a broader

range of mobile input types.

Classifying Behaviors from Mobile Sensors

Research shows that complex cognitive and affective phenomena can be inferred using commodity sen-

sors. The linearity of swiping, for example, correlates with emotions during game-play [71]. Similarly,

speed, acceleration, and precision in touch input are indicative of affective states [151]. Mobile activity

can also provide insight into a user’s thinking, where app activity, battery level, and time of day are

strong correlates of boredom [173].

Based on the idea of using mobile sensor data to support real-time inferences about human cognition,

we explore indicators of lying in mobile sensor data.

Lie Detection

Deceptive behavior carries a range of verbal and nonverbal cues, and research has explored various

strategies for using such cues to uncover deception. Among the most famous of these strategies is the

polygraph. Polygraphs examine the subject’s heart rate, galvanic skin response, respiration, and blood

pressure as physiological markers of deception. It is widely accepted, however, that the interpretation

of physiological responses and, thus, polygraph results, is ‘a complex clinical task’ [186]. The debate

continues regarding the accuracy and applicability of polygraph testing. For example, a large body of

research assessing the validity of polygraph techniques uses ‘mock crime’ scenarios, which inherently

lack the consequences of real crime scenarios, and thus call into question the validity of their results [45].
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5.4 Study I: Simple Lies

Other work has provided evidence on verbal, visual, and vocal cues to deception (e.g., [228]). Zuck-

erman et al. [253], for example, suggested that lying is a more cognitively complex task than telling

the truth, requiring liars to formulate internally and externally consistent events. These greater cogni-

tive challenges result in greater response latency, more hesitations, increased pupil dilations, and fewer

heartbeats.

More recently, research has shown that lies include more complex imagery, longer words, and a greater

number of pauses than truths [7, 87, 228]. This has led to automatic lie detection in text. Mihalcea et

al. [146], for example, reported 71% accuracy in lie detection across three text corpuses. Ott et al. [163]

used linguistic features (such as average word length or misspelling rate), psychological features (such

as social or emotional clues), and personal features (such as references to money or religion), to classify

spam and deceptive reviews.

Lying has also become a subject of exploration in crowdsourcing studies. Gino et al. [74] asked par-

ticipants to report the outcome of random events (such as dice rolling or coin tossing). They identify

lying across all of the input based on the deviation from the expectedmean, offering an insight into lying

across an entire study.

Opportunities for Lie Detection in Smartphones

While current research points towards physiological- and content-based lie detection, a common and

robust strategy to lie detection has yet to be derived. We look for a commodity, content-agnostic ap-

proach to lie detection, that can be used to identify deception in basic mobile input; taps and swipes.

We hypothesize that the bodily influences of deception can be measured using sensors available in con-

sumer smartphones, making commodity lie detecting feasible.

(a) (b) (c) (d)

Figure 5.1: Example screens from the experimental application used for Study I. The figures show (a) a
directed trial pre-screen, (b) a choice trial pre-screen, (c) a trial with sliders - where the participant should
slide the ‘RED’ slider, in this case, and (d) a trial with buttons - where the participant should select the
‘RED’ button, in this case.

5.4 Study I: Simple Lies
Research shows that lying takes longer than telling the truth [227]. A common explanation is that the

construction of a lie forces additional cognitive load compared to telling the truth, and thus causes longer
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response times.

Study I had two goals: (i) to establish whether lying through touch interaction on mobile devices pro-

duces results that are consistent with verbal responses in a laboratory, and (ii) to demonstrate the feasi-

bility of separating honest and dishonest activity using mobile interaction data. We ran a mobile crowd-

sourced study of an experimental paradigm originally developedWilliams et al. [240]. The participants

were asked to either lie or tell the truth about the color of the screen, using commonmobileUI elements.

This paradigm offers an experimental procedure for studying both instructed and voluntary lies, while

maintaining an even distribution of lies and truths. This provides a simple method for initially investi-

gating differences in interaction patterns between telling lies and truths using mobile devices.

Task

The experiment progressed as a series of random-ordered trials, each beginning with an objective:

TRUTH, LIE, or CHOICE. Directed trials (where participants were told to LIE or tell the TRUTH)

presented a continue button, and the CHOICE trials had two buttons prompting the user to choose

between lying or telling the truth (see Figures 5.1a and 5.1b).

Upon establishing the objective, participants were presented with a screen with a red or blue back-

ground. The participant’s objective was written as a visual reminder at the top of the screen. The UI

controls (button or slider) appeared at the bottom of the screen (see Figure 5.1d). The order of UI

controls was randomised. Participants then had to activate the correct UI control according to (a) the

color of the background, (b) the text on the UI control, and (c) the trial’s objective (see Figure 5.1c).

Trials were separated with a white screen for 1s. Participants were instructed to respond as quickly and

accurately as possible. Participants were asked to lie and tell the truth half of the time each in the choice

condition.

The task was similar to the original study [240], with the exceptions that: (i) instead of a lab-based

study, participants were recruited online and completed the experiment on their own phones, (ii) vocal

responses were replaced with selections using buttons or sliders, and (iii) the colors were changed to be

visible for color blind (red and blue, instead of red and green).

Design

The study used a 2×2×2within-subjects design. The independent variables were honesty of response

(lie vs. truth), type of instruction (directed vs. choice), and UI (button vs. slider). The dependent

variable was response time. Each participant did a total of 192 trials, with 64 from the directed to lie

condition, 64 from the directed to tell the truth condition, and 64 from the choice condition. In half of

the trials participants responded by tapping a button, and the other half by dragging a slider. The order

of trials was randomized. The study took 15 minutes on average.

Participants

We recruited 100 participants from Mechanical Turk, aged 19-59 (M = 31), 33 females. Participants

installed our experimental application on their own Android smart phones (Android version ≥ 6.0),

and followed onscreen instructions. Participants were reimbursed with $2.00 USD.
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5.4 Study I: Simple Lies

To ensure only qualified participation, we (i) required 90% HIT approval, (ii) had participants pass a

qualification test about the task before starting theHIT, (iii) stored a unique device ID to avoidmultiple

participations, and (iv) ensured that app and MTurk HIT participation count matched.

Data

Of the 100 participants, ten never lied and one never told the truth in the choice trials, and were there-

fore removed. The remaining 89 participants performed a total of 16,671 trials. We removed (i) the

first 10 trials per participant as warm-up rounds, (ii) 460 trials (2.9%) that lasted more than 4 seconds,

and (iii) 623 incorrectly answered trials (3.9%). The analysis is made on a resulting data set comprising

14,788 trials.

Results

Lying took longer than telling the truth, both when answering with a button and a slider, andwhen being

told whether to lie or when given the option to choose (see Figure 5.2).
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Figure 5.2:Response times for telling truths and lies using twodifferentUIs both for the directed and choice
conditions. Error bars show 95% confidence intervals. It took on average longer to tell a lie for both UIs.

Except for directed trials with the slider, participants took significantly longer when lying (on .5, see

Table 5.1). The effect was larger when participants chose whether to lie or not.

Condition UI F df p Cohen’s d

Directed Button 5.05 176 .026 * 0.34

Directed Slider 3.03 176 .084 0.26

Choice Button 8.94 176 .003 ** 0.45

Choice Slider 7.00 176 .009 ** 0.40

Table 5.1: Results from anANOVA comparing truths and lies. Lying caused significantly longer responses
for close to all conditions, with the largest effect for choice trials.
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Summary

The results show that constructing a lie is a cognitively harder task than simply telling the truth, re-

flected by the increased response time when participants were asked to lie about the background color

of a mobile UI. This corroborates the findings of Williams et al. [240]. While the data sourced do not

allow for an effective binary discrimination of truth and lies per entry, the results imply the feasibility of

separating honest and dishonest activity using mobile interaction data, specifically timing in this case.

We further investigate if this difference can be observed for other parameters in Study II-III.

Although not statistically significant, we observed that slider interactions were performed faster (by

4.4%) when telling the truth; F (1, 175) = 2.16, p = 0.14. Although mean response times pertaining

to honest and dishonest behaviour were distinguishable in this study, we were keen to explore whether

additional features become more prominent with (a) spontaneous lying, and (b) a more natural distri-

bution of truths and lies (i.e., [225]).

5.5 Study II: Ultimatum Game
We ran a second study to analyze natural deceptive behavior. We employed a mobile version of the

Ultimatum game, a commonly studied task in behavioral economics. In this variant the participants are

offered an incentive to lie.

In the Ultimatum Game, the first participant (the proposer) receives a sum of money and proposes a

division of the money between themselves and the second participant (the responder). The responder

then either accepts the division, giving both participants the proposed funds, or rejects it altogether

resulting in no payout for any of the participants. In the variant developed by Besancenot et al. [18],

which we use, the proposer is given the opportunity to lie about the amount of allocated funds. There-

fore, for each trial, the proposer to the responder (i) declares the amount that was allocated and (ii)

proposes a division. This provides a monetary incentive for the participant to understate the provided

funds, enabling the study of naturally occurring dishonest behavior.

Participants

We recruited 41 participants from the USA from Mechanical Turk, aged 22–63 (M = 33); 18 females,

36 right-handed. Participants were told that they were taking part in an economics experiment. Par-

ticipants installed our experimental application on their own Android smart phones (Android version

≥ 6.0), and followed onscreen instructions. Participants were reimbursed $1.00 USD, in addition to

the money collected throughout the experiment, which ranged from $1.74-$4.52 (M = $3.35). The

experiment took at most 10 minutes. We employed the same qualification standards as for Study I.

Design

Each participant did 10 trials of proposals, excluding a warm-up round. The independent variable was

funds allocated (25-99¢). The dependent variables were declared allocated funds and the proposed

division of money. Additionally, throughout the trials, the mobile application collected data related to

interaction with the UI using touch, pressure, accelerometer, and gyro sensors.

All participants had the role of the proposer. Participants were paired with an AI in the responder role,
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5.5 Study II: Ultimatum Game

presented as the human worker Mary with a fictional worker ID. Mary would simulate human latency

when responding to proposals, and would accept or reject proposals based on the available heuristics

and basic economic and moral behavior: greed was punished while fair divisions were rewarded.

The AI was implemented as nine simple steps that would accept offers deemed favorable, or refuse

offers that were either directly too low (< 25¢), or too unfair (3P < F ), where P is the proposal,

andF the declared funds. The AI would also reject offers when they repeatedly showed lower declared

funds than expected froma randomsample. If all steps passed, a 75% chance of acceptancewas returned,

to introduce some degree of unpredictable behavior.

Mary did not know whether the participant was in fact honest or dishonest, but instead reasoned based

on the distribution of declared allocations from all trials. Mary accepted 86% of all proposals made (very

similar to human behaviour observed in other of the Ultimatum game studies [160]).

Procedure

Upon installing and opening the experimental application, participants were informed that they were

playing the proposer and were paired with our AI (under the guise of another crowdworker). For each

of the 11 rounds, an amount of US cents between 25 and 99 were allocated to the participant. The

participant would then, using num-pads, first state the amount of allocated funds (about which they

could lie), and then propose a division (see Figure 5.3a).

(a) (b)

Figure 5.3: The experimental application used in Study II. Figures show (a) the screen where participants
declare the allocated funds and propose a division, and (b) a positive response from the AI, Mary, acting
as another human worker.

Shortly hereafter, the participant would receive a notification of whether the responder (Mary) had

accepted the division (see Figure 5.3b). Participants collected money throughout the trials, and were

paid according to their final score to create a monetary incentive to lie.
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Data

An entry was defined as the window of time between when the proposal screen would appear (see Fig-

ure 5.3a), and until the participant hit OK. The resulting data set comprised 41 participants and 410

entries.

Participants lied about the available funds on average 35.1% of time; this was most prominent when the

allocated funds were high. Seventeen participants never understated the available funds (59% lied at

least once). Three participants understated at every entry. Participants discounted the actual endow-

ment by 17.4% on average. The crowdsourced participants appear more loyal than laboratory partici-

pants (Besancenot et al. found that on average 88.5% of the proposers discount the actual endowment

by 20.5% [18]); in this study we observe that 41% of the participants never lied at all, consistent with

some feedback we received, such as:

It seemed fair to me to split the money evenly. I don’t believe in dishonesty so I did not want to lie

– Crowdworker

Classification

We built a binary truth/lie classifier based on the data obtained. We defined a lie as an entry where the

declared funds were lower than the allocated.

Choice of Classifier

We tried a range of classification algorithms, including ensemble methods. An SVMwith a radial basis

function kernel provided the most promising classification accuracy. Hyper parameters were selected

using grid search. The classifier was developed in Python using the ML library Scikit-learn.

Feature Generation

Features were chosen based on previous work in classification of human factors using mobile devices

(e.g., [151, 173]), such as speed, precision, rotation, and acceleration (sampled at 50 Hz). We also in-

cluded features from empirical observations of deception (e.g., [228]), such as immediacy and response

length.

Feature Selection

We clustered our features in related groups (see Table 5.2), and handpicked the effective predictors for

truth classification. The feature groups acceleration and num-pad presented the most viable features for

classifying truths and lies, and were thus shown in our final classifier (i.e., manual feature selection).

Performance

Wemeasure howwell our predictorworks, by reporting the average binaryF1-score obtained over a ran-

domized 5-fold cross validation. TheF1-score can be interpreted as a weighted average of the precision

and recall, where an F1-score reaches its best value at 1 and worst score at 0, and is defined as:

F1 = 2× precision× recall
precision+ recall
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Feature Group Features Description

Timing immediacy t before first event
response entry duration

Finger size touch area finger contact size

Num-pad key dynamics see [59]
hold-time button hold-down time
tap precision distance to target center

Button clicks hold-time button hold-down time
click area quadrant activated
backspaces number of deletions

Done-button taps number of times
precision distance to target center
hold-time button hold-down time
pressure screen pressure
click area quadrant activated

Acceleration x-, y-, and z a for all axes

Rotation α-, β-, and γ ω around all axes

Signal Magnitude
√
x2 + y2 + z2 for both a and ω

Table 5.2: Feature groups and specific features for each group.

where precision and recall relate to true positives (TP), false positives (FP), and false negatives (FN)

as:

precision =
TP

TP+ FP
, recall =

TP
TP+ FN

Using a randomized 5-fold cross validation we obtain precisions of 81% and 66% for truths and lies re-

spectively. The rates for recall are 88% and 52% for truths and lies respectively. This yields an average

F1-score of .77; .81 for truths and .66 for lies. These performances are well over both chance level (.50),

the baseline (.65), and human performance [23].

How Lies and Truths Differ

Next we report on how interaction with the mobile UI differed between honest and dishonest entries,

in particular features that varied with the honesty of the interaction. We inspect the distribution of

features using density plots: blue areas represent the prevalence of honest entries; red areas represent

dishonest entries (thosewith deflated declared funds). Note that a single feature seldom alone is enough

to support classification. Instead combinations of featuresmake up the decision, which is not clear from

a single feature’s distribution.

Acceleration

We observed that a low mean acceleration was most frequent among honest entries. This suggests that

honest entries resulted in less hand movement by the device-holding hand (their non-dominant hand).

This was true both on the x-axis, and the z-axis (see Figure 5.4). This follows findings from an existing
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5 Truth Estimation from Mobile Interaction

study of non-phone deceit [228], which showed that dishonesty causes increased hand/finger activity.

0 0.12m s2

Dishonest Honest

Figure 5.4: Mean acceleration on the z-axis during an entry. Entries towards the low spectrum are pre-
dominately honest.

Num-pad

For each entry an amount of cents between 25 and 99 was allocated, requiring participants to input a

two-digit number in the declared input field using a num-pad. We observe that the duration between the

first key event and the second key event is higher for dishonest entries (see Figure 5.5). This suggests

that participants decide whether to lie, and by how much, per individual digit, rather than per input.

0 8000

Dishonest
Honest

ms

Figure 5.5: Duration between first and second num-pad key event. Truthful entries show shorter durations
between the first two num-key presses.

Ournum-paddialog implementation could be dismissed by tapping outside of the num-pad area (instead

of clicking ‘OK’). Additionally, if, after having entered a number, the participants decided to correct

their entry, additional ‘OK’ taps could be performed. The more taps on the ‘OK’ button in the num-

pad, the more likely an entry was to be honest (see Figure 5.6); we almost exclusively observe dialog

dismissal amongst dishonest entries, and we almost only find honest entries for high number of taps on

‘OK’1.

−1 4N

Dishonest
Honest

Figure 5.6: Total number of taps on the ‘OK’ button in the num-pad. Honest entries tend to contain more
taps on ‘OK’; almost only dishonest entries closed the dialogwithout confirming ‘OK’; almost only honest
entries reopened the dialogue and pressed ‘OK’ again.

1This may also suggest that honest users lied initially, before correcting their input to the truth. Dishonest users may show
reluctance to ‘confirm’ their lie, and thus avoid pressing ‘OK’. Further research is needed to verify this behaviour.
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Summary

Study II shows that the way people interact with their mobile UI can change with the level of honesty of

the action. Specifically, movement of the phone (acceleration) and num-pad interactions varied. This

increases our confidence in the feasibility of using sensor data to estimate the veracity of input. We built

a classifier based on smartphone sensor data and achieved an averageF1-score of .77. This classification

accuracy shows that mobile sensor data can be a promising path towards lie detection. To validate these

results, and to assess whether the results generalize to other settings, we ran a third study.

5.6 Study III: Yatzy Game
Both Study I and Study II showed that we can observe differences in interaction data between lies and

truths using mobile UIs. In Study I, participants were instructed to lie and response time was the only

distinguishing feature. In Study II, participants were made aware that they could lie without punish-

ment, resulting in a higher proportion of lies than expected in everyday interaction [225]. From this

study, a wider spectrum of mobile input became valuable features for classification.

In order to validate the classification results from study II, we ran a third study. This study still facil-

itated spontaneous lying, but made no reference to dishonesty in its description. The study required

participants to play a dice-based game on a mobile device, inspired by a widely used experimental task

in dishonesty research. The task supported spontaneous lying, and allowed for automatic labeling of

discrete trials as either honest or dishonest. The participants were rewarded based on their reported

score, thereby making lying profitable. We did not encourage participants to lie, and given that all par-

ticipants passed an initial qualification test about the rules, we can assume that participants were aware

of their wrongdoings. Overstating scores could provoke both moral dissonance and fear of not having

the crowdwork approved (and thus not getting paid); we hypothesize that this manifests itself in the

participant’s mobile interaction.

Task

A commonly used task in studying deceit and dishonest behavior requires participants to report on the

outcome of randomized events such as rolling a die, or tossing a coin (see [92] for an overview). To

encourage lying, participants are rewarded relative to the reported outcomes. The actual outcomes of

the events are only known to the participants. This paradigm supports inferences about deceit across

all reports (based on deviation from the expected mean) but the individual reports cannot be labeled as

honest or dishonest. To support the training of a classifier, we used a dice rolling paradigm, but made

changes to allow for labeling of discrete events. Additionally, we wished to collect data across a range

of taps and swipes, so as to cover a wider spectrum of typical mobile input. The application required

participants to swipe through lists, tap desired selections, and tap numbers on a num-pad.

We developed a mobile dice game, similar to the popular game Yatzy. The game consisted of 12 rounds

of rolls with five dice. Each round required an initial roll, and two potential re-rolls of selected dice (see

Figure 5.7a). Participants then chose from a list of possible combinations (such as sixes, or three-of-a-

kind) and entered the score that a certain combination would yield (see Figure 5.7b). This was typically

the sum of the dice. There was a total of 12 combinations; one for each round. Each combination could
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only be selected once. If the final dice of a round did not equate to a combination, then any combination

could be selected and a score of 0 should be entered. The game recorded both the participants’ actual

score and their reported score. The participants were rewarded based on the sum of their reported

scores, providing an incentive to lie:

$0.50 : below 150 points

$1.00 : between 150 and 200 points

$2.00 :more than 200 points

Participants were briefed about the rules and scoring system of the game. Prior to taking part, par-

ticipants did a qualification test, to ensure that they understood the rules. A help text was available

throughout the game for assistance. After completing the experiment, a debriefing screen explained

the actual research agenda.

(a) (b)

Figure 5.7: The experimental application used in Study III. Figures show (a) the home screenwhere partic-
ipants roll and select dice (selected dice are blue), and see the score board, and (b) the entry screen where
combinations and amount of points are entered. The entry screen appears after finishing three rolls and
pressing ‘select combination’.

What Constitutes an Entry

In order to train our classifier, we labeled each entry as either a lie or a truth. When beginning a round,

the participants were presented with the home screen (see Figure 5.7a). After rolling the dice the third

time, and pressing Select Combination, they were presented with the entry screen (see Figure 5.7b). We

define an entry as the time frame from when participants were presented with the entry screen, until

and including they hit Done. During an entry, the user had to pick a dice combination from a list, and

enter the amount of points that the combination and the dice roll amounted to. Swipes were recorded
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when scrolling the list of combinations; taps were recorded when entering the amount of points on a

num-pad. IMU sensors recorded motion data throughout the entry.

We expected three possible outcomes of an entry in the game:

1. The participant reports their score accurately (Truth).

2. The participant purposefully inflates their score (Lie)

3. The participant unintentionally inflates the score (Truth - the participant does not intend to de-

ceive)

In an attempt to differentiate (2) and (3), lies were defined as scoreenter − scorereal > 4. This was

informed by the mean negative deviation from the real score (i.e., when participants under-reported

their score,M = -3.4).

Participants

We recruited 51 participants from Mechanical Turk, aged 22-57 (M = 31.5), 20 females. Participants

were told that they were reviewing a mobile game before its launch. Participants were paid accord-

ing to their score, ranging from $0.50 US to $2.00 US, to incentivize lying. We employed the same

qualification standards as for Study I.

Apparatus

We developed the application for Android version 6.0 and higher. To obtain comparable data between

participants, we excluded tablets and other large-screen devices. A pilot study identified touch pressure

level as a good predictor of truthful input, so for the final study we invited only participants who had

phones with pressure sensors. This limited the phones to specific models from Google, LG, Motorola,

HTC, and OnePlus. We also excluded mobile devices that could not report rotation or acceleration

data.

Results

Fifty-one participants took part in the study, completing 561 unique entries, with 44 labeled as lies (8%);

31% of the participants lied at least once. The average lie provided the participant with 15.6 surplus

points. Conversely, nine entries reported scores below the actual score, with an average shortfall of 3.4

points.

Our classification results show 98% precision, and 97% recall for truths (F1 = .98), and 65% precision

and 59% recall for lies (F1 = .57).

Classification

The classifier was built using the same approach as Study II.

Data Cleaning

We removed participants whose entries indicated that they did not understand the rules, or deliberately

rushed the game to optimize payment (amounting to four participants). No participant lied on every
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single entry.

We removed entries with entered points lower than the actual score (amounted to nine entries, mean

shortfall -3.4 points). While they lack an intention to deceive, they could represent either miscalcula-

tions or lack of attention with the task. We remove them because correct classification is impossible.

We also removed all first entries to account for participants learning to use the interface.

The final data set comprised 51 participants, and 561 entries. The lies covered 44 entries, amounting

to 8%. We normalized features per participant (using L2), and standardized the data set along all axes.

Feature Generation

We generated the same features as in Study II (see Table 5.2). Additionally, we computed features

originating from interactions with the list of dice combinations as well as pressure data (see Table 5.3).

Feature Group Features Description

List clicks on list n clicks

Swipe distance d(p0, pn)

duration tn − t0

length
∑

d(pi, pi+1)

linearity r2, linear regression
slope linear regression
speed length / duration
number n swipes

Pressure swipe pressure screen pressure
button pressure screen pressure

Table 5.3: Additional features used for the classifier in Study III.

Feature Selection

Again we handpicked feature groups; acceleration, pressure, and num-pad presented the most viable fea-

ture groups for the classification task.

Weused recursive feature reduction to eliminate specific bland featureswithin each feature group. From

the initial set of features, 11 remained:

• Num-pad: button precision (mean, min)

• Pressure: button pressure (mean, max, SD, pressure)

• Pressure: swipe pressure (mean)

• Acceleration: x-acceleration (mean, max, SD)

• Acceleration: z-acceleration (SD)

Both Study I and previous work explicitly consider timing as a key predictor of lying [207]. While

promising in an administered setting, timing is not robust to the practicalities of day-to-day mobile

50



5.6 Study III: Yatzy Game

device usage, where distractions can easily occur mid-input. For this reason, we did not use timing, or

response length, as features in our classifier. Additionally, our focus for this study is on lie classification

through physiological factors present in sensor data.

There is, however, a temporal dimensionwithin the accelerometer data. Lies took, on average, longer to

enter than truths, resulting inmore accumulated acceleration data for dishonest input. The acceleration

statistics that we computed go some way towards normalizing the effect of this increase in data. To

reduce the effect further, we checked for entries longer than three standard deviations of the mean

(there were none).

Performance

As Table 5.4 shows, we achieve high performance in classifying truths (F1 = .98) and above-chance

accuracy for lies (F1 = .57). To clarify our results, we provide classificationmetrics for two other “clas-

sifiers”. Coin-toss demonstrates classification at random (i.e., tossing a coin), and Naïve reports truth

for every input (i.e., the most common observation; ZeroR). We observe that our classifier performs

well above the random and the naïve approach.

Classifier Precision Recall F1-score

Veritaps Truth .98 .97 .98

Lie .65 .59 .57

Avg .96 .95 .95

Coin-toss Truth .92 .50 .65

Lie .08 .50 .14

Avg .85 .50 .61

Naïve Truth 1.0 .50 .67

Lie 0.0 0.0 0.0

Avg .92 .46 .62

Table 5.4: Performancemetrics of classification results. To compare, we report the theoretical scores from
a randomized/Coin-toss and a naïve/ZeroR classifier. The scores show the mean score from a 5-fold cross
validation. Average is computed with respect to the skewed distribution of truths and lies.

How Lies and Truths Differ

A truth took on average 13.0s (SD = 12.0) to complete. A lie took on average 20.8s (SD = 30.6) to

complete. Lies were most prominent in the beginning of the experiment; two thirds of all lies were

made in the first half of the experiment.

To understand the fundamental differences between an average lie and an average truth, we pick a rep-

resentative entry fromboth groups. The entries chosen are the two observations closest to the centroids

of two k-means clusters. Here, we explain how the most influential features varied.

51



5 Truth Estimation from Mobile Interaction

Num-pad

Weanalyzed a range of num-pad entry features, including key dynamics, precision, and hold-down time.

Only precision proved to be an effective predictor - the truthful entry records taps with closer proximity

to the button’s center.

Pressure

Most entries comprise two num-pad taps, excluding an additional tap on the done button. The truthful

entry showed a higher average pressure, and also an increase in pressure between the taps. The lie

showed a lower average pressure, and a decrease in pressure between taps.

Acceleration

Acceleration varies between lies and truthful entries, mainly on the x-axis. Specifically, the mean, max,

and SD of x-axis acceleration contribute effective indication of truth in input. For these examples of

entries, the mean x-acceleration is higher for the lie, which hints that the honest entry enforced a more

steady hand during interaction, as in Study II.

Summary

Our results demonstrate an F1-score of .98 in classifying truths. We also achieve an F1-score of .57

in identifying lies. While promising, the recall rate of lies (59%) renders the technique impractical for

binary lie-detection. This is in-line with other so-called lie detectors, such as the polygraph, that re-

port indicators associated with lying for interpretation by a practitioner, rather than a binary classifica-

tion [186].

Research has shown that we are only slightly better than chance at identifying lies when judging state-

ments with an evenly distributed truth-value [23, 228]. Instead of acting as a standalone lie detector

then, our results can provide cues to assist us in improving our lie detection accuracy (as in polygraph

tests). Whereas, typically, we would need to assess the truth of any input information, the sensor data

associated with mobile input allows us to identify only the subset of information that needs further con-

sideration. We can pre-identify a large part of input as true. This can reduce the space of statements that

require approximately chance-level lie analysis and make us significantly more accurate at lie-detection

overall.

5.7 Veritaps for Mobile Input
We playfully propose to use the results as an additional layer of communication, Veritaps, helping a

recipient determine the veracity of information from a sender. Veritaps marks both truthful input ,

and questionable input . If the input is questionable, then the recipient can choosewhether to request

additional information from the sender. In this way, Veritaps can limit the space of interaction that

requires further consideration and reduce veracity uncertainty in communication.

We sketch the use of Veritaps across three different styles of mobile interaction: data entry, inter-

personal interaction, and personal reflection. Across these three domains, we provide concept use

cases, based on the styles of interaction we explored in our studies, and highlight the potential ben-

efits of increased accuracy in veracity judgment.
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Mobile Data Entry

We performmany tasks on our mobile devices for which security is paramount, such as online banking.

These tasks involve interactions that do not rely on prose, but instead focus on taps and swipes for

navigating menu items and entering codes. This renders natural language processing techniques for lie

detection inapplicable. Using Veritaps, however, can provide additional layers of security.

eInsurance

SELECT ITEM

ENTER PURCHASE YEAR

ENTER ORIGINAL PRICE

OK CANCEL

(a)

eCar

SELECT BRAND

SELECT MODEL

SELECT CONDITION

ENTER YEAR

OK CANCEL

ENTER PRICE

(b)

Figure 5.8: Example Veritaps applications: (a) Veritaps can be used to verify the veracity of an insurance
claim, (b) Veritaps may verify the declared condition of a vehicle upon creating an online listing.

Veritaps could provide services with an additional layer of scrutiny for online forms. For example, by

adding a mobile entry step to the submission process insurance companies could use Veritaps to flag

submissions that need further attention or further supporting documents (see Figure 5.8a). Online

marketplaces could in a similar way use Veritaps to flag suspicious classified advertisements (see Fig-

ure 5.8b).

Interpersonal Communication

We envision that Veritaps could also afford a layer of inter-personal communication, such as increasing

confidence in conversations with strangers, or as a playful dimension between friends. For example,

after engaging the seller of a car, Veritaps could assess the veracity of the chat messages, ensuring that

information presented privately beyond the initial listing is also verified.

Personal Reflection

Self-deception is common and natural, and believed to relate closely to ethical fading; the decisions we

make, justified by self-deception, that are ethically questionable [219]. Veritaps can provide prompts

against self-deception. For example, you could install a Veritaps browser plugin that prompts you every

53



5 Truth Estimation from Mobile Interaction

time you exhibit deceptive behavior. The plugin could helpmake you aware of how often you are finding

excuses for canceling on your trainer, or neglect your diet.

5.8 Discussion
The results of the empirical studies, as well as the Veritaps concept, raise several discussion points.

They concern the studies, the concept, and the ethical concerns of lie detection.

Our classification accuracies across a broader range of mobile input are relevant only for spontaneous

lying. In our directed lying study (Study I), only response time provided a distinguishable feature. For

this reason, we cannot speculate about Veritaps’ accuracy for habituated lying. Classification accuracy

would likely be low here, however, as we believe the spontaneity and guilt of lying creates the physio-

logical features that empower our classification. We also assume that participants made their decision

to lie during the entry step of the task and that we, therefore, capture this moment. Currently, we can-

not separate the effects of this decision moment from the entry itself, and thus cannot be certain of the

efficacy of one without the other. This needs further exploration.

Because pressure data contributed an important feature in our classification, we required participants

to have phones with pressure sensors. This limited the applicable participants, as only recent Android

phones have pressure sensors. As a result, we found little variation in the phones used in the study. This

assisted our classification accuracy, as it reduced requirements for preprocessing of data. As smart-

phone chipsets are not standardized, a production setup of our proposed technique would optimally

require a per-phone-model training process.

The lying we are able to classify has a number of characteristics that limit the generalizability of the

findings. Three types of lying may be differentiated [228]: outright lies, exaggeration, and subtle lies.

The experimental task in Study I and II examined outright lies, while Study III considered exaggeration.

We do not know how our findings generalize to subtle lies. Also, interpersonal lies as present in Study

II, might have caused participants to react quite differently compared to interaction without another

human being. This could be an explanation for the difference in classification accuracies for Study II-

III. Verifying this remains an avenue for future work.

As for the Veritaps concept, we have sketched simple example mock-up scenarios. There are practical

challenges that arise with implementing Veritaps on smartphones, however.

Ideally, the smartphone would receive a steady stream of labelled ground truth input, to help train the

classifier. In practice, however, this would lead to repeated training interruptions on the device and

likely prevent adoption.The alternative would be for the phone to come pre-packaged with a trained

model, however, without per-user training this could under-perform.

Machine learning based estimators require considerable labelled data to perform well. We evaluated to

what extent our proposed method would work without per-user calibration. To do this, we ran Leave-

One-Subject-Out (LOSO) cross validation [85] using the classifiers from Study II-III. This caused an

increase in performance for Study II, but a decrease for Study III. This shows us the more open-ended

nature of the task in Study III works poor without per-user training, while other tasks are more suitable

to use with pre-trained models.
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Within our presentedVeritaps scenarios, there remains an opportunity to learn the features that suggest

truthful input and, therefore, trick the system. To reduce this risk, we propose that the user should not

be shown their own Veritaps assessments, rather they should only be made available to the receiver of

the information. In this way, it is important that both parties consent to engaging in a Truth-Verified in-

teraction. Future work should attempt to implement these to study the users’ reactions and adaptations

based on feedback from our algorithm.

Further, the polygraph has been banned from use in courts in most justice systems because of negligible

reliability. In the same way, we do not propose the use of Veritaps as any means of assessment of ob-

jective truth. The predictive insights provided by Veritaps should be used with caution, and we cannot

recommend critical reliance on Veritaps in any system.

The Veritaps concept raises a number of ethical questions. First, lying is an important social lubricant.

For instance, small lies play an important role in computer-mediated conversations (e.g., [86]). Also,

many lies are simply ignored (the so-called ostrich effect [228]). Therefore, making lies explicit, as

in some of the design concepts we discussed, threaten to undermine those functions and introduce

mistrust into computer-mediated communication. We call for empirical studies of the Veritaps concept

to understand how the availability of truth verification might impact the experience and outcomes of

digital communication. Second, our algorithm, and even improved algorithms, are likely to misclassify.

This might challenge the basis of human conversation [78]; that the information we communicate is

accurate and truthful. One reaction to this is to have both parties opt-in to having that basis challenged;

this would work for several of the concepts we discussed.

Based on the feature analyses, we believe that user interfaces made up of standard UI elements as input

fields and buttons are likely to perform best. Across Study I-III we found the details of simple user

actions such as taps to carry more reliable information of the veracity of an action, than for instance

sliding and scrolling gestures. Additionally, if the methods described in this paper were combined with

content-based features, it could likely outperform the performances presented.

Our data do not suggest that smaller lies are harder to detect that bigger lies. For Study II, a binary

distinction compared to a scale of deflated scores yielded the clearest division. In other words; an entry

with a deflation of one cent, on average heldmore similar interactional properties with dishonest entries

than honest entries.

5.9 Conclusion
We are frequently subject to lying, and to date lack means of classifying lies on mobile devices beyond

written text and speech. This leaves a large space of interaction open to deception. We explore the

feasibility of a content-agnostic, sensor-led approach to lie detection on smartphones that considers

only taps and swipes. Through three studies we presented empirical evidence for the feasibility of

commodity lie detection using mobile interaction.

First, we found significant differences in response times between lies and truths for simple mobile in-

teractions.

Next, we reported on the individual interaction differences observed between lying and truth telling in
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a mobile version of the Ultimatum game that encouraged lying. The study showed that some features

of mobile interaction varies with the honesty of an action. Specifically, properties of number entry were

good indicators of deceit.

Last, we reported on a study where participants took part in a mobile dice game that incentivized lying.

We trained a classifier onmobile sensor data that ignores the input data itself. We achieved 96%precision

and 95% recall in truth detection, and 65% precision and 59% recall for lie detection. While promising,

these results do not support reliable binary lie classification. Instead, we suggest their use a means of

improving peoples’ own near-chance level lie classification.

Based on the findings, we introduced Veritaps: an optional layer in mobile interaction, allowing users

to share truth assessments of their input. We presented three potential use cases of Veritaps, across

online form-filling, inter-personal communication, and personal reflection.
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ABSTRACT
Many user studies are now conducted outside laboratories to in-
crease the number and heterogeneity of participants. �ese studies
are conducted in diverse se�ings, with the potential to give re-
search greater external validity and statistical power at a lower cost.
�e feasibility of conducting virtual reality (VR) studies outside
laboratories remains unclear because these studies o�en use ex-
pensive equipment, depend critically on the physical context, and
sometimes study delicate phenomena concerning body awareness
and immersion. To investigate, we explore pointing, 3D tracing,
and body-illusions both in-lab and out-of-lab. �e in-lab study was
carried out as a traditional experiment with state-of-the-art VR
equipment; 31 completed the study in our laboratory. �e out-of-
lab study was conducted by distributing commodity cardboard VR
glasses to participants; 57 completed the study anywhere they saw
�t. �e e�ects found in-lab were comparable to those found out-
of-lab, with much larger variations in the se�ings in the out-of-lab
condition. A follow-up study showed that performance metrics are
mostly governed by the technology used, where more complex VR
phenomena depend more critically on the internal control of the
study. We argue that conducting VR studies outside the laboratory
is feasible, and that certain types of VR studies may advantageously
be run this way. From the results, we discuss the implications and
limitations of running VR studies outside the laboratory.
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1 INTRODUCTION
�e recent advance in consumer technology has accelerated re-
search in virtual reality (VR). In particular, a host of VR user studies
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are being conducted. �ey include both evaluations of the usability
and user experience of particular VR applications, as well as behav-
ioral research using VR. �e former includes evaluating games and
educational applications (e.g., [Bolton et al. 2014; von Zadow et al.
2013]). �e la�er includes simulating environments to conduct
experiments that would otherwise be di�cult (e.g., [Pan et al. 2016;
Slater et al. 2013]), impossible (e.g., [Banakou et al. 2013; Kilteni
et al. 2012; Slater et al. 2010]) or even unethical (e.g., [Slater et al.
2006]) to carry out using classical experimental paradigms.

Conducting VR studies, however, faces similar decisions about
practical ma�ers and research validity as running studies using
non-VR technology; those decisions and their associated trade-
o�s are well described (e.g., [Hornbæk 2013; McGrath 1995]). For
instance, much planning goes into recruiting people, managing
schedules, selecting environments in which to conduct studies, and
running the actual studies. Nevertheless, VR studies are almost
exclusively done in laboratories using specialized equipment (e.g.,
for tracking) and few and homogeneous participants (e.g., typically
fewer than 25 participants recruited through university mailing
lists). In that respect, VR studies are similar to studies from other
parts of HCI [Caine 2016; Hornbæk et al. 2014].

For non-VR technologies, many of these studies are now done
outside the laboratory, for instance with crowdsourcing or as in-
the-wild studies. In crowdsourcing, user studies are conducted as
micro tasks giving small amounts of payment on crowdsourcing
platforms such as Amazon Mechanical Turk or Crowd�ower [Kit-
tur et al. 2008]. Research shows that crowdsourcing o�en give a
higher diversity of participants [Mason and Suri 2012; Paolacci and
Chandler 2014; Ross et al. 2010] and that they can be done at a
low cost [Buhrmester et al. 2011; Ki�ur et al. 2008; Mason and Suri
2012], reliably [Buhrmester et al. 2011; Crump et al. 2013; Rouse
2015], and quickly [Ki�ur et al. 2008].

Although out-of-lab experimentation has been applied in many
computing areas (e.g., [Carter et al. 2007; Heer and Bostock 2010;
Ki�ur et al. 2008; Mo�elson and Hornbæk 2016; Reinecke and Gajos
2015]), it is not clear if that is feasible or valid for VR. Earlier work
has suggested that this type of experimental practice is ill suited
for tasks that depend on the physical environment [Heer and Bo-
stock 2010]. Also, many VR studies depend on headsets still not in
common use and, sometimes, other equipment that is not widely
available (e.g., for tracking or physical stimulation). Finally, partici-
pants in unsupervised experiments are not always paying a�ention,
switch tasks frequently [Gould et al. 2016], and may decide to pause
an experiment; all of these behaviors could interfere with goals of
VR studies, such as generating perception of presence. Goodman
et al. [Goodman et al. 2013] stressed that “MTurk participants are
less likely to pay a�ention to experimental materials”, which could
reduce the e�ects of experimental manipulations.

Virtual reality (VR) allows researchers to investi-

gate subjects in life threatening situations, very spe-

cific or uncommon events, or with modifications

to worlds or bodies without obeying the laws of

physics or human morphology. This makes VR, as

a technology, an especially interesting platform for

HCI research, and for investigating psychological

phenomena. Researchers have, in particular within

recent years, adopted this technology to investigate

aspects of how our bodies (or other bodies) influ-

ence psychological constructs, such as racism, at-

traction, empathy, etc.

In the two previous chapters I have shown how to

overcome the issue of ensuring reliable cognitive la-

belled data from many participants by crowdsourc-

ing user studies: I have recruited participants on-

line who then install experimental research appli-

cations onto their own devices, that then report ac-

tivity data back alongside user or condition based labels. In this chapter I showhow to apply themethod-

ology for VR studies.

This chapter contains the contents of the paper shown to the left [153], published at VRST ’17. I ap-

ply the samemethodological approach of conducting unsupervised experiments online to virtual reality

user studies: we handed out some 100Google cardboard commodityVRglasses togetherwith the link to

a mobile-based VR application. This application featured three seminal VR environments, each depict-

ing three levels of VR complexity (Fitts’s Law, 3D tracing, and a body ownership illusion). Additionally

we conducted a laboratory-based VR user study, with the same task, to identify which VR paradigms

can be conducted without supervision.

While unsupervised VR experiments are still cumbersome to conduct due to the modest adoption of

VR enabled devices, the paper shows that it can be done, and that reliable quantitative metrics can be

acquired. This is especially true for the more performance related data, rather than the experiential.
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6.1 Abstract

6.1 Abstract
Many user studies are now conducted outside laboratories to increase the number and heterogeneity

of participants. These studies are conducted in diverse settings, with the potential to give research

greater external validity and statistical power at a lower cost. The feasibility of conducting virtual reality

(VR) studies outside laboratories remains unclear because these studies often use expensive equipment,

depend critically on the physical context, and sometimes study delicate phenomena concerning body

awareness and immersion. To investigate, we explore pointing, 3D tracing, and body-illusions both

in-lab and out-of-lab. The in-lab study was carried out as a traditional experiment with state-of-the-

art VR equipment; 31 completed the study in our laboratory. The out-of-lab study was conducted by

distributing commodity cardboard VR glasses to participants; 57 completed the study anywhere they

saw fit. The effects found in-lab were comparable to those found out-of-lab, withmuch larger variations

in the settings in the out-of-lab condition. A follow-up study showed that performance metrics are

mostly governed by the technology used, where more complex VR phenomena depend more critically

on the internal control of the study. We argue that conducting VR studies outside the laboratory is

feasible, and that certain types of VR studies may advantageously be run this way. From the results, we

discuss the implications and limitations of running VR studies outside the laboratory.

6.2 Introduction
The recent advance in consumer technology has accelerated research in virtual reality (VR). In par-

ticular, a host of VR user studies are being conducted. They include both evaluations of the usability

and user experience of particular VR applications, as well as behavioral research using VR. The former

includes evaluating games and educational applications (e.g., [22, 249]). The latter includes simulating

environments to conduct experiments that would otherwise be difficult (e.g., [165, 198]), impossible

(e.g., [12, 111, 199]) or even unethical (e.g., [195]) to carry out using classical experimental paradigms.

Conducting VR studies, however, faces similar decisions about practical matters and research validity

as running studies using non-VR technology; those decisions and their associated trade-offs are well de-

scribed (e.g., [95, 142]). For instance, much planning goes into recruiting people, managing schedules,

selecting environments in which to conduct studies, and running the actual studies. Nevertheless, VR

studies are almost exclusively done in laboratories using specialized equipment (e.g., for tracking) and

few and homogeneous participants (e.g., typically fewer than 25 participants recruited through univer-

sity mailing lists). In that respect, VR studies are similar to studies from other parts of HCI [29, 97].

For non-VR technologies, many of these studies are now done outside the laboratory, for instance

with crowdsourcing or as in-the-wild studies. In crowdsourcing, user studies are conducted as mi-

cro tasks giving small amounts of payment on crowdsourcing platforms such as Amazon Mechanical

Turk or Crowdflower [112]. Research shows that crowdsourcing often give a higher diversity of partic-

ipants [140, 166, 181] and that they can be done at a low cost [28, 112, 140], reliably [28, 50, 182], and

quickly [112].

Although out-of-lab experimentation has been applied in many computing areas (e.g., [34, 90, 112, 151,

179]), it is not clear if that is feasible or valid for VR. Earlier work has suggested that this type of ex-

perimental practice is ill suited for tasks that depend on the physical environment [90]. Also, many VR
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studies depend on headsets still not in common use and, sometimes, other equipment that is not widely

available (e.g., for tracking or physical stimulation). Finally, participants in unsupervised experiments

are not always paying attention, switch tasks frequently [76], and may decide to pause an experiment;

all of these behaviors could interfere with goals of VR studies, such as generating perception of pres-

ence. Goodman et al. [75] stressed that “MTurk participants are less likely to pay attention to experimental

materials”, which could reduce the effects of experimental manipulations.

We explore the possibility of conducting out-of-lab VR studies, and compare experiments in uncon-

trolled settings using commodity VR technology to doing them in the laboratory. We distributed VR

cardboard glasses to 57 participants for use with participants’ own smartphones in exchange for their

participation in the study involving three canonical experimental VR tasks. The results show that it is a

feasible way to conduct affordable, ecologically valid, and large-scale VR studies outside the laboratory.

Additionally we discuss potential directions for out-of-lab VR experimentation, and how crowdsourcing

is an interesting platform for future VR studies.

6.3 Related Work
VR studies have been organized in a variety of ways, including analytic evaluation techniques (e.g., [10,

216]) as well as empirical ones (e.g., [12, 111, 199]). The literature also contains evaluations of usability

issues and user experiencewithVRhead sets [141], andMarsh [139] discussed some issues in evaluating

the usability of VR. Here we focus on empirical user studies using VR and first discuss those briefly.

Thenwe review types of user studies conducted outside of laboratories, and outline the potential of that

methodology for VR.

VR Studies

Virtual reality research has for long been engaged in user studies, and with the availability of consumer

oriented VR technology a host of VR studies are being conducted. Those studies include evaluations

of the usability and user experience of particular VR applications, such as games (e.g., [22]) and ed-

ucational applications (e.g., [249]). Another line of behavioral research uses VR to study phenomena

relating to body perception and body schema. These often employ body ownership illusions, which are

studies where participants perceive non-bodily objects, or alterations of their own body to be parts of

their own body [110]. These illusions are usually made feasible by means of synchronous stimulation

of the virtual and physical body [196, 197]. With this, perceptions of objects sizes have been shown to

be influenced by hand size alterations [132], and racial attitudes are found to be influenced by owner-

ship of an other skin-toned body [137]. Also, ownership of a child body has been shown to cause faster

identification of child-like attributes [12].

Researchers in virtual reality studies face many of the same concerns that go into doing any user study,

such as recruiting people,managing schedules, selecting environments, and running experiments. Other

concerns relate to validity and research methodology; similar to concerns about user studies in other

domains (e.g., [95, 142, 192]). While locomotion has historically been a critical topic within VR re-

search [201, 223], many VR studies are conducted stationary (e.g., sitting, standing, lying). Most

consumer oriented VR applications are also used stationary: the most popular consumer VR system

that supports walking for locomotion (HTCVive), reports standing as the most common configuration
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amongst its users [210]. This could indicate that many VR user studies could be straightforward for

participants to conduct without the guidance of a human evaluator. If the user studies conducted in VR

research bear at least some similarities to user studies conducted in other parts of HCI, might a shift in

experimental practice from laboratory to out of laboratory (which is widely successful in other parts of

HCI) be beneficial for VR studies?

Out-of-lab Studies in HCI

External validity concerns whether a causal relationship holds over persons, settings, treatments, and

outcomes [192]; that is, to which extent findings are generalizable to a broader domain. In an attempt

to increase the external validity of a study’s results, researchers may conduct their research outside

of a laboratory. Unlike observational research such as field studies, some out-of-lab research practices

allow researchers to control experimental conditions and manipulate independent variables. These un-

supervised experimental practices, such as crowdsourcing and in-the-wild experiments, have been an

ongoing endeavor within HCI for a while [26, 34, 113].

Crowdsourcing. In crowdsourcing, user studies are conducted as micro-tasks giving small amounts of

payment on crowdsourcing platforms such as AmazonMechanical Turk or Crowdflower [112]. Crowd-

sourcing has shown to be a valuable experimental practice that allows for fast and low-cost experimen-

tation, with high diversity of participants [28, 50, 112, 140, 166, 181, 182].

In-the-wild. Conducting in-the-wild experiments has long been a research agenda within the ubiquitous

computing community, and as such a variety of protocols for conducting unsupervised experimental

research has evolved. An alternative to the popular micro-task platforms includes LabintheWild [179],

a highly scalable way of conducting studies with widespread, uncompensated, and unsupervised par-

ticipation. The authors created an online experimental platform that provides participants with infor-

mation about themselves in exchange for their participation in studies. In-the-wild mobile experiments

have also been conducted,Henze et al. [91] for instance did in-the-wildmobile experiments, withmobile

app store distributed gaming-based user studies.

Potential of out-of-lab studies for VR

When is high external validity key to VR research? For some VR studies, high external validity is of less

concern than others. This is the case when VR is being used to mitigate arachnophobia [72], estimate

general practitioners’ susceptibility to prescribing antibiotics [165] - and in general studies with homo-

geneous participants and few experimental settings, especially for within-subjects designs. For studies

concerning a heterogeneous population, using subtle differences between conditions, with more ex-

perimental settings, the external validity is of much higher concern for the integrity of the research.

This is often true when employing a between-subjects design. Could out-of-lab experimentation be a

worthwhile methodology to consider for such studies? Unfortunately, it is not clear if it is feasible to

use widespread out-of-lab experimental practices to conduct VR studies, or whether these approaches

are valid. While crowdsourcing could give larger samples of more varied participants, the widespread

adoption of VR consumer devices has yet to happen which makes if difficult to recruit participants for

a crowdsourced VR study.

While the potential of conducting VR studies out-of-lab is promising, the associated questions are se-
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vere. Although increasing the generalizability of VR research has been an ongoing agenda (e.g., [116]),

we are only aware of one study that conducted out-of-lab VR experimentation; Steed et al. [211] ran

a mobile app-based experiment, gathering user stories from owners of household VR devices such as

Google Cardboard and SamsungGear to study presence and embodiment in a bar with a singer. The au-

thors did a between-subjects study with eight conditions, exploring among other things the prevalence

of a self-avatar on presence, hand-tapping, and eye contact with a virtual person. While this study is

a valuable example of using consumer VR technology to conduct studies using mobile app stores, it

does not conclude on the validity or feasibility of using that approach. Also, the authors employed an

untried procedure, which makes it difficult to separate effects from the experimental procedure and the

methodology.

How to study VR outside the laboratory

We surveyed crowdworkers to understand the types of VR equipment at their disposal. We asked 250

people (for 0.05$ USD pay, 92% validated using a verifiable control question) about their ownership

of computer equipment using a randomized ordered checklist of household computer technology. We

found that at the time of writing, 3% of crowdworkers own one or more devices capable of VR. In partic-

ular participants reported ownership of the following: Google Cardboard (2.2%), Samsung Gear (1.3%),

HTCVive (0.9%), andOculus Rift (0.4%). In comparison, 83.4% of the respondents reported ownership

of an Android smart phone. The effective size of the activeMTurk population has been estimated to be

about 7300 workers [212]. If our sample is representative of the MTurk population, we should expect

at most 226 crowdworkers to own a VR device. Thus, the modest share of crowdworkers who own

VR equipment at the time of writing make it unrealistic to use popular micro-task markets to crowd-

source VR experimentation. Because of the widespread adoption of consumer smart phones combined

with Google Cardboard as a cheap alternative to other VR technology, we see a contemporary opportu-

nity for inexpensive large-scale out-of-lab VR experimentation. To provide insights about the feasibility

and validity of conducting out-of-lab VR studies, we propose a study protocol where participants are re-

cruited online, pre-screened prior to participation, and provided with commodity cardboard VR glasses

to participate in the study.

Crowdsourcing is arguably not the correct term for the approach tried in this work, because we pre-

screen participants and require them to visit our premises. Accordingly, the term in-the-wild seems

inaccurate, since the experimental nature of our setup will enforce an artificial controlled setting, not

expected to occur completely in-the-wild (we did not expect any voluntary participation from regular

app store users). When HMDs become more prevalent, it will be possible to completely crowdsource

VR studies without requiring participants to visit the premises. In the remainder of this work, we em-

ploy the term out-of-lab to describe the method of equipping pre-screened participants with cardboard

VR glasses, and have them conduct experiments in non-controlled settings. This is opposed towhenwe

speak about in-lab studies, which covers experimentation in controlled settings, at our research facili-

ties. We conducted experiments using canonical VR paradigms, all previously verified in laboratories.

We study the implications of conducting out-of-lab VR experiments by directly comparing the partici-

pants’ differences across settings and technology.
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6.4 Experiment
The purpose of the experiment was to validate the potential of conducting VR studies outside the lab-

oratory, and to do so we compare in-lab to out-of-lab VR experiments over a range of VR phenomena.

The studies were set up to be representative of how VR studies are usually done (i.e., laboratory VR

studies usually do not use commodity technology).

Participants

We posted the invitation to participate in our experiment on large group for locals on Facebook, in ad-

dition to sending invitations using our internal e-mail list. Participants signed up online for either the

in-lab or out-of-lab study. In both cases, participants came to our premises; either to pick up a set of

cardboard glasses, or to participate in our lab-study.

In-lab. Thirty-one people, aged 20-50 (SD = 10.3 years) participated in the laboratory study and were

reimbursed with a gift worth the equivalent of 15$ US, our regular minimum rate for lab-study partici-

pation. Of these participants were 12 male.

Out-of-lab. 100 participants were given a Google cardboard for participating in the study. Fifty-seven

participants, aged 20-40 (SD = 7.0 years) completed the study within 20 days; of these were 35 males,

with 34 using iOS and 23 using Android.

Apparatus

We developed the VR tasks using Unity 5.3. The VR application was identical for in-lab and out-of-

lab, except that the VR equipment held by the avatar was substituted to match the visuals of the actual

VR equipment. The applications would send relevant user metrics to a server application written in

Python. The application contained on-screen instructions that blended in with the VR environments.

In-lab. The VR studies in-lab used an HTC Vive.

Out-of-lab. We deployed the VR application with the Google Cardboard SDK, distributed at relevant

application stores for both Android (version≥5.0) and iOS (version≥7.0).

(a) (b) (c)

Figure 6.1: The tasks. (a) Pointing: participants targeted the red spheres as fast and accurate as possible by
moving their head. (b) 3D tracing: participants selected which tree a yellow leaf belonged to. Participants
could either inspect the trees dynamically bymoving their head around, or could only see the trees fromone
angle. (c) Body Ownership Illusion: participants were immersed in a virtual bedroom, with their bodies
substituted with sex-matched avatars. In half of the cases avatars mapped the participants’ movements
real-time. A mirror that reflected the virtual body was present in the bedroom as shown.
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Design

Participants conducted three independent tasks; one without any experimental variation, and two with

a between-subject two-condition design (see Table 6.1). Participants were randomly assigned to the

experimental conditions on a per-task basis. The three tasks were administered in a randomized order.

The study procedure was carried out both in-lab and out-of-lab with different participants.

Task Conditions Dependent variables

Pointing Movement time, accuracy, throughput

Dynamic
3D Tracing

Static
Duration, estimations

Consistent

In
-la

b

O
ut

-o
f-

la
b

Body Ownership Illusion
Inconsistent

Body ownership, presence

Table 6.1:The three tasks employedwith their corresponding experimental conditions and dependent vari-
ables.

The intention of this design was to combine tasks where absolute performance values could be com-

pared (pointing task) and tasks with expected experimental effects that differ between multiple condi-

tions (3D tracing, body ownership illusion). For the latter we are interested in comparing the outcomes

of experimental conditions for in-lab and out-of-lab. To validate the feasibility of conducting VR exper-

imentation outside the laboratory, we hypothesize that out-of-lab studies yield similar effects and effect

sizes to those conducted in-lab.

Tasks

The participants were presented with three VR tasks as below. The intention was to get insights of VR

experimentation in-lab and out-of-lab in a broad range of tasks; we therefore employed three different

complexities of VR experimentation: a pointing task, a 3D tracing task, and a body illusion task. The

tasks are based on established experimental protocols about performance aspects of HCI and percep-

tion inVR.The tasks do not require the participant to travel across physical space, making them suitable

to conduct virtually anywhere and without the need of a human evaluator.

Pointing Task. The goal of this task was to show the feasibility of collecting performance metrics from

elementary VR navigation. We studied participants’ performance with 2D navigation within a VR en-

vironment, using a common Fitts’s Law task (see Figure 6.1a). Most aspects of the task adhered to

Soukoreff and MacKenzie [206], but to alleviate fatigue we used 15 targets with four IDs (range 2-4),

and two repetitions per ID. Thus every participant pointed at 120 targets, excluding a warm-up round.

Translational movements were ignored for this task.

3D Tracing Task. This task measured participants’ performance in judging depth and navigating in

VR. The task by Arthur et al. [9] compares users’ performance on distinguishing 3D objects in dif-

ferent viewing conditions. Two trees composed of straight lines were placed next to each other (see

Figure 6.1b). Each tree consisted of three levels of branches, resulting in 27 branches for each tree ex-

cluding the root. For each trial, one of the trees would contain a yellow leaf (the leaf was placed on the
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branch with the x coordinate nearest to the center), and the participant then distinguished which of the

trees the leaf belonged to. Participants were randomly assigned to either of two conditions: (1) partici-

pants could inspect the 3D spatial properties of the trees dynamically by moving their head around, or

(2) participants were presented with a static view, requiring them to determine the origin of the leaves

having seen the trees from one angle only. Textual feedback (correct/incorrect) was provided after each

selection for one second. This task was intended to test if out-of-lab participants could use the 3D spa-

tial capabilities of VR to increase depth judgment accuracy. For each trial of the 40 trials, a leaf was

randomly placed on a branch belonging to either the left or right tree.

Q# Question Scale Purpose Ref.

Q1
How much did you feel that the virtual body you saw when you
looked down at yourself was your own body?

Not at all .. Very much Body Ownership [12]

Q2
How much did you feel that the virtual body you saw when you
looked at yourself in the mirror was your own body?

Not at all .. Very much Body Ownership [12]

Q3
How much did you feel that your virtual body resembled your own
(real) body in terms of shape, skin tone or other visual features?

Not at all .. Very much Body Ownership [12]

Q4 How much did you feel as if you had two bodies? Not at all .. Very much Body Ownership [12]

Q5
Did the room that you saw seem bigger, smaller or about the same as
what you would expect from your everyday experience?

Smaller .. Larger Body Ownership [12]

Q6
Did the virtual body you owned seem bigger, smaller or about the same
as what you would expect from your everyday experience?

Smaller .. Larger Body Ownership [12]

Q7
While being in the virtual room, did you feel your unseen real
body being:

Smaller .. Larger Body Ownership [12]

Q8
Did you feel that the virtual {sex} you saw compared with your
virtual body was:

Smaller .. Larger Body Ownership [12]

Q9
Did you feel that the virtual {sex} you saw compared with your
real felt body was:

Smaller .. Larger Body Ownership [12]

Q10
How much did you feel that the {sex} you saw was aware of
your presence?

Not at all .. Very much Body Ownership [12]

Q11
During the experience did it feel as if you moved across the
bed room?

Not at all .. Very much Control [200]

Q12
Please rate your sense of being in the bed room, where 3 represents the
normal experience of being in a place.

Not normal .. Normal Presence [200]

Q13
To what extent were there times during the experience when the virtual
reality became the ’reality’ for you, and you almost forgot about the
‘real world’ in which the whole experience was really taking place?

Not at all .. All the time Presence [200]

Q14
During the time of the experience, which was strongest on the whole,
your sense of being in the virtual room, or of being in the real world

Real world .. Virtual room Presence [200]

Table 6.2: Body ownership illusion task post-questionnaire measuring among other things participants’
body ownership and presence (from [12, 200]).

Body Ownership Illusion Task. Body ownership illusions refer to the class of illusions where partici-

pants perceive virtual bodies to be their own [110]. The illusion of ownership of virtual bodies has

been shown feasible by means of consistent stimulation of the virtual and physical body (e.g., using a

rod) [196, 197]. To study the feasibility of conducting out-of-lab VR tasks involving more complex VR

phenomena, we designed a body ownership illusion task inspired by Banakou et al. [12]. The intention

was to induce the illusion of body ownership, and the feeling of being present in a virtual room. The

participants were asked to looked around and take notice of the room for twominutes. The participants
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could look down and see a sex-matched virtual body. Additionally, a mirror was present where the par-

ticipant’s avatar could be seen (see Figure 6.1c). The task employed two conditions: consistent and

inconsistent visuomotor stimuli. In the consistent condition, participants’ movements were mapped

real-time to the avatar, both when looking down at the virtual body and when looking in the mirror.

With participants hands fixed in a binocular pose, we only mapped the upper torso using a simple in-

verse kinematics system. In the inconsistent condition, the avatar’s body did not reflect participants’

movements. We expected the consistent condition to result in higher degrees of body ownership and

presence, as previous studies (e.g., [12, 185]). We employed a questionnaire that quantified body own-

ership and presence on a [−3, 3] Likert scale. We employed a mix of two questionnaire protocols, the

first with questions about body ownership by Banakou et al. [12]; in addition to the Slater-Usoh-Steed

(SUS) questionnaire [200] about presence (see questionnaire at Table 6.2).

Procedure

All tasks started with a textual description of the task. Participants would have to trigger a begin button

to initiate a task. All button selections were done by dwelling two seconds at a target using a cross hair

that triggered visual feedback.

In-lab. Participants first signed an informed consent form, and were then placed standing in the mid-

dle of a 4×4m room. To minimize effect of disturbing noise from our laboratory, a noise cancellation

headset was put on, and together with the HMD placed on the participants’ heads by the evaluator. To

minimize effects of body posture compared to the out-of-lab study, we asked the participants to keep a

posture similar to that when using a Google cardboard (arms and hands in binocular pose) during the

entire study. In the same fashion, although VR applications for the HTC Vive are usually controlled

using hand-carried controllers, we employed a dwell-based head controlling system to gather compara-

ble data to the out-of-lab cardboard study. An evaluator stayed in the room with the participant during

the study and made sure directions were adhered to.

Out-of-lab. Participants were invited to come by our premises to pick up their Google cardboard (if their

phone was capable of Android version ≥5.0 or iOS version ≥7.0). Together with the commodity VR

equipment, participants were provided with instructions on how to acquire the experimental applica-

tion and carry out the experiment, in addition to descriptions of the extent of the data collection and

associated privacy concerns.

Ethical Concerns

The immersiveness of VR combined with participants conducting the study protocol on their own give

rise to a number of concerns, and out of ethical concerns, some VR experiments should be avoided as

out-of-lab studies. Additionally collecting data for publicly open studies requires some consideration.

First, opposite to a laboratory-based experiment, an evaluator is not present to help subjects, for instance

in case of motion sickness or falling over objects. Second, our experimental application also took two

photosweused to analyze participants’ surroundings, and to confirm that the phonewas in fact correctly

placed in the cardboard VR glasses. How to ethically log user data from mobile experiments depends

on several factors, and a simple solution to this question does not seem to exist. We however followed

directions proposed byHenze et al. [91] and informed users prior to participation about the logging and
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thus implicitly get consent from the user by continuing use of the application.

Data Validation

As in other studies, attention and compliant participation is key. This is especially difficult to verify in

out-of-lab studies because of the absence of a human evaluator during the study. In addition to exclu-

sion criteria based on earlier work [112, 211], we used the front-facing camera of participants’ phones to

take a photo that was later used to determine whether the phone was accurately placed inside the card-

board equipment (this wasmentioned in the experiment invitation). In summary, we used the following

criteria to disqualify participants:

• Erroneous placement of phone in VR equipment (front camera)

• Zero variance in questionnaire responses

• High response to control question (Q5) (> 2)

• Too slow completion time (> M + 3 SD)

• Too fast response to questionnaire (< M − 3 SD)

Four participantswere discarded from the in-lab study, one because of zero variance in the questionnaire

answers, three because of the control question (Q5); thus 27 participants remained. For the out-of-lab

study, we also discarded four participants, one for not placing the phone in the VR glasses, one from

taking too long, and two because of the control question; 53 participants remained.

6.5 Results
The overall purpose of the result section is to present differences in dependent variables due to experi-

mental conditions, and to do comparison between the in-lab study and the out-of-lab study. We report

results from each of the three tasks, divided by the type of analysis. Where nothing else is indicated,

statistical tests were done with a one-way ANOVA.

Pointing Task

Movement time. While both in-lab and out-of-lab participants finished the pointing task without issues,

in-lab participants finished significantly faster: in-lab: M = 98s (SD = 14s), out-of-lab: M = 149s (SD =

62s), F (1, 78) = 17.5, p < .001. We plotted the linear fits of participants’ movement times as a func-

tion of ID (see Figure 6.2), which shows that Fitts’s Law (Shannon formulation) is indeed a very accu-

rate model for pointing in VR (both in controlled and uncontrolled settings). An ANCOVA shows a sig-

nificant effect of ID and place on movement time, but no significant interaction F (1, 316) = 0.72, ns,

hence the slopes, or the influence on movement time by ID is comparable for in-lab and out-of-lab VR

pointing. The distribution of movement times between two targets were similar for in-lab and out-of-

lab, both ranging between roughly 500 and 2000 milliseconds (see Figure 6.2). The distribution hints

that participants in both studies did not encounter any difficulties nor took any noticeable breaks in the

middle of trials.

Accuracy. The coordinates of each trial’s movements between to targets were fitted to a linear regres-

sion. An r2-value of 1.0 would thus show a perfect linear movement, and 0.0 a non-linear movement
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Index of Difficulty (bits)

Out-of-lab

y = 89x + 777, r  = .99

Index of Difficulty (bits)

In-lab

y = 78x + 495, r  = .99

Movement time (ms) Movement time (ms)

Figure 6.2: Top: MT as a function of ID. Bottom: the distribution of movement times. Left: In-lab; Right:
Out-of-lab.

between targets. This metric thus represents how optimal themovement was. The in-lab study showed

an average linearity of .75 (SD = .07), and the out-of-lab study .63 (SD = .04). The accuracy was signif-

icantly higher for the in-lab study: F (1, 78) = 99.4, p < .001.

Throughput. We find a higher throughput (computed using the formula from [206]), TP , for the in-lab

study: TP = 3.96 (SD = .61), compared to out-of-lab: TP = 2.85 (SD = .57). In-lab participants

had significantly higher TP : F (1, 78) = 63.4, p < .001.

Summary. The results show that participants had no difficulties conducting VR pointing without an

evaluator present, and that VR pointing tasks can be conducted virtually anywhere. However, task

completion times, throughput, and accuracy were significantly better when the experiment was con-

ducted in-lab.

3D Tracing Task

Completion Time. The manipulation did not have a significant effect on task completion times (see Ta-

ble 6.3). There was not a significant difference on completion time between in-lab and out-of-lab either.

Dynamic Static p

In-lab 240.9s± 62.4 247.8s± 79.0

Out-of-lab 292.4s± 92.1 269.8s± 91.2

Table 6.3: Completion times for the 3D Tracing task,±SD.
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6.5 Results

Correct Estimations. Both the in-lab and out-of-lab study showed that participants in the dynamic condi-

tion estimated the origin of the leaves significantly better (see Table 6.4). In-lab participants increased

estimations by 10.2%; Cohen’s d = .35; out-of-lab participants increased estimations by 9.1%; Cohen’s

d = .39. The effect of the experimental condition was significant for both studies; for in-lab this effect

was F (1, 25) = 13.1, p < .01, for out-of-lab it was F (1, 51) = 16.0, p < .001.

Dynamic Static p

In-lab 86.8%± 8.4 76.6%± 4.6 **

Out-of-lab 83.1%± 10.6 74.0%± 9.5 ***

Table 6.4: Correct estimations for the 3D Tracing task,±SD.

In-lab vs. Out-of-lab. The rates of correct answers to which tree the leaves originated were negligible

between in-lab and out-of-lab. In-lab participants on average estimated 81.7% correct; out-of-lab 78.6%.

This difference was not significant. Confidence intervals for the effect sizes for this task show that

the effects due to experimental conditions are within the same range: out-of-lab, d = 1.11, 95% CIs

[.45, 1.80]; in-lab, d = 1.40, 95% CIs [.40, 2.77].

Summary. Results from both the in-lab and out-of-lab study showed that participants increase their rate

of correctly estimating the origin of a leaf in VR, given the ability to inspect trees spatially. The data

show that the effect of the experimental condition was the same between in-lab and out-of-lab, and with

comparable effect sizes. Also, in-lab and out-of-lab participants did not perform significantly different

in terms of speed. The data therefore provide evidence for the validity of conducting VR studies that

entail 3D navigation outside the laboratory.

Body Ownership Illusion Task

Body Ownership. Body ownership is different sensory cues unified into the perception of my body [110]. We

asked four questions from [12] to quantify body ownership (see Table 6.2): VRBody (Q1),Mirror (Q2),

Features (Q3), and TwoBodies (Q4). Figure 6.3 gives an overview of the responses. Based on previous

work (e.g., [12]), we expected the visuomotor consistency to increase the degree of body ownership.

For the in-lab study, all means but TwoBody were higher in the consistent condition; for the out-of-lab

study all means but VRBody were higher in the consistent condition. Using a Wilcoxon rank-sum test

on these questions across the consistent and inconsistent conditions, we found that onlyMirror showed

a significant difference, and only for the in-lab study, Z = −1.92, p = .05.

Presence. Presence is the sense of being there, distinguished from immersion, as being the participants’s

response to the environment, and not relating the fidelity of technology used [202]. We asked three

questions originating from [211], relating to presence (see Table 6.2): BeingThere (Q6), VRExp (Q7),

and VRWorld (Q8). Figure 6.4 gives an overview of the responses. As evident from Figure 6.4, the

differences between conditions for both studies are negligible; the medians are similar across both con-

ditions both for the in-lab and out-of-lab study. No significant differences for any of the presence ques-

tions were found for the two conditions using a Wilcoxon rank-sum test. Steed et al. [211] did also not

find any difference in degrees of presence across conditions, except for synchronous tapping which had

the opposite effect to the expected (presence decrease).
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Figure 6.3: Box plots of body ownership data (Q1−Q4) from in-lab (left) and out-of-lab (right). Solid lines
show medians, boxes show interquartile ranges, circles show outliers.
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Figure 6.4: Box plots of presence data (Q6−Q8).

Probing Individual Differences. Steed et al. [211] wrote that “An obvious route for in the wild studies would

be to probe individual differences in presence response”. We did so and found no differences attributable

to study place or VR technology: a Wilcoxon rank-sum test comparing participants’ responses to the

questionnaire showed no significant differences for any questions across in-lab/out-of-lab; Z-values

ranging from [−1.81,−.16] and p-values from [.07, .92]. While this does not directly verify the feasi-

bility of studying complex VR phenomena out-of-lab, it shows that for the employed experiments more

advanced VR technology combined with higher experimental rigor, did not cause significant changes

to responses to body ownership and presence.

Summary. Similar to [12], the body ownership means in the consistent conditions were higher for all

questions, but one, in both the in-lab and out-of-lab study (one significant). There were no differences

attributable to study place, with similar responses in-lab and out-of-lab. This shows that it is feasible to

obtain comparable data to laboratory experiments, even for more complex VR phenomena when con-

ducting them out-of-lab.

6.6 Follow-up Study: In-lab/Low-tech
While the in-lab and out-of-lab studies by and large yielded comparable results, it is hard to attribute

the observed differences between the two studies to condition (lab, out-of-lab) or the hardware (low-

tech, high-tech). We find this confound natural because in-lab studies would typically be conducted
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6.6 Follow-up Study: In-lab/Low-tech

with high-tech and out-of-lab studies are currently only feasible with low-tech VR. However, it leaves

us unable to discuss the relative influence of condition and hardware. We therefore conducted a follow-

up study. We speculate that some of the differences observed in our user studies could be explained by

the setting, where other differences could be explained by the employed hardware.

To explore whether the differences observed were due to experimental setting (lab vs. non-lab), or fi-

delity of VR apparatus (HTC Vive vs. Google cardboard), we ran a follow-up study. We conducted

an in-lab study, using the out-of-lab technology from the first study. We thus did a new study with an

additional condition: in-lab/low-tech. The follow-up study showed that differences in absolute perfor-

mances are likely related to employed technology, where more complex VR phenomena such as immer-

sion scores showed to differentiate with experimental control.

Participants

Twenty-two people, aged 20-40 (SD = 5.8 years) participated in this laboratory study, and were reim-

bursed with a gift equivalent of 15$ US. None of the participants had previously participated in any

of our studies. Seven of the participants were male. One participant was discarded due to the control

question. The experimental design and apparatus followed the out-of-lab condition of the first study.

Pointing Task

While the first study showed that a simple pointing task can easily be completed by participants both

in-lab and out-of-lab, significant differences in performances were reported. The results from the sec-

ond study provides evidence, that this performance gap is most likely due to fidelity of the employed

VR technology. Figure 6.5 shows comparable performances between the out-of-lab and in-lab/low-tech

conditions, with significant differences to the in-lab performances. Neither movement time, accuracy,

or throughput varied significantly between the out-of-lab and in-lab/low-tech conditions. This shows

that the differences observed in the first study for this task, are most likely due to the employed appa-

ratus.

In-lab Out-of-lab In-lab/low-tech

Index of Difficulty (bits) Movement time (ms)

Figure 6.5: Results from the pointing task in-lab, out-of-lab, and in-lab/low-tech: (left) MT as a function
of ID, and (right) histograms of movement times. Differences in pointing performances are likely due to
the technology.
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3D Tracing Task

In the first study we observed that the experimental condition had the same effect across study places;

both participants in-lab and out-of-lab estimated origins of leaves better using a dynamic view. We did

not observe significant differences in completion times.

Dynamic Static p

In-lab 240.9s± 62.4 247.8s± 79.0

Out-of-lab 292.4s± 92.1 269.8s± 91.2

In-lab/low-tech 277.0s± 155s 276.0± 72.6

Table 6.5: Completion times for the 3D Tracing task,±SD.

As Table 6.5 shows, the experimental manipulation did not cause changes to completion time in the in-

lab/low-tech study, as with the two previous conditions. Through-out all three conditions, completion

time for the 3D tracing task did not vary significantly between experimental conditions.

The experimental manipulation caused better estimations for both in-lab and out-of-lab. As evident

from Table 6.6 this pattern was also true for the follow-up study; the dynamic condition caused signifi-

cantly better estimations of origins, F (1, 20) = 14.4, p < .001.

Dynamic Static p

In-lab 86.8%± 8.4 76.6%± 4.6 **

Out-of-lab 83.1%± 10.6 74.0%± 9.5 ***

In-lab/low-tech 87.0%± 7.5 75.0%± 7.0 ***

Table 6.6: Correct estimations for the 3D Tracing task,±SD.

The in-lab/low-tech condition did not significantly differ from the the other conditions. Confidence

intervals for the effect sizes for the in-lab/low-tech condition showed comparable to the first study:

d = 1.66, 95%CIs [.61, 2.56], showing that the intervals for out-of-lab and in-lab/low-tech are contained

in the in-lab interval.

Body Ownership Illusion Task

The third task had the most complex VR phenomena of the three. It studied if an avatar’s motor con-

sistency with the participant varies the participant’s sense of body ownership and presence.

Body Ownership. The mean of all body ownership scores were higher in the condition with visuomotor

consistency (see Figure 6.6a), consistent with the first study. Exactly as with the in-lab condition for the

first study, onlyMirror (Q2) showed to significantly differ between the conditions,Z = −2.45, p = .01.

This tells us, that even though we observe the same overall trends in body ownership throughout the

studies, the two laboratory studies did cause more similar ownership responses.

Presence. As with the first study the observed differences in presence due to experimental manipulation

are very negligible, making it difficult to make any inferences of the experimental variation on presence

scores.
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Figure 6.6: Box plots of questionnaire results on (a) body ownership (Q1−Q4), and (b) on presence (Q6−
Q8). The results fit the laboratory condition from the first study.

Summary of Follow-up Study. The follow-up study showed that the differences in simple performance

metrics (e.g., accuracy, speed of pointing), between and the in-lab and out-of-lab conditions of the VR

study were likely due to the hardware used. High-end VR equipment often deployed for in-lab studies

caused faster interactions, with higher accuracy, compared to commodity VR technology.

Conversely, in the more delicate spectrum of dependent variables for the VR studies; the place of study

seems to be of more concern than the fidelity of technology. This is indicated by our results, in the body

ownership illusion task; results from the follow-up study, all-though by and large follow the same trend

as both previous condition, match the in-lab better. That is, that the mean body ownership showed

higher for the condition with visuomotor consistency for most questions, but the same question (Q2)

showed statistically different by experimentalmanipulation in the in-lab and in-lab/low-tech conditions.

6.7 Other data
In addition to the tasks’ dependent variables we logged othermeasurements to get insights in the uncer-

tain factors of conducting studies without a human evaluator. We here look at the physical surroundings

and the differences in technology.

Setting

During the out-of-lab study, participants’ phones stored a photo using the back-facing camera, to pro-

vide insights into to the contexts in which participants carried out the study. We later printed all photos

(see example photos in Figure 6.7), and categorized them. The categorization of the photos resulted in

five non-exclusive groups:

• Place: where participant was during the study

• Locale: type of place (home, public or office)

• Barriers: near surroundings contained physical obstacles

• Activity: surroundings showed signs of co-occurring activity

• Social: other humans were present
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A B C D

Figure 6.7: Examples of out-of-lab study settings: outside (a), inside (b,c,d), home (a,b,c), office (d), stand-
ing (a,b), sitting (c,d). Photos printed with permission from the participants.

Note that thirteen of the photos did not contain much information, for instance when showing a close-

up wall, and hence did not provide further insights other than it was taken inside. Additional, nine

photos were indecipherable, for instance very blurry or dark.

Out-of-lab Technology

We analyzed the effect of two parameters relating to participants’ equipment: phone brand and screen

size, to see if the technology used had an impact on the performance of the participants. We looked

at all the dependent variables from each task (see Figure 6.1). Of the 53 participants, 31 participated

with an iOS device and 22 with an Android device. We found no significant difference on any of the

dependent variables: F (1, 51) = [.01, 2.7], p = [.11, .92]. We compared area of screen to the same

parameters, and also here found no significant effects attributable to screen size: F (5, 47) = [.42, 1.7],

p = [.15, .84].

Participation in Out-of-lab Study

We distributed 100 cardboard VR glasses over the course of 20 days. 80 participants installed our ex-

perimental application, and 57 completed the study. The data show that throngs of participants do not

come for free, but that it is possible to recruit subjects with the modest reimbursement of a pair of card-

board glasses. This presumable only works for first time VR users; as VR equipment becomes more

commonplace, other reimbursements should be offered.

6.8 Discussion
We have explored if it is feasible to conduct virtual reality (VR) user studies outside the laboratory.

Potentially, this would give access to more varied physical and social settings, and higher participation,

which in turn could give VR studies higher external validity at a lower cost. In particular, across three

tasks we investigated if the performance parameters obtained (e.g., task completion times) compare to

a laboratory condition and if the findings of experimental comparisons compared across in-lab and out-

of-lab. For the two tasks containing experimental conditions, we did find significant effects (i.e., not

null results). We found that similar effect sizes can be found using an easier and cheaper study method.

We believe that this gives a good first indication of how VR could be crowdsourced. Because VR equip-

ment is currently not widely available we ran the out-of-lab experiments by giving cardboards to partic-

ipants. We decided against mailing out cardboards because popular crowdsourcing platforms currently

do not have the population required for an out-of-lab VR study, and we are not in a country with a sig-
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nificant crowdworker population. Nonetheless, the results show that valid data can be acquired from

VR studies without supervision, across a range of VR phenomena and complexity.

The literature contains numerous comparisons of in-lab and out-of-lab studies (e.g., [28, 50, 73, 140,

166, 181, 182]); to our knowledge, this paper is the first to do such comparison for VR studies. Steed

et al. [211] provided a first exploration of whether VR studies could be conducted in-the-wild, in this

paper we have explored whether the results of in-lab and out-of-lab studies are comparable and indeed

whether out-of-lab is a valid methodology for VR.

Our results showed that the absolute differences in performance between the in-lab and out-of-lab study

were substantial; participants in the laboratory study performed better in most of the absolute per-

formance metrics (throughput, accuracy, completion time, and depth estimation). A follow-up study

however revealed that this difference is likely due to technology used, and to a lesser extent due to the

experimental design.

Data from all tasks confirms the feasibility of out-of-lab VR: there were no significant differences be-

tween effects of experimental conditions for tasks when comparing the in-lab and out-of-lab studies.

We show that even complex VR phenomena entailing body ownership are possible to conduct out-of-

lab with comparable results to in-lab studies, although the effects indicate that levels of body ownership

were likely higher for the laboratory-based studies.

Recommendations

Although our setup is limited in a number of ways to be discussed, we can still provide a first set of

recommendations on VR studies outside the laboratory.

• Pre-screen participants for the technology accessible to them to avoid recruiting unqualified peo-

ple

• Expect roughly half of the participants to complete the study

• 15 minutes seems like the maximum tolerable duration for keeping the pose required to use the

VR cardboard system

• Validate the integrity of participants, for instance using verifiable control questions, context pho-

tos, or user performance.

• Design experiments well-suited for both standing and sitting

• Expect simpler dependent variables (speed, accuracy, throughput) to vary with technology, but

complex phenomena (body ownership, presence) to depend more on internal control

Open Questions

The results in this paper were obtained with Google cardboards. First of all, it raises the question of

how to achieve the large-scale participation typically seen in out-of-lab research. We believe it is pos-

sible to mail cardboards directly to participants who have signed up online or possibly have them buy

them and be reimbursed. The current rate of cardboard adoption (about 2%-3% of the crowdworkers

75



6 Crowdsourcing Virtual Reality Studies

surveyed) makes recruiting on crowdsourcing platforms infeasible for anything but small studies. Sec-

ond, of course it raises the question what happens when more crowdworkers have high-end equipment

(e.g., Oculus, HTC Vive). We do not see that as imminent but the differences in settings, movement

of participants, and absolute performance values would be interesting to observe.

The current approach, mainly due to how cardboard VR glasses work sets several limitations on the task

design. People must hold the same posture (binocular pose) during the entire study, and it is therefore

infeasible to actively use the hands for anything, as you normally would in more advanced VR immer-

sions. Additionally, the use of vibrotactile feedback (such as synchronous stimulation with a rod on

virtual and physical body), as seen in many body ownership illusion studies (e.g., [195, 197, 199]), is

infeasible. We foresee that these limitations could be resolved in the future, due to advances in com-

modity VR and wearable technology. This will also open up to longer studies, where fatigue will not be

a factor in task design.

Conclusion

This paper shows that for VR studies concerning a heterogeneous population, out-of-lab experimenta-

tion is a worthwhile and valid methodology to consider. We compared VR tasks concerning pointing,

3D tracing and body ownership illusions, both as in-lab and out-of-lab studies. We showed that it is

feasible to get reliable data by conducting VR user studies outside the laboratory, across a range of tasks

and VR phenomena. This study is the first to validate VR experimentation outside the laboratory, and

provides a first set of suggestions on how to crowdsource VR user studies.
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7 Affective Avatars
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ABSTRACT
Human bodies influence the owners’ affect through pos-
ture, facial expressions, and movement. It remains unclear
whether similar links between virtual bodies and affect exist.
Such links could present design opportunities for virtual en-
vironments and advance our understanding of fundamental
concepts of embodied VR.
An initial outside-the-lab between-subjects study using

commodity equipment presented 207 participants with seven
avatar manipulations, related to posture, facial expression,
and speed. We conducted a lab-based between-subjects study
using high-end VR equipment with 41 subjects to clarify
affect’s impact on body ownership.

The results show that some avatar manipulations can sub-
tly influence affect. Study I found that facial manipulations
emerged as most effective in this regard, particularly for
positive affect. Also, body ownership showed a moderat-
ing influence on affect: in Study I body ownership varied
with valence but not with arousal, and Study II showed body
ownership to vary with positive but not with negative affect.
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1 INTRODUCTION
The theory of embodied cognition suggests that cognitive
processes are deeply rooted in the body’s interactions with the
world [30], because of a relation between bodily expression
of emotion and the way in which emotional information
is attended to [17, 18]. Here, we investigate the extent to
which affective embodiment can be observed with illusory
ownership of a virtual body. Will a smiling virtual self cause
joy and a frowning one prompt sadness? We examine the
causal relationship between virtually inducing embodied
affect and experiencing the relevant affective states.

Affect has been shown to be of great importance for many
aspects of day-to-day life, among them cognitive perfor-
mance, general health and well-being, creativity, decision-
making processes, and social relationships [7]. Also, studies
have shown that affect may influence perhaps the most fun-
damental VR concept: presence, the sense of being there [10].
Body ownership, another key concept in VR, refers to the

degree to which a virtual body is experienced as one’s own
body. Since bodies are demonstrably connected to affect, it
seems worthwhile to investigate the relationship between
virtual bodies and affect, and the link between affect and
body ownership. However, no previous studies have explored
these relationships.
Through two user studies, this paper investigates the de-

gree to which virtual bodies can modify affective responses,
in addition to uncovering the role of affect for ownership
of a virtual body. In summary, we present these findings as
contributions:

• body-ownership illusions can influence affect (found
in a large-scale user study with VR),

• manipulation of facial features was most effective in
influencing affect,

• body ownership is a key component for positive affect,

• body ownership showed to vary with the valence com-
ponent of SAM, and

• higher positive PANAS responses significantly increased
the probability of high body ownership.

Affective computing, as defined by Picard in 1997

is computing that relates to, arises from, or influ-

ences emotions [171]. The perhaps most commonly

researched topics within Affective Computing re-

lates to making computers understand human af-

fect; affect recognition. Many different meth-

ods have been suggested in the research field’s

roughly twenty years existence. The most robust

approaches for this use physiological sensors (e.g,

pulse, hear rate, skin response) and video.

As presented in the previous part of this thesis,

some research is focusing cognitive sensing around

interaction data alone, showing promising classifi-

cation accuracies for boredom, affect, and truth es-

timation, among others. Little research has, how-

ever, been conducted in influencing affect using

human-computer interaction. Certainly there has

been extensive research in emotion elicitation; ma-

nipulating affect for instance using film, stories, or imagery. Thesemethods are, however, quite generic

and usuallymake it obvious for the subjectwhat is going on. Also, they have seldomly been implemented

using interactive technology.

In this chapter I report how to use VR avatars to influence participants’ affect; specifically we hypoth-

esized that body-affect links, might have the same effect for virtual bodies and affect. The chapter is

identical to [152], as shown to the left, which is unpublished. In addition to experimenting with VR

bodies and their influence on affect, the paper reports on how affect and body ownership relates.
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7 Affective Avatars

7.1 Abstract
Human bodies influence the owners’ affect through posture, facial expressions, and movement. It re-

mains unclear whether similar links between virtual bodies and affect exist. Such links could present

design opportunities for virtual environments and advance our understanding of fundamental concepts

of embodied VR.

An initial outside-the-lab between-subjects study using commodity equipment presented 207 partici-

pants with seven avatar manipulations, related to posture, facial expression, and speed. We conducted

a lab-based between-subjects study using high-end VR equipment with 41 subjects to clarify affect’s

impact on body ownership.

The results show that some avatar manipulations can subtly influence affect. Study I found that facial

manipulations emerged as most effective in this regard, particularly for positive affect. Also, body own-

ership showed a moderating influence on affect: in Study I body ownership varied with valence but not

with arousal, and Study II showed body ownership to vary with positive but not with negative affect.

7.2 Introduction
The theory of embodied cognition suggests that cognitive processes are deeply rooted in the body’s inter-

actions with the world [241], because of a relation between bodily expression of emotion and the way in

which emotional information is attended to [157, 158]. Here, we investigate the extent to which affec-

tive embodiment can be observed with illusory ownership of a virtual body. Will a smiling virtual self

cause joy and a frowning one prompt sadness? We examine the causal relationship between virtually

inducing embodied affect and experiencing the relevant affective states.

Affect has been shown to be of great importance for many aspects of day-to-day life, among them cog-

nitive performance, general health and well-being, creativity, decision-making processes, and social

relationships [31]. Also, studies have shown that affect may influence perhaps the most fundamental

VR concept: presence, the sense of being there [54].

Body ownership, another key concept in VR, refers to the degree to which a virtual body is experienced as

one’s own body. Since bodies are demonstrably connected to affect, it seems worthwhile to investigate

the relationship between virtual bodies and affect, and the link between affect and body ownership.

However, no previous studies have explored these relationships.

Through twouser studies, this paper investigates the degree towhich virtual bodies canmodify affective

responses, in addition to uncovering the role of affect for ownership of a virtual body. In summary, we

present these findings as contributions:

• body-ownership illusions can influence affect (found in a large-scale user study with VR),

• manipulation of facial features was most effective in influencing affect,

• body ownership is a key component for positive affect,

• body ownership showed to vary with the valence component of SAM, and

• higher positive PANAS responses significantly increased the probability of high body ownership.
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7.3 Overview

Measuring Affect

Both physiological and subjectivemeasurements are commonly employed for estimation of affective re-

sponses. Especially popular among the latter are thePositive andNegativeAffect Schedule (PANAS) [236]

and the Self-Assessment Manikin (SAM) [24]. The former considers positive and negative affect on

independent scales, producing two summary scores from participants’ rating of their emotional fit on

a five-point scale with 10 positive and 10 negative words, while the SAM typically presents two scales,

valence (pleasantness) and arousal (activation), using a pictorial manikin for representing the scores.

There are versions with a five-, seven-, and nine-point scale (Figure 7.1 shows a nine-point SAM).

Figure 7.1: The nine-point Self-AssessmentManikin, measuring valence (unpleasant–pleasant, at the top)
and arousal (deactivation–activation, at bottom).

Manipulating Affect

The process of altering affect experimentally is known as affect manipulation. It is sometimes collo-

quially referred to as mood induction or emotion elicitation (although this informal use is undesirable).

Affectmanipulation allows researchers to enforce specific affective responses from a sample thanwould

have arisen if subjects had merely reported on their current affective state. Hence, this manipulation is

an important psychological tool for understanding how mood, emotion, and core affect modify human

cognition and behavior within the constraints of experimental scrutiny.

There are several ways of manipulating affect (Westermann et al. give an overview [238]). Among the

most commonly employed are film, IAPS, and Velten. These respectively involve showing affective

movie clips, imagery, or asking participants to immerse themselves in an emotional story.

Virtual Reality As an Affective Medium

Research covering virtual reality and affect is surprisingly scarce, notwithstanding the general consen-

sus on affect’s highly important influence on cognition and behavior, and the recent proliferation of

behavioral research using virtual reality. That said, some scholars have attempted to manipulate affect

via virtual environments [14, 64, 105, 180, 221]. We review that work below.

Baños et al. [14] created a virtual environment capable of eliciting four discrete emotions. The environ-

ments depicted alterations of a city park that incorporated a multitude of classical emotion-elicitation

procedures, such as Velten, IAPS, and movie clips. The full procedure, lasting 30 minutes, showed

effective for discrete emotion elicitation.

Another emotion-eliciting virtual park was created by Felnhofer et al. [64]. Five park scenarios were
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designed, each eliciting a specific emotion: joy, anger, boredom, anxiety, or sadness. The scenarios

differed in lighting, coloring, and sound, alongwith their plant and animal types. The authors concluded

that virtual environments can be used to induce emotional states.

Riva et al. [180] constructed their own park scenarios to elicit emotions in VR. Their three parks shared

the same structure but differed in their aural and visual experience. These researchers too confirmed

the efficacy of VR as an affective medium.

To our knowledge, only Jun et al. [105] have attempted to alter affect via avatar manipulations. They

found that facial expressions of a virtual avatar can modulate emotions and that greater presence is

associated with higher valence.

Body-Ownership Illusions

Body-ownership illusions are a class of experiment in which the participants are led to believe that they

are owners of another body, or part thereof [170]. These illusions are persuasive when the replacement

bodies are virtual avatars made possible by VR [110]. An optimal body-ownership illusion induces a

high level of ownership of the virtual body, usually by means of visuo-motor synchrony between the

physical and virtual body, sometimes alongside tactile feedback [159].

While there is ongoing scholarly debate on how far avatar manipulations can be extended without dis-

tortions to body ownership, evidence thus far suggests that ownership can be maintained even with

substantial alterations to the avatar, such as scaling the arms to three times the normal length [111],

rotating the body 15 degrees [20], or using a child’s body for the avatar [12].

A large body of research in this area is focused on manipulating avatars to study whether humans’

perception of the world can be influenced through body alteration/replacement. For instance, owning

a child avatar influences estimates of objects’ size and expedites association of the self with childlike

attributes [12]; similarly, owning a different-skin-toned avatar affects implicit racial bias [168].

The aforementioned body of work confirms the feasibility of changing body-oriented perceptions when

participants are manipulated to believe the virtual body they see in VR is, in fact, their real body.

Limitations of Previous Work

While previous studies attest that VR scenarios can alter affect, this has been confined largely to park

scenarios. The conditions involved are time-consuming, explicit in their purpose, and geared for a

specific narrative. Most importantly, they also neglect embodiment as a part of the immersion. This

renders it hard to evaluate the processes leading to affectmanipulation in embodiedVRprecisely. While

some evidence suggests that one can influence affect and presence by manipulating the avatar’s facial

features [105], the connection between affect and the illusion of owning a virtual body remains unclear,

as does whether other avatar manipulationsmay inform affect. Some authors have shed light on affect’s

role for presence [13]: the literature suggests a positive correlation between presence and affect.

We provide evidence that affect can be influenced by only bodies truly thought to be ours. Additionally,

we present a first study showing interplay between affect and body ownership. Our findings confirm

the existence of a link between (positive) affect and virtual bodies.
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(a) (d) (e) (f ) (g)

Figure 7.2: Experimental manipulations for Study I, as described in Table 7.1. Manipulations (b) and (c)
used the same body as the control condition (a), with changes to speed of navigation.

7.4 Study I
We conducted an outside-the-lab VR study, as research has proposed this to be a valid method for low-

cost VR user studies with high power [153, 211]. Each participant was given a commodity cardboardVR

headset to use in combination with his or her smartphone. This was deemed a cost-effective approach

enabling a large-scale user study that would allow us to try many experimental conditions and, thereby,

many avatar manipulations. To our knowledge, no other VR user study has been done with more than

200 participants.

The overall purpose of this study was to i) validate the feasibility of influencing affect with avatar ma-

nipulations in VR, ii) experiment with several avatar manipulations with high power, and iii) identify

specific questions pertaining to the body-ownership–affect link for further investigation via a laboratory

study focusing on high internal validity.

With Study I, we were interested in core affect [57]. Since this is the broadest class of non-reflective

affective feelings available to the consciousness, core affect is simpler to address than the underlying

emotions andmoods. Because itwas not clear in advance how themanipulationswould influence partic-

ipants, we decided on a dimension-based conceptualization of core affect, involving valence and arousal

(similar to Russell’s circumplex model of affect [57]).

Participants

In all, 207 undergraduate computer science students took part in the study. Most weremale (51 females

participated), and the age range was 19–50 (M = 23, SD = 3.8). Smartphones with iOS were slightly

more common thanAndroid ones among the participants, with 110 using iOS in the study. Participation

was counted toward the students’ credit for a compulsory introductory HCI course.

Apparatus

The participants used their smartphones within a Google cardboard VR headset that had a head strap.

A few students did not have a compatible device, so we lent them one. The application was developed
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with theGoogle VR SDK forUnity 2017, deployed for Android and iOS and distributed via the relevant

app stores. We employed an inverse kinematics (IK) system for the humanoid avatar, using the head as

the only tracked point, with three degrees of freedom (DoF).

Design

We used three tasks in the design of our between-subjects experiment. The independent variable was

body manipulation, with seven conditions (see Table 7.1 and Figure 7.2): control, speed (slow/fast),

face (smile/frown), and posture (upright/hunched)

These specific avatar manipulations were chosen based on a review of body–affect relations. Coombes

et al. [44], for instance, show that speed of a task varies as a function of affect, and Wallbott [229]

presents an overview of how postures are related to emotion. Finally, research has showed how facial

expressions can modulate affect [105, 157, 213].

The tasks were adapted from pen-and-paper ones in Strack et al.’s work [213] to suit an embodied VR

experience. In all three tasks, the subject selected spheres in turn, on the basis of the number or letter

printed on them. Each sphere was initially white, turned red when the subject looked at it, and then

turned blue once the subject had been dwelling on it for two seconds. While participants were perform-

ing the tasks, a large mirror was in front of them, showing them their avatar (see Figure 7.3). Between

tasks, the mirror served as a screen displaying buttons with which participants answered questions,

again via two-second dwell times. The specifics of the tasks are described below.

Task I

Task I was designed to give familiarity with selecting targets by dwelling on them via head position and

to introduce Likert-scale use in VR. Participants selected two spheres, numbered 1 and 2, by dwelling

on each in turn.

Task II

In the second task too, the participants selected numbered spheres, this time from 1 to 9.

Task III

For the final task, they were asked to select all spheres with vowels (“Y” was optional) on them, in any

order. A sphere was present for each letter of the alphabet.

Variable Manipulation Hypothesis

(a) Control None Baseline

(b) Rotation speed Slow (-40%) High affect

(c) Rotation speed Fast (+40%) Low affect

(d) Face Smile High affect

(e) Face Frown Low affect

(f ) Posture Upright High affect

(g) Posture Hunched Low affect

Table 7.1: The experimental manipulations in Study I (the hypotheses correspond to SAM responses).
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In the control condition (a), therewere nomanipulations. For the speed conditions, we increased/reduced

40% rotational gain around the y-axis, such that a 100-degree movement would result in rotation of 140

degrees for (b) and 60 degrees for (c). The face conditions manipulated facial features (using built-

in morphing), to produce smiling (d) and frowning (e). Postural manipulations were implemented by

adding artificial head and chest targets for the IK model, resulting in either upright (f ) or hunched (g)

posture.

Measurements

The primary dependent variables were valence and arousal, measured with a nine-point SAM (see Fig-

ure 7.1) [24] administered with the textual prompt “How do you feel?” (Table 7.2 provides the full

list of dependent variables). We chose the SAM to measure the primary dependent variables because

it requires few of the cumbersome in-VR button selections, which would be prevalent using common

affect questionnaires (e.g., PANAS [236]). The dominance scale sometimes used as a third dimension

for the SAM instrument is more emotion- than core-affect-oriented [57] so was not used in our study.

Measurement Instrument Category

Valence SAM Affect

Arousal SAM Affect

Difficulty Likert scale Post-task metric

Completion time Clock Performance

Error rate Head orientation Performance

Mirror time Head orientation Activity

Body ownership Two questions Questionnaire

VR experience Four options Questionnaire

Table 7.2: The dependent variables for Study I.

Also, we measured task difficulty (subjective difficulty), speed (task duration), and accuracy (error rate)

for each task. In addition, we recorded the time spent looking in the virtual mirror, as the number of

frames for which the participant’s point of view collided with the mirror.

Procedure

Participants entered a virtual room (see Figure 7.3) after installing and opening the mobile application

and placing their phone in the cardboard VR headset. In this room, a standing sex-matched avatar could

be seen in the mirror. Participants’ coarse body movements were mapped in real time, with head rota-

tion used alongside IK to create a sense of body ownership over the virtual character. Each participant

was randomly assigned to one of the seven experimental conditions. Each subject performed, in all,

three tasks, in a predefined order. In each task, the participants looked for floating spheres with pre-

defined locations. To create the illusion of body ownership, the mirror showed the avatar moving in

visuo-motor synchrony with the participant.

The participants rated the difficulty of each task upon its completion. After the third task, they filled

out a SAM form that used a nine-point Likert scale created for VR.
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Figure 7.3: Task II shown from a third-person perspective – the participant is placed in front of a mirror in
a virtual room, and numbered spheres are selected in turn via dwelling.

Debriefing

After completing theVRpart of the study, participants completed a briefWeb-based questionnaire, pro-
viding data on body ownership and prior VR experience. We defined their body ownership as the max-
imum value reported for these two questions on body ownership used by Bakakou and colleagues [12]):

• How much did you feel that the virtual body you saw when you looked down at yourself was your own
body?

• How much did you feel that the virtual body you saw when you looked at yourself in the mirror was your
own body?

Additionally, we asked the participants to guess the purpose of the study, for exclusion of anyone who

suspected its true purpose (no one did). Each participant included the unique ID generated by the app

for linking the app’s study log with the post-experiment questionnaire. A week later, we revealed the

purpose of the study to the student participants.

Results

We tested the responses for normality, and a Shapiro–Wilk normality test showed that body-ownership,

valence, and arousal responses did not follow a normal distribution. Therefore, our reporting of results

in the following section refers to non-parametric statistics. Kruskal–Wallis tests were used, with χ2 test

results reported in this section. For normally distributed data, F -scores from ANOVA tests are given.

Data

Most participants had only a little or some prior experience with VR; 21% had never tried it before, 55%

had a few times, and 24% had considerable VR experience. We excluded two of the 207 participants

for taking too long (>30 minutes), and 37 were removed from the sample for not experiencing body

ownership (BO) with the virtual avatar (BO≤ 2). Data from 168 participants remained.

The average time for completing the study was 297 s (SD = 197). No participants were excluded for
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guessing the purpose of the study; the vast majority responded with variations of “I don’t know,” with

some speculating that the aim was to understand usability aspects of VR navigation. A little less than

half of the time, 119 sec. (SD = 37), was spent looking in the mirror. The mean difficulty (from 1 to 9)

for each respective task was 1.8, 2.9, and 4.4, showing participants’ ease with completing the tasks.

Affect

The control group (without avatar manipulations) reported, on average, a score of 5.3 for valence and

3.3 for arousal. Figure 7.4 shows this group’s differences in means for both valence and arousal; it is

evident that the differences in valence between conditions are negligible (with means between 5.0 for

frowning and 5.8 for smiling), while differences in arousal are more pronounced (means range from 3.0

for hunched posture to 4.8 for smiling).
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Figure 7.4: Difference inmeans from the six conditions, normalized in terms of the control condition. Blue
ellipses represent conditions with hypotheses of high affect, and red ones represent conditions with hy-
potheses of low affect. The ellipses are fitted to represent 95% CIs.

We did find a significant effect of experimental condition on arousal: χ2
6 = 14.61, p = .02. A

Bonferroni-adjusted post hoc Dunn’s test showed that smile and hunched differed significantly, with

z = −3.32, p < 0.01. We found no significant effect of experimental condition on valence: χ2
6 =

2.75, p = .84.

The condition smile showed itself to be themost effectivemanipulation for causing positive affect. Non-

intuitively, its counterpart, frown, did not emerge as the most effective contributor to negative affect;

rather, it seems that this and other manipulations hypothesized to induce negative affect had little to no
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effect.

We noticed that positive avatar manipulations (smile, slow, and upright) led to increased arousal relative

to the control (see Figure 7.4). Comparing positive and negative manipulation reveals significance for

arousal: χ2
1 = 7.51, p < .01.

Conversely, we observed negative manipulations (frown, fast, and hunched) to have limited effect, with

hunched being the most effective. We noted that other researchers too have found positive affect easier

to induce than negative affect; e.g., Schaefer et al. [188] collected affect measurements for 64 movie

clips and consistently found stronger induction of positive affect than creation of negative affect with

these stimuli.

Body ownership

With regard to body ownership – the degree to which sensory cues coalesce in the perception that a

virtual body is “my body” [110] – we expected to find consistent levels across all the manipulations.

Therefore, we checked for an effect of experimental condition on level of body ownership. Indeed, we

found no such significance: χ2
6 = 6.61, p = .36.

The results from Study I showed that body ownership varied significantly with the time spent looking

in the mirror: χ2
8 = 20.8, p = .008. That is, the level of reported belief in the avatar being the

participants’ own body rose with the amount of time looking at the avatar in themirror in front of them.

This shows the importance of mirrors in body-ownership illusions, and it confirms that cardboard VR

systems, modest fidelity notwithstanding, can induce those illusions formost participants (as suggested

in earlier work [153, 211]).

A Kruskal–Wallis test showed that valence varied significantly with body ownership: χ2
7 = 21.3, p <

.01. A Spearman’s ρ = .29 showed that body ownership correlates somewhat with valence; the same

was not true for body ownership and arousal, ρ = .08 (see Figure 7.5).
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Figure 7.5: Plots showing the relationship of body ownership with (a) valence and (b) arousal, where the
size of the dots indicate frequency and the dashed lines represent the trend lines for positive (blue) and
negative (red) manipulations.
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Performance

Coombes et al. [44] described a link between task performance (speed/precision) and affect; specifically,

they reported that lower affect leads to higher speed and error rate in a motor task. Therefore, we were

interested in whether task performance would vary as a function of affect in this study.

Participants completed the study most quickly in the frown condition (M = 250 sec.) and most slowly

with smile (M = 353 sec.); however, the speed difference attributable to avatar manipulation was not

significant: F (6, 161) = .61, p = .72.

For error rate, we used the mean error rate over the three tasks, calculated thus: for each task, we

computed the Levenshtein distance, lev(α, β), between the optimal sequence of actions, α (e.g., Task

II’sα =“123456789”), and the participant’s sequence of actions, β. Error rate was, similarly to speed,

not found to vary significantly with avatar manipulation: F (6, 161) = 1.22, p = .30.

Summary

The three avatar manipulations hypothesized to induce negative affect (fast, frown, and hunched) did

produce a lower average affect score than each of the manipulations hypothesized to induce positive

affect (slow, smile, and upright). This effectwas statistically significant for arousal when the positive- and

negative-condition groups were compared. Also, an omnibus Kruskal–Wallis test showed significance

for arousal, and a Bonferroni-corrected post hoc test found the distributions to differ significantly for the

pairing hunched and smile.

Body ownership significantly varied with valence; this was not the case for arousal. We did not find

evidence suggesting that body ownership is influenced by avatar manipulation.

Neither did we find evidence for speed or error rate being influenced by the avatars’ manipulation.

The results of Study I suggest that facial manipulations to avatars do alter affective responses, with

posturemanipulations having a similar but less pronounced effect. Manipulating speeddoes not seem to

alter affective responses. Finally, our findings point tomanipulations for positive affect asmore efficient

than those intended to induce negative affect.

Discussion

The mean score from the body-ownership reports (scale: 1–9) was 4.36 (SD = 1.91). While this is

not unusually low, it does suggest that something in the circumstances of Study I limited the body-

ownership scores. We believe the factors might include i) the commodity VR equipment with only 3

DoF; ii) the short study duration (five minutes, with two minutes of mirror time); and iii) the lack of

internal control in outside-the-lab experimentation.

While outside-the-lab experimentation allows for rapid implementation of large-scale user studies at

low cost, it imposes design constraints and creates practical limitations to the experiment. In particular,

lengthy studies work poorly outside a laboratory setting, and adherence to the protocol (e.g., standing

up and using a head strap) is hard to confirm. Additionally, it is rendered difficult to obtain reliable

measurements of bodily aspects, such as posture and locomotion. We addressed these concerns by

conducting a lab-based study, with higher internal validity and technical fidelity.
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7.5 Study II
The purpose of Study IIwas to address unresolved questions fromStudy I about i) the interplay between

body ownership and affect and ii) the effect of posture changes on affect.

Since valence varied with body ownership in Study I, we wanted Study II to cast more light on the con-

nection between body ownership and affect, through measurements with high internal validity. While

Study I showed only a non-significant difference between the hunched and upright conditions in terms

of affect, that study was limited in a number of respects. With Study II, we hoped to ascertain whether

a more elaborate setup and rigorous study protocol would reveal differences in affective responses be-

tween posture changes to the avatar.

Participants

We had 42 participants in this study, with an age range of 21–34 (M = 26.3, SD = 3.4). We recruited

people to take part via an internalmailing list. The first participant was excluded on account of technical

errors, sowe report on analysis performed for 41 people (22 ofwhomwere female). All participantswere

given a gift worth the equivalent of $20 USD for their time. Participants signed a consent form before

the experiment commenced. No one who took part in Study I took part in Study II.

Apparatus

For this study, we used an HTC VIVE system (6 DoF) in combination with an OptiTrack motion-

capture system for state-of-the art body-tracking. We employed a Unity scene similar to that developed

for Study I, using a desktop PC (2.8 GHz Intel i7, 12 GB RAM, NVIDIAGTX 980), runningWindows

10 Pro. Tracking was performed with Motive, using eight Prime 13 cameras at 120 Hz (the same frame

rate used forHTCVIVE lighthouses), positioned in a semicircle (see Figure 7.6). We tracked the hands,

elbows, feet, chest, and shoulders. Retroreflective markers were attached to the head-mounted display

for SteamVR–Motive alignment. The chest and shoulders were not attached to the IK system but were

tracked for later analysis.

Design

Study II employed a between-subjects design with avatar manipulation as the independent variable

(there were three groups, with 14 people in each). Because themanipulations of avatar posture in Study

Figure 7.6: The lab study setup (top), and the view of the participant immersed in the VR world (bottom).
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I exhibited no clear effect, we were interested in seeing whether this was due to the lack of technical

fidelity (e.g., DoF, latency, and screen-resolution issues) and experimental control (e.g., issues with

supervision, whether subject were standing up, adherence to procedure, and interruptions). On this

basis, these three conditions were chosen for the independent variable: hunched, a control, and upright.

The last was added halfway through the study without the experimenter’s knowledge; this was done

since the analysis in Study I showed little difference between the control and the hunched-condition

group.

WechosePANAS results for the dependent variable of affect – thismeasure has consistently been shown

to have high validity [48]. The instrument offers a broader conceptualization of affect than in Study I,

in that it features items related to emotion and mood, not only core affect [57]. Thereby we hoped to

gain amore nuanced picture of the influence of ourmanipulations while retaining a dimensional view of

affect. The PANAS instrument was administered on a computer alongside the textual prompt “Please

indicate to what extent you feel this way right now.”

We chose a task similar to those in Study I, although this one was longer and required full-body move-

ments instead of only head orientation and dwelling. Again, a mirror was present, in which the visuo-

motor synchronous, sex-matched avatar was visible. The virtual room where participants were im-

mersed was a replica of the physical room in which the experiment took place (see Figure 7.6). The

experiment was conducted by someone aware of neither the study’s purpose nor of Study I.

In summary, in comparison to Study I, Study II had

• higher VR fidelity (HTC VIVE instead of cardboard),

• full-body tracking (8×OptiTrack Prime 13),

• longer duration (17 min., as opposed to 5 min.),

• an extensive construct for affect (PANAS, not SAM),

• fewer conditions (three instead of seven), and

• fewer participants (42 instead of 207).

Procedure

After calibration in which participants’ bodies were aligned with their virtual avatar, the study proper

began. The study progressed with a series of floating 3D objects (spheres, cubes, and icosahedra) that

disappeared when the participant tapped them with either hand. The experiment ended once the par-

ticipant had tapped 200 objects. All objects were spawned in random locations between the participant

and the mirror, such that the participant faced in the same direction with respect to the mirror through-

out the study (see Figure 7.6). Thus, each subject was required to glance around, move about, and tap

objects close to both the floor and the ceiling. Thismovement was reflected in themirror placed in front

of the participant. After finishing the VR task, participants filled out a computer-administered post-

experiment questionnaire in which i) PANAS results, ii) body-ownership data, and iii) demographic

details were collected.
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Results

Data

Participants used, on average, 17.6minutes (SD = 2.4) for the study, with 14minutes spent looking in the

mirror (SD = 1.7). Themedian score from the body-ownership reports (scale: 1–9)was 6 (IQR = 4, 7).

Most subjects had little prior experience with VR: 38% had never tried it before, 38% had tried it a few

times, and 24% had considerable VR experience.

Affect

The PANAS instrument covers two components, positive and negative affect, generating a score be-

tween 10 and 50 for each. These are considered two independent measures of affect. Figure 7.7 shows

the negligible difference in affective responses between conditions. We were unable to find any signifi-

cant effects of avatar manipulations on either PANAS component: for the positive one, χ2
2 = .25, p =

.88; for the negative one, χ2
2 = .09, p = .95.
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Figure 7.7: Mean PANAS scores. Error bars show 95% CIs.

Body ownership

We did not find an effect of avatar manipulation on body ownership: χ2
2 = 2.93, p = .23.

Since valence was found to vary with body ownership in Study I, we hoped to gain a better sense of

the body-ownership–affect relationship with this study. We tested whether the PANAS components

varied with body ownership and found a significant effect of body ownership on the positive one: χ2
7 =

14.92, p = .04. Significance was not found for the negative component: χ2
7 = 8.33, p = .3.

Inspired by Kilteni et al. [110], we treated body ownership as an ordered categorical value and in a com-

bination with the numerical PANAS positive component we performed an ordinal logistic regression of

body ownership. This yielded a fit value with a positive coefficient (the higher the positive-component

response, the greater the likelihood of a high level of body ownership at the time). Figure 7.8 shows

the estimated probabilities from the logistic fit P (Body ownership|Pos. PANAS). The probability of high

ownership increases as PANAS values rise. For instance, the estimated probability of the ownership

score being ≥ 7 is .76 for a PANAS value of 42 but only .05 for a PANAS figure of 16. Ownership
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scores below 3 are most likely to be seen with PANAS scores under 16, with an estimated probability of

.62.
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Figure 7.8: The probabilities estimated from the fitted values of an ordinal logistic regression of body own-
ership on the positive PANAS-response component.

Study I found valence to vary significantly with body ownership, while the foregoing analysis shows

that the probability of high ownership increases with higher positive-affect scores. Together, these

findings provide evidence that body ownership is an important factor in controlling the valence of affect

in embodied VR experiences, particularly for inducing positive affect.

We did not find a link between negative affect and body ownership, and we speculate that the low vari-

ance between subjects for the negative PANAS component reflects this: negative-component scores

varied within the range 10–26 (SD = 3.7), while positive-component ones ranged from 16 to 42 (SD =

6.4).

Summary

Study II did not reveal differences in affective responses between avatar conditions (control, upright, and

hunched), just as Study I revealed no differences in affect attributable to full-body avatar manipulations.

Hence, it is likely that posture changes do not have any influence on affect.

We found that body ownership varies significantly with positive affect. With higher affect scores, there

was greater likelihood of high ownership values being reported: a positive-component PANAS score

of 42 (out of 50) yields an estimated .76 probability of an ownership score of at least 7 (out of 9); a

positive-component score of 16 yields an estimated .05 probability of an ownership score of 7 or above.

7.6 Discussion
Baños et al. [13] found that affective content has an impact on presence in virtual environments: they

reported that in non-affective environments presence depended mainly on immersion, while the rela-

tionship proved more complex for environments with affective content. Jun et al. [105] too reported

on presence and affect: with a body-ownership illusion they found presence to be positively correlated
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with valence. Specifically, the authors showed that owning an avatar with a happy face leads to higher

presence estimates.

The study reported upon here expands our understanding of this interplay between virtual selves and

perception. Firstly, we found that facial features are, in fact, efficient at influencing affect, while aweaker

effect of this sort was found for upper-torso manipulations and movement speed. Secondly, we showed

that positive affect is a good predictor of the likelihood of high body ownership. Our results suggest

that valence is positively correlated with body ownership, while arousal is not. The results reveal, in

addition, that positive affect is an important factor in body ownership. These findings are important

for research considering affect and VR. For instance, mood-induction procedures in VR are likely to

interfere with body ownership; study designs should be sensitive to this issue.

Our examination of the link between virtual bodies and users’ affect was driven by a desire to inform

design. We believe that the studies speak to this goal well – they may fruitfully inform the design of

avatars and aid in creating a more solid foundation for subtle mood-induction techniques for virtual

reality. For the domain of avatar design, our work suggests that some manipulations may influence

affect, though not necessarily in great magnitude. As hinted at in prior work on VR [105], the most

promising route for influencing affect seems to lie inmanipulating facial expressions, especially smiling.

It is far from clear that suchmanipulationsworkwell for negative affect, however. Furthermore, indirect

manipulations of affect seem more difficult to achieve; movement speed and posture produce unclear

results. Further utility of the findings can be found in mood induction, as noted above. Existing mood-

induction procedures for VR change the entire environment [14, 64, 180]. Our results show that less

blatant manipulations might be feasible, although the interplay with body ownership suggests that their

design might be difficult.

Study II found only the positive PANAS component, not the negative one, to vary with body owner-

ship. While this may seem odd or counter-intuitive, the two components should be considered wholly

independent. In a similar vein, Study I’s manipulations intended to induce positive affect (smile, slow,

and upright) were more effective than their negative counterparts (frown, fast, and hunched). Also, in

Study I only valence (not arousal) was found to respond to the condition. Both studies suggest that

avatar manipulations are effective primarily for influencing positive affect.

7.7 Conclusion
We examined whether it is possible to influence affective responses by altering avatars in virtual re-

ality. Results from an outside-the-lab study with 207 participants showed that this indeed is feasible.

Manipulations to the avatars’ facial features proved effective in modulating valence responses.

Moreover, we tackled the seemingly harder question of how affect interacts with the illusion of own-

ing a virtual body. Our results show that positive affect is of great importance for body ownership: in

Study I, valence varied with body ownership, with positive affect being found to follow body ownership.

Our analyses show that high positive-affect responses increase the probability of high body-ownership

responses. Together, these findings contribute substantially to our understanding of how emotion in-

formation influences fundamental VR constructs.
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For reasons that will later become clear, this part of the thesis was never submitted for publication

anywhere. I think, however, the undeniably clear results are rather interesting, and hence deserve to be

printed.

As I was reading up on ways tomanipulate cognitive load I came across the disfluency literature. Disflu-

ency studies manipulate the ease with how humans obtain information; specifically, the hypothesis is

that the harder it is to immediately comprehend a task, the higher is the probability of you doing well on

that task. As this sounds counter intuitive, this experimental phenomena received quite some attention

when series of studies showed how a math task with hard-to-read text yielded better scores on average,

or that intentionally bad printing quality could increase memorability of words.

Many of the fantastic findings have later been found not to replicate, and studies with literally thousands

of subjects have shown null-effects of disfluency on task performance. Two meta reviews [120, 145]

summarize recent attempts at replication and conclude that the effects of disfluency on cognition are

limited to non-existing.

Any rational empiricist would accept the critique of the studies conducted in a former troublesome era

in experimental psychology. I thought, however, that there would be raison d’être for experimenting

with disfluency for HCI. First of all, some evidence, even from recent studies suggest that disfluency

might have an impact on memory. A HCI study also showed learning effects from increasing required

effort [42]. Second, both the original disfluency study design and recent replication attempts only ma-

nipulated font readability in a binary fashion (i.e., normal vs: italicized, black vs. gray, or using a easy- or

hard-to-read font), thereby leaving many ways and amounts one could manipulate information process-

ing open, perhaps showing non-linear effects. Last, these studies mostly used tasks that are artificial

(e.g., the Cognitive Reflection Test [69]).

With the work presented in this chapter I wanted to kill (at least) two birds with one stone: (i) improve

the validity and integrity of the disfluency theory by experimenting with disfluency across actual tasks,

modalities, with ‘enough’ subjects, and (ii) introduce disfluency for HCI, potentially disrupting the

common belief of ‘the more usability the better’.

The results, however, tell another story: disfluency systematically diminish performance, both found in

decreasing quality of work, and increased completion times. I report on this phenomena in this chapter

through three crowdsourced studies of applying disfluency to HCI tasks.
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8.1 Introduction

8.1 Introduction
Findings in cognitive psychology indicate that human reasoning involves two processing systems [60,

61, 106, 203]: System 1; a quick, intuitive, and effortless system, and System 2; a slow, analytical, and

deliberate system. Cognitive strain can activate System 2 [6]; the slower, more deliberative, and more

logical mode of thought, which allows for more elaborate logical problem solving.

Fluency is the ease with which people process information. Lack of fluency, or disfluency, introduced

cognitive strain and has peculiar effects on cognition. Research shows that disfluency has effect on intel-

ligence estimation [161], difficulty estimation [205],memory performance [53], and transcription [204],

among others.

A common way to induce disfluency of prose is to present the text in a font that is difficult to read

(e.g., [4, 6, 161, 162, 205]). A multitude of strategies for font manipulation have been tried; for instance

italicizing [6, 161], random transformations [4], changing font-family [161, 205], changing color [6, 204],

and reducing font-size [6, 162].

Thus, prior disfluency research has treated disfluency as binary (no disfluency/disfluency). This is

problematic for several reasons: this assumes a linear relation between the disfluency and the potential

benefits on cognition; it could very well be that the trade-off between disfluency and cognitive benefits

would pose itself as non-linear. In addition, the binary treatment of disfluency makes comparisons

across studies hard, for instance, if one study changed the color of a font, and another italicized. Lastly,

past literature does not quantify how much previous methods make text harder to read.

In this research we treat disfluency as an interval: interpreting disfluency of 0.0 as readable, and 1.0

as unreadable (see Figure 8.1). To reach a satisfying control of disfluency as a continuous variable we

apply varying amounts of blur, rotation, and white noise.

0.0 0.5 1.0

Figure 8.1: Scale of disfluency using images or text, going from fluent at 0, and disfluent at 1.

The study protocols, exclusion criteria, and the analysismethodswere pre-registered before conducting

any of the experiments: https://osf.io/9vksr/. That repository also contains materials for replication

(dataset, code, etc.).

Related Work and Controversy of Replication Failures

In a seminal paper Alter and colleagues [6] showed how a disfluent font lead to significantly more accu-

rate responses to questions from the Cognitive reflection test [69]. These questions are special in the
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sense, that they pose an immediate, but wrong, intuitive answer. To answer these correctly, one needs

to overcome intuition and think a bit. One of the questions from this inventory is shown in Figure 8.2:

A bat and a ball cost $1.10 in 
total. The bat costs $1.00 more 
than the ball.
How much does the ball cost?

Figure 8.2: A question from the Cogitive reflection test: fluent version left, disfluent right.

The intuitive answer to the question is 10¢, even though the correct answer is in fact 5¢. The original

paper showed that students who were exposed to the disfluent version of the question (see Figure 8.2,

right) had a much higher correct response rate: “90% of participants in the fluent condition answered

at least one question incorrectly, only 35% did so in the disfluent condition [...] p < .001”.

Following this work, researchers have conducted experiments with many tasks with the potential of

higher cognitive output following a disfluency condition. It has been shown that disfluency decreases

intelligence estimation of authors [161], minimizes engagement, and increases difficulty estimation of

tasks [205]. Disfluency can also lead to deeper processing, such as an increase in memory performance

[53]. Similarly, Soboczenski et al. [204] showed how transcription errors can beminimized by reducing

the presentation quality of the task.

Recently many of these studies have shown not to replicate ([120, 145]). Notably, the original study

protocol using the Cognitive reflection test showed null effects for 16 independent studies in a replica-

tion attempt [145]. One of these studies crowdsourcedmore than 5,000 online participants (the original

study had 40 participants).

Limitations of Previous Research and the Potential of Disfluency for HCI

While these replication attempts are overwhelmingly decisive, some strands of disfluency research still

suggest some effects. Kuhl et al. [120] summarized recent empirical findings in disfluency research, and

concluded that albeit most seminal studies fail to replicate, some studies still show significant effects

of disfluency on cognition. Specifically recall, comprehension, and transfer performance seems to have

some effect, under certain conditions [120]; for instance as noted for a specific group of participants,

“[for] students with higher working memory capacity, a disfluent font was advantageous” [120].

So far in the disfluency research the tasks employed have either been completely artificial (e.g., [6]),

or explored psychological constructs (e.g., memory, math comprehension, cognitive load), rather than

exploring scenarios where this could be applied.

HCI research has a long tradition for blending psychological constructs with practical application de-

sign to improve user interfaces and human-computer interaction with these. We draw on research in

this area, and apply methodologies for evaluating seminal computerized tasks using various amounts

of disfluency. In addition to experimenting with disfluency in common UI contexts, a major limitation

of previous research in this domain is the treatment of disfluency as a binary variable: we hypothesize

that treating disfluency as a continuum will reveal relevant relations between the potential cognitive
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advantages and the relative amount of disfluency applied. Last, some previous work employ few homo-

geneous subjects, which we mitigate by recruiting participants online using crowdsourcing markets.

8.2 Experiment I: Image Labeling

A commonly crowdsourced task concerns image labeling for training machine learning systems to rec-

ognize future unlabelled images. Regardless of the data domain (traffic signs, types of whales, etc.),

labelling tasks are quite similar: the worker has to explain what the contents of an image is. For this ex-

periment we were interested to see how disfluency would influence label quality and performance. We

hypothesized that while additional disfluency, and thus cognitive load, would increase labeling speed,

it would also improve labeling accuracy.

Participants

For this experiment we invited participants from the US, with a HIT (Human Intelligence Task) ac-

ceptance rate of more than 90%. We had 121 participants from AmazonMechanical Turk complete the

task, whowere reimbursed $2.50USD.We removed 31 participants for either taking too long, being too

fast, or having too many errors identified using the median absolute deviation (median ± 3 × MAD).

Of the resulting 90 participants, who were aged 20–69 (M = 31), 31 were female.

Apparatus

Participants completed the labeling task on a desktop computer using the Google Chrome browser,

with a resolution of at least 900x700 px. We developed the web application in plain JS/HTML/CSS.

Disfluency was dynamically administered with a JavaScript library developed for the purpose.

Design

We employed a within-subjects design, with disfluency (10 levels; 0.0–0.9) as the only independent

variable. For the labelling task we looked for a data set containing single labelled images. A known

“gold standard” would allow us to measure participants’ performance under experimental manipula-

tion. The CIFAR-10 data set [119] contains many images in 10 classes. Unfortunately, the images are

only available in 32×32 px, making it unusable for this experiment. Inspired by CIFAR-10 we created

our own data set with 250 images in 10 classes: bird, car, cat, deer, dog, frog, horse, monkey, ship,

truck. We found the images on image-net.org using the categories provided. Images were then cropped

and scaled to 300x300 pixels.

Procedure

Each participant labelled all 250 images (25 from each class), in random order using the interface shown

in Figure 8.3. The order of the buttons was also randomized. The first 5 images were discarded as warm

up rounds. For every trial we distorted the image with a disfluency level between 0.0 and 0.9. The

disfluency consisted of blurring, rotating, and white noise. A 5 second break separated the trials.
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8 Disfluent HCI

Figure 8.3: The participant labels an image, by clicking the correct button. Here is shown an image of a
frog with disfluency level of .5.

Results

The results show that disfluency not only reduced speed of image classification, but also significantly

reduced labeling quality (see Figure 8.4). The results from 22,050 image labels from participants, show

that with increased disfluency comes higher response times, and reduced label accuracy.
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Figure 8.4: The performance results for Experiment I: additional disfluency increases response time and
decreases accuracy for image labeling. The red lines show 2nd degree polynomial fits. Error bars show .95
confidence intervals.

The data for both time and correct label rate suggest a polynomial relation to disfluency; we plotted

the polynomial fits to Figure 8.4. For completion time this showed a good fit: F (2, 937) = 22.5, p <

10−10. For correct label rate, the polynomial function was also a good fit: F (2, 937) = 995.5, p <

10−16. Together this shows that the effect of disfluency on performance is close to quadratic; increasing

completion time and decreasing accuracy.

8.3 Experiment II: Menu Navigation
Menu navigation is a seminal HCI task, both studied numerous times experimentally, and fundamental

for deployed applications. As menu navigation requires thinking (e.g., should the user look for ‘United
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Kingdom’ in ‘Geography’ or ‘European History’). We were therefore interested to see if we could

enforce deeper thinking in menu navigation by applying disfluency, and thus minimize the error rate.

In this experiment we employed a menu navigation task by Larson and Czerwinski [126], where partic-

ipants find topics within hierarchical menus with different levels of disfluency.

Participants

We had 160 participants from Amazon Mechanical Turk partake in this experiment. We removed five

for too high/low time, number of clicks, or lostness (using MAD). The remaining 155 participants (53

females) were aged 20–69 (M = 31). All participants came from the US, and had a HIT acceptance

rate of more than 90%. We reimbursed participants $2 USD.

Apparatus

Participants completed the labeling task on a desktop computer using the Google Chrome browser,

with a resolution of at least 900×700 px. We developed the web application in plain JS/HTML/CSS.

Disfluency was dynamically administered with our JavaScript library.

Design

This experiment employed a within-subjects design, with disfluency as the only independent variable

(10 levels; 0.0–0.9). Dependent variables were time, clicks, and lostness. Clicks refer to how many

menu clicks were needed to find an item (minimum three required); lostness is a metric measuring how

participants are “going around in circles” [126].

The menu used a 8×8×8 hierarchy. The menus and items were the same used in the original study;

topics originated from Encarta, the discontinued digital encyclopedia. We applied a random level of

disfluency to each trial. Figure 8.5 shows the interface used for this study.

Procedure

Each participant conducted 28 trials of finding items in themenu (the first four of which were discarded

aswarmup rounds). Participants could request a new item to look for, if twominutes had passedwithout

finding the item. Afive second break separated the trials. The items for the userwere selected randomly

(from a pool of 512 items). The menus were presented alphabetically.

Results

Disfluency is thought to activate deeper reasoning and minimize intuitive reasoning. In this manner we

hypothesized that some amount of disfluency could improve performance for participants finding items

organized in a deep hierarchical menu. The analysis is done on a total of 3720 trials. Figure 8.6 shows

the performance metrics for Experiment II.

The relative high variance in the data (e.g., see the confidence intervals for lostness, Figure 8.6c), are

due to the relative difference in the trials; finding ‘Tango’ in ‘Performing Arts’ → ‘Dance’ could be

much easier than, for instance, finding ‘Aesop’ in ‘Art & Literature’→ ‘Writers & Poets’.
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8 Disfluent HCI

Figure 8.5: Menu navigation task used for Experiment II. In this trial the user has to find ‘Ukraine’ by
going through Geography→ Countries→Ukraine. A disfluency level of .5 is applied to the menu.
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Figure 8.6: The performance results for Experiment II: additional disfluency does not seem to have an
effect on menu navigation performance. Error bars show .95 confidence intervals.

Time

The time required to find the item was between 44–55 seconds (SD = 3.3). The overall trend does not

show a significant decrease of reaction time on disfluency. If we, however, only look at the means for

the disfluency levels of 0.0–0.5, we see a good linear fit: slope = −23.9, r2 = 0.94, p = 0.001. This

could indicate that disfluency does reduce reaction time in menu navigation, although not beyond 50%

disfluency. This is in contrast to the hypothesis of slower but more deliberate activity as disfluency

increases.
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Clicks

The results show that the number of clicks required to find items in the 8× 8× 8menu range between

6.9–8.5 on average (with the perfect navigation requiring 3 clicks). The trend shows a slightly decreasing

number of clicks as disfluency increases, slope= −0.58, however not significant: r2 = 0.21, p = .18.

Lostness

Lostness refers to how much a participant “is going in circles” whilst navigating the structure. A lost-

ness score higher than .5 is usually understood as “lost”, while any score lower than .4 should be in-

terpreted as “not lost”. We observe that, regardless of disfluency level, participants were on average

mostly “not lost”, with average lostness scores between .3–.31 (SD = .02). The lostness is only slightly

decreasing as disfluency increases, slope =−.02, but not significantly: r2 = 0.14, p = .29.

Summary

This experiment showed that disfluency has little to no effect on participants’ performance in a menu

navigation task. We hypothesized that disfluency would increase reaction time, and reduce clicks and

lostness. We found no effect on lostness and number of clicks; we did however see a reduction in reac-

tion time, although not beyond 50% disfluency. Together, the results show that disfluency has limited

effect on menu navigation, if any.

8.4 Experiment III: Spatial Recall
One of the areas where the effect of disfluency is continuously being discussed is aroundmemory [120]:

Lehmann et. al. [127] found that a disfluency condition had a significant influence on working memory

capacity.

Participants

We had 311 participants fromAmazonMechanical Turk partake in this experiment. We removed 35 for

taking too long/being too slow (using MAD). The remaining 276 participants (131 females) were aged

20–64 (M = 34). All participants came from the US, and had a HIT acceptance rate of more than 90%.

We reimbursed the participants $1 USD.

Apparatus

Participants completed the spatial recall task on a desktop computer using the Google Chrome browser,

with a resolution of at least 900×700 px. We developed the web application in plain JS/HTML/CSS.

Disfluency was dynamically administered with our JavaScript library.

Design

This experiment employed a between-subjects design with disfluency as the only independent variable

(10 levels, 0.0–0.9). The task is taken from Scarr et al. [187]: for each trial the participants find a target

icon in a control panel like setup. Participants searched for the same six icons in a total of nine rounds.

In each round the same six icons (for all participants) would appear as targets in a random order. We

chose icons such that there would not be any overlap in columns or rows. As the original study, the
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first six rounds were deemed as a training phase, the last three as recall phase. We expected that the

recall phase would be significantly faster than the training, because of a learning effect. Additionally we

hypothesized that additional disfluency would make recall even faster, because of better memory of the

locations of the icons. We used the Windows 7 Icons (instead of the Windows XP icons in the original

study).

Procedure

After participants accepted the HIT on Mechanical Turk, they were redirected to our web app where

the study would begin after answering a few demographics questions. The study progressed as a series

of trials where a target icon was shown in a box on the right (see Figure 8.7). The user should then

find and click the same icon among the 52 control panel icons, arranged in a 7 × 7 + 3 grid. Between

every trial a large box appeared with the text “Click to begin next trial”. Trials also continued if the user

picked the wrong icon. These account for few of the trials as shown in Figure 8.8b.

Figure 8.7: Control panel memory task: participants learn the location of six control panel items by recall-
ing them six times. Three additional rounds of recalling the same six icons show how the memory of their
locations improved recall time. Here the interface is shown with .5 disfluency, hypothesized to aid spatial
memory.

Results

First, the data shows that accuracy only drops when applying more than .7 disfluency (see Figure 8.8a);

given the simplicity of the task the vast majority found the correct icon.

It is evident that recall is significantly faster than training, as one would expect (see Figure 8.8b). This

holds for any disfluency level; so regardless of additional cognitive load during training and recalling, it

is much faster to recall than to learn the position of an icon in a grid.

It is also clear that more disfluency leads to both slower learning rates and recall rates. A linear fit shows
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a significant positive slope for training, slope = 1311, r2 = .76, p = .001. This follows intuition:

during learning, additional cognitive load causes prolonged learning times.

For recall we also observe an increase in response times as more disfluency is added, however not with

as high a slope as for training. For recall we found a significant increase as disfluency increases: slope

= 420, r2 = .56, p = .01.

For spatial recalling, disfluency thus both decreases the training and recalling time; even when disflu-

ency leads to increased training time, it does not lead to improved recall rates. For extreme disfluency

levels it also reduces accuracy.
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Figure 8.8: The performance results for Experiment III: (a) shows that disfluency causes additional search
time bothwhen learning and recalling icon locations; (b) shows how high levels of disfluency decreases the
rate of finding the correct icon.

8.5 Conclusion
The motivation of doing this research was due to an observed deficiency in the disfluency literature.

Prior to this study, disfluency had been treated binary, either present or not present. If the optimal dis-

fluency would, for instance, reside around 60% disfluency, past literature would not have been able to

detect this. Additionally, prior methods employed for making information disfluent (italicizing, color-

ing, or changing font family) are hard to verify that they really are harder to comprehend, which can be

observed here for extreme values of disfluency in Experiment III. Also, we wanted to experiment with

disfluency on other media than text (e.g., images, interfaces, interaction styles). Lastly, many tasks

used in disfluency research are quite artificial and even if disfluency lead to improved comprehension,

the employed tasks do not outline a path of how that can be utilized in reality.

While replication studies of disfluency studies to a large extent have shown null-results [145], this study

ismuch clearer: two of three experiments using seminal HCI tasks showed significant decrease in perfor-

mances (completion time and accuracy), while one study showed no difference. Even when disfluency

leads to longer comprehension times, it still decreases output in terms of quality of labels, or diminished

spatial memory.

We hypothesized that disfluency could be a valid UI ‘trick’ that could guide, for instance, crowdwork
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design or mission critical UI design, to force users to use their deliberate logical reasoning skills. How-

ever, the empirical data suggests that the application of disfluency as a design methodology is not rele-

vant for HCI.
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about interaction, including how to build knowledge across changing technologies, how to work towards a
model of quality for interaction, and what the core of a science of interaction could be.
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A colleague of mine was struggling with writing a

review paper about a specific subfield within HCI;

the paper required reading many other papers,

finding similarities, comparing methodologies, and

summarizing the current state-of-the-art. Even just

finding the set of papers that defined a subfield’s

current progress seemed to cause some challenge.

Another colleague and I discussed how difficult it

would be to automate this entire pipeline, or at least

just parts of it. This would entail automatically col-

lecting all HCI papers and defining each paper’s

core themes, such that finding the set of papers

within a theme would be straightforward. Ideally,

given an abstract, the system would return with a

list of DOIs of relevant papers, and a brief summary

of these. We further envisioned a human-in-the-

loop crowdsourced step, that would help summa-

rize findings in a table across papers.

Admittedly this review maker never materialized. We did collect all CHI papers, tried various data

science methods to summarize the field, and experimented with finding relevant papers given a topic,

without convincing results. Instead, this data set has been used to write two papers that use the full

CHI corpus to summarize parts of the field’s history, both of which are currently under review (about

interaction at TOCHI [96]; shown left, and about readability at alt.chi [175]). The idea of this chapter

is to use some of the findings presented in these two papers to zoom out a bit of this thesis’ presented

work, and try to answer what constitutes interaction to be ‘cognitive’ or ‘affective’.

Throughout this thesis I have reported on empirical findings of how interactionwith computers can both

convey a user’s cognitive state, and also manipulate the same. I have called this ‘computer-cognition

interfaces’ to imply how the interaction between man and machine can subtly work as a entrance to

human mental processes, such as affect and cognition. In conclusion of this thesis I will try to distill

a more formal definition of what such interaction is, based on analyses of the full text CHI corpus.

This can both help understanding this HCI subfield, but may also further advance work in this area by

pointing towards future strands of cognitive and affective interaction.
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This chapter is based on a collaborative effort as described below.

Title
What DoWeMean by ‘Interaction’? An Analysis of 35 Years of CHI

Authors
Kasper Hornbæk, Aske Mottelson, Jarrod Knibbe, and Daniel Vogel
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9 What is Cognitive and Affective Interaction?

9.1 Abstract
In the paper “What DoWeMean by ‘Interaction’?” [96] we used quantitative and qualitative methods

to investigate how the word ‘interaction’ has been used across 35 years of proceedings from the ACM

Conference on Human Factors in Computing (CHI). We extracted 53,568 occurrences of the word

‘interaction’ across 4,604 papers. In these occurrences, we categorized 2,669 uniquewords thatmodify

how ‘interaction’ is used in a sentence.

The original work led to us to divide interaction in six types: style, quality, concept, social, statistical,

and other. This chapter summarizes specific findings around cognitive and affective interaction from

this analysis. Both ‘affective interaction’ (mentioned across 284 papers, 369 sentences) and ‘cognitive

interaction’ (mentioned across 243 papers, 368 sentences) are qualities of interaction. From the original

study we expand the work with these two themes of interaction, and use the original data to distill a

notion of interaction that is cognitive or affective.

9.2 Method
We are interested in understanding how the notion of cognitive and affective interaction has been used

in HCI. We obtain data on this by taking the CHI proceedings as a representative, high-quality sample

of work inHCI conducted over the past three-and-a-half decades. In those proceedings, we focus on the

word interaction (as well as ‘interactions’). Upon extracting all noun phrases including ‘interaction’,

and manual coding these, we present findings related to those coded as cognitive or affective; find the

full analysis in aforementioned paper [96].

Figure 9.1 summarizes our analysis approach, which combines natural language processing (NLP) tech-

niques with manual classification. Next we describe each step of the process shown in Figure 9.1.

35 years of CHI N-grams
Noun phrases

CHI

Parsing
Error correction

interaction

53,568 occurrences5,439 papers Mapping modifiers
to types & themes

Figure 9.1:Overview of the analysis process. We analyze 35 years ofCHI from 1981 to 2016, spanning 5,439
papers (4,604 of which mention ‘interaction’). We then parse the text of all papers and automatically cor-
rect forOCRand other errors. In these paperswe identify occurrences of ‘interaction’ and extract n-grams
and noun phrases that contain the word interaction. This allows us to find keymodifiers of interaction that
wemanually map to types and themes of the use of the word interaction. The analysis provided here relate
only to ‘cognitive’ or ‘affective’ interaction.

Harvesting and Parsing Papers

We gathered the PDFs from all 5,349 papers or notes published at CHI 1981 through CHI 2016; note

there was no CHI in 1984. We extracted the text from all PDFs containing readily available digital text

using the Python PDFparser library, pdfminer1. Some papers had no available digital text (e.g., scanned

1https://github.com/euske/pdfminer
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9.2 Method

PDFs), poorly extracted text quality (e.g., because of partial OCR), or non-extractable text (e.g., corrupt

documents). On those 1,230 papers we ran optical character recognition (OCR) using Adobe Acrobat

Pro. For some older papers where OCR worked suboptimally, we manually transcribed 27 papers.

Using amixture of stringmanipulations and regular expressions, we then removed papermeta data (i.e.,

title, author names and affiliations, conference name, conference theme, conference date and location,

session title, keywords, and references) and other parts of the paper that do not contain topical content

(e.g., acknowledgements). Additionally we stitched hyphenated word-parts caused by line breaks. The

cleaned text representing each paper thus comprised the abstract, figure captions, tables, and the body.

Identifing Modifiers using N-grams and Noun Phrases

The complexity and number of extracted sentences make it infeasible to classify them manually. We

therefore use automatic ways of identifying the uses of the word interaction. The aim of the analysis is

to identify modifiers of ‘interaction’ that convey something about how that word is used.

Tofindmodifiers, we build onwork in automatic construction of index terms andphrases in text (e.g., [118]).

Somework suggests that noun-phrases and n-gramsmight usefully be combined for this task [98], there-

fore we use both.

Noun-phrase extraction

The meaning of ‘interaction’ as it appears in a sentence is related to the noun phrases it occurs in. A

noun phrase has a noun as its head, in our case ‘interaction’. The headmay then bemodified in different

ways, resulting in different uses of interaction. Relevant words may precede interaction, for instance,

‘awkward social interaction’ is both about social interaction and about that interaction being awkward.

Interaction may also be followed by relevant modifiers, as in ‘interaction is fluid’. To identify all of

these, we automatically identify noun phrases from the sentences containing interaction. We construct

grammar rules that segment the adjectives and nouns surrounding interaction, and ignore articles (‘the’

interaction), possessives (‘their’ interaction), and prepositions (interaction ‘on’).

We use the natural language toolkit for Python (NLTK2). First, a part-of-speech tagger labels every

word with its grammatical function (e.g., verb, noun, preposition). While the tagger is not completely

accurate, causing us tomiss important modifiers or include undesiredmodifiers (e.g., occasional prepo-

sitions), we deal with this limitation in later steps. Having tagged all words in our corpus with their part

of speech, we define a context-free-grammar rule to capture noun phrases. We assign all instances of

‘interaction’ to their own grammar rule (INT). This enables us to specify grammar rules that ensure that

each noun phrase has only ‘interaction’ as its head. Our grammars look for arrangements of preceding

and succeeding adjectives (JJ*), verbs (VB*), nouns (NN*), and conjunctions (CC, TO)3. The grammar

rules are:

INT: {interaction|interactions|interactive|interactional}

CONJ: {<TO|CC>*}
2http://www.nltk.org/
3Grammar key: | = or, ? = optional, *= 0 or more, + = 1 or more, . = accept singular or plural forms.
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9 What is Cognitive and Affective Interaction?

PRINCIPLE: {<CONJ>?<JJ.*>+}
{<CONJ>?<NN.*>+}

INTNP: {<PRINCIPLE>*<INT>+<VB.*>*<PRINCIPLE>*}

This finds 53,081 interaction noun phrases, we use every word of those phrases as a modifier (besides,

of course ‘interaction’), excluding common stop words and conjunctions. Note that each noun phrase

can contain zero or more individual modifiers.

N-gram extraction

Tomitigate againstmissedmodifiers from the grammar rule, we compare themodifiers to non-stopwords

found in both bigrams and trigrams containing interaction (i.e., those beginning and ending with inter-

action).

The idea here is to findmodifiers of interaction using word-level n-grams that include interaction as the

first or last word. We use 2- and 3-grams, expecting they would capture complex compound phrases

involving ‘interaction’. After stemming words and ignoring stopwords, the n-grams contributed an

additional 157 modifiers missed by the noun-phrases, such as instances of ‘external’, ‘implicit’, and

‘particular’.

Final set of modifiers

The combination of n-grams and noun-phrase extraction returns 6,449 modifiers. Of these modifiers,

3,780 appear in only one paper (e.g., ‘prescription’, ‘aggressively-downloading’, ‘voodoo’) and are re-

moved from our keyword corpus. This leaves 2,669 modifiers. Each sentence containing the word

interaction has 1.19 modifiers on average.

Mapping Modifiers to Uses of Interaction

We used a formal coding process to analyze these types of modifiers surrounding occurrences of ‘inter-

action’. We did a series of four manual groupings of modifiers (each comprising 100 to 200 modifiers,

and the sentences matched by each modifier), discussed the resulting groups, and iteratively refined a

coding manual to define types of modifiers. Table 9.1 shows the resulting types.
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Type Definition Example modifiers Papers

Style The form of input/output, the technology used

in interaction, or the medium of interaction.

Typically about the means by which interaction

happens.

mobile interaction, bimanual in-

teraction, cross-device interaction,

3D interaction, rhythmic interac-

tion, pan interaction, zoom interac-

tion, toy interaction

515

Quality The valence of the interaction, capturing some-

thing that would be good or desirable in inter-

action (or, alternatively, bad). Typically about

the experience of the person doing the interac-

tion.

rich interaction, uncomfortable in-

teraction, fluid interaction, play-

ful interaction, natural interaction,

meaningful interaction

371

Concept Technical concepts in human-computer inter-

action that are not about style or quality; might

occur in a textbook index. Typically about a

thing or phenomenon and not something ab-

stract or general

human-computer interaction,

interaction designer, interaction

modality, interaction technique

247

Social Social interaction among people, or people and

virtual characters and human-like agents. The

interaction may be mediated by computers or

not.

social interaction, face-2-face in-

teraction, physician-patient inter-

action, cooperative interaction

137

Statistical The use of interaction in a statistical sense. three-way interaction, significant

interaction, interaction effect

55

Other Cases where the modifier only serves a gram-

matical function and does not add anything to

the commonsense meaning of interaction.

different interaction(s), using

interaction, possible interaction,

many interaction(s), several

interaction(s), specific interaction

1,343

Table 9.1: Six types of interactionmodifiers. The Papers column gives the number ofmodifiers within each
type.

To ensure reliability of the classification, the four authors of the journal paper classified all 2,669 mod-

ifiers. Each author coded half of the data set (1,338 modifiers), administered such that authors over-

lapped with 669 modifiers each.

Fleiss’ κ was computed to determine the inter-rater agreement between four raters. According to Lan-

dis and Koch there was a “substantial agreement” [123], κ = .613 (ranging from chance-level at 0 to

perfect agreement at 1). All 705 disagreements (26.4%) were resolved through discussion.

Within these six interaction types, we further classified themes within each type of modifier. One author

merged similar codes that had been handled separately, for instance because of differences in orthogra-

phy (e.g., ‘color’ and ‘colour’) or because of abbreviations (e.g., ‘f2f’ or ‘face-to-face’). Two authors

then performed a thematic analysis of the two key uses of interaction, Style and Quality, spanning 515

and 371 modifiers respectively. We used the principles for thematic analysis described by Aronson [8]

combined with the practices prescribed by affinity diagramming [19]. This chapter reports on the find-

ings related to Quality only.
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9 What is Cognitive and Affective Interaction?

9.3 Findings

The use of ‘interaction’ is frequent and increasing over time. It represents many uses, of which Style

and Quality account for the most prominent. In this section we provide a brief general overview, but

then focus solely on affective and cognitive interaction, which represent an interaction quality.

The use of ‘Interaction’ at CHI

(a)

modifiers in use

exis
ting m

odifie
rs

new modifiers

(b)

Figure 9.2: Use of ‘interaction’ at CHI: (a) Absolute number of papers and of papers that mention ‘inter-
action’, (b) modifiers over years shown as the cumulative number of existing modifiers, the actual distinct
modifiers in use in one year, and the absolute number of new modifiers introduced each year.

The word interaction has been used extensively over the course of CHI. Figure 9.2a shows that the

absolute number of papersmentioning theword interaction increases, as does the total number of papers

published. The ratio between those have changed too, so that the word interaction has increased from

being mentioned in about 64% of the papers in the first five years of CHI to about 88% in 2016. Within

papers, the word interaction is also used frequently. The median number of mentions is 6, increasing

from 3-4 uses in the first five years of CHI, to approximately 9 over recent years.

Figure 9.2b shows the development in modifiers of ‘interaction’ over time. The figure shows that CHI

authors use an increasing amount of modifiers. For instance, in 1981, only 44 distinct modifiers were

used (e.g., ‘direct’, ‘menu-based’, ‘mode’). By 2016, the cumulative vocabulary of CHI had grown to

2,669 modifiers.

Figure 9.3 shows the distribution of the six types of modifiers over years, suggesting large-scale devel-

opments in how ‘interaction’ is used over the years. Modifiers related to Style appear to have increased

in use over time more than other modifier types. Figure 9.3 also shows that Quality modifiers are a

relatively constant fraction of the sentences containing interaction over time (around 10%). In contrast

to Style, the increase in variants of Quality modifiers is smaller. But still, new qualities emerge (e.g.,

‘extreme interaction‘ or ‘superior interaction’ from 2015).
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9.3 Findings

Figure 9.3: Percentage of modifier types used each year.

Qualities of Interaction

Quality modifiers capture valence, describing what is good or bad about the experience of interaction.

Our examination of the 371 Quality modifiers suggests what kinds of things the CHI community values

about interaction. We first define 12 themes of quality modifiers, listed in Table 9.2 with representative

modifiers, and explore their development over over time, as shown in Figure 9.4. After, we discuss the

specific Quality modifiers of particular interest to this thesis, namely Affective and Cognition.

Development of Quality Themes

The variability in vocabulary develops fromearly conferences to later ones: atCHI 1981 only theQuality

modifiers ‘logical’, ‘natural’, ‘unpleasant’, and ‘unpredictable’ were used; at CHI 2016, 190 different

modifiers of quality were used: the most frequent ones include ‘rich’, ‘intuitive’, ‘traditional’, ‘seam-

less’, ‘spontaneous’, and ‘subtle’.

More generally, fromCHI2012–2016, through2,256papers, a total of 35 newqualitymodifiers emerged.

In the same period the yearly use of distinct quality modifiers increased by 84, to 449. This suggests

that new qualities establish themselves roughly with the same pace as old ones perish. Of all quality

modifiers in our collective vocabulary, 150 did not occur in CHI 2012–2016. With the exception of

‘conventional’ which has been used in 13 different years at CHI, the other 149 modifiers have seldomly

been used.
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9 What is Cognitive and Affective Interaction?

Theme Examples Papers
Feel natural, complex, simple, intuitive, subtle 1,008
Comparison new, novel, normal, common, traditional 919
Mode of Use casual, continuous, frequent, explicit 517
Value Words rich, active, difficult, easy 489
Resource Use efficient, realtime, long, quick, rapid 396
Effectiveness effective, appropriate, successful, precise 341
Affective positive, negative, intimate, emotional, 284

intense, compelling, engaging, promising,
uncomfortable, fun, intensive, comfortable, desirable,
awkward, immersive, tedious, unexpected, unwanted

Cognitive meaningful, interesting, expressive, 243
realistic, challenging, serendipitous, imagined, purposeful,
acceptable, ambiguity, meaning, acceptance, authentic,
reflective, risky, secure, thoughtful, ambiguous

Temporal fluid, dynamic, sustained, concurrent 214
Adaptability accessible, generic, adaptive, adaptable 59
Play playful, serious, ludic, play-based 58
Look aesthetic, sophisticated, nuanced 52

Table 9.2:Themain themes of the 371 qualitymodifiers. TheExamples columnaremost frequentmodifiers
across years, the Papers column is the number of papers in which modifiers from each theme occur.

Affective and Cognitive Interaction

The themesAffective andCognitive both concern users’ reactions and attitudes, and these themes some-

times overlap. Affective and Cognitive saw modest use in the first two decades of CHI (see Figure 9.4),

and are still not the most prominent interaction qualities. Yet, they have seen increase in use since

around year 2000 (also relative to other Quality themes), where they first experienced steady use. To-

gether, affective and cognitive interaction account for between 10 and 20% percent of the use of interac-

tion as a quality. The most used modifiers fromwithin these categories are ‘positive’ and ‘meaningful’,

respectively.

Affective Interaction

Affective is about users’ emotional reactions to the interaction or, alternatively, ways of talking about

interaction that may engender particular reactions. The modifier ‘positive’ is the most prominent ex-

ample of an interaction quality in the Affective theme.

We find it interesting that positive words dominate Affective qualities. Not only is ‘positive’ (47) men-

tioned more frequently than ‘negative’ (26), but positive modifiers such as (‘intimate’, ‘compelling’,

‘fun’) are twice as frequent as negative ones (e.g., ‘undesirable’, ‘awkward’, ‘frustrating’). The excep-

tion to this is ‘uncomfortable’, which is defined and discussed in one paper on the notion of uncomfort-

able interactions [16] and then used in 13 later papers.
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9.3 Findings

Figure 9.4: Twelve themes of quality over 35 years.

Cognitive Interaction

The theme Cognitive is about users’ cognitive reactions to the interaction or, alternatively, ways of talk-

ing about interaction that may cause particular reactions.

Themost used cognitive modifiers, ‘meaningful’, ‘interesting’, and ‘expressive’, saw limited use before

the turn of the millennium (appearing in five papers combined), but are more frequent after (in 112

papers).

The cognitive modifiers are in particular qualitative, expressing the core valence about a particular in-

teractional experience. This becomes clear, as formalizing definitions for these interaction ideals is

remarkably difficult. While ‘meaningful’, ‘expressive’, and ‘interesting’ interactions are obviously all

good properties, distilling exactly what makes interaction for instance ‘expressive’, is much harder to

define. To this end, affective ideals appear somewhat less ambiguous, as seen by the lack of complexity

by themost prominent affectivemodifiers (‘positive’, ‘negative’, ‘intimate’, ‘emotional’, and ‘intense’).

Co-occurences

To provide an analysis of cognitive and affective interaction, one level deeper, I here look at which

words typically co-occur in sentences describing cognitive or affective interaction. I took each of the

2009 sentences containing a cognitive or affective interactionmodifier. From these sentences I counted

the occurences of all lemmatized words, exlcuding stopwords (such as ‘the’, ‘me’, or ‘be’). The most
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9 What is Cognitive and Affective Interaction?

frequently occurring words are therefore indicative of what domains, artifacts, or concepts CHI authors

refer to when describing cognitive and affective interaction.

Co-word Count Co-word Count Co-word Count Co-word Count

user 398 support 113 space 89 different 73

design 234 continuous 113 participant 88 effect 72

complex 208 number 112 technology 86 control 71

technique 187 display 111 dynamic 86 object 70

system 173 experience 110 gesture 86 people 68

social 160 information 110 appropriate 85 efficient 67

interface 151 casual 106 step 84 game 65

meaningful 145 effective 105 time 82 need 65

device 141 mobile 102 effort 82 approach 64

work 133 application 101 result 81 research 64

common 128 positive 98 model 81 version 64

study 124 touch 95 make 80

task 114 expressive 91 new 73

Table 9.3: Top 50 co-occuring words in sentences containing cognitive or affective interaction modifiers.

Table 9.3 shows the resulting top 50 co-occuring words from this analysis. The word ‘user’ tops the

list, however the majority of the co-occuring words are interestingly not about human aspects (except

‘user’, ‘social’, ‘participant’, and ‘people’). Rather they describe interaction ideals, system artifacts, or

activities.

Many frequently occurring co-words in cognitive or affective interaction sentences are about interac-

tion qualities, such as ‘complex’ (cognitive), ‘meaningful’ (feel), ‘common’ (cognitive), ‘continuous’

(affective), ‘casual’ (mode of use), positive (affective), ‘expressive’ (comparison), or dynamic (affec-

tive). Many co-occurring words are also about system artifacts, as ‘system’, ‘interface’, ‘device’, ‘ap-

plication’, ‘technology’, ‘model’, and ‘version’. Lastly, activities represent a large portion of the top 50

co-occuring words from affective/cognitive sentences: ‘work’, ‘study’, ‘task’, ‘support’, ‘time’, ‘game’,

and ‘research’. This is indicative that cognitive and affective interaction is of interest to a large variety

of tasks within HCI.

In summary, sentences describing affective and cognitive interaction are diverse, covering both system

artifacts, ideals, and activities. Interestingly, these are to a relatively little degree about human aspects,

but refer to more mainstream topics in HCI.

9.4 Discussion and Conclusion
It is clear that an analysis of an individual word and our relatively coarse analysis of the entire CHI paper

history cannot paint a complete picture of the development and current state of cognitive or affective

interaction, let alone human-computer interaction. Nevertheless, some general discussion points may

be raised from the analysis.

The notion of interaction is central to HCI, yet most accounts of it are conceptual. This chapter char-
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tered its use over 35 years using quantitative and qualitative analyses of sentences containing the word

interaction. The results show that ‘interaction’ is frequently used relative to other words, and that

its use has increased over the years. The variation with which authors write about ‘interaction’, cap-

tured by modifiers, also develops. More than 2,600 different modifiers have been used, although new

modifiers appear at a lower rate now than in 2006, when the number of papers at CHI grew.

Modifiers about the quality of interaction appear at a stable rate throughout the history of CHI, at be-

tween 8% and 11% over the years. Between quality modifiers, some changes can be observed. Since

around year 2000, the themes Affective and Cognitive have experienced increased use.

While some interaction qualities can easier be explained (e.g., ‘novel’, ‘positive, or ‘aesthetic’), Cog-

nitive ideals are mostly rather complex, experiential ideals. It seems however, that the modifiers from

the Affective theme are somewhat simpler ideals, such as positive or intimate interaction. Despite this

difference, the Affective and Cognitive themes are closely related, both describing users’ reactions and

attitudes towards interaction. These themes have both seen increasing use in the last years, with their

combined use reaching more than 15% of all Quality modifiers in 2014 and 2016.

While the general trend at CHI shows an increasing use of the styles of interaction, an increase in de-

scriptions of the experiential components of interaction, can also be observed. These themes are di-

versifying, with new modifiers emerging within the last few years such as ‘effortless’, ‘coherent’ and

‘authentic’.
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10 Ethics
Upon acceptance of the paper on truth estima-

tion [154], I shared a press release with a couple

of Danish and foreign news outlets. Metroxpress

(a free Danish tabloid newspaper with more than

300,000 daily prints) brought a story March 16th

2018 on their front cover entitled “Your smart-

phone can reveal, whether you are lying” (shown

left). Professor in Ethics at Aarhus University and

prior member of the Ethical Council of Denmark,

ThomasPloug, warned in this article against the ap-

plications of the research, and was cited for saying

that the “culture of trust could break down” with

the deployment of this type of technology.

Besides being criticized by a professor in ethics

on the front page of the most read newspaper in

Denmark, I believe some ethical stance is generally

fruitful as a creator of new disruptive technology,

that has shown to change the lives of people, for bet-

ter or worse. Because, as the American historian Melvin Kranzberg states it: “Technology is neither

good nor bad; nor is it neutral”. While the truth estimation received the most media attention of the

work within this thesis, it is my opinion that studies involving mental processing in general should be

ethically scrutinized. In this chapter I attempt at doing so.

The approach which I have chosen here is neither to unequivocally defend or reject the design and

implementation of interactive technology that interfaces with mental processes, but instead discuss dif-

ferent takes on best practises. To do so, I present some critical reflections of my work in the light of (i) a

recent blog post from the ACM Future of Computing Academy [43], and (ii) the ACMCode of Ethics

and Professional Conduct [3].
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10.1 Impacts, also the Negative
In a public appeal to computing researchers, the ACM Future of Computing Academy stresses that

“The computing research community needs to work much harder to address the downsides of our

innovations” [43]:

There clearly is a massive gap between the real-world impacts of computing research and the posi-

tivity with which we in the computing community tend to view our work. We believe that this gap

represents a serious and embarrassing intellectual lapse. The scale of this lapse is truly tremen-

dous: it is analogous to the medical community only writing about the benefits of a given treatment

and completely ignoring the side effects, no matter how serious they are [43].

The suggestion put forward in this blog post is a change to the peer-reviewing process: “Peer reviewers

should require that papers and proposals rigorously consider all reasonable broader impacts, both pos-

itive and negative”. The authors suggest that researchers and computing practitioners should consider

also the possible negative side effects of their new technological advances. Authors should be expected

to address each identified negative outcome of their new technology, making an argument of how the

positive outcomes outweigh the negative, and how to mitigate negative outcomes.

The intention of the appeal is for computing researchers to list and discuss the disadvantages of tech-

nological advances within their publications or grant proposals, such that it can become a open part of

the peer-reviewing process. Here, I will instead exercise this ethics task post publication (in addition to

some of the ethical reflections presented throughout the individual chapters).

Negative Impacts

As the individual chapters contained in this thesis have plenty of examples of how they can positively

influence HCI research and practice, this section will solely focus on the possible negative impacts of

the work. Each negative implication is backed by actionable suggestions for mitigating unethical use of

the research.

Negative Impacts of Sensing Mental Processes

A fair open question is whether interactive systems should be aware of users’ mental states at all. Con-

versely one could argue that if the system knows your emotional state, or had the ability of knowing it,

and yet does nothing about it; it would be like passing a crying person without interfering. Here I list

some of the problematic views of interfacing mental processes using HCI.

Respecting privacy

Software should typically function without the need of users’ personal information. As many details of

interaction convey intimate details of the user, respecting privacy is of evenhigher concern. It is not hard

to imagine a situation where a user unknowingly is passing on interactional information that discloses

e.g. gender, age, handedness, ormore delicate information about the user’s thoughts or emotions, while

being under the assumption of anonymity.

Section 1.6 of the ACM Code of Ethics and Professional Conduct states that “Only the minimum

amount of personal information necessary should be collected in a system” [3]. From this follows that
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any sensing algorithm should not store or operate on data that not directly follows from its stated pur-

pose.

I believe there are few examples of interactive systems that could not function without sensing-led clas-

sification, and the utilization of this class of predictive algorithms should generally be on an opt-in basis,

for improved usability, for instance. In that regards, it also follows that any user prediction should be

disclosed to the user. This obviously also entails that any sensitive information should not be disclosed

to 3rd parties.

Implicit sensing without awareness

The work on sensing presented in this thesis makes inferences on users cognitive or affective states

based on explicit interaction. That is, data generated directly based on the user’s aware interaction,

such as swiping details, acceleration, or the inter-tap details of number entry.

Many sensing approaches utilize data from implicit interaction, such as battery state, signal strength,

time of day, which arguably still derives from interaction (the battery level is for instance a function of

device usage). This not only allows for sensing when the device is not activated (for instance idling in

your pocket), but also allows for sensing without you awareness, or at times where privacy is of even

higher concern. These sensing approaches can have legitimate purposes (e.g., monitoring walking or

running), but requires additional ethical consideration. The ACM Code of Ethics suggests in section

1.3 to “Be honest and trustworthy” [3]; from this follows that sensing without awareness should be

avoided, thus requiring pre-sensing consent from any user.

Marginalizing users

The modest history of machine learning-led user classification is abundant with examples of marginal-

ization1, from inferring crime risks from face analysis [242] to using unknowingly sexist AI recruiting

tools [101]. Regardless of the accuracy of interaction-based sensing techniques, there is similarly a range

of potential unethical use-cases of such technology.

A first blatant risk of marginalizing users comes from inevitable misclassifications; situations where the

system identifies you as belonging to some class when that is in fact not the case. In the work presented

with truth estimationwe handle this issue by not disclosing negative classifications; that is, users are not

told if the algorithms find it plausible that an interaction is untruthful, but instead report the absence

of a truthful classification (the same happens when confidence is low for positive classifications). This

alleviates some of the issues related to beingmisclassified as a liar, yet requires some communication for

users to understand that absence of a truth classification does not equal a lie classification. The ACM

Code of Ethics, advocates in section 1.4, to “be fair and take action not to discriminate” [3]. Sensing

mental processes, and especially identifying users’ affective states poses a critical ethical issue. This is

the case if the purpose is to identify and discriminate specific vulnerable users, or monitoring users to

identify peaks and lows of for instance valence levels; be it for advertisement or political coercion. While

affect detection techniques can sensibly be utilized, for instance, for improved UX or self-monitoring,

consent should always be given prior to processing, and a vast range of applications of affect should be

avoided in general.

1See for instance https://github.com/daviddao/awful-ai for recent examples

122

https://github.com/daviddao/awful-ai


10.1 Impacts, also the Negative

Discrimination based on physiology

In a previous chapter I reported how positive affect was correlated with slower interactions. Interaction

speed is obviously not only determined by our affective state, and many traits could easily influence the

speed with which an interaction is performed (e.g., age, weight, or finger size).

Formachine learningmodeling, the feature engineerwill look for patterns in data that show a correlation

to the modeling domain at hand. It is therefore common to include features, not based on causation,

but correlation to optimize the model’s accuracy. While the features included in the work presented in

this thesis are to some degree based on hypotheses, and links retrieved from affect literature, I have not

carried out an analysis that determines how, for instance, physiology influence the model’s accuracy.

I call upon both empirical research on common sensing approaches’ sensitivity to user discrimination,

and for thorough testing of classification pipelines before production. One obvious way to somewhat

alleviate these concerns (which has been the methodology taken in this thesis), is to source the model’s

data from a large and heterogeneous user pool.

Negative Impacts of Influencing Mental Processes

If sensingmental processes poses ethical issues, influencing does it evenmore so. Commonly employed

affect manipulation techniques, such as watching movie clips or affective imagery, are first of all mostly

conducted in laboratories with strict ethical procedures, but are also explicit in their purpose. Velten, a

very common procedure to manipulate affect, asks participants to relive an emotional story from their

past [226], making it obvious to the participants what is happening. This is, however, not the case

when manipulating cognition or affect using more subtle techniques, such as those based on computer

interaction.

During 2012, Facebook conducted an emotionmanipulation experiment on 689,003 users without their

knowledge [117]. The content users were presented with was selected to manipulate their emotions,

and to study subsequent emotional contagion (i.e., by posting behavior on the social media). The

study showed that “longer-lasting moods (e.g., depression, happiness) can be transferred through net-

works” [117].

Facebook, and the two universities affiliatedwith the research (Cornell University and theUniversity of

California at San Francisco) faced strong criticism as a result of the study. Manipulating affect (without

consent or knowledge) can have widespread consequences for the individuals ranging from decreased

mood to depression. The authors responded to this critique, noting that “[The work] was consistent

with Facebook’s Data Use Policy, to which all users agree prior to creating an account on Facebook,

constituting informed consent for this research.” [117]. The Facebook study poses a potent example

of the potentials of subtle affect manipulation, showing significant changes to the vocabulary use of the

participants who unknowingly participated.

In general I believe it is objectionable to induce negative affect outside of a controlled laboratory. As

the whereabouts or psychological vulnerability of the participants is unknown, I believe this practice

should in general be avoided. This was also why we chose only to induce positive affect (and neutral)

for the affect detection study [150].
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Negative Impacts of Crowdsourcing

While the practice of crowdsourcing, including micro task markets such as Amazon Mechanical Turk

(AMT) andFigureEight, have shown to diversify participant recruiting, offering higher external validity

to studies, it does pose some critical questions, especially about labor rights. Workers on platforms such

as AMT have few rights or means to object decisions made by HIT creators: whoever creates the job

decides the compensation, the maximum amount of time allowed, and the acceptance criteria. AMT is

frequently used (around 100K users; 2K active users at any given time [55]), why some ethical critique

of its workers rights have been discussed (e.g, [68]). It is usually needed to include what Kittur refers to

as ‘verifiable questions’ [112] to verify the integrity of a worker. These could be outright easy questions

that anyone should be able to answer correct, just to make sure that the worker is paying attention. A

labormarket where the employer dictates all the rules, with few to nomeans of employees to organize or

object decisions is problematic. It undermines the minimum salary, and advocates precarious working

conditions. The problematic relationship is underlined by Amazons wording, calling Mechanical Turk

a “24x7 workforce”, yet refer to employers as “requesters”, and employees as “turkers” [47].

While the use of AMT remains problematic, I believe a few guidelines may help mitigate some of these

issues. We have, first of all, never paid less that the nationwideminimumUSwage ($7.25 perDecember

2018). Next, we have had our “exclusion tests” prior to the actual study participation, thus minimizing

unnecessary time spent by participants who did not follow the rules. These tests have been meta ques-

tions about the study (only requiring reading the study introduction), rather than “common knowledge

questions”. Lastly, we have not rejected any workers once they have finalized a study; in cases where

we have deemed the participation as unfit for the analysis, we have simply removed the data instead of

reporting the worker.

10.2 Summarizing Suggestions
Then, how to avoid that the “culture of trust could break down”? In addition to exercising the task

of imagining potential negative outcomes of computing research put forward by ACM Future of Com-

puting Academy [43], and the general advice from ACMCode of Ethics and Professional Conduct [3],

I have presented a few practical suggestions for mitigating ethical issues in computing research that

relates to mental processes, as summarized below.

Opt-in. Applications should ask before interfacing mental processes.

Consent. Ask participants prior to partaking experiments.

Privacy. Be open about the data processed.

Applications. Most interactive systems will not need users’ affective states to function properly.

Avoid black/white classifications. If a specific classification can be detrimental to users, consider rework-

ing the discourse.

Avoid elicitation of negative affect, especially outside of the laboratory.

Pay crowdworkers. Avoid declining pay-out, instead consider reworking your recruitment design. Re-

port the actual hourly wage in the participants section.
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11 Discussion
I will here present a brief overview of the methodological and validity considerations related to the

design and presentation of the content of the thesis. In conclusion, I will argue for the ideal of human-

computer interfaces to mental functions.

11.1 Methodological Considerations

Overview

Table 11.1 shows an overview of the study types, designs, and analyses used throughout the papers

presented in the thesis. A predominantly empirical and quantitative approach has been adopted; all

four papers use experiments, and subsequent analysis via statistical, mathematical, or computational

techniques. The work presented in Chapter 9, while predominantly quantitative, did employ some

qualitative methods, such as affinity diagramming and and thematic analysis.

Paper 1 Paper 2 Paper 3 Paper 4

Study

Crowdsourcing × ×
Out-of-lab × ×
Laboratory × ×

Design

Between-subjects × × ×
Within-subjects × ×

Analysis

Machine learning × ×
Statistical hypothesis test × ×

Objective Model Model Method Theory

Table 11.1: Methodology overview of the thesis’ included papers.

Place of study and Recruitment

In Table 11.1 I have separated ‘crowdsourcing’ and ‘out-of-lab’, to make the distinction between be-

tween outsourced recruitment (e.g., micro markets), and conventional recruitment with unsupervised

study participation.

An argument I have used at several occasions throughout the thesis is that conducting studies out of

the laboratory can increase heterogeneity and power of studies, thus increasing external validity and

generalizability. It has been a primary goal of the presented work to shift study participation out of the

laboratory; the laboratory studies I have conducted, have mainly been to compare results from unsu-

pervised studies.
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Power

It has been a priority in the design of the studies to have adequate power to make the conclusions drawn

from the data.

Paper 1 Paper 2 Paper 3 Paper 4

Study I 55 87 31 168

Study II 127 41 57 41

Study III 51

Table 11.2: Number of participants included in the final analysis for each study.

Table 11.2 shows the power of the individual studies presented in the thesis. An adequate amount of

participants is an ongoing scholarly discussion, becoming ever more relevant with recent replication

crisis in science.

As the temporal integrity of human affect and cognition can be hard to enforce in a within-subjects de-

sign, the studies presented in this thesis have mainly employed a between-subjects design. This both

reduces the risk of the participant guessing the purpose, and the integrity of, for instance emotion elic-

itation. This however comes with a cost of participant recruitment, as the study will generally require

a participant count coefficient equal to the number of conditions. Caine [29] surveyed studies at CHI,

and found that 70% of CHI studies have less than 30 participants. For between-subjects experiments

the mean total subject count is 26, considerably lower than what I have presented.

Validity

Shadish et al. [191] describe a validity taxonomy, helpful for inspecting threats to validity using four

categories: Internal Validity, External Validity, Construct Validity, and Statistical Conclusion Validity.

These categories describe ways to determine and analyze threats to the validity of experimentation.

Internal

Internal validity concerns whether findings can be attributed experimental manipulation of the inde-

pendent variable [191]. Internal validity often comes as a trade-off with external validity.

Because the studies presented in this thesis were mainly conducted without the presence of any ex-

perimenter, and that the studies tap into the participants’ regular daily lives, there are several internal

validity threats that cannot be controlled. Events that occur simultaneously, or naturally occurring

changes to the settings are not controlled. Specifically, results may vary if participants instance are on

a train while conducting a crowdsourced study. Differences might also arise if a study is conducted

during night, if a participant is intoxicated, or if the participants is not paying sufficient attention, to

name a few.

Obvious threats to internal validity are handled, such as multiple participation, avoiding multiple or

varied affect manipulation per participant, and requiring comparable equipment.
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11.2 Computer-Cognition Interfaces

External

External validity concerns whether causal relations between measures holds over variations in persons,

settings, treatments, and outcomes [191].

A primary concern for external validity is the extent to which findings generalize to other populations,

beyond the recruited sample. While the participants available for studies using crowdsourcing sys-

tems are not in perfect alignment with the general population (slightly younger and lower household

income on average [55]), they have been found to be more diverse, than samples typically recruited for

research [140, 166, 181].

As Table11.2 shows, each paper presented 2-3 studies in an attempt to verify relations in variation to

study design, context, settings, persons, etc.

Construct

Construct validity concernsmakinghigher-order inferences based onwhat is claimed to bemeasured [191].

Many constructs are used when measuring mental processes, notably the the distinct emotions, affect

and arousal, PANAS, and the use of Likert scales. The Self-Assessment Manikin [24] tries to mitigate

some of this cross participant understanding of affect scales, yet it is no silver bullet to obtaining labels

of affect.

Both studies in Paper 1 and Paper 2 showed an RBF kernel SVM as superior in classifying mental as-

pects. This could be a testament to the construct validity issues related to labeling user activity around

mental functions; the analyses showed different clusters (which gaussian functions often model effec-

tively), even for same labelled data, which could indicate different interpretations of the same affect

constructs.

Statistical Conclusion

Statistical conclusion validity refers to whether the suspected cause and effect covary [191].

The most fundamental threat to statistical conclusion validity is a low powered study (not considering

misuse of data analysis, p-hacking, etc). I have tried tomitigate this by recruitingmore participants than

what is usually seen at HCI venues (Paper 4 for instance, tomy knowledge, employedmore participants

than any singleVR experiment previously). It is however difficult to guarantee that statistical conclusion

validity is maintained. Tools like power analysis may help give an indication of subject counts needed.

However, for small effect sizes this usually renders participant counts much higher than what is prac-

tically possible. The studies in this thesis took a pragmatic midway; recruiting as many as possible and

aiming for at least 20 subjects per condition.

11.2 Computer-Cognition Interfaces
Throughout this thesis I have referred to the ideal of computer-cognition interfaces, broadly understood

as the capability of interactive systems to understand and influence humans’ mental processes.

An essential question arises when designing interactive systems that interface with mental processes:

why advocate for this ideal? As noted in the ethical discussion of such technology, many interactive
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systems should not enforce, let alone should entail, such interactions. I believe, however, there are

multiple reasons to why this is both an appealing quality for many interactive systems, and an important

leap for human-computer interaction research.

Benefits of sensing mental processes

Giving interactive systems the capabilities of understanding users’ mental processes, enables a range of

possibilities ranging from improvedUX to clinical applications, and as described in this thesis, enhanced

veracity and thus trust of digital communication.

While many systems already employ machine learning models to generate content based on individual

browsing history, country of origin, time of day, etc.; this is largely unused for the fundamentals of the

UX of the systems. Sensing mental functions could open up for personalized notifications, flows, or

menu layout, focused features, based on the user’s current mood, stress level, or alertness. In addition,

one could foresee the importance of sensing mental functions for humanoid robotics, that adapt and

personalize their behavior in correspondence to their human peers.

Benefits of influencing mental processes

Arguably more pressing than questioning the practice of sensing mental functions, is arguing for influ-

encing mental functions.

The fundamental understanding of human mental processes often requires researchers to manipulate

certain mental functions within their subjects. If we are to understand how, for instance, happiness

influences creativity, a researcher would need a happy person to begin with. Computer systems that

employ interfaces to human mental functions allow researchers to employ more subtle, and less cum-

bersome study designs, in turn allowing fascinating findings linked to human cognition.

Inducing certain cognitive aspects of users could also be beneficial for certain tasks. It is easy to imagine

how a digital systems that increased focus, and decreased the urge to procrastinatewould be compelling,

for instance. This also has an application for safety-critical systems, where human lives are potentially

at stake, such as systems deployed for the hospital or aviation sectors.

There is consensus about the dominating factor affective aspects have on human life, influencing deci-

sions, behavior, creativity, and other most fundamental parts of everyday life [31]. Affective computing

as a research paradigm was initiated in 1997, yet, nowadays computer systems generally do not process

affect, let alone the multitude of mental processes that are increasingly conducted sensing research on.

I believe there are fundamental work left to be explored, besides perfecting existing directions which is

evidently already happening. Many mental aspects of humans are open for digital interfacing, such as

decision- or judgement-making, attention (and not diversion), imagination, sense-making, and mem-

ory, to name a few.
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12 Conclusion
Research on user sensing is increasingly focusing on cognitive domains. Where sensing techniques

have previously primarily targeted physical activity and device position, these domains have in recent

years been extended to users’ complexmental functions such as depression, stress, and emotions. Con-

versely, interactive systems have shown capabilities in alteringmental aspects of users, and increasingly

so with the proliferation of immersive technology such as virtual reality.

Through four papers I have shown advances tomodels, methods, applications, and theory formediating

human thinking in digital systems. Paper 1 and Paper 2 showed how these complex mental processes

can be sensed with encouraging accuracy using only the details of touch interaction, disregarding actual

data input.

Paper 3 showed the feasibility of conducting unsupervisedVRexperiments, paving theway for increased

power and diversity in studies of complex VR phenomena, including body ownership and immersion.

Paper 4 adopted this methodology, and showed a link between visuo-synchronous virtual avatars, and

human affect. I have presented evidence for a link between positive affect and body ownership, showing

that humans exhibiting more positive affect, may easier accept a first person avatar as their body.

Additionally, I have provided some perspective: a chapter bridging quantitative and qualitative analyses

of the contents of all CHI papers tried distilling a notion ofwhat cognitive and affective interactionmight

entail.

Together, this thesis has contributed to the ideal of computer-cognition interfaces, that aspire towards

interactions between humans and computers that process thoughts and emotions. I have shown ad-

vances to this ideal through the chapters about affect and truth estimation using mobile interaction,

crowdsourced VR studies, affective avatar manipulations, and disfluent UIs.
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