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Thesis Summary

Temporal Graphs are collections of nodes and edges which change over

time. These types of graphs can model many types of real-world scenar-

ios such as email communications, online social networks, author citation

networks and so on. With the growth of data globally, graph data has be-

come more complex, e.g. introducing node attributes and labels, therefore

new tools and methods are needed to efficiently analyze and solve complex

graph problems. This thesis studies several challenges in static and temporal

graphs and aims to explore how to best utilize complex network data.

The thesis consists of four parts. The first part of the thesis describes how

to model both static and temporal graphs, as well as attributes and labels, in

a streaming fashion, and important graph metrics and properties of nodes.

The second part investigates how node attributes in graphs can be used to

uncover latent connections between nodes. Augmenting static graphs with

additional edges, based on shared attributes between pairs of nodes, can con-

nect similar but unconnected nodes. The experiments show that propagating

labels along these edges based on attributes can reliably improve classifica-

tion performance of relational classifiers without the need for complex infer-

ence or feature engineering.

The third part explains some shortcomings of current temporal node met-

rics, and how to improve them. Extensions based on two distinct concepts

are proposed. The first focuses on encoding information about node labels

directly into node metrics, making them “label-sensitive”, for example by

modifying how shortest paths are calculated in graphs. The second attempts

to capture “recent” topological changes in temporal graphs. This is done by

tracking the evolution, or change, of node metrics over time, and weighing

the amount of change by how long ago they took place. Experiments on real-

world datasets demonstrate that utilizing especially recent changes of label-

sensitive node metrics can improve classification performance. The notions

presented in these experiments are then generalized to weighted static and

temporal graphs using functions of nodes and their weights. Through exper-

iments, the proposed method is shown to be flexible and can be adapted to

various domains and can capture a a wide range of information in a weighted

graph, including label-sensitivity and recency mentioned earlier.

Finally, a novel embedding for temporal graphs is presented which con-

sists of a combination of Gaussian mixture models and static graphs. The
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embedding is designed for streamed temporal graphs with a high degree of

edge-insertions over time, and to maintain a compact size in memory. Exper-

iments on real and synthetic datasets show that the embedding scales well

and can reliably and accurately be used to query the state of the temporal

graph at any point in time.

The conclusions of this thesis are that the use of node attributes and la-

bels, combined with additional temporal information, can improve accuracy

when solving classification tasks in temporal graphs. Furthermore, it shows

that graphs can be modeled effectively with the use of mixtures of distribu-

tions when enough data is present. While examples of applications of the

proposed methods have been given, there are still many interesting chal-

lenges ahead.
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1
Introduction

Whether realizing it or not, most people in the world use graphs as a tool through-
out their lives for various tasks. A graph consists of a collection of nodes which can
be connected to each other by edges, and can be used in a wide range of scenarios
from brainstorm mind-mapping to online social network analysis. The strength
lies in their ability to model relationships and processes in a both intuitive and
efficient manner. Therefore it is no surprise they have been the subject of a large
amount of research over many years.

(a) Map over central
Königsberg river and
bridges.

(b) Abstract visualiza-
tion of Königsberg river
and bridges.

(c) Graph model of
Königsberg. Nodes
correspond to boroughs
and edges to bridges.

The earliest known paper in the field, the Seven Bridges of Königsberg, was
written by Leonhard Euler in 1736 and laid out the foundation of the graph the-
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1 Introduction

ory we use today [27]. In his work he split up central Königsberg (now Kalin-
igrad, Russia) into 4 parts, each physically separated from one another by the
river Pregel which runs through the city, and represented each part as a node in
a graph. He then placed edges between nodes if there was a bridge connecting
the two areas, thereby capturing the structure of bridges over Pregel in the city.
His task was to plan a walk through the city which traversed each bridge exactly
once, and with the graph representation he proved it impossible. Although the
Königsberg problem was small in todays scale, it was an important step in the
advancement of network science.

For decades, the sizes of graphs used for analysis were limited by the state
of technology, and the analysis could be performed by humans with relatively
simple techniques. Factors such as the revolution of the internet and computer
storage, changed how data was collected, shared and analyzed, and resulted in
graphs being used to solve problems for many different kinds of data:

• Social networks made up of family and social ties. Especially online so-
cial networks have allowed for research into human behavior, such as how
people can influence others opinions, on a massive scale [28].

• Communication networks, typically based on electronic devices, which can
range from cell phone calls and emails to ip traffic between servers across
the globe [29].

• Analysis of electrical grids, with networks of generators connected by power
lines, is important to avoid blackouts and cascading failures [30].

• The brain itself is a large network of neurons and simplified models have
been created to help understand its inner workings [31].

• Transport networks, such as public transit routes and road maps, can be
used for urban and traffic planning in cities [32].

• Social contact networks, based on physical interaction or proximity of hu-
mans in the real world, have been used to predict the spread of epidemics
such as H1N1 (swine flu). Furthermore the same models used for infec-
tions of humans have been successfully applied to other domains such as
malware in computers [33].

However, while a network of bridges is mostly static, i.e. does not change

2



1 Introduction

over time, most real-world data and scenarios exhibit change over time. In on-
line social networks friends are added/removed, in communications new emails
are sent/received, etc. These factors necessitate adding a temporal dimension to
graphs in order to accurately deal with these phenomena. This non-trivial task
has spawned a large amount of research into extending the concepts of static
graphs to temporal graphs. In the most general case, a temporal graph consists of
the same components as a regular graph, a set of nodes and edges, but, for each
node and edge, contains additional temporal information. Typically the temporal
information takes the form of time-stamped events. For example, the time-stamp
of an edge between two nodes in an email network can represent an email that
was sent, or a node’s timestamp, in an online social network, can indicate when
that user first created their profile. The additional temporal information can take
many forms, and depends on the domain which is being modeled.

Many surveys exist which cover the study of these types of graphs, especially
static graphs, and the many methods which have been applied. In the following
are three examples of real-world temporal data, which extend on the concepts of
static graphs.

1.1 Movie Actor Network: IMDb

IMDb is a well-known online searchable database containing information on mil-
lions of movies and tv-programs, and the cast and crew of each. The information
about each movie is vast and contains data such as country of origin, year of
screening, actors in movie, box office earnings, length, user rating (from 0 to 10),
and more. An example of how IMDb data is structured is shown in Figure 1.2.

A natural graph representation of the data is to model IMDb as a graph of
actors, where two actors are connected if they have participated in a movie to-
gether. It can be said that the graph is constructed based on which movies these
actors have in common. However, there are other attributes which actors share,
which also can be used as a basis for the constructed graph, such as age, country
of origin, gender, and so on. The graph and the following analysis or problem
solution, can depend heavily on which data is selected and which relations are
modeled. Some examples of different models are shown in Figure 1.3

3
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Movie 1

Movie 2

Movie 3

Length: 2:15 
Country: USA 
Rating: 5.3 
Release: 2011 

Name: A 
Age: 28 

Country: India 
Gender: Male 

Name: B 
Age: 55 

Country: USA 
Gender: Female 

Name: C 
Age: 35 

Country: Denmark 
Gender: Female 

Name: D 
Age: 24 

Country: Germany 
Gender: Male 

Movie Participation

Length: 1:40 
Country: France 
Rating: 8.7 
Release: 1999 

Length: 1:35 
Country: England 
Rating: 6 
Release: 2006 Name: E 

Age: 61 
Country: USA 
Gender: Male 

Figure 1.2: Visualization of how the online movie database IMDb is structured
into actors, the movies they participate in, and associated metadata.

A

B

CD

E

A

B

CD

E

A

B

CD

E

Participated in same movie From same Country Same gender

Figure 1.3: Visualization of three different approaches to representing the IMDb
dataset as simple graphs. From left to right: 1) Edges are based on which movies
actors have co-participated in 2) Edges between actors are based on shared coun-
try of origin 3) Edges are based on shared gender.

While each of the above graphs can be viewed and analysed independently,
other approaches, which combine information from several of these graphs, can
be used. An example of these types of methods is described in detail in Chapter
4.
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1 Introduction

1.2 Author Publication Network: DBLP

The website https://dblp.uni-trier.de/ is a public bibliography database
in the field of computer science. Each entry in the database is the title of an arti-
cle, and holds information such as authors, date of publication, and publication
venue. For research purposes, data from this website was downloaded and held
up against public records from ACM (and other sources), and the result was a
public dataset called DBLP [34]. For each article, the DBLP dataset contains the
aforementioned information, but also includes which articles cite one another.
The structure of the DLBP data is visualized in Figure 1.4

Title: X 
Date: 2011 
Venue: ICDM 

Authorship 

Name: A

Name: B

Name: C

Name: D

Name: E

Title: Y 
Date: 2008 
Venue: SIGKDD 

Title: Z 
Date: 2009 
Venue: ECML 

Citations 
Title: T 
Date: 2010 
Venue: SDM 

Title: V 
Date: 2001 
Venue: MLG 

Title: U 
Date: 2006 
Venue: NWS 

Figure 1.4: Visualization of how the DBLP dataset is structured. Authors on the
left publish articles (blue connections), which in turn cite other previously pub-
lished articles (green connections).

A
B
C
D
E

T
U
V
Y

Figure 1.5: Author-
citation network based
on DBLP data.

This type of dataset can be used to solve prob-
lems such as characterizing emerging conferences or
trends based upon the articles and authors attending,
matching a new paper to appropriate reviewers from
the same field, and predicting future collaborations be-
tween authors. It lends itself well to a graph represen-
tation, but since there are many types of relations in the
data, there are several ways to model a temporal graph
based on DBLP, depending on the problem at hand. An
example of a problem is to predict whether an author,
in the future, will publish a paper in a field, they haven’t previously published

5
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in, based on which types of articles the author cites in their work. For this type of
challenge, it can be advantageous to transform the DBLP dataset into a “author
citation network”, shown in Figure 1.5. The author citation network consists of
two types of nodes, authors and publications, and is a so-called bipartite graph
because there exists two types of nodes in the graph. Using this graph and various
methods designed for analysis it is then possible to predict what fields of science
authors will publish in, in the future. The problem described above is treated in
detail in Chapter 5.

1.3 Human Contact Network: RealityMining

The concept of social networks, especially online social networks, is widely known
and has received significant attention in both media and academia. Often these
types of graphs are used to better understand relationships and affiliations of
people, based on their interactions such as communications. Human contact net-
works are a special case, and are the result of studies on close-range interactions
between humans over time. These types of studies can be important in modeling
how diseases spread in populations, or how certain social patterns emerge, by
viewing humans as nodes, and edges as time-stamped contacts between pairs of
nodes. Due to the difficulty of accurately monitoring and recording human in-
teractions in the real world, such data is scarce. One project, the Reality Mining
experiment, was based on tracking the contacts between 75 students or faculty
members at MIT Media Laboratory, and 25 students of MIT Sloan business school
[33]. The students were instructed to carry cell phones with bluetooth technology,
and a monitoring application, over the course of 100 days. It was the first mobile
data set of its kind and contains rich personal information, geospacial location,
and interactions between participants. A visualization of the structure of data can
be seen in Figure 1.6.

A

B

CD

E

212

12 5

6

19

Figure 1.7: Temporal
graph representation of
the Reality Mining data.

With fine-grained information on when each inter-
action took place, it is possible to model the human
contacts as a temporal graph that grows over time, as
each contact occurs. A temporal graph visualization of
the network is shown in Figure 1.7. Each edge between
two nodes corresponds to an interaction between two
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Name: A 
Age: 18 

Campus: Sloan 
Gender: Male 

Name: B 
Age: 20 

Campus: Media Lab 
Gender: Female 

Name: C 
Age: 21 

Campus: Media Lab 
Gender: Female 

Name: D 
Age: 23 

Campus: Media Lab 
Gender: Male 

Human contacts

Name: E 
Age: 22 

Campus: Sloan 
Gender: Male 

Participants 

A met with B on the 2nd of May

C met with B on the 5th of May

C met with D on the 6th of May

E met with D on the 12th of May

E met with A on the 12th of May

B met with E on the 19th of May

Figure 1.6: Visualization of how the Reality Mining research data is structured
into participants, their physical contacts, and associated metadata.

people, and the edges are annotated with the day of the
month on which the interaction took place.

The researchers behind the experiment found that
they could predict the daily activities of students based
on their behavior, waking up at 10 am in the morning, for example. The dataset
in question consists of potentially many contacts between any two participants of
the study, and can result in a very large temporal graph. Therefore a completely
different type of challenge is how to represent the graph, so that it allows for
efficient analysis. This is a problem that is explored further in Chapter 7.

1.4 List of Publications

Over the course of my PhD project I have written five papers listed below. The
chapters of this thesis are based on the papers as follows: Chapter 4 is based on
[35], Chapter 5 is based on [36, 37], Chapter 6 is based on [38], and Chapter 7 is
based on [39].

• [35] Christopher Ryther, Jakob Simonsen, and Andreas Koch, ”Within-network
classification with label-independent features and latent linkages”, in Pro-
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ceedings of the 12th International Workshop on Mining and Learning with Graphs
(MLG), 2016.

• [36] Christopher Ryther and Jakob Simonsen, ”Within-network classifica-
tion in temporal graphs”, in Proceedings of the Eighth IEEE ICDM Workshop
on Data Mining in Networks (DaMNet), 2018.

• [37] Christopher Ryther and Jakob Simonsen, ”Recency and Label-Sensitivity
for Classification in Temporal Graphs”, awaiting submission.

• [38] Christopher Ryther and Jakob Simonsen, ”Weighted and Time-Sensitive
Metrics for Node Classification in Temporal Graphs”, submitted to Network
Science, 2018.

• [39] Christopher Ryther and Jakob Simonsen, ”GraphGMM: History-Preserving
Gaussian Embeddings for Temporal Graphs”, awaiting submission.

Each of the chapters begin with a brief introduction of the idea or motivation
behind the work.

1.5 Contributions

The contributions of this thesis are summarized below:

1. In [35] we propose two methods to increase connectivity of static graphs
for the purpose of within-network classification. One method creates an
additional graph where edges are only based on shared attributes, and the
other method augments the original graph with edges between nodes with
shared attributes. Using a selection of well-known relational classifiers, and
a baseline static graph representation, we show that our proposed methods
can improve classification accuracy on sparsely labeled real-world datasets.
The work is presented in Chapter 4.

2. In [36] and [37] we extend our focus on within-network classification to
the temporal domain, using time-varying graphs to represent network evo-
lution over time. We introduce variants of already established temporal
centrality metrics and clustering which capture, what we posit are, desir-
able node properties in temporal attributed networks. The two variants
are recency-sensitive, i.e. captures recent changes of a node’s metrics, and

8



1 Introduction

label-sensitive, which modifies the metrics to encode information about la-
bels of nodes in relation to each other. Through classification experiments
on nine real-world datasets we show improvement of weighted F1-score on
all using a combination of both proposed concepts. The work of both is
collectively presented in Chapter 5.

3. In [38] we propose theoretically-principled weighted node metrics for both
static and temporal graphs. We present eight centrality based metrics and
2 clustering based metrics. The weighted metrics are easily adaptable to
various domains using so-called node functions as metric parameters. We
exemplify their use with four prototypical node functions which are able
to capture the same or similar information as those used in [36, 37]. These
weighted node metrics are then applied to three real-world datasets, and
compared to unweighted metrics as features for within-network classifica-
tion. Results show that careful tailoring of node functions can lead to im-
provement of classification accuracy. The work is presented in Chapter 6.

4. Finally in [39] we propose an embedding for temporal multigraphs called
GraphGMM. The embedding consists of sequences of gaussian mixture mod-
els that for each node allow for efficient queries on the number of edge-
insertions at any time-instant. We present two different version of GraphGMM,
one node-centric and one edge-centric, and run experiments on large tem-
poral datasets with up to 2.5 million edges. We show that our embeddings
are efficient, compact and scalable when compared to baseline graph imple-
mentations. The work is presented in Chapter 7.

9



2
Temporal Graphs

In this section we introduce preliminaries and definitions of graphs that evolve
over time. First we provide generic descriptions of static graphs, and then ex-
tend these to provide definitions of graphs with time-stamped edges (tempo-
ral graphs), graphs with weights (weighted graphs), and sequences of temporal
graphs (time-varying graphs). Finally we discuss alternative graph models from
related work.

2.1 Static graphs

Definition 1. Let G = (V,E) be a static graph, where V are the nodes of the graph, and
E are the edges, where E ⊆ (V × V ).

2.2 Temporal Graphs

As the literature on time-windowed graphs contains many variations in nomen-
clature, we give full definitions appropriate for our domains of application, many
of which originate from [8]. In the remainder, let T be a totally ordered set (rep-
resenting time).

Definition 2. A temporal graph G is a tuple (V,E), where V is the set of nodes of G
and E is the set of edges. An edge e ∈ E is a triple (x, y, t) where x, y ∈ V and t ∈ T.
In the remainder of the paper e = (x, y, t) should be understood as an undirected edge

10



2 Temporal Graphs

between x and y at time t. A temporal multigraph is a temporal graph which allows for
multiple edges between pairs of nodes.

Definition 3. A weighted temporal graph G is a temporal graph (V,E,W ), where
V,E are the nodes and edges, respectively, and W : V 7→ W are weights on nodes in V .
For any node x ∈ V there exists a weight wx ∈ W .

An example of the three temporal graph types is shown in Figure 2.1.
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1

32

1

1
5

1

3

14

Figure 2.1: Three examples of temporal graphs: on the left a regular temporal
graph, in the middle a temporal multigraph, and on the right a weighted tempo-
ral graph.

When graphs grow massive and evolve over time, one approach to handling
them is to process them in a so-called data stream model, where changes to
the graph are represented as continuous updates e.g. node-insertions or edge-
insertions. In the following we define streams, and how temporal graphs can be
induced from streams of edge-insertions.

Definition 4. A stream S is any multiset S ⊆ D2 × T consisting of triplets of the form
(x, y, t). A substream of a stream S is a subset s ⊆ S. A slice of a stream S at time i, is
a substream si ⊆ S such that si = {(x, y, i) : (x, y, i) ∈ S}. The relation �, defined by:
(xi, yi, ti) � (xj, yj, tj) if ti ≤ tj , is a partial order on S.

Intuitively, a stream [(x1, y1, t1), (x2, y2, t2), . . .] is a set of “events” (x, y) each
happening at some time t, and a slice si is the set of all events that took place at
time i. Typically, (x, y) represents the creation of a directed edge between nodes
x and y in a graph at time t.

Definition 5. Let S = {s0, s1, s2 · · · } be a set of substreams of the stream S. S is then
strictly partially ordered by ≺, defined by:

si ≺ sj if min
(xa,ya,ta)∈si

ta < min
(xb,yb,tb)∈sj

tb (1)

11



2 Temporal Graphs

which results in ordering the substreams by which contains the earliest event.

Definition 6. Let s be a substream. The substream graphGs is a temporal graph (V,E)

whose nodes and edges are defined as:

V =
⋃

(x,y,t)∈s

{x, y} and E =
⋃

(x,y,t)∈s

{(x, y, t)} (2)

A special case of temporal substream graph is the bipartite substream graph denoted
Gb
s, which is a bipartite temporal graph (V, U,E) whose nodes and edges are defined as:

V =
⋃

(x,y,t)∈s

{x} and U =
⋃

(x,y,t)∈s

{y} and E =
⋃

(x,y,t)∈s

{(x, y, t)} (3)

where V is referred to as the set of top nodes and U as the set of bottom nodes. It
follows from the definition of bipartite graphs that V ∩ U = ∅.

Definition 7. Let S be a stream. The streamed multigraph GS is a temporal multi-
graph (V,E) whose nodes and edges are defined as:

V =
⋃

(x,y,t)∈S

{x, y} and E =
⋃

(x,y,t)∈S

{(x, y, t)} (4)

where
⋃

is the multiset union operator.

2.2.1 Time-Windowed Graphs

Some temporal metrics require modeling the stream as several temporal graphs,
where each graph represents the “state” of the stream during a specific period
of time. A straightforward approach is to split the stream into consecutive win-
dowed substreams, such that each substream induces a temporal graph. To do
this we define a type of graph container where each temporal graph in the con-
tainer is the result of a batch of insertions/deletions. This type of graph is called
a time-windowed graph. An illustration of this type of graph, and the stream that
induces it, is shown in Figure 2.2.

Definition 8. A time-window τ is a tuple τ = (t, t′) ∈ T2 where t < t′. Let T ⊆ T2

be any non-empty set of time-windows. Then ≺, defined by:

(ti, tj) ≺ (ta, tb) if ti < ta or (ti = ta and tj < tb) (5)

12



2 Temporal Graphs

is a strict partial order on T .

Definition 9. Let τ = (ti, tj) be a time-window and S be a stream. The windowed
substream sτ , induced by the time-window τ and stream S, is the substream sτ of S
defined by:

sτ = {(x, y, t) : (x, y, t) ∈ S and ti ≤ t < tj} (6)

Thus, the windowed substream intuitively is the set of all “events” occurring between ti
and tj .

Thus, the windowed substream intuitively is the set of all “events” occurring
between ti and tj .

Definition 10. A time-varying graph (TVG) is a sequence of temporal graphs G =

(G0, G1, G2 · · · ), where each graph Gi+1 is constructed from its predecessor Gi by in-
serting additional nodes/edges or deleting existing nodes/edges. This definition differs
from that of [8]: In our definition, G is based on temporal graphs instead of non-temporal
graphs, and time-windows are not part of the time-varying graph.

Definition 11. Let S = (s0, s1, s2 · · · ) be a sequence of substreams. We denote by GS
the strictly partially ordered TVG (Gs0 , Gs1 , Gs2 · · · ) induced by definition 6.

Definition 12. A time-windowed graph is a pair (G, T ), consisting of a time-varying
graph, G, and a set of time-windows T where |G| = |T |. For each temporal graph Gi ∈ G
there is a time-window τi = (tm, tn) ∈ T so that for any edge e = (x, y, t) ∈ Gi, we have
tm < t < tn. The adjacency matrix of a time-windowed graph is the map A(G,T ) such
that if τi ∈ T is a time-window, then A(G,T )(τi) = axy(τi) is the adjacency matrix of the
temporal graph for time-window τi.

Definition 13. Let T = {τ0, τ1, τ2 · · · } be a set of time-windows and S be a stream. The
time-windowed graph (G, T ) induced from S and all time-windows in T consists of a
sequence of (bipartite) substream graphs:

G = {Gsτ0
, Gsτ1

, Gsτ2
· · · } (7)

and satisfies:
τ0 ≺ τ1 ≺ τ2 · · · ⇒ Gsτ0

≺ Gsτ1
≺ Gsτ2

· · · (8)
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Time-Windowed Graph:

Figure 2.2: Example of stream and resulting time-windowed graph. At the top
is a stream of edge-insertions over time, and on the bottom are the four resulting
temporal graphs induced by four time-windows of equal size ranging from the
time-instant 0 to time-instant 80.

Definition 14. Let T = R≥0 and ∆τ be a value in T. A time-windowed graph with
fixed time-window size (TWGFW) is a time-windowed graph (G, T ) where each time-
window (t, t′) ∈ T satisfies:

t′ = t+ ∆τ (9)

and that for any two adjacent time-windows τij = (ti, tj), τmn = (tm, tn) ∈ T , where
τij ≺ τmn, we have tj = tm.

2.2.2 Accumulated Temporal Graphs

Definition 15. Let G be a time-varying graph. The accumulated graph Ga(V a, Ea) is
the temporal graph whose nodes and edges are defined as:

V a =
⋃

Gi(Vi,Ei)∈G:
x∈Vi

{x} and Ea =
⋃

Gi(Vi,Ei)∈G:
(x,y,t)∈Ei

{(x, y, t)} (10)

Similarly the accumulated bipartite graph Ga(V a, Ua, Ea) is the bipartite temporal
graph defined by:

V a =
⋃

Gi(Vi,Ui,Ei)∈G:
x∈Vi

{x} and Ua =
⋃

Gi(Vi,Ui,Ei)∈G:
y∈Ui

{y} and Ea =
⋃

Gi(Vi,Ui,Ei)∈G:
(x,y,t)∈Ei

{(x, y, t)} (11)
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2.2.3 Labels in Time-Windowed Graphs

As a main purpose of the paper is to predict future labels on nodes, temporal infor-
mation on nodes, in particular their labels, must be treated; hence the following
definitions.

Definition 16. Let L be a set. An observed label L is a triplet (x, l, t) where x ∈ D,
l ∈ L and t ∈ T. In the remainder of the paper L = (x, l, t) should be understood as x
being assigned label l at time t.

Definition 17. A labelstreamL is a temporally ordered set of observed labels (L0, L1, L2 · · · )
strictly partially ordered by ≺, defined by

(xi, li, ti) ≺ (xj, lj, tj) if ti < tj (12)

2.2.4 Snapshots of Time-Windowed Graphs

For classification of nodes in a TVG based on streams, we introduce “snapshots”
in order to clearly model the TVG at the “present” and “future”.

Definition 18. Let tp be a value in T, T be a set of time-windows, S be a stream, and
L be a labelstream. A snapshot at time tp is a quintuple (Stp ,Gtp , Ttp , Ga

tp ,Ltp) where
Stp is a substream of S, and Ttp is a subset of T , both consisting of elements timestamped
before tp. We denote (Gtp , Ttp) as the time-windowed graph induced by Stp and Ttp , and
Ga
tp(V

a
tp , E

a
tp) as the accumulated graph of Gtp . The labelstream subset Ltp ⊆ L consists

of labels timestamped before tp for nodes in V a
tp . A node vi ∈ V a

tp is said to be labeled in
the snapshot at time tp, if there exists a label (vi, l, t) ∈ Ltp .

Definition 19. Let tp be a value in T, T be a set of time-windows, S be a stream, and L
be a labelstream. A snapshot at time tp is a quintuple (Stp ,Gtp , Ttp , Ga

tp ,Ltp) where:

Stp = {(x, y, t) ∈ S : t ≤ tp} (13)

Ttp = {(ti, tj) ∈ T : ti ≤ tp} (14)

Stp is a substream of S, and Ttp is a subset of time-windows T . We denote (Gtp , Ttp) as
the time-windowed graph induced by Stp and Ttp , and Ga

tp(V
a
tp , E

a
tp) or Ga

tp(U
a
tp , V

a
tp , E

a
tp)

as the accumulated (possibly bipartite) graph of Gtp . We define the labelstream subset
Ltp ⊆ L as:

Ltp = {(x, l, t) ∈ L : t ≤ tp and x ∈ V a
tp} (15)
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Figure 2.3: Example of a top-node bipartite temporal graph projection.

A node vi ∈ V a
tp is said to be labeled in the snapshot at time tp, if there exists a triplet

(x, l, t) ∈ Ltp where x = vi.

2.2.5 Projections of Time-Windowed Graphs

Some of the datasets, used for experiments in this paper, are naturally bipartite
graphs, but the metrics used are designed for non-bipartite graphs. While any
bipartite graph can be viewed as an non-bipartite graph, it is often better for
modeling purposes to use projections from bipartite to non-bipartite graphs. We
briefly give the necessary definitions below.

Definition 20. Let G(V, U,E) be a bipartite temporal graph, the temporal projection
Gp(V p, Ep) of G, is the one-mode projection of G onto V . Gp is then a temporal graph
containing only nodes from V , where two nodes are connected by an undirected edge
when they have at least one common neighboring node in U . The edge is assigned the
largest timestamp seen from either of the two nodes, to the common neighbor.

A visualization of temporal projection is shown in Figure 2.3. Note: by the
above definition, any node without 2-hop neighbors in G will be isolated in Gp.
A definition for temporal projection of a time-windowed graph is not required by
the graph metrics in this paper, and thus omitted.

2.2.6 Shortest Temporal Paths

Some of the temporal node metrics used in our work are based on paths in tem-
poral graphs, as defined in [8]. Given a temporal graph G(V,E), a temporal path
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from node x to y is defined as a sequence of edges

P = ((x, n1, t1), (n1, n2, t2), · · · , (nl−1, y, tl))

such that no nodes are visited more than once and ti ≤ ti+1 for any two neighbor-
ing edges in the path. The length of a path len(P ) is the number of edges in the
sequence and the duration is defined as dura(P ) = tl − t1. A node y is said to be
temporally reachable from node x if there exists a temporal path from x to y.
Given the set of all temporal paths between node x and y, Pxy, and a temporal
graph G(V,E), a temporal path P ∈ Pxy is a shortest temporal path if len(P ) =

min{len(P ′) : P ′ ∈ Pxy}, and is a fastest temporal path if len(P ) = min{dura(P ′) :

P ′ ∈ Pxy}. Both are viable for path based node metrics, however for the remain-
der of the paper we use shortest temporal paths as they are most compatible with
existing efficient implementations.
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Figure 2.4: All temporal paths from X to Y.

2.3 Graph representations in related work

Several areas of research, such as analysis of communication networks, delay-
tolerant networks or social networks, which seem unrelated at first, typically em-
ploy distinct domain-specific definitions to describe data. However, in reality
they often share many of the same core concepts, such as time-stamped edges,
but with different names [2]. There have been multiple attempts at creating mod-
els for temporal networks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26] with a large amount of overlap.
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Figure 2.5: Or a couple dozen [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26]. From www.xkcd.com/927/.

In the following we review alternatives to the above definitions of time-varying
graphs, as well as some of the more well-established unifying models, in order of
increasing usefulness to our work.

A classic approach to representing graphs that change over time is to aggre-
gate all edges presented into a single static graph, thereby discarding all dynam-
ics of the data. The advantages of this are primarily simplicity; static graphs are
much better understood, and one can therefore apply techniques from a rich set
of static graph methods directly to the data [8, 21]. While still a severe over-
simplification, there are methods which can encode temporal information into a
static graph, for example by using weighted edges. In Figure 2.6 is an example of
dynamic data, in this case phone calls between 5 people, and three examples of
static representations of the phone calls. The phone calls are characterized by a
caller, recipient, time of call, and a duration of call.

The first representation in Figure 2.6 is the aggregated graph described above,
the second and third are weighted graphs, which encode temporal information in
the edge weights. In the second graph, the weight of an edge between two nodes
is equal to the total number of contacts between them, and in the third graph the
weight is the total duration of phone calls between the pair of nodes.

18
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Figure 2.6: Static graph representations of dynamic call data. From left to right:
a) Static aggregated graph, b) weighted by number of contacts, c) weighted by
duration of contacts.

While the two last graphs have encoded some of the temporal data of the
phone calls, they are not capable of representing more fine-grained temporal in-
formation, such as when each phone call took place, or the duration of each call.
Furthermore these types of representations tend to over-represent the number of
paths in the graph, which is undesirable when using path-based graph metrics
[8]. Weighted graph representations, or similar, have been used in [18, 19, 40, 41,
42, 43].

A different graph representation that has been useful for especially very sparsely
connected contacts graphs, is the reachability graph or path graph[12]. In sparsely
connected graphs, nodes generally have very few connections to other nodes, or
are completely isolated, in which case the typical classification methods can prove
ineffective. Reachability graphs can in some cases remedy this, and are derived
from temporal data by placing directed edges between a pair of nodes (A,B) if
there exists a temporal path from A to B. This type of graph shows which nodes
can affect others directly, and can be efficient for analyzing how epidemics spread
in contact networks throughout time [11]. Reachability graphs have been used in
[44, 45, 11, 46, 8, 47].
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Time t1 = 0 t2 = 1 t3 = 3 t4 = 5 t5 = 9 t6 = 14 t7 = 20
Sender A A E B B D A
Recipients B C,E D C D B D

Table 2.1: Email communications.

Like static graphs can be represented by an adjacency matrix, temporal graphs
can be represented by an adjacency tensor instead of traditional matrices [12, 48].
Adjacency tensors are higher order extensions of adjacency matrices, or data
cubes, and essentially multidimensional arrays. The tensors used for adjacency
in graphs resemble tensors used in mathematics and physics, but with fewer
restrictions[48]. The simplest adjacency tensor describing a temporal graph is a
third-order tensor where the first two dimensions represent the adjacency matrix
and the last dimension represents time [49, 48]. The advantages and disadvan-
tages of the adjacency tensor are similar to those of the adjacency matrix for static
graphs: in relation to other representations, it takes up more space in memory
compared to other representations, but with it follows an set of useful tensor alge-
bra. Adjacency tensor representations have been used in [50, 51, 52, 53, 54, 55, 56].

A different option is to retain all temporal information within the graph. One
solution is to use a so-called static expansion, which is a static graph representation
of all the temporal data. To illustrate this method, we first present a small email
dataset consisting of email communications from [6], shown in Table 2.1.

In contrast to the phone call dataset, the “contacts” in this dataset do not have
durations, but are instead represented by a sender, one or more recipients, and the
time the email was sent. The static expansion of the temporal data is a directed
acyclic graph (DAG) H = (S,E), and using the definitions adapted from work by
Michail [21] is described as follows: Let V = {A,B,C,D,E} be the set of people
in the email dataset,Q = {(A,B, t1), (A,C, t2), · · · } be the set of sent emails, where
a triplet (A,B, t1) corresponds to an email sent from A to B at time t1, and let λmin

and λmax be the earliest and latest, respectively, time an email was sent. We then
have

S =
⋃
v∈V

λmax⋃
i=λmin−1

vi
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Figure 2.7: Static expansion of the temporal data in Table 2.1.

In words we create a so-called “time-node” for every node, for every point in
time, with an additional “initial node” before the earliest time λmin, called At0−1.
Hence personAwill be represented by eight nodes: {At0−1, At1 , At2 , At3 , At4 , At5 , At6 , At7 , }.
One can imagine a copy of all nodes for each time-instant, or “level”. The edges
E of the static expansion are then defined as:

E = {(u(i−1), vi) : λmin ≤ i ≤ λmax and (u = v or (u, v, i) ∈ Q)}

The edges only connect time-nodes from one level to time-nodes one level later.
Specifically a time-node, e.g. At1 , is only connected to At2 and every time-node
which received an email fromA at time t2. The resulting graph is shown in Figure
2.7.

The static expansion has the advantages of being a static graph, but is some-
times counter-intuitive (in the above example, edges for emails end at nodes with
the timestamp corresponding to when they were sent), and has a large size in
memory compared to other representations since every node is represented mul-
tiple times. Similar representations have been used in [57, 58, 59, 16].

Kostakos proposed a type of temporal graph which improves on the static ex-
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Figure 2.8: Kostakos’ temporal graph representation of data in Table 2.1.

pansion above [6]. Kostakos creates the temporal graph in the following way:
For each person, create a node for every point in time where that person sent or
received an email. Hence person A will be represented by three node instances
{At1 , At2 , At7}. Then for each set of instances, they create edges between consec-
utive pairs {Ati , Ati+1

} with edge weight ti+1 − ti. Finally, unweighted directed
edges are created between the node instances of the corresponding senders and
recipients of Table 2.1, e.g. an email from A to B at time t1 results in an edge from
At1 to Bt1 . Following these steps, the produced temporal graph is as shown in
Figure 2.8

The temporal graph by Kostakos is more intuitive, and contains fewer nodes
and edges, than the static expansion, while still allowing algorithms for static
graphs, such as finding shortest paths, to be applied directly without extensive
modifications [6]. However this representation is still relatively expensive, i.e. it
unnecessarily takes up a lot of space in memory, and does not allow us to store
information about durations of contacts, e.g. phone calls.

A different approach is instead using a sequence of graphs to represent time,
for example the one used by Nicosia et al. [8]. Their definition of a time-varying
graph consists of an ordered sequence of non-overlapping time-windows and an
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ordered sequence of graphs – similar to the ones we use in [36, 38, 37] – where
each graph represents the activity/contacts between nodes that took place within
its corresponding time-window. In our definitions, each “contact” had no dura-
tion and took place instantaneously, and they were therefore trivial to assign to
time-windows. For a contact with a duration (x, y, τ, δτ), where x was in con-
tact with y at time τ for a duration of δτ , and a time-window [t, t + ∆t], Nicosia
et al. used the following criteria to determine if the contact belongs to the time-
window:

t ≤ τ ≤ t+ ∆t (16)

t ≤ τ + δτ < t+ ∆t (17)

τ < t ∧ t+ ∆t < τ + δτ (18)

If the contact satisfies at least one of these criteria, it “overlaps” the time-window
and therefore belongs to it. This also implies that a single contact can span mul-
tiple time-windows. An example of this type of time-windowed graph is shown
in Figure 2.9.

Note that each of the graphs in the time-windowed graph of Nicosia et al. are
static, whereas the ones we use are temporal and contain time-stamped edges,
and thus don’t allow for the use of temporal node metrics such as temporal be-
tweenness centrality. Sequences of graphs, or similar, have been used in [22, 23,
24, 11, 25, 10, 26, 21, 60, 61]

Casteigts et al. have proposed a unifying graph representation for temporal
network data which overcomes the above challenges [2]. They define a time-
varying graph as a set of nodes N and a set of edges E ⊆ V × V × L where L is
a property or label that any relation between two nodes might have. They leave
the definition of L open and allow L to contain multi-valued elements. Given a
so-called “lifetime” T ⊆ T of the data, within which all contacts or relations are
assumed to take place, the time-varying graph has the form G = (V,E, T , ρ, ζ),
where

• ρ : E × T 7→ {0, 1} is called the presence function and indicates whether an
edge is available, or present, at a given time.
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Figure 2.9: Example of a time-varying graph of Nicosia et al. using the phone
calls in Figure 2.6. In a) the TVG is based on two time-windows of equal size and
in b) there are four.

• ζ : E × T 7→ T is called the latency function and indicates the time it takes
to “travel across” a given edge if traversed at a specific time.

The representation can also be extended to allow for penalties or presence func-
tions for nodes, to account for e.g. disappearing nodes, or local processing times
at each node. Examples of the time-varying graph of Casteigts et al. are shown in
Figure 2.10.

Our definitions of temporal graphs can not represent latency as defined above,
but if one assumes null latency, one can trivially see how our definition of tem-
poral graphs are conceptually similar to those of Casteigts et al. TVGs, where an
edge, i.e. a triplet (x, y, t), corresponds to the presence function ρ(x, y, t) = 1.

Casteigts et al. also explain how this representation can be aggregated into se-
quences of graphs, which they call footprints, using sub-intervals, or what we call
time-windows. A footprint of a TVG from a time t1 to t2 is defined as the static
graph G[t1,t2) = (V,E[t1,t2)) such that ∀e ∈ E, e ∈ E[t1,t2) ⇐⇒ ∃t ∈ [t1, t2), ρ(t) = 1.
Therefore a footprint G = (V,E) of a time-varying graph G is similar to our def-
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Figure 2.10: Two examples of graphs modeled using Casteigts et al. TVG defini-
tions. The contacts from Figure 2.6 are modeled on the left, where the interval(s)
on the edges indicate the times when each edge is available, i.e. (t ∈ T : ρ(e, t) =
1). The emails from Figure 2.8 are shown on the right, where the sets on the edges
show when emails were sent between nodes.

inition of an accumulated graph (equation 10) except that footprints are static
graphs instead of temporal. To represent what we have called a time-windowed
graph, Cateigts et al. partition the lifetime T into consecutive sub-intervals τ =

[t0, t1), [t1, t2) · · · [ti, ti+1), where each sub-interval [tk, tk+1) is also denoted τk. The
sequence of footprints of the TVG G according to τ is then defined as the sequence:
SF (τ) = Gτ0 , Gτ1 , · · · , which corresponds to how our time-windowed graphs
are induced from a stream of data. While our definitions for temporal graphs
overlap with those of time-varying graphs from Casteigts et al., theirs do not
represent sequences of temporal graphs as needed in our work in [36, 37]. Fur-
thermore, neither of the above works by Casteigts et al. nor Nicosia et al. dis-
cuss how to implement their representations efficiently, or how they scale with
new edge- and/or node-insertions. Similar representations have been used in
[3, 62, 63, 64, 65, 66, 67, 40, 68].

Lastly we discuss a unifying time-varying graph representation by Wehmuth
et al. [1]. Their representation is based on the concept of MultiAspect Graphs
(MAG), a graph generalization which is capable of representing multi-layer graphs,
where time-varying graphs are a special case of MAGs [20, 69]. A MAG is an ob-
ject H = (A,E) where E is a set of edges and A is a finite list of sets, of which
each set is called an “aspect”. In the time-varying graph, the list A contains two
aspects, namely vertices and time instants, and is also referred to asH = (V,E, T )

where V is the set of nodes, T is the set of time instants, and E ⊆ V × T × V × T
is the set of edges. They further denote V (H) and E(H) as the set of all nodes
and edges in H , and T (H) as all the time instants in H . An edge is defined as a
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Time-instants (ta, tb) (t0, t1) (t0, t1) (t1, t1) (t1, t1) (t1, t2) (t1, t2) (t3, t2) (t3, t1)
Sender D C D C B C B A
Recipients A C C D B C B B

Table 2.2: Table of edges for Wehmuth time-varying graph example.
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Figure 2.11: Wehmuth time-varying graph example with both progressive and
regressive edges.

quadruplet e = (u, ta, v, tb) ∈ E(H) where u, v ∈ V are the origin and destination
nodes, respectively, and ta, tb ∈ T (H) are the origin and destination time-instants.

To illustrate the advantages of two time-instants in each edge, we present a
small dataset consisting of 4 nodes shown in Table 2.2, and the corresponding
Wehmuth et al. type of time-varying graphs based on Table 2.2 is shown in Figure
2.11.

As seen in Figure 2.12, the time-varying graphs of Wehmuth et al. are also
capable of representing cyclic and periodic data by using so-called “regressive”
edges where tb < ta, as opposed to progressive where ta < tb. Their time-varying
graphs are shown to be computationally efficient and can be mapped to other
more simple, or more useful for performing graph analysis, representations such
as adjacency tensors, shown in Figure 2.11. The adjacency tensor of a TVG H is
a 4th order tensor A(H) with dimension |V (H)| × |T (H)| × |V (H)| × |T (H)| that
has a non-zero entry for every edge in H , and zero otherwise. As an example, the
edge from D to A starting at t1 and ending at t2 is found on the 4th row and 5th
column, with a value of 1. Note that the procedure used to generate the adjacency
tensor matrix is a well-known matricization (or unfolding) of a tensor [70]. This
is a reversible process and thus the original tensor can be ontained from its matrix
form. Weimuth et al. furthermore show that the concepts of e.g. the snapshots of
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tb
t1 t2 t3

A B C D A B C D A B C D

ta

t1

A 0 0 0 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 1 0 0 0 0 0
D 0 0 0 0 1 0 0 0 0 0 0 0

t2

A 0 0 0 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 0 1 0 0
C 0 0 0 0 0 0 0 1 0 0 1 0
D 0 0 0 0 0 0 1 0 0 0 0 0

t3

A 0 1 0 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 1 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2.12: Matrix form of the adjacency tensor of the Wehmuth TVG in Table
2.2.

Nicosia et al., or the presence function of Casteigts et al., can be mapped to the
time-varying graph of Wehmuth et al. [1]. The representations of Wehmuth et al.
have been used in e.g. [71, 4, 72].

In our review we have omitted the following representations: Line graphs, trans-
mission graphs, multi-layer networks, node-centric time lines, film clips, link-
turnover graphs, influence graphs, concurrency graphs, difference graphs, mem-
ory networks [11, 12, 1, 2]. For additional literature on graph representations see
[11, 12, 73, 8, 10].

2.4 Node Metrics

Every graph representation presents specific topological features which charac-
terize the connectivity and dynamics of the underlying data. Efficient analysis
of graphs, or nodes within the graph, often relies on measurements, or metrics,
which are capable of capturing the most relevant features of the graph. A metric
for a node can take on any form, but is typically a single numerical value which
is the result of a more complex analysis of the graph structure around the node
in question.

In this thesis we primarily use so-called centrality node metrics which can be
useful for identifying important nodes in graphs in various ways. The concept
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of centrality in networks was first introduced by Alex Bavelas in the 1940s and
was used for analysis of communication networks [74]. Bavelas’ work was then
later extended for connected and unconnected networks by Linton Freeman in
1978 [75]. These metrics allowed for identifying “important” or “central” nodes
in social networks in an intuitive way, based on the shortest paths between nodes,
and the distances between nodes, in a graph. Since these definitions of central-
ity metrics, many variants have been proposed (for an overview see [76]) and
have successfully been used for problems such as within-network classification.
In the following we review three examples of static node metrics: Betweenness
centrality, closeness centrality, and clustering coefficient. Illustrations of the three
metrics are shown in Figures 2.13, 2.14, and 2.15, where node colors range from
blue (lowest value of metric) to red (highest value of metric).

Betweenness centrality is a node metric which describes the centrality of a
node in a graph using shortest paths. It has been studied as a measure of how
central a node is in regards to its “influence” on other nodes, for example in social
networks [77]. Betweenness has been applied to a wide variety of network prob-
lems such as fault tolerance in electrical grids and finding influencers in social
networks. The metric is defined as follows:

CB
x =


∑

y∈V
y 6=x

∑
z∈V
z 6=x
z 6=y

σyz(x)

σyz
if 0 < σyz

0 otherwise

where σyz is the number of shortest paths between node x and z, and σyz(x) is
the number of those paths that pass through x. This means, the more a node ap-
pears in shortest paths between pairs of nodes, the higher its centrality is. Figure
2.14 shows that only few nodes score high betweenness centrality since typically
only few nodes act as “hubs” connecting large parts of the graph with each other.

Closeness centrality is also based on shortest paths in the graph, but in con-
trast to betweenness, is calculated using shortest paths from that node to every
single other node in the graph. It is often regarded as a measure to quantify the
node’s “participation” in the graph, e.g. how much is a person communicating
with others in an online social network [77]. Closeness centrality for a node x is
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calculated using the length of these shortest paths, and is defined as follows:

CO
x =


|V |−1∑
y dxy

if 0 <
∑

y dxy

0 otherwise

where dxy is the length of the shortest path between x and y. As seen in Figure
2.14, the closeness centrality is lowest for nodes which are isolated and far away
from most other nodes.

The clustering coefficient, or local clustering coefficient, measures how many
edges are in the immediate neighborhood of a node, and can be used to determine
how “tightly knit” a cluster of nodes are. Clustering for a node x is calculated by
counting how many triangles are formed with x and is defined as:

CU
x =

 2Tx
degx(degx−1)

if 1 < degx

0 otherwise

where Tx(t) is the number of triangles through node x and degx(t) is the degree
of x. The illustration in Figure 2.14 shows nodes with high clustering coefficient
spread throughout the graph. In contrast to betweenness and closeness, clus-
tering can be useful for identifying important members of smaller communities
within the graph.

In the case of temporal or time-varying graphs there are many ways to extend
these types of metrics. In this thesis we seek to explore some of these methods
and propose new variants. Metrics in time-varying graphs are discussed more in
depth in Chapters 5 and 6.
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Figure 2.13: Betweenness centrality metric for nodes in graph. Blue nodes have
the lowest betweenness centrality and red nodes have the highest.

Figure 2.14: Closeness centrality metric for nodes in graph. Blue nodes have the
lowest closeness centrality and red nodes have the highest.

Figure 2.15: Clustering coefficient metric for nodes in graph. Blue nodes have the
lowest clustering coefficient and red nodes have the highest.
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3
Problems in Temporal Graphs

In this chapter we present a selection of six well-known problems in time-varying
graphs as well as review related literature on the subjects. The six problems
are within-network classification, node embedding, clustering, link prediction,
anomaly detection, and node ranking. In this thesis we primarily attempt to solve
the first two problems, while the remaining four are well-studied problems that
are closely related to ours. Other problems which are not covered here include:
Graph classification (of whole graph) [78, 79], subgraph mining [80], malware
detection [81, 82], identifying influencers [83, 84], entity resolution [85], and net-
work evolution [86].

3.1 Within-Network Classification

Classification of nodes, or within-network classification, is a problem in which
the goal is to assign labels to nodes in the graph. Many definitions of the problem
exist for static graphs, and it is a well-studied problem which has been applied to
a plethora of domains [34, 87, 88, 89, 90, 91, 92, 28, 93, 79, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113].

A simple example of within-network classification is shown in Figure 3.1.
Here four nodes have been assigned labels which take on values either 1 or 0,
and the last node has no label, indicated by a question mark. The goal is then to
assign either a 0 or 1 to the remaining node.
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Figure 3.1: Example of within-network classification problem.

In a real-world scenario this could represent a criminal network, where each
node is a person, and two people are connected if they have had contact by phone.
Their label could then indicate whether or not the person has a criminal history,
1 if they do, and 0 if they do not.

Many approaches to this problem, for example in social sciences, exploit two
important phenomena that can occur in graphs: homophily and co-citation regu-
larity. Homophily is also informally known as “birds of a feather”, and is when
the existence of an edge between a pair of nodes (e.g. friendship or communi-
cation) is highly correlated with those two nodes being similar. For example, in
online social networks, two people who are friends are more likely to share politi-
cal beliefs. The second phenomenon is related, but applies to when similar nodes
tend to connect to the same things. In these cases there are typically two sets of
nodes in the graph (i.e. a bipartite graph) where, for example, one set represents
humans and the other represents publications. Then, two authors who cite the
same papers can be said to be similar, since their work closely relates to the same
set of publications.

In some works, the classification is defined as a statistical relational learning
problem, where methods have been shown to perform well because of their abil-
ity to utilize label dependencies of neighboring nodes [114, 115]. These methods
assign labels to unlabeled nodes by propagating information (i.e. labels) from la-
beled nodes along the edges of the graph, to the unlabeled nodes. However, for
graphs with sparse labels, this method can under-perform due to lack of infor-
mation [90]. Within-network classification can also be viewed as a semi-supervised
learning problem since both labeled and unlabeled data exist at training time [91].
Semi-supervised learning is not usually applied to relational data, but has been
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Figure 3.2: Example of within-network classification performed using wvRN. The
arrows and numbers indicate the propagation of node labels to unlabeled nodes.

shown to have advantages such as less reliance on labeled training data, since
they can utilize unlabeled nodes as well [92]. For more information on semi-
supervised learning methods see work by Zhu et al. [105, 104].

Weighted-Vote Relational Neighbor (wvRN) is an example of a simple method
which performs relational learning by label-propagation. Using wvRN, an unla-
beled node is assigned a label-based on the distribution of labels of its neighbors,
the label that is most common among its neighbors is also assigned to the node
itself. An application of the procedure is illustrated in Figure 3.2. As seen in the
graphs, the node labels travel along the edges to unlabeled nodes, resulting in
the top-right node being assigned 1. However, the bottom-left node receives an
equal number of 1’s and 0’s and therefore a consensus is not possible. In such
cases the wvRN procedure can have trouble accurately classifying the node.

Unfortunately there is not much work on extending within-network classifica-
tion to time-varying graphs [116, 117, 118, 86], and as with non-temporal graphs,
there is no generally agreed upon formulation of the problem [119, 28, 120, 86,
121, 103]. Depending on the domain of application, and the choice of graph rep-
resentation, the problem can take on many very different forms [122, 26, 123, 86,
124, 116, 125, 126, 117, 118, 127, 128, 129, 130, 131, 132, 133], and therefore we limit
this section to work that is most relevant to the work done in Chapters 4, 5, and
6.

Aggarwal et al. propose a random-walk based method for within-network
classification in time-varying graphs. A node’s label is determined based on
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the distribution of labels of the nodes visited in a random walk starting from
said node. Their approach combines both information about graph topology and
node attributes by first creating a “pseudo-graph” where nodes are additionally
connected based on shared attributes [127]. Kajdanowicz et al. implement an in-
cremental algorithm for multiclass node classification in social networks which
updates and adapts an already training classifier to new data in a mini-batched
fashion [134]. They evaluate the performance on a problem where the goal is
to predict the future emotional state of users of an online social network. Pei et
al. use a dynamic factor graph model (dFGM) which attempts to capture three
distinct correlations in dynamic graphs: a) correlation between node feature and
node labels, correlation between neighbors’ label and node label, and correlation
of node label across two snapshots of the time-varying graph. Their method is
evaluated on a subset of a co-citation network based on DBLP [135].

Günes et al. use a genetic algorithm, inspired by evolutionary processes in
biology, called GA-TVRC-Het for evolving Heterogenous Networks. It uses a
combination of iterative mutation/cross and relational classifiers to perform node
classification in two real world networks [136]. Tagarelli et al. seek to enhance ex-
isting methods for time-varying graphs to better identify lurkers in online social
networks. To do so they provide an in-depth analysis of lurker behavior and iden-
tify several temporal dynamics, such as information production and information
consumption, that can be used for time-aware ranking to better classify nodes
[137]. Yao et al. represent dynamic network data in a streaming fashion with con-
tinuous updates, for example edge-insertions, and propose a unified framework
for classification tasks. Their framework uses methods from subgraph extraction,
and online version of the Weisfeiler-Lehman graph kernel, and finally an appli-
cation of kernel-based incremental learning [125]. Another streaming network
approach by Yang et al. tackles the problem of active learning and classification
in large networks. In addition to training a model on node labels in a graph, ac-
tive learning allows querying the graph for additional labels of unlabeled nodes
– at a cost. They propose a method which uses network sampling, and a active
learning strategy which minimizes structural variability, to efficiently perform
classification [124].

Metrics have been designed for time-varying graphs in order to better cap-
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ture the evolution and structural changes. For example, Santoro et al. propose
non-temporal and temporal metrics for time-windowed graphs [3] (originally
from [2]), and Nicosia et al. extend centrality and clustering concepts from static
graphs to time-varying graphs [61, 8]. Rossi and Neville propose a framework
which uses temporal ensemble methods for discovering temporal representations
of relational data. They are able to improve the accuracy of statistical relational
learning algorithms, by a careful selection of graph components and temporal
parameters (such as size of time-windows) [18]. Marginalized Gaussian Condi-
tional Random Fields (m-GCRF) is a method for attributed weighted temporal
graphs proposed by Stojanovic et al. which resembles the well-known method by
Zhu et al., but extended to the temporal domain [104]. Their method can utilize
both labeled and unlabeled parts of time-varying graphs and is shown to effec-
tively predict future node labels on synthetic and real-world datasets [138]. In the
work of Franzke et al. they attempt to find users of an online social network, who
show tendencies towards affecting the performance of other users, in a positive
or negative way. Their approach is to analyze how attributes describing an indi-
vidual change over time, in combination with intervention analysis, to identify
points in time when these change significantly, and then identify the candidates
most likely to be responsible [83].

In the last decade deep neural networks have gained increasing attention, and
have successfully been applied to a wide range of problems. However, only
recently works have been published which deal with using (deep) neural net-
works directly with classification problems in time-varying graphs [118]. Most
of these methods fall into these categories [120]: graph convolutional methods
[139, 140, 141, 120, 142], graph neural methods [143], graph recurrent neural net-
works [144, 145], or graph reinforcement learning [146, 147]. Deep learning in
graphs is a promising and fast-developing research field.

Additional surveys on methods and approaches to within-network classification
can be found in [119, 28, 120, 86, 121, 103]. Finally, the work done in this thesis
seeks to further knowledge on this topic for static and time-varying graphs.
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3.2 Node Embedding

With the growth of available graph data, and the size of the graphs themselves,
the space required to perform analysis often surpasses the available computation
and storage resources. There are several ways to go about this challenge, and
hence several problem definitions exist in literature with some overlap of nomen-
clature. A node embedding is a “succinct” and/or “efficient” representation of a
node in a graph, that can more easily be processed, queried, and/or visualized
[148]. For example, given a node in a time-varying graph, an embedding for this
node could be a data structure which allows us to efficiently query the degree of
the node at any time in that past.

In some works there is a sharp distinction between embeddings and repre-
sentation learning, and graph summarization and compression. In these, em-
beddings or representations are generally described as low-dimensional vectors
representing a node, part of the graph, or the whole graph, and are often tai-
lored and evaluated as features for classification or prediction tasks in graphs
[121]. The latter categories, summarization and compression, then primarily deal
with the tasks of storing large graphs in concise forms that can more easily be
visualized, processed, and managed, for example by designing efficient graph
databases [148]. However because this distinction does not generally hold [149],
and due to nomenclature used later in Chapter 7, we cover these topics broadly
under the term ”embeddings”. Furthermore we review primarily with node-
centric methods, also called node-embeddings.

In Figure 3.3 are two examples of node embeddings. These illustrate solu-
tions to embedding with two distinct usecases. The top embedding can be used
as a feature for within-network classification, for example identification of the
most active nodes in a social network. The other embedding allows for efficient
querying of which nodes are a distance of 2 away in the original graph, by simply
viewing the current neighbors in the embedding.

Node embeddings for classification problems in static graphs have been widely
studied [150, 96, 151, 152, 153, 154, 121, 155], with a recent increased interest in
application to time-varying graphs as well [156, 129, 73, 157, 129, 152, 158, 149,
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A = [1, 2]

A

Figure 3.3: Two examples of embeddings based on the graph on the left. The
top embedding is vector-based node embedding for node X , where the node’s
vector contains the degrees its neighbors. The bottom embedding is a copy of the
original graph, where all edges have been removed, and then for each pair, an
edge is added if they share a neighbor in the original graph on the left (similar to
a 1-mode projection).

80, 159, 160, 154, 161]. For these types of node vector representations, a desirable
quality is that two node embeddings are similar if the corresponding two nodes
are “close” in the graph itself [121]. The difference in these types of embedding
methods lies in how they define “closeness” (unrelated to closeness centrality)
between the two nodes. Two commonly used metrics are first- and second-order
proximity, which give an indication of the pairwise similarity between two nodes.
For example, the method of Cao et al. creates embeddings for each node that cap-
tures structural information about neighbors up to k edges away [151], and the
embeddings in both [158] and [162] consider two nodes to be “close” if they be-
long to the same community, and thus have similar embeddings.

Deep learning methods have also been shown to achieve high accuracy when
used to create node embeddings for classification tasks, and are often based on
random walks to sample parts of the graph [163, 164, 165, 96]. A well known ex-
ample is DeepWalk by Perozzi et al. which uses a neural language model (Skip-
Gram), originally designed to learn deep representations of words in text [166,
167, 168]. They then create sequences of nodes from repeated truncated random
walks in the graph. These sequences make up the “sentences” for the SkipGram
neural network to learn [96]. Many variants have since been proposed, modify-
ing either the language model, how the random walks are performed, or both
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[106, 155, 169, 165, 170]. Additional node embeddings for graph classification
problems can be found in [164, 121, 171, 153].

Many types of efficient node embeddings for static graphs exist, and generally
fall into three categories: aggregation-based, attribute-based, and compression
[148]. The aggregation-based techniques create node-embeddings called “super-
nodes” connected by “super-edges” and are useful in understanding complex
data in an efficient manner [148, 172, 173, 174, 175]. Attribute-based methods
must be aware of the fact that nodes in many real-world networks are assigned
attributes, and take them into consideration [176, 177]. Compression embed-
dings are focused on minimizing the resulting size of the graph representation
[178, 179, 180, 181]. This can allow for larger networks to remain in memory dur-
ing analysis.

However, efficient node embeddings for time-varying graphs is a relatively
new field [148]. Tsalouchidou et al. extend the idea of embeddings with recon-
struction error from the static to the temporal domain using an approach they call
tensor streaming [182]. As another example, Shah et al. have proposed a method
called TimeCrunch for interpretable embeddings of large real-world datasets.
They define a lexicon of temporal “phrases” which can be used to describe tem-
poral connectivity patterns in time-varying graphs. They then employ the min-
imum description length principle to describe temporal graphs efficiently [56].
DiffNet by Seah et al. was designed specifically for biological networks to be able
to create “differential” embeddings of graph snapshots [183].

Other methods have been designed specifically for graph streams, where edges
and nodes arrive over time. The challenge here is that the embeddings need to
be constructed in one pass (or very few) over the stream, and must be able to be
updated incrementally for every incoming update to the graph. Zhao et al. pro-
posed gSketch as a method to estimate edge frequencies. Their method is based
on using a random projection, or hash-based technique, to compress the graph
data into a smaller space, called sketches [184]. While allowing for fast and effi-
cient estimation of edge frequencies, their method does not retain the underlying
graph, and can therefore not be used for applications which utilize the graph
structure [185].
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Since their initial work, more advanced sketches, extending on the work of
[185], have been proposed in [186] and [187]. Tang et al. present a method, TCM,
which can embed information about streamed nodes and edges in constant time
using a two-dimensional graphical sketch [186]. Khan et al. propose a query-
friendly method called gMatrix which retains structural and frequency proper-
ties of the underlying graph data. They implement a three-dimensional sketch
which can perform the embedding in real-time, and evaluate their method using
large-scale real-world networks [187].

Additional surveys on methods and approaches to node embeddings can be found
in [188, 187, 148, 73, 161]. Finally, the work done in this thesis, specifically Chap-
ter 7, seeks to further knowledge on node embeddings for time-varying graphs.

3.3 Clustering

There does not exist a universally accepted definition of clustering in graphs.
Generally, clustering is the task of grouping nodes into clusters of nodes which
are similar, or well-connected, by some predefined metric. In other terms, the
goal of clustering is to create groups, or clusters, of nodes within the graph in
such a way that each node in a cluster is “similar” to each other node in the same
cluster, and “dissimilar” to nodes belonging to other clusters. Clustering falls
into the category of unsupervised learning problems because it deals with finding
structure in data without labels (i.e. node labels).

A common way to cluster nodes is by taking into account the local node topol-
ogy in such a way that there, informally, exist many edges between nodes within
each cluster, but few edges between the clusters, also referred to as modularity
optimization [189]. Other ways to measure cluster quality include measuring cut
sizes or internal vs. inter-cluster densities [190]. A small example is shown below
in Figure 3.4. Here a graph consisting of 14 nodes is clustered into three groups,
each with their own color. In this case one can see that each node is “well con-
nected’ to the other nodes in its own cluster, but few connections exist between
clusters.
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Figure 3.4: Example of clustering in graphs. On the left is the original graph,
and on the right is the graph when clustered into three groups of nodes. The
clustering performed here is an example of modularity clustering, hence there
are many edges between nodes within the clusters, and few between clusters.

When the graph evolves over time, so must these clusters. Rossetti et al. de-
scribe clustering in time-varying graphs as a generic problem with the name
“Dynamic Community Discovery” [191]. It is defined as follows: A “dynamic
community” is a set of distinct pairs of nodes and lists of time-windows, DC =

{(v1, P1), (v2, P2), · · · , (vn, Pn)}, where Pn = ((t0, t
′
0), (t1, t

′
1), · · · , (tN , t′N)), with ti ≤

t′i, is the set of time-windows indicating which periods of time node n is a member
of the dynamic community. The challenge of dynamic community discovery is
then identifying the set C of all dynamic communities in the time-varying graph.
These communities may be non-overlapping as well as overlapping.

Several authors have made surveys categorizing methods for clustering in
temporal networks [192, 193, 194]. They observe that methods generally fall
into three categories depending on how communities are discovered in the time-
varying graph. Using the nomenclature from Rossetti et al. [191], the three cat-
egories are: Instant-optimal, Temporal Trade-off, and Cross-Time. Due to the
many types of clustering methods, we limit this section to a selection of methods
which fall into the aforementioned categories.

The first method only considers the graph at its “current” state, and performs
clustering without regard for the evolution of the graph or clusters that have been
identified at a previous time-step. The advantages of instant-optimal clustering
is that it builds directly on top of results from clustering in static graphs. This
means that already proven efficient static methods can be applied at each time-
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step independently of each other, which furthermore allows for parallelization.
As an example, Salleberry et al. create so-called “time-clusters” for each graph in
sequences of graphs, which then are merged over time [195]. However, since the
clusters of each time-step are independent of each other, they might change sig-
nificantly from time-step to time-step, leading to instability. Recent approaches
have attempted to compensate for this weakness e.g. by only considering the
most “stable” parts of communities, called community cores, over time [196, 197].

A perhaps more natural approach to the clustering problem is the temporal
trade-off, where nodes are clustered at each time-step with the arrival of new
data, but where the clusters of the previous time-step(s) also are taken into ac-
count. An evolutionary clustering method by Chakrabarti et al. set forth two
objectives for this type of algorithm: 1) the assigned clusters of any time-step
should accurately reflect the graph at that time 2) clusters of any time-step should
be similar to those of the previous time-step [198]. Another incremental cluster-
ing method, DENGRAPH, uses concepts from multidimensional density-based
clustering methods such as DBSCAN [199]. This strategy mitigates some of the
weaknesses of instant-optimal solutions, such as instability. However, with this
approach there is naturally a trade-off of maintaining the results from previous
time-steps versus adapting to newly formed edges and nodes, and in contrast
to instant-optimal methods, these are typically not easy to parallelize [191]. Fur-
thermore, these methods are susceptible to cluster drift, where clusters found and
modified after many time-steps differ significantly from what a static clustering
method would identify.

Cross-time methods do not consider the individual time-steps of a time-varying
graph, but instead in a single process, consider all time-steps and states at the
same time. Many of the methods that fall into this category rely on transforming
the time-varying graph (i.e. a sequence of graphs) to a single graph, in such a way
as to preserve temporal information. Then clustering is performed using meth-
ods for (potentially complex) graphs. As an example Matias et al. use a stochastic
block models approach where the number of communities and community den-
sity is fixed for the entire process [200]. These methods are well-suited to avoid
the cluster drift and instability of above methods since the time-varying graph
is processed just once. However these methods typically require assumptions
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about the domain of application (e.g. number of clusters a priori), and cannot be
used with streams of data [191].

Additional surveys can be found in [189, 201, 202, 203, 190] for static graphs, and
in [193, 194, 191, 204, 205, 195, 192] for time-varying graphs.

3.4 Link Prediction

Link prediction is a fundamental problem in graphs that has received much at-
tention [206, 207, 208, 209, 210, 211, 212, 213, 214]. The goal of link prediction is
to estimate the likelihood of the existence of an edge between any pair of nodes,
based on already existing edges, and e.g. the attributes or weights of nodes [215].
This can be useful in biological networks, such as protein-protein interaction net-
works, where distinguishing whether or not an edge between two proteins exists
must be demonstrated by field work or real-life experiments, which are usually
very costly and can take a long time [216]. Besides assisting in finding missing
connections such as these, link prediction can also be used to predict future edges
in time-varying graphs. This can be useful in e.g. online social networks for rec-
ommending friends who you know, but have not yet connected with [206]. The
problem of link prediction is illustrated in Figure 3.5.

?

?

?

?

Figure 3.5: Example of link prediction where dotted lines indicate possible new
edges. The goal of link prediction is then to assign probabilities each of these
edges.

There are many methods to estimate the probabilities of edges, but many fall
into one of two categories: similarity-based methods, and probabilistic methods
[217]. Similarity-based methods assume that nodes tend to connect to other nodes
which are similar (i.e. homophily) and define a function which assigns a simi-
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larity score for every pair of nodes in the graph. These functions can take many
forms, some use only local structural information, such as counting the number of
shared neighbors [206, 209, 218], while others use the whole graph structure like
the negated length of shortest paths [219, 220, 221]. Meanwhile the probabilistic
methods usually assume that the network has a known structure, and then build
a model that estimate its parameters using statistical methods to fit the structure.
After fitting, the model parameters can then be used to compute the probability of
each non-observed edge [217]. Examples of models include the hierarchical struc-
ture model, which assumes that many real networks are hierarchically organized
[222], the stochastic block model, in which nodes are distributed in communities
or “blocks” [223], or the cycle formation model, in which the assumption is that
networks have a tendency to close cycles in their formation processes [224].

Additional surveys can be found in [217, 215].

3.5 Anomaly Detection

Anomaly detection in graphs is a problem dealing with finding data, e.g. edges
or nodes, that “stand out” compared to the rest of the graph. The problem has
many real-world applications in domains such as finance, health care, law en-
forcement, and fraud detection. For example, in health care, anomaly detection
can help reveal rare events such as disease outbreak or side effects which can be
of vital importance for medical diagnosis [225]. An example of anomaly detection
is shown in Figure 3.6.

Figure 3.6: Example of anomaly detection. Two tightly-knit communities of
nodes are formed on the left and right, however one node (red) is connected to
both, and can be described as an anomaly.

There are several very comprehensive survey articles on anomaly detection in
static and dynamic graphs, and large amount of work has been done in these sub-
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jects [226, 227, 228, 229, 230, 221, 231, 160, 232, 233, 234]. The existing methods for
detecting anomalous nodes generally belong to one of three categories: Structure-
based, community-based, or relational learning based [225]. The main idea be-
hind structure-based methods is to capture what the structure around each node
“normally” looks like, using graph metrics such as centralities and clustering co-
efficients, and then look for nodes which features deviate from the norm. An ex-
ample is the technique called OddBall by Akoglu et al. which constructs features
based on the local neighborhood, or sub-graphs, around each node, and then dis-
covers which patterns are most common in the graph [235]. Several works have
since extended and improved upon the techniques of OddBall [232, 233, 234].
Other approaches in this category can e.g. be based on random walks to create
similarity measures [236, 206, 237].

In community-based the technique for finding anomalies is closely related
to clustering. These methods first divide the graph into closely connected (or
“tightly knit”) groups of nodes, and then attempt to find nodes and/or edges
which have connections across communities. Example include gskeletonclu by
Sun et al., which uses random-walk-with-restart based scores to find nodes which
belong to more than one community [238]. Another approach by Chakrabarti et
al. called AutoPart, is based on the assumption that nodes with similar neighbor-
hoods also are clustered together in the graph. Therefore, any edges that do not
belong to any of these clusters constitute an anomaly [239].

The works in the last category, relational learning based methods, exploit the
relationships between nodes to assign classes to them: anomalous and normal.
This is very similar to the node binary classification task described in Section
3.1. Generally relational learning methods which can exploit sparsely labeled net-
works, such as the “Ghost-Edges” approach by Gallagher et al. [91], can achieve
high accuracy, since the number of labeled nodes in real world anomaly detection
networks is typically low [225].

Additional surveys on anomaly detection can be found in [230, 225, 226, 240, 241].
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3.6 Ranking

Ranking, also called link-based object ranking, is a well-known problem where
the objective is to exploit the graph structure in order to rank, or prioritize, nodes
within the graph. In the general case the nodes can be from any set of objects, but
for most the graph and nodes represent a single object type and single edge type
[95]. Ranking has found use in many applied domains such as web information
retrieval, academic authorship, and sports analysis [242, 243, 244, 137, 245, 246,
242, 247, 248, 249, 214, 250, 251, 252]. An example node ranking is shown in Figure
3.7.

A

B

CD

E

Rank Node Score

1 B 3

2 D 3

3 E 2

4 A 1

5 C 1

Figure 3.7: Example of node ranking. The nodes have been ranked in a list based
on their individual score. The score in this case is simply the degree of each node.

For web information retrieval a well known method is the PageRank algo-
rithm proposed by Page et al. which is currently in use by www.google.com to
rank web pages online [243]. PageRank is designed to perform random walks in
a graph where nodes are web pages connected by edges if there are links between
them. The resulting rank of a node is the fraction of time that PageRank spends
at that node in its random walks. A slightly more complex process called HITS
also aims to rank web pages, but can also be used to classify web pages into two
categories Hubs and Authorities [253]

Park and Newman prose a static ranking system for sports where players (rep-
resented as nodes) increase in rank or decrease in rank depending on their perfor-
mance against each other [254]. Motegi et al. extend the concept of win-lose score
to temporal graphs to account for the fact that nodes’ ranking can fluctuate over
time. They do this by implementing a temporal decay function which diminishes
the contributions to node’s rank over time as the contributions get older [242].
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In contrast to ranking in static graphs, ranking in time-varying graphs seeks
to track the changes in ranking over time as events (such as soccer matches) un-
fold [95]. O’Madadhain et al. have proposed a series of desired properties solu-
tions to ranking in time-varying graphs, ad themselves introduce a framework
for ranking based on “potential flow” that satisfies these specified requirements
[255, 256].

Additional surveys on node ranking can be found in [257, 95, 242].
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Classification using

label-independent features and
latent linkages

In this chapter we present work that has been published in [35] at the 12th In-
ternational Workshop on Mining and Learning with Graphs (MLG). I originally
wanted to solve within-network classification in pure static graphs without any
specifics in mind. Through work and literature I saw that there was a growing
availability of networks with rich node attributes such as age, profession, nation-
ality etc. I was then inspired by the way in which “ghost-edges” were added to
graphs in the work of Brian Gallagher [91] and thought to work with this idea of
increasing connectivity between nodes to improve performance of simple classi-
fiers.
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Abstract
We study within-network classification in sparsely labeled networks, pre-

senting two separate contributions: (A) a thorough reproduction of a label-

independent method for classification from recent research using statistical

relational learning (SRL) and semi-supervised learning (SSL), and (B) a novel

approach that utilizes node attribute information to improve SRL and SSL

classifier performance called Attribute Network Propagation (ANP). (B) uses

a method of linearly combining predictions with a procedure of transforming

node attributes into graph edges. For both contributions we use two well-

known real-world datasets: the reality mining (RM) cell phone calls dataset

and the Cora Portal publication citations dataset (CORA), both formulated as

binary classification problems. We employ an existing classification frame-

work to run 10 individual SRL- and SSL-based classifiers and evaluate per-

formance using the area under the ROC curve (AUC). Results from (A) con-

firms that label-independent features can improve the performance of some

relational classifiers using iterative methods, but in most cases, 26 out of 30,

deteriorates performance on existing baselines. Results from (B) show that

in 91 out of 100 cases it is possible to improve the performance of relational

classifiers with ANP.

4.1 Introduction

Numerous problems concerning real-world phenomena involve classification of
nodes in networks, for instance:

• Anomaly detection: detecting intrusions in networks based on network
traffic. Identified intrusions make up for a small fraction of all traffic in
and out.

• Social Network Analysis: Categorising and modelling user behaviour to
be used in e.g. targeted advertising or anti-terrorism operations. Typically
contains large amounts of unlabeled data and a small set of labeled nodes.

• Cell phone fraud: Cell phone fraud is an example where networks are often
very sparsely labeled. We have a handful of known fraudsters and legiti-
mate users, but the labels are unknown for the vast majority of users.

Other examples include classification of documents and webpages, protein inter-
actions, and product recommendation systems.
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More specifically, the problem of (univariate) within-network classification is
the following: given a quadruple G(V,E,W,L) where (V,E) is a (possibly di-
rected) graph, a set of labels W , and a subset L ⊆ V such that each node v ∈ L
has one or more known labels from W , find labels from W for each of the nodes
in V \ L. Typically, the labels are sparse (i.e., L is small compared to V , for large
real-world networks, often |L|/|V | ≤ 1%).

To tackle this problem, several modern approaches try to augment the tradi-
tional node-centric approach (using only information directly attributed to the
individual nodes) with relational data. Relational data differs from traditional
data in an important way: it violates the instance-independence assumption. The
core concept of relational methods is to take advantage of these dependencies be-
tween instances. Statistical relational learning (SRL) algorithms have been shown
to perform well on within-network classification problems [98], especially when
two phenomena are present in the data: homophily and/or co-citation regularity.
Homophily is the correlation between two connected nodes and their individual
labels. Co-citation regularity is related and holds true when individuals have a
tendency to connect to the same objects in networks. Under these circumstances,
the label-propagation algorithms can assign labels throughout the network, us-
ing edges between nodes as ”pathways”, to successfully classify previously un-
labeled nodes[97]. However because of the reliance on existing ground truths,
relational classifiers can degrade significantly when labels are sparse.

Recent research has proposed various methods to tackle the label sparsity.
Collective classification methods have been shown to improve performance when
labels are sparse[100, 258]. Other methods synthetically construct additional re-
lational data, e.g. directly adding new edges to the graphs [91], and other ap-
proaches employ more complex ways of combining various attributes and graph
structural properties, called latent graphs, like in [258, 259]. The idea of latent
graph methods is to use existing (node) attributes in graph datasets in order to
construct new – so-called latent – features or graph augmentations in the under-
lying graph; with the new features, a supervised classifier can then predict class
membership for remaining unlabeled nodes [87, 258, 89].

For instance, Tang uses spectral clustering and modularity maximization [87,
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89] to generate a new set of latent features for each node. Another example, the
Latent Network Propagation (LNP) algorithm by Shi et al. [258], transforms the
original graph by adding weighted edges, where the weights are determined by
factors such as attribute similarity or node proximity in the original graph. The
LNP algorithm uses quadratic programming to add weight to edges between
nodes that are likely to share the same class label. Such indirect edges are called
”latent linkages” and are already a part of the dataset, but need processing before
becoming part of the graph structure.

A particularly simple version of this approach is simply to generate new edges
in the underlying graph; using the augmented graph, with the new edges, a label
propagation algorithm makes its final class membership predictions. The idea is
that adding edges in this manner allows the ground truths to propagate more ef-
fectively throughout the graph[260]. By careful design and choice of latent edges,
one can improve classification reliability without the need for relational features
or more complex collective inference.

Our contribution: We extend the idea of using latent linkages by creating new
graphs with edges based on attribute similarity, but running inference separately,
on both the original graph and the newly constructed latent attribute graph, and
finally combining predictions. We also experiment with a simpler method, merg-
ing latent attribute features directly into the original graph, to test whether the
added complexity of the first approach provides any improvement of classifica-
tion.

4.1.1 Related Work

Traditional statistical relational techniques have made use of label-dependent fea-
tures. Lu and Getoor’s approach uses logistic regression to model class member-
ship using neighboring nodes [261], Macskassy and Provost use weighted sums
of neighboring nodes’ labels [98] for label propagation, and Neville and Jensen
[262] use spectral clustering to group nodes based on their local edge structure,
which in turn are used in learning classifiers.

Handling label-sparsity has been extensively studied: one approach is to use
an iterative procedure, Iterative Classification Algorithm (ICA), that feeds pre-
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dictions back into the network, which in turn are used to inform subsequent in-
ferences as done by Neville in [99]. ICA is reported as a somewhat robust method
which can be governed by a process called Gibbs sampling [261, 263]. Collective
classification has also been proposed to overcome this problem [263, 100], where
they key idea is to combine supervision knowledge about the graph with edge-
structural information from the graph. However, previous work has shown that
even collective classification can suffer when subjected to very sparsely labeled
graphs [114].

Another approach aims to incorporate extra information, e.g. attribute infor-
mation, already present in the data into the graph, to strengthen classification
by providing more edges for information to travel through. Gallagher et al. pro-
pose a method where ”ghost” edges are added to the original network to enable
flow of information to hard-to-reach unlabeled nodes. A similar design by Mac-
skassy [98] adds additional edges to the graph based on text-similarity between
nodes in the data. Shi et al. [258] transform the dataset into a fully connected
graph with latent edges, where edge weights are maximized between training
data with the same labels. Tang and Liu [87] extract social latent dimensions,
like affiliations, combined with discriminative learning to outperform relational
collective classification methods. Finally work by Fleming [264] and McDowell
et al. [260] compared latent edge methods with state-of-the-art non-latent meth-
ods and confirmed that these types of algorithms can perform competitively, but
don’t necessarily perform consistently. Our proposed method differs from pre-
vious approaches by keeping latent edges in separate graphs instead of adding
them to the existing edges.

4.2 Methodology

To address the problem of label sparsity we propose two methods: Attribute
Network Propagation (ANP) and MixedEdges (ME) that exploit latent linkages
between nodes based on attribute information already present in data. For exam-
ple, in a publication dataset like CORA, in addition to citations between articles
we also have a list of keywords present in each of the articles’ content. It can be
expected that nearly all of these keywords appear multiple times across several
papers. By adding edges between articles, that share keywords, it is possible to
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derive latent linkages in the dataset. The intuition behind this idea is that with
the added edges, the ground truths may be able to propagate throughout the
network more effectively. The problem lies in selecting the most useful shared
attributes to transform into edges and in what way they are best utilized by rela-
tional classifiers.

The two methods require generation of two types attribute-augmented graphs,
which we name after the dataset they are based on, with added suffixes: -ANP or
-ME. The -ANP graphs are used by Attribute Network Propagation and the -ME
graphs are used by MixedEdges.

The -ANP graphs are created by first making a copy of the original graph,
without edges, from the original dataset. The -ME graphs are based completely
in the original graph, nodes and edges. Then, for both -ANP and -ME graphs,
unweighted, undirected edges are added between nodes depending on dataset-
specific conditions, explained in detail in Section 4.4. These conditions are de-
rived from available attribute information in the individual datasets.

For -ME sets all added edges are merged into the original graph, but for the
ANP algorithm, the two sets of graphs (original and -ANP) remain separate. In-
formally, the nodes of the -ANP graph are only connected based on their shared
attributes and the nodes of the -ME graph are connected using both shared at-
tributes and the original edges. As described earlier in this section, the motivation
behind choosing these attributes is the assumption that they connect unlabeled
nodes to more labeled nodes than in the original graph (ME) or that attributes
edges alone can uncover more meaningful paths for labels to propagate. The at-
tribute graphs -ANP are each based on multiple attributes, which alternatively
could be split into separate graphs, one for each attribute. This was decided
against due to very low edge counts, (≤ 100 edges) for most attributes, which
we expect would lead to a decrease in performance of label-propagation meth-
ods.

For the ME, node class membership is determined simply by using relational
classifiers directly on the -ME graphs. For ANP we first run the relational classi-
fiers on both the original and the -ANP graphs individually. After, ANP combines
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Figure 4.1: Methods of classification using attribute edges. On the left are is the
ANP method using and on the right is the ME method. The red node is an arbi-
trary node in the graph, used to show the process of calculating its class member-
ship P (C). W is the pre-calculated weight using 10-fold cross-validation.

the results from -ANP sets with the original graphs in a fashion resembling how
the individual classifiers are combined in Section 4.3.2. The final prediction of
each node’s class is linear combination of results on the original dataset and the
shared attribute graph:

P (C) = w · P original
baseline (C) + (1− w) · P−ANPbaseline(C) (19)

Similar to equation 22 the weight w is calculated based on the individual per-
formance of the baseline over 10-fold cross-validation on the original dataset and
the -ANP dataset. The area under the receiver operating characteristic ROC curve
(AUC) is calculated for each fold and then an average AUC score for each dataset,
AUCoriginal

baseline and AUC−ANPbaseline, is obtained. The weighting parameter w is then de-
fined as:

w =
AUCoriginal

baseline

AUCoriginal
baseline + AUC−ANPbaseline

(20)
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The classification processes, ANP and ME on their respective graphs, -ANP
and -ME, is shown in Figure 4.1.

4.3 Experimental Design

In the following we first present details about the classifiers chosen and how
label-independent features are used. Following is a description of the real-world
datasets, their characteristics and how they are sampled. The last part explains
the experiment methodology in detail.

4.3.1 Label-Independent Features

Relational classifiers typically rely on the network edge-structure to make use of
label information from neighbouring nodes. Another approach to creating rela-
tional features is to use the graph-structural properties of the surrounding nodes,
such as node degree or other graph-metrics. The methods of creating relational
features can be divided into two categories, label-dependent features and label-
independent features.

An example using label-dependent features is the network-only edge-based
classifier (nLB) from Lu et al. [261]. It models a node’s class based on the classes of
neighbouring nodes. A node’s neighbourhood is summarized by edge-weighted
counts of neighbouring nodes for each class. One disadvantage to this approach
is that when labels are sparse, the relational features become useful since neigh-
bouring nodes will tend not to be labeled.

Label-independent (LI) features are calculated using only the structural prop-
erties of the graph – labels and attributes are not included. The hypothesis is
there is a correlation between the class label of a node and the network structure
and that they can be used in cases where label-sparsity impedes traditional re-
lational features. However, results have shown that label-independent features
alone are not enough to model class membership in the graph, therefore addi-
tional information is needed. From the design of Gallagher & Eliassi-Rad [92]
we use a logistic regression classifier (logLI) that is trained on the following four
label-independent node features: number of neighbouring nodes (node degree),
number of incident edges, the betweenness centrality coefficient, and the cluster-
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ing coefficient. The results using label-independent features are then combined
with predictions from baseline classifiers, described in detail in Section 4.3.2.

4.3.2 Classifiers

The work is based on 10 individual classifiers, some of which are hybrid methods
combining results from multiple algorithms. In order to use the label-independent
features of [92] we combine baseline classifiers with the logistic regression model
”logLI”, trained on the LI features, from Section 4.3.1. We use the implementa-
tions in NetKit, a modular toolkit for classification in networked data by Masck-
assy et al.[98]. The full list of methods used is as follows:

• wvRN: The weighted-vote relational neighbor classifier which is a non-
learning classifier that uses label-propagation and an average weighted sum
of neighboring nodes’ labels to determine class membership[98]. The wvRN
classifier calculates the class membership of a node i as:

P (Ci = c|N) =
1

Li

∑
j∈N

wi,j if Ci = c

0 otherwise
(21)

where N is set of neighbors for node i, wi,j is the number of edges between
node i and j and Li is the number edges connecting i to labeled nodes.

• wvRNICA: Uses the wvRN classifier with collective classification as de-
scribed in Section 4.3.3.

• wvRN+li: Is a combination of wvRN and the logLI logistic regression clas-
sifier, described in Section 4.3.1.

• wvRNICA+li: combination of wvRNICA and logLI.

• nLB: The network-only edge-based classifier [261]. Uses a logistic regres-
sion model to infer a node’s class. A node’s summary is the number of
neighboring nodes. A node’s features are neighboring nodes’ summaries.

• nLBICA: Uses the nLB classifier with collective classification as described
in Section 4.3.3.

• nLB+li: Is a combination of nLB and logLI, described in Section 4.3.1.
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• nLBICA+li: Is a combination of nLBICA and logLI, described in Section
4.3.1.

• GRF: Is the semi-supervised Gaussian Random Field classifier of Zhu et
al.[104].

• GRF+li: Is a combination of GRF and logLI, described in Section 4.3.1.

The methods which use logLI to improve predictions, calculate the probability
of each class as:

P (C) = w · Pbaseline(C) + (1− w) · PlogLI(C) (22)

where Pbaseline(C) is the class membership prediction of the baseline, i.e. wvRN,
nLB, GRF, and PlogLI(C) is the prediction from logLI. The weight w is calculated
once per dataset and is used throughout all trials for that specific graph. The
calculation is based on the individual performance of the baseline algorithm and
logLI over 10-fold cross-validation on the labeled nodes of the dataset. The area
under the receiver operating characteristic (ROC) curve (AUC) is calculated for
each fold and an average AUC score for each classifier, AUCbaseline and AUClogLI ,
is obtained. The weighting parameter w is then defined as:

w =
AUCbaseline

AUCbaseline + AUClogLI
(23)

thereby enabling utilization of label-independent features. The intuition is that
the label-independent features should be used to a degree based on their expected
performance.

4.3.3 Collective Classification

To perform collective classification (CC) we use the Iterative Classification Algo-
rithm (ICA) up to 1000 iterations with both the nLB (nLBICA) and wvRN (wvR-
NICA). We chose the Iterative Classification Algorithm over other methods, eg.
Gibbs Sampling, to follow the methodology described in [92]. For partially la-
beled datasets, there are two approaches when using ICA: Perform collective
classification on the entire graph or perform collective classification only on the
core set of nodes. The latter is chosen because it is has been shown to perform
better[92].
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4.3.4 Datasets

We employ data from two sources, chosen for their appearance in the research
papers that inspired this article: Reality Mining (RM) cell phone calls/texts1 and
CORA Research Paper Classification Dataset.2. CORA is a co-citation dataset
originally created by crawling the internet for machine learning articles [265].
Shi et al. use the dataset to perform multi-class classification using latent graphs
[258]. The publications themselves correspond to nodes in the graph and cita-
tions correspond to edges between publications. Each node is categorized into
one of seven classes: Case Based, Genetic Algorithms, Neural Networks, Proba-
bilistic Methods, Reinforcement Learning, Rule Learning and Theory. To pose a
binary classification problem in the context of the CORA dataset, we formulate
the classifiers’ task as: identify papers with the topic ”Probabilistic Methods”.

The CORA data is already cleaned and pre-processed by [100]. Each publica-
tion in the dataset is represented by a label (machine learning topic) and a 0/1-
valued word vector indicating the absence/presence of the corresponding word
from the dictionary. The dictionary consists of 1433 unique words and there are 7
topics as the set of labels.

The RM data originates from an experiment at a college campus where 100
mobile phones were tracked over the course of 9 months [33]. Gallagher et al.
used the collected data to create a graph where each user is considered a node
and cell phone communications are considered edges between users [92]. They
used the graph to evaluate a classification method using label-independent fea-
tures. For the Reality Mining data our task is to identify whether or not a person
is a student. In the RM graph there exists a subset of nodes, we call ”core” nodes,
for which we known the true class labels. For the rest of the RM nodes there ex-
ists no true class labels.

With RM we remove from the dataset any participants who do not communi-
cate with other individuals. The resulting graph is then sampled using breadth
first search, as done in [92], following edges based on communication. The pseu-
docode for the procedure is show in algorithm 1. Nodes are sampled using BFS

1http://realitycommons.media.mit.edu/realitymining.html
2http://linqs.umiacs.umd.edu/projects/projects/lbc/
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Algorithm 1: BFS Dataset Sampling
1 input : Graph Gi(Ei, Vi) , SampleSize
2 output : Graph Go(Eo, Vo)
3 begin
4 nodequeue ← getCoreNode (Vi )
5 Go(Eo, Vo) = ∅
6 while notEmpty(nodequeue) and |Vo| < SampleSize
7 vi ← pop(nodequeue)
8 Vo ← Vo ∪ vi
9 nodequeue← nodequeue ∪ (getNeighbors(vi) \ Vo)

10 i f |Vo| == SampleSize
11 break
12 end
13 foreach vo in Vo
14 Eo ← Eo ∪ allEdges(vo, Vo)
15 return Go(Eo, Vo)
16 end

Table 4.1: Dataset characteristics

Data Set |V | |E| |L| P (+)
RM Full 10.050 140.703 101 0.63
RM Samples 1K 16k-42k 18-92 0.04-1.00
RM-ANP Samples 1K 100-1800 18-92 0.04-1.00
RM-ME Samples 1K 16k-44k 18-92 0.04-1.00
CORA 2708 5429 2708 0.16
CORA-ANP 2708 220k 2708 0.16
CORA-ME 2708 225k 2708 0.16

starting from a core node. When 1000 nodes have been chosen, all edges present
between them are added to the sample. The breadth-first sampling of the RM
datasets in algorithm 1 is sensitive to which core node is chosen as the seed. To
overcome this we create |core nodes| = |L| number of datasets Gi

o(E
i
o, V

i
o ) for RM,

one for each possible core node seed. The order of RM seed core nodes is unim-
portant since the experiments are run on the resulting samples independently of
each other.

Table 4.1 contains the following information about the original and sampled
datasets from RM as well as the CORA co-citation network: |V | is the total num-
ber of nodes in the dataset, |L| is the number of labeled nodes, |E| is the number of
edges and P (+) is the fraction of labeled nodes which have a positive class label.
Since the RM dataset is sampled multiple times, we give intervals in which the
individual characteristics lie. The sets with suffix ’-ANP’ and ’-ME’ are datasets
based on latent attribute graphs described in Section 4.2.
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Algorithm 2: RM -ANP -ME Experiment Setup
1 input : Graphs Gio(E

i
o, V

i
o )

2 output : AUC
3 begin
4 f o r graph Gi(Ei, Vi) in Gio(E

i
o, V

i
o )

5 f o r c in c l a s s i f i e r s
6 10− fo ld cross−v a l i d a t i o n on Gi using c
7 C al c u la t e w from averaged AUC
8 f o r p in proport ion { 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9 }
9 f o r t r i a l in 30 t r i a l s :

10 t e s t s e t = g e t C l a s s S t r a t i f i e d S a m p l i n g
11 t r a i n i n g s e t = G\ t e s t s e t
12 I n i t i a l i z e uniform p r i o r s
13 Run c l a s s i f i e r s using t r a i n i n g s e t l a b e l s
14 Use weight w to combine p r e d i c t i o n s
15 C al c u la t e AUCs f o r t r i a l
16 end
17 Average AUC per r a t i o f o r a l l t r i a l s
18 end
19 end
20 return avg . AUC per r a t i o f o r a l l graphs Gio

4.4 Experimental Methodology

Classifiers have access to the entire graph during both training and evaluation,
but in the experiments we hide a proportion of the labeled nodes’ labels, so they
can be used for evaluation. The proportion of labeled nodes used for training is
varied from 0.1 to 0.9 in 0.2 size increments. For each proportion we run 30 trials
with each classifier. For each trial we perform a class-stratified sampling contain-
ing 100×(proportion labeled)% nodes as a training set and the remaining as a test
set. The samples are chosen carefully so that each node appears the same amount
of test sets over all trials. The train/test splits are the same for all classifiers and
across the -ME -ANP types as well. The experiment setup described is repeated
for each graph Gi

o sampled of RM. The process is shown in algorithm 2.

In this work we extract latent linkages from two datasets: a network of com-
munications (RM) and an article citation network (CORA). The attributes ex-
tracted from RM are based on a questionnaire filled out by participants in the
original paper and in CORA we use article keywords. As described in Section 4.2
we add edges depending on dataset-specific conditions. The conditions are the
same for both -ANP and -ME graphs:

• RM: Two nodes are connected if, based on their answers in the dataset’s
questionnaire, they both consider each other a friend or they spend any time
in the same physical vicinity. The intuition here is that students tend to be
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friends, and spend time on campus, with other students and less so with
people who are not students.

• CORA: Two nodes are connected if they share any of the first 1200 word-
vector features, sorted by ascending frequency, which are included in the
dataset. Without using a cutoff – thereby including all word-vectors – re-
sulted in a heavily connected graph (≈ 2.5M edges) where inference was
computationally infeasible. The idea behind is that there exists a strong cor-
relation between articles’ use of globally infrequent words, and the topic
of the article. By connecting articles that use the same words we hope to
improve relational classifiers.

We use the area under the ROC curve (AUC) to compare the classifiers’ per-
formance since the class distribution, shown in table 4.1 under P (+), is skewed
and the accuracy measure alone therefore is not discriminative enough. For the
RM samples we compute average AUCs for every sample and finally report the
harmonic mean over all samples’ AUCs.

4.5 Results

Results for baselines and addition of label-independent features are shown in Fig-
ures 4.2 and 4.3. Clearly, the baselines’ performance suffers when the ratio of la-
beled nodes is around ≈ 0.1 on the original datasets. The lackluster performance
of the baselines is most likely due to the sparse labeling: the algorithms employed
rely on label propagation, but without enough labels the original network may
not propagate correct labels effectively. In addition, the baselines cannot, in their
original setup, make use of latent features or attributes inherent in the data.

Figures 4.2 and 4.3 also show the effects of adding label-independent features
to classification methods. In general, the label-independent features do not seem
affect the AUCs in an easily predictable way. For 26 out of the 30 different ratios
of labeled-to-unlabeled data, the performance of nLB, wvRN and GRF decreases
when using the LI method, and it is apparent that label-sparsity has a strong neg-
ative impact on both baselines and LI-methods. In addition, the logLI logistic
regression classifier, run by itself, shows poor performance compared to all other
baselines. This could explain why there are so few examples where LI-methods

60



4 Classification using label-independent features and latent linkages

0.1 0.3 0.5 0.7 0.9
0.5

0.6

0.7

0.8

0.9

1

0.1 0.3 0.5 0.7 0.9
0.5

0.6

0.7

0.8

0.9

1

Ratio Labeled

A
U

C

nlb

nlb+li

nlbica

nlbica+li

0.1 0.3 0.5 0.7 0.9
0.5

0.6

0.7

0.8

0.9

1

0.1 0.3 0.5 0.7 0.9
0.5

0.6

0.7

0.8

0.9

1

Ratio Labeled

A
U

C

wvrn

wvrn+li

wvrnica

wvrnica+li

0.1 0.3 0.5 0.7 0.9
0.5

0.6

0.7

0.8

0.9

1

0.1 0.3 0.5 0.7 0.9
0.5

0.6

0.7

0.8

0.9

1

Ratio Labeled

A
U

C

grf

grf+li

logLI

Figure 4.2: RM – Baseline vs. label-independent method.
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Figure 4.3: CORA – Baseline vs. label-independent method.
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Figure 4.4: RM – Label-independent method vs. ANP method.
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Figure 4.5: CORA – Label-independent method vs. ANP method.
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Figure 4.6: RM – Baseline vs. ME method vs. ANP method.
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Figure 4.7: CORA – Baseline vs. ME method vs. ANP method.

outperform the baseline. The only cases where the LI approach improved AUC
are when collective classification (ICA) is used for trials with ratio ≥ 0.3, but even
then the improvement of AUC is negligible, ≤ 1%, for the CORA dataset.

Results for our proposed method of Attribute Network Propagation are shown
in Figures 4.4 and 4.5. We compare the results from the label-independent meth-
ods against the ANP method described in Section 4.2. In 48 out of the 50 compar-
isons, our proposed method outperforms the label-indpendent method; the bene-
fit is most pronounced for lower ratios of labeled-to-unlabed data (e.g., ratio ≤ 0.5

for the RM dataset), A prominent example of this effect can be seen for wvRN+ANP
with ratio = 0.1 that outperforms wvRN+li, even when the latter is given access
to a much higher proportion of labeled nodes ratio = 0.7.

Our results from Figure 4.4 and 4.5 show that using edges based on shared
attributes may improve the AUC when relational classifiers are used on sparsely-
labeled problems, but they are not enough to confirm that the complexity of our
method of linearly combining predictions with ANP is justified.
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In the last two figures 4.6 and 4.7 we have results from ANP compared with
results of the less complex method ME. Its easily apparent from the CORA results
in Figure 4.7 that simply adding edges based on shared attributes with ME can
lead to a decrease in AUC scores. For all ratios of labeled-to-unlabeled data in
the CORA dataset, the mixed approach +ME performs worse than baseline algo-
rithms on the original dataset. In total, ANP performs better than ME in 43 out of
50 cases. Running inference on separate graphs, like with ANP, can in this case
be an advantage. This phenomenon may be due to how relational classifiers like
wvRN and nLB use neighboring nodes’ labels. The added edges method of ME
might cause more confusion when calculating the wvRN weighted sum in equa-
tion 21 by adding edges to nodes which have opposite labels of the one being
classified, whereas with ANP the separation of edge types potentially avoids this
problem. However we have not been able to confirm this yet.

4.6 Conclusions and Future Work

We have proposed a method for within-network classification where attributes
generate new graph edges, thus taking advantage of latent linkages otherwise
not present. Our method combines several ideas from recent research: (i) create a
parallel attribute-graph for each dataset where edges only indicate shared node
attributes, and (ii) run inference separately on both graphs using simple relational
classifiers, and combine predictions after. We implement and reproduce results
from a recent paper that proposed a label-independent approach. In experiments
on two disparate real-world datasets, we have compared our methods to base-
lines and the label-independent method under varying label-sparsity conditions.
Our experiments showed that: (1) The baseline methods perform poorly when
very few labels are available; (2) Label-independent features do not consistently
produce accurate predictions and can in some case worsen the performance of
the constituent baseline methods; (3) Linearly combining predictions from multi-
ple subgraphs can be superior to simply adding edges to the original graph.

In our current model we do not assign weight or value to individual attributes.
However, we have observed ad hoc that certain attributes predict classification
more than others others; thus we are currently investigating automatic ways of
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4 Classification using label-independent features and latent linkages

attribute selection and recombination of predictions. The attribute edges used
by ANP and ME represent relations based only on homophily, but future work
should incorporate co-citation regularity phenomena as well. Furthermore ME
could be modified to handle classes of edges, instead of treating original and
added edges the same. Finally, it remains to compare the performance of our
method to recent complex methods like [258, 89, 87], as well as multi-relational
network methods, on these types of binary classification problems.
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5
Classification in temporal graphs

After working with graph structure transformations and classification in static
graphs I wanted to move on the challenge of characterizing nodes in temporal
graphs. Most of the work I found was either tailored to specific data or to prob-
lems which where not within-network classification, therefore I selected a set of
well-known node metrics as features and began experimenting with how to ex-
tend them. A preliminary version of the work in this chapter has been presented
at the Eighth IEEE ICDM Workshop on Data Mining in Networks 2018 (DaMNet)
[36]. The chapter will form the basis of a paper to be submitted in early 2019.
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Abstract

Within-network classification, which involves correctly assigning labels

to nodes in a graph, has many applications in several important domains

such as anomaly detection and identifying criminal activity. Recent results

indicate that static graph features, as well as feature-engineering, might not

be adequate to solve these kinds of challenges in graphs that evolve over

time. To investigate and solve this problem, we consider several classifica-

tion problems using already established temporal metrics, and we propose

new label-sensitive and recency-sensitive variants of these metrics that cap-

ture graph structural properties combined with labeling information and ad-

ditional temporal patterns in the data. We test all new and old metrics using

tuned off-the-shelf classifiers on 9 datasets of varying size and usage do-

main. Our results show that usage of label- and recency-sensitive metrics on

real-world data provides more accurate results than static approaches and

approaches based on temporal metrics alone.

5.1 Introduction

A common problem in network data is to ascertain or predict properties of in-
dividual nodes or edges, for instance to identify influential people in social net-
works. One standard way of doing so is to employ machine learning techniques
to perform classification of single nodes, typically called within-network classifi-
cation. This approach has traditionally used features based on graph-structural
metrics on static (i.e., time-invariant) graph representations of the data, or using
other features inherent in the data (e.g. social features)[261, 98, 91, 100, 266].

However, many real-world networks exhibit changes such as growth or label-
ing over time. For example, in social networks, friends are added or removed,
and in citation networks, articles are cited by newer publications. While substan-
tial work has been done on static graphs that do not evolve over time, classifica-
tion in dynamic (aka. time-varying or temporal) graphs remains a relatively new
field. The problem generally is to predict the future labels of existing nodes in
a dynamic graph, using only the information available before a specified time-
instant.

Generic methods [92, 102] for within-network classification employ feature
sets that abstract away from the domain of application; thus, typical features are
purely graph-theoretic, topological in nature, or local. However, such features do
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not a priori take into account the evolution over time, whence temporal variants of
the features have been devised by a number of authors[8, 26, 267, 268]. Some tem-
poral features require a “batched” representation of the dynamic graph [3, 269],
hence models consisting of temporal subgraphs of the original dynamic graph,
each covering successive time-windows[2], are frequently used. However, these
methods do not experiment with combining temporal information with informa-
tion (such as labels) in the data to improve accuracy.

For classification problems with information about the time of node or edge
additions to a graph, we posit that (i) time-sensitive variants of standard graph-
theoretic features will lead to better classification performance than using their
static variants, and (ii) that incorporating current information about the known
class of other nodes thereof will lead to better future classification of nodes whose
class is unknown (iii) using information on how node metrics change over time,
especially “recent” changes, can further improve classification accuracy.

Contributions: We define two new variants of temporal graph metrics (label-
sensitive metrics and recency-sensitive metrics). One takes class information of
other nodes in the graph into account, and the other captures recent topological
changes in the graph. We use both these and a standard set of graph metrics
devised elsewhere in the literature in the ensuing experiments.

We perform an experiment using 9 datasets for time-evolving graphs to com-
pare a total of 6 configurations of feature sets, both static and temporal. The fea-
ture sets are compared to each other and to two baselines consisting of (i) purely
static graph-theoretical features and (ii) a disease propagation model. Our key
findings are: (1) temporal extensions of static metrics are insufficient for classifi-
cation; (2) metrics that encode label information lead to better performance, both
static and temporal; (3) Encoding recent activity into metrics improves accuracy,
but only in combination with label information; (4) success of path-based graph
metrics are highly dependent on graph characteristics.

The time-sensitive variants of graph metrics have appeared in previous work
on metrics for time-windowed graphs [26, 8]; the label-sensitive and recency-
sensitive variants are new to this paper, as is the experimental comparison.

67



5 Classification in temporal graphs

5.1.1 Related Work

Within-network classification has been widely studied. Traditional machine learn-
ing approaches have in most cases made use of static representations of the net-
work [98].

Desikan et al. [123] present a generic method to analyze temporal node behav-
ior using node properties based on link structure and a weighting mechanism
to take recency into a account, to classify web-pages, but their methods do not
scale to large datasets and are not specific to within-network classification. Wang
et al. [270] proposed a model to predict how a virus would propagate in a real
dynamic network, using propagation; we use their SI-model as a non-machine
learning-based baseline. Tagarelli et al. [137] give an in-depth analysis of lurkers
in online social networks and identify several temporal dynamics that are used
for time-aware ranking to better classify nodes, but limited to nodes with low
activity. Instead of local topological features, Aggarwal and Li [127] use random
walks and textual node attributes to perform within-network classification. Al-
though comparable, they only perform experiments on 2 of the 9 datasets we use,
and do not take recency into account.

Yao et al. [125] represent dynamic network data in a streaming fashion with
continuous updates and use a kernel-based approach to classify nodes. An-
other streaming network approach uses active learning and network sampling
to efficiently perform classification in large networks[124]. Our method differs
from these approaches by additionally modeling node labels as a stream in time,
thereby retaining temporal information about class membership over time.

Santoro et al. [3] experiment with temporal metrics which require a time-
windowed (or batched) representation of time-windowed graphs similar to work
by Casteigts etl al. [2]. Their work focuses on the evolution of node metrics, and
do not demonstrate the performance when tasked with classification.

Other approaches use graph metrics, originally formulated for static graphs,
and extend them to the temporal domain [8, 26, 11]. Our work builds on their
work, by using and modifying their definitions of temporal node metrics, and
seeks to further understand how to most efficiently encode the temporal infor-
mation in the network through classification experiments.
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5.2 Preliminaries and Definitions

As the literature on time-windowed graphs contains many variations in nomen-
clature, we give full definitions appropriate for our domain of application below,
many of which originate from [8]. An extended set of definitions can be found
in the supplementary material. In the remainder of the paper, let T be a totally
ordered set (representing time).

Definition 21. A temporal graph G is a tuple (V,E), where V is the set of nodes of G
and E is the set of edges. An edge e ∈ E is a triple (x, y, t) where x, y ∈ V and t ∈ T.
In the remainder of the paper e = (x, y, t) should be understood as an undirected edge
between x and y at time t.

Definition 22. A stream S is a set of triplets of the form (x, y, t) where t ∈ T. A
substream of a stream S is a subset s ⊆ S.

Intuitively, a stream is a succession of “events” (x, y) each happening at some
time t. Typically, (x, y) represents the creation of a undirected edge between
nodes x and y in a graph.

Definition 23. A time-window τ is a tuple τ = (t, t′) ∈ T2 where t < t′. For τ =

(ti, tj) a time-window and S a stream, the windowed substream sτ induced by τ and
S, is the substream sτ = {(x, y, t) : (x, y, t) ∈ S and ti ≤ t < tj}.

Thus, the windowed substream intuitively is the set of all “events” occurring
between ti and tj .

5.2.1 Time-Windowed Graphs

Some temporal metrics require modeling the stream as several temporal graphs,
where each graph represents the “state” of the stream during a specific period
of time. A straightforward approach is to split the stream into consecutive win-
dowed substreams, such that each substream induces a temporal graph. To do
this we define a type of graph container where each temporal graph in the con-
tainer is the result of a batch of insertions/deletions. This type of graph is called
a time-windowed graph.

Definition 24. A time-windowed graph is a pair (G, T ), consisting of a set of temporal
graphs, G, and a set of time-windows T where |G| = |T |. For each temporal graphGi ∈ G
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there is a time-window τi = (tm, tn) ∈ T so that for any edge e = (x, y, t) ∈ Gi, we have
tm < t < tn. The adjacency matrix of a time-windowed graph is the map A(G,T ) such
that if τi ∈ T is a time-window, then A(G,T )(τi) = axy(τi) is the adjacency matrix of the
temporal graph for time-window τi.

Definition 25. Let G be a set of temporal graphs. The accumulated graph Ga(V a, Ea)

is the temporal graph whose nodes and edges are the accumulation of all edges and nodes
in G.

5.2.2 Labels in Time-Windowed Graphs

As a main purpose of the paper is to predict future labels on nodes, temporal infor-
mation on nodes, in particular their labels, must be treated; hence the following
definitions.

Definition 26. A labelstreamL is a temporally ordered set of observed labels (L0, L1, L2 · · · )
where each label is of the form L = (x, l, t). In the remainder of the paper L = (x, l, t)

should be understood as node x being assigned label l at time t.

5.2.3 Snapshots of Time-Windowed Graphs

For classification of nodes in a TVG based on streams, we introduce “snapshots”
in order to clearly model the TVG at the “present” and “future”.

Definition 27. Let tp be a value in T, T be a set of time-windows, S be a stream, and
L be a labelstream. A snapshot at time tp is a quintuple (Stp ,Gtp , Ttp , Ga

tp ,Ltp) where
Stp is a substream of S, and Ttp is a subset of T , both consisting of elements timestamped
before tp. We denote (Gtp , Ttp) as the time-windowed graph induced by Stp and Ttp , and
Ga
tp(V

a
tp , E

a
tp) as the accumulated graph of Gtp . The labelstream subset Ltp ⊆ L consists

of labels timestamped before tp for nodes in V a
tp . A node vi ∈ V a

tp is said to be labeled in
the snapshot at time tp, if there exists a label (vi, l, t) ∈ Ltp .

5.2.4 Problem Definition

The classification problem tackled in this paper is described below.
Input: Let (tp, tf ) ∈ T2 be a tuple where tp < tf , T be a set of time-windows, S
be a stream, L be a labelstream with binary labels l ∈ {0, 1}, corresponding to
negative and positive class labels, and (Stp ,Gtp , Ttp , Ga

tp ,Ltp) be a snapshot at time
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tp, referred to as the present snapshot, where Gtp and Ga
tp may be bipartite.

Output: Let V 0
tp ⊆ V a

tp be the set of nodes in the present snapshot where for every
node vi ∈ V 0

tp there does not exist an observed label (vi, l, t) ∈ Ltp where l = 1.
For each node vi ∈ V 0

tp predict if there exists an observed label (vi, l, t) where l = 1

in the labelstream of the snapshot at time tf , referred to as the future snapshot.
For the remainder of the paper: Nodes in V a

tp for which a positive label exists at tp
are referred to as present positive nodes, and nodes in V 0

tp for which a positive label
exists at tf are referred to as future positive nodes.

5.2.5 Projections of Time-Windowed Graphs

Some of the datasets, used for experiments in this paper, are naturally bipartite
graphs, but the metrics used are designed for non-bipartite graphs. While any
bipartite graph can be viewed as an non-bipartite graph, it is often better for
modeling purposes to use projections from bipartite to non-bipartite graphs. We
briefly give the necessary definitions below.

Definition 28. Let G(V, U,E) be a bipartite temporal graph, the temporal projection
Gp(V p, Ep) of G, is the one-mode projection of G onto V . Gp is then a temporal graph
containing only nodes from V , where two nodes are connected by an undirected edge
when they have at least one common neighboring node in U . The edge is assigned the
largest timestamp seen from either of the two nodes, to the common neighbor.

A visualization of temporal projection is shown in figure 5.1. Note: by the
above definition, any node without 2-hop neighbors in G will be isolated in Gp.
A definition for temporal projection of a time-windowed graph is not required by
the graph metrics in this paper, and thus omitted.

5.2.6 Shortest Temporal Paths

Some of the temporal node metrics used in our work are based on paths in tem-
poral graphs, as defined in [8]. Given a temporal graph G(V,E), a temporal path
from node x to y is defined as a sequence of edges

P = ((x, n1, t1), (n1, n2, t2), · · · , (nl−1, y, tl))

such that no nodes are visited more than once and ti ≤ ti+1 for any two neigh-
boring edges in the path. The length of a path len(P ) is the number edges in
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V
p

U

V

t=2

t=2t=1 t=1 t=3 t=2 t=4 t=3

t=4

t=3t=4

Figure 5.1: Example of a top-node bipartite temporal graph projection.

the sequence and duration is defined as dura(P ) = tl − t1. A node y is said to
be temporally reachable from node x if there exists a temporal path from x to
y. Given the set of all temporal paths between node x and y, Pxy, and a tem-
poral graph G(V,E), a temporal path P ∈ Pxy is a shortest temporal path if
len(P ) = min{len(P ′) : P ′ ∈ Pxy}, and is a fastest temporal path if len(P ) =

min{dura(P ′) : P ′ ∈ Pxy}. Both are viable for path based node metrics, however
for the remainder of the paper we use shortest temporal paths as they are most
compatible with existing efficient implementations.

5.3 Methodology

Our approach is to define a sequence of feature sets that take time-related and
label-related information into account, and compare them experimentally to both
each other and to a baseline that does not directly employ graph metrics.

Each of the six featuresets represents a specific way of extracting informa-
tion from the data stream and are named (and abbreviated) as follows: Static Non-
Label-Sensitive (STop), Temporal Non-Label-Sensitive (TTop), Temporal Recency-
Sensitive Non-Label-Sensitive (TRTop), Static Label-Sensitive (SLab), Temporal
Label-Sensitive (TLab), Temporal Recency-Sensitive Label-Sensitive (TRLab). All
sets of features assume the existence of a snapshot of a time-windowed graph at
a time instant t, (St,Gt, Tt, Ga

t ,Lt). In the following, we describe how each feature
in the feature sets is defined.
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5.3.1 Static node features

The static approach discards all temporal information available and is based only
on a single, undirected graphGt. In the context of classification in time-windowed
graphs, Gt is either the accumulated graph Ga

t (V
a
t , E

a
t ) taken at time t, or the tem-

poral projection Gp
t (V

p
t , E

p
t ) (def. 28), if Ga

t is bipartite. Note than even though
Ga
t and Gp

t are temporal graphs, the static methods described below do not take
the temporal information into account. We use existing established definitions of
metrics, but change notation slightly in order to be compatible with the nomen-
clature of time-windowed graphs and the problem definition in 5.2.4. We define
the betweenness centrality of node x at time t:

CB
x (t) =

∑
y∈V at
y 6=x

∑
z∈V at
z 6=x
z 6=y

σyz(x)

σyz

where σyz is the number of shortest paths between node y and z in the temporal
graph Gt, and σyz(x) is the number of those paths that pass through x. Closeness
centrality of node x at time t:

CO
x (t) =

N − 1∑
y dxy

where dxy is the length of the shortest path between x and y in the temporal graph
Gt and N is the number of nodes in Gt. Local clustering coefficient:

CU
x (t) =

2Tx(t)

degx(t)(degx(t)− 1)

where Tx(t) is the number of triangles through node x and degx(t) is the degree
of x in Gt. The static label-sensitive node features are extensions of the above.
For these metrics, only present positive nodes are considered. This means only
paths to/between present positive nodes are considered, and a node’s neighbors
only consist of nodes which are also present positive nodes.

5.3.2 Temporal node features

We now list the temporal features, as well as label-sensitive variants of these,
that will be used for classification. The features are based on the temporal node
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features from [8]. As with the static node features, we here assume the existence
of a snapshot of at time instant t, and a single undirected temporal graph Gt

(either accumulated or projected).

Temporal closeness centrality of node i,COT
x (t), uses equation 5.3.1 as defined

in [8], but for COT
x (t), dxy is defined as the length of the shortest temporal path

between x and y. The average temporal betweenness centrality of node x at
time t is:

CBT
x (t) =

1

|T |
∑

(ti,tj)∈T

Ctbc
x (tj)

where Ctbc
x (t) is the temporal betweenness centrality of node x at time t, defined

as:
Ctbc
x (t) =

1

(N − 1)(N − 2)

∑
y∈Vt
y 6=x

∑
z∈Vt
z 6=x
z 6=y

U(x, t, y, z)

σyz

where U(x, t, y, z) is the number of shortest temporal paths from y to z which
traverses node x at time t′ < t. Edge persistence for node x is defined as follows:
given two temporal graphs,Gm(Vm, Em) andGn(Vn, En) in G, the edge persistence
for x is the number of edges that persist across both graphs:

Cep
x (Gm, Gn) =

∑
y axy(τm)axy(τn)√[∑

y axy(τm)
] [∑

y axy(τn)
]

The average temporal edge persistence of node x is then:

CUT
x (t) =

1

|T | − 1

|T |−1∑
m=0

Cep
x (Gτm , Gτm+1)

where Gτm and Gτm+1 are adjacent temporal graphs in G, and Gτm ≺ Gτm+1 . As
with the static metrics, the temporal label-sensitive node features are extensions
of the temporal metrics. For these, only present positive nodes are considered.
For temporal paths, this means only temporal paths to/between present positive
nodes are considered, and a node’s neighbors only consists of nodes which are
also present positive nodes.
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5.3.3 Recency-Sensitive Features

We propose an alternative to the temporal extensions in Section 5.3.2, called recency-
sensitive features. Recency-sensitive features allow us to use definitions of com-
mon static graph metrics without change, but still capture temporal information
in the context of recent changes. These are calculated using a meta-feature, which
is a higher-level procedure that can use any node metric in combination with a
set of time-windows, and produce a “temporal” node feature in R. The recency-
sensitive features capture temporal information in the network using changes in
a node metric over a specified number of recent time-windows. Using the be-
low definitions we create a recency-sensitive variant for each static node metric
listed in section 5.3.1. Given a time-windowed graph containing a node x, the
set of time-windows T = [(t0, t1), (t1, t2), · · · , (t|T |−1, t|T |)], the number of recent
time-windows to consider nτ , and a node feature function fx(t) ∈ R, the recency-
weighted derivative (or recency-sensitive variant) of feature fx(t) of node x is:

f∆
x (fx, nτ ) =

|T |∑
i=|T |−nτ+1

(fx(ti)− fx(ti−1))

log2(2 + (t|T | − ti))

where the denominator is the freshness function[137].

5.4 Experimental Design

We now describe our experimental design and setup.

5.4.1 Classifier selection

Due to its prevalence in related literature [19], we use a decision tree classifier
to classify based on the node features in subsection 5.3.2. To complement the
classifier, we use a naı̈ve disease propagation classifier as one baseline, the SI
disease model based on [270] (details are in the supplementary material). The SI
model infection rate is set to β = 0.6 and the decision tree is limited to a maximum
depth of 6, both values based on highest F1 scores & precision/recall, over a
10-fold cross validation tuning experiment using 50% of labeled nodes. Tuning
experiments were also run on SVM- and neural network-based classifiers, with
comparable or worse results. The classifiers are trained on six configurations
of node features for each dataset. The six sets of features consist of three non-
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deg CB CO CU CBT COT CUT

STop • • • •
TTop • • • •
TRTop •/∆ ∆ ∆ ∆ • • •

degL CBL COL CUL CBTL COTL CUTL

SLab • • • •
TLab • • • •
TRLab •/∆ ∆ ∆ ∆ • • •

Table 5.1: Feature Configurations. • indicates that the feature is included in con-
figuration. ∆ indicates that the recency-weighted derivative (Def. 5.3.3) of the
feature is used.

label-sensitive and three label-sensitive configurations, see Table 5.1. The static
featuresets STop and SLab use non-temporal features only, whereas TTop, TRTop,
TLab and TRLab use the temporal node features from [8] instead. The two sets
using recency-sensitive features have additional 4 recency-sensitive features each.

5.4.2 Datasets

We use 9 publicly-available datasets containing temporal information, from a va-
riety of domains of application. Table 5.2 summarizes the resulting time-windowed
graphs. Information about time-instants (i.e. tp and tf ) used for each dataset as
well as the size of time-windows can be found in the supplementary material.
As seen in table 5.2, the fraction of positive labels is low (P (+) < 0.1 for most
datasets). Although there exists strategies to compensate for label-imbalance in
datasets, these can also have a negative influence on performance. With over-
sampling, replicating positive labels, there is a high risk of over-fitting on many
exact clones since the fraction of positive class labels is near zero. This would also
result in almost a doubling in size of training data for each dataset. Conversely,
under-sampling, removing non-positive labels, would waste 50%< of labels and
might result in worse classification accuracy through lack of labels [271].

For 3 out of 5 of the bipartite datasets, the projection described in definition
28 results in a significant increase in number of edges (e.g. from 70k to 550k

edges). Thus for simplicity and computability purposes, we impose an additional
condition that for any temporal graph, there can exist at most one edge between
two nodes. It is done in a way that ensures only the latest time-instant is used for
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Dataset |V a
tp| |U

a
tp| |E

a
tp | |E

p
tp | Qtp P (+)

IMDB 20k 66k 180k 460k 0.11 0.02
DBLP 4.2k 2.7k 15k 68k 0.39 0.02
ESCORT 1.6k 3.1k 7.3k 14k 0.07 0.04
DELIT 1.7k - 7k - 0.07 0.17
DELIB 1.7k - 7k - 0.07 0.13
CITEULIKE 0.9k 11k 12k 1.7k 0.03 0.06
DIGG 16k - 29k - 0.03 0.03
EPINIONS 17k - 48k - 0.004 0.02
WIKI 416 678 2.3k 4k 0.04 0.29

Table 5.2: Dataset Graph Characteristics: |V a
tp | and |Ua

tp | are number of top and
bottom nodes in the accumulated graph at time tp, |Ea

tp | is the number edges in
the accumulated graph, |Ep

tp | is the number of edges of the temporal projection of
the accumulated graph, and Qtp is the modularity of the accumulated graph Ga

tp

(temporal projection if bipartite). P (+) is the fraction of nodes in V a
tp which are

future positive nodes.

the edge between x and y.

IMDb is a database of actors, movies, and ratings (between 0 and 10). DBLP
is a database of metadata for papers [34], each consisting of a title, publishing
year, authors, publication venue and references. The Escort dataset [272] con-
sists of client ratings from an online forum detailing encounters with escorts.
Deli.cio.us served as a platform for storing and sharing web bookmarks [273].
The dataset consists of social networking, bookmarking and tagging information
from around 2k users. CiteULike is a network of users and publications [274].
There exists two types of timestamped events: a user u tags a document d at time
t, and a user u uses a tag a at time t. Digg was a story aggregation website where
stories were posted and voted upon by its users. The dataset consists user friend-
ships and which stories users vote on [275]. The Epinions dataset [276] consists
of data from a social product rating website. It contains two sets of timestamped
events: trust (u1 trusts/distrusts u2 at time t) and ratings (u rates product p a value
between 0 and 5, where 5 is the best rating). The Wiki dataset logs editing activ-
ity on wikipedia.com [277]. It consists of signed (positive/negative) interactions
between users.

77



5 Classification in temporal graphs

5.4.3 Experimental Methodology

We solve the problem of node classification described in subsection 5.2.4 for all
datasets. For present and future timesteps, tp and tf , we pick two timestamps
in the recent past to avoid lack of data, but also avoid using most recent data
available due to computational restrictions. The rating threshold rthreshold for la-
beling in the IMDb dataset is set as the mode of the distribution of ratings. For
each dataset we choose fixed parameter values for tp, tf , rthreshold and ∆τ inde-
pendently (details in supplementary material), and set the proportion of labeled
nodes used during training to 50% and number of time-windows for recency met-
rics nτ = 3.

5.4.4 Classification

The classifier is trained on the features and labels of a subset of the nodes in the
accumulated graph at time tp. All features are standardized by removing the
mean and scaling to unit variance. We run 50 trials and in each trial perform a
class-stratified sampling containing 100× (proportion labeled)% nodes as a train-
ing set and the remaining as a test set. The samples are chosen so that each node
appears the same amount of test sets over all trials. The baseline SI-model is run
starting at the first time-window available in each dataset and is updated at the
beginning of each new time-window using a fixed infection rate until reaching
the final time-window at tp.

5.4.4.1 Performance and scalability

The metrics were calculated on a standard laptop and took approx. 28 hours total
for all datasets. As seen in Table 5.3, the time used for computation scales on
the number of nodes and edges in the graph, except for IMDb. This trend is most
likely because the majority of the chosen metrics are path-based, which scale with
number of possible paths in the graph.

Although scalability was not a performance metric in this work, we briefly
mention a few approaches to keeping node metrics updated, efficiently. A non-
scalable way to deal with new data in the TWG is simply to re-calculate the node-
metrics for each node. A scalable alternative is to use incremental graph metric
algorithms, which do not need to iterate over all historical data to update the
node metrics. By using incremental metrics, it could be possible to retain node
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SI STop TTop TRTop SLab TLab TRLab
tcDataset 0/1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

0 .98 .18 .31 .97 .65 .78 .96 .74 .84 .96 .71 .82 .96 .74 .84 .96 .81 .88 .96 .75 .85
IMDB

1 .08 .95 .14
.30

.12 .70 .21
.74

.13 .56 .21
.80

.13 .62 .22
.78

.14 .60 .22
.80

.15 .47 .23
.84

.14 .58 .23
.81 11.25h

0 .96 .36 .52 .95 .67 .77 .94 .68 .78 .95 .71 .80 .95 .79 .86 .95 .76 .84 .95 .83 .88
DBLP

1 .07 .76 .13
.50

.07 .41 .11
.73

.06 .32 .10
.74

.07 .36 .11
.76

.09 .31 .14
.82

.09 .32 .13
.80

.09 .25 .13
.84 5.25h

0 .99 .63 .77 .98 .79 .88 .97 .76 .85 .98 .79 .87 .99 .80 .89 .98 .77 .86 .98 .90 .94
ESCORT

1 .10 .90 .18
.75

.13 .64 .22
.85

.09 .51 .16
.82

.12 .59 .19
.85

.15 .74 .25
.86

.10 .57 .17
.83

.18 .48 .26
.91 <10m

0 .85 .24 .38 .84 .61 .70 .81 .61 .69 .82 .67 .74 .81 .70 .75 .81 .70 .75 .82 .75 .78
DELIT

1 .21 .82 .33
.37

.24 .50 .32
.63

.20 .40 .26
.61

.22 .39 .28
.65

.21 .34 .26
.65

.22 .34 .26
.65

.23 .31 .26
.68 <5m

0 .88 .24 .38 .88 .57 .68 .87 .61 .72 .87 .64 .74 .88 .66 .75 .86 .67 .74 .87 .72 .78
DELIB

1 .15 .80 .25
.36

.17 .54 .26
.62

.16 .44 .23
.65

.16 .41 .23
.66

.19 .45 .26
.68

.16 .35 .19
.66

.18 .33 .22
.70 <5m

0 .93 .78 .85 .91 .80 .83 .91 .76 .81 .92 .87 .88 .92 .80 .83 .92 .92 .92 .92 .95 .94
CITEULIKE

1 .11 .32 .16
.79

.06 .15 .07
.77

.07 .18 .09
.75

.06 .11 .06
.82

.10 .18 .10
.77

.08 .07 .07
.86

.13 .08 .10
.87 <10s

0 .97 .56 .71 .97 .77 .86 .97 .76 .85 .96 .82 .88 .97 .81 .88 .96 .85 .90 .96 .89 .92
DIGG

1 .05 .63 .10
.69

.06 .33 .09
.83

.05 .30 .08
.82

.05 .24 .08
.85

.05 .28 .09
.85

.05 .19 .08
.87

.05 .15 .07
.89 12 h

0 .99 .54 .70 .99 .70 .82 .98 .79 .87 .98 .74 .84 .98 .74 .84 .98 .72 .83 .98 .77 .86
EPINIONS

1 .02 .59 .05
.69

.03 .48 .06
.80

.04 .38 .07
.86

.03 .40 .06
.82

.03 .35 .05
.83

.03 .39 .05
.81

.03 .35 .05
.84 9.5 h

0 .64 .23 .33 .92 .68 .78 .90 .71 .79 .91 .63 .74 1.00 .77 .87 .92 .67 .78 .97 .80 .88
WIKI

1 .03 .16 .05
.30

.23 .61 .33
.72

.21 .50 .28
.72

.20 .59 .29
.68

.39 .98 .56
.82

.23 .62 .33
.72

.39 .82 .53
.83 <10m

Table 5.3: Results on datasets for feature set. Precision (P), recall (R), and F1-
score is listed for both classes as well as a weighted F1-score (in bold). Green cells
indicate best weighted F1-score for dataset. Column tc contains running times for
each dataset.

information, based on the first historical data in the stream, as long as there is
space in memory for the TWG data structure [278]. To avoid infinite growth of a
TWG, one can retain only a dataset-dependent number of the most recent time-
windows, and discard older windows. Using this approach alone comes at the
cost of re-calculating node metrics over time. We leave in-depth analysis and
scalable implementations to future work.

5.5 Results

Results for the disease model and the classifier trained on node feature sets are
shown in Table 5.3, and Figure 5.2. Table 5.3 consists of precision/recall and
F1-scores for each featureset, where the leftmost two featuresets are the base-
lines, and an approximate running time needed to calculate node metrics for each
dataset. We choose a weighted F1-Score for Table 5.3 and fig. 5.2 to account for
label-imbalance.

For 8 of the 9 datasets, the baseline SI-model fails to achieve an average F1-
score above 0.6. The relatively poor performance is likely due to the SI model
relying on a large number of initial ground truths in order to accurately classify
future nodes. However, in most datasets, the proportion of positive nodes is
≤ 0.06 (highest is 0.29) which is low compared to datasets in related work [19].
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The purely temporal TTop features exhibit a small increase in performance
over the static features for 4 of 9 of the problems. With the recency-sensitive
TRTop features, this improves to 7 of 9, but leads to worse performance than TTop
on two of the datasets. Thus, existing temporal metrics alone perform poorly,
especially considering the number of nodes whose temporal features are zero-
valued: as seen in Table 5.4, more than 70% of the values are zero forCBT andCUT

for 7 of 9 datasets, and in the last two sets close to 50%. Hence, for most nodes
there is little information available in the TTop features. The amount of zero-
valued features in CiteULike (highest average of all datasets) might explain why
the SI-model did comparatively best here as the features used by the classifier
carried little information.

Using label-sensitive features increases the F1-score over non-label-sensitive
counterparts. The static featureset SLab achieves performance similar to the static
featureset STop, and slightly better results than TTop and TRTop, suggesting
that the use of label-sensitive static features may perform better than simply ex-
tending static features to temporal graphs. Similarly, the set of temporal label-
sensitive features, TLab, scores higher than pure temporal features TTop on 8 of 9
datasets and is the best performing featureset for IMDb. However for most of the
remaining datasets, TLab performs worse than SLab and TRLab. The lackluster
performance might again be attributed to many zero-valued features. As seen in
Table 5.4, both temporal label-sensitive features, betweenness and edge persis-
tence, are zero for over 78% of nodes and for 6 of 9 is nearly 100%. Therefore,
with the TLab feature set, the classifier must rely mostly on degree and closeness
metrics.

Finally, in 7 of 9 datasets, adding recency-sensitive features to temporal label-
sensitive features outperforms all other featuresets, and achieves on average ≈
10% higher weighted F1-score than STop for all datasets.

Adding recency-sensitive features alone has little effect. As seen for the TTop
and TRTop featuresets, there is only a minor positive effect on classification per-
formance, and only on 6 of 9 datasets. When comparing TLab vs. TRLab, ac-
curacy depends on the dataset: For IMDb, TRLab increases positive class recall
significantly, but degrades negative class recall by a factor of ≈ 0.15. Conversely,
for 6 of 9 datasets, the positive class recall is reduced, but negative class recall
is increased. The most significant improvement is observed for the Wiki dataset
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Dataset CB CO CU CBT COT CUT CBTL COTL CUTL

IMDB 60% 4% 9% 73% 4% 86% 85% 15% 92%
DBLP 43% 0% 5% 87% 0% 91% 97% 12% 100%
ESCORT 53% 11% 20% 78% 11% 89% 100% 18% 97%
DELIT 23% 0% 20% 52% 0% 45% 78% 21% 87%
DELIB 22% 0% 21% 52% 0% 45% 81% 22% 89%
CITEULIKE 85% 59% 74% 93% 59% 98% 97% 65% 98%
DIGG 76% 0% 92% 88% 0% 97% 91% 31% 99%
EPINIONS 62% 0% 82% 81% 0% 95% 92% 30% 99%
WIKI 47% 0% 100% 80% 0% 93% 90% 12% 93%

Table 5.4: For each feature: Percentage of nodes with zero-valued feature
(rounded to nearest whole number).

where precision & recall for both classes are improved by up to ≈ 30%.

The difference of adding recency to non-label-sensitive vs. label-sensitive met-
rics implies that changes in label-sensitivity is more important than recency. This
is consistent with what recency-label-sensitive features capture: For IMDb, these
enable easy identification of currently active actors that have not yet had many
roles (i.e., having many temporal features near zero). However, recency-sensitive
features only improve performance when labels are taken into account (TRLab vs.
TLab) as it matters which movies an aspiring actor is in. If their co-stars of recent
movies already are famous, it improves the probability of themselves becoming
a star.

Table 5.3 shows that, for 7 of 9 datasets, the positive class recall is higher for
all non-label-sensitive configurations, while precision is higher for their label-
sensitive counterparts. The lower recall might be a result of a difference in num-
ber of paths: there are fewer label-sensitive paths (used in computing the central-
ity score) than non-label-sensitive, and therefore fewer future positive nodes are
visited.

Low modularity for 7 of 9 datasets, as well as the percentage of positive nodes
P (+), provide added complexity, and might explain why Epinions, with almost
zero modularity, does not show improvement with label-sensitive methods. Even
the DeliT and DeliB datasets, with ≈ 15% positive nodes, do not benefit as much
from label-sensitive metrics, as other datasets. The low modularity combined
with high percentages in Table 5.5 could indicate that homophily is not a good
predictor for class membership in these datasets, and that future positive nodes
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Figure 5.2: Weighted F1-scores for classification experiments on datasets.

Dataset Static Static LS Temporal Temporal LS
IMDB 7.79% 6.83% 7.91% 7.17%
DBLP 1.02% 0.12% 1.68% 0.39%
ESCORT 9.02% 2.33% 13.14% 14.56%
DELIT 16.02% 19.26% 18.60% 24.99%
DELIB 16.88% 22.61% 19.38% 27.29%
CITEULIKE 5.22% 2.92% 5.75% 5.79%
DIGG 5.23% 5.82% 5.04% 5.29%
EPINIONS 4.66% 5.40% 4.94% 5.60%
WIKI 1.51% 0.14% 2.03% 0.38%

Table 5.5: Percentage of nodes in shortest paths which are future positive nodes.

are not very well connected to existing positives. However, for all datasets pre-
sented, label-sensitive metrics unequivocally yielded the best performance over-
all.

5.6 Conclusions And Future Work

We have proposed and investigated two sets of new graph metrics for performing
within-network classification on nodes in time-windowed graphs: label-sensitive
and recency-sensitive graph metrics. The proposed metrics were compared to ex-
isting temporal graph metrics as well as a label-spreading algorithm through ex-
periments on 9 real-world datasets. Results showed that incorporating both label-
and recency-sensitivity to existing graph-structural metrics improves classification
performance, and that the performance of popular temporal path based graph
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metrics are highly dependent on graph structure.
For further work, we firstly aim to experiment with tuning time window sizes

depending on the activity in the labelstream, to potentially improve classifica-
tion performance. Secondly, many topological features exist for time-windowed
graphs, but either fail to take purely local features into account (e.g., connec-
tivity in the immediate neighborhood of a node), or fail to accommodate time-
dependence such as decay in the local neighborhood of nodes structure (e.g., for
some applications “old friends” are more important than “new” friends”, for oth-
ers, vice versa). Devising metrics or local features that accommodate these phe-
nomena could potentially improve classification performance.
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5.7 Supplementary Material

Here we give supplementary information for the article ”Classification in tempo-
ral graphs” including additional information about datasets, sampling, and the
label-spreading algorithm used.

5.7.1 Extended Datasets

In this section we describe for each dataset, how the corresponding stream of
triplets S and the associated labelstream L are created.

Dataset tp tf ∆τ

IMDB 2000 2005 1 year

DBLP 2006 2011 1 year

ESCORT 2005 2009 182 days

DELIT 5/2010 11/2010 91 days

DELIB 5/2010 11/2010 91 days

CITEULIKE 3/2005 7/2005 15 days

DIGG 8/6/2009 10/6/2009 1 days

EPINIONS 5/2001 9/2001 30 days

WIKI 5/2003 11/2004 91 days

Table 5.6: Time-windowed graph parameters for each dataset. Column tp is the
time of the present snapshot, tf is the time of the future snapshot, and ∆τ is the
size of the time-windows

IMDB (Bipartite) is a database of actors, movies, and ratings (between 0 and
10). An IMDb triplet (a,m, t) ∈ S corresponds to an actor a participating in a
movie m at time t. An IMDb triplet (a, l, t) ∈ Lmeans actor a has participated in
a movie at time t where the label l is a binarization of that movie’s rating r. Using
the entire dataset was computationally infeasible, hence a sampled version of the
IMDb dataset is used. Details about the sampling and binarization processes are
in Section 5.7.2.

DBLP (Bipartite) is a database of metadata for papers [34], each consisting of
a title, publishing year, authors, publication venue and references. We only use
papers published in database and data mining (DBDM) or computer vision and pattern
recognition (CVPR) venues. The set of DBDM venues is: PODS, EDBT, SIGKDD,
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ICDM, DASFAA, SSDBM, CIKM, PAKDD, PKDD, SDM and DEXA, and the set of
CVPR venues is: CVPR, ICCV, ICIP, ICPR, ECCV, ICME and ACM-MM. A DBLP
triplet (a, p, t) ∈ S corresponds to an author a publishing a paper at time t which
cites paper p. A DBLP triplet (a, 1, t) ∈ L means an author a has published a
paper at time t in any DBDM venue. A triplet (a, 0, t) is given for every paper
published at a CVPR venue.

Escort Service (Bipartite) [272] consists of client ratings from an online forum
detailing encounters with escorts. The ratings are either -1, 0 or 1, corresponding
to bad, neutral or good. Each triplet (e, c, t) in the stream represents an encounter
between a client c and an escort e at time t. The labelstream is based on the
five clients with most encounters: a triplet (e, 1, t) means an escort e has had an
encounter with any of the top five clients at time t. A label (e, 0, t) is given for an
encounter between e and any other client.

Deli.cio.us served as a platform for storing and sharing web bookmarks [273].
The dataset consists of social networking, bookmarking and tagging information
from around 2k users. From these we define two separate datasets, DeliT and
DeliB. A triplet (u1, u2, t) in the stream S corresponds to a contact between u1 and
u2 and is used for both datasets. (u, 1, t) in DeliB labelstream means that user u
bookmarked a page on the domain wikipedia.org at time t. (u, 0, t) is used for a
bookmark of any other domain. Likewise for DeliT, a triplet (u, 1, t) means a user
tagged a website with ”Art” at time t, and a triplet (u, 0, t) is given when using
any other tag.

Citeulike (Bipartite) is a network of users and publications [274]. There exists
two types of timestamped events: a user u tags a document d at time t, and a user
u uses a tag a at time t. Each triplet (u, d, t) in S corresponds to a user u tagging a
document d at time t. The labelstream L is based on whether a user has used one
or more of pre-selected set of popular tags. A triplet (u, 1, t) means user u used
one of the pre-selected tags at time t. A triplet (u, 0, t) is given for use of any other
tag.

Digg was a story aggregation website where stories were posted and voted
upon by its users. The dataset consists user friendships and which stories users
vote on [275]. A triplet (u1, u2, t) in the stream S means a friendship was estab-
lished at time t. The labelstream is based on the top 10 most voted stories on
Digg. A triplet (u, 1, t) means a user u voted on one of the top 10 stories at time t.
A triplet (u, 0, t) is added for a vote on any other story.
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Epinions dataset [276] consists of data from a social product rating website.
It contains two sets of timestamped events: trust (u1 trusts/distrusts u2 at time t)
and ratings (u rates product p a value between 0 and 5, where 5 is the best rating).
The stream consists of triplets like (u1, u2, t) corresponding to trust relationships
as described above. The labelstream is based on product ratings of the 1000 most
rated products. A label (u, 1, t) indicates that user u rated one of the 1000 most
rated products with a rating of 5 at time t. A label (u, 0, t) is given for any rating
to any other product.

Wikipedia Conflicts (Bipartite) dataset logs editing activity on wikipedia.com
[277]. It consists of signed (positive/negative) interactions between users. The
sign is a decimal value between -10 and 10. A Wiki triplet (u1, u2, t) ∈ S corre-
sponds to a non-neutral interaction (i.e. the absolute value of the sign is greater
than 1) between u1 and u2 at time t. A Wiki triplet (u, 1, t) ∈ L means a user u
has had more than 1 strongly negative (i.e. sign is less than -4) interaction with
another user, where the second interaction took place at time t. A label (u, 0, t) is
given for any other non-neutral interaction.

5.7.2 IMDb Sampling and Binarization

The binarization of the labels for the IMDb, using a fixed threshold, is too strict
(i.e. two movies with ratings 6.999 and 7.001 would be given different labels, even
though they are very close in rating), therefore the threshold must be softened. To
soften the binarization process, we add Gaussian noise. Given a value rthreshold ∈
[0, 10], and a random variable Xr ∼ N (rthreshold,

1
2
), we define the labelstream L

as:
L = {(a, l, t) : (∃(m, r) ∈ D)[(a,m, t) ∈ A}

where (m, r) ∈ D is a rating of r for movie m, (a,m, t) ∈ A is an actor a in a movie
m which appeared in cinemas the year t, and l ∈ {0, 1} is given by:

Pr(l = 1 | r) = Pr(Xr ≤ r) (24)

Pr(l = 0 | r) = 1− Pr(l = 1 | r)

Thus, if the rating of a movie r is higher than rthreshold, the actors who partici-
pated are given a positive label (with some probability) as illustrated in fig. 5.3.
Thus, some movies with r < rthreshold will result in positive labels and vice versa -
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however, the farther the rating is from rthreshold, the lower the probability is of this
happening.

rthreshold r 10 rating

Pr(X)

Figure 5.3: Distribution plot to illustrate added noise to IMDb labeling.

The original IMDb dataset is very large and for resource management pur-
poses it was necessary to downsample. Furthermore, due to some low-quality
entries in the ratings of movies, we set labels to zero of movies which were not
rated by more than 200 members of IMDb to avoid movies which were rated very
high/very low by only a handful of people. The strategy used to modify labeling
and to downsample A and D is described below:

1. Define a setMc which contains all movies originating from a selected subset
of countries, in our case Denmark & Sweden.

2. Define a set Ac which contains the top 20 members of the cast, ordered by
cast billing, for each movie in Mc.

3. For each member in Ac, add all movies they have appeared in, to Mc.

4. The downsampled Ad is then defined as:

Ad = {(a,m, t) ∈ A : a ∈ Ac and m ∈Mc}

5. The downsampled Dd is then defined as:

Dd = {(m, r) ∈ D : m ∈Mc}
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6. Let nrm be the number of ratings for movie m. Equation 24 then becomes:

Pr(l = 1 | r) =

Pr(X ≤ r) if 200 ≤ nrm

0 otherwise

5.7.3 SI Model Classification

The below model is an obvious adaptation of the seemingly most popular (and
simple) graph-based disease-spreading model (from Wang et al., “Epidemic Spread-
ing in Real Networks: An Eigenvalue Viewpoint”)[270]. It is used as a baseline in
our paper on within-network classification.

At regular time steps, an infected node can infect its neighbors with some
time- and node-invariant probability β. In the SIS (Susceptible - Infected - Sus-
ceptible) model, each node may also be cured at each time step with probability
δ. We assume that δ = 0, resulting in the SI model.

Denote by p(i,t) the probability that node i is infected at time t (i.e., is already
infected prior to time t, or gets infected at time t). Some nodes are ”born” infected
(in our case, the original nodes for which there exists a positive label at time t = 0,
plus possibly new nodes that ”immediately” are positive when they enter the
network); we model this by assigning to each node i a time-invariant bit ξi such
that ξi = 1 if the node is born infected and ξi = 0 otherwise.

Then:

p(i,t) =


1 if ξi = 1

p(i,t−1) + (1− p(i,t−1)) ∗

1−
∏

j:neighbor of i

(1− β ∗ p(j,t−1))

 if ξi = 0

where we set p(i,0) = ξi.

For a time-windowed graph, (G, T ), the probability p(i,t) can be directly com-
puted by the above formula for each time t, corresponding to the upper boundary
of a window in T . Observe that new nodes that are ”born” as time evolves affect
the computation as well, not just the nodes present in the original graph.
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Thus, one can classify each node at the final time t = T as being infected or
not by asking whether p(i,T ) is above some threshold γ (e.g., p(i,T ) > 0.5 = γ). This
threshold γ, and the infection parameter β are the only values that need to be
tuned trough experiments. To keep things simple, we may keep γ = 0.5 and sim-
ply try different values of β until the fraction of predicted infected nodes is close
to the fraction of the nodes we know to be infected in the data (e.g., the fraction
of actors we know to be stars at t = T ).

Note that as, e.g., stars in movies, are rare, we may end up with realistic values
of β that are smaller than what is needed to maintain the disease (also called the
”epidemic threshold”), estimated by Wang et al. to be the reciprocal of the largest
eigenvalue of the adjacency matrix of the network. Accuracy, precision and recall,
ROC, etc. can be directly calculated from the above classification of each node.
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6
Weighted Temporal Graph Metrics

In this chapter we present work that has been submitted to the Network Sci-
ence Journal in [38]. After experimenting with how to modify centrality metrics,
allowing us to capture temporal or attribute information of nodes, I wanted to
define metrics that could capture the same information, but also be tailored to
other domains and problems. I began with adding functions of nodes to metrics
to change their behavior, and then experimented with how to make the functions
and metrics as general, or flexible, as possible.
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Abstract

A temporal graph is a(multi-)graph where nodes and edges can be added

over time, for example social or citation networks. A typical task involv-

ing temporal graphs is to predict which existing nodes will be of particular

interest in the future (e.g., have high connectivity). Methods and metrics de-

signed for static graphs can be used to treat temporal networks, but recent

work has shown that established metrics for temporal graphs can be exper-

imentally outclassed in tasks such as within-network classification by using

metrics that take temporal or attribute information into account.

In this work we (a) review the shortcomings of existing metrics for static

and temporal graphs; (b) present a theoretically principled extension of exist-

ing metrics incorporating weights in static and temporal graphs; (c) exemplify

the use of weights for classification tasks in temporal graphs; and (d) perform

an experimental validation of the new metrics by applying them to two dis-

tinct classification tasks in 3 datasets and comparing them to baselines using

unweighted time-sensitive metrics.

6.1 Introduction

Graphs are used to model many types of real-world phenomena. Extensive re-
search has been done aiming to engineer metrics for graphs, or nodes in a graph,
for example with the goal of measuring how “central” or “well-connected” a
node is. Such metrics have been successfully applied as descriptors, or as fea-
tures in machine-learning systems, when attacking problems such as link predic-
tion, anomaly detection, and within-network classification. In this work we focus
solely on within-network classification: the task of assigning labels to nodes in the
graph when incomplete information is available.

Real-world data is often complex: nodes have many types of additional infor-
mation (e.g. age, or affiliation in a social network), and real-world graphs often
change over time (e.g., friendships are created/removed in social networks, au-
thors cite new articles in citation networks, and new emails are sent/received in
communication networks). For many types of problems the additional informa-
tion present in the data is critical to solving the problem. For example, when
determining whether a node in an internet traffic network is infected with mal-
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ware, it is important to know both the activity of the node over time (especially
recent activity) and attributes such as hardware, country of origin, operating sys-
tem, and so forth. Therefore, static graphs, and their associated metrics may fail
to capture the temporal phenomena typical of real-world problems.

Extensive research has sought to extend concepts from static graphs to tempo-
ral graphs. Most existing metrics for temporal graphs, such as temporal between-
ness, or closeness centrality, are similar to their static counterparts, but are subject
to additional criteria such as all paths must be “time-respecting” [26, 8, 16, 279].
Prior work has shown that, for within-network classification, using temporal
node metrics may in some cases outclass static metrics by effectively capturing
temporal information as well as structural information [228, 83, 280, 26], how-
ever there exists only few works dealing solely with node metrics in complex
temporal graphs [267, 8, 59].

A different approach is to solve within-network classification problems by re-
lying on the attributes of neighboring nodes, instead of classical graph metrics
[259]. These types of methods often rely on diffusing information from certain
nodes to other nodes for which little is known. For example, in malware net-
works the diffusion approach has proven useful because of “guilt by association”,
that is, new threats are often identified based on connections to existing malware
[81, 82, 281]. The strength of these types of approaches lies in the assumption of
homophily of the underlying graph: that nodes are more likely to be connected
to other nodes of the same type, or with the same labels. This approach allows,
for example, collective classification methods to determine labels of a node based
on those of the nodes in its immediate neighborhood [97]. However, these meth-
ods can fail on graphs with few links between nodes with similar labels, large
distances between them in the graph, or low modularity overall. By modifying
node metrics, like centrality or coverage, to take node weights into account, it is
possible to label nodes based on information of nodes which are not in the imme-
diate neighborhood.

Consider the graph in Figure 6.1, consisting of node labels (green/red) and
numerical weights associated to said labels: weight 1 is assigned to green nodes,
weight 0 to red nodes, and nodes x and y are unlabeled. The task is to label the
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currently unlabeled nodes x and y as either green or red.

X Y

0 0

0

0 0

0

11 1

11 1

Figure 6.1: Within-network classification: Labels (and weights) of red- and green-
labeled nodes are known. What colours should be assigned to nodes x and y?

In this example, traditional, static node metrics such as betweenness central-
ity and closeness centrality are identical for both x and y, and relational classifiers
might mislabel x since none of the neighbors are green. However, by incorporat-
ing node weights in the definition of metrics e.g. closeness centrality, it possible to
differentiate between x and y and correctly label them. Furthermore, recent work
in time-varying graphs has shown that combining this type of node weights with
information on “recent” topological changes in the network, can further improve
the performance of classifiers [36].

We propose: a flexible way to parameterize existing graph metrics with a
node weighting function (or just, “node function” for short) that can easily be
adapted to several problem domains. A typical node function will be a simple,
additional multiplicative factor in each metric, and can be based on topological
or time-sensitive information in the graph (e.g. node weights, time-stamps of
edges, etc.). This allows for straightforward customization of general graph met-
rics to specific problems or domains. Examples of customization include basing
the metric calculations only on subsets of the most important nodes or weighing
the most recently inserted edges higher in temporal paths.

Hence, for within-network classification on complex real-world temporal data,
we posit that (i) using weighted temporal node metrics will lead to improved
performance over purely unweighted static/temporal metrics, and that (ii) com-
bining several types of weight functions may provide further valuable insights.
We thus investigate the problem of within-network classification using novel
weighted static and temporal node metrics.

We contribute: A new set of principled, weighted static and temporal node
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metrics, as well as several node weight functions, all designed for problems in
temporal graphs, with within-network classification being one of the prime ex-
amples. The weighted metrics are designed such that: (i) They allow us to cap-
ture both graph-topological properties and node weights; (ii) the time and space
complexity is the same as their unweighted counter-parts, mutatis mutandis; (iii)
they allow for time-dependent weighting, for example based on the “recency” of
edge or node additions; (iv) their flexibility allows for application to a variety of
real-world domains with ease.

To show the usefulness of our new metrics, we perform within-network clas-
sification experiments on 3 real-world datasets, and we compare the accuracy of
classification methods using the proposed metrics to baseline unweighted node
metrics. Our key findings in the experiments are: (1) unweighted node metrics
are in some cases insufficient for within-network classification (2) using weighted
metrics with tailored node functions can lead to better performance, both static
and temporal (3) the choice of node function for weighted metrics can present a
trade-off between positive class precision and recall.

6.1.1 Related Work

There is a substantial volume of related work in which unweighted/weighted
and static/temporal graph metrics have been used to solve a very eclectic set of
problems. Below, we have categorized related work into four rough categories,
based on whether the approach applies to static/temporal graphs, and unweight-
ed/weighted metrics.

6.1.1.1 Static Graphs

Methods have been developed and used for solving a plethora of problems in
static graphs for decades [282, 283, 89, 95]. The concept of centrality in networks
was first introduced by Bavelas in the 1940s for communication networks [74],
and extended for connected and unconnected networks by [75]. These metrics
allowed for identifying “important” or “central” nodes in social networks in an
intuitive way, based on the shortest paths between nodes, and the distances be-
tween nodes, in a graph. Since these definitions of centrality metrics, many vari-
ants have been proposed (for an overview see [76]) and have successfully been
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used for problems such as within-network classification [102, 92, 19, 26], link-
prediction [209], and anomaly detection [225]. Extensions of centrality metrics,
such as relative centrality that describes the relative importance of a node in re-
spect to other nodes in the graph, have been designed to overcome centrality
metrics’ shortcomings for specific domains [284]. Other examples include rout-
ing betweenness centrality [285], centrality based on random walks [286], and
process-driven betweenness centrality [287]. However, these metrics and meth-
ods typically do not perform well on weighted graphs [288]. Surveys on within-
network classification and metrics in static graphs can be found in [19, 122, 95].

6.1.1.2 Static Attributed/Weighted Graphs

There have been numerous attempts at generalizing metrics, such as centrali-
ties from [75], to weighted graphs and attributed graphs [289, 290]. These are in
most cases modeled as simple weighted graphs where edge/node weights are
scalar numerical values. [288] have proposed a Dempster-Shafer based centrality
which provides a trade-off between node strength and degree, and [291] have cre-
ated the Laplacian centrality which is analogous to eigenvalue centrality for un-
weighted graphs. Separate types of metrics have been designed for graphs with
other types of attributes, such as categorical attributes on nodes/edges [292, 293].
Real world datasets are often complex and sometimes lend themselves well to
so-called multiplex, or multilayer, graphs, which has spawned another field of
weighted graph metrics [294, 246, 295]. A survey on metrics for static weighted
graphs can be found in [296, 297]. Various methods have been proposed to im-
prove accuracy in classification tasks using attributes or weights. [298, 111] pro-
pose learning on sub-graphs which consist only of nodes which have target la-
bels, but this can in label-sparse cases result in many isolated subgraphs, and also
does not produce results for non-target nodes since they are omitted from sub-
graph. Other methods for attributed/weighted graphs include clustering using
graph/attributes [299, 300, 205], identifying untrustworthy individuals in multi-
agent communities from a combination of observable features and network con-
nections [301, 266], pattern mining in attributed graphs [112], and classification
based on topological and label attributes [79].
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6.1.1.3 Temporal Graphs

The early approaches at modeling temporal graphs, used sequences of static graphs,
sometimes called time-varying graphs (TVG) or time-windowed graphs (TWG),
where each graph in the sequence is a static representation of the data as time
passes [2]. While static metrics can be applied to each graph in the sequence,
they do not capture sufficient temporal information of the underlying data [8].
Extensions of static metrics have been proposed in several works [25, 61, 8, 279,
302, 303]. Several metrics such as cover time, and time-constrained coverage,
have been designed specifically to take advantage of the additional temporal
information, and do not have “static” counter-parts [267, 59]. Applications of
metrics on temporal graphs include using social temporal motifs (i.e. stars, or-
dered chains, ping-pong patterns) in social networks [132], using a custom rank-
ing score to track the evolution of node features over time and identify rising stars
[93, 304], and using temporal centrality metrics to characterize the evolution of
graphs [26, 268, 16]. Surveys on applications of metrics on real-world networks
can be found in [257, 18].

6.1.1.4 Temporal Attributed/Weighted Graphs

There are relatively few published works which regard both temporal and at-
tribute data for node metrics [228, 225, 19, 122]. Most related work defines mea-
sures which typically are appropriate only for a few domains. [83] define a node
metric which is weighted by the change of node attributes over time to identify
influencers in social networks. [130] proposed to use the strength of social ties
to weight centrality metrics in temporal weighted social networks, and [280] pro-
pose an entropy degree centrality metric to find influential nodes in mobile social
networks. However both these methods model the temporal graph as a sequence
of static graphs. Metrics can also be weighted by the temporal information in the
graph, e.g. time-weighted node degree, where edges are weighted based on their
respective ages, to predict future trends in data [245]. Applications in temporal
weighted graphs include: [138] Classification in temporal weighted graphs; [305]
Anomaly detection in graphs using attributes and temporal information.

Our proposed metrics are based on the abstract concept of a node function
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that can take many different forms depending on the problem at hand. Further-
more we show that the weighted metrics can benefit from combinations of several
independent node functions. In comparison to the above metrics for static/tem-
poral weighted graphs, our proposed metrics are flexible, can be used with both
static and temporal graphs, and can be applied to a large range of domains and
problems by modifying the node functions, or creating new types and tailoring
them to fit. Compared to the static graph metrics in Section 6.1.1.1 and 6.1.1.2,
our proposed metrics can be used on both static and temporal graphs. And in
contrast to the metrics in 6.1.1.3 and 6.1.1.4, our metrics are not limited to just
functions of node weights, but can be e.g. combinations of shortest path lengths
and functions describing how recent edges around each node are.

6.2 Preliminaries and Definitions

The literature on time-varying graphs contains many variations in nomenclature,
therefore we give full definitions appropriate for our domain of application be-
low, many of which originate from [26, 8, 2] and have appeared in earlier yet
unpublished work [37].

In the remainder of the paper, let T and D be totally ordered sets (representing,
time and data, respectively).

Definition 29. A time-window τ is a tuple τ = (t, t′) ∈ T2 where t < t′. Let T ⊆ T2

be any non-empty set of time-windows. Then ≺, defined by:

(ti, tj) ≺ (ta, tb) if ti < ta or (ti = ta and tj < tb) (25)

is a strict partial order on T .

Definition 30. A temporal graph G is a tuple (V,E), where V is the set of nodes of G
and E is the set of edges. An edge e ∈ E is a triplet (x, y, t) where x, y ∈ V and t ∈ T. In
the remainder of the paper e = (x, y, t) should be understood as a directed edge between x
and y at time t. We usually represent a temporal graph by its adjacency matrix A, where
axy = 1 iff there exists at least one edge from x and y in G

Definition 31. A weighted temporal graph G is a temporal graph (V,E,W ), where
V,E are the nodes and edges, respectively, and W : V 7→ W are weights on nodes in V .
For any node x ∈ V there exists a weight wx ∈ W .
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Definition 32. A stream S is any subset S ⊆ D2 × T. A substream of a stream S is a
subset s ⊆ S. The relation ≺, defined by:

(xi, yi, ti) ≺ (xj, yj, tj) if ti < tj (26)

is a strict partial order on the set of triplets. Intuitively, a stream is a succession of
“events” (x, y) each happening at some time t. Typically, (x, y) represents the creation of
a directed edge between nodes x and y in a graph.

Definition 33. Let τ = (t, t′) be a time-window and S be a stream. The windowed
substream sτ , induced by the time-window τ and stream S, is the substream sτ of S
defined by:

sτ = {(x, y, t) : (x, y, t) ∈ S and t ≤ t < t′} (27)

Thus, the windowed substream intuitively is the set of all “events” occurring between t
and t′.

Definition 34. Let S = {s0, s1, s2 · · · } be a set of substreams of the stream S. S is then
strictly partially ordered by ≺, defined by:

si ≺ sj if min
(xa,ya,ta)∈si

ta < min
(xb,yb,tb)∈sj

tb (28)

which results in ordering the substreams by which contains the earliest event.

Definition 35. Let s be a substream. The substream graph Gs is a temporal graph
(V,E) whose nodes and edges are defined as:

V =
⋃

(x,y,t)∈s

{x, y} and E =
⋃

(x,y,t)∈s

{(x, y, t)} (29)

A special case of temporal substream graph is the bipartite substream graph denoted
Gb
s, which is a bipartite temporal graph (V, U,E) whose nodes and edges are defined as:

V =
⋃

(x,y,t)∈s

{x} and U =
⋃

(x,y,t)∈s

{y} and E =
⋃

(x,y,t)∈s

{(x, y, t)} (30)

where we refer to V as the set of top nodes and U as the set of bottom nodes. It
follows from the definition of bipartite graphs that V ∩ U = ∅.

.
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6.2.1 Time-Varying Graphs

Some metrics, such as average edge persistence, require modeling the stream
as sequences of temporal graphs, where each graph represents a “state” of the
stream during a specific period of time. A direct approach is to split the stream
into consecutive windowed substreams, such that each substream induces a tem-
poral graph. To do so we first define a type of graph sequence structure that
allows for “batched” graph updates. Intuitively each temporal graph in the con-
tainer is the result of a batch of changes applied to its predecessor. This type of
graph is called a time-varying graph.

Definition 36. A time-varying graph (TVG) G is a sequence of temporal graphs (G0, G1, G2 · · · ),
where each graph Gi+1 is constructed from its predecessor Gi by inserting additional
nodes/edges or deleting existing nodes/edges. This definition differs from that of [8]: In
our definition, G is based on temporal graphs instead of non-temporal graphs, and time-
windows are not part of the time-varying graph.

Definition 37. Let S = (s0, s1, s2 · · · ) be a sequence of substreams. We denote by GS
the strictly partially ordered TVG (Gs0 , Gs1 , Gs2 · · · ) induced by definition 35.

Definition 38. A time-windowed graph (TWG) is a pair (G, T ), consisting of a time-
varying graph G and a set of time-windows T where |G| = |T |. For each graph Gi ∈ G
there exists a paired time-window τi = (tm, tn) ∈ T so that for any edge e = (x, y, t) ∈
Gi, we have tm < t < tn. The adjacency matrix of a time-windowed graph is the map
A(G,T ) such that if τi ∈ T is a time-window, then A(G,T )(τi) = axy(τi) is the adjacency
matrix of the temporal graph for time-window τi.

Definition 39. Let T = {τ0, τ1, τ2 · · · } be a set of time-windows and S be a stream. The
time-windowed graph (G, T ) induced from S and all time-windows in T consists of a
sequence of (bipartite) substream graphs:

G = {Gsτ0
, Gsτ1

, Gsτ2
· · · } (31)

and satisfies:
τ0 ≺ τ1 ≺ τ2 · · · ⇒ Gsτ0

≺ Gsτ1
≺ Gsτ2

· · · (32)

Definition 40. Let T = R≥0 and ∆τ be a value in T. A time-windowed graph with
fixed time-window size (TWGFW) is a time-windowed graph (G, T ) where each time-
window (t, t′) ∈ T satisfies:

t′ = t+ ∆τ (33)
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and that for any two adjacent time-windows τij = (ti, tj), τmn = (tm, tn) ∈ T , where
τij ≺ τmn, we have tj = tm.

6.2.2 Labels in Time-Varying Graphs

As a main purpose of the paper is to predict future labels on nodes, time-varying
information on nodes, in particular their labels, must be treated; hence the fol-
lowing definitions.

Definition 41. Let L be a set. An observed label L is a triplet (x, l, t) where x ∈ D,
l ∈ L and t ∈ T. In the remainder of the paper L = (x, l, t) should be understood as x
being assigned label l at time t.

Definition 42. A labelstream L is a set of observed labels (L0, L1, L2 · · · ) strictly par-
tially ordered by ≺, defined by

(xi, li, ti) ≺ (xj, lj, tj) if ti < tj (34)

6.2.3 Snapshots of Time-Windowed Graphs

For classification of nodes in a TVG based on streams, we introduce “snapshots”
in order to clearly model the TVG at the “present” and “future”.

Definition 43. Let tp be a value in T, T be a set of time-windows, S be a stream, and
L be a labelstream. A snapshot at time tp is a quintuple (Stp ,Gtp , Ttp , Ga

tp ,Ltp) where
Stp is a substream of S, and Ttp is a subset of T , both consisting of elements timestamped
before tp. We denote (Gtp , Ttp) as the time-windowed graph induced by Stp and Ttp , and
Ga
tp(V

a
tp , E

a
tp) as the accumulated graph of Gtp . The labelstream subset Ltp ⊆ L consists

of labels timestamped before tp for nodes in V a
tp . A node vi ∈ V a

tp is said to be labeled in
the snapshot at time tp, if there exists a label (vi, l, t) ∈ Ltp .

6.2.4 Problem Definition

The classification problem tackled in this paper is described below.
Input: Let (tp, tf ) ∈ T2 be a tuple where tp < tf , T be a set of time-windows, S
be a stream, L be a labelstream with binary labels l ∈ {0, 1}, corresponding to
negative and positive class labels, and (Stp ,Gtp , Ttp , Ga

tp ,Ltp) be a snapshot at time
tp, referred to as the present snapshot, where Gtp and Ga

tp may be bipartite.
Output: Let V 0

tp ⊆ V a
tp be the set of nodes in the present snapshot where for every
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node vi ∈ V 0
tp there does not exist an observed label (vi, l, t) ∈ Ltp where l = 1.

For each node vi ∈ V 0
tp predict if there exists an observed label (vi, l, t) where l = 1

in the labelstream of the snapshot at time tf , referred to as the future snapshot.
For the remainder of the paper: Nodes in V a

tp for which a positive label exists at tp
are referred to as present positive nodes, and nodes in V 0

tp for which a positive label
exists at tf are referred to as future positive nodes.

6.2.5 Projections of Time-Windowed Graphs

All three of the datasets, used for experiments later in this paper, are naturally bi-
partite graphs, but the metrics used are designed for non-bipartite graphs. While
any bipartite graph can be viewed as a non-bipartite graph, by simply ignored
top and bottom node associations, it is often better for modeling purposes to use
projections from bipartite to non-bipartite graphs. We briefly give the necessary
definitions below.

Definition 44. Let G(V, U,E) be a bipartite temporal graph, the temporal projection
Gp(V p, Ep) of G, is the one-mode projection of G onto V . Gp is then a temporal graph
containing only nodes from V , where two nodes are connected by an undirected edge
when they have at least one common neighboring node in U . The edge is assigned the
largest timestamp seen from either of the two nodes, to the common neighbor.

A visualization of temporal projection is shown in figure 6.2. Note: by the
above definition, any node without 2-hop neighbors in G will be isolated in Gp.
A definition for temporal projection of a time-windowed graph is not required by
the graph metrics in this paper, and thus omitted.

6.2.6 Shortest Temporal Paths

Some of the temporal node metrics used in our work are based on paths in tem-
poral graphs. Using definitions from Nicosia et al.[8] we describe several types
of paths in temporal graphs, collectively called shortest temporal paths, because
each minimizes a distinct graph measure.

Definition 45. Given a temporal graph G(V,E), a temporal path from node x to y is
defined as a sequence of edges

P = ((n0, n1, t1), (n1, n2, t2), · · · , (nl−1, nl, tl)) (35)
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V
p
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V
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Figure 6.2: Example of a top-node bipartite temporal graph projection.

where n0 ≡ x, nl ≡ y, such that no nodes are visited more than once and ti ≤ ti+1 for any
two neighboring edges in the path. The length of a path len(P ) is the number of edges in
the sequence and the duration of a temporal path is defined as dura(P ) = tl − t1. A node
y is said to be temporally reachable from node x if there exists a temporal path from x

to y.

Definition 46. Given the set of all temporal paths between node x and y, Pxy, and a
temporal graph G(V,E), a temporal path P ∈ Pxy is a shortest temporal path if
len(P ) = min{len(P ′) : P ′ ∈ Pxy}. Similarly, P is a fastest temporal path if
dura(P ) = min{dura(P ′) : P ′ ∈ Pxy}. The geodesic distance between two nodes in
a static graph is defined as the number of edges in a shortest path connecting them. For
a temporal graph we define the temporal geodesic distance as the number of edges in a
temporal shortest path connecting the pair of nodes.
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Figure 6.3: All temporal paths from X to Y.
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6.3 Methodology

We now present the baseline node metrics as well as our proposed weighted node
metrics and the node functions used for our experiments. In Section 6.3.1 we in-
troduce node functions which will later be used to weight node metrics proposed
in 6.3.2.

6.3.1 Weights

On a graph with weights on nodes, we handle both weighted edges and gener-
alization of metrics by introducing a single extra multiplicative factor to existing
metrics. As the local neighborhood of a node is dictated by the edges incident
on the node (or short paths from the node), and as most metrics already perform
aggregation in their definition, weighting information about the neighborhood
can be expressed using aggregation over very simple functions: we can make do
with the multiplicative factor being a function of a pair of nodes I(x, y), and this
can be adapted and inserted into the metrics on a case-by-case basis. We now de-
fine four prototypical “node functions” taking the place of I(x, y), leading to four
different types of weighted metrics, exemplifying various approaches to defining
I(x, y). Many other node functions are possible, but we believe that these four
are intuitive and prove their effectiveness well.

For simplicity, we assume that weights are real numbers; let I(x, y) 7→ R+ be
a function of two nodes x, y that returns a value in R+.

1. (Type I): This node function is based on the node weights on the nodes
passed to it. The node weights are multiplied, allowing for operations such
as calculating metrics on only a subset of nodes of the graph by assigning
binary weights (0/1) to nodes. The node function is defined as:

I(x, y) = wxwy

2. (Type II): Like the first node function, type II can also allow us to calculate
node metrics on just a subset of nodes. However, in contrast to type I, the
contribution from nodes with low weights, e.g. node weight 0, is not com-
pletely disregarded, but instead averaged. This can be useful to avoid node
metrics evaluating to zero, by performing a “softer” node subset selection.
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The function is defined as:

I(x, y) =
wx + wy

2

3. (Type III): The function takes on values in the range [0, 1] and is based on
the concept of recency from [137, 36] which weighs edges higher the more
“recent” they are. The closer I(x, y) is to 1, the more recent the path between
x and y is. The function is defined as:

I(x, y) =
1

|P (x, y)|
∑

p∈P (x,y)

∑
(u,v,t)∈p

|p|
log2(2 + (tp − t))

where P (x, y) is the set of shortest temporal paths from x to y. Note that
this node function is only applicable to temporal graphs.

4. (Type IV) We also base type IV on paths between nodes, but in contrast to
type III, it is based on the weights on node in the paths, not the edges, and
can be used for both temporal and static graphs. The function returns the
average of node weights encountered on all shortest paths between x and
y, and is therefore larger the more nodes with large weights are visited. It is
defined as follows:

I(x, y) =
1

|P (x, y)|
∑

p∈P (x,y)

wx +
∑

(u,v,t)∈pwv

|p|

where P (x, y) is the set of shortest paths from x to y.

Next we define both unweighted and weighted graph metrics for static and tem-
poral graphs which utilize I(x, y).

6.3.2 Metrics

We define four variants of metrics: Static unweighted, static weighted, temporal
unweighted, and temporal weighted. In Section 6.3.2.1 are the static metrics, and
in Section 6.3.2.2 are the temporal metrics. The following metrics are from Nicosia
et al.: temporal betweenness, temporal closeness, and edge-persistence [8], while
cover time and constrained coverage are inspired by articles from Costa et al. and
Takaguchi et al. [267, 59]. Cover time and constrained coverage were originally
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proposed as “time-centrality” metrics, analogous to betweenness and closeness
centrality, and were thus included in our work. For each of the metrics, we first
describe their “original” unweighted definition, then how they each are modified
into weighted node metrics. For all metrics we assume a non-empty graph, i.e.
for a temporal graph G = (V,E):

|V | 6= ∅ and |E| 6= ∅

and for temporal metrics we assume time-windowed graphs contain more than
1 time-window, i.e. for a TWG (G, T ): 1 < |T |. An overview of the metrics is
presented in Table 6.1.
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Metric Unweighted Weighted

Static

Betweenness Central-
ity

CBx =


∑
y∈V
y 6=x

∑
z∈V
z 6=x
z 6=y

σyz(x)

σyz
if σyz 6= 0

0 otherwise
CWB
x =


∑
y∈V
y 6=x

∑
z∈V
z 6=x
z 6=y

σyz(x)I(y,z)

σyz
if σyz 6= 0

0 otherwise

Closeness Centrality COx =

{ |V |−1∑
y dxy

if
∑
y dxy 6= 0

0 otherwise
CWO
x =

{ |V |−1∑
y I(x,y)dxy

if
∑
y I(x, y)dxy 6= 0

0 otherwise

Cover Time CT
x (α)=

d
t(x, α) if α is reached
∞ otherwise

α∈[0,1]

CWT
x (αw)=

d
wt(x, αw) if αw is reached
∞ otherwise

αw∈R+

Constrained Coverage CC
x (φ)=dc(x,φ)
φ∈[0,|V |−1]

CWC
x (φw)=dwc(x,φw)

φw∈[0,|V |−1]

Clustering CUx =

{
2Tx

degx(degx −1)
if 1 < degx

0 otherwise
CWU
x =

{∑
(x,y,z)∈Tx

I(x,z)+I(x,y)

degx(degx −1)
if 1 < degx

0 otherwise

Temporal

Betweenness Central-
ity

CTBx =


∑
y∈V
y 6=x

∑
z∈V
z 6=x
z 6=y

σt
yz(x)

σt
yz

if σtyz 6= 0

0 otherwise

CTWB
x =


∑
y∈V
y 6=x

∑
z∈V
z 6=x
z 6=y

σt
yz(x)I(y,z)

σt
yz

if σtyz 6= 0

0 otherwise

Closeness Centrality CTOx =

{ |V |−1∑
y d

t
xy

if
∑
y d

t
xy 6= 0

0 otherwise
CTWO
x =

{ |V |−1∑
y I(x,y)d

t
xy

if
∑
y d

t
xy 6= 0

0 otherwise

Cover Time CTT
x (α)=

d
tt(x, α) if α is reached
∞ otherwise

α∈[0,1]

CTTW
x (αw)=

d
wtt(x, αw) if αw is reached
∞ otherwise

αw∈R+

Constrained Coverage CTC
x (φ)=dtc(x,φ)

φ∈T+
CTWC

x (φw)=dtwc(x,φw)

φw∈T+

Edge-Persistence CTUx = 1
|T |−1

∑|T |−1
m=0 Cepx (Gτm , Gτm+1 ) CTWU

x = 1
|T |−1

∑|T |−1
m=0 Cepx (Gτm , Gτm+1 )

Cepx (Gm, Gn) =
∑

y axy(τm)axy(τn)√[∑
y axy(τm)

][∑
y axy(τn)

] if
√[∑

y axy(τm)
] [∑

y axy(τn)
]
6= 0

0 otherwise

Cwepx (Gm, Gn) =
∑

y axy(τm)axy(τn)I(x,y)√[∑
y axy(τm)

][∑
y axy(τn)

] if
√[∑

y axy(τm)
] [∑

y axy(τn)
]
6= 0

0 otherwise

Table 6.1: Overview of static/temporal unweighted/weighted metrics for a node x. The static are all node metrics for
static graphs, while the temporal are node metrics for temporal graphs, except edge-persistence which is only applicable
to time-windowed graphs.
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6.3.2.1 Static

Static betweenness centrality is a node metric which describes the centrality of a
node in a graph using shortest paths. It has been applied to a wide variety of net-
work problems such as fault tolerance in electrical grids and finding influencers
in social networks, and is defined as follows:

CB
x =


∑

y∈V
y 6=x

∑
z∈V
z 6=x
z 6=y

σyz(x)

σyz
if σyz 6= 0

0 otherwise
(36)

where σyz is the number of shortest paths between node x and z, and σyz(x) is
the number of those paths that pass through x. This means, the more a node ap-
pears in shortest paths between pairs of nodes, the higher its centrality is. In the
weighted version, static weighted betweenness centrality, we weigh the number
of paths from y to z with the node function of them:

CWB
x =


∑

y∈V
y 6=x

∑
z∈V
z 6=x
z 6=y

σyz(x)I(y,z)

σyz
if σyz 6= 0

0 otherwise
(37)

where as before σyz is the number of shortest paths between node x and z, and
σyz(x) is the number of those paths that pass through x.

Static closeness centrality for a node is also based on shortest paths in the
graph, but in contrast to betweenness, is calculated using shortest paths from
that node to every single other node in the graph. Closeness centrality for a node
x is calculated using the length of these shortest paths, and is defined as follows:

CO
x =


|V |−1∑
y dxy

if
∑

y dxy 6= 0

0 otherwise
(38)

where dxy is the length of the shortest path between x and y. The static weighted
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closeness centrality of node x is defined as:

CWO
x =


|V |−1∑

y I(x,y)dxy
if
∑

y I(x, y)dxy 6= 0

0 otherwise
(39)

where the inverse length of the shortest paths from x to y are weighted by the
node function between x and y.

There is no common definition of static cover time, however we argue that a
static cover metric for a node x, analogous to cover time, can be defined as the
minimum number of edges distance from x needed in order to reach α ∈ [0, 1]

fraction of nodes:

CT
x (α) =

dt(x, α) if α is reached

∞ otherwise
(40)

where dt(x, α) is the minimum geodesic distance from x needed in order to reach
a fraction α of nodes Vα ⊆ V \{x}. The corresponding static weighted cover time
for a node x is given by:

CWT
x (αw) =

dwt(x, αw) if αw is reached

∞ otherwise
(41)

where dwt(x, αw) is the minimum geodesic distance from x needed in order to
reach a set of nodes Vαw , by breadth-first-search, so that the sum of node weight
functions

∑
y∈Vαw I(x, y) is greater than, or equal, to αw ∈ R.

Similarly we define a static constrained coverage based on a diffusion pro-
cess which only can travel a limited number of edges away. Given a node x, the
constrained coverage CTC

x (φ) returns the fraction of nodes which can be reached
within a geodesic distance of φ ∈ [0, |V | − 1], i.e.

CC
x (φ) = dc(x, φ) (42)

where dc(x, φ) is the number of nodes which have geodesic distance≤ φ to x. The
weighted counterpart, static weighted constrained coverage, for a node x is then
defined as:

CWC
x (φw) = dwc(x, φw) (43)
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where dwc(x, φw) is the sum of node weight functions I(x, y) of the nodes y ∈ V
which have geodesic distance ≤ φw ∈ [0, |V | − 1] to x.

The Static clustering coefficient, or local clustering coefficient, measures how
many edges are in the immediate neighborhood of a node, and can be used to
determine how “tightly knit” a cluster of nodes are. Clustering for a node x is
calculated by counting how many triangles are formed with x and is defined as:

CU
x =

 2Tx
degx(degx−1)

if degx(degx−1) 6= 0

0 otherwise
(44)

where Tx(t) is the number of triangles through node x and degx(t) is the degree
of x. The static weighted clustering coefficient is weighted by applying the node
function to each pair of nodes which, in combination with x, form a triangle:CWU

x =
∑

(x,y,z)∈Tx I(x,z)+I(x,y)

degx(degx−1)
if degx(degx−1) 6= 0

0 otherwise
(45)

6.3.2.2 Temporal

Temporal betweenness centrality is an extension of the static betweenness cen-
trality to temporal graphs. The temporal version uses temporal shortest paths in
place of non-temporal shortest paths, and is defined as:

CTB
x =


∑

y∈V
y 6=x

∑
z∈V
z 6=x
z 6=y

σtyz(x)

σtyz
if σtyz 6= 0

0 otherwise
(46)

where σtyz is the number of shortest temporal paths between node x and z, and
σtyz(x) is the number of those paths that pass through x. In the weighted version,
temporal weighted betweenness centrality, we weigh the number of paths from
y to z with the node function of them:

CTWB
x =


∑

y∈V
y 6=x

∑
z∈V
z 6=x
z 6=y

σtyz(x)I(y,z)

σtyz
if σtyz 6= 0

0 otherwise
(47)
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where as before σtyz is the number of shortest paths between node x and z, and
σtyz(x) is the number of those paths that pass through x.

The temporal closeness centrality is defined as in equation 38, but with tem-
poral shortest paths, and, for a node x at time t, defined as:

CTO
x =


|V |−1∑
y d

t
xy

if
∑

y d
t
xy 6= 0

0 otherwise
(48)

where dtxy is the length of the shortest temporal path between x and y. Temporal
weighted closeness centrality of node x at time t is weighted similarly to the
static counterpart:

CTWO
x =


|V |−1∑

y I(x,y)dtxy
if
∑

y d
t
xy 6= 0

0 otherwise
(49)

Temporal cover time is originally a graph metric defined as the average num-
ber of time-steps a diffusion takes to reach a specified fraction α ∈ [0, 1] of nodes
in the temporal graph following a breadth-first search starting at a specific time
[267, 59]. We define cover time as a node-metric for a node x as:

CTT
x (α) =

dtt(x, α) if α is reached

∞ otherwise
(50)

where dtt(x, α) is the amount of time (number of time-steps) for a diffusion start-
ing on node x at time t, where t is the earliest time-stamp of x’s edges, to reach a
fraction α ∈ [0, 1] of nodes. Temporal weighted cover time for a node x is defined
as:

CTTW
x (αw) =

dwtt(x, αw) if αw is reached

∞ otherwise
(51)

where dwtt(x, αw) is the minimum number of time-steps for a diffusion starting
on node x at time t, where t is the earliest time-stamp of x’s edges, to reach a set
of nodes Vαw , so that the sum of node weight functions

∑
y∈Vαw I(x, y) is greater

than, or equal, to αw ∈ R+.
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Similarly, the temporal constrained coverage is originally the average fraction
of nodes which can be reached by a diffusion process in specified amount of time
[267, 59]. We define temporal constrained coverage as a node-metric as follows:
CTC
x (φ) returns the fraction of nodes which can be reached from x starting at time

t, where t is the earliest time-stamp of x’s edges, in φ ∈ T+ number of time steps,
i.e.

CTC
x (φ) = dtc(x, φ) (52)

where dc(t, x, φ) is the number of nodes reached from node x after φ time steps.
The weighted temporal constrained coverage for a node x at time t is:

CTWC
x (φw) = dtwc(x, φw) (53)

where dwc(x, φw) is the sum of node weight functions I(x, y) of the nodes y ∈ V
reached from x after φw time steps.

Edge persistence [61] for node x in a time-windowed graph G is defined as
follows: given two temporal graphs, Gm(Vm, Em) and Gn(Vn, En) in G, the edge
persistence for x is the number of edges that persist across both graphs:

Cep
x (Gm, Gn) =


∑
y axy(τm)axy(τn)√

[
∑
y axy(τm)][

∑
y axy(τn)]

if
√[∑

y axy(τm)
] [∑

y axy(τn)
]
6= 0

0 otherwise
(54)

In a time-windowed graph (G, T ), the average edge persistence of node x is
defined as the average over all pairs of adjacent temporal graphs in G:

CTU
x =

1

|T | − 1

|T |−1∑
m=0

Cep
x (Gτm , Gτm+1) (55)

where Gτm and Gτm+1 are adjacent temporal graphs in G, and Gτm ≺ Gτm+1 . The
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weighted edge persistence for node x is given by:

Cwep
x (Gm, Gn) =


∑
y axy(τm)axy(τn)I(x,y)√

[
∑
y axy(τm)][

∑
y axy(τn)]

if
√[∑

y axy(τm)
] [∑

y axy(τn)
]
6= 0

0 otherwise
(56)

where each persisting edge’s contribution has been weighted by the node func-
tion of its end-points. The average weighted edge persistence CTWU

x is defined
as in equation 55.

6.3.3 Examples

In this part we present two small example networks in Figures 6.4 and 6.5, and
then apply all metrics from Section 6.3.2 to two selected nodes, X and Y, one from
each network. Each of the networks consists of a set of nodes, time-stamped
edges, binary node weights, and two time-windows each. The accumulated
graph is used for calculating all metrics except edge-persistence and weighted
edge-persistence where the time-windowed graph is used instead. The resulting
node metric values are shown in Table 6.2. One significant difference between
the two examples is that since node X has weight 0, node function I results in
zero-valued metrics because the first term in the node function is always zero.
We also see that node Y is part of zero shortest paths in the graph, and therefore
has zero-valued betweenness centrality. For node Y, the temporal cover time is
zero for all node functions except type III. This is as expected as there is only one
“recent” edge to a node with weight 1, therefore the cover time using a recency
node function is higher than the other types.

6.3.4 Case Studies

We now present three examples of weighted metrics, each with distinct node
functions, applied to three different real-world datasets in the context of within-
network classification. The node functions applied to each dataset have each been
selected in order to capture some phenomena in the data which might improve
the performance of a classifier. These datasets are the same that are used for ex-
periments in Section 6.4.
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Figure 6.4: Time-windowed graph with two windows on the left, and the accu-
mulated graph G1 at time t = 10 on the right.
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Static Temporal
U I II IV U I II III IV

Figure 6.4 node X
Betweenness 36 14 21 12.66 2 0 0.50 0.67 0.25
Closeness 0.35 0 1.86 0.95 0.87 0 2.89 2.57 2.55
Clustering 0 0 0 0 0.35 0 0 0.13 0
Cover Time 1 inf 3 4 2 inf 6 6 6
Constrained Coverage 2 0 0 0 3 0 1 0.90 0.83

Figure 6.5 node Y
Betweenness 0 0 0 0 0 0 0 0 0
Closeness 0.53 1 0.70 0.85 0.57 1 0.73 1.63 0.83
Clustering 1 0.50 0.75 0.25 0.35 0 0.18 0.18 0.18
Cover Time 1 2 2 2 0 0 0 8 0
Constrained Coverage 2 1 1.50 1.50 4 2 3 1.17 3.17

Table 6.2: Node metrics for one node from each of the graphs in Figures 6.4 and
6.5. The rows indicate the node metric, and columns indicate whether it is the
unweighted (U) version, or a node function (I, II, III, or IV) is used. Parameters
used for metrics: α = 0.2, αw = 3, φ = 1, φw = 1 for static metrics, and α =
0.2, αw = 2, φ = 1, φw = 1 for temporal metrics.
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6.3.4.1 IMDb: Identifying future movie stars

The first dataset is an online actor-movie database, IMDb, consisting of movies
and which actors participated in them. Furthermore, for each movie there exists
a rating between 0 and 10 based on user reviews on the website. The graph rep-
resentation of the dataset is defined as a set of nodes, where each node represents
an actor, and edges that connect actors if they have participated in a movie to-
gether. Details can be found in Section 6.3.4.1. The challenge in this example is
to predict which less “successful” actors will achieve success in the future. We
define an actor as successful when they act in a movie with a high rating. If we
assume future successful actors more often associate with currently successful
actors (i.e. homophily), then using node function type I, II or IV might assist in
identifying these future stars if the node weights are chosen appropriately. To il-
lustrate this, we pick node function I, and assign a weight of 1 to all nodes which
have participated in a movie with rating 7 or higher, and a weight of 0 otherwise.
The weight is therefore an indication of whether or not the actor is successful.
Let V1 designate all nodes with weight 1. When applying the first node function
I(x, y) = wxwy the metrics for a node x capture the following:

• Betweenness centrality: Only considers paths between pairs of nodes in V1.
Centrality is higher the more the node “connects” otherwise disconnected
subgraphs of successful actors - possibly indicating participation in many
different movies with already successful actors.

• Closeness centrality: Represents normalized distance to nodes in V1 i.e. how
“close” the actor is to other successful actors.

• Cover time: Calculates the number of edges needed to reach a fraction α

of nodes in V1 and is similar to closeness centrality. In combination with
closeness centrality, the temporal cover time captures the information about
the age of the actor e.g. how long time they have had close ties to existing
nodes in V1.

• Constrained coverage: Returns the fraction of all nodes, that can be reached
within a certain distance, which are in V1. Temporal coverage captures in-
formation about how many highly rated movies actor x has participated in
within a specified window of time.

• Clustering: Only counts triangles through x where both the other nodes are
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in V1 and can be used for information about the success of the immediate
neighborhood around x. Temporal clustering (edge persistence) is indica-
tive of repeated participation in movies with the same successful actors.

6.3.4.2 CiteULike: Identifying active users in community

The second dataset, CiteULike, is a network of users which assign tags, such as
category, genre, etc., to publications [274]. The nodes in the network represent the
users, and two nodes are connected by an edge if they have tagged (co-tagged)
the same publication. Details on the dataset can be found in Section 6.3.4.2. Given
a set of tags, the goal in this example is to identify users who have not yet used
any of the tags in the set, but in the near future will use at least one tag from
the set. CiteULike, like many online portals, hosts many users which over time
become inactive for any number of reasons. Using node function type III it is pos-
sible to weigh nodes which have recently been active higher, and thereby “filter
out” inactive users. In contrast to the previous example, whether or not the nodes
have weights, is not of importance since node function III does not utilize them.
Furthermore, node function III assumes a temporal graph, therefore only tempo-
ral metrics are discussed below. When applying this node function, the metrics
for a node x capture the following:

• Temporal Betweenness centrality: Centrality is higher the more recent the
edges in the shortest paths through node x are - possibly indicating recent
increase in “important” connections.

• Temporal Closeness centrality: Represents average distance to all nodes in
graph, where each distance is weighted by the age of the edges. Informally
a node with high centrality will have had a recent connections to most other
nodes in the graph.

• Cover time: Captures how many recent temporal paths exist from node x
to its neighborhood. Lower values could indicate “inactive” users while
midrange values could indicate user only maintains contact with few of the
total number of acquaintances.

• Constrained coverage: Returns the number of nodes that can be reached
within a certain “temporal distance”, weighted by how recent the temporal
paths to these nodes are.
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• Clustering: As with the previous example, edge persistence indicates re-
peated co-tagging with the same users, weighted by how recent the repe-
tition took place. Could be used to identify groups of bots (fake user ac-
counts) which have been tasked with tagging specific documents with de-
sirable tags.

6.3.4.3 DBLP: Identifying data mining authors

The final dataset is from an online database of articles abbreviated DBLP. It con-
sists of authors in computer science, their published articles, and which other
papers are referenced by each article. Each article published also contains in-
formation about which venue it was accepted to. The graph representation of
the dataset is defined as a set of nodes, where each node represents an author,
and edges connecting pairs of authors if they have referenced each other. Details
can be found in Section 6.3.4.3. Given a set of venues belonging to the category
”Database and Data Mining”, the goal is to identify authors which have not yet
published in those venues, but will do so in the near future. In this case it is
not enough just to track which authors are active recently, because there will be
many which publish to completely unrelated fields. However, combining trends
on which authors have been active recently, with information on which scientific
communities, or which types of authors, they have collaborated with, can help
identify authors who will soon publish in the desired venues. We are able to
capture this by using a combination of node function type I and III. To illustrate,
we assign a weight of 1 to all authors which have published a paper in a set of
venues collectively named ”Database and Data Mining”, or DBDM, and 0 to all
other authors. As with the first example, V1 denotes all nodes with weight 1. The
combination of node function I and III results in the node function:

I(x, y) =
wxwy
|P (x, y)|

∑
p∈P (x,y)

∑
(u,v,t)∈p

|p|
log2(2 + (tp − t))

When applying this combination, again assuming a temporal graph, the metrics
for a node x capture the following:

• Betweenness centrality: Only considers paths between pairs of nodes in V1.
Centrality is higher the more the node recently has “connected” otherwise
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disconnected groups of researchers - possibly indicating that node x is an
important middleman between many different DBDM research groups.

• Closeness centrality: Represents normalized distance to nodes in V1 i.e. how
close the author is to other DBDM authors, where centrality is higher the
more recent the connections to DBDM authors are.

• Cover time: Calculates the number of edges needed reach a fraction α of
nodes in V1 and is similar to closeness centrality. In combination with close-
ness centrality, the temporal cover time captures the information about the
age of an author e.g. how long time they have had close ties to existing
nodes in V1.

• Constrained coverage: Returns the fraction of all nodes, that can be reached
within a certain distance, which are in V1, and captures information about
how many DBDM publications author x has referenced recently.

• Clustering: Only counts triangles through x where both the other nodes are
in V1 and can be used for information about how involved the immediate
neighborhood around x is in the DBDM field. Temporal clustering (edge
persistence) is indicative of repeated references to significant DBDM arti-
cles.

6.4 Experimental Design

We now describe our experimental design and setup3. Our approach is to define
several feature sets that take time-related and weight-related information into ac-
count, and compare them experimentally to each other.

We define seven feature sets containing node metrics from Section 6.3.2, where
each feature set represents a specific way of extracting information from the graph.
The first two feature sets, named S and T, are calculated for each dataset, and to-
gether form the baselines which will be compared to feature sets of metrics using
node functions. S contains all unweighted static node metrics, and T contains all
unweighted temporal node metrics.

3which is similar to that of work done in [36], but with different node metrics / features.
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CBx COx CTx CCx CUx CWB
x CWO

x CWT
x CWC

x CWU
x CTBx CTOx CTTx CTCx CTUx CTWB

x CTWO
x CTTWx CTWC

x CTWU
x

S • • • • •
T • • • • •
I1 • • • • •
I2 • • • • •
I4 • • • • •
C • • • • •
D • • • • •

Table 6.3: Feature Configurations. Feature sets are in the first column, and node
metrics are in the first row. • indicates that the feature is included in correspond-
ing feature set.

The four remaining feature sets are named I1, I2, I4, D, and C. The first three
feature sets I1, I2, and I4 are for the IMDb dataset, D is for DBLP, and finally C
is for CiteULike. The purpose of each feature set is to capture the phenomenon
described in Section 6.3.4. Therefore I1, I2, and I4 all consist of all static weighted
node metrics, where I1 uses node function type I, I2 uses node function type II,
and I4 uses node function type IV, set C contains all temporal weighted node met-
rics using node function III, and finally D contains all temporal weighted node
metrics using a combination of node function I and III. We could use all node
functions for all metrics over all datasets, but the purpose of our experiments
is to showcase node-functions tailored to varied domains. An overview of the
resulting feature sets is shown in Table 6.3.

6.4.1 Classifier selection

To compare the feature sets above, we use a decision tree classifier from the well-
known python library: Scikit-Learn. We use this method because of its prevalence
in related literature [19]. One might expect that neural networks using advanced
deep learning might produce better results, however due to aspects such as label-
imbalance and parameter tuning, which complicate deep learning experiment
setup, and that the focus of this paper is comparison of node features, we leave
deep learning to future work. The decision tree is limited to a maximum depth
of 6, based on the highest F1 scores obtained during a 10-fold cross-validation
tuning experiment using 50% of the labeled nodes. The tuning experiments were
also run on SVM- and neural network-based methods yielding comparable or
worse results.
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6.4.2 Datasets

We use 3 publicly-available datasets, containing both temporal information on
edges and labels, from a variety of domains: IMDb, DBLP, and CiteULike. Table
6.4 contains a summary of the resulting time-windowed graphs for each dataset.

The IMDb data originate from a snapshot of the online portal called the Inter-
net Movie Database4 taken on the 3rd of February 2017. The dataset consists of a
list of actors, which movies they have particpated in, what year the movies were
released, and for most movies a user rating from 0 to 10, where 10 is the best rat-
ing possible. In the time-windowed graph representation, the actors are labeled
based on the ratings of the movies they have participated in. The weighting is
performed as in Section 6.3.4.1 where for any node, if there exists a positive label,
then it is assigned a weight of 1, and 0 otherwise.

DBLP is an online database of metadata for published papers in computer
science [34]. For each article in the database there is information on the title, pub-
lishing year, authors, publication venue, and references. In the time-windowed
graph representation the authors are labeled based on which venues they have
published articles to. The weighting is performed as in Section 6.3.4.3 where for
any node, if there exists a positive label, then it assigned a weight of 1, and 0 oth-
erwise.

CiteULike is a network of users, publications, and tagging events where a
user tags a publication [274]. In the time-windowed graph representation, the
users are labeled based on whether they have used a tag from a predefined set of
tags. The weighting is performed as in Section 6.3.4.2 where for any node, if there
exists a positive label, then it assigned a weight of 1, and 0 otherwise.

Further details on the provenance of the datasets and their processing into
time-windowed graphs can be found in Appendix 6.7.

As can be seen in Table 6.4, the fraction of future positive nodes P (+) is close
to 0 for all three datasets, which can be a challenge for classification algorithms

4ftp://ftp.fu-berlin.de/pub/misc/movies/database/
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Dataset |V a
tp | |U

a
tp | |E

a
tp | |E

p
tp | tp tf ∆τ Qtp P (+)

IMDb 20k 66k 180k 460k 2000 2005 1 year 0.11 0.02

DBLP 4.2k 2.7k 15k 68k 2006 2011 1 year 0.39 0.02

CiteULike 0.9k 11k 12k 1.7k 3/2005 7/2005 15 days 0.03 0.06

Table 6.4: Dataset TWG Characteristics: |V a
tp | and |Ua

tp | are number of top and
bottom nodes in the accumulated graph at time tp, |Ea

tp| is the number edges of
the accumulated graph, |Ep

tp | is the number of edges of the temporal projection of
the accumulated graph, tp is the time of the present snapshot, tf is the time of the
future snapshot, ∆τ is the size of the time-windows, Qtp is the modularity of the
accumulated graph Ga

tp (temporal projection if bipartite), and P (+) is the fraction
of nodes in V a

tp which are future positive nodes.

due to label-imbalance. Although there exist strategies to compensate for these
imbalances, using them can also have unwanted effects on the classification per-
formance [288]. All three datasets form bipartite graphs, and the projection de-
scribed in definition 44 results in a significant increase in number of edges (e.g.
from 70k to 550k edges). For simplicity and the sake of computability, we restrict
any temporal graph from having more than one edge between any two nodes. It
is done in such a way that only the latest time-instant is used for an edge between
any pair of nodes.

6.4.3 Experimental Methodology

We solve the problem of node classification described in Section 6.2.4 for all three
datasets. The time instants representing “present” and “future”, tp and tf , are
selected from the recent past in such a way to avoid lack of data, but also not the
most recent time-stamps available due to computational restrictions. The rating
threshold for the IMDb dataset’s labeling, rthreshold, is set as the mode of the distri-
bution of ratings. For each of the three datasets we choose fixed parameter values
for tp, tf , rthreshold and ∆τ independently (details can be found in Table 6.4), and
set the proportion of labeled nodes to be used during training to 50%.

6.4.3.1 Classification

The decision tree classifier is trained on the node metrics and labels of a subset of
the nodes in the accumulated graph at time tp. All features are standardized by
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removing the mean and scaling the values to unit variance. For each dataset and
feature set we run 50 trials, and in each trial perform a class-stratified sampling
containing 100× (proportion labeled)% nodes as a training set and the remaining
as a test set. The sampled nodes are chosen to that each node appears in the same
amount of test sets over all trials.

6.4.3.2 Performance and scalability

The node metrics were calculated on a standard laptop and took approx. 50 hours
total for all three datasets. As seen in Table 6.5, the time used for computation
approximately scales on the number of nodes and edges in the graph, except for
DBLP. The long running time for DLBP is due to non-optimized implementations
of cover time and constrained coverage. This scaling is most likely explained by
the fact that the majority of the chosen metrics are path-based, and therefore scale
with number of possible paths in the graph. For strategies on scaling we refer to
discussions in earlier work [36, 37]

6.5 Results

Results for the decision tree classifier trained on sets of node metrics are shown
in Table 6.5, and Figure 6.6. Table 6.5 consists of precision/recall values and F1-
scores for each feature set, where the leftmost two featuresets are the baselines (S
and T), and an approximate running time needed to calculate node metrics for
each dataset tc. We choose a weighted F1-Score for Table 6.5 and Figure 6.6 to
account for label-imbalance.

For all three datasets the baseline unweighted temporal node features T ex-
hibit a small increase in performance over the static unweighted features S. How-
ever, while temporal unweighted features result in higher F1-scores, the overall
recall of the positive class is reduced slightly (< 0.01) for all three datasets. This
is most likely due to how temporal metrics are restricted to using temporal paths,
and thus for e.g. betweenness centrality, fewer nodes are visited (or not visited at
all), which in turn can result in nodes having zero-valued features.

For all of the datasets, there is at least one feature set of weighted metrics that
out-classes the pure unweighted static and temporal node metrics. For IMDb,

122



6 Weighted Temporal Graph Metrics

all three weighted feature sets I1, I2, and I4 result in higher F1 scores than the
baselines S and T. However, I4 provides an improvement of approximately 15%

increase of F1, while I1 and I2 only improve F1 by ≤ 2%. This indicates that the
use of weighted static metrics can improve classification performance over us-
ing pure static metrics, especially when using path-based node functions. This is
possibly due to the fact that node function type IV can encode information about
more of the topology around a node. For example, in closeness centrality, node
function type I and II only encode weights from the nodes and the beginning
and end of the shortest paths used for calculation. Type IV, using weights from
all nodes traversed, is able to more accurately describe the neighborhood of the
node in question.

For CiteULike we see an F1-score increase of approximately 15% when using
the weighted node metrics of C. The difference of using the recency node func-
tion (type III) on weighted metrics, versus temporal node metrics T, implies that
recent changes in graph topology are more important than just using temporal
paths in node metrics. This is consistent with what node function type III met-
rics capture: For CiteULike, these enable easy identification of currently active
authors that have not yet had many publications (i.e., having many temporal fea-
tures near zero).

Lastly we see that combining node function I and III, on DBLP, results in even
larger improvement of F1-score. Using feature set C increases the F1-score ap-
proximately 20% over static and temporal node metrics. This could indicate that
for some datasets recency node metrics can further improve performance when
node weights are taken into account, as it matters which articles an aspiring author
has recently referenced. If the articles they recently cited already are published in
the target venues (DBDM), it improves the probability of themselves publishing
in these in the near future.

The significant increase in F1-score using weighted node metrics (I4, D, and
C) come at a cost of lower positive class recall, and the choice of node function
represents a trade-off of positive class recall and positive class precision. Table 6.5
shows that for all datasets the positive class recall is higher for all non-weighted
configurations, while precision is higher for their weighted counterparts. The
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S T Weighted Metrics
tcDataset 0/1 P R F1 P R F1 P R F1 P R F1 P R F1

I1 I2 I4
0 .97 .66 .78 .96 .68 .80 .96 .71 .81 .96 .74 .84 .95 .87 .91IMDB 1 .12 .70 .21 .75 .12 .62 .20 .76 .13 .61 .21 .78 .14 .58 .22 .79 .18 .41 .25 .87 6h each

D
0 .95 .63 .75 .94 .63 .74 .95 .79 .85DBLP 1 .07 .44 .12 .71 .07 .41 .11 .70 .08 .27 .12 .81 43 hours

C
0 .91 .75 .79 .91 .79 .82 .92 .95 .94CITEULIKE 1 .07 .19 .07 .73 .08 .18 .09 .76 .11 .08 .09 .87 30 min

Table 6.5: Results on datasets for feature set. Precision (P), recall (R), and F1-
score is listed for both classes as well as a weighted F1-score (in bold). Green cells
indicate best weighted F1-score for dataset. Column tc contains running times for
each dataset.

lower recall might be a result of a difference in number of paths: there are fewer
paths in weighted metrics (used in computing the centrality score) than in purely
static or temporal metrics, and therefore fewer future positive nodes are visited.

Finally, for all datasets presented, our proposed weighted metrics unequivo-
cally yielded the best performance overall.

6.6 Conclusion and Future Work

We have proposed and investigated two sets of new theoretically principled node
metrics for weighted temporal graphs and evaluated them as features for per-
forming within-network classification: static and temporal weighted node met-
rics. The proposed metrics were compared to existing unweighted node met-
rics through experiments on 3 real-world datasets. The new node metrics were
tailored to each dataset using four node functions, which each captured some
phenomena in the data. Results showed that using weighted node metrics with
tailored node functions, or combinations of these, improves classification perfor-
mance, and that the weighted node metrics can be adapted to a range of domains.

For further work, there are three general directions: (I) to employ the weighted
node metrics, including possible tuning of node functions, to attack problems in
temporal weighted graphs beyond the ones we have done here, for example clus-
tering and link prediction; (II) to extend ours, and related work on metrics, to for
temporal multigraphs where multiple edges can exist between pairs of nodes; and
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Figure 6.6: Weighted F1-scores for classification experiments on datasets. Results
for feature sets are grouped and presented as bars for each dataset.

(III) to develop appropriate metrics using edge weights (as opposed to solely us-
ing node weights) weights.

Christopher Ryther & Jakob Simonsen have nothing to disclose.

6.7 Dataset Details

In this section we first describe for each dataset, how the corresponding stream of
triplets S and the associated labelstream L are created. Then we describe in de-
tail how the IMDb and DBLP were sampled and processed. This supplementary
material has also appeared in earlier yet unpublished work by us [37].

6.7.1 Dataset Streams

6.7.1.1 IMDB (Bipartite)

is a database of actors, movies, and ratings (between 0 and 10). An IMDb triplet
(a,m, t) ∈ S corresponds to an actor a participating in a movie m at time t. An
IMDb triplet (a, l, t) ∈ Lmeans actor a has participated in a movie at time twhere
the label l is a binarization of that movie’s rating r. Using the entire dataset was
computationally infeasible, hence a sampled version of the IMDb dataset is used
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(see Section 6.7.2).

6.7.1.2 DBLP (Bipartite)

is a database of metadata for papers [34], each consisting of a title, publishing
year, authors, publication venue and references. We only use papers published in
database and data mining (DBDM) or computer vision and pattern recognition (CVPR)
venues. The set of DBDM venues is: PODS, EDBT, SIGKDD, ICDM, DASFAA,
SSDBM, CIKM, PAKDD, PKDD, SDM and DEXA, and the set of CVPR venues is:
CVPR, ICCV, ICIP, ICPR, ECCV, ICME and ACM-MM. A DBLP triplet (a, p, t) ∈ S
corresponds to an author a publishing a paper at time t which cites paper p. A
DBLP triplet (a, 1, t) ∈ L means an author a has published a paper at time t in
any DBDM venue. A triplet (a, 0, t) is given for every paper published at a CVPR
venue.

6.7.1.3 Citeulike (Bipartite)

is a network of users and publications [274]. There exists two types of times-
tamped events: a user u tags a document d at time t, and a user u uses a tag a

at time t. Each triplet (u, d, t) in S corresponds to a user u tagging a document d
at time t. The labelstream L is based on whether a user has used one or more of
pre-selected set of popular tags. A triplet (u, 1, t) means user u used one of the
pre-selected tags at time t. A triplet (u, 0, t) is given for use of any other tag.

6.7.2 IMDb

The IMDb dataset is a snapshot of the Internet Movie Database5 downloaded on
the 3rd of February 2017. IMDb is an online database of movies, actors and re-
lated information about them, as well as a platform for users to rate movies. The
dataset consists of a list of actors, which movies they appeared in, which year the
movie was released, and for most movies: a user rating, which is a decimal value
between 0 and 10.

Let A be the set of triples (a,m, t) ∈ D2 × T where a is an actor that appeared
in movie m released in cinemas the year t, and let D be the set of tuples (m, r) ∈

5ftp://ftp.fu-berlin.de/pub/misc/movies/database/
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D×[0, 10] wherem is a movie that has a rating of r from users of the IMDb website.
The IMDb time-windowed graph consists of a sequence of bipartite graphs, and
is induced by the stream S defined by:

S = {(a,m, t) : (a,m, t) ∈ A and ∃r ∈ D[(m, r) ∈ D]} (57)

The IMDb labelstream is based on the ratings of movies in the following way:
a triplet (a, l, t) ∈ L means an actor a has participated in a movie m at time t
where the label l is a binarization of the movie’s rating r. Binarization using a
fixed threshold is too strict (i.e. two movies with ratings 6.999 and 7.001 would
be given different labels, even though they are very close in rating), therefore the
threshold must be softened. To soften the binarization process, we add Gaussian
noise. Given a value rthreshold ∈ [0, 10], and a random variable Xr ∼ N (rthreshold,

1
2
),

we define the labelstream L as:

L = {(a, l, t) : (∃(m, r) ∈ D)[(a,m, t) ∈ A} (58)

where l ∈ {0, 1} given by:

Pr(l = 1 | r) = Pr(Xr ≤ r) (59)

Pr(l = 0 | r) = 1− Pr(l = 1 | r) (60)

Thus, if the rating of a movie r is higher than rthreshold, the actors who participated
are given a positive label (with some probability) as illustrated in Figure 6.7. The
means some movies with r < rthreshold will result in positive labels and vice versa
- however, the farther the rating is from rthreshold, the lower the probability is of
this happening.

The original IMDb dataset is very large and for resource management pur-
poses it was necessary to downsample. Furthermore, due to some low-quality
entries in the ratings of movies, we set labels to zero of movies which were not
rated by more than 200 members of IMDb to avoid movies which were rated very
high/very low by only a handful of people. The strategy used to modify labeling
and to downsample A and D is described below:

1. Define a setMc which contains all movies originating from a selected subset
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rthreshold r 10 rating

Pr(X)

Figure 6.7: Distribution plot to illustrate added noise to IMDb labelling.

of countries, in our case Denmark & Sweden.

2. Define a set Ac which contains the top 20 members of the cast, ordered by
cast billing, for each movie in Mc.

3. For each member in Ac, add all movies they have appeared in, to Mc.

4. The downsampled Ad is then defined as:

Ad = {(a,m, t) ∈ A : a ∈ Ac and m ∈Mc}

5. The downsampled Dd is then defined as:

Dd = {(m, r) ∈ D : m ∈Mc}

6. Let nrm be the number of ratings for movie m. Equation 59 then becomes:

Pr(l = 1 | r) =

Pr(X ≤ r) if 200 ≤ nrm

0 otherwise

6.7.3 DBLP

DBLP is an online database6 of published computer science articles [34] which we
downloaded a snapshot of from 2016-07-14. Each article in DBLP is described by
a title, publishing year, authors, publication venue and references. Similar to the
work in [125] we are interested in predicting topic field labels in the binary case.
The positive class is given to papers which have been published in database and
data mining (DBDM) venues, and the negative class is given to papers published
in computer vision and pattern recognition (CVPR) venues. We define DBDM as

6https://aminer.org/citation
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the set of DBDM venues which contains the following: PODS, EDBT, SIGKDD,
ICDM, DASFAA, SSDBM, CIKM, PAKDD, PKDD, SDM and DEXA. Finally we
define CV PR as the set of CVPR venues, containing: CVPR, ICCV, ICIP, ICPR,
ECCV, ICME and ACM-MM. Note: Any article that is not published into at least
one of these categories is excluded from the dataset.

Let A be the set of triples (a, p, c, t) ∈ D3 × T, where p is an article pub-
lished by author a in venue c at time t. Furthermore let C be the set of tuples
(pi, pj) ∈ D2 which means a reference to article pj exists in article pi. The DBLP
time-windowed graph consists of a sequence of bipartite graphs, and is induced
by the stream S defined by:

S = {(a, pj, t) : (∃(pi, c) ∈ D2)

[(pi, pj) ∈ C and (a, pi, c, t) ∈ A]} (61)

Likewise, given the sets A, DBDM and CV PR, we define the DBLP labelstream
L as:

L = {(a, l, t) : (∃(p, c) ∈ D2)[(a, p, c, t) ∈ A]} (62)

where l ∈ {0, 1} given by:

l =

1 if c ∈ DBDM

0 if c ∈ CV PR
(63)

Thus, a triplet (a, l, t) ∈ L means an author a has published an article at time t,
where l indicates which type of venue the articles was published in. . Note: Any
article that is not published into at least one of these categories is excluded from
the dataset.

Let A be the set of triples (a, p, c, t) ∈ D3 × T, where p is an article pub-
lished by author a in venue c at time t. Furthermore let C be the set of tuples
(pi, pj) ∈ D2 which means a reference to article pj exists in article pi. The DBLP
time-windowed graph consists of a sequence of bipartite graphs, and is induced
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by the stream S defined by:

S = {(a, pj, t) : (∃(pi, c) ∈ D2)

[(pi, pj) ∈ C and (a, pi, c, t) ∈ A]} (64)

Likewise, given the sets A, DBDM and CV PR, we define the DBLP labelstream
L as:

L = {(a, l, t) : (∃(p, c) ∈ D2)[(a, p, c, t) ∈ A]} (65)

where l ∈ {0, 1} given by:

l =

1 if c ∈ DBDM

0 if c ∈ CV PR
(66)

Thus, a triplet (a, l, t) ∈ L means an author a has published an article at time t,
where l indicates which type of venue the articles was published in.
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7
Temporal graph embedding using

Gaussian mixture models
The final chapter is on how to represent large temporal multigraphs. I was work-
ing on extending some of the metrics in the above works to multigraphs when
I read about incremental Gaussian mixture models. Soon thereafter I was ex-
perimenting with representing various evolving features of graphs as Gaussian
mixture models. The work in this chapter will form the basis of a paper to be
submitted in early 2019.
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Abstract
A temporal graph is a (multi-)graph that evolves over time as dictated

by a graph stream: a sequence of node and edge insertions. A basic ques-

tion is how to query information about node connectivity at prior points in

time without storing all edges from the stream. For large streams of graph

data (e.g., the evolution of social networks over time) queries require sub-

stantial computational resources, and efficient temporal graph representa-

tions are needed. We propose a type of embeddings, GraphGMM, that is

tailor-made for efficient queries on a growing number of nodes and edges.

GraphGMM accurately stores edge insertions to a graph using static graph

representations combined with incremental Gaussian mixture models. We

run experiments on large temporal datasets (80K–2.5M edges), and compare

our embeddings to baseline temporal multigraph implementations. Our re-

sults show that GraphGMM embeddings are (i) accurate: average errors for

aggregated and unaggreated number of edges are typically single-digit for

all time steps, (ii) efficient: updates performed approximately in constant

time, (iii) compact: embeddings are a factor 10-100 smaller than baseline multi-

graph implementations, and (iv) suitable for large streams: queries performed

on embeddings are faster than on baselines for large numbers of edge inser-

tions, and scale well.

7.1 Introduction

A temporal graph is a graph that can grow over time as more edges and nodes are
added. Temporal graphs can model a wide variety of real-world scenarios, e.g.
social networks, p2p traffic, or citation networks, and can be analyzed through
various graph-based methods such as anomaly detection, link prediction, and
node classification [206, 86, 306]. As the size of temporal graphs grows over time,
storing and processing all historical data can become computationally cumber-
some; this is especially true for multigraphs where two nodes may have more
than one edge between them, each annotated with distinct information. It is
thus a pertinent problem how to store, or represent, relational information in
a way that allows for efficient usage and precise analysis while maintaining a
low memory footprint. Such representations of graphs are usually called embed-
dings [171, 121] or summaries [73, 148]. Embeddings are typically node, edge em-
beddings, or so-called whole-graph embeddings [307, 106, 159, 121], while sum-
maries fall into a more eclectic range of types, including edge/node-grouping,
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wavelets, histograms, and sketches [187, 188]. In this work, we focus solely on
node and edge embeddings.

Node and edge embeddings for static (i.e., ordinary non-temporal) graphs
have been widely studied [150, 96, 151, 152, 153, 154, 121], but the study of em-
beddings in temporal graphs is a fairly recent field [156, 129, 73], despite the many
real-world networks exhibit changes over time. For temporal graphs, the embed-
ding must not only be able to respond to queries concerning, e.g., the number
of edges between two nodes, but also do so for any prior point in time, as well as
answer queries about the changes to the graph at any prior point in time; thus, the
temporal evolution of the graphs has to be represented somehow in the embed-
ding. Informally, the problem to be solved is: Given an initially empty temporal
(multi)graph G(V,E) and a stream S of edge insertions applied in G, construct a
representation of Gr of G that uses less space than G, and where for each node
x ∈ V , or pair of nodes x, y ∈ V , and timestamp t, a query (degree, number of
new edges, etc.) deg(x, t) or deg(x, y, t) performed on Gr deviates little from the
same query performed on G and S. For sparse temporal graphs the above typ-
ically involves a trivial task of simply counting edges, but for multigraphs with
high average multiplicity (i.e., many edges between two nodes), the task is very
time consuming [73]. Other approaches include representing a temporal graph
as a sequence of static snapshots of the graph at different time steps, but this has
been shown to be practically unviable in many cases [157], because (a) embed-
dings can vary greatly between two consecutive snapshots and (b) the running
time – already expensive for a single static graph – scales poorly with the number
of snapshots. Other recent methods have proposed scalable sketch-based sum-
maries which can perform queries efficiently, but under assumptions about the
underlying size of the graph being known in advance, or without retaining infor-
mation about graph structure [73].

Contributions: We propose Graph-GMM which uses Incremental Gaussian Mix-
ture Models to create embeddings designed specifically for temporal multigraphs
with high average multiplicity and over many time-steps, such that (i) the size of
an embedding scales better than a corresponding temporal multigraph and can
accommodate both edge- and node-insertions, (ii) queries about the number of
new edges at any prior point in time, and aggregated number of edges, are an-
swered with only small error, (iii) the embeddings can grow dynamically with
introduction of new nodes and are agnostic towards node identifiers, (iv) and
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the embeddings retain information about graph structure, and are easily inter-
pretable by humans.

We perform experiments on three datasets, two real-world, and one synthetic,
and compare GraphGMM to two standard implementations of temporal graphs.
Our key findings are: (1) The average error for a lookup of edge-insertions at
specific time is ≈ 10% and ≤ 3% for aggregated number of edges in our exper-
iments, and grows slowly ≤ 1% for 10-fold increase in data. (2) The efficiency
of GraphGMM lookup queries is dependent on size of stream - the more edge-
insertions the better it compares to baselines. (3) GraphGMM shows robust per-
formance by all measured metrics across the three datasets in our work, but is
subject to seasonal patterns.

7.1.1 Related Work

Embeddings for static graphs have been heavily investigated [150, 155, 171, 153,
154, 121] using a variety of methods, e.g. guided random-walks [96, 151, 106],
edge-sampling [307], matrix-factorization [158], and role-based embeddings [154,
129]. Static embeddings have been applied to problems such as within-network
classification and link prediction [307, 96, 106]. The recent focus on deep learn-
ing for graphs [163, 164, 165] has been used to create proximity-preserving em-
beddings for temporal graphs[171, 152, 156], and other recent work taking time-
dependent growth into account have been applied to link prediction in temporal
graphs [308], and to clustering [309], and classification tasks [310, 164] in tem-
poral graphs by embedding nodes as Gaussians. While Gaussian distributions
have been used to augment embeddings for various types of graphs [311], and
for time-series analysis in other fields [312, 313, 314, 315], to our knowledge, no
previous work has attempted to use scalable Gaussian mixture models for node
embeddings in temporal multigraphs. Finally, although the above embeddings
capture temporal information in the data, they themselves are “static” in the sense
that they are based on a single state of a temporal network, limiting their ability
to “roll-back” or query the graph at a previous state, unlike the method put forth
in the present paper [121].

Graph compression and summarization methods are similar to embeddings,
but focus on presenting concise summaries of graphs [56, 148, 188, 73], and have
been applied to graph streams, and hence temporal graphs [185, 161, 187, 186].
However, these methods assume the set of nodes in the underlying graph to be
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static (or, at least, known in advance) and consisting of well-behaved node iden-
tifiers (for hashing purposes), whereas the models in the present paper can grow
and shrink arbitrarily and without penalty to existing embeddings, and can be
used on heterogeneous node and edge sets. While several summarization meth-
ods are designed to perform the same queries as we consider, they typically only
allow for edge-insertions between existing nodes, rather than both node- and
edge-insertions [187, 186, 73].

7.1.2 Preliminaries and notation

As the literature on temporal graphs contains many variations in nomenclature
[2], we clarify notation and nomenclature below. In the remainder of the paper,
let T and D be totally ordered sets (representing, time and data, respectively).

Definition 47. A temporal (multi)graph G is a tuple (V,E), where V is the set of
nodes of G and E is the set of edges. An edge e ∈ E is a triplet (x, y, t) where x, y ∈ V
and t ∈ T. In the remainder of the paper e = (x, y, t) should be understood as an edge
between x and y at time t.

Definition 48. A stream S is any multiset S ⊆ D2 × T. A slice of a stream S at time
i, is a subset si ⊆ S such that si = {(x, y, i) : (x, y, i) ∈ S}. The relation �, defined by:
(xi, yi, ti) � (xj, yj, tj) if ti ≤ tj , is a partial order on S.

Intuitively, a stream [(x1, y1, t1), (x2, y2, t2), . . .] is a set of “events” (x, y) each
happening at some time t, and a slice si is the set of all events that took place at
time i. Typically, (x, y) represents the creation of a directed edge between nodes
x and y in a graph at time t.

Definition 49. Let S be a stream. The streamed multigraph GS is a temporal multi-
graph (V,E) whose nodes and edges are defined as:

V =
⋃

(x,y,t)∈S

{x, y} and E =
⋃

(x,y,t)∈S

{(x, y, t)} (67)

where
⋃

is the multiset union operator.

7.2 Methodology

In this section we present GMM-Nodes and GMM-Edges as well as explain how
these embeddings can be queried to obtain approximations of the original graph.
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We assume the underlying graph data is streamed, and arrives in the form of or-
dered “slices” {s1, s2, · · · } (defined in 48) of a stream S, where S consists of edge
insertions to a streamed multigraph over time. These slices are in turn used as in-
put, one-by-one, to our embeddings where the time-stamps of the edge-insertions
are used to calculate or update the embeddings. Intuitively, this procedure corre-
sponds to batches of data arriving, with each batch containing all edge-insertions,
or “events” in some time-window (e.g., all new friends added by a user of a social
network in a single day).

Each model consists of a pair (G(V,E),P) where G(V,E) is a static graph and
P is a set of incremental Gaussian mixture models (IGMM).

The models are as follows:

1. GMM-Nodes: Each node in V has an associated Gaussian mixture in P ,
fitted to the timestamps of its’ edges in the stream. For each pair of nodes,
for which there has appeared at least one edge in the stream, place a single
edge in the graph G(V,E).

2. GMM-Edges: Each pair of nodes in V has an associated Gaussian mixture
in P , fitted to the timestamps of edges between the two in the stream. For
each pair of nodes, for which there has appeared at least one edge in the
stream, place a single edge in the graph.

The remainder of the section is organized as follows: In subsection 7.2.1 we
describe the method used to incrementally fit a Gaussian mixture model to edge
insertions in slices of a stream. In subsection 7.2.2 we describe how to use a fitted
mixture model to query (or lookup) the number of edge insertions (or new edges)
and/or the cumulative number of edges inserted up until a time t.

7.2.1 Incremental Gaussian Mixture Model

In this section we describe how we fit the Gaussian mixture models. Our task is
to continually fit and update Gaussian mixture models with the edge-insertion
times from slices st of a stream S. The edge-insertion times from a slice st is a
multiset of tt = {t}with multiplicity mt.

The expectation maximization (EM) algorithm is commonly used to find the
optimal parameters fitting a Gaussian Mixture Model (GMM) to a set of values
such as tt. However, the number of components k of the GMM is itself an input
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to the EM algorithm, and for most real world problems it is very difficult to know
the optimal number of components a priori. Solutions do exist, such as iterating
through values for k, by performing repeated runs of EM, and then evaluating
which number of components produces the best model. However these tend not
to scale well and have high update costs.

Instead, we use the incremental Gaussian mixture model (IGMM) of [314, 315]
with a few modifications. The incremental Gaussian mixture model for the uni-
variate case has the form:

p(t) =
K∑
k=1

πkN (t|µk, σk) (68)

c(t) =
K∑
k=1

πk
2

[
1 + erf

(
t− µk
σk
√

2

)]
(69)

N (t|µ, σ) =
1√

2πσ2
e−

(t−µ)2

2σ2 (70)

where p(t) and c(t) are the likelihood and cumulative distribution functions of a
Gaussian mixture model, andN is the Gaussian distribution with mean µ and de-
viation σ. The IGMM is continually fitted, using an online algorithm, which per-
forms an update iteration with every value t ∈ tt. For every update the IGMM:
adds a new component to the model, recalculates the model covariances, and
compresses the model if needed. The compression aims to keep the number of
components as small as possible [314]. An example of GMM fitting is shown in
Figure 7.1.

7.2.2 Lookup

After fitting an IGMM to a slice of edge-insertions, equation 68 can be used to
compute the likelihood of an edge-insertion at any previous time t. However,
one difference from [314, 315] is that we need to use the IGMM to lookup the
number of edge-insertions at time t, not just the likelihood. In practice, we need to
scale the distribution to fit the size of the slices (since

∫
x

∑K
k=1 πkN (x|µk, σk) = 1).

We define two separate scale-factors, one for the lookup of edge-insertions at a
specific time, using equation 68, and one for the lookup of total number of edges
using equation 69. Using constant scale-factors, a lookup of the number of new
edges at any time t, Lp(t), and a lookup of the number of edges inserted up until
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Figure 7.1: Distributions of fitted Gaussian mixture models (red) vs underlying
real distribution (blue histogram). From left to right: (7.1a) Too many components
in model resulting in overfitting. (7.1b) Correctly fitted GMM. (7.1c) Too few
components in model resulting in underfitting. (7.1d) Correctly fitted GMM.

any time t, Lc(t), then becomes:

Lp(t) = App(t) and Lc(t) = Acc(t)

where Ap,Ac ∈ R+ are the amplifications or scaling factors of the IGMM. As
the model grows, the scaling factors will need to be updated as well. For the
cumulative lookupLc(t) the amplificationAc is equal to the total number of edges
used to fit the model, and thus trivial to update using a counter. For Lp we opt to
scale based on the ratio of the distribution of the edge-insertion times, to that of
the models likelihood function. To do this efficiently, we use values from a fixed
window of recent slices. Given the size of the window m ∈ N+, and the time of
the last slice tp, we define the memory as M =

[
|ttp−m|, · · · , |ttp−2|, |ttp−1|, |ttp |

]
which functions as an first-in-first-out queue, ordered by descending age. The
window is updated every time a new slice is used to fit the IGMM.

The amplification can therefore be calculated as the mean of the set of ratios
between the values ofM and the corresponding likelihoods from the IGMM. To
avoid inaccuracies from components currently undergoing significant changes
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(typically the most recently added components), we only use the oldest q < m

values of M. Furthermore, to avoid inaccuracies from insufficient, or “small”,
sets of edge-insertions, we define a lower limit l ∈ N+ and require l ≤ |tt| in
order for |tt| to be committed toM. Finally, we define the amplification as:

Ap =
1

q

tp−q∑
t=tp−m

|tt|
p(t)

(71)

This requires minimal information about the “true” distribution to be stored in
the IGMM, which in turn allows for efficient computation and updates.

7.2.3 GraphGMM

In the following we describe our two proposed model variants.

7.2.3.1 GMM-Nodes

The GMM-Nodes embedding is a tuple (G(V,E),P) where (V,E) is a, possibly
directed, static graph, and P = {px1 , px2 , · · · , px|V |} is a set of incremental Gaus-
sian mixture models. For each node in xi ∈ V there is an associated mixture
model pxi ∈ P .

Given a slice of edge insertions si at time i, and a (possibly empty V = E =

P = ∅) embedding, the update is performed as follows. For every triplet (x, y, i) ∈
si with multiplicity mxy, if they do not already exist, create nodes x and y in V ,
an edge (x, y) in E (directed if triplet is directed), and create associated IGMMs
px and py in P .

Next, update the IGMM for x using a multiset {i}with multiplicity mi = mxy.
If the edges in the stream are undirected, update py as well, using the same set.
Repeat these two steps for all pairs of nodes in si.

The size of the GMM-Nodes+ embedding for a stream of directed edges has
an exact upper bound of

|V |+ |V |2 +
∑
xi∈V

2 + 3kxi +m− q

where m − q is the size of the short-term memory, and kxi is the number of
components of xi’s associated IGMM pxi .
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7.2.3.2 GMM-Edges

The GMM-Edges embedding is a tuple (G(V,E),P) where (V,E) is a, possibly
directed, static graph, andP = {pe1 , pe2 , · · · , pe|E|} is a set of incremental Gaussian
mixture models. For each edge in ei ∈ E there exists an associated mixture model
pei ∈ P .

Given a slice of edge insertions si at time i, and a (possibly empty V = E =

P = ∅) embedding, the update is performed as follows. For every triplet (x, y, i) ∈
si with multiplicity mxy, if they do not already exist, create nodes x and y in V ,
an edge (x, y) in E (directed if triplet is directed), and create an associated IGMM
pxy in P (and pyx if undirected and pyx /∈ P .

Next, update the IGMM pxy using a multiset {i} with multiplicity mi = mxy.
If the edges in the stream are undirected, update pyx as well, using the same set.
Repeat these two steps for all pairs of nodes in si. The size of the GMM-Edges
embedding for a stream of directed edges has an exact upper bound of

|V |+ |V |2 +
∑

(x,y)∈E

2 + 3kxy +m− q

where m − q is the size of the short-term memory, and kxy is the number of
components of (x, y)’s associated IGMM pxy.

7.3 Experimental Design

We now describe our experimental design and setup.

7.3.1 Datasets

We use 3 disparate datasets, 2 of which are publicly available datasets containing
temporal information, namely (i) an email communication dataset [316] (called
Manufacturing or M), and (ii) a human contact dataset [33] (called RealityMining or
R). In addition, we use a synthetically created temporal graph based on Gaussian
mixture models (called Synthetic or S). Sets M and R were chosen due to their
large number of temporal edges distributed over a large time-period, and S was
created to have a higher number of edge-insertions, but also out of necessity since
public multigraph datasets with sizes of R and M are rare. Table 7.1 summarizes
the resulting temporal graphs.
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Dataset |V | |E| m m̃ T
Manufact. (M) 167 82,927 5,784 14 271
RealityMin. (R) 96 1,086,404 2,539 428 232
Synthetic (S) 400 2,474,268 2,378 1,040 230

Table 7.1: Dataset Graph Characteristics: |V | and |E| are the number of nodes
and edges, m is the number of unique edges, m̃ is the average edge multiplicity
(average number of edges between any pair of nodes), and T is the number of
slices in the stream.

M contains internal email communication between employees of a manufac-
turing company. A triplet (x, y, t) in the stream for M is a directed edge corre-
sponding to an email sent from person x to person y at time t. The set R contains
proximity data collected over 9 months using 100 mobile phones. A triplet (x, y, t)

in the stream for R is an undirected edge corresponding to person x having physi-
cal contact with person y at time t. To smooth the real-world datasets, we group
all triplets into 24 hour blocks, or time-windows. Hence, every slice of data si
corresponds to all edges in a 24 hour time period.

The set S is created in a two-step process. First, we generate a graph with
power-law degree distribution and approximate average clustering [317] to pop-
ulate a directed static graph. Then, for each pair of nodes (x, y), we create a
random number of randomized Gaussian distributions, and sample a random
amount of values from each distribution. For every value sampled t ∈ N+, we cre-
ate a directed temporal edge with (x, y, t). This type of temporal graph could, for
instance, model a real-world online social network of communications between
people over time [317]. For the power-law graph algorithm we use parameters
n = 400, m = 3 and p = 0.1. n is the number of nodes, m is the number of random
edges added, and p is the probability of adding a triangle [317]. For the Gaussians
we use the following ranges for the parameters µ = [0, 200], σ = [1, 10], k = [2, 10],
and |x| = [50, 300]. µ and σ are the means and deviations, k is the number of
distributions, and |x| is the number of values to sample from each distribution.

7.3.2 Experimental Methodology

We construct embeddings for temporal multigraphs as described in Section 7.1
for all datasets.

The IGMM algorithm’s parameter cscale, which is a fixed value used to avoid
over- and undersmoothing, is tuned through a gridsearch experiment using val-
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ues in the range [0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1]. Adjusting the cscale parameter al-
lows us, in an intuitive way (i.e. larger cscale results in higher accuracy and more
components), to fine-tune the models[314]. The resulting values are 0.01 for the
Manufacturing dataset, 0.1 for RealityMining, and 0.1 for the synthetic. The pa-
rameters for the short-term memory described in 7.2.2 are set as follows: m = 20,
q = 10, l = 5. We employ a Matlab implementation of [315], wrapped and aug-
mented by our own untuned Python implementation. All experiments were per-
formed on a standard off-the-shelf 3Ghz CPU laptop with 64Gb RAM without
GPU use.

7.3.3 Evaluation

To evaluate the performance of our proposed models we measure the differences
between two temporal multigraph representations of each dataset, which saves
all edge-insertions as edges in the graph, and the two embeddings GMM-Nodes
and GMM-Edges.

7.3.3.1 Lookup Error

For each node in the temporal multigraph, we calculate the difference between
its distribution of new edges, and the values provided by the lookup functions
of the corresponding GMM-Nodes embedding. Similarly, for each pair of nodes
in the multigraph, we calculate the difference between its distribution of new
edges, and the values returned by the GMM-Edges lookup functions. We report
these errors using three common metrics. The first is Symmetric Mean Absolute
Percentage Error (sMAPE), which in contrast to the traditional Mean Absolute
Percentage Error (MAPE) can be used in the presence of zero-values, |ti| = 0,
in the data. The second metric is the Mean Absolute Scaled Error (MASE) for
non-seasonal time-series [318]. Since the one-step forecast of MASE always will
underpredict the real value of a monotonous growing function, we instead use
the aforementioned MAPE, since there are no zero-values to avoid, for the Lc
lookup function.

Given a set of sets of edge-insertion times T = {t1, t2, · · · , tT} used to fit a
GMM (as in subsection 7.2.1), sMAPE and MASE for the lookup function Lp(t)
are defined as:

sMAPEp =
1

T

∑
ti∈T

|Lp(i)− |ti||
|ti|+ |Lp(i)|
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MASEp =

∑T
i=1|Lp(i)− |ti||

T
T−1

∑T
i=2||ti| − |ti−1||

The sMAPE and MAPE for Lc(t) are defined in a similar way for the accumulated
sizes of ti ∈ T :

sMAPEc =
1

T

T∑
i=1

|Lc(i)−
∑i

j=1|tj||∑i
j=1|tj|+ |Lc(i)|

MAPEc =
1

T

T∑
i=1

∣∣∣∣∣Lc(i)−
∑i

j=1|tj|∑i
j=1|tj|

∣∣∣∣∣
7.3.3.2 Time and Space Complexity

To illustrate the growth of the embeddings as the number of edges in the stream
increases, we perform measurements of the IGMMs while fitting them to the
stream of slices. We take 50 samples for each IGMM during fitting. The sam-
ples are evenly distributed in the interval [0, T ] in such a way that between any
two consecutive samples, the IGMM has been fitted to approximately the same
number of non-empty slices. This way we can track how the embeddings evolve,
while avoiding sampling multiple times when no new data has been fitted. Each
sample contains the number of components in the IGMM and the total accumu-
lated time taken to fit the IGMM so far. Due to how the sampling process is
performed, any embedding with less than 50 slices of data is omitted from the
experiment.

7.3.3.3 Lookup Timing

To measure the speed of the embedding’s lookup functions Lp and Lc we conduct
a separate experiment for each dataset defined as follows: For each embedding,
run a lookup at all times in the range t ∈ [0, T ] and return the average time taken
to perform each lookup. This is done for both lookup functions.

7.3.3.4 Baseline Comparison

As noted in Section 7.1.1, recent methods solving similar problems to ours have
limitations in their application domain that make direct comparison difficult:
some do not handle multi-graphs [56], others assume the number of nodes in
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the underlying graph to be known a priori [187, 186], or do not retain the graph
structure after embedding [185]. Hence, we compare our proposed method to
two baseline temporal multigraph representations (i.e., non-embedded and non-
summarized) of the datasets. The first baseline is “node-centric” and uses an un-
ordered associative array to store information for each node; the second baseline
is “edge-centric” and uses a simple list for each pair of nodes. The node-centric
baseline is best suited for lookups of a node’s edge-insertions, where the edge-
centric baseline is best for lookups of edge-insertions between a pair of nodes -
analogous to our two proposed models GMM-Nodes and GMM-Edges.

In the node-centric baseline, each key-value pair (t,y), in any node x’s dic-
tionary, consists of a time t and a list of nodes y = [y1, y2, · · · ], corresponding
to triplets in the dataset stream [(x, y1, t), (x, y2, t), · · · ]. The lookups Lp(t) and
Lc(t) correspond to simply counting nodes in the lists for the appropriate key(s)
t. In the edge-centric baseline, each list t), for any pair (x, y), consists of times
[t1, t2, · · · ] corresponding to triplets in the dataset stream [(x, y, t1), (x, y, t2), · · · ].
The lookups Lp(t) and Lc(t) correspond to counting the occurrences of t.

7.4 Results

Results for the experiments run on GMM-Nodes and GMM-Edges for all datasets
are shown in Figures 7.2 and 7.3. Figure 7.2 shows the relative errors of the lookup
functions and Figure 7.3 shows how the embeddings scale.

Figure 7.2 and Tables 7.2 and 7.3 show that the average sMAPE of Lp is below
15% across all datasets, and the Lc sMAPE is below 2%. sMAPEc for both lookup
functions increases ≤ 1% for a 10-fold increase in edge-insertions. As explained
in Section 7.2.1, there is a tradeoff between the number of components used for
each IGMM and the size of the relative lookup errors. This effect can be seen
in Figures 7.2e and 7.2g and Tables 7.2 and 7.3 where cscale is the same value for
both the R and S sets, but because the number of edges used to fit IGMMs are
higher for the R set, the sMAPE error is larger. Therefore the largest multiplic-
ities of a temporal multigraph are a better indicator of the expected sMAPE of
the GraphGMM embedding than the average multiplicity (Table 7.1) where the
average multiplicity of S is more than double than that of R.

The MASE in Figures 7.2b and 7.2d is for most IGMMs around 1, with a few
outliers. This suggests that most fitted IGMMs have similar error to the naı̈ve
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 7.2: (lin-log) sMAPE, MASE and MAPE for Lp and Lc lookup errors vs.
edge-insertions used to fit the IGMM. The two leftmost columns show errors
for GMM-Nodes embeddings, and the two rightmost columns show errors for
GMM-Edges.
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forecast method which uses the value of the previous time-step as prediction. The
remaining outliers can be an effect of noisy data or seasonal effects which are not
compensated for. As an example, the M dataset is based on a real-life white-collar
company, and therefore few emails are sent/received in the weekends. When
removing the outliers in Figure 7.2d, the embeddings for the M set have a stable
upper bound on the relative error of Lc of 0.5 as seen in Figures 7.2f and 7.2h
and tables 7.2 and 7.3. The MAPEc is below 3% on average for all embeddings on
all datasets, and scales well with ≤ 1% increase in MAPEc for a 10-fold increase
in edge-insertions, as seen in Figures 7.2f and 7.2h.

Figures 7.3a, 7.3e and 7.3i show that the number of IGMM components in
all embeddings grow at a similar rate and that the size of the baseline temporal
multigraph representations grows linearly as expected. The experiments show
that the GraphGMM models scale better than both the baselines in number of
components. Furthermore both GMM-Nodes and GMM-Edges appear robust,
and show almost identical growth, in relation to number of edge-insertions, across
all metrics measured in Figure 7.3. However, the models have comparatively
more components, and follow the baselines more closely, for the M set. This is
possibly due to seasonal patterns in M, where the number of emails, and thus
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7.3: (log-log) Scalability results for GraphGMM. Each row corresponds to
a distinct dataset, and the following is plotted, in relation to the number of edge-
insertions, in the columns from left to right: (1) Number of components in each
embedding (2) Average time per lookup Lp (3) Average time per lookup Lc (4)
Total time to fit IGMM to data.
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Dataset sMAPEp MASEp sMAPEc MAPEc
M 5.68% 1.03 1.19% 2.11%
R 13.99% 1.21 1.77% 2.80%
S 10.62% 1.10 1.12% 2.04%

Table 7.2: Average GMM-Nodes errors over all samples.

Dataset sMAPEp MASEp sMAPEc MAPEc
M 9.14% 1.60 1.23% 2.23%
R 12.51 % 0.94 1.76% 3.00%
S 11.32% 0.95 1.48% 2.66%

Table 7.3: Average GMM-Edges errors over all samples.

edge-insertions, drops to zero on weekends, and the IGMM algorithm is thus
unable to generalize a single component to more than 5 days without large inac-
curacies.

The two centre columns of Figure 7.3 show that the time complexity of lookup
functions Lp and Lc are dependent on the number of edge-insertions, with Lp
scaling better than Lc. This is most likely due to how the cumulative distribution
function is implemented and executed as these are not optimized (as mentioned
in Section 7.3). Compared to the baselines, the GraphGMM models perform bet-
ter than the node-centric baseline for Lp type lookups and when the number
of edge-insertions is non-trivial (1000<). For small numbers of edge-insertions
(<1000, see Figure 7.3c), the naı̈ve baselines may still outperform GraphGMM, as
expected. The same observation holds Lc lookups where the embeddings require
more time to compute Lc than the corresponding baselines, but with enough
edge-insertions – for R in Figure 7.3g and S in Figure 7.3k (105 edge-insertions) –
the embeddings outperform the baseline. The final column in Figure 7.3 shows
the accumulated time taken to fit each IGMM. Both GMM-edges, GMM-nodes,
and both baselines have constant time updates, but the baselines have much bet-
ter constants, again as expected. While the baseline implementations are faster,
both GraphGMM models fulfill our update-efficiency requirements, but are tar-
gets for further optimization.

In summary, our proposed methods present a trade-off for modeling large real-
world temporal multigraphs: a higher computational complexity per update, but
significantly lower memory footprint, faster edge-insertion queries ability to ad-
d/remove embeddings without penalty.
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7.5 Conclusion and Future Work

We have proposed GraphGMM, a type of embedding consisting of a static graph
and incremental Gaussian mixture models for approximate representation of tem-
poral multigraphs. GraphGMM exploits that large amounts of edge-insertions
over time can be approximated by probability distributions in a streaming fash-
ion while providing efficient retrieval, or queries, of the previous states of the
original temporal multigraph. GraphGMM does not require a priori informa-
tion about the number of nodes in the graph, and adapts dynamically to both
edge-insertions and node-insertions. Experiments demonstrate the advantage of
our model over two traditional graph representations. Future work includes (a)
using GraphGMM to solve other types of problems, including link-prediction
and classification, (b) investigate the performance of GraphGMM on other types
of graph-structural queries, and (c) perform further optimization of (implemen-
tations of) GraphGMM. Furthermore, extending or augmenting GraphGMM to
better adapt to certain temporal patterns (e.g., sudden drops in the number of
edge-insertions) should be explored.
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[4] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A.
Porter, “Multilayer networks,” J. Complex Networks, vol. 2, no. 3, pp. 203–
271, 2014.

[5] M. Latapy, T. Viard, and C. Magnien, “Stream graphs and link streams for
the modeling of interactions over time,” Social Netw. Analys. Mining, vol. 8,
no. 1, pp. 61:1–61:29, 2018.

[6] V. Kostakos, “Temporal graphs,” Physica A: Statistical Mechanics and its Ap-
plications, vol. 388, no. 6, pp. 1007–1023, 2009.

[7] C. Xin, B. Xie, and C.-C. Shen, “A novel layered graph model for topology
formation and routing in dynamic spectrum access networks,” First IEEE
International Symposium on New Frontiers in Dynamic Spectrum Access Net-
works, 2005. DySPAN 2005., pp. 308–317, 2005.

[8] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora, Graph
Metrics for Temporal Networks, 2013.

[9] F. Harary and G. Gupta, “Dynamic graph models,” Mathematical and Com-
puter Modelling, vol. 25, no. 7, pp. 79 – 87, 1997.

149



References

[10] J. Tang, S. Scellato, M. Musolesi, C. Mascolo, and V. Latora, “Small-world
behavior in time-varying graphs,” Physical review. E, Statistical, nonlinear,
and soft matter physics, vol. 81, p. 055101, 05 2010.
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