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Abstract

Segmentation is an indispensable initial step in image analysis and com-
puter vision. New advanced scanners and large scale imaging facilities
have spiked the interest of researchers across fields to investigate the in-
ternal structures of objects in a noninvasive manner. However, with new
machines come new artefacts and challenges that need to be addressed
before subsequent analysis can be conducted.

This thesis presents six novel variational methods for the recovery
of segments in tomographic reconstructions. Two primary types of
volumetric datasets are used as target application; porous chalk rocks,
from X-ray computerised microtomography (X-ray µCT) and rat cranial
scans, acquired through magnetic resonance imaging (MRI). Several
types of artefacts are addressed, with an emphasis on bias fields that
corrupts both acquisition modalities.

The first two chapters of the thesis cope with noise and bias fields by
extending the piecewise constant Mumford and Shah functional to utilise
local instead of global means. A kernel function governs the locality
and weight of the spatial dependency. Regularisation of label fields is
achieved using a squared gradient and compared with a total variation
variant. Oversmoothing of edges is prevented by integrating an edge
sensitive halting function into the framework. Alternating optimisation
of the local averages and label fields is used to minimise the energy
functionals. Label fields are represented as posteriors by Hidden Markov
Measure Field Models (HMMFM), to relax constraints and convexify
the problem. Posterior labels additionally model uncertainty due to
partial volume effects, owed to limited resolution of the imaging system.
These presented methods are tested on both synthetically and exper-
imental datasets of porous media. Numerous quantitative similarity
and geophysical measures along with visual inspection demonstrate the
usefulness of the methods.

The following three chapters focus primarily on the extraction of
brains in bias field rich MRI scans of rodents crania. A pipeline for ex-
tracting brain matter, cerebrospinal fluid (CSF), and background serves
as the stepping stone for further improvements. The framework utilises
previously presented methods in succession as well as some classical
approaches to yield promising results. The framework is extended to
improve robustness and limit the amount of user interaction by introduc-
ing shape priors as regulariser for the label field evolution. The shape
priors are inherently invariant to similarity transformations including
translation, global scaling and rotations through alignment of shapes.
Experiments demonstrate that the updated framework is able to satisfac-
torily segment challenging cases of rich bias, debris, as well as attached
skull and brain matter.

The final chapter recognises the emphasis on precise background
segments over foreground in a new approach, based on information
theoretic measures for the data fidelity term. A special edge artefact is
addressed by a novel halting function for a classical length regulariser.
Preliminary experiments of individual energy terms show promising
results, but holistic tests need to be performed.
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Resumé

Segmentering er et uundværligt første skridt i billedanalyse og computer
vision. Nye avancerede skannere og stor-skala billeddannelsesfacilite-
ter har, på tværs af felter, øget forskeres interesse i at undersøge indre
strukturer af objekter, på en ikke-invasiv måde. Med større maskiner
kommer der dog nye artefakter og udfordringer der skal adresseres, før
efterfølgende analyser kan gennemføres.

Denne afhandling præsenterer seks nye variationelle metoder til
genskabelse af segmenter i tomografiske rekonstruktioner. To primære
typer af volumetrisk datasæt er brugt som fokusområde; porøse kalksten,
fra røntgenstråle computermikrotomografi (X-ray µCT) og skanninger
af rottekranier, anskaffet gennem magnetisk resonans skanning (MRI).
Adskillige typer af artefakter er addresseret, med et fokus på biasfelter
der korrumperer begge erhvervelsesmodaliteter.

Afhandlingens to første kapitler håndterer støj og biasfelter ved at
udvide den stykvis konstante Mumford og Shah funktional til at benytte
lokale, fremfor globale, gennemsnit. Regularisering af labelfelter er op-
nået ved brug af en kvadratisk gradient og sammenlignet med en total
variation udgave. Overudglatning af kanter er forebygget ved integre-
ring af en kantsensitiv stop-funktion i modelkonstruktionen. Skiftevis
optimering af de lokale gennemsnit og labelfelterne er brugt til at mini-
mere energy funktionalet. Labelfelterne er repræsenteret som posteriors
af Skjulte Markov Målfeltmodeller (HMMFM), for at lempe begrænsnin-
gerne og gøre problemet konveks. Posterior labels modellerer yderliger
usikkerhed fra delvise volumeneffekter, der skyldes begrænset opløs-
ning af billeddannelsessystemet. Disse præsenterede modeller er testet
på både syntetiske og eksperimentielle datasæt af porøse medier. Ad-
skillige kvantitative similaritets- og geofysiske mål sammen med visuel
inspektion demonstrerer brugbarheden af metoderne.

De efterfølgende tre kapitler fokuserer primært på ekstraktion af
hjerner i biasfeltrige MRI skanninger af gnaveres kranier. En sekventi-
el model for udtrækning af hjernemateriale, cerebrospinalvæske (CSF)
og baggrund bliver brugt som springbræt for yderligere forbedringer.
Modelkonstruktionen udnytter tidligere præsenterede metoder i række-
følge, såvel som nogle klassiske tilgange, til at give lovende resultater.
Modelkonstruktionen er udvidet til at forbedre robusthed og begrænse
mængden af brugerinteraktion, ved at introducere formpriorer som regu-
larisering af labelfeltudviklingen. Formpriorerne er naturligt invariante
overfor similaritetstransformationer som translation, global skalering og
rotationer, gennem formtilpasning. Eksperimenter demonstrerer at den
opdaterede modelkonstruktion er i stand til tilfredsstillende at segmente
udfordrende tilfælde af biasfelter, vragrester, såvel som sammenhængen-
de kranie- og hjernemateriale.

Det sidste kapitel anerkender vigtigheden af præcise baggrundsseg-
menter over forgrund i en ny tilgang, baseret på informationsteoretiske
mål for datatroskabsbetingelsen. En speciel kantartefakt er adresseret af
en ny stopfunktion for en klassisk længederegularisering. Indledende
eksperimenter af individuelle energibetingelser viser lovende resultater,
men holistiske tests skal udføres.
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1 Introduction

Image segmentation is of paramount importance for analysis across a mul-
titude of fields. The process is characterised as the separation of data into
multiple meaningful subsets or segments, enabling and simplifying subse-
quent data processing. Meaningful here depends on the specific goal of the
segmentation procedure, but the general criteria is that data with the same
segment label share certain characteristica or features. These attributes could
be linked to individual element values, or overall modelled properties, such
as neighbourhood information or statistical measures.

While the human visual system is able to process natural images for object
detection at incredible precision and accuracy, with speeds below fractions
of a second[Thorpe et al., 1996], we are still unsure which exact mechanisms
are used in the process[DiCarlo et al., 2012]. With access to unfathomable
amounts of data, humans and in particular machines and programs would
undoubtedly benefit immensely from discovering which computations goes
into this process. We have yet to uncover these algorithms, but incremental
steps in improving and inventing new segmentation models will definitely
push us in the right direction.

This thesis concerns itself with exactly that; to contribute to the field of
variational segmentation methods for 2D and 3D images, with Rocks and
Brains as the target application. Before we dive into the content of each chapter,
a brief introduction of the literature on general segmentation methods is in
order.

1.1 Segmentation methods in the literature

The list of various image segmentation methods in the literature is overwhelm-
ingly long. In this brief literature review we have therefore chosen to omit
the bulk of the methods, but provide the reader with an overview of some
influential types.

With more than 30.000 citations, the work and influence of [Otsu, 1979]
is difficult to overstate. Despite being almost 40 years old, the method is
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1. INTRODUCTION

still videly used today for its simplicity and excellent intermediate results.
In this work we use Otsu’s method primarily as initialisation of our more
complex methods. The method works by minimising the intra-class variance
and shows that it is equivalent to maximising the inter-class variance. It then
searches for the threshold that fulfils this criteria. In the work of [Liu and
Yu, 2009], they proved that the energy functional of Otsu is equivalent to that
of k-means, in the multiphase setting. So while k-means is faster, because it
does not have to compute histograms, Otsu makes use of an exhaustive search
strategy, whereas k-means can end up in local minima. Another significant
work in this context is that of [Lloyd, 1982], which proposed a k-means like
energy computed on voronoi diagrams. These methods are particularly inter-
esting for this thesis, as the majority of segmentation methods within the field
of X-ray computed tomography of porous media are based on global thresh-
olding [Iassonov et al., 2009]. For an excellent and more extensive review of
thresholding methods in the literature, we refer to [Sezgin and Sankur, 2004],
where they surveyed, implemented, and evaluated 40 two-phase thresholding
methods.

In a related subfield, one has clustering approaches akin to the k-means
method. These major categories can be divided into hierarchical clustering,
density and distribution based approaches, as well as graph, and neural net-
work based methods, which will be elaborated on in the following. There
are additionally various variants of these types, based on strict and fuzzy
labeling of pixels as well as different measures within the aforementioned
categories. For a more in-depth discussion on general clustering methods for
data partitioning, we refer to [Rokach and Maimon, 2005].

Other types of segmentation methods are those explicitly using graphs
to represent images. This representation lends itself easily to images as both
are discrete and simple mathematical representations. Additionally, graph
theory is a well-developed field, so previous methods extends directly to
images and proofs are readily available. The most prevalent incorporation
of graph models for image modelling and segmentation as Markov random
fields (MRF), was introduced in [Geman and Geman, 1984]. Among the most
popular graph based methods for image segmentation are those based on
graph-cuts[Boykov et al., 2001, Kolmogorov and Zabih, 2004, Rother et al.,
2004], i.e. partitioning of the graph, such that the weights on edges between
segments are small and high within segments - see [Yi and Moon, 2012] for
an overview. A most influential method that introduced normalised cut is
[Shi and Malik, 2000], which solved a generalised eigenvalue problem. Other
methods sought to analyse spectral partitioning, which is a relaxed version
of the NP-hard graph-cut minimisation, through studying eigenvectors and
the associated graph laplacian and other graph matrix variants, such as the
adjacency matrix. [Ng et al., 2002] more theoretically analysed the conditions

2



1.1. Segmentation methods in the literature

on which spectral graph clustering is expected to perform well, using tools
from matrix pertubation theory. An excellent introduction to the field of
spectral graph clustering, which uses the graph laplacian as the main tool, is
additionally provided by [Von Luxburg, 2007]. Other noteworthy methods,
that utilises the graph representation of images, are those that utilise random
walks [Grady, 2006]. These types work by manually selecting seed labels for
the various segments and then initalise random walkers at each unlabelled
pixel. The pixels are then assigned the labels of the the seeds they are most
likely to encounter first on their random walk. Additional higher order struc-
tural representations of graphs, such as minimum spanning trees have also
been used in the literature [Zahn, 1970], for speeding up the segmentation
process of larger problems, because of the implicit region represetation of trees.

Machine Learning is an unavoidable mention in these days and the field
of trainable segmentation models is vast and evergrowing. The subfield of
machine learning that has gained a lot of attention in recent years is deep
learning and specific architectures such as deep neural networks have been
applied in numerous fields. The basic building blocks of an artificial neural
network consist of the structure of multiple processors, so called neurons,
that produce a sequence of activations based on connectivity, weights, and
observation generating environments. Given a real number activation signal,
a neuron computes some predefined nonlinear function of the sum of these
ingoing signals. The strength of this new signal is then magnified or decreased,
based on the weight of the edges connecting the neurons. The typical structure
of artificial neural networks is formed by layers of neurons, that perform
various different transformations of input signals. A threshold is usually used
to determined whether or not a signal is passed on to the next layer. When we
are talking about deep neural networks, it therefore refers to the number of
layers. Various different versions and traversals of these structures are then
used for different tasks, but common for them all is that they are based on
initial learning or training steps. Given a sufficient number of pre-labeled data
and a task, the network is able to learn specific optimal parameters or weights
that solve the task, based on some cost function.

Deep learning have in particular been used with promising results in
automatic speech recognition [Hinton et al., 2012, Graves et al., 2013, Dahl
et al., 2012], AI for game theory [Silver et al., 2016, Mnih et al., 2013], natural
language processing [Collobert and Weston, 2008, Collobert et al., 2011] as
well as computer vision tasks like image classification [Cireşan et al., 2012,
Krizhevsky et al., 2012], object detection [Szegedy et al., 2013, Erhan et al.,
2014], semantic segmentation [Long et al., 2015], and many more. Generally
deep learning relies on supervised learning practices, although unsupervised
approaches exist and typically use restricted Boltzmann machines [Nair and
Hinton, 2010, Hinton, 2007] or autoencoders [Hinton and Salakhutdinov,
2006, Poultney et al., 2007, Vincent et al., 2008, Masci et al., 2011] to learn

3



1. INTRODUCTION

features, probability distributions over inputs, or perform dimensionality
reduction.

Two recent interesting approaches in machine learning are reinforcement
learning [Watkins, 1989, Watkins and Dayan, 1992] and the so called U-net
[Ronneberger et al., 2015, Çiçek et al., 2016, Dong et al., 2017]. Reinforcement
learning introduces the idea of delayed reward, through state transitions of
an autonomous entity, called an agent. In order to reinforce optimal strategy,
a reward can be given based on the expected value of the total reward of
all previous steps to the current. The strategy is then continuously adjusted
accordingly. A new step, through exploration of the solution space, while
exploiting current strategy knowledge, is then taken. U-nets are an improve-
ment of the fully convolutional network (FCN) presented in [Long et al., 2015]
and rely in the same way on down- and upsampling to capure contextual
information and recover spatial information respectively. U-nets are also sym-
metric in the number of down and upsampling layers and differ from FCNs in
that the skip connections apply concatenation operations instead of summing,
to preserve local information in the upsampling step. Skip connections are
traditionally used to bypass at least one layer, to preserve fine grained spatial
information that would otherwise have been lost in the ’pooling’ or down-
sampling layers. U-nets, while still in the very early stages of development
look promising, as they perform well even with very few training dataset,
compared to deep learning approaches.

A number of classical non-variational methods have been videly used,
such as the mean-shift algorithm [Cheng, 1995], originally formulated in
[Fukunaga and Hostetler, 1975] to locate maxima of density functions. Seg-
mentation using mean-shift works by converting data into feature space and
initialising nonoverlapping search windows over the space. Within each
window the mean is computed and the center of the windows are relocated
or shifted to the respective means. New means and shifts are computed
until convergence and windows sharing centers are merged. Each feature
is then labelled according to the mean of the potentially merged window
originally covering it. The number of classes is based on window size and
initial placement.

Another example of non-variational methods is the introduction of an
initial oversegmentation, resulting in so called "superpixels"[Ren and Malik,
2003] and it has been used as an important preprocessing step and main al-
gorithm in a number of segmentation algorithms [Liu et al., 2011, Achanta
et al., 2012, Shen et al., 2014, Veksler et al., 2010]. The introduction of super-
pixels result in easier and faster feature extraction on regions that are more
meaningful than regular pixels. Superpixels can be based on a variety of cues,
like intensity level, neighbourhood continuation, similarity, edges, texture
information, or pixel proximity.

A final example of non-variational methods are those based on the wa-
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tershed transform, originally described in [Strahler, 1957]. The idea of using
watershed by flooding, for segmentation, was described in [Beucher and Lan-
tuéj, 1979] and popularised in [Meyer, 1994]. The algorithm by Meyer views
the gray-level values of an image as a topographic relief, such that higher
intensity values correspond to hills and lower ones to catchment bassins.
Flooding the bassins will then result in watershed lines or ridges, that make
up the edges of each respective class. A number of alterations and improve-
ments have since been made to the classical algorithms, one example is the
priority-flood method [Barnes et al., 2014] that proposed to initialise flooding
at the edges and flood inwards, to avoid depressions or dams.

The variational setting is able to model problems in an infinite dimensional
way. Variational optimisation is therefore able to accomodate very general
problems, by accounting for all possible functions by use of the calculus of
variations to solve the associated Euler-Legrange equations. Additionally,
because the deriviation of models is often done in a continuous setting, which
is very well understood, the bias of choosing correct discretisation represen-
tations is dependant on the end user and specific problem, not the model
itself. One of the downsides of solving variational problems is the neces-
sary computation power, but recent hardware advances and GPU optimised
methods have popularised these techniques. Some classical examples of varia-
tional methods include [Geman and Geman, 1984] for introducing a Bayesian
paradigm by use of Markov Random Fields for image analysis. The Active
Contours model or ’snakes’ [Kass et al., 1988] proposed three energy terms
for 1) elasticity, based on a smoothness measure and continuity of the con-
tour, 2) an edge based energy to adapt the fitting of the contour, whereas the
elasticity energy controlled the deformation of the evolving contour, and 3) a
constraint energy which is typically the initial control points. [Cohen, 1991]
further improved on the model with the introduction of the classical "balloon"
force, to further push the contour towards edges. This enables the original
snakes model to converge to an optimal solution, even when the initial curve
is not close to the solution. It further is only stopped by strong edges, but
passes over weaker edges. Many variants of the snakes model have been
introduced over the years, some of these include Geodesic Active Contours
(GAC) [Caselles et al., 1997], which seeks to constrain the curve evolution
by introducing a halting function on the edge detection energy term, such
that stronger edges result in smaller energies. This addition makes the model
especially adapt at following strong edges, even in the pressence of other
strong forces. A similar approach was used in [Perona and Malik, 1990] for
recovering of image segments and edge detection, in the presence of noise.
Here the laplacian-based smoothing was constrained by a halting function, to
only encourage smoothing of low strength edges, thus preserving significant
image features. For an extensive overview of anisotropic diffusion in the field
of image processing, we refer to [Weickert, 1998]. Additional statistical shape
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information have also been incorporated in the classical GAC method, by
guiding the deformable shape evolution according to a probability distribu-
tion over the variances of a training set of shapes [Leventon et al., 2002] and
using mean shape statistics to compute characteristic deformation modes to
reveal shape variability [Charpiat et al., 2007]. Another alteration of the snakes
model is Diffusion snakes [Cremers et al., 2002] that deals with occlusions,
cluttering, and overall noise by the inclusion of statistical shape knowledge in
an altered Mumford-Shah functional [Mumford and Shah, 1989].

The work of Mumford and Shah and its cartoon limit, the picewise con-
stant Mumford-Shah model, has been the starting point of numerous recent
models and the focus of optimisation [Pock et al., 2009, Chambolle and Pock,
2011, Chambolle et al., 2012]. The former works also deal with the optimi-
sation of the classical total variation regularisation, also known as the ROF
model as it was pioneered by Rudin, Osher, and Fatemi [Rudin et al., 1992].
The Mumford-Shah functional consist of three energy terms; 1) a data fidelity
term, that makes sure that segments are close to their respective segment
means, 2) a smoothness term to guarantee that segment variations are smooth
within regions, but not on the discontinuity set, and 3) a length penalisation
of the discontinuity set. The cartoon limit is then introducing the assumption
that regions are piecewise constant, meaning that the second term disappears,
by letting the weight of the second term go to infinity. If one assumes two
regions, then a discrete version of the Mumford-Shah functional is the Ising
model [Lenz, 1920, Ising, 1925], which was later generalised and studied in
works such as [Heisenberg, 1928, Potts, 1952] all of which were influential
in the field of ferromagnetism and statistics in physics. One of the popular
models inspired by the Mumford-Shah functional is the two-phase Chan and
Vese model [Chan and Vese, 2001], using the level-set method [Osher and
Sethian, 1988] to represent the evolving contour, its extension to multiphases
[Vese and Chan, 2002], and their many variants.

This concludes the brief literature review. In Sections 1.2 and 1.3 we introduce
the various projects that I have been involved in. We highlight key challenges
and provide motivation for why these problems are of particular interest to
solve. The two sections cover two very different types of datasets, namely
rocks and rodent brains from two different modalities. It is however clear
from our results that methods developed from at least one area are general
enough, that they are applicable in the other.
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1.2. Rocks and the P-Cubed project

1.2 Rocks and the P-Cubed project

The P-Cubed (styled P3) project was a collaboration between The eScience
group1, The NanoGeoScience group2, and The Image Group3, which was
sponsored by The Innovation Fund DK, Maersk Oil & Gas, and The Uni-
versity of Copenhagen. P3 is an abbreviation for Predicting Petrophysical
Parameters and the project was established to build an automated data pro-
cessing pipeline, that ultimatively would turn physical rock samples into
feasible geophysical measures. These measures would be used both for com-
mercial interest such as extraction of natural resources, but also give valuable
insight into the internal microstructures of chalk rocks. The developed meth-
ods would in turn be used for different kinds of data, such as sea urchin shells
to analyse efficient light but strong structural designs.

The overall P3 pipeline can be seen in Figure 1.1. Each of the boxes rep-
resents a project in itself, responsible for taking the input from the previous
step, process it, and sending it on to the next. A chalk rock sample would
initially be dug up from the North Sea area, several kilometers down, then
scanned in a synchrotron to produce the initial tomographic projection that
make up the sinogram. After tomographic reconstruction, one is left with
the raw noisy image volume to be denoised and segmented. This was the
task assigned to us and we will present the proposed methods in Chapters 2
and 3 and as ongoing work in Chapter 7, where we deal with some particular
observed artifacts. Following that, the workflow pipeline would then pick
up the output, mesh it and simulate fluid flows to extract the parameters of
interest.

The collection of data available were roughly 4.2 TB of raw reconstructed data,
representing different acquisition depths and porosities, which was only a
fraction of the entire data intended to be processed. The requirement of the
models to be reliable and automated were essential, especially considering
that one full dataset was 4 GB. Additionally, none of the datasets were profes-
sionally anotated, in part due to the sheer amount of data to go through in a
single dataset, leaving out newer machine learning approaches, such as deep
neural networks. A typical example of chalk datasets and its corresponding
segmentation can be seen in Figure 1.2. Furthermore, X-ray microtomography
is well known to harbour a wealth of artefacts, which explains an entire project
dedicated to denoising and removing artefacts in Figure 1.1 - even anotaters
would have a difficult time because of the artefacts. These artefacts, aside
from noise and blurring, cover: ringing artefacts resulting from variation
in detector element sensitivity, various streaking artefacts due to a reduced

1Research group, under the Niels Bohr Institute, at The University of Copenhagen.
2Research group, under the Nano-Science Center, at The University of Copenhagen.
3Former research group under The Department of Computer Science, at The University of

Copenhagen - now known as the IMAGE group
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Figure 1.1: Overview of the P-cubed workflow pipeline

number of projections, double edges caused by slight motion of the sample,
partial volume effect caused by averaging due to resolution, bias fields due
to beam hardening caused by polychromatic radiation, and many more. We
refer to [Davis and Elliott, 2006] and [Hansen, 2015] for a detailed description
of X-ray micro-CT artefacts and for various reconstruction caused artefacts,
we refer to [Hsieh, 2009] for an in-depth list and characterisation.

When the P3 project launched, the most successful segmentation results were
achived using Otsu [Otsu, 1979], watershed based segmentation using flood-
ing [Meyer, 1994], and dual filtering [Müter et al., 2012]. We therefore generally
compare with these classical but simple methods.

In Chapters 2 and 3 we target specifically the bias field artefact, as it is quite
dominant and locally - as well as globally - observable in our datasets. The
methods are furthermore robust to strong noise, while preserving valuable
small edge details, that can have large consequences for subsequent analysis.
The models are based on the classical Mumford-Shah functional and deal with
the bias fields implicitely, instead of trying to explicitely model it.

Chapter 7 proposes a method fitted to deal with an artefact that in certain
ways mimics that of beam hardening. Whereas we have generally proposed
Mumford-Shah based segmentation methods, this approach relies on infor-
mation theoretic measures. Specifically one of the goals of this idea is to cut
down on the number of free parameters, particularly observing that often
only the background segment is of interest in further analysis. The observed
artefact is affecting material edges and is dealt with by explicitely modelling
the intensity profile of these edges.
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(a) (b)

Figure 1.2: Examples of typical reconstructed raw P3 datasets. Surface mesh of a
segmented dataset crop, dimensions = (500× 500× 500), original dataset
dimension = (1304 × 1304 × 1012) (a). A 3D slice representation of the
same dataset, in its raw version (b).

1.3 Rat brains

The study of lab rodents, and their brains in particular, has been of the utmost
importance in drug development, medicine, and biology research. One of
the main advantages of mice in particular mice, is that their genome is very
similar (99%[Vandamme, 2014]) to the human genome and due to their small
size and cost, they are efficient to handle, transport, and scale to large cohort
studies. Typical studies are those of obtaining functional and safe dosage
information of drugs, to increase human patient safety, before clinical studies
are initiated[Vandamme, 2014]. Another very important factor is that, with the
advert of genetical engineering, scientists can breed so called transgenic mice,
that are genetically altered mice whose genes mimic the human genomes
susceptible to disease. In layman’s terms: scientists are able to "turn on and
off" specific genes depending on the study. This approach also makes studies
highly reproducible and robust. Additionally, in the period of 2005-2007, rats
and mice ammounted to 93% (of the nine most commonly used species) of
all neurodevelopmental research article model mammals. Of these 93%, rats
ammount to 54% and mice 39%[Clancy et al., 2007]. The general shape of the
rat brain, seen from above, can be found in Figure 1.3a, where the different
regions are also highlighted. Typically, brain extraction software will however
obtain a more convex shape, due to exterior cerebrospinal fluid (CSF) being
difficult to deal with in general between region transitions, but in particular
in the gaps between the orange and teal regions, as well as the teal and green
regions.
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(a) (b)

Figure 1.3: Sketch of a typical rat brain seen top-down, major brain regions are
divided by different colors (a). Example of a reconstructed raw rat brain,
notice also the short distance from brain to skull and accompanied debris,
which complicate segmentation (b).

The work on rodent brains presented in this thesis, has not been associated
with any project for our part. The work was initiated by a colleague who
was collaborating with clinical scientists, but was having a difficult time seg-
menting the brains, due to strong bias fields, observed in Figure 1.4. Having
previously worked on accounting for bias fields in X-ray CT imaging, we
attempted our method on this new MRI data. Having no prior experience
with the field of medical image analysis, nor any knowledge of the current
best results, we sent an initial conference abstract to the ISMRM (International
Society for Magnetic Resonance in Medicine). At the conference, the abstract
presentation sparked a lot of interest that gave us not only ideas for improve-
ment and insight in the data from a clinical perspective, but has also set up
future collaborations. It is therefore planned that Chapters 5 and 6 will be
extended and sent to the journal of Magnetic Resonance in Medicine (MRM)
and the software made available.

The initial steps in rat brain analysis is computerised brain extraction
from the rat cranium. Unfortunately, at least in this case, clinical research
groups tend to use third party software for this step, which is often so general
application based, that it fails to account for harder artefacts. Bias fields
are one such artefact, often encountered in MRI of rodents, which has been
studied immensely in the MRI community. Even though the literature on bias
field correction algorithms is vast, in particular for human brains, it is not
considered a completely solved problem[Vovk et al., 2007]. Bias fields are
particularly problematic as many segmentation methods rely on relatively
homogeneous intensity distributions in the different classes. Local CSF and
brain matter consequently look so similar, based on their intensity ranges in
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(a) (b)

Figure 1.4: Example of a raw rat brain slice, affected by extreme levels of bias fields
(a) and its bias field corrected version (b).

the face of bias fields, that they get misclassified. A dataset effected by heavy
bias fields can be found in Figure 1.4. Notice that classical bias field correction
techniques, here an opensource implementation of [Tustison et al., 2010], are
unable to fully restore the original image. There are still observable dark
smudges in the center of the brain and quite bright regions near the edges.

Another complication for segmentation is when the brain and skull are
too close to each other, mainly because of the resolution of the image, but
debris also play a significant role, which is also observable from the brain
in Figure 1.3b. Motivated by these observations, we propose methods in
Chapters 4 to 6 to handle these two major issues; Bias fields and closely
positioned brain and skulls, with debris.

1.4 Outline of the thesis

This thesis is structured so that each chapter constitutes a paper, either as
published or in review, with the exception of Chapter 7 that presents an
ongoing work, to be published in the future. The only alterations to the orignal
publications are the size of figures as well as a few typos or rewordings to fit
the margin layout of the thesis. No contentual changes has been made to the
papers.

The overall goal of this thesis was to be able to handle various artefacts
that presented themselves in tomographic datasets such as porous media and
brain scans. In the face of these artefacts, we aimed to be able to segment
meaninful regions that would be used for postprocessing and analysis by a
third party. It was therefore important not to bias our solutions unnecessarily,
by making too many choices in regards to the output. Preferably, albeit not
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imperative, the methods should be able to generalise well to other datasets of
different origin and modality.

In Chapter 2, we present our first method that deals with the observed bias
field artefact. In that pursuit, the model attempts to implicitely deal with the
bias, rather than explicitely trying to model it. In doing so, we don’t enforce
too many assumptions on the nature of the bias field, other than at small
enough locality it is negligible. The model is based on the Mumford-Shah
functional and introduces and compares both a squared and TV regularisation,
for this setting.

Chapter 3 further extends the work of Chapter 2. The major goal of this
chapter is to address the oversmoothing of edges, as a result of the quadratic
regulariser. By introducing a classical halting function based on edge detection,
in our Chambolle-Pock optimisation setting, we achieve better results and
arrive at a richer more general formulation. The usefullness of the method is
demonstrated on experimental, as well as the same synthetic data as Chapter 2,
for comparison.

The method presented in Chapter 4 introduces the second dataset this
thesis concerns itself with, MRI scans of rat crania. Inspired by the promising
results of Chapters 2 and 3, we apply our previous method to bias field
corrected rat crania scans, in a four step pipeline. Through a serious of
steps of our pipeline, we demonstrate that the proposed framework is able
to automatically segment brain matter, cerebrospinal fluid, and background
satisfactorily.

One of the shortcomings of the method in Chapter 4 was the robustness to
particular situations when the brain matter and skull would intersect heavily
or large debris would be present in the gap. The Geodesic Active Contour
based skull extraction step would oversegment the brain matter and include
large parts of the skull. Therefore, in Chapter 5 we attempt to improve on
this drawback, by introducing a powerful similarity invariant shape prior. We
demonstrate that the inclusion of this shape prior in the framework enables
us to deal with the difficult situations satisfactorily. Additionally, parameter
choice robustness is also achieved.

Chapter 6 introduces the theoretical framework for the extension presented
in Chapter 5. The chapter presents a general shape prior framework for
robust and fully automated object segmentation. The method achieves this by
making the shape priors intrinsically invariant to translation, rotation, and
global scaling by alignment. This means that transformation parameters do
not need to individually optimised for.

An ongoing work is presented in Chapter 7 dealing specifically with the
problem of porous media segmentation. The chapter analysis a particularly
challenging edge type akin to beam hardening and constructs a powerful
novel edge detector, that is able to identify the target edges, as well as smaller
normal edges. Rooted in the observation that the background segment is of
particular interest in geophysical simulations, we propose an information
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Table 1.1: Publication status for the manuscripts included in this thesis.

Title Status

Local Mean Multiphase Segmentation with
HMMF Models.

Accepted as
[Hansen and Lauze, 2017].

Multiphase Local Mean Geodesic Active
Regions.

Accepted as
[Hansen and Lauze, 2018].

Brain Extraction and Segmentation Framework
for Bias Field Rich Cranial MRI Scans of Rats.

Accepted as
[Hansen et al., 2018].

Automatic Brain Segmentation Framework for
Bias Field Rich Cranial MRI Scans of Rats and Mice
via Similarity Invariant Shape Priors.

In review at
ISMRM.

Segmentation of 2D and 3D objects with intrinsically
similarity invariant shape regularisers.

In review at
SSVM.

Information Theory-Driven Two-Phase Segmentation
with Edge Penalty. In preparation.

theoretic based segmentation method, that divides a potentially multiphased
problem into a simply behaving background and complex foreground. Exper-
imental validation has been performed on the individual data and regularisa-
tion terms and the intermediate results are promising.

An overview of all the manuscripts used for this thesis and their publica-
tion status can be found in Table 1.1
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2 Local Mean Multiphase
Segmentation

The work presented in this chapter is based on [Hansen and Lauze, 2017]†.

† Hansen, J. D. K. and Lauze, F. (2017). Local Mean Multiphase Segmenta-
tion with HMMF Models. In International Conference on Scale Space and
Variational Methods in Computer Vision, pages 396–407. Springer.
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Local Mean Multiphase Segmentation with
HMMF Models

J. D. K. Hansen, F. Lauze, {jdkh,francois@di.ku.dk}

Department of Computer Science, University of Copenhagen

Abstract. This paper presents two similar multiphase segmentation
methods for recovery of segments in complex weakly structured images,
with local and global bias fields, because they can occur in some X-ray
CT imaging modalities. Derived from the Mumford-Shah functional,
the proposed methods assume a fixed number of classes. They use local
image average as discriminative features. Region labels are modelled
by Hidden Markov Measure Field Models. The resulting problems
are solved by straightforward alternate minimisation methods, partic-
ularly simple in the case of quadratic regularisation of the labels. We
demonstrate the proposed methods’ capabilities on synthetic data using
classical segmentation criteria as well as criteria specific to geoscience.
We also present a few examples using real data.

2.1 Introduction

Image segmentation remains a fundamental task in Image Analysis, often
used as a mandatory preprocessing step for further analysis. The large variety
of sources and contents has generated a myriad of approaches, from simple
clustering to more sophisticated ones. Our field of application is the analysis of
X-ray computerised micro or nanotomograph (X-ray µCT or nCT) of geological
samples. While these samples are essentially made of homogeneous materials,
with edges and flat surfaces, they are not too structured in terms of shapes.
Figure 2.1 illustrates two typical examples, with different resolutions.

Such an image can be modelled as a function u : Ω ⊂ Rd → R, with
d = 2, 3

u = L

(
n∑
i=1

αiχΩi

)
+ η (2.1.1)

where Ω1, . . .Ωn are the different segments, αi their intensity. L models blur
and resolution effect, such as partial volume; η contains noise and bias field.
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(a) (b)

Figure 2.1: Two (slices) of tomograms with internal reference names (irn): Hod chalk
#16[Müter et al., 2014] (a) and WIG1T #156 (b). A bias field is clearly
present in (a).

In high-photon-count synchrotron imaging, the noise can be considered as
Gaussian, but still depends on the underlying intensity[Buzug, 2008].

A wealth of methods for multiphase image segmentation are based on
variational models, especially the classical Mumford-Shah (MS) functional
[Mumford and Shah, 1989]. The MS model is region-based and copes with
non stationarity in segments by proposing a cartoon-representation of the
image data:

E(c,Γ;u) =
1

2

∫
Ω

(c− u)2 dx+
ν

2

∫
Ω\Γ
|∇c|2 dx+ µ`(Γ), (2.1.2)

with Γ a hypersurface in Ω (i.e., 1D when d = 2, 2D when d = 3) such that Ω\Γ
is a disjoint union of regions Ω1 t · · · t Ωn(Γ), the number of classes n being
determined by Γ, and `(Γ) is the Hausdorff measure of Γ. At optimality, the
model provides segment boundaries and a simplified representation c of the
input image u.

The optimisation of Γ is a complex task and has led to many approaches
and simplifications. The Chan and Vese formulation[Chan and Vese, 2001]
assumes a two-segment model and piecewise constant c. Although the model
has been extended to multiple classes, it cannot cope with local or global bias
fields, or more complex non-stationarity in u. For complex non-stationarity
and potential transparency-like effects, such as in X-ray CT imaging, an ap-
proach based on inpainting was proposed in [Lauze and Nielsen, 2008]. This
approach, however, is limited to two phases and relatively simple content.
Bias field problems are well known in the MRI community, see for instance

17



2. LOCAL MEAN MULTIPHASE SEGMENTATION

[Pham and Prince, 1999]. In contrast to our additive representation, these bias
fields are multiplicative.

An approach more relevant to our work is that of [Wang et al., 2010] which
presents a global, a regularisation, and a local term model with level sets, but
is limited to two phases. It is also worth mentioning the work of [Huang
and Zeng, 2015] for two-phase segmentation and bias field estimation. Our
methods do not attempt to estimate the bias field, but deal with it implicitely.
Closest to our model is the work of [Brox and Cremers, 2009], that we will use
in the next section.

To cope with a higher, but fixed number n of segments, binary labelling is
used: let Bn = {e1, . . . , en} be the standard basis vector of Rn. Then a labelling
function v = (v1, . . . ,vn) : Ω → Bn is defined by v(x) = ei iff x ∈ Ωi, and
optimisation is performed on v instead of Γ:

E(c,v;u) =
1

2

n∑
i=1

∫
Ωi

(c− u)2vi dx+
ν

2

n∑
i=1

∫
Ωi

|∇c|2 dx+ µ

∫
|Dv|. (2.1.3)

The presence of the operator L in the image model (2.1.1) makes soft la-
belling more appropriate in our setting. The concept of soft labelling is for-
malised in Marroquin’s Hidden Markov Measure Field Models (HMMFM)
[Marroquin et al., 2003]. This formalisation replaces Bn by its convex hull
∆n = {(s1, . . . , sn) : ∀i, si ≥ 0,

∑
i si = 1}, also used in [Chambolle et al., 2012]

for their relaxation approach, which we use in one of our proposed models.
The rest of the paper is organised as follows: In Section 2.2 we derive

two models, differing in their label regularisation term. We propose min-
imisation algorithms in Section 2.3. Then we demonstrate their capabilities
experimentally in Section 2.4. We conclude and discuss future work in the last
section.

2.2 Derivation of the model

As noted by Brox et al.[Brox and Cremers, 2009], in their two-phase approach,
the minimiser c of (2.1.2) on segment Ωi is the Tikhonov regularisation of u on
Ωi and satisfies the equation

c− u
ν

= ∆c

and approximates the solution at time t = ν of the diffusion equation ct = ∆c
with initial value c0 = u. Following [Nielsen et al., 1997], one can replace the
regularisation term ν

2

∫
Ωi
|∇c|2 dx by an infinite regulariser

1
2

∑∞
n=1

νn

n!

∫
Ωi
|Dnc|2. The corresponding minimiser is the solution of the diffu-

sion equation for all ν > 0. These solutions can be approximated by Gaussian
convolution, i.e., c ≈ g√ν ∗ u On Ωi. This opens the way for other smoothing
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kernels, in particular simple rotationally symmetric nearest neighbours (NN)
kernels hρ (moving average) with radius ρ > 0. In the sequel g will denote one
of these kernels. Kernel parameters, i.e., standard deviation σ for a Gaussian
kernel, or the radius ρ for the NN-kernel, are linked to the variation of the
unknown bias field. Following the discussion above, we replace c in (2.1.3) by
a smoothing ci of u on Ωi and attempt to minimise instead

E(v;u) =
1

2

n∑
i=1

∫
Ω

(ci − u)2vi dx+
µ

2

n∑
i=1

∫
Ω
|Dvi| (2.2.1)

with

ci(x) =
(uvi) ∗ g(x)

vi ∗ g(x)
, x ∈ suppvi. (2.2.2)

Energy (2.2.1) depends only on the labelling function v, though in a com-
plicated way in the local average (2.2.2). The gradient for the data term of
(2.2.1) can be derived easily, but the resulting object is rather complex. This
can be replaced by a “Chan-Vese”-like trick. Indeed, for x ∈ Ωi, ci(x) is the
minimiser of d 7→ g ∗

[
(u− d)2vi

]
(x) as shown by a direct calculation. We can

rewrite the variational segmentation problem 2.2.1 as the optimisation of

ETV (c,v) =
1

2

n∑
i=1

∫
Ω
g ∗
[
(u− ci(x))2vi

]
(x) dx+

µ

2

n∑
i=1

∫
Ω
|Dvi| (2.2.3)

v(x) ∈ ∆n (a.e)

with c = (c1 . . . , cn), and ci : Di ⊃ suppvi → R. The relaxation of the
perimeter term used in [Chambolle et al., 2012] is very tight and often produces
almost binary label fields v. While this may be desirable in many situations,
this can be a drawback, especially when partial volume effects have strong
influence, as this is often the case in our 3D micro-CT applications, where
a posterior probability may be better than a hard assignment. To avoid this
relaxation behaviour, we replace the perimeter term by a quadratic one:

EQ(c,v) =
1

2

n∑
i=1

∫
Ω
g ∗
[
(u− ci(x))2vi

]
(x) dx+

µ

2

n∑
i=1

∫
Ω
|Dvi|2 dx (2.2.4)

under the same HMMFM constraint on v.

2.3 Optimisation

To optimise segmentation functionals (2.2.3) and (2.2.4), we use an approach
where updates on c and v are computed alternately. The same general frame-
work is used for both approaches.
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Algorithm 1 Sketch of the algorithms.
Input: Input image volume u, number of classes n, weight parameter µ,

kernel g and maximum number of iterations LRS .
Output: Segmentation (v, c) of u .
Initialisation: Run a K-means or Otsu clustering to produce (c0,v0) from u.

For (2.2.3), an extra variable v̄0 is initialised as v0 and dual variable ξ is
initialised as 0, see below.
for r = 0 to LRS do

. Solution in c
Solve for cr+1 from u and vr.
. Solution in v

Solve for vr+1 from u and cr+1.
end for

2.3.1 Update for c.

Because of their very definitions, updates of the different local functions
c1, . . . , cn are computed via (2.2.2).

2.3.2 Update for v.

To compute an update of the HMMFM variable v for (2.2.3), we use the
framework of [Chambolle et al., 2012] and a proximal method for (2.2.4). In
the sequel, we denote by Ln := L(Ω,∆n) the set of HMMFM Ω → ∆n with
proper regularity: L(Ω,∆n) ⊂W 1,2(Ω,Rn) (resp. ⊂ BV (Ω,Rn)) for functional
(2.2.4) (resp. (2.2.3)).

We first compute the gradient (in the L2(Ω) sense) of the shared data term:

v 7→ ED(c,v) =
1

2

n∑
i=1

∫
Ω
g ∗
[
(u− ci(x))2 vi

]
(x) dx. (2.3.1)

This term is linear in v, thus equal to its differential and the gradient is
obtained by adjunction, via the easily shown rule

〈g ∗ u, v〉L2(Ω) = 〈u, ǧ ∗ (vχΩ)〉L2(R2) (2.3.2)

with ǧ(t) = g(−t). Both Gaussian and NN-kernels are even: ǧ = g. Note also
that if suppu ⊂ Ω, the adjunction rule (2.3.2) simplifies to

〈g ∗ u, v〉L2(Ω) = 〈u, ǧ ∗ (vχΩ)〉L2(Ω) . (2.3.3)

We use these properties to rewrite dvED.w = ED(w, c) as

ED(c,w) =
1

2

n∑
i=1

〈
wi, u

2g ∗ χΩ − 2ug ∗ ci + g ∗ c2
i

〉
L2(Ω)

,
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for a w = (w1, . . . ,wn) with support in Ω. The sought gradient is thus

∇vED =
1

2

(
u2g ∗ χΩ − 2ug ∗ ci + g ∗ c2

i

)n
i=1

. (2.3.4)

Quadratic regularised functional.

Functional (2.2.4) is differentiable with respect to v, with a gradient given by

∇vEQ = ∇vED − µ∆v (2.3.5)

with ∆ a vector Laplacian and assuming null Neumann boundary conditions
on ∂Ω. An update for a current value vr at iteration r is computed in two
steps. In the sequel, tr is a descent step that may or may not depend on r. We
in fact decrease it in our implementation, tr = C/r for a constant C.

1. Implicit descent step: vr = vr − tr (∇vED − µ∆vr), i.e. we solve the
following equation(

−µ∆ + t−1
r id

)
vr+1 = t−1

r vr −∇vED. (2.3.6)

2. Projection:
vr+1 = PLn (vr) . (2.3.7)

This is a variation over an incremental proximal step, the reader is referred
to [Bertsekas, 2011]. Numerically, a 4-points stencil is used to discretise
the Laplacian and we perform one sweep of a Jacobi solver per update. The
orthogonal projection operatorPLn projects each v(x) on the standard simplex.
We use the classical algorithm from [Held and Crowder, 1974].

Total-Variation regularised functional. Functional (2.2.3) is not differen-
tiable with respect to v and the optimisation in v from (2.3.6) is replaced by
the primal dual step of [Chambolle et al., 2012]. We recall it for the reader’s
convenience. In a continuous setting, the total variation is defined by duality.
The local convex envelope of [Chambolle et al., 2012]

J(v) = sup

{
−
∫

Ω

n∑
i=1

vi div ξi : ξ ∈ C∞c (Ω,Rn×d, ξ(x) ∈ K,∀x ∈ Ω

}
with K = {q ∈ Rn×d : |qi − qj | <= 1, ∀i < j} gives in fact the proper
representation of the TV-norm of the HMMFM v, due to a convexity argument.

The primal variable at iteration r is vr, used with the extra one v̄r, while
the dual variable is ξr. We update them as follows. Set ξr0 = ξr, vr0 = vr and
v̄r0 = v̄r. Then we run I iterations

ξri+1 = PK (ξri + τr∇v̄ri ) (2.3.8)
vri+1 = PLn

(
vri + tr

(
div ξri+1 −∇vED

))
(2.3.9)

v̄ri+1 = 2vri+1 − vri . (2.3.10)
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and set ξr+1 = ξrI , v
r+1 = vrI and v̄r+1 = v̄rI . We set I = 3 as it provides

the best results. Numerically, forward differences are used for the gradient
∇, and the numerical divergence is defined by duality. In contrast to the
quadratic regularisation method, the descent step parameter tr and ascent
step parameter τr are kept fixed.

2.4 Experimental Validation

There is no ground truth segmentation available on real tomograms. Therefore
we present and evaluate results on a synthetic volume called SYN250 in the
sequel. It simulates a porous medium, i.e., a medium which contains voids. It
has a background class (void) and three non-background classes, simulating
three different materials in a sample. Four segments are thus expected.

Noise is then added to it. A global bias field is added, resulting in the test
volume SYN250global. A per-segment bias field is also added to SYN250global,
resulting in the second test volume SYN250local. We describe below how we
have generated them, the evaluation methodology used, and the parameter
selection.

All results have been obtained on a personal computer with a 4th genera-
tion Intel Core i7-4910MQ CPU, at 2.90 GHz, 32 GB DDR3 1600 Mhz RAM,
and Ubuntu vivid, 15.04 operating system.

2.4.1 Synthetic datasets

Clean data. It consists of randomly distributed balls on a 3D volume of size
250× 250× 250 voxels. Radii range from 3 to 10 voxels, uniformly distributed
as well as the centre locations. Intensity values follow known material class
distributions, and the sampling is stopped when a background to material
ratio is reached. Ball overlap is allowed to complicate the geometry of the
data.

Bias field and noise. Global bias fields are added as 3rd degree polynomials
with random coefficients scaled to cover a given percentage of the intensity
range. Per-segment bias fields are generated the same way. Gaussian white
noise is added with a standard deviation up to 15% of the intensity range.
Bias field and noise is added to the ground truth.

2.4.2 Performance criteria

We report primarily Sørensen-Dice (DSC) index. True positive rate (TPR /
sensitivity), true negative rate (TNR / specificity), and positive predictive
value (PPV / precision) are computed. Also, porosity (amount of background
in material), pore network connectivity, which summarises the background
class / void inside the material: largest connected pore network divided by
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(a) (b)

(c)

Figure 2.2: The synthetic datasets with global (a) and global + class bias fields (b),
SYN250global and SYN250classrespectively. Each red square highlights
significant differences between the two. In the largest square, an entire
class has been cancelled out, due to the class bias fields. (c) shows the
segmentation result, using the proposed method with µ = 25 and kernel
size = 256, of a real 2-phase tomogram (irn: Chalk P3 1.1.3C), of dimen-
sions 800× 800× 256, with added bias field, inducing intensity variations
between -10% and 20% of the original intensity range.

the total pore size. Porosity ratio (Por. ratio) is the ratio between measured
porosity and the ground truth porosity. Connectivity ratio (Con. ratio) does
the same for connectivity.

These parameters describe properties of the pore space, and are essential
for the correctness of future geophysical applications, like fluid simulation
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Figure 2.3: Segmentation of SYN2503global (row 2) and SYN2503local (row 3), using the
proposed method. Row 1 is ground truth. Each column corresponds to a
class.

studies. A detailed characterisation and explanation of the porosity and
connectivity ratio parameters can be found in [Müter et al., 2012].

Measurements of TPR, TNR, and PPV have been computed for each class
individually. To account for class distribution, a weighted sum is used, with
weights corresponding to the ground truth class distributions. A unique DSC
score formed by averaging the different class versus class is reported.

The running time T is an important factor for the method. All experi-
ments run five iterations of Algorithm 1. We also experimented with up to
100 iterations for all the relevant iterative methods. They showed a slight
improvement in segmentation results, but at the cost of a large running time.

2.4.3 Methods

In the sequel, Equation (2.2.4) is referred to as Tikhonov and Equation (2.2.3) as
TV. We also use the piecewise constant Mumford-Shah method of [Chambolle
et al., 2012] as PCMS. We compare with Otsu and Dual filtering (Dual filter)
methods used in [Müter et al., 2012].
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Table 2.1: Best parameters for the variants of the proposed method, run on
SYN250global.

Method kernel parameter
1

µ

Tikhonov NN 53 91
Tikhonov Gaussian 55 89
TV NN 102 4
TV Gaussian 172 4

Table 2.2: DSC, TPR, TNR, PPV, and T values for the segmentation results of
SYN250global, using the selected methods.

Method kernel DSC TPR TNR PPV T (s)

Tikhonov NN 0.991576 0.98018 0.99504 0.98606 90.10
Tikhonov Gaussian 0.991422 0.97975 0.99497 0.98587 162.92
TV NN 0.956096 0.89397 0.97732 0.93107 228.28
TV Gaussian 0.956050 0.89389 0.97729 0.93097 311.28
Method - DSC TPR TNR PPV T (s)

PCMS - 0.958090 0.88087 0.98259 0.94811 114.96
Otsu - 0.894342 0.78868 0.93196 0.80911 2.02
Dual filter - 0.954899 0.90980 0.96833 0.91485 16.51

2.4.4 Results

Segmentation results of the simulated data are visualised in Figure 2.3, using
Tikhonov and NN-kernels. It clearly illustrates the difficulty of a visual
evaluation, due to the complexity of the data, and the necessity of objective
criteria.

We started by estimating parameters of the methods to provide the best
DSC score. Both Tikhonov and TV include kernel parameters and smoothness
versus data fidelity weight parameters. For a Gaussian kernel, the kernel
parameter is its standard deviation σ, while for the NN-kernel, it is the radius
ρ. Table 2.1 shows the best parameters for the DSC score of the SYN250global
dataset. The methods show comparable behaviours in terms of kernel pa-
rameters as well as smoothness weights. They are slightly suboptimal for
SYN250local, but with a DSC score difference less than 0.05%.

Next, we compare DSC, TPR, TNR, PPV for the SYN250global dataset in
Table 2.2 for our methods and the other test methods. Running time is also
reported in the same table. The same is done for the SYN250local dataset
in Table 2.3. We now report geological relevant criteria, in Table 2.4 for
SYN250global and in Table 2.5 for SYN250local.

For both datasets, Tikhonov methods perform better than the others with
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Table 2.3: DSC, TPR, TNR, PPV, and T values for the segmentation results of
SYN250local, using the selected methods.

Method kernel DSC TPR TNR PPV T (s)

Tikhonov NN 0.978750 0.95435 0.98884 0.96224 76.60
Tikhonov Gaussian 0.977205 0.95039 0.98801 0.95997 160.85
TV NN 0.940032 0.86449 0.96659 0.89872 224.71
TV Gaussian 0.939879 0.86027 0.96764 0.90113 305.83
Method - DSC TPR TNR PPV T (s)

PCMS - 0.941654 0.84959 0.97265 0.91403 108.18
Otsu - 0.888680 0.77736 0.92772 0.79739 1.89
Dual filter - 0.937939 0.87588 0.95904 0.88345 15.44

Table 2.4: Porosity, Connectivity and their respective ratios to the same measures for
the Ground truth, run on SYN250global, using the selected methods.

Method kernel Porosity Por. ratio Connectivity Con. ratio

Ground truth - 0.249998 1.0 0.999617 1.0
Tikhonov NN 0.248629 0.994523 0.998814 0.999197
Tikhonov Gaussian 0.248567 0.994272 0.998851 0.999234
TV NN 0.237072 0.948296 0.990781 0.991160
TV Gaussian 0.237048 0.948198 0.990785 0.991164
Method - Porosity Por. ratio Connectivity Con. ratio

PCMS - 0.233670 0.934685 0.997779 0.998161
Otsu - 0.228024 0.912102 0.980602 0.980978
Dual filter - 0.228537 0.914155 0.996137 0.996519

a slight advantage on all the criteria used. For DSC, TPR, TNR, PPV, there
is a slight advantage to the NN-kernel, while Gaussian seems slightly better
for connectivity measurements, though, the difference is not significant. All
methods present degraded performances when per-segment bias fields are
applied. This is of course to be expected. Figures 2.2a and 2.2b illustrate that
in that situation, it seems that some spatially closed segments merge.

Our proposed method has also been validated on real experimental data
in Figure 2.2c for a high resolution 2-phased setting and Figures 2.4 and 2.5
for a low resolution 3-phased setting. In both cases a [−10, 20] % bias field was
added. From visual inspection, the results are very satisfying in both cases.

Generally the smoothness to data fidelity weight µ has the biggest impact
on the results, and this is of course expected. We optimised for it directly, but
other methods, such as Hansen’s L-curve[Hansen and O’Leary, 1993] could
be considered.

The extend of the kernel was related to the rate of convergence, larger
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Table 2.5: Porosity, Connectivity and their respective ratios to the same measures for
the Ground truth, run on SYN250local, using the selected methods.

Regulariser kernel Porosity Por. ratio Connectivity Con. ratio

Ground truth - 0.249998 1.0 0.999617 1.0
Tikhonov NN 0.250620 1.002488 0.998527 0.998909
Tikhonov Gaussian 0.250724 1.002902 0.998541 0.998923
TV NN 0.243557 0.974236 0.994584 0.994966
TV Gaussian 0.242811 0.971251 0.995116 0.995498
Method - Porosity Por. ratio Connectivity Con. ratio

PCMS - 0.239993 0.959977 0.998053 0.998436
Otsu - 0.234354 0.937422 0.979921 0.980297
Dual filter - 0.236129 0.944522 0.996227 0.996609

kernels converging faster. Of course, choosing a kernel size approaching the
dimensions of the image will result in a Chan-Vese / piecewise constant-like
behaviour and not remove the bias field properly. Choosing too small a kernel
produces similarly poor results because the underlying image structure is
not represented well. Kernel extents should be related to the frequency /
scale of the bias field. Priori knowledge of this scale could be obtained by
considerations of the physics of the measurement device, as well as prior
knowledge of the material content.

2.5 Conclusion

In this paper we have proposed two multiphase segmentation methods that
cope with noise and bias fields for complex low structured volumes, especially
targeted to µCT and nanoCT used in geology. Based on the Mumford-Shah
functional, they discriminate regions based on local averages of their contents.
Using HMMFM and with Tikhonov regularisation or TV regularisation, they
provide spatially coherent class posteriors of voxels. The methods are easy to
implement and reasonably fast, though we have not optimised for running
time. Their running time performances could be greatly improved by proper
parallelisation.

We have investigated the methods on synthetic datasets via Gaussian- and
NN-kernels. They appear robust to parameter variation. They show similar
results, though with an advantage to NN-kernels and quadratic regularisation.
We have validated them using some classical segmentation validation criteria
as well as more specific criteria used in geoscience. In a future work, we will
investigate means for estimating the kernel extent and develop parallel code.
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Figure 2.4: Segmentation of a real 3-class dataset full size, (irn: Hod chalk #16 from
the North Sea Basin) using the proposed method. Size = 256× 1025× 825.
ν = 300, kernel size = 5123.
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Figure 2.5: Segmentation of a real 3-class dataset zoomed version, (irn: Hod chalk
#16 from the North Sea Basin) using the proposed method. Size = 256×
1025× 825. ν = 300, kernel size = 5123.
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3 Local Mean Geodesic Active
Regions

The work presented in this chapter is based on [Hansen and Lauze, 2018]†.

† Hansen, J. D. K. and Lauze, F. (2018). Multiphase Local Mean Geodesic
Active Regions. In 24th International Conference on Pattern Recognition,
pages 3031–3036. IEEE.
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Abstract. This paper presents two variational multiphase segmentation
methods for recovery of segments in weakly structured images, present-
ing local and global intensity bias fields, as often is the case in micro-
tomography. The proposed methods assume a fixed number of classes.
They use local image averages as discriminative features and binary la-
belling for class membership and their relaxation to per pixel/voxel pos-
terior probabilities, Hidden Markov Measure Field Models (HMMFM).
The first model uses a Total Variation weighted semi-norm (wTV) for
label field regularisation, similar to Geodesic Active Contours, but with
a different and possibly richer representation. The second model uses
a weighted Dirichlet (squared gradient) regularisation. Both problems
are solved by alternating minimisation on computation of local class
averages and label fields. The quadratic problem is essentially smooth,
except for HMMFM constraints. The wTV problem uses a Chambolle-
Pock scheme for label field updates. We demonstrate the capabilities
of the approaches on synthetic examples, and illustrate them on a real
examples.

3.1 Introduction

Image Segmentation is one of the very first steps necessary in Image Analysis
and understanding. The extraordinary variety of image sources and settings
has generated and continue to generate a very broad spectrum of approaches
and techniques. Our application will be the analysis of geological samples
through X-ray computerised micro or nanotomography (X-ray µCT or nCT).
Figure 3.1 serves as an example of typical material reconstructions. While we
visually observe, in the left example, essentially homogeneous materials with
mostly well defined edges up to some scale, we also note a clear bias field.
In the right image, coarser resolution and some CT reconstruction artifacts
can make some of the edges less pronounced. In both images individual
object sizes and shapes are not notably structured. While Deep Learning

32



3.1. Introduction

(a) (b)

Figure 3.1: Two (slices) of tomograms with internal reference names (irn): Hod chalk
#16[Müter et al., 2014] (a) and WIG1T #156 (b). A bias field is clearly
present in (a).

methods are generally state of the art in segmentation, they are extremely data
intensive and unfortunately, ground truth segmentation of the type of material
we are interested in is rare. Thus we instead resort to methods which attempt
to model the signal that need processing. In a previous work [Hansen and
Lauze, 2017], we introduced two multiphase variational algorithms capable of
modelling non stationarity of the phases together with classical regularisation
that encourages limited phase interface length/areas. They were intensity
based and did not use the local edge structure information. In this work we
add edge information to the regularisations, to improve robustness of the
method. The images and volumes we are interested in have limited structure
and we model such as a function u : Ω ⊂ Rd → R, with d = 2, 3 as

u = L

(
n∑
i=1

αiχΩi

)
+ η (3.1.1)

where Ωi is the ith segment and αi its intensity. L models blur and resolution
effects, such as partial volume; η contains the noise and bias field, which
generates non stationarity on the observed segments. While still depending on
the underlying intensity, the noise in high-photon-count synchrotron imaging
can be considered Gaussian[Buzug, 2008].

We choose to base our method on the classical region-based Mumford-
Shah (MS) functional[Mumford and Shah, 1989], that models the non station-
arity in segments by proposing the following data representation:

E(c,Γ;u) =
1

2

∫
Ω

(c− u)2 dx+
ν

2

∫
Ω\Γ
|∇c|2 dx+ µ`(Γ), (3.1.2)
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here Γ is a hypersurface in Ω, such that Ω\Γ is a disjoint union of regions Ω1 t
· · · tΩn(Γ), n is the number of classes determined by Γ, and `(·) the Hausdorff
measure. At optimality, the MS model outputs the sought decomposition of Ω
as simplified representations c of the input image u.

Numerous approaches have been proposed to deal with the optimisation
of Γ, such as the Chan and Vese formulation[Chan and Vese, 2001] - a two-
phase approach, later extended to multiphase, where c is piecewise constant
and equates to the average of its respective class. [Lauze and Nielsen, 2008]
attempted to model complex non-stationarity and transparency-like effects,
observed in X-ray imaging using an inpainting-based approach. Both of these
methods however are unable to cope with local or global bias fields by their
assumptions. Although additive bias field problems are not extensively stud-
ied, multiplicative ones are common in the MRI community, as for example
seen in [Pham and Prince, 1999].

In our previous work [Hansen and Lauze, 2017], we proposed two meth-
ods sharing the same data attachment term based on local average discrimina-
tion features with different regularisers. They seek to implicitly deal with the
bias fields, rather than explicitly estimating it, like the two-phase approach of
[Huang and Zeng, 2015]. The work of [Wang et al., 2010] is essentially equiva-
lent to our approach for the data term, though for a two-phases formulation
based on a levelset implementation.

We instead write the segmentation problem as a binary labeling problem,
with regularisation of the label fields. In order to make the labeling sensitive
to the local image structure, we modify the regularisation to incorporate a
measure h(x) of the local structure around a point x ∈ Ω, in a way similar
to [Paragios and Deriche, 2002a], but with our labeling. To optimise it, by
continuous methods, we convexify it and show how the local tight relaxation
of [Chambolle et al., 2012] can be easily extended by incorporating the measure
of the structure. As in the seminal work of [Caselles et al., 1997], the structure
measure h(x) can be interpreted as an isotropic Riemannian metric on the
image / volume domain.

The convexification of the problem also leads to a natural reformulation in
terms of the Hidden Markov Measure Field models (HMMFM) of Marroquin
[Marroquin et al., 2003], as implicitly done in [Chambolle et al., 2012] and our
previous work [Hansen and Lauze, 2017]. Because of the operator L in (3.1.1),
we may want smoother label fields and we also study a weighted quadratic
regularisation.

The rest of the paper is organised as follows: In Section 3.2 we extend
our two previously described models, introducing an image structure guided
regularisation of the label field. We propose updated minimisation algorithms
in Section 3.3. Their capabilities are experimentally demonstrated in Section
3.4 and compared with previous results. In the last section we conclude and
discuss future work.
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3.2 Derivation of the model

Before proceeding to the introduction of our model, we need a few notations.
In the sequel, the standard basis of Rn is denoted Bn = (e1, . . . , en). A binary
n-labeling function v is a vector valued function v = (v1 . . . , vn) : Ω → Bn.
The convex hull of Bn is the standard simplex Σn = {(s1, . . . , sn) |∀i, si ≥
0,
∑n

i=1 si = 1} and HMMFM are simply Σn-valued functions. The interior of
a subset H ⊂ Ω is denoted H̊ . In the sequel we follow closely the notations of
[Chambolle et al., 2012].

3.2.1 Weighted Perimeters and Relaxation.

Recall that the total variation of a function u : Ω→ R is defined as

J(u) = inf

{∫
Ω
udivϕdx|ϕ ∈ C1

c

(
Ω,Rd

)
, ‖ϕ(x)‖ ≤ 1

}
(3.2.1)

and if
∫

Ω|Du| := J(u) < ∞, u has bounded variation. The space of functions
of bounded variations is denoted BV (Ω). When u = χH , H ⊂ Ω is the
characteristic function of H , J(χH) = Per(H) the perimeter of H in Ω. This
extends to vector valued functions and the reader is referred to [Chambolle
et al., 2012]. Given a function h : Ω → R+, there is a notion of weighted
total variation of u, Jh(u) =

∫
Ω h|Du|, by replacing the constraint ‖ϕ(x)‖ ≤ 1

by ‖ϕ(x)‖ ≤ h(x) in (3.2.1). Call the corresponding space BVh(Ω). The
h-perimeter of H ⊂ Ω is Perh(H) = Jh (χH). Under sufficient regularity
conditions on h, this can be interpreted as the Hausdorff measure of the
boundary ∂H ofH on the Riemannian manifold Ω equipped with the isotropic
metric H(x) = h2(x)Id. Given a binary labeling v : Ω → Bn, each vi is the
characteristic function of an Ωi ⊂ Ω and the measure of Γ = Ω− tΩ̊i is given
by 1

2

∑
i=1n Perh Ωi. In the sequel we set

BVh(Ω,Bn) = {v : Ω→ Bn, vi ∈ BVh(Ω)},

BVh(Ω,Σn) = {v : Ω→ Σn, vi ∈ BVh(Ω)}.

Define

Fh(v) =

{
1
2

∑
i=1n Perh Ωi v ∈ BVh(Ω,Bn)

+∞ v 6∈ BVh(Ω,Bn).
(3.2.2)

As BVh(Ω,Bn) is not convex, Fh(v) is not. Computing its convex relaxation
does not seem possible but a tightest local relaxation, under general enough
assumptions, can be obtained by setting

Jh(v) =

{∫
Ω ψ
∗∗(x,Dv) v ∈ BVh(Ω,Σn)

+∞ v 6∈ BVh(Ω,Σn).
(3.2.3)
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where ψ∗∗ is the convex relaxation ([Ekeland and Téman, 1999]) w.r.t. to its
second variable p ∈ Rn×d of ψ, defined by

ψ(x,p) =

{
h(x)|p| if p = (ei − ej)⊗ p
+∞ otherwise.

Setting

Kα = {q = (q1, . . . , qn)T ∈ Rn×d, |qi − qj | ≤ α,∀i < j} (3.2.4)

one has p 7→ ψ∗∗(x,p) =
∑

q∈Kh(x) q · p.
Proofs are very similar to the non weighted case and ommitted in this

work.

3.2.2 Non Stationarity and Proposed Models.

In our previous work [Hansen and Lauze, 2017], we proposed to minimise

E(v;u) =
1

2

n∑
i=1

∫
Ω

(ci − u)2vi dx+
µ

2

n∑
i=1

∫
Ω
|Dvi|2 (3.2.5)

with
ci(x) =

(uvi) ∗ g(x)

vi ∗ g(x)
, x ∈ suppvi. (3.2.6)

arguing that it can be seen as an approximation of (3.1.2), after replacing the
quadratic regulariser

∫
|∇v|2 with an appropriate infinite order one. Energy

(3.2.5) depends only on the labeling function v, though in a complicated way
in the local average (3.2.6). The gradient for the data term of (3.2.5) can be
easily derived, but the resulting object is rather complex. This can be replaced
by a “Chan-Vese”-like trick. Indeed, for x ∈ Ωi, ci(x) is the minimiser of
d 7→ g ∗

[
(u− d)2vi

]
(x) as shown by a direct calculation. Replacing the flat

regularisation by the weighted one introduced in the previous paragraph, we
propose the following generalised Geodesic Active Regions functional

ETV (c,v) =
1

2

n∑
i=1

∫
Ω
g ∗
[
(u− ci(x))2vi

]
(x) dx+ µJh(v) (3.2.7)

with v(x) ∈ Σn (a.e), c = (c1 . . . , cn), and ci : Di ⊃ suppvi → R. The
relaxation of the perimeter term used in (3.2.7) is very tight and often produces
almost binary label fields v. While this may be desirable in many situations,
this can be a drawback, especially when partial volume effects have strong
influence, as this is often the case in our 3D micro-CT applications, where
a posterior probability may be better than a hard assignment. To avoid this
relaxation behavior, we can replace the perimeter term by a quadratic one:

EQ(c,v) =
1

2

n∑
i=1

∫
Ω
g ∗
[
(u− ci(x))2vi

]
(x) dx+

µ

2
‖Dv‖2h (3.2.8)

with ‖Dv‖2h =
∑n

i=1

∫
Ω h|Dvi|2 under the same HMMFM constraint on v.
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3.3. Optimisation

3.3 Optimisation

To optimise segmentation functionals (3.2.7) and (3.2.8), we use an approach
where updates on c and v are computed alternately. The same general frame-
work is used for both approaches.

Algorithm 2 Sketch of the algorithms.
Input: Input image volume u, number of classes n, weight parameter µ,

kernel g and maximum number of iterations LRS .
Output: Segmentation (v, c) of u.
Initialisation: Run a K-means or Otsu clustering to produce (c0,v0) from u.

For (3.2.7), an extra variable v̄0 is initialised as v0 and dual variable ξ is
initialised as 0, see below.
for r = 0 to LRS do

Solve for cr+1 from u and vr.
Solve for vr+1 from u and cr+1.

end for

3.3.1 Update for c.

Because of their very definitions, updates of the different local functions
c1, . . . , cn are computed via (3.2.6).

3.3.2 Update for v.

To compute an update of the HMMFM variable v for (3.2.7), we use the
framework of [Chambolle et al., 2012] modified to incorporate the weight
function h and a simple proximal method for (3.2.8). We only highlight the
parts that differ from our previous work [Hansen and Lauze, 2017] due to the
presence of the weight funtion h.

Both formulations share their data term

v 7→ ED(c,v) =
1

2

n∑
i=1

∫
Ω
g ∗
[
(u− ci(x))2 vi

]
(x) dx. (3.3.1)

Quadratic regularised functional.

Functional (3.2.8) is differentiable with respect to v, with a gradient given by

∇vEQ = ∇vED − µ∇ · (hDv) (3.3.2)

with∇· a vector divergence, i.e. divergence of the lines of the matrix hDv, with
Dv the Jacobian matrix of v, assuming null Neumann boundary conditions
on ∂Ω. The implicit descent step of [Hansen and Lauze, 2017] is replaced by
vr = vr−tr (∇vED−µ∇·(h∇vr)), i.e. we solve the following equation(

−µ∇ · h∇+ t−1
r id

)
vr+1 = t−1

r vr −∇vED. (3.3.3)
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3. LOCAL MEAN GEODESIC ACTIVE REGIONS

Numerically, a 4-points stencil is used to discretise the Laplacian and we
perform one sweep of a Jacobi solver per update.

Total-Variation regularised functional.

Functional (3.2.7) is not differentiable with respect to v and the optimisation
in v from (3.3.3) is replaced by the primal dual step of [Chambolle et al., 2012]
adapted to the weighted total variation. Define

Kh =
{
ξ ∈ C1

c (Ω,Rn×d), ξ(x) ∈ Kh(x), ∀x ∈ Ω
}
.

with Kα, α > 0 defined in (3.2.4). Modifying the optimisation scheme in
[Chambolle et al., 2012] to incorporate the function h is straightforward. The
orthogonal projection PKh on Kh is the local version of the projection on K,
and can as in [Chambolle et al., 2012], be computed by Dykstra projection
algorithm. Numerically, forward differences are used for the gradient ∇, and
the numerical divergence is defined by duality. We run only three iterations
of the Chambolle-Pock algorithm for each update of v.

3.4 Experimental Validation

Ground truth annotated segmentations are not available for real tomograms.
We use the same synthetic volumes as used in [Hansen and Lauze, 2017]
for this framework. They are created as follow: a first volume of size 2503

voxels, called SYN250 is generated. It consists of a background and randomly
distributed balls with radii between 3 and 10 voxels. Intensity values for these
balls follow known material class distribution and sampling is done until a se-
lected background to material ratio is reached. To allow for more complicated
geometry, balls can overlap. Global and per segment bias fields are added as
3rd degree polynomials with randomised coefficients. Gaussian distributed
noise of standard deviation corresponding to 15% of the intensity range is
also added. The volume with only global bias field is called SYN250global, the
one with added segment bias fields is called SYN250class. The two datasets
can be seen in Figure 3.2.

The weight / structure function used in our experiments is a classical edge
detector one,

h(x) =
1

1 +
(
|∇uσ(x)|

κ

)2

where uσ = gσ ∗u is the convolution of uwith a isotropic Gaussian of standard
deviation σ and κ is an edge / contrast parameter. In all our experimentations,
σ = 0.5 voxels and κ = 0.05.
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3.4. Experimental Validation

(a) (b)

Figure 3.2: The synthetic datasets SYN250global and SYN250class with global (a) and
global + per segment bias fields (b), respectively. The red squares illustrate
the important differences between the two. The largest square show an
entire segment has been canceled out, merged due to the per segment bias
fields.

3.4.1 Performance of Segmentation

We primarily report the Sørensen-Dice (DSC) coefficient, true positive rate
(TPR / sensitivity), true negative rate (TNR / specificity), and positive predic-
tive value (PPV / precision). Because our goal is the study of porous rocks,
we report two geophysical parameters: porosity (the lack of material) and
pore network connectivity, which describes the pore class inside the mate-
rial: specifically, it is the largest connected pore network divided by the total
amount of pore. Pore space properites like these are important for future geo-
physical applications, like fluid flow analysis. For a more in-depth explanation
of the two parameters we refer to [Müter et al., 2012].

Since the measurements of TPR, TNR, and PPV are based on individual
classes, we report a weighted sum version, using the ground truth class
distributional weights. DSC scores are disclosed as averaing the individual
class vs class scores.

All listed results of the proposed method, are based on 5 gradient descent
steps, but even for 100 descent steps the similarity measures are still slightly
improving. A convergence criteria is therefore advised, based on the change
in mean squared error of the label field, in each iteration.
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3. LOCAL MEAN GEODESIC ACTIVE REGIONS

Figure 3.3: A segmentation result for SYN2503global and 4 classes

Figure 3.4: Soft labeling segmentation of SYN2503local using the proposed Tikhonov
method. The two classes illustrate the difficulty of visual interpretation of
the results.

3.4.2 Methods

In the sequel, W-Tikhonov refers to the proposed weighted quadratic method
and W-TV refers to the proposed weighted total variation method. We com-
pare with method (2.4) and (2.5) from [Hansen and Lauze, 2017] by setting
h = 1, and refer to these as Tikhonov and TV respectively. We also compare
with the piecewise constant Mumford-Shah proposed method of [Chambolle
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3.4. Experimental Validation

Table 3.1: Best parameters for the variants of the proposed method, run on
SYN250global.

Method kernel parameter
1

µ

Tikhonov NN 45 20
TV NN 65 45
W-Tikhonov NN 45 20
W-TV NN 65 45

et al., 2012] using alias PCMS. We also use Otsu thresholding and the Dual
filtering method of [Müter et al., 2012].

3.4.3 Results

Figure 3.3 and Figure 3.4 show segmentation results of the synthetically gen-
erated data, using the weighted Tikhonov method. The figures highlight
the complications of visually evaluating results, and necessitates objective
quantitative criteria, due to the complexity of the data.

For both the Tikhonov and TV case, kernel scale and smoothness versus
data fidelity weight parameters were estimated first, with respect to highest
DSC score of the SYN250global dataset. The kernel parameter for our selected
nearest neighbour (NN)-kernel is the radius ρ. We do not include Gaussian
kernels as NN-kernels seemed to slightly outperform them. We intentionally
keep the parameters fixed to illustrate the sole contribution of adding the h
function. Optimal parameters, based on DSC scores, can be found in Table 3.1.

DSC, TPR, TNR, and PPV are compared in Table 3.2 for SYN250global, for
the proposed and selected test methods. Fixing the parameters we found
to be optimal from segmenting SYN250global, we now segment SYN250local
and report the results in Table 3.3. Table 3.4 and 3.5 contains the relevant
geological criteria for SYN250global and SYN250local respectively.

For all measurements used, the proposed weighted Tikhonov method vari-
ant performs slightly better than the others, except for the connectivity scores
- which gives the edge to the regular Tikhonov method. As we expect, all
used criteria show decreased scores for the more complex dataset SYN250local,
as different class segments appear to merge, as illustrated in Figures 3.2a
and 3.2b. However these differences are only around 1.5%. We note a slight
advantage to regular TV regularisation over the proposed weighted version.
This could be parameter or data specific, as visual results on experimental
data look preferable for the weighted variant of the regulariser. The choice of
h function and its parameters should also be adjusted to the regulariser and
dataset.

We also compared the proposed W-Tikhonov and the regular Tikhonov
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3. LOCAL MEAN GEODESIC ACTIVE REGIONS

Table 3.2: DSC, TPR, TNR, PPV, and T values for the segmentation results of
SYN250global, using the selected methods.

Method kernel DSC TPR TNR PPV

Tikhonov NN 0.989286 0.97406 0.99336 0.98296
TV NN 0.984218 0.96703 0.98956 0.97013
W-Tikhonov NN 0.990615 0.97918 0.99376 0.98325
W-TV NN 0.980704 0.92985 0.97880 0.94153
Method - DSC TPR TNR PPV

PCMS - 0.958090 0.88087 0.98259 0.94811
Otsu - 0.894342 0.78868 0.93196 0.80911
Dual filter - 0.954899 0.90980 0.96833 0.91485

Table 3.3: DSC, TPR, TNR, PPV, and T values for the segmentation results of
SYN250local, using the selected methods.

Method kernel DSC TPR TNR PPV

Tikhonov NN 0.973969 0.94232 0.98584 0.95473
TV NN 0.967062 0.93240 0.98052 0.93869
W-Tikhonov NN 0.975307 0.94816 0.98604 0.95477
W-TV NN 0.963770 0.92598 0.97820 0.93244
Method - DSC TPR TNR PPV

PCMS - 0.941654 0.84959 0.97265 0.91403
Otsu - 0.888680 0.77736 0.92772 0.79739
Dual filter - 0.937939 0.87588 0.95904 0.88345

methods on 3-phased experimental dataset with low resolution, as seen in
Figure 3.5. Inspecting the result visually we conclude that they are very satis-
fying for the proposed weighted variant, as pore throat branches and crooks
are segmented more satisfiably. These features are essential to petrophysical
parameter extraction from fluid flow simulations and further analysis.

As expected, the biggest influence on the segmentation results stems from
the data fidelity to smoothness weight µ. Instead of manually optimising
this parameter, we could employ Hansen’s L-curve method[Hansen and
O’Leary, 1993]. The rate of convergence is naturally influenced by the quality
of the initialisation, but also the extend of the kernels used. We observe that
larger kernels faster. The optimal scale of these is connected to the severity
of the bias field and the intensity frequency of these. If these parameters
are not easily accessible from the material content, prior physics knowledge
could be acquired from the measurement devices. Choosing a kernel that
covers the entire image domain will naturally result in a piecewise constant-

42



3.4. Experimental Validation

Figure 3.5: 10 iteration segmen-
tation of a crop of a
real 3-class dataset (irn:
WIG1T #156 from the
North Sea Basin) using
the unweighted and
proposed weighted
Tikhonov method. Size
= 1025 × 1025. 1

µ = 10,
kernel size = 32 for both
methods, κ = 0.05 and
gσ = 1 in the weighted
case.
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3. LOCAL MEAN GEODESIC ACTIVE REGIONS

Table 3.4: Porosity and Connectivity measurements compared to the Ground truth
measures, run on SYN250global, using the selected methods.

Method kernel Porosity Connectivity

Ground truth - 0.249998 0.999617
Tikhonov NN 0.245389 0.999065
TV NN 0.244769 0.996200
W-Tikhonov NN 0.247282 0.998602
W-TV NN 0.242451 0.995784
Method - Porosity Connectivity

PCMS - 0.233670 0.997779
Otsu - 0.228024 0.980602
Dual filter - 0.228537 0.996137

Table 3.5: Porosity and Connectivity measurements compared to the Ground truth
measures, run on SYN250local, using the selected methods.

Regulariser kernel Porosity Connectivity

Ground truth - 0.249998 0.999617
Tikhonov NN 0.248905 0.999047
TV NN 0.249490 0.996240
W-Tikhonov NN 0.250266 0.998517
W-TV NN 0.248083 0.995940
Method - Porosity Connectivity

PCMS - 0.239993 0.998053
Otsu - 0.234354 0.979921
Dual filter - 0.236129 0.996227

like behavior for the data term and consequently not properly remove bias
fields. If a too small kernel is employed, similar poor results can be observed,
as the representation of the underlying image structure is not acceptable.
Additionally, the convergence rates of smaller kernel model selections is
heavily influenced by a good initialisation.

3.5 Conclusion

We proposed two variational multiphase segmentation methods in this paper,
designed to handle complex, low structured data contaminated by noise and
bias field. These methods are especially targeted to µCT and nanoCT used in
geology. We have done it by desinging functionals with a data term robust
to potential bias field and Gaussian noise, and a label field regulariser which
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3.5. Conclusion

is adpated to the underlying image structure. We have shown how, in the
weighted TV case, this can be easily optimised by a Chambolle-Pock scheme,
while it leads to a standard elliptic problem in the quadratic case. We have
inspected performance of our methods on synthetically generated datasets as
well as a real dataset. The proposed methods are straightforward to implement
and run fairly quick, without being optimised for it. Running time could be
notably improved by parallelisation. In future works, we plan to investigate
techniques for kernel extent estimation and implement parallelisation. For the
regularisers, we will also look into general anisotropic TV terms.
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4 Rat Brain Extraction and
Segmentation

The work presented in this chapter is based on [Hansen et al., 2018]†.

† Hansen, J. D. K. et al. (2018). Brain Extraction and Segmentation Frame-
work for Bias Field Rich Cranial MRI Scans of Rats. In Book of Abstracts,
Annual meeting ISMRM, page 3249, Paris, France.
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Abstract. This abstract presents a framework to extract brain tissue and
internal Cerebrospinal fluid in cranial magnetic resonance imaging of
rats with strong bias fields. Desired segments are obtained through
bias field correction and several passes of segmentation. A refinement
procedure is proposed to remove brain surface CSF. Promising planar
and 3D visualisations of results are presented and demonstrate the
capabilities of the framework.

4.1 Introduction

Magnetic resonance imaging employing surface receive coils often faces the
problem of strong image bias fields in data that makes relevant tissue ex-
tractions very challenging, as bias field correction algorithms cannot fully
correct for it. We present a framework for the extraction of rat brain tissue
and the cerebrospinal fluid (CSF) networks, in the case where MR volumes
are affected by strong bias fields. We demonstrate that our framework obtains
very satisfactory segmentation results.

4.1.1 Animals

Unaffected male rats of the Wistar Kyoto stain (WKY) and spontaneously
hypertensive rats (SHR) were obtained from Charles River, Germany. Separate
groups of rats were scanned at two age-ranges: young (7-9 weeks old; WKY7,
n = 11; and SHR7, n = 8) and young adults (19-21 weeks WKY19, n = 8; and
SHR19, n = 9). All treatments and imaging were performed according to
protocols approved by the IACUC, and according to a protocol approved by
the University of Copenhagen animal experimentation committee.
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4.1. Introduction

Figure 4.1: The proposed framework, highlighting each step as a box inside the
dotted blue box. Arrows indicate that the output of the origin box is used
as input in the destination box.

4.1.2 MRI

All MRI investigations was conducted on a 9.4 T magnet (Bruker Biospec
9.4/30 USR) interfaced to a Bruker Advance III console and controlled by
Paravision 5.1 software (Bruker BioSpin) at the Panum Institute, University
of Copenhagen. Imaging was performed with an 86 mm3 volume resonator
and a surface quadrature array receiver coil. Images were acquired with the
spoiled gradient FLASH3D sequence (TE: 4 ms, TR: 15 ms, NA: 3; matrix:
128 × 128 × 128, voxel size: 0.24 × 0.24 × 0.26 mm, FA: 15°, scan time: 4:05
min).
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4. RAT BRAIN EXTRACTION AND SEGMENTATION

4.2 Methods

The proposed framework consists of 4 major steps and is illustrated in Fig-
ure 4.1. Each step is explained below.

4.2.1 Bias field correction

A standard bias field correction method[Tustison et al., 2010] is applied. This
alone does not completely remove the bias and standard segmentation meth-
ods fail to deal with it.

4.2.2 2-class segmentation

The local-means method proposed in [Hansen and Lauze, 2017, Brox and
Cremers, 2009] is used and seeks to minimise the functional

EQ(c,v) =
1

2

n∑
i=1

∫
Ω
g ∗
[
(u− ci(x))2vi

]
(x) dx+

µ

2

n∑
i=1

∫
Ω
|Dvi|2 dx (4.2.1)

where vi ∈ [0, 1] is the label field describing the probability of belonging to
class i. u is the bias corrected volume, g a moving average kernel and

ci(x) =
(uvi) ∗ g(x)

vi ∗ g(x)
, x ∈ suppvi. (4.2.2)

This method produces a clear contour of the brain tissue, with strong edges,
that makes rough brain extractions possible.

4.2.3 GAC brain extraction

A full brain mask is retrieved from the skull, by initialising a Geodesic Active
Contour (GAC) based model[Álvarez et al., 2010, Marquez-Neila et al., 2014]
in the center of the segmented brain. Any ’holes’ that would occur in the
resulting brain mask are filled, using mathematical morphology operations.

4.2.4 3-class segmentation

The retrieved brain mask is used to extract the brain tissue segment of the
binary segmentation result and is in turn segmented by a tighter 3-class local-
means segmentation. The three classes are background, CSF, and brain tissue.
A single connected brain tissue component is expected, so only the largest is
kept.

To refine the segmentation of the internal CSF network, we process as follows.
A run of the GAC method on the final brain tissue class provides a more
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4.3. Results

accurate brain mask. It is used to extract the internal CSF network from the
final CSF class, removing surface CSF. Small objects are removed in the CSF
class to highlight larger networks in the brain.

4.3 Results

The framework is run on a sample rat cranium volume affected by significant
bias. In Figure 4.2 the result of step 2 and 4 are shown for different brain slices.

Figure 4.3 presents a 3D surface view of the combined brain tissue matter
(pink) and CSF (blue) for different viewing angles. In Figures 4.4 and 4.5
respectively, the 3D surfaces of the isolated brain tissue and CSF network can
be seen.

4.4 Discussion and Conclusion

A framework that satisfactorily segments and extracts brain tissue and internal
CSF networks in rat brain MRI scans affected by strong image bias fields has
been proposed. The framework combines bias field correction with several
passes of segmentation to adequately extract the relevant classes. 3D surface
results for brain tissue and the major CSF network as well as axial, sagittal,
and coronal planes have been presented.

To further improve on the results, a distance based feature could be incorpo-
rated, as the severity of the bias field is correlated with the distance to the
coils. Additionally, strong priors on the connectivity of the CSF network will
be integrated in the model. While the framework introduces more parameters,
we believe the improvements in extracting high quality tissues from medical
imaging affected by strong bias fields are highly beneficial.
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4. RAT BRAIN EXTRACTION AND SEGMENTATION

Figure 4.2: The rows highlight: The original image, showing a severe bias field; the
bias field corrected image, which still has quite a bit of bias left; The
final segmentation and extraction of the example MRI using the proposed
framework. Each column provides the axial, sagittal, and coronal planes
for the same brain. Brain tissue is light gray while CSF is is dark gray.
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4.4. Discussion and Conclusion

Figure 4.3: The columns show different viewing angles of the brain by rotating 180
degrees around the corresponding axis of the resulting brain. The rows
from top to bottom show the x, y, and z direction for the same brain
segmentation. Brain tissue is pink, while CSF is light blue.
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4. RAT BRAIN EXTRACTION AND SEGMENTATION

Figure 4.4: The columns from left to right show the negative and positive direction
of the brain tissue (pink) segmentation, resulting from step 4. The rows
from top to bottom show the x, y, and z direction for the same brain
segmentation.
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4.4. Discussion and Conclusion

Figure 4.5: Each column shows two different angles of the extracted major CSF net-
work (light blue) segmentation, from running our framework. The rows
from top to bottom presents: The raw CSF segmentation; The internal
CSF network after removing surface CSF; The internal CSF network after
having removed small CSF objects. When rotating the volume in a 3D
visualiser the network structure and symmetry is more apparent.

55





5 Automatic Brain Segmentation
using Shape Priors

The work presented in this chapter is based on a manuscript† submitted and
currently under review at the International Society for Magnetic Resonance in
Imaging.

† Hansen, J. D. K. et al. (2019). Automatic Brain Segmentation Framework
for Bias Field Rich Cranial MRI Scans of Rats and Mice via Similarity
Invariant Shape Priors.
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Abstract. This abstract presents an extension to our previous work for
the extraction of rat brain tissue and internal cerebrospinal fluid net-
works in MR imaging of rat crania that display severe bias fields. This
work contributes automation and robustness for the skull extraction
module by introducing an automatic similarity invariant shape prior
segmentation method. We demonstrate the capabilities of our frame-
work on both rat brain as well as mouse brain data, using the same
minimal number of rat brain priors.

5.1 Introduction

MR imaging using surface receiver coils are in general affected by strong
image bias fields, for which only partial correction is available. This makes
subsequent feature extraction and analysis a difficult task. In a previous
work 1 we presented a semi-automatic framework that was able to segment
and extract rat brain tissue and the cerebrospinal fluid (CSF) networks. In
this work we improve on the robustness of the method and make it fully
automatic by introducing segmentation shape priors which, by construction,
are invariant to rotation, scale, and translation. We show that our improved
method obtains very good segmentation results, while automating the process
and limiting the number of free parameters.
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5.1. Introduction

Figure 5.1: Flowchart diagram of the proposed pipeline, with shape prior segmenta-
tion. Input and output data is indicated by the arrows.

5.1.1 Animals

Source 1 (identical to our previous work[Hansen et al., 2018]): Unaffected
male rats of the Wistar Kyoto stain (WKY) and spontaneously hypertensive
rats (SHR) were obtained from Charles River, Germany. Separate groups of
rats were scanned at two age-ranges: young (7-9 weeks old; WKY7, n = 11; and
SHR7, n = 8) and young adults (19-21 weeks WKY19, n = 8; and SHR19, n= 9).
All treatments and imaging were performed according to protocols approved
by the IACUC, and according to a protocol approved by the University of
Copenhagen animal experimentation committee.

Source 2: Male C57Bl6 mice (7-8 weeks old) were induced into deep anesthesia
with 5% isoflurane and maintained under 2% isoflurane during the MRI
experiments. All animal experiments were preapproved by the institutional
and national authorities and were carried out according to European Directive
2010/63.
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5. AUTOMATIC BRAIN SEGMENTATION USING SHAPE PRIORS

5.1.2 MRI

Source 1: All MRI investigations was conducted on a 9.4 T magnet (Bruker
Biospec 9.4/30 USR) interfaced to a Bruker Advance III console and controlled
by Paravision 5.1 software (Bruker BioSpin) at the Panum Institute, University
of Copenhagen. Imaging was performed with an 86 mm3 volume resonator
and a surface quadrature array receiver coil. Images were acquired with the
spoiled gradient FLASH3D sequence (TE: 4 ms, TR: 15 ms, NA: 3; matrix:
128×128×128, voxel size: 0.24×0.24×0.26 mm, FA: 15°, scan time: 4:05 min).

Source 2: MRI was performed on a 9.4T Bruker BioSpec scanner controlled by
Paravision 6.0.1 software, using a 86 mm3 quadrature resonator for transmit-
tance and a 4-element cryoprobe for reception. Images were acquired with a
3D multi-gradient echo sequence (16 echos, TE1: 2.2 ms, ∆TE: 2.2 ms, TR: 100
ms, matrix: 180× 90× 115, voxel size: 0.11× 0.1× 0.1 mm, FA: 60°, scan time:
12:16 min). Processing was performed on the mean across all 16 echo times.

5.2 Methods

Our pipeline is modified from [Hansen et al., 2018] and can be seen in Fig-
ure 5.1. It consists of four steps: 1) bias correction, 2) a preliminary 2-classes
segmentation, robust to remaining bias, 3) a segmentation with a proposed ker-
nel density shape prior to automatically detect and segment the brain / CSF
segments, and 4) a 3-classes (background, brain tissue and CSF) segmentation.
Step 1, 2, and 4 are identical to [Hansen et al., 2018].

5.2.1 Brain shape prior segmentation

In this step, we combine a Chan-Vese data term and a similarity invariant
shape prior, built from n training / template shapes. We have only used n = 4
training shapes here. We use the following shape prior based segmentation
energy

E(v) =
1

2

∫
Ω

((u− c1)2v + (u− c2)2(1− v)dx+ S(v) (5.2.1)

where

S(v) = − log
n∑
i=1

e
− d

2(v,vi)

2ρ2 (5.2.2)

is the contribution from the kernel density estimated collection of training
shapes vi. d2 is a pseudo squared distance measure.
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5.3. Results

Figure 5.2: Brain extraction comparison between the former model 1 (left) and our
proposed shape prior segmentation (middle, data from Figure 5.3). The
rightmost figure shows the left brain overlaid the middle one. Here red
corresponds to agreement, yellow is an over-segmentation and teal is an
under-segmentation with respect to our shape prior segmentation. The
shape prior provides a much better match, while being automated and
improving robustness to parameter choices as well.

5.3 Results

We ran our brain segmentation on rat brain data from source 1 and on mouse
data from source 2. The results for step 1-3 are illustrated in Figure 5.3,
while a comparison with our former brain extraction routine can be found in
Figure 5.2, The final segmentation result is shown in Figure 5.4. Figure 5.5
highlights our brain extraction method using rat data for training, but running
on mouse data and compares it to that of AFNI’s 3D skullstrip.

5.4 Discussion and Conclusion

We have proposed an automatic framework for rat brain and internal CSF
network segmentation for images affected by strong bias fields, using a brain
shape prior. It is shown to work well for data coming from other sources than
the one used for training our shape prior. To improve the results further, extra
training shapes representing better shape variability should be incorporated.
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5. AUTOMATIC BRAIN SEGMENTATION USING SHAPE PRIORS

Figure 5.3: Shape prior contribution: The first row is the process and result of the bias
field correction [Tustison et al., 2010] and 2-classes local mean segmenta-
tion of [Hansen and Lauze, 2017]. The second row illustrates the shape
prior segmentation process from left to right: 1) initialisation of the shape
gradient, 2) shape gradient at iteration 1, 3) final shape gradient, and 4)
final shape prior segmentation as a posterior. The last row shows the
segmentation improvement of running a Geodesic active contour method
- this step helps capture shapes previously unseen in the priors.
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5.4. Discussion and Conclusion

Figure 5.4: Step 4 of the pipeline: Final 3-classes segmentation for the brain tissue
and CSF network results. The columns indicate background (left), brain
tissue (middle left), CSF (middle right), and cropped data by the shape
mask from the previous step (right). First row: initialisation from the
2-classes segmentation step. Second row: Final segmentation results. All
figures show labels as posteriors, where red indicates belonging to the
class and vice versa for blue. The rightmost figure in the second row
shows thresholded labels for brain tissue and overlaid CSF.
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5. AUTOMATIC BRAIN SEGMENTATION USING SHAPE PRIORS

Figure 5.5: Data from a bias field corrected MR mouse brain volume from source 2
(left), segmentation obtained by AFNI’s 3D skullstrip (middle), and our
shape prior segmentation result (right). Both segmentation masks have
been overlaid on the original data to highlight the results.
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6 Invariant Shape Regularisers for
Object Segmentation

The work presented in this chapter is based on a manuscript† submitted
and currently under review at the International Conference on Scale Space and
Variational Methods in Computer Vision.

† Hansen, J. D. K. and Lauze, F. (2019). Segmentation of 2D and 3D objects
with intrinsically similarity invariant shape regularisers.
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Segmentation of 2D and 3D objects with
intrinsically similarity invariant shape

regularisers

J. D. K. Hansen, F. Lauze, {jdkh,francois@di.ku.dk}

Department of Computer Science, University of Copenhagen

Abstract. This paper presents a 2D and 3D variational segmentation
approach based on a similarity invariant, i.e., translation, scaling and
rotation invariant shape regulariser. Indeed, shape moments of order
up to 2 for shapes with limited symmetries can be combined to provide
a shape normalisation for the group of similarities. In order to obtain a
segmentation objective function, a two-means or two-local-means data
term is added to it. Segmentation is then obtained by a standard gradient
descent on it. We demonstrate the capabilities of the approach on a series
of experiments, of different complexity levels. We specifically target
rat brain shapes in MR scans, where the setting is complex, because
of bias field and complex anatomical structures. Our last experiments
show that our approach is indeed capable of recovering brain shapes
automatically.

6.1 Introduction

With the advent of 3D imaging devices, especially X-ray computerised tomog-
raphy and magnetic resonance imaging, there has been a growing need for
3D segmentation methods that can handle a large variety of signals. Images
produced from these modalities can show content with various degrees of
complexity and structures, from almost fully random phases to highly struc-
tured data, for example in medical imaging when imaging different types
of tissues and organs. In this work, we are interested in the latter, where
segmentation targets specific structures characterised by a shape distribution.

In this paper, We develop a variational segmentation–matching approach
which incorporates shape priors, and is at the same time robust to specific
acquisition problems. In addition to noise, MR images are in general cor-
rupted by a bias field coming from combinations of dropoff effects, as seen in
Figure 6.1. For this we will use a data fidelity term robust to noise and bias
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6.1. Introduction

(a) (b)

Figure 6.1: Slice of an MRI scan of a rat cranium (a), 3D brain segmentation (b).

field. We will discuss it in Section 6.2. Our emphasis in this paper, is however
more on shape. We will first briefly review related ideas of shape priors in the
next paragraph.

In a series of works, [Kendall, 1984] defined shape spaces based on equiv-
alence classes of finite dimensional collections of points, so as to factor out
scale, position, and pose. For shape segmentation, the Active Shapes Models
[Cootes et al., 1995] is the seminal work on representation of shape distri-
butions and shape priors and since then a large body of literature has been
generated. A complete review is however out-of-scope here. An operational
representation of shape distribution requires in general two main ingredients:
representation of geometric objects in R2 or R3 and identifications of classes
of such objects as a unique shape, in general via specific group actions. Of
course these two ingredients are rarely independent of each others. Typically,
shape priors and regularisers are built from similarity criteria between forms
or some of their extracted features, which are invariant by the group operation.
One general way is to introduce explicit minimisation over the transformation
group in the prior definition. In this line of work, [Chan and Zhu, 2005] ex-
plicitly minimise a shape term in 2D over the similarity group S(2) of scaling,
rotation and translation in R2. A similar idea, within a levelset framework,
and competing priors, was used in [Fussenegger et al., 2006]. [Mezghich
et al., 2014] use properties of the Fourier-Mellin transform cross-spectrum
w.r.t. rotation and scaling to segment-match shapes from one or more training
shapes. [Wang et al., 2015] define an affine matching and segmentation, based
on the action of the affine group on a class of shape representing functions
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6. INVARIANT SHAPE REGULARISERS FOR OBJECT SEGMENTATION

called interior-points-to-shape relations.
Another consists of finding canonical forms i.e., special representatives or

features. On special interest are the representations or features which exhibit
invariance by group action. Such representatives might be complex to define,
however that is our approach in this work. 2D rotations were already present
in the Diffusion Snakes of [Cremers et al., 2002], which incorporates elements
of active shapes. Our work goes in a slightly different direction and extends
the work of [Cremers et al., 2003] to incorporate rotations. [Foulonneau
et al., 2006] extract affine canonical moments, i.e., normalised moments which
are invariant by an affine transformation in 2D, and define invariant shape
dissimilarity from them.

The rest of this paper is organised as follows. In Section 6.2, we start with
mathematical preliminaries. We look at invariant shape terms, and deduce
a shape prior / regulariser term. As mentioned above, we will also discuss
the chosen data fidelity term. Together they form the cost function of the
method. Our algorithm is essentially a gradient descent on the cost function
and we derive its first variation and gradient in Section 6.3. Validation of the
capabilities and inherent transform invariance of our proposed model is done
experimentally in Section 6.4. Finally, Section 6.5 discusses and concludes the
proposed model.

6.2 Derivation of the model

In this section we start by introducing notations and elementary points about
shapes and some types of canonical forms, that allows us to define invariant
shape priors. We then introduce our objective, containing both data fidelity
terms and shape regularisers.

Normalisers and Canonical Forms. If G is a group and T a set with a (left)
G-action, a G-normaliser is a mapping α : T → G such that α(g ·A) = α(A)g−1.
It clearly satisfies α(α(A) ·A) = idG, thus the name. Its group-inverse (not to
confuse with inverse mapping) α(−)−1 : A 7→ τ(A) = α(A)−1 ∈ G is just a
G-covariant mapping. Given a mapping F : T → U , the mapping F̃ : A 7→
F (α(A) · A) is G-invariant. Indeed, if B = g · A, clearly α(B) · B = α(A) · A.
For this reason, normalisation provides canonical forms for the G-set T .

In the sequel we exhibit normalisers for shape related sets and certain Lie
subgroups G of the affine group, Aff(n) of invertible linear transforms and
translations, with n = 2 or 3. The main subgroup of interest is the subgroup
of similarities, S(n) ' (R∗+×SO(n))nRn, of (positive) scalings, rotations and
translations. To us, an object is a compact set of Rn, with non-empty interior
and regular boundary so as to be able to compute shape derivatives (see
[Delfour and Zolésio, 2001]). We will denote this set by S. The affine group
acts naturally on S and a G-shape is the orbit of an object under the action
of G. More generally, we will consider the set F of integrable functions with
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6.2. Derivation of the model

compact support, non-empty interior, and values in [0, 1], so that an object
A is naturally represented by its characteristic function, χA. G acts on F by
g · v = x 7→ v(g−1x).

For the group of translation and/or scaling, G = R∗+ n Rn, normalisers
are easy to construct from centred moments up to order 1 or 2. For instance,
set µ0(A) =

∫
A dx its volume and µ1(A) = µ0(A)−1

∫
A x dx and define the

transformation τ(A) = (µ0(A), µ1(A)) : x 7→ µ0(A)x + µ1(A). Then v 7→
τ(A)−1 is a normaliser. Scale normalisation can also be performed via the
standard deviation form

σ(A) =

(
1

µ0(A)

∫
A
|x− µ1(A)|2 dx

) 1
2

. (6.2.1)

Setting γ(A) = (σ(A), µ1(A)), γ−1 is the normaliser used in [Cremers et al.,
2003]. Extending this low-order moments approach to similarities necessitates
a few restrictions.

To extend it to the group of similarities, we use the object’s centred second
order moment, i.e., the mapping

A→ SPD(n), A 7→ Σ(A) =
1

µ0(A)

∫
A

(x− µ1(A))(x− µ1(A))T dx (6.2.2)

with SPD(n) the space of symmetric positive-definite matrices of order n,
and σ(A)2 = Tr(Σ(A). A general eigenvalue/eigenvector decomposition
Σ(A) = RAΛAR

T
A with RA ∈ O(n) and ΛA diagonal, is the solution of a

system of analytic equations. Restricted to the open subset U ⊂ SPD(n)
with distinct eigenvalues, there are finitely many solutions for RA, (n!2n). The
choice of one of these solutions, still denoted by RA, extends to U via the
implicit function theorem [Magnus, 1985]. Choose one of the branches for
which RA ∈ SO(n) (there are n!2n−1 such choices, and can be reduced to 2n−1

if eigenvalues are sorted). Restrict also the object space to Sd = Σ−1(U), it is a
S(n)-invariant subspace of S and A 7→ τA = (σ(A), RA, µ1(A)) is well-defined
from what precedes, and S(n)-covariant; it is straightforward to check that
for g = (s, S, t) ∈ S(n) τg·A = gτA as

Σ(g ·A) = s2SΣ(A)ST = s2SRAΛAR
T
AS

T , µ1(g ·A) = gµ1(A).

Thus α(A) = τ−1
A is a S(n)-normaliser on Sd.

Note that this construction based on moments of order up to two cannot,
in some sense, extend further to the whole affine group due to “too many
square roots” for SPD matrices, but we will not discuss it in this paper.

Shape invariant dissimilarities and shape regulariser. Given a model object
A0, which we assume normalised, we choose dissimilarities of the form

d2(A,A0) =

∫
Rn
L(χα(A)·A(x), χA0(x)) dx

=

∫
Rn
L(χA(τAx), χA0(x)) dx

(6.2.3)

69



6. INVARIANT SHAPE REGULARISERS FOR OBJECT SEGMENTATION

with L(r, s) a positively C1-function with L(r, s) = 0 if r = s so that the above
integral is in fact an integral over (α(A) ·A) ∪A0 and is finite. In the sequel
we work with with L(r, s) = (r − s)2. From the discussion in the previous
paragraph, this is indeed an S(n)-invariant measure. To build a shape prior
from it, we follow [Cremers et al., 2003] and build a kernel density estimator
from training data made of normalised model shapes A1, . . . , AN ,

p(A|A1, . . . , AN ) ∝ F (A,A1, . . . , AN ) =
N∑
i=1

e
− d

2(A,Ai)

2ρ2 , for a ρ > 0

. This density is well defined if we restrict it to a finite dimensional subspace
of Sd, otherwise the normalising constant

c(A1, . . . , AN ) =

∫
Ad

F (A,A1, . . . , AN )dA

is in general undefined. However we do not need a definite prior, we need
the well defined regulariser

ES(A) = − logF (A,A1, . . . , AN ) = − log

(
N∑
i=1

e
− d

2(A,Ai)

2ρ2

)
. (6.2.4)

Data fidelity term and proposed formulation. Different data fidelity terms
can be used in conjunction with the regulariser. Two data terms are used in
this work. The first one is a classical global 2-means term, while the second
is a local means term, better suited to MR data. In both cases, the signal is
represented by a function u : Ω ∈ Rn → R and we want to partition the image
domain Ω into two regions, A and Ω\A. The two-means term is

EDg(A, c1, c2) =
1

2

∫
Ω

(
(u− c1)2χA + (u− c2)2χΩ\A

)
dx (6.2.5)

with c1, c2 ∈ R. MR image data suffers among others from bias fields, that
are only partially corrected for by standard techniques. We use ideas from
[Hansen and Lauze, 2017] and propose the two-local-means term

EDl(A, c1, c2) =
1

2

∫
Ω
g ∗
[
(u− c1(x))2χA + (u− c2(x))2χΩ\A

]
(x) dx (6.2.6)

with c1 a smoothed version of u on A, c2 a smoothed version of u on Ω\A
and g a smoothing kernel, e.g. a Gaussian or nearest neighbours (NN) kernel,
which we assume to be even symmetric. Finally we propose to minimise the
following criterion

E(A, c1, c2) = ED(A, c1, c2) + κES(A) (6.2.7)

with κ > 0 a trade-off parameter between data fidelity and shape.
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From shapes to label fields. In all the previous constructions, A can be re-
placed by χA or a v in F . Moments are extended trivially to µ0(v), µ1(v), Σ(v),
and σ(v). This case and Fd represent the subspace of functions in Fd for which
Σ(v) has distinct eigenvalues.

6.3 First Variations and Optimisation

In this section, we compute the first variation for (6.2.7) with a bit more focus
for the term (6.2.4) as we follow [Hansen and Lauze, 2017] for the first term.

Derivative of shape regulariser. We start by stating moment derivatives
dvm.w of the moment m(v), v ∈ F for a “variation” w of v, i.e., functions v(t)
for which v(0) = v and v̇(0) = w. The moment derivatives are defined as
d
dt


t=0

m(v(t)), for the moments µ0(v), µ1(v) and Σ(v). Then we compute
dvτ.w instead of the derivative of the normaliser dvα.w. We use the notation
〈f, g〉 for the integral

∫
Rn f(x)g(x) dx. Straightforward calculations give

dvµ0.w = 〈1, w〉 , dvµ.w =

〈
• − µ1(v)

µ0(v)
, w

〉
, (6.3.1)

dvΣ.w =

〈
(• − µ1(v))(• − µ1(v))TΣ(v)

µ0(v)
, w

〉
, (6.3.2)

dvσ.w =

〈
| • −µ1(v)|2 − σ2(v)

2σ(v)µ0(v)
, w

〉
(6.3.3)

To compute dvR.w, we use classical formulas for the derivatives of eigenvec-
tors and eigenvalues of a symmetric matrix. If e1, . . . , en and λ1 . . . , λn are the
eigenvectors and associated eigenvalues of Σ(v),

dvR.w =
1

µ0(v)

〈∑
j 6=i

eTi (• − µ1(v))eTj (• − µ1(v))ej

λi − λj

n
i=1

, w

〉
(6.3.4)

Putting it together, one get

(dvτ.w)(x) = ((dvσ.w)R(v) + σ(v)dvR.w)x+ dvµ1.w. (6.3.5)

We set vi = χAi and provide the first variation of the dissimilarity measure
Li(v) =

∫
L(v(τvx), vi(x)) dx. A complete computation is not feasible within

the page limit and of limited interest anyway.

dvLi.w=

∫
L′(v(τvx), x)∇τvxv •(dvτ.w)(x) dx+

∫
L′(v(τvx), x)w(τvx) dx

(6.3.6)
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The first integral can be rewritten as

1

µ0(v)

[∫
Rn

{〈∫
S(y, v)yT dy,

|x− µ1(v)|2 − σ(v)2

2σ(v)
R(v) + σ(v)Ξ(x, v)

〉
F

+

(∫
S(y, v) dy

)T
(x− µ1(v))

}
w(x) dx

]
(6.3.7)

where we have set

S(x, v) = Lr(v(τvx), x)∇τvxv,

Ξ(x, v) =

∑
j 6=i

eTi (x− µ1(v))eTj (x− µ1(v))ej

λi − λj

n
i=1

.

The second integral in (6.3.6) becomes, after a mere change of variables,

1

σ(v)

∫
Lr(v(x), τ−1

v x)w(x) dx. (6.3.8)

From (6.3.7) and (6.3.8), one obtain dvLi.w =
〈
GiS(v), w

〉
where

GiS(v) =
1

µ0(v)

〈∫
S(y, v)yTdy,

|x− µ1(v)|2 − σ(v)2

2σ(v)
R(v) + σ(v)Ξ(x, v)

〉
F

+
1

µ0(v)

(∫
S(y, v)dy

)T
(x− µ1(v)) +

1

σ(v)
Lr

(
v(x),

R(v)T (x− µ1(v))

σ(v)

)
.

(6.3.9)

Finally, using standard differentiations rules, one get that

dvES .w = − 1

2ρ2

〈∑N
i=1 e

−Li(v)
2ρ2 GiS(v)∑N

i=1 e
−Li(v)

2ρ2

, w

〉
= 〈GS(v), w〉 (6.3.10)

Derivatives of data fidelity terms. Using a variation w over Ω, a trivial calcu-
lation gives, for (6.3.12)

dvEDg .w =
〈
2u(c2 − c1) + (c1 − c2)2, w

〉
L2(Ω)

=
〈
GDg , w

〉
L2(Ω)

(6.3.11)

and is a bit more complex for (6.2.6)

dvEDl .w =
〈
u2g ∗ χΩ−2u ∗ g(c2 − c1) + g ∗ (c2

1 − c2
2), w

〉
L2(Ω)

=〈GDl , w〉L2(Ω) .

(6.3.12)

Optimisation. We can be tempted to identify the gradient as−κGs(v)−GD(v)
with GD = GDg or GDl . Unfortunately, GS contains non local terms, this
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means that constrains on the support of w must be enforced. When v is a
characteristic functions and shape derivatives [Delfour and Zolésio, 2001]
are used, these variations are distributions supported along ∂A and have the
form vδ∂A or its normal component along ∂A, (v ·n∂A)n∂Aδ∂A with v a vector
field defined at least in a neighbourhood of ∂A. Here, instead of imposing
a special form to our w we use a simple narrow band approach: we restrict
their support to (supp v)ε = supp v ⊕ B(0, ε), the dilation of supp v by a ball
of radius ε. In practice ε is one or two pixels (voxels) and we implement the
projected gradient descent step. The algorithm is described in Algorithm 3.
Note that because of the narrow band implementation, the initial estimate (or

Algorithm 3 Sketch of the full algorithm.
Input: A1, . . . , An training shapes, ρ > 0 the deviation parameter, κ > 0 the

data vs. shape trade-off parameter, δt > 0 the descent step parameter, η > 0
the convergence threshold, ζ ∈ (0, 1) the binarisation threshold, v0 initial
shape function.

Output: Segmentation function / object closed to the training shapes.
repeat

vn+1 = PF
(
vn − δt

(
(GD(vn) + κGS(vn))|(supp v)ε

))
until ‖v

n+1−vn‖2
|Ω| < η

return v := (vn > ζ).

its dilation) should overlap the object we want to segment. This may limit
this type of approach, however, for the application that we have in mind, rat
brain segmentation, we usually start we a very large overlap due to the MR
measurement setting.

6.4 Experimental Validation

We target MR scans of rats, but there is no ground truth available for these
volumes. Therefore we first present two synthetic experiments where only
one shape is used, then two experiments on an MR scan where we have
segmented five rat brains by a combination of classical variational methods
and postprocessing so as to extract and learn brain shapes. We use them to
build a shape regulariser and proceed to segment an unseen MR volume.
To evaluate segmentation when we have ground truth, we have used the
Dice-Sørensen Coefficient (DSC) score:

DSC(X,Y ) =
2|X ∩ Y |
|X|+ |Y |

where | · | is the cardinality of a set. The binarisation threshold in Algorithm 3
has been fixed to 0.5. There are classical techniques for computing a good
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(a) (b)

(c) (d)

Figure 6.2: 2D experiment. (a): Shape prior. (b): Data to be segmented. (c): Initial
shape estimate. (d): Final segmentation.

value for ρ in (6.2.4), though, in this work we fixed it to ρ = 1.5 and 1 for the
experimental and synthetic respectively, as they always provided satisfactory
results.

A simple 2D experiment. In this experiment, as a simple validation of the
framework, we are given one training shape and an image obtained by a
similarity transform, with added noise and some small level of occlusion. The
data term used is the two-means term (6.2.5). We illustrate our prior, input
data, initial estimate and final segmentation in Figure 6.2. The values for κ, η
and δt in Algorithm 3 are respectively 5.0, 3× 10−5 and 0.1. The reported DSC
is 98.02%. We observe a spurious small contour in (d), which would have
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disappeared with a slightly lower threshold. Scaling and rotations necessitate
interpolation, which is also a source of inaccuracies. This is likewise present
in the other experiments.

A 3D experiment. In this experiment, we use a simple training shape, a
binarised 3D rendering of the letter “F”, while we generated a more complex
3D image and added noise and complex structures to it. Here too, the data
term is the two-means term (6.2.5). This is illustrated in Figure 6.3. The values

(a) (b)

(c) (d) (e)

Figure 6.3: Synthetic 3D example. The ground truth (a) is a crenellated 3D ’F’ shape.
The training shape (b) is a simple 3D ’F’ shape with flat faces. (c) is a noisy
and cluttered 3D scene (at one of the corners and side of the letter), (d) is
the initial shape for segmentation and (e) the final shape.

for κ, η and δt in Algorithm 3 are respectively 10.0, 1.5 × 10−6 and 0.1. The
reported DSC score is 90.7%, which may seem a bit low. Among other things,
this is due to the relatively important deviation between the training shape
(very flat) and the somewhat crenellated ground truth, as can be observed
from Figure 6.3.

Rat brain segmentation. First, we start by a 2D experiment, mainly because
it makes visualisation easier. Medically annotated data is not available for the
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(a) (b) (c) (d)

Figure 6.4: Training shape masks used in 2D segmentation of rotated rat cranium
scan.

specific dataset series we worked on, and to our knowledge, no automatic
segmentation exists for MR brain scans of rodents. Validation is therefore
based on qualitative assessment of the achieved segmentation. Without an-
notated data, we have used the work in [Hansen et al., 2018] to obtain the
brain segmentations. Figure 6.5 shows the effect of the shape regularisation in
2D. The rotated MR slice in Figure 6.5b shows Figure 6.1a after the bias field
correction procedure of [Tustison et al., 2010]. It is clear that the bias field has
not been fully eliminated. We therefore use the local means data term (6.2.6).
In the next subfigure we illustrate the different terms in the objective function.
Evolving only the regulariser term should result in a sort of mean training
shape. This is illustrated in Figure 6.5a. We use data in the form of a rotated
slice from a MR brain, which is represented in Figure 6.5b. The red square
contour inside represent the initial segmentation guess. Optimising using
only the local two-means data term results in an over-segmentation where
part of the skull and other anatomical elements are segmented: this can be
seen in Figure 6.5c. Finally, Figure 6.5d shows the obtained segmentation with
our approach.

We now illustrate the segmentation in 3D. Using the pipeline of variational
and image cleaning methods of [Hansen et al., 2018], we segmented five rat
brains from MR scans. With careful postprocessing, three of the segmentations
were refined and added to our set of training shapes, providing ten final
training shapes. No initial alignment of the training data was performed. As
initial guess, we use one of the the training shapes, slightly eroded, with its
original pose and scale parameters. The physical setup indeed guarantees
that pose and scale parameters for the different scans should vary moderately
from scan to scan. Two-dimensional slices for 4 of the original shapes have
already been shown in Figure 6.4. We tested our approach on an MR volume
which could not be segmented by the approach of [Hansen et al., 2018] (it
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(a) (b) (c) (d)

Figure 6.5: (a): “Mean” training shape computed by minimisation of regulariser. (b):
Rotated slice. (c): Local two-means clustering. (d): Segmentation with
both terms.

would either incorporate part of the skull or severely under-segment the
brain). The values for κ, η and δt in Algorithm 3 are respectively 2.0, 1× 10−5

and 2.0. Moreover, the two-local-means term (6.2.6) was used with a very
simple 3× 3× 3 local mean kernel g. Some evolution steps are displayed in
Figure 6.6. Small angular variations can be seen by observing the relative
position of the shape and the reference black plane. In Section 6.4 we visualise
the results for different viewing angles.

6.5 Conclusion

In this paper, we have proposed a 2D and 3D approach for the segmenta-
tion of objects whose distribution of shapes can be approximated via training
shapes. This allowed us to construct a regularisation term, within a variational
framework, which is invariant under similarity transforms. We coupled the
regulariser with a classic or robust data attachment term, to obtain segmenta-
tion objective functions and computed their gradients analytically. We have
demonstrated this approach in several scenarios, particularly on MRI scans of
rat crania. We are working on a more objective evaluation of our approach
for rat brains, which is somewhat complicated in the absence of ground truth
or accepted gold standard. We have used projected gradient descent on sim-
ple shape representations via relaxed characteristic functions. More efficient
optimisation methods could be considered, and other types of shape repre-
sentation could be used efficiently, especially for shape distributions where
topology does not change.
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(a) (b)

(c) (d)

Figure 6.6: Segmentation evolution in 3D after 0 (a), 24 (b), 49 (c), and 75 (d) iterations.
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6.5. Conclusion

(a) (b) (c)

(d) (e) (f)

Figure 6.7: Final segmentation results of our proposed model for difference viewing
angles. (a) and (d) shows the x and −x direction respectively, y and −y
directions in (b) and (e) and z and −z in (c) and (f).
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7 Segmentation by Information
Theory and Edge Penalty

The work presented in this chapter is based on an ongoing work by J. D. K.
Hansen, F. Lauze, and Y. Dong.
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Information Theory-Driven Two-Phase
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J. D. K. Hansen†, F. Lauze†, {jdkh,francois@di.ku.dk},
Y. Dong‡ {yido@dtu.dk}

†Department of Computer Science, University of Copenhagen
‡Department of Applied Mathematics and Computer Science,

Technical University of Denmark

Abstract. This chapter presents a variational two-phase segmentation
approach for recovery of background and material segments in weakly
structured images. We present data fidelity terms based on Shannon
entropy and symmetrised Kullback-Leibler divergence and a specialised
weight function of classical length penalisation. The derivation of the
length term is classical and the data term is done by computing the
shape gradients. We demonstrate promising preliminary capabilities
by individual experiments, for the data and weighted length terms, on
synthetic and real examples.

7.1 Introduction

Image segmentation is an unavoidable step in most smage processing tasks.
With the increasing amount of various sources and content, naturally the arte-
facts that follow need to be addressed. The field of X-ray computerised micro-
and nanotomography (X-ray µCT and nCT) of various samples is growing
very fast with the introduction of new more powerful synchrotron facilities,
such as MAX IV. Our application for this work will consist of the analysis
of reconstructed geological tomogram samples, with no expert annotations
available.

Observed rock samples are typically not too structured in terms of shapes,
but are in large assumed piecewise constant and homogenious with sharp
edges. This, however, is not always the case. It is common to observe multiple
material classes in the form of crystals and different sediments or different
artefacts that effectively produce two background modes or a new material
phase. For optimal segmentation results, choosing the correct number of
classes is necessary but tedious work to do manually, in particular when
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faced with an abundance of data and in 3D. Estimating the number of classes
is, on the other hand, an old well-understood problem and the amount of
work in this field is plentyful, see for instance [Silverman, 1981, Chao, 1984,
Cheng, 1995, Fukunaga and Hostetler, 1975]. These methods however are not
always appropriate and often introduce additional parameters to tune for. For
example, In the case of approaches based on [Parzen, 1962, Rosenblatt, 1956],
the bandwidth parameter needs to be chosen, and there are no general rules
to do so. In our application, hidden smaller classes and significant artefacts
make the process of estimating classes even more challenging.

For most cases in computing fluid dynamics and geophysical parameters
of porous structures, only the segmentation accuracy of the void region is es-
sential to the task. In this work, we therefore propose a method that compares
the background region to all others, effectively transforming a complicated
multiphase problem into a two-phase problem, without neglecting essential
accuracy, but hopefully improve on it. The main observation here, is that that
while material classes are relatively close to each other, in terms of intensity
values, the background class is more well-separated and less complex in terms
of intensity variation.

Edges constitute an important segmentation cue in X-ray n-CT modalities,
but they may present a challenging artifact as seen in Figure 7.1. This arte-
fact affects edges, effectively producing a significant increment following a
dip in the intensity profile over an edge from the background to foreground.
Additionally, this artefact does not affect all edges in the data, only a sub-
set. Although akin to, this artefact differs from classical beam hardening
effects of X-ray CT tomography, as the datasets here have been collected from
monochromatic beams. We believe the artefacts might stem from either X-ray
spreadding from the surface of the crystal monochromator, a component of
refraction due to a coherrent X-ray beam, or because the synograms have been
reconstructed as if sampled from a parallel beam, which is not the case.

In this work, we present a model that is able to satisfactorily deal with
the observed edge artefacts, while still being able to accomodate unaffected
and finer in detail edges. We use Shannon entropy[Shannon, 1948] and a
symmetrised version of Kullback-Leibler divergence[Kullback and Leibler,
1951] as data term and a special weighted length regularisation. The work
that we draw inspiration from is that of [Aubert et al., 2003, Herbulot et al.,
2004], where they present a general framework for naturally incorporating
shape gradients into active contour methods. They also use an entropy-based
information theoretic data term.

The rest of the chapter is organised as follows: In Section 7.2, we intro-
duce the foundations for the proposed model and argue for our individual
terms. Section 7.3 presents the associated Euler Legrange equations for each
of the terms making up the objective function. Finally Section 7.4 presents
individual experiments for our proposed data term and regularisation term
and Section 7.5 concludes the work.
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7.2 Derivation of the model

In the following we provide an overview of the individual components of our
proposed objective function. The model consists of two parts; first, a histogram
matching term that implicitely serves as a data fidelity term and could take
on any image feature in theory. For this work, we assume histograms of
gray-level image intensities. Secondly we introduce a weighted length term
that favours true edges over false (artefact prone) edges.

An obvious application of the histogram matching term for image seg-
mentation is that of video sequences, where a user wishes to e.g. track object
movements in time. Matching histograms over the time scale would be the
natural choice as we don’t expect objects to dissappear or deviate much from
their previous location one frame back in time. The same inference can be
applied in our field of porous media, as we assume a significant degree of
connectivity of the pore- and material space. Consequently, we expect small
deviations in histograms of neighbouring slices, for any directional cut.

As pointed out in Section 7.1, since rock tomography can be complex in the
foreground phase, containing a multitude of different materials, our method
focuses on the background phase relative to all other phases. The purpose
of this work is not a multiphase segmentation, but an accurate two-phase
segmentation as the background class often is more well behaved and the
target of further analysis. Furthermore, the background class must necessarily
consist of, at least, the smallest intensity value mode, effectivily bounding the
phase from the left.

We therefore choose to model our background phase as the entropy of
a kernel density estimate of the region. Minimising this function alone will
converge to a Dirac delta peak, maximising it will consequently result in a uni-
form distribution. Like [Herbulot et al., 2004], we could model the remaining
phases by the entropy as well, but that would result in an oversegmentation of
the background phase. Instead we propose to use the negative symmetrised
Kullback and Leibler (SKL) divergence, to keep the two phases well-separated,
but at the same time avoiding that one class disappears. Minimising the nega-
tive SKL divergence, we force the classes to be different, which fits our initial
analysis of the background being simple, while the foreground is usually quite
complex.

For our application, edges are for the most part nice and regions assumed
piecewise constant. However, because of relatively strong edge artefacts, tradi-
tional edge sensitive active contour models like [Caselles et al., 1997] are prone
to stop before the true edge, producing inaccurate pore space representations.
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7.2. Derivation of the model

(a) (b) (c)

Figure 7.1: Experimental dataset with edge artefacts (a), a crop of an area with clear
edge artefacts (b), and the intensity profile of a column perpendicular to
an edge (c).

7.2.1 Edge penalised length term

Inspired by the work on geodesic active contours [Caselles et al., 1997] and
active shapes [Paragios and Deriche, 2002b] with a modified length term
which takes small values along edges, we model our regularisation as the
curve formulation

Ereg(Ω) =

∮
g(∇u(c(p))) |cp| dp, (7.2.1)

where c(p) is a parametrisation of ∂Ω. Equation (7.3.32) can be considered as
a weighted length regularisation, favouring whatever the g function models.
C is a parametrisation of a curve and we propose g to be a powerful edge
detector, that is still able to respond to traditional edges, but also trickier ones
that are prone to amplification / absorption artefacts. A traditional choice is
when g is derived from the magnitude of the Gaussian smoothed gradient

g =
1

1 + β|∇σ0u|,

where∇σ0 • means taking the gradient of the convolution of x with a Gaussian
of standard deviation σ0. But while its robustness to noise and ability to
enhance edges is well understood, it fails to destinquish edge artefacts from
real edges and to tune the parameters β and σ0 to adapt to the artefacts would
mean losing finer detail weak edges, or include noise.

To argue for our choice of g function, we look at the dataset in Figure 7.1a
and in particular a crop thereof over the artefacts as seen in Figure 7.1b.
Analysing the intensity profile at a perpendicular crossing of an artefact
affected edge, we observe the pattern portrayed in Figure 7.1c. We then
proceed to design our g-function around this pattern, while still being able to
pick up regular edges.
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We model our g function based on classical filtering techniques for edge
enhancement:

g(u) =
1

1 + β|∇(w(σ1)(2u− k(σ2) ∗ u))|
. (7.2.2)

Here β is a weight parameter, w(σ2) is a median filtering function, and k(σ2)

is a Gaussian kernel, governed by σ1 and σ2 respectively. The essential part
of the functional (7.2.2) is the unsharp masking of the original image u. This
edge enhancement filter produces indeed the same edge intensity profile as
the artefact we seek to model. Additionally it also enhancing less clear edges
that would otherwise have been smoothed out. Since unsharpening the image
is a high pass procedure, noise is also amplified greatly, we therefore subject
it to a median filtering w(σ1) step, to maintain edge contrasts, but remove
noise. Alternatively, we could alter σ2 in the Gaussian gradient magnitude
step, but that would greatly blur edges and we would lose finer details. This
approach is similar to that of [Müter et al., 2012], where they use a dual
filtering approach to improve image thresholding.

7.3 Optimisation

In the following, we will derive the classic Euler Legrange equations for our
proposed objective function. For completeness, we start by presenting the
general derivation framework we use throughout this section.

7.3.1 Derivation framework

We focus on general region based energy functionals on the form

J(Ω(τ)) =

∫
RN

ϕ(k(x,Ω(τ))) dx, (7.3.1)

ψ being a vector field used to (at least infinitesimally) transport points and
Ω an open set that represents the region. Here we let τ be the evolution pa-
rameter in a dynamic scheme, so that Ω is continuously dependent on τ . k
in our case is a function R+ → R+ that describes some probabilistic measure
of the region Ω. ϕ is any information theoretic function. We use the shape
derivative method to finally obtain the velocity vector vthat minimises our
objective function.

The boundary evolution equation and the first variation is defined as the
Eulerian derivative of J , with respect to τ , in the direction ψ:

d

dτ
J(Ω(τ);ψ) :=

〈
d

dτ
J(Ω(τ);ψ)

〉
:= lim

τ↘0

J(Ω(τ))− J(Ω(0))

τ
. (7.3.2)
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In the following derivative calculations we will be using the technique of
rewriting the integration domain of a functional by use of a characteristic
function

χ(x,Ω(τ)) =

{
1 if x ∈ Ω(τ)

0 if x ∈ D ∈ Rn \ Ω(τ)
(7.3.3)

Due to the nature of characteristic functions being constant everywhere, except
for the boundary ∂Ω(τ) of the specified domain Ω(τ), the integration domain
of characteristic functions are therefore limited to the contour of Ω(τ) and
we get that χ’s variation is given as the (outward) normal component of the
vector field ψ:

d

dτ

∣∣∣∣
τ=0

∫
D
χ(x,Ω(τ)) dx =

∫
D

d

dτ

∣∣∣∣
τ=0

χ(x,Ω(τ)) dx =

∫
∂Ω(τ)

(n · ψ) da,

(7.3.4)
where a is the arc-length of the boundary. We now compute the shape gradient
of our general region based energy formulation J , i.e. d

dτϕ(q(α,Ω(τ))), where
α is an intensity value in the image

d

dτ
ϕ(q(α,Ω(τ))) =

∂

∂q
ϕ(q(α,Ω(τ)))

〈
∂

∂τ
q(α,Ω(τ)), ψ

〉
=

1

|Ω(τ)|

∫
∂Ω(τ)

∂

∂q
ϕ(q(α,Ω(τ))) [−q(α,Ω(τ)) +K(α− I(a))] (n · ψ) da.

(7.3.5)

For a more general form of the shape semi-derivative we refer the reader to
[Aubert et al., 2003].

We can also write this as a function of G:

d

dτ
J(Ω(τ);ψ) =

∫
∂Ω(τ)

G(α,Ω(τ)) · (n · ψ) da, (7.3.6)

where

G(α,Ω(τ)) =
1

|Ω(τ)|
∂

∂q
ϕ(q(α,Ω(τ))) [−q(α,Ω(τ)) +K(α− I(a))] . (7.3.7)

Rewriting (7.3.6) as an inner product, we get

d

dτ
J(Ω(τ);ψ) = 〈G(α,Ω(τ)) · n, ψ〉L2(∂Ω(τ)) . (7.3.8)

Now, Cauchy-Schwartz inequality theorem states that for all vectors u and v
of an inner product space, it holds that

||v · u|| ≤ ||v|| · ||u||, (7.3.9)

and in our case∣∣∣∣∣∣∣∣ ddτ J(Ω(τ);ψ)

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣〈G(α,Ω(τ)) · n, ψ〉L2(∂Ω(τ))

∣∣∣∣∣∣ ≤ ||G(α,Ω(τ)) · n|| · ||ψ||

(7.3.10)
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To achieve a maximal change in ∂Ω, our velocity vector ψ of steepest descent
must necessarily be the one that causes equality of the Cauchy-Schwartz equa-
tion. Equality is achieved exactly only when ψ is parallel to the normalised
gradient. We therefore conclude that the velocity vector of steepest descent is

∂(∂Ω)

∂τ
= ψ = − d

dτ
J(Ω(τ)) = −G(α,Ω(τ)) · n =

1

|Ω(τ)|

(
∂

∂q
ϕ(q(α,Ω(τ))) [q(α,Ω(τ))−K(α− I(x̂))]

)
· n =

G(α,Ω(τ)) · n

(7.3.11)

7.3.2 Entropy derivative

The differential entropy of a continuous random variable with probability
density p is defined as

DE(p) =

∫ ∞
−∞
−p(α) logp(α) dα (7.3.12)

where α is an intensity value and p denotes the density. In our case, our
Parzen window estimate represents p:

ϕ(q(α,Ω)) = −q(α,Ω) log q(α,Ω). (7.3.13)

We therefore seek to minimise

EE(Ω) =

∫
R
−q(α,Ω) log q(α,Ω) dα (7.3.14)

To obtain the gradient descent direction, we use the derivation framework
developed in Section 7.3.1 and compute the functional:

G(α,Ω) =
1

|Ω|

(
∂

∂q
ϕ(q(α,Ω)) [q(α,Ω)−K(α− I(x̂))]

)
. (7.3.15)

We start by computing the q dependent derivation term

∂

∂q
ϕ(q(α,Ω)) =

∂

∂q
− q(α,Ω) log q(α,Ω)

=
∂

∂q
− [q(α,Ω)] log q(α,Ω)− q(α,Ω)

∂

∂q
[log q(α,Ω)]

= − log q(α,Ω)− 1.

(7.3.16)

Inserting ∂
∂qϕ(q(α,Ω)) in G, we arrive at the descent direction

ψE =
1

|Ω|

(∫
R

(− log q(α,Ω)− 1) [q(α,Ω)−K(α− I(x̂))] dα

)
· n, (7.3.17)

which is the direction of steepest descent for our entropy based term.
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7.3.3 Symmetrised Kullback-Leibler divergence derivative

For distributions P and Q of a continuous random variable, The Kullback-
Leibler (KL) divergence is given as

DKL(P ||Q) =

∫ ∞
−∞

p(α) log

(
p(α)

q(α)

)
dα, (7.3.18)

where α is an intensity value and p and q denote the respective densities. The
symmetric KL divergence is given as

DSKL(P,Q) = DKL(P ||Q) +DKL(Q||P ) =∫ ∞
−∞

p(α) log

(
p(α)

q(α)

)
+ q(α) log

(
q(α)

p(α)

)
dα.

(7.3.19)

Our distributions P and Q are defined via our Parzen window function q:

p(α) = q(α,Ω) =
1

|Ω|

∫
Ω
K(α− I(x̂)) dx̂ (7.3.20)

q(α) = q(α,Ωc) =
1

|Ωc|

∫
Ωc
K(α− I(x̂)) dx̂. (7.3.21)

where Ωc = D \ Ω is the complement of Ω, D the entire image domain.
Knowing that the smoothed intensity level line L, for a given intensity α, must
necessarily be given as

LK(α) = I(I ' α) = |Ω|p(α) + |Ωc|q(α) =∫
Ω
K(α− I(x̂)) dx̂+

∫
Ωc
K(α− I(x̂)) dx̂,

(7.3.22)

we can therefore express q as a function purely of Ω:

q(α) =
1

|Ωc|

∫
Ωc
K(α− I(x̂)) dx̂ (7.3.23)

=
1

|D| − |Ω|

∫
R

(K(α− I(x̂)))(1− χ(x,Ω)) dx̂ (7.3.24)

=
1

|D| − |Ω|

∫
R
K(α− I(x̂)) dx̂− |Ω|

|D| − |Ω|
q(α,Ω) (7.3.25)

= C(α,Ω) (7.3.26)

This allows us to conveniently replace every occurency of integrals over the
complementary domain Ωc for this formulation of C.

Notice that the derivative of C, with respect to q is then simply

∂

∂q
C(α,Ω) =

|Ω|
|D| − |Ω|

(7.3.27)
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We therefore seek to minimise

ESKL(Ω) =

∫
R
q(α,Ω) log

(
q(α,Ω)

C(α,Ω)

)
+ C(α,Ω) log

(
C(α,Ω)

q(α,Ω)

)
dα. (7.3.28)

Using the derivation framework developed in Section 7.3.1, to get the gradient
descent direction, we need to compute the functional:

G(α,Ω) =
1

|Ω|

(
∂

∂q
ϕ(q(α,Ω)) [q(α,Ω)−K(α− I(x̂))]

)
(7.3.29)

To simplify the calculations, I compute the derivative with respect to q first:

∂

∂q
ϕ(q(α,Ω)) =

∂

∂q

[
q(α,Ω) log

(
q(α,Ω)

C(α,Ω)

)
+ C(α,Ω) log

(
C(α,Ω)

q(α,Ω)

)]
=

(
|Ω|

|D| − |Ω|
+ 1

)
· log

(
q(α,Ω)

C(α,Ω)

)
+ 1

+(C(α,Ω)− q(α,Ω)) · |D| − |Ω|
|Ω|

− C(α,Ω)

q(α,Ω)
(7.3.30)

Inserting ∂
∂qϕ(q(α,Ω)) into G(α,Ω) we get the descent direction

ψSKL =
1

|Ω|

(∫
R

((
|Ω|

|D| − |Ω|
+ 1

)
· log

(
q(α,Ω)

C(α,Ω)

)
+ 1

+ (C(α,Ω)− q(α,Ω)) · |D| − |Ω|
|Ω|

− C(α,Ω)

q(α,Ω)

)
· [q(α,Ω)−K(α− I(x̂))] dα

)
· n,

(7.3.31)

which is our direction of greatest descent for the Symmetrised Kullback-
Leibler term.

7.3.4 Edge penalised length term

Our proposed regularisation term has the classical form of [Caselles et al.,
1997] and is therefore simply given as

Ereg(Ω) =

∮
g(∇u(c(p))) |cp| dp, (7.3.32)

which has the steepest descent-direction of

ψreg = −(∇g · n) · n− gκ · n. (7.3.33)

(7.3.33) is then the negative gradient of Ereg and the classical result (with a
sign difference) obtained by [Caselles et al., 1997] using a parametrised curve.
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7.3.5 Full descent direction

We combine the terms derived in the previous section and arrive at the direc-
tion of steepest descent for our full energy formulation:

ψ = λ1ψE − λ2ψSKL + λ3ψreg (7.3.34)

=
λ1

|Ω|

(∫
R

(− log q(α,Ω)− 1) [q(α,Ω)−K(α− I(x̂))] dα

)
· n

− λ2

|Ω|

(∫
R

((
|Ω|

|D| − |Ω|
+ 1

)
· log

(
q(α,Ω)

C(α,Ω)

)
+ 1

+ (C(α,Ω)− q(α,Ω)) · |D| − |Ω|
|Ω|

− C(α,Ω)

q(α,Ω)

)
[q(α,Ω)−K(α− I(x̂))] dα

)
· n− λ3((∇g · n) · n− gκ · n)

(7.3.35)

7.4 Individual experiments

Synthetic data was generated by first initialising a background intensity and
foreground intensity squares. Darker and lighter edges, with varying thick-
ness, were then added to a subset of the squares to capture all the different
observed edge types.

The experiments that have been done so far consist of individual tests of
the data term and the length regularisation term, but no combined tests. In
order to test the choice of g function and argue for the results, we used the
opensource implementation from github.com/pmneila/morphsnakes - the
Morphological Geodesic Active Contours method of [Marquez-Neila et al.,
2014] - and altered their choice of g function manually. The three different g
functions are

gmag =
1

1 + β|∇σ0u|
(7.4.1)

gmag-unsharp =
1

1 + β|∇σ0(2u− k(σ2) ∗ u)|
(7.4.2)

g =
1

1 + β|∇σ0w(σ1)(2u− k(σ2) ∗ u)|
. (7.4.3)

The results of testing the three different choices of g function can be seen in
Figures 7.2 and 7.3. We notice that the classical gradient magnitude edge
detector (7.4.1) is not able to satisfactorily pickup the true edge, when the
dark edge is slightly thicker. Figure 7.2b shows that while (7.4.2) satisfactorily
deal with exterior edges, it does not allow segmentation of the overlapping
squares and is inherently more prone to noise because of the unsharp masking.
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Figure 7.3 satisfactorily segments the squares using the proposed g function
(7.4.3).
For the preliminary tests of the data terms, we used an opensource implemen-
tation from github.com/kevin-keraudren/.../chanvese3d.py. The Chan-Vese
data term was replaced with our own, but we kept their adopted narrow
band based level-set approach, which was originally formulated in [Chopp,
1991, Chopp, 1993] and then analysed in detail and optimised in [Adalsteins-
son and Sethian, 1995]. The individual result of our data fidelity experiment
can be seen in Figure 7.4. We notice that the data term is able to pickup the
darker regions of the cameraman’s jacket satisfactorily, without deteriorating
into only black, thanks to the symmetrised Kulback Leibler term.

7.5 Conclusion

In this chapter, we have proposed a mode that is able to satisfactorily deal with
a specific complex type of edge, by utilising unsharp masking and median
filtering, before taking the gradient magnitude. This weight function matches
the general intensity profile of an observed edge, but is also able to accomodate
weaker edges in the image, while being robust to noise. The data fidelity term
utilises the information theoretic terms entropy and a symmetrised version
of Kulback Leibler divergence. Individual preliminary tests have been run
on synthetic and real data for both the data and regularisation term. The two
terms need to be combined in a single model and run on experimental data, to
draw any definitive conclusions about the useability, but preliminary results
are very promising.
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7.5. Conclusion

(a)

(b)

Figure 7.2: Comparison of different choices of the g weight function. The top figure
corresponds to the best results for the classical gradient magnitude g, the
bottom one the gradient magnitude of the unsharp-masked image.
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7. SEGMENTATION BY INFORMATION THEORY AND EDGE PENALTY

Figure 7.3: The proposed g function model.

Figure 7.4: Individual test of the proposed entropy and symmetrised Kulback-Leibler
data terms, with classic length penalisation.
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8 Discussion

In the following, a number of key topics have been selected to elaborate
and improve on, they range from model choices and details to meaningful
extensions.

1. Empty scans for model calibration: Datasets from a variety of sources
have been obtained and processed. These sources however each intro-
duce different noise levels and types, introduce various artefacts, and
suffer from defects and other anomalies. This complicates any automatic
selection of parameters, as each dataset is not only structually different,
but also has a large variance of noise and artefacts. One approach to
remedy or improve on manual parameter selection methods, other than
analysing and estimating the noise of each dataset, is to use the same
real phantom objects as an initial scan for each acquisition facility. This
object should be known beforehand, so a groundtruth segmentation
would be available, and noise and artefact analysis would consequently
be straightforward. Knowing the exact type and extent of the errors
in the signal can greatly help calibrating or even selecting subsequnt
algorithms, from reconstruction to segmentation.

2. Quadratic regularisation vs TV: Chapter 2 showed that our proposed
method with a Dirichlet energy based regularisation outperformed the
Total Variation variant. To be able to conduct the experiments we build
complicated images from the ground truth, as a necessary verification
test. One could argue that the synthetically generated dataset in particu-
lar favoured the quadratic method over the TV based. Additionally a
nonexchaustive grid search was used for parameter selection, but this
was also shared for all tested methods. Furthermore, comparisons and
similarity measures were computed based on thresholded label fields,
not the probabilistic labels, so overly smoothed edges from the quadratic
regulariser were cut off.

3. Posterior vs thresholded labels: A number of different segmentation
methods are used in the P3-project, whereas only our proposed methods
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rely on probabilistic labels. Having binary labels introduce a very heavy
bias on the corresponding meshing procedure and subsequent fluid flow
simulations. Oversegmentations of the material phase often occurs at
edges, in particular narrow edges, where partial volume effects are most
prone. A single voxel misclassification can therefore result in cutting off
an entire pore network, which can have detrimental effects on the fluid
flow analyses. Additionally, if one decidedes to threshold the labels at
50%, one makes a choice that might not be straightforwardly justified.
Additionally that choice might have been made at a premature stage,
considering so many modules in the project still remain. Conversely,
outputting the posterior label field allows the meshing software and
group to make the decision, based on their expertice. Smaller thresholds
are more well-founded if it means including a pore-subnetwork to the
main network, as sedimentary rock pore networks are assumed to have
few ’lakes’, due to their origin. Finally, the meshing software can more
lenient select a preferred resolution to accomodate the probabilistic
labels, while we decided to constrain ourselves to voxel scale.

4. Generalised methods: In Chapters 2 and 3 two methods for segment-
ing bias field rich datasets were presented. One noteworthy feature
is that the TV variant inherently generalises [Chambolle et al., 2012],
thus providing a richer representation of their method, but with added
free parameters. For the method proposed in Chapter 3, setting the
kernel extent to the entire image and the weight function to zero, we
arrive exactly at the method proposed by [Chambolle et al., 2012]. This
generalisation enables our proposed methods to at least address the
same problems as their method and more.

5. Number of classes: The number of classes is a fixed, manually selected,
parameter for all methods. The choice is solely based on visual inspec-
tion of rather complex 3D tomographic volumes, which is tedious and
prone to errors. An alternative, rather successful, heuristic method used
was choosing a definite higher k than needed and combining classes
in the end. Having an automatised selection method is however more
beneficial and more work should be put into incorporating classical
k-selection methods into our proposed models. Alternatively, if only the
background is of interest, one could use methods inspired by Chapter 7.

6. Fuzzy segmentation initialisation: The proposed methods of Chap-
ters 2 and 3 use either a classical Otsu’s thresholding method or a dual
filtering approach for initialisation. This is however prone to introduce
bias in the methods and could mean slower convergence or eronous
results. Alternatively one could implement a fuzzy Otsu’s thresholding
method, that produces posterior label fields, instead of binary. Inten-
sity values close to the thresholds from Otsu’s method would then be
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weighted by some smoothly decaying function, to indicate that the prob-
ability of a given intensity belonging to either class is approaching 0.5.
Having such a probabilistic initialisation seem more appropriate and
correct, not only for our methods, but for thresholding in general.

7. Shape and type of local mean kernels: In Chapters 2 and 3 the local
mean kernel shapes are implemented as squared entities instead of being
circular / ball shaped. A radial basis function based kernel should be
used, but was avoided due to fast implementations of squared local
mean kernels. Coincidentally, this might explain the slight dice-score
difference between using Gaussian and uniform kernels. Although,
it is not a given that Gaussian kernels should be preferred, as values
further away from the voxel of interest should not necessarily contribute
less. This is especially true when working with smaller kernels, where
capturing a significant amount of image information is essential for the
local mean to be meaningful.

8. Utilising rat injection needle data: The proposed rodent brain segmen-
tation methods presented in Chapters 4 to 6 all utilise a classical bias
field correction method as preprocessing, in an attempt to clean the
data. Through presenting and discussing the method at the ISMRM
conference in Paris 2018, new information was obtained on a visible
needle in the scans. Precise knowledge of the needle and its content
could provide valuable information on the nature of the bias field and
its strength. Knowing this information, a more specialised bias field
correction method could be developed.

9. Edge penalising prior Chapter 6 presented a segmentation method
especially fitted for object segmentation, by use of shape prior invariant
to similarity transformations. A further improvement would be to
include a classical edge length penalising term to further regularise the
label field. This would complement the shape prior by constraining
the vast majority of the label field to the brain region and make sure
that strong edges are kept as part of the result. Generally, for brains,
the only sharp edges are found at the transition between brain and the
background. This would hopefully further increase the robustness of
the method and is straightforward to implement.

10. Extending shape priors to multiphase: The shape prior method pre-
sented in Chapter 6 has been tested for two classes; background and
combined brain matter / CSF. CSF refers to the cerebrospinal fluid of the
brain which was segmented in Chapter 5, but not a focus in Chapter 6.
While this works satisfactorily, an additional step would be required to
segment the CSF from the brain matter. A straightforward idea would
be to extend the framework to two (or more) classes of shape priors, this

97



8. DISCUSSION

seems easy to achieve from our current formulation. However satisfac-
tory results are not a guarantee, as individual CSF network locations
in rat brains seem to vary more than the overall surface of a brain and
CSF network shape variance are not necessarily as well-behaved. Ad-
ditionally, removing internal CSF regions from the full brain training
shapes might jeopardise the eigenvector directions, making them less
robust. Another possibility is to run a specific CSF segmentation after
brain mass extraction. Experiments need to be conducted to clarify this
concern.

11. Initialisation of the shape prior method: The method based on shape
priors presented in Chapter 6 currently uses the first training shape as
initialisation, but eroded to stay inside the target brain, while keeping the
general shape of a brain. While the strength and iterations of the erosion
procedure can be controlled, the method still relies on the initialisation
label field staying inside the brain we are trying to segment. While this
is not a problem for our target application, it is not robust to general
object extraction. One way to completely automatise this initialisation
procedure is to incorporate the idea of [Wang et al., 2015]. They proposed
to compute salient points in both the training data and the real data
and then perform feature matching. The matched points would in turn
create a shape decision kernel function, from which the most likely
shape region can be determined. Using this concept, we can simply
align a training shape to this shape region for an automatic and robust
initialisation.

12. Speed considerations: All presented methods have been implemented
purely as proof of concepts. This means that although the model descrip-
tion is inherently optimised to be efficient, the implementation is not.
Processing up to 4 GB for a single dataset where thousands are avaialble,
and hundreds of iterations are usually required, means that running
times are essential, even when large computational clusters are available.
Assuming that RAM is readibly available an obvious optimisation target
is the individual class updates, which for all presented methods is done
sequentially in each iteration. A rudimentary parallisation implementa-
tion of this step would mean a significant factor k speedup, where k is
the number of classes.

Naturally the choice of programming language has a big impact as well,
where currently all methods have been implemented using a combina-
tion of Python scientific computing libraries and a few C++ backend pro-
cedures. One could consider porting the framework to newer languages
that focus on automatic hardware acceleration of computations, such as
Bohrium [Kristensen et al., 2013, Kristensen et al., 2014]. Another option
is Futhark [Henriksen and Oancea, 2014], which is a high-performance
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functional language that utilises data-parallel array programming on
the GPU, that could be considered for the most computation intense
updates.

In regards to particularly the shape prior method, presented in detail
in Chapter 6, each iteration needs to align all training shapes to the
current label field estimate, which is the heaviest computation. Natu-
rally, this could be done by naive parallelisation of each training shape.
Another consideration is to compute a single mean training shape, of all
aligned training shapes. While this is not entirely correct or equal to our
current model, it could serve as an approximation that would greatly
reduce computation time as well as space requirements and is worth
investigating.
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9 Conclusion

This thesis presented six novel variational methods for segmentation of tomo-
graphic data. The datasets cover X-ray micro- and nano-CT acquired porous
geological samples, as well as MRI scans of rodent crania.

In Chapter 2 a method to deal with intensity inhomogeneity and noise in
complex weakly structured images was presented. It focused on accounting
for local and global bias fields without explicitedly modelling them, but in-
stead inherently deal with them. The classical global mean based data fidelity
term was constrained to local regions, governed by a kernel choice and its
extent, thus making the mean spatially dependent. Bias field inherently vio-
late the usual assuptions that classes are piecewise constant, so by controlling
the extend of the kernel, the method is able to accomodate various variation
strength of the intensity inhomogeneity. Two methods with different regu-
larisers were proposed and tested experimentally on synthetic and real data;
one regulariser based on the Dirichlet energy, the other a tight Total Variation.
Both methods were derived from the Mumford-Shah functionali, uses a fixed
number of classes and Hidden Markov Measure Field Models, modelling the
region labels, to account for partial volume effects. Both of the methods are
solved by alternatingly minimising the label fields and the local class averages.
Through reporting both segmentation quality and geophysical parameters the
Dirichlet energy was found to have the edge on the synthetic data.

Chapter 3 presented an extension to the work in Chapter 2, by addressing
the observed sharp edges in geological samples. The foundation of the model
handling bias fields is shared with that of Chapter 2 and binary labels are
similarly modelled as posterior probabilities as a relaxation and to account
for partial volume effects. The extended method presented a weighting term
to the two regularisers. One was a Total Variation weighted semi-norm akin
to that of Geodesic Active Contours, but with a richer and different repre-
sentation. The second being a weighted Dirichlet regularisation energy, i.e.
weighted squared gradient. Since the weight terms are based on first or-
der information of the constant image, not the label fields, the optimisation
problem is only affected by an image dependent constant, compared to the
non-weighted formulation. Similar experiments on synthetic and real data
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were performed and compared with those from Chapter 2, which improved
the previous best results, except for pore network connectivity measurements.

The framework presented in Chapter 4 aimed to extract cerebrospinal fluid
(CSF) and brain matter from MRI scans of rat crania. The main segmentation
method adopted in this framework was the Dirichlet regularised energy
presented in Chapter 2. The extractions were achieved through a process of
four major steps, namely 1) bias field correction, 2) 2-class segmentation, 3)
Geodesic Active Contours (GAC) brain extraction, and 4) 3-class segmentation.
Additionally, some postprocessing was applied to filter out exterior CSF
as well as very small CSF occurances. For bias field correction, a classical
correction method was used to recover more of the underlying data. The
2-class segmentation was used both as target image for the GAC method as
well as initialisation of the brain and csf region of the extracted brain. The
GAC method was initialised at the center of the brain and would expand until
stopping at the sharp edges achieved by the 2-class segmentation. Finally
the 3-class segmentation would focus on segmenting the masked brain of the
original bias field corrected image, using the 2-class masked segmentation
as initialisation. This framework was very successful in segmenting and
extracting the CSF network as well as brain matter of highly bias field affected
rat crania and will be of great help in the medical community.

Chapter 5 outlined an extension to the framework presented in Chapter 4
by introducing a shape prior term to guide the brain extraction process. The
data term for this new brain extraction term was the classical Chan-Vese one,
while the shape prior term replaced the length penalisation. The new term is
invariant to translation, global scaling, and rotations by alignment, making
the method fully automatic and greatly limits the number of free parameters,
while still improving robustness. Experiments were conducted by training
satisfiably segmented rat brains from Chapter 4 and testing on ones that were
not possible to segment with the old framework. Additionally an experiment
was performed on a mouse brain, while training on rat priors with great
success, especially compared to third party software.

Chapter 6 provided a more detailed and cleaner formulation of the shape
prior extension of Chapter 5. The model utilised a narrow-band like version
of the data term presented in Chapter 2 and works directly on the bias field
corrected data. While experiments were conducted on just two classes, the
method already incompasses multiple classes in its current formulation and
the implementation straightforwardly extends to multiple classes as well.
Multiple classes simply requires the corresponding shape prior training sets,
by splitting the segmented brains from Chapter 4 into their brain matter and
CSF components. In order to initialise the model, a training shape subjected
to mathematical erosion was used to give a good initial rotational orientation
and shape variance, while staying within the brain of interest. The chapter
demonstrated experimentally the invariance to translation, scaling, and rota-
tion, in addition to being able to segment datasets previously impossible by
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the framework proposed in Chapter 4.
In Chapter 7 an ongoing work for segmentation of tomographic geological

material was presented. The model encompassed information theoretic data
terms by use of Shannon entropy and symmetrised Kullback-Leibler energies
using shape gradients. To accomodate a special edge artefact, a novel weigh
function was proposed that mimics the intensity profile of such edges. It is de-
signed using an unsharp mask to enhance edges, while a median filter limits
the impact of enhanced noice. The gradient magnitude of the resulting image
is then used as a weight to guide the length penalisation. The length term was
compared with classical weight functions and showed to outperform them
on representative synthetic data. Individual experiments were conducted,
by adding the proposed terms to open source implementations of classical
methods, to assess the usefulness of each of the terms and preliminary results
were very promising.

This thesis has demonstrated that we are able to model and account for
various artefacts related to tomographc reconstructions of chalk rocks and rat
crania and satisfactorily segment relevant regions of interest. The presented
methods have rich representations that lends themselves well to various types
of datasets and problems. Through numerous types of synthetic and real
data experiments, this thesis has validated and established the usefulness and
versatility of the presented models.
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