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Abstract

The constant improvement of data collection techniques increases the
complexity of observed data objects. Cameras and scanning technolo-
gies make it possible to retrieve detailed images of everything from mi-
croscopic structures of a cell to 3D images of anatomical objects. No
matter if data are curve outlines of a shape, medical images, or a collec-
tion of landmark points for an object, such complex data structures lack
vector space properties and will hence challenge the well-known sta-
tistical theory for data in Euclidean space. All things considered, new
generalised statistical methods have to be developed for analysing non-
linear data samples. This thesis focus on two topics: The incorporation
of uncertainty estimation in generalised statistical models, and the use
of symbolic software packages for concise implementation of non-linear
statistical methods.

Obtaining closed-form expressions for probability density functions
of distributions on manifolds is difficult and has only been success-
fully deduced in simple cases. Alternatively, the presented work uses
stochastic theory to describe uncertainty and variation in distributions
on manifolds. A regression model is presented for estimating the rela-
tion between multiple Euclidean covariates and a manifold-valued re-
sponse variable. The data spaces are connected by transportation of a
Euclidean semi-martingale to the response manifold. The transported
semi-martingale can model non-geodesic regression curves and include
uncertainty in the estimated relation.

Furthermore, we present two different methods for describing the
uncertainty in populations of image data. The first method is a mixed-
effects model which separates uncertainty in images into a deformation
effect and a spatial intensity effect. Deformations are modelled as dis-
placement fields on a discretised lattice of the image domain. Based on a
maximum likelihood procedure, parameters for the uncertainty effects
are estimated along with a fixed template image. The second model rep-
resents uncertainty by stochastic deformation of images. The stochas-
tic deformations are modelled as a stochastic flow of diffeomorphisms
based on the Large Deformation Diffeomorphic Metric Mapping (LD-
DMM) framework. Estimation of parameters, which define noise corre-
lations and local variability in images, is performed by matching data
moments against moments of the stochastic deformation.

Numerical frameworks developed for Deep Learning tasks are gen-
erally computationally optimised and able to incorporate computations
on GPUs, parallel computing and symbolic calculations. The second
topic of the dissertation focuses on the use of such numerical frame-
works for concise implementation of concepts from differential geome-
try and non-linear statistics.
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Resumé

Den konstante udvikling af data indsamlingsteknikker øger komplek-
siteten af observerede dataobjekter. Kamera og scannings teknologier
gør det muligt at opnå detaljerede billeder af alt lige fra mikroskopiske
strukturer af celler til 3D billeder af anatomiske objekter. Lige meget
om data er kurver der repræsenterer konturen af en shape, medicin-
ske billeder, eller punkter der markerer landemærker for objekter, kan
sådanne komplekse datastrukturer mangle vektorrums egenskaber og
derved udfordre eksisterende statistiske metoder udviklet til analyse af
Euklidisk data. Alt i alt, skal der udvikles nye generaliserede statis-
tiske metoder for at analysere ikke-lineære data objekter. Afhandlingen
omhandler to emner: Inkorporering af usikkerhedsestimation i gener-
aliserede statistiske modeller, og brugen af symbolske software pakker
for koncis implementation af ikke-lineære statistiske metoder.

At opnå et lukket udtryk for sandsynlighedstæthedsfunktioner af
fordelinger på mangfoldigheder er besværligt og kun udledt i simple
tilfælde. De præsenterede metoder vil i stedet bruge stokastisk teori til
at beskrive usikkerhed og variation af fordelinger på mangfoldigheder.
Vi definerer en regressionsmodel til estimation af relationen mellem
multiple Euklidiske kovariater og en respons variabel, der tager værdier
på en mangfoldighed. De to data rum er forbundede via transport af en
Euklidisk semi-martingal til mangfoldigheden. Denne transporterede
semi-martingal kan modellere ikke-geodætiske regressions kurver og
inkludere usikkerhed i den estimerede relation.

Derudover, introducerer vi to forskellige metoder til estimation af
usikkerhed i populationer af billed data. Den første metode er en va-
rianskomponentmodel, der separerer usikkerhed i billeder i en warp
effekt og en spatiel intensitets effekt. Deformationer er defineret ved
forskydningsfelter på et diskretiseret gitter af billed domænet. Baseret
på maksimum-likelihood optimering er parametre for usikkerhedsef-
fekterne estimeret simultant med et billed atlas. Den anden model be-
skriver usikkerhed ved stokastisk deformation af billeder. Den stokas-
tiske deformation er modelleret som en stokastisk bevægelse i rum-
met af diffeomorfier inden for de givne rammer af LDDMM. Estima-
tion af parametre, der beskriver støj-korrelation og lokal variation af
billeder, er udført ved at matche data momenter mod momenterne for
den stokastiske deformation.

Software pakker udviklet primært til Deep Learning opgaver er ge-
nerelt beregningsmæssigt optimeret og kan inkorporere beregninger på
GPU’er, parallelle udregninger og indeholde muligheden for symbolske
kalkulationer. En del af arbejdet i denne afhandling viser, hvordan disse
software pakker kan bruges til koncis implementering af koncepter fra
differential geometri og ikke-lineær statistik.
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CHAPTER 1
Introduction and Background

1.1 Introduction

Until recent years statistical data has mainly been elements of Euclidean
spaces. However, the fast improvement of data collecting techniques in-
creases the complexity of data and challenges the well-founded methodology
of statistical analysis. Several statistical methods rely on vector space struc-
ture of the considered data space. With the new technology, it is, however,
no longer a consequence that data obey the vector space properties, e.g. be-
ing closed under the normal operations such as addition. Examples of non-
linear data include Medical images, 3D constructions of shapes, curves, or
landmark representation of objects, where either contours or special features
are represented by landmark points. Examples of data objects are shown in
Fig. 1.1.

Figure 1.1: Examples of non-linear data: (left) An MR image of a human
brain [71]. (middle) A landmark representation of a corpus callosum shape.
The MR image was taken from the ADNI database (adni.loni.usc.edu).
(right) A curve representation of the shape of a diatom [54].

The thesis aims at presenting generalised statistical methods capable of
modelling uncertainty and variation in non-linear data populations. The
lacking vector space structure of the data space makes the task of performing

1
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statistical analysis hard as the generalised methods have to incorporate the-
ory from differential geometry. Analysing non-linear data, therefore, com-
bines concepts from statistics, differential geometry, and computer science.
Working at the intersection of these fields has been both fascinating and chal-
lenging at times. The three years of the PhD have resulted in work which
naturally partitions into 2 main topics:

1. Uncertainty and variation estimation in complex data structures.

2. Concise implementation of non-linear statistical methods using sym-
bolic software packages.

The first topic is the main objective of the thesis and includes the work pre-
sented in Chapter 2-5. The common goal of the papers is to introduce uncer-
tainty estimation in generalised statistical methods. The considered methods
are regression models and longitudinal models describing the evolution of
data objects over time. Estimating the variation in data populations is an
essential part of statistical data analyses. By knowing the variation in data
distributions, we are able to perform statistical inference of the difference
between populations and to categorise individuals in different classes, e.g.
sick and healthy. Generalising uncertainty to complex data without the vec-
tor space structure is non-trivial as even distributions are hard to define on
such non-linear data spaces. In Section 1.4 and 1.7 we describe different ap-
proaches for defining distributions on non-linear data spaces.

The second topic concerns the problem of implementing non-linear sta-
tistical methods. We show how implementation tools, primarily developed
for Deep Learning tasks, can be naturally used for concise implementation
of concepts from differential geometry and non-linear statistics. The papers
enclosed in Chapter 6 and 7 present a software library in the deep learn-
ing framework Theano. The library contains implementations of the basic
theory of differential geometry and non-linear statistics. Additionally, the
manuscript in Chapter 8 describe how non-linear statistical methods can be
used to perform analysis of high-dimensional data, by representing data ob-
jects in a lower dimensional non-linear latent space trained by a Variational
Autoencoder [13].

In the following sections, we give an introduction to the background the-
ory and methodology inspiring the work presented in Chapter 2-8. This
cover a brief presentation of assumptions made for the non-linear data spaces,
a generalisation of distributions, linear regression generalisations, and stochas-
tic dynamics as a method for modelling uncertainty in non-linear data popu-
lations. The following sections describe methods relevant for the purpose of
the presented work and do not contain an extensive background study. For
more references on each subject see the corresponding chapters.
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1.2 Why Non-linear Statistics?

So what does it mean for data to be non-linear? Data objects are called non-
linear whenever the data space lacks the usual vector space properties, e.g.
being closed under addition. A common example of a non-linear space is the
sphere S2.

To perform statistical analysis on non-linear data, we need general as-
sumptions on the properties of the data space. A common assumption is
that data are elements of a manifold. A d-dimensional manifold,M, is a po-
tentially non-linear space which is locally homeomorphic to the Euclidean
space Rd. Manifolds behave like Euclidean spaces in a local neighbourhood
of a point p ∈ M, however, globally it can be highly non-linear. Examples of
simple non-trivial manifolds are the circle S1, the sphere S2, or the space of
landmark representations of Corpus Callosum shown in Fig. 1.1. We equip
M with a metric g to define the concept of distance on the data space. The
pair (M, g) is called a Riemannian manifold, where g denotes the Rieman-
nian metric. In this thesis, we restrict attention to data on Riemannian mani-
folds.

Even though manifolds can be approximated by a vector space in a local
neighbourhood of any point p ∈ M, applying Euclidean statistical methods
to non-linear data could result in biased estimates, which potentially escape
the data space. As simple examples, consider the data samples on the unit
sphere, S2, visualised in Fig. 1.2. Without knowing the structure of the data
space, a natural procedure would be to treat the sample points as elements of
the ambient space R3. Estimating the mean of the data sample by the regular
average estimator (left of equation of (1.1)) results in estimated mean values
which are not elements of the data space (see Fig. 1.2).

µ̄ =
1

n

n∑
i=1

xi, µ̄FM = arg min
y∈M

n∑
i=1

dist(y, xi)
2 (1.1)

Instead, we seek an intrinsic mean which is an element of the data space
and contains similar properties as the observed data sample. An intrinsic
mean estimator is the Fréchet mean, named after Maurice Fréchet, presented
in [38]. The Fréchet mean is based on a distance function dist : M→ R on the
data spaceM and is defined as the set of points µ ∈ Mminimising the total
distance to the data sample. The empirical estimator for the Fréchet means is
given as the right equation of (1.1). Notice that existence and uniqueness of
the Fréchet mean is not ensured as it is a solution to a minimisation problem.
For an example where the Fréchet mean is not unique consider the case in the
left plot of Fig. 1.2. For data in Rn equipped with the usual Euclidean dis-
tance, the Fréchet mean coincides with the traditional mean on vector spaces.

Defining the concept of a mean value on manifolds is just the first step in
fitting distributions to data, but equally important is it to describe variation
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Figure 1.2: (left) A data sample on the unit sphere S2 shown in red. The ma-
genta point is the normal Euclidean average as defined in (1.1) left, while the
blue points denotes the intrinsic emperical Fréchet mean set (see (1.1) right).
(middle) A data sample on the upper hemisphere with mean µ = (0, 0, 1)
generated by Brownian motions on S2. The red point denotes the Euclidean
average and the black the estimated emperical Fréchet mean. (right) An esti-
mated distribution on S2.

in data samples. Modelling variation in manifold-valued data is not an easy
task due to the possible curvature of the data space. In most of the methods
presented in this work, we propose to apply stochastic theory to describe un-
certainty in data samples. Stochastic processes can be defined chart free and
intrinsically on manifolds making it possible to obtain global distributions
on the non-linear space. Fig 1.2 shows an example of a distribution on the
unit sphere, S2.Section 1.7 gives a brief introduction to stochastic processes
on manifolds and how these define intrinsic distributions on the non-linear
data spaces.

1.3 Riemannian Manifolds

The following section is based on [76, 22]. As described above, we make the
general assumption that the considered data spaces are Riemannian mani-
folds, (M, g). The metric g is defined for any element p ∈ M and changes
smoothly between tangent spaces ofM. Let X(M) denote the space of smooth
vector fields onM. The manifold is endowed with a connection,∇ : X(M)×
X(M) → X(M), sending a pair of smooth vector fields to a smooth vector
field. A connection ∇ describes the transportation of tangent vectors along a
curve γ onM, hence connecting nearby tangent spaces. The transportation
defines an isomorphism between tangent spaces called parallel transport. A
connection preserving the metric across tangent spaces is called a metric con-
nection. Throughout the thesis, we consider a metric connection called the
Levi-Civita connection. Let x ∈M and consider a chart (U, φ) around x, with
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local coordinates φ(x) = (x1, . . . , xd) ∈ Rd. The corresponding coordinate
basis vectors are ∂1, . . . , ∂d, for ∂i = ∂

∂xi
, representing a basis for the tangent

spaces in U . If the coordinate representation of the metric g is given by the
matrix (gij)ij , where gij = 〈∂i, ∂j〉, the connection∇ satisfies the equation,

∇∂i∂j = Γkij∂k, (1.2)

for the Christoffel symbols, Γkij . The Levi-Civita connection is the affine met-
ric connection with the Christoffel symbols,

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij), (1.3)

where gkl denotes the coordinate representation of the inverse of the metric.
A curve, γt, onM is a called a geodesic curve if the vector field along γ

is parallel to the curve it self with respect to the connection ∇, i.e. ∇γ̇t γ̇t = 0.
As in Euclidean space, Rn, geodesics are length minimising and with zero
acceleration. A curve γt = (γit)

d
i=1 represented by local coordinates in the

chart (U, φ) with γ0 ∈ M and γ̇0 = v0 ∈ Tγ0M is a geodesic if and only if it
solves the geodesic equation,

γ̈kt + γ̇it γ̇
j
tΓ

k
ij(γt) = 0. (1.4)

For a point p ∈ M, the exponential map, Expp : TpM → M, is defined by
Expp(v) = γ1(v) for a geodesic γt with γ0 = p and γ̇0 = v. The exponential
map, Expp, is only invertible in a neighbourhood U of p. Consider the subset
V ⊆ TpM of tangent vectors v making Expp(tv) a minimising geodesic for
all t ∈ [0, 1], but not on the extended interval t ∈ [0, 1 + ε), for some ε > 0.
The set M \ Expp(V ) is called the cut locus of p and denoted CM(p). Let
U = M \ CM(p). The inverse of the exponential map, Logp : U → TpM,
is called the logarithm map. For a point q ∈ U , Logp(q) returns the unique
tangent vector v s.t. Expp(v) = q. The Riemannian distance on U is then
defined by

dist(p, q) = ‖Logp(q)‖
2
p,

where the norm is induced by the metric g. Chapter 6 and 7 provide a more
detailed description of differential geometry and describe simultaneously
how the Deep learning framework Theano can be used to make implemen-
tation of the mathematical theory.

1.4 Random Variables on Manifolds

When analysing data samples in Euclidean spaces, there is a wide range of
well-known distribution families available. These include Normal, Poisson,
Beta, and Uniform. A common feature of these distributions is that there
exists a closed form expression of the density function with respect to the
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Lebesgue measure. Defining similar standard distribution families on man-
ifolds is non-trivial, and it is in many cases impossible to describe distribu-
tions onM by a closed-form expression of a density function. However, to
even talk about distributions and random variables on manifolds, we first
need to define a probabilistic setting. The section is based on [22, 100].

Consider a probability space (Ω,F , P ) and a measurable space (M,A),
where F and A are Borel σ-algebras generated by open sets. In Euclidean
space, the Lebesgue measure is a common choice of a standard measure in
Rn as it describes the area or volume of a set A ⊆ Rn. Additionally, several
distributions are absolute continuous with respect to the Lebesgue measure
making it possible to describe distributions by a closed-form expression of
the density functions. The natural generalisation of the Lebesgue measure
on manifolds is the Volume measure, which can be described in local coordi-
nates. Consider a local finite atlas (Uα, φα) with coordinate basis ∂αi = ∂

∂xαi
,

i = 1, . . . , d. We denote the coordinate representation of the metric, g, in the
chart (Uα, φα), by the matrix Gα = (gαij)i,j=1,...,d = (g(∂αi , ∂

α
j ))i,j . Given a

partition of unity {ρα} the volume measure of A is hence,

Vol(A) =
∑
α

∫
φα(A∩Uα)

(
ρα
√

det(Gα)
)
◦ φ−1

α dxα1 · · · dxαd (1.5)

=
∑
α

∫
φα(A∩Uα)

ρα(φ−1
α (xα1 , . . . , x

α
d ))
√

det(Gα(φ−1
α (xα1 , . . . , x

α
d ))) dxα1 · · · dxαd ,

where dxα1 · · · dxαd denotes the Lebesgue measure of Rd. The volume measure,
therefore, maps the set A ⊂ M to Rd and measures the volume in the local
chart weighted by the metric.

Based on the volume measure we can define integration of real-valued
functions. Let f : M → R be a compactly supported continuous function
over a compact subset A ⊂ M. The integral of f with respect to the Volume
measure is given as,∫

A
f dVol =

∑
α

∫
φα(A∩Uα)

(f ◦ φ−1
α )

(
ρα
√

det(Gα)
)
◦ φ−1

α dxα1 · · · dxαd . (1.6)

Intuitively, this integral corresponds to regarding f , via f ◦φ−1 : Rd → R, as a
function from a subset of Rd to R and measure it with respect to the Lebesgue
measure on Rd.

A random variable X onM is a measurable function between the prob-
ability space (Ω,F , P ) and the measurable space (M,A). The measure on
M under the random variable X is the transformation X(P ), which define
the distribution of X . The measure of a set A ∈ A under X(P ) is written as
P (X ∈ A). Based on measures on M, assume that the random variable X
on M is integrable and that the distribution of X is absolutely continuous
with respect to a measure ν onM defining a density function p of X(P ). The
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mean of the transformation ofX under a real-valued function f is defined by

E[f(X)] =

∫
Ω
f(X) dP =

∫
M
f(x) dX(P )(x) =

∫
M
f(x) p(x) dν(x). (1.7)

The above mean is an element of R and does therefore not describe mean
values of data distributions on M. As a consequence, other methods have
to be taken into account to define means of distributions on manifolds. One
example of a generalisation of a mean onM is the Fréchet mean briefly de-
scribed in Section 1.2. The Fréchet mean is the set of points minimising the
variance [100],

VarX(y) = E[dist(y,X)2], (1.8)

where the mean value is well-defined as an integral over the real-valued
function dist(y,X). The problem with the Fréchet mean is that it is not
unique and does not always exist as a global minimum. In [58] it was pro-
posed to consider local minima of the variance (1.8), instead of the global
minima defining the Fréchet mean set. This mean is called the Karcher mean
and has been shown to be unique for a sufficiently locally defined distribu-
tion [58, 60]. For a more detailed discussion see also [100].

One way to describe the notion of variation of a random variable X is
by defining covariance in the tangent space of the mean. In the following,
we assume the existence of a unique mean µ. The covariance is defined in
the tangent space TµM by the Logµ map presented above. It is a straightfor-
ward generalisation of the Euclidean notion of covariance, and obtained as
the integral [100],

Σ(X) = E[Logµ(X)Logµ(X)T ] (1.9)

Later in Section 1.7, we present a way to determine the probability density
function of the normal distribution family based on this definition of covari-
ance.

In Euclidean space, another way of estimating the mean of a distribution
is by maximum likelihood estimation. The likelihood function is based on
the density function of a data distribution. Above we mentioned that deter-
mining the density function for a data distribution on a manifold is hard and
that there does not always exist a closed form expression for the density func-
tion. However, [120] presented a method for obtaining an approximation of
the likelihood function based on stochastic processes. The idea about using
stochastic theory to describe distributions and variation in data samples is the
primary objective of the thesis. We use stochastic processes to express uncer-
tainty in regression models on manifolds and evolution models for medical
images. In the rest of this chapter, we, therefore, introduce the deterministic
version of the models which inspired the work presented in Chapter 2-5.
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1.5 Geodesic Regression

In this section, we give a short description of the geodesic regression model
[35] and the extension [48] which introduce a non-geodesic relation between
data variables. There have been several methods for defining regression
models on manifolds, these include kernel-based, extrinsic and intrinsic, non-
parametric and parametric methods. For references see Chapter 2 and 3.

Regular linear regression for which both covariate variables x and the
response y are elements of the same vector space is modelled by the linear
relation,

y = α+Xβ + ε, (1.10)

for an intercept α ∈ R, a design matrix X with slope vector β and iid. nor-
mally distributed noise ε. Modelling the relation between x and y in vector
spaces is straightforward as the space is closed under addition. However,
when modelling the relation between variables with either the covariates or
the response defined on a manifold M, the data space is not closed under
addition, and the regular linear regression model is no longer applicable.

Geodesic regression [35] makes a natural generalisation of the Euclidean
linear regression model. Based on a single covariate x, geodesic regression
models the relation to the response y via geodesic curves,

yi = ExpExpp(xiv)(εi), (1.11)

for a random tangent vector εi ∈ TExpp(xiv)M. The tangent vector v is equiv-
alent to the slope of the linear regression, and the point p ∈ M describes the
intercept.

An extension of geodesic regression was presented in [48]. Here, the poly-
nomial regression model was generalised to manifolds by applying Rieman-
nian polynomials. Polynomial regression is able to describe more flexible
relations between covariates and response but is restricted to incorporate a
single covariate variable, e.g. time.

These methods formed the base of the stochastic development regression
presented in the papers of Chapter 2 and 3. The aim of the generalised re-
gression model, from Chapter 2 and 3, is to define an intrinsic parametric
regression model able to include multiple covariates, to model non-geodesic
relations, and to incorporate both fixed and random effects.

1.6 Evolution of Shapes and the LDDMM Framework

This section describes the setup for analysing deformation of shapes, which is
the topic of the papers presented in Chapter 4 and 5. In this respect, we intro-
duce the Large Deformation Diffeomorphic Metric Mapping framework [12]
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(LDDMM), which inspired the work presented in Chapter 5. The content of
the section was based on [12] and [87].

Consider a manifold Ω consisting of for example curves, images, or land-
mark points (see Fig. 1.1). We define the deformation of an element q ∈ Ω
as an action, φ.q. The deformation of the object q can be defined in multiple
ways, depending on the choice of regularisation. In the large deformation,
framework deformations are defined as diffeomorphisms. However, defor-
mations are not restricted to diffeomorphisms in general and in Chapter 4 we
give an example of small deformations modelled as displacement fields on a
discretised lattice.

The shape examples used throughout the thesis are landmark represen-
tations of shapes and deformation of images. The action of φ on an m-
dimensional landmark representation, q = (x1, . . . , xm) ∈ Rd×m, is an action
on each landmark, i.e. φ.q = (φ(x1), . . . , φ(xm)). The action of a deforma-
tion on an image I is defined as the composition φ.I = I ◦ φ−1. Examples of
deformation of shape objects are given in Fig. 1.3.

Let q0, q1 be two shapes in Ω. Analysing the difference between shapes
can be based on analysis of the deformation φmatching q0 to q1, i.e. φ.q0 = q1.
However, in many situations, e.g. image registration, there does not exist an
exact matching of shapes. Instead, consider inexact matching for which a
deformation φ is obtained by minimising the energy,

E(φ) = R(φ) + S(φ.q0, q1), (1.12)

for a regularisation R and a similarity measure S.
Consider the space Diff(Ω) of automorphisms of the smooth manifold Ω.

The LDDMM framework defines deformations, φ, based on a time-dependent
family of elements of the Lie group Diff(Ω). Deformations are modelled as
the endpoint of a flow of automorphisms solving the ordinary differential
equation (ODE),

∂

∂t
φt = φt ◦ vt. (1.13)

In (1.13), vt ∈ X(Ω), is a time-varying smooth velocity field over the domain
Ω. The Lie algebra g = TIdDiff(Ω) of the automorphism group is the space of
smooth velocity fields. The smoothness of the flow φt is uniquely determined
by the time-varying velocity field vt. To obtain a geodesic flow of automor-
phisms, a special class of velocity fields have to be considered, which we
describe in the following.

Assume that the space of velocity fields X(Ω) is a Reproducing Kernel
Hilbert space, with kernel K defining the metric, gL, on the Lie algebra, g.
Let φ ∈ Diff(Ω) be given and define the right-multiplication Rφ : Diff(Ω) →
Diff(Ω), Rφ(ψ) = ψ ◦ φ. By right translating the metric gL under the differen-
tial of the right-multiplication, a global metric can be defined on Diff(Ω). The
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Figure 1.3: (1. row) Deformation of Corpus Callosum shape in landmark rep-
resentation. (2. row) Matching of two shapes. The gray shape is matched into
the white circle. (3. row) The corresponding deformation of the underlying
grid. The matching was conducted by applying the FLASH code described
in [140].

resulting right-invariant metric give rise to a simplification of the geodesic
equations on Diff(Ω) called the Euler-Poincaré equations for diffeomorphisms
(EPDiff). For an initial velocity field v0 ∈ g, the EPDiff equation become,

d

dt
mt = −ad∗vtmt, (1.14)

for the dual mt = K−1vt and with ad∗ denoting an adjoint operator. Solving
(1.13) based on the time-varying velocity field vt, solution to (1.14), result in
a geodesic flow of automorphisms φt.

The deformation φ, a solution to the geodesic flow in the LDDMM frame-
work, describes a deterministic deformation of a shape q0. However, when
considering the time evolution of, for example, anatomical objects, modelling
the evolution as a deterministic path would not take into account the varia-
tion and uncertainty of the deformation. Including stochastic variation in the
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LDDMM framework makes it possible to describe uncertainty in data sam-
ples over time. This is the topic of the paper presented in Chapter 5.

The above sections introduced different generalisations of statistical con-
cepts to manifolds. Including estimation of uncertainty and variation to gen-
eralised models is non-trivial and often solved by modelling uncertainty in
the tangent bundle. In this thesis, we suggest using stochastic theory to de-
scribe variation in data distributions on manifolds. The following section
presents two ways of considering distributions on manifolds and gives an
overview of different definitions for Brownian motions onM.

1.7 Stochastic Dynamics on Manifolds

Defining standard distribution families, such as Normal, Beta, and Gamma
distributions, on manifolds is non-trivial. Probability density functions are
often defined based on desirable properties, e.g. by a decreasing probabil-
ity mass when the distance to the mean increases. However, determining
such suitable globally well-defined properties for distributions on manifolds
is hard.

In [100], a generalisation of the normal distribution to manifolds was pre-
sented as the distribution defined by the density function minimising the
negative entropy I ,

I[X] = E[log(p(X))] =

∫
M

log(p(x))dX(P )(x). (1.15)

The minimisation is conditioned on knowing the mean µ ∈ M, assumed to
be unique, and the covariance Σ, defined in (1.9), of the distribution of X . In
the above integral, p denotes the density function for the distribution of the
random variable X wrt. the lebesgue measure ν.

Under certain constraints on the minimisation of (1.15), described in [100],
the normal distribution obtain the form,

p(x) = k exp

(
−

(Logµx)TΛLogµx

2

)
, (1.16)

for the symmetric concentration matrix Λ and with the normalization con-
stant satisfying,

k−1 =

∫
M

exp

(
−

(Logµx)TΛLogµx

2

)
dν(x). (1.17)

The above definition of normal distributions result in a closed expression
for the probability density function which resembles the probability density
function for a normal distribution in Rd.
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An alternative method for generalisation of distributions, can be based
on stochastic theory. An example is the limiting distribution of a vector, Bt of
d independent standard Brownian motions B1

t , . . . , B
d
t for t ∈ [0, 1] which re-

semble a standard normal distribution in Rd. A Brownian motion, Bt in R, is
an almost surely continuous stochastic process with independent increments
and Bt − Bs ∼ N (0, t − s) for any time points t > s ≥ 0. The limit distri-
bution of Bt is the distribution at t = 1. A general normal distribution with
mean µ and covariance matrix Σ can be obtained by the limit distribution of
a random variable solution to the stochastic differential equation,

dXt = µdt+ Σ
1
2dBt, (1.18)

i.e. for µ ∈ Rd, Σ ∈ Rd×d, a d-dimensional vector Bt of d independent stan-
dard Brownian motions B1

t , . . . , B
d
t in R, and Xt solving (1.18), then X1 ∼

N (µ,Σ) [72]. Due to the potential non-linearity of the manifold, it is in gen-
eral not possible to take long steps on the space. Moving around a manifold is
instead defined by infinitesimal steps based on tangent vectors at the current
point of location. The transition distribution of a stochastic process solution
to a SDE is obtained by infinitesimal steps in tangent spaces. Hence, defining
distributions on manifolds in this way is a natural approach and will be a
focal point of this dissertation.

To talk about normal distributions on M, obtained via stochastic differ-
ential equations, we first need to define Brownian motions on manifolds.

1.7.1 Brownian Motions on Riemannian Manifolds

There are multiple ways to define Brownian motions on a Riemannian mani-
fold (M, g). In this section, we present a subset of these methods. The content
of the section is based on [52].

Brownian motions in Euclidean space is defined as the stochastic process
generated by the Laplace Beltrami operator. The Laplace Beltrami operator
is defined as the divergence of the gradient of a function f ,

∆f = div∇f. (1.19)

There exist a natural generalisation of the Laplace Beltrami operator in Eu-
clidean space to a Laplace Beltrami operator on a manifold M, ∆M. This
operator is given as (1.19) based on the divergence and gradient of f on man-
ifolds. For a metric g and local coordinates ∂1, . . . , ∂d the Laplace Beltrami
operator in local coordinates is given by,

∆Mf =
1√
G

∂

∂xj

(√
Ggij∂if

)
= gij

∂2

∂xi∂xj
f + gjkΓijk

∂

∂xi
f. (1.20)

Based on the generalised Laplace Beltrami operator Brownian motion on
manifolds can be defined as the diffusion process generated by 1

2∆M. From
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the local representation of 1
2∆M, a Brownian motion onM can be described

in local coordinates as an Itô SDE,

dW i
t = −1

2
glkΓikl(Wt)dt+

√
g−1

i

kdB
k
t . (1.21)

Here, g−1 denotes the inverse metric matrix g−1 = (gij)ij , Γikl the Cristoffel
symbols of the connection, and Bk

t a real-valued Brownian motion. The pre-
sented Itô SDE is described in local coordinates, and is therefore dependent
on the chosen chart and not globally defined.

To define a global, chart free representation of a Brownian motion onM,
we use the following result [52]. Let Vi, V0 be vector fields on the tangent
bundle TM and consider a Hörmander operator L on the form,

L =
1

2

d∑
i=1

V 2
i + V0. (1.22)

The stochastic process solving the Stratonovich SDE

dXt = V0(Xt)dt+ Vi(Xt) ◦S dBi
t, (1.23)

is generated by the operator L. This means that if it is possible to write the
Laplace Beltrami operator ∆M as in (1.22), then we obtain a Stratonovich rep-
resentation of a globally defined, chart free Brownian motion on M. How-
ever, ∆M cannot be described in this form. Consider instead the frame bun-
dle FM. Elements of FM is a tuple, (x, u), of a point x on the manifold
M and a linear isomorphism u : Rd → TxM, defining a basis on the tan-
gent space. An example of a basis of TxM is the collection of tangent vectors
uei, i = 1, . . . , d, where ei denotes the i’th canonical basis vector of Rd. The
canonical projection π : FM → M is defined by π(x, u) = x. The connec-
tion allows the splitting of the tangent space of the frame bundle into a ho-
risontal part describing changes in the base point x ∈ M, and a vertical part
explaining changes in the basis u, i.e. TFM = HFM⊕ V FM. For a visu-
alisation of the frame bundle see Fig. 1.4. The canonical projection give rise
to a one to one correspondance between the horizontal tangent space TπuM
and HuFM through the lift π∗ : TπuM→ HuFM. Considering the basis uei,
i = 1, . . . , d described above, a basis for the horizontal tangent space HuFM
is generated by lifting the basis vectors uei to the horizontal tangent space,
i.e. Hi(u) = π∗(uei), i = 1, . . . , d denotes a basis for HuFM.

For Riemannian manifolds we can restrict attention to a subspace of the
frame bundle called the Orthonormal frame bundle OM. The orthonormal
frame bundle consists of all points (x, u) where x ∈ M and u is an orthonor-
mal basis of the tangent space TxM. The Laplace Beltrami operator on M
can be lifted to the orthonormal frame bundle resulting in a Laplace Beltrami
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Figure 1.4: A visualisation of the frame bundle FM. Each point (x, u) is a
pair x ∈ M and a basis u of TxM. Walking horizontal in FM is equivalent
with walking onM and parallel transporting u along. Walking vertically in
FM fixes x ∈Mwhile smoothly moving across frames u of TxM.

operator ∆OM on OM. The Laplace Beltrami operator ∆OM can be written
as in (1.22) based on the horizontal basis vectors Hi, i.e.

∆OM =
d∑
i=1

H2
i . (1.24)

An intrinsic globally defined Brownian motion onOM can hence be obtained
by solving the Stratonovich SDE,

dUt =

d∑
i=1

Hi(Ut) ◦ dBi
t, (1.25)

for a d-dimensional real valued Brownian motion Bt, and an initial point
U0 = u0 ∈ OM. A Brownian motion, Wt, on M is then defined by the
canonical projection of Ut, i.e. Wt = π(Ut). Notice that if the horizontal
vector fields Hi are described in local coordinates, the local representation of
π(Ut) would be the same as the one presented in (1.21).

So why bother presenting this theory on Brownian motions on manifolds?
The reason is that noise or uncertainty of data in Euclidean spaces is most of-
ten assumed to follow a normal distribution. Brownian motions on a time
interval t ∈ [0, 1] generates a standard normal distribution at t = 1. Hence
modelling uncertainty by the limit distribution of a scaled Brownian motion
onM results in uncertainty being independent and identically normally dis-
tributed. Some of the included work in this dissertation considers uncer-
tainty defined based on Brownian motions in one of the described versions.
As an example, the stochastic development definition is used in Chapter 2
and 3 to generalise regression models to M. Chapter 4 and 5 model ran-
dom deformations of images, wherein Chapter 5, the random deformation is
based on a Stratonovich SDE on the group of automorphisms.



CHAPTER 2
Stochastic Development Regression on

Non-Linear Manifolds

The following paper was accepted for IPMI 2017 and published in the con-
ference proceedings,

• L. Kühnel and S. Sommer. Stochastic development regression on non-
linear manifolds. In Information Processing in Medical Imaging, pages
53–64, Cham, 2017. Springer International Publishing

The work was conducted in collaboration with Stefan Sommer and presents a
generalisation of linear regression on manifolds which is able to model flexi-
ble relations and include multiple covariate variables in the regression model.
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Stochastic Development Regression on Non-Linear
Manifolds

Line Kühnel and Stefan Sommer

Department of Computer Science (DIKU), University of Copenhagen, Denmark

Abstract

We introduce a regression model for data on non-linear manifolds.
The model describes the relation between a set of manifold valued ob-
servations, such as shapes of anatomical objects, and Euclidean explana-
tory variables. The approach is based on stochastic development of Eu-
clidean diffusion processes to the manifold. Defining the data distri-
bution as the transition distribution of the mapped stochastic process,
parameters of the model, the non-linear analogue of design matrix and
intercept, are found via maximum likelihood. The model is intrinsically
related to the geometry encoded in the connection of the manifold. We
propose an estimation procedure which applies the Laplace approxima-
tion of the likelihood function. A simulation study of the performance
of the model is performed and the model is applied to a real dataset of
Corpus Callosum shapes.

Keywords: Regression, Statistics on Manifolds, Non-linear Statistics,
Frame Bundle, Stochastic Development

2.1 Introduction

A main focus in computational anatomy is to study the shape of anatomical
objects. Performing statistical analysis of anatomical objects is however chal-
lenging due to the non-linear nature of shape spaces. The established statisti-
cal theory for Euclidean data does not directly allow us to answer questions
like: How does a treatment affect the deformation of an organ? or: Is it possi-
ble to categorize sick and healthy patients based on the shape of the subject’s
organs?

Shape spaces are typically non-linear and often equipped with manifold
structure. Examples of manifold-valued shape data include landmarks, curv-
es, surfaces, and images with warp variation. The lack of vector space struc-
ture for manifold-valued data implies that addition and scalar multiplication
are not defined. Several concepts in statistics rely on addition and scalar
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multiplication, these including mean value, variance, and regression models.
Hence, in order to make inference on manifold-valued data, generalization
of Euclidean statistical theory is necessary.

This paper focuses on generalization of regression models to manifolds.
The aim is to model the relation between Euclidean explanatory variables
and a manifold-valued response. The regression model has, as an exam-
ple, applications in computational anatomy [136]. The proposed model can
for example be used to analyze how age affects the shape of Corpus Callo-
sum [35].

Several approaches have previously been proposed for defining normal
distributions on manifolds [101, 118]. In [118], the distribution is defined
based on Brownian motions in Rm and the fact that normal distributions on
Rm can be defined as transition distributions of Brownian motions. The nor-
mal distribution on the manifold is then defined as the transition distribu-
tion of the stochastic development of the Euclidean Brownian motion [52].
The proposed regression model will be defined in a similar manner. The con-
struction can be considered intrinsic as it only depends on the connection of
the manifold, e.g. the Levi-Civita connection of a Riemannian manifold. It
does not rely on linearization of the manifold, and it naturally includes the
effect of curvature in the mapping of the stochastic processes.

In Euclidean linear regression, the relation between explanatory variables,
X , and a response variable, y, is modeled by an affine function ofX ,

y = a+Xb+ ε. (2.1)

Due to the lack of vector space structure, alternatives for modeling relations
between the given variables,X and y, are needed in the non-linear situation.
Several ideas have previously been introduced and a selection of these will
be described in Section 2.2.

In this paper, the regression model is considered as a transported linear
regression defined in Rm. This approach is inspired by the transport of nor-
mal distributions defined in [118]. Notice that the linear regression model
(2.1) can be generalized to situations in which several observations are ob-
served over time,

yt = at +Xtb+ εt, for t ∈ [t1, t2]. (2.2)

Our approach suggests to define the regression model by transportation of
stochastic processes, Zt = at +Xtb+ εt, in Rm on to the manifold in order to
obtain the relation to the response variable, y (see Figure 2.1).

The paper will be structured as follows. In Section 2.2, we give a discus-
sion on previous methods developed for regression on manifolds. Section
2.3 presents a short description of development of stochastic paths from a
Euclidean space to the manifold. Section 2.4 introduces the proposed model,
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Figure 2.1: The idea behind the proposed regression model. Stochastic pro-
cesses in Rm is transported toM, by stohcastic development ϕ, to model the
relation between the explanatory variables and the response y ∈M.

followed by a description of the estimation procedure in Section 2.5. In Sec-
tion 2.6 and 2.7, illustrative examples are considered for the application and
performance of the model. The paper is ended by a discussion of the defined
model in Section 2.8.

2.2 Background

Multiple approaches have been proposed for generalizing regression mod-
els to non-linear manifolds. The methods consider the regression problem in
different situations. In this paper we will consider the case of Euclidean exa-
planatory variables and a manifold-valued response. There have been sev-
eral works describing regression models for manifold-valued data in other
situations [25, 9, 80, 124].

Regression models for describing the relation between a manifold-valued
response and Euclidean explanatory variables have also previously been in-
troduced. Examples include [78] in which an extrinsic regression model is
introduced, and [115], which defines an intrinsic regression model where the
parameter vector is estimated by minimizing the total sum of squares based
on the Riemannian manifold distance. Another example is the geodesic re-
gression model introduced in [35], which is a generalization of the linear
regression model in Euclidean spaces. The relation is here modeled by a
geodesic described by an initial velocity dependent on an explanatory vari-
able and a starting point on the manifold.

In this paper, we will take a different view on how to relate the response
and explanatory variables. Instead of considering the relation as being mod-
eled by geodesics on the manifold as in [35], we will describe the relation by
stochastic paths transported from the space of explanatory variables to the
manifold. By defining the regression model using stochastic paths, we are
able to model non-geodesic relations, incorporate several explanatory vari-
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ables, and consider random effects in the model. Non-geodesic relations have
been considered by others before. An example is [117] in which the geodesic
regression model from [35] is generalized in order to model more complex
shape changes. The regression function is in this case fitted by piecewise cu-
bic splines that describes the variation of one explanatory variable. In [51],
a regression model is introduced, in which the non-geodesic relation is ob-
tained by time-warping. Others have proposed to model the non-geodesic
relation by either a generalized polynomial regression model or by non-linear
kernel-based regression [48, 137, 11, 10, 31]. On the contrary, [116] introduces
the Hierarchical Geodesic Model which are able to consider several explana-
tory variables including random variables, but assumes nested observations
and does only consider geodesic relations. A regression model, which in-
corporates both a non-geodesic relation and several explanatory variables,
is proposed in [28]. This work defines an intrinsic regression model on Rie-
mannian symmetric spaces, in which the regression function is obtained by
minimizing the conditional mean of residuals defined by the log-map.

In addition to describing the proposed model, we perform estimation of
model parameters by maximum likelihood using the transition density on
the manifold. The model does not linearize the manifold as in many of the
local regression models, but instead take into account the curvature of the
manifold at each point as encoded in the connection through the mapping of
the stochastic process.

2.3 Stochastic Development

In this section we give a brief description of stochastic development of curves
in Rm to the manifold. The reader is referred to [52, 119, 122] for a deeper
description of this concept.

Let M be a d-dimensional manifold provided with a connection ∇ and
metric g. The connection is necessary for transportation of tangent vectors
along curves on the manifold. A frequently used connection is the Levi-
Civita connection coming from a Riemannian structure on M. Let ∂i for
i = 1, . . . , d denote a coordinate frame onM and let dxi be the correspond-
ing dual frame. A connection ∇ is given in terms of its Christoffel symbols
defined by ∇∂i∂j = Γkij∂k. For the Levi-Civita connection, the Christoffel
symbols are given by

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij) (2.3)

in which gij is the components of g in the coordinate basis, i.e. g = gijdx
idxj ,

and gij is the inverse components.
Consider the frame bundle FM being the set of tuples (y, ν) in which

y ∈ M and ν is a frame for the tangent space TyM. Let π : FM →M be the
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projection map given by π(y, ν) = y for (y, ν) ∈ FM. A smooth curve Ut on
FM is a smooth selection of frames, i.e. for every t ∈ I , Ut = (yt, νt) in which
νt : Rd → Tπ(Ut)M is a frame.

Given a connection ∇, the tangent space of the frame bundle, TFM,
splits into a horizontal and a vertical part, TFM = HFM⊕V FM. The hor-
izontal subspace explains infinitesimal changes of the base point on the man-
ifold. On the other hand, tangent vectors in V FM describe changes of the
frame ν keeping the base point fixed. Given a tangent vector v ∈ TyM and a
frame ν, a vector in H(y,ν)FM can be defined by horizontal lift. The horizon-
tal lift of a tangent vector v is the unique horizontal vector w ∈ H(y,ν)FM,
satisfying π?w = v, where π? : H(y,ν)FM → TyM is induced by the projec-
tion π. The horizontal lift of v will be denoted hl(v).

Consider a probability space (Ω,F , P ) and a stochastic process Xt : Ω →
W(Rm), where W(Rm) denotes the path space of Rm. The stochastic devel-
opment of Xt to FM can be defined as a solution, Ut, of the Stratonovich
stochastic differential equation,

dUt =
d∑
i=1

Hi(Ut) ◦ dXi
t , (2.4)

where ◦ symbolizes a Stratonovich stochastic differential equation. The vec-
tor fields H1, . . . ,Hd denotes a basis for the horizontal subspace of TFM.
Given a point u = (y, ν) ∈ FM, Hi are defined as Hi(u) = hl(ν(ei)), i =
1, . . . , d, where e1, . . . , ed is the canonical basis for Rd. A path Yt on the mani-
foldM can then be obtained by the projection of Ut ontoM by the projection
map π, i.e. Yt = π(Ut).

Consider two processes X1
t , X

2
t in Rm, t ∈ [0, T ] for T > 0, for which

X1
0 = X2

0 = x0 and X1
T = X2

T . If Y 1
t , Y 2

t denotes the stochastic development
of X1

t and X2
t respectively onM, then it does not in general hold that Y 1

T =
Y 2
T onM due to the curvature of the manifold.

2.4 Model

LetM be a d-dimensional manifold embedded in the ambient space Rk for
some k ≥ d and consider a response variable y inM. Let νy0 : Rd → Ty0M
be a frame for the tangent space at a reference point y0 ∈ M. Assume that
y1, . . . ,yn ∈ Rk are n realizations of y ∈ M and let xi = (x1

i , . . . , x
m
i ) ∈ Rm

denote the vector of explanatory variables for the i’th observation. Notice
that the realizations of y are assumed to lie in the ambient space Rk and not
required to be in M. This construction allows for observations measured
with noise which are not necessarily observed as elements ofM.

The strategy of the proposed model is to define stochastic processes ac-
cording to the generalized linear regression in (2.2) and transport these to the
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Figure 2.2: Illustration of the regression model. Stochastic processes zit, de-
fined in (2.5), are transported through the frame bundle FM to M, with
stochastic development, ϕ. Each observation yi is then modelled as a noisy
member of the endpoint distribution of the transported zit processes. The
model supports cases where the endpoint noise ε̃ perturbes yi in the ambient
space Rk in whichM is embedded.

manifold by stochastic development. All stochastic processes are defined for
t ∈ [0, T ] for a T > 0. Consider for each observation i the stochastic process
zit : Ω→W(Rm), solution to the stochastic differential equation,

dzit = βdt+ W̃dXi
t + dεt. (2.5)

The first term, βdt, is a fixed drift for β ∈ Rm. W̃dXi
t is the dependence

of the explanatory variables with Xi
t : Ω → W(Rm) being a stochastic pro-

cess satisfying Xi
0(ω) = 0 and Xi

T (ω) = xi for ω ∈ Ω. The matrix W̃ is a
m ×m-dimensional matrix with columns relating to the basis vectors of the
frame νy0 on M. Consider the matrix W with columns consisting of basis
vectors of νy0 . IfM has a Riemannian metric, then W = UW̃ , in which U de-
notes a d×m orthonormal matrix with respect to the metric. Notice that this
model can incorporate both fixed and random explanatory variables. If the
j’th explanatory variable, xji , is a random effect, Xij

t is modeled as a Brow-
nian bridge, while it for fixed effects are modeled as a constant drift. The
random error, εt, is modeled as a multidimensional Brownian motion on Rm.

The i’th observation yi is modeled as a noisy endpoint of the stochastic
development of zit. If m < d only a reduced frame ν̃y0 is used for the stochas-
tic development of zit. The reduced frame is considered as we are only in-
terested in the effect of frame vectors associated to the explanatory variables.
The basis vectors of ν̃y0 corresponds to the columns ofW . Given the reference
point y0 ∈ M, define stochastic processes Y i

t as the stochastic development
of zit. Let YTi : Ω → M be a random variable following the distribution of
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endpoints of the stochastic development Y i
t . Then

yi = YTi + ε̃i, (2.6)

where ε̃i ∼ N (0, τ2Id) represents the random measurement error that pulls
the realization, yi, from the manifold. In Figure 2.2, the two steps of the
model are illustrated. First, the stochastic development of zit are defined on
the frame bundle and finally, this stochastic development is projected to the
manifold.

Notice that in the case M = Rk with the standard connection on Rk,
the proposed model reduces to the regular regression model for data in Rk.
Assume y ∈ Rk and that Xi

t is a vector from 0 to xi. Then β and y0 relates to
the intercept, W is the matrix of regression coefficients and εt and ε̃ the iid.
random noise.

2.5 Estimation

The reference point y0, the matrix W , the drift β, and the variance parame-
ter τ2 are the parameters of the model. These parameters can be estimated in
several ways. This section describes a Laplace approximation of the marginal
likelihood function which are used for finding optimal parameter estimates.
We could alternatively use a Monte Carlo EM based procedure using simu-
lations of the missing data, Y i

t for t ∈ [0, T ], to optimize the complete data
likelihood. This will be considered in future works.

Laplace approximation can be used to determine a linear approximation
of a non-linear likelihood function [59]. Let θ denote the vector of parameters,
and dxt a discretization of the process Xt at ns + 1 time-points. Hence dxt is
a vector of length n ·m · ns, in which ns denotes the number of time steps, n
the number of observations, and m the number of explanatory variables. Let
f(y|θ) be the conditional density of the response y ∈M given θ and p(dxt|θ)
the density of the discretization of Xt given θ. To find the optimal parameter
vector, θ, the following likelihood has to be optimized,

L(θ;y) = f(y|θ) =

∫
f(y|dxt, θ)p(dxt|θ)d(dxt) =

∫
e−nh(dxt) d(dxt), (2.7)

where h(dxt) = − 1
n log f(y|dxt, θ) − 1

n log p(dxt|θ). The Laplace approxima-
tion of L is then given by

L(θ;y) ≈ f(y|dxot , θ)p(dxot |θ)(2π)
mns
2 |Σ|

1
2n−

mns
2 , (2.8)

in which dxot = argmaxdxt{−h(dxt)} and Σ =
(
D2h(dxt)

)−1, the inverse
of the Hessian of h(dxt). The approximated likelihood is then optimized
wrt. θ to obtain the estimated parameters. In the following simulation study,
the Laplace approximation is used for parameter estimation. The code for
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the estimation algorithm as well as the simulation study below was imple-
mented in Theano [127]. The code is available at https://bitbucket.
org/stefansommer/theanodiffgeom.

2.6 Simulation Study

This section investigates properties of the model on simulated synthetic data.
Two setups will be introduced, both considering landmark representations
of shapes. The data are assumed to lie in a manifold defined in the LDDMM
(Large Deformation Diffeomorphic Metric Mapping) framework [135].

In the LDDMM framework, deformations of shapes are modeled as smooth
flows which are solutions to ordinary differential equations defined by vector
fields. A point q ∈M is a finite number of landmarks, q = (x1

1, x
2
1, . . . , x

1
nl
, x2

nl
).

The metric on M is given by g(v, w) =
∑nl

i,j vK
−1(xi, xj)w, where K−1 de-

notes the inverse of a kernel K. In this simulation study K is the Gaussian
kernel with standard deviation, σ = 0.5. Based on this metric the Levi-Civita
connection can be obtained by calculating the Christoffel symbols defined in
(2.3).

To begin with, we consider estimation of W̃ and y0 and investigate the
performance of the estimation procedure. The shapes that will be consid-
ered consists of 8 landmarks generated from the unit circle with landmarks
located at 0, π4 ,

π
2 , . . . ,

3π
2 ,

7π
4 radians. The center plot of Figure 2.3 shows the

unit circle with the chosen frame for each landmark. The number of explana-
tory variables are set to m = 2 and the variables are drawn from a normal
distribution with mean 0 and standard deviation 2. The other parameters are
set to

W̃ =

(
0.2 0.1
0.1 0.2

)
, τ = 0.1 (2.9)

In Figure 2.3 is shown an example of simulated observations as well as
the sample paths Xi

t . A total of 50 datasets were sampled, in which each
consisted of 20 observations. For each simulated dataset, the W̃ matrix was
estimated. Each of the estimated distrubtions for the entries of W̃ are shown
in Figure 2.4. By the results, we conclude that the estimated parameters are
fairly stable between the different simulations and that the true values are
well centered in each distribution. For this simulation, the estimation proce-
dure is thus able to estimate the true W̃ parameters that were specified in the
model.

Three similar datasets, as explained above, were sampled with different
number of observations, 20, 60 and 100 respectively. The matrix W̃ as well
as the reference point y0 were estimated for each of the three datasets. In this

https://bitbucket.org/stefansommer/theanodiffgeom
https://bitbucket.org/stefansommer/theanodiffgeom
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Figure 2.3: The figures show the simulation of a dataset. (left) The stochastic
paths in Rm are shown, where the vector of explanatory variables for each
observation i is represented by a green dot. (center) The true frame for the
simulated data as well as the reference shape are plotted. (right) The sim-
ulated observations are shown, with the stochastic developments as the red
processes.
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Figure 2.4: The distribution of the estimated W̃ parameters. The red horizon-
tal lines show the true parameters given in (2.9).
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Figure 2.5: (left) The estimated reference point y0 (red) for the dataset with
20 observations. (right) The estimated y0 for 60 (cyan) and 100 (red) observa-
tions. In both plots, the initial (green) and the true reference circle (blue) are
shown.

case, the estimated W̃ matrix was found to be

Ŵ20 =

(
0.206 0.136
0.147 0.322

)
, Ŵ60 =

(
0.22 0.11
0.11 0.21

)
, Ŵ100 =

(
0.205 0.104
0.115 0.214

)
while the estimated reference points are shown in Figure 2.5. By increasing
the number of observations, we conclude that the estimated parameters W̃
and y0 converge towards the true parameters.

In the second study, we consider the problem of estimating the frame
matrix U . In this case, each observation consists of 3 landmarks that were
generated from a setup shown in Figure 2.6. We only consider one explana-
tory variable, meaning that only one frame vector has to be estimated for each
landmark. The true frame vectors for each landmark was set to a vertical unit
vector. In the estimation procedure, the frame vectors were initialized with
the Euclidean linear regression estimate. In Figure 2.6 is shown the true (red),
the initial (green) and the estimated frame (blue) for each landmark. The esti-
mation procedure converges to a good estimate of the true frame. Estimation
of the initial frame was considered for different number of observations, but
the estimated frame did not seem to converge for increasing number of ob-
servations. The difference in the parameter estimates might therefore be a
result of either the linear approximation of the likelihood or that the optimal
solution of the initial frame is not unique.

2.7 Data Example

We now apply the model to a real dataset consisting of landmark represen-
tations of Corpus Callosum (CC) shapes. The model is used to describe the
effect of age on CC shapes. The manifold considered is the same as that
introduced in Section 2.6, but in this case σ = 0.1. Again the Levi-Civita
connection is used.
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Figure 2.6: Comparison of the estimated (blue), initial (green) and true frame
vectors (red).
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Figure 2.7: (left) A subset of the Corpus Callosum data. (right) The mean
shape with the estimated frame for the 20 landmarks used in the model fit-
ting.

A subset of the CC dataset is plotted in Figure 2.7. For model fitting, a
dataset of 20 CC shapes was considered with age values ranging from 22 to
78. The model was fitted to CC shapes represented by a subset of 20 land-
marks. We did not incorporate a drift term in the model, and only the frame
and W̃ has been estimated. The refrence point was set to the mean shape
(Figure 2.7) and τ = 0.1.

The estimated frame for the 20 landmarks are shown in Figure 2.7 on top
of the mean shape. The weight matrix was estimated as W̃ = −0.0002. Given
the low estimate of W̃ and hence a small frame matrix W , the result of this
experiment suggests a low age effect on CC for these data.

2.8 Discussion

A method was proposed for modeling the relation between a manifold-valued
response and Euclidean explanatory variables. The relation was modeled
by transport of stochastic paths from Rm to the manifold. The stochastic
paths defined on Rm was given as solutions to a stochastic differential equa-
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tion with a contribution from a fixed drift, a stochastic process related to
the explanatory variables, and a random noise assumed to follow a mul-
tidimensional Brownian motion. The response variable was then modeled
as a noisy observation of a stochastic variable following the distribution of
the endpoints of the transported process. The proposed model is intrinsic
and based on a connection on the manifold without making linearization
of the non-linear space. Moreover, a likelihood based estimation procedure
were described using Laplace approximation of the marginal likelihood. We
experimentally illustrated the model and the parameter estimation using a
simulation study and a real data example.

Other procedures could be used for estimation of parameters. As an ex-
ample, the Monte Carlo EM procedure could be used to optimize the com-
plete data likelihood based on simulations of the missing data. Another ex-
ample is to approximate the distribution of the response by moment match-
ing.

An interesting problem to investigate is how to make variable selection
in the model. As the contribution from the explanatory variables is defined
in comparison with the frame basis vectors, one idea is to exclude those ex-
planatory variables which corresponds to frame vectors parallel to the curve.
These frame vectors will not contribute to the stochastic development and
hence will not be important for explaining the relation to the response vari-
able.

An important assumption of the manifold considered, is that the mani-
fold is equipped with a connection. In this paper, the Levi-Civita connection
was used, but several other connections could have been chosen. It would be
interesting to explore how the choice of connection affects the model.

As it is possible to transport stochastic paths from a manifold to a Eu-
clidean space, the model could be generalized to handle situations in which
a Euclidean response variable is compared to manifold-valued explanatory
variables. Based on such a model, one might be able to make categorization
of individuals based on manifold-valued shapes.





CHAPTER 3
Stochastic Development Regression

using Method of Moments

In the previous paper, a Laplace approximation was used to approximate
the likelihood function in order to infer model parameters for the stochas-
tic development regression. This required calculation of a high-dimensional
Hessian matrix, making the optimisation procedure computationally infea-
sible. The paper in this chapter presents the same stochastic development
regression, but where we investigate the application of the method of mo-
ments procedure for retrieving good estimates of the model parameters. The
paper was joint work with Stefan Sommer and accepted for GSI 2017. The
paper can be found in the conference proceedings,

• L. Kühnel and S. Sommer. Stochastic development regression using
method of moments. In International Conference on Geometric Science of
Information, pages 3–11. Springer, Cham, 2017

Notice that Section 3.7 was not part of the original paper, but has been in-
cluded in the thesis to present an additional example on S2 and adress fur-
ther thoughts concerning the stochastic development regression.
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Stochastic Development Regression using Method of
Moments

Line Kühnel and Stefan Sommer

Department of Computer Science (DIKU), University of Copenhagen, Denmark

Abstract

This paper considers the estimation problem arising when inferring
parameters in the stochastic development regression model for man-
ifold valued non-linear data. Stochastic development regression cap-
tures the relation between manifold-valued response and Euclidean co-
variate variables using the stochastic development construction. It is
thereby able to incorporate several covariate variables and random ef-
fects. The model is intrinsically defined using the connection of the
manifold, and the use of stochastic development avoids linearizing the
geometry. We propose to infer parameters using the Method of Mo-
ments procedure that matches known constraints on moments of the
observations conditional on the latent variables. The performance of
the model is investigated in a simulation example using data on finite
dimensional landmark manifolds.

Keywords: Frame Bundle, Non-linear Statistics, Regression, Statistics
on Manifolds, Stochastic Development.

3.1 Introduction

There is a growing interest for statistical analysis of non-linear data such as
shape data arising in medical imaging and computational anatomy. Non-
linear data spaces lack vector space structure, and traditional Euclidean sta-
tistical theory is therefore not sufficient to analyze non-linear data. This pa-
per considers parameter inference for the stochastic development regression
(SDR) model introduced in [66] that generalizes Euclidean regression mod-
els to non-linear spaces. The focus of this paper is to introduce an alternative
estimation procedure which is simple and computationally tractable.

Stochastic development regression is used to model the relation between
a manifold-valued response and Euclidean covariate variables. Similar to
Brownian motions on a manifold,M, defined as the transport of a Euclidean

30



3.1. Introduction 31

Figure 3.1: The idea behind the model. Normal linear regression process zit
defined in (3.1) is transported to the manifold through stochastic develop-
ment, ϕ. Here FM is the frame bundle, π a projection map, and Dyi1 the
transition distribution of yit = π(ϕ(zit)). The tangent bundle of FM can be
split in a horizontal and vertical subspace. Changes on FM in the vertical
direction corresponds to fixing a point y ∈ M while changing the frame, ν,
of the tangent space, TyM. Changes in the horizontal direction is fixing the
frame for the tangent space and changing the point on the manifold. The
frame is in this case parallel transported to the new tangent space.

Brownian motion from Rn toM, the SDR model is defined as the transport of
a Euclidean regression model. A Euclidean regression model can be regarded
as a time dependent model in which, potentially, several observations have
been observed over time. Given a response variable yt ∈ Rd and covariate
vector xt = (x1

t , . . . , x
m
t ) ∈ Rm, the Euclidean regression model can be writ-

ten as

yt = αt + βtxt + εt, t ∈ [0, 1], (3.1)

where αt ∈ Rd and βt ∈ Rd×m. A regression model can hence be defined as
a stochastic process with drift αt, covariate dependency through βtxt, and a
brownian noise εt. The SDR model is then defined as the transport of a re-
gression model of the form (3.1), from Rd to the manifoldM. The trasnpor-
tation is performed by stochastic development described in Section 3.2. Fig.
3.1 visualizes the idea behind the model.

In [66], Laplace approximation was applied for estimation of the param-
eter vector. However, this method was computational expensive and it was
difficult to obtain results for detailed shapes. Alternatively, a Monte Carlo Ex-
pectation Maximization (MCEM) method has been considered, but, with this
method, high probability samples were hard to obtain, which led to an un-
stable objective function. As a consequence, this paper examines the Method
of Moments (MM) procedure for parameter estimation. The MM procedure
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is easy to apply and not as computationally expensive as the Laplace ap-
proximation. It is a well-known method for estimation in Euclidean statistics
(see for example [97, 45, 29]), where it has been proven in general to provide
consistent parameter estimates.

Several versions of the generalized regression model have been proposed
in the case of manifold-valued response and Euclidean covariate variables.
Local regression is considered in [137, 78]. The former defines an intrinsic
local regression model, while [78] constructs an extrinsic model. For global
regression models, [35, 93, 116] consider geodesic regression, which is a gen-
eralization of the Euclidean linear regression model. There have been sev-
eral approaches for defining non-geodesic regression models on manifolds.
An example is kernel based regression models, in which the model func-
tion is estimated by a kernel representation [10, 31, 94]. In [51, 48, 117], the
non-geodesic relation is modelled by a polynomial or piecewise cubic spline
function. Moreover, [115, 28] propose estimation of a parametric link func-
tion by minimization of the total residual sum of squares and the generalized
method of moments procedure respectively.

The paper will be structured as follows. Section 3.2 gives a brief descrip-
tion of stochastic development and the frame bundle FM. Section 3.3 in-
troduces the SDR model and Section 3.4 describes the estimation procedure,
Method of Moments. At the end, a simulation example is performed in Sec-
tion 3.5.

3.2 Stochastic Development

This section gives a brief introduction to frame bundle and stochastic de-
velopment. For a more detailed description and a reference for the following
see [52]. Consider a d-dimensional Riemannian manifold (M, g) and a proba-
bility space (Ω,F , P ). Stochastic development is a method for transportation
of stochastic processes in Rd to stochastic processes on M. Let zt : Ω → Rd
denote a stochastic process for t ∈ [0, 1]. In order to define the stochastic de-
velopment of zt it is necessary to consider a connection onM. A connection,
∇, defines transportation of vectors along curves on the manifold, such that
tangent vectors in different tangent spaces can be compared. A frequently
used connection, which will also be used in this paper, is the Levi-Civita
connection of a Riemannian metric. Consider a point q ∈ M and let ∂i for
i = 1, . . . , d denote a coordinate frame at q, i.e. an ordered basis for TqM, with
dual frame dxi. A connection∇ is locally determined by the Christoffel sym-
bols defined by ∇∂i∂j = Γkij∂k. The Christoffel symbols for the Levi-Civita
connection are given by Γkij = 1

2g
kl (∂igjl + ∂jgil − ∂lgij), where gij denotes

the coefficients of the metric g in the dual frame dxi, i.e. g = gijdx
idxj , and

gij are the inverse coefficients.
Stochastic development uses the frame bundle, FM, defined as the fiber
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bundle of tuples (y, ν), y ∈Mwith ν : Rd → TyM being the frame for the tan-
gent space TyM. Given a connection onFM, the tangent bundle of the frame
bundle, TFM, can be split into a horizontal, HFM, and vertical, V FM,
subspace, i.e. TFM = HFM⊕ V FM. Fig. 3.1 shows a visualization of the
frame bundle and the horizontal and vertical tangent spaces. The horizontal
subspace determines changes in y ∈Mwhile fixing the frame ν, while V FM
fixes y ∈ M and describes the change in the frame for TyM. Given the split
of the tangent bundle TFM, an isomorphism π?,(y,ν) : H(y,ν)FM → TyM
can be defined. The inverse map π?(y,ν) is called the horizontal lift and pulls a
tangent vector in TyM to H(y,ν)FM. The horizontal lift of v ∈ TyM is here
denoted v? ∈ H(y,ν)FM.

Let e1, . . . , ed be the canonical basis of Rd and consider a point (y, ν) ∈
FM. Define the horizontal vector fields, H1, . . . ,Hd, by Hi(ν) = (νei)

?. The
vector fields H1, . . . ,Hd then form a basis for the subspace HFM. Given
this basis for HFM, the stochastic development of a Euclidean stochastic
process, zt, to the frame bundle FM can be found by the solution to the
Stratonovich differential equation dUt = Hi(Ut) ◦ dzit, where Einsteins sum-
mation notation is used and ◦ specifies that it is a Stratonovich differential
equation. The stochastic development of a process zt ∈ Rd with reference
point (y, ν) will be denoted ϕ(y,ν)(zt). A stochastic process onM can then be
obtained by the projection of Ut toM by the projection map π : FM→M.

3.3 Model

Consider a d-dimensional manifold M equipped with a connection ∇ and
let y1, . . . ,yn be n realizations of the response y ∈ M. Notice that the real-
izations are assumed to be measured with additive noise, which might pull
the observations to an ambient space of M. An example of such additive
noise for landmark data is given in Section 3.5. Denote for each observation
i = 1, . . . , n, xi = (xi1, . . . , xim) ∈ Rm the covariate vector of m ≤ d co-
variate variables. The SDR model is defined as a stochastic process on M
based on the definition of Euclidean regression models regarded as stochas-
tic processes (see (3.1)). Assume therefore that the response y ∈ M is the
endpoint of a stochastic process yt inM and the covariates, xi, the endpoint
of a stochastic process Xt = (X1t, . . . , Xmt) in Rm. The process Xjt is for
random covariate variables assumed to be a Brownian motion in R, while
for fixed covariate effects it is modelled as a fixed drift. The process yit for
each observation i = 1, . . . , n is defined as the stochastic development of a
Euclidean model on Rm. Consider the stochastic process, zit, in Rm defined
by the stochastic differential equation equivalent to the Euclidean regression
model defined in (3.1),

dzit = αdt+WdXit + dεit, t ∈ [0, 1]. (3.2)
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Here αdt is a fixed drift, W the m ×m coefficient matrix and εit the random
error modelled as a Brownian motion in Rm. The response process yit is
then given as the stochastic development of zit, i.e. yit = ϕ(y0,ν0)(zit) for
a reference point y0 and frame ν0 ∈ Ty0

M (see Fig. 3.1). The realizations
are modelled as noisy observations of the endpoints of yit, yi = yi1 + ε̃i in
which ε̃i ∼ N (0, τ2I) denotes iid. additive noise. There is a natural relation
between W and the frame ν0. If ν0 is assumed to be an orthonormal basis
and U the d ×m-matrix with columns of basis vectors of ν0, then the matrix
W̃ = UW explains the gathered effect of W and ν0 through U . However, this
decomposition is not unique and hence the W̃ matrix is estimated instead of
U and W individually.

3.4 Method of Moments

In this section the MM procedure is introduced for the estimation of the pa-
rameters in the regression model. The MM procedure uses known moment
conditions to define a set of equations which can be optimized to find the
true parameter vector θ = (τ, α, W̃ ,y0), see [97, 45, 29]. Here τ2 is the addi-
tive noise variance, α the drift, W̃ combined effect of covariates and ν0, and
y0 the initial point onM.

In the SDR model the known moment conditions are based on the mo-
ments of the additive noise ε̃i and the fact that ε̃i is independent of the co-
variate variables xik for each k = 1, . . . ,m. Hence, the moment conditions
are,

E [ε̃ij ] = 0, E [ε̃ijxik] = 0, E
[
ε̃2
ij

]
= τ2 ∀j = 1, . . . , d, and k = 1, . . . ,m.

Known consistent estimators for these moments are the sample means. Con-
sider the residuals, ε̂ij = yij − ŷij , in which the dependency of the parameter
vector, θ, lies in the predictions, ŷij for i = 1, . . . , n, j = 1, . . . , d. For a proper
choice of parameter vector θ, the sample means will approach the true mo-
ments. Therefore, the set of equations used to optimize the parameter vector
θ are,

1

n

n∑
i=1

ε̂ij = 0,
1

n

n∑
i=1

xikε̂ij = 0, and
1

n− 2

n∑
i=1

ε̂2
ij = τ̂2,

for all j = 1, . . . , d and k = 1, . . . ,m and where τ̂2 is the estimated variance.
In Euclidean statistics, the method of moments is known to provide consis-
tent estimators, but these estimators might be biased.
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The cost function considered for optimization with respect to θ is,

f(θ) =
1

d

∑
j

(
1

n

n∑
i=1

ε̂ij

)2

+
1

dm

∑
j,k

(
1

n

n∑
i=1

xikε̂ij

)2

+
1

d

∑
j

(
1

n− 2

n∑
i=1

ε̂2
ij − τ̂2

)2

. (3.3)

This cost function depends on predictions from the model based on the given
parameter vector in each iteration. In order for the objective function to be
stable it has to be evaluated for several predictions. Therefore, the function
has been averaged for several predictions to obtain a more stable gradient
descent optimization procedure.

The initial value of θ can in practice be chosen as parameters estimated
from a Euclidean multivariate linear regression model. Here, the estimated
covariance matrix would resemble the W̃ effect and the intercept the initial
point y0.

3.5 Simulation Example

The performance of the estimation procedure will be evaluated using simu-
lated data. We will generate landmark data on Riemannian landmark man-
ifolds as defined in the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) framework [135], and use the Levi-Civita connection. Shapes in
the landmark manifold M are defined by a finite landmark representation,
i.e. q ∈ M, q = (x1

1, x
2
1, . . . , x

1
nl
, x2

nl
), where nl denotes the number of land-

marks. The dimension of M is hence d = 2nl. Using a kernel K, the Rie-
mannian metric onM is defined as g(v, w) =

∑nl
i,j vK

−1(xi,xj)w with K−1

denoting the inverse of the kernel matrix. In the following, we use a Gaussian
kernel for K with standard deviation σ = 0.1.

We will consider a single covariate variable x ∈ R drawn from N (0, 36)
and model the relation to two response variables either with 1 or 3 land-
marks. The response variables are simulated from a model with parameters
given in Table 3.1 and Fig. 3.2 for nl = 3. Examples of simulated data for
nl = 1 and 3 are shown in Fig. 3.2. The additive noise is in this case normally
distributed iid. random noise added to each coordinate of landmarks. In this
example we consider a simplification of the model, as the random error in
zit, given in (3.2), will be disregarded. Estimation of parameters is examined
for three different models: one without additive noise and drift, one with-
out drift, and at last the full model. For nl = 3 only estimation of the two
first models is studied, and estimation in the model with no drift has been
considered for n = 70 and n = 150.

By the results shown in Table 3.1 and Fig. 3.2, the procedure makes a good
estimate of the frame matrix W̃ in every situation. For the model with no
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Figure 3.2: (upper left) Sample drawn from model without additive noise
and drift. (upper center) Sample drawn with additive noise, but no drift.
(upper right) Sample drawn from the full model. The vertical lines are the
stochastic development of zit and the horizontal corresponds to the additive
noise, the blue point is the reference point. (lower left) Model without drift
and variance for nl = 3, n = 70. (lower center) Model without drift and
n = 70. (lower right) Model without drift and n = 150. These plots show the
estimated results. (red) initial, (green) true, and (black) estimated reference
point and frame. The gray samples are predicted from the estimated model
while the green are a subset of the simulated data. Lower right plot does also
show the difference in the estimated parameters for n = 70, n = 150 for the
model with no drift. The magenta parameters in that plot is the estimated
parameters for model without drift and n = 70, the corresponding black
parameters in lower center plot.

additive noise and no drift, the procedure finds a reasonable estimate of y0.
When noise is added, it is seen that a larger sample size is needed in order to
get a good estimate of y0. On the contrary, the variance estimate seems biased
in each case. For nl = 3 the variance parameters estimated were τ̂ = 0.306
for n = 70 and τ̂ = 0.231 for n = 150. However, when drift is added to the
model, the estimation procedure has a hard time recapture the true estimates
of y0 and α. This difficulty can be explained by the relation between the
variables. In normal linear regression, only one intercept variable is present
in the model, but in the SDR this intercept variable is split between α and y0.
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Table 3.1: Parameter estimates found with the MM procedure for 1 landmark.
First column shows the true values and each column, estimated parameters
in each model.

True excl. τ , α n = 70 excl. α n = 70 excl. α n = 150 full model n = 150

τ 0.1 - (τ = 0) 0.256 0.226 0.207

α 40 - (α = 0) - (α = 0) - (α = 0) 37.19

W̃ (0, 2) (0, 2.013) (0.004, 1.996) (0, 2.003) (0, 2.004)

y0 (1, 0) (1.064, 0.0438) (1.158, 0.162) (1.026, 0.0227) (1.076, 2.708)

3.6 Conclusion

Method of Moments procedure has been examined for parameter estimation
in the stochastic development regression (SDR) model. The SDR model is a
generalization of regression models on Euclidean space to manifold-valued
data. This model analyzes the relation between manifold-valued response
and Euclidean covariate variables. The performance of the estimation proce-
dure was studied based on a simulation example. The Method of Moments
procedure was easier to apply and less computationally expensive than the
Laplace approximation considered in [66]. The estimates found for the frame
parameters were reasonable, but the procedure had a hard time retrieving
the reference point and drift parameter. This is due to a mis-specification of
the model as the reference point and drift parameter jointly correspond to
the intercept in normal Euclidean regression models and hence there is no
unique split of these parameters.

For further investigation, it could be interesting to test the relation be-
tween the reference point and drift parameter to be able to retrieve good es-
timates of these parameters. In the Euclidean case, the Method of Moments
procedure has been shown to provide consistent, but sometimes biased es-
timates. An interesting question for future work could also be, whether the
parameter estimates in this model is consistent and biased.

Acknowledgements. This work was supported by the CSGB Centre for Sto-
chastic Geometry and Advanced Bioimaging funded by a grant from the Vil-
lum foundation.
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3.7 Example on S2 and Further Thoughts

In this section, we present an example of the stochastic development regres-
sion (SDR) for data on S2 and make suggestions for further improvement of
the model.

The paper presented in this chapter discussed mis-specifications of the
SDR model as different parameters described similar effects, e.g. the drift
of the Euclidean semi-martingale, zt, together with the initial point y0, and
the covariate weight matrix W with the initial frame ν0. To get rid of the
mis-specifications, this example consider a simplified semi-martingale,

dzit = WdXit. (3.4)

The drift α and intrinsic noise ε are disregarded, resulting in the process
zit exclusively describing the covariate dependency on y. The response y
is modelled as the stochastic development, φ, of zt,

yi = φ(y0,ν0)(zit)
∣∣
t=1

+ ε̃i, (3.5)

for the initial point y0 ∈ M, initial frame ν0 of Ty0M and additive noise ε̃i ∼
N(0, τ2I). To remove the problem of separating the effects of ν0 and W , we
model ν0 as the orthonormal basis obtained from a Cholesky decomposition
of the coordinate matrix of the metric g evaluated at y0.
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Figure 3.3: Example of stochastic development regression on S2. (left) Simu-
lated covariate variables. (right) Corresponding response variables. The red
regression curve resembles the estimated model, the black curve (near the
red) is the true model and the magenta curve is the initial regression curve.

A data sample of 150 observations was simulated on S2 based on the two-
dimensional covariate observations visualised in the left plot of Fig. 3.3. The
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corresponding simulated response observations are shown in the right plot
of Fig. 3.3 together with the initial (magenta), estimated (red), and true re-
gression curve (black). The additive noise pulls the response observations to
the ambient space R3. When excluding the drift and intrinsic noise ε, thewe
see that the model is able to retrieve a good estimate of the regression curve
on S2 (see Fig. 3.3).

Notice that we exclusively included the extrinsic noise in the model to
obtain a less stochastic objective function for the method of moments. An al-
ternative optimisation procedure could be to define method of moments for
the stochastic development process φ(y0,ν0)(zt) instead of the extrinsic noise
ε̃. This optimisation procedure was used in the paper presented in Chap-
ter 5. The procedure determines the moments of a stochastic process, e.g.
φ(y0,ν0)(zt), by applying the Fokker-Planck equations. The obtained moments
for the limit distribution of the stochastic process is then matched with the ob-
served data moments. The method does not require model predictions and
will hence be computationally more efficient and result in a stable optimisa-
tion procedure. Moreover, the procedure makes it possible to include intrin-
sic uncertainty on the data space via the Euclidean process zt. Introducing
the Fokker-Planck based method of moments to the stochastic development
regression will be a focal point for future work.
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Most Likely Separation of Intensity

and Warping Effects in Image
Registration

The chapter contains the paper

• L. Kühnel, S. Sommer, A. Pai, and L. L. Raket. Most likely separation
of intensity and warping effects in image registration. SIAM Journal on
Imaging Sciences, 10(2):578–601, 2017

published in SIAM Journal on Imaging Sciences. The work is conducted
in collaboration with Stefan Sommer, Akshay Pai, and Lars Lau Raket. We
present a model for separating uncertainty in image data. Compared to the
deformation model presented in Chapter 5, the considered deformations in
this chapter is not required to be diffeomorphic, but are modelled as random
displacement fields on a discretised lattice.
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Abstract

This paper introduces a class of mixed-effects models for joint mod-
eling of spatially correlated intensity variation and warping variation in
2D images. Spatially correlated intensity variation and warp variation
are modeled as random effects, resulting in a nonlinear mixed-effects
model that enables simultaneous estimation of template and model pa-
rameters by optimization of the likelihood function. We propose an al-
gorithm for fitting the model which alternates estimation of variance
parameters and image registration. This approach avoids the potential
estimation bias in the template estimate that arises when treating reg-
istration as a preprocessing step. We apply the model to datasets of
facial images and 2D brain magnetic resonance images to illustrate the
simultaneous estimation and prediction of intensity and warp effects.

Keywords: template estimation, image registration, separation of phase
and intensity variation, nonlinear mixed-effects model

4.1 Introduction

When analyzing collections of imaging data, a general goal is to quantify sim-
ilarities and differences across images. In medical image analysis and com-
putational anatomy, a common goal is to find patterns that can distinguish
morphologies of healthy and diseased subjects aiding the understanding of
the population epidemiology. Such distinguishing patterns are typically in-
vestigated by comparing single observations to a representative member of
the underlying population, and statistical analyses are performed relative to
this representation. In the context of medical imaging, it has been custom-
ary to choose the template from the observed data as a common image of
the population. However, such an approach has been shown to be highly
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dependent on the choice of the image. In more recent approaches, the tem-
plates are estimated using statistical methods that make use of the additional
information provided by the observed data [81].

In order to quantify the differences between images, the dominant modes
of variation in the data must be identified. Two major types of variability
in a collection of comparable images are intensity variation and variation in
point-correspondences. Point-correspondence or warp variation can be viewed
as shape variability of an individual observation with respect to the template.
Intensity variation is the variation that is left when the observations are com-
pensated for the true warp variation. This typically includes noise artifacts
like systematic error and sensor noise or anatomical variation such as tissue
density or tissue texture. Typically one would assume that the intensity vari-
ation consists of both independent noise and spatially correlated effects.

In this work, we introduce a flexible class of mixed-effects models that ex-
plicitly model the template as a fixed effect and intensity and warping vari-
ation as random effects, see Figure 4.1. This simultaneous approach enables
separation of the random variation effects in a data-driven fashion using
alternating maximum-likelihood estimation and prediction. The resulting
model will therefore choose the separation of intensity and warping effects
that is most likely given the patterns of variation found in the data. From
the model specification and estimates, we are able to denoise observations
through linear prediction in the model under the maximum likelihood esti-
mates. Estimation in the model is performed with successive linearization
around the warp parameters enabling the use of linear mixed-effects predic-
tors and avoiding the use of sampling techniques to account for nonlinear
terms. We apply our method on datasets of face images and 2D brain MRIs
to illustrate its ability to estimate templates for populations and predict warp
and intensity effects.

4.1.1 Outline of the paper

The paper is structured as follows. In Section 4.2, we give an overview of
previously introduced methods for analyzing image data with warp varia-
tion. Section 4.3 covers the mixed-effects model including a description of
the estimation procedure (Section 4.3.1) and how to predict from the model
(Section 4.3.2). In Section 4.4, we give an example of how to model spatially
correlated variations with a tied-down Brownian sheet. We consider two ap-
plications of the mixed-effects model to real-life datasets in Section 4.5 and
Section 4.6 contains a simulation study that is used for comparing the preci-
sion of the model to more conventional approaches.
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θ ◦ v + x y=θ ◦ v + x+ εθ θ ◦ v

Figure 4.1: Fixed and random effects: The template (θ: leftmost) pertubed by
random warp (θ ◦ v: 2nd from left) and warp+spatially correlated intensity
(θ ◦ v + x: 3rd from left) together with independent noise ε constitute the
observation (y: 4th from left). Right: the warp field v that brings the observa-
tion into spatial correspondence with θ overlayed the template. Estimation
of template and model hyperparameters are conducted simultaneously with
prediction of random effects allowing separation of the different factors in
the nonlinear model.

4.2 Background

The model introduced in this paper focuses on separately modelling the in-
tensity and warp variation. Image registration conventionally only focuses
on identifying warp differences between pairs of images. The intensity vari-
ation is not included in the model and possible removal of this effect is con-
sidered as a pre-or postprocessing step. The warp differences are often found
by solving a variational problem of the form

EI1,I2(ϕ) = R(ϕ) + λS(I1, I2 ◦ ϕ−1), (4.1)

see for example [123]. Here S measures the dissimilarity between the fixed
image I1 and the warped image I2 ◦ ϕ−1, R is a regularization on the warp
ϕ, and λ > 0 is a weight that is often chosen by ad-hoc methods. After reg-
istration, either the warp, captured in ϕ, or the intensity differences between
I1 and I2 ◦ ϕ−1 can be analyzed [126]. Several works have defined methods
that incorporate registration as part of the defined models. The approach de-
scribed in this paper will also regard registration as a part of the proposed
model and adress the following three problems that arise in image analysis:
(a) being able to estimate model parameters such as λ in a data-driven fash-
ion; (b) assuming a generative statistical model that gives explicit interpreta-
tion of the terms that corresponds to the dissimilarity S and penalization R;
and (c) being simultaneous in the estimation of population-wide effects such
as the mean or template image and individual per-image effects, such as the
warp and intensity effects. These features are of fundamental importance in
image registration and many works have addressed combinations of them.
The main difference of our approach to state-of-the-art statistical registration
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frameworks is that we propose a simultaneous random model for warp and
intensity variation. As we will see, the combination of maximum likelihood
estimation and the simultaneous random model for warp and intensity vari-
ation manifests itself in a trade-off where the uncertainty of both effects are
taken into account simultaneously. As a result, when estimating fixed effects
and predicting random effects in the model the most likely separation of the
effects given the observed patterns of variation in the entire data material is
used.

Methods for analyzing collections of image data, for example template
estimation in medical imaging [57], with both intensity and warping effects
can be divided into two categories, two-step methods and simultaneous meth-
ods. Two-step methods perform alignment as a preprocessing step before
analyzing the aligned data. Such methods can be problematic because the
data is modified and the uncertainty related to the modification is ignored in
the subsequent analysis. This means that the effect of intensity variation is
generally underestimated, which can introduce bias in the analysis, see [108]
for the corresponding situation in 1D functional data analysis. Simultaneous
methods, on the other hand, seek to analyze the images in a single step that
includes the alignment procedure.

Conventional simultaneous methods typically use L2 data terms to mea-
sure dissimilarity. Such dissimilarity measures are equivalent to the model
assumption that the intensity variation in the image data consists solely of
uncorrelated Gaussian noise. This approach is commonly used in image reg-
istration with the sum of squared differences (SSD) dissimilarity measure,
and in atlas estimation [141]. Since the L2 data term is very fragile to system-
atic deviations from the model assumption, for example contrast differences,
the method can perform poorly. One solution to make the L2 data term more
robust against systematic intensity variation and in general to insufficient
information in the data term is to add a strong penalty on the variation of
the warping functions. This approach is however an implicit solution to the
problem, since the gained robustness is a side effect of regularizing another
model component. As a consequence, the effect on the estimates is very hard
to quantify, and it is very hard to specify a suitable regularization for a spe-
cific type of intensity variation. This approach is, for example, taken in the
variational formulations of the template estimation problem in [57]. An ele-
gant instance of this strategy is the Bayesian model presented in [2] where the
warping functions are modeled as latent Gaussian effects with an unknown
covariance that is estimated in a data-driven fashion. Conversely, systematic
intensity variation can be sought to be removed prior to the analysis, in a re-
versed two-step method, for example by using bias-correction techniques for
MRI data [131]. The presence of warp variation can however influence the
estimation of the intensity effects.

Analysis of images with systematic intensity differences can be improved
using data dissimilarity measures that are robust or invariant to such system-
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atic differences. However, robustness and invariance come at a cost in accu-
racy. By choosing a specific kind of invariance in the dissimilarity measure,
the model is given a pre-specified recipe for separating intensity and warping
effects; the warps should maximize the invariant part of the residual under
the given model parameters. Examples of classical robust data terms include
L1-norm data terms [105], Charbonnier data terms [20], and Lorentzian data
terms [17]. Robust data terms are often challenging to use, since they may not
be differentiable (L1-norms) or may not be convex (Lorentzian data term).
A wide variety of invariant data terms have been proposed, and are useful
when the invariances represent a dominant mode of variation in the data. Ex-
amples of classical data terms that are invariant to various linear and nonlin-
ear photometric relationships are normalized cross-correlation, correlation-
ratio and mutual information [82, 47, 110, 98]. Another approach for achiev-
ing robust or invariant data terms is to transform the data that is used in
the data term. A classical idea is to match discretely computed gradients or
other discretized derivative quantities [99]. A related idea is to construct in-
variant data terms based on discrete transformations. This type of approach
has become increasingly popular in image matching in recent years. Exam-
ples include the rank transform and the census transform [138, 88, 43, 44],
and more recently the complete rank transform [33]. While both robust and
invariant data terms have been shown to give very good results in a wide
array of applications, they induce a fixed measure of variation that does not
directly model variation in the data. Thus, the general applicability of the
method can come at the price of limited accuracy.

Several alternative approaches for analyzing warp and intensity simulta-
neously have been proposed [91, 56, 18, 134]. In [91] warps between images
are considered as combination of two transformation fields, one represent-
ing the image motion (warp effect) and one describing the change of image
brightness (intensity effect). Based on this definition warp and intensity vari-
ation can be modeled simultaneously. An alternative approach is considered
in [56], where an invariant metric is used, which enables analysis of the dis-
similarity in point correspondences between images disregarding the inten-
sity variation. These methods are not statistical in the sense that they do
not seek to model the random structures of the variation of the image data.
A statistical model is presented in [18], where parameters for texture, shape
variation (warp) and rendering are estimated using maximizing-a-posteriori
estimation.

To overcome the mentioned limitations of conventional approaches, we
propose to do statistical modeling of the sources of variation in data. By
using a statistical model where we assume parametric covariance structures
for the different types of observed variation, the variance parameters can be
estimated from the data. The contribution of different types of variation is
thus weighted differently in the data term. By using, for example, maximum-
likelihood estimation, the most likely form of the variation given the data is
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penalized the least. We emphasize that in contrast to previous mixed-effects
models incorporating warp effects [2, 141], the goal here is to simultaneously
model warp and intensity effects. These effects impose randomness relative
to a template, the fixed-effect, that is estimated during the inference process.

The nonlinear mixed-effects models are a commonly used tool in statis-
tics. These types of models can be computationally intensive to fit, and are
rarely used for analyzing large data sizes such as image data. We formulate
the proposed model as a nonlinear mixed-effects model and demonstrate
how certain model choices can be used to make estimation in the model
computationally feasible for large data sizes. The model incorporates ran-
dom intensity and warping effects in a small-deformation setting: We do
not require warping functions to produce diffeomorphisms. The geometric
structure is therefore more straightforward than in for example the LDDMM
model [135]. From a statistical perspective, the small-deformation setting
is much easier to handle than the large-deformation setting where warping
functions are restricted to produce diffeomorphisms.

Instead of requiring diffeomorphisms, we propose a class of models that
will produce warping functions that in most cases do not fold. Another ad-
vantage of the small-deformation setting is that we can model the warping
effects as latent Gaussian disparity vectors in the domain. Such direct mod-
eling allows one to compute a high-quality approximation of the likelihood
function by linearizing the model around the modes of the nonlinear latent
random variables. The linearized model can be handled using conventional
methods for linear mixed-effects models [103] which are very efficient com-
pared to sampling-based estimation procedures.

In the large-deformation setting, the metamorphosis model [129, 130] ex-
tends the LDDMM framework for image registration [135] to include inten-
sity change in images. Warp and intensity differences are modeled separately
in metamorphosis with a Riemannian structure measuring infinitesimal vari-
ation in both warp and intensity. While this separation has similarities to the
statistical model presented here, we are not aware of any work which have
considered likelihood-based estimation of variables in metamorphosis mod-
els.

4.3 Statistical model

We consider spatial functional data defined on R2 taking values in R. Let
y1, . . . ,yn be n functional observations on a regular lattice with m = m1m2

points (sj , tk), that is, yi = (yi(sj , tk))j,k for j = 1, . . . ,m1, k = 1, . . . ,m2.
Consider the model in the image space

yi(sj , tk) = θ(vi(sj , tk)) + xi(sj , tk) + εijk, (4.2)
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for i = 1, . . . , n, j = 1, . . . ,m1 and k = 1, . . . ,m2. Here θ : R2 → R denotes
the template and vi : R2 → R2 is a warping function matching a point in y
to a point in the template θ. Moreover xi is the random spatially correlated
intensity variation for which we assume that xi = (xi(sj , tk))j,k ∼ N (0, σ2S)
where the spatial correlation is determined by the covariance matrix S. The
term εijk ∼ N (0, σ2) models independent noise. The template θ is a fixed-
effect while vi, xi, and εijk are random.

We will consider warping functions of the form

vi(s, t) = v(s, t,wi) =

s
t

+ Ewi(s, t),

where Ewi : R2 → R2 is coordinate-wise bilinear spline interpolation of wi ∈
Rm1

w×m2
w×2 on a lattice spanned by sw ∈ Rm1

w , tw ∈ Rm2
w . In other words, wi

models discrete spatial displacements at the lattice anchor points. Figure 4.2
shows an example of disparity vectors on a grid of anchor points and the
corresponding warping function.

Figure 4.2: An example of disparity vectors at a 5 × 5 grid of anchor points
and the corresponding warping function.

The displacements are modeled as random effects,wi ∼ N (0, σ2C) where
C is a 2m1

wm
2
w × 2m1

wm
2
w covariance matrix, and, as a result, the warping

functions can be considered nonlinear functional random effects. As wi is
assumed to be normally distributed with mean zero, small displacements are
favorited and hence the warp effect will be less prone to fold. The model is
a spatial extension of the phase and amplitude varying population pattern
(pavpop) model for curves [108, 106].

4.3.1 Estimation

First, we will consider estimation of the template θ from the functional ob-
servations, and we will estimate the contributions of the different sources
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of variation. In the proposed model, this is equivalent to estimating the co-
variance structure C for the warping parameters, the covariance structure
S for the spatially correlated intensity variation, and the noise variance σ2.
The estimate of the template is found by considering model (4.2) in the back-
warped template space

yi(v
−1
i (sj , tk)) = θ(sj , tk) + xi(v

−1
i (sj , tk)) + ε̃ijk. (4.3)

Because every back-warped image represents θ on the observation lattice, a
computationally attractive parametrization is to model θ using one parame-
ter per observation point, and evaluate non-observation points using bilin-
ear interpolation. This parametrization is attractive, because Henderson’s
mixed-model equations [46, 109] suggests that the conditional estimate for
θ(sj , tk) given w1, . . . ,wn is the pointwise average

θ̂(sj , tk) =
1

n

n∑
i=1

yi(v
−1
i (sj , tk)), (4.4)

if we ignore the slight change in covariance resulting from the back-warping
of the random intensity effects. As this estimator depends on the warping
parameters, the estimation of θ and the variance parameters has to be per-
formed simultaneously with the prediction of the warping parameters. We
note that, as in any linear model, the estimate of the template is generally
quite robust against slight misspecifications of the covariance structure. And
the idea of estimating the template conditional on the posterior warp is sim-
ilar to the idea of using a hard EM algorithm for computing the maximum
likelihood estimator for θ [90].

We use maximum-likelihood estimation to estimate variance parameters,
that is, we need to minimize the negative log-likelihood function of model (4.2).
Note that (4.2) contains nonlinear random effects due to the term θ(vi(s, t,wi))
where θ ◦ vi is a nonlinear transformation of wi. We handle the nonlinearity
and approximate the likelihood by linearizing the model (4.2) around the
current predictions w0

i of the warping parameters wi:

yi(sj , tk) ≈ θ(v(sj , tk,w
0
i ))

+ (∇θ(v(sj , tk,w
0
i )))

>Jwiv(sj , tk,wi)
∣∣∣
wi=w0

i

(wi −w0
i )

+ xi(sj , tk) + εijk

= θ(v(sj , tk,w
0
i )) + Zijk(wi −w0

i ) + xi(sj , tk) + εijk, (4.5)

where Jwiv(sj , tk,wi) denotes the Jacobian matrix of v with respect towi and

Zijk = (∇θ(v(sj , tk,w
0
i )))

>Jwiv(sj , tk,wi)
∣∣∣
wi=w0

i

. (4.6)
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Letting Zi = (Zijk)jk ∈ Rm×2m1
wm

2
w , the linearized model can be rewritten

yi ≈ θw
0
i + Zi(wi −w0

i ) + xi + εi. (4.7)

We notice that in this manner, yi can be approximated as a linear combination
of normally distributed variables, hence the negative log-likelihood for the
linearized model is given by

`y(θ, C, σ2) =
nm1m2

2
log σ2 +

1

2

n∑
i=1

log detVi

+
1

2σ2

n∑
i=1

(yi − θw
0
i + Ziw

0
i )
>V −1

i (yi − θw
0
i + Ziw

0
i ), (4.8)

where Vi = ZiCZ
>
i + S + Im. The idea of linearizing nonlinear mixed-

effects models in the nonlinear random effects is a solution that has been
shown to be effective and which is implemented in standard software pack-
ages [79, 103, 104]. The proposed model is, however, both more general and
computationally demanding than what can be handled by conventional soft-
ware packages. Furthermore, we note that the linearization in a random
effect as done in model (4.7) is fundamentally different than the conven-
tional linearization of a nonlinear dissimilarity measure such as in the vari-
ational problem (4.1). As we see from the linearized model (4.7), the den-
sity of θ(v(sj , tk,wi) is approximated by the density of a linear combination,
θ(v(sj , tk,w

0
i )) +Zijk(wi−w0

i ), of multivariate Gaussian variables. The like-
lihood function for the first-order Taylor expansion in wi of the model (4.2)
is thus a Laplace approximation of the true likelihood, and the quality of this
approximation is approximately second order [133].

Computing the likelihood function

As mentioned above the proposed model is computationally demanding.
Even the approximated likelihood function given in equation (4.8) is not di-
rectly computable because of the large data sizes. In particular, the compu-
tations related to determinants and inverses of the covariance matrix Vi are
infeasible unless we impose certain structures on these. In the following, we
will assume that the covariance matrix for the spatially correlated intensity
variation S has full rank and sparse inverse. We stress that this assump-
tion is merely made for computational convenience and that the proposed
methodology is also valid for non-sparse precision matrices. The zeros in the
precision matrix S−1 are equivalent to assuming conditional independences
between the intensity variation in corresponding pixels given all other pixels
[73]. A variety of classical models have this structure, in particular (higher-
order) Gaussian Markov random fields models have sparse precision matri-
ces because of their Markov property.
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To efficiently do computations with the covariances Vi = ZiCZ
>
i +S+Im,

we exploit the structure of the matrix. The first term ZiCZ
>
i is an update to

the intensity covariance S+Im with a maximal rank of 2m1
wm

2
w. Furthermore,

the first term of the intensity covariance S has a sparse inverse and the second
term Im is of course sparse with a sparse inverse. Using the Woodbury matrix
identity, we obtain

V −1
i = (ZiCZ

>
i + S + Im)−1

= (S + Im)−1 − (S + Im)−1Zi(C
−1 + Z>i (S + Im)−1Zi)

−1Z>i (S + Im)−1

which can be computed if we can efficiently compute the inverse of the po-
tentially huge m×m intensity covariance matrix (S + Im)−1. We can rewrite
the inverse intensity covariance as

(S + Im)−1 = Im − (Im + S−1)−1.

Thus we can write V −1
i in a way that only involves operations on sparse

matrices. To compute the inner product y>V −1
i y, we first form the matrix

Im + S−1 and compute its Cholesky decomposition using the Ng-Peyton
method [92] implemented in the spam R-package [41]. By solving a low-
rank linear system using the Cholesky decomposition, we can thus compute
L = (C−1 + Z>i (S + Im)−1Zi)

−1. The inner product is then efficiently com-
puted as

y>V −1
i y = y>x− (Zix)>LZix

where
x = (S + Im)−1y.

To compute the log determinant in the likelihood, one can use the matrix de-
terminant lemma similarly to what was done above to split the computations
into low-rank computations and computing the determinant of S + Im,

det(Vi) = det(ZiCZ
>
i + S + Im)

= det(C−1 + Z>i (S + Im)−1Zi) det(C) det(S + Im).

For the models that we will consider, the latter computation is done by using
the operator approximation proposed in [107] which, for image data with
sufficiently high resolution (e.g. m > 30), gives a high-quality approxima-
tion of the determinant of the intensity covariance that can be computed in
constant time.

By taking the described strategy, we never need to form a dense m ×m
matrix, and we can take advantage of the sparse and low-rank structures to
reduce the computation time drastically. Furthermore, the fact that we as-
sume equal-size images allows us to only do a single Cholesky factorization
per likelihood computation, which is further accelerated by using the updat-
ing scheme described in [92].
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4.3.2 Prediction

After the maximum-likelihood estimation of the template θ and the vari-
ance parameters, we have an estimate for the distribution of the warping
parameters. We are therefore able to predict the warping functions that are
most likely to have occurred given the observed data. This prediction paral-
lels the conventional estimation of deformation functions in image registra-
tion. Let pwi|yi be the density for the distribution of the warping functions
given the data and define pwi , pyi|wi in a similar manner. Then, by applying
pwi|yi ∝ pyi|wipwi , we see that the warping functions that are most likely to
occur are the minimizers of the posterior

− log(pwi|yi) ∝
1

2σ2
(yi − θwi)>(S + Im)−1(yi − θwi) +

1

2σ2
w>i C

−1wi. (4.9)

Given the updated predictions ŵi of the warping parameters, we update the
estimate of the template and then minimize the likelihood (4.8) to obtain
updated estimates of the variances. This procedure is then repeated until
convergence is obtained. The estimation algorithm is given in Algorithm 1.
The run time for the algorithm will be very different depending on the data
in question. As an example we ran the model for 10 MRI midsaggital slices
(for more details see Section 4.5.2) of size 210 × 210, with imax = 5, jmax = 3.
We ran the algorithm on an Intel Xeon E5-2680 2.5GHz processor. The run
time needed for full maximum likelihood estimation in this setup was 1 hour
and 15 minutes using a single core. This run time is without parallization,
but it is possible to apply parallization to make the algorithm go faster.

The spatially correlated intensity variation can also be predicted. Either
as the best linear unbiased prediction E[xi |y] from the linearized model (4.7)
(see e.g. equation 5 in [83]). Alternatively, to avoid a linear correction step
when predicting wi, one can compute the best linear unbiased prediction
given the maximum-a-posteori warp variables

E[xi(s, t) |yi,wi = ŵi] = S(S + Im)−1(yi − θ̂
ŵi

). (4.10)

The prediction of the spatially correlated intensity variation can, for example,
be used for bias field correction of the images.

4.4 Models for the spatially correlated variations

The main challenge of the presented methods is the computability of the like-
lihood function, in particular computations related to the m ×m covariance
matrix of the spatially correlated intensity variation S. The same issues are
not associated with the covariance matrix C, for the warping parameters, as
the dimensions of this matrix are considerably smaller than the dimensions
of S. In the end of this section, we will give a short description of how the
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Algorithm 1: Inference in the model (4.2).
Data: y
Result: Estimates of the fixed effect and variance parameters of the

model, and the resulting predictions of the warping
parameters w

// Initialize parameters
Initialize w0

Compute θ̂
w0

following (4.4)
for i = 1 to imax do

// Outer loop: parameters
Estimate variance parameters by minimizing (4.8)
for j = 1 to jmax do

// Inner loop: fixed effect, warping
parameters

Predict warping parameters by minimizing (4.9)
Update linearization points w0 to current prediction

Recompute θ̂
w0

from (4.4)
end

end

displacement vectors can be modeled, but first we consider the covariance
matrix S.

As mentioned in the previous section, the path we will pursue to make
likelihood computations efficient is to assume that the systematic random
effect xi has a covariance matrix S with sparse inverse. In particular, model-
ing xi as a Gaussian Markov random field will give sparse precision matrices
S−1. The Markov random field structure gives a versatile class of models that
has been demonstrated to be able to approximate the properties of general
Gaussian fields surprisingly well [111]. Estimation of a sparse precision ma-
trix is a fundamental problem and a vast literature exists on the subject. We
mention in passing the fundamental works, [21, 39], which could be adapted
to the present setup to estimate unstructured sparse precision matrices. We
will however not pursue that extension in the present paper.

We here model xi as a tied-down Brownian sheet, which is the general-
ization of the Brownian bridge (which is Markov) to the unit square [0, 1]2.
The covariance function, S : [0, 1]2 × [0, 1]2 → R, for the tied-down Brownian
sheet is

S((s, t), (s′, t′)) = τ2(s ∧ s′ − ss′)(t ∧ t′ − tt′), τ > 0.

The covariance is 0 along the boundary of the unit square and reaches its
maximal variance at the center of the image. These properties seem reason-
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able for many image analysis tasks, where one would expect the subject mat-
ter to be centered in the image with little or no variation along the image
boundary.

Let S be the covariance matrix for a Brownian sheet observed at the lattice
spanned by

(s1, . . . , sm1) and (t1, . . . , tm2), si = i/(m1 + 1), ti = i/(m2 + 1)

with row-major ordering. The precision matrix S−1 is sparse with the follow-
ing structure for points corresponding to non-boundary elements:

1

τ2(m1 + 1)(m2 + 1)
S−1[i, j] =


4 if j = i

−2 if j ∈ {i− 1, i+ 1, i+m2, i−m2}
1 if j ∈ {i− 1−m2, i+ 1−m2,

i− 1 +m2, i+ 1 +m2}

.

For boundary elements, the j elements outside the observation boundary
vanish.

As explained in Section 4.3.1, the computational difficulties related to
the computation of the log determinant in the negative log likelihood func-
tion (4.8) comes down to computing the log determinant of the intensity co-
variance S + Im. For the tied-down Brownian sheet, the log determinant can
be approximated by means of the operator approximation given in [107, Ex-
ample 3.4]. The approximation is given by

log det(S + Im) =
∞∑
`=1

log

(
π`√

τ2(m1 + 1)(m2 + 1)
sinh

(√
τ2(m1 + 1)(m2 + 1)

π`

))
.

To compute the approximation we cut the sum off after 10,000 terms.
As a final remark, we note that the covariance function τ−2S is the Green’s

function for the differential operator ∂2
s∂

2
t on [0, 1]2 under homogeneous Diri-

chlet boundary conditions. Thus the conditional linear prediction of xi given
by (4.10) is equivalent to estimating the systematic part of the residual as a
generalized smoothing spline with roughness penalty

1

2τ2

∫ 1

0

∫ 1

0
xi(s, t)∂

2
s∂

2
t xi(s, t) dsdt =

1

2τ2

∫ 1

0

∫ 1

0
‖∂s∂txi(s, t)‖2 ds dt.

The tied-down Brownian sheet can also be used to model the covari-
ance between the displacement vectors. Here the displacement vectors given
by the warping variables wi are modeled as discretely observed tied-down
Brownian sheets in each displacement coordinate. As was the case for the
intensity covariance, this model is a good match to image data since it al-
lows the largest deformations around the middle of the image. Furthermore,
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the fact that the model is tied down along the boundary means that we will
predict the warping functions to be the identity along the boundary of the
domain [0, 1]2, and for the found variance parameters, the predicted warping
functions will be homeomorphic maps of [0, 1]2 onto [0, 1]2 with high proba-
bility.

In the applications in the next section, we will use the tied-down Brown-
ian sheet to model the spatially correlated variations.

4.5 Applications

In this section, we will apply the developed methodology on two different
real-life datasets. In the first example, we apply the model to a collection
of face images that are difficult to compare due to varying expressions and
lighting sources. We compare the results of the proposed model to conven-
tional registration methods and demonstrate the effects of the simultaneous
modeling of intensity and warp effects. In the second example, we apply the
methodology to the problem of estimating a template from affinely aligned
2D MR images of brains.

4.5.1 Face registration

Figure 4.3: Ten images of the same face with varying expressions and il-
lumination. The images are from the AT&T Laboratories Cambridge Face
Database [112].

Consider the ten 92× 112 face images from the AT&T Laboratories Cam-
bridge Face Database [112] in Figure 4.3. The images are all of the same per-
son, but vary in head position, expression and lighting. The dataset contains
two challenges from a registration perspective, namely the differences in ex-
pression that cause dis-occlusions or occlusions (e.g. showing teeth, closing
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eyes) resulting in large local deviations; and the difference in placement of
the lighting source that causes strong systematic deviations throughout the
face.

To estimate a template face from these images, the characteristic features
of the face should be aligned, and the systematic local and global deviations
should be accounted for. In the proposed model (4.2), these deviations are
explicitly modeled through the random effect xi.

Using the maximum-likelihood estimation procedure, we fitted the mo-
del to the data using displacement vectorswi on an equidistant 4× 4 interior
grid in [0, 1]2. We used 5 outer and 3 inner iterations in Algorithm 1. The
image value range was scaled to [0, 1]. The estimated variance scale for the
random effect xi was σ̂2τ̂2 = 0.658; for the warp variables, the variance scale
was estimated to σ̂2γ̂2 = 0.0680; and for the residual variance, the estimated
scale was σ̂2 = 0.00134.

To illustrate the effect of the simultaneous modeling of random intensity
and warp effects, we estimated a face template using three more conventional
variants of the proposed framework: a pointwise estimation that corresponds
to model (4.2) with no warping effect; a Procrustes model that corresponds
to model (4.2) with no intensity component and where the warp variables
wi were modeled as unknown parameters and estimated using maximum-
likelihood estimation; and a warp-regularized Procrustes method where the
warp variables wi were penalized using a term λw>i C

−1wi where C−1 is
the precision matrix for the 2D tied-down Brownian sheet with smoothing
parameter λ = 3.125 (chosen to give good visual results).

The estimated templates for the proposed model and the alternative mod-
els described above can be found in Figure 4.4. Going from left to right, it is
clear that the sharpness and representativeness of the estimates increase.

To validate the models, we can consider how well they predict the ob-
served faces under the maximum-likelihood estimates and posterior warp
predictions. These predictions are displayed in Figure 4.5. The rightmost
column displays the five most deviating observed faces. From the left, the
first three columns show the corresponding predictions from the Procrustes
model, the warp-regularized Procrustes model and, for comparison, the pre-
dicted warped templates from the proposed model. It is clear that both the
sharpness and the representativeness increase from left to right. The predic-
tions in the third column show the warped template of model (4.2) which
does not include the predicted intensity effect xi. The fourth column dis-
plays the full prediction from the proposed model given as the best linear
unbiased prediction conditional on the maximum-a-posteori warp variables
θ̂(v(s, t, ŵi)) + E[xi(s, t) |yi,wi = ŵi]. The full predictions are very faithful
to the observations, with only minor visible deviations around the eyes in the
second and fifth row. This suggests that the chosen model for the spatially
correlated intensity variation, the tied-down Brownian sheet, is sufficiently
versatile to model the systematic part of the residuals.
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No alignment Procrustes free warp Procrustes
regularized warp

proposed

Figure 4.4: Estimates for the fixed effect θ using different models. The models
used to calculate the estimates are from left to right: model assuming no
warping effect and Gaussian white noise for the intensity model, the same
model but with a free warping function based on 16 displacement vectors,
the same model but with a penalized estimation of warping functions (2D
tied-down Brownian sheet with scale fixed τ = 0.4), the full model (4.2).

4.5.2 MRI slices

The data considered in this section are based on 3D MR images from the
ADNI database [96]. We have based the example on 50 images with 18 nor-
mal controls (NC), 13 with Alzheimer’s disease (AD) and 19 who are mild
cognitively impaired (MCI). The 3D images were initially affinely aligned
with 12 degrees of freedom and normalized mutual information (NMI) as a
similarity measure. After the registration, the mid-sagittal slices were chosen
as observations. Moreover the images were intensity normalized to [0, 1] and
afterwards the mid-sagittal plane was chosen as the final observations. The
50 mid-sagittal planes are given as 210 × 210 observations on an equidistant
grid on [0, 1]2. Six samples are displayed in Figure 4.6 where differences in
both contrast, placement and shape of the brains are apparent.

For the given data, we used 25 displacement vectors wi on an equidis-
tant 5 × 5 interior grid in [0, 1]2. The number of inner iterations in the algo-
rithm was set to 3, while the number of outer iterations was set to 5 as the
variance parameters and likelihood value already stabilized after a couple of
iterations. The estimated variance scales are given by σ̂2τ̂2 = 2.23 for the
spatially correlated intensity variation, σ̂2γ̂2 = 0.202 for the warp variation
and σ̂2 = 7.79 · 10−4 for the residual variance. The estimated template can be
found in the rightmost column in Figure 4.7.

For comparison, we have estimated a template without any additional
warping (i.e. only using the rigidly aligned slices), and a template estimated
using a Procrustes model with fixed warping effects and no systematic in-
tensity variation, but otherwise comparable to the proposed model. These
templates can be found in the leftmost and middle columns of Figure 4.7.
Comparing the three, we see a clear increase in details and sharpness from
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Procrustes Regularized
Procrustes

proposed
warped
template

prediction

proposed full
prediction

observation

Figure 4.5: Model predictions of five face images (rightmost column). The
two first columns display the maximum-likelihood predictions from the Pro-
crustes and regularized Procrustes models. The third column displays the
warped template θ̂(v(s, t, ŵi)) where ŵi is the most likely warp given data
y. The fourth column displays the full conditional prediction given the pos-
terior warp variables θ̂(v(s, t, ŵi)) + E[xi(s, t) |yi,wi = ŵi].
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Figure 4.6: A sample of six MRI slices from the data set of 50 mid-sagittal
MRI slices.

left to right. The reason for the superiority of the proposed method is both
that the regularization of warps is based on maximum-likelihood estimation
of variance parameters, but also that the prediction of warps takes the sys-
tematic deviations into account. Indeed, we can rewrite the data term in the
posterior (4.9) as

(yi − θwi − E[xi |yi,wi])
>(yi−θwi − E[xi |yi,wi])

+ E[xi |yi,wi]
>S−1E[xi |yi,wi].

Thus, in the prediction of warps, there is a trade-off between the regularity of
the displacement vectors (the termw>i C

−1wi in eq. 4.9) and the regularity of
the predicted spatially correlated intensity variation given the displacement
vectors (the term E[xi |yi,wi]

>S−1E[xi |yi,wi]).
The difference in regularization of the warps is shown in Figure 4.8, where

the estimated warps using the Procrustes model are compared to the pre-
dicted warps from the proposed model. We see that the proposed model
predicts much smaller warps than the Procrustes model.

One of the advantages of the mixed-effects model is that we are able to
predict the systematic part of the intensity variation of each image, which
in turn also gives a prediction of the residual intensity variation—the vari-
ation that cannot be explained by systematic effects. In Figure 4.9, we have
predicted the individual observed slices using the Procrustes model and the
proposed model. As we also saw in Figure 4.8, the proposed model predicts
less deformation of the template compared to the Procrustes model, and we
see that the Brownian sheet model is able to account for the majority of the
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Rigid registration with scaling Procrustes free warp proposed

Figure 4.7: Estimates for the fixed effect θ in three different models. From left
to right: pointwise mean after rigid registration and scaling; non-regularized
Procrustes; and the proposed model (4.2).

Figure 4.8: Three MRI slices and their estimated/predicted warping func-
tions for the Procrustes model and the proposed model. The top row shows
the Procrustes displacement fields, while the displacement fields for the pro-
posed model are given in the bottom row. The arrows corresponds to the
deformation of the observation to the template.

personal structure in the sulci of the brain. Moreover, the predicted intensity
variation seems to model intensity differences introduced by the different
MRI scanners well.
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Procrustes warped
template

prediction

warped template
prediction from

the proposed
model

predicted spatially
correlated

intensity variation

full prediction observation

Figure 4.9: Model predictions of three mid-saggital slices (rightmost column).
The first two rows display the warped templates from the Procrustes model
and the proposed model. The third row displays the absolute value of the
predicted spatially correlated intensity variation from the proposed model.
The fourth row displays the full conditional prediction given the posterior
warp variables θ̂(v(s, t, ŵi)) + E[xi(s, t) |yi,wi = ŵi].

4.6 Simulation study

In this section, we present a simulation study for investigating the precision
of the proposed model. The results are compared to the previously intro-
duced models: Procrustes free warp and a regularized Procrustes. Data are
generated from model (4.2) in which θ is taken as one of the MRI slices con-
sidered in Section 4.5.2. The warp, intensity and the random noise effects are
all drawn from the previously described multivariate normal distributions
with variance parameters respectively

σ2γ2 = 0.01, σ2τ2 = 0.1, σ2 = 0.001

and applied to the chosen template image θ. To consider more realistic brain
simulations, the systematic part of the intensity effect was only added to the
brain area of θ and not the background. As this choice makes the proposed
model slightly misspecified, it will be hard to obtain precise estimates of the
variance parameters. In practice, one would expect any model with a limited
number of parameters to be somewhat misspecified in the presented setting.
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The simulations thus present a realistic setup and our main interest will be
in estimating the template and predicting warp and intensity effects. Fig-
ure 4.10 displays 5 examples of the simulated observations as well as the
chosen θ.

Figure 4.10: 5 examples of simulated brains. The template brain θ is shown
in the upper left corner.

The study is based on 100 data sets of 100 simulated brains. For each sim-
ulated dataset we applied the proposed, Procrustes free warp and Procrustes
regularized model. The regularization parameter, λ, in the regularized Pro-
crustes model, was set to the true parameter used for generating the data
λ = γ−2/2.
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Figure 4.11: Density plots for the estimated variance parameters in the pro-
posed model. The red lines correspond to the true parameters.
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Figure 4.12: Density plots for the mean squared differences of template and
warp estimates for the three models. The plot to the left shows the density for
the mean squared difference for the template effect and the plot to the right
shows the mean squared difference for the warp effect. λ = 0 denotes the
procrustes free warp model, λ = γ−2/2 is the Procrustes regularized model
and the blue density corresponds to the Proposed model

The variance estimates based on the simulations are shown in Figure 4.11.
The true variance parameters are plotted for comparison. We see some bias
in the variance parameters. While bias is to be expected, the observed bias
for the noise variance σ2 and the warp variance scale σ2γ2 are bigger than
what one would expect. The reason for the underestimation of the noise vari-
ance seems to be the misspecification of the model. Since the model assumes
spatially correlated noise outside of the brain area, where there is none, the
likelihood assigns the majority of the variation in this area to the systematic
intensity effect. The positive bias of the warp variance scale seems to be a
compensating effect for the underestimated noise variance.

The left panel of Figure 4.12 shows the mean squared difference for the es-
timated templates θ with the three types of models. We see that the proposed
model produces conisderably more accurate estimates than the alternative
frameworks.

To give an example of the difference between template estimates for the
three different models, one set of template estimates for each of the models is
shown in Figure 4.13. From this example we see that the template for the pro-
posed model is slightly more sharp than the Procrustes models and are more
similar to the true θ which was also the conclusion obtained from the density
of the mean squared difference for the template estimates (Figure 4.12).

The right panel of Figure 4.12 shows the mean squared prediction/esti-
mation error of the warp effects. The error is calculated using only the warp
effects in the brain area since the background is completely untextured, and
any warp effect in this area will be completely determined by the predic-
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True template Proposed Procrustes λ = 0 Procrustes λ = γ−2/2

Figure 4.13: Example of a template estimate for each of the three models. For
comparison, the true θ are plotted as well.

tion/estimation in the brain area. We find that the proposed model estimates
warp effects that are closest to the true warps. It is worth noticing that the
proposed model is considerably better at predicting the warp effects than the
regularized Procrustes model. This happens despite the fact that the value
for the warp regularization parameter in the model was chosen to be equal
to the true parameter (λ = γ−2/2). Examples of the true warping functions in
the simulated data and the predicted/estimated effects in the different mod-
els are shown in Figure 4.14. None of the considered models are able to make
sensible predictions on the background of the brain, which is to be expected.
In the brain region, the predicted warps for the proposed model seem to be
very similar to the true warp effect, which we also saw in Figure 4.12 was a
general tendency.

4.7 Conclusion and outlook

We generalized the likelihood based mixed-effects model for template esti-
mation and separation of phase and intensity variation to 2D images. This
type of model was originally proposed for curve data [108]. As the model
is computationally demanding for high dimensional data, we presented an
approach for efficient likelihood calculations. We proposed an algorithm for
doing maximum-likelihood based inference in the model and applied it to
two real-life datasets.

Based on the data examples, we showed how the estimated template had
desirable properties and how the model was able to simultaneously sepa-
rate sources of variation in a meaningful way. This feature eliminates the
bias from conventional sequential methods that process data in several inde-
pendent steps, and we demonstrated how this separation resulted in well-
balanced trade-offs between the regularization of warping functions and in-
tensity variation.

We made a simulation study to investigate the precision of the template
and warp effects of the proposed model and for comparison with two other
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Figure 4.14: Examples of predicted warp effect for each model. The top row
shows the true warp effect, the second row the estimated warp effect of the
proposed model, the third row regularized Procrustes and the final row, the
Procrustes model with free warps.
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models. The proposed model was compared with a Procrustes free warp
model, as well as a Procrustes regularized model. Since the noise model was
misspecified, the proposed methodology could not recover precise maximum
likelihood estimates of the variance parameters. However, the maximum
likelihood estimate for the template was seen to be a lot sharper and closer to
the true template compared to alternative Procrustes models. Furthermore,
we demonstrated that the proposed model was better at predicting the warp-
ing effect than the alternative models.

The main restriction of the proposed model is the computability of the
likelihood function. We resolved this by modeling intensity variation as a
Gaussian Markov random field. An alternative approach would be to use the
computationally efficient operator approximations of the likelihood function
for image data suggested in [107]. This approach would, however, still re-
quire a specific choice of parametric family of covariance functions, or equiv-
alently, a family of positive definite differential operators. An interesting
and useful extension would be to allow a free low-rank spatial covariance
structure and estimate it from the data. This could, for example, be done by
extending the proposed model (4.2) to a factor analysis model where both the
mean function and intensity variation is modeled in a common functional ba-
sis, and requiring a specific rank of the covariance of the intensity effect. Such
a model could be fitted by means of an EM algorithm similar to the one for
the reduced-rank model for computing functional principal component anal-
ysis proposed in [55], and it would allow simulation of realistic observations
by sampling from the model.

For the computation of the likelihood function of the nonlinear model,
we relied on local linearization which is a simple well-proven and effective
approach. In recent years, alternative frameworks for doing maximum like-
lihood estimation in nonlinear mixed-effects models have emerged, see [23]
and references therein. An interesting path for future work would be to for-
mulate the proposed model in such a framework that promises better accu-
racy than the local linear approximation. This would allow one to investigate
how much the linear approximation of the likelihood affects the estimated
parameters. In this respect, it would also be interesting to compare the com-
puting time across different methods to identify a suitable tradeoff between
accuracy and computing time.

The proposed model introduced in this paper is a tool for analyzing 2D
images. The model, as it is, could be used for higher dimensional images as
well, but the analysis would be computationally infeasible with the current
implementation. To extend the proposed model to 3D images there is a need
to devise new computational methods for improving the calculation of the
likelihood function.



CHAPTER 5
Stochastic Image Deformation in

Frequency Domain and Parameter
Estimation using Moment Evolutions

The following paper is currently under review, but has been published on
ArXiv as submission,

• L. Kühnel, A. Arnaudon, T. Fletcher, and S. Sommer. Stochastic Image
Deformation in Frequency Domain and Parameter Estimation using
Moment Evolutions. arXiv:1812.05537 [cs, math, stat], December 2018.
arXiv: 1812.05537

It is joint work with Alexis Arnaudon, Tom Fletcher and Stefan Sommer. The
paper presents a method for modelling uncertainty in image data by combin-
ing the stochastic LDDMM framework described in [5] with the fast LDDMM
Fourier solver, FLASH, defined in [140].
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Abstract

Modelling deformation of anatomical objects observed in medical
images can help describe disease progression patterns and variations in
anatomy across populations. We apply a stochastic generalisation of the
Large Deformation Diffeomorphic Metric Mapping (LDDMM) frame-
work to model differences in the evolution of anatomical objects de-
tected in populations of image data. The computational challenges that
are prevalent even in the deterministic LDDMM setting are handled by
extending the FLASH LDDMM representation to the stochastic setting
keeping a finite discretisation of the infinite dimensional space of image
deformations. In this computationally efficient setting, we perform esti-
mation to infer parameters for noise correlations and local variability in
datasets of images. Fundamental for the optimisation procedure is us-
ing the finite dimensional Fourier representation to derive approxima-
tions of the evolution of moments for the stochastic warps. Particularly,
the first moment allows us to infer deformation mean trajectories. The
second moment encodes variation around the mean, and thus provides
information on the noise correlation. We show on simulated datasets
of 2D MR brain images that the estimation algorithm can successfully
recover parameters of the stochastic model.

Keywords: Uncertainty Estimation, Stochastic LDDMM Registration,
FLASH, Method of Moments, Fokker-Planck equations.
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Figure 5.1: The presented stochastic deformation model includes both the
average population trend over time starting at time t = 0, and the subject
specific stochastic evolution. The deformation φ−1

t is modelled as a stochastic
perturbation of the LDDMM flow of diffeomorphisms resulting in a stochas-
tic deformation I0 ◦ φ−1

t of the image I0. The stochastic deformation forms at
each time point a distribution around the population trend describing uncer-
tainty in the evolution. The mean flow 〈I0 ◦ φ−1

t 〉 (dashed green line) models
the general population evolution.

5.1 Introduction

Classical models describing the evolution of anatomical objects, occurring
from child development, from natural ageing, or from disease processes, are
generally smooth and deterministic. However, when analysing such defor-
mations across populations of subjects, the individual deviations have to be
taken into account as they otherwise affect the average trend in the evolution
of the population. It is natural to assume that the subject-specific deforma-
tions are not purely deterministic and that stochastic variation may occur at
any time of the evolution process. In this paper, we develop the technical
framework to model such combinations of population average and subject-
specific stochastic evolutions.

Shape changes of anatomical objects, observed in an image I0, can be
modelled using image registration. Here, the goal is to determine a defor-
mation φ : D → D of the image domain D, minimising an energy E(φ) =
R(φ) + S(I0 ◦ φ−1, I1) , for a regularisation R and similarity measure S, see
for example [135]. In this framework, the deformation φ is a deterministic,
smooth, bijective function independent of time. The Large Deformation Dif-
feomorphic Metric Mapping framework (LDDMM, see e.g. [12]), defines the
deformation φ as the endpoint of a flow of diffeomorphisms φt solution to
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the differential equation

d

dt
φt(x, y) = vt ◦ φt(x, y) , (5.1)

with initial value φ0 = id. The time-dependent velocity field vt is for each t an
element of the space of vector fields on D, V = X(D), and solves the EPDiff
equation d

dtvt = −Kad∗vtmt. Here mt = δl
δvt

= K−1vt = Lvt is the conjugate
momentum of the velocity vt if the regularisationR(φ) = l(v) = 1

2‖v‖
2
K corre-

sponds to the kinetic energy of the flow with a reproducible kernel K, see for
example [135] and references therein. Considering deformations via a flow in
the diffeomorphism group introduces a natural time component which can
be used to model the evolution of anatomical objects over time.

The flow of diffeomorphisms in the LDDMM model is deterministic, and
it is hence only possible to introduce uncertainties in the initial velocity field
v0. Random variation of the initial velocity field has been discussed in, for
example, the random orbit model of [86] and, for Bayesian principal geodesic
analysis, [139].

Modelling uncertainty by a random initial velocity field implies that the
entire variation over time is the result of uncertainty at the initial point of
the evolution process. For longitudinal models, it is arguably more natural
to model uncertainty time-continuously and thus having randomness occur-
ring through the entire evolution process. To enable random evolution, we
aim at modelling the variation as the endpoint of a stochastic flow of defor-
mations, φt. This, in turn, gives a separation between the deterministic mean
population evolution, and the per subject individual stochastic trajectories as
illustrated in Fig. 5.1.

In this work, we use the stochastic LDDMM framework presented in [5],
based on the stochastic fluid dynamics model introduced in [49]. Arnaudon
et al. [5] used a stochastic flow of diffeomorphisms to model uncertainties
in the evolution of any data type on which the diffeomorphism group acts,
in particular for landmarks. The stochastic flow is defined by a stochastic
differential equation (SDE) with a diffusion term parametrised by Eulerian
noise fields σ(x) instead of a standard Lagrangian noise associated with the
flow. In the latter case, [128, 132] studied a stochastic model of landmarks
dynamics with a different noise for each landmark and more recently [85]
added dissipation to this model.

The stochastic LDDMM with Eulerian noise fields of [5] applies to any
data structure on which the diffeomorphism group acts without modifica-
tion of the noise structure. Thus, in addition to landmarks, which have a
finite dimensional structure, the framework can be applied to complete im-
ages [6], provided that a good finite dimensional approximation can be ap-
plied to make numerical simulations possible. In this paper, we extend the
fast LDDMM solver FLASH presented in [140] to include the stochastic de-
formations. The algorithm is based on spatial Fourier transformation of a
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stochastic version of the EPDiff equation which results in a natural trunca-
tion of the high-frequencies in the stochastic process vt. For Eulerian noise
field, this is not an issue as we have total control on the spatial correlation
of the noise (and white noise in time). Thus we avoid introducing high fre-
quencies with the noise and thus obtain a good numerical approximation of
the flow. This truncation gives rise to a dimensionality reduction resulting in
a significant computational speed up, and it makes the use of noise in image
matching possible and relevant for applications.

With the paper, we make the following contributions: 1) we incorporate
stochasticity in the FLASH framework to model stochastic image evolutions
in a finite-dimensional setting; 2) we derive the Fokker-Planck equations in
the finite dimensional model and use this to approximate the evolution of
the moments of the stochastic flow and deformed images; 3) we show how
matching of the moment images can be used to estimate unknown parame-
ters in the model; 4) we illustrate the use of the model on 2D brain images by
recovering parameters from images simulated from the model.

5.2 Stochastic Image Deformation

The LDDMM framework models deformation over a time region as a flow,
φt, in the space of diffeomorphisms Diff(D). As φt varies smoothly and de-
terministically, applying the flow to an image I0 results in a time evolution
of the image which does not describe any uncertainty in the deformation. In
this section, we describe the stochastic LDDMM extension [5] which exactly
models the uncertainty of deformations.

We consider a probability space (Ω, P,F) and let φt : Ω × [0, 1] × D → D
be a stochastic process on the time interval [0, 1], i.e. for each t ∈ [0, 1], ω ∈ Ω,
φt(ω) : D → D is a deterministic deformation of the image domain D. The
stochastic flow φt is defined as a Stratonovich SDE with diffusion term based
on noise fields, σk ∈ X(D), k = 1, . . . , p, on the image domain D. See Fig. 5.2
for an example of noise fields describing the stochastic flow of deformations.
The Stratonovich SDE defining the flow φt is,

dφt = vt(φt)dt+

p∑
k=1

σk(φt) ◦S dW k
t , φ0 = id , (5.2)

where W k
t denotes p one-dimensional Wiener processes (or Brownian mo-

tions) on R and ◦S Stratonovich integration. The time-varying velocity field
vt is the solution of the stochastic Euler-Poincaré equation,

dvt = −Kad∗vtmt −
p∑

k=1

Kad∗σkmt ◦S dW k
t , v0 ∈ X(D) , (5.3)
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for the same momentum mt = Lvt as in the deterministic equations. In [5],
it was shown that under the stochastic deformation (5.2), the momentum is
preserved and (5.3) is hence the stochastic version of the EPDiff equation.

Zhang et al. [140] observed that the last operation of the EPDiff equa-
tion is applying a low-pass filter K. As K is an operator suppressing all
high-frequencies in Fourier domain, performing dimensionality reduction on
the number of frequencies results in a large computational gain, and, impor-
tantly, only a restricted amount of information being removed. Similarly to
the drift, the stochastic term of (5.3) has the smoothing operator K, applied
exclusively to the spatially dependent noise amplitude, and not dW k

t . Hence,
it is also possible to benefit from the computational speedup of FLASH in
the stochastic setting. We make a spatial Fourier transformation of dvt and
truncate the high-frequencies of this stochastic field. Details on the FLASH
Fourier space calculation in the deterministic setting can be found in [140].
As an example, stochastic shooting of an 128 × 128 image truncated to 16
Fourier frequencies with 100 times steps and 1 noise field on a standard lap-
top (i7 processor) takes approximately 1.5 seconds.

The stochastic deformation φt models both the population trend and the
subject-specific variations. The population trend is represented by the de-
terministic part of (5.2) and (5.3). It is a function of the initial velocity field
v0 and describes the global trend of the population, e.g. ageing or a disease
progression. The noise fields, on the other hand, describe the subject-specific
variation present in the data. The noise fields are modelled as local objects
of the full dimensional data space with correlations decreasing with the dis-
tance to the centre of the object, e.g. Gaussian kernels on the domain.

5.3 Moment Matching

Consider n individuals observed at t = 0, I1
0 , . . . , I

n
0 and again at t = 1,

I1
1 , . . . , I

n
1 . The goal is to model the population trend and infer the noise

structure describing the variation in the observed data at t = 1. For this,
we aim at estimating the parameters of the stochastic deformation model.
These parameters are the noise fields σ1, . . . , σp, the initial velocity field v0,
and parameters of the LDDMM RKHS kernel K. In this paper, we focus on
estimating the parameters of the noise fields σ1, . . . , σp.

We base parameter estimation on method of moments, i.e. we seek to
match moments of the observed data distribution with moments of the dis-
tribution of images at t = 1 generated by the stochastic deformation model.
For simplicity, we remove the subject effect at t = 0 by considering a single
initial image I0, the average Î0 = 1

n

∑n
i=1 I

i
0. This implies that population

variation at time t = 0 is removed and that the model, therefore, needs to
account for the entire population variation at t = 1. See Fig. 5.1 for a visual-
isation of the model. Moments of the random variable Î0 ◦ φ−1

1 are matched
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to the data moments, to retrieve the parameters for the noise fields σk. The
model can handle subject specific initial images with minor changes to the
moment equations presented in Section 5.3.2.
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Figure 5.2: First row: (left) The noise fields location on the domain. (middle)
Initial brain, I0. (right) Variation in the data sample. Second row: 3 examples
of simulated data by the stochastic deformation φ−1
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Figure 5.3: 4 time steps of a sample of the stochastic deformation process
I0 ◦ φ−1

t at t = 0, 0.25, 0.5, 1.

5.3.1 Inverse of the flow

To calculate the moments of the stochastic deformation, we need to consider
the nonlinear coupling between the process φt and the image. As the action
of φ on I0 is by composition with φ−1

t , we determine the SDE of the inverse
φ−1
t , i.e. for each t ∈ [0, 1], ω ∈ Ω, φt(ω, φ−1

t (ω, x, y)) = (x, y) for (x, y) ∈ D.
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By the Itô-Wentzel theorem [62], the SDE of φ−1
t is,

dφ−1
t = −Dφ−1

t vtdt−
p∑

k=1

Dφ−1
t σk ◦S dW k

t . (5.4)

By drawing sample paths of the stochastic flow φ−1
t , we obtain samples of

deformed images under the model. Sample images at t = 1 are shown in Fig.
5.2, together with a plot of the generated image variation, and the noise fields
used to simulate the sample data. Fig. 5.3 shows 4 time points from a sample
path of the stochastic process I0 ◦ φ−1

t for t = 0, 0.25, 0.5, 1.

5.3.2 Moments of Stochastic Image Deformation

To approximate the first order moment of Î0 ◦ φ−1
1 , we consider a first order

Taylor approximation of Î0 ◦ φ−1
1 around the mean 〈φ−1

1 〉, given as

Î0 ◦ φ−1
1 ≈ Î0 ◦ 〈φ1〉+∇(Î0 ◦ 〈φ−1

1 〉)
T (φ−1

1 − 〈φ
−1
1 〉) . (5.5)

We consider two different means: 〈·〉 which denote the mean of the stochas-
tic processes φt and vt, and E[Î0 ◦ φ−1

1 ] for the expectation in image space.
Applying E to the Taylor approximation (5.5) and using that ∇(Î0 ◦ 〈φ−1

1 〉)
is deterministic and can be moved outside the mean function, we obtain the
approximation

E[Î0 ◦ φ−1
1 ] ≈ Î0 ◦ 〈φ−1

1 〉 . (5.6)

In a similar manner, an approximation of the variance Var[Î0 ◦ φ−1
1 ] which

singularly depend on the transition variance of the stochastic process φ−1
t ,

can be described by applying the first order Taylor approximation of Î0 ◦φ−1
1 :

Var
[
Î0 ◦ φ−1

1

]
= E

[
(Î0 ◦ φ−1

1 )2
]
−
(
E[Î0 ◦ φ−1

1 ]
)2

≈ E

[(
Î0 ◦ 〈φ−1

1 〉+
(
∇(Î0 ◦ 〈φ−1

1 〉)
)T

(φ−1
1 − 〈φ

−1
1 〉)

)2
]
−
(
E[Î0 ◦ φ−1

1 ]
)2

≈
(
∇(Î0 ◦ 〈φ−1

1 〉)
2
)T 〈(

φ−1
1 − 〈φ

−1
1 〉
)2〉

. (5.7)

In the last approximation of (5.7), we used the approximation of the mean
value presented in (5.6). To determine the moments of Î0 ◦ φ−1

1 , we therefore
need the transition moments of the stochastic flow φ−1

t . These moments are
studied in the next section by considering the Fokker-Planck equation.

5.3.3 Moment Equations for φ−1
t and ṽt

The transition distributions of the stochastic process φ−1
t and the Fourier

transformation of vt denoted ṽt, can be determined via the Kolmogorov for-
ward equation also called the Fokker-Planck equation. Based on this and
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the Kolmogorov operator L, the moment evolution of a transformation of a
stochastic process Xt under a real-valued function h is described by

d

dt
〈h(Xt)〉 = 〈Lh(Xt)〉 . (5.8)

More information on the procedure for calculating the moment evolution via
the Fokker-Planck equation can be found in [5].

For sake of notation, let ψt = φ−1
t and

ψij = ψt(xi, yj) = (ψxt (xi, yj), ψ
y
t (xi, yj))

for a discretisation of the image domain D to a grid (xi, yj)ij . When consid-
ering a stochastic process, e.g. ψt, described by an Itô SDE, the Kolmogorov
operator L is found by applying Itô’s formula. The Kolmogorov operator is
defined as the drift of the resulting stochastic process. As an example, the
Kolmogorov operator for the 2-dimensional stochastic process ψij,t is given
by

Lf =
∂f

∂t
+

∑
α∈{x,y}

[
∂f

∂ψαij
(−Dψijvt(xi, yj)

+
1

2

∑
k

D[Dψijσk(xi, yj)]Dψijσk(xi, yj))α

]
+

1

2

∑
α,β∈{x,y}

Cαβ
∂2f

∂ψαij∂ψ
β
ij

,

for C = bbT , b = (Dψijσ1(xi, yj) · · ·Dψijσp(xi, yj)), and a twice differentiable
real-valued function f .

For the Kolmogorov operator for ψij , the evolution of the moments are
determined by (5.8). Let γ ∈ {x, y} be given and (xi, yj) be a fixed pixel in
the grid. Consider the time evolution of the first moment of ψγij

∂

∂t
〈ψγij〉 = 〈Lψγij〉

=

〈
(−Dψijvt(xi, yj) +

1

2

∑
k

D[Dψijσk(xi, yj)]Dψijσk(xi, yj))γ

〉
(5.9)

≈ (−D〈ψij〉〈vt(xi, yj)〉+
1

2

∑
k

D[D〈ψij〉σk(xi, yj)]D〈ψij〉σk(xi, yj))γ .

Notice the coarse approximation used in (5.9) to describe the time evolution
uniquely by moments of ψt and vt. This approximation is used in the rest of
the paper and assumes independence of the random variables. That is, any
mean of a product of random variables ψγij , v

γ
ij is approximated by the prod-

uct of the first order moments of each random variable. Extending the equa-
tions to include higher order correlation will be the topic of future works.
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The derivation of the variance of ψγij is calculated as above and results in
the moment evolution

∂

∂t

〈
(ψγij − 〈ψ

γ
ij

〉
)2〉 = 〈L(ψγij − 〈ψ

γ
ij〉)

2〉

=

〈
2(ψγij − 〈ψ

γ
ij〉)(−Dψijvt(xi, yj)

+
1

2

∑
k

D(Dψijσk(xi, yj))Dψijσk(xi, yj))
γ

〉
+ 〈Cγγ〉 ≈ 〈Cγγ〉 ,

where C is given as above and where the assumption of independence be-
tween variables is used to split the first term into the product of 〈ψγij − 〈ψ

γ
ij〉〉

and
〈
−Dψijvt(xi, yj) + 1

2

∑
kD(Dψijσk(xi, yj))Dψijσk(xi, yj))

γ
〉
.

The moment evolution ofψγij in (5.9) depends on the first order moment of
the time-varying velocity field vt. As described in Section 5.2, applying a spa-
tial discrete Fourier transform to a discretization, vt, of vt to a grid (xi, yj)ij ,
results in a computationally feasible optimisation procedure. Using the prop-
erty F [〈vαt 〉] = 〈F [vαt ]〉 = 〈ṽt〉, the moment evolution of ṽt is calculated by
the same procedure as above applied to the Fourier transform of the Itô SDE
presented in Section 5.2. The moment evolution is given as

d

dt
〈ṽαt,ij〉 = 〈Lṽαt,ij〉

≈ −
(
Kad∗〈ṽt〉〈m̃t〉

)α
ij

+
1

2

p∑
k=1

(
(D̃[Kad∗σ̃k〈m̃t〉) ∗ (Kad∗σ̃k〈m̃t〉)

)α
ij
.

The above moment equation is described in Fourier domain. Here, ∗ denotes
convolution, and D̃ a central difference Jacobian matrix (for more informa-
tion see [140]). Using the Fourier representaition, it takes approximately 8
seconds to solve the moment equations in a situation of 1 noise field, 100
time steps, truncated to 16 Fourier frequencies and on a standard laptop.

5.3.4 Similarity of Moment Images

With the method of moments, we seek to maximise the similarity between the
moments of the observed data and moments of the stochastic deformation of
the initial image Î0. For an example of the variance of the deformed images
and the data sample variance, see Fig. 5.4. Note that the approximation of
the mean Î0 ◦ 〈φ−1

1 〉 and the variance Var[Î0 ◦ φ−1
1 ] are images themselves.

Therefore, moment matching turns into matching of images, however not a
match of observed images as regularly performed in image registration, but
instead a match of Î0◦〈φ1

1〉 and Var[Î0◦φ−1
1 ] towards their sample equivalents.

Interestingly, we see that classical image similarity measures can be used to
compare these images effectively.
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Due to the approximations described in Section 5.3.2, we cannot expect a
perfect match between moment images of model and data samples. Because
of this, we find that the L2-distance often does not result in good match-
ing. Instead, using normalised mutual information, we were able to retrieve
the correct values of the variance parameters. However, as normalised mu-
tual information corrects for intensity differences, it is generally invariant to
changes in the noise amplitude parameters λk. Therefore, we use normalised
mutual information to get a good match for the variance parameters before
estimating the amplitude parameters using a combination of L2 distance and
unnormalised mutual information.

We let the noise kernels be Gaussian σk(x) = λkexp
(
‖x−µk‖2

2τ2k

)
Id2 for

simplicity. Hence, the parameters to be estimated consist of the amplitudes
λk ∈ R and the variances τ2

k . Varying the variances τ2
k changes the spatial

effect of the noise fields while varying the amplitude λk affects the intensity
of the noise. Let µ1 denote the sample average, i.e. µ1 = 1

n

∑n
i=1 I

i
1. The

optimisation procedure first optimise the function,

f({τk}k=1,...,p) = MInorm

(
Î0 ◦ 〈φ1

1〉(τk,λk), µ1

)
+ MInorm

(
Var(τk,λk)[Î0 ◦ φ−1

1 ],
1

n

n∑
i=1

(Ii1 − µ1)2

)
, (5.10)

for the variance parameters τ2
k and then optimise the objective function

g({λk}k=1,...,p) =
∥∥∥Î0 ◦ 〈φ1

1〉(τk,λk) − µ1

∥∥∥+ MI
(
Î0 ◦ 〈φ1

1〉(τk,λk), µ1

)
+

∥∥∥∥∥Var(τk,λk)[Î0 ◦ φ−1
1 ]− 1

n

n∑
i=1

(Ii1 − µ1)2

∥∥∥∥∥
+ MI

(
Var(τk,λk)[Î0 ◦ φ−1

1 ],
1

n

n∑
i=1

(Ii1 − µ1)2

)
, (5.11)

for the amplitude λk.

5.4 Simulation Study

In this section, we present a simulation study aiming at illustrating the ability
of the framework to infer parameters given MR brain images. Given an initial
2D MRI image from the OASIS database, two datasets of 200 observations
were simulated based on 9 noise fields located in a grid on the image domain.

The first data sample was simulated based on 9 Gaussian noise fields. The
location of the noise fields is shown in Fig. 5.2, which also shows the initial
brain image, I0. The variation of the simulated data sample is visualized in
Fig. 5.4.
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In the simulation study, estimates of the variance parameters τ2
k and am-

plitude λk were found for the 9 noise fields. The true value of the standard
deviation τk was set to 0.06 and the amplitudes λk = 2.0 for all k = 1, . . . , 9.

The initial values of the optimisation procedure were found by investi-
gating the parameter space randomly 40 times picking the values with the
smallest objective value. A gradient descent estimation was used with a line
search for determining the step size at each iteration.

Figure 5.4: From left: (1.) Pixel-wise variation in the data. (2.) Variation esti-
mated by the model. (3.) Estimates of the variance parameter τ2

k compaired to
the true values (4.) Estimates of the variance and amplitude parameter com-
paired to the true values. The length of the arrows correspond to τkλk. The
arrows show the location and width of the noise fields. The red arrows cor-
respond to the true values, while the yellow defines the resulting estimated
parameters.

Fig. 5.4 shows the initial brain, I0, with a comparison of the true values
of τk and λk, and the values found by the optimisation procedure. The red
arrows are the true values, and the yellow defines the estimated parameter
values. The model is able to retrieve the parameters of τk for all k = 1, . . . , 9.
It also returns a good estimate of the amplitude parameters, in particular for
the noise fields located inside the brain. For noise fields on the boundary of
the brain or in the background, the model does not have access to enough
information in the intensity differences to return precise estimates of the am-
plitude parameters.

To give an intuition of convergence of the optimisation, Fig. 5.5 (left)
shows the objective function with gradient steps for the optimisation of τk
in the case of k = 2. The amplitude is held fixed in this situation. In the same
figure is shown the objective function of the amplitude λk when the variance
is held fixed.

The second dataset was simulated based on 9 noise fields with larger de-
viation at τk = 0.1 and where the area of variation of each field intersect.
The 9 noise fields are shown in Fig. 5.2. The amplitude of the noise fields
is again set to λk = 2.0. Retrieving the true values of the parameter vector
is harder in this case as the optimisation procedure is more prone to reach a
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Figure 5.5: From left: (1.) Objective function for the optimisation of variance
parameters τ2

k for an example of 2 noise fields with fixed amplitude parame-
ters. (2.) The objective function for the amplitude λk for an example of 2 noise
fields with fixed variance parameters. (3.) A zoom of the previous image (2.)
around the estimated value.

local minimum. Therefore, we focus this example on estimating the variance
parameters τ2

k . As shown in Fig. 5.6, good estimates for the variance param-
eters of most of the noise fields are obtained. Estimation of both variance and
amplitude with large intersection between the fields is challenging because
little information in the data is availble to precisely determine to which of
the intersecting noise fields observed variation belong. This could be han-
dled either by imposing a prior on the noise to enforce spatial regularity of
the noise amplitudes or by considering noise that is naturally uniform over
the domain, e.g. by representing the noise itself in Fourier domain.

Figure 5.6: (left) Data variation. (middle) estimated variation from the model.
(right) Estimated variance parameters. The red arrows correspond to the true
values, the yellow defines the resulting estimated parameters.
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5.5 Conclusion

We presented a model for estimating the variation in medical images occur-
ring from time-continuous deformation variation. The model was based on
the stochastic generalisation of the LDDMM framework, using the FLASH
procedure to make a natural dimensionality reduction resulting in computa-
tionally fast image deformations. Determining the moments of the stochastic
flow of the deformations φt and velocity fields vt, the method of moments
was applied to estimate the parameter vector for noise fields defining the
variation in the data sample. The moments of φt and vt have been calculated
using the Fokker-Planck equation of the evolution of the truncated Fourier
expansion of the image deformation. These moments were compared to the
data distribution allowing for parameter estimation.

For future work, a natural extension is to define the noise fields in the
Fourier domain instead of the spatial fields discussed here.

To calculate the image moments, a coarse Taylor approximation was ap-
plied. In future work, we wish to perform a broader investigation of the
consequence of making this approximation and whether alternative meth-
ods can be used to get a more precise estimation of the image moments.

We disregarded the subject-specific variation and initialised the stochas-
tic deformation by a single image. However, in real data, the subject-specific
variation can be large and the model will generally not return a good estimate
of data variation when this effect is not taken into account. The model can be
extended to include a subject-specific initial image, such that only the varia-
tion over time for each individual is modelled and not the total population
variation.

Finally, the model has been applied to 2D slices of 3D images. The model
is fully general, and since the FLASH framework can handle 3D image data,
we wish to include analyses of 3D images in the stochastic framework.



CHAPTER 6
Differential Geometry and Stochastic

Dynamics with Deep Learning
Numerics

The following chapter includes a manuscript currently under review. The
manuscript has been made in collaboration with Alexis Arnaudon and Stefan
Sommer and posted on Arxiv as submission,

• L. Kühnel, A. Arnaudon, and S. Sommer. Differential geometry and
stochastic dynamics with deep learning numerics. arXiv 1712.08364,
2017

The work presents an introduction to the basic theory of Differential Geom-
etry and non-linear statistics. The main objective of the manuscript is to
show the application of numerical frameworks, mainly developed for deep
learning problems, for concise implementation of the mathematical concepts.
The symbolic calculations and automatic differentiation, reduce implementa-
tion tasks to a direct translation of mathematical equations. Moreover, even
for complex models including for example a numerical integration scheme,
Theano can calculate the gradient of the full model in a single function call,
making it easy to test new ideas and methods.
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Differential Geometry and Stochastic Dynamics with
Deep Learning Numerics

Line Kühnel1, Stefan Sommer1, and Alexis Arnaudon2

Department of Computer Science, University of Copenhagen1,

Department of Mathematics, Imperial College, London2

Abstract

With the emergence of deep learning methods, new computational
frameworks have been developed that mix symbolic expressions with
efficient numerical computations. In this work, we will demonstrate
how deterministic and stochastic dynamics on manifolds, as well as
differential geometric constructions can be implemented in these mod-
ern frameworks. In particular, we use the symbolic expression and
automatic differentiation features of the python library Theano, origi-
nally developed for high-performance computations in deep learning.
We show how various aspects of differential geometry and Lie group
theory, connections, metrics, curvature, left/right invariance, geodesics
and parallel transport can be formulated with Theano using the auto-
matic computation of derivatives of any orders. We will also show how
symbolic stochastic integrators and concepts from non-linear statistics
can be formulated and optimized with only a few lines of code. We will
then give explicit examples on low-dimensional classical manifolds for
visualization and demonstrate how this approach allows both a concise
implementation and efficient scaling to high dimensional problems.

Keywords: Deep Learning Numerics, Theano, Automatic Differentia-
tion, Differential Geometry, Non-linear Statistics

6.1 Introduction

Differential geometry extends standard calculus on Euclidean spaces to non-
linear spaces described by a manifold structure, i.e. spaces locally isomorphic
to the Euclidean space [75]. This generalisation of calculus turned out to be
extremely rich in the study of manifolds and dynamical systems on mani-
folds. In the first case, being able to compute distances, curvature, and even
torsion provides local information on the structure of the space. In the second
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case, the question is rather on how to write a dynamical system intrinsically
on a nonlinear space, without relying on external constraints from a larger
Euclidean space. Although these constructions are general and can be rather
abstract, many specific examples of both cases are used for practical applica-
tions. We will touch upon such examples later.

Numerical evaluation of quantities such as curvatures and obtaining so-
lutions of nonlinear dynamical systems constitute important problems in ap-
plied mathematics. Indeed, high dimensional manifolds or just complicated
nonlinear structures make explicit closed-form computations infeasible, even
if they remain crucial for applications. The challenge one usually faces is
not even in solving the nonlinear equations but in writing them explicitly.
Nonlinear structures often consist of several coupled nonlinear equations ob-
tained after multiple differentiations of elementary objects such as nontrivial
metrics. In these cases, there is no hope of finding explicit solutions. In-
stead, the standard solution is to implement the complicated equations in a
mathematical software packages such as Matlab or Python using numerical
libraries.

In this work, we propose to tackle both issues - being able to solve the
equations and being able to implement the equations numerically - by us-
ing automatic differentiation software which takes symbolic formulae as in-
put and outputs their numerical solutions. Such libraries in Python includes
Theano [127], TensorFlow [1] and PyTorch (http://pytorch.org). It is
important to stress that these libraries are not symbolic computer algebra
packages such as Mathematica or Sympy, as they do not have any symbolic
output, but rather numerical evaluations of symbolic inputs. Here, we chose
to use Theano but similar codes can be written with other packages with au-
tomatic differentiation features. The main interest for us in using Theano
is that it is a fully developed package which can handle derivatives of any
orders, it has internal compilation and computational graph optimization
features that can optimize code for multiple computer architectures (CPU,
GPU).

It is the recent surge of interest of deep learning methods that has lead to
the development of python libraries such as Theano that mix automatic dif-
ferentiation with the ability to generate efficient numerical code. The work
presented in this paper takes advantage of the significant software engineer-
ing efforts to produce robust and efficient libraries for deep learning to ben-
efit a separate domain, computational differential geometry and dynamical
systems. We aim to present the use of Theano for these applications in a
similar manner as the Julia framework recently presented in [15].

We now wish to give a simple example of Theano code to illustrate this
process of symbolic input and numerical output via compiled code. We con-
sider the symbolic implementation of the scalar product, that is the vector
function f(x,y) = xTy, and want to evaluate its derivative with respect to
the first argument. In Theano, the function f is first defined as a symbolic

http://pytorch.org
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function, f = lambda x,y: T.dot(x,y), where T calls functions of the li-
brary theano.tensor. Then, the gradient of f with respect to x is defined
by calling the gradient function T.grad, as df = lambda x,y: T.grad(f(

x,y),x). Both functions f and df are still symbolic but can be evaluated
on any numerical arrays after the compilation process, or construction of an
evaluation function. For our function f, the compilation is requested by ff

= theano.function([x,y], f(x,y)), where we have previously declared
the variables x and y as x = T.vector() and y = T.vector(). The func-
tion ff is now a compiled version of the function f that can be evaluated on
any pair of vectors. As we will see later in the text, such code can be written
for many different functions and combination of derivatives, in particular for
derivatives with respect to initial conditions in a for-loop.

One aim is to illustrate this transparent use of Theano in various nu-
merical computations based on objects from differential geometry. We will
only cover a few topics and many other such applications will remain for
future works. Apart from our running example, the sphere, or the rotation
group, we will use higher dimensional examples, in particular the manifold
of landmarks as often used in computational anatomy. In both cases, we will
show how to compute various geometrical quantities arising from Rieman-
nian metrics on the spaces. In most cases, the metric is the only information
on the manifold that is needed, and it allows for computing geodesics, Brow-
nian motion, parallel transport etc. In some cases, it will be convenient to
extend to computations in a fiber bundle of the manifold to have more free-
dom and allow for example anisotropic diffusion processes. Also, when the
manifold has a group structure, we can perform for example reduction by
symmetry for dynamical systems invariant under the group action. All of
these mechanical constructions can be used to real-world applications such
as in control or robotics. We refer to the books [19, 26, 27] for more theories
and applications in these directions. We will not directly consider these ap-
plications here, but rather focus on applications of computational anatomy.
We refer the interested reader to the book [135] and references therein for a
good overview of this topic. We also refer to the conference paper [65] for a
short introduction of the use of Theano in computational anatomy. Compu-
tational anatomy is a vast topic, and we will only focus here on a few aspects
when shapes or images are represented as sets of points, or landmarks, that
are used as tracers of the original shape. With these landmarks, we show
how many algorithms related to matching of shapes, statistics of shapes or
random deformations, can be implemented concisely and efficiently using
Theano.

As an example, we display in Figure 6.1 two examples of solving the
inverse problem of estimating the initial momenta for a geodesic matching
landmark configurations on high-dimensional manifolds of landmarks on
the plane. On the left panel of Figure 6.1, we solved the problem of match-
ing a letter ’T’ to a letter ’O’, or more precisely an ellipse, with 2,500 land-
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Figure 6.1: (left) Matching of 2,500 landmarks on the outline of a letter ’T’
to a letter ’O’. The matching is performed by computing the logarithm map
Log considering the 5,000 dimensional landmark space a Riemannian man-
ifold. (right) Similar matching of landmark configurations using Log while
now using the transparent GPU features of Theano to scale to configurations
with 20,000 landmarks on a 40,000 dimensional manifold. Theano generates
highly efficient numerical code and allows GPU acceleration transparently to
the programmer. For both matches, only a subset of the geodesic landmark
trajectories are display.

marks. On the right panel, we solved the problem of matching two simple
shapes, ellipses, however with 20,000 landmarks. The shapes represented by
landmarks are considered elements of the LDDMM landmark manifold of
dimension 5,000 and 40,000, see [135]. The geodesics equation and inverse
problem are implemented using the few lines of code presented in this paper
and the computation is transparently performed on GPUs.

Parts of the code will be shown throughout the paper with corresponding
examples. The full code is available online in the Theano Geometry repos-
itory http://bitbucket.org/stefansommer/theanogeometry. The
interested reader can find a more extensive description of the mathematical
notions used in this paper in the books Riemannian Manifolds: an introduction
to curvature by J. Lee [76], Stochastic Analysis on Manifolds by E. P. Hsu [52]
and Introduction to Mechanics and Symmetry by Marsden, Ratiu [84].

Content of the paper

The paper will be structured as follows. Section 6.2 gives an account of how
central concepts in Riemannian geometry can be described symbolically in
Theano, including the exponential and logarithm maps, geodesics in Hamil-
tonian form, parallel transport and curvature. Concepts from Lie group the-
ory are covered in section 6.3, and section 6.4 continues with sub-Riemannian
frame bundle geometry. In addition to the running example of surfaces em-

http://bitbucket.org/stefansommer/theanogeometry


86 Chapter 6. Deep Learning Numerics and Differential Geometry

bedded in R3, we will show in section 6.5 applications on landmark mani-
folds defined in the LDDMM framework. At the end, concepts from non-
linear statistics are covered in section 6.6.

6.2 Riemannian Geometry

In this section, we will show how to implement some of the theoretical con-
cepts from Riemannian geometry. This includes geodesics equation, parallel
transport and curvature. The focus is to present simple and efficient imple-
mentation of these concepts using Theano [127].

Though the code applies to any smooth manifolds M of dimension d,
we will only visualize the results of numerical computations on manifolds
embedded in R3. We represent these manifolds by a smooth injective map
F : R2 → R3 and the associated metric onM inherited from R3, that is

g = (dF )TdF , (6.1)

where dF denotes the Jacobian of F . One example of such representation is
the sphere S2 in stereographic coordinates. In this case, F : R2 → S2 ⊂ R3 is

F (x, y) =
(

2x
1+x2+y2

2y
1+x2+y2

−1+x2+y2

1+x2+y2

)
. (6.2)

6.2.1 Geodesic Equation

We begin by computing solutions to the Riemannian geodesic equations on
a smooth d-dimensional manifoldM equipped with an affine connection ∇
and a metric g. A connection on a manifold defines the relation between
tangent spaces at different points onM. Let (U,ϕ) denote a local chart onM
with coordinate basis ∂i = ∂

∂xi
, i = 1, . . . , d. The connection ∇ is related to

the Christoffel symbols Γkij by the relation

∇∂i∂j = Γkij∂k . (6.3)

An example of a frequently used connection on a Riemannian manifold
(M, g) is the Levi-Civita connection. The Christoffel symbols for the Levi-
Civita connection is uniquely defined by the metric g. Let gij denote the
coefficients of the metric g, i.e. g = gijdx

idxj , and gij be the inverse of gij .
The Christoffel symbols for the Levi-Civita connection are then

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij) . (6.4)

The implementation of the Christoffel symbols in Theano are shown in the
code snippet below.
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"""
Christoffel symbols for the Levi-Civita connection

Args:
x: Point on the manifold
g(x): metric g evaluated at position x on the manifold.

Returns:
Gamma_g: 3-tensor with dimensions k,i,j in the respective

order
"""
# Derivative of metric:
Dg = lambda x: T.jacobian(g(x).flatten(),x).reshape((d,d,d))
# Inverse metric (cometric):
gsharp = lambda x: T.nlinalg.matrix_inverse(g(x))
# Christoffel symbols:
Gamma_g = lambda x: 0.5*(T.tensordot(gsharp(x),Dg(x),axes =

[1,0])\
+T.tensordot(gsharp(x),Dg(x),axes = [1,0]).dimshuffle

(0,2,1)\
-T.tensordot(gsharp(x),Dg(x),axes = [1,2]))

Straight lines in Rn are lines with no acceleration and path minimizers be-
tween two points. Geodesics on a manifold are defined in a similar manner.
The acceleration of a geodesic γ is zero, i.e. Dtγ̇ = 0, in which Dt denotes the
covariant derivative. Moreover, geodesics determines the shortest distances
between points on M. Let x0 ∈ M, (U,ϕ) be a chart around x0 and con-
sider v0 ∈ Tx0M, a tangent vector at x0. A geodesic γ : I → M, I = [0, 1],
γt = (xit)i=1,...,d, satisfying γ0 = x0, γ̇0 = v0 can be obtained by solving the
geodesic equations

ẍkt + ẋitẋ
j
tΓ

k
ij(γt) = 0 . (6.5)

The goal is to solve this second order ordinary differential equation (ODE)
with respect to xkt . We first rewrite the ODE in term of wkt = ẋkt and xkt to
instead have a system of first order ODE of the form

ẇkt = −witw
j
tΓ

k
ij(γt) , ẋ

k
t = wkt ,

which can be solved by numerical integration. For this, we can use the Euler
method

yn+1 = yn + f(tn, yn)∆t, ∆t = tn+1 − tn , (6.6)

or by higher-order integrators such as a fourth-order Runge-Kutta method.
Both integrators are available in symbolic form in the code repository. In
Theano, we use the symbolic for-loop theano.scan for the loop over time-
steps. As a consequence, symbolic derivatives of the numerical integrator
can be evaluated. For example, we will later use derivatives with respect to
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the initial values when solving the geodesic matching problem in the defi-
nition of the Logarithm map. In addition, it is possible to solve stochastic
differential equations in a similar way, see Appendix 6.A. The symbolic im-
plementation of the integrator method is shown below.
"""
Numerical Integration Method

Args:
ode: Symbolic ode function to be solved
integrator: Integration scheme (Euler, RK4, ...)
x: Initial values of variables to be updated by

integration method

*y: Additional variables for ode.

Returns:
Tensor (t,xt)

t: Time evolution
xt: Evolution of x

"""
def integrate(ode,integrator,x,*y):

(cout, updates) = theano.scan(fn=integrator(ode),
outputs_info=[T.constant(0.),x],
sequences=[*y],
n_steps=n_steps)

return cout

Based on the symbolic implementation of the integrators, solutions to the
geodesic equations are obtained by the following code.
"""
Geodesic Equation

Args:
xq: Tensor with x and xdot components.

Returns:
ode_geodesic: Tensor (dx,dxdot).
geodesic: Tensor (t,xt)

t: Time evolution
xt: Geodesic path

"""
def ode_geodesic(t,xq):

dxdott = - T.tensordot(T.tensordot(xq[1], Gamma_g(xq[0]),
axes=[0,1]),

xq[1],axes=[1,0])
dxt = xq[1]
return T.stack((dxt,dxdott))

# Geodesic:
geodesic = lambda x,xdot: integrate(ode_geodesic, T.stack((x,

xdot)))
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Figure 6.2 shows examples of geodesics on three different manifolds ob-
tained as the solution to the geodesic equations in (6.5) using the above code.
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Figure 6.2: The solution of the geodesic equations for three different man-
ifolds; the sphere S2, an ellipsoid, and landmark manifold defined in the
LDDMM framework. The arrows symbolizes the initial tangent vector v0.

6.2.2 The Exponential and Logarithm Maps

For a geodesic γvt , t ∈ [0, 1] with initial velocity γ̇v0 = v, the exponential map,
Expx : TxM→M, x ∈M is defined by

Expx(v) = γv1 , (6.7)

and can be numericaly computed from the earlier presented geodesic equa-
tion.

"""
Exponential map

Args:
x: Initial point of geodesic
v: Velocity vector

Returns:
y: Endpoint of geodesic

"""
Exp = lambda x,v: geodesic(x,v)[1][-1,0]

Where defined, the inverse of the exponential map is denoted the loga-
rithm map. For computational purposes, we can define the logarithm map
as finding a minimizing geodesic between x1, x2 ∈M, that is

Log(x1, x2) = arg min
v
‖Expx1(v)− x2‖2M , (6.8)
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for a norm coming for example from the embedding ofM in R3. From the
logarithm, we also get the geodesic distance by

d(x, y) = ‖Log(x, y)‖ . (6.9)

The logarithm map can be implemented in Theano by using the symbolic cal-
culations of derivatives by computing the gradient of the loss function (6.8)
with Theano function T.grad, and then use it in a standard minimisation al-
gorithm such as BFGS. An example implementation is given below, where
we used the function minimize from the Scipy package.

"""
Logarithm map

Args:
v0: Initial tangent vector
x1: Initial point for geodesic
x2: Target point on the manifold

Return:
Log: Tangent vector

"""
# Loss function:
loss = lambda v,x1,x2: 1./d*T.sum(T.sqr(Exp(x1,v)-x2))
dloss = lambda v,x1,x2: T.grad(loss(v,x1,x2),v)
# Logarithm map: (v0 initial guess)
Log = minimize(loss, v0, jac=dloss, args=(x1,x2))

6.2.3 Geodesics in Hamiltonian Form

In section 6.2.1, geodesics were computed as solutions to the standard second
order geodesic equations. We now compute geodesics from a Hamiltonian
viewpoint. Let the manifoldM be equipped with a cometric g∗ and consider
a connection ∇ on M. Given a point x ∈ M and a covector p ∈ T ∗xM,
geodesics can be obtained as the solution to Hamilton’s equations, given by
the derivative of the Hamiltonian, which in our case is

H(x, p) =
1

2
〈p, g∗x(p)〉T ∗xM×T ∗xM . (6.10)

Hamilton’s equations are then

d

dt
x = ∇pH(x, p)

d

dt
p = −∇xH(x, p) , (6.11)

and describe the movement of a particle at position x ∈ M with momentum
p ∈ T ∗xM.
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Depending on the form of the Hamiltonian and in particular of the metric,
the implementation of Hamilton’s equations (6.11) can be difficult. In the
present case, the metric on M is inherited from an embedding F , hence g∗

is defined only via derivatives of F , which makes the computation possible
with Theano.

"""
Calculate the Exponential map defined by Hamilton’s equations

Args:
x: Point on manifold
p: Momentum vector at x
gsharp(x): Matrix representation of the cometric at x

Returns:
Exp: Tensor (t,xt)

t: Time evolution
xt: Geodesic path

"""
# Hamiltonian:
H = lambda x,p: 0.5*T.dot(p,T.dot(gsharp(x),p))

# Hamilton’s equation
dx = lambda x,p: T.grad(H(x,p),p)
dp = lambda x,p: -T.grad(H(x,p),x)
def ode_Hamiltonian(t,x):

dxt = dx(x[0],x[1])
dpt = dp(x[0],x[1])
return T.stack((dxt,dpt))

# Geodesic:
Exp = lambda x,v: integrate(ode_Ham,T.stack((x,g(v))))

Calculating geodesics on a Riemannian manifold M by solving Hamil-
ton’s equations can be generalized to manifolds for which only a sub-Rie-
mannian structure is available. An example of such geodesics is given in
section 6.4 on a different construction, the frame bundle.

Example 6.2.1 (Geodesic on the sphere). Consider the sphere S2 ⊂ R3 in stere-
ographic coordinates such that for (x, y) ∈ R2, a point on the sphere is given by
F (x, y) with F defined in (6.2). Equip S2 with the metric g defined in (6.1) and let
x0 = F (0, 0) ∈ S2 and v0 = dF (1,−1) ∈ Tx0S2. The initial momentum vector is
chosen as the corresponding covector of v0 defined by the flat map [ : TM→ T ∗M,
i.e. p0 = v[0. The geodesic, or the solution to Hamilton’s equations can be seen in the
left plot of Figure 6.3.
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Figure 6.3: (left) Geodesic defined by the solution to Hamilton’s equations
(6.11) with initial point x0 = F (0, 0) ∈ S2 and velocity v0 = dF (1,−1) ∈
Tx0S

2. See Example 6.2.1. (right) Parallel transport of vector v = dF
(
−1

2 ,−
1
2

)
along the curve γt = F (t2,− sin(t)). See Example 6.2.2.

6.2.4 Parallel Transport

Let again M be a d-dimensional manifold with an affine connection ∇ and
let (U,ϕ) denote a local chart on M with coordinate basis ∂i = ∂

∂xi
for i =

1, . . . , d. A vector field V along a curve γt, is said to be parallel if the covariant
derivative of V along γt is zero, i.e. ∇γ̇tV = 0. It can be shown that given
a curve γ : I → M and a tangent vector v ∈ Tγt0M there exists a unique
parallel vector field V along γ such that Vt0 = v. We further assume that
γt = (γit)i=1,...,d in local coordinates and we let Vt = vi(t)∂i be a vector field.
V is then parallel to the curve γt if the coefficients vi(t) solve the following
differential equation,

v̇k(t) + Γkij(γt)γ̇
i
tv
j(t) = 0 . (6.12)

The parallel transport can be implemented in an almost similar manner as
the geodesic equations introduced in section 6.2.1.

"""
Parallel Transport

Args:
gamma: Discretized curve
dgamma: Tangent vector of gamma to each time point
v: Tangent vector that will be parallel transported.
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Returns:
pt: Tensor (t,vt)

t: Time Evolution
vt: Parallel transported tangent vector at each

time point
"""
def ode_partrans(gamma,dgamma,t,v):

dpt = - T.tensordot(T.tensordot(dgamma, Gamma_g(gamma),
axes = [0,1]),

v, axes = [1,0])
return dpt

# Parallel transport
pt = lambda v,gamma,dgamma: integrate(ode_partrans,v,gamma,

dgamma)

Example 6.2.2. In this example, we consider a tangent vector v = dF
(
−1

2 ,−
1
2

)
∈

TxS
2 for x = F (0, 0) ∈ S2 that we want to parallel transport along the curve

γ : [0, 1] → S2 given by γt = F
(
t2,− sin(t)

)
. The solution of the problem is

illustrated in the right panel of Figure 6.3.

6.2.5 Curvature

The curvature of a Riemannian manifoldM is described by the Riemannian
curvature tensor, a (3, 1)-tensorR : T (M)×T (M)×T (M)→ T (M) defined
as

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z . (6.13)

Let (U,ϕ) be a local chart on M and let ∂i for i = 1, . . . , d denote the local
coordinate basis with dxi being the dual basis. Given this local basis, the
curvature tensor is, in coordinates, given as

R = R m
ijk dxi ⊗ dxj ⊗ dxk ⊗ ∂m , (6.14)

where the components R m
ijk depend on the Christoffel symbols as follow

R(∂i, ∂j)∂k = R m
ijk ∂m = (ΓljkΓ

m
il − ΓlikΓ

m
jl + ∂iΓ

m
jk − ∂jΓmik)∂m . (6.15)

In Theano, the Riemannian curvature tensor can be computed in coordinates
as follow.

"""
Riemannian curvature tensor in coordinates

Args:
x: point on manifold

Returns:
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4-tensor R_ijkˆm in with order i,j,k,m
"""
def R(x):
return (T.tensordot(Gamma_g(x),Gamma_g(x),(0,2)).dimshuffle

(3,0,1,2)
- T.tensordot(Gamma_g(x),Gamma_g(x),(0,2)).dimshuffle

(0,3,1,2)
+ T.jacobian(Gamma_g(x).flatten(),x).reshape((d,d,d,d)).

dimshuffle(3,1,2,0)
- T.jacobian(Gamma_g(x).flatten(),x).reshape((d,d,d,d)).

dimshuffle(1,3,2,0))

In addition to the curvature tensor R m
ijk , the Ricci and scalar curvature

can be computed by contracting the indices as

Rij = R k
kij , S = gijRij . (6.16)

The sectional curvature can also be computed and describes the curva-
ture of a Riemannian manifold by the curvature of a two-dimensional sub-
manifold. Let Π be a two-dimensional sub-plane of the tangent space at a
point x ∈ M. Let e1, e2 be two linearly independent tangent vectors span-
ning Π. The sectional curvature is the Gaussian curvature of the sub-space
formed by geodesics passing x and tangent to Π, that is

κ(e1, e2) =
〈R(e1, e2)e2, e1〉

‖e1‖2‖e2‖2 − 〈e1, e2〉2
. (6.17)

Example 6.2.3 (Curvature of S2). We consider x = F (0, 0) ∈ S2 and the or-
thonormal basis vectors e1 = dF (0.5, 0), e2 = dF (0, 0.5) in the tangent space TxM
with respect to the metric g. As expected, we found that the Gaussian curvature of
S2 is 1 and its scalar curvature is 2 [76].

The Ricci, scalar and sectional curvature have also been implemented in
Theano as follow.

"""
Different curvature measures

Args:
x: point on manifold
e1, e2: linearly independent tangent vectors

"""
# Ricci curvature:
Ricci_curv = lambda x: T.tensordot(R(x),T.eye(d),((0,3),(0,1)

))
# Scalar curvature:
S_curv = lambda x: T.tensordot(Ricci_curv(x),gsharp(x),((0,1)

,(0,1)))
# Sectional curvature:
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Figure 6.4: We show an example of an element of SO(3) represented as a
matrix g ∈ R3×3. The vectors represent each column of g.

def sec_curv(x,e1,e2):
Rflat = T.tensordot(R(x),g(x),[3,0])
sec = T.tensordot(

T.tensordot(
T.tensordot(

T.tensordot(Rflat, e1, [0,0]),
e2, [0,0]),

e2, [0,0]),
e1, [0,0])

return sec

6.3 Dynamics on Lie Groups

In this section, we consider a manifold equipped with a smooth group struc-
ture, that isM = G is a Lie group. As the most interesting finite dimensional
Lie groups are isomorphic to matrix groups, we can without loss of generali-
ties represent elements of Lie group G by matrices. We will give examples
of how various fundamental Lie group constructions can be written with
Theano and how to compute geodesics in the Hamiltonian and Lagrangian
setting. We will mostly follow [84] for the notation and definitions. We will
use G = SO(3), the three dimensional rotation group acting on R3 as an il-
lustration, where an element of G is represented by a coordinate basis as for
example in Figure 6.4.

The group operation on G defines the left and right translation maps
La(g) = ag and Ra(g) = ga for a, g ∈ G. As elements of G are represented
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by matrices, these maps are in Theano computed by matrix multiplications.
Their corresponding tangent maps dL and dR can be directly obtained by
taking symbolic derivatives. The left and right translation maps relate ele-
ments of the Lie algebra g of the group with the left (and right) invariant
vector fields Xη(g) := dLg(η) on TG, where η ∈ g. The algebra structure on
g is then defined from the Jacobi-Lie bracket of vector fields [ξ, η] = [Xξ, Xη],
ξ, η ∈ g.

Using invariance under the group action, either left or right, an inner
product on g = TeG can be extended to a Riemannian metric on G by setting
〈v, w〉g = 〈dLav, dLaw〉La(g) for v, w ∈ TgG. Invariant metrics can thus be
identified with a symmetric positive definite inner product 〈·, ·〉A on g, where
after fixing a basis for g, we can consider that A ∈ Sym+(g) and 〈·, ·〉A =
〈·, A·〉. Hence, A−1 is the corresponding co-metric.

In Theano, these constructions can be formulated as shown below. A basis
ei for g is fixed, and LAtoV is the inverse of the mapping v → eiv

i between
V = Rd and the Lie algebra g.

"""
General functions for Lie groups

Args:
g,h: Elements of G
v: Tangent vector
xi,eta: Elements of the Lie Algebra
d: Dimension of G
vg,wg: Elements of tangent space at g

"""

L = lambda g,h: T.tensordot(g,h,(1,0)) # left translation L_g
(h)=gh

R = lambda g,h: T.tensordot(h,g,(1,0)) # right translation
R_g(h)=hg

# Derivative of L
def dL(g,h,v):

dL = T.jacobian(L(theano.gradient.disconnected_grad(g),h).
flatten(),

h).reshape((N,N,N,N))
return T.tensordot(dL,v,((2,3),(0,1)))

# Lie bracket
def bracket(xi,eta):

return T.tensordot(xi,eta,(1,0))-T.tensordot(eta,xi,(1,0))

# Left-invariant metric
def g(g,v,w):

xiv = dL(inv(g),g,v)
xiw = dL(inv(g),g,w)
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v = LAtoV(xiv)
w = LAtoV(xiw)
return T.dot(v,T.dot(A,w))

6.3.1 Euler-Poincaré Dynamics

In the context of Lie groups, we can also derive the geodesic equations for
a left-invariant metric. Geodesics on the Lie group can, similar to geodesics
on manifolds defined in section 6.2.3, be described as solutions to Hamilton’s
equations for a Hamiltonian generated from the left-invariant metric. In this
section, we will, however, present another method for calculating geodesics
based on the Euler-Poincaré equations.

The conjugation map h 7→ aha−1 for fixed a ∈ G has as a derivative the
adjoint map Ad(a) : g→ g, Ad(a)X = (La)∗(Ra−1)∗(X). The derivative of Ad
with respect to a is the Lie bracket adξ : g → g, adξ(η) = [ξ, η]. The coadjoint
action is defined by

〈
ad∗ξ(α), η

〉
= 〈α, adξ(η)〉, α ∈ g∗ with 〈·, ·〉 the standard

pairing on the Lie algebra g. For the kinetic Lagrangian l(ξ) = ξTAξ, ξ ∈ g, a
geodesic is a solution of the Euler-Poincaré equation

∂t
δl

δξ
= ad∗ξ

δl

δξ
, (6.18)

together with the reconstruction equation ∂tgt = gtξt. This relatively abstract
set of equations can be expressed in Theano with the following code.

"""
Euler-Poincare Geodesic Equations

Args:
a,g: Element of G
xi,eta: Element of Lie Algebra
p,pp,mu: Elements of the dual Lie Algebra

Returns:
EPrec: Tensor (t,xt)

t: Time evolution
gt: Geodesic path in G

"""
# Adjoint functions:
Ad = lambda a,xi: dR(inv(a),a,dL(a,e,xi))
ad = lambda xi,eta: bracket(xi,eta)
coad = lambda p,pp: T.tensordot(T.tensordot(C,p,(0,0)),pp

,(1,0))

# Euler-Poincare equations:
def ode_EP(t,mu):

xi = T.tensordot(inv(A),mu,(1,0))
dmut = -coad(xi,mu)
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return dmut
EP = lambda mu: integrate(ode_EP,mu)

# reconstruction
def ode_EPrec(mu,t,g):

xi = T.tensordot(inv(A),mu,(1,0))
dgt = dL(g,e,VtoLA(xi))
return dgt

EPrec = lambda g,mus: integrate(ode_EPrec,g,mus)

Example 6.3.1 (Geodesic on SO(3)). Let g0 ∈ G be the identity matrix. An
example of a geodesic on SO(3) found as the solution to the Euler-Poincaré equation
is shown in Figure 6.5.
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Figure 6.5: (left) Geodesic on SO(3) found by the Euler-Poincaré equations.
(right) The geodesic on SO(3) projected to the sphere using the left action
g.x = gx for x ∈ S2 ⊂ R3.

6.3.2 Brownian motion onG

In the following subsection, we will go through a construction of Brownian
motions on a group G where the evolution is given as a Stratonovich SDE.
With a group structure, we can simulate a Brownian motion which remains
in the group G. Using the inner product A, let e1, . . . , ed be an orthonormal
basis for g, and construct an orthonormal set of vector fields on the group as
Xi(g) = dLgei, for g ∈ G. Recall that the structure constant of the Lie algebra
Cijk are the same as in the commutator of these vector fields, that is

[Xj , Xk] = CijkXi . (6.19)
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The corresponding Brownian motion on G is the following Stratonovich SDE

dgt = −1

2

∑
j,i

CjijXi(gt)dt+Xi(gt) ◦ dW i
t , (6.20)

where Wt is an Rd-valued Wiener processes. We refer to [77] for more infor-
mation on Brownian motions on Lie groups.

In Theano, the stochastic process (6.20) can be integrated with the follow-
ing code.

"""
SDE for Brownian Motions on a Lie group G

Args:
g: Starting point for the process
dW: Steps of a Euclidean Brownian motion

Returns:
Tensor (t,gt)

t: Time evolution
gt: Evolution of g

"""
def sde_Brownian(dW,t,g):

X = T.tensordot(dL(g,e,eiLA),sigma,(2,0))
det = -.5*T.tensordot(T.diagonal(C,0,2).sum(1),X,(0,2))
sto = T.tensordot(X,dW,(2,0))
return (det,sto)

Brownian = lambda g,dWt: integrate_sde(sde_Brownian,
integrator_stratonovich,g,dWt)

Here, we used integrate_sde which is a discrete time stochastic inte-
grator as described in section 6.A.2.

Example 6.3.2 (Brownian motion on SO(3)). Figure 6.6 shows an example of a
Brownian motion on SO(3). The initial point x0 ∈ SO(3) for the Brownian motion
was the 3-dimensional identity matrix.

There are other ways of defining stochastic processes on a Lie group G.
An example can be found in [3] for finite dimensional Lie groups and in
[49] for infinite dimensions. See also [30] for the general derivation of these
stochastic equations. In this theory, the noise is introduced in the reconstruc-
tion relation to form the motion on the dual of the Lie algebra to the Lie group
and appears in the momentum formulation of the Euler-Poincaré equation
given in (6.18). This framework has also been implemented in Theano and
can be found in the repository. Another interesting approach, not yet im-
plemented in Theano, is the one of [7], where noise is introduced on the Lie
group, and an expected reduction by symmetries results in a dissipative de-
terministic Euler-Poincaré equation.
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Figure 6.6: (left) Brownian motion on the group SO(3) defined by (6.20). The
initial point, x0 ∈ SO(3), was set to the identity matrix. (right) The projection
by the left action of the Brownian motion on SO(3) to the sphere

6.4 Sub-Riemannian Frame Bundle Geometry

We now consider dynamical equations on a more complicated geometric con-
struction, a frame bundle or more generally fibre bundles. A frame bundle
FM = {FxM}x∈M is the union of the spaces FxM, the frames of the tangent
space at x ∈ M. A frame ν : Rd → TxM is thus an ordered basis for the
tangent space TxM. The frame bundle FM is a fibre bundle π : FM → M
with projection π and can be equipped with a natural sub-Riemannian struc-
ture induced by the metric g onM [89]. Given a connection onM the tan-
gent space TFM can be split into a horizontal and vertical subspace, HFM
and V FM, i.e. TFM = HFM ⊕ V FM. Consider a local trivialization
u = (x, ν) of FM so that π(u) = x. A path ut = (xt, νt) on FM is horizontal
if u̇t ∈ HFM for all t. A horizontal motion of ut corresponds to a parallel
transport of the frame along the curve π(ut) on M. Consequently, the par-
allel transport νt of a frame ν0 of Tx0M along a curve xt on M is called a
horizontal lift of xt.

Let ∂i = ∂
∂xi

, i = 1, . . . , d be a coordinate frame and assume that the
frame ν has basis vectors να for α = 1, . . . , d such that (x, ν) has coordinates
(xi, νiα) where να = νiα

∂
∂xi

. In these coordinates, a matrix representation of a
sub-Riemannian metric gFM : TFM? → HFM is given by

(gFM)ij =

 W−1 −W−1ΓT

−ΓW−1 ΓW−1ΓT

 , (6.21)

where (W−1)ij = δαβνiαν
j
β and the matrix Γ = (Γkαi ) has elements Γkαi =
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Γkijν
j
α. We refer to [125, 89, 118] for more details on sub-Riemannian struc-

tures and the derivation of the sub-Riemannian metric on FM. Using the
sub-Riemannian metric gFM, normal geodesics on FM can be generated by
solving Hamilton’s equations described earlier in (6.11).

Example 6.4.1 (Normal sub-Riemannian geodesics on FM). With the same
setup as in Example 6.2.1, let u0 = (x0, ν0) ∈ FS2 such that x0 = F (0, 0) and ν0

has orthonormal frame vectors ν1 = dF (0.5, 0), ν2 = dF (0, 0.5). Figure 6.7 shows
two geodesics on FS2 visualised on S2 with different initial momenta.
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Figure 6.7: Geodesics on FS2 solving Hamiltion’s equations for the sub-
Riemannian metric gFM with different initial momenta. The curves on S2

show the evolution of xt while the evolution of the frame νt is shown by the
tangent vectors in TxtS2.

6.4.1 Curvature

The curvature form on the frame bundle is defined from the Riemannian
curvature tensor R ∈ T 3

1 (M) described in section 6.2.5 [61]. Let u = (x, ν) be
a point in FM, the curvature form Ω: TFM× TFM → gl(d) on the frame
bundle is

Ω(vu, wu) = u−1R(π∗(vu), π∗(wu))u , vu, wu ∈ TuFM , (6.22)

where π∗ : TFM → TM is the projection of a tangent vector of FM to a
tangent vector ofM. By applying the relation,

Ω(vu, wu) = Ω(hu(π∗(vu)), hu(π∗(wu))), (6.23)
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where hu : Tπ(u)M → HuFM denotes the horizontal lift, the curvature ten-
sor R can be considered as a gl(d) valued map

Ru : T 2(Tπ(u)M)→ gl(d)

(v, w) 7→ Ω(hu(π∗(vu)), hu(π∗(wu))) ,
(6.24)

for u ∈ FM. The implementation of the curvature form Ru is shown in the
code below.

"""
Riemannian Curvature form
R_u (also denoted Omega) is the gl(n)-valued curvature form

uˆ{-1}Ru for a frame u for T_xM

Args:
x: point on the manifold

Returns:
4-tensor (R_u)_ijˆm_k with order i,j,m,k

"""
def R_u(x,u):

return T.tensordot(T.nlinalg.matrix_inverse(u),
T.tensordot(R(x),u,(2,0)),
(1,2)).dimshuffle(1,2,0,3)

Example 6.4.2 (Curvature on S2). Let u = (x, ν) ∈ FM with x = F (0, 0) and
ν as shown in Figure 6.8 (solid arrows). We visualize the curvature at u by the
curvature form Ω(ν1, ν2), calculated by applying R to the basis vectors of ν. The
curvature is represented in Figure 6.8 by the dashed vectors showing the direction
for which each basis vector change by parallel transporting the vectors around an
infinitesimal parallelogram spanned by ν.

6.4.2 Development and Stochastic Development

The short description of the development process in this section is based on
the book [52]. The presented approach has also been described in [34, 118,
122], where the method is used for generalisation of Brownian motions to
manifolds.

Using the frame bundle and its horizontal and vertical splitting, deter-
ministic paths and stochastic processes onFM can be constructed from paths
and stochastic processes on Rd. In the deterministic case, this process is
called development and when mapping Euclidean semi-martingales to M-
valued semi-martingales, the corresponding mapping is stochastic develop-
ment. The development unrolls paths on FM by taking infinitesimal steps
corresponding to a curve in Rd along a basis of HFM. Let e ∈ Rd and



6.4. Sub-Riemannian Frame Bundle Geometry 103

x

1

0

1

y

1

0

1
1

0

1

Figure 6.8: Curvature of each basis vector of ν. The solid arrows represents
the basis vectors, while the dashed arrows are the curvature form Ω(ν1, ν2).
The figure shows in which direction the basis vectors would change if they
were parallel transported around an infinitesimal parallelogram spanned by
the basis vectors of ν.

u = (x, ν) ∈ FM, then a horizontal vector field He ∈ HuFM can be de-
fined by the horizontal lift of the vector νe ∈ TxM, that is

He(x) = hu(νe) .

If e1, . . . , ed is the canonical basis of Rd, then for any u ∈ FM, a basis for
the horizontal subspace HuFM is represented by the horizontal vector fields
Hi(x) = Hei(x), i = 1, . . . , d. Consider a local chart (U,ϕ) on M, the coor-
dinate basis ∂i = ∂

∂xi
on U , and the projection map π : FM → M, then the

coordinate basis ∂i induces a local basis on the subset Ũ = π−1(U) ⊆ FM.
Notice that the basis vectors νe1, . . . , νed of TxM can be written as νej = νij∂i

for each j = 1, . . . , d. Hence (xi, νij) is a chart for Ũ and
(

∂
∂xi
, ∂
∂νij

)
spans the

tangent space TuFM. The horizontal vector fields can be written in this local
coordinate basis as

Hi(q) = νji
∂

∂xj
− νji ν

l
mΓkjl

∂

∂νkm
. (6.25)

The code below shows how these horizontal vector fields in the local basis
can be implemented in Theano.
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"""
Horizontal Vector Field Basis

Args:
x: Point on the manifold
nu: Frame for the tangent space at x
Gamma_g(x): Christoffel symbols at x

Returns:
Matrix of coordinates for each basis vector

"""
def Hori(x,nu):

dnu = - T.tensordot(nu, T.tensordot(nu,Gamma_g(x),axes =
[0,2]),

axes = [0,2])
dnu = dnu.reshape((nu.shape[1],dnu.shape[1]*dnu.shape[2]))
return T.concatenate([nu,dnu.T], axis = 0)

Example 6.4.3 (Horizontal vector fields). Figure 6.9 illustrates the horizontal
vector fields Hi at a point u ∈ FS2. Let u = (x, ν) with x = F (0.1, 0.1) ∈ S2

and ν being the black frame shown in the figure. The horizontal basis for u is then
found by (6.25) and is plotted in Figure 6.9 with the red frame being the horizontal
basis vectors for x and the blue frames are the horizontal basis vectors for each frame
vector in ν. The horizontal basis vectors describe how the point x and the frame ν
change horizontally.

Let now Wt be a Rd-valued Euclidean semi-martingale, e.g. a Brownian
motion. The stochastic version of the development maps Wt to FM by the
solution to the Stratonovich stochastic differential equation

dUt =
d∑
i=1

Hi(Ut) ◦ dW i
t . (6.26)

The solution Ut to this stochastic differential equation is a path in FM for
which a stochastic path onM can be obtained by the natural projection π :
Ut → M. The stochastic development of Wt will be denoted ϕu0(Wt) where
u0 ∈ FM is the initial point on FM. In Theano this Stratonovich stochastic
differential equation can be implemented as follow.

"""
Stochastic Development

Args:
dW: Steps of stochastic process
u: Point in FM
drift: Vector of constant drift of W

Returns:
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Figure 6.9: Horizontal vector fields for the point u = (x, ν) ∈ FM with
x = F (0.1, 0.1) and the frame ν visualized with black arrows. The horizontal
tangent vectors at x is shown in red and the horizontal tangent vectors for
each tangent vector at ν is shown in blue.

det: Matrix of deterministic evolution of process on FM
sto: Matrix of stochastic evolution of the process

"""
def stoc_dev(dW,u,drift):

x = u[0:d]
nu = u[d:(d+rank*d)].reshape((d,rank))
det = T.tensordot(Hori(x,nu), drift, axes = [1,0])
sto = T.tensordot(Hori(x,nu), dW, axes = [1,0])
return det, sto

The variable drift can be used to find the stochastic development of a
process with defined drift. The numerical solution to this SDE requires the
use of stochastic numerical integration methods, described in the appendix
6.A, such as the Euler-Heun scheme, used in the example below.

Example 6.4.4 (Deterministic and stochastic Development). Let γt be a curve
in R2 defined by

γ(t) = (20 sin(t), t2 + 2t), t ∈ [0, 10] ,

and x = F (0, 0) ∈ S2. Consider the orthonormal frame for TxM given by the
Gram-Schmidt decomposition based on the metric g of the vectors v1 = dF (−1, 1),
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Figure 6.10: (left) The curve γt defined in Example 6.4.4. The red and green
point denotes the start and endpoint respectively. (right) The development
of γt on the sphere.

v2 = dF (1, 1). The curve γt is a deterministic process in R2 and hence (6.26) can be
applied to obtain the development of γt to S2. In Figure 6.10 is shown the curve γt
and its development on the sphere.

Let then Xt be a stochastic process in R2 defined from a Brownian motion, Wt,
with drift, β. Discretizing in time, the increments dWt follow the normal distribu-
tion N (0, dtI2), here with dt = 0.0001. Let β = (0.5, 0.5) such that

dXt = dWt + βdt .

A sample path of Xt is shown in Figure 6.11. The stochastic development of Xt is
obtained as the solution to the Stratonovich stochastic differential equation defined
in (6.26). The resulting stochastic development on S2 is shown in the right plot of
Figure 6.11.

6.4.3 Most Probable Path equations

The most common distance measure on Riemannian manifolds is the geode-
sic distance. However, in contexts where data exhibit non-trivial covariance,
it is argued in [118, 122] that weighting the geodesic energy by the inverse
of the covariance, the precision, gives a useful generalization of the geodesic
distance. Extremal paths for the corresponding variational problem are pre-
cisely projections of FM geodesics with respect to the sub-Riemannian met-
ric gFM constructed earlier. These paths also have an interpretation as being
most probable for a specific measure on the path space.

More formally, letXt be a stochastic process withX0 = x0. Most probable
paths in the sense of Onsager-Machlup [40] between x0, y ∈ M are curves



6.4. Sub-Riemannian Frame Bundle Geometry 107

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

x

1

0

1

y

1

0

1

1

0

1

Figure 6.11: (left) The stochastic processXt defined in Example 6.4.4. The red
and green point denotes the start–and endpoint respectively of the process.
(right) The stochastic development of Xt on S2.

γt : [0, 1]→M, γ0 = x0 maximizing

µMε (γt) = P (dg(Xt, γt) < ε, ∀t ∈ [0, 1]) , (6.27)

for ε → 0 and with the Riemannian distance dg. Most probable paths are
in general not geodesics but rather extremal paths for the Onsager-Machlup
functional ∫ 1

0
LM (γt, γ̇t) dt = −E[γt] +

1

12

∫ 1

0
S(γt) dt . (6.28)

Here, S denotes the scalar curvature ofM and the geodesic energy is given
by E[γt] = 1

2

∫ 1
0 ‖γ̇t‖

2
g dt. In comparison, geodesics only minimize the energy

E[γt].
Instead of calculating the MPPs based on the Onsager-Machlup func-

tional on the manifold, the MPPs for the driving process Wt can be found.
It has been shown in [122] that under reasonable conditions, the MPPs of the
driving process exist and coincide with projections of the sub-Riemannian
geodesics on FM obtained from (6.11) with the sub-Riemannian metric gFM.
The implementation of the MPPs shown below is based on this result and
hence returns the tangent vector in TuFM which leads to the sub-Rieman-
nian geodesic on FM starting at u and hitting the fibre at y.

Let Wt be a standard Brownian motion and Xt = ϕu0(Wt), the stochastic
development ofWt with initial point u0 ∈ FM. Then, the most probable path
of the driving process Wt from x0 = π(u0) to y ∈ M is defined as a smooth
curve γt : [0, 1]→Mwith γ0 = x0, γ1 = y satisfying

arg min
γt,γ0=x0,γ1=y

∫ 1

0
−LRn

(
ϕ−1
u0 (γt),

d

dt
ϕ−1
u0 (γt)

)
dt , (6.29)
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that is, the anti-development ϕ−1
u0 (γt) is the most probable path of Wt in Rn.

The implementation of the MPPs is given below.

"""
Most probable paths for the driving process

Args:
u: Starting point in FM
y: Point on M

Returns:
MPP: vector in T_uFM for sub-Riemannian geodesic hitting

fiber above y
"""
loss = lambda v,u,y: 1./d*T.sum((Expfm(u,g(u,v))[0:d]-y)**2)
dloss = lambda v,u,y: T.grad(loss(v,u,y),v)
# Returns the optimal horizontal tangent vector defining the

MPP:
MPP = minimize(loss, np.zeros(d.eval()), jac=dloss, args=(u,y

))

Example 6.4.5 (Most Probable Path on ellipsoid). Let u0 = (x0, ν0) ∈ FM for
which x0 = F (0, 0) and ν0 consists of the tangent vectors dF (0.1, 0.3), dF (0.3, 0.1)
and y = F (0.5, 0.5) ∈ S2. We then obtain a tangent vector

v = (1.03,−5.8, 0, 0, 0, 0) ∈ Hu0FM

which leads to the MPP shown in Figure 6.12 as the blue curve. For comparison, the
Riemannian geodesic between x0 and y is shown in green.

6.5 Landmark Dynamics

In this section, we will apply the previous generic algorithms to the example
of the manifold of landmarks, seen as a finite dimensional representation of
shapes in the Large Deformation Diffeomorphic Metric Mapping (LDDMM).
We will not review this theory in details here but only show how to adapt the
previous code to this example. We refer to the book [12] for more details and
LDDMM and landmark dynamics.

LetM ∼= Rdn be the manifold of n landmarks with positions xi ∈ Rd on
a d-dimensional space. From now on, we will only consider landmarks in
a plane, that is d = 2. In the LDDMM framework, deformations of shapes
are modelled as flows on the group of diffeomorphisms acting on any data
structure, which in this case are landmarks. To apply this theory, we need to
have a special space, a reproducing kernel Hilbert space (RKHS), denoted by
V . In general, an RKHS is a Hilbert space of functions for which evaluations
of a function v ∈ V at a point x ∈ M can be performed as an inner product
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Figure 6.12: A most probable path between x0 = F (0, 0) and y = F (0.5, 0.5)
(red point) on an ellipsoid. The blue curve is the MPP and the green the
Riemannian geodesic between x0 and y.

of v with a kernel evaluated at x. In particular, for v ∈ V , v(x) = 〈Kx, v〉V for
all x ∈ M , for which Kx = K(., x). In all the examples of this paper, we will
use a Gaussian kernel given by

K(xi,xj) = α · exp
(
−‖xi − xj‖

2

2σ2

)
, (6.30)

with standard deviation σ = 0.1 and a scaling parameter α ∈ Rd.
The diffeomorphisms modelling the deformation of shapes in M is de-

fined by the flow
∂tϕ(t) = vt ◦ ϕ(t), for vt ∈ V , (6.31)

where ϕ : M → M and ◦ means evaluation vt(ϕ) for a time-dependent
vector field vt. Given a shape x1 ∈M, a deformation of x1 can be obtained by
applying to x1 a diffeomorphism ϕ obtained as a solution of (6.31) for times
bteween 0 and 1. We write x2 = ϕ(1) · x1, the resulting deformed shape.

Let a shape x in the landmark manifold M be the vector of positions
x = (x1

1, x
2
1, . . . , x

1
n, x

2
n), where the upper indices are the positions of each

landmark on the image. Consider ξ, η ∈ T ∗xM. The cometric onM is thus

g∗x(ξ, η) =

n∑
i,j=1

ξiK(xi,xj)ηj , (6.32)
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where the components of the cometric are gij = K(xi,xj) for xi = (x1
i , x

2
i ).

The coordinates of the metric are the inverse kernel matrix gij = K−1(xi,xj)
and the cometric (6.32) corresponds to the standard landmark Hamiltonian
when ξ = η = p, the momentum vector of the landmarks.

Recall that the Christoffel symbols depend only on the metric, hence they
can be obtained by the general equation (6.4). Geodesics onM can then be
obtained as solutions of Hamilton’s equations described in section 6.2.3 with
this landmark Hamiltonian. An example of geodesics for two landmarks is
shown in Figure 6.13 along with an example of a geodesic on the frame bun-
dle FM, obtained as the solution to Hamilton’s equations generated from
the sub-Riemannian structure on FM described in section 6.4.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.0 0.1 0.2 0.3 0.4 0.5
0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Figure 6.13: Geodesics on the landmark manifold. (left) Geodesic on M
found with Hamilton’s equations. (right) Geodesic on FM as the solution to
Hamilton’s equations generated from the sub-Riemannian structure on FM.

Example 6.5.1 (Stochastic Development). We use a two landmarks manifoldM,
that is dim(M) = 4. Then, as in Example 6.4.4, we consider the curve γt =
(20 sin(t), t2+2t), t ∈ [0, 10] (Figure 6.14 top left panel) and point x = (0, 1, 0.5, 1)
in M. The initial frame for each landmark is given as the canonical basis vectors
e1 = (1, 0), e2 = (0, 1) shown in Figure 6.14 (top right panel) as well as the deter-
ministic development of γt toM. Figure 6.14 (bottom right panel) shows an example
of a stochastic development for a 4-dimensional stochastic process Wt displayed on
the bottom left panel. Notice that in the deterministic case, a single curve was used
for both landmarks, thus their trajectories are similar and only affected by the cor-
relation between landmarks. In the stochastic case, the landmarks follow different
stochastic paths, also affected by the landmarks interaction.

The examples shown in this section can, in addition, be applied to a
higher dimensional landmark manifold as seen in figure 6.1. For more ex-
amples on Theano code used with more landmarks on for example the Cor-
pus Callosum shapes, we refer to [65, 4]. For another stochastic deformation
of shapes in the context of computational anatomy, with examples on land-
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Figure 6.14: Deterministic development (top left) The curve γt defined in Ex-
ample 6.5.1. The red and green point denotes the start–and endpoint of the
process respectively using the displayed frame. (right) The development of
γt on each landmark. Bottom row: Stochastic development (left) Brownian
motion, Wt, in R4 plotted as two processes. (right) The stochastic develop-
ment of Wt to the manifold.

marks, we refer to [5, 4], where the focus was on noise inference in these mod-
els. These works were inspired by [49], where stochastic models for fluid dy-
namics were introduced such that geometrical quantities remain preserved,
and applied for finite dimensions in [3]. In the same theme of stochastic land-
mark dynamics, [85] introduced noise and dissipation to also tackle noise in-
ference problems and [50] considered parametric stochastic deformation in
the variational principle originated from the Euler-Poincaré equations.

6.6 Non-Linear Statistics

This section focuses on a selection of basic statistical concepts generalized to
manifolds and how these can be implemented in Theano. We refer to [101]
for an overview of manifold valued statistics.
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6.6.1 Fréchet Mean

The Fréchet Mean is an intrinsic generalization of the mean-value in Eu-
clidean space [38]. Consider a manifold M with a distance d and let P be
a probability measure on M. The Fréchet mean set is defined as the set of
points minimizing the function

F (y) = arg min
x∈M

EP
[
d(x, y)2

]
, y ∈M . (6.33)

Unlike the Euclidean mean, the solution to (6.33) is not necessarily unique. If
the minimum exists and is unique, the minimum is called the Fréchet mean.
The Fréchet mean for a sample of data points y1, . . . , yn is estimated as

Fȳ = arg min
x∈M

1

n

n∑
i=1

d(x, yi)
2 . (6.34)

When considering a Riemannian manifold, a natural choice of distance mea-
sure is the geodesic distance described in section 6.2.2. With this choice of
distance, the empirical Fréchet mean reduces to

Fȳ = arg min
x∈M

1

n

n∑
i=1

‖Log(x, yi)‖2 , (6.35)

which can be implemented in Theano as follow.

"""
Frechet Mean

Args:
x: Point on the manifold
y: Data points
x0: Initial point for optimization

Returns:
The average loss from x to data y

"""
def Frechet_mean(x,y):

(cout,updates) = theano.scan(fn=loss, non_sequences=[v0,x
],

sequences=[y], n_steps=n_samples)
return 1./n_samples*T.sum(cout)

dFrechet_mean = lambda x,y: T.grad(Frechet_mean(x,y),x)
FMean = minimize(Frechet_mean, x0, jac=dFrechet_mean, args=y)

Example 6.6.1 (Fréchet mean on S2). Consider the Levi-Civita connection on S2

and equip S2 with the geodesic distance given in (6.9). A sample set of size 20 is
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Figure 6.15: (left) Sampled data points, with the red point being the initial
guess of the mean. (right) The resulting empirical Frechet mean. The iterated
results are visualized as red dots. The final result is the largest red dot with
the distance minimizing geodesics to each datapoint.

generated on the northern hemisphere. Each coordinate of a sample point has been
drawn from a normal distribution with mean 0 and standard deviation 0.2. The
initial guess of the Fréchet mean is F (0.4,−0.4). The sample set and initial mean
are shown in the left plot of Figure 6.15. The resulting empirical Frechet mean found
with the implementation above is visualized in Figure 6.15.

The Fréchet mean can not just be used to calculate the mean on manifolds.
In [122], the authors presented a method for estimating the mean and covari-
ance of normal distributions on manifolds by calculating the Fréchet mean on
the frame bundle. The next section will describe a way to generalize normal
distributions to manifolds.

6.6.2 Normal Distributions

Normal distributions in Euclidean spaces can be considered as the transition
distribution of Brownian motions. The generalization of normal distributions
to manifolds can be defined in a similar manner. In [34], isotropic Brown-
ian motions onM are constructed as the stochastic development of isotropic
Brownian motions on Rn based on an orthonormal frame. However, [119,
122] suggested performing stochastic development with non-orthonormal
frames, which leads to anisotropic Brownian motions on M. Let Wt be a
Brownian motion on R2 and consider the initial point u = (x, ν) ∈ FS2, for
x = F (0, 0) and ν the frame consisting of the canonical basis vectors e1, e2. An
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example of a Brownian motion path on the sphere, derived as the stochastic
development of Wt in R2, is shown in Figure 6.16.
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Figure 6.16: (left) Brownian motion, Wt, in R2. (right) The stochastic devel-
opment of Wt to the sphere with initial point u = (x, ν), for x = F (0, 0) and
ν the frame consisting of the canonical basis vectors e1, e2.

Based on the definition of Brownian motions on a manifold, normal dis-
tributions can be generalized as the transition distribution of Brownian mo-
tions onM. Consider the generalization of the normal distribution N (µ,Σ).
When defining the normal distribution onM as the stochastic development
of Brownian motions, the initial point onM is the mean and the initial frame
represents the covariance of the resulting normal distribution.

Example 6.6.2 (Normal distributions on S2). Let Wt be a Brownian motion on
R2 and consider x = F (0, 0) ∈ S2 being the mean of the normal distributions in
this example. Two normal distributions with different covariance matrices have been
generated, one isotropic and one anisotropic distribution. The normal distributions
are N (0,Σi) for i = 1, 2 with covariance matrices

Σ1 =

(
0.15 0

0 0.15

)
, Σ2 =

(
0.2 0.1
0.1 0.1

)
. (6.36)

As explained above, the initial frame ν represents the covariance of the normal
distribution on a manifoldM. Therefore, we chose ν1 with basis vectors being the
columns of Σ1 and ν2 with basis vectors represented by the columns of Σ2. Density
plots of the resulting normal distributions are shown in Figure 6.17.
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Figure 6.17: (left) Density estimate of the isotropic normal distribution on S2

with covariance Σ1 given in (6.36). (right) Density estimate of the anisotropic
normal distribution on S2 with covariance Σ2.

6.7 Conclusion

In this paper, we have shown how the Theano framework and Python can
be used for implementation of concepts from differential geometry and non-
linear statistics. The opportunity to perform symbolic calculations makes im-
plementations of even complex concepts such as stochastic integration and
fibre bundle geometry easy and concise. The symbolic representation is of-
ten of great practical value for the implementation process, leading to shorter
code, fewer bugs, and faster implementations, and formulas can almost di-
rectly be translated to Theano code. As seen in the examples, the symbolic
representation of functions allows taking derivatives of any variables and of
any orders. The task of calculating gradients for optimization procedures
can be difficult and prone to errors while with symbolic calculations, only a
few lines of code is needed to optimize over, for instance, the parameters of
a stochastic integrator or the evolution of a sub-Riemannian geodesic. This
makes numerical testing of new ideas fast and efficient and easily scalable to
useful applications if optimized for parallel computers of GPUs.

We have just shown here a small fragment of mathematical problems
which can be implemented with Theano and other similar software. Other
problems that could be solved using these methods can be found in statisti-
cal analysis on manifold-valued data, such as geodesic regression, longitu-
dinal analysis, and PCA, or in computational anatomy, by solving registra-
tion problem on continuous shapes and images and analysing or modelling
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shape deformations. For example, we refer to [65, 4, 5] for further examples
of Theano in the field of computational anatomy which were not treated here.

Packages such as Theano have their limitations, and one must sometimes
be careful in the implementation and aware of the limitations of the algo-
rithms. For example, if equations are simple enough that derivatives can be
written explicitly, the code can in some situations be faster when computing
from the explicit formula rather than relying on the automatic differentiation.
For complicated constructions, the compilation step can be computationally
intensive as well as memory demanding. Such limitations can be overcome
by carefully writing the code in order to limit the compilation time and have
the parameters of Theano properly adjusted to the machine at hand.

With this paper and its accompanying code1, we hope to stimulate the use
of modern symbolic and numerical computation frameworks for experimen-
tal applications in mathematics, for computations in applied mathematics,
and for data analysis by showing how the resulting code allows for flexibil-
ity and simplicity in implementing many experimental mathematics endeav-
ours.
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6.A Stochastic integration

In the following, we give a brief description of some basic theory on stochas-
tic differential equations and stochastic integration methods. The symbolic
specification in Theano allows us to take derivatives of parameters specify-
ing the stochastic evolutions, and the presented methods can, therefore, be
used for e.g. maximum likelihood estimation over stochastic processes. The
theory in this appendix is based on [113].

6.A.1 Stochastic Differential Equations

We consider here stochastic processes, Ut in Rn, solutions to SDEs of the form

dUt = f(Ut, t)dt+ g(Ut, t)dWt, t ∈ [0, T ] , (6.37)

with drift f(Ut, t) and diffusion field g(Ut, t), functions from Rn × R to Rn.
There are two types of stochastic differential equations; Itô and Stratono-

vich differential equations. The Stratonovich SDEs are usually denoted with
1http://bitbucket.org/stefansommer/theanogeometry

http://bitbucket.org/stefansommer/theanogeometry
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◦, such that (6.37) reduces to

dUt = f(Ut, t)dt+ g(Ut, t) ◦ dWt . (6.38)

For integration of deterministic ODEs, solutions to the integral equation
can be defined as the limit of a sum of finite differences over the time interval.
In this case, it does not matter in which point of the intervals the function is
evaluated. For stochastic integrals, this is not the case. Itô integrals are de-
fined by evaluating at the left point of the interval, while Stratonovich inte-
grals use the average between the value at the two endpoints of the interval.
The two integrals do not result in equal solutions, but they are related by

g(Ut, t)dWt =
1

2
dg(Ut, t)g(Ut, dt)dt+ g(Ut, t) ◦ dWt , (6.39)

where dg denotes the Jacobian of g [14]. Whether to choose Itô or the Strato-
novich framework depends on the problem to solve. One benefit from choos-
ing the Stratonovich integral is that it obeys the chain rule making it easy to
use in a geometric context.

6.A.2 Discrete Stochastic Integrators

We generally need numerical integration to find solutions to SDEs. There are
several versions of numerical integrators of different order of convergence.
Two simple integrators are the Euler method for Itô SDEs and the Euler-Heun
for the Stratonovich SDEs.
Euler Method. Consider an Itô SDE as defined in (6.37). Let 0 = t0 < t1 <
. . . < tn = T be a discretization of the interval [0, T ] for which the stochastic
process is defined and assume ∆t = T/n. Initialize the stochastic process,
U0 = u0 for some initial value u0. The process Ut is then recursively defined
for each time point ti by,

Uti+1 = Uti + f(Uti , ti)∆t+ g(Uti , ti)∆Wi , (6.40)

in which ∆Wi = Wti+1 −Wti . Given an Itô stochastic differential equation,
sde_f, the Euler method can be implemented in Theano by the following
code example.

"""
Euler Numerical Integration Method

Args:
sde: Stochastic differential equation to solve
integrator: Choice of integrator_ito or

integrator_stratonovich
x: Initial values for process
dWt: Steps of stochastic process

*ys: Additional arguments to define the sde
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Returns:
integrate_sde: Tensor (t,xt)

t: Time evolution
xt: Evolution of x

"""
def integrator_ito(sde_f):

def euler(dW,t,x,*ys):
(detx, stox, X, *dys) = sde_f(dW,t,x,*ys)
ys_new = ()
for (y,dy) in zip(ys,dys):

ys_new = ys_new + (y+dt*dy,)
return (t+dt,x + dt*detx + stox, *ys_new)

return euler

# Integration:
def integrate_sde(sde,integrator,x,dWt,*ys):

(cout, updates) = theano.scan(fn=integrator(sde),
outputs_info=[T.constant(0.),x, *ys],
sequences=[dWt],
n_steps=n_steps)

return cout

Euler-Heun Method. An equivalent integration method as the Euler method
for Itô SDEs, is the Euler-Heun method used to approximate the solution to
Stratonovich SDEs. Consider a similar discretization as in the Euler method.
The Euler-Heun numerical integration method is then defined as,

Uti+1 = Uti + f(Uti , ti)∆t+
1

2

(
g(Uti , ti) + g(Ûti , ti)

)
∆Wi , (6.41)

where Ûti = Uti + g(Uti , ti)∆Wi. The implementation of the Euler-Heun
method is similar to the Euler method, such that based on a Stratonovich
SDE, sde_f, the implementation can be executed as follows,

"""
Euler-Heun Numerical Integration Method

Args:
sde: Stochastic differential equation to solve
integrator: Choice of integrator_ito or

integrator_stratonovich
x: Initial values for process
dWt: Steps of stochastic process

*ys: Additional arguments to define the sde

Returns:
integrate_sde: Tensor (t,xt)

t: Time evolution



6.A. Stochastic integration 119

xt: Evolution of x
"""
def integrator_stratonovich(sde_f):

def euler_heun(dW,t,x,*ys):
(detx, stox, X, *dys) = sde_f(dW,t,x,*ys)
tx = x + stox
ys_new = ()
for (y,dy) in zip(ys,dys):

ys_new = ys_new + (y+dt*dy,)
return (t+dt,

x + dt*detx + 0.5*(stox + sde_f(dW,t+dt,tx,*ys)
[1]),

*ys_new)
return euler_heun

# Integration:
def integrate_sde(sde,integrator,x,dWt,*ys):

(cout, updates) = theano.scan(fn=integrator(sde),
outputs_info=[T.constant(0.),x, *ys],
sequences=[dWt],
n_steps=n_steps)

return cout
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The content overlap with the longer journal version presented in Chapter 6,
but focus on applying the methods to analyse data in the field of computa-
tional anatomy.
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Line Kühnel, and Stefan Sommer

Department of Computer Science, University of Copenhagen

Abstract

To model deformation of anatomical shapes, non-linear statistics
are required to take into account the non-linear structure of the data
space. Computer implementations of non-linear statistics and differ-
ential geometry algorithms often lead to long and complex code se-
quences. The aim of the paper is to show how the Theano framework
can be used for simple and concise implementation of complex differ-
ential geometry algorithms while being able to handle complex and
high-dimensional data structures. We show how the Theano framework
meets both of these requirements. The framework provides a symbolic
language that allows mathematical equations to be directly translated
into Theano code, and it is able to perform both fast CPU and GPU com-
putations on high-dimensional data. We show how different concepts
from non-linear statistics and differential geometry can be implemented
in Theano, and give examples of the implemented theory visualized on
landmark representations of Corpus Callosum shapes.

Keywords: Computational Anatomy, Differential Geometry, Non-Li-
near Statistics, Theano.

7.1 Introduction

Euclidean statistical methods can generally not be used to analyse anatom-
ical shapes because of the non-linearity of shape data spaces. Taking into
account non-linearity and curvature of the data space in statistical analysis
often requires implementation of concepts from differential geometry.

Numerical implementation of even simple concepts in differential geom-
etry is often a complex task requiring manual implementation of long and
complicated expressions involving high-order derivatives. We propose to
use the Theano framework in Python to make implementation of differen-
tial geometry and non-linear statistics algorithms a simpler task. One of the
main advantages of Theano is that it can perform symbolic calculations and
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Figure 7.1: Matching of 20000 landmarks on two ellipsoids. Only the match-
ing curve for 20 landmarks have been plotted to make the plot interpretable.
The GPU computation is automatic in Theano and no explicit GPU code is
used for the implementation.

take symbolic derivatives of even complex constructs such as symbolic in-
tegrators. As a consequence, mathematical equations can almost directly be
translated into Theano code. For more information on the Theano frame-
work, see [127].

Even though Theano make use of symbolic calculations, it is still able to
perform fast computations on high-dimensional data. A main reason why
Theano can handle complicated data is the opportunity to use both CPU and
GPU for calculations. As an example, Fig. 7.1 shows matching of 20000 land-
marks on two different ellipsoids performed on a 40000-dimensional land-
mark manifold. The matching code was implemented symbolically using no
explicit GPU code.

The paper will discuss multiple concepts in differential geometry and
non-linear statistics relevant to computational anatomy and provide corre-
sponding examples of Theano implementations. We start by considering
simple theoretical concepts and then move to more complex constructions
from sub-Riemannian geometry on fiber bundles. Examples of the imple-
mented theory will be shown for landmark representations of Corpus Callo-
sum shapes using the Riemannian manifold structure on the landmark space
defined in the Large Deformation Diffeomorphic Metric Mapping (LDDMM)
framework.

The presented Theano code is available in the Theano Geometry reposi-
tory,

http://bitbucket.org/stefansommer/theanogeometry,

http://bitbucket.org/stefansommer/theanogeometry
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that includes Theano implementations of additional differential geometry,
Lie group, and non-linear statistics algorithms. The described implementa-
tions are not specific to the LDDMM landmark manifold used for examples
here. The code is completely general and can be directly applied to analysis
of data modelled in spaces with different non-linear structures. For more ex-
amples of Theano implementation of algorithms directly targeting landmark
dynamics, see [4, 5].

The paper is structured as follows. Section 7.1.1 gives a short introduc-
tion to the LDDMM manifold. Section 7.2 concerns Theano implementa-
tion of geodesics as solution to Hamilton’s equations. In Section 7.3, we
use Christoffel symbols to define and implement parallel transport of tan-
gent vectors. In Section 7.4, the Fréchet mean algorithm is considered, while
stochastics, Brownian motions, and normal distributions are described in
Section 7.5. Section 7.6 gives an example of calculating sample mean and
covariance by estimating the Fréchet mean on the frame bundle. The paper
ends with concluding remarks.

7.1.1 Background

The implemented theory is applied to data on a landmark manifold defined
in the LDDMM framework [135]. More specifically, we will exemplify the
theoretical concepts with landmark representations of Corpus Callosum (CC)
shapes.

Consider a landmark manifold,M, with elements q = (x1
1, x

2
1, . . . , x

1
n, x

2
n)

as illustrated in Fig. 7.2. In the LDDMM framework, deformation of shapes
are modelled as a flow of diffeomorphisms. Let V denote a Reproducing
Kernel Hilbert Space (RKHS) of vector fields and let K : V × V → R be the
reproducing kernel, i.e. a vector field v ∈ V satisfies v(q) = 〈Kq, v〉V for all
q ∈ M with Kq = K(., q). Deformation of shapes in M are then modelled
by flows ϕt of diffeomorphisms acting on the landmarks. The flow solves
the ordinary differential equation ∂tϕt = v(t) ◦ ϕt, for v ∈ V . With suit-
able conditions on K, the norm on V defines a right-invariant metric on the
diffeomorphism group that descends to a Riemannian structure onM. The
induced cometric g∗q : T ∗qM× T ∗qM→ R takes the form

g∗q (ν, ξ) =

n∑
i,j=1

νiK(xi,xj)ξj , (7.1)

where xi = (x1
i , x

2
i ) for i ∈ {1, . . . , n}. The coordinate matrix of the cometric

is gij = K(xi,xj) which results in the metric g having coordinates gij =
K−1(xi,xj).

In the examples, we use 39 landmarks representing the CC shape outlines,
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Figure 7.2: (left) An example of a point in M. (right) A subset of the data
considered in the examples of this paper. The black curve represents the
mean CC of the data.

and the kernel used is a Gaussian kernel defined by

K(xi,xj) = exp

(
−‖xi − xj‖

2

2σ2

)
with variance parameter σ set to the average distance between landmarks in
the CC data. Samples of CC outlines are shown in the right plot of Fig. 7.2.

7.2 Geodesics

Geodesics onM can be obtained as the solution to Hamilton’s equations used
in Hamiltonian mechanics to describe the change in position and momentum
of a particle in a physical system. Let (U,ϕ) be a chart on M and assume
(M, g) is a Riemannian manifold. The Hamiltonian H describes the total
amount of energy in the physical system. From the cometric g∗, the Hamilto-
nian can be defined as H(q, p) = 1

2p
T g∗qp, where g∗q = (gij) is the component

matrix of g∗ at q. Hamilton’s equations are given as the system of ordinary
differential equations

dqt = ∇pH(q, p), dpt = −∇qH(q, p).

Using the symbolic derivative feature of Theano, the system of ODE’s can be
represented and discretely integrated with the following code snippet:

"""
Hamiltonian function and equations
"""
# Hamiltonian function:
H = lambda q,p: 0.5*T.dot(p,T.dot(gMsharp(q),p))
# Hamiltonian equations:
dq = lambda q,p: T.grad(H(q,p),p)
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dp = lambda q,p: -T.grad(H(q,p),q)

def ode_Ham(t,x):
dqt = dq(x[0],x[1])
dpt = dp(x[0],x[1])
return T.stack((dqt,dpt))

# Geodesic:
Exp = lambda q,v: integrate(ode_Ham,T.stack((q,gMflat(v))))

where gMflat is the [ map turning tangent vectors in TM to elements in
T ?M. integrate denotes a function that integrates the ODE by finite time
discretization. For the examples considered here, we use a simple Euler inte-
gration method. Higher-order integrators are available in the implemented
repository mentioned in Section 7.1. A great advantage of Theano is that such
integrators can be implemented symbolically as done below using a symbolic
for-loop specified with theano.scan. The actual numerical scheme is only
available after asking Theano to compile the function.

"""
Numerical Integration Method
"""
def integrator(ode_f):

def euler(*y):
t = y[-2]
x = y[-1]
return (t+dt,x+dt*ode_f(*y))

return euler

def integrate(ode,x):
(cout, updates) = theano.scan(fn=integrator(ode),

outputs_info=[x],sequences=[*y], n_steps=n_steps)
return cout

%\end{minted}

In the above, integrator specifies the chosen integration method, in
this example the Euler method. Since the integrate function is a symbolic
Theano function, symbolic derivatives can be obtained for the integrator, al-
lowing e.g. gradient based optimization for the initial conditions of the ODE.
As the derivatives of the integration schemes are symbolic, the schemes re-
main compatible.

An example of a geodesic found as the solution to Hamilton’s equations
is visualized in the right plot of Fig. 7.3. The initial point q0 ∈ M was set to
the average CC for the data shown in Fig. 7.2 and the initial tangent vector
v0 ∈ Tq0Mwas given as the tangent vector plotted in Fig. 7.3.

The exponential map, expx : TxM → M, x ∈ M is defined as expx(v) =
γv1 , where γvt , t ∈ [0, 1] is a geodesic with γ̇v0 = v. The inverse of the ex-
ponential map is called the logarithm map, denoted log. Given two points
q1, q2 ∈ M, the logarithm map retuns the tangent vector v ∈ Tq1M that re-
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Figure 7.3: (left) The initial point and tangent vector for the geodesic. (right)
A geodesic obtained as solution to Hamilton’s equations.

sults in the minimal geodesic from q1 to q2, i.e. v satisfies expq1(v) = q2.
The logarithm map can be implemented using derivative based optimization
by taking a symbolic derivative of the exponential map, Exp, implemented
above:

"""
Logarithm map
"""
# Loss function for landmarks:
loss = lambda v,q1,q2: 1./d*T.sum(T.sqr(Exp(q1,v)-q2))
dloss = lambda v,q1,q2: T.grad(loss(v,q1,q2),v)
# Logarithm map: (v0 initial guess)
Log = minimize(loss, v0, jac=dloss, args=(q1,q2))
%\end{minted}

The use of the derivative features provided in Theano to take symbolic
derivatives of a discrete integrator makes the implementation of the loga-
rithm map extremely simple. The actual compiled code internally in Theano
corresponds to a discrete backwards integration of the adjoint of the Hamil-
tonian system. An example of matching shapes by the logarithm map was
shown in Fig. 7.1. Here two ellipsoids of 20000 landmarks were matched by
applying the above Log function.

7.3 Christoffel Symbols

We here describe how Christoffel symbols can be computed and used in the
Theano framework. A connection ∇ defines links between tangent spaces
onM and describes how tangent vectors for different tangent spaces relate.
Let (U,ϕ) denote a coordinate chart on M with basis coordinates ∂i, i =
1, . . . , d. The connection ∇ is uniquely described by its Christoffel symbols,
Γkij , defined as∇∂i∂j = Γkij∂k.
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An example of a frequently used connection is the Levi-Civita connec-
tion for Riemannian manifolds. Based on the metric g onM, the Levi-Civita
Christoffel symbols are found by

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij). (7.2)

The Theano implementation below of the Christoffel symbols directly trans-
lates (7.2) into code:

"""
Christoffel Symbols
"""
## Cometric:
gsharp = lambda q: T.nlinalg.matrix_inverse(g(q))
## Derivative of metric:
Dg = lambda q: T.jacobian(g(q).flatten(),q).reshape((d,d,d))
## Christoffel symbols:
Gamma_g = lambda q: 0.5*(T.tensordot(gsharp(q),Dg(q),axes =

[1,0])\
+ T.tensordot(gsharp(q),Dg(q),axes = [1,0]).dimshuffle

(0,2,1)\
- T.tensordot(gsharp(q),Dg(q),axes = [1,2]))

%\end{minted}

The connection,∇, and Christoffel symbols, Γkij , can be used to define parallel
transport of tangent vectors onM. Let γ : I → M be a curve and let t0 ∈ I .
A vector field V is said to be parallel along γ if the covariant derivative of
V along γ is zero, i.e. ∇γ̇tV = 0. For a tangent vector v0 = vi0∂i ∈ Tγt0M,
there exists a unique parallel vector field V along γ s.t. Vt0 = v0. Assume
Vt = vi(t)∂i, then the vector field V is parallel along γ if the coordinates
follows the differential equation,

v̇k(t) + Γkij(γt)γ̇
i
tv
j(t) = 0, (7.3)

with initial values vi(0) = vi0. In Theano code the ODE can be written as,

"""
Parallel transport
"""
def ode_partrans(gamma,dgamma,t,x):

dpt = - T.tensordot(T.tensordot(dgamma, Gamma_gM(gamma),
axes = [0,1]),x, axes = [1,0])

return dpt

pt = lambda v,gamma,dgamma: integrate(ode_partrans,v,gamma,
dgamma)

%\end{minted}

Let q0 be the mean CC plotted in Fig. 7.3 and consider v1, v2 ∈ Tq0M s.t. v1 is
the vector consisting of 39 copies (one for each landmark) of e1 = (1, 0) and
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Figure 7.4: Example of parallel transport of basis vectors v1, v2 along the
geodesic with initial values q0, v2. The parallel transported vectors are only
plotted for 5 landmarks.

v2, the vector of 39 copies of e2 = (0, 1). The tangent vector v2 is shown in
Fig. 7.3. Define γ as the geodesic calculated in Section 7.2 with initial values
(q0, v2). The parallel transport of v1, v2 along γ is visualized in Fig 7.4. To
make the plot easier to interpret, the parallel transported vectors are only
shown for five landmarks.

7.4 Fréchet Mean

The Fréchet mean [37] is a generalization of the Euclidean mean value to
manifolds. Let d be a distance map onM. The Fréchet mean set is defined
as F (x) = arg miny∈M Ed(y, x)2. For a sample of data points x1, . . . , xn ∈M,
the empirical Fréchet mean is

Fx̄ = arg min
y∈M

1

n

n∑
i=1

d(y, xi)
2. (7.4)

Letting d be the Riemannian distance function determined by the metric g,
the distance can be formulated in terms of the logarithm map, defined in
Section 7.2, as d(x, y) = ‖ log(x, y)‖2. In Theano, the Fréchet mean can be ob-
tained by optimizing the function implemented below, again using symbolic
derivatives.

"""
Frechet Mean
"""
def Frechet_mean(q,y):

(cout,updates) = theano.scan(fn=loss, non_sequences=[v0,q
],
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Figure 7.5: (left) The estimated empirical Fréchet mean (black), the initial
value (blue) and the Euclidean mean of the 20 samples (red). (right) Plot of
the 20 samples of CC, with the Fréchet mean shown as the black curve.

sequences=[y], n_steps=n_samples)
return 1./n_samples*T.sum(cout)

dFrechet_mean = lambda q,y: T.grad(Frechet_mean(q,y),q)
%\end{minted}

The variable v0 denotes the optimal tangent vector found with the Log func-
tion in each iteration of the optimization procedure.

Consider a sample of 20 observations of the CC data shown in the right
plot of Fig. 7.5. To calculate the empirical Fréchet mean on M, the initial
point q0 ∈M was set to one of the CC observations plotted in the left plot of
Fig. 7.5. The result of the optimization is shown in Fig. 7.5 (bold outline).

So far we have shown how Theano can be used to implement simple and
frequently used concepts in differential geometry. In the following sections,
we will exemplify how Theano can be used for stochastic dynamics and for
implementation of more complex concepts from sub-Riemannian geometry
on the frame bundle ofM.

7.5 Normal Distributions and Stochastic Development

We here consider Brownian motion and normal distributions on manifolds.
Brownian motion on Riemannian manifolds can be constructed in several
ways. Here, we consider two definitions based on stochastic development
and coordinate representation of Brownian motion as an Itô SDE. The first ap-
proach [34] allows anisotropic generalizations of the Brownian motion [122,
118] as we will use later.

Stochastic processes onM can be defined by transport of processes from
Rm, m ≤ d to M by the stochastic development map. In order to describe
stochastic development of processes ontoM, the frame bundle has to be con-
sidered.



7.5. Normal Distributions and Stochastic Development 131

The frame bundle, FM, is the space of points u = (q, ν) s.t. q ∈ M and ν
is a frame for the tangent space TqM. The tangent space of FM, TFM, can
be split into a vertical subspace, V FM, and a horizontal subspace, HFM,
i.e. TFM = V FM⊕HFM. The vertical space, V FM, describes changes in
the frame ν, whileHFM defines changes in the point x ∈Mwhen the frame
ν is fixed in the sense of having zero acceleration measured by the connec-
tion. The frame bundle can be equipped with a sub-Riemannian structure by
considering the distribution HFM and a corresponding degenerate comet-
ric g∗FM : TFM∗ → HFM. Let (U,ϕ) denote a chart onM with coordinates
(xi)i=1,...,d and coordinate frame ∂i = ∂

∂xi
for i = 1, . . . , d. Let να α = 1, . . . , d

denote the basis vectors of the frame ν. Then (q, ν) have coordinates (qi, νiα)
where να = νiα∂i and ναi defines the inverse coordinates of να. The coordinate
representation of the sub-Riemannian cometric is then given as

(gFM)ij =

(
W−1 −W−1ΓT

−ΓW−1 ΓW−1ΓT

)
, (7.5)

where W is the matrix with components Wij = δαβν
α
i ν

β
j and Γ = (Γ

hγ
j ) for

Γ
hγ
j = Γhjiν

i
γ with Γhji denoting the Christoffel symbols for the connection, ∇.

The sub-Riemannian structure restricts infinitesimal movements to be only
along horizontal tangent vectors. Let π∗ν : TνM→ HνFM be the lift of a tan-
gent vector in TM to its horizontal part and let e ∈ Rd be given. A horizontal
vector at u = (q, ν) can be defined as the horizontal lift of the tangent vector
νe ∈ TqM, i.e. He(u) = (νe)∗. A basis for the horizontal subspace at u ∈ FM
is then defined as Hi = Hei(u), where e1, . . . , ed denote the canonical basis of
Rd.

Let Wt denote a stochastic process on Rm, m ≤ d. A stochastic process
Ut on FM can be obtained by the solution to the stratonovich stochastic dif-
ferential equation, dUt =

∑m
i=1Hi(Ut) ◦ dW i

t , with initial point u0 ∈ FM. A
stochastic process onM can then be defined as the natural projection of Ut to
M. In Theano, the stochastic development map is implemented as
"""
Stochastic Development
"""
def sde_SD(dWt,t,q,nu):

return T.tensordot(Hori(q,nu), dWt, axes = [1,0])
stoc_dev = lambda q,u,dWt: integrate_sde(sde_SD,

integrator_stratonovich,q,u,dWt)[1]
%\end{minted}

Here, integrate_sde is a function performing stochastic integration of the
SDE. The integrate_sde is defined in a similar manner as integrate de-
scribed in Section 7.2. In Fig. 7.6 is given an example of stochastic devel-
opment of a stochastic process Wt in R2 to the landmark manifold. Notice
that for m < d, only the first m basis vectors of the basis Hi is used in the
stochastic development.
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Figure 7.6: (left) Stochastic process Wt on R2. (right) The stochastic develop-
ment of Wt onM. The blue points represents the initial point chosen as the
mean CC. The red points visualize the endpoint of the stochastic develop-
ment.

Given the stochastic development map, Brownian motions onM can be
defined as the projection of the stochastic development of Brownian motions
in Rd. Defining Brownian motions by stochastic development makes it pos-
sible to consider Brownian motions with anisotropic covariance by choosing
the initial frame as not being orthonormal.

However, if one is only interested in isotropic Brownian motions, a differ-
ent definition can be applied. In [120], the coordinates of a Brownian motion
is defined as solution to the Itô integral,

dqit = −1

2
gklq Γikldt+

√
g∗q
i
dWt. (7.6)

This stochastic differential equation is implemented in Theano by the follow-
ing code.

"""
Brownian Motion in Coordinates
"""
def sde_Brownian_coords(dW,t,q):

gMsharpq = gMsharp(q)
X = theano.tensor.slinalg.Cholesky()(gMsharpq)
det = T.tensordot(gMsharpq,Gamma_gM(q),((0,1),(0,1)))
sto = T.tensordot(X,dW,(1,0))
return (det,sto,X)

Brownian_coords = lambda x,dWt: integrate_sde(
sde_Brownian_coords,

integrator_ito,x,dWt)
%\end{minted}

An example of an isotropic Brownian motion found by the solution of (7.6)
is shown in Fig. 7.7.
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Figure 7.7: (left) Brownian motion on M. (right) Samples drawn from an
isotropic normal distribution defined as the transition distribution of a Brow-
nian motion obtained as a solution to (7.6).

In Euclidean statistical theory, a normal distribution can be considered as
the transition distribution of a Brownian motion. A similar definition was
described in [122]. Here a normal distribution onM is defined as the transi-
tion distribution of a Brownian motion onM. In Fig. 7.7 is shown samples
drawn from a normal distribution on M with mean set to the average CC
shown in Fig. 7.2 and isotropic covariance. The Brownian motions are in this
example defined in terms of (7.6).

7.6 Fréchet Mean on Frame Bundle

A common task in statistical analysis is to estimate the distribution of data
samples. If the observations are assumed to be normally distributed, the
goal is to estimate the mean vector and covariance matrix. In [122], it was
proposed to estimate the mean and covariance of a normal distribution on
M by the Fréchet mean on the frame bundle.

Consider Brownian motions onM defined as the projected stochastic de-
velopment of Brownian motions on Rd. A normal distribution onM is given
as the transition distribution of a Brownian motion onM. The initial point
for the stochastic development, u0 = (q0, ν0) ∈ FM, corresponds to the mean
and covariance, i.e. q0 ∈ M denotes the mean shape and ν0 the covariance
of the normal distribution. As a consequence, normal distributions with
anisotropic covariance can be obtained by letting ν0 be a non-orthonormal
frame.

In Section 7.4, the Fréchet mean onM was defined as the point y ∈ M,
minimizing the average geodesic distance to the observations. However, as
only a sub-Riemannian structure is defined on FM, the logarithm map does
not exist and hence the geodesic distance cannot be used to define the Fréchet
mean on FM. Instead, the distance function will be defined based on the
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most probable paths (MPP) defined in [118]. In this section, a slightly differ-
ent algorithm for estimating the mean and covariance for a normal distribu-
tion is proposed compared to the one defined in [122].

Let u = (q, ν) ∈ FM be given such that q, ν is the mean and covariance of
a normal distribution onM. Assume that observations y1, . . . , yn ∈ M have
been observed and let p1, . . . , pn ∈ H∗FM. The Fréchet mean on FM can
then be obtained by optimizing,

FFM = arg min
(u,p1,...,pn)

1

n

n∑
i=1

‖pi‖2g∗FM +
λ

n

n∑
i=1

dM(π(expu(p]i)), yi)
2 − 1

2
log(det ν),

where ] denotes the sharp map on FM changing a momentum vector in
T ∗FM to the corresponding tangent vector in TFM. The point of mini-
mizing with respect to the momentum vector p1, . . . , pn is that the geodesics,
expu(p]i), becomes MPPs on FM, i.e. the first term penalizes the momentum
vector. The second term decreases the distance of the mean to each data point
as in the empirical Fréchet mean onM, while the last term ensures that the
covariance frame does not tend to 0.

The Fréchet mean on FM is implemented in Theano and numpy as,

"""
Frechet Mean on FM
"""
detg = lambda q,nu: T.nlinalg.Det()(T.tensordot(nu.T,

T.tensordot(gM(q),nu,axes=(1,0)),axes=(1,0)))

lossf = lambda q1,q2: 1./d.eval()*np.sum((q1-q2)**2)

def Frechet_meanFM(u,p,y0):
q = u[0:d.eval()]
nu = u[d.eval():].reshape((d.eval(),rank.eval()))
for i in range(n_samples):

distv[i,:] = lossf(Expfmf(u,p[i,:])[0:d.eval()],y0)
normp[i,:] = 2*Hfm(u,p[i,:]) # Hamiltonian on FM

return 1./n_samples*np.sum(normp)
+lambda0/n_samples*np.sum(distv**2)-1./2*np.log(detgf(x,

u))
%\end{minted}

7.7 Conclusion

In the paper, it has been shown how different concepts in differential geom-
etry and non-linear statistics can be implemented using the Theano frame-
work. Integration of geodesics, computation of Christoffel symbols and par-
allel transport, stochastic development and Fréchet mean estimation were
considered and demonstrated on landmark shape manifolds. In addition, we
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showed how the Fréchet mean on the frame bundle FM can be computed for
estimating the mean and covariance of an anisotropic normal distribution on
M.

Theano has, for the cases shown in this paper, been a very efficient frame-
work for implementation of differential geometry concepts and for non-li-
near statistics in a simple and concise way yet allowing efficient and fast
computations. We emphasize that Theano is able to perform calculations on
high-dimensional manifolds using either CPU or GPU computations. In the
future, we plan to extend the presented ideas to derive Theano implementa-
tions of differential geometry concepts in more general fiber bundle and Lie
group geometries.
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Geometry and Advanced Bioimaging (CSGB) funded by a grant from the
Villum foundation.





CHAPTER 8
Latent Space Non-Linear Statistics

The following manuscript, made in collaboration with Tom Fletcher, Sarang
Joshi and Stefan Sommer, is available at ArXiv as submission,

• L. Kühnel, T. Fletcher, S. Joshi, and S. Sommer. Latent space non-linear
statistics. arXiv preprint arXiv:1805.07632, 2018

Based on a pre-trained latent space of a variational autoencoder, we perform
analyses of the projection of newly observed data to the lower dimensional
latent space representation. It was shown simultaneously by [114, 24, 8] that
the latent space has a non-linear Riemannian structure as the pull-back of the
metric structure of the Euclidean ambient space. Hence, non-linear statistical
methods should be used to analyse the latent space data representations.
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Abstract

Statistical analysis of high-dimensional data is usually infeasible
and computationally difficult to conduct. Deep generative models, e.g.,
variational autoencoders and generative adversarial networks, train a
lower dimensional latent representation of the data space primarily used
for generating data samples. However, the low dimensionality of latent
space makes the space optimal for analysing high-dimensional data.
The linear Euclidean geometry of the high-dimensional data space pulls
back to a nonlinear Riemannian geometry on latent space where clas-
sical linear statistical techniques are no longer applicable. The paper
shows how analysis of data in their latent space representation is per-
formed using techniques from the field of nonlinear manifold statis-
tics. Nonlinear manifold statistics provide generalisations of Euclidean
statistical notions including means, principal component analysis, and
maximum likelihood estimation of parametric distributions. Introduc-
tion to estimation procedures on latent space are considered, and the
computational complexity of using geometric algorithms with high-di-
mensional data addressed by training a separate neural network to ap-
proximate the Riemannian metric and cometric tensor capturing the
shape of the learned data manifold.

8.1 Introduction

The Riemannian geometry of latent models, provided by deep generative
models, have recently been explored in [114], [24] and [8]. The mapping
f : Z → X , from latent space Z to the data space X , constitutes an em-
bedding of Z into X under mild assumptions on the network architecture.
The embedding allows the image f(Z) to inherit the Riemannian metric and
hence the geometry from the Euclidean ambient space X . Equivalently, the
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metric structure ofX pulls back via f to a nonlinear Riemannian structure on
Z. The above papers explore aspects of this geometry including numerical
schemes for geodesic integration, parallel transport, Fréchet mean estima-
tion, simulation of Brownian motion, and interpolation. With this paper, we
focus on performing subsequent statistics after learning the latent represen-
tation including the embedding f .

Variational autoencoders learn a latent space Z in which training data fol-
lows a normal distribution. Performing statistical analysis on the data used
for training the latent space Z is hence unnatural. On the contrary, we aim at
learning the latent space representation Z given a training dataset and then
use constructions, tools, and methods from nonlinear statistics [101] to per-
form statistical analysis on newly observed data in the latent representation.

Deep generative models are excellent tools for learning the intrinsic ge-
ometry of a low-dimensional data manifold f(Z), subspace of the data space
X . When the highest modes of data variation can be expressed in a few
intrinsic dimensions, statistical analyses exploiting the lower dimensionality
can be more efficient than conducting analyses directly in the high-dimensio-
nal data space. Performing statistical analysis in lower-dimensional man-
ifolds learned with deep generative models, we simultaneously adapt the
statistics to the intrinsic geometry of the data manifold, exploit the compact
representation, and avoid unnecessary dimensions in the high-dimensional
space X affecting the statistical analysis. As an example, we compare two-
sample test in the full data space with a generalised two-sample test in the
non-linear lantent space. The presented example shows that the test in the la-
tent space results in a more significant test of the two generated populations
than the test in the high-dimensional data space.

Exemplified on three datasets, synthetic data on the sphere S2 for visual-
ization, the MNIST digits dataset, and landmark representation of diatoms,
we show how statistical procedures such as principal component analysis
can be performed on the latent space. We will subsequently define and infer
parameters of geometric distributions allowing the definition and inference
of maximum likelihood estimates via simulation of diffusion processes. Both
VAEs and GANs themselves learn distributions representing the input train-
ing data. The aim is to perform nonlinear statistical analyses for data inde-
pendent of the training data and with a different distribution, but which are
elements of the same low-dimensional manifold of the data space. The la-
tent representation can in this way be learned unsupervised from large num-
bers of unlabeled training samples where subsequently the low-dimensional
space can be used to perform statistical analysis on datasets of a small sam-
ple size. This setting occurs for example in medical imaging where brain
MR scans are abundant while controlled disease progression studies are of
a much smaller sample size. The approach resembles the common task of
using principal component analysis to represent data in the span of fewer
principal eigenvectors, with the critical difference that in the present case a
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nonlinear manifold is learned using deep generative models instead of stan-
dard linear subspace approximation.

The field of nonlinear statistics provide generalizations of statistical con-
structions and tools from linear Euclidean vector spaces to Riemannian man-
ifolds. Such constructs, e.g., the mean value, often have many equivalent def-
initions in Euclidean space. However, nonlinearity and curvature generally
break this equivalence leading to a plethora of different generalizations. For
this reason, we here focus on a subset of selected methods to exemplify the
use of nonlinear statistical tools in the latent space setting: Principal compo-
nent analysis on manifolds with the principal geodesic analysis (PGA, [36]),
inference of maximum likelihood means from intrinsic diffusion processes
[122] and a generalisation of Hotelling two-sample test [16].

The learned manifold defines a Riemannian metric on the latent repre-
sentation. The often high dimensionality of the data manifold makes it com-
putationally costly to evaluate the metric. The computational cost is severely
amplified when calculating higher-order derivatives needed for geometric
concepts such as the curvature tensor and the Christoffel symbols that are
crucial for numerical integration of geodesics and simulation of sample paths
for Brownian motions. We present a new method for handling the com-
putational complexity of evaluating the metric by training a second neural
network to approximate the local metric tensor of the latent space thereby
achieving a massive speed up in the implementation of the geometric and
nonlinear statistical algorithms.

The paper thus presents the following contributions:

1. we couple tools from nonlinear statistics with deep end-to-end differ-
entiable generative models for analyzing data using a pre-trained low-
dimensional latent representation,

2. we show how an additional neural network can be trained to learn the
metric tensor and thereby greatly speed up the computations needed
for the nonlinear statistics algorithms,

3. we develop a method for maximum likelihood estimation of diffusion
processes in the latent geometry and use this to estimate ML means
from Riemannian Brownian motions.

4. we give an example of two-sample test for which the latent space rep-
resentation results in a more significant test than the two-sample test in
the high-dimensional data space.

We show examples of the presented methods on latent geometries learned
from synthetic data in R3, on the MNIST dataset and on data of diatoms. The
statistical computations are implemented in the Theano Geometry package
[70] that using the automatic differentiation features of Theano [127] allows
for easy and concise expression of differential geometry concepts.
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The paper starts with a brief description on latent space geometry based
on the papers [114], [24], and [8]. We then discuss the definition of mean val-
ues in the nonlinear latent geometry, the use of the principal geodesic anal-
ysis (PGA) procedure, and make a description of a generalised two-sample
test on nonlinear spaces. We end the paper with developing a scheme for
maximum likelihood estimation of parameters with Riemannian Brownian
motion using a diffusion bridge sampling scheme before performing experi-
ments on the described datasets.

8.2 Latent Space Geometry

Deep generative models such as generative adversarial networks (GANs,
[42]) and autoencoders/variational autoencoders (VAEs, [13]) learn mappings
from a latent space Z to the data space X . In the VAE case, the decoder map-
ping f : Z → X describes the mean of the data distribution, P (X|z) = N (X |
f(z), σ(z)2I), and is complemented by an encoder h : X → Z. Both Z and
X are Euclidean spaces, with dimension d and n respectively and generally
d� n. When the push forward f∗, and the differential df of f , is of rank d for
any point z, the image f(Z) in X is an embedded differentiable manifold of
dimension d. We denote this manifold by M . Generally, for deep models, f
is nonlinear making M a nonlinear manifold. An example of a trained man-
ifold with a VAE is shown in Figure 8.1. Here we simulate synthetic data on
the sphere S2 by the transition distribution of a Riemannian Brownian mo-
tion starting at the north pole. The learned submanifold approximates S2 on
the northern hemisphere containing the greatest concentration of samples.
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Figure 8.1: (left) Samples from the data distribution (blue) with correspond-
ing predictions from the VAE (red). (right) The trained manifold.
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The learned manifoldM inherits differential and geometric structure from
X . In particular, the standard Euclidean inner product restricts to tangent
spaces TxM for x ∈ M to give a Riemannian metric g on M , i.e. for v, w ∈
TxM , g(v, w) = 〈v, w〉 = vTw. Locally, we invert f to obtain charts on M ,
and get the standard expression gij(z) = 〈∂zif, ∂zjf〉 for the metric tensor in
Z coordinates. Using Jacobian matrix Jf = (∂zif

j)ij , the matrix expression
of g(z) is g(z) = (Jf(z))TJf(z). The metric tensor on Z can be seen as the
pullback f∗g of the Riemannian metric on X .

The geometry of latent spaces was explored in [114]. In addition to set-
ting up the geometric foundation, the paper developed efficient algorithms
for geodesic integration, parallel transport, and Fréchet mean estimation on
the latent space. The algorithms make particular use of the encoder func-
tion h : X → Z trained as part of the VAEs. Instead of explicitly comput-
ing Christoffel symbols for geodesic integration, the presence of h allows
steps of the integration algorithm to be taken in X and then subsequently
mapped back to Z. Execution speed increases significantly when avoiding
computation of Christoffel symbols, a critical improvement for the heavy
computations involved with the typically high dimensions of X . [24] pro-
vides additional views on the latent geometry and interpolation examples on
the MNIST dataset and robotic arm movements. [8] includes the z-variability
of the variance σ(z) of VAEs resulting in the inclusion of the Jacobian of σ in
the expected metric. In addition, the paper explores random walks in the
latent geometry and how to enable meaningful extrapolation of the latent
representation beyond the training data.

8.2.1 Latent Data Representations

Given sampled data y1, . . . , yN in X , the aim is here to perform statistical
analysis on the data after mapping to the low-dimensional latent space Z.
Note that the mapping f can thus be trained unsupervised and afterwards
used to perform statistics on new data in the low-dimensional representa-
tion. Therefore, the data y1, . . . , yN are generally different from the training
data used to train f . In particular, N can be much lower than the size of the
training set.

For VAEs, the mapping of yi to corresponding points in the latter repre-
sentation zi is directly available from the encoder function h, i.e. zi = h(yi).
In more general settings where h is not present, we need to construct zi from
yi. A natural approach is to define zi from the optimization problem

zi = arg min
z∈Z

‖f(z)− yi‖2 . (8.1)

This can be seen as a projection from X to M using the Euclidean distance in
X .
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8.2.2 Geodesics and Brownian Motions

The pullback metric f∗g on Z defines geometric concepts such as geodesics,
exponential and logarithm map, and Riemannian Brownian motions on Z.
Using f , each of these definitions is equivalently expressed on M viewing it
as a submanifold of X with inherited metric. Given z ∈ Z and v ∈ TzZ, the
exponential map Expz : TzZ → Z is defined as the geodesic γvt at time t = 1
with starting point z and initial velocity v, i.e. Expz(v) = γv1 . The logarithm
map Log : Z × Z → TZ is the local inverse of Exp: Given two points z1, z2 ∈
Z, Logz1(z2), returns the tangent vector v ∈ Tz1Z defining the minimizing
geodesic between z1 and z2. The Riemannian metric defines the geodesic
distance expressed from the logarithm map by d(z1, z2) = ‖Logz1(z2)‖g. Us-
ing Z as coordinates for M by local inverses of f , the Riemannian Brownian
motions on Z, and equivalently on M , is defined by the coordinate expres-
sion

dzjt = −1

2
g(z)klΓjkldt+

√
(g(z))−1

j
dBt,j , (8.2)

where Γjkl denotes Christoffel symbols, g−1 the cometric, i.e. the inverse of
the metric tensor g, and Bt a standard Brownian motion in Rd. Notice that
Einstein notation is used for index summation.

8.3 Computational Representation

While metric computation is easily expressed using automatic differentiation
to compute the Jacobian Jf of the embedding map f , the high dimensional-
ity of the data space has a computational cost when evaluating the metric.
The computational cost is particularly emphasised when computing higher-
order differential concepts such as Christoffel symbols, used for geodesic in-
tegration, curvature, and Brownian motion simulation. The reason being the
multiple derivatives and metric inverse computations involved. For integra-
tion of geodesics and Brownian motion, one elegant way to avoid the com-
putation of Christoffel symbols is to take each step of the integration in the
ambient data space of M and map the result back to the latent space using
the encoder mapping h [114]. This procedure requires h to be close to the
inverse of f restricted toM and limits the method to VAEs where h is trained
along with the decoder, f .

We here propose an additional way to allow efficient computations with-
out using the encoder map h. The approach, therefore, works for both GANs
and VAEs. The latent spaceZ is of low dimension, and the only entity needed
for encoding the geometry is the metric g : Z → Sym+(d) which to each z as-
signs a positive symmetric d× d matrix. Sym+(d) has dimension d(d+ 1)/2.
Hence, the high dimensionality of the data space does not appear directly
when defining the geometry, and X is only used for the actual computation
of g(z). We therefore train a second neural network g̃ to act as a function
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approximator for g, i.e. we train g̃ to produce an element of Sym+(d) that
is close to g(z) for each z. Notice that this network does not evaluate a Ja-
cobian matrix when computing g(z), and no derivatives are hence needed
for evaluating the metric. The lack of complexity and due to both input and
output space of the network being of low dimensions, d and d(d + 1)/2 re-
spectively, makes the computational effort of evaluating g̃ and Christoffel
symbols, computed from g̃, orders of magnitude faster than evaluating g di-
rectly. The speedup is especially present when the dimensionality n of X is
high compared to d: Integration of the geodesic equation with 100 timesteps
in the MNIST case presented later takes ≈ 30 s., when computing the metric
from Jf , compared to ≈ 30 ms., when using the second neural network to
predict g.

Inverting g̃(z) is sensitive to the approximation of g provided by g̃. The
cometric tensor g−1 is therefore more sensitive to the approximation when
computed from g̃ than from g itself. This is emphasized when g(z) has small
eigenvalues. As a solution, we let the second neural network predict both
the metric g(z) and cometric g(z)−1. Defining the loss function for training
the network, we balance the norm between predicted matrices g̃ and g̃−1. In
addition, we ensure that the predicted g̃ and g̃−1 are close to being actual
inverses. These observations are expressed in the loss function

lossg,g−1-approximator(gtrue, g
−1
true, gpredicted, g

−1
predicted)

= ‖gtrue − gpredicted‖2/‖gtrue‖2

+ ‖g−1
true − g

−1
predicted‖

2/‖g−1
true‖2

+ ‖g−1
predictedgpredicted − Idd ‖2, (8.3)

using Frobenius matrix norms. We train a neural network with two dense
hidden layers to minimize (8.3), and use this network for the geometry cal-
culations. The network predicts the upper triangular part of each matrix, and
this part is symmetrized to produce gpredicted and g−1

predicted. Note that addi-
tional methods could be employed to ensure the predicted metric being pos-
itive definite, see e.g. [53]. For the presented examples, it is our observations
that the loss (8.3) ensures positive definiteness without further measures.

8.4 Non-Linear Latent Space Statistics

We now discuss aspects of nonlinear statistics applicable to the latent geom-
etry setting. We start by focusing on means, particularly Fréchet and max-
imum likelihood (ML) means, before modeling variation around the mean
with the principal geodesic analysis procedure and ending the section with a
description of a generalised two-sample test.
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8.4.1 Fréchet and ML Means

Fréchet mean [38] of a distribution on M , and its sample equivalent, min-
imise the expected squared Riemannian distance: x̂ = arg minx∈M E[d(x, y)2]

and x̂ = arg minx∈M
1
N

∑N
i=1 d(x, yi)

2. The standard way to estimate a sample
Fréchet mean is to employ an iterative optimisation to minimise the sum of
squared Riemannian distances. The Riemannian gradient of the squared dis-
tance can be expressed using the Riemannian Log map [101] by∇xd(x, y)2 =
2 Logx(y).

The Fréchet mean generalises the Euclidean concept of a mean value as
a distance minimiser. In Euclidean space, this is equivalent to the standard
Euclidean estimator x̂ = 1

N

∑
i yi. From a probabilistic viewpoint, the equiv-

alence between the log-density function of a Euclidean normal distribution
and the squared distance results in x̂ as an ML fit of a normal distribution to
data:

x̂ = arg min
x

log pN ,x(y), (8.4)

with pN ,x(y) ∝ exp(−1
2‖x − y‖

2) being the density of a normal distribution
with mean x. While the normal distribution does not have a canonical equiv-
alent on Riemannian manifolds, an intrinsic generalisation comes from the
transition density of a Riemannian Brownian motion. This density on M
arise as the solution to the heat PDE, ∂

∂tpx,t = 1
2∆gpx,t, using the Laplace-

Beltrami operator ∆g, or, equivalently, from the law of the Brownian motion
started at M . In [122], [95], and [120], this density is used to generalise the
ML definition of the Euclidean mean,

x̂ = arg min
x

log px,T (y). (8.5)

for at fixed T > 0. We will develop approximation schemes for evaluating
the log-density and for solving the optimisation problem (8.5) in Section 8.5.

8.4.2 Principal Component Analysis

Euclidean principal component analysis (PCA) estimates subspaces of the
data space that explain the majority of variation in the data, either by max-
imising variance or minimising residuals. PCA builts around the linear vec-
tor space structure and the Euclidean inner product. Defining procedures
that resemble PCA for manifold-valued data hence become challenging, as
neither inner products between arbitrary vectors nor the concept of linear
subspaces are defined on manifolds.

[36] presented a generalised version of Euclidean PCA denoted principal
geodesic analysis (PGA). PGA estimates nested geodesic submanifolds of M
that capture the most variation of the data projected to each submanifold.
The geodesic subspaces hence take the place of the linear subspaces found
with the Euclidean PCA.
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Let z1, . . . , zN ∈ Z be latent space representations of the data y1, . . . , yN
in M , and let µ be a Fréchet mean of the samples z1, . . . , zN . We assume the
observations are located in a neighbourhood U of µ where Expµ is invertible
and the logarithm map, Logµ, thus well-defined. We search for an orthonor-
mal basis of tangent vectors in TµZ such that for each nested submanifold,
Hk = Expµ(span{v1, . . . , vk}), the variance of the data projected on Hk is
maximised. The projection map used is based on the geodesic distance, d,
and is defined by, πH(z) = arg min

z1∈H
d(z, z1)2.

The tangent vectors v1, . . . , vk in the orthonormal basis of TµZ are found
by optimising the Fréchet variance of the projected data on the submanifold
H , i.e.

vk = arg max
‖v‖=1

n∑
i=1

d(µ, πH(zi))
2, (8.6)

where H = Expµ(span{v1, . . . , vk−1, v}). For a more detailed description of
the PGA procedure, including computational approximations of the projec-
tion map in the tangent space of µ, see [36]. In the experiment section, we
perform PGA on the manifold defined by the latent space of a deep genera-
tive model for the MNIST dataset.

8.4.3 Generalised Two-Sample Test

This section describes another example of the usage of the latent space rep-
resentation to perform statistical analyses on high-dimensional data. More
specifically, we apply a permutation test based on the test statistic from the
generalised Hotelling two-sample test presented in [16].

Given two populations, X = (x1, . . . , xn) and Y = (y1, . . . , ym), in the
latent space Z, we test the null hypothesis H0 : µ1 = µ2 of equal Fréchet
mean against the alternative hypothesis, H1 : µ1 6= µ2. The test relies on
several assumptions including the existence of an element p ∈ M such that
the exponential chart φ−1 = Expp contains both populations, X and Y , i.e.
Y,X ⊂ Expp(V ) for V ⊂ Rd. The test statistic for the generalised Hotelling
two-sample test is given as

Tmn = (n+m)(µ̂1 − µ̂2)T Σ̂−1(µ̂1 − µ̂2) (8.7)

where µ̂i is the Fréchet sample mean for the i’th population and Σ̂ denotes
the pooled sample covariance,

Σ̂ = (m+ n)

(
1

n
Λ̂−1

1 Σ̂1Λ̂−1
1 +

1

m
Λ̂−1

2 Σ̂2Λ̂−1
2

)
. (8.8)
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The pooled covariance matrix is based on

Λ̂1 =
1

n

n∑
i=1

D2
y(‖Log(φ−1xi, φ

−1y)‖2) |y=φµ̂1 and

Σ1 = Cov
(
Dy(‖Log(φ−1xi, φ

−1y)‖2) |y=φµ1

)
such that Σ̂1 denotes the sample covariance of Σ1. Calculations of the deriva-
tives of the geodesic distance can be found in [102], and [121].

Based on the test statistic Tmn the significance of the test is determined
based on a permutation test. The permutation test uses the assumption of
equal means under the null-hypothesis, i.e. if the null-hyppothesis is true
permuting the samples between populations would not change the popula-
tion means. Running several permutations under the null-hypothesis creates
a distribution of the test statistic under the null for which it is possible to
obtain a p-value.

8.5 Maximum Likelihood Inference of Diffusions

As in Euclidean statistics, parameters of distributions on manifolds can be
inferred from data by maximum likelihood or, from a Bayesian viewpoint,
maximum a posteriori. These methods can even be used to define statisti-
cal notions as exemplified by the ML mean in Section 8.4. The probabilistic
viewpoint relies on the existence of parametric families of distributions in
the geometric spaces, and the ability to evaluate likelihoods. One example of
such a distribution is the transition distribution of the Riemannian Brownian
motion, see, e.g. [52]. In this section, we show how likelihoods of data in the
latent space Z under the transition distribution can be evaluated by Monte
Carlo sampling of conditioned diffusion bridges. As previous, assume that a
separate training dataset has been used to train the geometry of Z. We wish
to perform statistical analysis on newly observed data represented by zi. To
determine the transition distribution of a Brownian motion on the data man-
ifold, we apply a conditional diffusion bridge simulation procedure defined
in [32]. The following section makes a description of this procedure. The
sampling scheme has previously been used for geometric spaces in [5], and
[120].

8.5.1 Bridge Simulation and Parameter Inference

Let z1, . . . , zN ∈ Z be N observations in Z. We assume zi are time T observa-
tions from a Brownian motion, zt defined by (8.2), on Z started at x ∈ Z. The
aim is to optimise for the initial point x by maximising the likelihood of the
observed data and thereby find the ML mean (8.5). The mean value of the
data distribution is thus defined as the starting point of the process maximis-
ing the data likelihood, Lθ(z1, . . . , zN ) =

∏N
i=1 pT,θ(zi), where pT,θ(zi) is the
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Figure 8.2: (left) Brownian bridge sample paths on the trained data manifold.
(middle) The estimated ML mean (blue) from the data (black points). (right)
The likelihood values from the MLE procedure.

time T transition density of zt evaluated at zi. The difficulty is to determine
the transition density pT,θ(zi), i.e. the time T density conditional on zT = zi.
In [32] it was shown that this conditional probability can be calculated based
on the notion of a guided process

dz̃jt = −1

2
g(z)klΓjkldt−

z̃jt − z
j
i

T − t
dt+

√
(g(z))−1

j
dBt, (8.9)

which, without conditioning, almost surely hits the observation zi at time
t = T . In fact, the conditional process zt|zT = zi is absolutely continuous with
respect to the guided process with Radon-Nikodym derivative, dPz|zi/dPz̃ =
ϕ(z̃)/Ez̃[ϕ(z̃t)]. Based on the above arguments, an expression of the transi-
tion density is

pT,θ(zi) =

√
|g(zi)|
(2πT )d

e−
‖(x−zi)

T g(x)(x−zi)‖
2

2T Ez̃t [ϕ(z̃t)], (8.10)

see [32], and [120] for more details. We use Monte Carlo sampling of z̃t to ap-
proximate Ez̃t [ϕ(z̃t)] and hence determine pT,θ(zi) by (8.10). The likelihood
can then be iteratively optimised to find the ML mean by computing gradi-
ents with respect to x.

Figure 8.2 shows sample paths of a Brownian bridge on the trained man-
ifold for the synthetic data on S2 in addition to the ML estimated mean (mid-
dle). The likelihood values at each iteration are plotted in the same figure
and illustrates convergence for the MLE procedure.

8.6 Experiments

We give examples of the analyses described above for the MNIST dataset [74]
and a dataset of landmark representations of diatoms [54]. The computations
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are performed with the Theano Geometry package http://bitbucket.
com/stefansommer/theanogeometry/ described in [70]. The package
contains implementations of differential geometry concepts and correspond-
ing statistical algorithms.

8.6.1 MNIST

The MNIST dataset consists of images of handwritten digits from 0 to 9 with
each observation of dimension 28 × 28. A VAE is trained on the full dataset
providing a 2-dimensional latent space representation. The VAE [13] has one
hidden dense layer for both encoder and decoder, each layer containing 256
neurons, and results in a 2d latent space Z.
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Figure 8.3: (left) Scalar curvature of space Z. (middle) Min. eigenvalue of
the Ricci curvature tensor. (right) Parallel transport of a tangent vector in Z.
The transported vectors have constant length measured by the Riemannian
metric.

Figure 8.3 shows the scalar (left) and minimum Ricci curvature (middle)
in a neighbourhood of the origin of Z. Moreover, an example of parallel
transport of a tangent vector along a curve in the latent space is presented
in the same figure (right). Note that the transported vector has a constant
length as measured by the metric g which is not the case for the Euclidean R2

norm.
The top row of Figure 8.4 shows samples of Brownian motions and Brow-

nian bridges in the latent space Z. Each of these Brownian bridges corre-
sponds to a bridge in the data manifold of the MNIST data. Examples of
bridges in the high dimensional space X are shown in the bottom row of
Figure 8.4.

We now perform PGA on the latent space representation of the subset
of the MNIST data consisting of even digits. PGA is a nonlinear coordinate
change of the latent space around the Fréchet mean. PGA is applied to the
data in Figure 8.5(a) where the resulting data represented in the PGA basis
is shown in Figure 8.5(b). The variation along the two principal component

http://bitbucket.com/stefansommer/theanogeometry/
http://bitbucket.com/stefansommer/theanogeometry/
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Figure 8.4: (top left) Samples from a Riemannian Brownian motion in latent
space. (top right) Samples from a Brownian bridge simulated by (8.9). (bot-
tom) Examples of Brownian bridges of MNIST data between two fixed 9s
(left-/rightmost). The variance of the Brownian motion has been increased
to visually emphasize the image variation.

directions are visualised in the full dimensional data space in the bottom row
of Figure 8.5.

Figure 8.6 (bottom left) shows the maximum likelihood mean image for
a subset of 256 even digits estimated by the ML procedure described in Sec-
tion 8.5. Figure 8.6 (bottom right) shows the corresponding Fréchet mean.
The iterations, for both ML and Fréchet mean in latent space, are presented
in Figure 8.6 (upper left), with the upper right plot showing the likelihood
values for each step of the ML optimisation.

8.6.2 Diatoms

As a final experiment we compare two-sample tests for equal mean for two
populations of diatoms in the full data space against a nonlinear two-sample
test in the latent space. The diatom dataset consists of 780 observations each
a landmark representation of a diatom with 45 landmark points. A VAE has
been trained on the diatom data with one hidden layer in both encoder and
decoder. The hidden layer consists of 20 neurons and the dimension of the
latent space is again set to 2. In Figure 8.7 is shown exsamples of data obser-
vations. The goal is to test the hypothesis of equal mean for two populations
of diatoms shown in Figure 8.7. The two populations have been generated
such that the populations overlap, but are not drawn from the same distribu-
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Figure 8.5: (top left) Latent space representation of data. (top right) PGA
analysis on the sub-space of even digits. (bottom) Variation along first (1.
row) and second (2. row) principal components.
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tion. We compare a normal Hotelling test in the full data space with a gen-
eralised Hotelling two-sample test in the latent space using the non-linear
geometry induced by the decoder mapping. The generalised Hotelling test
was presented in Section 8.4.3.
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Figure 8.7: (left) Examples of data observations. (right) The two populations
tested for equal mean. The populations have been generated such that they
overlap but still differ in distribution.

For the diatom example, we investigate whether the test using the dimen-
sionality reduction is better at seperating the two populations compaired to
the two-sample test in the full data space. Performing statistical analysis
of high-dimensional data often leads to difficulties if the sample size is too
small. Similar to the dimensionality reduction based on principal compo-
nent analysis, we use the low-dimensional latent representation to resolve
the curse of dimensionality. On the contrary, when considering the low-
dimensional representation of data, important information might have been
excluded resulting in no difference between the two populations in latent
space. The presented test with the diatom data shows an example where
performing two-sample test in the latent space results in a more significant
test of the null-hypothesis of equal mean than conducting the analysis in the
high-dimensional data space.

Figure 8.8 shows the test statistic for the sample data and a histogram for
the permutation based statistics. We notice that the normal Hotelling two-
sample test in the full data space (left of Figure 8.8) results in a p-value of
approximately 0.042, compaired to the generalised Hotelling test in the latent
space which significantly rejects the hypothesis of equal Fréchet mean for the
two populations with a p-value of approximately 0.0025.
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Figure 8.8: (left) Estimated density plot of the test statistic for the two-sample
test in high-dimensional data space. The data statistic is shown as the red
line. (right) Density plot for the test in latent space with the red line defining
the data statistic.

8.7 Conclusion

Deep generative models define an embedding of a low dimensional latent
space Z to a high dimensional data space X . The embedding can be used to
reduce data dimensionality and move statistical analysis from X to the low-
dimensional latent representation in Z. This method can be seen as a non-
linear equivalent to the dimensionality reduction commonly performed by
PCA. Some versions of generative models project data used for training the
low dimensional structure to a specific distribution on the latent space. Per-
forming statistical analysis on the training data is hence unnatural. We pro-
posed to learn the low dimensional structure of the latent space as a prede-
fined step and subsequently perform statistical analysis on newly observed
data. The nonlinear structure of data can be represented compactly, and the
induced geometry necessitates the use of nonlinear statistical tools. We con-
sidered principal geodesic analysis on the latent space, maximum likelihood
estimation of the mean using simulations of conditioned diffusion processes
and performed a generalised Hotelling two-sample test. The test resulted in
a more significant rejection of the null hypothesis for the test in the latent
space compared to the two-sample test in the high-dimensional data space.
To enable fast computation of the geometric algorithms that involve high-
order derivatives of the metric, we fit a second neural network, to predict the
metric g and its inverse, which vastly speeds up computations. We visualised
examples on 3D synthetic data simulated on S2 and performed analyses on
the MNIST dataset and shape contours of diatoms based on a trained VAE
with a 2D latent space.





CHAPTER 9
Conclusion and Future Work

Throughout the thesis, we presented generalised methods for analysing non-
linear data structures. The focus has been on incorporating estimation of un-
certainty and variation for distributions on manifolds in non-linear statistical
methods. Commonly, distributions on Euclidean spaces are described by a
closed-form expression of a density function with respect to the Lebesgue
measure. An alternative definition is to consider the limit distribution of a
stochastic diffusion process. In this thesis, we introduced variation and un-
certainty to the generalised statistical methods by applying stochastic theory
on non-linear data spaces.

Uncertainty Estimation in Images

In Chapter 4 and 5 ([68, 69]), we considered the task of modelling uncertainty
in deformation of images. Two different approaches were developed, one for
which deformations were modelled by spatial displacements of a discrete
lattice and the other applying the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) framework, where deformations are defined as diffeo-
morphisms.

Paper [68] (Chapter 4) proposed a mixed-effects model for separating un-
certainty into a warp effect and a spatial intensity effect. Deformations of
a template image were modelled as random displacement fields discretised
on a regular lattice. The fixed template and the parameters for the random
variation effects were simultaneuosly estimated by maximum likelihood op-
timisation. We presented an efficient likelihood method based on spatial cor-
related intensity effects modelled as Gaussian Markov random fields. An
approximation of the model likelihood was determined via linearisation of
the deformation model. The applied linearisation is an effective method for
determining a likelihood approximation, but how much information it costs
is uncertain. For future work, we wish to explore the effect of the linearisa-
tion and apply new methods for determining the likelihood of the non-linear
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model. An alternative option for obtaining the likelihood function is to use
Brownian bridges as described in [32, 120]. Simulating Brownian motions
conditioned on hitting, in this case, an observation yi can approximate the
density function of the data distribution at exactly the observed data points.
The obtained density values will, hence, jointly provide an approximation of
the likelihood function [120]. Investigating the application of this method to
the presented deformation model is left for future work.

The work presented in [69] (Chapter 5) regarded stochastic deformation
of images in the LDDMM framework. We proposed to combine the stochastic
LDDMM framework introduced in [5] with the fast LDDMM solver [140] to
create a computationally efficient method for modelling uncertainty in med-
ical images. The noise was described by parametric fields located on the im-
age domain. Optimisation of the noise field parameters was based on match-
ing the moments of the stochastic image deformations with the observed data
moments.

To estimate the moments for the transition distribution of the deformed
images, we considered a coarse assumption of any higher-order moment of
a stochastic process being the product of the first order moments. The sever-
ity of the approximation is unsure, but it will most definitely affect the op-
timisation results. Future investigation should focus on examining the lost
information and find alternative methods for determining the moments of
the deformed images. Another interesting goal is to model uncertainty in the
Fourier domain. By considering Fourier representation of noise, we remove
the spatial location of noise fields and can, therefore, define more global vari-
ation in data populations.

Regression on Manifolds

In Chapter 2 and 3 ([66, 67]) the stochastic development regression was pre-
sented, generalising the notion of regression in the case of a manifold-valued
response variable. The relation between Euclidean covariates and the ma-
nifold-valued response was modelled by stochastic development of a semi-
martingale dependend on the involved covariate variables. The regression
model was able to include multiple covariates, model non-geodesic relations,
and introduce uncertainty in the relation between variables. Two different
optimisation procedures for parameter inference were considered. The first
approach approximated the likelihood function by a Laplace approximation.
This method was found computationally infeasible as it required calcula-
tion of a high-dimensional Hessian matrix. The second approach used the
method of moments for the extrinsic additive noise as the moments of this
random variable was known. This procedure was computationally faster but
resulted in a stochastic objective function. Due to the stochastic objective
function, multiple predictions had to be calculated to obtain a stable optimi-
sation procedure.
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After working with the stochastic development model in [69], we would
like to investigate the opportunity for performing parameter inference by
matching data moments to the limiting moments of the stochastic develop-
ment of the Euclidean semi-martingale. Based on the Fokker-Planck equa-
tions, we can obtain an ordinary differential equation for the evolution of the
moments for the stochastic development and use the solution to match with
the observed data moments. The procedure would result in a more stable
and computationally efficient optimisation procedure as predictions are not
required. It would, moreover, be natural to incorporate uncertainty directly
in the semi-martingale and thereby introduce intrinsically defined noise on
the manifold.

As a final note, it would be interesting to use the model for analysing
longitudinal data. By modelling the relation as transportation of a semi-
martingale, we naturally introduce a time parameter in the model. This time
parameter could be used to model the time evolution of patients following
a treatment program or to model the evolution of an anatomical object over
time as was discussed in Chapter 5.

Applying stochastic theory to describe uncertainty in data populations is
just one approach for considering distributions on manifolds. For Euclidean
distributions, it is not the most common application as we usually obtain
a closed form expression of the probability density function, or at least an
approximation of it. However, as probability density functions are hard to
define for distributions on manifolds, we may need to take into account al-
ternative methods for describing variation in data populations.

Automatic Differentiation and Non-linear statistics

In Chapter 6 and 7 ([63, 65]) we proposed to implement concepts from differ-
ential geometry and non-linear statistics in numerical frameworks primar-
ily developed for Deep Learning tasks. Using the symbolic and automatic
calculations available in these numerical frameworks, such as automatic dif-
ferentiation and symbolic loop functions, we were able to perform concise
implementations of the mathematical theory. The task of implementing theo-
retical concepts came down to a direct translation of mathematical equations
making implementations less error-prone.

Many of the deep learning numerical frameworks can run on GPUs and
make parallel computing for optimisation of the computation time of the con-
sidered task. However, like all software packages, the deep learning numeri-
cal frameworks have their limitations. When considering simple tasks, where
for example expressions for derivatives are easily obtained, making explicit
implementation of the expression can be faster than using automatic differen-
tiation. For complex constructions, which rely on multiple order derivatives
or nested symbolic loops, the compilation time for the symbolic functions can
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be extensive and memory consuming. However, by choosing the right setup
for the numerical software, these restrictions can be considerably limited.

Applying the Deep learning numerical frameworks can be a fast way to
verify new ideas and methods without spending unnecessary time on the
derivation of equations and gradients for ideas that may not provide the de-
sired outcome.

The software library is based on the Deep Learning framework Theano,
a package of Python. As the development of Theano has stopped, a natural
next step is to adapt the developed software library in another symbolic deep
learning framework, e.g. PyTorch or Tensorflow.

In the paper [64] (Chapter 8), we proposed to use the lower dimensional
non-linear latent space representation trained by a Variational Autoencoder
(VAE) to perform subsequent analysis on newly observed data. As the latent
space is shown to inherit a non-linear geometry from the VAE embedding,
non-linear statistical methods have to be used for analysing data in the latent
space representation. We performed Principal Geodesic analysis in latent
space, maximum likelihood estimation of the mean of the data sample, and
a Hotelling two-sample test for the difference in two populations. The two
sample test was shown to provide a more significant test for data in the latent
space representation, compared to the two sample test in the full dimensional
data space. We only performed one example of the Hotelling two-sample test
of significance between populations. However, it could be interesting to in-
vestigate whether the projection of the high-dimensional data to the latent
space representation of a pre-trained VAE, in general, keep sufficient infor-
mation of the data distributions to result in more significant tests in the latent
space compared to the high-dimensional data space.
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reduction. Journal of Mathematical Physics, 55(8):081507, 2014.

[8] G. Arvanitidis, L. K. Hansen, and S. Hauberg. Latent Space Odd-
ity: on the Curvature of Deep Generative Models. ICLR 2018,
arXiv:1710.11379, October 2017.

[9] A. Aswani, P. Bickel, and C. Tomlin. Regression on manifolds: Esti-
mation of the exterior derivative. The Annals of Statistics, 39(1):48–81,
February 2011. arXiv: 1103.1457.

159



160 Bibliography

[10] M. Banerjee, R. Chakraborty, E. Ofori, M. S. Okun, D. E. Vaillancourt,
and B. C. Vemuri. A Nonlinear Regression Technique for Manifold
Valued Data with Applications to Medical Image Analysis. In 2016
IEEE Conference on CVPR, pages 4424–4432, June 2016.

[11] M. Banerjee, R. Chakraborty, E. Ofori, D. Vaillancourt, and B. C. Ve-
muri. Nonlinear regression on Riemannian manifolds and its applica-
tions to Neuro-image analysis. MICCAI, 9349:719–727, October 2015.

[12] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing Large De-
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