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A B S T R A C T

Content analysis is a research technique that is concerned with the
discovery of trends, patterns and differences in artifacts of human
communication. It requires the reading and coding of data according
to annotation guidelines, which is a labor-intensive process. In the
times of mass communication, huge amounts of content are produced
everyday. Analysing this content with respect to the social phenomena
they capture is of interest to researchers in many fields. However,
manual coding is impractical for such large amounts of data and
automating the coding step could speed up the process significantly.
Supervised machine learning is a promising approach in this direction,
as such models can be applied to learn from human annotations and
generalize to unseen data, making the coding of large amounts of
content more feasible.

However, labeled data sets are expensive to generate. On the one
hand, this leads to small training dataset sizes. On the other hand, it
makes it valuable if a model can generalize across datasets from differ-
ent domains and languages. Transfer learning is a machine learning
method that enables such knowledge transfer between data from dif-
ferent distributions, leveraging as much data as possible and keeping
the additional annotation efforts low.

This thesis investigates the use of transfer learning for automated
content coding. In the first part of the work, we directly apply transfer
learning to content coding tasks. We investigate how the methods can
improve the task and show that transfer learning can overcome the
problem of little training data by leveraging additional resources.

The second part of the work focuses on methods that enable knowl-
edge transfer between languages. Such methods rely on word rep-
resentations that capture meanings across languages. Unsupervised
methods for learning such representations are attractive but unstable
and we investigate the causes of these instabilities.
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A B S T R A C T I N D A N I S H – R E S U M É PÅ D A N S K

Indholdsanalyse er en forskningsteknik, der beskæftiger sig med op-
dagelsen af tendenser, mønstre og forskelle i artefakter af menneskelig
kommunikation. Det kræver læsning og kodning af data i henhold
til retningslinjer for at markere data, som er en arbejdskrævende pro-
ces. I tiderne med massekommunikation produceres store mængder
indhold hver dag. Analyse af dette indhold med hensyn til de sociale
fænomener, de fanger, er af interesse for forskere på mange områder.
Imidlertid er manuel kodning upraktisk for så store datamængder,
og at automatisering af kodningstrinnet kan fremskynde processen
markant. Overvåget maskinlæring er en lovende tilgang i denne ret-
ning, da sådanne modeller kan anvendes til at lære af menneskelige
kommentarer og generalisere til usete data, hvilket gør kodningen af
store mængder indhold mere gennemførlig.

Mærkede datasæt er imidlertid dyre at generere. På den ene side
fører dette til små træningsdatastørrelser. På den anden side gør det
det værdifuldt, hvis en model kan generalisere på tværs af datasæt
fra forskellige domæner og sprog. Overførselslæring er en maskin-
læringsmetode, der muliggør en sådan videnoverførsel mellem data
fra forskellige distributioner, udnytter så mange data som muligt og
holder de ekstra kommentarer indsats lave.

Denne afhandling undersøger brugen af overførselslæring til au-
tomatisk indholdskodning. I den første del af arbejdet anvender vi
direkte overførselslæring til indholdskodningsopgaver. Vi undersø-
ger, hvordan metoderne kan forbedre opgaven og viser, at overfør-
selslæring kan løse problemet med lidt træningsdata ved at udnytte
yderligere ressourcer.

Den anden del af arbejdet fokuserer på metoder, der muliggør
videnoverførsel mellem sprog. Sådanne metoder er afhængige af or-
drepræsentationer, der fanger betydninger på tværs af sprog. Ikke-
overvågede metoder til at lære sådanne repræsentationer er attraktive,
men ustabile, og vi undersøger årsagerne til disse ustabiliteter.
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Part I

B A C K G R O U N D





1
I N T R O D U C T I O N

Communication is a key factor of human society, and hence the study
of communication is a valuable tool to understand society (Lasswell,
1948). Content analysis is a methodology that is concerned with the
discovery of trends, patterns and differences in artifacts of human
communication, in order to infer or predict social phenomena. Com-
munication artifacts can take various forms such as texts, speeches,
images, television programs and melodies. A common aspect of all
of these forms is that they were produced by someone (an author) in
order to be consumed by someone (a reader). Hence, studying these
artifacts allows researchers to make inferences about the contexts of
their use. Content analysis is not only about understanding content,
but also about using it to make inferences that can answer questions
about society (Krippendorff, 2018).

For example, Budak and Watts, (2015) study if social movements
actively shape the opinions and attitudes of their participants. In
order to do so, they analyze tweets that were authored during the
2015 Gezi protests in Turkey, a series of protests that were started
by environmentalists and turned into general protests against the
government. From analysing the numbers of tweets that are supportive
of Turkish opposition parties before, during and after the protests,
they infer that solidarity among groups arises mainly from the fact
that participants in the protests were generally more supportive of
other groups beforehand, and less from the fact that different groups
interact with each other during the protests.

Content analysis is usually applied to study phenomena that are
not directly observable or accessible at the time the analysis is made.
For example, in the Second World War, British researchers were able
to predict major political and military campaigns by conducting con-
tent analysis of enemy propaganda (Guetzkow, 1959). In contrast to
other research techniques used primarily in the social sciences, such
as survey research, interviews, or social experiments, content analysis
is non-invasive and non-reactive, i.e. humans producing or consuming
the communication artifacts (authors or readers) are not influenced
by the fact that their communication is subject to analysis (Salganik,
2019, Chapter 2.3.3). As communication is important to society, con-
tent analysis is a popular research technique in many fields of the
social sciences to study phenomena of interest to these fields, such
as mass communication research (Wimmer and Dominick, 2013), po-
litical science (Grimmer and Stewart, 2013), international relations
research (Pashakhanlou, 2017), health research (Hsieh and Shannon,
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4 introduction

2005), disaster research (Imran et al., 2013), psychology (Gondim and
Bendassolli, 2014), and literary studies (Hoover, 2008).

The usual approach to content analysis involves several components,
starting with the sampling of data and the breaking down of the data
into units. These units are then subject to content coding or content
annotation1, i.e. they are assigned pre-defined categories or codes. The
coding happens according to guidelines that the researcher developed
beforehand, which are intended to make the coding process replica-
ble. Finally, the researcher extrapolates from relations between these
codes to phenomena that are not manifest in the data (Krippendorff,
2018, p.84). For example, for the above mentioned study on social
movements, the researchers sampled Twitter data and annotated this
data on the tweet level according to the authors’ supportiveness of
political parties and their participation in the movement. Then, they
compare the distribution of these annotations for participants and
non-participants before, during and after the protest, and make an in-
ference about the influence of social movements on their participants.

1.0.1 content analysis in the digital age

Traditionally, the coding of content is carried out manually by domain
experts, who read through considerable amounts of data and manually
assign codes according to the coding guidelines. The coding of the
content is the most time-consuming component of the analysis process
(Wimmer and Dominick, 2013, p.171). This hurdle has become a major
concern in the digital age of almost unlimited amounts of content
being produced on a daily basis, and one of the main challenges of
contemporary content analysis is the processing of such huge amounts
of data (Krippendorff, 2018, p.5). Data of this size and variety have
great potential to answer many questions about society, that could not
be answered by looking at fewer data points (Salganik, 2019). However,
content analysis for such large datasets and data from many different
sources is infeasible if manually coded.

These considerations and the growing amount of content available
in digital form led to a rise in adopting automated methods for content
analysis. Early versions of so-called computer-aided content analysis
involve dictionary-based coding systems (e.g. the General Inquirer
(Stone, Dunphy, and Smith, 1966)), that automatically code content
based on a word list specified by the researcher. Dictionary-based
methods, however, come with drawbacks. Often, the categories to
be coded are more nuanced and complex than what can be inferred
based on the presence of single words or phrases, or the concepts
these categories reflect are only implicit in the text. In these cases,
such concepts can only be identified through complex combinations
of sets of terms that are present in the text. Similarly, studies showed

1 We use the terms coding, annotating and labeling as synonyms throughout this thesis.
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that the widely used method of using hashtags for content coding
on Twitter is reliable for general topics, but fails to capture finer
nuances such as the stance towards the topic (Budak and Watts, 2015).
Hence, computational methods that go beyond the identification of
pre-defined keywords are needed.

The computational extraction of complex patterns from data fall
in the area of pattern recognition, and can be handled by Machine
Learning (ML) methods. The ML methods applied for the compu-
tational analysis of text come from the field of Natural Language
Processing (NLP). The application of NLP methods for content coding
is attractive because it can easily be scaled to large amounts of data.
Also, the content analysis process does not have to be changed to
accomodate for the integration of the automated coding method, as
NLP methods aim to identify codes at the same complexity level as the
human coders (Scharkow, 2013; Wiedemann, 2016).

1.0.2 natural language processing for content coding

In the NLP community, methods for extracting useful information
from text have been studied under the umbrella term of text mining
(Hearst, 1999), and comprise a wide range of applications, such as text
categorization (Sebastiani, 2002), event detection (Yang, Pierce, and
Carbonell, 1998), hate speech detection (Schmidt and Wiegand, 2017),
stance detection (Hanselowski et al., 2018), sentiment analysis (Pang,
Lee, et al., 2008), and more. Here, dictionary-based approaches have
been replaced by (supervised) ML methods, which have shown to be
superior in capturing the semantics of text content for applications
such as sentiment analysis (Bakliwal et al., 2013). Supervised methods
for NLP rely on labeled training data on which model parameters
are estimated, in order to then make inferences on unseen data. NLP

classifiers for content coding as a component of content analysis have
to be trained on hand-coded examples. Scharkow, (2013) notes that
this is similar to the process of training a human coder, which is also
trained how to code by looking at example documents.

Unfortunately, high quality hand-annotated data sets are expensive
to generate, and especially so for content that is of interest for the social
sciences and reflects complex phenomena that cannot be handled by
dictionary-based approaches. This leads, on the one hand, to small
annotated datasets for model training, which poses a challenge for the
application of supervised ML models. On the other hand, the high cost
of annotating data makes it more valuable to have models that can
code new data sets without the need to manually label large amounts
of new data. Hence, the goal for NLP models for content coding should
be to learn as much as possible from the available datasets, and be able to
apply this knowledge to new datasets.
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For example, the Euromanifesto Study2 (Braun et al., 2007) aims to
collect and code manifestos issued to the elections for the European
Parliament in all member countries of the European Union. Hence,
data in new languages has to be coded as the number of member states
increases. The same applies for the manifesto database3 (Merz, Regel,
and Lewandowski, 2016) that codes frames in political manifestos
of democratic countries. Another example is the emergence of new
forms of communication, such as social media, compared to traditional
and long-studied newspaper media. For example, there is a are large
dataset of newspaper articles coded with generic media frames that
are applicable across platforms (Card et al., 2015), but only a much
smaller dataset of tweets coded according to the same guidelines
(Johnson, Jin, and Goldwasser, 2017). Except for our efforts in coding
data from online discussion fora (Hartmann et al., 2019), there are no
other datasets yet that extend this generic coding project to any other
of the various digital media platforms. It would be incredibly valuable
to be able to automatically code such new data in the same way the
existing data was coded.

1.0.3 learning from available data

NLP classifiers seem suited for reducing the manual effort in content
coding, but the classifiers should be able to deal with small amounts
of training data. These small dataset sizes result from the high cost of
manual coding of content. For the same reason, the classifiers should
be able to transfer their knowledge about relations between content
and codes from one dataset to another. In the context of content
analysis, these new datasets could for example comprise text data in a
different language or artifacts from different communication channels,
such as news articles compared to blog posts. In ML, such transfer can
be accomplished using transfer learning (Pan and Yang, 2009).

The goal of transfer learning is to apply what a model has learned
on one dataset to process a new dataset. For NLP classifiers applied
to content analysis, this means that a model can learn how to assign
codes to content from one dataset, and then transfer this knowledge
to assign codes to a new dataset, according to the same paradigm that
was used to code the old dataset. Transfer learning methods that have
been explored for NLP and successfully been applied for text mining
tasks include cross-lingual learning (learn from data in one language,
apply it to data in another language) and multi-task learning (learn to
solve several tasks simultaneously) and domain adaptation (learn from
data in one domain, apply it to data in another domain) (Pan and
Yang, 2009).

2 http://europeanelectionstudies.net/ees-study-components/

euromanifesto-study

3 https://manifesto-project.wzb.eu/

http://europeanelectionstudies.net/ees-study-components/euromanifesto-study
http://europeanelectionstudies.net/ees-study-components/euromanifesto-study
https://manifesto-project.wzb.eu/
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From an ML perspective, transfer learning models help to overcome
the lack of training data, and can improve model performance by
exploiting information from complementary data (Pan and Yang, 2009).
From an application-based perspective, transfer learning is interesting,
because it allows the application of already existing models to new
datasets with different text forms, e.g. texts from different platforms,
or text in different languages, or even communication artifacts of
different types such as images and text, without the need of manually
annotating large portions of the new datasets.

Being able to apply the same model to text in different languages
or from different platforms makes it possible to extract and combine
information from multiple data sources, which is particularly interest-
ing for content analysis across languages, or across communication
channels. For example, Hanna, (2013) note that political activists from
Bahrain tweet political messages in English rather than Arabic to
avoid detection by state agents. Hence, analysing tweets in only one
language paints an incomplete picture of the protests. On a similar
note, Stewart, Pinter, and Eisenstein, (2018) found that people talk
about independence in Catalan rather than Spanish. Almeida and
Lichbach, (2003) note that media coverage is biased across platforms
and that analysing content from as many data sources as possible
should improve content analysis.

Hence, transfer learning seems a promising approach for enhanc-
ing computational content analysis. The present dissertation aims to
explore this idea. Our central research question is:

Can transfer learning be useful for the automatic coding of content?

We approach the answer to this questions from two directions.
First, we apply transfer learning for automatic coding of content
and examine the use of such methods for the content coding task.
Second, we focus on ways to improve transfer learning, in particular
cross-lingual learning, and investigate how representations used for
cross-lingual learning can be improved. Hence, the second research
question for this thesis is:

How can we improve word representations that capture semantics across
languages?
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1.0.4 contributions of the thesis

This thesis presents research into methods that enable automatic cod-
ing for text data from different domains or languages. The contribu-
tions that are presented in the following chapters are summarized
below.

• We show to what extent NLP classifiers can be applied to label
tweets for content analysis, finding that classifiers are most useful
when applied as a pre-filter for human annotators (Chapter 3 in
Part ii)

• We show that multi-task learning is beneficial for content coding
in settings with no training data (Chapter 4 in Part ii)

• We introduce a new issue frame annotated corpus of online
discussions (Chapter 4 in Part ii)

• We show that the induction of bilingual dictionaries from image
data does not generalize to other parts of speech than nouns and
identify reasons for this (Chapter 5 in Part iii)

• We show that training instabilities in a GAN-based architecture
for aligning embeddings are likely caused by discriminator sad-
dle points (Chapter 6 and 7 in Part iii)

• We provide a fair comparison between methods that align cross-
lingual embeddings in an unsupervised setup (Chapter 7 in Part
iii)

1.0.5 thesis overview

The thesis is divided in four parts. The remaining Chapter 2 in the
first part of this thesis provides background on computational content
analysis and transfer learning.

Part ii of the thesis focuses on the application of automated meth-
ods for content coding. In particular, we evaluate the use of transfer
learning for overcoming the lack of training data by learning from
additional data. In Chapter 3, we examine to what extent text clas-
sifiers can be used for content coding in the context of studying
(dis)information flow on Twitter. We experiment with cross-lingual
transfer based on aligned word embeddings and distant supervision,
but find that performance does not improve, most likely because the
additional data is noisy. Even though a neural classifier outperforms a
hashtag-based baseline, the classifier does not generalize well beyond
the training data. However, we find that the classifier can speed up the
manual annotation process by pre-filtering data. In Chapter 4, we focus
on knowledge transfer between domains, in particular news articles,
tweets, and posts from online discussion fora. While frame-labeled
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datasets exist for news articles and tweets, there is no training data
available for online discussion fora. To alleviate this lack of training
data, multi-task learning and domain adaptation are applied to learn
from the datasets of news articles and tweets. We introduce a new
data set of manually frame-labeled online discussions, which we use
for evaluation.

Part iii of the thesis focuses on unsupervised methods that enable
knowledge transfer between data in different languages, in particular
the unsupervised induction of bilingual dictionaries, and the unsu-
pervised alignment of cross-lingual word embeddings. In Chapter
5, we re-evaluate an approach for unsupervised bilingual dictionary
induction on a larger dataset, that extends previous evaluations from
nouns to verbs and adjectives. The approach uses image data associ-
ated with words as contexts for identifying word-level translations.
The experiments reveal that the approach is promising for translating
nouns, but does not generalize well to verbs and adjectives, most likely
because those parts of speech refer to more abstract concepts.

Chapters 6 and 7 focus on methods for unsupervised alignment of
word embeddings across languages. In Chapter 6, we analyse training
instabilities of the MUSE system (Conneau et al., 2018), that performs
unsupervised embedding alignment based on a generative adversarial
network. We show that the system is unable to align two isomorphic
graphs of English word embeddings learned with different embedding
algorithms. We find that the system cannot navigate the highly non-
convex loss landscape resulting from the different inductive biases of
the embedding algorithms. The instabilities of the MUSE system are
further investigated in Chapter 7, where we find indications that the
training instability arises from saddle points in which the model gets
stuck, and which cannot easily be overcome by varying hyperparam-
eters such as batch size and learning rate. In the same Chapter, we
present a fair comparison between several systems for unsupervised
word embedding alignment, finding that the system suffers from in-
stabilities, but has the highest potential to induce good initial seed
dictionaries for subsequent iterative refinement.

Finally, Part iv summarizes and discusses the contributions made in
the thesis.





2
B A C K G R O U N D

The work presented in this thesis joins two methods that come from
two different disciplines: content analysis, a method from the social
sciences, and transfer learning, a method that comes from statistical
learning. Hence, this background chapter has two parts. In the first
part, we will provide background on automated content analysis
and related work, including examples of content analyses that could
profit from transfer learning. In the second part, we will give some
background on transfer learning, with a focus on cross-lingual learning
and a brief review of related work that successfully applies transfer
learning for text mining tasks.

2.1 automated methods for content analysis

A content analysis using automated methods follows the same work-
flow and is subject to the same requirements as traditional content
analysis. This is visualized in Figure 2.1, which shows the workflow
of a computational qualitative data analysis as seen by Wiedemann,
(2016). We add the components of traditional content analysis as seen
by Krippendorff on the left side of the Figure. The Figure shows that
any of the components can be solved using automated methods, and
each step can be evaluated using the metrics listed on the right. In
the first step, relevant documents are selected. This step can be auto-
mated using information retrieval techniques (Manning, Raghavan,
and Schütze, 2010). If a codebook needs to be defined, the data needs
to be explored first. Unsupervised methods such as topic models (Blei
and Lafferty, 2009) can be used to automate the exploration step.1

Then, content is manually annotated according to the instructions in
the codebook. If automated content coding is applied, the manual
annotations serve to evaluate the quality of the automated annotations,
or if supervised machine learning techniques are used for automated
coding, also for model training. Finally, the annotated data is analysed.
Automation can be integrated at various steps of the workflow.

In our work, we focus on the automation of the content coding
step. Hence, the scope of our overview is limited to works that use
automated methods for content coding.

1 If the data is annotated according to a pre-defined codebook, this step can be skipped

11



12 background

1. Document selection

2. Corpus exploration

3. Manual annotation

4. Automated content 
coding

5. Final analysis

Retrieval precision

Topic coherence/ reliability
Cluster quality

Intercoder reliability

Precision/recall

Figure 2.1: Workflow of computational qualitative data analysis as proposed
by Wiedemann, (2016)(see p.227). We modify step 4 from Active
learning to Automated content coding to reflect that any automated
content coding method can be applied there.

2.1.1 automated content coding using dictionaries

In dictionary-based systems, researchers specify lists of words or sym-
bols that they associate with categories of interest. The system then
assigns these categories to content automatically according to the
presence of dictionary entries in the text (Krippendorff, 2018; Wiede-
mann, 2016, Chapter 11.3, Chapter 2.3.1). The first dictionary-based
systems were motivated by the idea that computers are more reliable
in coding than humans, because they are more precise in identify-
ing occurrences of words in text (Stone, Dunphy, and Smith, 1966).
Dictionary-based coding with individual dictionaries was applied in
a wide-range of studies, for example for coding sentiment in English
political texts (Tumasjan et al., 2010; Young and Soroka, 2012) and
the coding of events in English news paper articles for international
relations research (King and Lowe, 2003; Schrodt, Davis, and Weddle,
1994).

limitations Dictionary-based methods are only suited if the rele-
vant content categories are manifest in the text, as they cannot capture
more complex semantics arising from combinations of parts of the
content. (Wiedemann, 2016, p.41). In most cases it is infeasible to gen-
erate exhaustive dictionaries that cover all potentially relevant words
or expressions (Nelson et al., 2018, p.6).
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Reducing the semantics of a text to the semantics of words without
context is problematic. For example, Back, Küfner, and Egloff, (2010)
draw incorrect inferences in their study about the emotional conse-
quences of the September 11 terrorist acts in the US. The mistake is
partly arising from the fact that their dictionary-based coding approach
annotates an error message produced by a bot as anger, because it con-
tains the keyword critical (see also Salganik, (2019, Chapter 2.3.9), Back,
Küfner, and Egloff, (2011)). Another limitation of dictionary-based
methods is that dictionaries are rarely generalized across projects. Dic-
tionaries are expensive to generate, and in many cases project specific,
i.e. they cannot be re-used across projects. Scharkow, 2012, p.79 found,
that even more general dictionaries are not used in other works than
the ones that introduced them.

2.1.2 automated content coding based on meta data

Coding based on meta data is similar to dictionary-based coding,
where content is categorized based on the presence of meta data in the
text, or by meta data that is associated with the content (for example
when news articles are categorized according to the news outlet that
produced them). One of the most popular instances of this approach
is the coding of content from the micro blogging service Twitter 2

based on hashtags, a text meta tag inserted by the author. Hashtags
were use in order to identify stance of the tweet author towards ISIS
in a study on the causes of people supporting the group (Magdy,
Darwish, and Weber, 2016), and author stance towards the Catalan
independence referendum in Catalan and Spanish tweets (Stewart,
Pinter, and Eisenstein, 2018). Conover et al., (2013) use hashtags to
identify communication activities related to the Occupy Wall Street
movement, an anti-capitalist protest movement in the US. González-
Bailón, Borge-Holthoefer, and Moreno, (2013) use hashtags to examine
how protest information in the Spanish outraged movement spreads
on Twitter. Varol et al., (2014) study topical discussions about the Gezi
movement in Turkey using lists of manually curated hashtags that are
extended via bootstrapping.

limitations Several studies suggest that care has to be taken
when using hashtags for categorizing content. Budak and Watts, (2015)
study the changes in attitude of participants of the Turkish Gezi
movement using hashtags, and find that hashtags can only be used as
proxy for support of the movement, if used by the opposition party.
The majority of tweets that are authored by other parties and contain
the target hashtag are hostile (Budak and Watts, 2015, p. 380). This
shows that hashtags are not suited to identify fine-grained semantics
of tweets. Another concern is that hashtag-based coding can only be

2 https://twitter.com/
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applied to tweets that contain a hashtag, and excludes content without
this feature from the study (Hanna, 2013, p.369) Finally, hashtag-based
coding prevents a study from being extended across platforms that
do not share this feature (Rogers, 2017, p.13).

2.1.3 content coding using topic models

Topic models are a popular family of unsupervised machine learning
models among social scientists (Meeks and Weingart, 2012). The idea
behind topic models is to model the generative process of a document
collection assuming there is a fixed set of latent topics, i.e. distributions
over words, that underlie the document generation (Blei and Lafferty,
2009). After approximating posterior distributions, each document
in the collection can be described by a combination of topics that
contributed to its generation. For automated content coding, a common
practice is to label each data unit with the topic that is most prominent
in the text (Nelson et al., 2018). Due to their unsupervised nature,
topic models can also be applied for corpus exploration (Step 2 in
Figure 2.1) prior to defining categories of interest.

Zhang, (2016) use topic models to track differences in topics of
discussions before and after the umbrella protests in Hong Kong.
Comparing the topic distributions over time between people that
witnessed the protests and people that did not, they infer that physical
witnesses are strongly impacted by the protests. Grimmer, (2010) use
topic models to analyze press releases from US congress members
with respect to how political actors portray themselves. Paul and
Dredze, (2011) examine the use of Twitter for public health research
using topic models. They correlate detected topics with public health
metrics and find that Twitter contains much health related information
that can be minded using topic models. Shen and Rose, (2019) use
topic models to examine how Reddit users with different view points
discuss a quarantine policy introduced by the platform. They find that
right-leaning users frame the issue in terms of political censorship,
while left-leaning users focus on issues surrounding the consistency
in how the moderation is applied.

Topic models have also been applied in cross-lingual content analy-
sis. Mimno et al., (2009) use multilingual topic modeling to track the
development of topics across languages in proceedings of the Euro-
pean parliament. In a cross-national study, Sakamoto and Takikawa,
(2017) compare the polarization in American and Japanese legislative
speech.

limitations Topic models have been criticized for instabilities
arising from the randomness in approximating posterior distributions,
i.e. they can produce different word to topic assignments for the same
data, if ran with different random initializations (Koltcov, Koltsova,
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and Nikolenko, 2014). The evaluation of topic models for content
coding is difficult, as there are no guarantees that the model finds
topics that coincide with categories assigned by humans (see e.g.
Nelson et al., 2018, p.22–24).

2.1.4 content coding using supervised machine learning

The most commonly used supervised machine learning models ap-
plied for automatic content labeling are Support Vector Machine (SVM)
(Boser, Guyon, and Vapnik, 1992; Cortes and Vapnik, 1995),Maximum
Entropy (MaxEnt) classifiers, and Naive Bayes classifiers.

Nelson et al., (2018) benchmark three computer assisted approaches
for content coding of news articles for the concept of economic in-
equality. They compare supervised ML methods (SVM and MaxEnt), a
dictionary-based method and unsupervised ML methods (topic mod-
els and k-means clustering) based on their ability to reproduce the
manually assigned codes. The supervised learning methods perform
best, while the dictionary-based methods succeed in detecting explicit
mentions of inequality and fail to identify latent mentions. The un-
supervised methods fail to produce clusters that coincide with the
manually assigned codes for most hyperparameters.

Hillard, Purpura, and Wilkerson, (2008) compare the performance
of an SVM, a Naive Bayes classifier, and a Maximum Entropy classifier
for the classification of congressional bills into up to 20 main topic
and 226 sub-topic categories. They suggest to integrate only the high
confidence classifier predictions into the content analysis, which are
indicated by all three classifiers predicting the same category (see also
Purpura and Hillard, (2006)).

Merz, Regel, and Lewandowski, (2016) use SVMs to code electoral
manifestos on sentence level with one of 56 codes indicating the
political framing. They report 42% precision, but point out that human
agreement for the task is only 50%. They conclude that these results
are promising for using the classifier in an semi-automated approach.

Several works use supervised machine learning for coding senti-
ment in political text, including political web-logs in English (Durant
and Smith, 2006) and political tweets in Farsi (Vaziripour, Giraud-
Carrier, and Zappala, 2016). Bakliwal et al., (2013) find that SVMs
outperform dictionary-based baselines for sentiment classification in
tweets. Johnson, Shukla, and Shukla, (2012) use a MaxEnt classifier to
code the political sentiment of tweets and correlate it with survey data
on the popularity of US president Obama. The results are mixed, as in
the long-term the classifier shows negative correlation with the survey
data.

Another approach is to use ensembles of classifiers for content
coding. Stewart and Zhukov, (2009) study the public debate on the use
of force in Russia. They use an ensemble of supervised classifiers on
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bags-of-words to classify Russian government texts according to the
expressed opinion as Activist or Conservative. Burscher et al., (2014) use
an ensemble of classifiers on bags-of-words for detecting four generic
frames in Dutch news articles. They examine if the trained models can
generalize to news sources not included in the training set and find
that this is possible with slight decreases in performance. They also
find that the amount of improvement from increasing the amount of
training examples varies between frames.

Morstatter et al., (2018) predict the degree of press freedom in a
country by comparing the automatically assigned frames in govern-
ment issued texts with t in news those in news paper articles. Their
hypothesis is that the frames across both sets of texts will be more
similar in countries with a lower degree of press freedom, as the gov-
ernment might dictate the frames the media outlets have to circulate.
They perform sentence-level frame classification using several non-
neural classifiers and an Long-Short Term Memory Network (LSTM)
classifier.

Hopkins and King, (2010) introduce a supervised learning method
that is based on the observation that social scientists are usually more
interested in the proportion of data that falls into specific categories,
than in accurate per data point classification. Even with increasing
classification performance, the predictions can be biased with respect
to category proportions. Hence they propose a method that directly
estimates the proportions of categories in the unseen data from the
annotated training data, without making individual classifications.
This method is used by King, Pan, and Roberts, (2013) to study cen-
sorship in China. They classify censored/non-censored posts from a
huge amount of Chinese social media sites and find that primarily
posts that could lead to organized activity get censored, and not posts
that criticize the government. Hanna, (2013) use Hopkins and King,
(2010)’s method to study Egyptian online activism on Facebook. They
look at tweets in Arabic and in Franco-Arabic and build language
specific classifiers to automatically assign 5 categories reflecting the
type of mobilization expressed in the tweet. Their reason for building
separate classifiers is due to the bag-of-words approach not being able
to capture cross-lingual similarities, which leads to small training set
size (Hanna, 2013, p.380). They note that Computer-aided content analysis
methods also have not given sufficient attention to how to address multiple
languages in a single corpus. (p.384), a problem that we contribute to
solve in this dissertation.

Field et al., (2018) perform a cross-lingual content analysis to study
media manipulation strategies. They use cross-lingual word embed-
dings to project frames from a large manually annotated English data
set to Russian news articles. In their analysis, they find that mentions
of the US in the Russian newspaper increase in the month directly
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following economic downturn in Russia, which they interpret as a
distraction strategy.

limitations The limitations of supervised machine learning meth-
ods for content coding lie in their (un)ability to model human be-
haviour (Grimmer and Stewart, 2013; Lake et al., 2017). The quality of
the automated coding depends on the model’s ability to learn from
classifying the human annotations. This depends on many factors,
such as the type of model and the difficulty of the task. Wiedemann,
(2016) summarizes the factors that complicate the task of content
coding compared to standard NLP text categorization (see p. 128 -
130). First, the categories of interest are often abstract concepts, which
complicates the task. Second, the distribution over categories might
be highly unbalanced, as the phenomena of interest might be rare.
We encounter this problem in Chapter 3, where only 5% of the data
correspond to the class of interest in a 3-way classification task. Fi-
nally, the models have to deal with small data set sizes for training, as
data annotation is expensive and annotations might fit only a small
research interest.

Building models that can deal with these challenges is likely to
improve automated content coding using supervised models. The
motivation behind using transfer learning for content coding is to
alleviate the problem arising from the small amounts of training data.

2.2 transfer learning (for content coding)

The idea behind transfer learning is to apply knowledge gained from
solving one problem to solving another problem that is different but
related (Pan and Yang, 2009; Ruder, 2019). This means the model is
trained to solve one problem, and then applied or tested on another
problem. As this setup violates the fundamental assumption that train-
ing data and testing data come from the same distribution, we cannot
expect traditional ML models to perform well in this scenario. Transfer
learning is a set of methods that enable the transfer of knowledge by
accounting for the difference in source and target distribution (Pan
and Yang, 2009). Two important concepts in transfer learning are task
and domain, which we explain below following the definitions and
notation of Ruder, (2019).

domain A domain D is defined as D = {X , P(X)}. X is a fea-
ture space and P(X) is a marginal probability distribution, where
X is a training example represented by features in X , i.e. X =

{x1, x2, · · · , xn} ∈ X .
In the context of content analysis, different domains can for example

correspond to different communication channels, such as news articles
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compared to social media platforms, or to different news outlets within
one platform.

task A task T is defined as T = {Y , P(Y), P(X|Y)}. Y is the set of
possible labels , P(Y) is a prior distribution over the labels, and P(X|Y)
is a conditional distribution that is learned from training examples.
The training examples are pairs of feature vectors and corresponding
labels, i.e. {xi, yi} with xi ∈ X and yi ∈ Y .

In the context of content analysis, a task can for example correspond
to a specific coding scheme. One task could be to label tweets accord-
ing to polarity and another task to label these tweets according to
authorship. In the first task, Y∞ contains all possible polarity codes,
while in the second task, Y∈ contains codes for all possible authors.

Transfer learning models learn from solving a source problem, i.e.
a source task and a corresponding source domain, and transfer what
they learned to a target problem, i.e a target task and corresponding
target domain. Given a source domain Ds, a corresponding source
task Ts, a target domain Dt and a corresponding target task Tt, the
aim of transfer learning is to improve the learning of the conditional
probability Pt(Yt|Xt) with knowledge from Ds and Ts, in cases where
source and target domain are different (Ds 6= Dt), or source and target
task are different (Ts 6= Tt).

The three types of transfer learning addressed in the later chap-
ters of the present dissertation are cross-lingual learning (Chapters 3,
5, 6, 7), domain adaptation (Chapter 4), and multi-task learning (Chap-
ter 4). According to the taxonomy introduced by Ruder, (2019) to
classify transfer learning methods used in NLP, domain adaptation
and cross-lingual learning are instances of transductive transfer learn-
ing. Transductive transfer learning is applied when source and target
task are the same, and labeled data is only available in the source
domain, which is different from the target domain. Consequently,
knowledge has to be transferred from the source to the target domain.
This method is referred to as domain adaptation. Cross-lingual learn-
ing is transductive transfer learning in cases where source and target
domain are in different languages.

Multi-task learning is an instance of inductive transfer learning, as
it leverages labeled data for both source and target task. Source and
target task are different, and both tasks are learned simultaneously.
Ideas from cross-lingual learning and domain adaptation can also
be applied to enable transfer between languages and domains in a
Multi-Task Learning (MTL) setup.

In the following, we provide some technical background on these
methods using definitions and notation of Ruder et al., (2019). We
also list examples of successful applications of these transfer learning
methods for text mining tasks, in order to motivate their use for our
content coding experiments. The choice of these methods for our
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content coding tasks (see Part II) was motivated by the availability of
data and the nature of the problems in the specific projects.

2.2.1 cross-lingual learning

Cross-lingual learning refers to knowledge transfer between source
and target domain when texts in the two domains are in different
languages. This is usually motivated by overcoming a lack of resources
in the target language. For content analysis, this type of transfer can
be useful for cross-national or cross-lingual studies, where content
in two languages should be analysed simultaneously. It can also be
useful to transfer annotations from text in one language to text in
another language when manually labeled content only exists in the
source language.

Early approaches to cross-lingual learning include the translation
of text into a common language using machine translation systems
(Balahur and Turchi, 2012; Bautin, Vijayarenu, and Skiena, 2008; For-
tuna and Shawe-Taylor, 2005; Wan, 2008) and the projection of whole
documents into a common multilingual space for applications such as
information retrieval (Dumais, Landauer, and Littman, 1996).

In this thesis, we address two approaches to cross-lingual learning,
bilingual dictionary induction and the alignment of word embeddings. Bilin-
gual dictionary induction aims to induce word-level translations from
monolingual corpora (Irvine and Callison-Burch, 2017), whereas the
primary goal for word embedding alignment is to produce word rep-
resentations that capture similarities across languages (Ruder, Vulić,
and Søgaard, 2019). The two tasks are closely related, as the represen-
tations learned by word embedding alignment can be used to induce
bilingual dictionaries, and Bilingual Dictionary Induction (BDI) is fre-
quently used as an evaluation task for word embedding alignment.
Both approaches enable cross-lingual transfer, as we will explain in
the next sections.

2.2.1.1 bilingual dictionary induction

When large amounts of parallel data are available, word-to-word trans-
lations can be extracted from automatically induced word alignments
between the parallel sentences (Brown et al., 1993). However, parallel
data is expensive to generate and rarely available for low-resource
languages. Hence, many BDI methods aim to induce dictionaries from
non-parallel data. The idea behind those methods is based on the
distributional hypothesis that words that occur in similar contexts
have similar meanings (Harris, 1954). BDI approaches assume that
this holds, even if the words and their contexts are from different
languages. Hence, similar contexts across languages can serve as a
signal to identify word translations. Several contextual signals that
can be extracted from monolingual resources have been proposed,
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such as co-occurrence patterns (Rapp, 1995), heterogeneity of contexts
(Fung, 1995), the distribution of word usage over time (Schafer and
Yarowsky, 2002), orthographic similarity (Melamed, 1995), or combi-
nations thereof (Irvine and Callison-Burch, 2017). Other approaches,
including our work presented in Chapter 5, explore the use of images
as contexts to induce bilingual dictionaries (Bergsma and Goebel, 2011;
Kiela, Vulic, and Clark, 2015; Vulić et al., 2016). There, the contexts of
a word are computed based on the representations of images that are
associated with the word.

To induce a bilingual dictionary, each source word ws is represented
by a vector representation of its context xws . The translation(s) of ws

are identified by ranking the representations of all target words wt

according to their similarity to the source word. Similarity is typically

computed as the cosine similarity sim(xws , xwt) =
xws · xwt

|xws ||xwt |
or vari-

ants derived thereof. The performance is evaluated using a rank-based
metric such as Precision at k (P@k), i.e. the fraction of correct trans-
lations ranked among the k highest ranks averaged over all source
words.

applications Inducing bilingual dictionaries can be useful for
statistical machine translation, where the induced dictionaries are
used to translate out-of-vocabulary words that the MT system did
not encounter in the parallel training data(Irvine and Callison-Burch,
2017). Bilingual dictionaries can also directly be used to transfer knowl-
edge across the language links in the dictionary. In this way, bilingual
dictionaries have been used for cross-lingual transfer for metaphor
detection in news articles (Tsvetkov et al., 2014), Named Entity Recog-
nition (Zirikly and Hagiwara, 2015), dependency parsing (Durrett,
Pauls, and Klein, 2012), cross-lingual information retrieval (Demner-
Fushman and Oard, 2003; Grefenstette, 1998), the identification of
subjective language in news articles (Mihalcea, Banea, and Wiebe,
2007), and multilingual sentiment analysis (Dashtipour et al., 2016).
Bilingual dictionaries are also used as seeds to bootstrap cross-lingual
embedding alignment.

2.2.1.2 cross-lingual word embeddings

Whereas BDI focusses on finding word-level translations, methods that
learn cross-lingual word embeddings aim to learn word represen-
tations that capture the meaning of words across languages. Word
embeddings, again, are based on the distributional hypothesis that
contexts define the meaning of a word. Hence, it is possible to rep-
resent the meaning of a word in vector space based on the context
it occurs in. Traditionally, this is done using count-based models, that
represent each word by counting the co-occurrences with words in
its context, and apply dimensionality reduction to the co-occurrence
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matrix (Landauer, Foltz, and Laham, 1998; Levy, Goldberg, and Dagan,
2015). Recently, Mikolov et al., (2013a) introduced a highly efficient
predictive model for learning distributed word representations. Here,
word representations are learned by predicting a word’s contexts in a
supervised classification task3. During training, the representations
are updated such that the probability of predicting the correct contexts
gets maximized4.

The similarities between monolingual word representations in vector
space should reflect similarities between word meaning, e.g. represen-
tations of synonyms should lie close to each other. Cross-lingual word
embeddings, analogously, capture the semantics of words within one
language, but in addition they also capture the similarities of words
across languages. For example, words that are translations of each
other should have representations that lie close to each other in the
vector space.

Such cross-lingual word representations can be used to solve the BDI

task, or they can be used for cross-lingual transfer between models us-
ing directly, for example by using them in the task specific embedding
layers of a multi-task setup (Lin et al., 2018).

There are numerous approaches to learning cross-lingual word
embeddings (see e.g (Ruder, 2019, Table 3.3 on p.107)), that can be
grouped into three categories. Pseudo-multi-lingual corpora-based ap-
proaches construct text data that contains words in both languages,
and learn cross-lingual word embeddings by applying a standard
model for computing monolingual word embeddings to that pseudo-
multi-lingual corpus. Joint methods learn cross-lingual representations
by optimizing an objective that aims at making similar words across
languages similar. Mapping-based approaches map two sets of monolin-
gual embeddings into a common space and are described in the next
paragraph.

cross-lingual word embedding alignment Mapping based
approaches aim to learn a mapping between two sets of monolingual
word embeddings, such that words that are translations of each other
have representations close to each other. The mapping is learned based
on an initial bilingual seed dictionary, that captures correspondences be-
tween words and can be obtained in a supervised or an unsupervised
setup (Ruder, Vulić, and Søgaard, 2019; Vulić et al., 2019). A mapping
between two d-dimensional word embedding spaces is learned by
aligning two matrices Sn×d and Tn×d. The rows in S and T are ordered
such that si and ti correspond to translation pairs in the initial seed
dictionary.

3 The supervision is given by observing a word’s context in large otherwise unlabeled
corpora.

4 It is shown that both types of models can be equivalent under certain conditions
(Levy and Goldberg, 2014)
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The mapping W is optimal when the mapped source word repre-
sentations WS and the corresponding target word representations T
are closest to each other, i.e. the optimal mapping is found as

W∗ = argminW ||WS− T|| (2.1)

A commonly adopted approach proposed by Artetxe, Labaka, and
Agirre, (2017) is to apply equation (2.1) iteratively to bootstrap transla-
tion pairs for the seed dictionary, i.e. to start out with an initial seed
dictionary and map the source words using the mapping W∗ computed
from that seed dictionary. Then, additional translation pairs are identi-
fied based on similarity between all mapped source representations
and all target word representations. The new translation pairs are
added to the seed dictionary and a new optimal mapping for the
extended seed dictionary is computed.

unsupervised cross-lingual word embedding alignment

The most interesting question for word embedding alignment ap-
proaches is how to obtain the initial seed dictionary to compute S and
T. Much work on cross-lingual learning is inspired by the idea that
it can help transfer from resource-rich languages to low-resource lan-
guages for which few annotated data is available. Hence, much work
is focusing on approaches that learn cross-lingual word embeddings
with little to no supervision, i.e. the aim is to keep the initial seed
dictionary as small and as cheap as possible. Cheap initial seed dic-
tionaries have been generated by for example using numerals shared
across languages (Artetxe, Labaka, and Agirre, 2018a), or identically
spelled words (Smith et al., 2017; Søgaard, Ruder, and Vulić, 2018).
Unsupervised cross-lingual word embedding alignment methods aim to
learn alignments without any predefined initial seed dictionary, but
solve equation (1) using a seed dictionary of word correspondences
inferred in a completely unsupervised setup. The assumption of unsu-
pervised approaches is that the structures of embedding spaces across
languages are similar enough to enable alignment without initial hints
about word correspondences. In other words, to allow unsupervised
alignment, embeddings spaces have to be near isomorphic, i.e. the
translations of neighbouring source word representations have to be
neighbors in the target space as well (Barone, 2016; Søgaard, Ruder,
and Vulić, 2018). Conneau et al., (2018) presented MUSE, the first un-
supervised alignment system that could achieve results on par with
supervised methods. Their system induces the initial seed dictionary
using a GAN (Goodfellow et al., 2014). The network has two adversarial
components, a generator that learns the mapping W∗ and a discrimi-
nator that discriminates between mapped source representations and
target representations. The generator learns the mapping such that the
discriminator cannot discriminate between word representations from
source and target language, which leads to a mapping that makes the
mapped source and target representations as similar as possible.
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Søgaard, Ruder, and Vulić, (2018) found that the isomorphism condi-
tion does not hold for many language pairs and that the GAN training
is instable and highly dependent on parameter configurations such
as training domain and language pairs. In Chapter 6 we present a
study that investigates the causes of these instabilities, where we find
that they are due to a problem in the interplay between generator and
discriminator. Many other unsupervised methods have been proposed
following the MUSE system, that apply different strategies to matching
source and target embedding spaces without supervision. Many of
them are inspired by overcoming the robustness issues of MUSE. These
systems are described in more detail in Chapter 7, where we present a
step by step comparison between several unsupervised models, that
focuses on equal conditions for automatically inducing the initial seed
dictionary.

2.2.1.3 evaluation

Analogously to monolingual word embeddings, the quality of cross-
lingual word embeddings can be evaluated using multi-lingual word
similarity datasets (Ruder, Vulić, and Søgaard, 2019). Here, the cross-
lingual quality of the embeddings is determined through correlation
between model-assigned and human-assigned similarity scores be-
tween pairs of source and target words. However, using this method
for evaluation is questionable (Ruder, Vulić, and Søgaard, 2019), as for
the monolingual case it was shown that human judgment in this task
can be subjective (Faruqui et al., 2016).

Another common approach is to use BDI as evaluation task. Here,
translation pairs are identified using a retrieval function on the cross-
lingual word representations. The gold dictionaries used most fre-
quently for evaluation of cross-lingual embedding alignments (Con-
neau et al., 2018; Dinu, Lazaridou, and Baroni, 2015) cover a wide
range of languages but were generated automatically. Hence, they con-
tain considerable amounts of noise. In Kementchedjhieva, Hartmann,
and Søgaard, (2019), we analyse the shortcomings of the datasets
released along with the MUSE system and show how the quality of
dictionaries can distort differences in model performances (see Ap-
pendix ??). Besides the quality of resources, further concerns about
BDI as evaluation task were raised by Glavas et al., (2019), who found
there is little correlation between BDI performance and performance
in downstream tasks such as document classification, information
retrieval, and natural language inference.

2.2.1.4 applications

Besides improving core-NLP tasks such as dependency parsing (Guo
et al., 2015; Søgaard et al., 2015) and part-of-speech tagging (Gouws
and Søgaard, 2015), cross-lingual embeddings have also proven useful
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for applications relevant to content coding, including document classi-
fication (Klementiev, Titov, and Bhattarai, 2012; Søgaard et al., 2015),
the detection of textual similarity (Glavaš et al., 2018) and sentiment
analysis (Mogadala and Rettinger, 2016).

2.2.2 multi-task learning

The idea behind MTL is that by learning different tasks simultaneously,
the models can combine information from all the tasks, which can
be beneficial to solve the individual tasks. (Caruana, 1993). It was
introduced in the context of NLP by Collobert et al., (2011).

Ruder, (2019) summarizes five reasons for why multi-task learn-
ing might improve performance over single-task learning. First, it
implicitly performs data augmentation by increasing the sample size.
Second, it can help to focus the model’s attention on relevant features
that generalize across tasks. Third, it enable eavesdropping, i.e. getting
information that is needed for solving a task by looking at other tasks.
Fourth, it encourages learning models that generalize across tasks.
Fifth, solving multiple tasks at once acts as a regularizer preventing
the individual models from overfitting.

2.2.2.1 parameter sharing

The most straight-forward approach to MTL is hard parameter sharing. In
the context of neural models, hard parameter sharing means that per
task, one neural network is trained, but the hidden layers are shared
between all the tasks. The output layers are task-specific (see left part
of Figure 4.1 on page 50). Other approaches to parameter sharing
do not share any layers between tasks, but the parameters of each
network are constrained to be close to each other. Such approaches
are referred to as soft parameter sharing (Ruder, 2019, p.49).

2.2.2.2 auxiliary tasks

Multi-task learning can be applied when different tasks (Ts 6= Tt) need
to be solved simultaneously. Even if we are interested in only the
target task, it might be beneficial to simultaneously solve the source
task(s).5 In that case, the source tasks (here referred to as auxiliary
tasks) should be chosen such that they are most helpful to solve the
target task (Alonso and Plank, 2016; Bingel and Søgaard, 2017; Bjerva,
2017).

The most straightforward choice for an auxiliary task is a super-
vised classification task related to the target task (Ruder, 2019). In the
case of text classification, this could be text classification at different
granularity levels (Balikas, Moura, and Amini, 2017) or a different text
classification task (Liu, Qiu, and Huang, 2017; Zhang et al., 2017a).

5 The number of tasks that are solved simultaneously is not limited to two.
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2.2.2.3 domain adaptation with an adversarial auxil-
iary task

If MTL involves data from different domains, it can be beneficial to
have an auxiliary task that explicitly aims to overcome this difference
between domains. A popular strategy is to use an adversarial auxiliary
task. Similarly to the adversarial component in GANs for embedding
alignment, the adversarial auxiliary task makes the model learn rep-
resentations that are similar across domains. Ganin and Lempitsky,
(2015) introduced a setup for domain adaptation, in which a model is
optimized to perform as poorly as possible in discriminating between
source and target domain. This is achieved by optimizing the model
for a binary classification task of discriminating between domains, but
reversing the direction of the loss gradient in the backpropagation
step. Due to the gradient reversal, the model learns representations
that discriminate between the domains as little as possible.

Even though this task is supervised, the supervision comes from
discriminating between domains, and hence otherwise unlabeled data
can be used for this task.

2.2.2.4 applications

MTL has successfully been applied for many text mining tasks that
are relevant for content coding, including the classification of product
reviews (Liu, Qiu, and Huang, 2017), sentiment analysis in product
reviews (Wu and Huang, 2016), joint detection of sentiment and topics
in tweets (Huang et al., 2013), author stance in tweets (Ma, Gao, and
Wong, 2018), and hate speech detection on Twitter (Waseem, Thorne,
and Bingel, 2018).

In Chapter 4, we apply multi-task learning with hard parameter
sharing and an adversarial auxiliary task in order to assign frame
labels from news articles and tweets to posts from online discussion
fora.
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abstract

Digital media enables not only fast sharing of information, but also
disinformation. One prominent case of an event leading to circulation
of disinformation on social media is the MH17 plane crash. Studies
analysing the spread of information about this event on Twitter have
focused on small, manually annotated datasets, or used proxys for data
annotation. In this work, we examine to what extent text classifiers
can be used to label data for subsequent content analysis, in particular
we focus on predicting pro-Russian and pro-Ukrainian Twitter content
related to the MH17 plane crash. Even though we find that a neural
classifier improves over a hashtag based baseline, labeling pro-Russian
and pro-Ukrainian content with high precision remains a challenging
problem. We provide an error analysis underlining the difficulty of
the task and identify factors that might help improve classification
in future work. Finally, we show how the classifier can facilitate the
annotation task for human annotators.

3.1 introduction

Digital media enables fast sharing of information, including various
forms of false or deceptive information. Hence, besides bringing the
obvious advantage of broadening information access for everyone,
digital media can also be misused for campaigns that spread disinfor-
mation about specific events, or campaigns that are targeted at specific
individuals or governments. Disinformation, in this case, refers to
intentionally misleading content (Fallis, 2015).

A prominent case of a disinformation campaign are the efforts of the
Russian government to control information during the Russia-Ukraine
crisis (Pomerantsev and Weiss, 2014). One of the most important events
during the crisis was the crash of Malaysian Airlines (MH17) flight on
July 17, 2014. The plane crashed on its way from Amsterdam to Kuala
Lumpur over Ukrainian territory, causing the death of 298 civilians.
The event immediately led to the circulation of competing narratives
about who was responsible for the crash (see Section 3.2), with the
two most prominent narratives being that the plane was either shot
down by the Ukrainian military, or by Russian separatists in Ukraine
supported by the Russian government (Oates, 2016). The latter theory
was confirmed by findings of an international investigation team. In
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this work, information that opposes these findings by promoting other
theories about the crash is considered disinformation. When studying
disinformation, however, it is important to acknowledge that our fact
checkers (in this case the international investigation team) may be
wrong, which is why we focus on both of the narratives in our study.

MH17 is a highly important case in the context of international
relations, because the tragedy has not only increased Western, po-
litical pressure against Russia, but may also continue putting the
government’s global image at stake. In 2020, at least four individu-
als connected to the Russian separatist movement will face murder
charges for their involvement in the MH17 crash (Harding, 2019),
which is why one can expect the waves of disinformation about MH17

to continue spreading. The purpose of this work is to develop an
approach that may help both practitioners and scholars of political
science, international relations and political communication to detect
and measure the scope of MH17-related disinformation.

Several studies analyse the framing of the crash and the spread
of (dis)information about the event in terms of pro-Russian or pro-
Ukrainian framing. These studies analyse information based on man-
ually labeled content, such as television transcripts (Oates, 2016) or
tweets (Golovchenko, Hartmann, and Adler-Nissen, 2018; Hjorth and
Adler-Nissen, 2019). Restricting the analysis to manually labeled con-
tent ensures a high quality of annotations, but prohibits analysis from
being extended to the full amount of available data. Another widely
used method for classifying misleading content is to use distant anno-
tations, for example to classify a tweet based on the domain of a URL
that is shared by the tweet, or a hashtag that is contained in the tweet
(Gallacher et al., 2018; Grinberg et al., 2019; Guess, Nagler, and Tucker,
2019). Often, this approach treats content from uncredible sources as
misleading (e.g. misinformation, disinformation or fake news). This
methods enables researchers to scale up the number of observations
without having to evaluate the fact value of each piece of content
from low-quality sources. However, the approach fails to address an
important issue: Not all content from uncredible sources is necessarily
misleading or false and not all content from credible sources is true.
As often emphasized in the propaganda literature, established media
outlets too are vulnerable to state-driven disinformation campaigns,
even if they are regarded as credible sources (Chomsky and Herman,
1988; Jowett and O’donnell, 2014; Taylor, 2003)1.

In order to scale annotations that go beyond metadata to larger
datasets, NLP models can be used to automatically label text content.
For example, several works developed classifiers for annotating text
content with frame labels that can subsequently be used for large-scale

1 The U.S. media coverage of weapons of mass destruction in Iraq stands as one of the
most prominent examples of how generally credible sources can be exploited by state
authorities.
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content analysis (Card2015; Boydstun et al., 2014; Field et al., 2018;
Hartmann et al., 2019; Ji and Smith, 2017; Johnson, Jin, and Goldwasser,
2017; Naderi and Hirst, 2017; Tsur, Calacci, and Lazer, 2015). Similarly,
automatically labeling attitudes expressed in text (Augenstein et al.,
2016; Hasan and Ng, 2013; Walker et al., 2012b; Zubiaga et al., 2018)
can aid the analysis of disinformation and misinformation spread
(Zubiaga et al., 2016). In this work, we examine to which extent such
classifiers can be used to detect pro-Russian framing related to the
MH17 crash, and to which extent classifier predictions can be relied
on for analysing information flow on Twitter.

mh17 related (dis-)information flow on twitter We
focus our classification efforts on a Twitter dataset introduced in
Golovchenko, Hartmann, and Adler-Nissen, (2018), that was collected
to investigate the flow of MH17-related information on Twitter, fo-
cusing on the question who is distributing (dis-)information. In their
analysis, the authors found that citizens are active distributors, which
contradicts the widely adopted view that the information campaign is
only driven by the state and that citizens do not have an active role.
To arrive at this conclusion, the authors manually labeled a subset of
the tweets in the dataset with pro-Russian/pro-Ukrainian frames and
build a retweet network, which has Twitter users as nodes and edges
between two nodes if a retweet occurred between the two associated
users. An edge was considered as polarized (either pro-Russian or pro-
Ukrainian), if at least one retweet between the two users connected
by the edge was pro-Russian/pro-Ukrainian. Then, the amount of
polarized edges between users with different profiles (e.g. citizen,
journalist, state organ) was computed.

Labeling more data via automatic classification (or computer-assisted
annotation) of tweets could serve an analysis as the one presented in
Golovchenko, Hartmann, and Adler-Nissen, (2018) in two ways. First,
more edges could be labeled.2 Second, edges could be labeled with
higher precision, i.e. by taking more tweets comprised by the edge
into account. For example, one could decide to only label an edge
as polarized if at least half of the retweets between the users were
pro-Ukrainian/pro-Russian.

contributions We evaluate different classifiers that predict frames
for unlabeled tweets in Golovchenko, Hartmann, and Adler-Nissen,
(2018)’s dataset, in order to increase the number of polarized edges in
the retweet network derived from the data. This is challenging due to
a skewed data distribution and the small amount of training data for
the pro-Russian class. We try to combat the data sparsity using a data
augmentation approach, but have to report a negative result as we

2 Only 26% of the available tweets in Golovchenko, Hartmann, and Adler-Nissen,
(2018)’s dataset are manually labeled.



32 mapping (dis-)information flow about the mh17 plane crash

find that data augmentation in this particular case does not improve
classification results. While our best neural classifier clearly outper-
forms a hashtag-based baseline, generating high quality predictions
for the pro-Russian class is difficult: In order to make predictions at a
precision level of 80%, recall has to be decreased to 23%. Finally, we
examine the applicability of the classifier for finding new polarized
edges in a retweet network and show how, with manual filtering, the
number of pro-Russian edges can be increased by 29%. We make our
code, trained models and predictions publicly available3.

3.2 competing narratives about the mh17 crash

We briefly summarize the timeline around the crash of MH17 and
some of the dominant narratives present in the dataset. On July 17,
2014, the MH17 flight crashed over Donetsk Oblast in Ukraine. The
region was at that time part of an armed conflict between pro-Russian
separatists and the Ukrainian military, one of the unrests following
the Ukrainian revolution and the annexation of Crimea by the Russian
government. The territory in which the plane fell down was controlled
by pro-Russian separatists.

Right after the crash, two main narratives were propagated: Western
media claimed that the plane was shot down by pro-Russian sepa-
ratists, whereas the Russian government claimed that the Ukrainian
military was responsible. Two organisations were tasked with inves-
tigating the causes of the crash, the Dutch Safety Board (DSB) and
the Dutch-led Joint Investigation Committee (JIT). Their final reports
were released in October 2015 and September 2016, respectively, and
conclude that the plane had been shot down by a missile launched by
a Buk surface to air missile system (BUK). The BUK was stationed in
an area controlled by pro-Russian separatists when the missile was
launched, and had been transported there from Russia and returned
to Russia after the incident. These findings are denied by the Russian
government until now. There are several other crash-related reports
that are frequently mentioned throughout the dataset. One is a re-
port by Almaz-Antey, the Russian company that manufactured the
BUK, which rejects the DSB findings based on mismatch of technical
evidence. Several reports backing up the Dutch findings were released
by the investigative journalism website Bellingcat.4

The crash also sparked the circulation of several alternative theories,
many of them promoted in Russian media (Oates, 2016), e.g. that the
plane was downed by Ukrainian SU25 military jets, that the plane
attack was meant to hit Putin’s plane that was allegedly traveling the
same route earlier that day, and that the bodies found in the plane
had already been dead before the crash.

3 https://github.com/coastalcph/mh17

4 https://www.bellingcat.com/

https://github.com/coastalcph/mh17
https://www.bellingcat.com/
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3.3 dataset

For our classification experiments, we use the MH17 Twitter dataset
introduced by Golovchenko, Hartmann, and Adler-Nissen, (2018), a
dataset collected in order to study the flow of (dis)information about
the MH17 plane crash on Twitter. It contains tweets collected based
on keyword search5 that were posted between July 17, 2014 (the day
of the plane crash) and December 9, 2016.

Golovchenko, Hartmann, and Adler-Nissen, (2018) provide anno-
tations for a subset of the English tweets contained in the dataset. A
tweet is annotated with one of three classes that indicate the framing of
the tweet with respect to responsibility for the plane crash. A tweet can
either be pro-Russian (Ukrainian authorities, NATO or EU countries are
explicitly or implicitly held responsible, or the tweet states that Russia
is not responsible), pro-Ukrainian (the Russian Federation or Russian
separatists in Ukraine are explicitly or implicitly held responsible, or
the tweet states that Ukraine is not responsible) or neutral (neither
Ukraine nor Russia or any others are blamed). Example tweets for
each category can be found in Table 3.2. These examples illustrate that
the framing annotations do not reflect general polarity, but polarity
with respect to responsibility to the crash. For example, even though
the last example in the table is in general pro-Ukrainian, as it displays
the separatists in a bad light, the tweet does not focus on responsibility
for the crash. Hence the it is labeled as neutral.

Table 3.1 shows the label distribution of the annotated portion of
the data as well as the total amount of original tweets, and original
tweets plus their retweets/duplicates in the network. A retweet is a
repost of another user’s original tweet, indicated by a specific syntax
(RT @username: ). We consider as duplicate a tweet with text that is
identical to an original tweet after preprocessing (see Section 3.5.1).
For our classification experiments, we exclusively consider original
tweets, but model predictions can then be propagated to retweets and
duplicates.

3.4 classification models

For our classification experiments, we compare three classifiers, a
hashtag-based baseline, a logistic regression classifier and a Convolutional
Neural Network (CNN).

hashtag-based baseline Hashtags are often used as a means to
assess the content of a tweet (Dhingra et al., 2016; Efron, 2010; Godin

5 These keywords were: MH17, Malazijskij [and] Boeing (in Russian), #MH17,
#Pray4MH17, #PrayforMH17. The dataset was collected using the Twitter Garden hose,
which means that it contains a 10% of all tweets within the specified period that
matched the search criterion.
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Label Original All

Labeled
Pro-Russian 512 4,829

Pro-Ukrainian 910 12,343

Neutral 6,923 118,196

Unlabeled - 192,003 377,679

Total - 200,348 513,047

Table 3.1: Label distribution and dataset sizes. Tweets are considered original
if their preprocessed text is unique. All tweets comprise original
tweets, retweets and duplicates.

et al., 2013). We identify hashtags indicative of a class in the annotated
dataset using the pointwise mutual information (pmi) between a
hashtag hs and a class c, which is defined as

pmi(hs, c) = log
p(hs, c)

p(hs) p(c)
(3.1)

We then predict the class for unseen tweets as the class that has the
highest pmi score for the hashtags contained in the tweet. Tweets
without hashtag (5% of the tweets in the development set) or with
multiple hashtags leading to conflicting predictions (5% of the tweets
in the development set) are labeled randomly. We refer to to this
baseline as hs_pmi.

logistic regression classifier As non-neural baseline we
use a logistic regression model.6 We compute input representations
for tweets as the average over pre-trained word embedding vectors for
all words in the tweet. We use fasttext embeddings (Bojanowski et al.,
2017) that were pre-trained on Wikipedia.7

convolutional neural network classifier As neural clas-
sification model, we use a CNN (Kim, 2014), which has previously
shown good results for tweet classification (Dhingra et al., 2016; San-
tos and Gatti, 2014).8 The model performs 1d convolutions over a
sequence of word embeddings. We use the same pre-trained fasttext
embeddings as for the logistic regression model. We use a model with
one convolutional layer and a relu activation function, and one max
pooling layer. The number of filters is 100 and the filter size is set to 4.

6 As non-neural alternative, we also experimented with SVMs. These showed inferior
performance to the regression model.

7 In particular, with cross-lingual experiments in mind (see Section 3.7), we used
embeddings that are pre-aligned between languages available here https://fasttext.
cc/docs/en/aligned-vectors.html

8 We also ran intitial experiments with recurrent neural networks (RNNs), but found
that results were comparable with those achieved by the CNN architecture, which
runs considerably faster.

https://fasttext.cc/docs/en/aligned-vectors.html
https://fasttext.cc/docs/en/aligned-vectors.html
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Label Example tweet

Pro-Ukrainian

Video - Missile that downed MH17 ’was brought in from
Russia’ @peterlane5news

RT @mashable: Ukraine: Audio recordings show pro-
Russian rebels tried to hide #MH17 black boxes.

Russia Calls For New Probe Into MH17 Crash. Russia needs
to say, ok we fucked up.. Rather than play games

@IamMH17 STOP LYING! You have ZERO PROOF to
falsely blame UKR for #MH17 atrocity. You will need to
apologize.

Pro-Russian

Why the USA and Ukraine, NOT Russia, were probably
behind the shooting down of flight #MH17

RT @Bayard_1967: UKRAINE Eyewitness Confirm Military
Jet Flew Besides MH17 Airliner: BBC ...

RT @GrahamWP_UK: Just read through #MH17 @bellingcat
report, what to say - written by frauds, believed by the
gullible. Just that.

Neutral

#PrayForMH17 :(

RT @deserto_fox: Russian terrorist stole wedding ring from
dead passenger #MH17

Table 3.2: Example tweets for each of the three classes.

3.5 experimental setup

We evaluate the classification models using 10-fold cross validation,
i.e. we produce 10 different datasplits by randomly sampling 60% of
the data for training, 20% for development and 20% for testing. For
each fold, we train each of the models described in Section 3.4 on the
training set and measure performance on the test set. For the CNN
and LogReg models, we upsample the training examples such that
each class has as many instances as the largest class (Neutral). The
final reported scores are averages over the 10 splits.9

3.5.1 tweet preprocessing

Before embedding the tweets, we replace urls, retweet syntax (RT
@user_name: ) and @mentions (@user_name) by placeholders. We
lowercase all text and tokenize sentences using the StandfordNLP
pipeline (Qi et al., 2018). If a tweet contains multiple sentences, these
are concatenated. Finally, we remove all tokens that contain non-

9 We train with the same hyperparameters on all splits, these hyperparameters were
chosen according to the best macro f score averaged over 3 runs with different random
seeds on one of the splits.
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Macro-avg Pro-Russian Pro-Ukrainian Neutral

Model F1 AUC F1 AUC F1 AUC F1 AUC

Random 0.25 - 0.10 - 0.16 - 0.47 -

hs_pmi 0.25 - 0.10 - 0.16 - 0.48 -

LogReg 0.59 0.53 0.38 0.34 0.51 0.41 0.88 0.86

CNN 0.69 0.71 0.55 0.57 0.59 0.60 0.93 0.94

Table 3.3: Classification results on the English MH17 dataset measured as F1

and AUC.

alphanumeric symbols (except for dashes and hashtags) and strip the
hashtags from each token, in order to increase the number of words
that are represented by a pre-trained word embedding.

3.5.2 evaluation metrics

We report performance as F1-scores, which is the harmonic mean
between precision and recall. As the class distribution is highly skewed
and we are mainly interested in accurately classifying the classes
with low support (pro-Russian and pro-Ukrainian), we report macro-
averages over the classes. In addition to F1-scores, we report the Area
Under the Precision-Recall Curve (AUC).10 We compute an AUC score
for each class by converting the classification task into a one-vs-all
classification task.

3.6 results

The results of our classification experiments are presented in Table 3.3.
Figure 3.1 shows the per-class precision-recall curves for the LogReg

and CNN models as well as the confusion matrices between classes.11

comparison between models We observe that the hashtag
baseline performs poorly and does not improve over the random
baseline. The CNN classifier outperforms the baselines as well as the
LogReg model. It shows the highest improvement over the LogReg for
the pro-Russian class. Looking at the confusion matrices, we observe
that for the LogReg model, the fraction of True Positives is equal
between the pro-Russian and the pro-Ukrainian class. The CNN model
produces a higher amount of correct predictions for the pro-Ukrainian
than for the pro-Russian class. The absolute number of pro-Russian

10 The AUC is computed according to the trapezoidal rule, as implemented in the sklearn
package (Pedregosa et al., 2011)

11 Both the precision-recall curves and the confusion matrices were computed by con-
catenating the test sets of all 10 datasplits
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Figure 3.1: Confusion matrices for the CNN (left) and the logistic regression
model (right). The y-axis shows the true label while the x-axis
shows the model prediction.

True Positives is lower for the CNN, but so is in return the amount of
misclassifications between the pro-Russian and pro-Ukrainian class.

per-class performance With respect to the per class perfor-
mance, we observe a similar trend across models, which is that the
models perform best for the neutral class, whereas performance is
lower for the pro-Ukrainian and pro-Russian classes. All models per-
form worst on the pro-Russian class, which might be due to the fact
that it is the class with the fewest instances in the dataset.

Considering these results, we conclude that the CNN is the best
performing model and also the classifier that best serves our goals,
as we want to produce accurate predictions for the pro-Russian and
pro-Ukrainian class without confusing between them. Even though
the CNN can improve over the other models, the classification perfor-
mance for the pro-Russian and pro-Ukrainian class is rather low. One
obvious reason for this might be the small amount of training data, in
particular for the pro-Russian class.

In the following, we briefly report a negative result on an attempt
to combat the data sparseness with cross-lingual transfer. We then
perform an error analysis on the CNN classifications to shed light on
the difficulties of the task.
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3.7 data augmentation experiments using cross-lingual

transfer

The annotations in the MH17 dataset are highly imbalanced, with
as few as 512 annotated examples for the pro-Russian class. As the
annotated examples were sampled from the dataset at random, we
assume that there are only few tweets with pro-Russian stance in
the dataset. This observation is in line with studies that showed that
the amount of disinformation on Twitter is in fact small (Grinberg
et al., 2019; Guess, Nagler, and Tucker, 2019). In order to find more
pro-Russian training examples, we turn to a resource that we expect to
contain large amounts of pro-Russian (dis)information. The Elections
integrity dataset12 was released by Twitter in 2018 and contains the
tweets and account information for 3,841 accounts that are believed
to be Russian trolls financed by the Russian government. While most
tweets posted after late 2014 are in English language and focus on
topics around the US elections, the earlier tweets in the dataset are
primarily in Russian language and focus on the Ukraine crisis (Howard
et al., 2018). One feature of the dataset observed by Howard et al.,
(2018) is that several hashtags show high peakedness (Kelly et al.,
2012), i.e. they are posted with high frequency but only during short
intervals, while others are persistent during time.

We find two hashtags in the Elections integrity dataset with high
peakedness that were exclusively posted within 2 days after the MH17

crash and that seem to be pro-Russian in the context of responsibility
for the MH17 crash: #КиевСкажиПравду (Kiew tell the truth) and
#Киевсбилбоинг (Kiew made the plane go down). We collect all tweets
with these two hashtags, resulting in 9,809 Russian tweets that we try
to use as additional training data for the pro-Russian class in the MH17

dataset. We experiment with cross-lingual transfer by embedding
tweets via aligned English and Russian word embeddings.13 However,
so far results for the cross-lingual models do not improve over the
CNN model trained on only English data. This might be due to the
fact that the additional Russian tweets rather contain a general pro-
Russian frame than specifically talking about the crash, but needs
further investigation.

Error
cat.

True
class

Model
prediction id Tweet

I

Pro-U Pro-R

a) RT @ChadPergram: Hill intel
sources say Russia has the capa-
bility to potentially shoot down
a #MH17 but not Ukraine.

12 https://about.twitter.com/en_us/values/elections-integrity.html#data

13 We use two sets of monolingual fasttext embeddings trained on Wikipedia (Bo-
janowski et al., 2017) that were aligned relying on a seed lexicon of 5000 words via
the RCSLS method (Joulin et al., 2018)

https://about.twitter.com/en_us/values/elections-integrity.html#data
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b) RT @C4ADS: .@bellingcat’s new
report says #Russia used fake
evidence for #MH17 case to
blame #Ukraine URL

c) The international investigation
blames Russia for MH17 crash
URL #KievReporter #MH17

#Russia #terror #Ukraine #news
#war

Pro-R Pro-U

d) RT @RT_com: BREAKING: No
evidence of direct Russian link
to #MH17 - US URL URL

e) RT @truthhonour: Yes Washing-
ton was behind Eukraine jets
that shot down MH17 as pretext
to conflict with Russia. No se-
crets there

f) Ukraine Media Falsely Claim
Dutch Prosecutors Accuse Rus-
sia of Downing MH17: Dutch
prosecutors de URL #MH17

#alert

II

Pro-U Pro-R

g) @Werteverwalter @Ian56789

@ClarkeMicah no SU-25 re
#MH17 believer has ever been
able to explain it,facts always
get in their way

h) Rebel theories on #MH17 "to-
tal nonsense", Ukrainian Amb
to U.S. Olexander Motsyk in-
terviewed by @jaketapper via
@cnn

i) Ukrainian Pres. says it’s false
"@cnnbrk: Russia says records
indicate Ukrainian warplane
was flying within 5 km of
#MH17 on day of crash.

Pro-R Pro-U

j) Russia has released some solid
evidence to contradict @EliotH-
iggins + @bellingcat’s #MH17

report. http://t.co/3leYfSoLJ3

Pro-R Pro-U

k) RT @masamikuramoto:
@MJoyce2244 The jets were
seen by Russian military radar
and Ukrainian eyewitnesses.
#MH17 @Fossibilities @irina

l) RT @katehodal: Pro-Russia
separatist says #MH17 bodies
"weren’t fresh" when found
in Ukraine field,suggesting
already dead b4takeoff

m) RT @NinaByzantina: #MH17 re-
dux: 1) #Kolomoisky admits in-
volvement URL 2) gets $1.8B of
#Ukraine’s bailout funds
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III

Pro-U Pro-R

n) #Russia again claiming that
#MH17 was shot down by air-
to-air missile, which of course
wasn’t russian-made. #LOL
URL

o) RT @20committee: New
Moscow line is #MH17 was
shot down by a Ukrainian
fighter. With an LGBT pilot, no
doubt.

Pro-R Pro-U

p) RT @merahza: If you believe
the pro Russia rebels shot
#MH17 then you’ll believe Jus-
tine Bieber is the next US Presi-
dent and that Coke is a

q) So what @AC360 is implying is
that #US imposed sanctions on
#Russia, so in turn they shot
down a #Malaysia jet carrying
#Dutch people? #MH17

r) RT @GrahamWP_UK: #MH17

1. A man on sofa watching
YouTube thinks it was a ’sepa-
ratist BUK’. 2. Man on site for
over 25 hours doesn’t.

Table 3.4: Examples for the different error categories. Error category I are
cases where the correct class can easily be inferred from the text.
For error category II, the correct class can be inferred from the text
with event-specific knowledge. For error category III, it is necessary
to resolve humour/satire in order to infer the intended meaning
that the speaker wants to communicate.

3.8 error analysis

In order to integrate automatically labeled examples into a network
analysis that studies the flow of polarized information in the network,
we need to produce high precision predictions for the pro-Russian and
the pro-Ukrainian class. Polarized tweets that are incorrectly classified
as neutral will hurt an analysis much less than neutral tweets that
are erroneously classified as pro-Russian or pro-Ukrainian. However,
the worst type of confusion is between the pro-Russian and pro-
Ukrainian class. In order to gain insights into why these confusions
happen, we manually inspect incorrectly predicted examples that
are confused between the pro-Russian and pro-Ukrainian class. We
analyse the misclassifications in the development set of all 10 runs,
which results in 73 False Positives of pro-Ukrainian tweets being
classified as pro-Russian (referred to as pro-Russian False Positives),
and 88 False Positives of pro-Russian tweets being classified as pro-
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Ukrainian (referred to as pro-Ukrainian False Positives). We can identify
three main cases for which the model produces an error:

1. the correct class can be directly inferred from the text content
easily, even without background knowledge

2. the correct class can be inferred from the text content, given that
event-specific knowledge is provided

3. the correct class can be inferred from the text content if the text
is interpreted correctly

For the pro-Russian False Positives, we find that 42% of the errors
are category I and II errors, respectively, and 15% of category III. For
the pro-Ukrainian False Positives, we find 48% category I errors, 33%
category II errors and and 13% category III errors. Table 3.4 presents
examples for each of the error categories in both sets which we will
discuss in the following.

category i errors Category I errors could easily be classified
by humans following the annotation guidelines (see Section 3.3). One
difficulty can be seen in example f). Even though no background
knowledge is needed to interpret the content, interpretation is difficult
because of the convoluted syntax of the tweet. For the other examples
it is unclear why the model would have difficulties with classifying
them.

category ii errors Category II errors can only be classified with
event-specific background knowledge. Examples g), i) and k) relate to
the theory that a Ukrainian SU25 fighter jet shot down the plane in air.
Correct interpretation of these tweets depends on knowledge about
the SU25 fighter jet. In order to correctly interpret example j) as pro-
Russian, it has to be known that the bellingcat report is pro-Ukrainian.
Example l) relates to the theory that the shoot down was a false flag
operation run by Western countries and the bodies in the plane were
already dead before the crash. In order to correctly interpret example
m), the identity of Kolomoisky has to be known. He is an anti-separatist
Ukrainian billionaire, hence his involvement points to the Ukrainian
government being responsible for the crash.

category iii errors Category III errors occur for examples that
can only be classified by correctly interpreting the tweet authors’
intention. Interpretation is difficult due to phenomena such as irony
as in examples n) and o). While the irony is indicated in example n)
through the use of the hashtag #LOL, there is no explicit indication in
example o).
Interpretation of example q) is conditioned on world knowledge as
well as the understanding of the speakers beliefs. Example r) is pro-
Russian as it questions the validity of the assumption AC360 is making,
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but we only know that because we know that the assumption is absurd.
Example s) requires to evaluate that the speaker thinks people on site
are trusted more than people at home.

From the error analysis, we conclude that category I errors need
further investigation, as here the model makes mistakes on seemingly
easy instances. This might be due to the model not being able to
correctly represent Twitter specific language or unknown words, such
as Eukraine in example e). Category II and III errors are harder to avoid
and could be improved by applying reasoning (Wang and Cohen, 2015)
or irony detection methods (Van Hee, Lefever, and Hoste, 2018).

Figure 3.2: The upper plot shows the original k10 retweet network as com-
puted by Golovchenko, Hartmann, and Adler-Nissen, (2018) to-
gether with the new edges that were added after manually re-
annotating the classifier predictions. The bottom plot only visu-
alizes the new edges that we could add by filtering the classifier
predictions. Pro-Russian edges are colored in red, pro-Ukrainian
edges are colored in dark blue and neutral edges are colored in
grey. Both plots were made using The Force Atlas 2 layout in
gephi (Bastian, Heymann, and Jacomy, 2009).
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3.9 integrating automatic predictions into the retweet

network

Finally, we apply the CNN classifier to label new edges in Golovchenko,
Hartmann, and Adler-Nissen, (2018)’s retweet network, which is
shown in Figure 3.2. The retweet network is a graph that contains
users as nodes and an edge between two users if the users are retweet-
ing each other.14 In order to track the flow of polarized information,
Golovchenko, Hartmann, and Adler-Nissen, (2018) label an edge as
polarized if at least one tweet contained in the edge was manually
annotated as pro-Russian or pro-Ukrainian. While the network shows
a clear polarization, only a small subset of the edges present in the
network are labeled (see Table 3.5).

Automatic polarity prediction of tweets can help the analysis in
two ways. Either, we can label a previously unlabeled edge, or we can
verify/confirm the manual labeling of an edge, by labeling additional
tweets that are comprised in the edge.

3.9.1 predicting polarized edges

In order to get high precision predictions for unlabeled tweets, we
choose the probability thresholds for predicting a pro-Russian or pro-
Ukrainian tweet such that the classifier would achieve 80% precision on
the test splits (recall at this precision level is 23%). Table 3.5 shows the
amount of polarized edges we can predict at this precision level. Upon
manual inspection, we however find that the quality of predictions is
lower than estimated. Hence, we manually re-annotate the pro-Russian
and pro-Ukrainian predictions according to the official annotation
guidelines used by Golovchenko, Hartmann, and Adler-Nissen, 2018.
This way, we can label 77 new pro-Russian edges by looking at 415

tweets, which means that 19% of the candidates are hits. For the
pro-Ukrainian class, we can label 110 new edges by looking at 611

tweets (18% hits). Hence even though the quality of the classifier
predictions is too low to be integrated into the network analysis right
away, the classifier drastically facilitates the annotation process for
human annotators compared to annotating unfiltered tweets (from the
original labels we infer that for unfiltered tweets, only 6% are hits for
the pro-Russian class, and 11% for the pro-Ukrainian class).

14 Golovchenko, Hartmann, and Adler-Nissen, (2018) use the k10 core of the network,
which is the maximal subset of nodes and edges, such that all included nodes are
connected to at least k other nodes (Seidman, 1983), i.e. all users in the network have
interacted with at least 10 other users.
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Pro-R Pro-U Neutral Total

# labeled edges in
k10

270 678 2193 3141

# candidate edges 349 488 - 873

# added after filter-
ing predictions

77 110 - 187

Table 3.5: Number of labeled edges in the k10 network before and after
augmentation with predicted labels. Candidates are previously
unlabeled edges for which the model makes a confident prediction.
The total number of edges in the network is 24,602.

3.10 conclusion

In this work, we investigated the usefulness of text classifiers to detect
pro-Russian and pro-Ukrainian framing in tweets related to the MH17

crash, and to which extent classifier predictions can be relied on for
producing high quality annotations. From our classification experi-
ments, we conclude that the real-world applicability of text classifiers
for labeling polarized tweets in a retweet network is restricted to pre-
filtering tweets for manual annotation. However, if used as a filter, the
classifier can significantly speed up the annotation process, making
large-scale content analysis more feasible.
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abstract

In online discussion fora, speakers often make arguments for or against
something, say birth control, by highlighting certain aspects of the
topic. In social science, this is referred to as issue framing. In this
paper, we introduce a new issue frame annotated corpus of online
discussions. We explore to what extent models trained to detect issue
frames in newswire and social media can be transferred to the domain
of discussion fora, using a combination of multi-task and adversarial
training, assuming only unlabeled training data in the target domain.

4.1 introduction

The framing of an issue refers to a choice of perspective, often mo-
tivated by an attempt to influence its perception and interpretation
(Chong and Druckman, 2007; Entman, 1993). The way issues are
framed can change the evolution of policy as well as public opinion
(Dardis et al., 2008; Iyengar, 1991). As an illustration, contrast the
statement Illegal workers depress wages with This country is abusing and
terrorizing undocumented immigrant workers. The first statement puts
focus on the economic consequences of immigration, whereas the
second one evokes a morality frame by pointing out the inhumane
conditions under which immigrants may have to work. Being exposed
to primarily one of those perspectives might affect the public’s attitude
towards immigration.

Computational methods for frame classification have previously
been studied in news articles (Card et al., 2015) and social media posts
(Johnson, Jin, and Goldwasser, 2017). In this work, we introduce a
new benchmark dataset, based on a subset of the 15 generic frames
in the Policy Frames Codebook by (Boydstun et al., 2014). We focus on
frame classification in online discussion fora, which have become crucial
platforms for public dialogue on social and political issues. Table 1

shows example annotations, compared to previous annotations for
news articles and social media. Dialogue data is substantially different
from news articles and social media, and we therefore explore ways
to transfer information from these domains, using multi-task and
adversarial learning, providing non-trivial baselines for future work
in this area.

45



46 issue framing in online discussion fora

Platform: Online discussions

Economic Frame, Topic: Same sex marriage

But as we have seen, supporting same-sex marriage

saves money.

Legality Frame, Topic: Same sex marriage

So you admit that it is a right and it is being

denied?

Platform: News articles

Economic Frame, Topic: Immigration

Study Finds That Immigrants Are Central to Long

Island Economy

Legality Frame, Topic: Same sex marriage

Last week, the Iowa Supreme Court granted same-sex

couples the right to marry.

Platform: Twitter

Legality Frame, Topic: Same sex marriage

Congress must fight to ensure LGBT people have the

full protection of the law everywhere in America.

#EqualityAct

Table 4.1: Example instances from the datasets described in §4.2 and 4.3.

contributions We present a new issue-frame annotated dataset
that is used to evaluate issue frame classification in online discussion
fora. Issue frame classification was previously limited to news and
social media. As manual annotation is expensive, we explore ways to
overcome the lack of labeled training data in the target domain with
multi-task and adversarial learning, leading to improved results in the
target domain.1

related work Previous work on automatic frame classification
focused on news articles and social media. Card et al., (2016) predict
frames in news articles at the document level, using clusters of latent
dimensions and word-based features in a logistic regression model.
Ji and Smith, (2017) improve on previous work integrating discourse
structure into a recursive neural network. Naderi and Hirst, (2017)
use the same resource, but make predictions at the sentence level,
using topic models and recurrent neural networks. Johnson, Jin, and
Goldwasser, (2017) predict frames in social media data at the micro-

1 Code and annotations are available at https://github.com/coastalcph/issue_

framing.

https://github.com/coastalcph/issue_framing
https://github.com/coastalcph/issue_framing
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Frames 1 13 5 6 7

# instances 78 96 234 166 186

Table 4.2: Class distribution in the online discussion test set. The frame labels
correspond to the classes Economic (1), Political (13), Legality, Ju-
risprudence and Constitutionality (5), Policy prescription and evaluation
(6) and Crime and Punishment (7).

post level, using probabilistic soft logic based on lists of keywords,
as well as temporal similarity and network structure. All the work
mentioned above uses the generic frames of Boydstun et al., (2014)’s
Policy Frames Codebook. Baumer et al., (2015) predict words perceived
as frame-evoking in political news articles with hand-crafted features.
Field et al., (2018) analyse how Russian news articles frame the U.S.
using a keyword-based cross-lingual projection setup. Tsur, Calacci,
and Lazer, (2015) use topic models to analyze issue ownership and
framing in public statements released by the US congress. Besides
work on frame classification, there has recently been a lot of work
on aspects closely related to framing, such as subjectivity detection
(Lin, He, and Everson, 2011), detection of biased language (Recasens,
Danescu-Niculescu-Mizil, and Jurafsky, 2013) and stance detection
(Augenstein et al., 2016; Ferreira and Vlachos, 2016; Mohammad et al.,
2016).

Model Task Domain Labelset # classes # sequences

Baseline
Main task News articles Frames 5 10,480

Target task Online disc. (test) Frames 5 692

Multitask
+Aux task Tweets Frames 5 1,636

+Aux task Online disc.
Argument

quality
2 3,785

Adversarial +Adv task
Online disc.

+ News articles
Domain 2

4,731

+ 10,480

Online disc. (dev) Frames 5 176

Table 4.3: Overview over the data and labelsets for the different tasks. The
baseline model trains on the main task and predicts the target task.
The multi-task model uses one or both auxiliary tasks in addition
to the main task. The adversarial model uses the adversarial task
in addition to the main task. All models use the online disc. dev
set for model selection.

4.2 online discussion annotations

We create a new resource of issue-frame annotated online fora dis-
cussions, by annotating a subset of the Argument Extraction Corpus
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(Swanson, Ecker, and Walker, 2015) with a subset of the frames in the
Policy Frames Codebook. The Argument Extraction Corpus is a col-
lection of argumentative dialogues across topics and platforms.2 The
corpus contains posts on the following topics: gay marriage, gun control,
death penalty and evolution. A subset of the corpus was annotated with
argument quality scores by Swanson, Ecker, and Walker, (2015), which
we exploit in our multi-task setup (see §4.3).

We collect new issue frame annotations for each argument in the
argument-quality annotated data.3 We refer to this new issue-frame
annotated corpus as online discussion corpus henceforth. Each argu-
ment can have one or multiple frames. Following Naderi and Hirst,
(2017), we focus on the five most frequent issue frames: Economic,
constitutionality and jurisprudence, policy prescription and evaluation, law
and order/crime and justice, and political. See Table 4.1 for examples and
Table 4.2 for the class distribution in the resulting online discussions
test set. Phrases which do not match the five categories are labeled
as Other, but we do not consider this class in our experiments. The
annotations were done by a single annotator. A second annotator
labeled a subset of 200 instances that we use to compute agreement
as macro-averaged F-score, assuming one of the annotations as gold
standard. Results are 0.73 and 0.7, respectively. The averaged Cohen’s
Kappa is 0.71.

4.3 additional data

The dataset described in the previous section serves as evaluation set
for the online discussions domain. As we do not have labeled training
data for this domain, we exploit additional corpora and additional
annotations, which are described in the next subsection. Statistics
of the filtered datasets as well as preprocessing details are given in
Appendix 9.

media frames corpus The Media Frames Corpus (Card et al.,
2015) contains US newspaper articles on three topics: Immigration,
smoking and same-sex marriage. The articles are annotated with the 15

framing dimensions defined in the Policy Frames Codebook.4 The
annotations are on span-level and can cross sentence boundaries. We
convert span annotations to sentence-level annotations as follows: if
a span annotated with label l lies within sentence boundaries and
covers at least 50% of the tokens in the sentence, we label the sentence

2 The corpus is a combination of dialogues from http://www.createdebate.com/, and
Walker et al., (2012a)’s Internet Argument Corpus, which contains dialogues from
4forums.com.

3 Topic cluster Evolution was dropped, because it contained too few examples matching
our frame categories.

4 We discard all instances that do not correspond to the frame categories in the online
discussions data.

http://www.createdebate.com/
4forums.com
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with l. We only keep sentence annotations if they are indicated by at
least two annotators.

congressional tweets dataset The congressional tweets dataset
(Johnson, Jin, and Goldwasser, 2017) contains tweets authored by 40

members of the US Congress, annotated with the frames of the Policy
Frames Codebook. The tweets are related to one or two of the follow-
ing six issues: abortion, the Affordable Care Act, gun rights vs. gun control,
immigration, terrorism, and the LGBTQ community, where each tweet is
annotated with one or multiple frames.

argument quality annotations The corpus of online discus-
sions contains additional annotations that we exploit in the multi-task
setup. Swanson, Ecker, and Walker, (2015) sampled a subset of 5,374

sentences, using various filtering methods to increase likelihood of
high quality argument occurrence, and collected annotations for ar-
gument quality via crowdsourcing. Annotators were asked to rate
argument quality using a continuous slider [0-1]. Seven annotations
per sentence were collected. We convert these annotations into binary
labels (1 if ≥ 0.5, 0, otherwise) and generate an approximately bal-
anced dataset for a binary classification task that is then used as an
auxiliary task in the multi-task setup. Balancing is motivated by the
observation that balanced datasets tend to be better auxiliary tasks
(Bingel and Søgaard, 2017).

4.4 models

The task we are faced with is (multi-label) sequence classification for
online discussions. However, we have no labeled training data (and
only a small labeled validation set) for the target task in the target
domain. Hence, we train our model on a dataset which is labeled
with the target labels, but from a different domain. The largest such
dataset is the news articles corpus, which we consequently use as
main task. Our baseline model is a two-layer LSTM (Hochreiter and
Schmidhuber, 1997) trained on only the news articles data. We then
apply two strategies to facilitate the transfer of information from
source to target domain, multi-task learning and adversarial learning.
We briefly describe both setups in the following. An overview over
tasks and data used in the different models is shown in Table 4.3.

multi-task learning To exploit synergies between additional
datasets/annotations, we explore a simple multi-task learning with
hard parameter sharing strategy, pioneered by (Caruana, 1993), intro-
duced in the context of NLP by (Collobert et al., 2011), and to Recurrent
Neural Network (RNN)s by (Søgaard and Goldberg, 2016), which has
been shown to be useful for a variety of NLP tasks, e.g. sequence la-
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Figure 4.1: Overview over the multi-task model (left) and the adversarial
model (right). The baseline LSTM model corresponds to the same
architecture with only one task.

belling (Augenstein and Søgaard, 2017; Rei, 2017; Ruder et al., 2019),
pairwise sequence classification (Augenstein, Ruder, and Søgaard,
2018) or machine translation (Dong et al., 2015). Here, parameters are
shared between hidden layers. Intuitively, it works by training several
networks in parallel, tying a subset of the hidden parameters so that
updates in one network affect the parameters of the others. By sharing
parameters, the networks regularize each other, and the network for
one task can benefit from representations induced for the others.

Our multi-task architecture is shown in Figure 4.1. We have N
different datasets T1, · · · , TN . Each dataset Ti consists of tuples of
sequences xTi ∈ XTi and labels yTi ∈ YTi . A model for task Ti consists
of an input layer, an LSTM layer (that is shared with all other tasks)
and a feed forward layer with a softmax activation as output layer. The
input layer embeds a sequence xTi using pretrained word embeddings.
The LSTM layer recurrently processes the embedded sequence and
outputs the final hidden state h. The output layer outputs a vector of
probabilities pTi ∈ R

YTi , based on which the loss Li is computed as
the categorical cross-entropy between prediction pTi and true label
yTi . In each iteration, we sample a data batch for one of the tasks and
update the model parameters using stochastic gradient descent. If we
sample a batch from the main task or an auxiliary task is decided by a
weighted coin flip.
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Nr. Gold Adv MTL LSTM Sentence

(1) 5 5 5 7 But, star gazer, we had guns then when the
Constitution was written and enshrined in
the BOR and now incorporated into th 14th
Civil Rights Amendment.

(2) 6 6 5 1 Gun control is about preventing such security
risks.

(3) 7 7 5 1 First, you warn me of the dangers of using
violent means to stop a crime.

(4) 5 6 6 6 So I don’t see restrictions on handguns in
D.C. as being a clear violation of the Second
Amendment.

Table 4.4: Examples for model predictions on the online discussion dev set.
The first column shows the gold label and the following columns
the prediction made by the adversarial model (Adv), the Multi-Task
model (MTL) and the LSTM baseline (LSTM).

adversarial learning Ganin and Lempitsky, (2015) proposed
adversarial learning for domain adaptation that can exploit unlabeled
data from the target domain. The idea is to learn a classifier that is as
good as possible at assigning the target labels (learned on the source
domain), but as poor as possible in discriminating between instances
of the source domain and the target domain. With this strategy, the
classifier learns representations that contain information about the
target class but abstract away from domain-specific features. During
training, the model alternates between 1) predicting the target labels
and 2) predicting a binary label discriminating between source and tar-
get instances. In this second step, the gradient that is backpropagated
is flipped by a Gradient-Reversal layer.5 Consequently, the model pa-
rameters are updated such that the classifier becomes worse at solving
the task. The architecture is shown in the right part of Figure 4.1. In
our implementation, the model samples batches from the adversarial
task or the main task based on a weighted coinflip.

4.5 experiments

We compare the multi-task learning and the adversarial setup with two
baseline models: (a) a Random Forest classifier using tf-idf weighted
bag-of-words-representations, and (b) the LSTM baseline model. For
the multi-task model, we use both the Twitter dataset and the argu-
ment quality dataset as auxiliary tasks. For all models, we report re-
sults on the test set using the optimal hyper-parameters that we found
averaged over 3 runs on the validation set. For the neural models, we
use 100-dimensional Global Vectors for Word Representation (GloVe)

5 In the forward pass, this layer multiplies its input with the identity matrix.
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1 5 6 7 13

Figure 4.2: Improvement in F-score over the random baseline by class. The
absolute F-scores for the best performing system for classes 1, 5,
6, 7, and 13, are 0.529, 0.625, 0.298, 0.655, and 0.499, respectively.

embeddings (Pennington, Socher, and Manning, 2014), pre-trained on
Wikipedia and Gigaword.6 Details about hyper-parameter tuning and
optimal settings can be found in Appendix 9.

Model Pma Rma Fma Fmi

Random Baseline 0.196 0.198 0.189 0.196

Random Forest Baseline 0.496 0.335 0.267 0.279

LSTM Baseline 0.512 0.510 0.503 0.521

Multi-Task 0.526 0.525 0.505 0.534

Adversarial 0.533 0.534 0.515 0.548

Table 4.5: Macro- (ma) and micro-averaged (mi) scores for the online discus-
sion test data averaged over 3 runs. The multi-task model uses
the Twitter and argument quality datasets as auxiliary tasks. The
micro-average F of a baseline that predicts the majority class is
0.307.

results The results in Table 4.5 show that both the multi-task
and the adversarial model improve over the baselines. The multi-task
model achieves minor improvements over the LSTM baseline, with
a bigger improvement in the micro-averaged score, indicating bigger
improvements with frequent labels. The adversarial model performs
best, with an error reduction in micro-averaged F over the LSTM
baseline of 5.6%.

Figure 4.2 shows the system performances for each class. Each bar
indicates the difference between the F-score of the respective system
and the random baseline. The adversarial model achieves the biggest
improvements over the baseline for classes 5 and 7, which are the

6 https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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two most frequent classes in the test set (cf. Table 9.1 in Appendix 9).
For classes 1 and 13, the adversarial model is outperformed by the
LSTM. Furthermore, we see that the hardest frame to predict is the
Policy prescription and evaluation frame (6), where the models achieve the
lowest improvement over the baseline and the lowest absolute F-score.
This might be because utterances with this frame tend to address
specific policies that vary according to topic and domain of the data,
and are thus hard to generalize from source to target domain.

analysis Table 4.4 contains examples of model predictions on the
dialogue dev set. In Example (1), the adversarial and the multi-task
model correctly predict a Constitutionality frame, while the LSTM
model incorrectly predicts a Crime and punishment frame. In Examples
(2) and (3), only the adversarial model predicts the correct frames. In
both cases, the LSTM model incorrectly predicts an Economic frame,
possibly because it is misled by picking up on a different sense of the
terms means and risks. In Example (4), all models make an incorrect
prediction. We speculate this might be because the models pick up on
the phrase restrictions on handguns and interpret it as referring to a pol-
icy, whereas to correctly label the sentence they would have to pick up
on the violation of the Second Amendment, indicating a Constitutionality
frame.

4.6 conclusion

This work introduced a new benchmark of political discussions from
online fora, annotated with issue frames following the Policy Frames
Cookbook. Online fora are influential platforms that can have impact
on public opinion, but the language used in such fora is very different
from newswire and other social media. We showed, however, how
multi-task and adversarial learning can facilitate transfer learning from
such domains, leveraging previously annotated resources to improve
predictions on informal, multi-party discussions. Our best model
obtained a micro-averaged F1-score of 0.548 on our new benchmark.
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abstract

Cross-lingual representation learning is an important step in making
NLP scale to all the world’s languages. Previous work on bilingual
lexicon induction suggests that it is possible to learn cross-lingual rep-
resentations of words based on similarities between images associated
with these words. However, that work focused (almost exclusively) on
the translation of nouns only. Here, we investigate whether the mean-
ing of other POS, in particular adjectives and verbs, can be learned in
the same way. Our experiments across five language pairs indicate that
previous work does not scale to the problem of learning cross-lingual
representations beyond simple nouns.

5.1 introduction

Typically, cross-lingual word representations are learned from word
alignments, sentence alignments, from aligned, comparable documents
Levy, Goldberg, and Søgaard, 2017, or from monolingual corpora
using seed dictionaries (Ammar et al., 2016).1 However, for many
languages such resources are not available.

(Bergsma and Van Durme, 2011) introduced an alternative idea,
namely to learn bilingual representations from image data collected
via web image search. The idea behind their approach is to represent
words in a visual space and find valid translations between words
based on similarities between their visual representations. Representa-
tions of words in the visual space are built by representing a word by
a set of images that are associated with that word, i.e., the word is a
semantic tag for the images in the set.

(Kiela, Vulic, and Clark, 2015) improve performance for the same
task using a feature representation extracted from convolutional net-
works. However, both works only consider nouns, leaving open the
question of whether learning cross-lingual representations for other
POS from images is possible.2

1 Recent work by (Conneau et al., 2018) introduces unsupervised bilingual lexicon
induction from monolingual corpora, however, it was shown that this approach has
important limitations (Søgaard, Ruder, and Vulić, 2018).

2 (Kiela, Verő, and Clark, 2016) induce English-Italian word translations from image
data for the Simlex-999 dataset which contains adjectives and verbs, but they do not
evaluate the performance for these POS compared to nouns.
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In order to evaluate whether this work scales to verbs and adjectives,
we compile wordlists containing these POS in several languages. We
collect image sets for each image word and represent all words in
a visual space. Then, we rank translations computing similarities
between image sets and evaluate performance on this task.

Another field of research that exploits image data for NLP appli-
cations is the induction of multi-modal embeddings, i.e. semantic
representations that are learned from textual and visual information
jointly (Hill and Korhonen, 2014; Kiela and Bottou, 2014; Kiela, Verő,
and Clark, 2016; Kiela et al., 2014; Lazaridou, Pham, and Baroni, 2015;
Silberer, Ferrari, and Lapata, 2017; Vulić et al., 2016). The work pre-
sented in our paper differs from these approaches, in that we do not
use image data to improve semantic representations, but use images
as a resource to learn cross-lingual representations. Even though lexi-
con induction from text resources might be more promising in terms
of performance, we think that lexicon induction from visual data is
worth exploring as it might give insights in the way that language is
grounded in visual context.

5.1.1 contributions

We evaluate the approaches by (Bergsma and Van Durme, 2011) and
(Kiela, Vulic, and Clark, 2015) on an extended data set, which apart
from nouns includes both adjectives and verbs. Our results suggest
that none of the approaches involving image data are directly ap-
plicable to learning cross-lingual representations for adjectives and
verbs.

5.2 data

wordlists We combined 3 data sets of English words to com-
pile the wordlists for our experiments: the original wordlist used by
(Kiela, Vulic, and Clark, 2015), the Simlex-999 data set of English
word pairs (Hill, Reichart, and Korhonen, 2014) and the A dataset for
multimodal distributional semantics (MEN) data set (Bruni, Tran, and
Baroni, 2014). Whereas the first wordlist contains only nouns, the latter
two datasets contain words of three POS classes (nouns, adjectives and
verbs). We collect all distinct words and translate the final wordlist
into 5 languages (German, French, Russian, Italian, Spanish) using
the Google translation API3, choosing the most frequent translation
with the respective POS tag. Table 5.1 shows the POS distribution in the
datasets.

3 https://translate.google.com/

https://translate.google.com/
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(a) Images associated with the English noun cow (left) and the German translation Kuh
(right).

(b) Images associated with the English verb discuss (left) and the German translation
diskutieren (right).

(c) Images associated with the English adjective sad (left) and the German translation
traurig (right).

Figure 5.1: Examples for images associated with equivalent words in two
languages (English and German).

image data sets We use the Google Custom Search API4 to
represent each word in a wordlist by a set of images. We collect the
first 50 jpeg images returned by the search engine when querying the
words specifying the target language.5 This way, we compile image
data sets for 6 languages.6 Figure 5.1 shows examples for images
associated with a word in two languages.

4 https://developers.google.com/custom-search/

5 Even though we get the search results for the first 50 images, some of them cannot be
downloaded. On average, we collect 42 images for each image word.

6 The wordlists and image datasets are available at https://github.com/coastalcph/
cldi_from_image_search/

https://developers.google.com/custom-search/
https://github.com/coastalcph/cldi_from_image_search/
https://github.com/coastalcph/cldi_from_image_search/
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MEN Simlex Bergsma Combined

N 656 751 500 1406

V 38 170 0 206

A 57 107 0 159

Table 5.1: Distribution of POS tags in the datasets used to compile the final
wordlist.

5.3 approach

The assumption underlying the approach is that semantically similar
words in two languages are associated with similar images. Hence, in
order to find the translation of a word, e.g. from English to German, we
compare the images representing the English word with all the images
representing German words, and pick as translation the German
word represented by the most similar images. To compute similarities
between images, we compute cosine similarities between their feature
representations.

5.3.1 convolutional neural network feature represen-
tations

Following (Kiela, Vulic, and Clark, 2015), we compute convolutional
neural network (CNN) feature representations using a model pre-
trained on the ImageNet classification task (Russakovsky et al., 2015).
For each image, we extract the pre-softmax layer representation of
the CNN. Instead of an AlexNet (Krizhevsky, Sutskever, and Hinton,
2012) as used by (Kiela, Vulic, and Clark, 2015), we use the Keras
implementation of the Very deep convolutional network for large-
scale image recognition (VGG19) model as described in (Simonyan and
Zisserman, 2014), which was shown to achieve similar performance
for word representation tasks by (Kiela, Verő, and Clark, 2016). Using
this model, we represent each image by a 4069-dimensional feature
vector.

similarities between individual images (Bergsma and Van
Durme, 2011) determine similarities between image sets based on
similarities between all individual images. For each image in image
set 1, the maximum similarity score for any image in image set 2 is
computed. These maximum similarity scores are then either averaged
(AvgMax) or their maximum is taken (MaxMax).

similarities between aggregated representations In
addition to the above described methods, (Kiela, Vulic, and Clark, 2015)
generate an aggregated representation for each image set and then
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compute the similarity between image sets by computing the similarity
between the aggregated representations. Aggregated representations
for image sets are generated by either taking the component-wise
average (CNN-Mean) or the component-wise maximum (CNN-Max)
of all images in the set.

k-nearest neighbor For each image in an image set in language
1, we compute its nearest neighbor across all image sets in language 2.
Then, we find the image set in language 2 that contains the highest
number of nearest neighbors. The image word is translated into the
image word that is associated with that image 2 set. Ties between
image sets containing an equivalent number of nearest neighbors are
broken by computing the average distance between all members. We
refer to the method as k nearest neighbor (KNN). Whereas the other
approaches described above provide a ranking of translations, this
method determines only the one translation that is associated with
the most similar image set.

clustering image sets As we expect the retrieved image sets
for a word to contain images associated with different senses of the
word, we first cluster images into k clusters. This way, we hope to
group images representing different word senses. Then, we apply the
KNN method as described above. We refer to this method as KNN-C.

5.3.2 evaluation metrics

Ranking performance is evaluated by computing the Mean Reciprocal

Rank (MRR) as MRR = 1
M

M
∑

i=1

1
rank(ws, wt)

M is the number of words

to be translated and rank(ws, wt) is the position the correct translation
wt for source word ws is ranked on.

In addition to MRR, we also evaluate the cross-lingual representa-
tions by means of P@k.

ALL NN VB ADJ

MRR P@1 P@10 MRR P@1 P@10 MRR P@1 P@10 MRR P@1 P@10

avgMax 0.53 0.49 0.60 0.60 0.56 0.67 0.20 0.15 0.30 0.28 0.22 0.37

maxMax 0.44 0.38 0.54 0.49 0.43 0.61 0.19 0.15 0.24 0.23 0.18 0.31

CnnMean 0.49 0.44 0.57 0.56 0.52 0.64 0.15 0.10 0.26 0.24 0.20 0.32

CnnMax 0.47 0.43 0.55 0.55 0.50 0.63 0.15 0.10 0.24 0.19 0.15 0.27

KNN – 0.42 – – 0.50 – – 0.06 – – 0.13 –

KNN-C – 0.47 – – 0.56 – – 0.10 – – 0.16 –

Table 5.2: Results for translation ranking with images represented by CNN
features averaged over 5 language pairs. KNN and KNN-C do not
produce a ranking, hence we only provide P@1 values. For both
KNN models, k = 3.
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5.4 experiments and results

We run experiments for 5 language pairs English–German, English–
Spanish, English–French, English–Russian and English–Italian. We
evaluate the representations computed from image data and compare
the different methods for similarity computation described in 5.3. For
each English word, we rank all the words in the corresponding target
languages based on similarities between image sets and evaluate the
models’ ability to identify correct translations, i.e. to rank the correct
translation on a position near the top. We compare 4 settings that
differ in the set of English words that are translated. In the setting
ALL, all English words in the wordlist are translated. NN, VB and
ADJ refer to the settings where only nouns, verbs and adjectives are
translated.

5.4.1 results

comparison of similarity computation methods for vi-
sual representations Table 5.2 displays results averaged over
all language pairs.7 First, comparing the different methods to com-
pute similarities between image sets, avgMax outperforms the other
methods in almost all cases. Most importantly, we witness a very
significant drop in performance when moving from nouns to verbs
and adjectives. For verbs, we rarely pick the right translation based on
the image-based word representations. This behavior applies across
all methods for similarity computation. Further, we see small improve-
ments if we cluster the image sets prior to applying the KNN method,
which might indicate that the clustering helps in finding translations
for polysemous words.

5.4.2 analysis

If we try to learn translations from images, integrating verbs and
adjectives into the dataset worsens results compared to a dataset
that contains only nouns. One possible explanation is that images
associated with verbs and adjectives are less suited to represent the
meaning of a concept than images associated with nouns.

(Kiela, Vulic, and Clark, 2015) suppose that lexicon induction via
image similarity performs worse for datasets containing words that
are more abstract. In order to approximate the degree of abstractness
of a concept, they compute the image dispersion d for a word w as

7 We also evaluate our visual representations on the set of 500 nouns used by Kiela,
Vulic, and Clark, (2015), which results in P@1=0.6 and MRR=0.63 averaged over 5

language pairs for the avgMax method.
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the average cosine distance between all image pairs in the image set
{ij, . . . , in} associated with word w according to

d(w) =
2

n(n− 1) ∑
k<j≤n

1− ij · ik

|ij||ik|

In their analysis, (Kiela, Vulic, and Clark, 2015) find that their model
performs worse on datasets with a higher average image dispersion.
(Kiela et al., 2014) introduce a dispersion-based filtering approach for
learning multi-modal representations of nouns. They show that the
quality of their representations with respect to a monolingual word-
similarity prediction task improves, if they include visual information
only in cases where the dispersion of the visual data is low.

Computing the average image dispersion for our data across lan-
guages shows that image sets associated with verbs and adjectives
have a higher average image dispersion than image sets associated
with nouns (nouns: d = 0.60, verbs: d = 0.68, adjectives: d = 0.66).

Table 5.3 shows the image words associated with the image sets that
have the highest and lowest dispersion values in the English image
data. For nouns and adjectives, we observe that the words with lowest
dispersion values express concrete concepts, whereas the words with
highest dispersion values express more abstract concepts that can be
displayed in many variants. Manually inspecting the dataset, we find
e.g. that the images associated with the noun animal display many
different animals, such as birds, dogs, etc, whereas the images for mug
all show a prototypical mug.

Lowest dispersion Highest dispersion

Word d Word d

NN
mug 0.31 animal 0.78

oscilloscope 0.32 companion 0.78

padlock 0.33 mammal 0.78

VB
vanish 0.43 differ 0.76

shed 0.43 hang 0.76

divide 0.47 arrange 0.75

ADJ
yellow 0.39 huge 0.79

white 0.40 large 0.79

fragile 0.43 big 0.78

Table 5.3: English image words associated with the image sets with highest
and lowest dispersion scores d.
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Besides the dispersion values, we also analyze the number of word
senses per POS using WordNet8. We find that the verbs in our dataset
have a higher average number of word senses (n = 9.18) than the
adjectives (n = 6.88) and the nouns (n = 5.08). That we get worst
results for the words with highest number of different word senses is
in agreement with (Gerz et al., 2016), who find that in a monolingual
word similarity prediction task, models perform worse for verbs with
more different senses than for less polysemous verbs.

5.5 conclusion

We showed that existing work on learning cross-lingual word rep-
resentations from images obtained via web image search does not
scale to other POS than nouns. It is possible that training convolutional
networks on different resources than ImageNet data will provide bet-
ter features representing verbs and adjectives. Finally, it would be
interesting to extend the approach to multi-modal input, combining
images and texts, e.g. from comparable corpora with images such as
Wikipedia.

8 https://wordnet.princeton.edu/

https://wordnet.princeton.edu/
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abstract

This paper presents a challenge to the community: Generative ad-
versarial networks (GANs) can perfectly align independent English
word embeddings induced using the same algorithm, based on dis-
tributional information alone; but fails to do so, for two different
embeddings algorithms. Why is that? We believe understanding why,
is key to understand both modern word embedding algorithms and
the limitations and instability dynamics of GANs. This paper shows
that (a) in all these cases, where alignment fails, there exists a linear
transform between the two embeddings (so algorithm biases do not
lead to non-linear differences), and (b) similar effects can not easily
be obtained by varying hyper-parameters. One plausible suggestion
based on our initial experiments is that the differences in the inductive
biases of the embedding algorithms lead to an optimization landscape
that is riddled with local optima, leading to a very small basin of
convergence, but we present this more as a challenge paper than a
technical contribution.

6.1 introduction

This paper brings together two fascinating research topics in NLP,
namely understanding the properties of word embeddings (Mikolov et al.,
2013; Mimno and Thompson, 2017; Mitchell and Steedman, 2015) and
unsupervised bilingual dictionary induction (Conneau et al., 2018; Sø-
gaard, Ruder, and Vulić, 2018; Zhang et al., 2017b). In an effort to
better understand when unsupervised bilingual dictionary induction
is possible, we factored out linguistic differences between languages,
and studied English-English alignability (by learning to align English
embeddings trained on different samples of the English Wikipedia),
when we came across a puzzling phenomena: English-English can be
aligned with almost 100% precision, if you use the same embedding algo-
rithms for the two samples, but not at all (0% precision), if you use different
embedding algorithms. This results suggest that the properties of word
embeddings induced by different algorithms challenge unsupervised
bilingual dictionary algorithms. Understanding why will enable us
to develop more stable adversarial learning algorithms and give us a
better understanding of how embedding algorithms differ.

65
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contributions We are, to the best of our knowledge, the first to
study unsupervised alignability of pairs of English word embeddings.
We show that unsupervised alignment – specifically the MUSE system
(Conneau et al., 2018) – fails when the algorithms used to induce the
two embeddings differ, and that this is not because there is no linear
transformation between the two spaces. We further show that poor
initialization, as a result of MUSE initially applying an identity trans-
form to two word embeddings far apart in space, is not the sole reason
the discriminator suffers from local optima. Finally, we present an
experiment showing what the minimal corpus size is for unsupervised
alignment to succeed, in the absence of linguistic differences.

6.2 aligning embeddings

6.2.1 unsupervised alignment using generative adver-
sarial networks

MUSE (Conneau et al., 2018) uses a vanilla GAN with a linear generator
to learn alignments between embedding spaces without supervision.
In a two-player game, a discriminator D aims to tell the two language
spaces apart, while a generator G aims to map the source language
into the target language space, fooling the discriminator. While MUSE

achieves impressive results at times, MUSE is highly unstable, e.g., with
different initializations precision scores vary between 0% and 45% for
English-Greek (Søgaard, Ruder, and Vulić, 2018).

The parameters of a GAN with a linear generator are (Ω, w). They
are obtained by solving the following min-max problem:

min
Ω

max
w

E[log(Dw(X)) + log(1− Dw(gΩ(Z)))] (6.1)

which reduces to

min
Ω

JS(PX | PΩ) (6.2)

Ω is initialized as the identity matrix I.
If G wins the game against an ideal discriminator on a very large

number of samples, then F (the source vector space) and ΩE (with
E being the target vector space) can be shown to be close in Jensen-
Shannon divergence, and thus the model has learned the true distri-
bution. This result, referring to the distributions of the data, pdata, and
the distribution, pg, G is sampling from, is from Goodfellow et al.,
(2014): If G and D have enough capacity, and at each step of training, the
discriminator is allowed to reach its optimum given G, and pg is updated so
as to improve the criterion

Ex∼pdata [log D∗G(x)] + Ex∼pg [log(1− D∗G(x))]
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then pg converges to pdata.
This result relies on a number of assumptions that do not hold in

practice. Our generator, which learns a linear transform Ω, has very
limited capacity, for example, and we are updating Ω rather than pg.
In practice, therefore, during training, we alternate between k steps of
optimizing the discriminator and one step of optimizing the generator.
If the GAN-based alignment is not successful, this can thus be a result
of two things: Either that G does not have enough capacity, or that
D is stuck in a local optimum. Our results in Section 6.3 show that
the inability to align English-English in the case of different word
embedding algorithms is not a result of limited capacity, but a result
of the GAN being trapped in one of the many local optima of the loss
function.

6.2.2 supervised alignment using procrustes analysis

Procrustes Analysis (Schönemann, 1966) has been commonly used
for supervised alignment of word embeddings (Artetxe, Labaka, and
Agirre, 2018b; Smith et al., 2017). Here, the optimal alignment between
two embedding spaces is computed using singular value decompo-
sition of the aligned embeddings in a seed dictionary. Conneau et
al., (2018) use Procrustes Analysis to refine an initial seed dictionary
learned by the generative adversarial network without supervision. In
our supervised experiments, we use 5000 seed words as supervision
for learning the alignment between embeddings.

6.2.3 geometry of embeddings

Below we summarize some previous findings about the geometry
of monolingual embeddings (Mimno and Thompson, 2017), and
add some new observations. We discuss five embedding algorithms:
Singular Value Decomposition (SVD) on positive Pointwise Mutual In-
formation (PMI) matrices (Hyperwords-SVD) (Levy, Goldberg, and Da-
gan, 2015), skip-gram negative sampling applied to co-occurrence ma-
trices (Hyperwords-Skipgram Negative Sampling (SGNS)) (Levy, Gold-
berg, and Dagan, 2015), Continuous Bag-of-Words (CBOW) (Mikolov
et al., 2013a), GloVe (Pennington, Socher, and Manning, 2014), and
FastText (Bojanowski et al., 2017). To analyze the geometry of our
monolingual embeddings in space, we report average inner product
to mean vector; see (Mimno and Thompson, 2017) for details.

hyperwords-svd have a small average inner product (0.0032),
suggesting they are well-dispersed through space; like Hyperwords-
SGNS and standard SGNS (Mimno and Thompson, 2017), they do
not exhibit a clear word frequency bias. Hyperwords-SGNS vectors
also have a small average inner product (0.0002), in contrast with
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Hyperwords-SGNS Hyperwords-SVD CBOW GloVe FastText

Unsupervised

Hyperwords-SGNS 0.997

Hyperwords-SVD 0.000 0.992

CBOW 0.000 0.000 0.997

GloVe 0.000 0.000 0.000 0.997

FastText 0.000 0.000 0.000 0.000 0.997

Supervised

Hyperwords-SVD 0.967

CBOW 0.990 0.989

GloVe 0.985 0.992 0.999

FastText 0.994 0.994 0.999 0.997

Table 6.1: Precision at 1 (P@1) for unsupervised GAN alignment with Pro-
crustes refinement (top) and supervised Procrustes analysis for
the cases in which unsupervised alignment fails (bottom). Results
clearly show that GANs can align two independent embeddings
induced by the same algorithm; but not embeddings aligned by
different ones. Supervised Procrustes analysis, on the other hand,
perfectly aligns the embeddings in both cases.

standard SGNS vectors, which are narrowly clustered in a single
orthant (Mimno and Thompson, 2017). In line with standard SGNS

vectors, the frequency of words has relatively little effect on their
inner product, with the exception of the rare words, which have
slightly less positive inner products. CBOW vectors have a relatively
large average inner product (4.2985). The vectors trained by GloVe

show a clear relationship with word frequency, with low-frequency
words opposing the frequency-balanced mean vector. The embeddings
are well-dispersed, with an average inner product of 0.0002. Finally,
FastText vectors have a large, positive inner product with the mean
(0.2988), indicating that they are not evenly dispersed through the
space, but pointing in roughly the same direction. The FastText vectors
exhibit a frequency bias, much like what has been previously observed
with GloVe vectors. The differences are the results of the inductive
biases of the different embedding algorithms.

6.3 experiments

This section presents our data, the hyper-parameters of our embed-
dings, our experimental protocols, and our results.
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6.3.1 data

In the following experiments we learn word embeddings on samples
of a publicly available Wikipedia dump from March 2018.1 The data is
preprocessed using a publicly available preprocessing script2, extract-
ing text, removing non-alphanumeric characters, converting digits to
text, and lowercasing the text.

6.3.2 hyper-parameters

We train 300-dimensional word embeddings using the algorithms’
recommended hyperparameter settings, listed in the following:3 For
Hyperwords-SGNS, the window size is set to 2 and the subsampling
of frequent words and smoothing of the context distribution are dis-
abled. The minimal word count for being in the vocabulary is 100. The
same applies for Hyperwords-SVD, and the exponent for weighting
the eigenvalue matrix is 0.5. For CBOW, the window size is set to 8,
the number of negative samples is 25, and the subsampling threshold
for frequent words is 1e-4. For GloVe, the window size is set to 15 and
the cutoff parameter xmax to 10. Finally, for FastText, the window size
is 5, the number of negatives samples is 5 and the sampling threshold
is 0.0001.

6.3.3 main experiments

We train word embeddings using the different embedding algorithms
listed in Section 6.3.2 on two non-overlapping 10% samples of the
English Wikipedia dump (the samples contain 463,576 and 528,556

distinct words, with an overlap in vocabulary of 351,858 words). We
learn unsupervised and supervised alignments for embeddings (as
described in Section 6.2) trained by different algorithms on the same
datasplits, and for embeddings trained by the same algorithm on the
two different datasplits. For the unsupervised alignments, we use the
default parameters of the MUSE system for the adversarial training, i.e.
a discriminator with 2 fully connected layers of 2048 units trained over
5 epochs, 1,000,000 iterations per epoch with 5 discriminator steps per
iteration and a batch size of 32.

We evaluate the alignments in terms of Precision@1 in the word
translation retrieval task for the 1500 test words used by Conneau et al.,
(2018). The results are shown in Table 6.14. Our main observations are:
(a) MUSE learns perfect alignments for embeddings learned by the same

1 https://dumps.wikimedia.org/enwiki/

2 http://mattmahoney.net/dc/textdata.html

3 We also ran experiments with one of the embedding algorithms (FastText) to check if
our results were robust across hyper-parameter settings

4 We report Precision at 1 scores but find that the pattern is the same for Precision at
10, with perfect alignments for embeddings from the same algorithm and 0 scores

https://dumps.wikimedia.org/enwiki/
http://mattmahoney.net/dc/textdata.html
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algorithm on different data splits. (b) MUSE cannot learn alignments
for embeddings learned by different algorithms on the same data
splits, even if there exists a linear transformation aligning both sets
of embeddings (the supervised algorithm learns perfect alignments).
We also verify that MUSE cannot learn to align embeddings from
different algorithms even when induced from the same sample. As already
mentioned, we also ran experiments to check that the failure of MUSE

to learn good alignments was not a result of the differences in hyper-
parameter settings. Section 6.3.4 presents additional experiments with
normalization, for control; Section 6.3.5 addresses how much data is
needed to align independently induced embeddings from the same
algorithm. Section 6.4 discusses potential answers to why MUSE fails
when embeddings are induced using different algorithms.

6.3.4 experiments with normalization

The embeddings in the main experiments differ in several ways; see
Section 6.2. One possible explanation for the inability of MUSE to
align embeddings from different algorithms could be that the two
embeddings are so far apart in space that the discriminator learns to
discriminate between them too quickly. Recall that Ω is initialized as
the identity matrix I, which means that the generator initially presents
the discriminator with the source embedding as is. This is an effect
that has often been observed with GANs (Arjovsky and Bottou, 2017);
could this also be the explanation for our results? At a first glance,
this seems a possible explanation. The inner products with the mean
differ significantly for the five embedding algorithms (see Section
6.2). The only embeddings that have roughly the same directionality
are Hyperwords and GloVe, and their centroids are very far apart in
cosine space. The cosine similarity of the centroids of the two versions
of Hyperwords is -0.006, and the cosine similarity for Hyperwords-
SVD and GloVe is 0.019. However, poor initialization as a result of
applying the identity transform to very distant word embeddings is
not the explanation for the poor performance of MUSE in this set-up:
Both sets of Hyperwords embeddings were normalized, but alignment
still failed. To verify this holds in general, i.e., that results are not
affected by normalization in general, we also ran experiments with the
remaining 14 embedding pairs, normalizing and/or centering both
embeddings. Results stayed the same: Precision at 1 scores of 0.

6.3.5 learning curve

MUSE perfectly aligns independently induced word embeddings in-
duced by the same algorithm. For FastText, it correctly aligns 99.7% of

for alignments between embeddings from different algorithms in the unsupervised
experiments.
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Figure 6.1: Unsupervised alignment quality for FastText embeddings trained
on samples of different sizes, evaluated on 878 words covered by
all of the embeddings. The x-axis is log-scaled.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05
Number of updates

0.4

0.5

0.6

0.7

Di
sc

rim
in

at
or

 lo
ss

same algorithms
different algorithms

Figure 6.2: Discriminator losses using the same algorithm for source and
target (black curves) or using different algorithms (grey curves).

all words in the evaluation lexicon with itself. Our samples are 10% of
a publicly available Wikipedia dump, amounting to more than 400

million tokens per sample. English-English alignment is an interesting
control experiment for unsupervised bilingual dictionary induction,
abstracting away from linguistic differences, and we ran a series of
experiments to see how small samples MUSE can align in the absence
of linguistic differences. The learning curve is presented in Figure 6.1.

6.4 discussion

We have shown that the fact that MUSE cannot align two embedding
spaces for English induced by different algorithms (even if using the
same corpus), is not a result of there not being a linear transformation,
and not a result of (lack of) normalization or trivial differences in
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model hyper-parameters. The only explanation left seems to be that
the inductive biases of the different algorithms lead to a loss landscape
so riddled with local optima that MUSE cannot possible escape them.

To support this hypothesis, compare the loss curves for the MUSE

runs aligning embeddings induced with the same algorithms (black
curves) to the runs aligning embeddings induced with different algo-
rithms, in Figure 6.2. When the embeddings are induced by the same
algorithm, we clearly see the contours of a min-max game, suggesting
that the generator and discriminator challenge each other, both con-
tributing to a good alignment. When the embeddings are induced by
different algorithms, however, the discriminator quickly drops, with
the generator unable to push the discriminator out of a local optimum.
Understanding when biases induce highly non-convex landscapes, and how
to make adversarial training less sensitive to such scenarios, remains an open
problem, which we think will be key to the success of unsupervised machine
translation and related tasks.
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C O M PA R I N G U N S U P E RV I S E D W O R D T R A N S L AT I O N
M E T H O D S S T E P B Y S T E P

abstract

Cross-lingual word vector space alignment is the task of mapping the
vocabularies of two languages into a shared semantic space, which can
be used for dictionary induction, unsupervised machine translation,
and transfer learning. In the unsupervised regime, an initial seed
dictionary is learned in the absence of any known correspondences be-
tween words, through distribution matching, and the seed dictionary
is then used to supervise the induction of the final alignment in what
is typically referred to as a (possibly iterative) refinement step. We
focus on the first step and compare distribution matching techniques
in the context of language pairs for which mixed training stability
and evaluation scores have been reported. We show that, surprisingly,
when looking at this initial step in isolation, vanilla GANs are superior
to more recent methods, both in terms of precision and robustness.
The improvements reported by more recent methods thus stem from
the refinement techniques, and we show that we can obtain state-of-
the-art performance combining vanilla GANs with such refinement
techniques.

7.1 introduction

A word vector space – sometimes referred to as a word embedding –
associates similar words in a vocabulary with similar vectors. Learning
a projection of one word vector space into another, such that similar
words – across the two word embeddings – are associated with similar
vectors, is useful in many contexts, with the most prominent example
being the alignment of vocabularies of different languages, i.e., word
translation. This is a key step in machine translation of low-resource
languages (Lample, Denoyer, and Ranzato, 2018).

Projections between word vector spaces have typically been learned
from seed dictionaries. In seminal papers (Faruqui and Dyer, 2014;
Gouws and Søgaard, 2015; Mikolov, Le, and Sutskever, 2013), these
seeds would comprise thousands of words, but Vulić and Korhonen,
(2016) showed that we can learn reliable projections from as little
as 50 words. Smith et al., (2017) and Hauer, Nicolai, and Kondrak,
(2017) subsequently showed that the seed can be replaced with just
words that are identical across languages; and Artetxe, Labaka, and
Agirre, (2017) showed that numerals can also do the job, in some

73
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cases; both proposals removing the need for an actual dictionary. Even
more recently, entirely unsupervised approaches to projecting word
vector spaces onto each other have been proposed, which induce seed
dictionaries in the absence of any known correspondences between
words, using distribution matching techniques. These seed dictionaries
are then used as supervision for alignment algorithms based on, e.g.,
Procrustes Analysis Schönemann, 1966. These unsupervised systems,
in other words, typically combine two steps: an unsupervised step of
distribution matching and a (possibly iterative) (pseudo-)supervised
step of refinement, based on a seed dictionary learned in the first step.
See Table 7.1 for an overview.

The first Unsupervised Bilingual Dictionary Induction (UBDI) sys-
tems (Barone, 2016; Conneau et al., 2018; Zhang et al., 2017b) were
based on GANs (Goodfellow et al., 2014). These approaches learn a
linear transformation to minimize the divergence between a target
distribution (say French word embeddings) and a source distribution
(the English word embeddings projected into the French space). GAN-
based approaches achieve impressive results for some language pairs
(Conneau et al., 2018), but show instabilities for others. In particular,
Søgaard, Ruder, and Vulić, (2018) presented results suggesting that
GAN-based UBDI is difficult for some language pairs exhibiting very
different morphosyntactic properties, as well as when the monolin-
gual corpora are very different. Recently, a range of unsupervised
approaches that do not rely on GANs have been proposed (Artetxe,
Labaka, and Agirre, 2018a; Grave, Joulin, and Berthet, 2018; Hoshen
and Wolf, 2018) in the hope they would provide a more robust al-
ternative. In this paper, we show none of these are more robust on the
language pairs we consider. Instead we propose a simple technique
for making (vanilla) GAN-based UBDI more robust and show that com-
bining this with a recently proposed refinement technique – stochastic
dictionary induction (Artetxe, Labaka, and Agirre, 2018a) – leads to
state-of-the-art performance in UBDI.

contributions We present the first systematic comparison of (a
subset of) recently proposed methods for UBDI. These methods are
two-step pipelines of unsupervised distribution matching for seed
induction and supervised refinement. While the authors typically
introduce new approaches to both steps (see Table 7.1), distribution
matching and refinement are independent, and in this paper, we focus
on the distribution matching step - by either omitting refinement
or using the same refinement method across different distribution
matching, or seed dictionary induction methods. On the language
pairs considered here, vanilla GANs are superior to more recently
improved distribution matching techniques. Moreover, we show that
using an unsupervised model selection method, we can often pick out
the best vanilla GAN runs in the absence of cross-lingual supervision.
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Initialization and optimization steps

Authors Unsupervised step Supervised step Extras

Barone, 2016 GAN None

Zhang et al., 2017b Wasserstein GAN Procrustes

Conneau et al., 2018 GAN Procrustes

Hoshen and Wolf, 2018 ICP Procrustes Restarts

Alvarez-Melis and Jaakkola, 2018 Gromov-Wasserstein Procrustes

Artetxe, Labaka, and Agirre, 2018a Gromov-Wasserstein Stochastic

Yang et al., 2018 Gromov-Wasserstein MMD

Xu et al., 2018 GAN Sinkhorn Back-translation

Grave, Joulin, and Berthet, 2018 Gold-Rangarajan Sinkhorn

Table 7.1: Approaches to unsupervised alignment of word vector spaces.
We break down these approaches in two steps (and extras): (1)
Unsupervised distribution matching for seed dictionary learning):
(W)GANs, ICP, Gromov-Wasserstein initialization, and the convex
relaxation proposed in Gold and Rangarajan, 1996. (2) Supervised
refinement: Procrustes, stochastic dictionary induction, maximum
mean discrepancy (MMD), and the Sinkhorn algorithm.

Since vanilla GANs thus seem to remain an interesting technique for
inducing seed dictionaries, we explore what causes the instability of
vanilla GAN seed induction, by looking at how they perform on simple
transformations of the embedding spaces, and by using a combination
of supervised training and model interpolation to analyze the loss
landscapes. The results lead us to conclude that the instability is caused
by a mild form of mode collapse, that cannot easily be overcome by
changes in the number of parameters, batch size, and learning rate.
Nevertheless, vanilla GANs with unsupervised model selection seem
superior to more recently proposed methods, and we show that when
combined with a state-of-the-art refinement technique, vanilla GANs
with unsupervised model selection is superior to these methods across
the board.

7.2 gan-initialized ubdi

In this section, we discuss the dynamics of GAN-based UBDI. While the
idea of using GANs for UBDI originates with Barone, (2016), we refer to
Conneau et al., (2018) as the canonical implementation of GAN-based
UBDI. Note that GANs are not a necessary component to unsupervised
distribution matchning for alignment of vector spaces, albeit a popular
approach (Barone, 2016; Conneau et al., 2018; Zhang et al., 2017b). In
Section 7.3, we briefly discuss how GAN-based initialization compares
to the alternative of using point set registration techniques (Hoshen
and Wolf, 2018) and related strategies.
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A GAN consists of a generator and a discriminator (Goodfellow et
al., 2014). The generator G is trained to fool the discriminator D. The
generator can be any differentiable function; in Conneau et al., (2018),
it is a linear transform Ω. Let e ∈ E be an English word vector, and
f ∈ F a French word vector, both of dimensionality d. The goal of the
generator is then to choose Ω ∈ Rd×d such that ΩE has a distribution
close to F. The discriminator is a map Dw : X → {0, 1}, implemented
in Conneau et al., (2018) as a multi-layered perceptron. The objective of
the discriminator is to discriminate between vector spaces F and ΩE.
During training, the model parameters Ω and w are optimized using
stochastic gradient descent by alternately updating the parameters of
the discriminator based on the gradient of the discriminator loss and
the parameters of the generator based on the gradient of the generator
loss, which, by definition, is the inverse of the discriminator loss. The
loss function used in Conneau et al., (2018) and in our experiments
below is cross-entropy. In each iteration, we sample N vectors e ∈ E
and N vectors f ∈ F and update the discriminator parameters w
according to w→ w + α ∑N

i=1∇[log Dw( fi) + log(1− Dw(GΩ(ei)].
Theoretically, the optimal parameters are a solution to the min-max

problem: minΩ maxw E[log(Dw(F)) + log(1−Dw(GΩ(E)))], which re-
duces to minΩ JS(PF | PΩ). If a generator wins the game against an
ideal discriminator on a very large number of samples, then F and ΩE
can be shown to be close in Jensen-Shannon divergence, and thus the
model has learned the true data distribution. This result, referring to
the distributions of the data, pdata, and the distribution, pg, G is sam-
pling from, is from Goodfellow et al., (2014): If G and D have enough
capacity, and at each step of training, the discriminator is allowed
to reach its optimum given G, and pg is updated so as to improve
the criterion Ex∼pdata [log D∗G(x)] then pg converges to pdata. This result
relies on a number of assumptions that do not hold in practice. The
generator in Conneau et al., (2018), which learns a linear transform Ω,
has very limited capacity, for example, and we are updating Ω rather
than pg. In practice, therefore, during training, Conneau et al., (2018)
alternate between k steps of optimizing the discriminator and one step
of optimizing the generator. Another common problem with training
GANs is that the discriminator loss quickly drops to zero, when there
is no overlap between pg and pdata (Arjovsky, Chintala, and Bottou,
2017); but note that in our case, the discriminator is initially presented
with IE and F, for which there is typically no trivial solution, since the
embedding spaces are likely to overlap. We show in Section 7.4 the
that discriminator and generator losses are poor model selection crite-
ria, however; instead we propose a simple criterion based on cosine
similarities between nearest neighbors in the learned alignment.

From ΩE and F, a seed (bilingual) dictionary can be extracted us-
ing nearest neighbor queries, i.e., by asking for the nearest neighbor
of ΩE in F, or vice versa. Conneau et al., (2018) use a normalized
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nearest neighbor retrieval method to reduce the influence of hubs
(Dinu, Lazaridou, and Baroni, 2015; Radovanović, Nanopoulos, and
Ivanovic, 2010). The method is called Cross-domain Similarity Local
Scaling (CSLS) and used to expand high-density areas and condense
low-density ones. The mean similarity of a source language embed-
ding Ωe to its k nearest neighbors in the target language is defined as
µk

E(Ω(e)) = 1
k ∑k

i=1 cos(e, fi), where cos is the cosine similarity. µF(fi)

is defined in an analogous manner for every i. CSLS(e, fi) is then
calculated as 2 cos(e, fi)− µE(Ω(e))− µF(fi). Conneau et al., (2018)
use an unsupervised validation criterion based on CSLS. The transla-
tions of the top k (10,000) most frequent words in the source language
are obtained with CSLS and average pairwise cosine similarity is com-
puted over them. This metric is considered indicative of the closeness
between the projected source space and the target space, and is found
to correlate well with supervised evaluation metrics. After inducing
a bilingual dictionary, Ed and Fd, by querying ΩE and F with CSLS,
Conneau et al., (2018) perform a refinement step based on Procrustes
Analysis (Schönemann, 1966). Here, the optimal mapping Ω that maps
the words in the seed dictionary onto each other, is computed analyti-
cally as Ω = UVT, where U and V are obtained via the singular value
decomposition UΣVT of FT

d Ed.

7.3 alternatives to gan-initialized ubdi

This section introduces some recent alternatives to (vanilla) GAN-
initialized UBDI. In Table 7.1, we list more approaches and classify
them by how they perform unsupervised distribution matching and
supervised refinement.

iterative closest point The idea of minimizing nearest neigh-
bor distances for unsupervised model selection is also found in point
set registration and lies at the core of ICP optimization (Besl and
McKay, 1992). ICP typically minimizes the λ2 distance (mean squared
error) between nearest neighbor pairs. The ICP optimization algorithm
works by assigning each transformed vector to its nearest neighbor
and then computing the new relative transformation that minimizes
the cost function with respect to this assignment. ICP can be shown to
converge to local optima (Besl and McKay, 1992), in polynomial time
(Ezra, Sharir, and Efrat, 2006). ICP easily gets trapped in local optima,
however, exact algorithms only exist for two- and three-dimensional
point set registration, and these algorithms are slow (Yang et al., 2016).
Generally, it holds that the optimal solution to the GAN min-max prob-
lem is also optimal for ICP. To see this, note that a GAN minimizes the
Jensen-Shannon divergence between F and ΩE. The optimal solution
to this is F = ΩE. As sample size goes to infinity, this means the
L2 loss in ICP goes to 0. In other words, the ICP loss is minimal if
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an optimal solution to the UBDI min-max problem is found. ICP was
independently proposed for UBDI in Hoshen and Wolf, (2018). They
report their method only works using PCA initialization, i.e. they
project a subset of both sets of word embeddings onto the 50 first
principal components, and learn an initial seed dictionary using ICP

on the lower-dimensional embeddings. This seed mapping is then
used as starting point for ICP on the full word embeddings. We ex-
plored PCA initialization for GAN-based distribution matching, but
observed the opposite effect, namely that PCA initialization leads to a
degradation in performance. The most important thing to note from
Hoshen and Wolf, (2018), however, is that they do 500 random restarts
of the PCA initialization to obtain robust performance; ICP, in other
words, is extremely sensitive to initialization. This explains their poor
performance under our experimental protocol below (Table 7.2).

wasserstein gan Zhang et al., (2017b) were the first to introduce
Wasserstein GANs as a way to learn seed dictionaries in the context of
UBDI. In their best system, they train simple Wasserstein GANs and
use the resulting seed dictionaries to supervise Procrustes Analysis.
We modified the MUSE code to experiment with Wasserstein GANs in a
controlled way. Simple Wasserstein GANs were unsuccessful, but with
gradient penalty (Gulrajani et al., 2017), we obtained almost competi-
tive results, after tuning the learning rate and the gradient penalty λ

using nearest neighbor cosine distance as validation criterion. On the
other hand, the results were not significantly better, and instability did
not improve. Finally, we experimented with CT-GAN! (CT-GAN!)s (Wei
et al., 2018), an extension of Wasserstein GANs with gradient penalty,
but this only lowered performance and increased instability. Since
Wasserstein GANs and CT-GANs were consistently worse and less
stable than vanilla GANs, we do not include them in the experiments
below.

gromov-wasserstein Alvarez-Melis and Jaakkola, (2018) present
a very different initialization strategy. In brief, Alvarez-Melis and
Jaakkola, (2018) learn a linear transformation to minimize Gromov-
Wasserstein distances of distances between nearest neighbors, in the
absence of cross-lingual supervision. We report the performance of
their system in the experiments below, but results (Table 7.2) were
all negative. We think the reason is that Alvarez-Melis and Jaakkola,
(2018) only consider small subsamples of the vector spaces, and that
in hard cases, alignments induced on subspaces are unlikely to scale.
It achieved an impressive P@1 of 85.6 on the Greek MUSE dataset
(Conneau et al., (2018) obtain 59.5); but on the datasets, where Conneau
et al., (2018) are instable, considered here, it consistently fails to align
the vector spaces.
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Artetxe, Labaka, and Agirre, (2018a) introduce a very simple, re-
lated initialization method that is also based on Gromov-Wasserstein
distances of distances between nearest neighbors: They use these
second-order distances to build a seed dictionary directly by aligning
nearest neighbors across languages. By itself, this is a poor initial-
ization method (see Table 7.2). Artetxe, Labaka, and Agirre, (2018a),
however, combine this with a new refinement method called stochastic
dictionary induction, i.e., randomly dropping out dimensions of the
similarity matrix when extracting a seed dictionary for the next itera-
tion of Procrustes Analysis. Artetxe, Labaka, and Agirre, (2018a) show
in an ablation study for one language pair (English-Finnish) that the
initialization method only works in combination with the stochastic
dictionary induction step, i.e., without the application of stochasticity,
the induced mapping is degenerate. In our experiments below, we
show that this finding generalizes to other language pairs, suggesting
that the stochastic dictionary induction is the main contribution in
their work. We show that when combined with vanilla GANs for the
initial step of learning a seed dictionary through distribution matching,
stochastic dictionary induction performs even better.

convex relaxation The Gold-Rangarajan relaxation is a convex
relaxation of the (NP-hard) graph matching problem and can be
solved using the Frank-Wolfe algorithm. Once the minimal optimizer
is computed, an initial transformation is obtained using singular-value
decomposition. The Gold-Rangarajan relaxation can thus be used for
stable learning of seed dictionaries Grave, Joulin, and Berthet, 2018.
It remains an open question how this strategy fairs on challenging
language pairs such as the ones included here. We would have liked
to include this approach in our experiments, but the code was not
publicly available at the time of writing.

properties of unsupervised alignment algorithms The
above approaches provably work if the two vector spaces to be aligned,
are isomorphic, except for the pathological case where the vectors
are placed on an equidistant grid forming a sphere.1 A function Ω

1 In this case, there is an infinite set of equally good linear transformations (rotations)
that achieve the same training loss. Similarly, for two binary-valued, n-dimensional
vector spaces with one vector in each possible position. Here the number of local
optima would be 2n, but since the loss is the same in each of them the loss landscape
is highly non-convex, and the basin of convergence is therefore very small (Yang et al.,
2016). The chance of aligning the two spaces using gradient descent optimization
would be 1

2n . In other words, minimizing the Jensen-Shannon divergence between
the word vector distributions, even in the easy case, is not always guaranteed to
uncover an alignment between translation equivalents. From the above, it follows
that alignments between linearly alignable vector spaces cannot always be learned
using UBDI methods. In Section ?? , we test for approximate isomorphism to decide
whether two vector spaces are linearly alignable. Sections ??–Section ?? are devoted to
analyzing when alignments between linearly alignable vector spaces can be learned.
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from E to F is a linear transformation if Ω( f + g) = Ω( f ) + Ω(g) and
Ω(k f ) = kΩ( f ) for all elements f , g of E, and for all scalars k. An
invertible linear transformation is called an isomorphism. The two vec-
tor spaces E and F are called isomorphic, if there is an isomorphism
from E to F. Equivalently, if the kernel of a linear transformation
between two vector spaces of the same dimensionality contains only
the zero vector, it is invertible and hence an isomorphism. Most work
on supervised or unsupervised alignment of word vector spaces relies
on the assumption that they are approximately isomorphic, i.e., iso-
morphic after removing a small set of vertices (Barone, 2016; Conneau
et al., 2018; Mikolov, Le, and Sutskever, 2013; Zhang et al., 2017b).
It is not difficult to show that many pairs of vector spaces are not
approximately isomorphic, however. See Søgaard, Ruder, and Vulić,
2018 for examples.

7.4 experiments

In our experiments, we focus on aligning word vector spaces between
two languages, by projecting from the foreign language into English.
Our languages are: Estonian (et), Farsi (fa), Finnish (fi), Latvian (lv),
Turkish (tr), and Vietnamese (vi). This selection of languages is moti-
vated by observed instability when training vanilla GANs, e.g., Søgaard,
Ruder, and Vulić, 2018. In addition, the languages span four language
families: Finno-Ugric (et, fi), Indo-European (fa, lv), Turkic (tr), and
Austroasiatic (vi).

data In all our experiments, we use pretrained FastText embed-
dings (Bojanowski et al., 2017) and the bilingual dictionaries released
along with the MUSE system.2 The FastText embeddings are trained
on Wikipedia dumps; the bilingual dictionaries were created using an
in-house Facebook translation tool. Since we cannot do reliable hyper-
parameter optimization in the absence of cross-lingual supervision,
we use MUSE with the default parameters (Conneau et al., 2018).

7.4.1 comparison of distribution matching strategies

Our main experiments, reported in Table 7.2, compare the initialization
strategies listed in Table 7.2: vanilla GANs, the two varieties of Gromov-
Wasserstein (see Section 7.3), and ICP.3 Table 7.2 is split in two: First we
report the performance, measured as precision at one, in the absence
of refinement; and then we report the performance with refinement,
using the same refinement technique (Procrustes Analysis) across the

2 https://github.com/facebookresearch/MUSE

3 We ignore Wasserstein GANs, which proved more instable than vanilla GANs in our
preliminary experiments, as well as Gold-Rangarajan, which performs considerably
below current state of the art.

https://github.com/facebookresearch/MUSE
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board. For all the randomly initialized algorithms (the first three), we
report the best of 10 runs and the number of fails, where fails are
runs with scores lower than 2%. The reported scores are P@1, i.e., the
fraction of words whose neighbors are translation equivalents.

We believe it is crucial to evaluate the different techniques this way,
instead of simply comparing the numbers reported in the relevant
papers: First of all, no three of these authors report performance on
the same datasets. Secondly, if the authors use different refinement
techniques, it is impossible to see the impact of the initialization strate-
gies in the reported numbers. Instead we control for the refinement
techniques and study the distribution matching techniques in Table
7.1 in isolation. This means, for example, that we evaluate the Artetxe,
Labaka, and Agirre, (2018a) in the absence of stochastic dictionary
induction, and Hoshen and Wolf, (2018) in the absence of 500 random
restarts. In Section 7.4.2 (Table 7.3), we compare vanilla GANs and
Gromov-Wasserstein in the context of stocastic dictionary induction.

The patterns in Table 7.2 are very consistent. Vanilla GAN distribu-
tion matching is very instable, with 1/10 fails for Finnish and Turkish,
but 6, 7 and 9 fails for Estonian, Latvian, and Vietnamese, respectively.
All other methods are more instable, however, with the distribution
matching techniques in Hoshen and Wolf, 2018 and Alvarez-Melis and
Jaakkola, 2018 failing across the board, with or without supervised
Procrustes refinement. Vanilla GAN distribution matching also leads
to higher precision for 5/6 language pairs.

Vanilla GAN distribution matching thus seems to have the highest
potential for inducing useful seed dictionaries among all these meth-
ods. If we could only manage their instability, GANs seem to provide
us with a better point of departure. This naturally leads us to ask: Is it
feasible to select good vanilla GAN UBDI runs from a batch of random restarts,
in the absence of cross-lingual supervision? This question is explored in
Section 7.4.2, in which we also explore whether state-of-the-art per-
formance can be achieved with vanilla GANs and a more advanced
refinement technique, namely stochastic dictionary induction.

7.4.2 gan distribution matching with random restarts

Exploring this question we found that the discriminator loss during
training, which is used as a model selection criterion in Daskalakis
et al., (2018), is a poor selection criterion. However, we did find another
unsupervised model selection criterion that correlates well with UBDI

performance: cosine similarity of (induced) nearest neighbors. This
criterion is also used as a stopping criterion in Conneau et al., (2018),
and can be used with or without CSLS scaling. This stopping criterion
in fact turns out to be a quite robust model selection criterion for
picking the best out of n random restarts.
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Procrustes Stochastic Dictionary Induction

C-MUSE C-MUSE Artetxe, Labaka, and Agirre, (2018a)

et-en 38.1 47.6 47.6

fa-en 40.9 41.5 40.2

fi-en 58.9 62.5 63.6

lv-en 33.2 44.6 43.3

tr-en 60.6 62.8 60.6

vi-en 51.3 54.4 55.3

average 47.2 52.2 51.7

Table 7.3: Comparison of MUSE with cosine-based model selection over 10

random restarts (C-MUSE) with and without stochastic dictionary
induction (with suggested hyper-parameters from Artetxe, Labaka,
and Agirre, 2018a), against state of the art. Using vanilla GANs is
slightly better than Gromov-Wasserstein on average and better on
3/6 language pairs.

In Table 7.3, we compare MUSE with 10 random restarts and using
CSLS cosine similarity of nearest neighbors as an unsupervised model
selection criterion, to the full state-of-the-art model in Artetxe, Labaka,
and Agirre, (2018a) with stochastic dictionary induction. What we see
in these results, is that Artetxe, Labaka, and Agirre, (2018a) is still
superior to MUSE with random restarts, but even with 10 restarts, the
gap narrows considerably, and MUSE is better on 2/6 languages. Note,
however, that this is a comparison of two systems using two differ-
ent refinement techniques. If we combine vanilla GAN distribution
matching from MUSE with the stochastic dictionary induction tech-
nique from Artetxe, Labaka, and Agirre, (2018a), we obtain slightly
better performance than Artetxe, Labaka, and Agirre, (2018a) (Table
7.3, mid-column): While overall improvements are small, compared to
the differences in seed dictionary quality, the combination of vanilla
GANs for distribution matching and stochastic dictionary induction
provides a promising and fully competitive alternative to the state of
the art for unsupervised word translation.

7.4.3 discussion and further experiments

We have shown that while vanilla GANs are instable, they carry a
seemingly unique potential for UBDI. We have shown that a simple
unsupervised cosine-based model selection criterion can achieve ro-
bust state-of-the-art performance. We have performed several other
experiments to probe this instability in search of ways to stabilize
vanilla GANs without significant performance drops. This subsection
summarizes these experiments.
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normalization We observed that GAN-based UBDI becomes more
instable and performance deteriorates with unit length normalization.
We performed unit length normalization (ULN) of all vectors x, i.e.,
x′ = x

||x||2 , which is often used in supervised bilingual dictionary induc-
tion (Artetxe, Labaka, and Agirre, 2017; Xing et al., 2015). We used this
transform to project word vectors onto a sphere – to control for shape
information. If vectors are distributed smoothly over two spheres,
there is no way to learn an alignment in the absence of dictionary seed;
in other words, if vanilla GAN distribution matching is unaffected by
this transform, vanilla GANs learn from density information alone.
While supervised methods are insensitive to or benefit from ULN, we
find that vanilla GANs are very sensitive to such normalization; in fact,
the number of failed runs over six languages increases from below
50% to 90%. For example, while for Finnish, MUSE only fails in 1/10

runs, MUSE with ULN failed across the board; for Farsi, MUSE with
ULN failed in 6/10 runs, compared to 3/10. We verify that supervised
alignment is not affected by ULN by running Procrustes refinement
with a seed dictionary as supervision; here, performance remains
unchanged under this transformation.

noise injection On the contrary, GAN-based UBDI is largely un-
affected by noise injection. We saw this from running experiments
on a few languages, but do not report performance across the board.
Specifically, we add 25% random vectors, randomly sampled from a
hypercube bounding the vector set. GAN-based UBDI results are not
affected by noise injection. This, we found, is because the injected
vectors rarely end up in the seed dictionaries used for subsequent
refinement.

over-parameterization GAN training is instable because dis-
criminators end up in poor local optima or saddle points (see below).
A known technique for escaping local optima is over-parameterization
(Brutzkus et al., 2018). We experimented with widening our discrimi-
nators to smoothen the loss landscape. Results were mixed, with more
stability and better performance on some languages, and less stability
and worse performance on others.

large batches and small learning rates Previous work
has shown that large learning rate and small batch size contribute
towards Stochastic Gradient Descent (SGD) finding flatter minima
(Jastrzebski et al., 2018), but in our experiments, we are interested
in the discriminator not ending up in flat regions, where there is no
signal to update the generator. We therefore experiment with (higher
and) smaller learning rate and (smaller and) larger batch sizes. The
motivation behind both is decreasing the scale of random fluctuations
in the SGD dynamics (Balles, Romero, and Hennig, 2017; Smith and
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Figure 7.1: Discriminator loss averaged over all training data points (green),
P@1 on the test data points (blue) and mean cosine similarity
(red) on the training data – for generator parameters on the line
segment that connects the unsupervised GAN solution with the
supervised Procrustes Analysis solution. α is the interpolation pa-
rameter moving the generator parameters from the unsupervised
GAN solution (α = 0) to the supervised solution (α = 1).

Le, 2017), enabling the discriminator to explore narrower regions in
the loss landscape. Increasing the batch size or varying the learning
rate (up or down), however, leads to worse performance, and it seems
the MUSE default hyperparameters are close to optimal.

exploring the loss landscapes GAN training instability arises
from discriminators getting stuck in saddle points, where neither the
discriminator nor the generator has a learning signals. To show this,
we analyze the discriminator loss in areas of convergence by plotting it
as a function of the generator parameters. Specifically, we plot the loss
surface along its intersection with a line segment connecting two sets
of parameters (Goodfellow, Vinyals, and Saxe, 2015; Li et al., 2018). In
our case, we interpolate between the model induced by GAN-based
UBDI and the (oracle) model obtained using supervised Procrustes
Analysis. Results are shown in Figure 7.1. The green loss curves
represent the current discriminator’s loss along all the generators
between the current generator and the generator found by Procrustes
refinement. We see that while performance (P@1 and mean cosine
similarity) goes up as soon as we move closer toward the supervised
solution, the discriminator loss does not change until we get very close
to this solution, suggesting there is no learning signal in this direction
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for GAN-based UBDI. This is along a line segment representing the
shortest path from the failed generator to the oracle generator, of
course; linear interpolation provides no guarantee there are no almost-
as-short paths with plenty of signal. A more sophisticated sampling
method is to sample along two random direction vectors (Goodfellow,
Vinyals, and Saxe, 2015; Li et al., 2018). We used an alternative strategy
of sampling from normal distributions with fixed variance that were
orthogonal to the line segment. We observed the same pattern, leading
us to the conclusion that instability is caused by discriminator saddle
points.

7.5 conclusions

This paper explores the dynamics of (vanilla) GAN training in the con-
text of unsupervised word translation and a systematic comparison
of GANs with different distribution matching (seed induction) meth-
ods across six challenging language pairs. Our main finding is that
vanilla GANs, in spite of their instability, have the highest potential for
inducing useful seed dictionaries. We explore an unsupervised model
selection criterion for selecting the best models from multiple random
restarts, narrowing the gap between MUSE and Artetxe, Labaka, and
Agirre, 2018a, and further show that combining GANs with stochastic
dictionary induction provides a new state of the art for unsupervised
word translation.



Part IV

C O N C L U S I O N





8
D I S C U S S I O N O F T H E C O N T R I B U T I O N S

The preceding chapters presented research into automatic content
coding for text data from different domains or languages. As manual
annotation of datasets for content coding is expensive, cross-domain
and cross-language transfer should help automatic content coding to
leverage information from existing datasets. The first research question
asked in this thesis was

Can transfer learning be useful for the automatic coding of content?

The work presented in this thesis confirms that this is indeed the
case. In Chapter 4, we showed that multi-task learning enables the
coding of posts from online discussion fora, a domain for which no
labeled training data exists. The multi-task approach solves this prob-
lem by enabling the exploitation of three types of readily available
resources and does not require any additional coding of content, be-
sides a small dataset for evaluation. The additional resources included
a large frame-labeled dataset of news articles, large amounts of unla-
beled text from online discussion fora, and a smaller set of additional
annotations of the discussion posts with labels that are not directly
relevant to the frame-labeling task. As it seems reasonable to expect
the availability of such resources for other content coding problems,
multi-task learning proves an ideal approach for extending content
coding to new domains. In Chapter 3, we attempted to overcome the
small size of the training data set with cross-lingual transfer using
cross-lingual word embeddings. In that case, the cross-lingual trans-
fer did not improve results. However, the experiments are carried
out in a distant supervision setup, i.e. the additional Russian data is
expected to be of the pro-Russian target class, but this expectation
is not confirmed by manually labeling the data. Hence, the lack of
performance improvement might be due to noise in the additional
data Hence, we do not take this experiment as evidence that transfer
learning does not help in general, but that it does not help in this
specific case. An interesting question for future work is to explore
under which conditions transfer learning does help the content coding
task, and how to best select which kind of additional data to leverage
for improving model performance.

The second part of the thesis focused on methods that enable cross-
lingual transfer to answer the second research question:

How can we improve word representations that capture semantics across
languages?

89
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In Chapter 5, we evaluated an approach for unsupervised bilingual
dictionary induction from image data on a dataset that besides nouns
also contained verbs and adjectives. We found that translations can
be induced reliably for concrete nouns, but the model struggles with
translating verbs and adjectives. This shows that in order to assess
model performance for inducing word-level translations, the choice
of evaluation data is crucial, as performance for words with specific
features might not generalize to other groups of words.

In Chapters 6 and 7, we analysed training instabilities of the GAN-
based MUSE system for unsupervised word embedding alignment.

In Chapter 6, we showed that the system cannot align two sets
of English embeddings learned by different embedding algorithms.
In Chapter 7, we further investigated the unsupervised alignment
between English and another language, and found that the training
instabilities are most likely caused by saddle points in which the
discriminator gets stuck without a learning signal. We also found that
this problem cannot be easily overcome by varying hyperparameters
such as batch size and learning rate, or overparameterization of the
discriminator. This is unfortunate, as our comparison between several
systems for unsupervised alignment revealed that in a successful run,
the MUSE system has the highest potential to induce useful starting
points for subsequent iterative refinement. Finally, we showed that
such successful runs can be selected using an unsupervised criterion
based on cosine similarity.

Even though this selection criterion can tell us which initial seed
dictionaries to select for subsequent iterative refinement, it does not
alleviate the training instabilities. How these instabilities can be over-
come is still an open problem. In a recent study, Vulić et al., 2019

found that even the empirically most stable unsupervised alignment
system (VecMap) fails in many configurations. They point out that
especially unsupervised methods suffer from the fact that the isomor-
phism assumption does not hold (Søgaard, Ruder, and Vulić, 2018),
and conclude that one of the most promising research directions for
embedding alignment systems, regardless of the degree of supervision,
is to increase the isomorphism between the monolingual embedding
spaces. The conclusion of the presented thesis aligns with that sugges-
tion, and our future work will be aimed at increasing isomorphism
between embedding spaces.
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A P P E N D I X

9.1 data preprocessing

For the Twitter and news articles datasets, we remove all instances
that do not correspond to the five target frames. Table ?? shows the
class distributions in the filtered datasets. We tokenize all sequences
using spaCy 1, which we also use for sentence splitting in the news
articles dataset. For the Twitter dataset, we follow Johnson, Jin, and
Goldwasser, (2017) in removing URLs and @-mentions.

9.2 hyperparameters in experiments

The hyperparameters for all neural models were tuned on the online
disc. dev set. We report test results for the optimal settings found
by averaging over 3 training runs, which we determine by the best
macro-averaged F-score and smallest variance between the runs. We
set the DyNet weight decay parameter to 1e-7 for all neural models,
batch size is 128, and the word embeddings are not updated during
training.

For the multi-task and adversarial model, we do a grid-search over
the weight of the coin flip used to decide on sampling from main/aux
or main/adversarial task in the range of [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9].
The optimal weight for sampling the main task is 0.5 for the multi-task
model and 0.3 for the adversarial task.

All models are trained using early stopping (after at least 80 epochs
of training) with a patience of 5 epochs. The number of iterations
(updates) per epoch is a hyperparameter, that we set by default as
twice the number of data batches for the main task. For a fair coin
flip, the models hence see as much data for the main task as for the
auxiliary/adversarial task per epoch.

1 https://spacy.io/

93
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Dataset # instances # instances per class # multi

1 13 5 6 7

Newspaper (Train) 10,480 1088 1959 2023 924 890 45

Twitter (Train) 1,636 73 300 137 27 174 554

Online Disc. (Test) 692 78 96 234 166 186 67

0 1

Argument Quality 3,785 1,350 2,435 0

Online Disc. unlabeled 4731

Table 9.1: Dataset statistics and class distributions. The frame labels corre-
spond to the classes Economic (1), Political (13), Legality, Jurispru-
dence and Constitutionality (5), Policy prescription and evaluation (6)
and Crime and Punishment (7). # multi refers to the number of multi-
label instances. For Argument quality, label 1 indicates a score
greater or equal 0.5.
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