
Algorithms and AI in Education
Univesity of Copenhagen - Faculty of Science - Computer

Science Department

Niklas Hjuler

July 2019

2

0.1 abstract

In this thesis we show several new results in a broad spectrum, rang-
ing from theoretical computer science to data analysis. A brief sum-
mary of the results are:

One-Way Trail Orientations: We show that there exists a strong ori-
entation of a graph if and only if the graph is two edge connected,
even if the edges are partitioned into trails, thus improving Robbins
theorem from 1939.

Dominating Sets and Connected Dominating Sets in Dynamic Graphs:
We show the first results in how to maintain a O (log (n)) approxima-
tion of a minimum dominating set and a minimum connected domi-
nating set. The solution are maintained in running timeO (δ · polylog (n))

Fully Dynamic Consistent Facility Location: We show how to maintain
a constant approximation for the facility location problem for general
metrics with running time O (log(n)n) and total recourse O (n).

Detecting ghostwriters in high schools: Author verification, i.e. the
task of verifying if an acclaimed author of an essay actually is the
author. This is a known problem in the Natural Language Process-
ing community. What is new, is doing this in the educational setting,
challenging whether the student has actually written the assignment
in question. With our method on a balanced data set, we achieve an
accuracy of 87.5 percent.

Investigating Writing Style Development in High School: For every
student we make a profile by comparing how similar a current as-
signment is to previous assignments. The profiles are then clustered
and analyzed. Furthermore, we compare how the average similarity
evolves over time.

Sequence Modelling For Analysing Student Interaction with Educational
Systems: Using log data we model student behavior as a distribution
of Markov chains. The Markov chains are analyzed, and 125.000 of
the sessions are deemed suboptimal from a learning perspective.

Tracking Behavioral Patterns among Students in an Online Educational
System: We make a soft clustering of a students activity during one
week, using log data from an educational system. Based on the re-
sults, we give suggestions for an improved learning experience for
the students.

0.1 abstract 3

DABAI: A data driven project for e Learning in Denmark: In this paper
we give an overview of the goals of the projects involved in DABAI,
and what issues the educational companies are interested in.

This thesis is written as a manuscript with an addendum of pub-
lished papers and papers in submission. The descriptions of the pa-
pers are largely based on the introduction of the papers, with some
parts being close to identical.

4

0.2 dansk résumé

I denne thesis viser vi et bredt spektrum af resultater, fra teoretisk
datalogi til mere praktisk data analyse. En kort beskrivelse af alle
resultaterne er:

One-way trail orientations: Vi viser, at der findes en stærk orienter-
ing af en graf, hvis og kun hvis grafen er 2 kants forbundet, selv hvis
kanterne er partitioneret til veje. Dette forbedrer Robbins theorem fra
1939.

Dominating sets and connected dominating sets in dynamic graphs: Vi
viser de første resultater til at bevare en O log(n) approximation af
Minimum dominerende mængde og forbundet minimum dominerende
mængde. Løsningerne er bevaret i køretid O(δ · polylog (n)).

Fully Dynamic Consistent Facility Location: Vi viser, hvordan man be-
varer en konstant approximation for facilitets lokation i en general
metrik med en køretid på O (log(n)) og rekurs på O (n)

Detecting ghostwriters in high schools: Forfatter bekræftelse, altså
problemstillingen om en given forfatter er den faktiske forfatter, er
et kendt problem i NLP fællesskabet. Det nye i denne artikel er at
benytte det til at afgøre, om en elev har fået en anden til at lave sin
aflevering. Dette lykkes med 87.5 procent success på et balanceret
data sæt.

Investigating Writing Style Development in High School: For hver stud-
erende laves en profil af skrivestil, baseret på en sammenligning af de
første afleveringer mod afleveringer over tid. Profilerne grupperes og
analyseres. Derudover sammenligner vi, hvordan den gennemsitlige
similiaritet udvikler sig over tid.

Sequence Modelling For Analysing Student Interaction with Educational
Systems: Vi bruger log data fra EDULAB til at modellere studeren-
des opførsels som en distribution af Markov kæder. Vi analyserer
kæderne, og finder, at ca 125.000 af dem viser suboptimal læring.

Tracking Behavioral Patterns among Students in an Online Educational
System:: Vi laver en svag gruppering af studerendes aktivitet af peri-
oder på en uge, baseret på log data for undervisningssystemet CLIO
ONLINE. Baseret på det giver vi anbefalinger til, hvordan de stud-
erendes læringskurve kan forbedres.

0.2 dansk résumé 5

DABAI: A data driven project for e Learning in Denmark: I denne
artikel giver vi overblik over projekterne involveret i DABAI, samt
hvilke problemer firmaer i undervinsnings sektoren står over for, og
som kan løses ved brug af data.

Denne afhandling er skrevet som manuskript med publicerede ar-
tikler og artikler i submission vedhæftet til sidst. Beskrivelsen af af-
tiklerne er baseret i stor stil på introduktions stykket i aftiklerne, med
nogen dele tæt på identiske.

C O N T E N T S

0.1 Abstract 2

0.2 Dansk Résumé 4

0.3 Preface 8

0.4 Introduction 9

0.5 Algorithms 11

0.5.1 Introduction to Algorithms 11

0.5.2 One-way trail orientations [AHHR18] 11

0.5.3 Dominating Sets and Connected Dominating Sets
in Dynamic Graphs [HIPS19] 12

0.5.4 Fully Dynamic Consistent Facility Location [clustering] 15

0.6 Machine Learning and Data Analysis 21

0.6.1 Introduction 21

0.6.2 Ghost Writing Detection in High schools [SSL+19b] 21

0.6.3 Investigating Writing Style Development in High
School [LHA19] 23

0.6.4 Sequence Modelling For Analyzing Student In-
teraction with Educational Systems [HHH+17a] 27

0.6.5 Tracking Behavioral Patterns among Students
in an Online Educational System [LHA18] 28

0.7 Company Applications 30

0.7.1 Introduction 30

0.7.2 DABAI: A data driven project for e Learning in
Denmark [ECEL] 30

0.8 Conclusion 31

0.9 Appendix 121

7

8 Contents

0.3 preface

This thesis is written as a synopsis based on the papers below, to
comply with the general rules and guidelines of the University of
Copenhagen, Faculty of Science, for the PhD program. The synopsis
consists of a short description of the main results in each paper. The
papers are attached at the end, and they might differ slightly from the
version in the proceedings, but the results and conclusions remain
in perfect alignment. Of the papers described in this thesis, seven
have been accepted at peer reviewed venues and the remaining one
in submission.

• Anders Aamand, Niklas Hjuler, Jacob Holm, and Eva Roten-
berg, "One-way Trail Orientations" In: Proc. 45th International
Colloquium on Automata, Languages and Programming (ICALP). 2018

• Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis, David
Saulpic, "Dominating Sets and Connected Dominating Sets in
Dynamic Graphs" In: The 36th International Symposium on Theo-
retical Aspects of Computer Science (STACS’19) Algorithm inO(

√
m)

update time in submission

• Niklas Hjuler, Nikos Parotsidis, David Saulpic, "Fully Dynamic
Consistent Facility Location", In: Submission to NIPS 2019

• Magnus Stavngaard, August Sørensen, Stephan Lorenzen, Niklas
Hjuler, Stephen Alstrup, "Detecting Ghostwriters in High Schools",
In: European Symposium on Artificial Neural Networks (ESANN
2019)

• Stephan Lorenzen, Niklas Hjuler, Stephen Alstrup "Investigat-
ing Writing Style Development in High School", Proceedings of
the 12th International Conference on Educational Data Mining (EDM
2019)

• Christian Hansen, Casper Hansen, Niklas Hjuler, Stephen Al-
strup, Christina Lioma, "Sequence Modelling For Analysing Stu-
dent Interaction with Educational Systems", In: Proceedings of
the 10th International Conference on Educational Data Mining (EDM
2017)

• Stephan Lorenzen, Niklas Hjuler, Stephen Alstrup "Tracking Be-
havioral Patterns among Students in an Online Educational Sys-
tem", In: Proceedings of the 11th International Conference on Educa-
tional Data Mining (EDM 2018)

• Stephen Alstrup, Casper Hansen, Christian Hansen, Niklas Hjuler,
Stephan Lorenzen, Ninh Pham, "DABAI: A data driven project
for e Learning in Denmark", In: Proceedings of the 16th European
Conference on e-Learning (ECEL 2017)

0.4 introduction 9

0.4 introduction

This thesis contains a short introduction of the papers I have written
during my PhD studies. For each paper there is a summary of the
main results of the paper, a description of related work, a brief de-
scription of possible applications, and where applicable, a discussion
of ethically issues regarding the paper. The introductions are in no
way mathematically thorough, but meant to give an overview. If a
deeper curiosity is sparked, the entire paper can be consulted in the
appendix. The papers in this thesis span a very broad scope, from
pure theoretical computer science, over practical machine learning
applications, to data analysis. In chapter 0.5 we go over the algorith-
mic papers, which includes one paper regarding strong orientations
of graphs, one regarding probabilistic labeling schemes, two about
maintaining a property in a graph (Dominating Set and Independent
Set), and finally one where we maintain a constant approximation
in different clustering problems. In the second chapter 0.6 we go
through three articles about student profiling. One with focus on
writing style, and two others based on log data. Finally we have a pa-
per about detecting ghostwriting in high school assignments. In the
last chapter 0.7 we go through one paper about digital challenges in
the educational sector, furthermore discussing the cooperation with
companies involved, and how they possibly could apply my research.
This reflects the burden that was given to me as a PhD student at the
University of Copenhagen in the DABAI project, where I was asked
to contribute in all these fields.

Besides the papers: During my PhD I have supervised three bach-
elor projects, all in the subject of intelligent tutoring systems, super-
vised two students in a project about authorship verification, and
supervised two master thesis students about Ghostwriting detection.
Furthermore I have taught classes in both Machine learning and Al-
gorithms. I would like to thank all the students I have supervised and
taught for good cooperation and for doing a great job. I have taken
30 ECTS points in a wide range of classes, ranging from technical ma-
chine learning and graph theory classes to ethical and pedagogical
classes. I like to thank all my teachers for improving my knowledge
in various areas and aspects of research. In 2018 I had a four month
stay at Tor Vergata University in Rome, Italy, with Professor Giuseppe
F. Italiano as my host. During my stay at Tor Vergata I worked with
dynamic graph problems such as: Maximal Independent Set, Dom-
inating Set and clustering. I like to thank Giuseppe F. Italiano for
welcoming me into his group with open arms, which also extends
to two of my colleagues in Rome, David Saulpic and Nikos Parot-
sidis. I have attended numerous conferences and summer schools
in Machine Learning, algorithms, and educational data analysis, and
I would like to thank the people involved and the communities for

10 Contents

their work and great inspiration. My research has been cited more
than a hundred times by media all over the world in multiple lan-
guages including Danish, English, German, and Spanish.1 The work
I did during my PhD was in close cooperation with three compa-
nies: MaCom, CLIO online, and Edulab. I like to thank the people
involved in the cooperation for their valuable effort and assistance. I
like to thank my supervisors Mikkel Abrahamsen, Christina Lioma,
and Stephen Alstrup for their guidance. I like to thank my family
and friends, and specially my girlfriend Emilie Brun for her love and
support.2 I like to thank for my father for his support and assistance
in the making of this thesis.

1 A subset of the medias can be seen in the appendix
2 Which was no small feat at daunting times

0.5 algorithms 11

0.5 algorithms

0.5.1 Introduction to Algorithms

In this section I will go through all my papers relating to algorithms.
For all of them it can be said, that they are related to graph theory.
The first four papers are clearly embedded into graph theory and the
last paper, about fully dynamic clustering, is on the borderline related
to graph theory. We see a graph as a set G = (V ,E) with nodes V and
edges E. Unless otherwise specified the graph is not directed and
unweighted.

0.5.2 One-way trail orientations [AHHR18]

Imagine a town, and the following question: When can you make
all the streets of a town one-way, without losing the property that
you can get from anywhere to anywhere. In 1939 Robbin [Rob39]
showed, that given a graph G, every edge can be directed such that
the resulting graph is strongly connected if and only if G was 2−edge
connected. In 1980 Bosch [BT80] showed, that given a mixed multi-
graph G, the remaining undirected edges can be directed, such that
the resulting graph is strongly connected if and only if G is connected
and the underlying graph is bridgeless. However; Turing award win-
ner Professor Robert Tarjan naturally noticed, that a street in the real
world rarely correspond to a single edge in the corresponding graph.
Thus he asked the same questions, but now the edges of the graph
are partitioned into trails, and the trails must be oriented. Part of our
contribution is the following two theorems:

Theorem 0.5.1. Let G = (V ,E) be an undirected multigraph with E parti-
tioned into trails. An orientation of each trail such that the resulting directed
graph is strongly connected exists if and only if G is 2-edge connected.

which is a beautiful extension of Robbins [Rob39] original theorem.
The proof is done by a simple and elementary induction on the num-
ber of edges in the graph. The proof also inspires how to find a strong
orientation in polynomial time, which was the first of its kind. In the
mixed case, things are still elementary but not simple:

Theorem 0.5.2. Let G = (V ,E) be a strongly connected mixed multigraph.
Then G− e is strongly connected for all undirected e ∈ E if and only if for
any partition P of the undirected edges of G into trails, and any T ∈ P, any
orientation of T can be extended to a strong trail orientation of (G,P).

To understand this theorem, think of an undirected edge as forced,
if there exists a cut, such that all the directed edges only go from
one side to the other. This "forces" the direction of our undirected
edge. Then the first part of the theorem states, that there are no

12 Contents

forced edges. This leads to a simple algorithm, where we direct the
forced edges (and their corresponding trail), and if there is none, you
can direct any. The theorem above guarantees, that this algorithm is
successful if a strong orientation did exist. Understanding the mixed
case is clearly not a resolved matter, and I strongly encourage further
research to clear this up. To understand that the mixed case actually
differ in this setting, take a look at the following graph.

Figure 1: The graph is strongly connected, and the underlying graph is 2-
edge connected, but irrespective of the choice of orientation of the
red trail, the graph will no longer be strongly connected.

As described in the paper "one way trail orientations", we find a
number of additional results. We show a linear time algorithm for
solving the trail orientation problem in undirected graphs. For this,
we make two essential observations. First, we show that there is an
easy linear time reduction from general graphs or multigraphs to
cubic multigraphs. Second, we show that in a cubic multigraph with
n vertices, we can in linear time find and delete a set of edges, that
are at the end of their trails, such that the resulting graph has Ω(n)

3-edge connected components.
We further show, that we can compute the required orientation re-

cursively from an orientation of each 3-edge connected component to-
gether with the cactus graph of 3-edge connected components. Since
the average size of these components is constant, we can compute the
orientations of most of them in constant time individually, and thus
in linear time taken together. The rest contains at most a constant
fraction of the vertices, and so a simple geometric sum argument tells
us, that the total time is also linear.

0.5.3 Dominating Sets and Connected Dominating Sets in Dynamic Graphs
[HIPS19]

The study of dynamic graph algorithms is a classical area in algorith-
mic research, and has been thoroughly studied in the last few decades.
Maintaining a solution of a graph problem in the case, where the un-
derlying graph changes dynamically over time, is a big challenge in
the design of efficient and practical algorithms. Indeed, in several
applications, due to the dynamic nature of today’s data, it is not suffi-
cient to compute a solution to a graph problem only once and for all:
Often, it is necessary to maintain a solution efficiently while the input
graph is undergoing a sequence of dynamic updates. More precisely,
a dynamic graph is a sequence of graphs G0, ...,GM on n nodes and

0.5 algorithms 13

such that Gi+1 is obtained from Gi by adding or removing a single
edge. The natural first barrier in the study of dynamic algorithms,
is to design algorithms, that are able to maintain a solution for the
problem at hand after each update faster than recomputing the solu-
tion from scratch. Many dynamic graph problems such as minimum
spanning forests (see e.g. [HLT01; NSW17]), shortest paths [DI04],
matching [BFH; NS16; Sol16], or coloring [BCHN18] have been ex-
tensively studied in the literature, and very efficient algorithms are
known for those problems. Recently, a lot of attention has been de-
voted to the Maximal Independent Set problem (MIS). In this prob-
lem, one wishes to find a maximal set of vertices that do not share
any edge (“maximal” meaning that it is not possible to add any vertex
without violating this property). Until very recently, the best known
update bound on the complexity to maintain a MIS, was a simple
O(∆) algorithm, where ∆ is an upper bound on the degree of vertices
in the graph. This bound was first broken by Assadi et al. [AOSS18],
who gave an O(m3/4) algorithm, then Gupta and Khan [GK18] im-
proved the update bound to O(m2/3). Using randomization, Assadi
et al. [AOSS] presented an amortized fully-dynamic algorithm with
an expected Õ(n1/2)-time bound per update.

The MIS problem is closely related to the Dominating Set (DS)
problem: Given a graph G = (V ,E) the DS problems is to find a sub-
set of vertices, D ⊆ V , such that every vertex in G is adjacent to D (or
dominated by D). Indeed, a MIS is also a Minimal DS: The fact that
it is not possible to add a vertex without breaking the independence
property implies, that every vertex is adjacent to the MIS, so this must
also be a DS; at the same time, it is not possible to remove a vertex,
since that vertex is no longer dominated. Thus, to find a Minimal
DS, one can simply find a MIS: This immediately gives a determin-
istic O(m2/3) [GK18] bound and a randomized Õ(n1/2) [AOSS] one.
However, while it is known that is hard to approximate Maximum
Independent Set3 within a factor n1−ε for every ε > 0[Hås99], a
simple greedy approach achieves a O(logn)-approximation for Mini-
mum DS [Chv79].

In recent years, there has been a lot of work done on designing
dynamic graph algorithms for maintaining approximate solutions to
several problems. A notable example is matching, where for differ-
ent approximations there exist different algorithms (see e.g., [BFH;
BS16; NS16; GP13; BHI18; Sol16]). This raises the natural question
of whether there exists a dynamic algorithm capable of maintaining
an approximation to Minimum DS, and even better a O(logn) ap-
proximation. In this paper, we answer this question affirmatively,
by presenting an algorithm that achieves a O(logn) approximation,
with a complexity matching the long standing O(∆) bound for MIS.

3 It is not possible to find a polynomial-time algorithm that finds a n1−ε-
approximation to Maximum Independent Set under the assumption NP 6= ZPP

14 Contents

Moreover, if one is interested in finding a DS faster, we present a very
simple deterministic O(m1/2) algorithm to compute a Minimal DS, im-
proving the O(m2/3) bound coming from MIS. We believe these are
important steps towards understanding the complexity of the prob-
lem. Those two results are stated below.

Theorem 0.5.3. Starting from a graph with n vertices, a O(logn) approx-
imation of Minimum Dominating Set can be maintained over any se-
quence of Ω(n) edge insertions and deletions in O(∆ logn) amortized time
per update, where ∆ is the maximum degree of the graph over the sequence
of updates.

Theorem 0.5.4. Starting from a graph with n (fixed) vertices, a Minimal
Dominating Set can be deterministically maintained over any sequence of
edge insertions and deletions in O(

√
m) amortized time per update, where

m is an upper bound on the number of edges in the graph.

We also study the Minimum Connected Dominating Set prob-
lem (MCDS), which adds the constraint, that the graph induced by
the DS D must be connected. This problem was first introduced
by Sampathkumar and Walikar [SW79] and arises in several appli-
cations. The most noteworthy is its use as a backbone in routing pro-
tocols: It allows us to limit the number of packet transmissions, by
sending packets only along the backbone, rather than throughout the
whole network. Du and Wan’s book [DW12] summarizes the knowl-
edge about MCDS. A special class of graphs are geometric graphs,
where vertices are points in the plane, and two vertices are adjacent
if they fall within a certain range (say, their distance is at most 1).
This can model wifi transmissions, and the dynamic MCDS has been
studied in this setting: A polynomial-time approximation scheme is
known [CHL+03], and Guibas et al. [GMM13] show how to maintain
a constant-factor approximation with polylogarithmic update time.
While geometric graphs model problems are linked to wifi transmis-
sions, the general graph setting can also be seen as a model for wired
networks. However, no work about dynamic MCDS is known in this
setting: The static case is well studied, with a greedy algorithm de-
veloped by Guha and Keller [GK98], that achieves an approximation
factor O(ln∆). They also show a lower bound matching their com-
plexity, together with their approximation factor. MCDS has also
been thoroughly studied in the distributed setting. A heuristic to
find a Minimal CDS can be seen in [BCOP04], another one that sends
O(∆n) messages and has a time complexity at each vertex O(∆2)
[WL99] or a 3 logn approximation that runs in O(γ) rounds where γ
is the size of the CDS found, with time complexity O(γ∆2 + n) and
message complexity O(n∆γ +m + n logn) [BB97]. Despite all this
work, no results are known in the dynamic graph setting. As another
application of our approach, we contribute to filling this gap in the
research line of MCDS. In particular, in this paper we show how our

0.5 algorithms 15

algorithm for Minimum DS can be adapted in a non-trivial way to
maintain a O(logn) approximation of the MCDS in general dynamic
graphs.

Theorem 0.5.5. Starting from a graph with n vertices, a O(logn) approxi-
mation of Minimum Connected Dominating Set can be maintained over
any sequence of Ω(n) edge insertions and deletions in Õ(∆) amortized time
per update.

We further show how to maintain independently a Dominating Set
D and a set of vertices C, such that the induced subgraphs on the
vertices C ∪D are connected. The set C has the additional property
that |C| 6 2|D|, such that |C ∪D| = O(|D|). If D is a α-approximation
of Minimum DS, this gives a O(α) approximation for MCDS.

further related work . It is well known that finding a Mini-
mum DS is NP-hard [GJ79]. It is therefore natural to look for approxi-
mation algorithms for this problem. Unfortunately, it is also NP-hard
to find a c logn approximation, for any 0 < c < 1 [Fei98]. This bound
is tight, since there is a simple greedy algorithm matching this bound
[Chv79]. Minimum DS had been studied extensively in distributed
computing: An algorithm which runs in O(logn log∆) rounds finds
an O(logn) approximation with high probability [JRS02], and an al-
gorithm with constant number of rounds achieves a non-trivial ap-
proximation[KW05].

The DS problem is closely related to the Set Cover problem: The
two problems are equivalents under L-reduction [Kan92]. However,
Set Cover was studied in the dynamic setting [GKKP17; AS18], but
with different kinds of updates: Instead of edges being inserted or
deleted (which would represent new elements in the sets according
to the L-reduction), new elements are being added to the cover (which
would be new vertices in DS).

0.5.4 Fully Dynamic Consistent Facility Location [clustering]

Clustering is a core procedure in unsupervised machine learning and
data analysis. Due to the large number of applications, clustering
problems have been extensively studied for several decades. The
existing literature includes both very precise algorithms[ANSW17;
Gon85; Li13], and very fast ones [MP04]. Due to the importance
of the task, clustering problems have also been studied in several
computing settings, such as the streaming model [COP03], and the
sliding-window model [BLLM16], the distributed model [BLK17], the
dynamic model [HGS18], and others.

Applications nowadays operate on dynamically evolving data, e.g.,
pictures are constantly added and deleted from picture repositories,
purchases are continuously added into online shopping systems, re-
views are added or being edited in retail systems, etc. Due to the

16 Contents

scale and the dynamic nature of the data at hand, conventional algo-
rithms designed to operate on static inputs, become unable to handle
the task for two main reasons. First, the running time of even the
most efficient algorithms is too expensive to execute after every sin-
gle change in the input data. Secondly, re-running a static algorithm
after every update, might generate solutions that differ substantially
between consecutive updates, which might be undesirable for the ap-
plication at hand. The number of changes in the maintained solution
between consecutive updates is called the recourse of the algorithm.
Our study is motivated by these limitations of static algorithms or
dynamic algorithms, that are effective on only one of the two objec-
tives.

Most fundamental problems in computer science have been stud-
ied in the dynamic setting. At a very high-level, a dynamic algorithm
computes a solution on the initial input data, and as the input under-
goes insertions and/or deletions of elements, the algorithm updates
the solution to reflect the current state of the data. A dynamic algo-
rithm may allow only insertions or only deletions, or may support
an intermixed sequence of insertions and deletions, in which case the
algorithm is called fully-dynamic. The running time of a dynamic
algorithm can either guarantee a worst-case update time after each
update, or a bound on the average update time over a sequence of
updates, which is called amortized update bound. A dynamic algo-
rithm with worst-case update bounds is the most desirable, and often
hard to obtain, but in several applications algorithms with amortized
update bounds are sufficient.

In this paper, we study fully-dynamic algorithms for classic clus-
tering problems. In particular, we consider the facility location, the
k-means, and the k-median problems in the dynamic setting. In the
static case, these problems are defined as follows. Let X be a set of
n points, and d : X× X → R a distance function. We assume that
d is symmetric and that (X,d) forms a metric space. For the (k,p)-
clustering problem, the objective function that we seek to optimize is
Cp(X,S), where S ⊆ X, |S| = k. p = 1 gives the k-median objective,
and p = 2 the k-means one. For the facility location problem the
objective function is C(X,S).

C(X,S) :=
∑
x∈X

min
c∈S

d(x, c)+ f · |S| Cp(X,S) :=
∑
x∈X

min
c∈S

dp(x, c),

All these problems are NP-Hard, so our best hope is to design al-
gorithms with provable approximation guarantees. In the dynamic
setting, the goal is to efficiently maintain a good solution to the clus-
tering problem at hand, as the set of points undergoes element inser-
tions and deletions. The main criterion for designing a good dynamic
algorithm for these problems, is the quality of the clustering, with re-
spect to the optimum solution at any given time. However, in many

0.5 algorithms 17

applications, it is equally important to maintain a consistent cluster-
ing, namely a clustering with bounded recourse. Lattanzi and Vas-
silvitskii [LV17] have recently considered consistent clustering prob-
lems in the online setting, where the points appear in sequence, and
the objective is to maintain a constant factor approximate solution,
while minimizing the total number of times the maintained solution
changes over the whole sequence of points. Another criterion, that
has been much less explored, but is of high importance when dealing
with massive data, is update time. This criterion is the time it takes to
update the solution after each insertion/deletion so that the solution
remains a constant factor approximate solution.

Our Contribution

We present the first work, that studies fully-dynamic algorithms while
considering all of the three aforementioned objectives at the same
time: The approximation guarantee, consistency and update time.
From an input perspective, we consider general metric spaces, an ele-
ment of the input is thus a point in that metric space, which is defined
by the distances to the other points of the metric. The contribution of
our paper can be summarized as follows:
• We give a fully-dynamic algorithm for the facility location prob-

lem with a constant factor approximation, a constant number of changes
to the clustering at each time step, and O(n logn) update time. We
moreover show, that a constant number of changes per update is nec-
essary for achieving a constant factor approximation.
•We extend the algorithm for facility location to the k-median and

k-means problems. Here, our algorithm maintains a constant factor
approximate solution with Õ(n+ k2)4 update time (Theorem 0.5.7).
This is the first non-trivial result for these problems, as hitherto the
only known solution was to recompute from scratch after each up-
date: This requires time Ω(nk) for k-median and Ω(n2) for facility
location. Hence, our time bounds are significantly better than the
naive approach for a large range of k.

empirical analysis . We complement our study with an exper-
imental analysis of our algorithm, on three real-world data sets, and
show that it outperforms the standard approach which recomputes a
solution from scratch after each update, using a fast static algorithm.
Interestingly, we show that this barely impacts the approximation
guarantee. At the same time, our algorithm outperforms by at least
three orders of magnitude the simple-minded solutions, both in terms
of running time and total number of changes made in the maintained
solution throughout the update sequence.

4 Õ(·) hides polylog factors.

18 Contents

Related Work

online and consistent clustering Online algorithms for
facility location were first proposed by Meyerson [Mey01] in his semi-
nal paper. Fotakis [Fot08] later showed that the algorithm, has a com-
petitive ratio of O(logn/ log logn), which is also optimal. Addition-
ally, the algorithm has a constant competitive ratio if the points arrive
in random order [Mey01; Lan18]. There also exist O(logn) competi-
tive deterministic algorithms, see [ABUH04; Fot07]. This was recently
extended to the online model, that incorporates deletions [CCMS18].

Online algorithms for clustering, that are only allowed to place cen-
ters, cannot be competitive. This led to the consideration of the incre-
mental model, which allows two clusters to be merged at any given
time. Work in this area includes [CCFM04; Fot06]. The number of
reassignments (commonly referred to as recourse) over the execution
of an incremental algorithm, may be arbitrary. However, recently Lat-
tanzi and Vassilvitskii [LV17] considered the online clustering prob-
lem with bounded total recourse. They showed a lower bound of
Ω(k logn) changes over an arbitrary sequence of updates, and pre-
sented an algorithm that can maintain a constant factor approxima-
tion, while limiting the total recourse to O(k2 · log4 n). Their work
differs to ours in that elements can only be added, and that they do
not consider optimizing the running time. In the fully dynamic case,
their bound on the recourse does not hold, and we moreover show,
that constant recourse per update is unavoidable.

fully-dynamic and streaming algorithms . Streaming al-
gorithms for clustering can be used to obtain fast dynamic algorithms,
by recomputing a clustering after each update. Since streaming algo-
rithms are highly memory compressed, and typically process updates
in time linear in the memory requirement, the approach automati-
cally yields good update times. Low-memory adaptations of Mey-
erson’s algorithm [Mey01] turned out to be simple and particularly
popular, see [BMO+11; Lan18; SWM11]. Another technique for de-
signing clustering algorithms in the streaming models, is by maintain-
ing coresets, see the following recent survey for an overview [MS18].
For fully dynamic data streams, the only known algorithms for main-
taining coresets for k-means and k-median in Euclidean spaces using
small space and update times, are due to Braverman et al. [BFL+17]
and Frahling and Sohler [FS05]. There also exists some work on esti-
mating the cost of Euclidean facility location in dynamic data streams,
see [CLMS13; Ind04; LS08].

For more general metrics, the problem of maintaining clusterings
dynamically, has been considered by Henzinger et al. [HLM17] and
Goranci et al. [GHL18] who consider the facility location in bounded
doubling dimension. The arguably most similar work previous to
ours is due to Hubert-Chan et al. [HGS18]. They consider the k-center

0.5 algorithms 19

problem in general metrics in the fully dynamic model. Here, they
were able to maintain a constant factor approximation with update
time O(k logn) 5.

Whether an algorithm in the fully dynamic model with low re-
course and update times exists, was left as an open problem.

In this paper we consider the classical clustering problems: Facil-
ity location, K-means, K-median, but in a fully dynamic data stream
setting. Three parameters are of importance in this context: (1) How
good the solution is, (2) the time it takes to update the solution, and
(3) how much the solution changes.

In this paper we focus on general metric space. Most of the fo-
cus is on the facility location problem. We give a simple algorithm,
which maintains a constant factor approximation with update time
O (log (n)n) and total recourse O (n). This is better than the naive
algorithm, which consists of recomputing at every timestamp, which
can take up to O

(
n2
)

running time and a total recurse of O
(
n2
)
.

Our bounds are nearly optimal, since inserting a point in a general
metric space takes O(n) time, and we show a simple lower bound of
O(n) on total recourse. Moreover, we generalize this result for the k-
medians and k-means problems: Our algorithms maintain a constant
factor approximation in time Õ

(
n+ k2

)
.

We complement our analysis with experiments, showing that the
cost of the solution maintained by our algorithm at any time t, is
very close to the cost of a solution obtained by quickly recomputing
a solution from scratch at time t while having a much better running
time.

A quick statement of the results

For facility location we get the following theorem.

Theorem 0.5.6. There exist a randomized algorithm that, given a metric
space undergoing insertion and deletions of points, maintains a set of center
St such that :

• each update is processed in time O (n∗ log (n∗)) with probability 1−
1/n∗

• at any given time t, C(Xt,St) = O(1)C(Xt, OPTt) with probability
1− 1/n∗

•
∑n
t=0 |S

t∆St+1| = O(n), i.e. the amortized recourse is O(1) per
step.

and for k-means and k-median

5 Under the common assumption that the ratio longest distance / shortest distance of
the metric is polynomially bounded.

20 Contents

Theorem 0.5.7. There exists a randomized algorithm that, given a metric
space undergoing insertions and deletions of points, maintains a set of cen-
ters St with Õ(n∗+k2) update time such that, for any time t, Cp(Xt,St) =
O(1) ·Cp(Xt, OPTt).6

and the empirical results are

Figure 2: Running
time,
Twitter.

Figure 3: Cost,
Twitter.

Figure 4: Recourse,
Twitter.

Figure 5: Running
time,
cover-
type.

Figure 6: Cost,
cover-
type.

Figure 7: Recourse,
cover-
type.

Figure 8: Running
time,
USCen-
sus1990.

Figure 9: Cost,
USCen-
sus1990.

Figure 10: Re-
course,
USCen-
sus1990.

Figure 11: A comparison of the algorithms we consider in terms of running
time (left column), cost of the solution (middle column), and re-
course (right column).

6 We assume (as in [LV17]) that the minimum distance in the metric is 1 and the
maximum ∆ is bounded by a polynomial in n∗. Alternatively, our bounds can be
stated with log∆ instead of logn∗.

0.6 machine learning and data analysis 21

0.6 machine learning and data analysis

0.6.1 Introduction

In this section we go through four papers related to machine learn-
ing and data analysis. The first paper: "Ghost Writing Detection in
High Schools" is using a Siamese network to estimate how similar
two assignments are, where two assignments from the same author
is said to be similar. Then this network is used to guess, if a new
assignment from a student is written by the student himself or by
the use of a ghost writer. In "Investigating Writing Style Develop-
ment in High School", the Siamese network from before is used on a
student to track how similar his newer assignments are compared to
previous work. This gives a profile of each student, which is then ana-
lyzed and the profiles are clustered. In both "Sequence Modelling For
Analyzing Student Interaction with Educational Systems" and "Track-
ing Behavioral Patterns among Students in an Online Educational
System" we do clustering of log data, though with different models
and sources of data. In the first it is done with a model, based on
a mixture of Markov chains, and in the second it is done with Non-
Negative Matrix Factorization.

0.6.2 Ghost Writing Detection in High schools [SSL+19b]

In recent years, the possibility of hiring a ghost writer to do your aca-
demic work, has increased due to the rise in the number of services
who offer to do this for you. Compared to plagiarism, this is a much
harder task to detect, since the work is original, just not written by
the student himself. The problem is of course only solveable, if you
have a history of assignments from the student, and thus the problem
is answering whether the new assignment is written by the same au-
thor as the earlier assignments. In the Natural language processing
community, this problem is called authorship verification and is well
studied [Sta09; Bag15; BDD+15].

However, in the case of detecting ghost writing in written work in
high school, to the best of our knowledge, this was the first attempt.

The network we used was a Siamese neural network, which was
inspired by [QHZ18a]. The network is trained, such that given two
documents, it determines how likely they are to be written by the
same author. The Siamese part of the network gives an encoding of
each of the documents in the network, which are then compared with
four dense layers of 500 neurons in the end. This network was able
to predict with about 72 percent accuracy, if two documents were
written by the same author on a balanced data set.

22 Contents

Figure 12: The architecture of the siamese network used

For the final prediction the student has a new assignment x and a
history of assignments Tα. The final prediction is given by

Cs (Tα, x) =
∑
t∈α

e−λτ(t)s(t, x)

where τ(t) is the number of months assignment t was written before
the new assignment x, λ is a configurable parameter, and s(x, t) is the
similarity between the assignments as learned by the network. The
new assignment x is said to be written by the student if Cs (Tα) >
δ. The parameters λ, δ was found on a validation set. Using this
prediction strategy, we got an accuracy of 87.5 percent and an AUC
score of 0.947 on a balanced data set.

Figure 13: On the left we have the ROC curve, on the right is tradeoff be-
tween false accusation and catch rate

This project received lots of media attention, and has been men-
tion by more than 60 danish media and more than 120 international
media.7 One of the reasons for the large media attention is at least
partially due to it being controversial. There is a clear ethical dilemma
here. On one side using ghostwriters can unfairly improve your
grades, and in Denmark high school grades directly determines which
further education programs you can pursue. Thus, the use of ghost-
writers may push out more deserving students. Also, the use of ghost
writers undermines the whole grade system, since students are given

7 see Appendix

0.6 machine learning and data analysis 23

grades based on other peoples work. On the other hand, falsely ac-
cusing a student of using a ghostwriter is a serious issue, and should
in no way be taken lightly.

Confronted with the issue that the use of our research may lead to
false accusations, our natural response is, that we are just a warning
system. An alert should not lead to any consequences, before all tradi-
tional methods have been taken into account. In other words, the only
difference our system make is "information" to the teacher/principal,
and what he/she does with it is up to him/her. While such an answer
is understandable, it does nothing but push the responsibility to the
next level. We are in the usual situation, where we have to balance
the false negatives (false accusation) and false positives (not detecting
when a ghostwriter has been used). Many people like to cite Black-
stone’s principle: "It is better that ten guilty persons escape than that
one innocent suffer" when I confronted with this dilemma. However
my response "what about twenty?" either leaves them silent, or takes
their sympathetic, but too idealistic, principle to the limit, concluding
that no innocent may ever be accused.

Another ethical issue which is not specific to our paper, but to au-
thor verification in general, is the prospects of re identification based
on text. For a long time there has been an underlying assumption,
that text with no named author is anonymous. With the new GDPR
rules, whether data is anonymous or not depends on whether the
person, which the data belong to is identifiable or not. From recital
26 of EU GDPR we have the following quote:
"To determine whether a natural person is identifiable, account should
be taken of all the means reasonably likely to be used, such as sin-
gling out, either by the controller or by another person to identify the
natural person directly or indirectly.
To ascertain whether means are reasonably likely to be used to iden-
tify the natural person, account should be taken of all objective fac-
tors, such as the costs of and the amount of time required for identifi-
cation, taking into consideration the available technology at the time
of the processing and technological developments."

With authorship verification developing as it does, it changes which
texts are anonymous and which are not. A famous, but not so devas-
tating example, was when J.K Rowling was identified as the author
of ’The Cuckoo’s Calling’, which she wrote under a pseudonym. I
do not think though, it will be long, before we are faced with much
more serious issues, such as identifying ’anonymous’ dissidents.

0.6.3 Investigating Writing Style Development in High School [LHA19]

One of the most essential skills learned during the course of primary,
secondary, and high school, is writing. While the main focus of pri-
mary school are on basic writing skills (such as grammar), secondary

24 Contents

or high school will be more focused on improving the linguistic writing
style of a student, that is, the quality of the written text as perceived
by the reader. With many jobs being highly dependent on produc-
ing relatively large amounts of well-written text, no justification is
needed for why good writing is an essential skill.

The definition of quality in linguistic writing style is widely dis-
cussed [Spa01; B D74]. While correct grammar being a prerequisite,
several other measures are also correlated to writing style being per-
ceived as good, for instance use of vocabulary, sentence structure and
readability [PN08]. Our focus in this work will mainly be on writing
style development through the course of high school, while writing
style quality will have a secondary role. We consider data from Dan-
ish high schools, consisting of Danish essays, and investigate the gen-
eral development patterns among the students during the three years
of study. The end goal is to be able to provide feedback to teachers
about the development of their students’ writing styles. We identify
patterns among thousands of students across different classes and in-
stitutions, allowing us to provide teachers with new insights, which
current data available to teachers might not show. For instance, in-
sights about students, whose writing style development patterns may
be unique within their own classes.

By itself, our method potentially allows for identifying students
with deviating writing styles development (which might be good or
bad), or students with sudden significant changes in writing style,
which could be an indicator of cheating. However, we also consider
several measures for the quality of writing. We investigate how these
measures correlate with the different patterns of writing style devel-
opment found, as a mean to detect optimal and suboptimal develop-
ment profiles with respect to text quality. Information of this kind
could be used to help teachers tailor their teaching style to specific
groups of students, who may need training in specific areas challeng-
ing to their development profile.

Our Contribution

As mentioned, we concern ourselves with the development of linguis-
tic writing style (as opposed to e.g. handwriting) during the course of
high school. Specifically, we investigate the development of writing
style in Danish essays handed-in by students in Danish high schools
8.

We are interested in determining general patterns of development,
and to discuss which of the patterns are optimal, in the sense of im-
proving writing style quality. In particular, we consider the following
questions:

8 Note, that high school in Denmark usually consists of three years of study with
students normally starting at age 15-17 and finishing at age 18-20.

0.6 machine learning and data analysis 25

• How does the writing style of a student develop, and what are
the typical kinds of development in writing style?

• How does writing style changes correlate with measures of
quality?

• How does writing style similarity between students behave, with
respect to how far the students are in their education?

Our study is based on data from the company MaCom9, which is
behind the learning management system Lectio, a system used by
90% of Danish high schools. Students submit their written essays
through Lectio, giving MaCom access to a huge corpus of Danish
texts by high school students, marked with author and date of sub-
mission.

Our approach is based on methods from authorship verification; in
order to learn a similarity measure for writing style, we consider ex-
amples of writing styles in texts from the same or different authors,
similar to how it is done in verification tasks. We use a Siamese neural
network for learning this similarity measure. While training, time is
not taken into account. Assuming that writing style actually changes
over time, this will lead to a suboptimal network. However, test-
ing the network, we see clear patterns in how the "errors" distribute
for a single author, indicating that the network simulates the best
similarity measure possible, and the "errors" are actual changes in
writing style. Using this method, writing style development profiles
are generated and clustered for a large body of students. Analyzing
the clusters, we see optimal and suboptimal types of development.
In general, the average similarity is found to decay with time to a
great extend, which corresponds well with the general perception,
that writing style changes during high school, and also matches con-
clusions made in the literature [SSL+19a; HLLA14; CP04].

While this paper presents a case study of the data from MaCom,
the methods used for analysis are of independent interest. They are
not specific to the Danish language or high school, except for the
neural network, which would at least require retraining in the given
language. Considering other network architectures than the one used
in this work, might also improve upon the analysis, see for instance
[QHZ18b] for a network used with English.

Related Work

In one way or another, writing style analysis has been studied in the
natural language community for many years. Typically, the analysis
of writing style is used as a middle link for tasks such as authorship
verification [SSL+19a; QHZ18b; Sta09], in which a text of unknown

9 The data set is proprietary and not publicly available

26 Contents

authorship is given, together with a set of texts by some known au-
thor, and we wish to verify, whether the given author is the author
of the unknown text. Similarly, in authorship attribution the unknown
text must be attributed to one of several known authors. Traditional
methods for verification and attribution utilize both unsupervised
methods from the field of outlier detection [Sta09], as well as stan-
dard supervised learning techniques, such as SVMs [HLLA14] and
techniques based on neural networks [SSL+19a; QHZ18b].

Other uses of writing style analysis include distinguishing features
of the writer (e.g. sex and age [SBSV13; SKA02; PDV11; AKFS03],
demographics [AKPS09], or nationality [KSZ05]), using supervised
learning algorithms such as SVMs, random forest, and neural net-
works. Other studies have investigated written conversations on on-
line forums, trying to infer whether one person is trying to convince
another [FBPW11].

Some studies investigate the quality of writing, for instance pre-
diction of popularity of news articles [YCL+19], or the quality of sci-
entific articles [LN13]. The former uses the popularity of an article
on social media as a measure of quality, while the quality measure
of scientific papers considered in the latter, is based on acceptance
of a paper to "The Best American Science Writing", an anthology of
popular science articles published in the United States on a yearly
basis.

Few studies consider development of writing style as the main ob-
jective. [CS14] uses neural network models to track style of handwrit-
ing (i.e. not linguistic writing style) and investigate the development
of handwriting among young students, and how similar it is when
compared to different students, in the same/different grade level. [B
D74] shows how students in higher grades get higher scores for their
essays from teachers, in a blind experiment, where all student infor-
mation is hidden from the grading teacher. [CP04] consider two fa-
mous Turkish writers, investigating their change in writing style over
time, the most significant finding being average word length increas-
ing with the age of the author.

Finally, several studies related to writing style have been conducted
using the data available from MaCom. [HLLA14] investigates tempo-
ral aspects of authorship attribution, and concludes, that considering
more recent essays improves authorship attribution algorithms, indi-
cating that the writing style among high school students does indeed
change with time. [SSL+19a] also uses the MaCom data for testing
their neural network based authorship verification methods; their re-
sults also support these findings.

By using the Siamese network from above, we can tell how similar
two essay are, or more exactly, how likely they are to be written by
the same author. What was noticed when we did the "ghost writing
detection", was that the further apart in time two assignments written

0.6 machine learning and data analysis 27

by the same author was, the less "similar" our network predicted them
to be. If you think of the network as checking similar writing style,
it is of no surprise that this happens, since students writing style
develop a lot during high school. Though one needs to keep in mind,
that the network is trained with plenty of pairs of assignments written
by the same student but far apart in time, thus the conclusion is not
trivial, but none the less the case.

We took the two first assignments of each student, and then cal-
culated the similarity of these two assignments to all later assign-
ments. Using these similarities, we created a profile of each student,
which shows a graph of how the similar his later assignments was to
his two first. Then we made a modified k++ algorithm and cluster
the profiles, with the number of clustered determined by the elbow
method. Then we analyzed all the clusters and evaluated which of
them showed the best learning behavior by comparing to other met-
rics such as number of words, verbs per phrase and SMOG score.
One of the clusters showed the similarity dropping so low, that after
30 months it could just as well have been another person writing it,
when seen from the perspective of the algorithm.

We also looked at how the average similarity was between essays
with different authors, depending on how far in high school they
were when the assignment was written. This showed clearly, that the
similarities decreased with time, an indication that students writing
style develop through their high school years.

0.6.4 Sequence Modelling For Analyzing Student Interaction with Educa-
tional Systems [HHH+17a]

In this paper we used 1.08 million student sessions. We modeled each
student as a distribution of different underlying behaviors, where the
sequence of actions from each session is assumed to be generated by
a single Markov chain. This means, that a student can act according
to different types of behavior, but during one session will act only
according to one Markov chain.

The method of the paper is as follows: For each session we extract
a sequence of actions A1, ...,An, and every sequence correspond to
a path in the Markov chain model. We then generate priors P1, ...Pk,
which themselves are Markov chains, one for each cluster we want.
The priors are generated by each edge given a random number from
a uniform distribution between 0 and 1. Then every action sequence
is assigned to the prior most likely to generate it, and we update each
prior such that it maximizes the likelihood to generate the sequences
assigned to it. Then we assign sequences again and update priors and
this is done until less than 5 percent of the seqeunces change prior.
Notice that this is just the k++ algorithm modified for this settting.

28 Contents

To decide the right number of clusters/priors, we used the elbow
method, which means that you look for the elbow in the graph when
the algorithm has been run for different number of clusters. In this
case the graph is the probability that the priors would generate the
sequences assigned to them. This should be increasing with the num-
ber of clusters, but there should be a sign once the number of clusters
go above the "true" number. Using the elbow approach is very com-
mon, when you do not have expert domain knowledge. However, we
did not see a clear break, but a strong indication that it was between
6-10, and we went with 6.

When we started analyzing the 6 chains, one of the chains showed
strong signs of suboptimal behavior, where the student either experi-
ence questions that are too easy, too hard, or they never train what
they learn in a lesson.

0.6.5 Tracking Behavioral Patterns among Students in an Online Educa-
tional System [LHA18]

How students act in educational systems is always an essential topic
in educational data mining. Understanding this behavior in an educa-
tional systems can help us guide students in the direction of optimal
learning, based on actual use of the system. This behaviour can be
understood both through an explicit study [HMW+16], or, as in this
paper, through the automatically generated log data of the system.

The analysis of log data is often done as an unsupervised clustering
of students [FKD16; GRD+16; HHH+17b; KKSG16]. A popular ap-
proach is to extract action sequences, and transform them into an ag-
gregated representation using Markov models [HHH+17b; KKSG16].
The Markov chains can then be clustered by different methods. Klin-
gler et al. did student modeling with the use of explicit Markov
chains and the clustering with different distance measures defined on
the Markov chains [KKSG16]. Hansen et al. assumed the actions se-
quences to be generated by a mixture of Markov chains, and used an
heuristic algorithm to find the generating Markov chains [HHH+17b].
Gelman et al. used non-negative matrix factorization to find clusters
for different measures of activity, aggregated in weekly periods dur-
ing a MOOC course. These clusters are then matched from week to
week by cosine similarity.

Our work is similar to Gelman et al. [GRD+16] in that we also use
Non-negative Matrix Factorization (NMF) to make a soft clustering at
the student level in a given time period. However, our clustering is
only made once, and we are looking at primary school data over a
vastly longer period of time, (2 years compared to 14 weeks).

Our soft clustering by non-negative matrix factorization is based
on log data from Clio Online. Clio Online is the largest provider of
digital learning of all subjects in the Danish primary school (except

0.6 machine learning and data analysis 29

mathematics), having 90% of all primary schools in Denmark as cus-
tomers.

Using NMF, we assume that the set of features chosen can be repre-
sented by a set of fewer underlying behaviors. These underlying be-
haviours would each be represented by a cluster in the non-negative
matrix factorization. Each student will then get a number for each
cluster in each time period, representing how much of that underly-
ing behavior he has shown. Non-negativity gives the behaviors an
additive structure, which is more natural than showing a negative
amount of a given behavior. We reason that the soft clustering will
show both the behaviors of individual students, as well as how the
behaviors change over time, both individually and on a system-wide
level.

In the paper, we consider two main questions: a) how does student
activity in the system affect performance, and b) how does student
activity distribute between different levels of Bloom’s taxonomy in
different subjects. Both questions are important in regards to optimiz-
ing learning; the first in relation to performance, the latter in relation
to utilization of all taxonomy levels.

Several points can be taken from our analysis. We have identified
three optimal and two sub-optimal behaviors in relation to subject
and performance. One notably conclusion is that students using the
Clio Online system during non-school hours (at home), do not seem
to gain any significant boost to performance. We also see how taking
quizzes seems to increase the performance of students in languages,
more so than in other subjects where reading texts are of more im-
portance. This fits the intuition that skills such as grammar need to
be trained in order to be learned. We inform how exercises are used,
depending both on their subject and their level in Bloom’s taxonomy.
And lastly we see that the average amount of time spent in the sys-
tem is increasing both generally and for the individual students in
all subjects, but especially for students working with languages. Fur-
thermore, both experiments show how behaviors can have high cor-
relation on a system-wide level, despite being uncorrelated on the
individual student level. While the change of behavior for individ-
ual students was not directly analyzed in this paper (due to privacy
concerns), our method allows for tracking such individual changes.
Hopefully, this will help teachers encourage optimal student behav-
ior, e.g. by recommending training quizzes for students working with
languages, or making sure that students are allowed more time to use
the system in school.

30 Contents

0.7 company applications

0.7.1 Introduction

While my PhD was not a traditional industrial PhD, it was in close
cooperation with three companies. Edulab, who is responsible for
"MatematikFessor", a Danish online math platform, where primary
school students can practice and learn math. "MatematikFessor" is
used by more than 1.500 primary school math teachers in Denmark,
and more than a million questions is answered each day on the plat-
form. CLIO online, which is another learning platform for primary
schools, has the focus on all the other classes. Finally there was Ma-
Com, who is behind the product Lectio, a Learning Management
System for high schools, which is used by about 90 percent of high
schools in Denmark. Working together with private companies presents
itself with both challenges and opportunities. The opportunities re-
late to working with problems that the industry cares for and getting
access to real world data sets, which might otherwise be unavailable.
Working with real world data sets is a very messy job, and you have
to take many decisions regarding the best way to clean your data.
The right way to clean data is in no way obvious, and I encountered
this issue several times during my PhD. An example was, when we
wanted to predict the score of a student on a quiz before he took it,
based on historical data of the student. In many cases the data indi-
cated that the student was not doing his best, for example by using
less than a minute on a test estimated to last an hour. Thus it became
a question of predicting human behavior, instead of predicting how
good the student would be at the quiz. While it was obvious that
some attempts were not genuine, it was no easy task to decide where
to draw the line.

0.7.2 DABAI: A data driven project for e Learning in Denmark [ECEL]

One of the first papers I wrote, was about the challenges faced by
the companies we were cooperating with. One of them was student
profiling. I have written three papers about student profiling during
my PhD:Tracking Behavioral Patterns among Students in an Online
Educational System, Sequence Modelling For Analyzing Student In-
teraction with Educational Systems, and Investigating Writing Style
Development in High School. The common denominator in all these
papers was, that suboptimal learning behavior was found, and alter-
natives suggested. The companies have incorporated those findings
into the services to improve the learning experience of students.

Another problem which originates from MaCom, was authorship
verification. This lead to the paper: Ghost Writer Detection in High

0.8 conclusion 31

Schools. This paper received extraordinary media attention and has
been cited by hundreds of media all over the world.

0.8 conclusion

I have contributed with three papers to the algorithms community,
one to the machine learning community, and four to the educational
community. I have shown companies how to use their data for get-
ting insights which can help improve their system, and also given
them ways to solve problems, which was previously unheard of in
their setting. I have spread our ideas and results, not just for the sci-
ence community, but for people in general, by having our research
described by hundreds of medias with reach to millions of people.
Such impacts are unusual, but necessary, if you want more than just
the community to be aware.

I have extended Robinsons original theorem by theorem 0.5.1.This
led to the finding of a strong orientation in polynomial time.

Theorem 0.5.2 led to a simple algorithm, where the theorem guar-
antees the algorithm to be successful, if a strong orientation exists.
Furthermore, I have shown, that there is a linear time algorithm for
solving the trail orientation in undirected graphs.

Dominating Sets and Maximum Independent Sets: I have demon-
strated, that there exists a dynamic algorithm capable of maintain-
ing an O(logn) approximation, with a complexity matching the long
standing O(δ) bound for MIS (theorem 0.5.3). Furthermore, I have
shown a simple, deterministic algorithm to compute a minimal DS
(theorem 0.5.4).

Minimum Connected Dominating Sets: I have contributed to filling
the gap in MCDS research, by showing an algorithm for Minimum DS
can be adapted in a non-trivial way to maintain an O(logn) approxi-
mation of the MCDS in general dynamic graphs (theorem 0.5.5).

Dynamic Clustering: I have presented the first work that stud-
ies fully-dynamic algorithms, which simultaneously takes approxi-
mation guarantee, consistency, and update time into consideration.
This led to a fully-dynamic algorithm for the facility location problem,
with a constant factor approximation, a constant number of changes
to the clustering at each time step, and O(logn) update time. The
algorithm was extended for facility location to the k-median and k-
means problem (theorem 0.5.6). This is the first non-trivial solution
to these problems, resulting in time bounds significantly better than
the naive approach for a larger range of k. In an empirical analysis
on three real-world data sets, our algorithm outperformed the simple-
minded solutions by at least three orders of magnitude.

Machine Learning and Data Analysis
Authorship Verification: I present a Siamese Network to detect ghost
writing in high school, which, to the best of my knowledge, is the

32 Contents

first of its kind. The model had an accuracy of 87.5 percent, and an
AUC score of 0.947 on a balanced data set.

Writing Style Development in High School
Using a Siamese Network, I have shown the ability to identify pat-
terns in "error" distribution for individual authors. This has the po-
tential to be used by teachers to improve their teaching, as the model
identifies optimal and suboptimal developments.

Sequence Modelling for Analyzing Student Interaction with Eudca-
tional Systems
Assuming that each individual student session is generated by a sin-
gle Markov chain, we analyzed 1.08 million student sessions. By re-
peatedly updating priors and reassigning sequences, we reached a
level where less than 5 percent change prior (a modified k++ algo-
rithm for this setting). By using the elbow method we found a strong
indication, that the right numbers of clusters/priors were between 6

and ten. Analyzing six chains, we found one to be suboptimal, in-
dicating that the students found questions to be either too easy, too
hard, or that they lack training in the subject.

Tracking Behavioral Patterns among Students in an Online Educa-
tional System
Using Non-negative Matrix Factorization I studied primary school
data from Clio Online over a period of two years. The clustering
was only made once. I identified three optimal and two suboptimal
behaviors related to subject and performance. This lead to the iden-
tification of the areas where Clio Online was a great benefit to the
students (language, quizzes), and where it was not (working with
Clio Online at home).

B I B L I O G R A P H Y

[AHHR18] Anders Aamand, Niklas Hjuler, Jacob Holm, and Eva
Rotenberg. “One-Way Trail Orientations.” In: 45th In-
ternational Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2018, July 9-13, 2018, Prague, Czech Re-
public. 2018, 6:1–6:13.

[AS18] Raghavendra Addanki and Barna Saha. “Fully Dynamic
Set Cover–Improved and Simple.” In: arXiv preprint arXiv:1804.03197
(2018).

[ANSW17] S. Ahmadian, A. Norouzi-Fard, O. Svensson, and J. Ward.
“Better Guarantees for k-Means and Euclidean k-Median
by Primal-Dual Algorithms.” In: 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS).
Oct. 2017, pp. 61–72.

[ABUH04] Aris Anagnostopoulos, Russell Bent, Eli Upfal, and Pas-
cal Van Hentenryck. “A simple and deterministic com-
petitive algorithm for online facility location.” In: Inf.
Comput. 194.2 (2004), pp. 175–202.

[AKFS03] Shlomo Argamon, Moshe Koppel, Jonathan Fine, and
Anat Rachel Shimoni. “Gender, genre, and writing style
in formal written texts.” In: TEXT 23 (2003), pp. 321–
346.

[AKPS09] Shlomo Argamon, Moshe Koppel, James W. Pennebaker,
and Jonathan Schler. “Automatically Profiling the Au-
thor of an Anonymous Text.” In: Commun. ACM 52.2
(Feb. 2009), pp. 119–123.

[AOSS18] Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and
Shay Solomon. “Fully dynamic maximal independent
set with sublinear update time.” In: Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2018, Los Angeles, CA, USA, June 25-29,
2018. 2018.

[AOSS] Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and
Shay Solomon. “Fully Dynamic Maximal Independent
Set with Sublinear in <italic>n</italic> Update Time.”
In: Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 1919–1936.

[B D74] Paul B. Diederich. “Measuring Growth in English.” In:
(Jan. 1974).

33

34 Bibliography

[BLK17] Olivier Bachem, Mario Lucic, and Andreas Krause. “Dis-
tributed and Provably Good Seedings for k-Means in
Constant Rounds.” In: Proceedings of the 34th Interna-
tional Conference on Machine Learning. Ed. by Doina Pre-
cup and Yee Whye Teh. Vol. 70. Proceedings of Machine
Learning Research. International Convention Centre, Syd-
ney, Australia: PMLR, June 2017, pp. 292–300.

[Bag15] Douglas Bagnall. “Author Identification using multi-
headed Recurrent Neural Networks.” In: CLEF 2015
Evaluation Labs and Workshop – Working Notes Papers.
CEUR-WS.org, Sept. 2015.

[BDD+15] Alberto Bartoli, Alex Dagri, Andrea De Lorenzo, Eric
Medvet, and Fabiano Tarlao. “An author verification
approach based on differential features.” In: CEUR WORK-
SHOP PROCEEDINGS. Vol. 1391. CEUR. 2015.

[BFH] Aaron Bernstein, Sebastian Forster, and Monika Hen-
zinger. “A Deamortization Approach for Dynamic Span-
ner and Dynamic Maximal Matching.” In: Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1899–1918.

[BS16] Aaron Bernstein and Cliff Stein. “Faster fully dynamic
matchings with small approximation ratios.” In: Pro-
ceedings of the twenty-seventh annual ACM-SIAM sympo-
sium on Discrete algorithms. Society for Industrial and
Applied Mathematics. 2016, pp. 692–711.

[BB97] Sivakumar R Bevan Das and V Bharghavan. “Routing
in ad-hoc networks using a virtual backbone.” In: Pro-
ceedings of the 6th International Conference on Computer
Communications and Networks (IC3N’97). 1997, pp. 1–20.

[BCHN18] Sayan Bhattacharya, Deeparnab Chakrabarty, Monika
Henzinger, and Danupon Nanongkai. “Dynamic algo-
rithms for graph coloring.” In: Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms. Society for Industrial and Applied Mathematics.
2018, pp. 1–20.

[BHI18] Sayan Bhattacharya, Monika Henzinger, and Giuseppe
F Italiano. “Deterministic fully dynamic data structures
for vertex cover and matching.” In: SIAM Journal on
Computing 47.3 (2018), pp. 859–887.

[BT80] Frank Boesch and Ralph Tindell. “Robbins’s Theorem
for Mixed Multigraphs.” In: The American Mathematical
Monthly 87.9 (1980), pp. 716–719.

Bibliography 35

[BMO+11] V. Braverman, A. Meyerson, R. Ostrovsky, A. Roytman,
M. Shindler, and B. Tagiku. “Streaming k-means on
Well-Clusterable Data.” In: SODA. 2011, pp. 26–40.

[BFL+17] Vladimir Braverman, Gereon Frahling, Harry Lang, Chris-
tian Sohler, and Lin F. Yang. “Clustering High Dimen-
sional Dynamic Data Streams.” In: Proceedings of the
34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017. 2017,
pp. 576–585.

[BLLM16] Vladimir Braverman, Harry Lang, Keith Levin, and Morteza
Monemizadeh. “Clustering problems on sliding win-
dows.” In: Proceedings of the twenty-seventh annual ACM-
SIAM symposium on Discrete algorithms. Society for In-
dustrial and Applied Mathematics. 2016, pp. 1374–1390.

[BCOP04] Sergiy Butenko, Xiuzhen Cheng, Carlos A Oliveira, and
Panos M Pardalos. “A new heuristic for the minimum
connected dominating set problem on ad hoc wireless
networks.” In: Recent developments in cooperative control
and optimization. Springer, 2004, pp. 61–73.

[CP04] Fazli Can and Jon M. Patton. “Change of Writing Style
with Time.” In: Computers and the Humanities 38.1 (Feb.
2004), pp. 61–82.

[CCFM04] Moses Charikar, Chandra Chekuri, Tomás Feder, and
Rajeev Motwani. “Incremental Clustering and Dynamic
Information Retrieval.” In: SIAM J. Comput. 33.6 (2004),
pp. 1417–1440.

[COP03] Moses Charikar, Liadan O’Callaghan, and Rina Pani-
grahy. “Better Streaming Algorithms for Clustering Prob-
lems.” In: Proceedings of the Thirty-fifth Annual ACM Sym-
posium on Theory of Computing. STOC ’03. San Diego,
CA, USA: ACM, 2003, pp. 30–39.

[CHL+03] Xiuzhen Cheng, Xiao Huang, Deying Li, Weili Wu, and
Ding-Zhu Du. “A polynomial-time approximation scheme
for the minimum-connected dominating set in ad hoc
wireless networks.” In: Networks: An International Jour-
nal 42.4 (2003), pp. 202–208.

[CS14] Jun Chu and Sargur Srihari. “Writer Identification Us-
ing a Deep Neural Network.” In: Proceedings of the 2014
Indian Conference on Computer Vision Graphics and Image
Processing. ICVGIP ’14. Bangalore, India: ACM, 2014,
31:1–31:7.

[Chv79] V. Chvatal. “A Greedy Heuristic for the Set-Covering
Problem.” In: Mathematics of Operations Research 4.3 (1979),
pp. 233–235.

36 Bibliography

[CCMS18] Marek Cygan, Artur Czumaj, Marcin Mucha, and Piotr
Sankowski. “Online Facility Location with Deletions.”
In: 26th Annual European Symposium on Algorithms, ESA
2018, August 20-22, 2018, Helsinki, Finland. 2018, 21:1–
21:15.

[CLMS13] Artur Czumaj, Christiane Lammersen, Morteza Mone-
mizadeh, and Christian Sohler. “(1+ ε)-approximation
for facility location in data streams.” In: Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2013, New Orleans, Louisiana,
USA, January 6-8, 2013. 2013, pp. 1710–1728.

[DI04] Camil Demetrescu and Giuseppe F. Italiano. “A New
Approach to Dynamic All Pairs Shortest Paths.” In: J.
ACM 51.6 (2004), pp. 968–992.

[DW12] Ding-Zhu Du and Peng-Jun Wan. Connected dominating
set: theory and applications. Vol. 77. Springer Science &
Business Media, 2012.

[FKD16] Louis Faucon, Lukasz Kidzinski, and Pierre Dillenbourg.
“Semi-Markov model for simulating MOOC students.”
In: Proceedings of the 9th International Conference on Edu-
cational Data Mining (EDM). International Educational
Data Mining Society (IEDMS), 2016, pp. 358–363.

[Fei98] Uriel Feige. “A threshold of ln n for approximating
set cover.” In: Journal of the ACM (JACM) 45.4 (1998),
pp. 634–652.

[Fot06] Dimitris Fotakis. “Incremental algorithms for Facility
Location and k-Median.” In: Theor. Comput. Sci. 361.2-3
(2006), pp. 275–313.

[Fot07] Dimitris Fotakis. “A primal-dual algorithm for online
non-uniform facility location.” In: J. Discrete Algorithms
5.1 (2007), pp. 141–148.

[Fot08] Dimitris Fotakis. “On the Competitive Ratio for Online
Facility Location.” In: Algorithmica 50.1 (2008), pp. 1–57.

[FS05] Gereon Frahling and Christian Sohler. “Coresets in dy-
namic geometric data streams.” In: Proceedings of the
37th Annual ACM Symposium on Theory of Computing
(STOC). 2005, pp. 209–217.

[FBPW11] Marjorie Freedman, Alex Baron, Vasin Punyakanok, and
Ralph Weischedel. “Language Use: What Can It Tell
Us?” In: Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Language
Technologies: Short Papers - Volume 2. HLT ’11. Portland,
Oregon: Association for Computational Linguistics, 2011,
pp. 341–345.

Bibliography 37

[GJ79] M. R. Garey and David S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman, 1979.

[GRD+16] Ben U. Gelman, Matt Revelle, Carlotta Domeniconi, Kalyan
Veeramachaneni, and Aditya Johri. “Acting the Same
Differently: A Cross-Course Comparison of User Be-
havior in MOOCs.” In: Proceedings of the 9th Interna-
tional Conference on Educational Data Mining (EDM). In-
ternational Educational Data Mining Society (IEDMS),
2016, pp. 376–381.

[Gon85] Teofilo F. Gonzalez. “Clustering to minimize the maxi-
mum intercluster distance.” In: Theoretical Computer Sci-
ence 38 (1985), pp. 293–306.

[GHL18] Gramoz Goranci, Monika Henzinger, and Dariusz Le-
niowski. “A Tree Structure For Dynamic Facility Lo-
cation.” In: 26th Annual European Symposium on Algo-
rithms, ESA 2018, August 20-22, 2018, Helsinki, Finland.
2018, 39:1–39:13.

[GK98] Sudipto Guha and Samir Khuller. “Approximation al-
gorithms for connected dominating sets.” In: Algorith-
mica 20.4 (1998), pp. 374–387.

[GMM13] Leonidas Guibas, Nikola Milosavljević, and Arik Mot-
skin. “Connected dominating sets on dynamic geomet-
ric graphs.” In: Computational Geometry 46.2 (2013), pp. 160–
172.

[GKKP17] Anupam Gupta, Ravishankar Krishnaswamy, Amit Ku-
mar, and Debmalya Panigrahi. “Online and dynamic
algorithms for set cover.” In: Proceedings of the 49th An-
nual ACM SIGACT Symposium on Theory of Computing.
ACM. 2017, pp. 537–550.

[GK18] Manoj Gupta and Shahbaz Khan. “Simple dynamic al-
gorithms for Maximal Independent Set and other prob-
lems.” In: arXiv preprint arXiv:1804.01823 (2018).

[GP13] Manoj Gupta and Richard Peng. “Fully dynamic (1+
e)-approximate matchings.” In: Foundations of Computer
Science (FOCS), 2013 IEEE 54th Annual Symposium on.
IEEE. 2013, pp. 548–557.

[HHH+17a] Christian Hansen, Casper Hansen, Niklas Hjuler, Stephen
Alstrup, and Christina Lioma. “Sequence Modelling For
Analysing Student Interaction with Educational Systems.”
In: Proceedings of the 10th International Conference on Ed-
ucational Data Mining, EDM 2017, Wuhan, Hubei, China,
June 25-28, 2017. 2017.

38 Bibliography

[HHH+17b] Christian Hansen, Casper Hansen, Niklas Hjuler, Stephen
Alstrup, and Christina Lioma. “Sequence Modelling For
Analysing Student Interaction with Educational Systems.”
In: Proceedings of the 10th International Conference on Edu-
cational Data Mining (EDM). International Educational
Data Mining Society (IEDMS), 2017, pp. 232–237.

[HLLA14] Niels Dalum Hansen, Christina Lioma, Birger Larsen,
and Stephen Alstrup. “Temporal context for authorship
attribution: a study of Danish secondary schools.” In:
Multidisciplinary information retrieval. Springer, 2014, pp. 22–
40.

[Hås99] Johan Håstad. “Clique is hard to approximate withinn
1- ε.” In: Acta Mathematica 182.1 (1999), pp. 105–142.

[HLM17] Monika Henzinger, Dariusz Leniowski, and Claire Math-
ieu. “Dynamic Clustering to Minimize the Sum of Radii.”
In: 25th Annual European Symposium on Algorithms, ESA
2017, September 4-6, 2017, Vienna, Austria. 2017, 48:1–
48:10.

[HIPS19] Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis,
and David Saulpic. “Dominating Sets and Connected
Dominating Sets in Dynamic Graphs.” In: 36th Interna-
tional Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 2019). Ed. by Rolf Niedermeier and Christophe
Paul. Vol. 126. Leibniz International Proceedings in In-
formatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2019, 35:1–35:17.

[HLT01] Jacob Holm, Kristian de Lichtenberg, and Mikkel Tho-
rup. “Poly-logarithmic Deterministic Fully-dynamic Al-
gorithms for Connectivity, Minimum Spanning Tree, 2-
edge, and Biconnectivity.” In: J. ACM 48.4 (2001), pp. 723–
760.

[HGS18] T.-H. Hubert Chan, Arnaud Guerqin, and Mauro Sozio.
“Fully Dynamic k-Center Clustering.” In: Proceedings
of the 2018 World Wide Web Conference on World Wide
Web, WWW 2018, Lyon, France, April 23-27, 2018. 2018,
pp. 579–587.

[HMW+16] Stephen Hutt, Caitlin Mills, Shelby White, Patrick J.
Donnelly, and Sidney K. D’Mello. “The Eyes Have It:
Gaze-based Detection of Mind Wandering during Learn-
ing with an Intelligent Tutoring System.” In: Proceed-
ings of the 9th International Conference on Educational Data
Mining (EDM). International Educational Data Mining
Society (IEDMS), 2016, pp. 86–93.

Bibliography 39

[Ind04] Piotr Indyk. “Algorithms for dynamic geometric prob-
lems over data streams.” In: Proceedings of the 36th An-
nual ACM Symposium on Theory of Computing, Chicago,
IL, USA, June 13-16, 2004. 2004, pp. 373–380.

[JRS02] Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. “An
efficient distributed algorithm for constructing small
dominating sets.” In: Distributed Computing 15.4 (2002),
pp. 193–205.

[Kan92] Viggo Kann. “On the approximability of NP-complete
optimization problems.” PhD thesis. Royal Institute of
Technology Stockholm, 1992.

[KKSG16] Severin Klingler, Tanja Käser, Barbara Solenthaler, and
Markus Gross. “Temporally Coherent Clustering of Stu-
dent Data.” In: Proceedings of the 9th International Con-
ference on Educational Data Mining (EDM). International
Educational Data Mining Society (IEDMS), 2016, pp. 102–
109.

[KSZ05] Moshe Koppel, Jonathan Schler, and Kfir Zigdon. “De-
termining an Author’s Native Language by Mining a
Text for Errors.” In: Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery
in Data Mining. KDD ’05. Chicago, Illinois, USA: ACM,
2005, pp. 624–628.

[KW05] Fabian Kuhn and Roger Wattenhofer. “Constant-time
distributed dominating set approximation.” In: Distributed
Computing 17.4 (2005), pp. 303–310.

[LS08] Christiane Lammersen and Christian Sohler. “Facility
Location in Dynamic Geometric Data Streams.” In: Al-
gorithms - ESA 2008, 16th Annual European Symposium,
Karlsruhe, Germany, September 15-17, 2008. Proceedings.
2008, pp. 660–671.

[Lan18] Harry Lang. “Online Facility Location against a t-Bounded
Adversary.” In: Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018. 2018,
pp. 1002–1014.

[LV17] Silvio Lattanzi and Sergei Vassilvitskii. “Consistent k-
Clustering.” In: Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017. 2017, pp. 1975–1984.

[Li13] Shi Li. “A 1.488 approximation algorithm for the unca-
pacitated facility location problem.” In: Information and
Computation 222 (2013). 38th International Colloquium

40 Bibliography

on Automata, Languages and Programming (ICALP
2011), pp. 45–58.

[LHA18] Stephan Lorenzen, Niklas Hjuler, and Stephen Alstrup.
“Tracking Behavioral Patterns among Students in an
Online Educational System.” In: Proceedings of the 11th
International Conference on Educational Data Mining, EDM
2018, Buffalo, NY, USA, July 15-18, 2018. 2018.

[LHA19] Stephan Lorenzen, Niklas Hjuler, and Stephen Alstrup.
“Investigating Writing Style Development in High School.”
In: Proceedings of the 12th International Conference on Edu-
cational Data Mining, EDM 2019, Montréal, Canada, July
2-5, 2019. 2019.

[LN13] Annie Louis and Ani Nenkova. “What Makes Writing
Great? First Experiments on Article Quality Prediction
in the Science Journalism Domain.” In: Transactions of
the Association for Computational Linguistics 1 (2013), pp. 341–
352.

[MP04] Ramgopal R. Mettu and C. Greg Plaxton. “Optimal Time
Bounds for Approximate Clustering.” In: Machine Learn-
ing 56.1 (July 2004), pp. 35–60.

[Mey01] Adam Meyerson. “Online Facility Location.” In: 42nd
Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA.
2001, pp. 426–431.

[MS18] Alexander Munteanu and Chris Schwiegelshohn. “Coresets-
Methods and History: A Theoreticians Design Pattern
for Approximation and Streaming Algorithms.” In: KI
32.1 (2018), pp. 37–53.

[NSW17] D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen. “Dy-
namic Minimum Spanning Forest with Subpolynomial
Worst-Case Update Time.” In: 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS).
Oct. 2017, pp. 950–961.

[NS16] Ofer Neiman and Shay Solomon. “Simple deterministic
algorithms for fully dynamic maximal matching.” In:
ACM Transactions on Algorithms (TALG) 12.1 (2016), p. 7.

[PDV11] Claudia Peersman, Walter Daelemans, and Leona Van
Vaerenbergh. “Predicting Age and Gender in Online
Social Networks.” In: Proceedings of the 3rd International
Workshop on Search and Mining User-generated Contents.
SMUC ’11. Glasgow, Scotland, UK: ACM, 2011, pp. 37–
44.

Bibliography 41

[PN08] Emily Pitler and Ani Nenkova. “Revisiting Readability:
A Unified Framework for Predicting Text Quality.” In:
EMNLP 2008. 2008.

[QHZ18a] Chen Qian, Tianchang He, and Rao Zhang. “Deep Learn-
ing based Authorship Identification.” In: (2018). report,
Stanford University.

[QHZ18b] Chen Qian, Tianchang He, and Rao Zhang. Deep Learn-
ing based Authorship Identification. Accessed April 2019.
Stanford University, 2018.

[Rob39] H. E. Robbins. “A Theorem on Graphs, with an Appli-
cation to a Problem of Traffic Control.” In: The American
Mathematical Monthly 46.5 (1939), pp. 281–283.

[SW79] E Sampathkumar and HB Walikar. “The connected dom-
ination number of a graph.” In: J. Math. Phys (1979).

[SBSV13] Kosgi Santosh, Romil Bansal, Mihir Shekhar, and Va-
sudeva Varma. “Author Profiling: Predicting Age and
Gender from Blogs - Notebook for PAN at CLEF 2013.”
In: CLEF. 2013, p. 10.

[SKA02] Anat Rachel Shimoni, Moshe Koppel, and Shlomo Arg-
amon. “Automatically Categorizing Written Texts by
Author Gender.” In: Literary and Linguistic Computing
17.4 (Nov. 2002), pp. 401–412. eprint: http://oup.prod.
sis.lan/dsh/article-pdf/17/4/401/3345463/170401.

pdf.

[SWM11] M. Shindler, A. Wong, and A. Meyerson. “Fast and
Accurate k-means For Large Datasets.” In: NIPS. 2011,
pp. 2375–2383.

[Sol16] S. Solomon. “Fully Dynamic Maximal Matching in Con-
stant Update Time.” In: 2016 IEEE 57th Annual Sym-
posium on Foundations of Computer Science (FOCS). Oct.
2016, pp. 325–334.

[Spa01] V. Spandel. Creating Writers: Through 6-trait Writing As-
sessment and Instruction. Longman, 2001.

[Sta09] Efstathios Stamatatos. “A Survey of Modern Author-
ship Attribution Methods.” In: J. Am. Soc. Inf. Sci. Tech-
nol. 60.3 (Mar. 2009), pp. 538–556.

[SSL+19a] Magnus Stavngaard, August Sørensen, Stephan Loren-
zen, Niklas Hjuler, and Stephen Alstrup. “Detecting
Ghostwriters in High Schools.” In: 27th European Sym-
posium on Artificial Neural Networks, Computational Intel-
ligence and Machine Learning. 2019.

http://oup.prod.sis.lan/dsh/article-pdf/17/4/401/3345463/170401.pdf
http://oup.prod.sis.lan/dsh/article-pdf/17/4/401/3345463/170401.pdf
http://oup.prod.sis.lan/dsh/article-pdf/17/4/401/3345463/170401.pdf

42 Bibliography

[SSL+19b] Magnus Stavngaard, August Sørensen, Stephan Loren-
zen, Niklas Hjuler, and Stephen Alstrup. “Detecting
Ghostwriters in High Schools.” In: CoRR abs/1906.01635

(2019). arXiv: 1906.01635.

[WL99] Jie Wu and Hailan Li. “On calculating connected dom-
inating set for efficient routing in ad hoc wireless net-
works.” In: Proceedings of the 3rd international workshop
on Discrete algorithms and methods for mobile computing
and communications. ACM. 1999, pp. 7–14.

[YCL+19] Yuting Yang, Juan Cao, Mingyan Lu, Jintao Li, and
Chia-Wen Lin. “How to Write High-quality News on
Social Network? Predicting News Quality by Mining
Writing Style.” In: CoRR abs/1902.00750 (2019). arXiv:
1902.00750.

http://arxiv.org/abs/1906.01635
http://arxiv.org/abs/1902.00750

Dominating Sets and Connected Dominating Sets
in Dynamic Graphs
Niklas Hjuler
University of Copenhagen, Denmark
hjuler@di.ku.dk

Giuseppe F. Italiano
LUISS University, Rome, Italy
gitaliano@luiss.it

Nikos Parotsidis
University of Rome Tor Vergata, Italy
nikos.parotsidis@uniroma2.it

David Saulpic
ENS Paris, France
david.saulpic@ens.fr

Abstract
In this paper we study the dynamic versions of two basic graph problems: Minimum Dominating Set
and its variant Minimum Connected Dominating Set. For those two problems, we present algorithms
that maintain a solution under edge insertions and edge deletions in time O(∆ ·polylog n) per update,
where ∆ is the maximum vertex degree in the graph. In both cases, we achieve an approximation
ratio of O(log n), which is optimal up to a constant factor (under the assumption that P 6= NP).
Although those two problems have been widely studied in the static and in the distributed settings,
to the best of our knowledge we are the first to present efficient algorithms in the dynamic setting.

As a further application of our approach, we also present an algorithm that maintains a Minimal
Dominating Set in O(min(∆,

√
m)) per update.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Dominating Set, Connected Dominating Set, Dynamic Graph Algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.35

Funding This work was done while Niklas Hjuler and David Saulpic were visiting University of
Rome Tor Vergata.

1 Introduction

The study of dynamic graph algorithms is a classical area in algorithmic research and has
been thoroughly investigated in the past decades. Maintaining a solution of a graph problem
in the case where the underlying graph changes dynamically over time is a big challenge in
the design of efficient and practical algorithms. Indeed, in several applications, due to the
dynamic nature of today’s data, it is not sufficient to compute a solution to a graph problem
only once and for all: often, it is necessary to maintain a solution efficiently while the input
graph is undergoing a sequence of dynamic updates. More precisely, a dynamic graph is a
sequence of graphs G0, ..., GM on n nodes and such that Gi+1 is obtained from Gi by adding
or removing a single edge. The natural first barrier, in the study of dynamic algorithms, is
to design algorithms that are able to maintain a solution for the problem at hand after each
update faster than recomputing the solution from scratch. Many dynamic graph problems
such as minimum spanning forests (see e.g. [22, 26]), shortest paths [12], matching [4, 27, 30]
or coloring [7] have been extensively studied in the literature, and very efficient algorithms
are known for those problems. Recently, a lot of attention has been devoted to the Maximal

© Niklas Hjuler, Giuseppe F. Italiano, Nikos Parotsidis, and David Saulpic;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 35; pp. 35:1–35:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

35:2 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

Independent Set problem (MIS). In this problem, one wishes to find a maximal set of
vertices that do not share any edge (“maximal” meaning that it is not possible to add any
vertex without violating this property). Until very recently, the best known update bound
on the complexity to maintain a MIS was a simple O(∆) algorithm, where ∆ is an upper
bound on the degree of vertices in the graph. This bound was first broken by Assadi et al. [2]
who gave a O(m3/4) algorithm, then by Gupta and Khan [19] improved the update bound
to O(m2/3). Very recently, using randomization, Assadi et al. [3] presented an amortized
fully-dynamic algorithm with an expected Õ(n1/2)-time bound per update.

The MIS problem is closely related to the Dominating Set (DS) problem: given a graph
G = (V,E) the DS problems is to find a subset of vertices D ⊆ V such that every vertex in
G is adjacent to D (or dominated by D). Indeed, a MIS is also a Minimal DS: the fact that
it is not possible to add a vertex without breaking the independence property implies that
every vertex is adjacent to the MIS, so this must be also a DS; at the same time, it is not
possible to remove a vertex since that vertex is no longer dominated. Thus, to find a Minimal
DS one can simply find a MIS: this gives immediately a deterministic O(m2/3) [19] bound
and a randomized Õ(n1/2) [3] one. However, while it is known that is hard to approximate
Maximum Independent Set1 within a factor n1−ε for every ε > 0[21], a simple greedy
approach achieves a O(logn)-approximation for Minimum DS [11].

In recent years, there has been a lot of work on designing dynamic graph algorithms for
maintaining approximate solutions to several problems. A notable example is matching, where
for different approximations there exist different algorithms (see e.g., [4, 5, 27, 20, 8, 30]).
This raises the natural question on whether there exists a dynamic algorithm capable of
maintaining an approximation to Minimum DS, and even better a O(logn) approximation. In
this paper, we answer this question affirmatively by presenting an algorithm that achieves a
O(logn) approximation, with a complexity matching the long standing O(∆) bound for MIS.
Moreover, if one is interested in finding a DS faster, we present a very simple deterministic
O(m1/2) algorithm to compute a Minimal DS, improving the O(m2/3) bound coming from
MIS. We believe these are important steps towards understanding the complexity of the
problem. Those two results are stated below.

I Theorem 1. Starting from a graph with n vertices, a O(logn) approximation of Minimum
Dominating Set can be maintained over any sequence of Ω(n) edge insertions and deletions
in O(∆ logn) amortized time per update, where ∆ is the maximum degree of the graph over
the sequence of updates.

I Theorem 2. Starting from a graph with n (fixed) vertices, a Minimal Dominating Set
can be deterministically maintained over any sequence of edge insertions and deletions in
O(
√
m) amortized time per update, where m is an upper bound on the number of edges in

the graph.

We also study the Minimum Connected Dominating Set problem (MCDS), which
adds the constraint that the graph induced by the DS D must be connected. This problem
was first introduced by Sampathkumar and Walikar [28] and arises in several applications.
The most noteworthy is its use as a backbone in routing protocols: it allows to limit the
number of packet transmissions, by sending packets only along the backbone rather than
throughout the whole network. Du and Wan’s book [13] summarizes the knowledge about

1 It is not possible to find a polynomial-time algorithm that finds a n1−ε-approximation to Maximum
Independent Set under the assumption NP 6= ZPP

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:3

MCDS. A special class of graphs is geometric graphs, where vertices are points in the plane,
and two vertices are adjacent if they fall within a certain range (say, their distance is at
most 1). This can model wifi transmissions, and the dynamic MCDS had been studied in this
setting: a polynomial-time approximation scheme is known [10], and Guibas et al. [17] show
how to maintain a constant-factor approximation with polylogarithmic update time. While
geometric graphs model problems linked to wifi transmissions, the general graph setting
can be also seen as a model for wired networks. However, no work about dynamic MCDS
is known in this setting: the static case is well studied, with a greedy algorithm developed
by Guha and Keller [16] that achieves an approximation factor O(ln ∆). They also show a
lower bound matching their complexity, together with their approximation factor. MCDS
had also been thoroughly studied in the distributed setting (see e.g. a heuristic to find a
Minimal CDS in [9], another one that sends O(∆n) messages and has a time complexity
at each vertex O(∆2) [31] or a 3 logn approximation that runs in O(γ) rounds where γ
is the size of the CDS found, with time complexity O(γ∆2 + n) and message complexity
O(n∆γ +m+ n logn) [6]). Despite all this work, no results are known in the dynamic graph
setting. As another application of our approach, we contribute to filling this gap in the
research line of MCDS. In particular, in this paper we show how our algorithm for Minimum
DS can be adapted in a non-trivial way to maintain a O(logn) approximation of the MCDS
in general dynamic graphs.

I Theorem 3. Starting from a graph with n vertices, a O(logn) approximation of Minimum
Connected Dominating Set can be maintained over any sequence of Ω(n) edge insertions
and deletions in Õ(∆) amortized time per update.

We further show how to maintain independently a Dominating Set D and a set of vertices
C such that the induced subgraphs on the vertices C ∪ D is connected. The set C has the
additional property that |C| ≤ 2|D|, such that |C ∪ D| = O(|D|). If D is a α-approximation
of Minimum DS, this gives a O(α) approximation for MCDS.

Further Related Work

It is well known that finding a Minimum DS is NP-hard [15]. It is therefore natural to look
for approximation algorithms for this problem. Unfortunately, it is also NP-hard to find a
c logn approximation, for any 0 < c < 1 [14]. This bound is tight, since there is a simple
greedy algorithm matching this bound [11]. Minimum DS had been studied extensively in
distributed computing: an algorithm which runs in O(logn log ∆) rounds finds a O(logn)
approximation with high probability [23] and an algorithm with constant number of rounds
achieves a non-trivial approximation[25].

The DS problem is closely related to the Set Cover problem: the two problems are
equivalents under L-reduction [24]. However, Set Cover was studied in the dynamic setting
[18, 1], but with different kinds of updates: instead of edges being inserted or deleted (which
would represent new elements in the sets according to the L-reduction), new elements are
being added to the cover (which would be new vertices in DS).

Outline. The rest of the paper is organized as follows. First, we present an algorithm for
Minimum DS, which will be used later on also for MCDS: we start by a Õ(n) algorithm, and
then show how to overcome its bottleneck in order to achieve a Õ(∆) complexity. Finally,
we present our O(

√
m) algorithm for Minimal DS.

STACS 2019

35:4 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

2 A O(log n) approximation of Minimum Dominating Set in
O(∆ log n) time per update

This section aims at proving Theorem 1. Following a reduction from Set Cover, minimum
DS is NP-hard to approximate within a factor logn [14]. Here we present a matching upper
bound (up to a constant factor), in the dynamic setting. Our algorithm relies heavily on
the clever set cover algorithm by Gupta et al. [18]. While in the static setting Set Cover is
equivalent to minimum DS, in the dynamic setting these two problems are different. More
precisely, in the dynamic Set Cover problem one is asked to cover a set of points S (called
the universe) with a given family of sets F , while the set S is changing dynamically. To draw
the parallel with DS, in the latter the set S is the set of vertices of the graph (which does
not change) and for every vertex the set of its neighbors is in F . The dynamic part concerns
therefore F , and not the universe S.

Gupta et al. present an O(logn)-approximation for dynamic Set Cover problem: in
what follows, we show how to adapt their algorithm to the DS case, with an update time of
O(∆ logn). As in [18], the approach easily adapts to the weighted case. Unfortunately, this
cannot be generalized to MCDS, therefore we do not consider this property of the algorithm.
The following definitions are partly adapted from [18].

2.1 Preliminaries

For a vertex v, let N(v) be the set of its neighbors, including v. The algorithm maintains a
solution St at time t such that an element of St is a pair composed of

a dominant vertex v
a set Dom(v) ⊆ N(v), which are the vertices that are dominated by v. We call |Dom(v)|
the cardinality of the pair.

We call a dominating pair an element of St. The algorithm requires that multiple copies of a
vertex can appear as the dominant vertex of a pair. However, each vertex is exactly in one
Dom(v). The solution to the DS problem is composed of all vertices that appear as dominant
vertices of a pair. Since each vertex is in exactly one Dom(v), each vertex is dominated and
therefore the set of dominants is a valid solution to the DS problem.

The dominating pairs are placed into levels according to their cardinality: the level l is
defined by a range Rl := [2l−10, 2l], and each pair (v,Dom(v)) is placed at an appropriate
level l such that |Dom(v)| ∈ Rl. In that case, elements of Dom(v) are said to be dominated at
level l; we denote by Vl the set of all vertices dominated at level l. We say that an assignment
of levels is valid if it respects the constraint |Dom(v)| ∈ Rl. This allows us to define the
notion of Stability:

stable solution: A solution St is stable if there is no vertex v and level l such that
|N(v)∩Vl| > 2l; in other words, it is not possible to introduce a new vertex in the solution
to dominate some vertices at level l such that the resulting dominating pair could be at
level strictly greater that l.

The algorithm will dynamically maintain a stable solution St, with a valid assignment
of levels. Note that the ranges Rl overlap: this gives some slack to the algorithm, which
allows enough flexibility to prevent too many changes while our algorithm maintains a valid
solution.

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:5

2.2 The algorithm
The main part of the algorithm is the function Stabilize, which restores the stability at the
end of every update. The function is the following (see [18]):

Stabilize. As long as a vertex v violates the stability condition at level l, do the
following: Add the pair (v,N(v) ∩ Vl) to the lowest possible level j (i.e., the lowest
level such that |N(v) ∩ Vl| ∈ Rj); Remove the elements of N(v) ∩ Vl from the set
of their former covering pair: if it gets empty, remove the pair from the solution.
Otherwise, if the cardinality of such a pair goes below 2l−10, put it at the highest
possible level.

Edge addition. When a new edge (u, v) is added to the graph, one just need to ensure that
the solution remains stable, and thus the algorithm runs Stabilize.

Edge deletion. When an edge (u, v) is removed from the graph, we proceed as follows. If
neither u nor v dominates the other endpoint, the solution remains valid and stable, and
nothing needs to be done. Otherwise, assume without loss of generality that v dominates u.
Then:

Remove u from Dom(v)
Add the pair (u,Domu = {u}) to the solution with level 1
Run Stabilize

Correctness. All the nodes of the graph are dominated at every time. Indeed, Stabilize
does not make any node undominated and if a vertex is not dominated after an edge removal,
the algorithm simply adds it to the solution. Therefore, the solution St maintained by the
algorithm is a valid one.

2.3 Analysis
Approximation ratio. We use the following lemma by Gupta et al. [18] to bound the cost
of a stable solution.

I Lemma 4 (Lemma 2.1 in [18]). The number of sets at one level in any stable solution is at
most 210 ·OPT.

Since for every dominating pair (v,Dom(v)) we have that 1 ≤ |Dom(v)| ≤ n, there are
only logn levels that can contain a set. The total cost of a stable solution is therefore
O(logn ·OPT).

A token scheme to bound the number of updates. Unfortunately, the analysis of Gupta
et al. cannot be applied directly to the case of DS, due to the different nature of the updates.
However, we can build upon their analysis, as follows. We first bound the number of vertices
that change level, and then explain how to implement a level change so that it costs O(∆).
We prove the following lemma by using a token argument.

I Lemma 5. After k updates of the algorithm, at most O(k logn+ n logn) elements have
changed levels.

STACS 2019

35:6 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

Proof. We use the following token scheme, where each vertex pays one token for each level
change. In the beginning, we give 2 logn tokens to every vertex. If a vertex is undominated
after an edge removal, we give 2 logn new tokens to this vertex. Since at most one vertex
gets undominated for each edge deletion, the total number of tokens given after k updates
is O(k logn+ n logn). To prove the lemma, we need to show that at any time each vertex
has always a positive amount of tokens. We adapt the proof of Gupta et al. to show the
following invariant:

I Invariant 1. Every vertex at level l has more than 2(logn− l) tokens.

When a vertex is moved to a higher level, it pays one token for the cost of moving. It
also saves one token, and gives it to an “emergency fund” of its former covering pair. Each
pair has therefore a fund of tokens that can be used when the pair has to be moved to a
lower level.

When the pair (v,Dom(v)) has to be moved from level l to level l − j, it means that
a lot of vertices have left Dom(v) and that the tokens they gave to the pair can be used
to pay for the operation. Formally, we want to pay one token for every vertex in Dom(v)
for its level change, but we also want to restore the invariant. We need therefore 2j + 1
tokens for each vertex of Dom(v). Since the pair can be moved to level l− j, this means that
|Dom(v)| < 2l−j . Since a new pair is moved to the lowest possible level, this pair could not
be at level l− 1, which implies that |Dominit(v)| > 2l−1 where Dominit(v) is the set Dom(v)
at the time where it was created. Moreover, each of the vertices that left gave one token:
the amount of tokens usable is therefore bigger than 2l−1 − 2l−j . Thus we want to prove
that 2l−1 − 2l−j ≥ (2j + 1) · |Dom(v)|. It is enough to have 2l−1 − 2l−j ≥ 3 · (2j + 1)2l−j ,
i.e. to have 2j−1 − 1 ≥ 3(2j + 1). But since the pair was moved to level l − j, it means that
|Dom(v)| > 2l−j−1 and |Dom(v)| < 2l−10: putting these two equations together gives j > 9,
which ensures that 2j−1 − 1 ≥ 3(2j + 1) and concludes the proof. J

As the following corollary shows, we can bound the number of changes to D to O(logn)
amortized. This property will be useful in Section 3.

I Corollary 6. After k updates of the algorithm, at most O(k logn+ n logn) vertices can be
added to or removed from D.
Proof. Whenever a vertex is added to or removed from D, its level is changed. Lemma 5
gives the corresponding bound. J

We now turn to the implementation of the function Stabilize. As shown in the next
lemma, we implemented so that its cost is O(∆) for each element that changes level.

I Lemma 7. A stable solution can be maintained in O(∆ logn) amortized time per update.

Proof. For all vertices v and all levels l, the algorithm maintains the set N(v) ∩ Vl and its
cardinality. Every time a vertex changes its level, it has to inform all its neighbors: this
can be done in O(∆). When an edge (u, v) is added to or removed from the solution, the
algorithm updates the sets N(v) ∩ Vlu and N(u) ∩ Vlv , where lu and lv are the levels of u
and v, respectively.

During a call to Stabilize, the algorithm maintains also a list of vertices that may have
to be added to restore the stability: for a vertex v and level l, every time that N(v) ∩ Vl
changes, if the new cardinality violates the stability, we add v to this list in constant time.
The algorithm processes the list vertex by vertex: it checks that the current vertex still needs
to be added to the solution, and add it if necessary.

Since we pay O(∆) per level change and there are O(logn) amortized changes, the
amortized complexity of each update is O(∆ logn). J

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:7

Since a stable solution gives a O(logn) approximation to minimum DS, Lemmas 4 and 7
yield the proof of Theorem 1: a O(logn) approximation of Minimum Dominating Set can be
maintained in O(∆ logn) amortized time per update.

3 A O(log n) Approximation for Minimum Connected Dominating
Set in Õ(n) per update

A possible way to compute a Connected DS is simply to find a DS and add a set of vertices
to make it connected. Section 2 gives an algorithm to maintain an approximation of the
Minimum DS: we will use it as a black box (and refer to it as the “black box”), and show how
to make its solution connected without losing the approximation guarantee. If the original
graph is not connected, the algorithm finds a CDS in every connected component: we focus
in the following on a single of these components. Let D be the DS maintained, and C be a set
of vertices such that C ∪ D is connected and C is minimal for that property. The minimality
of C will ensure that |C| ≤ 2|D|: since D is a O(logn) approximation of MDS, this leads to a
O(logn) approximation for MCDS. Note that the vertices of C are not used for domination:
C ∪ D is therefore not minimal, but still an approximation of minimum.

Overall, we will apply the following charging scheme to amortize the total running time.
The main observation is that although a lot of vertices can be deleted to restore the minimality
of C, only a few can be added at every step. We thus give enough potential to a vertex
whenever it is added into C and whenever its neighborhood changes, so that at the time of
its removal from C it has accumulated enough potential for scanning its entire neighborhood.
After an edge deletion we might have to restore the connectivity requirement. We do that by
adding at most 2 new vertices in C: this is crucial for our amortization argument.

Outline. The set C may have to be updated for two reasons:
Restore the connectivity: if an edge gets deleted from the graph, or if the black box
removes some vertices from D, it may be necessary to add some vertices to C in order to
restore the connectivity of C ∪ D.
Restore the minimality of C: when an edge is added to the graph, or when a vertex is
added to C ∪ D (either by the black box or in order to restore the connectivity), some
vertices of C may become useless and therefore need to be removed.

We now address those two points. All our bounds are expressed in term of the total number
of changes in C ∪D: let therefore k be this number of changes. We will show later that, after
t updates to the graph, k = O(t logn).

The first phase of the algorithm is to restore the connectivity. We explain in the following
how to decide which vertices should be added to C for that purpose.

Restore the connectivity after an edge deletion

To monitor the connectivity requirement, we use the following idea. The algorithm maintains
a minimum spanning tree (MST) of the graph G where a weight 1 is assigned to the edges
between vertices in C ∪ D (called from now on D̃), and weight m is assigned to all other
edges. These weights ensure that, as long as D̃ is connected, the MST induces a tree on D̃.
When G[D̃] gets disconnected by an update, the MST uses a vertex of V \ D̃ as an internal
vertex: in that case, our algorithm adds this vertex to C, to restore the connectivity. We
give more details in the next section.

STACS 2019

35:8 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

The edge weights are updated as the graph undergoes edge insertions and deletions and
vertices enter or leave D̃. The MST of the weighted version of the graph has the following
properties.

If D̃ is a connected DS, then the MST has weight (|D̃| − 1) + m · |V \ D̃| (Kruskal’s
algorithm on this graph would use |D̃| − 1 edges of weight 1 to construct a spanning tree
on D̃, then |V \ D̃| edges of weight m to span the entire graph).
If D̃ is a DS but G[D̃] is not connected, then the weight of the MST has larger value.

The two properties stem from the fact that a MST can be produced by finding a minimum
spanning forest on D̃ and extend it to a MST on V . Kruskal’s algorithm ensures that this
leads to a MST. In the case where D̃ is connected, the first step yields a tree of weight D̃ − 1,
and since the graph is connected the second step yields a cost m · |V \ D̃|. However, if D̃ is
not connected, the second step adds strictly more that |V \ D̃| edges, therefore yielding a
cost bigger than m · (1 + |V \ D̃|). This is more than (|D̃| − 1) +m · |V \ D̃|, as claimed.

Furthermore, if G[D̃] has two connected components C1, C2, then the shortest of all paths
between vertices u, v, u ∈ C1, v ∈ C2 is the minimum number of vertices whose insertion
into C restores the connectivity requirement. Note that the shortest of all such paths must
have length at most 2 (otherwise, there must be a vertex not adjacent to any vertex in D,
which contradicts the fact that D is a DS).

After an edge deletion, it may happen that D̃ becomes disconnected and that the MST
includes some internal vertices (at most 2, by the previous discussion) not in D̃: in that case,
we add them to C. This turns out to be enough to ensure the connectivity.

To maintain the MST of the weighted version of the input graph we use the O(log4 n)
update time fully-dynamic MST algorithm from [22]. Since the weights of the edges incident
to the vertices that enter or leave D̃ are also updated, the algorithm runs in time Õ(∆) for
each change in D̃, i.e. in time k · Õ(∆)

Restore the connectivity when a vertex is deleted by the black box. When a vertex v is
deleted from D by the black box DS algorithm, we need to be more careful: updating the
edge weights and finding the new MST may add a lot of vertices to C (as many as ∆, one
per edge of the MST incident to v). However, if the removal of v disconnects G[D̃], it is
enough to add v to C to restore the connectivity. If its removal does not disconnect G[D̃],
nothing needs to be done. It is possible to know if the graph G[D̃] gets disconnected using
the properties of the MST, by only looking at the weight of the MST. The complexity of this
step is therefore Õ(∆), the time needed to update the weights of the MST.

Restore the minimality. The second phase of the algorithm is to restore the minimality of
C. We explain next how to find the vertices of C that need to be removed to accomplish
this task. This minimality condition is equivalent to the condition that all vertices in C are
articulation points in the graph induced by C ∪D. (An articulation point is a vertex such
that its removal increases the number of connected components.) This turns out to be useful
in order to identify which vertices need to be removed to restore the minimality of C.

To restore the connectivity requirement, new vertices were added into C, and the black
box added some vertices to D: this might result in some vertices in C not being articulation
points of G[D̃] anymore. As observed before, these are the vertices that need to be removed.
We need to identify a maximal set of such vertices that can be removed from C without
violating the connectivity requirement. To do this, the algorithm queries in an arbitrary
order one-by-one all the vertices v ∈ C to determine whether G[D̃ \ v] is connected. This can
be done using a data structure from Holm et al. [22] that requires Õ(1) per query. Whenever

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:9

the algorithm identifies a vertex such that G[D̃ \ v] is connected, it can safely remove it from
C. The complexity of this step is therefore Õ(n) to find all articulation points, and an extra
Õ(∆) for each of the vertices we remove from C.

The following three lemmas conclude the proof: the first shows that the algorithm is
correct, the second the Õ(n) time bound and the third the O(logn) approximation ratio.

I Lemma 8. The algorithm that first restores the connectivity of C∪D and then the minimality
of C is correct: it gives a minimal set C such that C ∪ D is connected.

Proof. After restoring the connectivity requirement the algorithm maintains a spanning tree
of D̃, so G[D̃] is indeed connected. In the following steps, before the algorithm removes a
vertex v from C, it first verifies that G[D̃ \ v] remains connected, which guarantees that G[D̃]
is connected at the end of the update procedure. Since the black box ensures that D is a
DS, D̃ is a DS too: hence at the end, D̃ satisfies both the domination and the connectivity
requirements. It remains to show that C is minimal, i.e., that all vertices in C are articulation
points in G[D̃]. Since during the second step the algorithm only removes vertices from C, a
vertex that was not an articulation point cannot become one, and therefore the loop to find
the articulation points is correct. The set C is therefore a minimal set such that C ∪ D is
connected. J

I Lemma 9. The amortized complexity of the algorithm is Õ(n) per update.

Proof. The amortized cost of the black box to compute D is Õ(∆). We analyze now the
additional cost of maintaining D̃. As shown in this section, the cost to add or delete a vertex
from D̃ is Õ(∆). To prove the lemma, we bound the number of changes in D̃. For that, we
count the number of vertices added to D̃: in an amortized sense this bounds the number of
changes too. Formally, we pay a budget deg(v) when v is added to D̃. Following insertions
and deletions of edges adjacent to v, we update this budget (with a constant cost), so that
when v gets deleted from D̃ a budget equal to its degree is available to spend.

From Corollary 6, the black box makes at most Õ(1) changes to D per update (in an
amortized sense). If it removes a vertex from D, we showed previously that no new vertex
is added to D̃. The number of additions to D̃ is therefore Õ(1). Moreover, in the case of
an edge deletion, at most two vertices are added to D̃ to maintain the connectivity. Since
restoring the minimality requires only to delete vertices, the total number of additions into
D̃ is Õ(1). As the cost for any of these additions is Õ(∆), the total cost of this algorithm is
upper bounded by the loop to find the articulation points, which is Õ(n). J

I Lemma 10. The algorithm maintains a O(logn) approximation for MCDS, i.e. |C ∪ D| =
O(logn) ·OPT

Proof. We first prove that |C| ≤ 2|D|, using the minimality of C. Each vertex of C is there
to connect some components of D. Consider the graph (W,F) where vertices W are either
connected components of D or vertices of C, and the set F of edges is constructed as follows.
Start with a graph containing one vertex for each connected component of D, and add
vertices of C one by one. When the vertex v is added, identify a node u in D adjacent to v
such that adding the edge (u, v) to F does not create a cycle: add to F an edge between v
and the node corresponding to the connected component containing u. It is always possible
to find such a vertex u, otherwise v would not be necessary for the connectivity, which would
contradict the minimality of C. This process gives a forest such that every node of C is
adjacent to a connected component of D. Since C ∪D is connected, it is possible to complete
F to make it a tree, adding some other edges. This tree has the two following properties.

STACS 2019

35:10 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

1. The leaves are vertices that correspond to connected component of D: indeed, if a vertex
of C was a leaf in this tree, it could be removed without losing the connecting of C ∪ D,
which would contradict the minimality of C.

2. Any vertex of C is adjacent to a connected component of D, by construction of the forest.

These properties ensure that for every subtree rooted at a vertex of C, there is a D vertex
at distance at most 2 from the root: otherwise, the vertices at distance 1 from it would
be from C and adjacent only to C vertices. Moreover, since a C vertex is not a leaf, it has
necessarily some descendant and the reasoning applies. Therefore, by rooting the tree at an
arbitrary vertex of C, we can charge every C vertex to a D descendant at distance at most 2.
As a D vertex can be charged only by an ancestor at most two levels above it, it is charged
at most twice. This ensures that |C| ≤ 2|D|.

Moreover, since D is a O(logn) approximation of MDS, |D| = O(logn) ·OPT. Putting
things together, we have |C ∪ D| = |C|+ |D| = O(logn) ·OPT. J

Combining Lemmas 8, 9 and 10 proves our claim: there is a Õ(n) algorithm to maintain a
O(logn) approximation of the Minimum Connected Dominating Set. The main bottleneck of
this approach is the time spent by the algorithm in the second phase to query all vertices in
C in order to identify the vertices that are no longer articulation points. In the next section
we present an algorithm that overcomes this limitation and is able to identify the necessary
vertices more efficiently.

4 A more intricate Õ(∆) algorithm to restore the minimality of C
In this section we present a more sophisticated algorithm for implementing the phase that
guarantees the minimality of the maintained connected dominating set. This gives a proof
of Theorem 3. We focus on a single edge update: indeed, when a vertex is added to (or
removed from) D̃, one can simply add (or remove) all its edges one by one. As in the analysis
of the complexity in Lemma 9, the amortized number of changes in D̃ is Õ(1). We aim now
at proving that the time required for handling a single change is Õ(∆): for that, we treat
edge insertions and deletions to D̃ one by one, and prove that any edge update can be done
in Õ(1), which would prove the claimed bound. Our algorithm maintains another spanning
forest F of G[D̃] (unweighted) using the algorithm from [22].

I Lemma 11. The vertices of C that are not articulation points after the insertion of the
edge (v, w) all lie on the tree path v...w of F . Moreover, the removal of any of these vertices
results in the other vertices being articulation points again.

Proof. Let Gb be the graph before the insertion of (v, w), and Ga be the one after. Let u be
a vertex that is an articulation point in Gb[D̃] but not in Ga[D̃]. Suppose by contradiction
that u is not on the tree path v...w: that means that v and w are connected in Gb[D̃] \ {u}.
Since u is an articulation point in Gb[D̃], v is not connected to some vertex x in Gb[D̃] \ {u}.
But as v and w are connected in Gb[D̃] \ {u}, adding the edge (v, w) does not connect v and
x and therefore u is still an articulation point after the insertion of the edge. Therefore,
all the articulation points that can be removed are in the cycle v...w, v. Since they are not
articulation points in Ga[D̃], they separate Gb[D̃] in only two components: one with v, the
other with w. Therefore, v...w, v is the only cycle containing v and w, and removing any
vertex from it make the articulation points of Gb[D̃] be articulations point in Ga[D̃], because
they disconnect v and w again. J

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:11

Lemma 11 allows us to focus on the following problem: find a vertex in C that is no
longer an articulation point in G[D̃] after the insertion of the edge (v, w). To achieve this,
the algorithm maintains for each vertex v ∈ C the number nc(v) of connected component of
G[D \ v]. For v /∈ C we set for convenience nc(v) to be the number of connected component
in G[D \ v] plus n. This information can be used as follows: when an edge (v, w) is added, if
for one vertex u ∈ C it holds nc(u) = 1 then u is removed from C (because it is no longer an
articulation point). To identify such a vertex, the algorithm queries for the minimal value
along the path v...w in T : if the minimum value is 1, the corresponding vertex is removed
from C. This removal makes all the other vertices of the set C articulation points again: by
Lemma 11, the cycle created by the insertion of (v, w) is broken by the deletion of u from
G[D̃] .

Notice that we are only interested in the nc(v) values of the vertices in C, as nc(v) > n

for v /∈ C. Since we compute a minimum and the values relevant are smaller than n, this is
equivalent to ignoring v. The advantage of this offset is that when v becomes part of C, it is
sufficient to decrease its value by n to make it consistent. We now show how to keep this
value up to date after adding or removing an edge.

Maintaining the nc(v) values in a top-tree. For this purpose, we use the biconnectivity
data structure from [22] (called top-tree) on the subgraph G[D̃]. To avoid cumbersome
notation, we pretend that we execute the algorithm on G, although the underlying graph on
which we execute the algorithm is G[D̃]. We also assume that the number of vertices remains
n throughout the execution, which is simply implemented by removing from G all incident
edges from the vertices with no incident edges in G[D̃].

We now briefly describe the approach of [22]. The algorithm maintains a spanning forest
F of G and assigns a level `(e) to each edge e of the graph. Let Gi be the graph composed of
F and all edges of level at least i. The levels are attributed such that the following invariant
is maintained:

I Invariant 2. The maximal number of vertices in a biconnected component of Gi is dn/2ie.

Therefore the algorithm needs only to consider dlog2 ne levels. Whenever an edge (v, w) is
deleted, one needs to find which vertices in the path v...w in F are still biconnected. We use
the following notion to describe the algorithm.

I Definition 12. A vertex u is covered by a nontree edge (x, y) if it is contained in a tree
cycle induced by (x, y). We say that a path v...w is covered at level i if every of its node is in
a tree cycle induced by an edge at level greater than i.

Mark that all the vertices that are covered by a given edge are in the same biconnected
component.

When a non-tree edge (v, w) is removed, it may affect the 2-edge connected components
along the tree-path v...w in T . To find which vertices are affected, the following algorithm is
used in [22]. It first marks the vertices in v...w as no longer covered at level `(v, w). Then,
it iterates over edges (x, y) that could cover v...w, i.e., the ones such that the intersection
between x...y and v...w is not empty, and marks the vertices in this intersection as covered.
This step is explained in the following function, which is called for all level i from `(v, w)
down to 0. meet(v, w, x) is the intersection of the tree paths v...w, v...x and x...w.
Recover(v, w, i). Set u := v, and iterate over the vertices of v...w towards w. For each

value of u, consider each nontree edge (q, r) with meet(q, v, w) = u and such that u...q is
covered at level i. If it is possible without breaking Invariant 2, increase the level of (q, r)

STACS 2019

35:12 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

to i+ 1 and mark the edges of q...r covered at level i+ 1. Otherwise, mark them covered
at level i and stop. If the phase stopped, start a second symmetric phase with u = w and
iterating on w...v towards v.

As shown in [22], this is correct and runs in O(log4) amortized time.

Figure 1 The edge (q, r) covers some node u on the path v...w.

In our case, we are interested in the vertices u whose value nc(u) changes. They are
exactly those that are still marked as not covered at the end of the process. Indeed, if an
edge (q, r) covers a vertex u (see Figure 1), then v and w are still connected in G[D \ u],
hence the connected component of G[D \ u] do not change. However, if u is not covered by
any edge, then v and w gets disconnected in G[D \ u], thus nc(u) must be updated.

We maintain the nc(·) values in a top-tree, as follows. We call a segment a subpath of
v...w. The idea is to maintain the non-covered segments and decrease the nc values along
these at the end of the process. The top-trees allow us to alter the value of a segment of a
path in O(polylogn) time.

Figure 2 The black segments are covered by edges (qi, ri). The red segments are uncovered.

Computing the list of uncovered segments. To find the uncovered segments (in red on
Figure 2), we sort the covered ones and take the complementary. Let (q1, r1), ..., (qk, rk)
be the nontree edges considered in the execution of Recover, and let xi = LCA(v, qi) and
yi = LCA(v, ri) (where LCA(u, v) is the lowest common ancestor of u and v in the tree).
The covered segments are exactly the (xi, yi). Using lowest common ancestor queries, it is

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:13

possible to sort those segments according to the position of xi along the path v...w. Given
the segments in order, it is then possible to determine the uncovered segments in linear
time: they correspond to the complementary of those segments. Answering a lowest common
ancestor query on a dynamic tree can be done in O(logn) (see [29]), hence it is possible to
sort the covered segments in time O(k log2 n) and to find the uncovered segments with the
same complexity.

Since k is the number of edges that move to a higher level during a call to Recover, and
the maximum level is logn, the total complexity of computing the uncovered segments is at
most log3 n per edges. Hence the overall complexity is O(log4 n), which is the cost of the
function Recover.

Adding an edge. To add an edge, two things are required: first decrease some nc value,
and then query if a vertex has a nc value 1. We have to decrease the nc value of a vertex y
if and only if its predecessor and its successor along the tree path v...w were not connected
in D \ {y} before the insertion of (v, w). This turns out to be equivalent to saying that y is
not covered: thus, the algorithm needs to compute the list of segments along v...w that were
uncovered before the insertion of (v, w). It then must decrease the nc values along these
segments, because they become connected. This is analogous to the case of an edge deletion:
the latter can be used the following way. First add the edge (v, w) (and make updates to
the data structure according to [22]), then delete it using the algorithm from the previous
section, with the only difference that, instead of increasing the nc values along the uncovered
segments, the algorithm decrease them.

It is then easy to find the minimum nc value along the path v...w, using the top-tree. If
this value is 1, we can remove the corresponding vertex from C. To remove it, we remove its
incident edges one by one, each time updating the nc values of the remaining vertices.

The results of this section are summarized in the following lemma.

I Lemma 13. After these updates, C is minimal. Moreover, the algorithm runs in amortized
time Õ(1) for a single edge update.

A direct corollary of this lemma and Lemma 9 is Theorem 3.

I Corollary 14 (Theorem 3). The whole algorithm to maintain the Connected DS is correct
and runs in time Õ(∆)

Proof. The correctness follows from Lemma 13 and from the correctness of the Õ(n) algorithm.
As for the running time, the only difference from Lemma 9 is the search for articulation
points: this takes Õ(1) for each edge added or removed from D̃, and consequently Õ(∆) for
each node added to or removed from D̃. This yields that the algorithm takes Õ(∆) amortized
time per update. J

5 A O(min(∆,
√

m)) amortized algorithm for Minimal Dominating
Set

This section presents a faster algorithm if one is only interested in finding a Minimal DS.
This is a DS in which it is not possible to remove a vertex, but it can be arbitrarily big. For
instance, in a star, the Minimum DS is only one vertex (the center), but its complementary
is another minimal DS and has size n− 1. This result highlights the difference between MIS
and Minimal DS: the best known deterministic complexity for MIS is O(m2/3), whereas we
present here a O(

√
m) algorithm for Minimal DS.

STACS 2019

35:14 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

Key idea. When one needs to add a new vertex to the dominating set in order to dominate
a vertex v, he can choose a vertex with degree O(

√
m), either v or one of its neighbors

(a similar idea appears in Neiman et al. [27]). We present an algorithm with complexity
proportional to the degree of the vertex added to the DS: this will give a O(min(∆,

√
m))

algorithm. To analyze the complexity, we follow an argument similar to the one for CDS.
At most one vertex is added to the DS at every step, even though several can be removed.
Therefore we can pay for the (future) deletion of a vertex at the time it enters the DS.

For a vertex v, N(v) is the set of its neighbors, including v. Let D be the dominating set
maintained by the algorithm. If v ∈ D and u ∈ N(v), we say that v dominates u.

For each vertex v, the algorithm keeps this sets up-to-date:
let ND(v) be the set of neighbors of v that are in the dominating set D, i.e., ND(v) =
D ∩N(v)
if v ∈ D, let OnlyBy(v) be the set of neighbors of v that are dominated only by v, i.e.,
OnlyBy(v) = {u ∈ N(v) | |ND(u)| = 1}

Note that ND(v) and OnlyBy(v) are useful to check, throughout any sequence of updates,
whether a vertex v must be added to or removed from the current dominating set. In
particular, if ND(v) = ∅ then v is not dominated by any other vertex, and thus it must be
included in the dominating set. On the other hand, if OnlyBy(v) = ∅, all the neighbors of v
(v included) are already dominated by some other vertex, and thus v could be removed from
the dominating set.

5.1 The algorithm
We now show how to maintain a minimal dominating set D and the setsND(v) and OnlyBy(v),
for each vertex v, under arbitrary sequences of edge insertions and deletions. We first describe
two basic primitives, which will be used by our insertion and deletion algorithms: adding a
vertex to and deleting a vertex from a dominating set D.

Adding a vertex v to D. Following some edge insertion or deletion, it may be necessary
to add a vertex v to the current dominating set D. In this case, we scan all its neighbors u
and add v to the sets ND(u). If before the update ND(u) consisted of a single vertex, say w,
we also have to remove u from the set OnlyBy(w), since now u is dominated by both v and
w. If OnlyBy(w) becomes empty after this update, we remove w from D since it is no longer
necessary in the dominating set.

Removing a vertex v from D. When a vertex v is removed from the dominating set, we
have to remove v from all the sets ND(u) such that u ∈ N(v). If after this update ND(u)
consists of a single vertex, say w, we add u to OnlyBy(w).

Edge insertion. Let (u, v) be an edge to be inserted in the graph. We distinguish three
cases depending on whether u and v are in the dominating set D before the insertion. If
neither of them is in the dominating set (i.e., u /∈ D and v /∈ D), then nothing needs to be
done. If both are in the dominating set (i.e., u ∈ D and v ∈ D), then we start by adding v to
the set ND(u). If u was only necessary to dominate itself, we remove u from D. Otherwise,
we add u to ND(v) and perform the same check on v.

If only one of them is in the dominating set (say, u /∈ D and v ∈ D), we have to add v to
the set ND(u). As in the case of adding a vertex to D, this may cause the removal of another
vertex from the dominating set. This can happen only if before the insertion, ND(u) = {w}

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:15

for some vertex w and OnlyBy(w) = {u}: in other terms, u was dominated only by w, and
w was in the dominating set only to dominate u. Since after the addition of the edge (u, v)
u is also dominated by v, w can be removed from the dominating set.

Edge deletion. Let (u, v) be the edge being deleted from the graph. We distinguish again
the same three cases as before. If u /∈ D and v /∈ D, nothing needs to be done. If both u ∈ D
and v ∈ D, we just have to remove u (resp. v) from the sets ND(u) and OnlyBy(u) (resp.
ND(v) and OnlyBy(v)).

If only one of them is in the dominating set, say u /∈ D and v ∈ D, then we have to
remove v from ND(u). Now, there are two different subcases:

If ND(u) 6= {v} before the deletion, then nothing needs to be done.
Otherwise, we have to remove u from OnlyBy(v): if OnlyBy(v) = ∅ after this operation,
then we can safely remove v from D. The algorithm must find a new vertex to dominate
u: we simply add u to the dominating set.

5.2 Running time
Adding or removing a vertex v from the dominating set can be done in time O(deg(v)), where
deg(v) is the degree of v in the current graph. While several vertices can be removed from D
at every step, only one can be added (following an edge deletion): the amortized complexity
of the algorithm is therefore O(∆), where ∆ is an upper bound on the degree of the nodes.

Nevertheless, it is possible to chose the vertex to be added to the dominating set more
carefully. When the algorithm must find a new vertex to dominate vertex u, it does the
following:

If deg(u) ≤ 2
√
m+ 1, the algorithm simply adds u to D.

Otherwise, deg(u) > 2
√
m+ 1. The algorithms finds a vertex w ∈ N(u) with deg(w) ≤√

m and adds w to D. Note that such a vertex w can be found by simply scanning only
2
√
m + 1 neighbors of u, since (by averaging) at least one of them must have degree

smaller than
√
m.

In both cases, the insertion takes time O(min(∆,
√
m)).

When a vertex v is deleted from the dominating set, its degree can be potentially larger
than 2

√
m. However, when v was added to the dominating set its degree must have been

O(
√
m): this implies that many edges were added to v, and we can amortize the work over

those edges. More precisely, when a vertex v enters the dominating set, we put a budget
deg(v) on it. Every time an edge incident to v is added to the graph, we increase by one this
budget, so that when v has to be removed from D, v has a budget larger than deg(v) that
can be used for the operation.

References
1 Raghavendra Addanki and Barna Saha. Fully Dynamic Set Cover–Improved and Simple.

arXiv preprint, 2018. arXiv:1804.03197.
2 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal

independent set with sublinear update time. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
2018.

3 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully Dynamic Maximal
Independent Set with Sublinear in n Update Time, pages 1919–1936. SIAM, 2019. doi:
10.1137/1.9781611975482.116.

STACS 2019

35:16 Dominating Sets and Connected Dominating Sets in Dynamic Graphs

4 Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A Deamortization Approach
for Dynamic Spanner and Dynamic Maximal Matching. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1899–1918. SIAM, 2019. doi:
10.1137/1.9781611975482.115.

5 Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation
ratios. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete
algorithms, pages 692–711. Society for Industrial and Applied Mathematics, 2016.

6 Sivakumar R Bevan Das and V Bharghavan. Routing in ad-hoc networks using a virtual
backbone. In Proceedings of the 6th International Conference on Computer Communications
and Networks (IC3N’97), pages 1–20, 1997.

7 Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai.
Dynamic algorithms for graph coloring. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1–20. Society for Industrial and Applied
Mathematics, 2018.

8 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. Deterministic fully dynamic
data structures for vertex cover and matching. SIAM Journal on Computing, 47(3):859–887,
2018.

9 Sergiy Butenko, Xiuzhen Cheng, Carlos A Oliveira, and Panos M Pardalos. A new heuristic
for the minimum connected dominating set problem on ad hoc wireless networks. In Recent
developments in cooperative control and optimization, pages 61–73. Springer, 2004.

10 Xiuzhen Cheng, Xiao Huang, Deying Li, Weili Wu, and Ding-Zhu Du. A polynomial-time
approximation scheme for the minimum-connected dominating set in ad hoc wireless networks.
Networks: An International Journal, 42(4):202–208, 2003.

11 V. Chvatal. A Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations
Research, 4(3):233–235, 1979. URL: http://www.jstor.org/stable/3689577.

12 Camil Demetrescu and Giuseppe F. Italiano. A New Approach to Dynamic All Pairs Shortest
Paths. J. ACM, 51(6):968–992, 2004.

13 Ding-Zhu Du and Peng-JunWan. Connected dominating set: theory and applications, volume 77.
Springer Science & Business Media, 2012.

14 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

15 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

16 Sudipto Guha and Samir Khuller. Approximation algorithms for connected dominating sets.
Algorithmica, 20(4):374–387, 1998.

17 Leonidas Guibas, Nikola Milosavljević, and Arik Motskin. Connected dominating sets on
dynamic geometric graphs. Computational Geometry, 46(2):160–172, 2013.

18 Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Online
and dynamic algorithms for set cover. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 537–550. ACM, 2017.

19 Manoj Gupta and Shahbaz Khan. Simple dynamic algorithms for Maximal Independent Set
and other problems. arXiv preprint, 2018. arXiv:1804.01823.

20 Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In Foundations
of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 548–557. IEEE,
2013.

21 Johan Håstad. Clique is hard to approximate withinn 1- ε. Acta Mathematica, 182(1):105–142,
1999.

22 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic Deterministic Fully-
dynamic Algorithms for Connectivity, Minimum Spanning Tree, 2-edge, and Biconnectivity. J.
ACM, 48(4):723–760, 2001.

23 Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. An efficient distributed algorithm for
constructing small dominating sets. Distributed Computing, 15(4):193–205, 2002.

N. Hjuler, G. F. Italiano, N. Parotsidis, and D. Saulpic 35:17

24 Viggo Kann. On the approximability of NP-complete optimization problems. PhD thesis, Royal
Institute of Technology Stockholm, 1992.

25 Fabian Kuhn and Roger Wattenhofer. Constant-time distributed dominating set approximation.
Distributed Computing, 17(4):303–310, 2005.

26 D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen. Dynamic Minimum Spanning Forest
with Subpolynomial Worst-Case Update Time. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 950–961, October 2017.

27 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. ACM Transactions on Algorithms (TALG), 12(1):7, 2016.

28 E Sampathkumar and HB Walikar. The connected domination number of a graph. J. Math.
Phys, 1979.

29 Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of
computer and system sciences, 26(3):362–391, 1983.

30 S. Solomon. Fully Dynamic Maximal Matching in Constant Update Time. In 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), pages 325–334, October
2016. doi:10.1109/FOCS.2016.43.

31 Jie Wu and Hailan Li. On calculating connected dominating set for efficient routing in ad hoc
wireless networks. In Proceedings of the 3rd international workshop on Discrete algorithms
and methods for mobile computing and communications, pages 7–14. ACM, 1999.

STACS 2019

Detecting Ghostwriters in High Schools

Magnus Stavngaard August Sørensen Stephan Lorenzen†

Niklas Hjuler Stephen Alstrup ∗

University of Copenhagen - Department of Computer Science
Universitetsparken 3, Copenhagen, Denmark

† Corresponding author, e-mail: lorenzen@di.ku.dk

Abstract. Students hiring ghostwriters to write their assignments is
an increasing problem in educational institutions all over the world, with
companies selling these services as a product. In this work, we develop
automatic techniques with special focus on detecting such ghostwriting in
high school assignments. This is done by training deep neural networks on
an unprecedented large amount of data supplied by the Danish company
MaCom, which covers 90% of Danish high schools. We achieve an accuracy
of 0.875 and a AUC score of 0.947 on an evenly split data set.

1 Introduction

The number of Danish high school students using ghostwriters for their assign-
ments has been rising at an alarming rate due to the emergence of several new
online services, allowing students to hire others to write their assignments[1].

We consider in this paper the problem of detecting such ghostwriting, or as
it is more commonly known: authorship verification. Authorship verification is
a common task in natural language processing [2, 3, 4]: Given author α with
known texts t ∈ Tα and unknown text x, determine whether α is the author of x.
Often, a set of texts Tα = T \Tα (T denoting the complete set of available texts)
not written by α is also available, which can be utilized as examples of different
writing styles, when training a model. Note however, that Tα is unlikely to
contain examples written by the true author of x, unlike in the related authorship
identification problem, in which the task is to determine the exact author of x,
given a set of candidate authors and their texts [5, 6].

In this paper, we focus on the problem in high schools. We have access to a
large data set consisting of 130K Danish essays, written by more than 10K high
school students1. Thus we have access to a lot of different authors, each with a
large amount of text. We suggest a generalizing technique for authorship verifi-
cation (as opposed to author specific models); using a Siamese network working
at character level (an approach inspired by [5]), writing style representations
are learned and compared, in order to compute the style similarity between two
texts. Using the similarity measure provided by this network, x are compared to
previous works t ∈ Tα, and a final answer is given by a weighted combination of
the individual similarities. The data used is supplied by MaCom, the company
behind Lectio, the largest learning management system in Denmark.

∗Supported by the Innovation Fund Denmark through the Danish Center for Big Data
Analytics Driven Innovation (DABAI). The authors would like to thank MaCom.

1The data set is proprietary and not publicly available.

Many previous approaches for authorship verification/identification are based
on excessive feature selection [7, 2], but neural network approaches have also
been considered, for instance [3] who utilize recurrent neural networks for iden-
tification. Previous work on Danish high school essays have used author specific
models for verification/identification [6], but this work is the first neural network
based approach used on this data (and, to our knowledge, in this setting).

2 Method

As mentioned, we solve the authorship verification problem in two steps. First,
we solve the problem of computing the writing style similarity between two texts
by learning the similarity function s : T × T → [0, 1] using a Siamese network
(Section 2.1). Second, we solve the authorship verification problem for author α
by combining similarities computed between the unknown text x and the known
texts t ∈ Tα. We consider several different ways to combine these similarities,
based on their value and relevant meta data. (Section 2.2).

2.1 Network

Several different architectures are considered, using different input channels (e.g.
char, word, POS-tags), and evaluated on a validation set. The architecture of
our best performing network is shown in Figure 1.

Encoding

Comparison

t1

t2

M
e
r
g
e

Embd
d=5

Conv8
k=8, n=700

Conv4
k=4, n=500

GMP

GMP

Embd
d=5

Conv8
k=8, n=700

Conv4
k=4, n=500

GMP

GMP

Dense
4 × 500

s(t1, t2,)

1 − s(t1, t2,)

SoftMax

Fig. 1: Network architecture.

The Siamese network can be considered in two parts: encoding and compari-
son, the main idea being to learn an encoding of writing style, that the network
is then able to distinguish. Our network uses only character level inputs.

The encoding part consists of a character embedding (Embd), followed by
two different convolutional layers: Conv8 using kernel size k = 8 and n = 700
filters, and Conv4 using k = 4 and n = 500. Each convolutional layer is followed
by a global max pooling layer (GMP). The weights of Embd and Conv8/Conv4
are shared between encoding t1 and t2.

In the comparison part, we first compute the absolute difference between
the encodings in the Merge layer. Afterwards, 4 dense layers with 500 neurons

each are applied (Dense), and finally, the output is normalized by use of a
softmax layer with two outputs.

2.2 Combining similarities

Having a good estimate of s(t1, t2) for any two texts, we consider different ways
to combine these similarities, in order to give the final answer to an authorship
verification query. More specifically, we consider functions Cs : P (T) × T →
[0, 1], such that, given x and Tα, we will answer the query positively (i.e. α is
the author of x) if:

Cs (Tα, x) ≥ δ

where δ is a configurable threshold, which describes how likely we are to answer
positively. In the experiments, we consider several different ways to combine
similarities, for instance using weighted sums, the min/max similarity or major-
ity vote, while utilizing meta data such as time stamps and text length. From
the experiments, we found that the optimal strategy was a weighted sum with
weights decaying exponentially with time:

Cs (Tα, x) =
∑

t∈Tα
e−λτ(t)s(t, x) (1)

where τ (t) denotes the time in months since t was written, and λ is a configurable
parameter, which is determined experimentally.

3 Experiment

This section describes our experiments performed on the MaCom data. Sec-
tion 3.1 will describe the preprocessing and partitioning of data. Baselines will
be described in Section 3.2. Finally, Section 3.3 lists and discusses the final re-
sults. We use accuracy, false accusation rate, FAR = FN/(TN + FN), and catch
rate, CR = TN/(TN + FP) as performance metrics.

3.1 Data

The data is partitioned into three sets: Ttrain used for training, Tval used for
early stopping and selecting Cs, and Ttest used only for estimating the metrics
of the final models. The three sets are author disjoint, meaning no author will
appear in more than one of the sets. In an effort to remove invalid data (blank
hand-ins, etc.), we clean the data by filtering according to length (keeping texts
with lengths between 400 and 30,000 characters). Furthermore, some texts were
found to include author revealing information (such as name, address); hence we
removed all proper pronouns from the texts, as well as the first 200 characters.
Finally, authors with less than 5 texts were removed.

After cleaning, the data set contains a total of 131,095 Danish essays, written
by 10095 authors, with an average 13.0 texts per author, and an average text
length of 5894.8 characters.

For each data set, we construct two types of problem instances: Sim and AV,
used for training the network and selecting the combination strategy respectively.
The data set has no labelled ghostwriters, so we assume all authors to be correct2,
and construct balanced (50/50) data sets as follows:

A Sim instance simply consists of two texts t1, t2 and a label indicating
whether the texts are by the same author. Positive samples are generated by
using t1, t2 ∈ Tα, while negative samples are generated by using t1 ∈ Tα and
t2 ∈ Tα. An AV instance consists of a set of known texts T ′α, an unknown text x,
and a label indicating whether α is (positive) or is not (negative) the author of
x. Letting tlast denote the most recent text of Tα, samples are generated using
T ′α = Tα \ {tlast} with x = tlast for the positive sample, and x ∈ Tα chosen at
random for the negative sample.

Table 1 provides an overview of the data after partitioning and preprocessing.

Data set #authors #texts #Sim #AV
Ttrain 5418 70432 934720 10836
Tval 989 12997 173536 1978
Ttest 3688 47666 627744 7376

Table 1: Data set overview.

3.2 Baselines

We will compare our method to Burrows’s Delta method and author specific
SVMs:

Burrows’s Delta method (Burrows) [7] is a method for authorship identi-
fication based on the l1-distance between the z-scores of word frequencies in x
and in the corpus for each of the candidate authors β1, ..., βk. We adapt it for
verification by sampling a set of ’wrong’ authors, β2, ...βk, and querying with x
and β1 = α, β2, ..., βk. answering positively, if x is attributed to α. The top 150
word frequencies are considered. The optimal k is determined using Ttrain.

An author specific SVM [6, 2] is trained for each author in order to recognize
Tα from Tα. Hyper parameters and features are selected using cross validation.
Forward feature selection is used, considering char, word and POS-tag n-grams
for varying n. The SVM will be trained on a balanced set, meaning that only a
limited amount of data is available for each SVM. However, they have previously
been shown to work well in this data set [6].

3.3 Results

Methods were trained and validated on Ttrain and Tval. For Burrows, we found
k = 4 to give the best results, while the parameters C = 10, γ = 103 were found
optimal for the RBF kernel SVM. The optimal combination strategy Cs was

2An undoubtedly false assumption, which will be discussed in Section 3.3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AUC = 0.947

1-Specificity

S
en

si
ti

v
it

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

FAR = 0.05

CR

F
A

R

Fig. 2: ROC (left) and plot of false accusation rate/catch rate (right) on Ttest.

found to be exponentially decaying weights (see (1)) with λ = 0.1. Furthermore,
δ = 0.57 was found to be optimal. Using these parameters, the baselines and
our method were evaluated on Ttest; Table 2 presents the results, while Figure 2
shows the ROC/AUC and a plot of false accusation/catch rate for our method.
As it can be seen, our method clearly outperforms the baselines, on all metrics.

Method Accuracy FAR CR
Burrows 0.677 0.357 0.806

SVM 0.720 0.266 0.689
Our method 0.875 0.141 0.896

Table 2: Results obtained on Ttest

The false accusation rate is especially important considering the use case:
when trying to detect ghostwriting in high schools, making false accusation can
be especially devastating, as students found guilty of cheating could risk se-
vere punishment and maybe even be expelled. Using this metric, our method
performs very well, as illustrated in Figure 2 (right), a fairly low FAR can be
obtained, while still catching a lot of ghostwriters. Optimizing the method on
Tval while restricting FAR < 0.1, we achieved an accuracy of 0.864, FAR = 0.106
and CR = 0.825 on Ttest (with exponential weighting and parameter λ = 0.16).
However, even if these results are promising, the system should only be used as
a warning system for the teacher, who should always have the final say.

An interesting aspect to note about the combination strategy Cs, is that it
takes time into account with λ = 0.1, weighing recent assignments more than
older ones. Since τ (t) measures in months, this means that a recent assignment
gets e12·0.1 ≈ 3.3 times the weight of a one year old assignment. This corresponds
well with the idea that high school students writing style changes over time, as
also observed in [6].

When looking at the low false accusation rates of Figure 2 (right), one have
to consider two things before translating them into practice: a) Ttest is balanced,

while in reality much less than half of assignments are written by a ghostwriter,
and b) ghostwriting does happen, also in our data set, and thus most likely some
of our labels are wrong. A possible remedy for the second point could be to adjust

FN to FN − TN
TN+FPγT (where γ is the estimated fraction of ghostwriters and

T = TP+FN), and similar for TP, under the assumption that a negative sample
and a corrupted positive sample are indistinguishable. Adjusting for this would
obviously lead to improved accuracy and false accusation rate, but requires a
good estimate of γ.

4 Conclusion

We achieved an accuracy of 0.875, with a false accusation rate of 0.141 and a
catch rate of 0.896. We show how false accusation rate can be improved at
the cost of catch rate and accuracy. Results are good enough for practical use,
and even with a slightly lower catch rate, the system is still expected to have a
preventive effect. However, one has to keep in mind that, in practice, the data
set is not 50/50 balanced, which obviously will affect the results. Making a split
imitating the real world is hard for two reasons: one needs a good approximation
of the actual fraction of ghostwriters, and even if this fraction is known, the
number of corrupt labels would be approximately the same as the number of
negatives, making it impossible to beat a false accusation rate of 0.5, even for
a perfect classifier. Finding a clean data set or establishing ground truth would
alleviate these problems, and could be interesting prospects for future work.

Another interesting direction is to analyze writing style changes over time
more in depth, motivated by the chosen combination strategy and preliminary
experiments, which show how two texts written within a shorter time span have
higher similarity on average.

References

[1] Politisk flertal vil gøre salg af eksamensopgaver ulovligt. http://nyheder.tv2.dk/politik/
2017-06-21-politisk-flertal-vil-gore-salg-af-eksamensopgaver-ulovligt. Ac-
cessed: 2018-11-25.

[2] Efstathios Stamatatos. A survey of modern authorship attribution methods. J. Am. Soc.
Inf. Sci. Technol., 60(3):538–556, March 2009.

[3] Douglas Bagnall. Author Identification using multi-headed Recurrent Neural Networks.
In CLEF 2015 Evaluation Labs and Workshop – Working Notes Papers. CEUR-WS.org,
September 2015.

[4] Alberto Bartoli, Alex Dagri, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. An
author verification approach based on differential features. In CEUR WORKSHOP PRO-
CEEDINGS, volume 1391. CEUR, 2015.

[5] Chen Qian, Tianchang He, and Rao Zhang. Deep learning based authorship identification.
2018. report, Stanford University.

[6] Niels Dalum Hansen, Christina Lioma, Birger Larsen, and Stephen Alstrup. Temporal con-
text for authorship attribution: a study of Danish secondary schools. In Multidisciplinary
information retrieval, pages 22–40. Springer, 2014.

[7] John Burrows. ’Delta’: a Measure of Stylistic Difference and a Guide to Likely Authorship.
Literary and Linguistic Computing, 17(3):267–287, 2002.

DABAI: A data driven project for e-Learning in Denmark

Stephen Alstrup, Casper Hansen, Christian Hansen, Niklas Hjuler, Stephan Lorenzen, and Ninh Pham

Department of Computer Science, University of Copenhagen, Denmark
s.alstrup@di.ku.dk
bnq@di.ku.dk
chrh@di.ku.dk
hjuler@di.ku.dk
lorenzen@di.ku.dk
pham@di.ku.dk

Abstract: A new Big Data research team called DABAI have been launched in Denmark, which aims at
integrating cutting edge computer science research from machine learning, algorithms and visualization into
the education sector. The educational part of the DABAI project is a cooperation between Danish universities
and multiple enterprises providing e-Learning solutions for the Danish market. The companies’ services cover
over 90% of the Danish schools, with more than one million students, who on a daily basis do millions of
exercises and interactions using the involved companies’ solutions. The study presented in this paper is an
initial investigation of the needs of the three largest companies in e-Education in Denmark directly involved in
DABAI, as well as other companies, with the goal being to continue providing novel and high-demand features
for their customers. The three companies are MaCom, Clio Online, and Edulab. Clio Online together with
Edulab provide an online platform for teaching material and exercises for the primary school level covering all
subjects. MaCom provides a lecture management system used by most Danish high schools. Overall the study
shows that the problems encountered at the different companies are varied, but can be categorized into three
general sub categories: Student Profiling, Content Profiling, and Content Recommendation. Some problem
types fall into multiple sub categories, and in general to accomplish the goal of providing e-Learning of the
highest quality, research into all of them is necessary. This paper presents the fundamental problems in e-
Learning. For each encountered problem, we describe its objectives and challenges in detail, followed by the
current state of the art for solving it.

Keywords: e-Learning, e-Learning challenge categorization, Big Data

1. Introduction

A new Big Data research team called Danish Center for Big Data Analytics driven Innovation (DABAI) have been
launched in Denmark, which aims at integrating cutting edge computer science research from machine
learning, algorithms, and visualization into the domains encompassing Food Supply Chain Data, Societal Data,
and Education Data. DABAI is funded by Innovation Fund Denmark, with a total funding of 17M euro. In this
paper we will present our initials finding for problems in the educational sector. The educational part of the
DABAI project is a cooperation between Danish universities and multiple enterprises providing e-Learning
solutions for the Danish market. The companies’ services cover over 90% of the Danish schools, with more
than one million students, who daily do millions of exercises using the involved companies’ solutions. In
Denmark there is a strong political focus and funding to ensure the education system being more data driven,
and e-Learning tools developed being integrated quickly. Such a hard political push on the software level is
now possible since it has been ensured that the schools have the necessary hardware level over the past years.

This work is an initial investigation of the needs of the three largest companies in e-Education in Denmark
directly involved in DABAI, with the goal being to continue providing novel and high-demand features for their
customers. The three companies are MaCom, Clio Online, and Edulab. Clio Online together with Edulab
provide an online platform for teaching materials and exercises for the primary school level covering all topics.
MaCom provides a lecture and assignment management system used by most Danish high schools.

Overall our study shows that the problems encountered at the different companies are very diverse, but can
be categorized into three general sub categories: Student Profiling, Content Profiling, and Content
Recommendation. Some problem types fall into multiple sub categories, and in general to accomplish the goal
of providing e-Learning of the highest quality, research into all of them is necessary.

In this paper we present the fundamental problems in e-Learning, and for each encountered problem we
describe its objectives and challenges in detail, followed by the current state of the art for solving it. We
strongly believe that even though this work is done in Danish context, then the encountered problems and
solutions generalizes worldwide.

1.1 Introduction of companies

In this section we will briefly introduce the three companies we are working with, such that the challenges
they are facing can be better understand in the setting they are going to be used in.

Clio Online is a complete digital learning platform for the primary school level, and aims at offering everything
a teacher and student need. They offer all subjects except mathematics, which Edulab provides. The material is
tailored to the national targets for education, such that the material always follows the national curriculum for
each subject. They want the teachers to be able to focus more on teaching, and less on preparing and finding
the right material.

Edulab is a complete digital learning platform for mathematics, with the goal of making every child in the
world better at mathematics. Edulab's products offers many different ways of learning mathematics, ranging
from question heavy workloads to video and text lessons, as well as other activities depending on if the
student is in class or at home.

MaCom provides Lectio, which is a lecture management system used in high schools. They provide a tool to
manage the lessons carried out, and in a way that is transparent to the students and the parents. They also
provide a tool to manage homework and for handing in assignments, such that they have a big repository of
student work.
Together these companies services over 90% of all schools in Denmark.

1.2 Categorization of e-Learning challenges

One of the end goals for educational software is obtaining differentiable teaching materials fitted to each
student’s needs, such that the overall progression of the students is as high as possible. The current generation
of educational software offer personalization options, but not as in depth compared to what a real human
personal tutor could provide, and bridging this gap is one of the major challenges for current educational
software providers. However, this task is complex and can be split in many subtasks, which also independently
can provide great value. Our cooperation with the three largest e-Learning companies in Denmark have
revealed that their needs can be put into three categories:

1. Student Profiling
2. Content Profiling
3. Content Recommendation

Student profiling is the broadest of the categories and cover modelling the students' skills, knowledge, and/or
behaviour. These can be modelled by how the students interact with the educational systems, and how they
perform in these systems. We present two cases on student profiling, one from modelling how students
interact with the website and material, and another on modelling a student's writing style.

Content profiling is the task of understanding the material provided by the educational system, the
understanding can be in the case of finding material that students generally perform much worse on than
expected, or finding relations between material necessary for building solid material recommender systems.
We present a case on content profiling with the task of finding similarities among a large number of quizzes.

Content Recommendation is in its essence the combination of student and content profiling, where the task is
to recommend the right learning material to the student. A detailed profiling of both students and content
allows to create optimal learning paths for the individual students. We present three cases on this category
from improving personalized learning, to predicting student performance on quizzes based on other students'
performance, and a system to train specific parts of a subject curriculum.

2. Company faced e-Learning challenges

In this section we will present our initial work and related literature on six e-Learning challenges faced by the
companies.

2.1 Optimize e-Learning personalization

E-Learning personalization refers to an online educational approach that provides differentiated instruction to
support the individual student’s need. Currently, EduLab is deploying and developing an online learning
platform called “SuperTrainer” to optimize the e-Learning personalization for individual student on learning
Mathematics. In a nutshell, SuperTrainer can be seen as a specific recommender system that recommends
“the best question at the right time” to students to optimize their mathematical learning process in primary
school. Such adaptive recommender system provides a sequence of math questions in order to maximize
student’s learning gain while taking into account the limited amount of time and number of questions. One
traditional mechanism is that students will be assigned easier/harder questions if they answer
incorrectly/correctly on previous questions. This is due to the argument in psychology (Berlyne, 1960) and
neuroscience (Gottlieb et al., 2013) that the human brain shows intrinsic pleasure in activities of optimal
difficulty, i.e. balance between interest (not too difficult) and challenge (not too easy).

While traditional recommender systems are focusing on “one-shot” recommendations, e-Learning
personalization investigates a “personal path” through the questions and adjusts this path depending on how
students progress in learning. Therefore, it is essential to have a systematic measurement of individual
student’s performance when using personalized products. Currently, to the best of our knowledge, there is no
measurement of student’s performance on using e-Learning personalization. This means that we do not know
how well we could do with e-Learning personalized platforms. Furthermore, there is no efficient mechanism
with guarantees to recommend “the best question at the right time” to students.

To handle recent problems of e-Learning personalization, we aim to introduce and formalize important
progress factors to measure students’ performance, and then exploit such measurements to evaluate and
improve an e-Learning personalization mechanism. In particular, we decompose student’s progress into three
factors as follows:

▫ Ability of understanding: Given a fixed number of questions, for each student we want to maximize
the correctness/difficulty level of the given questions.

▫ Learning speed: Given a fixed amount of questions, we want to minimize the total amount of time
that each student has to spend on solving them.

▫ Balance of challenge and interest: Given a fixed amount of questions, we want to maintain a well-
defined correct ratio to balance between the challenge (i.e., student feels difficult to answer
correctly) and the interest (i.e., student feels happy when answering correctly).

After formalizing student’s performance measurements, or goal is to model the e-Learning personalization
problem, i.e., recommending the best question at the right time to students, as an optimization problem.
Following very recent machine learning approaches (Lopes et al., 2015; Tekin, Braun, and van der Schaar,
2015), we are investigating the “Multi-Arm bandit models” for our optimization. Assume that an e-Learning
personalization has to recommend a sequence of questions to each individual student. Each question will give
the student a reward value that highly depends on the student’s level at that time. Note that such reward
value must express the three progress factors above so that we are able to measure the student’s progress.
Then, we develop the optimization algorithms to maximize the sum of rewards earned by each student
through a sequence of recommended questions. Our collaboration with EduLab will deploy a scalable and
efficient algorithm for optimizing their e-Learning personalization platform – SuperTrainer – since EduLab is
now dealing with very large-scale data, i.e., millions of questions on every day.

2.2 Student behavior modelling

Most learning platforms allow a student to access the material through many different paths. An example
could be a video lesson which could be given as homework, it could come up as recommended material to an
exercise if the student needs help solving it, or the student could simply find the video lesson themselves
because they want to review the material without being asked to do it. Edulab is interested in the paths users

take for two primary reasons: 1) as for every other company providing a web solution, knowledge of user
behavior can be used directly when planning further extensions of the system. 2) Educational systems are built
based on knowledge of didactics which guide the usage of the system, and unintended usage of the system
can therefore in some cases correspond to sessions with suboptimal learning for the user.

The number of daily user sessions is too large to make any meaningful qualitative study of the individual user
sessions, where session in this context is defined as the interactions a user does from logging into the system
to the time they log out. It is therefore necessary to do some clustering of sessions and analyze the resulting
clusters, to extract general trends. A common approach (Köck, M. and Paramythis, A. 2011) for modelling the
sessions, is to consider them as a sequence over an action space. A simple action space is that the user either
answers a quiz (Q) or watches a video (V). A user session would then consist of entering the system, a
sequence of actions, e.g. QQQVVQ, and then logging off. A clustering over such a simple space, would still
allow us to ask questions like, does students in general start with videos or quizzes, and are the user
interactions very binary such that they either answer questions or watch lessons? This is a very trivial example
of an action space, but it can be made arbitrarily complex according to the system we wish to model, with the
limitation being that larger action spaces requires more data to find meaningful insights. The method of
considering user sessions as sequence over an action space have been used with success in deriving insights
from educational systems (Klingler, S. et al. 2016; Faucon, L., Kidzinski, L., and Dillenbourg, P. 2016).

We are currently in the process of clustering all sessions done in Edulab’s system on multiple different state
spaces with the focus on finding "unproductive" sessions, where the students use the system in an unintended
way. An initial study on a subset of the available data have been done (Hansen, C. et al. 2017), where the
clustering lead to insight into a significant number of sessions where students had very binary behavior,
meaning they either always watched lessons, answered questions correctly or answered wrongly. This study
used an action space of considering video lesson, if a question was correctly and incorrectly answered, and if
the student switched to material of different topics. The overall goal of this work is to provide Edulab with a
new tool for future development of their system.

2.3 Predict student performance

Prediction of student performance, estimating the unknown score of a given task, is one of the important
problems in e-Learning. The scores given by an individual student reflect how a student understands and
applies the knowledge conveyed in class. A reliable performance prediction of such scores enables teachers to
provide remedial support for weak students, recommend appropriate tasks to excellent students, generate
adaptive hints, and improve the learning of students. This section focuses on predicting the score of students
in the quiz system of the Clio Online learning platform, where a student has answered only a subset of the
quizzes.

Currently, Clio Online learning platform is maintaining a quiz system that contains thousands of quizzes with
several types, including multiple choice quizzes, gap-filling quizzes, etc., spanning several different elementary
school subjects. We study the performance of students on the quiz data; specifically we will focus on
predicting how a student performs on an unseen quiz. More formally, given n students S = {s1, ..., sn}, and a set
of m quizzes Q = {q1, ..., qm}, any student si will answer some quizzes in Q and we need to predict the score of
the other quizzes that he has not finished yet. In other words, given an incomplete matrix X of size n × m
reflecting the scores of n students over m quizzes, our task is to efficiently complete such matrix X given its
partial known values. Since we can view a student/quiz as a user/item, we view our prediction task as the
collaborative filtering problem (Collaborative Filtering, 2017) and investigate state-of-the-art techniques for
solving it.

In particular, we have studied the matrix factorization techniques (Koren, Bell, and Volinsky, 2009; Lee and
Seung, 2000) for improving our prediction. This is due to the fact that we can assume that there are a small
number of latent features, e.g., skill sets, revealing the students and tasks preferences. Such assumption is
natural and has been used widely in research and application work in educational data (Barnes, 2005;
Desmarais, 2011). It is also worth noting that these solutions require no knowledge of students and tasks, and
therefore avoid the need for extensive data collection. Prior work using matrix factorization for predicting
student performance (Elbadrawy et al., 2016; Thai-Nghe et al., 2010) indicates that there is sufficient
information in the historical student-task score data to make the prediction feasible.

2.4 Similarity among quizzes

Given a par of quizzes, Quiz 1 and Quiz 2, how similar are they? There exist many qualitative ways of
addressing this question and some quantitative like Pearson correlation measures and cosine similarity. Deary
et al (2007) research correlation among intelligence tests and how well kids perform in different subjects. Even
with the high number of answers in the Clio Online setting (millions of quiz answers), the thousands of quizzes
results in many pairs of quizzes which have only a few or even no students who have taken both quizzes. This
results in very high variance for the usual techniques. One could combat this by densifying the data with
prediction values for the quizzes which would reduce the similarity problem to predicting student
performance. The other option is to infer similarity in the sparse quizzes going through a third quiz taking
advantage of the "transitive" property of objects being similar.

Formally we solve the problem of making the best prediction on normalized quiz scores (0 mean and unit
variance for each quiz). The prediction we make is a weighted average of the other quizzes taken and the
weights are the similarities. We require the similarities to be symmetric and non-negative, but other than that
there is no restriction. This allow us to both train and check different overfitting measures to capture the
"transitive property" of objects being similar.

The knowledge of similarities would give insight to the teachers. If for example a student suddenly does worse
on a writing test than he usually does, one can find the similarities of more specific quizzes (like grammar
quizzes) and thus pinpoint why this student has trouble with the specific writing quiz. Furthermore, taking
advantage of similarities is likely to improve prediction (Khajah, Lindsey, and Mozer 2016). Chen, Gonxáles-
Brenes and Tian (2016) suggest that spurious similarities could be due to the quiz requiring multiple skills.

2.5 Authorship verification

The competition for high grades in Danish secondary education (high school) is tougher than ever. This has led
to an increase in fraud in written assignments. While efficient techniques for detecting simple copy-paste
plagiarism exist and are deployed in Denmark (Frølich and Hansen, 2012), there have recently been an
increase in students resorting to ghost-writing, i.e. handing in assignments written by someone else (e.g. a
teacher, college student, or other professional). Normal plagiarism control does not detect this kind of fraud,
since the assignment is original work. The problem has been highlighted recently by the emergence of so-
called paper-mills in Denmark; online services providing academic ghost-writing (e.g. www.fixminopgave.dk), a
phenomenon already seen in other pars of the world, e.g. the U.S., where paper mills have existed for several
years (Tomar, 2014). MaCom wishes to combat this emerging trend by deploying a system for detecting cases
of ghost-writing in Lectio. With data for more than 150,000 Danish students, including more than 15 million
handed-in assignments, there is large potential.

Formally, we can define the problem of detecting ghost-writing as the Authorship Verification Problem: Given
an author a, a set of texts S = {s1, s2, …, sn} written by a and a text x, determine whether a is the author of x.
This problem (and the related problem of Authorship Attribution) has been considered in the literature
(Koppel, Schler and Bonchek-Dokow, 2007; van Halteren, 2004; Stamatatos 2009), and is in general considered
challenging, since only limited data about the author is available. Most approaches take inspiration from the
study of stylometrics and employ techniques from natural language processing and machine learning.
Approaches usually follow either the profile-based paradigm (x is compared to a constructed profile of a) or
the instance-based paradigm (x is compared to all instances s1, s2,...); in either case, the problem can be seen
as a case of Student Profiling.

For the case of authorship verification in Danish high schools, there are several important considerations to be
made. Most notably the fact that:

1. Students are still learning, and their writing style may change over time.
2. We have access to a large corpus of text consisting of the 15 million assignments, which may be

utilized in order to improve verification.

These considerations are already investigated in two studies using the data from MaCom: (Hansen et al., 2014)
considers authorship attribution with the temporal aspect, and concludes that, using SVMs, good accuracy can

be obtained even when S only contains the most recent assignments for a student, while (Aalykke, 2016)
utilizes the corpus by performing verification through a profile-based authorship attribution approach.

We hope to improve upon the previous studies by utilizing both (1) and (2), coupled with comprehensive
feature selection and state-of-the-art techniques for authorship verification and outlier detection.
Furthermore, we hope that our student profiling may also aid in measuring progress of the student in terms of
writing style.

2.6 Curriculum trainer

Every week teachers all over the world plan lessons to teach their kids. Much of this work is overlapping in
between teachers since what the students need to learn is in many cases the same. Now in the era of "sharing
economy" it is possible to utilize the community of teachers via large lecture management systems, such as
Lectio, which is made by MaCom. Lectio is used by almost all high schools in Denmark (90%).

Curriculum trainer is a small step in the utilization of taking advantage of "sharing economy". It is a system
made for high school students. They can use it to prepare them for their exams. The system is to be
implemented in Lectio.

The system is made such that all high school teachers in Denmark (who use Lectio) can pose questions directly
into the system. The teacher only has to state the question, the correct answer, some wrong answers and in
which subject the question is related to. When the students use the system it adaptively estimates the
difficulty of the question and the skill of the student. This is done by the ELO rating from chess (Elo, 1978),
where the game is between a question and the student, similar to (Pelanek, 2016) and (Antal, 2013). The
student wins if the question is answered correctly and is thus rewarded with an increase in his skill score. The
difficulty index of the question is then decreased. How much depend on both the skill level of the student and
the difficulty index of the question. The opposite happens if the student answers incorrectly. However unlike
in chess the update rules can be different for students and questions, since the skill level of a student is
expected to change whereas the difficulty level of a question is expected to be static at least over shorter
periods of time, like a school year. The ELO ratings are also used to make sure that students get question at the
level which is optimal for their learning. The initialisation of a student’s skill level is based on his/her grades in
the subject. In the future, log files could be studied to personalize how difficult question should be for a
student to keep motivation high. The ELO rating is preferred for its simplicity since we need to minimize the
amount of information the teacher needs to give.

The possibility of using “sharing economy” in the teaching scene has huge potential for generating teaching
material of high quality, since all teachers can contribute. There are of course some barriers, the most often
mentioned is the fear of being judged for their work. Hence starting at a small level and share questions should
help overcome this barrier and in this case anonymity could easily be granted.

3. Conclusion

The overall goal of the study was to find a wide array of interesting problems that companies providing e-
Education in Denmark have, and present early work in the direction we plan to go to solve them. The
uncovered problems are interesting from an educational point of view, but they also raise interesting
problems from a computer science perspective, showing the importance of the cooperation between the fields
for e-Learning.

None of the presented problems were novel for the e-Learning community, and there are varying levels of
existing work that potentially can be used directly by the companies without further improvement. This
demonstrate the potential value between industry and university cooperation in the e-Learning community,
where a cooperation will help reduce the gap between current state-of-the-art research in academia, and
what solutions are currently available for students.

The goal of the educational part of DABAI is to go one step beyond bridging the gap between industry and
academia. With access to data generated from more than a million students, the goal is to push the state-of-

the-art in cooperation with the companies, with the advantage of having access to extremely large amounts of
real-world data to verify the methods against.

4. References

Aalykke, A. H. (2016), Computational Authorship Attribution in Danish High Schools. Master Thesis. DTU.

Antal, M., (2013) On the use of elo rating for adaptive assessment. Studia Universitatis Babes-Bolyai,
Informatica 58

Barnes, T. (2005) The Q-matrix Method – Mining Student Response Data for Knowledge. In American
Association for Artificial Intelligence 2005 Educational Data Mining Workshop, pp 1—8.
Berlyne, D. (1960) Conflict, arousal, and curiosity, McGraw-Hill Book Company.
 Chen, Y. ,González-Brenes, J. , Tian, J. (2016) Joint Discovery of Skill Prerequisite Graphs and Student Models
, Proceedings of Educational Data Mining (EDM), pp 46-53.
Collaborative Filtering 2017, Wikiversity, wiki, 22 May 2017. Available from
https://en.wikipedia.org/wiki/Collaborative_filtering. [22 May 2017]
Deary, I., Strand , S., Smith, P., Fernandes, C. (2007) Intelligence and educational, Intelligence 35 (2007) pp
13–21.
Desmarais, M. (2011) Conditions for Effectively Deriving a Q-matrix from Data with Non-negative Matrix
Factorization, In Proceedings of the International Conference on Educational Data Mining, pp 41—50.
Elbadrawy, A., Polyzou, A., Ren, Z., Sweeney, M., Karypus, G., and Rangwala, H. (2016) Predicting Student
Performance Using Personalized Analytics, Computer Vol. 49, No. 4, pp 61—69.
Elo, A. E. (1978), The rating of chess players, past and present. B.T. Batsford, Ltd., London
Faucon, L.; Kidzinski, L. & Dillenbourg, P. (2016), Semi-Markov model for simulating MOOC students., in
Proceedings of Educational Data Mining (EDM), pp. 358-363 .
Frølich, M. and Hansen, K. (2012), Efficient Plagiarism Detection. Master Thesis. DTU.
Gottlieb, J., Oudeyer, P.-Y., Lopes, M., and Baranes, A. (2013) Information-seeking, curiosity, and attention:
computational and neural mechanisms, Trends in Cognitive Sciences 17, 11, pp 585–593.
Hansen, C., Hansen, C., Hjuler, N., Alstrup, S., and Lioma, C. (2017), Sequence Modelling For Analysing Student
Interaction with Educational Systems. To appear in Proceedings of Educational Data Mining (EDM).
Hansen, N., Lioma, C., Larsen, B. and Alstrup, S. (2014), Temporal context for authorship attribution: a study of
Danish secondary schools, in Proceedings of the 7th Information Retrieval Facility Conference (IRFC), pp 22-40.
Khajah, M., Lindsey, R., Mozer, M. (2016) How Deep is Knowledge Tracing? Proceedings of the 9th
International Conference on Educational Data Mining pp 94-101
Klingler, S., Käser, T., Solenthaler, B. and Gross. M. (2016), Temporally Coherent Clustering of Student Data., in
Proceedings of Educational Data Mining (EDM), pp. 102-109 .
Köck, M. & Paramythis, A. (2011), Activity sequence modelling and dynamic clustering for personalized e-
learning., in User Model. User-Adapt. Interact. 21 (1-2), pp 51-97.
Koppel, M., Schler, J. and Bonchek-Dokow, E. (2007), Measuring Differentiability: Unmasking Pseudonymous
Authors, Journal of Machine Learning Research Vol. 8, pp 1261-1276.
Koren, Y., Bell, R.-M., and Volinsky, C. (2009) Matrix Factorization Techniques for Recommender System, IEEE
Computer, Vol. 42, No. 8, pp 30 – 37.
Lee, D.-D., and Seung H.-S. (2000) Algorithms for Non-negative Matrix Factorization. In Advances in Neural
Information Processing System (NIPS), pp 556—562.
Lopes, M., Clement, B., Roy, D., and Oudeyer, P.-Y. (2015) Multi-Armed Bandits for Intelligent Tutoring
Systems, Journal of Educational Data Mining (JEDM), Vol. 7, No. 2, pp 20–48.
Pelanek, R. (2016). Applications of the Elo Rating System in Adaptive Educational Systems. In Computers and
Education , pages 169-179
Stamatatos, E. (2009), A survey of modern authorship attribution methods, Journal of the American Society for
Information Science and Technology Vol. 60, No. 3, pp 538-556.
Tekin, C., Braun, J, and van der Schaar, M. (2015) eTutor: Online Learning for Personalized Education, In:
Proceeding of International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 5545—5549.
Thai-Nghe, N., Drumond, L., Krohn-Gimberghe, A., and Schimidt-Thieme, L. (2010) Recommender System for
Predicting Student Performance, In Proceedings of the Workshop on Recommender System of Technology
Enhanced Elearning, pp 2811—2819.
Tomar, D. A. (2014), The Ghostwriting Business: Trade Standards, Practices, and Secrets. [online] The Best
Schools. Available at: http://www.thebestschools.org/resources/ghostwriting-business-trade-standards-
practices-secrets/ [Accessed 24th May 2017]

van Halteren, H. (2004), Linguistic profiling for author recognition and verification, in Proceedings of the 42nd
Annual Meeting on Association for Computational Linguistics (ACL), Article No. 199.

Investigating Writing Style Development in High School

Stephan Lorenzen
University of Copenhagen

lorenzen@di.ku.dk

Niklas Hjuler
University of Copenhagen

Hjuler@di.ku.dk

Stephen Alstrup
University of Copenhagen

alstrup@di.ku.dk

ABSTRACT
In this paper we do the first large scale analysis of writing
style development among Danish high school students. More
than 10K students with more than 100K essays are analyzed.
Writing style itself is often studied in the natural language
processing community, but usually with the goal of verifying
authorship, assessing quality or popularity, or other kinds of
predictions.

In this work, we analyze writing style changes over time,
with the goal of detecting global development trends among
students, and identifying at-risk students. We train a Siamese
neural network to compute the similarity between two texts.
Using this similarity measure, a student’s newer essays are
compared to their first essays, and a writing style develop-
ment profile is constructed for the student. We cluster these
student profiles and analyze the resulting clusters in order to
detect general development patterns. We evaluate clusters
with respect to writing style quality indicators, and identify
optimal clusters, showing significant improvement in writing
style, while also observing suboptimal clusters, exhibiting
periods of limited development and even setbacks.

Furthermore, we identify general development trends be-
tween high school students, showing that as students progress
through high school, their writing style deviates, leaving stu-
dents less similar when they finish high school, than when
they start.

Keywords
Student clustering, Writing style analysis, Siamese Neural
Network, Educational Systems

1. INTRODUCTION
One of the most essential skills, learned during the course of
primary, secondary and high school, is writing. While the
main focus of primary school are on basic writing skills (such
as grammar), secondary or high school will be more focused

on improving the linguistic writing style of a student, that
is, the quality of the written text as perceived by the reader.
With many jobs being highly dependent on producing rela-
tively large amounts of well-written text, no justification is
needed for why good writing is an essential skill.

The definition of quality in linguistic writing style is widely
discussed [3, 23]. While correct grammar being a prerequi-
site, several other measures are also correlated to writing
style being perceived as good, for instance use of vocabu-
lary, sentence structure and readability [18]. Our focus in
this work will mainly be writing style development through
the course of high school, while writing style quality will
have a secondary role. We consider data from Danish high
schools, consisting of Danish essays, and investigate the gen-
eral development patterns among the students during the
three years of study. The end goal is to be able to pro-
vide feedback to teachers about the development of their
students’ writing styles. We identify patterns among thou-
sands of students across different classes and institutions,
allowing us to provide teachers with new insights, which the
data available to the teacher might not show. For instance
insights about students, whose writing style development
patterns may be unique within their own classes.

By itself, our method potentially allows for identifying stu-
dents with deviating writing styles development (which might
be good or bad), or students with sudden significant changes
in writing style, which could be an indicator of cheating.
However, we also consider several measures for the quality
of writing. We investigate how these measures correlate with
the different patterns of writing style development found, as
a mean to detect optimal and suboptimal development pro-
files with respect to text quality. Information of this kind
could be used to help teachers tailor their teaching style to
specific groups of students, who may need training in specific
areas challenging to their development profile.

1.1 Our Contribution
As mentioned, we concern ourselves with the development
of linguistic writing style (as opposed to e.g. handwriting)
during the course of high school. Specifically, we investigate
the development of writing style in Danish essays handed-in
by students in Danish high schools 1.

1Note, that high school in Denmark usually consists of three
years of study with students normally starting at age 15-17
and finishing at age 18-20.

We are interested in determining general patterns of devel-
opment, and to discuss which of the patterns are optimal, in
the sense of improving writing style quality. In particular,
we consider the following questions:

• How does the writing style of a student develop, and
what are the typical kinds of development in writing
style?

• How does writing style changes correlate with mea-
sures of quality?

• How does writing style similarity between students be-
have, with respect to how far the students are in their
education?

Our study is based on data from the company MaCom2, who
is behind the learning management system Lectio, a system
used by 90% of Danish high schools. Students submit their
written essays through Lectio, giving MaCom access to a
huge corpus of Danish texts by high school students, marked
with author and date of submission.

Our approach is based on methods from authorship verifica-
tion; in order to learn a similarity measure for writing style,
we consider examples of writing styles in texts from the same
or different authors, similar to how it is done in verification
tasks. We use a Siamese neural network for learning this
similarity measure. While training, time is not taken into
account. Assuming that writing style actually changes over
time, this will lead to a suboptimal network. However, test-
ing the network, we see clear patterns in how the ”errors”
distribute for a single author, indicating that the network
simulates the best similarity measure possible, and the ”er-
rors” are actual changes in writing style. Using this method,
writing style development profiles are generated and clus-
tered for a large set of students. Analyzing the clusters, we
see optimal and suboptimal types of development. In gen-
eral, the average similarity is found to decay with time to a
great extend, which corresponds well with the general per-
ception, that writing style changes during high school, and
also matches conclusions made in the literature [4, 9, 25].

While this paper presents a case study of the data from
MaCom, the methods used for analysis are of independent
interest, and not specific to the Danish language or high
school, except for the neural network, which would at least
require retraining in the given language. Considering other
network architectures than the one used in this work, might
also improve upon the analysis, see for instance [19] for a
network used with English.

1.2 Related Work
Writing style analysis, in one way or another, has been stud-
ied in the natural language community for many years. Typ-
ically, the analysis of writing style is used as a middle link
for tasks such as authorship verification [19,24,25], in which
a text of unknown authorship is given, together with a set of
texts by some known author, and we wish to verify, whether

2The data set is proprietary and not publicly available

the given author is the author of the unknown text. Simi-
larly, in authorship attribution the unknown text must be at-
tributed to one of several known authors. Traditional meth-
ods for verification and attribution utilize both unsupervised
methods from the field of outlier detection [24], as well as
standard supervised learning techniques, such as SVMs [9]
and techniques based on neural networks [19,25].

Other uses of writing style analysis include distinguishing
features of the writer (e.g. sex and age [1, 17, 21, 22], demo-
graphics [2], or nationality [12]), using supervised learning
algorithms such as SVMs, random forest, and neural net-
works. Other studies have investigated written conversa-
tions on online forums, trying to infer whether one person
is trying to convince another [8].

Some studies investigate the quality of writing, for instance
prediction of popularity of news articles [27], or the quality
of scientific articles [14]. The former uses the popularity of
an article on social media as a measure of quality, while the
quality measure of scientific papers considered in the latter
is based on acceptance of a paper to ”The Best American
Science Writing”, an anthology of popular science articles
published in the United States on a yearly basis.

Few studies consider development of writing style as the
main objective. [5] uses neural network models to track style
of handwriting (i.e. not linguistic writing style) and investi-
gate the development of handwriting among young students,
and how similar it is when compared to different students,
in the same/different grade level. [3] shows how students in
higher grades get higher scores for their essays from teach-
ers, in a blind experiment, where all student information is
hidden from the grading teacher. [4] considers two famous
Turkish writers, investigating their change in writing style
over time, the most significant finding being average word
length increasing with the age of the author.

Finally, several studies related to writing style have been
conducted using the data available from MaCom. [9] in-
vestigates temporal aspects of authorship attribution, and
concludes that considering more recent essays improves au-
thorship attribution algorithms, indicating that the writing
style among high school students does indeed change with
time. [25] also uses the MaCom data for testing their neural
network based authorship verification methods; their results
also support these findings.

2. METHODS AND SETUP
This section describes our experimental setup and methods.
We start by giving some basic notation.

We consider a set of students A, and let α ∈ A denote a
single student with texts t ∈ Tα. Furthermore, let T =
∪α∈ATα denote the entire corpus of texts.

Since our main focus is how the writing style of a student
develops during the time they spend in high school, we are
interested in computing a similarity function s : T × T →
[0, 1], allowing us to compare the writing style between two
texts. As mentioned, we utilize a Siamese neural network
to compute s; this approach is widely used for computing
writing style similarity [7, 19, 25], specifically, our network

E
n
c
o
d
in
g

C
o
m
pa

r
iso

n

t1 t2

EMBEDDING

d=5

CONV.

k=8,

n=700

CONV.

k=4,

n=500

GMP GMP

EMBEDDING

d=5

CONV.

k=8,

n=700

CONV.

k=4,

n=500

GMP GMP

MERGE

DENSE

4 × 500

s(t1, t2) 1-s(t1, t2)

Figure 1: Network architecture.

will be similar to that of [25]. Section 2.1 will describe our
network in detail.

The similarity measure s found will then be utilized for writ-
ing style analysis. Primarily, we will focus on determining
development patterns by generating a writing style develop-
ment profile Pα for each student α. These profiles are then
clustered and analyzed with respect to different measures
for text quality. The profile generation and clustering are
described in more detail in Section 2.2.

Finally, we also explore how the similarity between random
students change depending on their current progress through
high school. This is done by sampling random pairs of texts
t1 ∈ Tα, t2 ∈ Tβ and computing their similarity. We then
consider how the similarity changes depending on if α and
β are in the same grade or not.

2.1 Text Similarity using a Siamese Neural Net-
work

As mentioned, we use a Siamese neural network for com-
puting the similarity s(t1, t2) between two texts t1 and t2.
We considered several different architectures, using different
input channels (e.g. char, word, part of speech tags). These
architectures were evaluated using a validation set (see Sec-
tion 3.1), and the best architecture was selected, as shown in
Figure 1. The network relies only on character level inputs.

The basic philosophy behind the network is to a) encode the
two texts in some space using a replicated encoder network
with shared weights, and b) compare the two texts in this
space.

• The encoder network in the encoding part of our net-
work consists of a character embedding (using ReLu
activation functions), followed by two different convo-
lutional layers (CONV): one using kernel size k = 8
and n = 700 filters, and one using k = 4 and n = 500,
each followed by global max pooling layers (GMP).

• In the comparison part of the network, the MERGE
layer first computes the absolute difference between
the outputs of the two encoder networks. Afterwards,
four dense layers (DENSE) with 500 neurons each are
applied, using ReLu for activation function and with a
dropout of 0.3. Finally a two neuron softmax layer is
used to normalize the output.

Using the convolutional layers, the network extracts charac-
ter n-grams. Specifically, it compares 8- and 4-grams. Char-
acter n-grams have been shown to be an important feature
in writing style analysis tasks such as authorship attribu-
tion [24]. We did also consider architectures using recurrent
networks, however none of them performed as well as con-
volutional networks.

2.2 Student Profiling and Clustering
As mentioned, we construct writing style development pro-
files for the students, in order to analyze the general develop-
ment patterns. The profile Pα for student α is constructed
by first determining their initial writing style. The natu-
ral way to do so, and indeed our approach, is to consider
their early work. One or more texts may be used to rep-
resent the initial writing style, as a trade off between the
amount of data available for the profile and the robustness
of the initial writing style estimation. Pα then consists of
a chronologically ordered sequence of similarities, between
any t ∈ Tα and this initial writing style. More specifically, if
t1, t2, ..., t|Tα|, ti ∈ Tα is a chronologically ordering of Tα, we
compute the similarity pi between ti and the initial writing
style by:

pi =
1

m

m∑

j=1

s(ti, tj),

where m is the number of texts used for representing the
initial writing style. Since the first m texts are part of the
initial writing style, p1, p2, ..., pm are not independent, and
thus we exclude the first m−1 texts, and re-index such that
pj = pi−m+1. Furthermore, for each text, we let τj denote
the time in months since tm was written, i.e. the time since
p0, with τ0 = 0. Now, the final profile becomes the sequence
consisting of pairs (τj , pj) of length |Tα| −m+ 1. Note that
the profile now describes a curve.

These profiles are now clustered using a slightly modified k-
means clustering. Before clustering, for each profile Pα, an
approximate profile P̂α is constructed by interpolating val-
ues between any two consecutive pairs (τj , pj) and (τj+1, pj+1),

in intervals of 0.05 months. Thus P̂α becomes a vector
P̂α ∈ [0, 1]`α consisting of similarities for every 0.05 month,
with length `α.

These approximate profiles are then clustered. The cluster-
ing is complicated by profiles having variable length: P̂α has
length `α depending on τ|Tα|−m+1 (the time span between

tm and tTα), specific to α. Hence, distance computation used
in the clustering algorithm is modified slightly; we compute
the distance dist(P̂α, P̂β) between two profiles P̂α and P̂β
by computing the Euclidean distance between the prefixes
of length ` = min {`α, `β} of the two profiles:

dist(P̂α, P̂β) = distE(P̂α[1...`], P̂β [1...`]),

where distE denotes the Euclidean distance, and v[1...n] de-
notes the prefix of length n of vector v.

Similarly, when computing centroid Cr for cluster Cr, profile
P̂α contributes only to the `α first entries of Cr. Thus, with

Cjr =
{
P̂α|P̂α ∈ Cr, `α ≤ j

}
, the j’th entry of Cr is then

computed as:

Cr[j] =
1

|Cjr |
∑

P̂α∈Cjr

P̂α[j]

where v[j] denotes the j’th entry of vector v.

The clustering is initiated by selecting k profiles at random
as the initial clusters, and then continually reassigning pro-
files and recomputing centroids for clusters. Having reas-
signed the profiles, the EC is computed:

EC =
1

|A|
k∑

r=1

∑

α∈Cr
dist(P̂α, Cr)

The algorithm iterates until the change in cluster error EC
is sufficiently small (EC ≤ 10−6), or until a set number of
maximum iterations (100) is reached.

Selecting the number of clusters k is an inherent problem in
all unsupervised learning task. One approach is to base the
decision on domain knowledge, and select the ”right”number
of clusters. We will instead make use of the so called elbow
heuristic which relies on looking at how the error decreases
with the number of cluster and pick at the ”elbow” in the
resulting curve [26].

Having determined the parameter k and found k clusters, we
compute a few statistics and writing quality indicators for
each cluster. Specifically, we will compute the average noun
and verb phrases, defined as the ratio between nouns and
sentences, and the ratio between main verbs and sentences
respectively. These measures, especially verb phrases, have
been shown to correlate well with readability, which corre-
lates with text quality [18]. Furthermore, we compute the
simple measure of Gobbledygook (SMOG) grade [16], a mea-
sure estimating the grade level required for understanding
the text. The SMOG grade is computed as:

SMOG = 1.0430

√
30nw∗
ns

+ 3.1291,

where nw∗ is the number of words of 3 or more syllables,
and ns is the number of sentences [16].

Note that the study showing correlation between noun and
verb phrases, and readability, is done on English texts. The
SMOG grade as well is defined with the purpose of evaluat-
ing English texts. Hence, one must be careful when basing
conclusion on these measures when used on Danish. How-
ever, we believe they can still provide information about the

development, even if the exact computed value might be
hard to interpret.

3. EXPERIMENTS AND RESULTS
In this section, we present the data, the experimental setup,
and the results obtained. Section 3.1 presents the data, how
it is preprocessed and split for training and analysis and
some basic statistics. Section 3.2 describes the training of
the Siamese neural network, while Section 3.3 describes the
clustering and shows the resulting clusters.

3.1 Data
The full data set made available to us by MaCom contains
around 130K essays by approximately 10K students, with
an average length of about 6K characters. The data set
was cleaned by removing very short (≤ 400) and very long
(≥ 30, 000) texts, in order to get rid of outliers/invalid essays
(blank hand-ins, garbled texts, etc.). Furthermore, proper
pronouns were substituted with placeholder tokens and the
first 200 characters of each text were removed, in an effort
to remove any data identifying the real author of the text,
as such clues could be picked up by the neural network and
lead to overfitting. Finally, authors with less than 5 texts
were removed. Following this cleaning, the data set contains
a total of 131,095 Danish essays, written by 10095 authors,
with an average 13.0 texts per author, and an average text
length of 5894.8 characters.

We partition the clean data into two author disjoint sets:
Tnetwork used for training the neural network, and Tanalyze,
which we analyze using the trained similarity function. Tnetwork
is further split into a training set Ttrain and a validation
set Tval (also author disjoint), used for early stopping when
training the network. As the analysis relies heavily on a
strong similarity function, the majority of the data (around
two thirds) is used for Tnetwork. The exact sizes are given
in Table 1.

Data set #students #texts #Sim
Ttrain 5418 70432 934720
Tval 989 12997 173536

Tanalyze 3688 47666 N/A
Total 10095 131,095 1108256

Table 1: Data set overview. The table lists the num-
ber of students and texts, as well as the number of
problem instances #Sim for training the Siamese
neural network.

Data for network training
For training and evaluating the Siamese neural network, we
require problem instances consisting of a pair of texts, and a
label indicating whether they are by the same author (pos-
itive sample) or by different authors (negative sample). We
refer to these instances as Sim-instances, and generate them
for the training set Ttrain and the validation set Tval.

Positive Sim-instances are generated by using ti, tj ∈ Tα
with i 6= j, while negative instances are generated by using
ti ∈ Tβ1 and tj ∈ Tβ2 , where i, j, β1, β2 are selected at ran-
dom, with β1 6= β2. A balanced 50:50 data set is generated
by generating the maximum number of positive instances

10 20 30 40
0

200

400

#texts

#
st
u
d
en

ts

0 10 20 30
0

1,000

2,000

Months

#
te
x
ts

Figure 2: Statistics for Tanalyze. Distribution of stu-
dents according to number of essays written (left)
and total number of essays written at any time dur-
ing a students stay in high school (right).

for each student, and an equal number of negative instances.
The final numbers of Sim-instances for Ttrain and Tval are
shown in Table 1.

Note, that in generating these samples, we assume all claimed
authors in the data to be the real authors; in reality, sev-
eral students may use ghostwriters or plagiarism, in which
case the labels will be wrong. However, we expect that the
number of invalid labels is low.

Data for clustering and analysis
The clustering is performed on the remaining data in Tanalyze.
Each data point consists of a single student and their texts.
As mentioned, an author has around 13 texts in average, dis-
tributed over three years; the actual distribution is shown
in Figure 2 (left)3.

Figure 2 (right) shows the number of essays handed in during
the three years of high school. The summer vacations are
clearly visible in the plot. Note also, that the number of
hand-ins drops during the third year. A few students spend
more than three years (not shown in the figure), but as only
a few students hand-in after 30 months, we consider only
the data within 30 months in the experiments4.

3.2 Neural Network Training
The similarity network described in Section 2.1 was imple-
mented using TensorFlow. We generate Sim-instances for
Ttrain and Tval, and optimize the network for cross en-
tropy using the Adam optimizer. The final network ob-
tains a training loss of 0.5026 and a validation loss of 0.5357.
Rounding the computed similarity to 0 or 1, we can compute
an accuracy of 0.7451 for the training set and an accuracy
of 0.7178 for the validation set. Figure 3 shows a plot of the
loss and accuracy, as the network was trained.

3.3 Clustering
Using the similarity network to compute the similarity func-
tion s, we construct profiles as described in Section 2.2. We
found that using m = 2 texts for determining the initial

3Recall that, students with less than 5 essays is not consid-
ered in this study.
4The time span considered is smaller than three years (36
months), since we measure the time from first hand-in until
the last. Combining this with vacation and finals, most stu-
dents appear to only be active within the 30 month period.

1 2 3 4 5 6

0.5

0.52

0.54

0.56

0.58

Epoch

L
o
ss

1 2 3 4 5 6
0.68

0.7

0.72

0.74

Epoch

A
cc

u
ra

cy

Figure 3: Plot of training (solid) and validation
(dashed) loss (left) and accuracy (right), the latter
computed by rounding the output. Minimum vali-
dation loss was obtained at epoch 5.

2 4 6 8
0.012

0.014

0.016

0.018

k

E
C

Figure 4: The cluster error EC obtained for various
values of k.

writing style yielded good results. Thus, profile Pα consists
of |Tα| − 1 pairs (τj , pj) with:

pj =
s(tj+1, t1) + s(tj+1, t2)

2
.

and τj being the time in months since hand-in of t2. With
a single profile constructed per student, the total number
of profiles is equal to the number of students, as given in
Table 1. As mentioned, the lengths of the profiles depend on
the number of texts written during the time, they spend in
high school. Thus the distribution of the lengths of profiles
follows that presented in Figure 2 (left).

We now apply the elbow method in order to determine the
optimal number of clusters k. We compute a clustering for
k = 2, 3, ..., 9, and plot the resulting cluster error EC in
Figure 4.

Based on Figure 4, we select k = 5, as the curve flattens
considerable for k = 6. The final clustering is performed,
obtaining five clusters: C1, C2, C3, C4, and C5, with a cluster
error of EC = 0.01407. The curves representing the final
clusters are shown in Figure 5, while Table 2 lists the num-
ber of members in each cluster. Furthermore, we sampled
two million random pairs of texts with random (different)
authors, and computed the similarity for these samples, ob-
taining an average of 0.3470. This average is also plotted in
Figure 5, while the similarity with respect to time is plotted
as a heat map in Figure 7.

Finally, Figure 6 shows a more detailed view for each cluster.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Months

S
im

il
a
ri

ty

C1 C2 C3

C4 C5 Rand.

Figure 5: The curves representing the five clusters
found. The average similarity between random texts
by different students is also plotted.

Cluster #students
C1 603
C2 720
C3 884
C4 969
C5 512

Table 2: The number of students in each cluster.

The similarity curve plots include a plot of the middle 90%
of profiles in each cluster. The SMOG score, the noun and
verb phrases, and the average text length (in words) are
also plotted, as indicators for writing quality changes for
the given cluster, see also Section 2.2.

Note, that in visualizing and inspecting the clusters, we con-
sider only data until 30 months, since, as mentioned, only
few students are active after 30 months, and the number of
data points contributing to that part of the cluster curve
becomes small.

4. ANALYSIS AND DISCUSSION
This section presents our analysis and discussion of the five
clusters found. Section 4.1 describes and discusses the char-
acteristics of each cluster. Section 4.2 discussed how simi-
larity between random students behaves with time.

4.1 Cluster Analysis
When analyzing the clusters, three properties are important
in order to understand a cluster: the initial value of the
curve, the shape of the curve, and the total change from start
to end. The initial value of the curve describes the similarity
between the second text of a student and their initial writing
style, which is based on the first two texts of the student.
Thus a smaller initial value indicates a high initial variance

in writing style, which could be an indication of a developing
writing style. The shape of the curve describes the rate of
change in writing style. And finally the total change tells us
how much the writing style has evolved.

While the similarity curves themselves give no information
about the quality of the writing, we will use the indicators of
writing style, described in Section 2, in the discussion: the
SMOG grade, and the noun and verb phrases per sentences.
For each of these indicators, the average curves for each
cluster are plotted in Figure 6.

Before discussing each cluster in detail, we note some pat-
terns common for all clusters. Across all clusters, it seems
the number of words written increases (with the exception
of C5), and the increase seems to be correlated with the cor-
responding decrease in similarity. Furthermore, on average,
students in all clusters appear to be improving with respect
to the quality metrics. While positive, some clusters see a
smaller increase than others, indicating that these clusters
represents suboptimal development profiles. Finally, we note
for the SMOG grade, that the maximum increase, occurring
in C1, is only slightly above 1, which might not seem impres-
sive across three years. However, as discussed in Section 2.2,
the SMOG grade is a measure designed for readability of En-
glish texts, and thus may not be entirely accurate for Danish
texts.

Below follow detailed descriptions of each cluster:

C1 The initial similarity of C1 is the lowest among the clus-
ters found. Furthermore, the similarity drops rapidly
during the first year, and continues the decline, leading
to C1 having the lowest final similarity with the initial
writing style, among all the clusters. In fact, the sim-
ilarity between the first and the last assignments for
students in this cluster is so low, that they could just
as well have been written by different students, as can
be seen when comparing to the average similarity be-
tween random students plotted in Figure 5. Thus, C1
contains students with a significant change in writing
style, happening mostly during the first year of high
school. Considering the other metrics plotted in Fig-
ure 6, we first note the increase in number of words
written, as it is particular extreme in the case of C1,
increasing by almost a factor 2 from start till end. This
increase also helps explain the decrease in similarity in
two ways: a) length is itself a part of writing style rec-
ognized by the network, and b) it seems that writing
style changes is correlated with when you start writing
more. Looking at the SMOG grade, we see an over-
all large increase, indicating that the students of C1
does indeed improve, especially compared to the other
clusters. Nouns and verbs per sentence are also both
increasing, which also indicates that the students in
this cluster write longer sentences.

C2 The initial value of cluster C2 of about 0.84 (third high-
est among the clusters) indicates an initial low variance
in writing style, but the following drop to about 0.4 is
quite significant, indicating that the writing style of
students in C2 change a lot during high school, simi-
lar to C1. However, where C1 had a sudden drop in

0

0
.2

0
.4

0
.6

0
.81

Similarity
C 1

C 2
C 3

C 4
C 5

1
0
.51
1

1
1
.5

SMOG

2
.53

3
.5

Phrases

0
5

1
0

1
5

2
0

2
5

3
0

8
0
0

1
,0

0
0

1
,2

0
0

#Word

0
5

1
0

1
5

2
0

2
5

3
0

0
5

1
0

1
5

2
0

2
5

3
0

0
5

1
0

1
5

2
0

2
5

3
0

0
5

1
0

1
5

2
0

2
5

3
0

F
ig

u
re

6
:

D
e
ta

il
e
d

p
lo

ts
o
f

th
e

fi
v
e

c
lu

st
e
rs

fo
u
n
d
.

T
h
e

to
p

p
lo

t
sh

o
w

s
th

e
si

m
il
a
ri

ty
c
u
rv

e
,

w
it

h
th

e
m

id
d
le

9
0
%

o
f

p
ro

fi
le

s
in

e
a
ch

c
lu

st
e
r

p
lo

tt
e
d

a
s

w
e
ll
.

T
h
e

se
c
o
n
d

p
lo

t
fr

o
m

th
e

to
p

sh
o
w

s
th

e
d
e
v
e
lo

p
m

e
n
t

o
f

th
e

S
M

O
G

g
ra

d
e
,

w
h
il
e

th
e

th
ir

d
p
lo

t
sh

o
w

s
n
o
u
n

(s
o
li
d
)

a
n
d

v
e
rb

(d
a
sh

e
d
)

p
h
ra

se
s.

F
in

a
ll
y

th
e

b
o
tt

o
m

p
lo

t
sh

o
w

s
th

e
d
e
v
e
lo

p
m

e
n
t

o
f

n
u
m

b
e
r

o
f

w
o
rd

s
w

ri
tt

e
n
.

similarity, the change in C2 is more constant.

Considering the other metrics, we see the number of
words written is increasing from about 800 to almost
1200, while the SMOG grade is again showing a large
increase from about 10.3 to 11.3. Noun and verb phrases
see modest increases. All in all, the metrics indicate a
good development of writing style among students in
C2, similar to C1. However, the more gradual change
in similarity of C2 is preferable to that of C1, as the
development does not stagnate already after the first
year.

C3 After a significant initial drop in similarity in C3, the
similarity actually increases again after the first year,
showing the students in this cluster actually reverts to
writing style more similar to their original work, before
dropping a bit again in the last months. This corre-
sponds well with a smaller improvement in e.g. SMOG
grade (around 0.5) compared to the other clusters.

The setback seems to start around the first summer va-
cation. While not necessarily bad (as students could be
reverting back from a worsened writing style), the in-
crease in similarity could indicate reverting to a worse
writing style. As such, students in C3 may be at risk.
Many remedies for helping these students could be
imagined, from simply encouraging the student to write
during their vacation, to going to summer school.

C4 The similarity of C4 drops slightly at first, but then de-
creases slowly at a constant pace, until it reaches a sim-
ilarity of about 0.6. The total change is smaller than
several of the other clusters, as is the improvement in
both SMOG grade and noun/verb phrases, indicating
that students in the cluster improve less than students
in e.g. C1 and C2.

This indicates suboptimal development among students
in C4; while we do not see students reverting back, as
in C3, the lower increase in SMOG grade is alarming,
indicating students in this cluster may be at risk, and
in need of extra attention or encouragement. As for C3,
the total number of words also increases only slightly
at a steady pace, from around 900 to 1100.

C5 Cluster C5 seems quite distinct from the other clus-
ters. Most notably, students in this cluster have the
highest initial similarity, while also decreasing the least
amount, ending with a very high similarity of about
0.75. Furthermore, the number of words written is
quite high and remains fairly stable, which is quite
different from the other clusters, and might be part
of the reason the decrease in similarity is as low as it
is. Despite the fall in similarity being so low, we still
see an increase in SMOG score from about 10.5 to a
bit below 11.5, indicating that students are, in fact,
improving. A similar pattern occurs for the noun and
verb phrases.

The higher-than-average initial SMOG grade and num-
ber of words written, indicates that students in C5 are
the initially strong students. While they do develop
their writing style, they do not improve as much as stu-
dents in C1 and C2; this could be an indication, that
schools do not manage to properly encourage/teach
students, who are initially strong.

While not included in the plots, we also investigated sev-
eral other metrics for the clusters and the set of students
in general. Most notably, the average word length increases
with time for all clusters. A similar trend was seen in [4],
although the study was in a very different setting and time
frame.

Summarizing the clusters, the development in SMOG grade
was greatest for C1 and C2, making those clusters appear the
most beneficial for writing style development. While stu-
dents in C5 also increased their SMOG grade, they started
higher than the students in the other clusters, and did not
manage to improve as much as C1 and C2. As to C3 and C4,
they seem to be suboptimal with regards to writing style
development, and students in these clusters may need at-
tention.

Looking at Table 2, we see that C3 and C4 are the largest indi-
vidually, indicating that quite a few students are exhibiting
suboptimal writing style development. However, the major-
ity of students included in our data are located in C1, C2 and
C5, indicating optimal or at least fair development through
high school.

4.2 Investigating Similarity Between Random
Students

As mentioned, we also investigated how the similarity de-
velops between different students, across the time spent in
high school. Based on roughly 2 million sampled text pairs
from different students, we computed the average similarity
between random students to be 0.3470. As seen in Figure 5,
the similarity observed among students in C1 actually drops
below this value. This motivated a further investigation of
how the similarity between different authors behave on av-
erage, conditioned on how long time they each have spend
in high school. Based on the samples, we constructed the
heat map shown in Figure 7.

The plot shows students starting out similar in writing style
and then becoming less similar as time passes. The most
surprising thing to notice is that a student in their first year
and a student in their third year are equally or even more
similar in writing style on average, compared to two different
students in their third year. One explanation could be that
the initial space of possible writing styles start out small and
grows as students are educated, i.e. writing styles among
students coming from primary school are fairly similar, but
grow more diverse during high school. One would expect
some writing styles to diminish or even disappear, but from
this data it looks like more new and diverse writing styles
develop, than disappear. And not only that; the amount
of possible directions for the writing style to develop is so
large, that we see first and third year students as equally
or more similar on average, than two students both within
their third year.

Education is sometimes accused of destroying individuality
and/or creativity; these findings indicate the opposite to
such claims, at least in regards to writing style.

1 10 20 30
1

10

20

30

0.32 0.34 0.36 0.38

Figure 7: Heat map showing the average similarity
between different authors, depending on how long
time the two authors have been in high school.

5. CONCLUSIONS AND FUTURE WORK
We trained a Siamese neural network to be able to tell people
apart by their writing, and used this network as a similar-
ity function for analyzing the development of writing style in
Danish high schools. Writing style development profiles were
constructed for 3688 students, and five clusters were found
and discussed. Based on quality indicated by noun/verb
phrases and SMOG grade, two were found to be optimal,
while three were found to be suboptimal, especially two clus-
ters exhibited limited improvement.

The optimal clusters both exhibited a large degree of change
in writing style, although at different rates, while the sub-
optimal clusters showed less development, with one cluster
even reverting back to an earlier writing style. The setback
in similarity occurred around the summer vacation after the
first year. The effect of summer vacation on student learn-
ing is highly discussed topic among researchers, teachers,
and parents [15]; in the case of the found cluster, the effect
appears to be negative.

One tendency, we saw in all clusters, was that writing style
changed more when students start writing more words in
their essays. It does not seem surprising that your writing
style changes as you write more, but it could be an indica-
tion of even more: writing style changes, when students are
pushed out of their comfort zone, i.e. in the end of their as-
signments, when they write more than what they usually do.
It could be interesting to investigate the scenario, where a
student starts writing longer texts: does changes in writing
style occur in the entire text, or only near the end, where
the student is literally writing more than before?

Furthermore, we saw from Figure 7 how students become
less alike, as they go through high school. Specifically, we
saw how first year and third year students had higher or
equal writing style similarity than two students both in third

year, indicating that as Danish students go through high
school, their writing styles diverge and become more indi-
vidual.

5.1 Future Work
It is easy to pose several new questions based on the clusters
found and the conclusions made above.

With regards to improving the analysis, using different qual-
ity measures tailored to Danish instead of SMOG would be
interesting. Another way would be to consider the grades
given to the students (as many essays in Danish high school
are graded individually), although good writing style is only
a requirement for a good grade, but not sufficient.

As mentioned above, one could also consider a more fine
grained analysis, by investigating style changes within texts,
and maybe even being able to pinpoint exactly where in a
text the writing style develops/changes. One could easily
imagine drawing inspiration from studies of style breach de-
tection [10,11,20].

One could also investigate prediction of writing style devel-
opment, possibly based on the methods used in this study.
This would allow for an early warning system, allowing iden-
tification of at-risk students, e.g. students likely to have a
setback in writing style due to summer vacation.

The methods used in this study build upon methods used
for authorship verification, in which Siamese networks are
utilized directly in order to verify authorship [25]. While a
sudden deviation in writing style could be an indication of a
ghost writer, detecting these reliably using our method will
probably not be able to compete with the more direct meth-
ods. However, the results obtained here could potentially be
used to improve authorship verification techniques, with re-
spect to the fairness perspective: The fact, that the clusters
found show such different similarity development, is of in-
terest from a fairness perspective. Fairness is a general issue
in machine learning algorithms where the predictions have
severe consequences [6, 13]. In the setting of ghost writing
detection in high school it is extremely difficult to get non-
artificial negative samples and even guaranteeing correctness
of labels is rare in large scale data sets. Which makes fair-
ness even more difficult to measure than usual. It could be
interesting to check that clusters such as C5, which would
be the cluster most likely to be classified as a false negative,
have a representative distribution in regards to gender, race,
social status, etc.

Another interesting course of study, would be to further in-
vestigate the fact that students seem to become less similar
during high school. It could be interesting to pursue this on
a larger timescale, perhaps all the way from primary school
and on through college. Another take could be to look at
how similarity in writing among people behaves with age
after they have finished their education. Will the trend con-
tinue?

Finally, one could investigate how similarity in writing de-
velops among the genders. Several studies have shown, with
some success, that gender can be predicted from writing
[17,21,22], but no one has settled whether this is due to bi-

ology or environment. One could try to answer this question
by looking at how similarity in writing style changes with
age, while considering three groups: female-female, male-
male, female-male. If the cross gender similarity changes
faster than same gender similarity, it would be an indication
that the differences in writing style are taught, more than it
is something you are born with.

6. ACKNOWLEDGMENTS
The work is supported by the Innovation Fund Denmark
through the Danish Center for Big Data Analytics Driven
Innovation (DABAI) project. The authors would like to
thank MaCom for the cooperation.

7. REFERENCES
[1] Shlomo Argamon, Moshe Koppel, Jonathan Fine, and

Anat Rachel Shimoni. Gender, genre, and writing
style in formal written texts. TEXT, 23:321–346, 2003.

[2] Shlomo Argamon, Moshe Koppel, James W.
Pennebaker, and Jonathan Schler. Automatically
profiling the author of an anonymous text. Commun.
ACM, 52(2):119–123, February 2009.

[3] Paul B. Diederich. Measuring growth in english. 01
1974.

[4] Fazli Can and Jon M. Patton. Change of writing style
with time. Computers and the Humanities,
38(1):61–82, Feb 2004.

[5] Jun Chu and Sargur Srihari. Writer identification
using a deep neural network. In Proceedings of the
2014 Indian Conference on Computer Vision Graphics
and Image Processing, ICVGIP ’14, pages 31:1–31:7,
New York, NY, USA, 2014. ACM.

[6] Sam Corbett-Davies, Emma Pierson, Avi Feller,
Sharad Goel, and Aziz Huq. Algorithmic decision
making and the cost of fairness. In Proceedings of the
23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17,
pages 797–806, New York, NY, USA, 2017. ACM.

[7] William Weidong Du, Michael Fang, and Ming Shen.
Siamese convolutional neural networks for authorship
verification.
https://www.semanticscholar.org/paper/Siamese-
Convolutional-Neural-Networks-for-Du-
Fang/c5d1c54511d7f688963cd29a8556d0cf02595890,
2017. Accessed April 2019.

[8] Marjorie Freedman, Alex Baron, Vasin Punyakanok,
and Ralph Weischedel. Language use: What can it tell
us? In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies: Short Papers - Volume 2,
HLT ’11, pages 341–345, Stroudsburg, PA, USA, 2011.
Association for Computational Linguistics.

[9] Niels Dalum Hansen, Christina Lioma, Birger Larsen,
and Stephen Alstrup. Temporal context for authorship
attribution: a study of Danish secondary schools. In
Multidisciplinary information retrieval, pages 22–40.
Springer, 2014.

[10] Daniel Karaś, Martyna Śpiewak, and Piotr Sobecki.
OPI-JSA at CLEF 2017: Author Clustering and Style
Breach Detection—Notebook for PAN at CLEF 2017.
In CLEF 2017 Evaluation Labs and Workshop –
Working Notes Papers, 11-14 September, Dublin,

Ireland. CEUR-WS.org, September 2017.

[11] Jamal Ahmad Khan. Style Breach Detection: An
Unsupervised Detection Model—Notebook for PAN at
CLEF 2017. In CLEF 2017 Evaluation Labs and
Workshop – Working Notes Papers, 11-14 September,
Dublin, Ireland. CEUR-WS.org, September 2017.

[12] Moshe Koppel, Jonathan Schler, and Kfir Zigdon.
Determining an author’s native language by mining a
text for errors. In Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge
Discovery in Data Mining, KDD ’05, pages 624–628,
New York, NY, USA, 2005. ACM.

[13] Joshua R. Loftus, Chris Russell, Matt J. Kusner, and
Ricardo Silva. Causal reasoning for algorithmic
fairness. CoRR, abs/1805.05859, 2018.

[14] Annie Louis and Ani Nenkova. What makes writing
great? first experiments on article quality prediction
in the science journalism domain. Transactions of the
Association for Computational Linguistics, 1:341–352,
2013.

[15] Andrew Mceachin and Allison Atteberry. The impact
of summer learning loss on measures of school
performance. Education Finance Policy, 12, 05 2016.

[16] Harry G. McLaughlin. SMOG grading - a new
readability formula. Journal of Reading, pages
639–646, May 1969.

[17] Claudia Peersman, Walter Daelemans, and Leona
Van Vaerenbergh. Predicting age and gender in online
social networks. In Proceedings of the 3rd
International Workshop on Search and Mining
User-generated Contents, SMUC ’11, pages 37–44,
New York, NY, USA, 2011. ACM.

[18] Emily Pitler and Ani Nenkova. Revisiting readability:
A unified framework for predicting text quality. In
EMNLP 2008, 2008.

[19] Chen Qian, Tianchang He, and Rao Zhang. Deep
learning based authorship identification.
https://www.semanticscholar.org/paper/Deep-
Learning-based-Authorship-Identification-Qian-
He/ab0ebe094ec0a44fb0013d640b344d8cfd7adc81,
2018. Accessed April 2019.

[20] Kamil Safin and Rita Kuznetsova. Style Breach
Detection with Neural Sentence
Embeddings—Notebook for PAN at CLEF 2017. In
CLEF 2017 Evaluation Labs and Workshop – Working
Notes Papers, 11-14 September, Dublin, Ireland.
CEUR-WS.org, September 2017.

[21] Kosgi Santosh, Romil Bansal, Mihir Shekhar, and
Vasudeva Varma. Author profiling: Predicting age and
gender from blogs - notebook for pan at clef 2013. In
CLEF, page 10, 2013.

[22] Anat Rachel Shimoni, Moshe Koppel, and Shlomo
Argamon. Automatically Categorizing Written Texts
by Author Gender. Literary and Linguistic
Computing, 17(4):401–412, 11 2002.

[23] V. Spandel. Creating Writers: Through 6-trait Writing
Assessment and Instruction. Longman, 2001.

[24] Efstathios Stamatatos. A survey of modern authorship
attribution methods. J. Am. Soc. Inf. Sci. Technol.,
60(3):538–556, March 2009.

[25] Magnus Stavngaard, August Sørensen, Stephan
Lorenzen, Niklas Hjuler, and Stephen Alstrup.

Detecting Ghostwriters in High Schools. In 27th
European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning,
2019.

[26] Robert L. Thorndike. Who belongs in the family?
Psychometrika, 18(4):267–276, Dec 1953.

[27] Yuting Yang, Juan Cao, Mingyan Lu, Jintao Li, and
Chia-Wen Lin. How to write high-quality news on
social network? predicting news quality by mining
writing style. CoRR, abs/1902.00750, 2019.

Sequence Modelling For Analysing Student Interaction
with Educational Systems

Christian Hansen, Casper Hansen, Niklas Hjuler, Stephen Alstrup, Christina Lioma
Department of Computer Science

University of Copenhagen, Denmark
{chrh,bnq,hjuler,s.alstrup,c.lioma}@di.ku.dk

ABSTRACT
The analysis of log data generated by online educational sys-
tems is an important task for improving the systems, and
furthering our knowledge of how students learn. This paper
uses previously unseen log data from Edulab, the largest
provider of digital learning for mathematics in Denmark, to
analyse the sessions of its users, where 1.08 million student
sessions are extracted from a subset of their data. We pro-
pose to model students as a distribution of different underly-
ing student behaviours, where the sequence of actions from
each session belongs to an underlying student behaviour.
We model student behaviour as Markov chains, such that
a student is modelled as a distribution of Markov chains,
which are estimated using a modified k-means clustering
algorithm. The resulting Markov chains are readily inter-
pretable, and in a qualitative analysis around 125,000 stu-
dent sessions are identified as exhibiting unproductive stu-
dent behaviour. Based on our results this student represen-
tation is promising, especially for educational systems offer-
ing many different learning usages, and offers an alternative
to common approaches like modelling student behaviour as
a single Markov chain often done in the literature.

Keywords
Markov Chains, Sequence Modelling, Clustering

1. INTRODUCTION AND RELATED WORK
How students interact with educational systems is today an
important topic. Knowledge of how students interact with a
given system can give insight in how students learn, and di-
rections for the further development of the system based on
actual use. The interaction can be studied both by explicit
studies [7] directly observing student interaction in situ, or
by the use of log data collected automatically by the use of
the system as done in this paper.

Analysis of log data is often viewed as an unsupervised
clustering problem at the student level [4, 8]. Our work

takes another direction and focuses on the action sequence
level. For clustering sequences, Markov models are popular
as they provide a convenient way of modelling the transi-
tions and dependencies of the sequences [9]. For action se-
quence mining, both hidden and explicit models have been
used depending on the tested hypothesis, and on whether
the states are explicit or implicit. Beal et al. use hidden
Markov models for student prediction, assuming underly-
ing hidden states of engagement, which can be clustered [2].
Köck and Paramythis use explicit states for analysing prob-
lem solving activity sequences, as the states in this case are
explicit and therefore appear directly in the log [9].

The choice of clustering of the Markov models depends on
the application area. Klingler et al. did student mod-
elling by the use of explicit Markov chains, and the clus-
tering was done by different similarity measures defined on
the Markov chains themselves [8], e.g. euclidean distance
between transitional probabilities, or Jensen-Shannon Di-
vergence between the stationary probabilities of the chains.
When individual sequences are clustered, an underlying as-
sumption of the data coming from a mixture of Markov
chains has been used [10], where the individual chains rep-
resent the cluster centres, and the task is finding both the
chains and the mixing coefficients.

The work presented in this paper is using discrete Markov
chain models for action sequence analysis, on log data1 ac-
quired from the company Edulab. Edulab is the largest
provider of digital learning for mathematics in Denmark,
having 75% of all schools as customers, and receiving more
than 1 million student answers a day. Using a mixture of
Markov chains, we assume that each chain will represent a
prototype student behaviour. So the underlying assumption
in this work is that each student can be modelled as behav-
ing according to some underlying behaviour during each ses-
sion, and a student can then be seen as a distribution over
different behaviours. Edulab’s product offers many different
ways of learning mathematics, ranging from question-heavy
workloads to video and text lessons, and other activities de-
pending on whether the student is in class or at home. This
allows to model a student as "distributed" over different be-
haviours, in contrast to a single student behaviour model of
how the student usually interacts with the system.

We reason that mixture of Markov chains will allow for a
qualitative study of what type of behaviour each chain rep-

1The data is proprietary and not publicly available

ar
X

iv
:1

70
8.

04
16

4v
1

 [
cs

.C
Y

]
 1

4
A

ug
 2

01
7

resents, and thus ultimately it can be used to show how a
student uses the educational system.

Mixtures of Markov models can be solved by the EM al-
gorithm, which however is notoriously slow to run for large
amounts of data, and only local optimal solutions are found
[6]. In this paper we need fast processing in order to anal-
yse the large amounts of data produced by Edulab, so we
simplify the assumptions on the underlying Markov chains,
which allows for a modified version of k-means clustering.

Initial cluster centres, representing underlying student be-
haviour, can be chosen by domain experts and then refined
through the clustering. However, since the true number of
underlying clusters is unknown, it is difficult for an expert
to predefine sensible cluster centres for a range of different
numbers of clusters. In this work we first perform simula-
tions to consider the effect of starting at the correct locations
versus adding noise to the correct location until the start-
ing points are completely random. Based on these results
clustering is done on the Edulab dataset, and a qualita-
tive analysis is performed on the resulting Markov chains.
This shows how students are distributed among the Markov
chains, and how unproductive system usage can be detected
using the Markov chains.

In summary the primary research questions this paper ad-
dresses are: 1) to what extent can students be modelled
as a distribution over underlying usage behaviours which is
changing across sessions, and 2) how this modelling leads
to insight in future improvements of the system for the pro-
ducers of educational systems.

2. DATA
The data used in this work is produced by matematikfes-
sor.dk, a Danish mathematics portal made by Edulab that
spans the curriculum for students aged 6 to 16. The web-
site offers both video and text lessons in combination with
exercises covering the whole curriculum, such that it can be
used as a primary tool for learning, and not only supplemen-
tary. Log data generated by the grade levels corresponding
to students of age 12 to 14 for the 2016 school year is used
(from August 2016 to February 2017). An action in this
system can either be watching a lesson, which contains ei-
ther a video or text description, or answering a question.
Lessons and questions both have a topic id, specifying the
general topic of the question or lesson. The data statistics
are summarized in Table 1. The lessons and questions can
be assigned as homework or done freely by the students (this
study does not differentiate between whether it is homework
or not). It should be noted that a lesson takes significantly
longer time doing than answering a question hence the lower
ratio of lessons, compared to other actions, in Table 1.

The logs do not contain information about when a session
is started or finished, so we define a session as a sequence of
actions, where the time between two actions is less than 15
minutes. A student has on average 12.5 sessions (standard
deviation of 13.3), and the histogram of the number of ac-
tions in each action sequence can be seen in Figure 1, where
sequence lengths larger than 200 have been removed from
the plot for the purpose of visualization. When a student
interacts with the system his actions are stored and seen as

0 25 50 75 100 125 150 175 200
sequence length

0

20000

40000

60000

80000

co
un

ts

Sequence length distribution

Figure 1: The distribution of action se-
quence lengths with lengths larger than 200
removed.

Number of sequences 1.08M
Number of actions 37.5M
Number of lessons 1.35M
Number of correctly answered questions 27.44M
Number of wrongly answered questions 8.71M

Table 1: Data statistics. The number of
lessons and question answers sum to the num-
ber of actions.

an action sequence, an example of one is:

Qrt1
1 , Qw

t2
2 , L

t1
3 , Qw

t3
4 , Qr

t1
5 , Qr

t1
6 , Qr

t1
7 (1)

Qr is a correctly answered question, Qw is an incorrectly
answered question, and L is a lesson. The subscript denotes
the action number in a temporal ordering, and the super-
script denotes the topic id, which is associated with each
lesson and question.

3. METHOD
Our method for action sequence clustering will be explained
in this section, and is based on modelling interactions with
the system as Markov chains. Our Markov chain model with
its transitions is shown in Figure 2. Our model consists of
8 states as will now be explained with their abbreviations
in parentheses. These abbreviations are used for visualizing
the resulting Markov chains from the clustering. The first
two are start (S) and end (E). The rest consists of three gen-
eral states: Doing a lesson (L), answering a question right
(Qr), or answering a question wrong (Qw). Each lesson and
question have an associated topic id, which might change
from action to action creating the last three states: doing
a lesson in another topic than the previous action (L_c),
answering a question right in another topic (Qr_c), and an-
swering a question wrong in another topic (Qw_c). If we
consider the sequence described in Equation 1, then that

would correspond to visiting the following states

S → Qr → Qw_c→ L_c→
Qw_c→ Qr_c→ Qr → Qr → E (2)

The pipeline for clustering has the following procedure.

1. For every session we extract a sequence of actionsA1, ..., An,
and each action sequence corresponds to a path in the
used Markov chain model.

2. Since the Markov chains are unknown, priors P1, ..., Pk

(which themselves are Markov chains) are generated at
random such that each edge shown in Figure 2 has a
transition probability taken uniformly at random from
0 and 1. Each random chain is normalized such that
each state’s outgoing transitional probabilities sum to
one. These priors function is the pendant to the usual
initial cluster centers, which most often are random
data points. Generating a Markov chain from a ran-
domly chosen point would however not work in our
case, since many zero valued transition probabilities
would occur.

3. Each action sequence is assigned to the prior which
was most likely to generate it, i.e.

arg max
1≤j≤k

(
m∏

i=1

pj
bi−1,bi

)
(3)

where pj
bi−1,bi

is the transition probability from state
bi−1 to bi in prior Pj , m is the number of transitions
between states, and k is the number of priors.

4. After each action sequence has been associated with
a prior, then each prior is updated by generating the
Markov chain most probable given its associated ac-
tion sequences. This is done by counting the state
transitions in each sequence in a new Markov chain
model, and normalizing afterwards.

5. Points 3 and 4 are ideally reiterated until convergence,
i.e. no action sequence changes its associated prior.
However for computational reasons we stop iterating
after less than 5% of the sequences have changed their
assigned prior.

The clustering technique is very similar to ordinary k-means
clustering, with the major difference that the clustering is
not dependent on a similarity measure directly on the se-
quence, but dependent on the Markov chains generated by
the clustering. Comparing to ordinary k-means clustering,
the produced chains in each iteration are analogous to the
ordinary cluster center found by some mean. The mixture
model could also be estimated by the EM algorithm [1],
which has the benefit that sequences that do not belong to
a single clear cluster, i.e. that have multiple highly prob-
able chains, will weight in on all of them. This has the
downside that clusters take longer to be separated, and the
convergence is therefore slower. Under the assumption of
the chains being distinct, each sequence will mostly weight
on a single chain, and here the k-means clustering method
and EM algorithm will perform very similarly. For the data
from Edulab we assume most of the chains to be distinct,

Figure 2: Markov chain representing the
possible states and transitions. Note the tran-
sitions each way do not have to be equal.

but not necessarily all. In addition a very large number of
sequences will have to be clustered in the future when the
full dataset is used, and not restricted as done for this paper.
We are therefore mostly interested in how well the k-means
clustering approach performs as it is more computationally
feasible when the data size is increased.

The above procedure leaves two challenges: 1) How do we
know the resulting Markov chains are close to the real ones?
and 2) How to estimate the number of priors? We address
these points next.

The first point is dealt with using synthetic data, where k
random Markov chains are made, and each action sequence
is generated from one of those chosen uniformly at random.
In order to ensure a suitable length of the generated action
sequences, the ingoing probabilities to the end state are fixed
to allow for an average sequence length of 20. After gener-
ating the synthetic data, the most probable Markov chain
for each sequence is assigned as its label, and the goal in the
clustering is to be able to capture these clusters. Note, that
since each sequence is randomly generated using the chosen
Markov chain, then its most probable Markov chain might
not be the one generating it. To determine the ability to
capture the original clusters we consider the average purity
of the resulting clusters:

Averagepurity = 1
n

n∑

i=1

max1≤j≤k(|Cj ∩ Si|)
|Si|

(4)

Where Si is an estimated cluster, Cj is the true cluster, n is
the number of clusters, and k is the number of true clusters.
An average purity of 1 represents that the method fully cap-
tures the original clusters. The underlying Markov chains
are unknown on real data, so increasingly noisy versions of
the underlying Markov chains are experimented with as pri-
ors, to show how the method is expected to perform under
real circumstances.

In the case of real data, the true underlying Markov chains
are unknown, so in this case the sum of the log likelihoods
is calculated for the sequences to their most probable prior:

sum of log likelihood =
n∑

i=1

log (L(si|P ∗
i)) (5)

where si is an action sequence, P ∗
i is the prior most likely to

generate action sequence si, and L(si|P ∗
i) is the likelihood

that P ∗
i generates si.

The second point mentioned earlier, about estimating the
number of priors, can be solved using either the average pu-
rity in the synthetic case, or from the sum of log likelihoods
in the real case. The sum of log likelihoods as a function of k
will be monotonically increasing, but the slope will decrease
as k exceeds its true underlying value. Since the method
starts with randomly chosen priors, it is repeated a number
of times, and the solution with the largest log likelihood is
chosen for each value of k.

4. SIMULATED EXPERIMENT WITH
NOISY PRIORS

There are two approaches for estimating the Markov chains
for the Edulab data set. 1) The prior Markov chains can
be chosen by domain experts - by specifying common se-
quences we would expect to find in the data, and then refine
them during the clustering. 2) The second approach is as de-
scribed in the method section, starting with random chains,
and running k-means multiple times, and taking the clus-
tering which gives the highest sum of log likelihoods. To
measure how the method behaves as the initial priors are
increasingly noisy versions of the underlying Markov chains,
k-means is run with the priors chosen as:

Pi = (1− α)P ∗
i + αPrand (6)

Where all P s are Markov chains represented by matrices of
transitional probabilities, and α is the noise parameter. Pi

is the ith prior, P ∗
i is the ith underlying Markov chain used

when generating the synthetic data, and Prand is a random
Markov chain. The higher α, the more noisy the initial prior
is.

In Figure 3, we see how the average purity behaves as a
function of noise parameter α. The experiment is run for
k = 6, and 6 random chains are generated. The transition
probabilities to the end state are fixed at 0.05 for all states
for all chains to allow for sequences of average length 20.
50000 sequences are sampled uniformly from the 6 chains.
The modified k-means is then run with the priors varying
depending on α, and the experiments are run 10 times and
purity is the average over the 10 runs. First we note that
even with using the modified k-means algorithm and not
the EM algorithm the resulting average purities are quite
high. It is seen that even with α = 1 representing com-
pletely random priors, the reduction in purity is not too
large compared to starting with the same priors as the data
is generated from. Even starting with the same priors which
generated the data does not guarantee perfect purity, which
is expected as there are some sequences that are almost as
likely under multiple chains, so small differences in the data
determined Markov chains will move them from one chain
to another. Based on the above result we will not define

0.0 0.2 0.4 0.6 0.8 1.0
Percentage noise

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e
pu

rit
y

Average purity obtained from noisy priors

Figure 3: Average purity as a function of
increasingly more noisy priors. A completely
random prior (1.0 on the x axis) is able to
perform well.

the priors by an expert, and instead let them be random.
This has the benefit of being more manageable than hand-
crafting specific priors for each choice of k, which would be
very difficult to do in a meaningful way when k is large.

5. REAL DATA EXPERIMENT
5.1 Choosing the number of clusters
The problem of determining the number of clusters is com-
mon for all unsupervised learning tasks. In this paper we
consider the sum of the log likelihoods for the action se-
quences. A common approach is the use of the "elbow"
heuristic, where the choice of k is chosen based on the slope
of the sum of log likelihoods function over k.

In order to argue that there is structure in the data, and that
the method is able to capture this structure, a randomized
experiment is made. The randomized experiment consists
of randomly permuting each sequence (but keeping the start
and end states), and seeing how the sum of log likelihoods
is affected by it. If there is no structure originally in the
sequences, then one can not expect it to perform better than
the permuted data.

In Figure 4 we see that the sums of log likelihoods are con-
siderably lower in the permuted data set, with only slightly
higher sum of log likelihoods when k = 20 compared to
k = 2 for the real data set. The action sequences therefore
have structure which the Markov chain captures, and it is
therefore not just random chains that the k-means clustering
produces. Since the chains capture some inherent structure
in the data, it is meaningful to analyse the individual chains
with regards to what user behaviour they capture.

There is not an obvious breaking point in the sum of log
likelihoods, but the increase before k = 6 is large, while the
increase for k > 10 is notably smaller, so a value of k between
6-10 is sensible. We will in the qualitative assessment of the
chains use k = 6.

2 4 6 8 10 12 14 16 18 20
k

−4.2

−4.0

−3.8

−3.6

−3.4

Su
m
 o
f l
og

 li
ke

lih
oo

ds

1e7 Sum of log likelihoods with varying k

Original data
Permutated data

Figure 4: Sum of likelihoods for the best
performing clusters for each k. Each experi-
ment is run 5 times for each k. The permuta-
tions of each sequence is done for each value
of k in each of the 5 times.

5.2 Qualitative assessment of Markov chains
This section will make qualitative assessments of what the
different resulting Markov chains represent with regards to
what type of user behaviour they capture. Even with six
chains there is some similarity between some chains, so in
this section we will focus on the three most distinct chains
shown in Figure 5. The thickness of the arrows is propor-
tional to the transitional probability for each state, except
the ending state. The transitional probabilities are sorted
and only drawn until 70% of the probability mass is cov-
ered. For the ending state, 70% of the incoming transitional
probabilities are drawn.

In general not all chains can be described as either being a
positive or negative usage of the system. Chain 2 captures
usage where most of the questions being answered are ei-
ther right or wrong, and there is very little mixing between
taking lessons and answering a question. Usage like this
could indicate an unproductive session for students, since
they are mostly getting all questions right or all questions
wrong, and research shows that students feel more intrin-
sic pleasure when the difficulty level is slightly challenging
[5] leading to more engaged sessions [3]. Similarly, watch-
ing lessons without engaging with the material via questions
leads to students not training the learned material, which is
important for the learning process.

Chain 6 can be described as a positive usage of the sys-
tem, as the most probable transitions lead to a question
being correctly answered, except for the two transitions in
the lessons. Generally students are focused on one topic at
a time.

Chain 4 has high transitional probability when switching be-
tween topics, so this could indicate a session with a primary
focus on repetition as the topic is varying, and students most
often answer questions from another topic than the watched
lessons.

Figure 5: Chains 2, 6, and 4 of the six chains.
The thickness of the arrows is proportional to
the transitional probability for each state, ex-
cept the ending state. The transitional prob-
abilities are sorted and only drawn until 70%
of the probability mass is covered. For the
ending state 70% of the incoming transitional
probabilities are drawn. State abbreviations
are explained in section 3.

Num. sequences Avg. sequence length
chain 1 295,792 34.81
chain 2 126,683 36.88
chain 3 198,736 26.79
chain 4 131,460 28.79
chain 5 194,174 36.12
chain 6 144,121 44.85

Table 2: The number of sequences and aver-
age length of sequences for each Markov chain

The distribution of the sessions over the chains can be seen
in Table 2.

The length of the sequences is varying, but no single chain
in general captures either the very short or very long se-
quences. Instead a combination of shorter and longer se-
quences is captured by each chain. The most common chain
can be seen in Fig 6. This chain is similar to chain 4 (Fig
5), but with more topic changes and more wrongly answered
questions when changing topics, which can be seen in the self
loop for Qw_c. Chain 4 is also shorter on average. As seen
in Table 2, generally all six chains contain a large amount
of sequences on average. This indicates that the system us-
age does indeed vary, and is not limited to all sequences of
the same length defining the same use of the system. If one
considers each user’s distribution of Markov chains, then on
average each user has 3.5 different types of sessions out of
6 with a standard deviation of 1.5. This supports the as-
sumption that a single Markov chain is not optimal for user
profiling for educational systems similar to the one generat-
ing our data, where there is a lot of user freedom in what

Figure 6: Chain 1, the most common chain.
State abbreviations are explained in section 3.

activities they engage in.

6. DISCUSSION AND CONCLUSION
In this work first order Markov chains have been used, but
it is generally known that the action sequences do not ful-
fil the Markov property of transition to a state only being
dependent on the previous state. No order of Markov chain
will completely capture the underlying transition between
states, as the usage is dependent on many external factors
which are unknown, but higher order chains would be able to
capture more complex dynamics in the usage. Even though
the Markov property is violated, Markov chains are still very
widely used in educational data mining [4, 8], and provide
a good tool for comparisons of action sequences across dif-
ferent lengths, focusing on the flow of actions taken. In
future work an interesting extension would be considering
time dependent Markov models, such that the transitional
probabilities are dependent on how long the states have been
unchanging. This would allow for more interpretative mod-
els, e.g. we could see when the probability of a session ending
gets high.

When inspecting the Markov chains produced by the cluster-
ing, chain number 2 indicated suboptimal or unproductive
usage of the system, where the students either experience
questions that are too easy or too hard, or never train what
they learn in the lessons. The chain has 126,683 sessions
in its cluster, and it is therefore a significant amount of
sessions where the learning outcome most likely could be
improved. Based on this it could be recommended to have
a few obligatory questions after a lesson to strongly encour-
age the student to use what they have just learned, and
detect negative spirals where the students are always wrong
by recommending lessons to help the student move forward.

Modelling the student as a distribution over Markov chains,
which can be considered usage patterns, results in a vector
representation of the individual students. This represen-
tation allows to apply standard techniques directly on the
student model, compared to working on more complex stu-
dent models. An example is the issue of drift in student be-
haviour over time, corresponding to some learning, or wider
cognititive development of the student. This problem has
also been considered in a similar context in [8], where dis-
tances between single Markov chains on a student level were
estimated. However, in our setting standard methods could
readily be used to detect this type of drift and potentially
alert the teacher.

The work presented shows a qualitative study of the pro-

posed student representation, and experiments using syn-
thetic data show that our methodology is able to capture
the underlying generative Markov chains very well, when
the number of chains has been estimated. A source for fu-
ture work will be using the student vectors in a predictive
task, such that quantitative measures can be acquired. An
interesting path would be using knowledge tracing methods
over the different session types, to see if there are any un-
expected differences between the knowledge acquired by the
student depending on the type of session - i.e. the kind of
Markov chain the session originates from.

7. ACKNOWLEDGMENTS
The work is supported by the Innovation Fund Denmark
through the DABAI project.

8. REFERENCES
[1] D. Barber. Bayesian Reasoning and Machine

Learning. Cambridge University Press, New York, NY,
USA, 2012.

[2] C. Beal, S. Mitra, and P. R. Cohen. Modeling learning
patterns of students with a tutoring system using
hidden markov models. In Proceedings of the 2007
Conference on Artificial Intelligence in Education:
Building Technology Rich Learning Contexts That
Work, pages 238–245, Amsterdam, The Netherlands,
The Netherlands, 2007. IOS Press.

[3] M. Csikszentmihalyi and I. Csikszentmihalyi. Optimal
Experience: Psychological Studies of Flow in
Consciousness. Cambridge University Press, 1992.

[4] L. Faucon, L. Kidzinski, and P. Dillenbourg.
Semi-markov model for simulating mooc students. In
T. Barnes, M. Chi, and M. Feng, editors, EDM, pages
358–363. International Educational Data Mining
Society (IEDMS), 2016.

[5] J. Gottlieb, P.-Y. Oudeyer, M. Lopes, and A. Baranes.
Information-seeking, curiosity, and attention:
computational and neural mechanisms. Trends in
Cognitive Sciences, 17(11):585–93, Nov. 2013.

[6] R. Gupta, R. Kumar, and S. Vassilvitskii. On mixtures
of markov chains. In Advances in Neural Information
Processing Systems, pages 3441–3449, 2016.

[7] S. Hutt, C. Mills, S. White, P. J. Donnelly, and S. K.
D’Mello. The eyes have it: Gaze-based detection of
mind wandering during learning with an intelligent
tutoring system. In Proceedings of the 9th
International Conference on Educational Data
Mining, EDM 2016, Raleigh, North Carolina, USA,
June 29 - July 2, 2016, pages 86–93, 2016.

[8] S. Klingler, T. Käser, B. Solenthaler, and M. Gross.
Temporally Coherent Clustering of Student Data. In
Proceedings of EDM, pages 102–109, 2016.

[9] M. Köck and A. Paramythis. Activity sequence
modelling and dynamic clustering for personalized
e-learning. User Modeling and User-Adapted
Interaction, 21(1):51–97, 2011.

[10] Y. Yang, Q. Yang, W. Lu, S. J. Pan, R. Pan, C. Lu,
L. Li, and Z. Qin. Preprocessing time series data for
classification with application to crm. In S. Zhang and
R. Jarvis, editors, Australian Conference on Artificial
Intelligence, volume 3809 of Lecture Notes in
Computer Science, pages 133–142. Springer, 2005.

Tracking Behavioral Patterns among Students in an Online
Educational System

Stephan Lorenzen
University of Copenhagen

lorenzen@di.ku.dk

Niklas Hjuler
University of Copenhagen

hjuler@di.ku.dk

Stephen Alstrup
University of Copenhagen

s.alstrup@di.ku.dk

ABSTRACT
Analysis of log data generated by online educational sys-
tems is an essential task to better the educational systems
and increase our understanding of how students learn. In
this study we investigate previously unseen data from Clio
Online, the largest provider of digital learning content for
primary schools in Denmark. We consider data for 14,810
students with 3 million sessions in the period 2015-2017.
We analyze student activity in periods of one week. By
using non-negative matrix factorization techniques, we ob-
tain soft clusterings, revealing dependencies among time of
day, subject, activity type, activity complexity (measured
by Bloom’s taxonomy), and performance. Furthermore, our
method allows for tracking behavioral changes of individual
students over time, as well as general behavioral changes
in the educational system. Based on the results, we give
suggestions for behavioral changes, in order to optimize the
learning experience and improve performance.

Keywords
Student clustering, Non-negative matrix factorization, Edu-
cational Systems

1. INTRODUCTION + RELATED WORK
How students behave in educational systems is an impor-
tant topic in educational data mining. Knowledge of this
behavior in an educational system can help us understand
how students learn, and help guide the development for op-
timal learning based on actual use. This behaviour can be
understood both through an explicit study [5], or as in this
paper through the automatically generated log data of the
system.

The analysis of log data is usually done as an unsupervised
clustering of students [2, 3, 4, 7]. A popular approach is
to extract action sequences and transform them into an ag-
gregated representation using Markov models [4, 7]. The
Markov chains can then be clustered by different methods.

Klingler et al. did student modeling with the use of ex-
plicit Markov chains and the clustering with different dis-
tance measures defined on the Markov chains [7]. Hansen
et al. assumed the actions sequences to be generated by a
mixture of Markov chains and used an heuristic algorithm
to find the generating Markov chains [4]. Gelman et al.
used non-negative matrix factorization to find clusters for
different measures of activity aggregated in weekly periods
during a MOOC course. These clusters are then matched
from week to week by cosine similarity.

Our work is similar to Gelman et al. [3] in that we also
use Non-negative Matrix Factorization (NMF) to make a
soft clustering at the student level in a given time period,
however our clustering is only made once, and we are looking
at primary school data over a vastly longer period of time,
(2 years compared to 14 weeks).

Our soft clustering by non-negative matrix factorization is
based on log data from Clio Online.1 Clio Online is the
largest provider of digital learning for all subjects in the
Danish primary school (except mathematics), having 90%
of all primary schools in Denmark as customers.

Using NMF, we assume that the set of features chosen can
be represented by a set of fewer underlying behaviors. These
underlying behaviours would each be represented by a clus-
ter in the non-negative matrix factorization. Each student
will then get a number for each cluster in each time period
representing how much of that underlying behavior he has
shown in the given time period. Non-negativity gives the
behaviors an additive structure, which is more natural than
showing a negative amount of a given behavior. We reason
that the soft clustering will show both the behaviors of in-
dividual students, as well as how the behaviors change over
time, both individually and on a system-wide level.

In this paper, we will consider two main questions: a) how
does student activity in the system affect performance, and
b) how does student activity distribute between different lev-
els of Bloom’s taxonomy in different subjects. Both ques-
tions are important in regards to optimizing learning; the
first in relation to performance, the latter in relation to uti-
lization of all taxonomy levels.

1This data is proprietary and not publicly available.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

Activity period

#
st

u
d
en

ts

Figure 1: Number of students active in each period.
Note that period 0 starts on 2015-01-08, while pe-
riod 111 ends on 2017-03-01. The drops in activity
occur due to vacation in Danish primary school, with
the two large drops around periods 25 and 79 being
due to the summer vacation.

2. EXPERIMENTAL SETUP
This section describes our experimental setup and methods.
We start by describing our data and how it is preprocessed,
and then move on to describing our clustering method.

2.1 Data Preprocessing
As mentioned, we consider log data generated in the Dan-
ish online educational system Clio Online. The system is
used in Danish primary schools and contains learning ob-
jects across all Danish subjects (except mathematics), for
instance texts, videos, sound clips and exercises. Further-
more, the system includes a large number of quizzes, used
for evaluating students. Students may use the system for
self study, but they may also be assigned homework by their
teacher. Our data covers 14,810 students.

The raw data consists of logs detailing page accesses for in-
dividual students in the system. For quizzes, the final score
(between 0 and 1) and total time spent for the quiz is also
available. In our preprocessing, we combine these log entries
to sessions. Two consecutive entries are considered in the
same session, if they have the same subject, and their times-
tamps differ by less than some threshold. For our study, we
choose this threshold to be 600 seconds, based on recom-
mendations from Clio Online, who have a deeper knowledge
of the content and flow of the system (e.g. expected time
per page). Furthermore, quizzes are considered separate ses-
sions. A total of 3 million sessions is obtained in this way.

With the sessions defined, we consider student activity in
activity periods, with a length of one week. The data spans
a total of 112 activity periods, starting January 2015 and
ending in March 2017. For each activity period, we add an
entry for a student, if the student is active (accesses the
system) within that period. The entry for the given student
contains all sessions for that student, which starts within
the activity period. We end up with approximately 677,000
student entries across the 112 periods. Figure 1 shows the

active number of students in each period. Note the drop
in active students around periods 25 and 79; these drops in
activity occur due to summer vacation.

The final step of data preprocessing is the feature extrac-
tion. For each activity period, a set of activity/performance
related features are extracted. The features are chosen so
as to answer the questions posed in the previous section. A
complete overview of all features considered in our exper-
iments is given in Table 1, including the maximum, mean
and variance across all active students in all periods. Not
all features are used for each experiment, see section 3.

All features are aggregates over the activity period. Below
follows a detailed description:

• f1 describes the activity during the period of day, where
Danish students are normally in school, while f2 de-
scribes the activity during non-school hours.
• f3, f4 and f5 describe time spent doing exercises, read-

ing texts and taking quizzes respectively.
• f6, f7 and f8 describe time spent working with differ-

ent topics: languages (Danish, English, German), soci-
etal (social studies, history, etc.) and science (physics,
biology, etc.), respectively.
• f9 is the average session length during the activity pe-

riod.
• f10 is the average quiz score; this feature may be miss-

ing, if a student takes no quizzes during an activity
period, but our analysis methods can handle this, see
section 2.2.
• f11, f12, f13 and f14 describe the time spent doing exer-

cises of different complexity, measured by their level in
Bloom’s taxonomy. We regroup the levels of Bloom’s
taxonomy into 4 levels:

f11 Remember/Understand: Exercises involving
reading and describing, e.g. ”Read a map”.

f12 Apply: Exercises involving application of previ-
ously learned concepts, e.g. ”Practice adjectives”.

f13 Analyze/Evaluate: Exercises involving discus-
sion, analysis and experimenting, e.g. ”Work with
the poem”, ”Analyze the game”.

f14 Create: Exercises involving creation of a prod-
uct, e.g. ”Create a cartoon”, ”Write a story”.

Having extracted m features for each student in each period,
we construct the matrix X ∈ Rn×m, where each of the n
rows consists of the feature vector for an active student in
a given activity period. Thus each student occurs several
times in X; once for each period, where they are active.

2.2 Soft Clustering using Non-negative Matrix
Factorization

We will utilize non-negative matrix factorization for our soft
clustering. The use of NMF as a soft clustering technique
has become popular in recent times [10], with applications
within several fields, such as clustering of images and docu-
ments [8, 13]. NMF has also seen success in the educational
data mining community, for clustering tasks, as well as other
tasks such as performance prediction [3, 12].

i fi Max Mean Variance

1 Hours between 8AM and 4PM 31.85 0.940 0.862
2 Hours before 8AM and after 4PM 71.84 0.174 0.283
3 Hours doing exercises 3.61 0.048 0.019
4 Hours reading texts 7.73 0.344 0.148
5 Hours taking quizzes 23.76 0.231 0.297
6 Hours working with language subjects 58.28 0.531 0.693
7 Hours working with societal subjects 45.96 0.294 0.285
8 Hours working with science subjects 103.69 0.277 0.326
9 Average session length in hours 7.91 0.268 0.027
10 Average quiz score (in [0, 1]) 1.00 0.733 0.034
11 Hours working with Bloom level 1 2.83 0.016 0.006
12 Hours working with Bloom level 2 1.64 0.008 0.002
13 Hours working with Bloom level 3 1.51 0.014 0.003
14 Hours working with Bloom level 4 2.04 0.009 0.003

Table 1: Overview of features.

f1 f2 f3

x1

x2

x3

x4

X

0.0

0.5'
C1 C2

x1

x2

x3

x4

U

f1 f2 f3

C1

C2

V

Figure 2: The soft clustering given by NMF.

NMF is a dimensionality reduction method, in which we are
given a non-negative matrix X ∈ Rn×m

+ and k ∈ N, and wish

to determine U ∈ Rn×k
+ ,V ∈ Rk×m

+ , such that X ' UV.
More specifically, we search for U and V, such that the error
||X − UV||F is minimized, where || · ||F is the Frobenious
norm. For our analysis, we need to be able to handle missing
values in X. In this case the NMF problem is reformulated
as the weighted non-negative matrix factorization, in which
we are also given a binary weight matrix W ∈ {0, 1}n×m,
where a 0 indicates missing data. Now, we wish to find U,V
such that ||W � (X−UV) ||F is minimized2.

U and V admits a soft k-clustering as shown in Figure 2; V
describes the importance of each feature for each cluster (for
instance, f1 has high importance in C1), while U describes
the membership of each data point to the different clusters
(for instance, x3 is mostly in C1, while x4 is in both clusters).

Note, that for NMF, we have X ' UV = UIV = UA−1AV,
where I is the k× k identity matrix and A is a k× k invert-
ible matrix. This means that we may rescale U and V by
this matrix, A, and its inverse. In our analysis, we use this
to rescale V, such that all rows of V (the clusters) sum to
one, thus making the clusters comparable, and membership
of the different clusters easier interpretable.

There exist several algorithms for obtaining the non-negative
matrix factorization of X, for instance basic gradient de-

2� denotes the Hadamard product (element-wise multipli-
cation).

scent, multiplicative update rules and alternating least squares;
[1] gives a good overview in the non-weighted setting. Sev-
eral of these algorithms have been adapted for the WNMF
case, while approaches based on expectation maximization
have also been proposed, see [6]. For our analysis, we will use
the weighted version of the multiplicative update method,
proposed by Lee and Seung [9].

The NMF algorithm given in [9], adopted to WNMF [6], is
as follows:

1. Initialize U and V.
2. Repeatedly update U and V by the following rules:

U← U� (W �X) VT

(W � (UV)) VT

V← V � UT (W �X)

UT (W � (UV))

where division is done element-wise.

The literature explores several ways of initializing U and V;
in our case, we will simply use random initialization. The
alternating optimization steps are applied until the decrease
in error reaches below a set threshold. Finally, Lin has noted
that the procedure described above may not converge to
a stationary point, hence we modify the update rules as
proposed by them [11]. Furthermore, since we in our case
know all missing values of X to be bounded by a constant c,
we modify the above procedure such that 0-weight values of
UV that deviate above c are penalized, i.e. whenever a value
(UV)ij with Wij = 0 gets larger than c, we set Xij = c and
Wij = 1, before the next update step. If (UV)ij decreases
below c again, the weight is reset to 0.

It remains to be seen, how we select the number of clusters,
k. For each experiment, we construct clusterings with k =
1, 2, ..., and stop when the decrease in error going from k
clusters to k + 1 clusters is below some threshold, which
depends on the initial error. As a consequence clusters will
be uncorrelated on a student level, since otherwise we would
pick a lower k.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

C1

C2

C3

C4

C5

0 0.1 0.2 0.3 0.4 0.5

Figure 3: The cluster matrix for the first experi-
ment.

3. EXPERIMENTS AND RESULTS
In this section, we present two different experiments using
the setup described above. In the first experiment, we inves-
tigate the relation between activity, activity type, subject,
time of day, average session length and performance. In
the second experiment, we investigate the relation between
complexities of exercises and subjects.

3.1 Performance and Optimal Behavior
In the first experiment, we investigate the relation between
activity, activity type, subject, time of day, average session
length and performance, i.e. we consider features f1, ..., f10.
The features are extracted and k = 5 is selected, as described
in section 2. We run the WNMF algorithm, and obtain the
cluster matrix V as shown in Figure 3. From the figure, we
can make several observations about the clusters:

C1 In this cluster, we find students mostly working with
the science subjects (f8). These students seem to work
mostly during school hours (f1). The students also
seem to spent a lot of time reading (f4).

C2 Students in this cluster spend a lot of time taking
quizzes (f5). They will spend some time during school
hours (f1) and some time working with language sub-
jects (f6). Furthermore, students in this cluster seem
to both have fairly long average session length and high
performance (f9 and f10).

C3 In cluster C3, we see students working with societal
subjects (f7). They work during school hours (f1) and
spend time reading texts in the system (f4).

C4 This cluster shows a relationship between being ac-
tive in school (f1) and spending time in the language
subjects (f6). Students in this cluster also spend time
reading texts (f4) and doing some exercises (f3).

C5 The most important feature for C5 is f2, i.e. the stu-
dents in this cluster spend most time using the system
during non-school hours. These students spent time in
all subjects, but mostly languages (f6), and they spent
time taking quizzes (f5).

From the clusters, we can see that the impact on perfor-
mance from different behaviors depends on the subject. From
cluster C2, we see that students working mostly with lan-
guage subjects gain most performance from spending time
taking quizzes and working during school hours, whereas
students working mostly with societal (cluster C3) and sci-
ence (cluster C1) subjects gain most from reading texts,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.2

0.4

0.6

0.8

1

Normalized cluster membership

F
ra

ct
io

n
o
f

st
u
d
en

ts

C1

C2

C3

C4

C5

Figure 4: The distribution of cluster membership
for the first experiment.

0 20 40 60 80 100
0

0.5

1

1.5

Activity period

A
v
er

a
g
e

cl
a
ss

m
em

b
er

sh
ip C1 C2 C3 C4 C5

Figure 5: The average cluster membership in each
activity period for the first experiment.

while working mostly during school hours. Note that cluster
C4 indicates that students working with languages may also
improve performance by reading texts, but to a lesser degree
than students working in other subjects. Finally, C5 indi-
cates that working mostly from home and primarily taking
quizzes, does not improve performance. While C5 indicates
this for all subjects, the high importance of f4 indicates
that this most often occur for students working with lan-
guages, confirming the observations from C2. Finally, it is
also worth noticing, that there is a strong relation between
performance and average session length (clusters C1, C2 and
C3), indicating that students, who perform well, also have
longer sessions on average.

From the above discussion, it appears that the behavior in
clusters C4 and C5 are sub-optimal, when considering per-
formance, while students gain more from being in C1, C2 or
C3, i.e. by working during school hours, having longer ses-
sions and taking quizzes (in the case of languages) or reading
texts (in the case of societal or science subjects).

Figure 4 describes the distribution of cluster membership
across all students and all activity periods , i.e. the columns
of the first interval [0, 0.1) gives for each cluster the fraction
of students with 0%-10% membership. We see, that we do
indeed get a soft clustering, with students often belonging
to more than one cluster. Only C3 seems to be the sin-

f6 f7 f8 f11 f12 f13 f14

C1

C2

C3

10−4 10−3 10−2 10−1 1

Figure 6: The cluster matrix for the second experi-
ment. Note, that a logarithmic scale is used for this
plot.

gle dominant cluster of some students. From the figure, we
also see that students are typically never exclusively in C5,
which is positive, as the behavior observed in that cluster
was not very productive in terms of performance. Other
than that, we generally observe that students seem to dis-
tribute fairly well between the top four clusters, indicating
most time spent during school hours and a varied use of both
quizzes and texts across all subjects.

Next, we analyze how the membership of different clusters
change over time. Figure 5 plots the average membership
for each period, i.e. the average of rows from U belonging to
the given period. The first observation we make from Fig-
ure 5, is that clusters C1, C2, C3 and C4 appear correlated
at the system-wide level. This is due to these clusters being
dependent on the general activity in the online system; most
of the sudden drops occur at the same time as Danish school
vacations, most notably the two larger drops around activity
periods 25 and 79 (see Figure 1). C5 seems to be relatively
unaffected by the general activity, but this makes sense, as
C5 contains mostly students, who work outside school hours,
and thus a lower membership is expected in that cluster in
general, which is also the pattern we see in periods with no
vacation.

Looking at the general distribution between the different
clusters, C3 and C4 seem to be the most dominant, indi-
cating that most students are working with language and
societal subjects and reading texts. Cluster C1 (science sub-
jects) is fairly constant in the non-vacation periods, and C2

seems to increase starting period 80, indicating that more
students spend time taking quizzes. Finally, as mentioned,
C5 is the least active cluster across most periods. One gen-
eral trend for the top four clusters seem to be an increase
in activity during the 112 periods, indicating that students
are spending more time in the system on average.

3.2 Subject and Exercise Complexity
In the second experiment we look at the relation between
subjects and exercises grouped by Bloom’s taxonomy level,
i.e. we consider features f6, f7, f8, f11, f12, f13, f14

We expect three clusters, one for each of the subject classes,
which will tell us how much each Bloom level is used within
each subject class. Figure 6 shows the cluster matrix found.
From Figure 6, we make the following observations:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.2

0.4

0.6

0.8

1

Normalized cluster membership

F
ra

ct
io

n
o
f

st
u
d
en

ts

C1

C2

C3

Figure 7: The distribution of cluster membership
for the second experiment.

0 20 40 60 80 100
0

0.5

1

Activity period

A
v
er

a
g
e

cl
a
ss

m
em

b
er

sh
ip C1 C2 C3

Figure 8: The average cluster membership in each
activity period for the second experiment.

C1 In the science subjects, only very little of the 3 higher
levels are used, and almost none of reading and under-
standing.

C2 For societal subjects, students have only little activity
in the first 2 levels, a lot in analyzing and evaluating,
and very little activity in creation.

C3 In languages, students have a tendency to read and
understand a lot, and then distribute almost evenly
on the 3 higher levels.

This implies that if we want to attract students to use an
online educational system for languages, focus should be on
exercises with Bloom’s taxonomy level read and understand.
For societal subjects the focus should be on exercises with
analyzing and evaluating. For science we see no preference.

From Figure 7, we see that the clustering has many high
values which is most likely explained by having a teacher
who uses the system exclusively in only one of the subjects,
which we can see happens most often for languages.

As we can see in Figure 8 all three clusters share similar cur-
vature, which is partly explained by holidays. Especially the
science and societal clusters behave seem highly correlated
on a general level. We also see that in all three subjects, the
average time spent during a week has gone from 15 minutes,

to 45 minutes for languages and 25 minutes for both societal
subjects and sciences. A clear indication that teachers and
students in Denmark are using online educational systems
more, especially for languages.

4. CONCLUSIONS AND FUTURE WORK
Several points can be taken from our analysis. We have
identified three optimal and two sub-optimal behaviors in
relation to subject and performance. One notably conclu-
sion is that students using the Clio Online system during
non-school hours (at home) do not seem to gain any signifi-
cant boost to performance. We also saw how taking quizzes
seems to increase the performance of students in languages,
more so than in other subjects, where reading texts are of
more importance. This fits the intuition that skills such as
grammar need to be trained, in order to be learned. We in-
form how exercises are used depending both on their subject
and their level in Bloom’s taxonomy. And lastly we see that
the average amount of time spent in the system is increasing
both generally and for the individual students in all subjects,
but especially for students working with languages. Further-
more, both experiments show how behaviors can have high
correlation on a system-wide level, despite being uncorre-
lated on the individual student level. While the change of
behavior for individual students was not directly analyzed in
this paper (due to privacy concerns), our method allows for
tracking such individual changes, hopefully helping teachers
encourage optimal student behavior, e.g. by recommend-
ing training quizzes for students working with languages, or
making sure that students are allowed more time to use the
system in school.

In our setting, the number of clusters is fixed. It may be
interesting to use an adaptive clustering strategy instead,
as done in [7], as one might expect clusters to change over
time. In the future, it might also be interesting to include
other features, that were not available to us at this time, for
instance whether a text (or quiz) have been assigned by a
teacher, or whether the student reads it by themselves. For
this study, we also only had access to a limited amount of
data; better and more reliable results might be obtained by
including more data.

5. ACKNOWLEDGMENTS
The work is supported by the Innovation Fund Denmark
through the Danish Center for Big Data Analytics Driven
Innovation (DABAI) project. The authors would like to
thank Clio Online, and the reviewers for their thorough and
insightful feedback.

6. REFERENCES
[1] Michael W. Berry, Murray Browne, Amy N. Langville,

V. Paul Pauca, and Robert J. Plemmons. Algorithms
and Applications for Approximate Nonnegative
Matrix Factorization. Computational Statistics & Data
Analysis, 52(1):155 – 173, 2007.

[2] Louis Faucon, Lukasz Kidzinski, and Pierre
Dillenbourg. Semi-Markov model for simulating
MOOC students. In Proceedings of the 9th
International Conference on Educational Data Mining
(EDM), pages 358–363. International Educational
Data Mining Society (IEDMS), 2016.

[3] Ben U. Gelman, Matt Revelle, Carlotta Domeniconi,
Kalyan Veeramachaneni, and Aditya Johri. Acting the
Same Differently: A Cross-Course Comparison of User
Behavior in MOOCs. In Proceedings of the 9th
International Conference on Educational Data Mining
(EDM), pages 376–381. International Educational
Data Mining Society (IEDMS), 2016.

[4] Christian Hansen, Casper Hansen, Niklas Hjuler,
Stephen Alstrup, and Christina Lioma. Sequence
modelling for analysing student interaction with
educational systems. In Proceedings of the 10th
International Conference on Educational Data Mining
(EDM), pages 232–237. International Educational
Data Mining Society (IEDMS), 2017.

[5] Stephen Hutt, Caitlin Mills, Shelby White, Patrick J.
Donnelly, and Sidney K. D’Mello. The Eyes Have It:
Gaze-based Detection of Mind Wandering during
Learning with an Intelligent Tutoring System. In
Proceedings of the 9th International Conference on
Educational Data Mining (EDM), pages 86–93.
International Educational Data Mining Society
(IEDMS), 2016.

[6] Yong-Deok Kim and Seungjin Choi. Weighted
Nonnegative Matrix Factorization. In Proceedings of
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1541–1544,
2009.

[7] Severin Klingler, Tanja Käser, Barbara Solenthaler,
and Markus Gross. Temporally Coherent Clustering of
Student Data. In Proceedings of the 9th International
Conference on Educational Data Mining (EDM),
pages 102–109. International Educational Data Mining
Society (IEDMS), 2016.

[8] Cosmin Lazar and Andrei Doncescu. Non Negative
Matrix Factorization Clustering Capabilities;
Application on Multivariate Image Segmentation. In
Proceedings of the 3rd International Conference on
Complex, Intelligent and Software Intensive Systems
(CISIS), pages 924–929, 2009.

[9] Daniel D. Lee and H. Sebastian Seung. Algorithms for
Non-negative Matrix Factorization. In Advances in
Neural Information Processing Systems 13, Papers
from Neural Information Processing Systems (NIPS)
2000, Denver, CO, USA, pages 556–562, 2000.

[10] Tao Li and Chris Ding. Non-negative matrix
factorization for clustering: A survey. In Data
Clustering: Algorithms and Applications, pages
149–176. Chapman & Hall/CRC, January 2013.

[11] Chih-Jen Lin. On the Convergence of Multiplicative
Update Algorithms for Non-negative Matrix
Factorization. Trans. Neur. Netw., 18(6):1589–1596,
2007.

[12] Stephan Lorenzen, Ninh Pham, and Stephen Alstrup.
On Predicting Student Performance Using Low-rank
Matrix Factorization Techniques. In Proceedings of the
16th European Conference on e-Learning (ECEL),
pages 326–334. Academic Conferences and Publishing
International, 2017.

[13] Farial Shahnaz, Michael W. Berry, Victor P. Pauca,
and Robert J. Plemmons. Document clustering using
nonnegative matrix factorization. Information
Processing & Management, 42(2):373 – 386, 2006.

Fully Dynamic Consistent Facility Location

Anonymous Author(s)
Affiliation
Address
email

Abstract

We consider classic clustering problems in fully dynamic data streams, where data1

elements can be both inserted and deleted. In this context, several parameters are2

of importance: (1) the quality of the solution after each insertion or deletion, (2)3

the time it takes to update the solution, and (3) how different consecutive solutions4

are. The question of obtaining efficient algorithms in this context for facility loca-5

tion, k-median and k-means has been raised in a recent paper by Hubert-Chan et6

al. [WWW’18] and also appears as a natural follow-up on the online model with7

recourse studied by Lattanzi and Vassilvitskii [ICML’17] (i.e.: in insertion-only8

streams).9

In this paper, we focus on general metric spaces and mainly on the facility location10

problem. We give an arguably simple algorithm that maintains a constant factor11

approximation, with O(n log n) update time, and total recourse O(n). This im-12

proves over the naive algorithm which consists in recomputing a solution at each13

time step and that can take up toO(n2) update time, andO(n2) total recourse. Our14

bounds are nearly optimal: in general metric space, inserting a point takes O(n)15

times to describe the distances to other points, and we give a simple lower bound16

of O(n) for the recourse. Moreover, we generalize this result for the k-medians17

and k-means problems: our algorithms maintains a constant factor approximation18

in time Õ(n+ k2).19

We complement our analysis with experiments showing that the cost of the solu-20

tion maintained by our algorithm at any time t is very close to the cost of a solution21

obtained by quickly recomputing a solution from scratch at time t while having a22

much better running time.23

1 Introduction24

Clustering is a core procedure in unsupervised machine learning and data analysis. Due to the large25

number of applications, clustering problems have been extensively studied for several decades. The26

existing literature includes both very precise algorithms[1, 16, 26], and very fast ones [28]. Due to27

the importance of the task, clustering problems have also been studied in several computing settings,28

such as the streaming model [9] and the sliding-window model [6], the distributed model [3], in the29

dynamic model [21], and others.30

Applications nowadays operate on dynamically evolving data, e.g., pictures are constantly added and31

deleted from picture repositories, purchases are continuously added into online shopping systems,32

reviews are added or being edited in retail systems, etc. Due to the scale and the dynamic nature33

of the data at hand, conventional algorithms designed to operate on static inputs become unable to34

handle the task for two main reasons. First, the running time of even the most efficient algorithms35

is too expensive to execute after every single change in the input data. Second, re-running a static36

algorithm after every update might generate solutions that differ substantially between consecutive37

updates, which might be undesirable for the application at hand. The number of changes in the38

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

maintained solution between consecutive updates is called the recourse of the algorithm. Our study39

is motivated by these limitations of static algorithms, or dynamic algorithms that are effective on40

only one of the two objectives.41

Most fundamental problems in computer science have been studied in the dynamic setting. In a42

very high-level, a dynamic algorithm computes a solution on the initial input data and as the input43

undergoes insertions or/and deletions of elements, the algorithm updates the solution to reflect the44

current state of the data. A dynamic algorithm may allow only insertions or only deletion, or may45

support an intermixed sequence of insertions and deletions, in which case the algorithm is called46

fully-dynamic. The running time of a dynamic algorithm can either guarantee a worst-case update47

time after each update, or a bound on the average update time over a sequence of updates which is48

called amortized update bound. A dynamic algorithm with worst-case update bounds is the most49

desirable, and often hard to obtain, but in several applications algorithms with amortized update50

bounds are sufficient.51

In this paper, we study fully-dynamic algorithms for classic clustering problems. In particular, we52

consider the facility location, the k-means, and the k-median problems in the dynamic setting. In the53

static case, these problems are defined as follows. Let X be a set of n points, and d : X ×X → R54

a distance function. We assume that d is symmetric and that (X, d) forms a metric space. For55

the (k, p)-clustering problem, the objective function that we seek to optimize is Cp(X,S), where56

S ⊆ X, |S| = k. p = 1 gives the k-median objective, and p = 2 the k-means one. For the facility57

location problem the objective function is C(X,S).58

C(X,S) :=
∑

x∈X
min
c∈S

d(x, c) + f · |S| Cp(X,S) :=
∑

x∈X
min
c∈S

dp(x, c),

All of these problems are NP-Hard, so our best hope is to design algorithms with provable approxi-59

mation guarantees. In the dynamic setting, the goal is to maintain efficiently a good solution to the60

clustering problem at hand as the set of points undergoes element insertions and deletions. The main61

criterion for designing a good dynamic algorithm for these problems is the quality of the clustering,62

with respect to the optimum solution, at any given time. However, in many applications, it is equally63

important to maintain a consistent clustering, namely a clustering with bounded recourse. Lattanzi64

and Vassilvitskii [25] have recently considered consistent clustering problems in the online setting,65

where the points appear in sequence and the objective is to maintain a constant factor approximate66

solution while minimizing the total number of times the maintained solution changes over the whole67

sequence of points. Another criterion that has been much less explored but which is of high impor-68

tance when dealing with massive data is the time it takes to update the solution after each update so69

that the solution remains a constant factor approximate solution.70

1.1 Our Contribution71

We present the first work that studies fully-dynamic algorithms while considering all of the three72

aforementioned objectives at the same time, that is, the approximation guarantee, consistency and73

update time. From an input perspective, we consider general metric spaces, an element of the input74

is thus a point in that metric space which is defined by the distances to the other points of the metric.75

The contribution of our paper can be summarized as follows:76

•We give a fully-dynamic algorithm for the facility location problem with a constant factor approx-77

imation, a constant number of changes to the clustering at each time step, and O(n log n) update78

time. We moreover show that a constant number of changes per update is necessary for achieving a79

constant factor approximation.80

• We extend the algorithm for facility location to the k-median and k-means problems. Here, our81

algorithm maintains a constant factor approximate solution with Õ(n + k2)1 update time (Theo-82

rem 3.1). This is the first non-trivial result for these problems, as the only known solution for these83

problems was to recompute from scratch after each update: this requires time Ω(nk) for k-median84

and Ω(n2) for facility location. Hence, our time bounds are significantly better than the naive ap-85

proach for a large range of k.86

1Õ(·) hides polylog factors.

2

Empirical Analysis. We complement our study with an experimental analysis of our algorithm,87

on three real-world data sets, and show that it outperforms the standard approach that recomputes88

a solution from scratch after each update, using a fast static algorithm. Interestingly, we show that89

this barely impacts the approximation guarantee. At the same time, our algorithm outperforms by at90

least three orders of magnitude the simple-minded solutions, both in terms of running time and total91

number of changes made in the maintained solution throughout the update sequence.92

1.2 Related Work93

Online and Consistent Clustering Online algorithms for facility location were first proposed by94

Meyerson [29] in his seminal paper. Fotakis [14] later showed that the algorithm has a competitive95

ratio of O(log n/ log log n), which is also optimal. Additionally, the algorithm has a constant com-96

petitive ratio if the points arrive in random order [29, 24]. There also exist O(log n) competitive97

deterministic algorithms, see [2, 13]. This was recently extended to the online model that incorpo-98

rates deletions [10].99

Online algorithms for clustering that are only allowed to place centers cannot be competitive. This100

led to the consideration of the incremental model, which allows two clusters to be merged at any101

given time. Work in this area includes [8, 12]. The number of reassignments (commonly referred102

to as recourse) over the execution of an incremental algorithm may be arbitrary. However, re-103

cently, Lattanzi and Vassilvitskii [25] considered the online clustering problem with bounded total104

recourse. They showed a lower bound of Ω(k log n) changes over an arbitrary sequence of updates,105

and presented an algorithm that can maintain a constant factor approximation while limiting the106

total recourse to O(k2 · log4 n). Their work differs to ours in that element can only be added, and107

that they do not consider optimizing the running time. In the fully dynamic case their bound on the108

recourse does not hold, and we moreover show that constant recourse per update is unavoidable.109

Fully-Dynamic and Streaming Algorithms. Streaming algorithms for clustering can be used to110

obtain fast dynamic algorithms by recomputing a clustering after each update. Since streaming al-111

gorithms are highly memory compressed and typically process updates in time linear in the memory112

requirement, the approach automatically yields good update times. Low-memory adaptations of113

Meyerson’s algorithm [29] turned out to be simple and particularly popular, see [7, 24, 31]. Another114

technique for designing clustering algorithms in the streaming models is by maintaining coresets,115

see the following recent survey for an overview [30]. For fully dynamic data streams, the only116

known algorithms for maintaining coresets for k-means and k-median in Euclidean spaces using117

small space and update times are due to Braverman et al. [5] and Frahling and Sohler [15]. There118

also exists some work on estimating the cost of Euclidean facility location in dynamic data streams,119

see [11, 22, 23].120

For more general metrics, the problem of maintaining clusterings dynamically has been considered121

by Henzinger et al. [19] and Goranci et al. [17] who consider the facility location in bounded dou-122

bling dimension. The arguably most similar previous to ours is due to Hubert-Chan et al. [21]. They123

consider the k-center problem in general metrics in the fully dynamic model. Here, they were able124

to maintain a constant factor approximation with update time O(k log n) 2. Whether an algorithm125

in the fully dynamic model with low recourse and update times exists, was left as an open problem.126

1.3 Preliminaries127

We assume that we are given some finite metric space (X, d), where X is the set of points and128

d : X ×X → R≥0 a distance function. Every entry d(a, b) is stored in a (symmetric) n× n matrix129

D. Our algorithms work in the distance oracle model, which assumes that we can access any entry130

of D in constant time.131

Our input consists of tuples (X,Rn≥0, {−1, 1}). The first coordinate is the identifier of some point132

p ∈ X , the second coordinate is the column/row vector in D associated with p, and the last coordi-133

nate signifies insertion (1) or deletion (−1). We assume that the stream is consistent, which means134

that no point can be deleted without having been previously inserted. The adversary generating135

the point sequence is called adaptive if he can modify the sequence depending on the algorithm’s136

2Under the common assumption that the ratio longest distance / shortest distance of the metric is polynomi-
ally bounded.

3

choices. Throughout the paper, we letXt be the set of points present at time t, n be the total number137

of steps, and n∗ := supt∈1,...,n |Xt| be the maximum number of points present at the same time.138

All our results could be phrased in term of |Xt|, but for simplicity we present them in terms of n∗.139

Roadmap. Our paper is organized as follows. In Section 2, we describe our algorithm for fully140

dynamic facility location. Section 3 extends these results to k-median and k-means clustering. We141

conclude with an experimental evaluation of our algorithms in Section 4 on real-world benchmarks.142

All omitted proofs can be found in the supplementary material.143

2 Dynamic Facility Location144

The goal of this section is to prove the following theorem.145

Theorem 2.1. There exist a randomized algorithm that, given a metric space undergoing insertion146

and deletions of points, maintains a set of center St such that :147

• each update is processed in time O (n∗ log (n∗)) with probability 1− 1/n∗148

• at any given time t, C(Xt, St) = O(1)C(Xt,OPTt) with probability 1− 1/n∗149

• ∑n
t=0 |St∆St+1| = O(n), i.e. the amortized recourse is O(1) per step.150

The proof is divided into several lemmas: we first study how the optimal cost behaves upon dynamic151

updates, and we exhibit then an algorithm that maintains a solution whose cost evolves in a similar152

way as the optimum.153

Though perhaps counter intuitive, removing a point from the input in a finite metric may increase154

the cost of a clustering, if one cannot locate a center there anymore. We show in the supplementary155

material that this increase is bounded by a factor 2: this leads to the following lemma, which bounds156

the evolution of the optimal cost.157

Lemma 2.2. Let OPT0 be the optimal cost of an initial metric spaceX . After an arbitrary sequence158

of ni insertions and nd deletions of points in X , the optimal solution OPT1 satisfies OPT0/2− nd ·159

f ≤ OPT1 ≤ 2(OPT0 + ni · f)160

Maintaining a solution during few steps. We now turn on designing an algorithm competitive with161

the optimal solution, showing first how to deal with a small number of steps. In order to process162

deletions, we define the notion of substitute centers: given a function s mapping every center from163

the initial solution to a center in the current one, we say that s(c) substitutes c. Initially, s(c) = c.164

When a center c is deleted, the algorithm opens a replacement center cr, and updates the function s:165

s(s−1(c)) = cr.166

The algorithm is as follows: when a point x is inserted, it is open as a facility, and for convenience167

we define s(x) = x. When a point x is deleted, we have two cases: either x was not an open facility,168

in which case the algorithm does nothing, or x was a facility. In the latter case, let c = s−1(x) : the169

algorithm opens the closest point c′ of c in X0 that is still part of the metric, and set s(c) = c′. This170

choice of c′ ensures that, for all points x in the current metric space, d(c′, c) ≤ d(x, c).171

Lemma 2.3. Starting from any metric space (X0, d) and an α-approximation with cost Θ, the172

algorithm described above maintains a (8α + 4)-approximation during Θ
4αf steps, with recourse173

O(1) and time O(n∗) at each step.174

Proof. This algorithm opens at most one new facility at every step: the recourse is thus at most 1.175

The time to process an insertion is constant, and the time to process a deletion is at most O(n∗) (the176

time required to compute the closest point to x).177

We now analyse the cost of the solution produced after t steps. Since the recourse is at most 1 per178

step, the cost of open facilities increases by at most t · f . Since every inserted points is opened as a179

center, it does not contribute to the connection cost: this cost changes therefore only by deletions of180

points from X0. Similarly to Lemma 2.2, one can show that the connection cost of a point x ∈ X0181

at most doubles. More formally, let c ∈ X0 be the center that serves x in the initial solution. Let182

c′ = s(c) be the center that substitutes c in the current metric. By the choice of c′ and triangle183

4

inequality, it holds that d(x, c′) ≤ d(x, c) + d(c, c′) ≤ 2d(x, c). Hence, the total serving cost is at184

most twice as expensive as in the initial solution. The cost at time t is therefore at most 2Θ + t · f .185

Let t ≤ Θ
4αf , and OPT0 the optimal cost in the initial state. By Lemma 2.2, the optimal cost at time186

t is at least OPT0/2− t ·f ≥ OPT0/4, since by definition of α it holds t ≤ OPT0

4f . Moreover, the cost187

of our algorithm at time t is at most Θ(2 + 1
α) ≤ OPT0(2α + 1). Combining the two inequalities188

gives that our algorithm is a (8α+4)-approximation for all t ≤ Θ
4αf , which concludes the proof.189

We remark that the parameters can be optimized: for instance, with a suitable data structure, the190

time to find a substitute center can be logarithmic; however, this is dominated by the complexity of191

finding the initial α-approximation.192

Maintaining a solution for any number of steps. We combine Lemma 2.3 with a classic static193

O(1)-approximation algorithm, namely Meyerson’s algorithm, to prove Theorem 2.1.194

Proof of Theorem 2.1. We summarize here the useful properties of Meyerson algorithm, and refer to195

the supplementary material for more details. The algorithm processes the input points in a random196

order, opening each point x with probability d(x, F)/f (where F is the set of previously opened197

facilities). If the algorithm opens k facility, its running time is O(kn∗), and the cost is at least198

Θ ≥ kf . Hence, the running time is O(Θ/f ·n∗). Moreover, one can assume that the cost is always199

at most n∗f (by opening a facility at every point).200

We say that a run of Meyerson’s algorithm is good if it yields a O(1)-approximate solution. By201

the analysis in [29], a run is good in expectation (where the randomness comes from the random202

ordering of points): hence, by running log(2n∗) independent copies of the algorithm, at least one203

run is good with probability 1− (1/n∗)2. We let α be the approximation constant of this algorithm.204

Our main algorithm is therefore the following: start with a solution given by Meyerson’s algorithm205

of cost Θ, use Lemma 2.3 to maintain a solution during Θ
4αf steps, and then recompute from scratch.206

We call the intervals in between recomputations periods, and note that they are random objects: the207

length of a period is determined by the cost of its initial solution, which is a random variable.208

We first analyze the running time of this algorithm. Within one period, Lemma 2.3 ensures that209

the running time is O(n∗) per step. Moreover, the running time of the initial recomputation is210

O(Θ/f · n∗ log n∗), and the length of the period is Ω(Θ/f). Therefore the amortized running211

time is Õ(n∗) per update. Since the initial recourse is O(Θ/f), the same argument proves that the212

recourse is amortized O(1) per update.213

We aim at using again Lemma 2.3 to prove that, at a given time t, the solution is a constant factor214

approximation. For this, let P be the period P in which t lies. If the period is good, then Lemma 2.3215

concludes. Unfortunately, the fact that t is in P is not independent of P being good (for instance, if216

P is very long it is unlikely to be good). However, note that the starting time of P cannot be before217

t − n∗: indeed, a period lasts at most for Θ
4αf ≤

n∗f
4αf ≤ n∗ steps. Hence, if we condition on all218

periods starting between t − n∗ and t, Lemma 2.3 applies and the solution at time t is a constant219

factor approximation. Since any period is good with probability 1 − (1/n∗)2, all periods between220

t− n∗ and t are good with probability 1− 1/n∗ by union bound. This concludes the proof.221

The algorithm sketched in the previous proof can be transformed so that the complexity becomes222

Õ(n∗) in the worst case, by spreading the recomputation over several steps (see supplementary223

material). Moreover, randomization is not needed in order to maintain the solution (only to compute224

a starting approximation): hence the algorithm works against an adaptive adversary.225

We conclude this section by showing that our algorithm is (up to a logarithmic factors) optimal both226

for update time and recourse.227

Proposition 2.4. Any algorithm maintaining aO(1)-approximation for Facility Location must have228

an amortized update time Ω(n∗) and total recourse Ω(n), where n the total number of steps.229

5

3 Dynamic k-Median and k-Means in Linear Time230

In this section we adapt the algorithm from Section 2 to handle the stricter problem of k-Median and231

k-Means. For simplicity, we call (k, p)-clustering the problem of finding k centers that minimize Cp232

(p = 1 for k-Median and p = 2 for k-Means).233

Roughly speaking, our algorithm works as follows. We use an adaptation of the algorithm from234

Section 2 to maintain a coresetR of Õ(k) points that contain a constant factor approximate solution235

for the (k, p)-clustering problem. Then, we apply a constant factor approximation algorithm for236

the metric (k, p)-clustering problem on the maintained coreset (e.g., we can use a quadratic-time237

local-search algorithm, see [18]). This yields the following theorem.238

Theorem 3.1. There exists a randomized algorithm that, given a metric space undergoing insertions239

and deletions of points, maintains a set of centers St with Õ(n∗+k2) update time such that, for any240

time t, Cp(Xt, St) = O(1) · Cp(Xt,OPTt).3241

The remainder of this section is devoted in proving Theorem 3.1. The main hurdle in applying the242

framework from Section 2 is that the optimum solution can change drastically with the addition or243

deletion of a point, and it is therefore not easy to adapt the previous amortization argument. To244

overcome this barrier, we make use of the following lemma, from [8] and [25]:245

Lemma 3.2. Let L be some integer. With probability 1/2, running Meyerson’s algorithm for Facility246

Location with f = L
k(1+logn∗) gives a set S of 4k · (1 + log n∗) · (22p+1 · Cp(X,OPT)

L + 1) centers247

such that Cp(X,S) ≤ L+ 4 · Cp(X,OPT).248

For completeness, we provide the pseudocode of Meyerson’s algorithm, adapted for our purpose,249

in Procedure MeyersonCapped. The lemma implies that, if we know a value L that approximates250

OPT within a factor 2, Procedure MeyersonCapped computes a set of pointsR and an assignment251

of points φ such that
∑
d(p, φ(p)) ≤ 6 · Cp(X,OPT) with probability 1/2. This probability can be252

boosted to 1− (1/n∗)2 by taking the union of q = O(log n∗) independent copies of the algorithm.253

Therefore for all i = 1, ..., q, our algorithm will use this lemma assuming Cp(X,OPT) ∈ [2i, 2i+1),254

and taking L = 2i. This provides, for all i, a setRi of O(k log2 n∗) centers.255

It remains to maintain those sets dynamically. Similarly to Section 2, we use the solution computed256

by Procedure MeyersonCapped for the subsequent k steps, so that we can amortize the update-257

time bound. However, for (k, p)-clustering it is not possible to bound the cost of OPT after a few258

steps. We overcome this obstacle by updating the sets Ri more carefully. More precisely, let Rti be259

the (updated) setRi after t updates of the algorithm. The algorithm ensures the following invariant:260

Invariant 3.3. The set Rti has size O(k log2 n∗) and, with high probability, there exists i such that261

Cp(Xt,Rti) = O(1) · Cp(Xt,OPTt).262

For this, initialize Ri to be the union of the outputs of q = O(log n∗) independent executions of263

MeyersonCapped(Li, X), for Li = 2i and i = 1, ..., q. The algorithm updates these sets during264

k steps before recomputing them from scratch. In the case of a point insertion, it suffices to add the265

new point to all Ri: over k steps, this changes the cardinality by at most k while the cost remains266

the same, and therefore the two conditions are met. The case of a point deletion requires more work.267

The idea is, as in Section 2, to replace the deleted center by its closest point. However, this is not268

enough to ensure Invariant 3.3: this is taken care of by Procedure DeletePoint , which finds the269

next point in Xt that MeyersonCapped would open, if there was no constraint on the size ofR.270

We are now ready to describe our fully-dynamic algorithm for maintaining a constant-approximate271

solution to the (k, p)-clustering problem. The algorithm uses Procedures MeyersonCapped and272

DeletePoint as subroutines to build and maintain the sets Ri, and after each update calls the273

static constant-approximate algorithm to compute an approximate solution Sti on each weighted274

instance Ri (where the weight of each point p ∈ Ri corresponds to the number of points of Xt275

assigned to p by the function φi, computed in Procedures MeyersonCapped and DeletePoint.276

The algorithm chooses to maintain the solution Sti that minimizes Cp(Rti, Sti), that is, St = Sti277

for i = arg mini{Cp(Rti, Sti)}. The algorithm is formally stated in the supplementary material,278

3We assume (as in [25]) that the minimum distance in the metric is 1 and the maximum ∆ is bounded by a
polynomial in n∗. Alternatively, our bounds can be stated with log ∆ instead of logn∗.

6

Input: An integer L, a set of points X
Output: A set of centers R, an assignment φ

of point to centers, and tl the id of the last
center opened

1: Let R = ∅, x1, ..., x|X| be a random order
on the points of X

2: for all i ∈ {1, ..., |X|} do
3: if |R| < 4k · (1 + log n∗) · (22p+2 + 1)

then
4: add xi to R with probability

d(xi,R)pk(1+logn)
L

5: if |R| = 4k · (1 + log n∗) · (22p+2 + 1)
then

6: tl = i
7: end if
8: end if
9: φ(xi) = arg min

c∈R
{d(xi, c)

p}
10: end for

(a) MeyersonCapped(L,X)

Input: Integers L and tl, a set of points X and
a set of centersR

Output: UpdatedR and tl, an assignment φ of
points to centers

1: for all i ∈ {tl, ..., |X|} do
2: if No center was opened yet then
3: add xi to R with probability

d(xi,R)pk(1+logn∗)
L

4: if xi is added toR then
5: tl = i, φ(xi) = xi
6: end if
7: else {Update φ}
8: φ(xi) = arg min

z∈{φ(xi),xtl
}
{d(xi, z)

p}

9: end if
10: end for
(b) DeletePoint(L, tl, X,R). L is the value with
which we approximate Cp(X,OPT) and tl is the last
time MeyersonCapped opened a center.

together with the proof of Invariant 3.3. The next lemma, together with Invariant 3.3, shows that St279

can be used as a solution for the entire set Xt.280

Lemma 3.4. Let OPT(Rti) be the optimal solution in the weighted set Rti. Then it holds that281

Cp(Xt,OPT(Rti)) ≤ 23p−1(Cp(X,Rti) + Cp(Xt,OPTt))282

This proves the second part of Theorem 3.1: for i such that Cp(Xt,Rti) = O(1) ·Cp(Xt,OPTt), the283

solution computed on the set Rti is a good approximation of the optimal solution, and therefore the284

algorithm maintains a constant factor approximation. The bound on the running time being similar285

to the one of Section 2, we provide it in the supplementary material.286

4 Empirical Analysis287

In this section, we evaluate our algorithm for facility location experimentally. Recall that we aim to288

strike a balance between (1) overall running time, (2) the cost of the solution, (3) the total recourse.289

Our implementation follows the framework outline in Theorem 2.1. As part of the recomputation290

step between two periods, we run 5 independent executions of Meyerson’s algorithm, and selecting291

the execution with lowest cost. The updates within a period are handled by assigning to closest292

center if distance is less than f or otherwise open a new center at the point, and we simply remove293

a client if it gets deleted. We compare our algorithm against two variants of Meyerson’s algorithm.294

The first one, termed MeyersonRec, re-runs Meyerson at every single update. The second, termed295

MeyersonSingle, consists of a single execution of Meyerson for all updates, where deletions are han-296

dled by just removing the distance cost of the deleted point. Following Hubert-Chan et al. [21], we297

incorporate deletions by considering a sliding window over the data set. A point is inserted/deleted298

when it enters/exists the window, respectively.299

Data Set and Setup. We consider the following data sets, equipped with the Euclidean distance.300

• The Twitter data set [20], considered by [21], consists of 4.5 million geotagged tweets in 3 dimen-301

sions (longitude, latitude, timestamp). We restricted our experiments to the first 200K tweets.302

• The COVERTYPE data set [4], considered by [25], from the UCI repository with 581K points and303

54 dimensions. We restricted our experiments to the first 100K points and 10 dimensions (the ones304

we believed to be appropriate for an Euclidan metric).305

• The USCensus1990 data set [27] from the UCI repository has 69 dimensions and 2.5 million306

points. We restricted our experiments to the first 30K points.307

7

We restricted the number of points considered due to time constraints. Since larger data sets typ-308

ically have more complicated ground truths, we used a larger windows for them containing more309

samples. To avoid overfitting, we also adjusted the facility cost depending on the window size, i.e.310

for larger windows a lower opening cost per facility. For COVERTYPE and USCensus1990, we311

used a window size of 5000 points and a facility cost of 0.5; for Twitter, the window size was 10000312

and the facility cost 0.004. All our codes are written in Python. The experiments were executed on313

a Windows 10 machine with processor: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 3701 Mhz,314

6 cores, 12 Logical processors, and 16 GB RAM.315

(a) Running time, Twitter. (b) Cost, Twitter. (c) Recourse, Twitter.

(d) Running time, covertype. (e) Cost, covertype. (f) Recourse, covertype.

(g) Running time, USCensus1990. (h) Cost, USCensus1990. (i) Recourse, USCensus1990.

Figure 2: A comparison of the algorithms we consider in terms of running time (left column), cost
of the solution (middle column), and recourse (right column).

Results. In all three data sets we generally observed the same behavior in terms of running time,316

cost, and the number of clusters opened, see Figure 2. Our algorithm is 100 times faster than Mey-317

ersonRec. Compared to MeyersonSingle, our algorithm is slower initially. When the number of318

processed points becomes very large, the running time of MeyersonSingle deteriorates compara-319

tively, as it never removes a facility once it has been opened: the time to compute the distance to the320

set of facilities is therefore increasing (see Figure 1 in supplementary material). The cost of Mey-321

ersonSingle generally has a linear dependency on the number of updates, though the slope is very322

gentle. This is also what our algorithm takes advantage off, broadly speaking by approximating the323

curve with a step function (adapted to handle insertions and deletions). The cost of our algorithm and324

MeyersonRec is basically indistinguishable, and in certain cases our algorithm fares even slightly325

better. The recourse of our algorithm is expectedly better than MeyersonRec by a wide margin, and326

signficantly worse than MeyersonSingle.327

Finally, we ran our algorithm with multiple choices of facility cost f , and we observed that the re-328

course is almost independent of the both cost and running time of the algorithm, and only depends on329

the number of updates. This is consistent with tracking evolving data in time, where the underlying330

ground truth clustering also evolves in time.331

8

References332

[1] S. Ahmadian, A. Norouzi-Fard, O. Svensson, and J. Ward. Better guarantees for k-means333

and euclidean k-median by primal-dual algorithms. In 2017 IEEE 58th Annual Symposium on334

Foundations of Computer Science (FOCS), pages 61–72, Oct 2017.335

[2] A. Anagnostopoulos, R. Bent, E. Upfal, and P. V. Hentenryck. A simple and deterministic336

competitive algorithm for online facility location. Inf. Comput., 194(2):175–202, 2004.337

[3] O. Bachem, M. Lucic, and A. Krause. Distributed and provably good seedings for k-means in338

constant rounds. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International339

Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,340

pages 292–300, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.341

[4] J. A. Blackard, D. J. Dean, and C. W. Anderson. Covertype data set, https://archive.ics.342

uci.edu/ml/datasets/covertype.343

[5] V. Braverman, G. Frahling, H. Lang, C. Sohler, and L. F. Yang. Clustering high dimensional344

dynamic data streams. In Proceedings of the 34th International Conference on Machine Learn-345

ing, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 576–585, 2017.346

[6] V. Braverman, H. Lang, K. Levin, and M. Monemizadeh. Clustering problems on sliding347

windows. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete348

algorithms, pages 1374–1390. Society for Industrial and Applied Mathematics, 2016.349

[7] V. Braverman, A. Meyerson, R. Ostrovsky, A. Roytman, M. Shindler, and B. Tagiku. Streaming350

k-means on well-clusterable data. In SODA, pages 26–40, 2011.351

[8] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic352

information retrieval. SIAM J. Comput., 33(6):1417–1440, 2004.353

[9] M. Charikar, L. O’Callaghan, and R. Panigrahy. Better streaming algorithms for clustering354

problems. In Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing,355

STOC ’03, pages 30–39, New York, NY, USA, 2003. ACM.356

[10] M. Cygan, A. Czumaj, M. Mucha, and P. Sankowski. Online facility location with deletions.357

In 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki,358

Finland, pages 21:1–21:15, 2018.359

[11] A. Czumaj, C. Lammersen, M. Monemizadeh, and C. Sohler. (1+)-approximation for facility360

location in data streams. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium361

on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages362

1710–1728, 2013.363

[12] D. Fotakis. Incremental algorithms for facility location and k-median. Theor. Comput. Sci.,364

361(2-3):275–313, 2006.365

[13] D. Fotakis. A primal-dual algorithm for online non-uniform facility location. J. Discrete366

Algorithms, 5(1):141–148, 2007.367

[14] D. Fotakis. On the competitive ratio for online facility location. Algorithmica, 50(1):1–57,368

2008.369

[15] G. Frahling and C. Sohler. Coresets in dynamic geometric data streams. In Proceedings of the370

37th Annual ACM Symposium on Theory of Computing (STOC), pages 209–217, 2005.371

[16] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Com-372

puter Science, 38:293 – 306, 1985.373

[17] G. Goranci, M. Henzinger, and D. Leniowski. A tree structure for dynamic facility location.374

In 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki,375

Finland, pages 39:1–39:13, 2018.376

[18] A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for facility loca-377

tion. CoRR, abs/0809.2554, 2008.378

9

[19] M. Henzinger, D. Leniowski, and C. Mathieu. Dynamic clustering to minimize the sum of379

radii. In 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017,380

Vienna, Austria, pages 48:1–48:10, 2017.381

[20] T. Hubert Chan, A. Guerqin, and M. Sozio. Twitter data set, https://github.com/382

fe6Bc5R4JvLkFkSeExHM/k-center.383

[21] T. Hubert Chan, A. Guerqin, and M. Sozio. Fully dynamic k-center clustering. In Proceedings384

of the 2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France, April385

23-27, 2018, pages 579–587, 2018.386

[22] P. Indyk. Algorithms for dynamic geometric problems over data streams. In Proceedings of the387

36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004,388

pages 373–380, 2004.389

[23] C. Lammersen and C. Sohler. Facility location in dynamic geometric data streams. In Algo-390

rithms - ESA 2008, 16th Annual European Symposium, Karlsruhe, Germany, September 15-17,391

2008. Proceedings, pages 660–671, 2008.392

[24] H. Lang. Online facility location against a t-bounded adversary. In Proceedings of the Twenty-393

Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,394

USA, January 7-10, 2018, pages 1002–1014, 2018.395

[25] S. Lattanzi and S. Vassilvitskii. Consistent k-clustering. In Proceedings of the 34th Interna-396

tional Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August397

2017, pages 1975–1984, 2017.398

[26] S. Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. In-399

formation and Computation, 222:45 – 58, 2013. 38th International Colloquium on Automata,400

Languages and Programming (ICALP 2011).401

[27] C. Meek, B. Thiesson, and D. Heckerman. Us census data (1990), http://archive.ics.402

uci.edu/ml/datasets/US+Census+Data+(1990).403

[28] R. R. Mettu and C. G. Plaxton. Optimal time bounds for approximate clustering. Machine404

Learning, 56(1):35–60, Jul 2004.405

[29] A. Meyerson. Online facility location. In 42nd Annual Symposium on Foundations of Com-406

puter Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 426–431,407

2001.408

[30] A. Munteanu and C. Schwiegelshohn. Coresets-methods and history: A theoreticians design409

pattern for approximation and streaming algorithms. KI, 32(1):37–53, 2018.410

[31] M. Shindler, A. Wong, and A. Meyerson. Fast and accurate k-means for large datasets. In411

NIPS, pages 2375–2383, 2011.412

10

One-Way Trail Orientations
Anders Aamand∗1, Niklas Hjuler†1, Jacob Holm∗1, and

Eva Rotenberg‡2

1University of Copenhagen
2Technical University of Denmark

Abstract

Given a graph, does there exist an orientation of the edges such that the resulting directed
graph is strongly connected? Robbins’ theorem [Robbins, Am. Math. Monthly, 1939] asserts that
such an orientation exists if and only if the graph is 2-edge connected. A natural extension of this
problem is the following: Suppose that the edges of the graph are partitioned into trails. Can
the trails be oriented consistently such that the resulting directed graph is strongly connected?

We show that 2-edge connectivity is again a sufficient condition and we provide a linear time
algorithm for finding such an orientation.

The generalised Robbins’ theorem [Boesch, Am. Math. Monthly, 1980] for mixed multigraphs
asserts that the undirected edges of a mixed multigraph can be oriented to make the resulting
directed graph strongly connected exactly when the mixed graph is strongly connected and the
underlying graph is bridgeless.

We consider the natural extension where the undirected edges of a mixed multigraph are
partitioned into trails. It turns out that in this case the condition of the generalised Robbin’s
Theorem is not sufficient. However, we show that as long as each cut either contains at least 2
undirected edges or directed edges in both directions, there exists an orientation of the trails such
that the resulting directed graph is strongly connected. Moreover, if the condition is satisfied, we
may start by orienting an arbitrary trail in an arbitrary direction. Using this result one obtains
a very simple polynomial time algorithm for finding a strong trail orientation if it exists, both in
the undirected and the mixed setting.

∗This research is supported by Mikkel Thorup’s Advanced Grant DFF-0602-02499B from the Danish Council for
Independent Research under the Sapere Aude research career programme.
†This work is supported by the Innovation Fund Denmark through the DABAI project.
‡This research was conducted during the fourth author’s time as a PhD student at University of Copenhagen.

1

1 Introduction and motivation
Suppose that the mayor of a small town decides to make all the streets one-way such that it is
possible to get from any place to any other place without violating the orientations of the streets1.
If all the streets are initially two-way then Robbins’ theorem [10] asserts that this can be done
exactly when the corresponding graph is 2-edge connected. If, on the other hand some of the streets
were already one-way in the beginning then the generalised Robbins’ theorem by Boesch [1] states
that it can be done exactly when the corresponding “mixed” graph is strongly connected and the
underlying graph is bridgeless.

However, the proofs of both of these results assume that every street of the city corresponds to
exactly one edge in the graph. This assumption hardly holds in any city in the world and therefore
a more natural assumption is that every street corresponds to a trail (informally, a potentially
self-crossing path) in the graph and that the edges of each trail must be oriented consistently2.

In this paper we consider such graphs having their edges partitioned into trails. We prove that
the trails can be oriented to make the resulting directed graph strongly connected exactly if the
initial graph is 2-edge connected (note that this is precisely the condition of Robbins’ theorem).

Not only do we show that the strong trail orientation problem in undirected 2-edge connected
graphs always has a solution, we also provide a linear time algorithm for finding such an orientation.
In doing so, we use an interesting combination of techniques that allow us to reduce to a graph
with a number of 3-edge connected components that is linear in the number of edges. Using that
the average size of these components is constant and that we can piece together solutions for the
individual components we obtain an efficient algorithm.

Finally, we will consider the generalised Robbins’ theorem in this new setting by allowing some
edges to be oriented initially and supposing that the remaining edges are partitioned into trails.
We will show that if each cut (V1, V2) in the graph has either at least 2 undirected edges going
between V1 and V2 or at least 1 directed edge in each direction then it is possible to orient the trails
making the resulting graph strongly connected. In fact, we show that if this condition is satisfied
we may start by orienting an arbitrary trail in an arbitrary direction. Although this condition is not
necessary it does give a simple algorithm for finding a trail orientation if it exists. Indeed, initially
the graph may contain undirected edges that are forced in one direction by some cut. For finding a
trail orientation if it exists we can thus orient forced trails in the forced direction. If there are no
forced trails we orient any trail arbitrarily.

Note that in the mixed setting the feasibility depends on the trail decomposition which is not
the case for the other results. That the condition from the generalised Robbins’ theorem is not
sufficient can be seen from Figure 1.

Earlier methods Several methods have already been applied for solving orientation problems in
graphs where the goal is to make the resulting graph strongly connected.

One approach used by Robbins [10] is to use that a 2-edge connected graph has an ear-
decomposition. An ear decomposition of a graph is a partition of the set of edges into a cycle C and
paths P1, . . . , Pt such that Pi has its two endpoints but none of its internal vertices on C∪

(⋃i−1
j=1 Pj

)
.

Given the existence of an ear decomposition of a 2-edge connected graph it is easy to prove Robbins’
1The motivation for doing so is that the streets of the town are very narrow and thus it is a great hassle when two

cars unexpectedly meet.
2This version of the problem was given to us through personal communication with Professor Robert E. Tarjan.

2

Figure 1: The graph is strongly connected and the underlying graph is 2-edge connected, but
irrespective of the choice of orientation of the red trail, the graph will no longer be strongly
connected.

theorem. Indeed, any choice of consistent orientations of the paths and the cycle gives a strongly
connected graph.

A second approach introduced by Tarjan [4] gives another simple proof of Robbins’ theorem.
One can create a DFS tree in the graph rooted at a vertex v and orient all edges in the DFS tree
away from v. The remaining edges are all back edges (see [4]) and are oriented towards v. It is easily
verified that this gives a strong orientation if the graph is 2-edge connected. A similar approach was
used by Chung et al. [2] in the context of the generalized Robbins’ theorem for mixed multigraphs.

The above methods not only prove Robbins’ theorem, they also provide linear time algorithms
for finding strong orientations of undirected or mixed multigraphs.

However, none of the above methods have proven fruitful in our case. In case of the ear
decomposition we would need one that is somehow compatible with the partitioning into trails, and
this seems hard to guarantee. Similar problems appear when trying a DFS-approach. Neither does
the proof by Boesch [1] of Robbins’ theorem for mixed multigraphs generalise to prove our result.
Most importantly, the corresponding theorem would no longer be true for trail orientations as is
shown by the example in Figure 1.

Since the classical linear time algorithms rely on ear-decompositions and DFS searches, and
since these approaches do not immediately work for trail partitions, our linear time algorithm will
be a completely new approach to solving orientation problems.

Structure of the paper The structure of this paper is as follows. In section 3 we prove our
generalisation of Robbins’ theorem for undirected graphs partitioned into trails. In section 4 we
study the case of mixed graphs. Finally in section 5 we provide our linear time algorithm for trail
orientation in an undirected graph.

2 Preliminaries
Let us briefly review the concepts from graph theory that we will need.

A graph having some subset of its edges oriented is said to be a mixed graph. We will write
{u, v} for an undirected edge between u and v and (u, v) for an edge directed from u to v.

A walk in a graph is an alternating sequence of vertices and edges v0, e1, v1, e2, . . . , vk, such that
for 1 ≤ i ≤ k the edge ei has vi−1 and vi as its two endpoints. In a directed or mixed graph we
further require that either ei be undirected or directed from vi−1 to vi

A trail is a walk without repeated edges. A path is a trail without repeated vertices (except
possibly v0 = vk). Finally, a cycle is a path for which v0 = vk.

Next, a mixed multigraph G = (V, E) is called strongly connected if for each pair of vertices
u, v ∈ V there exists a walk from u to v. In case the graph is undirected this is equivalent to

3

saying that it consists of exactly one connected component. If A ⊆ V we will say that A is strongly
connected in G if for each pair of vertices u, v ∈ A there is a walk in G from u to v.

A cut or edge-cut (V1, V2) in a graph is a partition of its vertices into two non-empty subsets
V1, V2. We recall the definition of k-edge connectivity. A graph G = (V, E) is said to be k-edge
connected if and only if G′ = (V, E −X) is connected for all X ⊆ E where |X| < k. A trivially
equivalent condition is that each cut (V1, V2) in the graph has at least k edges going between V1
and V2.

Finally, if G = (V, E) is a mixed multigraph and A ⊆ V we define G/A to be the graph obtained
by contracting A to a single vertex (maintaining duplicate edges and self-loops) and G[A] to be the
subgraph of G induced by A. The following simple observation will be used repeatedly in this paper.

Observation 2.1. If G = (V, E) is k-edge connected and A ⊆ V then G/A is k-edge connected.
Also, if G is a strongly connected mixed multigraph then G/A is too.

3 Robbins Theorem Revisited
We are now ready to state and prove our generalisation of Robbins’ theorem.

Theorem 3.1. Let G = (V, E) be an undirected multigraph with E partitioned into trails. An
orientation of each trail such that the resulting directed graph is strongly connected exists if and only
if G is 2-edge connected.

We note that this theorem could also be proven using a general result from Király and Szigeti [6]
which relies on theorems by Nash-Willams [9]. However, our proof is significantly simpler (in fact
we believe that restating the theorem by Király and Szigeti and explaining the reduction would be
more cumbersome) and more suitable for constructing algorithms.

Proof. If G is not 2-edge connected, such an orientation obviously doesn’t exist, so we only need to
prove the converse. Suppose therefore that G is 2-edge connected.

Our proof is by induction on the number of edges in G. If there are no edges, the graph consists of
a single vertex, and the statement is obviously true. Assume now the statement holds for all graphs
with strictly fewer edges than G. Pick an arbitrary edge e that sits at the end of its corresponding
trail.

If G− e is 2-edge connected, then by the induction hypothesis there is a strong orientation of
G− e that respects the trails of G. Such an orientation clearly extends to the required orientation
of G.

V1 V2

u1

w1

u2

w2

e

b

V1 V2

u1

w1

u2

w2

Figure 2: A 2-edge cut and the two graphs G1 = G[V1] ∪ {{u1, w1}} and G2 = G[V2] ∪ {{u2, w2}}.
The orientations of the two new edges are obtained from the strong trail orientations of G1 and G2.

4

If G− e is not 2-edge connected, there exists a bridge b in G− e (see Figure 2). Let V1, V2 be
the two connected components of G− {e, b}, and let e = {u1, u2} and b = {w1, w2} such that for
i ∈ {1, 2}, ui, wi ∈ Vi (note that we don’t necessarily have that ui and wi are distinct for i ∈ {1, 2}).

Now for i ∈ {1, 2} construct the graph Gi = G[Vi] ∪ {{ui, wi}} (note that {ui, wi} might be
a self-loop but this causes no problems for the argument), and define the trails in Gi to be the
trails of G that are completely contained in Gi, together with a single trail combined from the
(possibly empty) partial trail of e contained in Gi and ending at ui, followed by the edge {ui, wi},
followed by the (possibly empty) partial trail of b contained in Gi starting at wi. Both G1 and G2
are 2-edge connected since they can each be obtained as contractions of G with some self-loops
deleted. Furthermore, they each have strictly fewer edges than G, so inductively each has a strong
orientation that respects the given trails. Further, we can assume that the orientations are such
that the new edges are oriented (u1, w1) and (w2, u2) by flipping the orientation of all edges in
either graph if necessary. We claim that this orientation, together with e oriented as (u1, u2) and b
oriented as (w2, w1), is the required orientation of G. To see this first note that (by our choice of
flips) this orientation respects the trails. Secondly, suppose v1 ∈ V1 and v2 ∈ V2 are arbitrary. Since
G1 is strongly connected G[V1] contains a directed path from v1 to u1. Similarly, G[V2] contains a
directed path from u2 to v2. Thus G contains a directed path from v1 to v2. A similar argument
gives a directed path from v2 to v1 and since v1 and v2 were arbitrary this proves that G is strongly
connected and our induction is complete.

The construction in the proof can be interpreted as a naive algorithm for finding the required
orientation when it exists.

Corollary 3.2. The one-way trail orientation problem on a graph with n vertices and m edges can
be solved in O(n + m · f(m, n)) time, where f(m, n) is the time per operation for fully dynamic
bridge finding (a.k.a. 2-edge connectivity).

At the time of this writing [3], this is O(n + m(log n log log n)2). In Section 5 we will provide a
less naive algorithm which runs in linear time.

4 Extension to Mixed graphs
Now we will extend our result to the case of mixed graphs. We are going to prove the following.

Theorem 4.1. Let G = (V, E) be a strongly connected mixed multigraph. Then G− e is strongly
connected for all undirected e ∈ E if and only if for any partition P of the undirected edges of G into
trails, and any T ∈ P, any orientation of T can be extended to a strong trail orientation of (G,P).

Suppose G = (V, E) is as in the theorem. We will say that e ∈ E is forced if it is undirected
and satisfies that G− e is not strongly connected. This terminology is natural as it is equivalent to
saying that there exists a cut (V1, V2) in G such that e is the only undirected edge in this cut and
such that all the directed edges go from V1 to V2. If we want an orientation of the trails making the
graph strongly connected we are clearly forced to orient e from V2 to V1.

Theorem 4.1 is a proper extension of Theorem 3.1 since if G is undirected and 2-edge connected
then no e ∈ E is forced. Furthermore, the theorem suggests a very simple polynomial time algorithm
(see Algorithm 1) for finding a strong orientation of the trails if it exists. Indeed, if the mixed graph
contains forced edges we direct the corresponding trails in the forced direction. If there are no

5

forced edges then either the graph is no longer strongly connected in which case we know that a
strong trail orientation doesn’t exist. Otherwise, we may by Theorem 4.1 orient any trail in an
arbitrary direction.

Algorithm 1: Algorithm for mixed graphs.
Input: A mixed multigraph G and a partition P of the undirected edges of G into trails.
Output: True if (G,P) has a strong trail orientation, otherwise false. If G has a bridge or is

not strongly connected, G is left unmodified. Otherwise G is modified, either to
have such a strong trail orientation, or to a forced graph that is not strongly
connected.

1 if G has a bridge or is not strongly connected then
2 return false
3 end
4 while |P| > 0 do
5 if for some undirected edge e, G− e is not strongly connected then
6 Let T ∈ P be the trail containing e.
7 if some orientation of T leaves G strongly connected then
8 Apply such an orientation of T to G
9 else

10 return false
11 end
12 else
13 Let T ∈ P be arbitrary.
14 Update G by orienting T in an arbitrary direction.
15 end
16 Remove T from P.
17 end
18 return true

For proving Theorem 4.1 we will need the following lemma.

Lemma 4.2. Let G be a directed graph, and let (A, B) be a cut with exactly one edge crossing from
A to B. Then G is strongly connected if and only if G/A and G/B are.

Proof. Strong connectivity is preserved by contractions, so if G is strongly connected then G/A
and G/B both are. For the other direction, let (a1, b1) be the edge going from A to B. As G/A
is strongly connected and (a1, b1) is the only edge going from A to B we can for any edge (b2, a2)
going from B to A find a path from b1 to b2 that stays in B. Since G/B is strongly connected, it
follows that A is strongly connected in G. By a symmetric argument, B is also strongly connected
in G and since the cut has edges in both directions (as e.g. G/A is strongly connected), G must be
strongly connected.

Now we provide the proof of Theorem 4.1.

Proof of Theorem 4.1. If there exists an undirected edge e such that G−e is not strongly connected,
then the trail T containing e can at most be directed one way since e is forced, so there is an

6

orientation of T that does not extend to a strong trail orientation of (G,P). To prove the converse
suppose G− e is strongly connected for all undirected e ∈ E.

The proof is by induction on |P|. If |P| = 0 the result is trivial. So suppose |P| ≥ 1 and that
the theorem holds for all (G′,P ′) with |P ′| < |P|.

Consider the chosen trail T ∈ P. If both orientations of T leave a graph where the condition in
the theorem is still satisfied we are home by induction. Otherwise, there must exist a cut (A, B)
of the following form: (1) T crosses the cut exactly once, (2) exactly one undirected edge from a
different undirected trail T ′ ∈ P crosses the cut and (3) every directed edge crossing the cut goes
from A to B.

A B
T

T ′
A

b
TA

Figure 3: A cut with two undirected edges and all directed edges going from A to B followed by a
contraction of B.

Now suppose there is such a cut (A, B) (see Figure 3). Consider the graph G/B and let b be the
node corresponding to B in G/B. Let PA consist of all trails in P that are completely contained in
A, together with a single trail TA combined from the (possibly empty) fragments of T and T ′, joined
at b. Since any cut in G/B corresponds to a cut in G, G/B is strongly connected and remains so
after deletion of any single undirected edge. By construction |PA| ≤ |P| − 1, so by induction any
orientation of TA in G/B extends to a strong orientation of (G/B,PA). Let G/A, a, PB and TB

be defined symmetrically, then by the same argument any orientation of TB in G/A extends to a
strong orientation of (G/A,PB). Now for any orientation of T , we can choose orientations of TA

and TB that are compatible. The result then follows by Lemma 4.2.

Theorem 4.1 gives a sufficient condition for the existence of a strong orientation and we deal
with the other cases by first orienting all forced edges. However, the generalised Robbins’ theorem
provides a simple equivalent condition, which we lack. Finding such an equivalent condition in our
setting is an essential open problem for strong trail orientations. As seen by the example of Figure 1
such a condition will necessarily have to depend on the structure of the trail partition.

5 Linear time algorithm
In this section we provide our linear time algorithm for solving the trail orientation problem in
undirected graphs. For this, we make two crucial observations. First, we show that there is an easy
linear time reduction from general graphs or multigraphs to cubic multigraphs. Second, we show
that in a cubic multigraph with n vertices, we can in linear time find and delete a set of edges that
are at the end of their trails, such that the resulting graph has Ω(n) 3-edge connected components.
We further show that we can compute the required orientation recursively from an orientation of
each 3-edge connected component together with the cactus graph of 3-edge connected components.

7

Since the average size of these components is constant, we can compute the orientations of most of
them in constant time individually and thus in linear time taken together. The rest contains at
most a constant fraction of the vertices, and so a simple geometric sum argument tells us that the
total time is also linear.

We start out by making the following reduction.

Lemma 5.1. The one-way trail problem on a 2-edge connected graph or multigraph with n vertices
and m edges, reduces in O(m + n) time to the same problem on a 2-edge connected cubic multigraph
with 2m vertices and 3m edges.

Proof. Cyclically order the edges adjacent to each vertex such that two edges that are adjacent
on the same trail are consecutive in the order. Replace each single vertex v with a cycle of length
deg(v), with each vertex of the new cycle inheriting a corresponding neighbour of v such that the
order of the vertices on the cycle corresponds to the cyclic ordering (see Figure 4). Note that for a
vertex of degree 2, this creates a pair of parallel edges, so the result may be a multigraph. By the
choice of cyclic ordering, we can make the cycle-edge between the two vertices on the same trail
belong to that trail. The rest of the cycle edges form new length 1 trails. Clearly the new graph
is also 2-edge connected so by Theorem 3.1 it has a strong trail orientation, and any strong trail
orientation on this graph translates to a strong trail orientation of the original graph. The new
graph has exactly 2m vertices and 3m edges, and is constructed in O(m + n) time.

v

Figure 4: A node of degree 5 turns into a cycle of length 5.

Recall now that a multigraph C is called a cactus if it is connected and each edge is contained in
at most one cycle. If G is any connected graph we let C1, . . . , Ck be its 3-edge connected components.
It is well known that if we contract each of these we obtain a cactus graph. For a proof of this result
see section 2.3.5 of [8]. As the cuts in a contracted graph are also cuts in the original graph we have
that if G is 2-edge connected then the cactus graph is 2-edge connected. The edges of the cactus
are exactly the edges of G which are part of a 2-edge cut. We will call these edges 2-edge critical.

It is easy to check that if a cactus has m edges and n vertices then m ≤ 2(n− 1). We will be
using this result in the proof of the following lemma.

8

Lemma 5.2. Let G = (V, E) be a cubic 2-edge connected multigraph, let X ⊆ E, and let F ⊆ E
with F ⊇ E \X minimal (w.r.t inclusion) such that H = (V, F) is 2-edge connected. Then H has at
least 2

5 |X| distinct 3-edge connected components.

Proof. Let Xdel = X \ F be the set of edges deleted from G to obtain H, and let Xkeep = X \Xdel
be the remaining edges in X.

By minimality of H there are at least |Xkeep| 2-edge-critical edges in H i.e. edges of the
corresponding cactus, and thus, if |Xkeep| ≥ 4

5 |X|, there are at least 1
2 |Xkeep|+1 ≥ 2

5 |X|+1 distinct
3-edge connected components.

If |Xkeep| ≤ 4
5 |X| then |Xdel| ≥ 1

5 |X|, and since G is cubic and the removal of each edge creates
two vertices of degree 2 we must have that H has at least 2 |Xdel| ≥ 2

5 |X| distinct 3-edge connected
components.

Lemma 5.3. Let G = (V, E) be a connected cubic multigraph with E partitioned into trails. Then
G has a spanning tree that contains all edges that are not at the end of their trail.

Proof. Let F be the set of edges that are not at the end of their trail. Since G is cubic, the graph
(V, F) is a collection of vertex-disjoint paths, and in particular it is acyclic. Since G is connected, F
can be extended to a spanning tree.

Note that we can find this spanning tree in linear time e.g. by contracting all edges internal to a
trail, finding a spanning tree of the resulting graph, and adding the internal trail edges to the edges
of this spanning tree.

Lemma 5.4. Let G = (V, E) be a cubic 2-edge connected multigraph with E partitioned into trails.
Let T be a spanning tree of G containing all edges that are not at the end of their trail. Let H be
a minimal subgraph of G (w.r.t inclusion) that contains T and is 2-edge connected. Then for any
k ≥ 5, less than 4

5
k

k−1 |V | of the vertices in H are in a 3-edge connected component with at least k
vertices.

Proof. Let X be the set of edges that are not in T . Since G is cubic, |X| = 1
2 |V |+ 1. By Lemma 5.2

H has at least 2
5 |X| > 1

5 |V | 3-edge connected components. Each such component contains at
least one vertex, so the total number of vertices in components of size at least k is less than

k
k−1

(
|V | − 1

5 |V |
)

= 4
5

k
k−1 |V |.

Definition 5.5. Let C be a 3-edge connected component of some 2-edge connected graph H, whose
edges are partitioned into trails. Define ΓH(C) to be the 3-edge connected graph obtained from C
by inserting a new edge {e1, f1} for each min-cut {e, f} where e = {e1, e2} and f = {f1, f2} and
e1, f1 ∈ C. Define the corresponding partition of the edges of ΓH(C) into trails by taking every
trail that is completely contained in C, together with new trails combined from the fragments of
the trails that were broken by the min-cuts together with the new edges that replaced them. See
Figure 5.

At this point the idea of the algorithm can be explained. We remove as many of the edges
that sit at the end of their trails as possible, while maintaining that the graph is 2-edge connected.
Lemma 5.4 guarantees that we obtain a graph H with Ω(|V |) many 3-edge connected components
of size O(1). We solve the problem for each ΓH(C) for every 3-edge connected component. Finally,
we combine the solutions for the different components like in the proof of Theorem 3.1.

9

C ΓH(C)

Figure 5: The 3-edge connected components of a 2-edge connected graph. Notice that every edge
leaving a 3-edge connected component C becomes part of a cycle if all 3-edge components are
contracted. The right hand side shows ΓH(C) where C is the component in the middle.

Theorem 5.6. The one-way trail orientation problem can be solved in O(m+n) time on any 2-edge
connected undirected graph or multigraph with n vertices and m edges.

Proof. By Lemma 5.1, we can assume the graph is cubic. For the algorithm we will use two
subroutines. First of all, when we have found a minimum spanning tree T containing the edges that
are not on the end of their trail we can use the algorithm of Kelsen et al. [5] to, in linear time, find
a minimal (w.r.t. inclusion) subgraph H of G that contains T and is 2-edge connected. Secondly,
we will use the algorithm by Mehlhorn et al. [7] to, in linear time, build the cactus graph of 3-edge
connected components. The algorithm runs as follows:

1. Construct a spanning tree T of G that contains all edges that are not at the end of their trail.

2. Construct a minimal subgraph H of G that contains T and is 2-edge connected3.

3. Find the cactus of 3-edge connected components of4 H.

4. For each 3-edge connected component Ci, construct ΓH(Ci).

5. Recursively compute an orientation for each5 ΓH(Ci).

6. Combine the orientations from each component to a strong trail orientation of H. A such is
also a strong trail orientation of G.

First we will show correctness and then we will determine the running time.
Recall that we can flip the orientation in each ΓH(Ci) and still obtain a strongly connected

graph respecting the trails in ΓH(Ci). The way we construct the orientation of the edges of G is by
flipping the orientation of each ΓH(Ci) in such a way that each cycle in the cactus graph becomes a

3See Kelsen [5].
4See Mehlhorn [7].
5Note that ΓH(Ci) is cubic unless it consists of exactly one node. In this case however we don’t need to do anything.

10

directed cycle6. This can be done exactly because no edge of the cactus is contained in two cycles.
By construction this orientation respects the trails so we need to argue that it gives a strongly
connected graph.

For showing that the resulting graph is strongly connected, consider the graph in which every
3-edge connected component is contracted to a single point. This is exactly the cactus of 3-edge
connected component of G which is strongly connected as the cycles of the cactus graph have
become directed cycles. Now assume inductively that we have uncontracted some of the 3-edge
connected components obtaining a graph G1 which is strongly connected. We then uncontract
another component C (see Figure 6) and obtain a new graph G2 which we will show is strongly
connected. If u, v ∈ C, then since ΓH(C) is strongly connected there is a path from u to v in ΓH(C).
If this path only contains edges which are edges of C it will also exist in G2. If the path uses one of
the added (now oriented) edges (e1, f1), it is because there are edges (e1, e2) and (f2, f1) forming a
cut and thus being part of a cycle in the cactus. In this case we use edge (e1, e2) to leave component
C and then go from e2 back to component C which is possible since G1 was strongly connected.
When we get back to the component C we must arrive at f1 since otherwise there would be two
cycles in the cactus containing the edge (e1, e2). Hence we succeeded in disposing of the edge (e1, f1)
with a directed path in G2. This argument can be used for any of the edges of ΓH(C) that are not
in C and thus C is strongly connected in G2. Since G1 was strongly connected this suffices to show
that G2 is strongly connected. By induction this implies that after uncontracting all components
the resulting graph is strongly connected.

C

C

Figure 6: Before and after uncontracting component C. The blue edges are the edges of the cactus
i.e. the 2-edge critical edges of H. The red edges are the ones obtained from the 2-edge cuts of H
as described in the construction of the ΓH(Ci).

Now for the running time. By Lemma 5.4 each level of recursion reduces the number of vertices
in “large” components by a constant fraction, for instance for k = 10 we reduce the number of
vertices in components of size at least 10 by a factor of 8

9 . Let f(n) be the worst case running time
with n nodes for a cubic graph, and pick c large enough such that cn is larger than the time it takes
to go through steps 1-4 and 6 as well as computing the orientations in the “small” components.
This includes the linear time needed to construct the new set of trails (in 4), and the linear time to

6In practice this is done by making a DFS (or any other search tree one likes) of the cactus and repeatedly orienting
each component in a way consistent with the previous ones.

11

reassemble the directed trails (in 6). Let a1, . . . , ak be the number of vertices in the “large” 3-edge
connected components. Then ∑i ai ≤ 8n

9 and

f(n) ≤ cn +
∑

i

f(ai).

Inductively, we may assume that f(ai) ≤ 9cn and thus obtain

f(n) ≤ cn +
∑

i

f(ai) ≤ cn +
∑

i

9cai = cn + 8cn = 9cn

proving that f(n) ≤ 9cn for all n.

Algorithm 2: Linear time algorithm for cubic graphs.
Input: A 2-edge connected undirected cubic multigraph G and a partition P of the edges of

G into trails.
Output: G is modified to a strong trail orientation of (G,P).

1 Construct a spanning tree T of G that contains all edges that are not at the end of their trail.
2 Construct a minimal subgraph H of G that contains T and is 2-edge connected.
3 Find the cactus C of 3-edge connected components of H.
4 for each 3-edge connected component Ci in C in DFS preorder do
5 Construct Gi = ΓH(Ci).
6 Recursively compute an orientation for Gi.
7 if the orientation of Gi is not compatible with its DFS parent then
8 Flip orientation of Gi

9 end
10 end
11 for each edge e deleted from G to create H do
12 if no edge on the trail of e has been oriented yet then
13 Pick an arbitrary orientation for e.
14 else
15 Set the orientation of e to follow the trail.
16 end
17 end

6 Open problems
We here mention two problems concerning trail orientations which remain open.

First of all, our linear time algorithm for finding trail orientations only works for undirected
graphs and it doesn’t seem to generalise to the trail orientation problem for mixed graphs. It would
be interesting to know whether there also exists a linear time algorithm working for mixed graphs.
If so it would complete the picture of how fast an algorithm we can obtain for any variant of the
trail orientation problem.

Secondly, our sufficient condition for when it is possible to solve the trail orientation problem
for mixed multigraphs is clearly not necessary. It would be interesting to know whether there is a

12

simple necessary and sufficient condition like there is in the undirected case. Since in the mixed
case the answer to the problem actually depends on the given trail decomposition and not just
on the structure of the mixed graph it is harder to provide such a condition. One can however
give the following condition. It is possible to orient the trails making the resulting graph strongly
connected if and only if when we repeatedly direct the forced trails end up with a graph satisfying
our condition in Theorem 4.1. This condition is not simple and is not easy to check directly. Is
there a more natural condition?

13

References
[1] Frank Boesch and Ralph Tindell. Robbins’s theorem for mixed multigraphs. The American

Mathematical Monthly, 87(9):716–719, 1980.

[2] Fan R. K. Chung, Michael R. Garey, and Robert E. Tarjan. Strongly connected orientations of
mixed multigraphs. Networks, 15(4):477–484, 1985.

[3] Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Dynamic bridge-finding in Õ(log2 n)
amortized time. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’18, pages 35–52, 2018.

[4] John Hopcroft and Robert Tarjan. Algorithm 447: Efficient algorithms for graph manipulation.
Commun. ACM, 16(6):372–378, June 1973.

[5] Pierre Kelsen and Vijaya Ramachandran. On finding minimal 2-connected subgraphs. In
Proceedings of the Second Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms,
28-30 January 1991, San Francisco, California., pages 178–187, 1991.

[6] Zoltán Király and Zoltán Szigeti. Simultaneous well-balanced orientations of graphs. J. Comb.
Theory, Ser. B, 96(5):684–692, 2006.

[7] Kurt Mehlhorn, Adrian Neumann, and Jens M. Schmidt. Certifying 3-edge-connectivity.
Algorithmica, 77(2):309–335, 2017.

[8] Hiroshi Nagamochi and Toshihide Ibaraki. Algorithmic Aspects of Graph Connectivity. Cam-
bridge University Press, New York, NY, USA, 1 edition, 2008.

[9] J. A. Nash-Willams. On orientations, connectivity and odd-vertex-pairings in finite graphs.
Canad. J. Math., 12(5):555–567, 1960.

[10] H. E. Robbins. A theorem on graphs, with an application to a problem of traffic control. The
American Mathematical Monthly, 46(5):281–283, 1939.

14

0.9 appendix 121

0.9 appendix

Danish:

• Amtsavisen.dk

• Aoib.dk

• AOH.dk

• Avisen.dk

• Berlingske.dk

• BT.dk

• Dagbladet-Holstebro-Struer.dk

• Dagbladet Køge

• DagbladetRingSkjern.dk

• Dagbladet Ringsted

• Dagbladet Roskilde

• Dit-Ringsted.dk

• Dit-Soroe.dk

• dknyt.dk

• DR.dk

• Ekstrabladet.dk

• Enyt.dk

• Flensborg Avis

• Folkebladetlemvig.dk

• Folketidende.dk

• Fredericia Dagblad

• Fyens.dk

• Headtopics.com

• Herning Folkeblad

• HSFO.dk

• Information.dk

• Jyllands-Posten.dk

122 Bibliography

• Kristeligt-Dagblad.dk

• kortenyheder.dk

• LocalEyes.dk

• Lokalavisen.dk

• Lolland-Falsters Folketidende

• MJA.dk

• News.dk

• Nordvestnyt.dk

• Nordvestnyt Holbæk/Odsherred

• Nordvestnyt Kalundborg

• Politiken.dk

• Radio24Syv

• Radioglobus.dk

• Radiovictoria.dk

• Rbot.dk

• Ritzau

• Skive Folkeblad

• SN.dk;

• Stiften.dk

• Tidende.dk

• TV2.dk

• VejleAmtsFolkeblad.dk

• Viborg-folkeblad.dk

• Weekendavisen

Foreign

• Aiois.com

• Acunn.com

• Aksam.com.tr

• Airbeit

0.9 appendix 123

• Atmarkit.co.jp

• Atyun.com

• Automotive Technology for Today

• Bolssmania.com

• BXmart.com

• Business Standard

• Chinavoa.com

• Cloud-finder.ch

• Cognilytica

• Cvclavoz.com

• Verdict.co.uk

• Indianexpress.com

• Fossbytes.com

• Datainnovation.org

• De Ingenieur

• Deuxieme.nl

• Devdiscourse.com

• Digitaljournal.com

• Distinguished Cybersecurity

• Drdouggreen.com

• Ecnmag.com

• Edexlive.com

• El Diario Vasco

• EL DISPENSADOR

• Elreporte.com.uy

• Engsincero.com.br

• Emol.com

• Engineering Evil

• Engineering360

124 Bibliography

• Eurasiaview.com

• EurekAlert

• Europa Press

• Expresscomputer.in

• Financialexpress.com

• Flipboard.com

• Fossbytes.com

• Galileu

• Houseofbots.com

• Hyper.ai

• Ictk.ch

• Indian Strategic Studies

• Indiatoday.in

• Infomance.com

• Innovatorsmag.com

• Innovation Toronto

• Iot.ng

• Jimuenglish.com

• La Nacion

• La Vanguardia

• Lecano.com

• Medkit.info

• Megawhiz.com

• Milliyet.com.tr

• Mimikama.at

• Muckrack.com

• Mundomaistech.com.br

• Nazology.net

• Newslocker

0.9 appendix 125

• Neurosciencenews.com

• Newslettercollector.com

• New.qq.com

• News.nicovideo.jp

• Nice.hu

• Njus.me

• Odatv.com

• Parallelstate.com

• Pentoz.com

• Phys.org

• Pickthenews.com

• Popyard.com

• Pressetext.com

• Reddit.com

• Refugo.hol.es

• Sanal Kripto

• Science Daily

• Sözcü

• Science Wiki

• Sciencecodex.com

• Scienmag

• Scientific American

• Scientific India

• Serendeputy

• Sinirsizbilim.com

• Sputnik

• T.cj.sina.com.cn

• Tech Check News

• Techristic.com

126 Bibliography

• Technologynetworks.com

• Theweek.in

• Techcapon

• Technochoudhary.com

• The Better Parent

• Thelatest.com

• Timesnownews.com

• Tladatatech.com

• Todo Tech 2.0

• Topocaltalk.com

• Urfanatik.com

• Wallstreet-online.de

• Worldpronews.com

• Zeus News

• 20minutos.es

• 15minutenews.com

	0.1 Abstract
	0.2 Dansk Résumé
	0.3 Preface
	0.4 Introduction
	0.5 Algorithms
	0.5.1 Introduction to Algorithms
	0.5.2 One-way trail orientations DBLP:conf/icalp/AamandHHR18
	0.5.3 Dominating Sets and Connected Dominating Sets in Dynamic Graphs hjuleretal:LIPIcs:2019:10274
	0.5.4 Fully Dynamic Consistent Facility Location clustering

	0.6 Machine Learning and Data Analysis
	0.6.1 Introduction
	0.6.2 Ghost Writing Detection in High schools ghost
	0.6.3 Investigating Writing Style Development in High School edm19
	0.6.4 Sequence Modelling For Analyzing Student Interaction with Educational Systems edm17
	0.6.5 Tracking Behavioral Patterns among Students in an Online Educational System edm18

	0.7 Company Applications
	0.7.1 Introduction
	0.7.2 DABAI: A data driven project for e Learning in Denmark ECEL

	0.8 Conclusion
	0.9 Appendix

