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Abstract

Emphysema is a pathology in chronic obstructive pulmonary disease (COPD), a leading cause of death world-
wide. Emphysema is characterized by destruction of lung tissue leading to reduced capacity for gas exchange in
the lungs.

The extent and appearance of emphysema can be assessed in CT scans of the lungs. Current recommen-
dations for assessing emphysema in CT scans is to use a combination of densitometry and visual assessment.
Densitometry is a quantitative method that estimates the amount of lung tissue affected by emphysema, by
measuring the amount of voxels in the CT scans with attenuation below a certain threshold. Visual assessment
of emphysema by experts provides an assessment of emphysema extent and patterns that has been found to
be useful for lung cancer risk prediction. Current densitometry methods are vulnerable to variation in scan-
ners, scan protocols and software implementations, and cannot characterize emphysema patterns. On the other
hand, visual assessment requires expert knowledge, is difficult, time-consuming and commonly only provides
semi-quantitative estimates of emphysema extent.

Machine learning methods that learn from visual assessment could combine the benefits of densitometry and
visual assessment, to provide fully automated assessment of emphysema extent and patterns.

One of the main issues when applying supervised machine learning in medical image analysis is obtaining
labels. Not only can the labeling procedure require medical expertise and be time-consuming and costly, it can
also be very difficult, even for experts, to provide accurate labels.

This thesis investigates three approaches to reducing the need for labels when training machine learning
methods to assess emphysema: weakly supervised learning, crowdsourcing and learning from visual similarity.

Weakly supervised machine learning aims at learning from global labels instead of local labels, for example
learning from image labels instead of pixel labels. By learning from weak labels, we can reduce the need
for medical expertise, reduce the cost of labeling and improve label quality because assigning global labels
is generally easier and less costly than assigning local labels. The thesis investigates emphysema detection
and quantification within two weakly supervised learning settings, multiple instance learning, where labels are
binary, and learning with label proportions, where labels are proportions.

Crowdsourcing aims at reducing labeling costs by replacing expert annotators with non-experts. Assessing
emphysema in a volumetric CT scan is a complex task requiring expert knowledge and experience. Adapting the
task to the crowd setting could enable crowdsourced labels to be used when training machine learning methods.
Thereby, allowing experts to focus on interpreting and validating trained models. The thesis provides a survey
of how crowdsourcing is used in medical imaging, as well as an investigation into how emphysema assessment
can be framed as a task that can be solved by non-expert crowd workers.

Learning from visual similarity aims at learning representations from relative comparisons of images. One
of the reasons that labels are costly and require expertise, is that labels are often obtained for a specific task and
new labels need to be acquired for additional tasks. Visual similarity assessments could provide a more general
characterization of visual content in images, than labels obtained for a specific task. By learning from visual
similarity it is possible that more general representations can be learned. Additionally, focusing on similarity
could allow non-experts to replace experts, since comparing visual similarity requires less expertise than cate-
gorizing pathology patterns. The thesis investigates how visual similarity assessments can be obtained and used
for training convolutional neural networks to learn representations of chest CT scans.
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Resumé

Emfysem er en patologi i kronisk obstruktiv lungesygdom (KOL), en førende dødsårsag på verdensplan. Emfy-
sem er karakteriseret ved ødelæggelse af lungevæv der medfører reduceret kapacitet til gasudveksling i lungerne.

Omfanget og udseendet af emfysem kan bedømmes fra CT skanninger af lungerne. De nuværende anbe-
falinger for bedømmelse af emfysem fra CT skanninger er at benytte en kombination af densitometri og visuel
bedømmelse. Densitometri er en kvantitativ metode der estimerer omfanget af emfysem, ved at målet mængden
af voxels i CT skanningerne med værdier under en vis tærskel. Visuel bedømmelse af emfysem af eksperter,
giver bedømmelse af emfysem omfang og mønstre, der har vist sig at være brugbart ved lunge cancer prognoser,
Nuværende densitometri metoder er sårbare overfor variation i skannere, skan protokoller og software imple-
menteringer, og kan ikke karakterisere emfysem mønstre. På den anden side kræver visuel bedømmelse tid og
ekspertviden, og giver oftest kun semi-kvantitative estimater af emfysem omfang.

Maskinlæringsmetoder der lærer fra visuel bedømmelse, kan kombinere fordelene ved densitometri og vi-
suel bedømmelse til at give en automatisk bedømmelse af emfysem omfang og mønstre. En af hoved udfor-
dringerne ved at anvende maskinlæring til medicinsk billedanalyse er at få annoteringer. Annoterings arbejdet
kræver ikke kun ekspertviden, tid og penge. Det kan også være meget vanskeligt, selv for eksperter, at lave
nøjagtige annoteringer. Denne afhandling undersøger tre tilgange til at mindske behovet for annoteringer når
maskinlæringsmetoder trænes til at bedømme emfysem: læring fra svage annoteringer, crowdsourcing og læring
fra visuel lighed.

Læring fra svage annoteringer sigter mod at lære fra globale annoteringer istedet for fra lokale annoteringer.
F. eks fra billedeannoteringer istedet for fra pixel annoteringer. Ved at lære fra svage annoteringer mindskes både
pris og behovet for medicinsk ekspertise, samtidigt med at kvaliteten af annoteringerne øges fordi det generelt
er nemmere at lave globale annoteringer end lokale annoteringer. Denne afhandling undersøger detektering og
kvantificering af emfysem indenfor to varianter af læring fra svage annoteringer, multiple instance learning, hvor
annoteringer er binære, og learning with label proportions, hvor annoteringer er proportioner.

Crowdsourcing sigter mod at reducere annoterings omkostninger ved at erstatte eksperter med uerfarne
bedømmere. Det er en kompleks opgave, der kræver ekspert viden og erfaring, at bedømme emfysem i en
volumetrisk CT skanninger. Ved at tilpasse opgaven er det muligt at bruge crowdsourcing til at få annoteringer
der kan bruges til at træne maskinlæringsmetoder. Derved kan eksperterne fokuserer på at fortolke og validere de
trænede modeler. Denne afhandling undersøger hvordan crowdsourcing bliver brugt til medicinsk billedanalyse,
samt hvordan bedømmelse af emfysem kan tilpasses så crowdsourcing kan benyttes til at få annoteringer.

Læring fra visuel lighed sigter mod at lære repræsentationer fra relative sammenligninger af billeder. En
af grundene til at annoteringer er dyre og kræver ekspert viden, er at annoteringer ofte fokusere på et bestemt
problem og nye annoteringer er nødvendige for hvert nyt problem. Bedømmelse af visuel lighed kan give en
mere generel karakteristik af det visuelle indhold i billeder, end annoteringer fokuseret på et bestemt problem.
Ved at lære fra visuel lighed er det muligt at mere generelle repræsentationer kan læres. Derudover, kan det gøre
det muligt at erstatte eksperter med uerfarne bedømmere, eftersom det kræver mindre ekspertise at bedømme
visuel lighed end at kategorisere patologiske mønstre. Denne afhandling undersøger hvordan visuel lighed
kan bedømmes og bruges til at træne convolutional neural networks til at lære repræsentationer af lunge CT
skanninger.
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1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a common, preventable and treatable dis-
ease that is characterized by persistent respiratory symptoms and airflow limitation that is due to
airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles
or gases. The chronic airflow limitation that is characteristic of COPD is caused by a mixture of
small airways disease (e.g., obstructive bronchiolitis) and parenchymal destruction (emphysema),
the relative contributions of which vary from person to person.

Global Initiative for Chronic Obstructive Lung Disease, 2019 report [14]

The interplay between small airways disease, emphysema and factors such as genetics and blood biomarkers
have been the focus of several large investigations [39, 8], with the aim of understanding how COPD develops
in and impacts individuals. Several large lung cancer screening trials [44, 38, 25] have investigated CT-based
lung cancer screening and found emphysema to be predictive of lung cancer risk. This increased focus on
CT based analysis of emphysema has likely been a main contributing factor in recent years’ increased interest
in automating assessment of emphysema, primarily through the use of machine learning (ML) based methods.
This thesis contributes to this line of research by investigating how machine learning methods can learn to assess
emphysema.

Section 1.1 provides a brief overview of lung anatomy, emphysema and CT imaging of the lungs. Section 1.2
provides an overview of current practice for assessing emphysema, as well as outlining recent advances within
machine learning based assessment. Section 2 provides an outline of the thesis and highlights the contributions.
Sections 3,4 and 5 contain manuscripts included in the thesis. Section 6 discusses the contributions as well as
perspectives for the future.

1.1 Lungs, emphysema and X-ray computed tomography

The following three paragraphs are largely based on Tortora and Derrickson [46], Flower [10] and Lynch et al.
[22].

The human respiratory system is responsible for exchanging oxygen in the air with carbon-dioxide in the
blood. Inhaled oxygen-rich air is spread throughout the lungs through the airway tree. Starting at the trachea, the
airway branches multiple times, eventually culminating at the alveoli where the gas exchange occurs. Finally,
the oxygen-poor air is exhaled. Emphysema is a pathology characterized by the destruction of alveoli. When air
is inhaled it will also spread to areas with emphysema, however little or no gas exchange occurs in the affected
regions.

X-ray computed tomography (CT) can be used for assessing the appearance, severity and distribution of
emphysema in the lungs. When an X-ray passes through an object some of the energy of the ray is attenuated
(absorbed and reflected) by the object. By measuring the amount of energy that is not attenuated, it is possible
to measure the density of the object. Imagine a setup with an X-ray source, an object of interest and a detector
on a line. Rotating the source and detector around the object forms a plane. From attenuation measurements 180
degrees around the object it is possible to compute a reconstruction of the part of the object intersected by the
plane. By computing the reconstructing in small increments along the axis perpendicular to the plane, we obtain
a tomographic reconstruction showing the 3D distribution of densities in the object. Such a reconstruction is
referred to as a CT scan. Slices from a chest CT scan are shown in Figure 1. Medical CT scans are normalized
with the Hounsfield unit (HU) scale such that the value of water is 0HU and the value of air is -1000HU. This
normalization allows comparisons across subjects, scanners, and so forth.

Three main sub-types of emphysema have been defined based on the appearance and distribution of emphy-
sema in CT. Centrilobular emphysema, characterized by areas of low attenuation surrounded by normal lung
tissue; paraseptal emphysema, characterized by clearly defined areas of low attenuation at the boundary of the
lungs and lobes; and panlobular emphysema, characterized by a more uniform decrease in attenuation across the
affected area. In severe cases, the sub-types have similar appearance with large areas of the lung completely de-
stroyed. Examples of centrilobular and paraseptal emphysema are shown in Figure 2. The data used in this thesis

5



Figure 1: Examples of axial slices from a chest CT scans with a resolution of 0.78mm × 0.78mm. Moving from
the stomach towards the head from top left to bottom right. The lung to the left in the images is the right lung.
A typical chest CT scan with 1mm slice spacing contains around 300 slices.

is from the Danish Lung Cancer Screening Trial (DLCST) [38], where the prevalence of panlobular emphysema
is very low. The panlobular emphysema pattern is thus not of particular interest in this thesis.

1.2 Assessment of emphysema

The current recommendation for assessing emphysema in CT scans of the lung is to use a combination of
quantitative measures of lung density and visual assessment [22]. Recently, several machine learning methods
have been proposed for quantifying and characterizing emphysema and COPD based on CT scans. Despite
promising results, these methods have yet to impact clinical practice.

1.2.1 Density based assessment

Quantitative measures of lung density are based on the observation that air-filled areas in the lung will appear as
areas of low attenuation in CT images. Early work by [26] showed that measuring the percentage of lung area
with density below a fixed threshold (-910HU) correlated well with pathological findings in resected lung tissue.
Later work by [13], however, found that only a threshold of -950HU resulted in measurements not significantly
different from findings in resected lung tissue. Deciding which fixed threshold to use is challenging due to
differences in acquisition and populations between studies.

An alternative to fixed thresholding is to consider the histogram of attenuation values in each scan. PD15,
where the value at the 15’th percentile is used, was found to be the most sensitive when measuring progression
in subjects with alpha 1-antitrypsin deficiency [37].

Regardless of method, when using density-based measures of emphysema it is necessary to consider the
impact of variation in CT scans. There are many sources of variation in CT scans. Differences in scanners and
protocols, inspiration level, study populations [16] and software implementations [49] all contribute to variation
in CT scans and derived quantitative measurements. Some of the variation can be reduced by careful normal-
ization and standardization [40, 21, 11]. However, even when variation is accounted for, density based mea-
surements cannot currently characterize the appearance of emphysema patterns. The difference in appearance
of centrilobular and paraseptal emphysema can be striking, and there is evidence that paraseptal emphysema is
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Figure 2: Appearance of emphysema in CT lung scans. Dark regions have low attenuation (black is -1000HU)
and bright region have high attenuation. Arrows indicate some areas with emphysema. Top: Centrilobular
emphysema. Bottom: Paraseptal emphysema.
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less associated with symptoms than centrilobular emphysema [22]. Further, panlobular emphysema primarily
occurs in subjects with a genetic disorder causing alpha 1-antitrypsin deficiency, indicating that the appearance
of emphysema patterns is important for patient-specific prognosis and treatment.

1.2.2 Visual assessment

Visual assessment of emphysema dates back to the early studies of CT lung imaging. As technology has changed
so have protocols for visual assessment, from grid-based assessment of hard-copy printouts in the eighties [26] to
region based assessment using interactive views today [7]. The main benefit of visual assessment is a combined
assessment of appearance, distribution and severity of emphysema that is lacking from density-based methods.
Additionally, visual similarity is less affected by differences in scanners and inspiration level. There is indication
that visual assessment of emphysema can improve lung cancer risk prediction [51] and overall mortality risk
prediction [23] over density based assessment. The main limitations of visual assessment are cost and substantial
inter-rater variation [7]. Additionally, the common practice of using a six-point scale for scoring emphysema
extent is relatively coarse compared to density based assessment.

1.2.3 Machine learning based assessment

By learning from visually assessed emphysema, machine learning could overcome the limitations of visual
assessment and provide a characterization of emphysema patterns lacking from density based methods. Machine
learning in medical imaging is rapidly evolving. New methods and variations are constantly proposed and
applied to a variety of tasks, including COPD and emphysema assessment. This section is intended as an
overview of trends in the context of COPD and emphysema, not as a comprehensive review of machine learning
based assessment of COPD and emphysema.

The majority of machine learning methods for assessing emphysema are based on supervised learning using
visually assessed emphysema presence, extent or patterns as labels. The supervised machine learning methods
can be grouped into weak supervision and strong supervision. There are degrees of weak and strong supervision.
In this context we consider strong supervision to be supervision at pixel or patch level. Pixel level supervision
refers to cases where areas containing a single pattern are contoured. We consider weak supervision to be
supervision at image or region level. Region level supervision refers to cases where anatomically defined lung
regions are assigned a single label, as is common in visual assessment of emphysema.

Several strongly supervised methods have been proposed. Sørensen et al. extracted 2D patches from the
lungs and assigned each patch one of four emphysema labels. A k-nearest-neighbor classifier was then used to
predict emphysema categories for new patches using a histogram representation of patches. A similar approach
was used in [4] with six emphysema categories and a large set of images. More recently, CNN based methods
have been trained to detect emphysema as one of several interstitial lung disease patterns [1, 12, 48]. These three
studies used data from [9] where experts have annotated lung tissue patterns by tracing the contours of affected
regions.

A common approach to weakly supervised learning is multiple instance learning (MIL). In MIL we have
unlabeled samples grouped into labeled bags. When working with images, the common approach is to sample
patches from images and view patches from the same image as a bag of samples. In the standard MIL setting, bag
labels are binary and indicate that at least one sample satisfy the bag label. However, it is increasingly common
to consider other relations between instances and bag labels, for example that a bag label is the majority of
instance labels. In the context of COPD, bag labels could be COPD stage.

MIL approaches have been used for texture-based COPD prediction in [42, 5], where patches are represented
by scale-space texture descriptors and MIL models trained to predict COPD diagnosis. More recently, González
et al. proposed a CNN model for predicting COPD diagnosis as well as acute respiratory disease events. Four
slices were extracted at predefined anatomical landmarks to reduce the dimensionality of the CT scan and allow
the network to focus on the most important parts of the images. A variation on this approach was proposed in
[17] where the resulting COPD predictions were shown to be useful for lung cancer risk prediction.
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The traditional MIL setting can be extended in various ways, for example learning with label proportions
(LLP) where bag labels are proportions indicating how many samples satisfy the label. When learning from
emphysema extent scores, the LLP setting matches the learning task better than MIL methods and can potentially
provide better results by improved utilization of label information.

MIL and LLP methods have also been used for emphysema classification and quantification. Hofmanninger
and Langs proposed to learn so called “semantic profiles” linking super-voxel texture descriptors to image level
labels indicating presence of five interstitial lung disease abnormalities, including emphysema. The results
showed good correspondence between voxel labels predicted from semantic profiles and expert defined voxel
classifications. More recently, several CNN methods have been proposed to predict visually assessed emphy-
sema presence [17] and extent [3, 19]. Bortsova et al. showed that learning from emphysema extent scores (LLP)
improved quantification and localization over learning from emphysema presence (MIL) alone.

A few approaches use unsupervised learning to search for patterns that can characterize emphysema. Häme
et al. propose to use a two stage algorithm. Firstly, texture prototypes are generated by locating key-points using
a standard blob detector (difference of Gaussians) and clustering texture descriptors extracted at the key points.
Secondly, texture prototypes are grouped based on spatial proximity in lungs to obtain lung texture patterns.
This idea is extended in [52], where spatial features are integrated to account for variation in emphysema across
lung regions. Binder et al. propose to jointly model patient clusters and disease subtypes using a generative
model. Explicitly modeling patient clusters allows the model to learn distinct patterns that capture a large part
of the variation in emphysema subtypes.

2 Aim, outline and contributions

2.1 Aim

The aim of this thesis has been to investigate methods for assessing emphysema in chest CT scans, with emphasis
on learning from visual assessment of texture patterns.

2.2 Outline

There are three tracks in the thesis, weakly supervised learning, crowdsourcing and learning from visual simi-
larity.

2.2.1 Weakly supervised learning

One of the main issues when applying supervised machine learning in medical image analysis is obtaining
labels. Not only can the labeling procedure require medical expertise and be time-consuming and costly, it can
also be very difficult, even for experts, to provide accurate labels. By learning from weak labels, we can reduce
the need for medical expertise, reduce the cost of labeling and improve label quality because assigning global
labels is generally easier and less time-consuming than assigning local labels. Section 3 investigates emphysema
detection and quantification using multiple instance learning (MIL) and learning with label proportions (LLP)
methods that learn from region or scan level labels.

2.2.2 Crowdsourcing

A complementary approach to reduce labeling cost is to use crowdsourcing. Although there is a risk that label
quality worsens when replacing experts with crowd workers, the increased quantity can make up for it. By
adapting the labeling task so it is easier for crowd workers to do and combining labels from multiple workers, it
is possible to obtain expert level quality [24]. Combining crowdsourcing and weakly supervised learning could
reduce the need for experts when developing methods, and allow them to focus on interpreting and validating
trained models. Section 4 provides a survey of how crowdsourcing is used in medical imaging, as well as an
investigation into how emphysema assessment can be framed as a task that can be solved by non-expert crowd
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workers. Instead of asking crowd workers to assess emphysema extent and sub-type, we ask them to decide
which images are visually most similar.

2.2.3 Learning from visual similarity annotations

One of the reasons obtaining labels is costly and require expertise, is that labels are often obtained for a specific
task, e.g. tumor segmentation or emphysema quantification, and new labels need to be acquired for additional
tasks. By focusing on a more general characterization of the visual content in images it is possible that more
general representations can be learned. Assessing visual similarity is an approach for characterizing image
content based on the similarity between images. For three images a, b, c we could ask if image a is more similar
to image b than to image c. The answer to this question yields a similarity triplet that can be used as a constraint
for learning a representation of the images. A potential benefit of assessing visual similarity is that being able
to recognize and distinguish pathologies is not necessary as long as the rater can decide if patterns are similar or
not, thus reducing the reliance on experts for annotation tasks. Section 5 investigates how convolutional neural
networks (CNNs) can learn representations from similarity triplets.

2.3 Contributions

The contributions in this thesis falls into three tracks, weakly supervised learning, crowdsourcing and learning
from visual similarity.

2.3.1 Weakly supervised learning

A study of MIL and LLP methods for detecting and quantifying emphysema. The study is presented in the three
papers [31, 34, 35] included in Section 3.

The paper [31] investigates how the LLP method Cluster Model Selection (CMS) [43] can be used for
emphysema quantification. CMS is based on clustering patches into a small set of clusters and subsequently
labeling the clusters to obtain patch labels. A weighting of features is learned using an evolutionary strategy
in order to adapt the feature space to the task at hand. [31] proposes a new loss function to avoid an issue
with singularities in the objective. as well as replacing the simple evolutionary strategy used in [43] with
Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES), state-of-the-art in evolutionary optimization.
[31] extends work produced as part of my Masters thesis [30]. The method achieved intra-class correlation
(ICC) of 0.73 with a gold standard, compared to inter-rater ICC of 0.83. While MIL had previously been used
for predicting COPD and content-based retrieval of scans with emphysema, this work was the first to investigate
the use of proportion labels in order to learn from visual assessment of regional emphysema extent.

The paper [34] investigates how a “Simple MIL” method can be used for regional emphysema detection.
This work presented the first comparison of learning from scan-level labels versus learning from region-level
labels in the context of emphysema assessment. In the Simple MIL approach, samples inherit bag labels and the
problem is treated as a standard supervised learning problem. In [34] a logistic regression model was trained
with image level labels and compared to the the same model trained with region-level labels. The models
achieved similar performance, with ROC AUC scores of .80 for scan level detection, and 0.76–0.89 for regional
detection.

Finally, [35] combines and extends [31] and [34] to investigate if MIL methods that learn from binary labels
can predict emphysema extent as well as LLP methods that learn from proportion labels.[35] compares nine
different MIL and LLP methods and finds that the best MIL and the best LLP methods have similar performance,
suggesting that emphysema presence labels, which are less costly to obtain, could be enough to learn to quantify
emphysema. The comparison includes previously published methods as well as new variations of these methods.

A limitation of the work in these three papers, is that all methods use a predefined set of scale space features
instead of learning the features. Jointly learning features and classifier using CNNs was explored in collabora-
tions [3, 45] and are not included in this thesis.
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2.3.2 Crowdsourcing

A study of crowdsourcing as an approach to obtaining labels for medical image analysis tasks, in particular for
emphysema assessment. The study is presented in the papers [32, 29] included in Section 4.

The paper [32] investigates how emphysema assessment can be posed as a task that can be solved by crowd
workers. This was the first work to investigate crowdsourced assessment of emphysema1 . Instead of assessing
presence or severity of emphysema, crowd workers are asked to assess how similar images are. Each task
shows coronal slices from the upper right lung region of three subjects, and asks crowd workers to assess
which slices are visually most similar. This results in a set of similarity triplets of the form “image a is more
similar to image b than to image c”. These similarity triplets are then used to find an embedding of the images
that satisfy the triplets. Untrained crowd workers were recruited from the Amazon Mechanical Turk platform2

and the collected similarity triplets used to find an embedding using t-distributed stochastic triplet embedding
(tSTE) [47]. Although the quality of the crowdsourced annotations varied, we found that crowd workers’ visual
assessment was informative of emphysema sub-type patterns.

The paper [29] is a survey of crowdsourcing in medical imaging. It is a collaboration arising from the
Lorentz workshop “Crowdsourcing in Medical Imaging” 3. The survey summarize 55 papers on crowdsourcing
in medical imaging covering a large range of modalities and tasks. The two most important conclusions of the
survey are (1) crowdsourcing is a viable approach to label medical images and (2) reporting of experiments is
lacking and must be improved in order to realize the full potential of crowdsourcing in medical image analysis.

2.3.3 Visual similarity

A study of how CNNs can learn expressive representations using visual similarity assessments of chest CT
slices. The study is presented in [33, 36] included in Section 5.

This work builds on [32] where tSTE was used to embed images. tSTE finds an embedding that satisfies
similarity triplets, but does not provide a method for mapping unseen images into the embedding. By using a
triplet CNN it is possible to learn a mapping from image space to embedding space that satisfies the triplets,
and can map unseen images into the embedding. Thus allowing unseen images to be represented in the learned
space, and enabling classifiers built on the representation to classify unseen images.

The paper [33] investigates how CNNs can learn a representation of emphysema in chest CT scans us-
ing similarity measurements derived from scan labels. We define a “similarity oracle” using visually assessed
emphysema extent scores and show that the oracle can be used to train a triplet CNN to learn an emphysema
sensitive representation of CT slices. The CNN is trained by picking three images from a set of images and using
the oracle to decide which are most similar. Since the emphysema extent scores are on a six point scale, there is
a high likelihood of picking three images with the same extent score. In this case the oracle cannot provide any
information. We show that although using only informative triplets (at least two images have different labels)
is optimal, having a substantial amount of uninformative triplets only leads to minor decrease in performance.
This indicates that the triplet CNN is robust to noisy labels.

The paper [36] investigates how CNNs can learn a representation of emphysema in chest CT scans using
visual similarity measurements from a non-expert rater. We demonstrate how a large set of visual similarity
triplets, 180,000 triplets for 300 images, can be obtained and find that the approach yields reasonable levels of
inter- and intra-rater agreement. We use the similarity triplets to train a CNN model to learn an eight dimensional
representation of the images, and show that this representation is useful for detecting both emphysema and
interstitial lung disease. When assessing visual similarity for a large set of images, it is likely that the measure
of similarity will not be the same for all images. We propose a method to incorporate multiple notions of
similarity in the learning process. Although the approach does not improve performance, it pushes the features
of the representation to be less correlated, which could be useful for interpreting the learned representation.

1Crowdsourcing annotations of interstitial lung disease patterns was investigated in [28] presented at the same workshop as [32]
2https://www.mturk.com
3https://www.lorentzcenter.nl/lc/web/2018/967/info.php3?wsid=967&venue=Snellius
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3 Emphysema quantification using Multiple Instance Learning and Learning
with Label Proportions

This section is based on three manuscripts. The first two investigate emphysema quantification using a learn-
ing with label proportions (LLP) method [31] and a multiple instance learning (MIL) method [34]. The last
manuscript [35] investigates what labels are needed for learning to quantify emphysema extent by comparing
nine different MIL and LLP methods.

[31] Silas Nyboe Ørting, Jens Petersen, Mathilde M W Wille, Laura H Thomsen, and Marleen de
Bruijne. Quantifying emphysema extent from weakly labeled CT scans of the lungs using label pro-
portions learning, The Sixth International Workshop on Pulmonary Image Analysis. 2016.

[34] Silas Nyboe Ørting, Jens Petersen, Laura H Thomsen, Mathilde M W Wille, and Marleen de
Bruijne. Detecting emphysema using multiple instance learning. In 2018 IEEE 15th International
Symposium on Biomedical Imaging. 2018.

[35] Silas Nyboe Ørting, Jens Petersen, Laura H Thomsen, Mathilde MW Wille, and Marleen
de Bruijne. Learning to quantify emphysema extent: What labels do we need? arXiv preprint
arXiv:1810.07433. 2018.
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Abstract. Quantification of emphysema extent is important in diagnos-
ing and monitoring patients with chronic obstructive pulmonary disease
(COPD). Several studies have shown that emphysema quantification by
supervised texture classification is more robust and accurate than tradi-
tional densitometry. Current techniques require highly time consuming
manual annotations of patches or use only weak labels indicating over-
all disease status (e.g, COPD or healthy). We show how visual scoring
of regional emphysema extent can be exploited in a learning with label
proportions (LLP) framework to both predict presence of emphysema in
smaller patches and estimate regional extent. We evaluate performance
on 195 visually scored CT scans and achieve an intraclass correlation of
0.72 (0.65–0.78) between predicted region extent and expert raters. To
our knowledge this is the first time that LLP methods have been applied
to medical imaging data.

1 Introduction

Emphysema is a central structural abnormality in patients suffering from chronic
obstructive pulmonary disease (COPD), a leading cause of death worldwide.
Emphysema is characterized by destruction of lung tissue and entrapment of
air in affected regions. Quantifying emphysema extent is useful for monitoring
progression [11] and in the search for genetic associations with COPD [1].

Emphysema is visible in chest CT scans and standard methods for CT-based
assessment of emphysema are densitometry and visual scoring by experts. Den-
sitometry provides an objective measure of emphysema, but is vulnerable to
noise and cannot be used to distinguish emphysema sub-types. Visual scoring
provide information about emphysema sub-type along with estimates of emphy-
sema extent, but suffers from inter-observer variability and is time consuming.
A recent machine learning approach used expert annotations of CT patches for
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predicting emphysema sub-type and severity [2]. Region based visual scoring is
less time-consuming than annotating patches and more clinically relevant [11],
making it more realistic to obtain large data sets.

In this work we classify patches of CT scans by learning emphysema patterns
from visual scoring of regional emphysema extent. In this type of visual scoring,
the lungs are divided into six regions, the upper, middle and lower regions of the
right and left lungs, and each region is assigned a percentage interval indicating
the extent of emphysema in the region.

We view this learning problem as an instance of learning with label propor-
tions (LLP). LLP is a relatively new learning setting first introduced by [6] as an
extension of multiple instance learning (MIL) to proportion labels. In both MIL
and LLP we are concerned with bags of instances, e.g. a collection of patches
from a CT scan, and we wish to predict unknown instance labels from known bag
labels. The difference between MIL and LLP is that MIL learns from binary bag
labels, e.g. COPD versus no-COPD as in [3, 10] and LLP learns from proportion
labels that indicate the proportion of instances in a bag with a certain label. Bag
proportion labels provide more information about instance labels than binary
bag labels and LLP methods attempt to use the extra information to improve
performance.

Several LLP methods have been proposed, Kück and de Freitas [6] develop a
graphical model where both instance labels and true bag proportions are treated
as unknowns; Yu et al. [12] adapt support vector machines to LLP, and present a
method for iteratively optimizing instance and bag loss; Patrini et al. [7] present
Laplacian Mean Map and show that aggregate statistics can be sufficient for
optimizing a large class of loss functions.

In this work we adapt cluster model selection (CMS) [9] to the problem
of learning from visual scoring of emphysema. CMS searches for a clustering
of patches that match known region labels. A part of the search is reshaping
the feature space to improve clustering, and this feature space optimization
together with the fact that no assumptions are made for the bag loss makes CMS
attractive. We reformulate the CMS problem so it is straightforward to use a non-
standard bag loss and contribute an interval bag loss for visually scored intervals
of emphysema extent. We replace the feature weight optimization method with
CMA-ES, a state-of-the-art method for black-box optimization and evaluate the
method on visually scored CT scans. To our knowledge this is the first time that
regional visual scoring of emphysema has been used to train a classifier, and the
first time that LLP has been applied to medical image data.

2 Methods

Based on previous work by [10] and [3] for predicting COPD from CT scans, we
take a texture-analysis approach to characterizing emphysema patterns. Each
patch is represented by a collection of histograms of filter responses. The filters
are multi-scale Gaussians and combinations of derivatives of Gaussians. A sum-
mary of the used filters is given in Table 1 and a thorough description of the
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filters can be found in [10]. The filters are applied at scales σ ∈ {1.2, 2.4, 4.8}mm,
a subset of those used in [10] chosen as a compromise between feature space di-
mension and expressiveness.

Table 1. Multi-scale filters for analyzing lung texture. I is an image and Gσ is a
Gaussian with scale σ. The asterisk ∗ indicates convolution. The Hessian is the matrix
of second order partial derivatives of I, where the partial derivatives are computed by
convolution with a corresponding partial derivative of a Gaussian

Feature name Definition Feature name Definition

Gaussian blur Gσ ∗ I Laplacian of Gaussian
∑3
i=1 λi

Gradient magnitude ||∇Gσ ∗ I| | Gaussian curvature
∏3
i=1 λi

Eigenvalues of the Hessian |λ1| ≥ |λ2| ≥ |λ3| Frobenius norm
√∑3

i=1 λ
2
i

2.1 Cluster Model Selection

Cluster model selection (CMS) introduced by [9] is a machine learning method
for learning from label proportions (LLP). Let X d be a d-dimensional feature
space, in our case it is the d filter responses, and x ∈ X d an instance or patch. A
bag Gi ∈ X l×d is a set of l patches from a lung region and Y i

G ∈ Y is a bag label
indicating the extent of emphysema in the region. Here Y = {[Ilow, Ihigh]|Ilow <
Ihigh, Ilow, Ihigh ∈ [0, 1]} is the set of closed intervals on the closed unit interval
[0, 1]. In LLP we have a set of m bags G = {G1, G2, . . . Gm} with associated
bag labels YG = {Y 1

G, Y
2
G, . . . Y

m
G } and we want to predict a binary label for each

patch indicating if emphysema is present.

Cluster model selection is a data-driven approach based on clustering. A
cluster model in this context is a partitioning of X = {G1 ∪G2 ∪ . . . Gm} into k
clusters S = {S1, S2, . . . Sk} with a cluster labeling YS ∈ {0, 1}k indicating if a
cluster is an emphysema cluster. An instance x ∈ Si inherits the label of Si and
a bag label can be estimated as the mean instance label over all instances in the
bag. The cluster model problem can be defined as

arg min
w,ỸS

1

m

m∑

i=1

L(Y i
G, Ỹ

i
G) , (1)

where w ∈ [0, 1]d is a weighting of features and ỸG the estimated bag labels
derived from the cluster labeling ỸS . L is a bag loss function that measures the
loss incurred by predicting Ỹ i

G when the real bag label is Y i
G.

Optimizing (1) is done by splitting it in smaller steps. For a given feature
weight vector w we find a clustering Sw by minimizing the within-cluster distance
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to the cluster center

Sw = arg min
S

k∑

i

∑

x∈Si

dP (x, µi|w) , (2)

where µi is the mean of instances in cluster Si and dP is a weighted patch
distance defined by

dP (x, y|w) =
d∑

i=1

widH(xi, yi) , (3)

where dH is a histogram distance function. Following [10] we use the earth
movers’ distance to measure histogram distance. Minimizing (2) is NP-hard and
we use the k-means algorithm to find an approximate solution.

Cluster Labeling. The original CMS formulation considers real valued label
proportions and uses a loss function with potentially5 multiple “sub-optimal”
global minima. The problem is that several terms are combined as a product,
so if any term is zero the other terms can be arbitrarily large. While the loss
function cannot distinguish between the cases where all terms are zero and one
term is zero, it is unreasonable to consider the two cases equally good solutions.
Here we contribute an interval bag loss more suitable for our purpose, and while
it also has potential for multiple global minima, due to the interval bag labels,
but all the global minima are “equally optimal” from the definition of the loss
function.

For a clustering S we search for the cluster labeling that minimizes the bag
loss L. Let I = [Ilow, Ihigh] be the known interval label and p ∈ [0, 1] the pre-
dicted label. We define the bag loss

L(Ii, pi) =




Iilow − pi if pi < Iilow
pi − Iihigh if pi > Iihigh
0 otherwise

. (4)

L(Ii, pi) is zero when pi is inside the interval and equal to the shortest absolute
distance from the interval otherwise.

The instances from each bag Gi are distributed over the clustering S and
we define a matrix M that maps cluster labels to bag labels, such that Mij is
the proportion of instances from Gi that belongs to cluster Sj . This allows us
to formulate the labeling problem as

arg min
YS

m∑

i

L(Ii, (MYS)i), s.t.∀j ∈ [1 : k]. 0 ≤ Y j
S ≤ 1 . (5)

Solving (5) is NP-hard for binary cluster labels, so we use a greedy heuristic.
We start by assigning all clusters label zero, then we search for the best labeling

5 It is potentially, because it depends on the clustering - some clusterings have a unique
global minima
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when only one cluster is labeled one. From a cluster labeling with i clusters
labeled one, we search for the best labeling with i+ 1 clusters labeled one. The
labeling is stopped when there is no longer an improvement in (5).

Feature Weight Optimization Clustering and cluster labeling is wrapped in
a black-box optimization over w. The original formulation of CMS uses a simple
genetic algorithm which we have replaced with state-of-the in black-box opti-
mization, CMA-ES. Originally proposed in [5], CMA-ES is a genetic algorithm
that works by generating a set of candidate weight vectors W from a multi-
variate Gaussian distribution with mean m and co-variance C. For each w′ ∈W
we evaluate the fitness of w′ by optimizing (1) with w = w′. The candidate
weights are then ranked and used to update m and C before a new set of can-
didates are generated. The process is iterated until convergence or a maximum
number of iterations is reached.

3 Experiments and Results

The method is evaluated on low-dose CT scans from the Danish Lung Cancer
Screening Trial [8]. Visual scoring of emphysema is performed by two raters using
the method described in [11]. Each rater assigns one of seven labels to the upper,
middle and lower regions of each lung. The labels {0%, 1–5%, 6–25%, 26–50%,
51–75%, 76–100%} indicate the percentage of the region affected by emphysema.
Three data sets have been defined Atrain, Avalidate, Atest with respective sizes of
193, 195, 195 scans. Each data set was initially 200 scans, matching the data
sets defined in [10], but some scans were excluded because they were not visually
scored. A set of 50 patches with a size of approximately 21× 21× 21mm3 were
sampled from each region of the lungs and aggregated into bags. Emphysema
is commonly characterized by the appearance of tissue destruction in lobules,
which are about 10–25mm in diameter [4], and the patch size has been chosen
to approximately match the size of lobules. Each bag was labeled by combining
the extent of both raters, such that the combined interval is the smallest interval
containing the interval of both raters. We assume that the extent labels can be
interpreted as the proportion of patches containing emphysema.

Model training is a two-step procedure, in the first step we train several mod-
els on Atrain and use predictions on Avalidate to choose parameters. In the second
step we train on Atrain combined with Avalidate using the selected parameters
and use predictions on Atest to estimate the performance of the model.

Choosing Parameters. A separate classifier was trained on each of the six
regions and the number of clusters was set to k = [5, 10, 15, 20, 25, 30] for each
classifier, giving a total of 36 models. The performance of each model was esti-
mated on Avalidate by calculating mean absolute error (MAE) from the reference
intervals and intraclass correlation (ICC). To calculate ICC we converted CMS
predictions to interval midpoints and used the average interval midpoint of the
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raters. MAE stabilized around 0.01 for all regions for k ≥ 20. ICC was highest
in the upper regions and values for the right and left upper regions are given in
Table 2. ICC was poor in the lower (≤ 0.24) and middle (≤ 0.31) regions for all
values of k. Prevalence of emphysema and rater agreement is generally highest in
the upper regions (Average prevalence in upper, middle, lower: 26%, 20%, 12%.
Average ICC in upper, middle, lower: 0.81, 0.65, 0.51). We focus on the upper
regions in the following analysis because learning from the lower prevalence and
rater agreement in the middle and lower regions appear to be a much harder
problem, which we leave for future work.

Table 2. Intraclass correlation for parameter selection. The best values are shown
along with the number of clusters in the model. ICC is calculated with a two-way
model and measures consistency. Avg refers to the average of R1 and R2

Region Number of clusters Raters ICC (CI)

Right upper 20
R1/R2 0.83 (0.79–0.87)
Avg/CMS 0.62 (0.53–0.70)

Left upper 15
R1/R2 0.78 (0.72–0.83)
Avg/CMS 0.53 (0.43–0.63)

Region Prediction. We use the selected parameters to train two new models
on the combined data Acombined = Atrain ∪ Avalidate. Performance of the four
models, two trained on Atrain and two trained on Acombined, is evaluated on
Atest by calculating ICC, using the same procedure for converting predictions as
for parameter selection. Performance scores are summarized in Table 3, and we
see that ICC in the upper right region improves when training on the larger data
set, while ICC decrease in the upper left region. We also note that performance
in upper left on Atest is much lower than on Avalidate indicating overfitting in
the parameter selection.

Reduced data set for training A potential issue when applying CMS to this
data is that the proportion of non-emphysema bags is large (> 70%) and only
very few bags have a label proportion larger than 25%. This gives a highly skewed
data set where less than 10% of instances contain emphysema. It is possible that
the skewed data makes it difficult to identify emphysema clusters because all
clusters will contain mostly non-emphysema instances.

To investigate this hypothesis we re-run the above experiment, but use only
bags with emphysema for training. This gives a less skewed data set, but the
proportion of emphysema instances is still less than 25% . First we train on a
reduced version of Atrain and use performance on the full version of Avalidate for
parameter selection. Then we train a new model using the selected parameter
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Table 3. Agreement between raters and model predictions on Atest. 95% confidence
intervals are shown for ICC. ICC measures consistency and is calculated with a two-way
model

Region Raters
ICC on Atest

Atrain Acombined

Right upper
R1/R2 0.82 (0.76–0.86) 0.82 (0.76–0.86)
R1/CMS 0.67 (0.59–0.74) 0.71 (0.63–0.77)
R2/CMS 0.54 (0.44–0.64) 0.58 (0.48–0.66)
Avg/CMS 0.64 (0.55–0.71) 0.67 (0.59–0.74)

Left upper
R1/R2 0.81 (0.75–0.85) 0.81 (0.75–0.85)
R1/CMS 0.38 (0.25–0.49) 0.38 (0.25–0.49)
R2/CMS 0.37 (0.24–0.49) 0.31 (0.18–0.43)
Avg/CMS 0.40 (0.27–0.51) 0.36 (0.23–0.48)

on the reduced version of Acombined and measure performance on the full version
of Atest.

Performance on Avalidate is summarized in table 4 where we again see best
performance in the upper right region. Performance on Atest is summarized in
table 5 and again we see indication of overfitting in the parameter selection.
Training on the reduced Acombined result in large improvements over training on
the reduced Atrain, beating performance when training on the full data.

Table 4. Intraclass correlation for parameter selection using reduced training data.
Best values are shown with the number of clusters in the model. ICC is calculated with
a two-way model and measures consistency. Avg refers to the average of R1 and R2

Region Number of clusters Raters ICC (CI)

Right upper 30
R1/R2 0.83 (0.79–0.87)
Avg/CMS 0.73 (0.65–0.79)

Left upper 20
R1/R2 0.78 (0.72–0.83)
Avg/CMS 0.56 (0.46–0.65)

It is interesting to note that ICC between CMS and Avg is larger than ICC be-
tween CMS and any of the raters when training on the reduced data. Training on
the full data shows highest ICC between CMS and R1 in three out of four cases.
Estimates from R1 is generally a bit lower than from R2, so underestimating
emphysema should give a better ICC with R1 than with R2 and Avg. This indi-
cates that training on the reduced data overcomes a problem of underestimation
present when training on the full data.
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Table 5. Agreement between raters and model predictions on Atest using reduced
training data. 95% confidence intervals are shown for ICC. ICC measures consistency
and is calculated with a two-way model

Region Raters
ICC on Atest

Atrain Acombined

Right upper
R1/R2 0.82 (0.76–0.86) 0.82 (0.76–0.86)
R1/CMS 0.61 (0.52–0.69) 0.68 (0.60–0.75)
R2/CMS 0.64 (0.55–0.71) 0.69 (0.61–0.75)
Avg/CMS 0.66 (0.57–0.73) 0.72 (0.65–0.78)

Left upper
R1/R2 0.81 (0.75–0.85) 0.81 (0.75–0.85)
R1/CMS 0.45 (0.33–0.56) 0.59 (0.49–0.67)
R2/CMS 0.45 (0.33–0.55) 0.60 (0.50–0.68)
Avg/CMS 0.47 (0.36–0.58) 0.63 (0.53–0.70)

Patch Prediction. We inspected patch predictions visually. Figure 1 shows
slices and patch predictions for two subjects. Top row shows a case where raters
and prediction agree and bottom row shows a case where prediction is larger
than raters. In the case with agreement we see that patches classified as not
emphysema contain little to no emphysema, while patches classified as emphy-
sema contain large areas with clear tissue destruction. It appears that emphy-
sema patches are in an area with a large degree of paraseptal emphysema, while
not-emphysema patches are in an area with a small degree of centrilobular em-
physema. In the case of larger predicted extent it appears that there is a small
decrease in density in the upper part of the region compared to the lower part.
The patches predicted as emphysema are in the upper part and appear to contain
some tissue destruction.

4 Discussion and Conclusion

The agreement in the upper right region shows that CMS can estimate emphy-
sema extent, which is clinically more relevant than predicting COPD presence
considered in [10] and [3].

The performance improvement when training only on emphysema bags in-
dicates that subsampling training data to achieve a more balanced data set is
beneficial for CMS. The tendency to overfit, suggested by the performance de-
crease from Avalidate to Atest, indicate that removing all non-emphysema bags
is detrimental to performance. Future work could investigate how to determine
the optimal mix of bags. It is possible that performance in the middle and lower
regions could be improved in the same manner, but the very low prevalence in
the lower regions could result in overfitting because the amount of training data
is too small to be representative of the full data set. Another approach is to train
on data from several regions, either by combining a couple of regions or using
all six regions.
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Fig. 1. Patch prediction in upper right region. Top: Rated as 26-50% extent, predicted
as 26% extent. Bottom: Rated as 0% extent, predicted as 10% extent. Left: Intensity
rescaled coronal slice. Center: Blue regions are not labeled. Purple patches are labeled
as emphysema and non-colored patches as not emphysema. Right: Blue regions are
not labeled. Purple patches are labeled as not emphysema and non-colored patches as
emphysema

The increased performance when training on Acombined versus training on
Atrain indicates that improving performance could be a matter of increasing
the amount of training data. However increasing the amount of training runs
counter to one of the primary objectives of weak label learning, that of reducing
the burden of labeling training data, and future work should consider the trade
off between labeling burden and performance.

The inspected patch predictions show that patches with severe emphysema
are likely to be labeled emphysema, while regions with mild emphysema tend to
be labeled not emphysema. It is unlikely that we can account for the heterogene-
ity of emphysema with binary patch labels alone, and an alternative is to assign
continuous labels indicating emphysema extent in the patch. This would allow
us to rank patches and could be interesting as a tool for studying progression of
emphysema. An interesting possibility suggested by the patch predictions for the
region assessed as having 0% emphysema, is that the method is more sensitive
to some mild cases of emphysema than the raters. If this is true, the approach
could become a valuable tool for early detection of emphysema.

In this work we have focused on predicting emphysema extent without con-
sidering emphysema sub-type. Sub-type information is clinically interesting and
a model that simultaneously predicts extent and sub-type is a future goal. Em-
physema sub-types appear differently in CT scans, centrilobular emphysema is
diffuse with small holes spread out over the affected area and paraseptal em-
physema is more clearly defined with large bounded regions of complete tissue
destruction. Simply extending cluster labels to {no-emphysema, centrilobular,
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paraseptal} could improve performance, because it is likely that some patches
with centrilobular emphysema are more similar to patches without emphysema
than to patches with paraseptal emphysema.

There is, to our knowledge, no previous work that attempts to learn from the
kind of visual assessment we consider here. The patch-based classifier from [2]
uses a different labeling scheme with six classes (three severities of centrilobular,
one panlobular, one pleural-based and one non-emphysema), and the evaluation
metrics are also different making it difficult to compare. It appears that the
biggest problem for [2] is distinguishing mild and severe cases of centrilobular
emphysema. This suggests that replacing binary labels indicating presence with
categorical labels indicating severity might not be enough to model emphysema
severity and a continuous severity score could be the way forward.

In conclusion, we show that visual scoring of emphysema extent in regions can
be used for training an LLP method to predict both region extent and presence
of emphysema in patches. The results also show that predictions correlate poorly
with raters when training on data where emphysema prevalence is very low and
rater agreement is low to moderate.
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ABSTRACT
Emphysema is part of chronic obstructive pulmonary disease,
a leading cause of mortality worldwide. Visual assessment of
emphysema presence is useful for identifying subjects at risk
and for research into disease development. We train a ma-
chine learning method to predict emphysema from visually
assessed expert labels. We use a multiple instance learning
approach to predict both scan-level and region-level emphy-
sema presence. We evaluate performance on 600 low-dose
CT scans from the Danish Lung Cancer Screening Study and
achieve an AUC of 0.82 for scan-level prediction and AUCs
between 0.76 and 0.88 for region-level prediction.

Index Terms— Weak supervision, Emphysema, Multiple
Instance Learning

1. INTRODUCTION

Emphysema is a lung pathology characterized by destruc-
tion of lung tissue and enlargement of airspaces in the lung.
Emphysema is part of chronic obstructive pulmonary dis-
ease (COPD) a leading cause of mortality and morbidity
world-wide [1]. Standard practice for assessment of em-
physema is based on CT densitometry, however, visual as-
sessment using CT may be more sensitive to emphysema
development[2] and is a part of the PanCan model for lung
cancer risk prediction[3]. Visual assessment of emphysema
is time-consuming and suffers from inter-rater variability[2].
Automatic assessment of emphysema presence could provide
more stable predictions at a much lower cost and thus be a
valuable replacement of expert assessments.

In this work we present a multiple instance learning (MIL)
algorithm to detect emphysema. The proposed method is
trained to predict emphysema presence at scan level, as well
as in six regions of the lungs. We investigate if informa-
tion about emphysema at the scan-level is enough to train the
method to predict region-level emphysema presence.

This study was financially supported by the Danish Council for Inde-
pendent Research (DFF) and the Netherlands Organization for Scientific Re-
search (NWO).

2. RELATEDWORK

Multiple Instance Learning methods have previously been
successfully used for COPD prediction[4] where simple MIL
methods perform similarly to more complex methods. We
have previously used a learning with label proportions ap-
proach for predicting emphysema extent[5] with some suc-
cess. However training required a lot of extent annotations,
which are laborious to produce. Here we focus on emphy-
sema detection, which is simpler to annotate than extent. A
method for emphysema detection was proposed by [6], us-
ing a bullae-score computed from connected regions of low
attenuation. Several recent papers have proposed to train a
convolutional neural network (CNN) to classify lung tissue
patterns[7, 8]. However, these works focus on several in-
terstitial lung disease patterns and emphysema is either not
considered[7] or is only a small part of the data set[8]. Other
works have focused on unsupervised discovery of emphy-
sema subtypes[9, 10] which is more relevant for analysis of
detected emphysema than for initial detection of emphysema.

3. MATERIALS & METHODS

3.1. METHOD

We consider regional emphysema detection as a multiple in-
stance learning (MIL) problem. MIL is a weakly supervised
machine learning setting where the goal is to predict the label
of individual samples by learning from grouped samples with
group labels. In MIL we refer to samples as instances and sets
of samples as bags. In our context, an instance is a small vol-
umetric patch of a chest CT scan and patches from the same
scan are grouped into bags. The bags are given a binary label
indicating if emphysema is visible in the scan and the objec-
tive is to predict both emphysema presence in the scans and
which patches contain emphysema.

More formally, let X be an instance space, Y an instance
label space, Z a bag label space and b = (x ⊆ X , z ∈ Z) a
labeled bag of instances. We refer to the instances in b with
bx, the label of b with bz and the unknown instance labels
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with by. For a set of m bags B = {b1,b2, . . . ,bm} the
learning problem is

arg max
Y,h,Θ

P(Y, h,Θ|B), (1)

whereY = ∪m
i=1b

y
i is a labeling of instances, Θ : Y �→ Z is

a bag labeling function relating byi to b
z
i and h : X �→ Y is a

hypothesis relating bxi to b
y
i .

In this work we restrict our attention to logistic regression
hypotheses

h(bx) = σ(wTbx) = (1 + exp(−wTbx))−1, (2)

and the mean bag label function

Θ(by) =
1

n

n∑

i=1

yi, (3)

where n is the number of instances in b. The learning prob-
lem now becomes

argmax
Y,w

P(Y,w|B,Θ). (4)

Optimizing (4) is hard since it depends on bothY andw. We
use the simpleMIL approach where instances are labeled with
the corresponding bag label, i.e. by = bz · 1n. The learning
problem is now a standard logistic regression problem.

3.2. DATA

We used data collected in the Danish Lung Cancer Screening
Trial (DLCST) [11]. The screening arm of the study enrolled
2052 participants for annual low dose CT screening. Scan
parameters described in [11] are reproduced below

All CT scans of the study were performed
on a MDCT scanner (16 rows Philips Mx 8000,
PhilipsMedical Systems, Eindhoven, The Nether-
lands). Scans were performed supine after full
inspiration with caudocranial scan direction in-
cluding the entire ribcage and upper abdomen
with a low dose technique, 120kV and 40 mAs.
Scans were performed with spiral data acquisi-
tion with the following acquisition parameters:
Section collimation 16 × 0.75 mm, pitch 1.5,
rotation time 0.5 second[11].

We obtained visual assessment of emphysema from [2],
where screening participants with at least two CT scans where
selected for visual assessment (n=1990). Two experts as-
sessed whether signs of emphysema were visible in the top,
middle and lower regions of each left and right lung. The re-
gions were defined as above carina, between carina and lower
pulmonary vein, and below carina. We measured rater agree-
ment on label c as the proportion of cases both raters assigned
c, out of the number of cases at least one rater assigned c.
Agreement on regional emphysema presence on the train set
are summarized in table 1. We note that both prevalence and
agreement increase as we move upwards in the lungs.

LL LM LU RL RM RU Scan
Present 59 73 81 62 74 81 81
Absent 96 95 95 96 94 94 93
Prevalence 12 21 27 13 22 29 32

Table 1. Mean prevalence and rater agreement on regional
emphysema presence in the three train sets. All numbers are
percentages. LL=Left Lower, LM=Left Middle, LU=Left Up-
per, RL=Right Lower, RM=Right Middle, RU=Right Upper.

3.2.1. Data representation

We represented a lung CT scan as a set of 3D patches sam-
pled from the six regions. A fixed patch size of approximately
11mm3 was used to match the size of the secondary lobule
[12]. We sampled 100, possibly overlapping, patches ran-
domly from each of the six regions. For each patch we ex-
tracted a set of multi-scale filter responses and used equalized
histograms of the filter responses as the final representation of
the patch. The filters used were Gaussian blur, gradient mag-
nitude, eigenvalues of the Hessian, Laplacian of Gaussian,
Gaussian curvature and the Frobenius norm of the Hessian.
All filters were calculated at scales 1mm, 2mm and 4mm re-
sulting in 24 histograms with 13 bins each. The filters have
previously been used successfully for COPD texture analysis
[13], and further details can be found there.

The prevalence and appearance of emphysema varies be-
tween regions so we included an extra feature encoding which
region an instance is sampled from.

4. EXPERIMENTS & RESULTS

We selected a test set of 600 subjects and a train set of 1200
subjects. The train set was further split into three sets of 400
subjects and we trained the models separately on each of the
three datasets. This was done primarily to provide estimates
of variance due to changes in training data and to estimate sta-
bility of predicted instance and bag labels, but we also com-
bine them to create more stable ensemble predictions. In the
following we refer to the three training sets as replications.

We derived reference region labels from visual scoring by
assigning presence labels to a region if at least one rater indi-
cated emphysema was present. Scans were assigned presence
labels if at least one region had a presence label.

We used three variations of the proposed method: a model
trained with scan labels; a model trained with region labels;
and a model trained for each region separately with region
labels. The last variation thus discarded the region feature.
We refer to the three variations as “global” (G), “region” (R)
and “separate” (S). We validated the predictive power of the
method on scan and region predictions. Instance reference
labels are not available, so it is not possible to directly validate
instance predictions.
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LL LM LU RL RM RU Scan
G 78 81 83 76 82 88 80
R 80 81 83 76 82 87 80
S 74 81 84 76 82 87 82
G 80 83 85 77 83 89 82
R 80 82 84 77 83 88 81
S 78 83 84 77 83 87 82

Table 2. AUC (×100) of emphysema prediction . First three
rows show mean AUC across replications. Last three rows
show AUC for ensemble predictions.

LL LM LU RL RM RU Scan
G 78 82 87 78 84 91 83
R 71 80 88 69 85 90 88
S 62 80 87 72 86 89 87

Table 3. AUC (×100) of ensemble predictions using instance
threshold (0.5) prior to aggregating bag labels.

4.1. EMPHYSEMA DETECTION

Table 2 summarize the area under the receiver operating char-
acteristic curve (AUC) of the three methods. The first three
rows show mean AUC of the three replications and the last
three rows show the AUC when the replications are used as
an ensemble. We see that all three methods have similar per-
formance on all regions and scan prediction, with most dif-
ference in the lower left (LL) region with AUC from 0.74 to
0.80. We also see that AUC correlates with lower, middle,
and upper region and that the best AUC is achieved in the
upper right region (0.89). Scan-level AUC is lower than the
best region-level AUCs and seems to be negatively affected
by the performance in the lower regions. We note that using
the ensemble is beneficial in all cases, although improvement
is only 1-2 percentage points. Using densitometry (RA950)
to detect emphysema achieves an AUC of 0.67.

The mapping from instance labels to bag labels does not
influence the model training. However, it can have a large
influence on bag predictions. If for example, we alternatively
convert instance predictions to binary labels by thresholding
at 0.5 prior to aggregating instance labels into bag labels, we
obtain the AUC values in table 3 (only ensemble predictions
shown). We see that this results in more variation and more
extreme values across regions (0.62 – 0.91), but also a large
increase in scan AUC for R and S.

4.2. REGION FEATURES

We included region as feature for G and R and we are inter-
ested in how this feature is weighted. Based on the prevalence
in table 1 we expect that an instance from a lower region is
less likely to contain emphysema. Table 4 summarize the re-
gion weights across replications. The right upper (RU) region

model LL LM LU RL RM RU
G -0.11 -0.04 0.07 -0.10 -0.05 0
G -0.16 -0.12 0.01 -0.14 -0.10 0
G -0.15 -0.09 0.03 -0.12 -0.09 0
R -1.36 -0.53 -0.07 -1.23 -0.41 0
R -1.20 -0.53 -0.12 -1.16 -0.48 0
R -1.40 -0.61 -0.09 -1.23 -0.50 0

Table 4. Fitted weights of region features. One row for each
replication of G and R.

is the reference. We see that both G and R seem to capture the
relationship between prevalence and upper, middle, lower re-
gion. The fact that G, without access to region labels, appears
to capture the difference in prevalence across upper, middle,
lower regions indicates the model is learning to discriminate
emphysema and non-emphysema tissue.

4.3. STABILITY OF PREDICTIONS

We assess the variation in predictions arising from differences
in training data. Bag predictions are continuous values in the
interval (0, 1) and we measure stability with intraclass cor-
relation (ICC, two-way model, agreement) and median abso-
lute deviation (MAD). ICC is calculated between each pair
of replications and we report the mean. MAD is calculated
for each triplet of replicated predictions and we report the
90’th percentile. The 90’th percentile is chosen to provide
an upper bound on the most common deviation. The ICC
measure informs us about the linearity of predictions and ac-
counts for systematic differences between replications. The
MAD measure informs us about the magnitude of the dif-
ference between replications. We can interpret the numeri-
cal value of the MAD measure as for 90% of the bags, the
largest deviation between any two replications is at most 2 ×
MAD . Table 5 shows the measures. All three models have in-
creasing ICC going from lower over middle to upper regions
which could be related to the prevalence of emphysema in
the regions. R has higher ICC and lower mad than G in all
cases except LL. R has similar or higher ICC and similar or
lower mad as S in all cases. G has higher ICC than S in three
cases and S has higher ICC in four cases. The mad measure
for G and S is similar in all cases. This suggests that having
access to region labels and training on all regions simultane-
ously yields a more stable model. This is probably because,
training a single model on all six regions versus training a
model on each region increases the amount of training data
and decreases the number of parameters by a factor of six.

5. DISCUSSION & CONCLUSION

We proposed to use a MIL approach to predict regional and
scan-level emphysema presence. We achieved an AUC of
0.82 at scan-level, which is comparable to the bullae-score
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LL LM LU RL RM RU Scan
G .81 .83 .87 .82 .82 .90 .84
R .74 .84 .93 .85 .89 .95 .90
S .45 .75 .94 .74 .87 .96 .91
G .026 .028 .033 .026 .027 .032 .029
R .017 .027 .024 .015 .023 .022 .022
S .027 .025 .030 .020 .025 .035 .028

Table 5. Stability of bag predictions. First three rows show
ICC, last three rows show mad.

approach [6] that achieved AUC of 0.82 on a dataset with
substantially higher emphysema prevalence. We showed that
scan-level AUC can be improved from 0.82 to 0.88 by mak-
ing a binary classification of instances before aggregating into
bag labels. However, this comes at the cost of increased dif-
ference in performance between regions. A possible expla-
nation is that the low prevalence in the lower regions yields a
larger ratio of spurious to actual detections in the region, lead-
ing to decreased scan-level performance. We saw that learned
region feature weights correlate with prevalence, so it is likely
that predictions in the lower regions are generally lower. Im-
posing a threshold will then suppress more detections in the
lower regions, thereby improving the overall detection perfor-
mance at the cost of missed detections in the lower regions.

We have shown that learning from visual scoring of em-
physema is feasible and can produce good predictions of both
scan-level and region-level emphysema presence. We further
found that training on scan-level labels achieves performance
similar to training on region-level labels. This could substan-
tially reduce the burden of producing training data.
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Learning to quantify emphysema extent: What
labels do we need?

Silas Nyboe Ørting, Jens Petersen, Laura H. Thomsen, Mathilde M. W. Wille and Marleen de
Bruijne Member, IEEE,

Abstract—Accurate assessment of pulmonary emphysema is
crucial to assess disease severity and subtype, to monitor disease
progression and to predict lung cancer risk. However, visual
assessment is time-consuming and subject to substantial inter-
rater variability and standard densitometry approaches to quan-
tify emphysema remain inferior to visual scoring. We explore
if machine learning methods that learn from a large dataset
of visually assessed CT scans can provide accurate estimates of
emphysema extent. We further investigate if machine learning
algorithms that learn from a scoring of emphysema extent can
outperform algorithms that learn only from a scoring of em-
physema presence. We compare four Multiple Instance Learning
classifiers that are trained on emphysema presence labels, and five
Learning with Label Proportions classifiers that are trained on
emphysema extent labels. We evaluate performance on 600 low-
dose CT scans from the Danish Lung Cancer Screening Trial and
find that learning from emphysema presence labels, which are
much easier to obtain, gives equally good performance to learning
from emphysema extent labels. The best classifiers achieve intra-
class correlation coefficients around 0.90 and average overall
agreement with raters of 78% and 79% on six emphysema extent
classes versus inter-rater agreement of 83%.

I. INTRODUCTION

EMPHYSEMA is a lung pathology characterized by de-
struction of lung tissue and enlargement of airspaces in

the lung, causing shortness of breath. It is a main component
of chronic obstructive pulmonary disease (COPD), a leading
cause of mortality and morbidity world-wide [1]. Emphysema
can be assessed on chest CT scans and its extent quantified
by densitometry, where the amount of tissue affected by
emphysema is estimated by measuring the percentage of lung
volume with attenuation below a specific threshold. Although
densitometry is simple and provides a single interpretable mea-
surement of emphysema extent, it is also highly dependent on
scanner hardware, reconstruction parameters [2] and software
used for analysis [3].
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An alternative to densitometry is visual assessment that
can quantify extent and characterize emphysema subtype. The
COPDGene CT Workshop Group [4] proposed a standard
for visual assessment of COPD based on the characterization
of emphysema appearance from the Fleischner society [5].
A slightly modified version of the standard was used for
visual assessment in the Danish Lung Cancer Screening Trial
(DLCST), where it was shown to be predictive of lung
cancer [6]. A similar classification scheme defined in [7] was
used in [8] where it was shown that visual presence and
severity of emphysema is associated with increased mortality
independent of densitometric measures of emphysema severity.
The downside of visual assessment is that it is time-consuming
and subject to inter-rater variability [4], [9].

Automated approaches based on the appearance of em-
physema could provide fast and reproducible assessment of
emphysema extent, location and sub-type, thus combining the
superior disease characterization of visual assessment with the
ease of densitometry. For instance [10] has shown that a shape-
model of bullae-like structures can be used for emphysema
detection. We have previously used machine learning algo-
rithms based on texture features to predict regional emphysema
presence [11] and emphysema extent [12]. Other learning
based approaches have focused on discovery of emphysema
patterns using supervised [13] and unsupervised [14], [15]
learning, COPD detection and staging [16], [17] and emphy-
sema detection in the more general context of interstitial lung
disease classification [18], [19].

Multiple Instance Learning (MIL) has been used with suc-
cess in a number of the prior works on emphysema and COPD
detection [11], [16], [17] and for many related medical image
analysis tasks as reviewed in [20]. MIL is a learning setting
where the objects of interest are represented by a collection
of samples. Each collection has a binary label and the goal is
to learn which samples in a collection are “responsible” for
the label. MIL has been very succesful at detecting presence
of abnormalities. However, visual assessment systems for
lung disease, such as those developed for COPD [4], give
estimates of affected lung tissue that is better captured by
proportion labels. Label Proportions Learning (LLP) is the
natural extension of MIL to cases where labels are proportions,
but despite the success of MIL, LLP has seen almost no usage
in medical imaging.

In this work we present the largest comparison yet of
machine learning methods for assessing emphysema extent,
extending our previous work on emphysema presence pre-
diction [11], where a MIL method was used for regional
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emphysema detection, and our work on extent prediction [12],
where the LLP method Cluster Model Selection was used for
regional emphysema extent prediction. We compare four MIL
methods, of which three have not been used for emphysema
detection before, and five LLP methods, of which four have
not been used for emphysema detection or in medical imaging
before. We investigate if learning from emphysema extent
labels improves performance over learning from emphysema
presence labels. Knowing what can be achieved by learning
from labels of different quality and cost is paramount for cost-
effective development and application of machine learning
methods for clinical decision making.

II. MATERIALS AND METHODS

We view emphysema extent prediction as a bag learning
problem. Bag learning is a machine learning setting where
we are given a set of instances, a partition of the instances
into bags and a labeling of the bags. The objective is to learn
to predict both instance and bag labels for unseen data. In
this work we view a region of the lung as a bag and patches
sampled from the region as instances. The bag labels are
regional emphysema extent scores, corresponding to estimated
percentage of affected lung volume, and we wish to predict
which patches contain emphysema, as well as the extent of
emphysema in the region. Representing a scan as a set of
patches provides a representation of local patterns in the lungs.
By controlling the patch size we can focus on the scale at
which patterns are expected to be distinct.

More formally, let X be an instance space, Y an instance
label space, Z a bag label space and b = (x ⊆ X , z ∈ Z) a
labeled bag of instances. We use superscripts to refer to the
label (bz), instances (bx) and instance labels (by) associated
with a bag b. For a set of m bags B = {b1,b2, . . . ,bm}, bx

i

are the instances in the i’th bag and bx
ij is the j’th instance

in the i’th bag. We define the learning problem as

arg max
Y,h,Θ

P(Y, h,Θ|B), (1)

where Y = ∪mi=1b
y
i is a labeling of instances, Θ : Y 7→ Z

is a bag labeling function relating by
i to bzi and h : X 7→ Y

is a hypothesis relating the instances bx
i to the corresponding

instance labels by
i , i.e. h is a method for predicting by

i from
bx
i .
Two well known bag learning settings are multiple instance

learning (MIL) and learning with label proportions (LLP). In
the standard MIL setting bag labels are binary, instance labels
are binary and bag labels are related to instance labels by
the max rule, i.e. a bag is positive if at least one instance is
positive

bzi = Θmax(by
i ) = max

j
by
ij . (2)

This MIL setting is powerful because it allow us to learn about
instance labels when only little information about the relation
between instance and bag labels is available. A potential
issue with the max rule is that it focuses on the single most
discriminative instance. This could lead to a situation with
good bag-level detection but poor localization and extent pre-
diction. Including information about the proportion of positive

instances could improve localization and extent prediction. In
the standard LLP setting, bag labels are proportions, instance
labels are binary and bag labels are related to instance labels
by the mean rule, i.e. the bag label is the proportion of positive
instances

bzi = Θmean(by
i ) =

1

|bi|

|bi|∑

j

by
ij . (3)

Although MIL methods require binary labels for training, i.e.
Θ : Y 7→ {0, 1}, we can use Θmean at test time to obtain
proportion estimates of emphysema extent.

A. Methods

We compared four MIL methods (logistic, SVM, mi-
logistic, mi-SVM) and five LLP methods (beta, Cluster Model
Selection, ∝-SVM, ∝-logistic, Laplacian Mean Map). The
methods can be grouped into three distinct strategies used
to solve the bag learning problem: the simple strategy, the
relabeling strategy and the mean strategy. Some methods have
previously been successfully applied to emphysema and COPD
prediction, logistic, SVM and mi-SVM in [17], [11] and
Cluster Model Selection in [12]. The LLP methods, ∝-SVM
[21] and Laplacian Mean Map [22], have been shown to
perform well on a variety of datasets. The beta method [23]
can be seen as an LLP version of logistic and the mi-logistic
and ∝-logistic methods are logistic regression versions of their
SVM counterparts.

a) Simple strategy: In the simple strategy the bag learn-
ing problem is solved by ignoring intra-bag dependencies.
We assign each instance the label of the bag it came from,
i.e by

ij = bzi , and train a standard supervised method on
the instance labels. Labels for unseen bags are predicted by
predicting instance labels and using Θmean to derive a bag
label. The learning problem now becomes

arg max
φ

P(hφ|Y,X), (4)

where X = ∪mi=1b
x
i is the set of instances and h is a model

parameterized by φ. We consider two simple MIL models,
logistic regression (log) and a support vector machine (svm);
and one simple LLP model, beta regression [23] (beta). Beta
regression is a generalized linear model where the outcome Y
follows a beta distribution allowing us to perform regression
with proportion outcomes. Note that bag labels are only used
for the initial instance labeling, so Θ plays no role in the
simple strategy.

b) Relabeling strategy: In the relabeling strategy the bag
learning problem is solved by splitting it into two sub problems
that are solved separately, a standard learning problem (5) and
an instance labeling problem (6),

arg max
φ

P(hφ|Y,X) (5)

arg max
Y

P(Y|hφ,Θ,Z), (6)

where Z = ∪mi=1{bzi } is the set of bag labels and Θ = Θmax

for MIL and Θ = Θmean for LLP. The two sub problems
are iterated until convergence, with the result of (5) being
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used for (6) and the result of (6) being used for (5). We
consider two relabeling MIL methods, mi-SVM [24] (misvm)
and mi-logistic (milog); and three relabeling LLP methods,
∝-SVM [21] (psvm), ∝-logistic (plog) and Cluster Model
Selection [25] (cms). The methods milog and plog have not
previously been published, they are however very similar to
their svm counterparts and we do not include the derivation
here. Details can be found in Appendix B. The cms algorithm
differs from the other relabeling methods in that it solves (5)
by unsupervised clustering. We use a version of cms previously
described in [12].

c) Mean strategy: In the mean strategy the bag learning
problem is solved by replacing the direct dependence on
instance labels with a dependence on a mean statistic µ
calculated over all instances

arg max
φ

P(hφ|µ,X). (7)

µ is defined as

µ =
1

n

∑

i

YiXi (8)

where Yi ∈ {−1, 1} and n is the number of instances.
Knowing µ allow us to minimize the expected risk of a large
class of loss functions. However, since the instance labels Y
are still unknown µ must be estimated. The basic idea for the
mean strategy is to express µ in terms of bag-wise averages
and solve for these bag-wise averages

µ =
m∑

i=1

|bi|
n

µi (9)

µi = bziµ
+
i − (1− bzi )µ

−
i (10)

where |bi| the number of instances in bag i and µi,µ
+
i ,µ

−
i ,

are the unknown mean instance, mean positive instance and
mean negative instance of bag i, respectively. Equation (10)
yields an underdetermined system of equations. We consider
a single mean LLP method, Laplacian Mean Map [22] (lmm),
that solves the system of equations by regularizing with a bag
similarity term. We refer to [22] for further details.

B. Measures

We measure agreement in the following way. Let nk be the
number of ratings for case k and nc,k the number of times
label c is assigned to case k. Agreement on label c over all
cases is defined as ∑

k

nc,k (nc,k − 1)

∑
k

nc,k (nk − 1)
. (11)

Overall agreement across labels is defined as
∑
c,k

nc,k (nc,k − 1)

∑
k

nk (nk − 1)
. (12)

When all cases have two ratings Equation 11 corresponds to
the Jaccard similarity and Equation 12 corresponds to multi-
class accuracy. For multiple raters these measures ensure that

partial agreement, e.g. two out of three, is counted appropri-
ately. We measure prevalence of label c as the proportion of
times a case is assigned label c out of all assignments.

∑
k

nc,k
∑
c,k

nc,k
(13)

C. Data

Examples of the appearance of emphysema in CT scans are
provided in Appendix A.

1) Study population, CT scanning & visual assessment:
We used data collected in the Danish Lung Cancer Screening
Trial (DLCST) [26]. The screening arm of the study enrolled
2052 participants for annual low dose CT screening. Scan
parameters are reproduced below verbatim from [26].

All CT scans of the study were performed
on a MDCT scanner (16 rows Philips Mx 8000,
Philips Medical Systems, Eindhoven, The Nether-
lands). Scans were performed supine after full in-
spiration with caudocranial scan direction including
the entire ribcage and upper abdomen with a low
dose technique, 120kV and 40 mAs. Scans were
performed with spiral data acquisition with the fol-
lowing acquisition parameters: Section collimation
16 × 0.75 mm, pitch 1.5, rotation time 0.5 second.

We used a 1mm reconstruction with pixel size of 0.78mm ×
0.78mm.

We obtained visual assessment of emphysema from [9],
where screening participants with at least two CT scans were
selected for visual assessment (n=1990). The visual assessment
used a slight modification of the assessment sheets from [4].
Baseline and final followup scan was assessed by two experts.
Emphysema extent was assessed for the top, middle and lower
regions of each lung. The regions were defined as above carina,
between carina and lower pulmonary vein, and below lower
pulmonary vein. Each region was assigned a score of 0%, 1-
5%, 6-25%, 26-50%, 51-75% or 76-100% indicating the extent
of emphysema in the region.

In general, prevalence was highest and rater agreement
best in the upper regions. Prevalence and agreement for the
upper right region are summarized in Table I. Prevalence
for emphysema extent above 26% is low (≈ 36 of 1200
subjects). Agreement on the five categories indicating emphy-
sema presence was around 50%. Using only two categories
(0%, ≥ 1%) improves agreement to 82% on the emphysema
category. Although the original six categories provide more
information than presence/absence labels, they are noisier and
likely harder to learn from.

2) Patches: We represented a lung region as a collection of
3D patches sampled from the region. Sampling was done by
choosing patch center locations uniformly at random within
the region. We used a fixed patch size of approximately
11mm3 to match the size of the secondary lobule [5] and
allowed overlapping patches. For each patch we extracted a set
of multi-scale filter responses and used equalized histograms
of the filter responses as the final representation of the patch.
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All Presence
Extent Agreement Prev Extent Agreement Prev

0% 94 (93–95) 75.2 0% 94 (93–95) 75.2
1-5% 54 (47–60) 14.7

≥ 1% 81 (78–85) 24.8
6-25% 44 (34–53) 7.0

26-50% 45 (26–61) 2.0
51-75% 57 (26–80) 0.9
≥ 76% 67 (00–99) 0.1
Overall 83 (81–85) 91 (89–92)

TABLE I: Agreement and mean prevalence in the upper right
region of the training data. Numbers are percentages. First
three columns are for all six categories, last three columns are
for presence/absence. 95% confidence intervals for agreement
estimated by bootstrapping are given in parenthesis.

The filters used were Gaussian blur, gradient magnitude,
eigenvalues of the Hessian, Laplacian of Gaussian, Gaussian
curvature and the Frobenius norm of the Hessian. All filters
were calculated at scales 1mm, 2mm and 4mm. The filters
and the patch sampling strategy have previously been used
successfully for COPD texture analysis in [16].

III. EXPERIMENTS AND RESULTS

We created a set of 1800 bags by sampling patches from
the upper right region of 1800 subjects, such that each bag
corresponds to one unique subject. We chose the upper right
region because it has the highest prevalence and agreement.
Results in [11] indicate that although absolute performance
decreases when training on regions with lower prevalence and
agreement, this decrease is relatively smaller than the decrease
in rater agreement and prevalence.

Each bag contained 100 patches from a single subject. The
bags were split into three non-overlapping datasets of 400
training and 200 test bags. Each experiment was run on all
three datasets. In each split, we used two-fold cross validation
on the training bags for parameter tuning. The three separate
sets of classifiers were finally trained on all 400 training bags
and performance estimated on the corresponding 200 test bags.

All classifiers provide posterior instance label probabilities
which were converted to binary predictions using a classifier
specific instance threshold fitted on the training bags. Param-
eters are summarized in Appendix C.

To train and evaluate we derived point estimates of emphy-
sema extent by converting visually assessed extent intervals
to interval midpoints and taking the mean over both raters.
As an example, for a region with ratings 6-25% and 1-5%,
the ratings are converted to 15.5% and 3% and combined into
9.25%. The point estimates where used directly for training
LLP classifiers and thresholded at zero to obtain binary labels
for training MIL classifiers.

A. Extent prediction accuracy

The prediction performance of the nine classifiers is il-
lustrated with correlation plots in Fig. 1. The numbers in
the title of each plot are intra-class correlation coefficients
(ICC, two-way model, agreement) for each replication. The
average ICC coefficients over the three replications are shown

log svm milog misvm beta plog psvm cms lmm
0.88 0.86 0.90 0.89 0.89 0.69 0.71 0.78 0.91

TABLE II: Average ICC of of emphysema extent over the
three replications. MIL on the left, LLP on the right.

0 1-5 6-25 26-50 51-75 76-100 Overall
log 88 35 54 38 17 00 74
svm 89 37 49 27 12 00 74
milog 85 35 50 36 29 00 71
misvm 91 39 58 36 31 00 79
beta 91 35 54 24 47 00 78
plog 72 26 57 45 00 00 58
psvm 27 15 21 35 51 17 24
cms 62 22 49 28 37 00 49
lmm 81 31 49 30 44 17 66
Rater 95 49 53 47 32 00 83

TABLE III: Agreement percentages between classifiers and
raters averaged over replications and raters. First four columns
show MIL classifiers, next five columns show LLP classifiers,
last column shows rater agreement.

in Table II. We see clear positive correlation between reference
and predicted extent for all classifiers. It appears that plog
and cms tend to underestimate extent, whereas psvm tends to
overestimate for cases with low extent but seems to perform
very well for larger extent. Most classifiers show the largest
variation for 15% reference extent. For extent larger than
15% we see very few cases with 0% extent predicted. The
ICC values across replications, also seen in Fig. 1, illustrate
that the performance of some classifiers varies a lot, with a
difference of 0.25 in the worst case (cms). The most stable
ICC performance is seen for lmm, which also has the highest
average ICC.

B. Replacing a rater

The ICC of predicted extent and average rater extent pro-
vides an overall measure of performance and a validation that
the classifiers have learned what they are trained to do. We
are also interested in how the classifiers compare against each
rater on the original rater task, i.e assign one of six intervals
of emphysema extent. We converted predicted extent into the
six extent intervals and calculated agreement with each rater.
Agreement was calculated as described in Section II-B and is
reported in Table III as an average over raters and replications.
The final column in Table III provides inter-rater agreement
averaged over replications. We see that beta and misvm have
the highest overall agreement (78 and 79), which is not far
from the overall rater agreement of 83. The agreement pattern
of misvm and beta also seem to match that of the raters to
a large degree, with a large agreement on 0% extent cases.
It is interesting that psvm has the worst overall performance
yet seems to outperform the other classifiers and raters for
51-75% extent. However, we cannot rule out that this is just
a random coincidence given the low prevalence of that class.
Another interesting observation is that the best results relative
to inter-rater agreement is seen for 6-25% and 51-75%, with
four classifiers having better agreement scores than inter-rater
agreement.



5

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Reference

P
re

di
ct

ed

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●

●
●

●

●
●
●
●
●

●

●
●

●
●
●
●

●

●
●
●

●

●

●

●

log (ICC: 0.88, 0.93, 0.84)

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Reference

P
re

di
ct

ed

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●
●

●

●
●
●
●
●

●
●

● ●
●
●

●

●
●

●

●

●
●

●

●

●
●

●

svm (ICC: 0.87, 0.92, 0.81)

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Reference

P
re

di
ct

ed

●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●
●
●
●
●
●
●

●

●

●

●

●
●

●

●
●
●

●

●
●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●
●
●

●
●
●

●
●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

milog (ICC: 0.93, 0.91, 0.86)

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Reference

P
re

di
ct

ed

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●
●

●
●

●

●
●
●
●
●
●

● ●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

misvm (ICC: 0.91, 0.94, 0.82)

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Reference

P
re

di
ct

ed

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●
●

●
●
●

●
●
●
●
●
●
●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

beta (ICC: 0.91, 0.91, 0.87)

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Reference

P
re

di
ct

ed

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●
●

●

●
●
●

●
●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●

●

●
●
●
●
●

●

●
●
●

●

●

●

●

●

●

plog (ICC: 0.66, 0.83, 0.59)

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Reference

P
re

di
ct

ed

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●
●
●
●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●

●
●
●
●
●

●
●
●

●
●
●

●

●
●
●
●
●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

psvm (ICC: 0.77, 0.76, 0.59)

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Reference

P
re

di
ct

ed

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●

●

●

●
●
●
●
●
●

●
●
●
●

●
●

●

●

●
●
●
●
●
●
●
●

●

●
●

●
●
●
●
●

●

●
●

●

●

cms (ICC: 0.62, 0.87, 0.86)

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Reference

P
re

di
ct

ed

●

●

●

●
●
●

●

●

●

●

●

●
●

●
●
●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●

●

●
●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

lmm (ICC: 0.91, 0.91, 0.90)

Fig. 1: Correlation between predicted and reference extent of emphysema. The x-axis is reference extent and the y-axis is
predicted extent. The amount of red “petals” at a coordinate indicates the amount of coincident points. Plot titles show ICC
coefficients for each replication.

C. Ranking classifiers

We use Friedmans and Nemenyis test for comparing classi-
fiers as suggested in [27]. We test the hypothesis H0 : All
classifiers are equal using Friedmans test and significance
level α = 0.05. This test is based on the rank of the classifiers
for each sample prediction. We use the absolute distance from

predicted extent to reference extent to assign ranks. In all three
replications we get p < 0.001 for the Friedman test and reject
the hypothesis that all classifiers have equal performance. We
then test the pairwise hypothesis H0 : The classifiers are equal
for all pairs of classifiers using the Nemenyi test. The results
of the Nemenyi tests are summarized in Fig. 2. Columns are
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beta misvm log svm milog lmm plog cms psvm

misvm log svm beta milog lmm plog cms psvm

milog misvm beta svm log lmm plog cms psvm

Fig. 2: Grouping of classifiers based on difference in extent
prediction performance as decided by the Nemenyi test. Classi-
fiers in the same box are not significantly different (α = 0.05).
Columns are sorted by mean rank over all test samples in
descending order. Bold typeface indicates LLP methods.

sorted by average ranks and H0 is rejected for classifiers that
are not in the same box. We see that the LLP methods plog,
cms and psvm are consistently ranked low, confirming the low
ICC in Table II and the low overall agreement in Table III.
Even though lmm is never significantly different from the
best classifier, it is consistently ranked low. We also saw in
Table III that lmm had low overall agreement with raters yet
achieved the best average ICC. It is also interesting that misvm
is consistently ranked in the top-2.

1) Label stability: We investigate label stability under
changes in training data by predicting all test data with the
trained models from each replication. For each classifier we
got three sets of predictions of 60,000 instances and 600 bags.
We converted bag predictions to the six extent intervals and
measured agreement between replications for predicted bag
and instance labels for each classifier. The stability results are
summarized in Table IV. For bag labels, most classifiers have
best agreement on 0% extent followed by 6-25%. Overall, beta
and misvm are the most stable classifiers for both bag and
instance labels, whereas milog is the most stable classifier on
6-25%, 26-50% and 51-75%. The missing scores for 51-75%
and 76-100% are because there are no predictions of these
classes in any of the replications. The inter-rater agreement
on bag labels is included in the last row of Table IV. We see
that misvm and beta always have equal or better agreement
than the raters, and most methods have better agreement than
raters on all non-zero extent scores.

IV. DISCUSSION & CONCLUSION

We have focused on comparing MIL methods, which have
previously shown promising results for COPD and emphysema
detection, with LLP methods that can learn directly from
proportion labels. While end-to-end learning using CNNs have
shown promising results for medical imaging tasks, and have
just recently been used for emphysema quantification [28],
we decided to use classic scale space features to focus on
the aspects of learning from binary versus proportion labels,
and to establish performance of classic feature engineering
approaches.

Using the average rater as reference, the best classifiers
achieve ICC coefficients around 0.9. Average overall agree-
ment between the best classifiers and each rater on six em-

physema extent intervals is close to the inter-rater agreement
(78-79% vs 83%). For some extent intervals the classifiers are
better than the inter-rater agreement. These results show that
that the presented approach to automatic emphysema extent
prediction is viable and could be useful for routine assessment
of emphysema extent.

The four best performing classifiers, beta, misvm, milog
and lmm, have very similar ICC coefficients, with lmm being
slightly more consistent across replications. However, beta and
misvm show superior overall prediction of extent intervals
with a much better discrimination of CT scans without visible
emphysema compared to milog and lmm. Overall stability of
beta and misvm is also superior to milog and lmm, although
milog shows more stable predictions for the lower prevalence
extent intervals 6-25%, 26-50% and 51-75%. Learning from
scores indicating emphysema extent did not appear to be
advantageous for extent prediction compared to learning based
on emphysema presence alone. The MIL classifiers, misvm
and milog, and the LLP classifiers, beta and lmm, show
comparable performance.

One possible explanation for the lack of improved perfor-
mance when training on extent labels, is that the extent labels
are too noisy, as the relatively large disagreement between
observers suggests. Obtaining more accurate and precise extent
labels is costly and it is not clear if it is possible to improve
the label quality significantly. In this work we have combined
the emphysema estimates of two raters by simple averaging
of point estimates. In [12] we showed that performance
of the cms classifier improved when learning from labels
incorporating rater uncertainty over learning from averaged
point estimates. The approach used in [12] is not directly
applicable to the other methods used here and we have used
point estimates to keep the comparison fair. Recent work on
classification of retinal images with a CNN-based method [29]
show that modeling individual raters can improve performance
over simple averaging of multiple raters. Although more than
30 raters were used in [29] it is possible that a more complex
model of rater annotations could also improve performance
when only two raters are used.

Another possible factor is that the model of proportion
labels is too simple to exploit the additional information in
the labels. The results in [28] indicate that learning from
proportion labels can help more complex models based on
CNNs to converge faster and to a better optima than learning
from binary labels. A possible explanation for this is that
explicitly modeling proportion labels has a regularizing effect
on the feature learning part of CNNs, which would also explain
why we do not see improved performance for LLP methods
when features are fixed.

We considered three strategies for learning from bag labels,
the simple strategy, the relabeling strategy and the mean
strategy. For the MIL classifiers it appears that the relabeling
strategy is best, whereas for the LLP classifiers it appears
that the simple and mean strategies are best. One reason the
simple strategy works better for LLP than for MIL could
be that a proportion instance label as used in simple LLP
is interpreted as a probability of emphysema in the patch,
whereas the binary instance labels as used in simple MIL are
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Bag Instance
0% 1-5% 6-25% 26-50% 51-75% 76-100% Overall E NE

log 89 60 68 58 57 – 79 35 97
svm 89 57 60 51 58 – 78 44 97
milog 84 60 81 82 77 – 78 44 96
misvm 95 70 77 70 74 – 88 52 98
beta 96 71 72 58 62 50 89 56 98
plog 65 54 73 78 – – 61 07 95
psvm 24 40 47 47 60 0 41 12 82
cms 65 60 59 45 12 – 61 05 93
lmm 82 60 68 58 67 17 73 43 97
Rater 95 49 53 47 32 0 83 – –

TABLE IV: Label stability. Agreement percentages between predictions from each replication. Instance columns are for binary
instance predictions (Emphysema / No Emphysema). A dash (–) indicates no predictions in that category.

interpreted as the probability the patch came from a CT scan
with emphysema. In this sense, the proportion instance labels
match the intended objective, predicting the proportion of
patches with emphysema, much better than the binary instance
labels.

A limitation of this study is that we have only trained and
validated the classifiers on the upper right region of the lung.
Due to the lower prevalence and agreement of visual scoring
in the remaining five regions, we expect some decrease in
extent prediction accuracy for these regions, similar to what
was observed in [11] for regional emphysema detection. Inves-
tigating the performance over all regions should be considered
in future work. However, the results in [11] show that a simple
MIL classifier trained on subject-level presence/absence labels
can provide the same performance as a classifier trained on
region-level presence/absence labels. In light of the results
here, this suggests that a MIL classifier, such as misvm, could
provide accurate regional emphysema extent estimates even
when trained only on subject-level presence of emphysema.

In conclusion, the best performing classifiers have close to
human-level performance and are promising candidates for
automatic quantification of emphysema extent. Furthermore,
MIL classifiers having access to only emphysema presence
labels perform just as well as LLP classifiers with access to
emphysema extent labels. Reducing the labeling task from
estimating emphysema extent to indicating presence, reduces
the cost of training and makes it more feasible to implement
in new settings.
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[3] M. O. Wielpütz, D. Bardarova, O. Weinheimer, H.-U. Kauczor,
M. Eichinger, B. J. Jobst, R. Eberhardt, M. Koenigkam-Santos, M. Pud-
erbach, and C. P. Heussel, “Variation of densitometry on computed
tomography in COPD–influence of different software tools,” PloS one,
vol. 9, no. 11, p. e112898, 2014.

[4] COPDGene CT Workshop Group:, R. G. Barr, E. A. Berkowitz,
F. Bigazzi, F. Bode, J. Bon, R. P. Bowler, C. Chiles, J. D. Crapo, G. J.
Criner, J. L. Curtis, C. Dass, A. Dirksen, M. T. Dransfield, G. Edula,
L. Erikkson, A. Friedlander, M. Galperin-Aizenberg, W. B. Gefter,
D. S. Gierada, P. A. Grenier, J. Goldin, M. K. Han, N. A. Hanania,

N. N. Hansel, F. L. Jacobson, H.-U. Kauczor, V. L. Kinnula, D. A.
Lipson, D. A. Lynch, W. MacNee, B. J. Make, A. J. Mamary, H. Mann,
N. Marchetti, M. Mascalchi, G. McLennan, J. R. Murphy, D. Naidich,
H. Nath, J. D. N. Jr., M. Pistolesi, E. A. Regan, J. J. Reilly, R. Sandhaus,
J. D. Schroeder, F. Sciurba, S. Shaker, A. Sharafkhaneh, E. K. Silverman,
R. M. Steiner, C. Strange, N. Sverzellati, J. H. Tashjian, E. J. van
Beek, L. Washington, G. R. Washko, G. Westney, S. A. Wood, and
P. G. Woodruff, “A combined pulmonary-radiology workshop for visual
evaluation of COPD: Study design, chest CT findings and concordance
with quantitative evaluation,” COPD: Journal of Chronic Obstructive
Pulmonary Disease, vol. 9, no. 2, pp. 151–159, 2012.

[5] D. M. Hansell, A. A. Bankier, H. MacMahon, T. C. McLoud, N. L.
Müller, and J. Remy, “Fleischner Society: Glossary of terms for thoracic
imaging,” Radiology, vol. 246, no. 3, pp. 697–722, 2008.

[6] M. M. W. Wille, L. H. Thomsen, J. Petersen, M. de Bruijne, A. Dirksen,
J. H. Pedersen, and S. B. Shaker, “Visual assessment of early emphysema
and interstitial abnormalities on CT is useful in lung cancer risk
analysis,” European Radiology, pp. 1–8, 2015.

[7] D. A. Lynch, J. H. Austin, J. C. Hogg, P. A. Grenier, H.-U. Kauczor,
A. A. Bankier, R. G. Barr, T. V. Colby, J. R. Galvin, P. A. Gevenois
et al., “CT-definable subtypes of chronic obstructive pulmonary disease:
a statement of the Fleischner Society,” Radiology, vol. 277, no. 1, pp.
192–205, 2015.

[8] D. A. Lynch, C. M. Moore, C. Wilson, D. Nevrekar, T. Jennermann,
S. M. Humphries, J. H. Austin, P. A. Grenier, H.-U. Kauczor, M. K.
Han et al., “CT-based visual classification of emphysema: Association
with mortality in the COPDGene study,” Radiology, p. 172294, 2018.

[9] M. M. W. Wille, L. H. Thomsen, A. Dirksen, J. Petersen, J. H. Pedersen,
and S. B. Shaker, “Emphysema progression is visually detectable in low-
dose CT in continuous but not in former smokers,” European Radiology,
vol. 24, no. 11, pp. 2692–2699, Nov 2014.

[10] R. Wiemker, M. Sevenster, H. MacMahon, F. Li, S. Dalal, A. Tahmasebi,
and T. Klinder, “Automated assessment of imaging biomarkers for the
PanCan lung cancer risk prediction model with validation on NLST
data,” in Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134.
International Society for Optics and Photonics, 2017, p. 1013421.

[11] S. N. Ørting, J. Petersen, L. H. Thomsen, M. M. W. Wille, and
M. de Bruijne, “Detecting emphysema using multiple instance learning,”
in 2018 IEEE 15th International Symposium on Biomedical Imaging
(ISBI 2018), 2018.

[12] S. N. Ørting, J. Petersen, M. M. Wille, L. H. Thomsen, and M. de Brui-
jne, “Quantifying emphysema extent from weakly labeled CT scans
of the lungs using label proportions learning,” The Sixth International
Workshop on Pulmonary Image Analysis, pp. 31–42, 2016.
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APPENDIX A
EMPHYSEMA

Fig. 3 shows slices from the upper right region of three CT
scans. Background and airways have been masked. The left
image is assessed as having no visible emphysema extent. The
center image as having 6-25% and the right image as having
51-75% emphysema extent. For the center image, emphysema
is predominately visible at the boundary of the lung, whereas
it is distributed throughout the region in the right image.

APPENDIX B
METHODS

A. Notation

Let X be an instance space, Y an instance label space, Z
a bag label space and b = (x ⊆ X , z ∈ Z) a labeled bag
of instances. We use superscripts to refer to the label (bz),
instances (bx) and instance labels (by) associated with a bag
b. For a set of m bags B = {b1,b2, . . . ,bm}, bx

i are the
instances in the i’th bag and bx

ij is the j’th instance in the
i’th bag. For the set of all instances we use X = ∪mi=1b

x
i , for

all instance labels we use Y = ∪mi=1b
y
i and for all bag labels

we use Z = ∪mi=1{bzi }.

B. mi-logistic

The bag learning problem for mi-logistic is a constrained
optimization problem over model weights and unknown in-
stance labels

max
w,Y

∏

i,j

p(by
i,j |bx

i,j ,w) (14)

s.t.∀i : Θmax(by
i ) = bzi ∈ {0, 1}. (15)

We use the heuristic for solving the mi-SVM problem from
[24]. Initially, fix instance labels by setting them to bag labels,
by
i,j = bzi ∀i, j. For fixed instance labels (14) reduces to

standard logistic regression. Let h(·) = σ(wT ·) denote the
fitted model. Instance labels are predicted as

b̃y
i,j = 1{h(bx

i,j) > 0.5} (16)

and bag labels are predicted as

b̃zi = Θmax(b̃y
i ). (17)

Instance labels are then updated according to

by
i,j =





0 if bzi = 0

1 if bzi = 1. b̃zi = 0. h(bx
i,j) > h(bx

i,k)∀k 6= j

b̃y
i,j if otherwise

(18)
The first clause ensures that instances from negative bags
are always labeled negative. The second clause ensures that
a positive bag predicted as negative will always have one
positive instance by labeling the “most” positive instance as
positive, and the third clause ensures all other instances in
positive bags are relabeled to match the predicted class.

C. ∝-logistic

The ∝-logistic model can be derived by considering the
joint probability over instances X, bag labels Z and instance
labels Y

P (Y,X,Z) = P (Z|Y,X)P (Y,X) (19)
= P (Z|Y)P (Y,X) Z ⊥⊥ X |Y

(20)
∝ P (Z|Y)P (Y|X) P (X) = Constant

(21)

We use a logistic model for instance labels and a binomial
model for bag labels.

P (Y |X) =
∏

i,j

P (by
i,j |bx

i,j ,w) (22)

=
∏

i,j

σ(wTbx
i,j)

by
i,j (1− σ(wTbx

i,j))
1−by

i,j (23)

P (Z |Y) =
∏

i

P (bzi |by
i ) = (24)

∏

i

( |bi|
|bi|bzi

)
Θmean(by

i )|bi|bz
i (1−Θmean(by

i )|bi|−|bi|bz
i

(25)

substituting into (21) gives us

P (Z|Y)P (Y|X) =
∏

i

P (bzi |by
i )
∏

j

P (by
i,j |bx

i,j ,w) (26)

We want to find the Y and w that maximize (26)

arg max
Y,w

∏

i

P (bzi |by
i )
∏

j

P (by
i,j |bx

i,j ,w) (27)

We do this by fixing Y and w iteratively. For fixed Y we get
standard logistic regression. For fixed w we can optimize over
each bag individually

arg max
by

i

P (bzi |by
i )
∏

j=1

P (by
i,j |bx

i,j ,w). (28)

This can be done with the same greedy method used for ∝-
SVM in [21].

APPENDIX C
PARAMETERS

All classifiers provide probability estimates of instance
labels and a classifier-specific instance threshold was fitted
on the training data by trying all thresholds in the range
[0, 0.01, 0.02, . . . , 0.99, 1]. Fitted thresholds are reported in
Table V. There is a large variation in fitted instance thresholds
across classifiers, and for some classifiers there is a large
variation across replications. Variation across replications is an
indication that the classifier has learned substantially different
decision rules for each replication. Variation between classi-
fiers could just be a scaling issue, but is at least an indication
that interpreting instance predictions as probability estimates
is problematic.
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Fig. 3: Example slices. From left, visually assessed emphysema extent is 0%, 6-25% and 51-75%. Window level -780HU,
window width 560HU.

Classifier D1 D2 D3
log 0.78 0.79 0.60
beta 0.09 0.09 0.09
svm 0.77 0.76 0.70

misvm 0.85 0.94 0.78
milog 0.99 0.99 0.99
psvm 0.97 0.99 0.14
plog 0.01 0.01 0.01
cms 0.86 0.68 0.99
lmm 0.75 0.62 0.73

TABLE V: Fitted instance thresholds for each classifier and
replication

A. beta

The implementation of beta regression requires uncorrelated
features and we used the PCA algorithm to decorrelate fea-
tures. We tried dimensionality reduction (only keep principal
components with standard deviation ≥ 1). We tried two
optimization methods, maximum likelihood estimation (ML)
and bias correction (BC).

Fitted parameters

beta D1 no dimensionality reduction, ML
D2 no dimensionality reduction, BC
D3 no dimensionality reduction, ML

B. svm, misvm, psvm

For all three classifiers we tried both linear and RBF kernels.
In both cases we tried C ∈ {0.1, 1, 10, 100}. For psvm we tried
C2 ∈ {1, 10, 100, 1000}. For the RBF kernels we tried γ ∈
{0.1, 1}. We used Platt calibration [30] to obtain probability
estimates from all three SVMs.

Fitted parameters

svm D1 linear kernel, C = 1
D2 linear kernel, C = 0.1
D3 linear kernel, C = 10

misvm D1 linear kernel, C = 0.1
D2 linear kernel, C = 0.1
D3 linear kernel, C = 0.1

psvm D1 rbf kernel, C = 1, C2 = 1, γ = 0.1
D2 rbf kernel, C = 0.1, C2 = 1, γ = 1
D3 rbf kernel, C = 1, C2 = 1, γ = 0.1

C. log, milog, plog

We tried dimensionality reduction using PCA for log. We
did not use dimensionality reduction for milog and plog. We
ran milog and plog until convergence of instance labels or for
20 iterations, whichever came first.

Fitted parameters
log D1 no dimensionality reduction

D2 no dimensionality reduction
D3 dimensionality reduction

D. cms

We used the following fixed parameters, branching = 2,
number of k-means iterations = 25, maximum iterations of
CMA-ES = 1000, λ = 13. We tried number of clusters
k ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

Fitted parameters
cms D1 k = 70

D2 k = 50
D3 k = 100

E. lmm

We tried

λ ∈ {0, 1, 10, 100}
γ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1}
σ ∈ {0.001, 0.01, 0.1, 0.125, 0.25, 0.5, 1.0}

Fitted parameters
lmm D1 λ = 1, γ = 0.01, σ = 0.1

D2 λ = 1, γ = 0.01, σ = 0.1
D3 λ = 10, γ = 0.00001, σ = 0.25



4 Crowdsourcing for medical imaging

This section is based on two manuscripts. The first [32] investigates how emphysema assessment can be framed
as a task that can be solved by non-expert crowd workers. The second [29] provides a review of crowdsourcing
in medical image analysis.

[32] Silas Nyboe Ørting, Veronika Cheplygina, Jens Petersen, Laura H Thomsen, Mathilde MW
Wille, and Marleen de Bruijne. Crowdsourced emphysema assessment. In Intravascular Imaging
and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label
Synthesis. 2017.

[29] Silas Ørting, Andrew Doyle, Arno van Hilten, Matthias Hirth, Oana Inel, Christopher R. Madan,
Panagiotis Mavridis, Helen Spiers, and Veronika Cheplygina. A survey of crowdsourcing in medical
image analysis. arXiv e-prints, art. arXiv:1902.09159. Feb 2019.

38



Crowdsourced Emphysema Assessment

Silas Nyboe Ørting1(B), Veronika Cheplygina2,5, Jens Petersen1,
Laura H. Thomsen3, Mathilde M.W. Wille4, and Marleen de Bruijne1,5

1 Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark
silas@di.ku.dk

2 Medical Image Analysis (IMAG/e), Department of Biomedical Engineering,

Eindhoven University of Technology, Eindhoven, The Netherlands
3 Department of Respiratory Medicine, Gentofte Hospital, Hellerup, Denmark

4 Department of Diagnostic Imaging, Bispebjerg Hospital, Copenhagen, Denmark
5 Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical

Informatics, Erasmus MC - University Medical Center Rotterdam,

Rotterdam, The Netherlands

Abstract. Classification of emphysema patterns is believed to be useful
for improved diagnosis and prognosis of chronic obstructive pulmonary
disease. Emphysema patterns can be assessed visually on lung CT scans.
Visual assessment is a complex and time-consuming task performed by
experts, making it unsuitable for obtaining large amounts of labeled data.
We investigate if visual assessment of emphysema can be framed as an
image similarity task that does not require expert. Substituting untrained
annotators for experts makes it possible to label data sets much faster
and at a lower cost. We use crowd annotators to gather similarity triplets
and use t-distributed stochastic triplet embedding to learn an embedding.
The quality of the embedding is evaluated by predicting expert assessed
emphysema patterns. We find that although performance varies due to
low quality triplets and randomness in the embedding, we still achieve a
median F1 score of 0.58 for prediction of four patterns.

Keywords: Crowdsourcing · Emphysema · Similarity learning

1 Introduction

Emphysema is a lung pathology common to chronic obstructive pulmonary dis-
ease that is a major cause of morbidity and mortality world wide [3]. Emphysema
is characterized by destruction of lung tissue. Lung CT scans can reveal emphy-
sema and visual scoring can be used to rate the extent and type of emphysema
in the lungs [14]. Visual scores can be used for training classifiers to automati-
cally assess presence and extent of emphysema [9,11]. However, visual scoring of
emphysema by experts is both expensive and prone to high rater disagreement
[14]. Instead of performing a full visual scoring, which requires expert knowledge

c© Springer International Publishing AG 2017
M.J. Cardoso et al. (Eds.): CVII-STENT/LABELS 2017, LNCS 10552, pp. 126–135, 2017.
DOI: 10.1007/978-3-319-67534-3 14
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of the lungs, we investigate whether it is possible to reduce emphysema assess-
ment to a simpler task that can be performed by untrained raters, or crowds.

In fields such as computer vision, crowdsourcing - outsourcing simple tasks
to a crowd of online users, often without any specific training - has been used
successfully to gather labels for training and validation of classifiers [4]. Most of
this research focuses on collecting labels that directly characterize the content
of the image, for instance presence of an object or indicating regions of inter-
est. Motivated by the fact that some categorization tasks may be difficult for
non-experts, a few others instead focus on collecting assessments of similarities
between images. For example, Wah et al. [13] collect similarities between images
of different bird species, which most people do not know by name, but can eas-
ily assess their visual similarity. The similarities can then be used to learn an
embedding that can aid classification.

Due to the success of crowdsourcing in computer vision, there have also
been several efforts to apply it to medical imaging [1,2,6,8]. Similar to methods
from the computer vision field, these works focus on collecting labels for images,
targeting classification or segmentation tasks. For example, the crowd can be
asked to grade retinal images as normal or abnormal [8] or to segment airways
in 2D slices of chest CT images [2]. To the best of our knowledge, this work is
the first to gather crowdsourced similarities for medical images, as well as to
apply a crowdsourcing approach to classification of emphysema patterns.

2 Materials and Methods

2.1 Data

We used 40 chest CT scans from the a national lung cancer screening trial [10]
and visual assessment of emphysema from [14]. Visual assessment is performed by
considering the full 3D volume and splitting each lung in three regions. The top,
middle and lower regions are defined as above carina, between carina and inferior
pulmonary vein, and below inferior pulmonary vein. The volume is assigned a
label indicating the predominant emphysema pattern and each region is assigned
an estimate of the extent of emphysema in the region. The 40 scans were selected
amongst those where raters agreed on visual assessment of both predominant
pattern and emphysema extent in the upper right region. We excluded scans
with panlobular emphysema due to low prevalence. We grouped candidate scans
based on predominant pattern: normal (N), centrilobular (C), paraseptal (P),
mixed (M), and chose ten scans from each group. For the three emphysema
groups (C, P, M) we chose the scans with highest extent, and for the normal
group we chose ten scans at random. We used lung fields segmented from the
scans obtained from [5].

We extracted nine coronal slices from the top region of the right lung of each
scan. The slices were evenly spaced (10 mm) and located such that the center
slice coincided with the center slice of the region. In this way we covered a depth
of 80 mm and avoided slices at the very boundary of the lungs. An example
of an extracted set of slices is given in Fig. 1. The slices are extracted from
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a subject with a large extent of centrilobular emphysema. We see that while
texture patterns vary a lot throughout the region, patterns are similar between
neighboring slices. It is also clear that size and shape of the lung region varies
with slice location. To avoid having workers focus on the differences in lung size
and shape, we stratify slices by their location in the lung when sampling triplets.

Fig. 1. Nine slices extracted from a single volume. There is a large extent of centrilob-
ular emphysema. We can see that neighboring slices tend to have more similar texture
patterns than slices that are far away from each other. White border added for clarity.

2.2 Crowdsourced Triplets

We used Amazon MTurk1 to collect similarity triplets. MTurk centers on the
concept of a human intelligence task (HIT), a self-contained task that can be
solved by a worker. We designed our HIT as a set of three image triplets where
the task is to provide similarity assessment of each of the three triplets. A screen-
shot showing part of a HIT is given in Fig. 2. We asked workers to choose one of
two images on the right with the most similar disease patterns to the image on
the left. We instructed workers to look for emphysema patterns, defined as areas
of low intensity, and consider the distribution of patterns of these areas: scat-
tered throughout the lung or concentrated. We emphasized that workers should
ignore differences in size and shape of the lung. We asked three different workers
to perform each HIT. We required workers that had at least 1000 previously
approved HITs and a 95% approval rate. The reward for each task was $0.10.

We collected 9720 similarity triplets for 3240 unique image triplets. 150 dif-
ferent workers worked on the HITs, with a median number of HITs per worker
of 6.5 (19.5 similarity triplets). The median work time per HIT was 55 s. The
most productive worker submitted 131 HITs and the lowest work time for a HIT
was 4 s. More than 92% of the HITs were finished within 30 min of the first HIT
being available. The total cost was $388.80.

2.3 Similarity Embedding

We used t-distributed stochastic triplet embedding (t-STE) [12] to learn an n-
dimensional Euclidean embedding from the similarity triplets. t-STE searches for
an embedding X that maximizes the probability of observing the given triplets.

1 https://www.mturk.com.
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Fig. 2. Amazon MTurk user interface for collecting the similarity triplets

Let T be the set of known triplets and ijl ∈ T a triplet indicating that d(i, j) <
d(i, l). The probability of ijl given xi, xj , xl ∈ X is

pijl =

(
1 +

||xi−xj ||2
α

)− α+1
2

(
1 +

||xi−xj ||2
α

)− α+1
2

+
(
1 + ||xi−xl||2

α

)− α+1
2

(1)

The optimization problem is

min
X

−
∑

ijl∈T

log pijl (2)

which is solved with gradient descent using the implementation from Michael
Wilber2.

Crowdsourced similiarity triplets are very likely to contain inconsistent and
redundant triplets. When multiple workers perform the same HIT this is defi-
nitely the case. McFee and Lanckriet [7] give empirical evidence that pruning
triplets for consistency and redundancy reduces computation time without affect-
ing performance. However, they compare against a baseline where directly dis-
agreeing triplets are removed. Removing triplets where workers disagree removes
information about the uncertainty of the triplets. We can implicitly model this
uncertainty by keeping all triplets. It can be shown that for x = xi, xj , xl the
conflicting triplets satisfy

∂

∂x
pijl = − ∂

∂x
pilj , (3)

and the sum of the derivatives becomes

∂

∂x
log pijl +

∂

∂x
log pilj =

∂

∂x
pijl

(
1

pijl
− 1

pilj

)
(4)

2 https://github.com/gcr/cython tste.
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which will drive the triplets to become equally probable, i.e. ||xi−xj || = ||xi−xl||.
In the case where ijl occur cj times and ilj occur cl the gradient will depend on
both the ratio cj/cl and the distances ||xi − xj ||, ||xi − xl||. In this way workers
uncertainty about triplets will be accounted for in the optimization.

We used k-fold cross-validation with a multinomial log-linear model to esti-
mate the predictive performance of the obtained embeddings. We enforced that
each test fold contained exactly one sample from each class. For four classes with
ten scans each this resulted in 10-fold cross-validation. We used the predomi-
nant pattern from the expert visual scoring of the regions as class labels. The
model was fitted as a neural network with one hidden layer using the multinom
function from the nnet package3.

3 Experiments and Results

3.1 Simulated Similarity Triplets

To estimate how many triplets are needed to reveal an underlying pattern
we performed a simulation experiment. We defined a distance function that
encodes a similarity hierarchy of visually assessed patterns and emphysema
extent. Paraseptal emphysema often appear as a small number of large holes,
whereas centrilobular emphysema often appear as a large number of small holes.
We therefore expect most raters will consider normal and centrilobular patterns
more similar than normal and paraseptal patterns. We also expect both cen-
trilobular and paraseptal patterns to be considered more similar to the mixed
pattern than to each other. For images with the same pattern class we used
absolute distance on emphysema extent. This simple distance function does not
account for variability in patterns and it is unlikely that image based similar-
ity triplets will match the visual assessment perfectly. However, it does provide
some insight into the amount of triplets necessary. We used three sets of ran-
domly selected triplets with sizes of 120, 240, and 360. For each set of triplets we
generated 100 2D embeddings and estimated the prediction performance of the
embedding with the multinomial model described above. We used the F1 score
to measure performance

F1 = 2 · precision · recall

precision + recall
. (5)

The median F1 score for 120 triplets was 0.8 and improved to 0.9 for 240 triplets
and to 1.0 for 360 triplets. There was some variation in performance for 120 and
240 triplets, whereas almost all 360 triplet embeddings gave perfect prediction.
Representative embeddings for 120 and 240 triplets are given in Fig. 3. We can see
that the embedding matches the distance function quite well, with normal and
paraseptal being furthest from each other and mixed in between centrilobular
and paraseptal. We also see some class overlap for 120 triplets and almost no
overlap for 240 triplets. We used these results to guide the crowdsourcing to
gather relatively many triplets for a small number of scans.

3 https://cran.r-project.org/web/packages/nnet.
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Fig. 3. Example embeddings from simulated triplets. Left: 120 triplets. Right: 240
triplets. While there is no overlap between emphysema and normal classes in both
cases, there is some overlap between emphysema classes for 120 triplets.

3.2 Crowdsourced Similarity Triplets

We estimated the quality of the crowdsourced triplets by measuring the agree-
ment with a small set of validation triplets. The validation triplets were labeled
by one of the authors and consist of 52 triplets that the authors view as easy
to reproduce. The overall agreement was 71% with a large variation between
workers. We expected most workers to work on one or more validation triplets.
However, due to the large number of workers only 41% of workers worked on
a validation triplet and only 11% on more than two validation triplets. While
agreement was lower than anticipated, and some workers had very poor agree-
ment, we decided to include all triplets.

We varied the embedding dimensionality d from 1− 10. We set α = max(d−
1, 1) for all experiments and used a random initialization of t-STE. From the
similarity triplets we learned an embedding of slices. Due to the stratification of
triplets by slice location it is not meaningful to embed different slice locations
simultaneously. We therefore concatenated the slice feature vectors to obtain
a region embedding. We normalized each slice embedding to avoid that slice
locations with numerically large distances dominated the region embedding. As
an alternative to embedding each slice location separately we added triplets
between slice locations and embedded all slice locations simultaneously. The
extra triplets were derived by exploiting that neighboring slices in a region, in
general, are more similar than slices further away from each other. This “neighbor
similarity” was encoded with the distance function

d(slicei, slicei+1) < d(slicei, slicei+3), i ∈ [1 : 6],

d(slicei, slicei−1) < d(slicei, slicei−3), i ∈ [4 : 9],
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and the corresponding triplets were added to T . We refer to the first approach as
stratified and the second as combined. All embeddings were repeated 100 times
to account for variability arising from the random initialization of t-STE.
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Fig. 4. Distribution of mean F1 scores for classification of emphysema type. Left strat-
ified, right combined. The dashed red line indicate random performance (F1 = 0.25).
(Color figure online)

Figure 4 shows the mean F1 score over all classes for increasing embedding
dimension for stratified and combined embeddings. Best median performance
was achieved with D8 for stratified (F1 = 0.58) and with D9 for combined
(F1 = 0.55). In both plots we see a large variation in performance. Adding the
extra triplets for combined embedding seems to make performance more similar
across dimensions, but does not decrease variation within each dimension. The
direct source of the variation is the random initialization of t-STE. However,
as the simulation showed, having a large consistent set of triplets will drive the
variation in prediction performance to 0. The extra triplets for combined, that
as subset is consistent, did not reduce variation, so the main underlying cause
is likely having too many inconsistent triplets.

Figure 5 show performance by class. In all cases we see best performance on
centrilobular and normal. For D > 5 we see consistently higher performance on
centrilobular than on normal. Performance on centrilobular seems to be the main
cause for the higher mean scores at D8 and D9. Treating mixed and paraseptal
as one pattern makes the performance similar to performance on centrilobular
(results not shown). This indicates that the main difficulty is in distinguishing
paraseptal and mixed.
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Fig. 5. F1 scores for classification of emphysema type. Left for stratified, right for
combined. The dashed red line indicate random performance (F1 = 0.25). Symbols
indicate median values and bars indicate ±1 median absolute deviation. (Color figure
online)

4 Discussion and Conclusion

Although there was large variation in prediction performance, it was in all but
a few cases substantially better than random. The results from the simulation
experiment show that more triplets improve median prediction performance and
reduce variance. However, the simulation experiment uses triplets that perfectly
encodes a distance function on patterns. While more crowdsourced triplets might
improve performance and reduce variance, it is possible that higher quality set
of triplets is needed to see significant gains.

Pruning triplets could improve quality. Directly inconsistent triplets, i.e.
ijl, ilj ∈ T , can arise from poorly performing workers or difficult decisions.
If we assume they represent difficult decisions, then they contain important
information that we would like to keep. Pruning triplets is shown by [7] to be
NP-hard and can only be solved approximately. Using the information from the
direct inconsistencies to guide the pruning could be an interesting approach to
improve the quality of the triplet set.

Direct inconsistencies due to poorly performing workers should not guide
anything, but be removed. One approach is to rank workers and discard triplets
from the least trustworthy workers. Ranking could be done by ensuring all work-
ers perform tasks with a reference. Alternatively, it could be based on how well
each worker agree with other workers. The first case requires expert labels and
that each worker perform a minimum number of reference tasks. The second
case requires that workers perform a large number of tasks and that tasks over-
lap with many different workers. In the future we intend to use one or both
approaches to improve the quality of the triplet set.
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An alternative to filtering triplets from poorly performing workers is to only
enlist high performing workers. This could be done by splitting the tasks into
many small sets and only allow the best performing workers to work on a new set.
In this way the workforce would be trained to solve the tasks to our specification.
Another option is recruiting workers that find the tasks worth doing beyond
the financial gain. One worker expressed interest in working more on this type
of tasks and asked “Am I qualified to be a pulmonologist now?”. Compared to
many other crowdsourcing tasks, medical image analysis seems like a good fit for
community research, where people outside the traditional research community
play an active part. It requires a larger degree of openness and communication
about the research process but could be a tool to recruit high quality workers.

In this work we aimed at keeping HITs as simple as possible, hence the choice
of collecting triplets. Instead of similarity triplets it is possible to ask workers to
label the images. We believe that asking untrained workers to assess emphysema
pattern and extent would be overly optimistic. However, focusing on a few simple
questions might work well, for example “Are there dark holes in the lung?”, “Are
holes present in more than a third of the lung?”, “Are the holes predominantly at
the boundary of the lung?”. These types of questions correspond to a model we
have of emphysema and could be used to derive emphysema pattern and extent
labels. The downside is that we need to know exactly what we want answered
at the risk of missing important unknowns in the data.

Regardless of the high variance in performance, we conclude that untrained
crowd workers can perform emphysema assessment when it is framed as a ques-
tion of image similarity. No quality assurance, beyond requiring that workers
had experience with MTurk, was performed. It is likely that large improvements
can be gained by quality assurance of similarity triplets.
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Abstract—Rapid advances in image processing capabilities
have been seen across many domains, fostered by the appli-
cation of machine learning algorithms to “big-data”. However,
within the realm of medical image analysis, advances have been
curtailed, in part, due to the limited availability of large-scale,
well-annotated datasets. One of the main reasons for this is the
high cost often associated with producing large amounts of high-
quality meta-data. Recently, there has been growing interest in
the application of crowdsourcing for this purpose; a technique
that has proven effective for creating large-scale datasets across
a range of disciplines, from computer vision to astrophysics.
Despite the growing popularity of this approach, there has not
yet been a comprehensive literature review to provide guidance
to researchers considering using crowdsourcing methodologies
in their own medical imaging analysis. In this survey, we review
studies applying crowdsourcing to the analysis of medical images,
published prior to July 2018. We identify common approaches,
challenges and considerations, providing guidance of utility to
researchers adopting this approach. Finally, we discuss future
opportunities for development within this emerging domain.

Index Terms—Medical imaging, crowdsourcing, citizen science,
machine learning

I. INTRODUCTION

The limited availability and size of labeled datasets for
training machine learning algorithms is a common problem
in medical image analysis [Greenspan et al., 2016, Litjens
et al., 2017, Cheplygina et al., 2018]. In several other fields,
crowdsourcing - defined as the outsourcing of tasks to a crowd
of individuals [Howe, 2006]- has been found effective for
labeling large quantities of data. For example, in computer
vision crowdsourcing has been used to annotate large datasets
of images and videos with various tags [Kovashka et al., 2016].

Due to the success of crowdsourcing, several researchers
have recently applied these techniques to the annotation of

medical images. Although such images present specific chal-
lenges, including absence of expertise of the crowd, several
early papers such as [Mitry et al., 2013, Mavandadi et al.,
2012, Maier-Hein et al., 2014a] have demonstrated promising
results. Despite the growing interest, there has not been an
overview of the work in this field. In this paper we summarize
existing literature on crowdsourcing in medical imaging.

This paper originated during the Lorentz workshop “Crowd-
sourcing in medical image analysis” in June 20181. As par-
ticipants of the workshop, we searched Google Scholar with
the query “crowdsourcing AND (medical or biomedical)” and
screened the results for papers focusing on the topic. Google
Scholar was selected due to previous papers highlighting
the poor indexing of the topic in databases and the high
prevalence of crowdsourcing papers in conferences [Wazny,
2017]. Additional papers were identified for inclusion by
examining the references and citations of selected papers. We
only included papers where the crowd was involved in the
analysis of medical or biomedical images, for example by
annotating them. Our search strategy resulted in 55 papers.
Key terms emerging from these studies are illustrated in
Fig. 1. Five key dimensions were identified for discussion;
the application involved, the type of interaction between the
crowd and the images, the scale of the task (such as the number
of images), the type of evaluation performed on the crowd
annotations, and the results of the evaluation.

There are a number of surveys which are related to this
work. However, they are quite different in scope:

• Ranard et al. [2014] survey crowdsourcing in health

1https://www.lorentzcenter.nl/lc/web/2018/967/info.php3?wsid=967&
venue=Snellius
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Fig. 1. A word cloud of the abstracts of the surveyed papers.

and medical research. They identify four tasks: problem
solving, data processing, monitoring and surveying and
cover 21 papers published until March 2013. In contrast,
we only focus on papers where image analysis (i.e. data
processing) is involved.

• Kovashka et al. [2016] survey crowdsourcing in com-
puter vision. The surveyed papers focus on analysis of
everyday/natural images. Only one of the 195 referenced
papers (Gurari et al. [2015]) uses biomedical data.

• Wazny [2017] present a meta-review of crowdsourcing
from 2006 to 2016. Similar to Ranard et al. [2014], they
take a more broad view of crowdsourcing. They review
existing review papers until August 2015, focusing on
how each review categorizes the papers, for example by
platform, size of crowd, and so forth.

• Alialy et al. [2018] is most similar to our survey, but
only focuses on crowdsourcing in human pathology. They
do a systematic search with several steps, excluding
conference papers or abstracts, and summarize seven
papers. The coverage of literature is therefore much more
limited than in this work.

While this paper is a preprint, we welcome feedback from
other researchers, which we will aim to incorporate in the
journal version. Interested researchers can submit comments
via https://goo.gl/forms/Qzr2yAJQjOnRCAF23.

The paper is organized as follows. The five dimensions
according to which we analyzed the papers are described in
more detail in Sections II to VI. We then discuss overall
trends, limitations, and opportunities for future research in
Section VII.

II. APPLICATIONS

There are a variety of crowdsourcing applications to medical
imaging data addressed in the papers surveyed in this work.
We group these applications by (1) the type of task performed
by the crowd, (2) the biomedical content of the image and (3)
the dimensionality of the images.

A. Type of task

An important task in medical image analysis is classifi-
cation, and 42% of the surveyed papers focus on this task.

Classification can refer to assigning a label to an entire image,
such as diagnosing whether a chest CT image contains any
abnormalities. Classification can also refer to assigning a label
to a part of the image, for example, the type of abnormality
located in a particular region of interest. Other types of labels
include non-diagnostic labels such as image modality [de Her-
rera et al., 2014], visual attributes [Cheplygina and Pluim,
2018], and assessing the quality of the image [Keshavan
et al., 2018]. These three types of labels are based more on
visual characteristics, and thus might be easier to provide than
diagnostic labels without any medical training.

A further 38% of the papers focus on localization or seg-
mentation. Typically the goal is to delineate the boundary of an
entire healthy structure, or of an abnormality such as a lesion.
The difference with how we define the classification task above
is that instead of providing information about the image, the
annotator has to modify the image, by providing positions or
outlines. These tasks rely more on visual characteristics than
classification tasks, and may be more easily explained to a
non-expert crowd.

In 13% of the papers both classification and segmentation
are addressed. Often this means that the annotator first has to
indicate if the structure of interest is visible, and if yes, to
locate it in the image.

Finally, 7% of papers request less standard tasks from their
crowd. For example, Maier-Hein et al. [2015] focus on de-
termining correspondence between pairs of images. Although
this is a type of detection task, where the annotator has to
locate points of interest in an image, it is also different since
a point of reference is already provided. Another example is
Ørting et al. [2017], where the annotator has to decide which
image is more similar to a reference image. This is a type
of classification problem, but again relying more on visual
features than on prior knowledge.

B. Type of image

Medical images are acquired at vastly different scales and
locations depending on the physiological measurement of in-
terest. The imaging acquisition modality and strategy depends
heavily on the scale of the anatomy of interest, and different
technologies’ expected contrast with surrounding tissues. Here
we categorize the images by where in the body the image
originates from, which narrows down the modality. We use
the following categorization, also used in two recent surveys of
medical imaging [Litjens et al., 2017, Cheplygina et al., 2018]:
brain, eye, heart, breast, lung, abdomen, histology/microscopy,
multiple, other.

We compare the distribution of applications surveyed in this
work with the two other surveys in Table I. An interesting
observation is that Litjens et al. [2017] and Cheplygina et al.
[2018] have a similar distribution of applications despite
surveying different topics: Litjens et al. covers deep learning,
where a larger dataset is preferred, while Cheplygina et al.
covers weakly supervised learning, where datasets are smaller
in size. Given that crowdsourcing is often proposed as an
alternative to weakly supervised learning, it is surprising that
the current survey has a different distribution of papers.
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Application This survey Cheplygina et al.
[2018]

Litjens et al.
[2017]

Brain 9% 21% 18%
Eye 15% 4% 5%
Lung 9% 13% 14%
Breast 0% 6% 7%
Heart 2% 4% 7%
Abdomen 22% 14% 9%
Histo/Micro 29% 17% 20%
Multiple 7% 12% 4%
Other 7% 10% 16%

TABLE I
COMPARISON OF THE DISTRIBUTION OF APPLICATIONS IN THIS SURVEY

AND TWO OTHER RECENT SURVEYS IN MEDICAL IMAGE ANALYSIS.
PERCENTAGES ARE ROUNDED TO THE NEAREST WHOLE NUMBER.

Many of the papers in this survey are aimed at 2D images.
The most common application is histopathology/microscopy
with 29% of all the papers, followed by retinal images with
15% of the papers. Both applications are over-represented
compared to [Litjens et al., 2017] and Cheplygina et al.
[2018]. This overrepresentation in crowdsourcing studies may
be because many retinal and microscopic images are acquired
in 2D, which might be easier to use in a crowdsourcing study
than 3D images.

Breast and heart images, which were already not well
represented in the other two surveys, are almost absent in
crowdsourcing studies. Both applications can be aimed at 2D
or 3D images. However, perhaps due to lack of datasets or per-
ceived difficulty of assessing these images, these applications
are almost never considered for crowdsourcing.

Several other papers address applications where images
are often 3D, such as the brain (9%) and the lungs (9%).
Compared to [Litjens et al., 2017, Cheplygina et al., 2018],
brain and lung images are underrepresented in crowdsourcing.
This could be due to complexity of images or limitations
in interfaces. One approach for dealing with 3D images is
to select 2D parts of the original 3D images. For example,
[Ørting et al., 2017, O’Neil et al., 2017] select axial slices.
[Cheplygina et al., 2016] shows patches of 2D projections
in various directions in the image. Others circumvent the 3D
problem by presenting a video to the users where the entire
image is displayed as a sequence of 2D frames [Boorboor
et al., 2018]. Only a few of the papers addressing 3D images,
present images in 3D [Huang and Hamarneh, 2017, Sonabend
et al., 2017].

The last type of data that is addressed is video, common for
endoscopy and colonoscopy (both in the abdomen category).
Several different approaches are used for presenting video
data: 2D frames [Maier-Hein et al., 2014b, 2015, 2016, Heim,
2018, Roethlingshoefer et al., 2017], 3D renderings [Nguyen
et al., 2012, McKenna et al., 2012], short video clips [Park
et al., 2017], or longer videos that can be paused and anno-
tated [Park et al., 2018].

Other applications of crowdsourcing include segmenting
hip joints in 2D MRI [Chávez-Aragón et al., 2013], rating
visual characteristics of dermatological images [Cheplygina
and Pluim, 2018] and assessing surgical performance [Mal-
pani et al., 2015, Holst et al., 2015]. Two papers [Foncu-
bierta Rodrı́guez and Müller, 2012, de Herrera et al., 2014]

look at multiple applications, where the task is classifying
image modality, rather than segmentation or diagnosis. A few
papers address segmentation in multiple modalities: [Gurari
et al., 2016] focus on both natural and biomedical images,
[Lejeune et al., 2017] address segmentation across four med-
ical applications.

III. INTERACTION

An important aspect of crowdsourcing medical image anno-
tations is task design. The interplay between the type of image
data, the type of annotations that are needed and the available
tools for annotation, needs to be considered to successfully
crowdsource annotations. A major component of task design
is choosing how workers interact with the task. The type of
interaction influences time per task and the required level of
expertise and training, which ultimately translates into cost
and quality. We identified four categories of interaction tasks
across the studies surveyed:

• Rate an entire image
• Draw shapes to identify regions of interest
• Click on specific locations
• Compare two or more images
Furthermore, we also observed that studies generally had

crowds either (1) create entirely new annotations on unlabeled
data, or (2) make responses based on pre-existing annotations,
e.g., output from automated segmentation methods.

Rating entire images was the most common interaction
and was the main task of 52% of the studies surveyed here.
Ratings took many forms, identifying the presence/absence
of specific visual features [Sonabend et al., 2017], counting
number of cells [Smittenaar et al., 2018], assessing intensity of
cell staining [dos Reis et al., 2015], or discriminating healthy
samples from diseased [Mavandadi et al., 2012]. Most com-
monly, crowd worker were asked to create new annotations
(89% of rating tasks). Less commonly, crowd workers were
asked to validate pre-existing annotations (14%). One study
involved both validating pre-existing annotations and creating
new ones [Heim, 2018], so the percentages do not sum to
100%. Existing annotations were the output of automated
methods [Roethlingshoefer et al., 2017, Ganz et al., 2017, Gur
et al., 2017] half of the time, and the crowdsourced annotations
were used to identify instances with errors to be corrected.

Drawing a shape was the second most common task,
comprising 37% of studies. Here crowd workers were asked
to draw bounding boxes or segment outlines of structures
of interest. Sometimes, this was only after identifying if a
structure was present in the image or not [Heim, 2018]. Similar
to rating images, drawing shapes was used as an interaction
for both creating new annotations (90% of drawing tasks) and
validating existing annotations (15%). In the case of evaluating
existing annotations, drawing was used as a means to indicate
the location of errors in segmentations produced by automated
methods [Roethlingshoefer et al., 2017, Ganz et al., 2017].

Clicking on specific locations was the third most used
interaction, occurring in 26% of studies. Clicking was only
used to create new annotations such as identifying the precise
location of specific cells, abnormalities, or artifacts within
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an image. The use of multiple clicks to outline a structure
was considered a “drawing a shape” interaction. Selecting
points was also used in pairs of video frames to determine the
stereotactic correspondence of two video streams for follow-up
3D reconstruction [Maier-Hein et al., 2014b, 2015, 2016].

Comparing two or more images was the least used in-
teraction, occurring in only 5 (9%) of studies. In all cases,
comparisons were used to create new annotations, such as
marking corresponding points in two consecutive video frames
[Maier-Hein et al., 2015, 2016] or to choose which of two
images was more similar to a target image [Ørting et al., 2017].

Overall, crowds were more often used to create new annota-
tions, than to make judgments on existing annotations. Ratings
and drawing of shapes can be used to obtain more detailed
annotations than information already present in datasets. Click-
ing interactions are sometimes used to identify specific image
features, but more commonly used to create bounding boxes
or draw object boundaries. Evaluating existing annotations is
always done with rating or drawing interactions.

IV. PLATFORM, SCALE AND WAGES

In this section we summarize the main meta parameters and
settings of crowdsourcing experiments. First, we classify the
reviewed papers based on the type of platform used to perform
the crowdsourcing experiments. Second, we report on the scale
of the experiments where we consider 1) the number of images
annotated and 2) the number of annotators per image. Finally,
we summarize the wages paid to crowd workers.

A. Crowdsourcing platforms

A potentially important factor that varies across the sur-
veyed papers is the choice of platform for conducting crowd-
sourcing experiments. We classify the platforms into six cat-
egories: paid commercial marketplaces such as Amazon Me-
chanical Turk2 and FigureEight3 (formerly known as Crowd-
Flower), volunteers such as Zooniverse4 and Volunteer Sci-
ence5, custom recruitment/platforms, lab participants, experts
and simulation or no experiment at all. The most common
choice is a commercial platform (53%). The second most
common choice is a custom platform (22%) followed by a
volunteer platform (10%). The remaining 15% were almost
equally divided into the other categories with around 7% of
all papers reporting prototypes or simulation studies.

B. Scale

We summarize the scale of the crowdsourcing experiments
in terms of number of images annotated and number of
annotations per image.

2https://www.mturk.com
3https://www.figure-eight.com
4https://www.zooniverse.org
5https://volunteerscience.com

1) Number of images: We classify the number of images
into four categories: very small (less than 10 annotated im-
ages), small (10 to 100 annotated images), medium (100 to
1000 annotated images) and large (more than 1000 annotated
images). The large majority of reviewed papers, 71%, report
small and medium scale experiments, while a smaller part
report large experiments (21%) or very small experiments
(5%). However, in around 3% of the reviewed papers, the scale
of the experiments is not reported.

2) Number of annotations per image: We divide the num-
ber of annotations per image into two categories: a single
annotator per image (5%) or multiple annotators per image
(61%). Surprisingly, for 34% of surveyed papers the number
of annotations per image is not reported nor can it be inferred.

Overall, the experiments using a single annotator per image
involve either simulations or locally recruited, volunteer-based
annotators that are not remunerated. The number of annotators
per image for experiments using multiple annotators per image
ranges from 2 to 5000. However, the majority (70%) of these
experiments use between 5 to 25 annotators per image.

C. Annotators Wage

We classify the wage given to annotators into six different
categories: a few dollars per hour, less than or equal to $0.10
per annotation, more than $0.10 per annotation, volunteers (no
monetary incentive), not specified (if we have no information
about compensation) and none (if no actual experiment or
recruitment took place).

More than a third (35%) of papers did not specify anything
about wage. In 32% of papers the wage was less than or equal
to $0.10, in 25% of papers crowds where volunteers with no
monetary incentive, in 5% of papers the wage was more than
$0.10, and in 3% of papers the wage was an hourly payment
of a few dollars per hour.

Overall, very few and mainly the papers that mention an
hourly payment considered crowd worker wages in relation to
minimum wage rules and regulations.

V. EVALUATION

In this section we describe how the crowdsourced annota-
tions are evaluated. This is done via two strategies:

• ensuring sufficient quality of annotations by preprocess-
ing

• estimating the utility of the crowd annotations for the task
at hand

Although the two strategies are closely related and should be
considered jointly when designing crowdsourcing experiments,
it is informative to consider them separately here.

The first strategy is closely related to the field of quality
control in crowdsourcing. Numerous approaches exist to tackle
this, starting from simple majority voting and worker filtering
to sophisticated statistical and machine learning methods that
consider workers’ specific skills, task difficulty and clarity of
task descriptions. The second strategy is more domain-specific,
as different tasks may have different levels of tolerance for
errors.
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A. Preprocessing of annotations

Preprocessing of annotations broadly covers what is done
to the crowdsourced annotations prior to using them for their
intended purpose. It includes filtering individual annotations
and/or aggregating annotations. Of the surveyed papers, 84%
perform some form of preprocessing.

1) Filtering individuals: One way to filter annotations, is to
remove annotations made by “poorly performing” annotators.
Most crowdsourcing platforms offer a rating score for workers
that provides an estimate of their performance, based on their
percentage of previously approved tasks. This score is used
in 15% of surveyed papers to filter workers prior to assigning
tasks. A related approach, used in 13% of surveyed papers, is
to exclude workers that fail a test task prior to the actual tasks.
A refinement of this, used in 24% of surveyed papers, is to
integrate separate test tasks in the tasks and exclude workers
that fail the tests. One example is adding a smiley face to
colonoscopy videos to ensure attention [Park et al., 2018].

Another common filtering approach for individual workers,
used in 22% of surveyed papers, is comparing annotations
to gold standard annotations. In this case, tasks with known
gold standard annotations, are injected into the regular working
process. A worker’s correspondence with the gold standard
can then be used to estimate individual worker performance.
In contrast to platform scores and unrelated test tasks, this
approach assesses worker performance on the specific task,
allowing more fine-grained worker selection.

2) Aggregating results: One of the main benefits of crowd-
sourcing is the fast and cost-effective collection of a large
number of annotations. This allows aggregating annotations
to reduce noise in the individual annotations.

Majority voting is widely used due to its computational
and conceptual simplicity and was found in 22% of the
papers. In the context of medical image analysis, majority
voting is applied to annotations, ratings, and also to aggregate
slices of images. One example is presented in Heim [2018]
where the authors used crowdsourcing for organ segmentation
in computed tomography scan. Multiple organ outlines are
collected via an online tool and pixel-wise majority voting
is applied to improve the accuracy of the segmentation.

In the case of numerical ratings, mean and median statistics
are also used in 13% of the papers to determine a final
annotation. For example, Cheplygina et al. [2016] use median
to aggregate the areas of the annotations created by individual
workers.

A more sophisticated version of the majority vote uses
additional information about the general quality of workers.
This information can be derived if workers perform multiple
tasks or if gold standard data is available. Weighted voting is
used in 16% of surveyed papers, for example in [Keshavan
et al., 2018], where the XGBoost algorithm was used to
estimate annotator weights and in [Brady et al., 2017] where
task difficulty is taken into account and annotator weights are
estimated as the probability an annotator is correct conditioned
on the difficulty of the task,

B. Evaluating annotations

Evaluating how well crowd annotations solve the intended
purpose is most commonly (78% of surveyed papers) done
by directly comparing crowdsourced annotations to a gold
standard. In about 16% of surveyed papers crowd annotations
are used for training a machine learning method, and the
performance of the machine learning method used to indirectly
evaluate annotations. The remaining 5% have no evaluation of
how well annotations solve the intended purpose.

The gold standard originates from different sources. In about
20% of surveyed papers the gold standard is based on a single
expert, in about 36% the gold standard is based on multiple
experts and in the remaining papers the number of experts
is not reported or no expert gold standard is used. Using a
gold standard based on a single expert can be problematic
since experts often disagree on all but the most trivial tasks.
However, only 3 of 20 papers that use multiple experts
consider how well experts agree.

Expert-based gold standards are generally not obtained from
experts performing exactly the same task as the crowd. In
several cases the only difference in expert and crowd tasks is
due to differences in user interface, e.g. a clinical workstation
for experts and a web interface for crowds. As long as the
fundamental task is the same (e.g. count cells) and the user
interface has not been dramatically changed we consider the
expert and crowd tasks to be the same. Using this definition,
about 40% of the papers use the same task and about 40% use
a different task. In the remaining 20% it is either not reported
or no expert gold standard is used.

There are several reasons for asking crowds to perform
a different task than what experts have done for the gold
standard. Some papers use a simplified version of the expert
task in order to make the task easier or more suitable as a small
self-contained task. For example, ranking relative performance
in pairs of surgical videos instead of grading performance
in each [Malpani et al., 2015]; assessing visual similarity of
images instead of classifying disease patterns [Ørting et al.,
2017]; refining segmentation proposals instead of performing a
full segmentation [Maier-Hein et al., 2016]; annotating polyps
in a single frame instead of in a full video [Park et al., 2017];
counting stained cells instead of classifying disease status
[Irshad et al., 2017]. Other papers focus on changing the user
interface, such as in [Lejeune et al., 2017] where an eye tracker
is used for segmentation instead of a mouse, or in [Albarqouni
et al., 2016b, Mavandadi et al., 2012] where the user interface
is changed to support gamification strategies.

In a few papers, evaluation is focused on variation in
annotations. For example, in [Lee and Tufail, 2014, Lee et al.,
2016] where annotations are evaluated in terms of inter-rater
reliability; and in [Heller et al., 2017, Huang and Hamarneh,
2017, Leifman et al., 2015, Sonabend et al., 2017] where
individual annotations are compared to aggregated annotations.
Measuring variability of annotations it not directly useful for
evaluating the correctness of annotations. However, annotation
variability is essential when evaluating how much the crowd-
sourced annotations can be trusted. Additionally, variation
provides an indirect measure of correctness. Large variation
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can indicate that annotations are often wrong, while small
variation indicates that annotations are often correct or the
task has been designed such that annotators are consistently
wrong.

VI. RESULTS AND RECOMMENDATIONS

Here, we provide an overview of the primary results and
recommendations emerging from the papers examined in this
review. Complementary to the topics discussed in Section V
we consider (1) How effective is the application of crowd-
sourcing to medical image analysis? (2) Recommendations to
ensure data quality.

A. How effective is the application of crowdsourcing to med-
ical image analysis?

The vast majority of studies examined in this review found
crowdsourcing to be a valid approach for data production.
Crowdsourcing of medical image analysis was noted to be
an accurate approach [Lawson et al., 2017], that can produce
large quantities of annotations needed to solve high-throughput
problems requiring human input [Irshad et al., 2015, dos
Reis et al., 2015, Lee and Tufail, 2014, Maier-Hein et al.,
2014b]. Crowdsourcing can be used to create new annotations
or make existing data more robust, both cheaper and faster
than annotation by medical experts [Rajchl et al., 2016, Holst
et al., 2015, Gurari et al., 2016, Eickhoff, 2014, Park et al.,
2017].

Although the relative efficacy of crowdsourcing applied to
medical image analysis will be dependent on the complexity of
the task, the papers examined here show crowdsourcing to be
an effective methodology across a wide variety of applications,
including objective assessment of surgical skill [Malpani et al.,
2015], emphysema assessment [Ørting et al., 2017], polyp
marking in virtual colonoscopy [Park et al., 2018], identifi-
cation of chromosomes [Sharma et al., 2017] and biomarker
discovery in immunohistochemistry data [Smittenaar et al.,
2018]. Notably, only one project stated that crowdsourcing
could not always be applied effectively to the studied task
(“it is very difficult and maybe even impossible to entirely
outsource the task of labelling mitotic figures in histology
images to crowds” [Albarqouni et al., 2016a]).

Rather than comparing the absolute performance of the
crowd to experts or to algorithms, it might be worth con-
sidering their relative benefits. For example, crowds were
particularly useful for rare classes [Sullivan et al., 2018],
which are often difficult cases for algorithms. Another situ-
ation where crowds can be useful is identifying data that is
missing from the gold standard provided by experts, see for
example [Luengo-Oroz et al., 2012]. Benefits of combining
crowds with algorithms were also demonstrated by [Albar-
qouni et al., 2016a, Sharma et al., 2017].

B. Recommendations to ensure data quality
The papers examined in this review included suggestions

to improve the quality of data produced through crowdsourc-
ing. These suggestions focused on refining the task design,
crowdsourcing platform and post-processing of annotations.
We summarize these recommendations here.

1) Task design: As discussed, crowdsourcing has been
applied effectively to many medical imaging applications.
However, careful study design remains necessary to ensure
generation of data of sufficient quality.

The selection and design of an appropriate crowdsourcing
task is central to project success. Effort should be made to
make the task simple and unambiguous [Rajchl et al., 2016,
Gurari et al., 2016], and to present study data appropriately
[McKenna et al., 2012]. For unavoidably challenging tasks,
crowdsourcing may still provide useful data, for instance,
through enabling a rapid first-pass evaluation of large scale
data sets [Della Mea et al., 2014, Park et al., 2017]. Particularly
challenging tasks may be made tractable through gamification
[Albarqouni et al., 2016b] or careful reframing of the task, e.g.
crowdsourcing of emphysema assessment was made possible
through reframing the task as a question of image similarity
[Ørting et al., 2017]. Alternatively, it may be possible to
achieve the desired data quality simply through asking a larger
cohort of crowd workers to perform each task per data point.
An interesting example of task design is given in [Gurari et al.,
2016] where quality and speed of crowdsourced segmentations
in natural images are increased by flipping images, suggesting
that familiarity with an image can be detrimental.

2) Crowdsourcing platform: The choice of crowdsourcing
platform can influence study cost and completion time, as well
as the size and demographics of the crowd. Furthermore, dif-
ferent platforms offer distinct features which may influence the
quality of data produced. For example, Heller et al. noted that
user interface features, such as zoom and intuitive controls, can
increase data quality. Contingent on the complexity of the task
and interface design, training materials should be provided, as
this can improve results [McKenna et al., 2012]. However, this
is not always necessary - in some cases minimal [Brady et al.,
2014] or no training [Ganz et al., 2017] was required.

3) Post-processing: Post-processing of annotations is rec-
ommended to improve annotation quality by removing an-
notations from poorly performing workers. Alternatively, if
multiple workers annotate the same data it is possible to
improve annotation quality by aggregating annotations.

The surveyed papers propose a variety of criteria for filter-
ing individual annotations. For example, time spend on task
[O’Neil et al., 2017], expected shape of segmentation [Chep-
lygina et al., 2016, Chávez-Aragón et al., 2013], correlation
with other workers’ results [Sharma et al., 2017, Chávez-
Aragón et al., 2013] and correlation to experts annotations or
ground truth [Sameki et al., 2016, Keshavan et al., 2018, Irshad
et al., 2017, 2015, Foncubierta Rodrı́guez and Müller, 2012].
However, due to the lack of comparisons between different
filtering approaches, the only clear recommendation from these
works is to use some form of filtering.

Contrary to this recommendation, Nguyen et al. found that
filtering unreliable workers did not have a significant influence
when annotations from multiple workers are aggregated. How-
ever, aggregating without taking individual performance into
account might not be the best approach. Malpani et al. com-
pared different aggregation methods, and found that weighted
voting, with weights based on self-reported confidence scores,
improved results compared to simple majority voting. Simi-
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larly, Irshad et al. found that aggregating segmentations from
3-5 workers, using weights based on consensus and worker
trust scores, improved performance over using single worker
annotations. Further, Cheplygina and Pluim [2018] found that
disagreement between workers was predictive of melanoma
diagnosis in skin lesions, suggesting that simple aggregation,
such as majority voting or mean statistics, might not be the
best approach.

VII. DISCUSSION

A. Trends
As discussed in Section II, crowdsourcing is applied to

a variety of medical images, however, it is most commonly
applied to histology or microscopy images. The trend for
crowdsourcing of this image type may be due to the ease of
which these (typically 2D) images can be incorporated into
a crowdsourcing or citizen science project. Alternatively, the
microscopy images examined in these papers may have not
been derived from a patient, and would therefore not require
the consent of an individual to use for crowdsourcing purposes.

The most common crowd task is rating entire images. This is
somewhat surprising, given that we would expect such tasks to
rely more on prior knowledge than other crowdsourced tasks,
such as drawing outlines of objects. Again, this trend might
be facilitated due to the ease with which rating images can be
incorporated in existing platforms.

Most crowdsourcing studies are set up on commercial plat-
forms, followed by custom platforms. Each image is annotated
by multiple crowd workers, who typically receive less than
$0.10 per annotation. On the one hand, this low reimbursement
might be a product of researchers trying to optimize the total
number of annotations given a particular budget. On the other
hand, it could be a lack of awareness of what appropriate
compensation should be [Hara et al., 2017].

A surprising finding is that, often, important details about
the crowd and their compensation are missing. Besides missing
details in terms of crowd compensation, we find missing
details regarding the number of requested annotations per unit.
While for some of the surveyed papers, we could infer an
approximation of the number of annotations gathered per unit
by checking the scale of the experiment and the total amount
of annotations gathered, for at least a third of the surveyed
papers (34%) this was not possible due to a lack of detail when
describing the crowdsourcing experimental methodology.

Crowdsourced annotations are generally processed prior
to evaluating how well the annotations solved the intended
purpose. Simply excluding workers based on platform scores
or a single test task is not as popular as continuously monitor-
ing worker performance. 29% of the surveyed papers aggre-
gate annotations from multiple crowd workers. This is most
commonly done by simple majority voting, but some papers
use estimates of task difficulty and/or worker performance to
obtain a weighted aggregation.

The most common approach to evaluating the quality of
preprocessed annotations is by comparing to an expert defined
gold standard. A smaller set of papers use the annotations
to train an ML method and evaluate the performance of the
trained method.

The studies we reviewed almost unanimously conclude
that crowdsourcing is a a viable solution for medical image
annotation, which may seem unexpected given the complexity
of medical imaging as a field in general. There might be
several possible reasons for the lack of negative results. One
is researchers selecting tasks which they already expect to
be suitable for crowdsourcing. Another reason is publication
bias, with papers demonstrating negative results having less
chance of being published, which is also an issue in computer
vision [Borji, 2018].

B. Limitations
There are a number of limitations in the way that the

current studies are being conducted. There is generally a
lack of clarity in the reporting of experimental design and
evaluation protocols. Additionally, ethical questions regarding
worker compensation, image content and patient privacy are
rarely discussed, but seem crucial to address. In several papers
the study design appears to be ad-hoc. Characteristics such as
the platform, number of annotators, how the task is explained
and so forth, are not always motivated, or even described. This
creates difficulties in understanding what leads to a successful
crowdsourcing study and increases the barrier for researchers
who have not used crowdsourcing before. The studies which
do examine such factors are often conducted on a single
application, making it difficult to generalize lessons learned to
other applications. Detailed documentation of experiments is
a crucial factor for ensuring reproducible science and essential
for replication studies.

Another problem is the evaluation of results. The quality of
crowdsourced annotations is generally estimated by comparing
directly to expert annotations. However, variation in both
expert defined gold standard and crowd annotations are not
systematically accounted for, making it difficult to assess if
crowd annotations are actually good enough. When using
annotations to train ML methods, noisy crowd annotations
might not be a problem if handled by the ML algorithm.
However, variation in annotations should still be investigated
in this case. A related problem is using expert annotations to
filter crowd annotations, which would not be possible for real
unlabeled data, thus leading to overly optimistic results.

Overall, surveyed papers reported successful results. How-
ever, from our personal experience and discussions with other
researchers, it is non-trivial to setup a crowdsourcing project
for medical images. Due to the lack of negative results, the cur-
rent literature does not inform researchers inexperienced with
crowdsourcing about the main considerations of such a project.
Furthermore, very few articles report on pilot experiments
which aim to calibrate and identify the optimal crowdsourcing
parameter settings such as the number of annotators per image.

There are important ethical issues which are largely not
mentioned in the papers we surveyed. First of all, details about
compensation are often missing, whereas this can have an
important effect on the crowd [Hara et al., 2017]. Furthermore,
what is reasonable compensation in one country, may be too
low for another country due to different cost of living. How to
set the compensation fairly is an open issue that researchers
should consider in their work.
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Another ethical concern is whether it is possible and/or
appropriate to share images with the crowd. Some images (for
example of surgery) may be traumatic to view or unsuitable
for children, which is more unique to the medical domain than
other areas where crowdsourcing is applied e.g. astronomy or
ecology projects. Another issue is sharing images from the
perspective of patient consent, which is an issue that must be
considered case by case.

C. Opportunities

Several papers discuss directions they want to take in further
research. One of the popular directions is increasing the role of
machine learning. Several papers not using machine learning
plan to do so in future [Brady et al., 2017, Cheplygina and
Pluim, 2018, Sullivan et al., 2018]. Papers that already use
machine learning discuss improvements to their algorithms or
crowd-algorithm combinations [Sharma et al., 2017, Sameki
et al., 2016].

Related to the above, tailoring the tasks to individual work-
ers is another possibility. The rating score given to workers
by platforms only reflects an overall completion rate, and
might be artificially high because employers tend to rate the
majority of the tasks positive and apply a filtering afterwards.
Considering worker scores on different task types could help
to make a better selection of workers beforehand.

Another strategy discussed as future work is the use of
gamification. Several papers have explored this idea [Luengo-
Oroz et al., 2012, Mavandadi et al., 2012, Albarqouni et al.,
2016b, Sullivan et al., 2018] citing increased motivation of
annotators. While the earlier papers [Luengo-Oroz et al., 2012,
Mavandadi et al., 2012, Albarqouni et al., 2016b] have task-
specific games, Sullivan et al. [2018] takes a more task-
independent approach of a mini-game within an existing,
larger game. This could be an opportunity for many other
researchers, without the need to design a game from scratch.
Finally, annotating images at a festival as in [Timmermans
et al., 2016] could be an interesting direction.

Beyond the opportunities that the papers discuss as future
research, we see a number of other future directions for the
community as a whole. Perhaps the most important future di-
rection is openly sharing our experiences with crowdsourcing,
including failures. Due to publication bias, current papers may
not reflect the performance and difficulties encountered in a
typical crowdsourcing project.

More generally, there is an opportunity to create a set of
guidelines for crowdsourcing medical imaging studies. Rather
than relying on ad-hoc choices, researchers could then make
informed decisions about the platform, reward of the annota-
tors and other variables. For example, the European Citizen
Science Initiative has a selection of guides for performing
citizen science studies6. A further opportunity is to interact
more with other fields where crowdsourcing has been in use
longer, and to see which of their best practices are also
applicable to medical imaging.

6https://ecsa.citizen-science.net/blog/collection-citizen-science-guidelines-
and-publications

Interacting with workers could both improve projects
and help establish guidelines. Workers have created com-
munities (e.g. Reddit, Facebook) and discussion boards
(https://www.mturkforum.com, https://www.turkernation.com)
for some platforms. Chandler et al. found that 28% ± 5% of
the workers on Mechanical Turk read discussion boards and
blogs related to Mechanical Turk. The topics of conversations,
in order of frequency, are: pay, gratification, completion time,
difficulty, how to successfully complete, purpose and the
requesters’ reputation of the HIT. These forums are a valuable
source for researchers for gathering information, measuring
opinions and getting feedback on improving their project. This
is particularly important because high throughput workers are
more likely to discuss HITs [Chandler et al., 2014]. This
subgroup (less than 10 % of the workers do more than 75%
of the work [Hara et al., 2017]) is likely to have experience
with similar tasks [Chandler et al., 2014], and interaction with
these workers may result in various improvements such as
improvements of the user interface as in [Bruggemann et al.,
2018].

Next to image analysis, crowdsourcing could also be a
way to collect, rather than curate, data to improve medical
knowledge. This could vary from donating your own medical
images (such as http://www.medicaldatadonors.org) to con-
tributing experiences about rare diseases. Since such initiatives
do not focus on image analysis we did not include them in
this survey, however [Ranard et al., 2014, Wazny, 2017] may
be good starting points for readers interested in these topics.
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5 Learning from visual similarity assessment

This section is based on two manuscripts. The first [33] investigates training convolutional neural networks
(CNNs) using similarity measurements derived from visual scoring. The second [36] investigates how visual
similarity assessments can be obtained and used to learn expressive representations using CNNs.

[33] Silas Nyboe Ørting, Jens Petersen, Veronika Cheplygina, Laura H Thomsen, Mathilde MW
Wille, and Marleen de Bruijne. Feature learning based on visual similarity triplets in medical image
analysis: A case study of emphysema in chest CT scans. In Intravascular Imaging and Computer
Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis (LA-
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[36] Silas Nyboe Ørting, Jens Petersen, Veronika Cheplygina, Laura H Thomsen, Mathilde MW
Wille, and Marleen de Bruijne. Visual similarity comparisons for medical image analysis. In prepa-
ration, 2019.

61



Feature Learning Based on Visual
Similarity Triplets

in Medical Image Analysis: A Case Study
of Emphysema in Chest CT Scans

Silas Nyboe Ørting1(B), Jens Petersen1, Veronika Cheplygina2,
Laura H. Thomsen3, Mathilde M. W. Wille4, and Marleen de Bruijne1,5

1 Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark

silas@di.ku.dk
2 Medical Image Analysis (IMAG/e), Department of Biomedical Engineering,

Eindhoven University of Technology, Eindhoven, The Netherlands
3 Department of Internal Medicine, Hvidovre Hospital, Copenhagen, Denmark

4 Department of Diagnostic Imaging, Bispebjerg Hospital, Copenhagen, Denmark
5 Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical

Informatics, Erasmus MC - University Medical Center Rotterdam,
Rotterdam, The Netherlands

Abstract. Supervised feature learning using convolutional neural net-
works (CNNs) can provide concise and disease relevant representations
of medical images. However, training CNNs requires annotated image
data. Annotating medical images can be a time-consuming task and even
expert annotations are subject to substantial inter- and intra-rater vari-
ability. Assessing visual similarity of images instead of indicating specific
pathologies or estimating disease severity could allow non-experts to par-
ticipate, help uncover new patterns, and possibly reduce rater variability.
We consider the task of assessing emphysema extent in chest CT scans.
We derive visual similarity triplets from visually assessed emphysema
extent and learn a low dimensional embedding using CNNs. We evaluate
the networks on 973 images, and show that the CNNs can learn disease
relevant feature representations from derived similarity triplets. To our
knowledge this is the first medical image application where similarity
triplets has been used to learn a feature representation that can be used
for embedding unseen test images.

Keywords: Feature learning · Similarity triplets
Emphysema assessment

1 Introduction

Recent years have demonstrated the enormous potential of applying convolu-
tional neural networks (CNNs) for medical image analysis. One of the big chal-
lenges when training CNNs is the need for annotated image data. Annotating
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medical images can be a time-consuming and difficult task requiring a high
level of expertise. A common issue with annotations is substantial inter- and
intra-rater variability. There are many sources of rater variability in annota-
tions, for example, level of expertise, time-constraints and task definition. A
common approach to defining annotation tasks is to ask raters for an absolute
judgment, “segment the tumor”, “count number of nodules”, “assess extent of
emphysema”. Evidence from social psychology suggests humans in some cases are
better at making comparative ratings than absolute ratings [3,5,11]. Redefining
annotation tasks in terms of relative comparisons could improve rater agreement.

An annotation task that is especially prone to rater variations and may be
better suited for comparative ratings is visual assessment of emphysema extent
in chest CT scans. Emphysema is a pathology in chronic obstructive pulmonary
disease (COPD), a leading cause of death worldwide [4]. Emphysema is char-
acterized by destruction of lung tissue and entrapment of air. The appearance
of emphysema in CT scans can be quite varied and in many cases it is difficult
to precisely define where healthy tissue starts and emphysema stops. Current
visual scoring systems for assessing emphysema extent are coarse yet still sub-
ject to considerable inter-rater variability [2,15]. Emphysema assessment based
on visual similarity of lung tissue could improve rater agreement while also
improving the granularity of ratings and because it is not limited by current
radiological definitions, it could be used to uncover new patterns.

Current practice for visual assessment of emphysema is to consider the full
lung volume and decide how much is affected by emphysema [2,15]. Comparing
visual similarity of several 3D lung volumes simultaneously could be a difficult
and time-consuming task, leading to worse rater agreement compared to assess-
ing each volume by itself. Comparing visual similarity of 2D slices is a much
easier task that could even be performed by non-experts with a little instruc-
tion. Simplifying the task to this degree opens the possibility of substituting
medical experts with crowdworkers, leading to dramatic reductions in time con-
sumption and costs. Crowdsourced image similarities have successfully been used
for fine-grained bird classification [12], clustering of food images [14] and more
recently as a possibility for assessment of emphysema patterns [6].

There is a growing body of recent work on learning from similarities derived
from absolute labels [8,13] illustrating that learning from similarities can be
better than learning directly from labels. The triplet learning setting used in
these works is for learning from visual image similarity where ratings for a triplet
of images (xi, xj , xk) are available in the form of “xi is more similar to xj than
to xk”.

In this work we also consider similarity triplets derived from absolute labels
in the form of expert assessment of emphysema extent. However, our focus is
on investigating the feasibility of learning in this setting, with the future goal of
learning from actual visual similarity assessment of lung images. We aim to learn
descriptive image features, relevant for emphysema severity assessment, directly
on the basis of visual similarity triplets. We investigate if CNNs can extract
enough relevant information from a single CT slice to learn a disease relevant
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representation from similarity triplets. In our previous work on crowdsourcing
emphysema similarity triplets [6] we did not learn a feature representation that
could be used for unseen images. We believe this work is the first medical image
application where similarity triplets has been used to learn a feature represen-
tation for embedding unseen images.

2 Materials and Method

In this section we define the triplet learning problem and present a CNN based
approach for learning a mapping from input images to a low dimensional repre-
sentation that reflects the characteristics of the visual similarity measurements.

2.1 The Triplet Learning Problem

Let X be an image space and xi ∈ X an image. We define a similarity triplet
as an ordered triplet of images (xi, xj , xk) such that the ordering satisfies the
triplet constraint, given by

δ(xi, xj) ≤ δ(xi, xk) (1)

where δ is some, potentially unknown, measure of dissimilarity. Let T ⊆ X3 be
a set of ordered triplets that satisfies (1). We want to find a mapping from image
space to a low dimensional embedding space, h∗ : X → Rd, that minimizes the
expected number of violated triplets

h∗ = arg min
h

E(i,j,k)∈T

[
1{δ̃(h(xi), h(xj)) ≤ δ̃(h(xi), h(xk))}

]
. (2)

where 1 is the indicator function and δ̃ : Rd → R is a known dissimilarity.

2.2 Learning a Mapping

End-to-end learning using CNNs is a convenient and powerful method for learn-
ing concise representations of images. Optimization of CNNs is based on gradi-
ent descent and we cannot optimize (2) directly, because the subgradient is not
defined. A commonly used approach is to define a loss function based on how
much a triplet is satisfied or violated

L((xi, xj , xk)) = max{0, δ̃(h(xi), h(xj)) − δ̃(h(xi), h(xk) + C)} (3)

where C is a fixed offset used to avoid trivial solutions and encourage over-
satisfying triplet constraints. Large violations can dominate the loss (3) and
force the optimization to focus on outliers. Since we expect some inconsistencies
in the similarity triplets, we consider a variant of (3) that bounds the loss on
both sides

L((xi, xj , xk)) = clipl,u(δ̃(h(xi), h(xj)) − δ̃(h(xi), h(xk))) (4)
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where

clipl,u(x) =

⎧
⎨
⎩

0 if x < l
1 if x > u
x−l
u−l otherwise

(5)

We consider two CNN architecture setups loosely based on VGGnet [9], one with
increasing and one with a fixed number of filters in each layer. In both cases a
layer is comprised of zeropadding, 3× 3 convolution and maxpooling. After the
final layer we add a global average pooling layer, and d fully connected units
to obtain a d-dimensional embedding of the input. We use squared Euclidean
distance as dissimilarity, i.e. δ̃ = || · ||22.

2.3 Data

We use CT scans of 1947 subjects from a national lung cancer screening study [7]
with visual assessment of emphysema extent [15] and segmented lung masks.
Emphysema is assessed on a six-point extent scale for six regions of the lung:
the upper, middle and lower regions of the left and right lung. Here we restrict
our attention to the upper right region, defined as the part of the right lung
lying above the carina. The six-point extent scale is defined by the intervals {0,
1–5%, 6–25%, 26–50%, 51–75%, 76–100%}. Distribution of emphysema scores is
skewed towards 0% with about 73% having 0% and only about 13% having more
than 1–5%. Example slices with varying emphysema extent are shown in Fig. 1.

Fig. 1. Example slices. From top left, visually assessed emphysema extent is 0%, 1–5%,
6–25%, 26–50%, 51–75% and 76–100%. Window level −780HU, window width 560HU.
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3 Experiments and Results

We split subjects randomly into a training group of 974 subjects and a test
group of 973 subjects. For each experiment we then split the training group
randomly in half and use one half for training and the other half for validation.
Each experiment was run 10 times and we report median statistics calculated
over these 10 runs. We use the same clip function for all experiments, with
[l, u] = [−0.01, 0.1].

3.1 Preprocessing

A single coronal slice was extracted from the center of the upper right region.
Bounding boxes were calculated for the lung mask of each extracted slice in
the training data and all images were cropped to the size of the intersection of
these bounding boxes (57× 125 pixels). Pixels outside the lung mask were set to
−800HU to match healthy lung tissue. This aggressive cropping was introduced
to avoid background pixels dominating the input data. Finally all pixel intensities
were scaled by 1

1000 resulting in values roughly in the range [−1, 0].

3.2 Selecting Training Triplets

For 974 images there are close to 106 possible triplets. Many of these triplets
will contain very little information, and choosing the right strategy for selecting
which triplets to learn from could result in faster convergence and reduce the
required number of triplets needed. When class labels are available they can be
used to select triplets as suggested in [8]. However, we are primarily interested in
the setting where we do not have class labels. To understand the importance of
triplet selection we compare uniform sampling of all possible triplets to sampling
based on emphysema extent labels.

When selecting triplets based on emphysema extent we pick the first image
uniformly at random from all images, the second uniformly at random from all
images with the same emphysema extent as the first, and the third from from all
images with different emphysema extent. For the third image we sample images
with probability proportional to the absolute difference between the labels.

3.3 Simulating Similarity Assessment

We use visually assessed emphysema extent to simulate similarity assessment of
image triplets. For a triplet of images (xi, xj , xk) with emphysema extent labels
(yi, yj , yk) the ordering of the triplets satisfies

|yσ(1) − yσ(2)| ≤ |yσ(1) − yσ(3)| (6)

|yσ(1) − yσ(2)| ≤ |yσ(2) − yσ(3)| (7)

|yσ(1) − yσ(3)| ≤ |yσ(2) − yσ(3)| (8)

This corresponds to asking a rater to order images based on similarity.
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3.4 CNN Selection

We implemented all CNNs in Keras [1] and used the default Adam optimizer. We
searched over networks with {3, 4, 5} convolution layers. We used 16 filters for
the setup with a fixed number of filters, and 8,16,32,64,128 for the setup with an
increasing number of filters. We used a batch size of 15 images and trained the
models for 100 epochs or until 10 epochs passed without decrease in triplet vio-
lations on the validation set. We then selected the weights with the lowest triplet
violations on the validation set. We expect an untrained network with randomly
initialized weights will show some degree of class separation and include it as a
baseline. Table 1 summarizes median validation triplet violations of the selected
models and the median number of epochs used for training. Triplet selection
based on emphysema results in somewhat faster convergence and slightly fewer
violations compared to uniform triplet selection. The difference in median epochs
between uniform triplet selection and extent based triplet selection corresponds
to 7500 extra training triplets for uniform selection.

Table 1. Validation set performance. The letter in model type indicates Fixed or
Increasing number of filters and the digit indicates number of convolution layers.

Sampling scheme Model type Median epochs Median violations

Untrained F3 – 46.80 ± 0.94

Uniform I4 23.0 ± 7.0 40.84 ± 0.71

Extent F4 18.0 ± 5.0 39.30 ± 0.58

3.5 Triplet Prediction Performance

Selecting Test Triplets. Because we simulate similarity assessments from class
labels, the selection of test triplets will have a large influence on the interpreta-
tion of performance metrics. In our case about 71% of subjects in the test set do
not have emphysema. This implies that selecting triplets uniformly at random
results in about 36% of the triplets having no emphysema images. We choose to
ignore these same-class triplets when measuring test performance.

In addition to the issue of same-class triplets, we are also faced with a dataset
where more than 50% of those subjects that have emphysema only have 1–5%
extent. Ignoring this issue will lead to performance metrics dominated by the
ability of the network to distinguish subjects with very little emphysema from
those without emphysema. This is a difficult task even when given access to
the full volume. To more fully understand how well the network embeds images
with varying levels of emphysema extent, we calculate test metrics under five
different test triplet selection schemes. (1) two images with same extent and one
image with different extent, (2) two images without emphysema and one with
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emphysema, (3) two images with 0–5% and one with >5%, (4) two images with
0–25% and one with >25%, (5) two images with 0–50% and one with >50%.

Table 2 summarizes the results. As expected we see that the networks are
much better at distinguishing between subjects with moderate to severe emphy-
sema versus mild and no emphysema (0–5%), than subjects with emphysema
versus subjects with no emphysema (0%). We also see that the untrained net-
work provides decent separation of images with severe emphysema versus mod-
erate to no emphysema (0–50%). In all cases we see that using information about
emphysema extent for generating training triplets leads to better performance
compared with uniform sampling of triplets.

Table 2. Median triplet violations on test set for the selected models from Table 1
using different schemes for selecting test triplets. See text for explanation of column
names.

Sampling scheme Test triplet selection method

All 0% 0–5% 0–25% 0–50%

Uniform 41.0 40.2 30.0 19.0 11.6

Extent 39.3 39.0 26.4 14.6 9.4

Untrained 48.5 48.9 44.3 37.2 29.2

An example embedding of the test set is shown in Fig. 2. We used the models
with best performance on the validation set to generate the embedding. Although
we see significant overlap between subjects with and without emphysema, both
of the trained embeddings have a reasonably pure cluster of subjects with emphy-
sema. There is a clear tendency towards learning a one dimensional embedding.
We hypothesize that several factors contribute to this tendency, (1) clipping at
[−0.01, 0.1] encourages small distances, (2) pairwise distances for uniformly dis-
tributed points increase as the dimensionality is increased, (3) the underlying

Fig. 2. Example embedding of test data. Black crosses are subjects without emphy-
sema, red circles are subjects with emphysema. Size of circle correspond to emphysema
extent. From left: Untrained (48.3% testset violations), uniform (39.5% testset viola-
tions), visual (38.8% testset violations). (Color figure online)
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dissimilarity space, emphysema extent, is one dimensional and all triplets can in
principle be satisfied by embedding unto the real line.

4 Discussion and Conclusion

We formulated assessment of emphysema extent as a visual similarity task and
presented an approach for learning an emphysema relevant feature representation
from similarity triplets using CNNs. We derived similarity triplets from visual
assessment and investigated the importance of selecting informative triplets.

It is slightly surprising that a single cropped 2D slice contains enough infor-
mation for the level of separation illustrated by the embeddings in Fig. 2. This
shows that learning can be accomplished from simple annotation tasks. How-
ever, there are likely instances where the particular slice is not representative for
the image as a whole, which may explain why there is a large overlap between
subjects with and without emphysema in Fig. 2. We suspect that with triplet
similarities based on individual slice comparisons, class overlap would be less.

As a proof of concept, in this work we simulated slice similarity assessment
from experts’ emphysema extent scores. Potentially such triplets could be gath-
ered online via crowdsourcing platforms such as Amazon Mechanical Turk. Our
previous results [6] showed that crowdsourced triplets could be used to classify
the emphysema type (rather than extent) with a better than random perfor-
mance. Preliminary results indicate that the crowdsourced triplets are too few
or too noisy for training the proposed CNNs. However, we expect that improving
the quality and increasing the quantity of crowdsourced triplets will allow CNNs
to learn an emphysema sensitive embedding without needing expert assessed
emphysema extent for training.

We investigated the importance of triplet selection and found that perfor-
mance improved slightly when selecting triplets based on emphysema extent, in
particularly for subjects with moderate emphysema extent (columns 0–5% and
0–25% in Table 2). While using disease class labels to select triplets is not a viable
solution, for medical images we often have access to relevant clinical information
that could be used to select triplets. In the context of emphysema, measures of
pulmonary function are potential candidates for triplet selection. However, our
preliminary results indicate that using pulmonary function measures for triplet
selection is not straightforward and can harm performance compared to uniform
triplet selection.

We assumed that there is a single definition of visual similarity between
the slices. However, this does not have to hold in general. For emphysema it
is relevant to consider both pattern and extent as measures of similarity. The
idea of having multiple notions of similarity is explored in [10], where different
subspaces of the learned embedding corresponds to different notions of similar-
ity. Simultaneously modeling multiple notions of similarity could lead to more
expressive feature representations. Additionally, it be useful when learning from
crowdsourced triplets, where some raters might focus on irrelevant aspects, such
as size and shape of the lung.
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In conclusion, we have shown that CNNs can learn an informative repre-
sentation of emphysema based on similarity triplets. We believe this to be a
promising direction for learning from relative ratings, which may be more reli-
able and intuitive to do, and therefore could allow the collection of large data
sets that CNNs benefit from. The next step is to explore embeddings resulting
from directly annotated similarity triplets. We expect such embeddings to show
different notions of similarity and it will be interesting to see how these notions
compare to current radiological definitions.
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Feature learning using visual similarity triplets for
lung texture analysis

Silas Nyboe Ørting, Jens Petersen, Veronika Cheplygina, Laura H. Thomsen, Mathilde M. W. Wille and Marleen
de Bruijne

Abstract—For many medical image analysis tasks state-of-
the-art methods are based on supervised machine learning.
Obtaining expert labels required for this is costly and generally
under-utilizes experts knowledge by reducing expert knowledge
about anatomy, imaging, and disease patterns to a single label.
Relative comparisons of images, focusing on visual similarity of
image content, could increase the information extracted from
experts and allow more general representations to be learned.
Additionally, since assessing visual similarity does not require
classification of patterns, it is likely that non-experts can perform
the task allowing crowdsourcing to be used as a means of
reducing labeling costs. We present a study of how visual
similarity can be assessed and used to learn representations useful
for detecting lung abnormalities. We focus on visual similarity in
the form of similarity triplets, “image a is more similar to image
b than to image c”, and obtain 60,000 visual similarity triplets for
300 images. Inter and intra-rater agreement for these assessments
are 58% and 65%. We use the similarity triplets to learn a low-
dimensional embedding using a convolutional neural network.
We propose a model to handle multiple notions of similarity
and show that representations learned with this model results in
less correlated features. Decorrelating features could help learn
a representation where feature dimensions can be mapped to
semantic concepts. Using a single slice from each scan we use
the learned representations to fit logistic regression models for
detecting visually assessed emphysema and ILD patterns. We
obtain AUC of 0.74 (0.54 using random features) for emphysema
detection and 0.58 (0.53 using random features) for ILD detection.

I. INTRODUCTION

SUPERVISED machine learning, and in particular deep
learning, has greatly advanced medical image analysis [1],

[2], [3]. One of the main challenges when applying supervised
machine learning in medical image analysis is that labels are
costly to obtain due to the need for expert knowledge.

Crowdsourcing, where groups of non-experts perform the
labeling tasks, is an increasingly popular solution to reducing
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the cost of labeling [4]. Although many labeling tasks are
amenable to crowdsourcing, many medical image analysis
tasks require a certain level of expertise. For example, as-
sessing severity of emphysema requires knowledge, not only
about the appearance of emphysema in CT, but also about the
appearance variations of healthy lung tissue and other patholo-
gies. It can therefore be necessary to adapt the labeling task
to ensure non-experts can perform it quickly and accurately.

There is a discrepancy between how experts label images,
and the kind of labels used by machine learning algorithms.
Machine learning solutions generally focus on a very specific
problem, e.g. segment a tumor, count micro-bleeds, or estimate
severity of emphysema. Labels are then obtained to match
the specific problem. However, when making an assessment a
radiologist will not just segment a tumor, count micro-bleeds
or estimate severity of emphysema. Rather, the radiologist will
also consider the entire image and how it compares to what
is to be expected. Some of this information will make its way
into a radiology report, for example as incidental findings,
some will stay in the head of the radiologist. Reducing all this
information to a single label under-utilizes the radiologist’s
expertise, thereby increasing the cost of labeling images.

In this work we focus on learning from visual similarity
comparisons as an approach to improved utilization of experts
knowledge and reduced labeling costs. By focusing on visual
similarity, we hope to learn representations that yield a more
complete characterization of image content compared to rep-
resentations optimized for a single task.

Additionally, learning from visual similarity could reduce
the need for expert knowledge. Distinguishing pathologies
with similar appearance is a challenging task requiring exper-
tise and, in many cases, context not directly available in the
image. However, when characterizing the visual appearance of
an image, it is not necessary to make this distinction. Indeed,
if two pathologies are visually similar it is reasonable that the
learned representation of them is also similar. Accepting this
limitation, it is reasonable to believe non-experts can assess
visual similarity about as well as experts.

The idea of learning from visual similarity comparisons
has been explored in computer vision applications for tasks
such as clustering [5], learning image similarity metrics [6]
and object categorization [7]. Closely related to learning
from visual similarity comparisons is learning from similarity
measurements derived from image labels, e.g. two images are
similar if they share a label. This idea was explored in [8]
where the Siamese network architecture was proposed for face
verification. More recently, [9] explored how learning from
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derived similarity triplets, “a is more similar to b than to c”,
improved facial recognition over learning directly from image
labels. Learning from similarity triplets was further explored in
[10] where a conditional triplet network was proposed to learn
from similarity triplets when different notions of similarity are
used, e.g. color for some triplets, size for others.

The closest to our work is probably [11] where visual
similarity assessments of endomicroscopy videos are used to
improve a video retrieval system based on SIFT features. How-
ever, learning from visual similarity remains under-explored in
image analysis, especially for end-to-end learning.

An alternative approach to reducing the cost of labeling
is weakly supervised learning where models are trained on
image level labels. For example, learning from lung function
measurements [12] or presence of emphysema and interstitial
lung disease [13]. Convolutional neural networks (CNNs) has
proved useful in this setting. For example, learning from em-
physema presence [14]. However, learning from weak labels
does not directly address the challenge of extracting more
information than what can be summarized in a single label.

The aim of this study is to explore how visual similarity
can be used to learn a low-dimensional representation of
medical images. We believe the idea of learning from visual
similarity is generally applicable where texture and other
visual characteristics are of primary concern, and we here
provide a study of chest CT scans as an illustrative example.

This work extends our previous work in [15] where we
investigated crowdsourcing of visual similarity comparisons
for emphysema assessment and in [16] where we investigated
how well different convolutional neural networks (CNNs)
could learn from similarity measurements that were derived
from expert visual assessment of individual scans.

In this work we show how visual similarity triplets can be
gathered and analyze how well raters agree on visual similarity
assessments. In contrast to [15], where we used a small
stratified set of images with maximally different emphysema
patterns, we here consider a more realistic setting by sampling
a larger set of images uniformly at random from all CT scans
acquired in a lung cancer screening trial. We use the visual
similarity triplets to learn a low-dimensional representation
using a CNN and show that the learned representation is useful
for detecting both emphysema and interstitial lung disease
abnormalities. We propose an iterative approach for learning
when multiple notions of similarity are used by the annotators,
and investigate how this model of multiple similarity notions
influences the learned embeddings.

II. MATERIALS AND METHODS

A. Learning from similarity triplets

Consider three images a, b, c. Assume we know that image
a is more similar to image b than to image c. Using a suitable
distance function δ we can express this as

∆(a, b, c) = δ(a, b)− δ(a, c) < 0, (1)

which we refer to as a triplet constraint. We represent such
a triplet constraint as the ordered triplet (a, b, c). We wish to

find a low-dimensional embedding of the images a, b, c that
satisfies the triplet constraint.

Let F be a class of functions that maps from image space
to some embedding space E and δ a distance function on E.
We want to find a function f∗ ∈ F that satisfies the triplet
constraint from Equation 1

f∗ ∈ {f |∆f (a, b, c) < 0} (2)

where ∆f (a, b, c) = ∆(f(a), f(b), f(c)).
For a set of images I and a set of triplets T ⊆ I3 we

are interested in finding a function that satisfies all triplet
constraints in T

f∗ ∈ {f |∆f (a, b, c) < 0 .∀(a, b, c) ∈ T}. (3)

In general we cannot guarantee that there exists such an f .
Instead we consider the problem

f∗ = arg min
f∈F

∑

(a,b,c)∈T
max{0, h−∆f (a, b, c)} (4)

that minimizes the number of violated triplet constraints.
The max operation ensures that easily satisfied triplets will
not dominate the optimization, and h > 0 ensures that the
trivial solution of mapping everything to the same point,
∆f (a, b, c) = 0 .∀(a, b, c), is sub-optimal.

B. Similarity triplet networks

In this work we restrict the class of functions F to a small
set of convolutional neural networks (CNNs). We consider
relatively shallow and simple CNN models, because our
previous work [16] indicates that these models have enough
capacity to learn lung texture representations. We consider
CNNs comprised of three convolution blocks, each comprised
of: 1px zero padding, one layer c convolution kernels of size
3 × 3, a rectified linear activation function and 2 × 2 max
pooling. The number of convolution kernels c in the three
convolution blocks is respectively set to 8, 16 and 32. After the
final convolution block we use k 1×1 convolution kernels with
hyperbolic tangent activations, followed by masked global
average pooling to obtain average feature responses within the
lung mask. The last two steps results in an embedding lying
in the k-dimensional unit cube.

1) Masked global average pooling: Let x be an image and
m a binary mask indicating which part of x should be pooled.
Masked global average pooling of x is then

∑
i ximi∑
imi

(5)

C. Multiple notions of similarity

When assessing relative visual similarity of images, a rater
uses some notion of similarity. For a given set of similarity
triplets, it is very likely that the similarity notion varies
between triplets. Consider the example in Fig. 1, where the
similarity notion on the left could be “amount of bullae” and
the similarity notion on the right could be “overall intensity”.

Using the same embedding to represent both cases could be
problematic. Which notion of similarity is used depends on
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the context, so the same image could occur in triplets using
different notions of similarity, resulting in triplet constraints
that cannot be satisfied simultaneously in the same embedding.
This problem is investigated in [10] where it is shown that it
is beneficial to force different parts of the embedding space
to correspond to different notions of similarity. In [10] triplets
are derived from image labels and it is thus known which
similarity notion is used for each triplet. We do not have
that knowledge. Instead we propose to learn which similarity
notion is used for each triplet.

We propose an EM like approach where we interchange
between optimizing the embedding given an assignment of
similarity notions and optimizing the assignment of similarity
notions given an embedding. A similarity notion is assigned
to each triplet and not constrained to be the same for triplets
with the same anchor image.

We represent a similarity notion as a weight vector w that
encodes which dimensions of the embedding are relevant for
a specific triplet. The triplet constraint from Equation 2 then
becomes

∆f (a, b, c;w) = ∆f (w ◦ f(a), w ◦ f(b), w ◦ f(c)) (6)

where ◦ is the Hadamard, or component-wise, product.
For a given triplet we will have that some features are

relevant, whereas others should be ignored. In order to achieve
this, we restrict w to be a binary vector that selects which
dimensions are relevant. For a triplet (a, b, c) we find the w
that minimizes Equation 6 by considering each component of
w separately

wi =

{
0 if ∆f (a, b, c; ei) ≥ 0
1 if ∆f (a, b, c; ei) < 0

(7)

where ei is the i’th unit vector. This corresponds to mask-
ing out dimensions where the triplet is not satisfied. In the
case where the triplet cannot be satisfied in any dimension
(∀i . wi = 0), we set all wi = 1 for that triplet. By allowing
more than one wi = 1, we ensure that complex similarities
requiring multiple dimensions can still be modeled.

The suggested approach for assigning similarity notions is
only possible when the triplet constraint is known, and can
thus only be used during training. Regardless of this limitation,
we hypothesize that using multiple similarity notions can help
the network learn embeddings where dimensions correspond
to different features of interest.

D. Data

We used low-dose chest CT scans from the Danish Lung
Cancer Screening Study (DLCST) [17]. We randomly selected
300 baseline scans from DLCST and split these 300 scans into
three non-overlapping datasets (D1, D2, D3) with 100 scans in
each.

In Section III-B3 we conduct experiments to estimate how
much information about lung abnormalities is contained in
the learned representations. For these experiments we use
assessments of lung abnormalities from [18] where all DLCST
scans where visually assessed by medical experts. We used
assessment from a single rater and included assessment of

TABLE I
DISTRIBUTION OF VISUALLY ASSESSED ILD PATTERNS AND EMPHYSEMA
EXTENT IN THE UPPER RIGHT REGION.. COLUMNS 0-6 CORRESPOND TO
0% IN SCAN, 0% IN REGION, 1-5%, 6-25%, 26-50%, 51-75%, 76-100%

Dataset 0 1 2 3 4 5 6 ILD present
D1 70 4 12 9 4 1 0 17
D2 66 3 18 7 5 0 1 12
D3 69 5 11 12 3 0 0 6

emphysema extent on a 6-point scale in the upper right region;
and assessment of three interstitial lung disease (ILD) patterns:
honeycombing, ground glass opacities and reticulation. Due to
low prevalence, we considered all three ILD patterns jointly
and refer to this as ILD.

The distribution of emphysema extent and prevalence of
ILDs is summarized per dataset in Table I. To asses similarity
between emphysema extent distributions of the three datasets
we computed the Earth Mover’s Distance between distribu-
tions. We find EMD(D1, D3) = 5, EMD(D1, D2) = 12
and EMD(D2, D3) = 15. In the sense of emphysema extent,
D1 and D3 are more similar to each other than to D2, and both
are about equally similar to D2. For ILDs we see a difference
in 5% for D1, D2, 11% for D1, D3 and 6% for D2, D3. In
the sense of ILD presence, D1 and D3 are each more similar
to D2 than to each other.

1) Preprocessing: We used previously segmented lung
masks from [19] to extract the region above the carina from
the right lung (right upper region). We then extracted three
coronal slices from the upper right region of each scan. We
chose the center slice, and the two neighboring slices spaced
1cm away from the center. We masked all slices to only
include the lung fields and set areas outside the lung mask to
-800HU (≈ density of healthy lung tissue). Finally, to avoid
scaling issues when fitting models, we scaled intensity values
by 1/1000 to obtain pixel values approximately in the range
[−1, 0]. Additionally, we extracted a single slice covering the
full lung field of both lungs and processed it in the same
manner. This full lung field slice was used for testing how
well the learned representation can predict ILD presence, for
which no regional visual assessments were available.

2) Obtaining visual similarity triplets: We used only the
center slice from the upper right region when assessing visual
similarity.

Visual similarity was assessed by looking at a 3 × 3 grid
of images and choosing the two images that are most similar
to the center images, see Fig. 2 for an example. We refer
to such an image grid as query and to the center image as
the anchor image. We obtained 12 similarity triplets from
each query (six similarity triplets for each of the two selected
images). This approach of choosing multiple images from a
grid was shown to be effective in [20] where they found that
the increased annotation quantity outweighed the decrease in
annotation quality. In out study, we have a skewed dataset with
mostly no pathology and we are primarily interested in images
with pathology. We believe that a large set of annotations
with more pathology images (in absolute numbers), is more
beneficial than a smaller set of higher quality annotations.

For each image in a dataset we generated 50 queries with
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Fig. 1. Multiple notions of similarity. Left: Amount of bullae (indicated with yellow arrows) as similarity notion. Right: Overall intensity as similarity notion

Fig. 2. Annotation UI

that image as anchor. The eight other images in each query
where chosen uniformly at random among the remaining
99 images in the dataset. This resulted in 5.000 queries
per dataset, with no query containing images from multiple
datasets. All 15.000 queries where then randomly shuffled
and split into batches of 100 queries, such that each batch
contained queries from all datasets.

A single rater (SØ) annotated all batches. Additionally,
two raters (JP and MdB), annotated the same four batches
to assess inter-rater variability. The same four batches where
also annotated twice by SØ, with at least 2 weeks between,
to asses intra-rater variability. All three raters have 3+ years
experience analyzing emphysema in chest CT images from a
computer science perspective, but have no clinical training.
Instructions for annotation where informal and general, along
the lines of “focus on differences in lung tissue texture”.

E. Measuring rater agreement

We measure how well raters agree on the two images se-
lected as most similar to the anchor image. In this paper there

are three possibilities when measuring pairwise agreement (1)
raters agree on two images (2) raters agree on one image and
(3) raters agree on no images. For a set of queries Q we define
agreement between two raters, r1 and r2, that select k images
as

∩(r1, r2|Q) =
1

|Q|
∑

q∈Q

|r1(q) ∩ r2(q)|
k

. (8)

There will be some agreement due to chance. The size of
chance agreement depends on the size of the query. There are(
8
2

)
= 28 ways of picking two images among eight candidates.

Let {a, b} and {c, d} be two sets of two images picked
uniformly at random from eight candidates. The expected
agreement is then

E

[
1

2
|{a, b} ∩ {c, d}|

]
(9)

= E

[
1

2
(|{a} ∩ {c, d}|+ |{b} ∩ {c, d}|)

]

= E [|{a} ∩ {c, d}|]
= E [1{a ∈ {c, d}}]
= P (a ∈ {c, d})
= 1− P (a /∈ {c, d})

= 1−
(
7
2

)
(
8
2

)

= 0.25

III. EXPERIMENTS AND RESULTS

We conducted two sets of experiments. First we analyzed
the triplet annotations by measuring rater agreement and
estimating how consistent the triplets are. then we investigated
how and how well a network can learn a low-dimensional
representation of images from the triplets.

A. Analysis of annotations

1) Annotation variability: Four batches of 100 randomly
selected queries where annotated by all three raters to assess
inter-rater variability. Annotating a single batch took between
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TABLE II
RATER AGREEMENT IN PERCENT. FIRST ROW IS INTRA-RATER

AGREEMENT. COLUMNS SHOW OVERALL AGREEMENT AND STRATIFIED
BY EMPHYSEMA EXTENT AND ILD PRESENCE IN ANCHOR IMAGE.

Raters Overall 1 2 3 4 5 6 ILD
SØ1/SØ2 65 62 66 75 83 69 100 71

SØ/JP 61 59 68 60 68 74 100 61
SØ/MdB 55 54 49 59 66 65 71 57
JP/MdB 55 54 56 61 56 50 71 55

10 and 30 minutes. The same four batches where annotated
twice by the primary rater, with at least two weeks in between,
to assess intra-rater agreement. Agreement was measured as
described in Section II-E and is summarized in Table II.
Columns 1-6 show agreement stratified by visually assessed
emphysema extent in the anchor image and column ILD show
agreement for anchor images with ILD presence. Agreement
between the primary rater (P) and the secondary raters (S1,S2)
is averaged across the two sets of annotations from the primary
rater. Overall agreement is substantially better than random
(25%). Overall intra-rater agreement is better than inter-rater
agreement. Agreement between P and S1 is close to intra-rater
agreement and better than P/S2 an S1/S2. There appears to be
a tendency of higher agreement for larger emphysema extent
in anchor image. Intra-rater agreement is higher for ILD than
overall, whereas inter-rater agreement on ILD is the same as
overall inter-rater agreement.

2) Annotation consistency: We have no guarantee that all
triplet annotations can be satisfied. Triplet constraints induce a
partial ordering and can be represented as a directed graph. If
this graph contains any cycles the constraints are inconsistent.
Although detecting cycles is simple, deciding which edges
to prune is not. McFee and Lanckriet [21] view inconsis-
tent triplets as label noise and aims at retaining as much
information as possible, however this is equivalent to the
NP-Complete maximum acyclic subgraph problem. Although
good approximate solutions exist, we take a different view.
Inconsistent triplets arise because images are very similar or
because different notions of similarity are used. In both cases,
the inconsistencies are valuable and should not be discarded.

We measure the scale of inconsistencies by estimating how
many triplets can be satisfied when the embedding is not
constrained by image data. This also provides an approximate
upper bound on the proportion of triplets that can be satisfied
by a triplet network using a single notion of similarity.

Based on our experience annotating the data we believe
that 5-10 dimensions are sufficient for capturing the different
similarity notions. We used an 8-dimensional embedding space
for the consistency experiments.

We used t-distributed stochastic triplet embedding (t-STE)
[22] to embed each of the three datasets. Consistency was
measured as the percentage of violated triplet constraints.
The experiment was run 1000 times with different random
initializations of t-STE. The median percentage of violated
triplets was 10.1%, 10.9%, 9.6% for D1, D2, D3, with median
absolute deviation less than 0.07%. Although there is some
difference in violated triplets (1.3% beween D2, D3), it is not
clear if this difference is large enough too be of importance.

TABLE III
CROSS VALIDATION FOLDS USING THE THREE DISJOINT DATASETS

D1, D2, D3 .

Fold Train Validation Test
123 D1 D2 D3

213 D2 D1 D3

132 D1 D3 D2

312 D3 D1 D2

231 D2 D3 D1

321 D3 D2 D1

For 60000 triplets, a difference of 1.3% corresponds to 780
triplets.

B. Triplet network performance

We compare two approaches for training networks. In the
first approach we train the networks using multiple similarity
notions as described in Section II-C. We stop training after
10 iterations. In the second approach we follow the same
procedure with the exception that all triplets use the same
similarity weight (w = 1) in all iterations. All experiments
are carried out with both approaches.

We use a 3× 2-fold cross validation scheme for all experi-
ments where we train a network. The scheme is summarized
in Table III. We run all experiments 10 times for each fold,
we refer to each run as a “replication”. Parameters for the
network are kept fixed throughout all experiments.

The networks are implemented in Keras [23] using the
Tensorflow backend. We use the ADAM optimizer with default
parameters. We use a batch size of 30 with 2000 steps per
epoch for at most 100 epochs. We use early stopping by
stopping optimization after 10 epochs without reduction in
violations on the validation set.

Although similarity triplets where only collected for the
center slice, we assume the same triplet holds for neighboring
slices. Based on this assumption we use the two neighboring
slices for data augmentation during training, by randomly
selecting one of the three slices in each training epoch. We
do not use augmentation for the validation and test sets. We
used a variety of GPUs for the experiments with training times
around 1-2 hours for the first iteration and 6-8 hours for all
ten iterations.

1) Stability: The purpose is to investigate how stable model
fitting is with respect to initialization and training data.

For each fold we measure proportion of violations on the
test set using the networks from the first training iteration.
Note that the training procedure is exactly the same for
both training approaches in the first iteration, since all initial
weights are set to 1 for all triplets. We therefor report results
jointly.

The results are summarized in Fig. 3. With a few exceptions,
test set violations is below 35% with the best cases being close
to 25%. This clearly indicates that the networks learn a useful
representation for predicting visual similarity.

There is clearly large variation across folds. The folds
trained on D2 (213,231) have some replications that fail to
learn anything useful. The best, and very similar, performance
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Fig. 3. Proportion of test set violations across folds.

is on folds 123 and 321. If we take the difference in em-
physema distribution, reported in Table II, into account, this
performance difference appears to correlate with the similarity
of emphysema extent distribution between train and test data.

The difference in test and validation violations is plotted
against the validation set generalization error in Fig. 4. The
maximum difference in proportion of test and validation
violations is never larger than 7.4% indicating that poorly per-
forming networks, e.g. test violations > 45%, can be avoided
by discarding networks with large validation violations.

There appears to be three clusters mostly containing two
folds each: (123,321) where validation violations overestimate
test violations, (132,312) where validation violations under-
estimate test violations, (213,231) where generalization error
is less than one and validation violations are close to test
violations. This again indicates that D2 is dissimilar from D1

and D3.
2) Training with multiple similarity notions: The purpose

is to investigate if using multiple similarity notions during
training decreases the proportion of violated test triplets.

For each fold we measure the proportion of test set vi-
olations using the networks from each iteration. The distri-
bution of test set violations for all folds and replications is
summarized in Fig. 5. Using multiple iterations is generally
beneficial. When training with multiple similarity notions there
is a clear reduction in variation and the median proportion of
violations decreases steadily from around 31% to 28%.. When
training without multiple similarity notions there is a decrease
in variation and median proportion of violations, from around
30% to 27%, the first four iterations. After that it appears to
have no effect.

When training with multiple similarity notions we encour-
age the network to find embeddings where triplets are satisfied
in at least one dimension. To investigate the effect of this we
measure how well the learned embeddings satisfy triplets in at
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generalization error. Points below the dashed line have lower test violations
than validation violations. Points to the left of the dotted line have lower
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Fig. 5. Test set violations. Left: Training with multiple similarity notions.
Right: Training without multiple similarity notions.

least one dimensions, by assigning weights to test triplets as
described in Section II-C. The distribution of test set violations
for all folds and replications is summarized in Fig. 6. Training
with multiple similarity notions clearly reduces the amount of
test triplets that cannot be satisfied in any dimensions. Whereas
the results is about the same across iterations when training
without.

To further investigate the effect of training with multiple
similarity notions we measure how the correlation between
samples changes between iterations. By masking out dimen-
sions i for some triplets, we reduce the number of constraints
that are active for dimensions i. In the extreme case, where
dimension i is masked for all triplets containing a specific
image a, the representation of a is unconstrained in dimension
i. The representation of a in i will not be random, because
constraints from other triplets force different dimensions to be
correlated, we do however expect the correlation to decrease.
We measure change in correlation between two iterations as
the average change in absolute correlation between all pairs of
dimensions. Let ρn, ρm be the correlation matrices at iteration



7

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●
●●

●●

●

●

●●
●

●●

●

●

●●
●

1 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Iterations

V
io

la
tio

ns

●

●●
●

●
●●

●
●

●

●

●

●

●

●
●●●

●

●

●

● ●
●
●●

●
●

●

●●●

●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●
●

●●●

●

●

●

●

1 2 3 4 5 6 7 8 9 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Iterations

V
io

la
tio

ns

Fig. 6. Test set violations when triplets need only be satisfied in a single
dimension. Left: Training with multiple similarity notions. Right: Training
without multiple similarity notions.

TABLE IV
CHANGE IN CORRELATION FROM ITERATION 1 TO ITERATION 10.

AGGREGATED ACROSS REPLICATIONS AND FOLDS. COLUMNS WITH
∆ < −x SHOW THE PERCENTAGE OF REPLICATIONS WHERE DECREASE IN

CORRELATION IS MORE THAN x.

Experiment Median ∆ ∆ < 0 ∆ < −0.1 ∆ < −0.2
Without -0.009 61.7% 15.0% 5.0%

With -0.108 85.0% 53.3% 13.3%

n and m. Using a k-dimensional embedding, the change in
correlation from iteration n to iteration m is then

2

k(k − 1)

∑

i

∑

j>i

|ρmi,j | − |ρni,j | (10)

The change in correlation from iteration 1 to iteration 10 is
summarized in Table IV. Although correlation is reduced both
when training with and without multiple similarity notions,
the decrease is largest and most consistent when training
with multiple similarity notions, indicating that the similarity
weights pushes the embedding to decorrelate dimensions.

3) Predictive power of embeddings: The purpose is to
investigate how well the learned embeddings can predict
visually assessed lung pathologies.

We use the networks trained in Section III-B2 to embed
center slices from the upper right region and from the full
lung field. For each fold, we then fit a regularized logistic
regression model on the training splits to predict 1) visually
assessed emphysema presence in the upper right region and
2) visually assessed ILD presence in the scan.

We use a weighted cost function to handle class imbalance.
The cost for predicting absence is set to 1 and the cost
of predicting presence is set to 2 × (1 − prevalence). The
regularization parameter of the logistic regression model is
optimized over (C ∈ {2i|i = 0, 1 . . . , 9) on the validation
splits.

The results are summarized in Table V with the last row
showing performance when using random features sampled
from an 8-dimensional normal distribution. Although random
features are better than random guessing, performance of the
trained networks is clearly better. Overall, training without
multiple similarity notions is slightly better than training with.

Predicting presence of emphysema at iteration 1 yields AUC
of around .70 (.70 - .74 at iteration 10). Predicting emphysema
extent larger than 5% is substantially easier with AUC around

TABLE V
AVERAGE ROC AUC (×100) FOR PREDICTING LUNG PATHOLOGIES.

Emphysema
Experiment Iteration Presence > 5% > 25% ILD

With 1 69 82 86 58
Without 1 70 83 87 59

With 10 70 84 88 58
Without 10 74 86 89 58
Random – 54 58 59 53

.83 (.84 - .86 at iteration 10). AUCs only increase slightly
when predicting more than 25% extent, indicating that the
main challenge is in distinguishing 0% and 1-5% emphysema
extent. Presence of the three ILD pathologies is overall lower
than emphysema (11.6% versus 31.6%) with more variation
between datasets (6%, 12%, 17% presence). Average AUC for
predicting ILD presence is .58 at both iteration 1 and 10. A
possible explanation for the relatively poor detection of ILD
patterns could be that the patterns are rarely visible in the
slices extracted from the upper right region, resulting in very
little ILD signal during optimization. However, these results
indicate that the networks can learn features related to both
emphysema and ILDs from visual similarity triplets.

IV. DISCUSSION & CONCLUSION

We have presented and analyzed an approach for obtaining
and learning from visual similarity triplets. We have shown
that the approach for obtaining triplets yield reasonably high
agreement between annotators and that CNNs can learn to
predict unseen triplets. We have shown that the learned repre-
sentations capture features that are relevant for both emphy-
sema and ILD prediction. Emphysema and ILD predictions
are based on a single slice in the upper right lung region
(emphysema) and from the full lung fields (ILD). Detecting
pathologies from a single slice is not always possible, because
they may not be present in the slice, and performance should
be viewed in this light.

We have proposed a method for modeling multiple notions
of similarity during training and showed that it pushes the
learned representations to decorrelate dimensions. Although
this decorrelation did not improve performance, it could prove
helpful for a better understanding of the representation. The
decorrelated representations make it easier to satisfy triplets
in at least one dimension. If we can learn a good predictor of
which similarity notion to use for a specific triplet, it is likely
that we can learn a better embedding by including this in the
optimization.

A possible weakness of using multiple similarity notions as
suggested here is that it provides few constraints. For eight
dimensions we have 255 ways of picking a non-zero binary
vector. Restricting the weight vectors to a smaller set would
provide a stronger constraint that could improve learning.
One way of restricting the weights would be to have a set
of partially overlapping weight vectors (110 and 011 in the
3D case), which would allow each similarity notion to adapt
independently, while still constraining all notions to partially
respect each other.
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Any data-driven analysis is at the mercy of the data. In this
work we have randomly selected three sets of 100 scans from
the same screening study population. We have deliberately
not stratified subjects by ILD presence or emphysema extent
scores. Our aim in this study was to consider visual similarity
comparisons as an alternative to assessing individual image
labels. Stratifying by image labels would defeat this aim and
hide issues arising from variation in datasets. This has led
to three datasets with different distributions of pathological
findings. Although we have randomized the order in which
queries where answered, we found that the triplet constraints in
the three datasets where not equally consistent. We also found
that performance was best (and similar) when training/testing
on D1/D3 and vice versa. These results indicate that the
observed variation in data and label distribution could be the
cause of variation in performance across datasets. Future work
would need to consider the scale of experiments to ensure
the variation in images presented to raters is large enough to
characterize the full dataset.

In this work, we have used a single rater to answer all
queries. One of the aims of this study is learning repre-
sentations that provide a more complete characterization of
images, than representations learned for a specific task. Having
multiple raters should provide a more diverse characterization
supporting this aim. Additionally, having multiple raters allow
us to estimate how difficult a query is by measuring inter-rater
agreement for each query. High agreement could indicate easy
triplets that must be respected, whereas low agreement could
indicate queries with very similar images or different notions
of similarity.

We used a 3 × 3 grid query to obtain visual similarity
triplets. This introduces some dependence between the triplets
from each query, which we ignore in this work by treating
each triplet independently. Instead of learning from triplets,
it could be useful to learn directly from 3 queries. The input
to the network would then be one anchor image and eight
query images. The output would be an embedding of the nine
images, and the loss should ensure that the partial ordering
from the visual similarity assessment was respected. This
could be helpful in cases where query images are similar. If
images are embedded close together, then it is probably not
very important to get the ordering exactly right. Additionally,
similarity notions could be assigned per query, which probably
matches reality better than assigning a similarity notion to each
triplet independently.

In summary, we have shown that assessing visual sim-
ilarity of lung texture in a population with relatively low
pathology prevalence is possible, and that visual similarity
triplets can be used to learn low-dimensional embeddings
that capture features of visually assessed pathologies. This
positions learning from visual similarity as an approach that
could reduce annotation cost by learning rich representations
of image content from possibly crowdsourced annotations.
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6 Discussion and directions

The importance of machine learning in medical image analysis is growing. For tasks, such as segmentation, that
lend themselves well to machine learning solutions, fully automated solutions seem more and more realistic.
A major challenge when developing machine learning solutions for medical imaging tasks is that the methods
are trained on data from a specific distribution and generalize poorly to new distributions. The problems can
be subtle. Imagine a diagnostic tool that has been validated and found to have a false positive rate of 5% when
applied on a population with 50% prevalence. Now apply the same tool in a population with 25% prevalence.
Assuming the same false positive rate yields a 50% increase in number of false positives for a fixed population
size, which could tip the scale from useful tool to unacceptable over-diagnosis.

Why is this interesting in the context of this thesis? Because it illustrates that training a machine learning
method on one population and applying it on another population is problematic. Instead of hoping performance
generalizes despite changes in data distribution, it might be better to focus on developing models that are cheap
and easy to train. Weak supervision, crowdsourcing and learning from visual similarity are all aimed at reducing
the labeling burden when developing machine learning methods.

Other approaches exists. Unsupervised methods aimed at characterizing common patterns in the images is
a very interesting approach, because it eliminates the need for labels. Semi-supervised learning, where only a
small part of the data is labeled, could be a better approach because it allows experts to guide the learning process
such that it centers on the relevant features. This work has aimed at reducing the need for labels, without losing
the benefits of supervised learning.

The following three sections discuss the three tracks of contributions presented in Sections 3, 4 and 5, with
an emphasis on directions for future work.

6.1 Weakly supervised learning

The weakly supervised methods presented in this thesis have all used a representation based on classic scale-
space features. There is little doubt now that CNNs can yield superior performance by learning a representation
more closely tied to the task. Multiple layers enable CNNs to learn complex combinations of features that are
hard or impossible to learn with traditional methods. The Simple MIL approach with a logistic classifier can
in principle learn complex interactions between features, but the combinatorical explosion of possibilities limits
this in practice, unless strong regularization, such as the spatial regularization enforced by convolutions, is used.

The fact that fine-tuning CNNs trained on ImageNet is effective for many tasks, suggests that as long as the
representation is rich enough, it is interactions between features that is important for specific tasks. Although
pre-training on ImageNet can be beneficial for medical imaging tasks, it is likely better to pre-train CNNs on
a large and diverse set of medical imaging tasks, a medical ImageNet. This could provide representations that
are generally useful for medical image analysis, and enable machine learning methods to be trained for specific
tasks using much less annotated data.

It is quite interesting that the Simple MIL approach presented in [34] works as well as it does. The CNN
analog is to add a global pooling layer after a pixel prediction layer. This approach also works quite well and
does not require more data or better annotations [3]. An obvious question to ask is “what benefits are there to not
using a CNN?”. One answer is that we avoid optimizing features for a specific dataset. Compared to machine
learning systems, humans are exceptionally good at ignoring intensity shifts, noise and changes in resolution.
Ideally we want our computer systems to have the same qualities.

Emphysema can be detected quite well with a simple blob detector [50]. If we know that we need a blob
detector, and we know that interesting blobs will always have intensities in [-1000HU, -850HU] then it is simple
to create a set of blob detectors that covers this intensity range. On the other hand, if we have a dataset where
interesting blobs never have intensities above -920HU, learned filters will not work well for data where blobs
have intensities close to -850HU. Avoiding feature learning can improve generalization because we avoid over-
fitting to the available data. However, the rise of CNNs have clearly illustrated that knowing which features are
important is very difficult and learning filters is often the better option.
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Figure 3: Naturally occurring textures that vaguely resembles lung tissue textures.

6.2 Crowdsourcing

The thesis argues that crowdsourcing is a path worth exploring for medical image analysis. However, bringing
the power of crowdsourcing to medical imaging is a challenge. In many cases we are dealing with data that
is private and cannot be shared with the public. In recent years, growing use and abuse of personal data has
brought the issue to the attention of the public and to researchers working in medical image analysis.

Ideally we would not need medical data for training. For instance, we could try to train on naturally occurring
texture patterns, such as those shown in Figure 3. However, applying this model directly on chest CT images
will yield nonsensical results. If we instead of applying the model directly, first find a mapping from chest CT
images to natural texture and then apply the model, it might work. Generative Adversarial Networks (GANs)
have been shown to be very powerful for this kind of domain adaptation tasks, for example in robotics where
simulated training environments are mapped to real world [27].

A likely easier task is mapping between closely related domains, such as chest CT scans from different
studies. One of the challenges when using GANs is to constrain the mapping, such that new information is not
introduced and important information is not lost. GANs learn a mapping by matching the data distributions.
However, different studies will generally have different label distributions. Ignoring differences in label distri-
butions is highly problematic, since the mapping will then force one study population to appear more or less
diseased than it is. This problem was nicely illustrated in [6], where GANs learned to add and remove tumors
when translating between brain MRI modalities.

When working with medical images we often have access to information about major sources of variation:
scanners, scan protocols and populations. This information can be used to constrain the mappings. For example,
if we know that one study used a hard reconstruction kernel and another used a soft reconstruction, we can
probably make them more similar by blurring the images in the first study. Another example, imagine we want
to apply a model for assessing emphysema trained on one domain in a new domain. Even though we do not have
access to the distribution of emphysema in the new domain, we generally have knowledge about prevalence and
severity of COPD, which could be incorporated to reduce issues arising from differences in label distribution.

Although crowdsourcing raises privacy concerns, it is not impossible to respect privacy while crowdsourcing
labels. And although the privacy concern is most evident when crowdsourcing, the same issue faces anyone
working within medical image analysis. If people do not trust researchers to ensure their data is not abused,
they will increasingly block access to their data. Solving this challenge requires first and foremost that informed
consent is obtained from the people whose data is to be used. Clearly communicating what data is needed, why
it is needed and how it will be used is crucial to enable informed consent. Additionally, placing stricter demands
on obtaining informed consent encourages researchers to define clear research goals and analysis protocols that,
in general, leads to more robust findings.

A major challenge is allowing a breadth of exploratory work while still ensuring informed consent. One
solution would be to establish a large public database of images, using crowdsourcing to extensively characterize
the images. Combined with domain adaptation, this could allow models to be trained on the public database and
applied on private databases.
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In addition to proper handling of personal information, crowdsourcing also pose technical challenges . The
primary technical concern when crowdsourcing labels is ensuring acceptable label quality. As illustrated in
[32], lack of proper quality control leads to large variation in label quality, negatively impacting performance.
Expertise from research areas such as quality control and user interface design, could help realize crowdsourcing
as a valuable tool for developing of machine learning solutions to medical image analysis tasks.

6.3 Learning from visual similarity

A hypothesis in this thesis is that learning from visual similarity annotations can yield a more general charac-
terization of images than learning from image labels. [33] and [36] investigate how to collect and learn from
visual similarity triplets, but do not provide a comparison between learning from image labels and learning from
visual similarity. Key elements in such a comparison are the cost of labeling and the information content of
learned representations. If non-experts can perform visual assessment of emphysema, the cost can be reduced
significantly. It is unclear how much expertise is needed for visual assessment of emphysema. No significant
difference between assessments by radiologists and pulmonologists was found in [7], indicating that daily expe-
rience with assessing CT scans are not paramount. However, pulmonologists may lack experience with routine
assessment of CT scans, but they have a deep knowledge of the lungs and abnormalities. It is unlikely that
untrained crowds can achieve a similar quality of assessment.

In [28] a diverse group of annotators are tasked with segmenting six patterns in CT scans. Although indi-
vidual annotators perform worse than an expert, combining the annotators yields performance similar to expert
segmentations. However, annotators are informed about which pattern to segment and the study only includes
slices from twenty subjects, so it is unlikely that the results transfer to assessment of emphysema in CT scans
“in the wild”.

Measuring which representation is better is tricky. If the task is to detect honeycombing, then CNNs trained
to detect emphysema will not perform as well as CNNs trained to detect honeycombing. There is no technical
need to restrict CNNs to a single class setting, and a CNN trained to predict both emphysema and honeycombing
is likely as good as a CNN trained to detect one of the patterns. A proper comparison should compare learning
from multi-class labels to learning from visual similarity.

One area where visual similarity has an advantage is when we do not know which patterns to look for.
There is some controversy over the definition of emphysema sub-types. Annotating centrilobular, paraseptal
and panlobular emphysema assumes that these patterns can be distinguished and that they cover all possibilities.
Annotating visual similarity allows the CNN to learn without being forced to find three distinct classes, which
could improve characterization and understanding of emphysema appearance in CT scans. On the other hand,
learning from visual similarity could force the CNN to learn similarities that are irrelevant.

6.4 Closing remark

While writing this thesis an important question has presented itself. Is machine learning based on visual assess-
ment of emphysema the right path? Densitometry is useful and easy to interpret. Many of the issues can be
overcome by careful standardization of scan protocols and analysis software. Densitometry can also be com-
plemented by relatively simple bullae detectors that provides some characterization of patterns and have been
shown to be useful for lung cancer risk prediction [50]. Methods that learn from clinical outcomes, such as
COPD stage and mortality, could also complement densitometry without requiring visual assessment.

The central question to answer is, which part of visual assessment is it that provides beneficial information.
Is it robustness to noise, pattern recognition, holistic analysis or something else? The powerful feature learning
aspect of CNNs could be used to analyze which low-level features are important when radiologists assess em-
physema. Comparing this to densitometry and bullae detectors could improve understanding of the factors that
are important in terms of disease progression and risk prediction.

The role of machine learning in deepening our understanding of emphysema and COPD is as, if not more,
important as its role in enabling automated emphysema assessment.
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