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Abstract. This thesis summarizes my PhD project. The structure of the thesis,
and my project, follows the philosophy behind the Danish Center for Big Data
Analytics driven Innovation (DABAI); in collaboration with companies, we develop
solutions for educational data mining. Taking inspiration from the challenges faced,
we define and investigate research problems within the areas of algorithms and ma-
chine learning.

During my project, I have worked with the Danish companies Clio and MaCom.
With Clio, the main objective has been to provide teacher insight about students

in primary school. We do so through performance prediction in an online quiz
system and by analyzing behavioral patterns observed in log data, in order to
determine optimal study behavior.

With MaCom, we investigate methods for detecting ghostwriters in high school;
external authors hired by students to write their essays. We extend this work to
an analysis tool for analyzing and tracking writing style changes for high school
students, providing insights for teachers.

Based on the problems faced while working with Clio, we develop novel techniques
for improving budgeted maximum inner product search, an important algorithmic
ingredient in many data mining methods.

Furthermore, we investigate theoretical bounds for majority vote classifiers, pro-
viding theoretical guarantees for the random forest classifier. While these bounds
are often still too loose for practical uses, the area of research is important, as
highlighted by our work with MaCom.

Finally, the thesis concludes with an overview of the company collaboration and a
discussion of the challenges faced during the collaboration.
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Abstract. Denne afhandling opsummerer mit ph.d-project. Strukturen af afhan-
dlingen og mit projekt følger filosofien bag Danish Center for Big Data Analytics
driven Innovation (DABAI): I samarbejde med firmaer, udvikler vi løsninger til
dataanalyse inden for digital uddannelse. Baseret p̊a de udfordringer, vi møder i
dette samarbejde, opsætter og undersøger vi nye problemstillinger inden for algo-
ritmik og maskinlæring.

I løbet af mit projekt, har jeg arbejdet med de danske firmaer Clio og MaCom.
Med Clio har vores hovedopgave været at finde metoder til at assistere folkeskole-

lærere, ved at give dem øget kendskab til deres elevers faglige evner og svagheder.
Det gør vi ved at forudsige, hvordan eleverne klarer sig i online quizzer og ved,
baseret p̊a logdata, at analysere hvordan eleverne bruger systemet, og hvilken brug,
der er optimal.

Med MaCom har vi undersøgt metoder til at spotte s̊akaldte ghostwriters i gym-
nasierne; eksterne skribenter hyret af studerende til at skrive deres opgaver. Disse
metoder er blevet videreudviklet med henblik p̊a at analysere og monitorere æn-
dringer i skrivestil blandt gymnasieelever, som endnu en m̊ade at danne indblik for
lærerne.

Baseret p̊a problemstillingerne ved Clio, udvikler vi nye teknikker, der forbedrer
maksimalt indre produkt søgning med begrænsede resourcer, en vigtig algoritmisk
ingrediens i mange metoder til dataanalyse.

Derudover undersøger vi teoretiske garantier for klassificeringsalgoritmer baseret
p̊a flertalsafstemninger, og vi præsenterer teoretiske garantier for random forest
klassificeringsalgoritmen. Selvom garantierne endnu ikke er gode nok, er det et
vigtigt forskningsomr̊ade, hvilket bekræftes i vores arbejde med MaCom.

Endelig konkluderes afhandlingen med en oversigt over samarbejdet med firmaerne,
og en diskussion af de udfordringer, der er opst̊aet under samarbejdet.
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Chapter 1. Introduction

This thesis summarizes the work done during my PhD, starting September
1’st 2016 and ending August 31’st 2019. My PhD is funded by the Danish
Center for Big Data Analytics driven Innovation (DABAI) [11] (described
below in Section 1.1), and as such, the structure of my PhD follows the goals
set out in this project. This has included a lot of work with different edu-
cational companies, as well as doing research based on problems identified
with these companies; the overall structure is described in Section 1.2 below.
The thesis consists of a collection of papers published during my thesis. The
papers fall into two categories: applied data mining papers done in collab-
oration with the companies in the educational domain, and pure research
papers. The papers and their main results will be introduced in the thesis,
with the full papers being attached in Appendix A. A short overview of the
included papers is given below with references to the appendix:

Applied data mining
A.1 S. Lorenzen, N. Pham, S. Alstrup: On Predicting Student Performance

Using Low-rank Matrix Factorization Techniques. In Proc. 16’th Eu-
ropean Conference on e-Learning (ECEL), 2017.

A.2 S. Alstrup, C. Hansen, C. Hansen, S. Lorenzen, N. Hjuler, N. Pham:
DABAI: A data driven project for e-Learning in Denmark. In Proc.
16’th European Conference on e-Learning (ECEL), 2017.

A.3 S. Lorenzen, N. Hjuler, S. Alstrup: Tracking Behavioral Patterns among
Students in an Online Educational System. In Proc. 11’th International
Conference on Educational Data Mining (EDM), 2018.

A.4 M. Stavngaard, A. Sørensen, S. Lorenzen, N. Hjuler, S Alstrup: Detect-
ing Ghostwriters in High Schools. In Proc. 27’th European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN), 2019.

A.5 S. Lorenzen, N. Hjuler, S. Alstrup: Investigating Writing Style Devel-
opment in High School. In Proc. 12’th International Conference on
Educational Data Mining (EDM), 2019.

Research
A.6 S. Lorenzen, C. Igel, Y. Seldin: On PAC-Bayesian Bounds for Random

Forests. In Machine Learning, Volume 108, Issue 8-9, 2019.
A.7 S. Lorenzen, N. Pham: Revisiting Wedge Sampling for Budgeted Maxi-

mum Inner Product Search. In submission for 23’rd International Con-
ference on Extending Database Technology (EDBT), 2020.

A short overview of all papers will be given in Section 1.2. A more thorough
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Figure 1.1: Overview of the research areas and the business cases of the
DABAI project [11].

presentation and discussion of the Applied data mining papers is given
in Chapter 2, with the exception of the paper DABAI: A data driven project
for e-Learning in Denmark, which is discussed in Chapter 4. Chapter 3
presents and discusses the Research papers.

1.1. DABAI

The Danish Center for Big Data Analytics driven Innovation (DABAI) [11]
is a cooperation between the University of Copenhagen (UCPH), Aarhus
University (AU), the Danish Technical University (DTU), and several com-
panies and businesses in Denmark. The project is funded by Innovations-
fonden.

DABAI consists of two parts: a practical/applied part, in which the uni-
versities help the companies solve their data analysis related problems, and
a research oriented part, in which the universities, based on challenges faced
in the practical part, formulate new theory and develop novel algorithms,
which are then refined and publicized. Furthermore, each part is split into
three. The scientific part is split between research in algorithms, machine
learning and visual analytics, while the applied part is split between three
different branches from Danish businesses: digital education, food supply
chain and societal, see Figure 1.1.

UCPH is responsible for the work packages relating to algorithmic re-
search and digital education, and thus this has been my focus in the PhD.
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Three companies have been the main business collaborators in our branch:
Clio [8], EduLab [15] and MaCom [29]. Of these, I have mostly worked with
Clio and MaCom:

Clio [8] is the company behind the online learning platform with the same
name, targeted at primary school. The system is used in most Danish pri-
mary schools, as well as other Nordic countries, having been used by more
than 240,000 students. Clio consists of a large set of learning materials, in-
cluding texts, exercises and auto-graded quizzes, and allows for the teacher
to assign homework.

MaCom [29] supplies the lecture management system Lectio to more than
90% of Danish high schools. Lectio allows teachers to manage classes and
teams and allows students to hand-in their assignments digitally. As a result,
MaCom has access to a huge number of high school assignments written by
Danish high school students.

As members of DABAI, Clio and MaCom formulated some high-level prob-
lems, which they or their users have encountered. These problems, described
below in Section 1.2, have been the basis for starting the applied/practical
part of my PhD, while some of the problems identified in this part, has
formed (either directly or indirectly) the basis for the more theoretical part
of my project. In short, my focus has been two-fold: assisting suppliers of
digital educational tools with analyzing their data, and, based on the chal-
lenges faced in this task, to develop novel, efficient data mining/machine
learning techniques with a focus on Big Data.

1.2. PhD Overview

As mentioned, my PhD follows the project description for DABAI. It con-
sists of two parts: working on data analysis problems with the companies
Clio and MaCom, and, with the gained knowledge from these cases, working
on some more general underlying problems.

My main focus has been data analysis, with an extra focus on large amounts
of data. More and more data is created and collected every day; it is ex-
pected, that 175 zeta bytes will be generated in 2025, compared to 33 zeta
bytes in 2018 [35]. This enormous increase in data comes with a huge po-
tential, but in order to realize this potential, we need efficient algorithms.
Furthermore, with machine learning used for assisting in making more, po-
tentially important, decisions, we also need careful analysis of said algo-
rithms in order to guarantee that they perform as expected.

These two questions: more efficient data analysis and obtaining perfor-
mance guarantees, are the main topics of my project, and are inspired by
my initial work with Clio and MaCom respectively.
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1.2.1 Teacher Insight and Efficient Recommender Systems

Our main collaboration with Clio has been centered around their quiz sys-
tem, in which a student takes a quiz and gets a score, which is then converted
to a grade on the Danish grade scale. The system has been used for several
years; with more than 240,000 unique users and more than 10,000 quizzes
in the system, Clio has collected several million records of answered quizzes
with accompanying scores.

The main task we have been working on in this domain, is to predict
the score achieved by a student on an hitherto unseen quiz. Such kind of
predictions may assist the teacher in several ways, for instance in selecting
the correct quiz for the class or in differentiating assigned time for the quiz
between different students.

Our initial approach was based on recommender systems, as used for
example in the Netflix price competition [21]. In this setting, one may
equate the score of the quiz with the rating of an item in the recommender
system, and the skills of a student can be modeled in a similar fashion to
the preferences of a user. Using matrix factorization techniques, we achieve
a fairly high accuracy, as presented in [28].

As mentioned, the Clio system also contains a lot of other learning ma-
terials, such as texts and exercises. In order to improve our predictions and
be able to provide even better feedback to the teachers, we apply again the
matrix factorization techniques to a matrix containing temporal profiles for
the students, i.e. activity profiles generated for students for a fixed period of
time, consisting of aggregates over system accesses, time spent reading, etc.
The output is a soft clustering of the activity profiles. Analyzing the clus-
ters allows us to make qualitative statements about them, including which
clusters are more likely to score better in quizzes. With development profiles
for students in every time period, the method also allows us to track how
the activity of students change during their time in primary school. This
work was presented in [24].

Applying the methods and analyzing the large amount of data made avail-
able by Clio highlighted the need for algorithms with capacity for handling
large amounts of data, especially as one requirement from Clio is that a quiz
prediction query must be answered quickly. Specifically, Clio had demands
on the amount of time allowed for answering a query; as such, the prediction
algorithm required an explicit way to set the time allowed for a query. Hence
we looked into the budgeted maximum inner product search. Maximum inner
product search is a key component of many recommender system algorithms,
such as item similarity search and matrix factorization, and indeed in many
other machine learning algorithms. The budgeted version accepts an explicit
budget on the number of computations allowed, at the cost of higher failure
probability (i.e. not getting the actual maximum inner product), giving us
an explicit way to limit the amount of time needed. Our work on this topic
is presented in [27], currently in submission for EDBT 2020.
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Our data analysis tasks related to predicting scores and analyzing student
behavior is described in more detail in Section 2.1, while the follow-up work
on improving recommender systems is described in Section 3.1.

1.2.2 Writing Style Analysis and Trusting Machine Learning

The focus with MaCom has been on student writing style in Danish essays,
with the end goal being to provide insight to the teacher about the develop-
ment of the writing style of a student. This is a natural area of interest, as
developing the writing style is a main task in Danish secondary education.
However, our initial research into tracking writing style was motivated by
the increase in use of ghostwriters in Danish high school. In this setting,
a ghostwriter is a person (likely to be external to the high school), who is
hired by a student to write an assignment for them. It may be an older
high school student, a university student or a teacher, and the ghostwriter
may be hired through online services. In the literature, the problem is also
known as authorship verification.

The use of ghostwriters has become an increasing problem in Danish
high schools, especially for Studieretningsprojektet (SRP), a large, inter-
disciplinary, written assignment, which high school students have to com-
plete during their third and final year, and which counts double towards
the grade point average [47]. We investigated several approaches to solving
the ghostwriter detecting problem based on MaCom’s textual data. The
best results were achieved using a Siamese neural network to encode and
compare texts, beating results obtained by the more traditional authorship
verification methods. These methods were initially tested as part of two
master’s projects, before the results were finalized in our paper [42]. The
results were encouraging and paves the way for implementing the software,
adding to the plagiarism detecting software already in place in Lectio.

From the models trained to solve the ghostwriter problem, we also made
observations about the development over time of writing style among high
school students. This resulted in a spin-off study of writing style develop-
ment, which was published at the international conference for Educational
Data Mining in 2019 [25]. This study investigates the overall patterns for
development of writing style in high school and correlates different devel-
opment profiles with development in writing quality and can potentially be
used to detect suboptimal development. Furthermore, our models allowed
us to analyze how similarities between different students change over time,
providing insights about the general development trends during high school.

Working on the initial project to detect ghostwriters presented us with an-
other problem: being falsely accused of cheating in the SRP can have serious
consequences for a student. As such, we have to be very confident in the
accuracy of the algorithm (which, even then, should not be used by itself, see
also the discussion in Section 4.2). Our proposed method allows for limiting
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the number of false accusations by adjusting a threshold, but this in itself
gives no theoretical guarantees.

This indirectly motivated an investigation into such theoretical guarantees
in the form of PAC-Bayesian bounds on the risk of a classifier. However, our
study in this regard is not directly applicable to the final ghostwriter soft-
ware, as we investigated PAC-Bayesian bounds for majority vote classifiers,
specifically random forests. We did evaluate random forests for the author-
ship verification task, but the final model found was not very successful and
was abandoned in favor of the deep learning approach.

However, our results on applying these theoretical guarantees to random
forests trained using bagging showed, how good guarantees can be had “for
free”, in the sense that no validation set is required (this extends to any
algorithm trained using bagging) [26]. Furthermore, our experiments indi-
cated the strength and usefulness of some of the state-of-the-art bounds in
this setting. And while not applicable in our current ghostwriter detection
approach, a future model is likely to be based on an ensemble, in which case
the bounds may be applicable.

The ghostwriter project and the writing style analysis are described in more
detail in Section 2.2. The work relating to PAC-Bayesian bounds for major-
ity vote classifiers are described in Section 3.2.

1.3. Road map

My thesis is structured according to the DABAI setup. Thus, Chapter 2
gives an overview and discusses the new results achieved in educational data
mining. The section will discuss the results from [24,25, 28, 42], including a
few other relevant results.

Chapter 3 presents the new theoretical and empirical results obtained,
motivated by our work in educational data mining. The results from [26,27].

Chapter 4 discusses our collaboration with the companies, the challenges
faced, and the potential for the companies and for society in terms of im-
proved learning and evaluation of students, drawing on the conclusions of [1].

Finally, Chapter 5 makes some concluding remarks on the thesis.



Chapter 2. Data Analysis in Online Education

This section discusses the results obtained in educational data mining and
analysis during our collaboration with Clio and MaCom.
Section 2.1 describes the research done in collaboration with Clio, which is
focused around providing teacher insight, through predicting student perfor-
mance and by profiling the students in terms of performance and behavior in
the system. The section presents our results in predicting quiz scores [28],
and our investigation of the correlation between performance and behav-
ior [24]. The section is similar to the content of those papers and may
contain passages from the papers without quotation.

Section 2.2 discusses the results obtained with MaCom, which, as men-
tioned, is focused on the writing style of the students. The results regarding
detection of ghostwriters is described and discussed [42] (including some re-
sults from an earlier master’s thesis on the subject), before the spin-off study
regarding tracking of writing styles [25] is presented. The section is similar
to the content of those papers and may contain passages from the papers
without quotation.

2.1. Providing Teacher Insight in Primary School

Insights about students’ skills and study habits can be very valuable for
teachers in primary school. While most teachers probably know their stu-
dents well, the teachers knowledge will be “local” in nature, limiting itself
to the students and material, that the teacher knows. Hence, new and im-
proved insights may be found by analyzing student data across classes and
even across schools; data, such as that available to Clio.

2.1.1 Predicting Student Performance

One way to provide insights to the teacher is through performance predic-
tion. Thus, we have looked into predicting the grades of students in the
Clio quiz system. Our work is presented in the paper On Predicting Stu-
dent Performance Using Low-rank Matrix Factorization Techniques [28], see
Appendix A.1.

The problem of predicting the performance of a student (as the answer to
a question, the score on a quiz, a final grade, or some other metric) has seen
a lot of interest in the educational data mining community [14, 31]. There
are several motivating factors for measuring and understanding the skills of
a student. It is valuable insight to the teacher, and may help the teacher
provide individualized learning (in terms of allotted time and difficulty of
learning material), or identifying at-risk students early.

7
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Predicting grades in the Clio quiz system has been a primary objective
in our work with Clio. The system contains quizzes consisting of various
question types such as multiple choice, pair matching, or fill-in-the-blanks.
Each quiz has a maximum number of points obtainable, and, on answering
a quiz, a student is awarded some number of points between zero and the
quiz maximum. The points are then converted to a grade on the Danish 7-
grade scale. This is the grade we wish to predict and present to the teacher.
However, for the work discussed here, we have instead normalize the points
to a score in [0, 1]; converting back is easily done.

The data made available by Clio consists of answered quizzes and access
logs for different learning materials, such as texts read, videos watched and
exercises performed, making the data suitable for the task.

In [28], we consider only the historical quiz data for the prediction, i.e. let-
ting S = {s1, s2, ..., sn} denote the set of students and Q = {q1, q2, ...., qm}
denote the set of quizzes, we are given an incomplete matrix X ∈ [0, 1]n×m,
where Xij is equal to the score obtained, if student i has taken quiz j, and
missing otherwise. The objective is to determine the values of the missing
entries in X.

The problem can be viewed as a collaborative filtering problem, which is
more often associated with rating of items by users, such as movies [21] or
music [20], but with a rating substituted for a score, and user preferences
substituted for student skills. Thus, we consider methods from collaborative
filtering for solving the problem; specifically, we consider matrix factorization
(MF) [22]. Using MF, the given matrix X is factorized, so that we obtain
Q ∈ Rn×k and P ∈ Rk×m for some parameter k, such that X ' QP. The
parameter k describes the number of latent variables. In problems relating
to movie rating, these variables have been linked to user preferences, while
the natural link in our case is student skills.

Aside from considering unrestricted MF, we also consider non-negative
matrix factorization (NMF) in which Q and P must be non-negative, due
to it being naturally regularized by the non-negative constraint, as well as
the intuitive interpretation of the solution found [21].

As X is incomplete, the factorization is computed by an Expectation-
Maximization (EM) procedure [28, 40], in which new solutions Ui,Vi are
found (expectation step) based on X̃i−1, obtained by imputing missing val-
ues of X with the best previous solution Ui−1 ·Vi−1 (maximization step).
Given imputed matrix X̃i−1, the solution Ui,Vi is obtained by a truncated
(non-negative) single value decomposition [3].

The results obtained using NM and NMF are compared to a baseline,
where the prediction B(i, j) for student i taking quiz j is computed as a
simple linear combination of the global mean score µ, the student bias αi
for student i, and the quiz bias βj for quiz j [21,28]:

B(i, j) = µ+ αi + βj ,

where the student bias is given by αi = µsi −µ, µsi being the student mean
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Method k RMSE
Baseline - 0.1768

MF 1 0.1751
NMF 2 0.1744

Table 2.1: Results obtained using matrix factorization compared to the
baseline.

score, and similar for the quiz bias βj . This baseline is also used to impute

the initial matrix X̃0 for the EM procedure.

The data supplied by Clio was cleaned for the experiment, consisting of
removal of incomplete and duplicate answers, and answers from test users,
leaving a dataset with approximately 167,000 students, 6,290 quizzes and
1.4 million answers. However, many of the students and quizzes were inac-
tive in the quiz system, in the sense that they had only few answers. For
instance 40% of students had answered less than 5 quizzes. Thus, the data
was densified by continuously removing students and quizzes with less than
15 answers, leaving us with a final dataset consisting of n = 1141 students
and m = 245 quizzes. Table 2.1 presents the results obtained on this dataset,
where the error is computed as the root mean square error between X and
the found solution U ·V. For regular MF, k = 1 was found to be optimal,
while k = 2 was found to be optimal for NMF [28]. As can be seen, NMF
achieves the best result.

It is worth noting, that while NMF does not beat the simpler baseline by
much, the model can be used to provide insight about the students. The
fact that k is small for both MF and NMF, i.e. we get a low dimensional
factorization with only few latent variables, indicates that the performance
of a student on a given quiz is not well described by many different types
of skills. This was unexpected, as we had hoped to observe at least a few
different skills. The results is further confirmed by computing the eigen
spectrum of X [28].

The results presented in [28] and discussed above were all performed on a
small, densified subset of the quiz dataset. Further experimentation showed,
that the methods would usually degrade on more sparse data. As can be
seen from Figure 2.1, most users are not very active, with more that 40% an-
swering less than 5 quizzes (from more than 6,000 quizzes in total), meaning
that the data set is indeed very sparse. Furthermore, the matrix factoriza-
tion techniques were also limited by available memory and computational
power. Hence, we implemented hybrid versions, which applied (N)MF to
the most active users and quizzes, while using the baseline for less active
users and quizzes, allowing Clio to obtain predictions for all students. The
results for the hybrid NMF are shown in Table 2.2. While these results have
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Figure 2.1: Statistics for the Clio dataset. Left: distribution of students
according to activity. First bar is students with 0-5 answered quizzes, second
bar is 5-10, and so on. Note, the y scale is logarithmic. Right: distribution
of grades in the dataset.

RMSE Acc@1 Acc@2 Acc@3
0.1933 0.4061 0.5674 0.8338

Table 2.2: Results obtained on the full Clio dataset using the hybrid NMF
(k = 1), combining NMF with the baseline. The table contains the RMSE
and accuracy when predicting one (Acc@1), two (Acc@2) or three (Acc@3)
grades.

not been publicized, the method was incorporated in the final prediction
framework developed with Clio, as described in Section 4.1. Hence, the ta-
ble also includes the accuracy Acc@x for predicting the correct grade when
allowing the algorithm to return a set of x grades, as these are relevant to
the deployment of the solution. We determined k = 1 to be optimal for
NMF in this extended dataset.

We also continued experimentation with other approaches. One approach
considered was based on quiz similarity, and predicted scores as a linear
combination of the student’s score on other quizzes, weighted by the quiz
similarities. This has been done successfully in other recommendation tasks,
but unfortunately we were unsuccessful in making it work well for the Clio
case. However, as a result of our experimentation with that method, we
started looking into efficiently computing the budgeted maximum inner prod-
uct, as described in Section 3.1.

A drawback of the solutions presented in this section, is the fact that they
rely only on the data from the quiz system, while much more data is avail-
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able in the Clio system, such as time spent on the quiz and access logs for
other learning materials. Thus, we started investigating the gains from using
the activity log data from the system as well.

2.1.2 Tracking Student Behavior

As a further mean to provide teacher insight and in order to hopefully im-
prove the quiz grade prediction, we investigated the activity log data pro-
vided by Clio. In our paper, Tracking Behavioral Patterns among Students
in an Online Educational System [24] (see Appendix A.3) we investigate
these logs. The main objective was to determine optimal student behavior,
where optimality was considered as improving grades obtained in the quiz
system. Furthermore, we also investigated the relation between subjects and
complexity of exercises, where complexity is measured by Bloom’s taxonomy.

For both experiments, we defined a set of non-negative activity measures,
for example hours active in the system between 8AM and 4PM, hours spent
reading texts, etc. We then traversed the log and computed these measures
for fixed time periods, i.e. for every period, an activity vector consisting of
these measures was computed for every active student within that period.
The length of the period was set to 1 week. Processing the log in this way, we
obtained a large matrix X ∈ Rn×m+ , where each of the n rows corresponded
to the activity vector with m measures for an active student in some time
period. Thus, each student would have several rows; one for each period, in
which they were active.

A soft clustering of the activity vectors were constructed using non-
negative matrix factorization, i.e. we obtain student matrix U ∈ Rn×k+

and cluster matrix V ∈ Rk×m+ , such that X ' U ·V. The student matrix
U describes which clusters a student in a given period belongs to, while V
describes how the clusters relate to the measures. Thus, the rows of U for
a single student allowed us to track how the student changes clusters, while
V allowed us to analyze the clusters.

As mentioned, we performed two different experiments with two different
sets of activity measures [24]. The first experiment, trying to determine
optimal student behavior with respect to quiz grade obtained, is shortly
summarized here. By use of the ’elbow method’ [45], we determined k = 5
to be optimal. The transposed cluster matrix VT from the experiment is
shown in Figure 2.2.

The cluster matrix shows the correlation between each of the activity mea-
sures and the performance, given by the average score (bottom row). One
can make the following observations:

– Students working with science (C1) and societal (C3) subjects appear
to benefit more from reading texts.
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Figure 2.2: The cluster matrix obtained, transposed.

– In contrast, students working with languages (C2) benefits more from
taking quizzes, while less from reading texts (C4).

– Working outside of school hours (4PM to 8AM) (C5) does not seem to
have any effect on performance.

A full description and analysis of the five clusters are given in the paper [24].

As mentioned, we can track how individual students moves between clusters
by inspecting the corresponding rows of U. Single students cannot be high-
lighted due to privacy concerns, but Figure 2.3 shows instead the average
cluster membership for each period. From the figure, C1, C2, C3 and C4

appear correlated at the system-wide level. This is due to these clusters
being dependent on the general activity in the online system, i.e. drops in
membership occur during school vacations. C5 appears to be the exception,
as it is the “work from home” cluster.

Regarding the use of log data for predicting quiz grades, the experiment
presented here does show a correlation between student activity in the sys-
tem and performance, indicating that including activity measures will im-
prove the score prediction. However, while we did experiment with several
methods for prediction, which included the log data as input, we did not
managed to beat the methods based solely on the historical quiz data.
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Figure 2.3: Average cluster membership in each period.

2.2. Writing Style Analysis in High School

Writing style, and especially good writing style, is a hard concept to define.
Some studies link writing style to readability [33], i.e. “simple” writing style
may be first grade level, while “better” writing style may be at a ninth
grade level. In discussing writing style, we are not thinking of grammatical
errors, but rather vocabulary, sentence structure, etc. Such stylistic markers
provide a finger print for the author, allowing us to identify the author by
the writing style. Furthermore, tracking changes in the writing style can be
used as valuable feedback for teachers.

2.2.1 Detecting Ghostwriters

Our initial work with MaCom dealt with the problem of detecting ghostwrit-
ers. The hiring of ghostwriters for large written assignments has been an
increasing problem in Danish high schools. A large part of the grade point
average for a Danish high school student is made up of grades based on
written home work, especially the Studieretningsprojekt (SRP), an interdis-
ciplinary paper the students have to complete in their final year, the grade
of which counts double towards the grade point average.

The use of ghostwriters have seen an increase in the last few years, with
new websites offering ghostwriter services appearing [47]. Thus, together
with MaCom, we started investigating the problem. MaCom, through Lec-
tio, already provides tools for checking for plagiarism; however these tools
only detect plagiarism when passages of text are copied from other, known
sources. Since a ghostwriter will produce new, original and unseen text, the
plagiarism tools will not detect this kind of cheating.

Hence, in [42] we looked into detecting ghostwriters by analyzing the
writing style used in texts handed-in by students. The reverse problem is
known in the literature as authorship verification: Given author α with
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Method Type Accuracy
Distance (V) Author specific 0.629

SVM (V) Author specific 0.598
Distance (A) Semi-generalizing 0.726

SVM (A) Semi-generalizing 0.642
Random forest Generalizing 0.670

Table 2.3: Results obtained in the first master project [19]. (V) denotes
the verification version of the method, while (A) denotes the attribution
version.

known texts t ∈ Tα and unknown text x, determine whether α is the author
of x [41].

Furthermore, in the case of our work with MaCom, we had access to
not only the texts of α, but indeed an entire corpus of texts, T , i.e. texts
Tα = T \ Tα not written by α are also available. These can be utilized as
examples of different writing styles, when training a model. In our case, we
considered only Danish essays; MaCom supplied us with access to approxi-
mately 130.000 such essays from approximately 10.000 students.

The project was started as a masters project [19] (co-supervised by me), in
which the master student compared some traditional methods with some
state-of-the-art methods for authorship verification. In the project, au-
thor specific models (using only texts from Tα) were compared to (semi-
)generalizing models, which utilize some or all of the data from T . Specif-
ically, the student tested outlier methods based on distance computation
between feature vectors constructed from the texts, as well as SVM based
outlier detection. These methods were further modified by sampling “false
authors” from T and solving the related problem of authorship attribu-
tion [18, 41]: selecting the correct author from a set of authors, and an-
swering the verification query positively, if the correct author was identified.
This trick allowed for including more data from T , providing examples of
different writing styles. Finally, the methods were compared to a fully gen-
eralizing model, the generalizing forest [32]. The methods were tested on a
balanced dataset, and the results are shown in Table 2.3.

As can be seen from the table, the (semi-) generalizing methods perform
better. Motivated by these results, the project was continued in another
master thesis [43] (again, co-supervised by me), which investigated deep
learning based, generalizing approaches for authorship verification. Our final
approach, described in the paper Detecting Ghostwriters in High Schools [42]
(see Appendix A.4), is based on the ground work from this thesis.

Our approach for solving the authorship verification consists of two steps:
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Figure 2.4: The Siamese network used to compare writing style [25,42].

a text similarity computation using a Siamese neural network and a com-
bination phase, in which several similarity computations are combined. A
Siamese neural network consists of two equal encoder networks with shared
weights, which encode two inputs (in our case, two texts), before the en-
codings are compared in a final comparison part of the network (see also
Figure 2.4). This approach to computing text similarity (for instance in
terms of writing style) is well known in the literature [36,39]. However, our
study is the first in the domain of high school essays and using Danish texts,
and as such, a new network structure was needed, as shown in Figure 2.4.

The network solves the problem of writing style similarity between texts:
given two texts t1, t2 ∈ T , it computes s(t1, t2). Now we consider an author
α with texts Tα and an unknown text x. For each t ∈ Tα, we compute
the similarity s(x, t). A final similarity between x and the author α is then
computed as a weighted average of these similarities, taking into account
the hand-in time of each known text t relative to x. A decision is made by
comparing the computed, final similarity to a configurable threshold.

This approach is generalizing, as no model needs to be trained for each
specific author; rather the network and combination strategy are trained on
the entire training set, while a separate set of authors is set aside for evaluat-
ing the final model. Another advantage of the network, is that it learns the
important features in the convolutional layers of the encoding sub-network
during training, compared to many of the traditional approaches which re-
quire excessive feature selection [7, 41].

We compared our proposed model to author specific SVMs [18] and Bur-
rows’ delta method [7] on a balanced dataset (both methods use the trick
with “false authors” mentioned above). Our approach is best among the
three by a large margin, as shown in Table 2.41.

1 Note, that the dataset used in this experiment is larger than the one from the first
thesis.
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Method Accuracy FAR CR
Burrows’ delta method 0.677 0.357 0.806
Author specific SVMs 0.720 0.266 0.689

Our approach 0.875 0.141 0.896

Table 2.4: Results obtained for detecting ghostwriting in a balanced
dataset.
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Figure 2.5: Plot of the ROC (left) and the false accusations rate as a
function of catch rate (right).

When evaluating the final model, we also had a significant focus on the
number of false negatives (FN), i.e. the number of false accusations. We
define the false accusation rate (FAR) and the catch rate (CR) as follows:

FAR =
FN

FN + TN
CR =

TN

TN + FP

i.e. the fraction of false accusations and the fractions of ghostwriters caught,
where TN denotes true negatives and FP denotes false positives.

We are particularly interested in these metrics, since falsely accusing a
student of cheating is very problematic, as the consequences for said student
can be quite severe. From Table 2.4, we see that we get a false accusation
rate of 14.1% in a balanced dataset. However, at the cost of some accuracy,
this can be directly reduced by decreasing the threshold for accepting an
author (another advantage over some of the traditional methods, where the
number of false negatives may only be adjusted in a more indirect manner).

Figure 2.5 shows a plot of the ROC (left) and the false accusation rate
(right). As can be seen, we can achieve a low false accusation rate (< 0.05)
while still maintaining a catch rate above 0.6. Furthermore, as seen from
the ROC, we obtain a high AUC = 0.947. The problems regarding the false
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accusation rate are further discussed in Section 4.2, which also discusses the
possible ways of deploying the system.

Another take-away from our authorship verification experiments is the
optimal strategy found for combining the similarities [42]. As mentioned, the
optimal strategy computes a weighted average of s(t, x), t ∈ Tα. The optimal
weight assigned to each similarity was found to be exponential decreasing
in the time of hand-in between t and x, indicating that the writing style
of a Danish student changes during high school. While not surprising, we
investigated this further as a means to provide teacher insight.

2.2.2 Tracking Changes in Writing Style

In the paper Investigating Writing Style Development in High School [25]
(see Appendix A.5), we utilized the similarity function s(t1, t2,) computed by
the network described in the previous section, in order to track the writing
style changes for individual students during high school.
While the focus was mainly on the change in writing style occurring among
groups of students in Danish high school, evaluating the quality of the writing
style was a secondary objective.

Whereas the focus of the Danish primary school in the Danish subject is
for students to write correctly without grammatical errors, students in high
school can focus more on improving the writing style instead. Good writing
style is hard to define, but it has been linked to readability [33], for which
many empirically supported measures have been defined [30]. However, us-
ing the network of Figure 2.4 and training it in a similar fashion, allowed us
to track the changes in the writing style of a single student, by comparing
their later essays to their earlier essays.

The problem of tracking writing style changes has only seen limited in-
terest in the educational data mining community, although the benefits are
large. As done more directly in our previous work [42], one may detect fraud-
ulent behavior, but one may also be able to detect deviating development,
which could indicate suboptimal development of a student at risk.

In [25], we train the network in Figure 2.4 by supplying the text pair
examples as before. The network is then used to analyze a separate set of
students. For each student α in this set with texts T = {t1, t2, ...} (chrono-
logically ordered), a writing style development profile Pα is generated as a
sequence of pairs (τi, pi) where τi = τα (ti), τα : Tα → R+ giving the number
of months between the hand-in of ti ∈ Tα and t1 ∈ Tα, and pi = s(t1, ti).
Here, t1 is used to determine the initial writing style of student α; however,
this was found to be fragile, as t1 may be an outlier, and instead, we settled
on using the k = 2 first texts of α as the initial writing style and removing
the first k − 1 data points from Pα (meaning pi is an average of k simi-
larities and τi is the months between the first data point based on tk and
ti−k+1) [25]. Note, that Pα describes a curve.

We then clustered these profiles by applying a modified version of k-means
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Figure 2.6: Clusters C2 and C3 found in the analysis set [25]. The plots run
over a 30 month period, with the top plot showing the change in similarity,
the second and third plots showing writing style quality indicators, and the
fourth plot showing average text length.

clustering, which could handle the profiles having different lengths (since
not all students have handed-in during the same time frame). By use of
the “elbow” method [45], we found five clusters to be optimal. For each
of these five clusters, we computed average length and some indicators of
writing style quality: the simple measure of Gobbledygook (SMOG) grade,
and noun and verb phrases [30].

From our analysis, we found two clusters, where the cluster center indi-
cated near-optimal development, one cluster with fair development, and two
clusters with clearly sub-optimal development profiles. Figure 2.6 shows ex-
ample clusters C2 and C3 found in the analysis, which exhibit near-optimal
and sub-optimal development respectively. Below follows a brief discussion
of these cluster, while the full discussion is given in the paper.

For C2, the initial value of approximately 0.84 indicates an initial low
variance in writing style, but the following drop to about 0.4 is quite signifi-
cant, indicating that the writing style of students in this cluster change a lot



19

1 10 20 30
1

10

20

30

0.32 0.34 0.36 0.38

Figure 2.7: Average similarity between random students as a function of
the time each student has spent in high school.

during high school. While the drop is significant across the 30 months, the
rate is fairly constant, indicating stable learning during the period. Con-
sidering the other metrics, we see a large increase in SMOG grade, with
modest increases to noun and verb phrases, indicating a good development
of writing style among students in C2.

Comparing this to C3, we also see an initial drop in similarity, but here the
drop is followed by an increase after the first year, showing that the students
in this cluster actually revert to a writing style more similar to their original
work. This may indicate“forgetting” learned skills or possibly reverting from
a bad habit; in either case, the result is a smaller improvement in SMOG
grade compared to C2, indicating sub-optimal development.

Aside from inspecting the clusters, one may also inspect the development
profiles of individual students, especially students who do not fit well in any
cluster, in order to detect other, deviating development profiles.

We also investigated how the similarity develops between different students
in different stages of high school. This was done by sampling random pairs
of essays from different students, computing their similarity, and plotting
the averages in a heat map as a function of the time spent in high school by
the students. The result can be seen in Figure 2.7.

As can be seen from the figure, surprisingly, the writing style of students
become less similar, as they progress through high school, although the over-
all similarities are still fairly small. An explanation could be that the writing
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styles of students are aligned when leaving primary school. The observed
pattern, where students develop towards more unique writing styles as they
become more educated, is probably preferred compared to the alternative,
where education makes student more alike each other.

Whether this pattern also occurs in primary school and higher education
could be an interesting topic to investigate further.



Chapter 3. Improved Data Mining and Machine
Learning Techniques

This section describes some challenges identified during the work with the
companies, which we investigated further, in order to improve the general
methods. Specifically, this section will describe my work with budgeted max-
imum inner product search [27] and with generalization bounds for random
forests [26]. The section is similar to the content of these papers and may
contain passages from the papers without quotation.

3.1. Better Recommender Systems by Budgeted Maximum Inner
Product Search

Some of the most competitive algorithms used in collaborative filtering based
recommender systems are based on finding the maximum inner product of
a set of vectors. In maximum inner product search (MIPS), we are given a
set of vectors X = {x1,x2, ...,xn} ⊂ Rd and a query vector q ∈ Rd, and we
wish to determine the element xi ∈ X such that xi = argmaxxi∈X xi · q. The
related variant k-MIPS denotes the problem, in which we wish to determine
the k elements of X having the top-k inner products.

Aside from being an important algorithmic ingredient in a variety of ma-
chine learning tasks, such as multi-class prediction [12, 37] and neural net-
works [10], MIPS is the backbone of many collaborative filtering based rec-
ommender systems, in which a large inner product between user and item
vectors indicates that the item is relevant to the user and should be in the
recommendation list.

Several modern real world online recommender systems, e.g. Xbox or
Netflix, relies on MIPS, and often deal with very large-scale datasets and
limited amount of response time [20,21], showing the need for fast algorithms
for finding these large inner products. This was also the case in our work
with Clio, in which the best performing algorithms were based on matrix
multiplication and finding items of the highest similarity, motivating further
research into this topic.

In many use cases, Clio included, the recommendation is often performed
in the online manner since the user vector is updated online with ad-hoc
contextual information only available during the interaction [20, 22]; rele-
vant recommendations may need to be presented to the user, at the press
of a button or as they input their preferences. Furthermore, as user prefer-
ences or implicit history changes over time, recommender systems need to
frequently update the model to address this drift in user preferences.

Often, “non-perfect” results are acceptable, when retrieving the recom-

21
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mended items, if the retrieval is “fast”. However, the results should improve
in terms of accuracy/relevance, as more time is used for retrieval. In many
use cases, it is advantageous to be able to explicitly control this time/quality
trade-off. Motivated by this need, we have investigated the budgeted MIPS
problem, a natural extension of MIPS with a computational limit for the
search efficiency and quality trade-off, while still keeping the preprocessing
time near-linear (in order to still allow for frequent updates of the model as
user preferences changes).

Assuming d = O(log n), we require an algorithm for budgeted MIPS to
build a data structure in Õ(n) time in the preprocessing (query independent)
phase. In the query (dependent) phase, a budget B of computational opera-
tions is given, and the algorithm must answer the MIPS query in O(B) [27].

Budgeted MIPS has been studied recently in [50], using a budget of
B = ηn inner product computations, where η is a small constant. Fur-
thermore, the budgeted versions of several other search problems have also
been studied [34].

In the paper Revisiting Wedge Sampling for Budgeted Maximum Inner
Product Search [27] (see Appendix A.7), we investigated different sampling
approaches for budgeted MIPS. We proposed a novel deterministic tech-
nique, called GreedySam for improving sampling schemes for budgeted MIPS.
These techniques were applied to wedge [9] and diamond sampling [2]. Fur-
thermore, we proposed a shifting technique used to modify the schemes to
also handle negative inputs. A novel analysis was provided, and our ap-
proach was compared to other sampling approaches: basic sampling, and
traditional wedge and diamond sampling [2,9], as well as to the state-of-the-
art methods for solving exact MIPS, FEXIPRO [23].

In general, sampling approaches for MIPS fits well for the budgeted ver-
sion, as the number of samples allowed (and thus the quality of the result)
will be tied to the budget, allowing for explicit control of the quality through
the budget.

Given point set X, let X ∈ Rn×d denote the matrix with elements from
X as rows, and let yj denote column j. On query q the overall idea behind
wedge sampling is to sample indexes of points in X, where index i is sampled
with probability xi · q/z, where z =

∑n
i=1 xi · q. In practice, the algorithm

first samples a column yj from X with probability qjcj/z and then samples
a row i with probability xij/cj . As can be seen:

P [Sampling i] =

d∑

j=1

P [Sampling i|Sampling j] · P [Sampling j]

=

d∑

j=1

xij
cj
· qjcj
z

=

∑d
j=1 xijqj

z
=

xi · q
z

.

Note that, in the query phase, z can be computed in O(d) time by computing
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z =
∑n

i=1 xi · q =
∑d

j=1 cjqj , where cj =
∑n

i=1 xij (i.e. the sum of yj) for

all j ∈ [d] can be computed in the preprocessing phase.
In this way, s rows are sampled. A histogram is used to keep track of

the number of times any row i has been sampled. From this histogram, the
top-k candidates can be extracted in O(n log k). Results might be improved
by performing a post-processing step, where the exact value of the inner
products between q and the top m > k candidates extracted from the his-
togram are computed in time O(dm+ n logm).

Diamond sampling was originally proposed for approximating matrix prod-
ucts [2], but works for MIPS as well. While the description of the algorithm
is different from wedge sampling, we show in the paper [27] how it works in
a similar way, but with an extra step. Basically, diamond sampling applies
the techniques of wedge sampling to sample a row xi, before basic sampling
(sampling with probability qj′/q) is applied in order to sample xij′ from xi.
The final sample has expected value proportional to (xi · q)2, and is used
to rank the top-k candidates. A detailed description is given in the the pa-
per [27].

The implementation specific details of wedge and diamond sampling are
given in the paper [27]. We proposed three techniques in order to improve
upon the schemes:

1. A simple shifting technique, allowing for transforming any MIPS prob-
lem instance with negative values into an instance with values in R+,
while preserving the order of the inner products. Wedge and diamond
sampling employ methods for handling negative values, but their anal-
yses break down in this case.

2. A new data structure for handling the sample counting in wedge sam-
pling. In addition to the n-sized histogram, we store an s-sized array
of hashmaps, which tracks indexes in the histogram according to their
count. Traversing this tracking array, allows for candidate extracting
in O(s), meaning that the running time of the query dependent phase
is independent of n.

3. A deterministic sampling scheme, called GreedySam. The scheme re-
places the row sampling in the wedge sampling scheme, i.e. the sam-
pling of the index i from the distribution given by column j. Wedge
sampling pre-samples these rows in the preprocessing phase, and our
deterministic scheme replaces this randomized sampling [9, 27].
As diamond sampling also relies on wedge sampling [27], GreedySam
is also applicable for this algorithm [2].

In our experiment, we compared and evaluated the sampling schemes and
the proposed modifications:

– Wedge and Diamond: Standard wedge and diamond sampling.

– dWedge and dDiamond: Wedge and diamond sampling using GreedySam.

– dsDiamond: Diamond sampling using GreedySam and shifting.
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Figure 3.1: Comparison of accuracy with k = 10 and varying B (left) and
speedup with B = n and varying k (right) between the wedge and diamond
variants on Movielens1M.

– dfsWedge: Wedge sampling using GreedySam, shifting, and the im-
proved sample counting.

– Greedy: The greedy approach of Yu et al. [50].

For accuracy comparisons, the reported accuracy is the average of the top-
k accuracy for each query in the dataset (also denoted Precision@k). For
speed comparisons, the speedup is measured compared to a bruteforce imple-
mentation. The algorithms were evaluated on several large-scale benchmark
datasets, using 100 query points for each set. A selection of the results is
presented below.

Figure 3.1 shows a comparison of the accuracy of the wedge and diamond
variants on the Movielens1M dataset (n = 3, 952, d = 150), with fixed
k = 10 and varying B (left) and fixed budget B = n and varying k (right).

We note, how the modified schemes clearly outperform the non-modified,
with the modified versions of wedge sampling obtaining the best accuracy
in both cases. Interestingly, while Diamond performs better than Wedge, the
order is reversed for the modified versions.

Between dWedge and dfsWedge, dWedge seems to have the edge, especially
when B is large, although dfsWedge still has the advantage of working in
cases where the input is negative.

Figure 3.2 shows a comparison of the accuracy (left) and speedup (right)
obtained by the modified wedge sampling schemes and the greedy approach
[50] on the Yahoo dataset (n = 624, 961, d = 50), with k = 5 and varying
budget B.

On this large-scale dataset, Greedy provides the highest accuracy for small
B, and consistently beats dWedge in both running time and accuracy. How-
ever, dfsWedge performs better in terms of running time, and for B > n/2,
dfsWedge also outperforms Greedy in terms of accuracy, with the gap for
B = 3n being around 10%.
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Figure 3.2: Comparison of accuracy (left) and speedup (right) between
dfsWedge, dWedge and Greedy on Yahoo with varying B and k = 5.

Finally, we also compared dfsWedge to FEXIPRO, an exact solution for
MIPS [23]. Compared on Netflix (n = 17, 770, d = 200), and Movie-
lens10M (n = 65, 133, d = 150) with k = 5 and budgets B = 10n and
B = n/4 respectively, dfsWedge maintained an accuracy above 80%, while
achieving a speedup factor over FEXIPRO of 9 for Netflix and 1.17 for
Movielens10M. Furthermore, the speedup over the bruteforce solution for
the latter dataset was an incredible 118.

As can be seen from the above experiments, our modified version of wedge
sampling, dfsWedge, performs better on several real world large-scale rec-
ommender system datasets. The budget allows for explicit control of the
quality/running time trade-off for every query, making our approach rele-
vant in many real life cases, where a fast response is important.

3.2. (Free) Theoretical Guarantees for Random Forests

As discussed in Section 2.2, knowing when to trust a machine learning algo-
rithm is important in many cases. In most cases, an algorithm is trained on
one dataset (a training set T ) and evaluated on an external second hold-out
set (a test set Text, from the same distribution as T ), which is kept separate
from T in order to get an unbiased estimate of the quality of the algorithm.

However, aside from being unbiased, this estimate comes with no other
guarantees. One may obtain bounds by analyzing the complexity of a given
model using the VC dimension, through analysis of the training procedure,
or by probabilistic analysis of the performance on a validation set Tval.

In the paper X-PAC (see Appendix A.6), we investigated theoretical guar-
antees for the performance of majority vote classifiers, a special kind of
aggregate classifier, where the final classification is based on a (possibly
weighted) majority vote among a set (an ensemble) of weaker classifiers (vot-
ers). Specifically, we considered the standard random forest classifier [5], a
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majority vote classifier where individual voters are decision trees 2.
The random forest is one of the most successful machine learning al-

gorithms [5], being easy to apply and to parallelize, and it often achieves
high accuracies in practice [16]. While Breiman provided some analysis and
theoretical bounds in his initial paper [5], the algorithm is still not well
understood theoretically [13].Several simpler and easier analyzable variants
have been proposed, such as purely random forests [6] and Bernoulli random
forests [49], although they are less successful empirically, than the standard
random forest [49].

For the study, we limited ourselves to binary classification problems. We con-
sidered different bounds based on PAC-Bayesian analysis, where PAC stands
for the Probably Approximately Correct frequentist learning model [48]. Usu-
ally, applying such bounds require a hold-out validation dataset Tval. How-
ever, random forests are usually trained using bagging : given training set T ,
for each tree, a random subset Ti ⊂ T is sampled with replacement, such
that |Ti| = |T | [4,5], thus generating validation sets T̄i = T \Ti for individual
trees as part of the training procedure. These sets can be utilized by some
of the bounds, and thus we obtain bounds “for free” in the sense that no
hold-out data needs to be reserved.

The bounds considered in our study is presented below. We first intro-
duce some notation [26]. Let S = {(X1, Y1), . . . , (Xn, Yn)} be an indepen-
dent identically distributed sample from X × {−1, 1}, drawn according to
an unknown distribution D. A hypothesis (for instance a decision tree) is
a function h : X → {−1, 1}, and H denotes a space of hypotheses. The
bounded loss function ` : Y2 → [0, 1] is used to evaluate h ∈ H. Further-
more, the expected loss of h is denoted by L(h) = E(X,Y )∼D [`(h(X), Y )]

while the empirical loss on S is given by L̂(h, S) = 1
n

∑n
i=1 `(h(Xi), Yi).

Given a set of hypotheses H, the ρ-weighted majority vote classifier hM
is an aggregate classifier, which predicts

hM (X) = argmaxY ∈Y
∑

h∈H∧h(X)=Y

ρ(h).

hM has expected loss LMV(hM ) = P(X,Y )∼D [Mρ(X,Y ) ≤ 0] and the empir-

ical loss L̂MV(hM , S) = P(X,Y )∼S [Mρ(X,Y ) ≤ 0].
Closely related to hM is the Gibbs classifier. A Gibbs classifier hG is a

stochastic classifier. On input X, hG samples h ∈ H according to ρ, and
h(X) is returned. hG has expected loss LGibbs(hG) = Eh∼ρ [L(h)] and em-

pirical loss L̂Gibbs(hG, S) = Eh∼ρ
[
L̂(h, S)

]
.

We investigate three different kinds of bounds:

2 While these bounds are not directly applicable to our final model in the ghostwriter
study, some of our early experiments used random forests, although results were subopti-
mal.
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– The C-bounds (specifically the C1-bound and the C2-bound) [17], which
can bound LMV(hM ) directly.

– The PAC-Bayesian kl-bound (PBkl-bound) [38], for bounding LGibbs(hG).
It can be seen, that the loss LMV(hM ) of a majority vote classifier hM is
at most twice the risk LGibbs(hG) of the corresponding Gibbs classifier
hG [17]:

LMV(hM ) ≤ 2LGibbs(hG),

thus allowing us to bound LMV(hM ) using the PBkl-bound and paying
a factor of two.

– The single hypothesis bound (SH-bound), for bounding the loss of a
single hypothesis, L(h). The SH-bound can be used to bound LMV(hM )
directly by considering hM a single hypothesis.

The discussion here will be limited to a high level discussion of the bounds;
the full definitions can be found in the paper [26]. However, we note that
all bounds relies on an evaluation of the classifier on some hold-out data S.

In the case of the majority vote classifier, the SH-bound considers hM
a single hypothesis, and thus uses only L̂MV(hM , S) and no other informa-
tion. Being derived for Gibbs classifiers, the PBkl-bound utilizes information
about ρ and L̂Gibbs(hG, S). And finally, the C-bounds also include informa-
tion about the correlation between classifiers. Thus, the C1-bound uses ρ,
L̂Gibbs(hG, S) and the correlation between classifiers, in the form of the em-

pirical disagreement d̂Sρ , computed as the ρ-weighted average disagreement
between any two voters [26].

Theoretically, this should give the C-bounds an edge. However, when
individual voters are strong, the bound deteriorates [17, 26], as it becomes
harder to estimate the correlation.

As mentioned, we can apply the PBkl-bound and the C-bounds without
a hold-out validation set, when the majority vote classifier is trained using
bagging. This can be done, since we may compute the empirical Gibbs loss
using only the hold-out sets T̄i:

L̂Gibbs
OOB (hG, T ) = Eρ


 1

|T̄i|
∑

(X,Y )∈T̄i

` (hi(X), Y )


 .

The empirical disagreement can be computed in a similar fashion, but re-
quires using the intersection of the out-of-bag sets T̄i ∩ T̄j between any two
voters hi, hj . As these sets are generally much smaller, the C-bounds dete-
riorates if T (and hence T̄i, T̄i) is small.

Note, that the SH-bound cannot be applied without a separate validation
set, as L̂MV(hM , S) cannot be computed from the out-of-bag sets.

We evaluated the bounds on a set of benchmark datasets, using the standard
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Figure 3.3: The bounds computed in the bagging setting (left) and the
validation set setting (right) for a selection of the datasets tested in [26] (see
Table 1 and Table 2 in Appendix A.6), as well as the error on the external
test set.

random forest trained with bagging, and ρ being the uniform distribution.
We considered both the setting without and with a hold-out dataset:

1. Bagging setting: The random forest is trained on all the data, and
bounds (with exception of the SH-bound) are based solely on the out-
of-bag sets, T̄i.

2. Validation set setting: Half of the data is used for training, while
the other half, Tval, is used for the bounds.

In each setting, an external dataset Text was set aside for evaluating the
strength of the final classifier.

Figure 3.3 presents the bounds evaluated on a subset of the datasets con-
sidered in [26] for both settings (numerical values given in Table 2 in Ap-

pendix A.6). In Figure 3.3, the test score L̂MV(hM , Text) provides an es-
timate of the accuracy of the classifier. For the bagging setting (left), the
PBkl-bound always gave the tightest bounds3, beating the C-bounds, even
with the factor of two. Thus we clearly see the C-bounds degrading, when

3 This was true for all datasets tested, although some bounds were trivial, i.e. greater
than 0.5
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Figure 3.4: Development of bounds as individual voters become weaker.
The plots show results on the Letter:AB and mushroom datasets in the
validation set setting, using a random features for splits.

individual voters are strong [17] and when only limited amount of data is
available for estimating correlations.

In the setting with a separate validation set (right), the results between
the PBkl-bound and the C-bounds remain the same (again caused by the
strong individual voters), although they are all looser than the SH-bound.
This indicates that the PBkl-bound does indeed suffer from not taking cor-
relations into account, even if it outperforms the C-bounds.

Comparing the bounds obtained between the two settings, we see that the
bounds are similar (with the exception of the SH-bound). This is caused by
the balance between using data for training and for evaluating bounds; in
the second setting, more data is available for the bounds, resulting in tighter
bounds at the cost of slightly weaker classifiers, as seen by the slightly worse
L̂MV(hM , Ttest) (this is especially clear for the USvotes dataset, which is very
small, with n = 232).

The SH-bound provides the best guarantees for all datasets across both
experiments, indicating that the other bounds are still too loose. However,
the bound is only applicable when having a separate validation set, whereas
the bounds in the bagging setting come“for free”, leaving more data available
for selecting the hypothesis.

In order to further investigate the impact of the strength of the individual
voters, we performed experiments with varying voter strength. This was
done by limiting the depth of the trees in the random forest (from depth
1 to unlimited depth), as well as choosing different splitting strategies, i.e.
choosing a random feature instead of the best feature.
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This experiment was performed in both settings. Figure 3.4 shows the
result for the validation set setting, when using a random feature in splits.
The figure plots the resulting risk on the test set, the empirical disagreement,
and the bounds as a function of the average voter strength. Only results for
the mushroom and Letter:AB datasets in the validation set setting are
shown, as these are representative; the full experiment can be found in the
paper.

It can be seen, that between the PBkl-bound and the C-bounds, the C2-
bound becomes the better alternative, when the voters are weak. However,
the SH-bound is still clearly superior in this case. For the bagging setting,
the PBkl-bound remained tighter than the C-bounds due to the smaller
amount of data available, even when the voters are weak [26].

Finally, we also investigated and compared the λ-bound [44] and the C3-
bound [17] for model selection. These bounds allows for optimizing the
posterior ρ. In our experiment, we found that the λ-bound overfitted ρ to
the strongest voters, while the C3-bound ended up with the uniform poste-
rior. A detailed description will not be given here, but can be found in the
paper [26].

In conclusion, we have seen how non-trivial bounds can often be obtained
“for free” for classifiers trained using bagging. The PBkl-bound [38] is often
the better alternative in this case, unless voters are weak and a lot of data
is available.

When using a validation set, we typically obtained a worse classifier, as
less data was available for training. However, much better bounds can be
obtained by applying the SH-bound to the final classifier, indicating that
both the PBkl-bound and the C-bounds are still too loose.



Chapter 4. Company Collaboration

As mentioned, the focus of DABAI is two-fold: providing solutions to com-
panies and doing research. While the two previous sections discussed the
data mining and research aspect of my work, this section will focus on the
collaboration with the companies, including the implementation and inte-
gration of our solutions, as this has taken up a lot of time during my PhD,
especially with Clio. Furthermore, the section will discuss the reception and
the publicity surrounding these projects, as this has been a big part of the
work with the companies as well, especially in the MaCom project, which
saw a huge amount of interest in the media afterwards.

The collaboration part of DABAI has been structured around milestones
every half year. Thus, a project with a company is expected to develop
according to the following milestones:

M0 (Month 0) Project is initiated.

M1 (Month 6) Initial analysis is completed and problems are identified.

M2 (Month 12) Proof-Of-Concept is completed.

M3 (Month 18) Working prototype is completed.

M4 (Month 24) An industrial prototype is deployed.

As I have mainly been involved in the collaboration with Clio and MaCom,
the two sections below will discuss the collaboration with these companies
respectively. For either company, the collaboration follows the above struc-
ture, although the MaCom case has only reached M3. For both companies,
the final prototypes are quite close to the methods described in Chapter 2;
thus the discussion in this section will focus on other aspects, such as re-
quirements, practical challenges and ethical considerations.

Common for all company projects in DABAI is the initial analytic phase,
in which interesting problems are identified together with the companies.
During late 2016 and early 2017, we conducted this analysis with the educa-
tional companies of DABAI: EduLab [15], Clio [8] and MaCom [29], which
resulted in a set of formalized problems.

These problems were presented in the paper DABAI: A data driven project
for e-Learning in Denmark4, published at ECEL [1] (see Appendix A.2).
The following discussion is similar to the content of the paper and may con-
tain passages from the paper without quotation.

4 In the paper, Clio is referred to by their former name: Clio Online
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In the paper, each identified problem is described, together with the mo-
tivation and potential for the company. Furthermore, we identified three
categories, which cover the types of problems encountered with the compa-
nies. Thus, each problem is categorized according to the following categories:

– Student Profiling

– Content Profiling

– Content Recommendation

The problems identified in the paper include student performance prediction
(Clio), detecting ghostwriters (MaCom), optimizing e-learning personaliza-
tion (EduLab), etc. The following sections will further elaborate on the
problems, including motivation and potential, as identified in the paper.

4.1. Clio

This section describes the collaboration with Clio, with some focus on the
time consuming task of integrating our solutions as part of the M4 milestone.

4.1.1 Potential and Requirements

Working with Clio (former Clio Online), we identified two main problems, as
described in [1]: predicting student performance and finding similar quizzes.

In our discussion, we quickly determined predicting student perfor-
mance to be a central problem for Clio. The problem is also important to
the educational data mining community in general, as good estimations of
scores on unseen quizzes allow teachers to select the correct quiz and provide
remedial support for weak students, or they may highlight problems with
learning materials. Depending on the point of view, the problem may fit in
all of the categories from [1], although most methods for prediction (at least
the ones, we investigated) relies on student profiling and content profiling.
The student performance prediction ended up being our main project with
Clio. In practice, as quizzes in the Clio system is graded on the Danish grade
scale, the system should predict the correct grade, out of seven possible. The
initial hope from Clio was for the system to achieve as high as 80% accuracy.

Furthermore, we determined detecting the similarity among quizzes to
be of interest. Here, similarity is considered in terms of answer history, i.e.
two quizzes are considered similar, if similar students get similar grades. De-
termining this similarity is a content profiling problem. With thousands of
quizzes in the Clio system, a tool for determining similar quizzes has great
potential, such as helping content creators create unique quizzes, or allow
teachers to select suitable training quizzes for their students.

While we never directly developed a tool for determining quiz similarity,
some of the tested prediction algorithms were based on quiz similarity, by
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using similar, answered quizzes in order to give a prediction for a student on
an unseen quiz (as also mentioned in Section 2.1). These methods store the
quiz similarity as part of the model, allowing easy access to similar quizzes.

4.1.2 Data Cleaning and Prototype Development

Having identified the above problems, we started working on prototypes for
solving the performance prediction problem.

Clio supplied us with raw (anonymized) data from their data base. This
presented us with several initial challenges:

– Getting an initial overview of the database.

– The relevant data had to be extracted. For instance, quizzes were
graded by an internal points system specific to each quiz, and required
normalization.

– Sorting out invalid data, for instance quizzes with invalid or inconsistent
quiz ids or grading scales.

– Reducing the “noise” in the data.

Especially the last point was time consuming, as the initial data set had
a lot of noise. Most notably, around 60% of answers received a score of 0
(i.e. a grade of -03). We suspected, and confirmed through dialog with the
technical lead at Clio, that this was due to students aborting quizzes. As
we were only interested in students trying to answer the entire quiz, we im-
plemented several cleaning procedures in order to extract the relevant data
(for instance including only quizzes with a minimum amount of time spent).
This cleaning alleviated the problem to some degree, although we still dis-
covered anomalies from time to time.

With the data cleaned, we performed the experiments as described in Sec-
tion 2.1 and [28]. As mentioned, the initial prototype was tested on a den-
sified dataset, including only the most active students and quizzes. This
reduction in data size was used in order to ease the development of the
initial prototype.

During our development of the initial prototype using non-negative ma-
trix factorization, Clio started developing a user interface. The mock-up,
is shown in Figure 4.1, and displays the desired features. On assigning a
quiz, the system initially warns the teacher, that some students are at risk
(left). Pressing “Differentiate” shows the teacher exactly which students are
at risk, and allows the teacher to assign more time.

As mentioned, Clio requested a solution able to predict the correct grade
for 80% of students. Our initial prototype did not reach this goal, obtain-
ing only an RMSE of around 0.1744, corresponding to less than 50% grades
correctly predicted on the densified data set.

The results were discussed with Clio, and the goals were redefined as fol-
lows: in stead of predicting a single grade, the system could be allowed to
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Figure 4.1: Proof-of-Concept user interface designed by Clio. Left: screen
for assigning a quiz to a class. Right: overview of class with students
expected to obtain a low score highlighted.

predict two grades. Furthermore, we started to investigate how to include
other data, such as log data, in the prediction [24], in order to give better
predictions for students with limited history in the quiz system.

As can be seen from Section 2.1, the results worsened when including the
full data set. It appears that the historical data by itself is not enough,
and unfortunately we did not managed to incorporate the log data in the
prediction successfully.

Even so, while working on improving the prototype, we also started the
work to integrate the prediction system in the Clio system.

4.1.3 Full Integration

As we started the full integration with Clio, we faced a new set of challenges:

– Fetching data from the live database: Clio provided access to the
live database through a set of APIs. These APIs allowed for accessing
the relevant (anonymized) data from their database, i.e. quiz answers,
log entries, and quiz/site meta data, although rather slow, as the data
was stored at different instances.

– Accessible to the Clio application: As Clio is based on AWS,
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Figure 4.2: Overview of the integration of the prediction system with
the Clio software. Cylinders indicate databases, while squares indicates
applications, with the red color indicating existing Clio instances. Arrows
indicate reads/writes from applications, with the dashed arrows indicating
communication through the AWS lambda protocol.

they requested that our application should run on the AWS Lambda
platform5, and be accessible through the AWS Lambda protocol.

– Frequent model updates: The model should be updated regularly,
at least once a day. While the training procedures were efficient enough,
that training the models once every night was feasible, fetching and
preprocessing the data presented a bottleneck; hence we settled on a
model, in which new data is preprocessed every night, and stored in a
local database on the AWS instance, before the model is updated.

Thus, we ended with the architecture shown in Figure 4.2: our solution
is split in two applications: the preprocessing application and the pre-
diction engine, both of which can be invoked through the AWS Lambda
protocol.

The preprocessing application takes care of preprocessing the raw Clio
data and storing it in the local database (Prep. data), while the prediction
engine updates the model, which is stored in Model storage. Furthermore,
the prediction engine answers prediction requests (which also requires reads
from the Clio data in order to properly convert the predicted score to the
corresponding grade.

The final system was handed over to Clio, with the models described in

5 https://docs.aws.amazon.com/lambda/latest/dg/welcome.html, accessed August
2019.

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
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Section 2.1. However, Clio is yet to deploy our solution.

4.2. MaCom

This section describes the collaboration with MaCom. While our solution
with MaCom only made it to the prototype state (M3), this section will
also discuss the huge media interest in our prototype.

4.2.1 Motivation and Potential

In our initial meetings with MaCom, we discussed the problem of detecting
ghostwriters (or authorship verification), as described in [1].

The problem is motivated by the increasing use of ghostwriters in Danish
high schools (especially for the Studieretningsprojekt, SRP) [47]. As also
mentioned in Section 2.2, MaCom already has a system for detecting copy-
paste plagiarism, but the authorship verification problem is harder, as the
texts in question are original work. Thus, methods for solving the problem
must learn to recognize the writing style of a student, and the problem is
therefore clearly a case of student profiling.

Hiring ghostwriters in Denmark became easier with the launch of the
first Danish paper mill, www.fixminopgave.dk [47]. While the government
has since banned the site, the sale of SRPs and essays happened before
on other web forums, and continues to happen; hence, MaCom is eager to
have a solution incorporated in their system. Furthermore, the problem
is widespread outside of Denmark; in the USA, paper mills are abundant.
Websites need only include a disclaimer somewhere on their site, telling
students to only use the papers as “study support”, in order to be legal [46].

As any solution for detecting ghostwriters basically makes accusations to-
wards students, MaCom had some requirements for the software. The final
solution should not make more than 5% false accusations on a test set, while
still having a significant catch rate (although a catch rate high enough to
have a deterring effect would be enough).

As mentioned in Section 2.2, we also investigated how to track changes
in writing style as a means to provide feedback to the teacher. We did not
consider this problem in our paper for ECEL [1]; rather the idea surfaced as
a “positive” (in the sense of providing insight instead of making accusations)
use of the writing style analysis tools developed for the ghostwriter detection
task.

4.2.2 Data Access and Prototype Development

Working with MaCom, we took a different approach than with Clio. Most
notably, the ground work was done in two master theses during 2017-2018
[19, 43]. As mentioned, the first thesis considered traditional methods from
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authorship verification. However, the methods applied were not easily con-
figurable with respect to limiting the number of false accusations. Further-
more, the accuracy obtained was not satisfactory. Hence, the second thesis
consider neural network based methods, which saw a lot more success, and
allowed for easy configuration of sensibility.

During the master’s projects, we would meet with the students on a weekly
basis, discussing ideas and implementation. The students would then go to
MaCom and test the ideas. Compared to Clio, MaCom had more restric-
tions regarding data access; aside from being anonymized, the raw text data
could only be accessed by a computer at the MaCom office. Thus, working
by proxy through the master students was beneficial, as we did not have to
go ourselves for the initial analysis and prototyping.

After the second master’s project had been concluded, we implemented the
final framework for writing style analysis and authorship verification, based
on ideas tested in the thesis. The results obtained using this prototype were
published in the paper Detecting Ghostwriters in High Schools [42], and
summarized in Section 2.2. The method used allowed for easy configuration
of the similarity threshold required, meaning that the number of false ac-
cusations could easily be adjusted. As can be seen from Figure 2.5 (right),
the software still performs well on a balanced data set, when the number of
false accusations is below 5%.

While MaCom is yet to deploy our solution, we have discussed, how to
deploy it. Two main ways of deploying the software has been discussed: a)
as a screening procedure for all essays, or b) as a tool to be used, when there
is already a suspicion of cheating.

While the screening option will be similar in function to the regular pla-
giarism checker, we will encounter the “problem” of only having very few
ghostwriters. The live dataset will (most likely) contain much fewer than
50% ghostwriters, which will require a re-tuning of the threshold and lead to
a lower catch rate. As such, the second option appears to be the better alter-
native; often a teacher will have a suspicion beforehand, for instance based
on the quality/grade of the essay, and considering only suspected students,
the input data will likely be more balanced.

However, even if used as a supporting mechanism, the final decision rests
with the teacher or school administration. A first step may be to require the
suspected student to do an oral presentation, rather than making an out-
right accusation. This is indeed the way suspicions of cheating are currently
handled in many Danish high schools.

After the publication of the ghostwriter detection results, we started look-
ing into the other problem: tracking changes in writing style during high
school [25]. The prototype was extended to included the functionality for
performing the analysis described in Section 2.2 and handed over to MaCom.
Thus this final framework includes three modules:
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– A writing style similarity module, used for computing the similarity of
the writing style in any two texts.

– An authorship verification module, allowing the verification of author-
ship of a given text when given the corpus of texts for the claimed
author [42].

– A writing style analysis module, used for detecting development pat-
terns among groups of students [25].

While MaCom is yet to deploy the software for either task, the implemen-
tation is open source and available at GitHub6, which also contains a more
thorough explanation of the software.

4.2.3 Media Interest

After the conclusion of the initial master project dealing with ghostwriter
detection [19], the University of Copenhagen issued a press release about
the results. The story was picked up by a few publications, for instance the
Danish newspaper Berlingske7.

However, the story about the ghostwriter detection software did not really
take off until after the conclusion of the second thesis [43] and the publica-
tion of the paper [42]. The university issued a new press release, which were
picked up by more than 50 Danish publications and more than 100 interna-
tional publications from USA, India, Russia, Argentina, Spain, Netherlands,
Canada and more.

In general, most publications were positive about the project. The story
was featured on the two major news sites in Denmark, Danmarks Radio
(DR)8 and TV29, as well as in national radio, and shared on Facebook and
Twitter. Among the largest international publications to pick up the story
were Sputnik10 and Scientific American11, the latter of which interviewed
me for a podcast about the project.

The project did also receive some negative publicity, such as comments on
Facebook/Twitter, and an article from Version212, questioning the legality
of using the high school students’ essays.

6 Writing style analysis framework: https://github.com/StephanLorenzen/
AuthorshipVerification
7 https://www.berlingske.dk/samfund/ny-metode-kan-opdage-eksamenssnyd
8 https://www.dr.dk/nyheder/viden/tech/kunstig-intelligens-afslorer-om-du-selv-har-
skrevet-eksamensopgaven
9 https://nyheder.tv2.dk/samfund/2019-05-29-nyt-vaerktoj-kan-afslore-om-opgaven-er-
kobt-pa-nettet
10 https://sputniknews.com/military/201906111075784789-machine-learning-vs-fake-
learning-ai-can-now-predict-when-youll-cheat/
11 https://www.scientificamerican.com/podcast/episode/high-school-cheaters-nabbed-
by-neural-network/
12 https://www.version2.dk/artikel/lectio-stiller-130000-opgaver-raadighed-forskere-
uden-at-informere-gymnasier-eller-elever

https://github.com/StephanLorenzen/AuthorshipVerification
https://github.com/StephanLorenzen/AuthorshipVerification
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Publication Country Note
UCPH Denmark Press release
DR Denmark National news
TV2 Denmark National news
Jyllands-Posten Denmark Newspaper
Politiken Denmark Newspaper
Version2 Denmark Web media
Scientific American USA Web media
Science Daily USA Web media
Sputnik Russia News agency
wallstreet:online Germany Financial portal
India Today India News magazine
Scientific India India Web media
La Nacion Argentine Newspaper
La Vanguardia Spain Newspaper

Table 4.1: Selection of publications with mentions of the ghostwriter soft-
ware.

Table 4.1 presents a list of a few of the major publications from different
countries, which published the story.



Chapter 5. Conluding Remarks

In this thesis, I have presented my work in educational data mining, some
improved data mining techniques and theoretical bounds for majority vote
classifiers, as well as an overview of the collaboration with the Danish com-
panies Clio and MaCom. The structure of my PhD has followed that of the
DABAI project, in which research has been motivated by problems encoun-
tered during the collaboration with the companies.

In collaboration with the companies Clio and MaCom, we have demon-
strated, how using data from digital educational tools can provide valuable
insight to teachers, as well as assist school administration in detecting fraud.
With Clio, we evaluated methods based on matrix factorization for predict-
ing quiz scores in primary school. While results were only slightly better
than the baseline, our analysis of the resulting model provided insight about
the students and the quizzes; for instance, the model might provide infor-
mation about the skill level of a student or the difficulty of a quiz.

We further developed a method for analyzing student behavior, using the
log data available from Clio. A set of activity measures were defined and
correlated with performance (measured by scores obtained in quizzes), in or-
der to detect optimal and suboptimal behavioral patterns. Furthermore, the
method allowed for tracking changes in behavioral patterns among students,
providing valuable insight for teachers. Finally, the method also provided
valuable insight about the complexity of learning materials for the different
classes covered by Clio.

With MaCom, we investigated methods for detecting the use of ghost-
writers (known as authorship verification in the literature) in high school, a
problem seeing a recent increase in Denmark. The proposed method relied
on convolutional Siamese neural networks in order to compare writing styles
of Danish essays, and obtained an accuracy of 0.875, catching almost 90% of
cheaters, while making only 14.1% false accusations, although the latter can
be improved at the cost of accuracy. The proposed method beat all of the
traditional methods for authorship verification, while being more flexible.

As a spin-off from the ghostwriter detection project, we developed meth-
ods for tracking changes in writing style of high school students. We com-
puted writing style development profiles of students, which were clustered
and compared to several writing style quality measures. An analysis of the
clusters showed both optimal and suboptimal development patterns; an-
other valuable insight for high school teachers. Furthermore, a comparison
of writing style between different students indicated, that the writing style
becomes more individual, as students progress through high school.
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Based on our work with Clio, we investigated sampling methods for bud-
geted maximum inner product search, an important algorithmic ingredient in
many data mining methods. We evaluated the state-of-the-art methods em-
pirically and theoretically, and proposed a series of algorithmic engineering
techniques for improving wedge sampling. Our novel deterministic wedge-
based algorithm runs significantly faster than the state-of-the-art methods
on budgeted MIPS. The algorithm also compares well to exact MIPS, main-
taining an accuracy of at least 80% on standard real-word recommender
system data sets, while achieving a significant speedup.

Our work with MaCom highlighted the need for strong theoretical guar-
antees for machine learning algorithms. We investigated PAC-Bayesian gen-
eralization bounds for the standard random forest classifier. These bounds
can be applied with no modification of the algorithm necessary. Further-
more, no additional data is required because the out-of-bag samples can be
exploited, giving bounds “for free”.

Our experiments showed how bounds inherited from the corresponding
Gibbs classifiers clearly outperformed bounds tailored to majority vote clas-
sifiers, due to the individual decision trees being accurate classifiers by them-
selves, making estimation of correlations of errors difficult. Even with weaker
individual classifiers, the majority vote bounds were outperformed when us-
ing only the out-of-bag samples for computing the bounds. Using a separate
validation set, the single hypothesis bound was tightest by far, at the cost
of a weaker classifier (as less data is available for training). This indicates,
that the existing bounds for ensemble method (even those taking correla-
tions into account) are not yet sufficiently tight.

A large part of my time during the PhD has been spent working with the
companies. Thus, we started by identifying problems in collaboration with
EduLab, Clio and MaCom, through several meetings and brain storming. In
doing so, we found several interesting problems, as well as a categorization
into three types of problems: student profiling, content profiling and content
recommendation. The problems found were not only interesting to the com-
panies, but also to the educational data mining community, and highlighted
the great potential for the companies.

Working with Clio, the most time consuming part has been in accessing
and cleaning their data, and later in integrating our final solution into their
product. However, the project did reach the state of having a working,
integrated prototype, although Clio is yet to deploy it.

In our collaboration with MaCom, we initially utilized master students
with great success. In supervising these students, we managed to test several
ideas. The main challenges in working with MaCom has been the strict data
access policy, requiring physical presence at the MaCom office. However, we
reached the goals required by MaCom, and while the final prototype has
not yet been integrated in Lectio, the project received huge interest from
national and international media.
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5.1. Where do we go from here?

While we achieved interesting results in working with the companies, there
are still several problems to be investigated further.

Most notably, while we spent a lot of time on trying to incorporate the
data from the Clio log system into our prediction algorithms, we did not
manage to improve significantly upon the algorithms relying only on the
historical quiz data. Incorporating the log data into the performance pre-
diction algorithms in a suitable way would hopefully improve predictions,
especially for students with only limited activity in the quiz system.

While our later work with incorporating the log data did not improve the
performance prediction, Clio has expressed interest in our writing style anal-
ysis with MaCom. The Clio system has several exercises centered around
writing free text, and hence they are interested in tracking the improvement
of writing style among the students. As it is a different domain (primary
school vs. high school) and as the written texts are much shorter than the
typical high school essay, adapting the method will most likely require signif-
icant work, for instance testing other architectures for the Siamese network.
However, it is an interesting project for DABAI moving forward.

As for the ghostwriter detection project, the current method provides only a
similarity score, but no justification. The convolutional neural network can
be inspected in order to determine which stylistic markers in the text are
investigated, but a more detailed feedback to the teachers is still desired.
One approach could be to train and apply the network on sections of an
essay instead, in order to be able to give more fine-grained feedback, such
as highlighting sections with questionable authorship.

In regards to the theoretical bounds investigated for majority vote classi-
fiers, our experiments showed how the existing bounds tailored to ensemble
classifiers are not tight enough; the fact that the single hypothesis bound
was much tighter than the C-bounds, even for weak classifiers, indicates
that the C-bounds does not managed to properly estimate the correlation
between individual voters. Therefore, more work is required for tightening
the analysis of the effect of correlations in majority voting.
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On Predicting Student Performance Using Low-rank Matrix Factorization Techniques  
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Abstract. Predicting the score of a student is one of the important problems in educational data mining. The                  
scores given by an individual student reflect how a student understands and applies the knowledge conveyed                
in class. A reliable performance prediction enables teachers to identify weak students that require remedial               
support, generate adaptive hints, and improve the learning of students. This work focuses on predicting the                
score of students in the quiz system of the Clio Online learning platform, the largest Danish supplier of online                   
learning materials, covering 90% of Danish elementary schools and hundred of thousands of students. In               
particular, we formalize our prediction task as the ​weighted ​low-rank matrix factorization (LRMF) problem, a               
very attractive problem in machine learning community due to its extensive applications in collaborative              
filtering. We investigate the two variants of weighted LRMF including standard weighted LRMF and weighted               
non-negative LRMF, and apply the Expectation-Maximization (​EM​) procedure to solve them. We also study              
different Singular Value Decomposition (SVD)-based initialization methods for these variants since the ​EM             
method is sensitive to the initial values. Experimental results in the Clio Online data set confirm that the                  
proposed initialization methods lead to very fast convergence. Regarding the prediction accuracy, surprisingly,             
the advanced ​EM ​method is just slightly better than the baseline approach based on the global mean score and                   
student/quiz bias. In order to understand the behaviour of the algorithm, we extract a dense subset of the                  
data set and visualize its eigenvalue spectrum. The highly skewed eigenvalue spectrum of such subset explains                
our interesting findings. We conclude that since the active students in the platform perform very similar and                 
the current version of the data set is very sparse, the very low-rank approximation can capture enough                 
information. This means that the simple baseline approach achieves similar performance compared to other              
advanced methods. In future work, we will restrict the quiz data set, e.g. only including quizzes with a time                   
limit, considering several quiz types. We expect that students will behave differently and the advanced ​EM                
methods might improve the prediction accuracy. 
 
Keywords. ​Predicting student performance, collaborative filtering, matrix factorization. 

1.    Introduction 

Prediction of student performance, estimating the unknown score of a given task, is an important problem in                 
educational data mining (Elbadrawy et al. 2016; Meier et al. 2016; Ayala 2014; Thai-Nghe et al. 2010). The                  
scores given by an individual student reflect how a student understands and applies the knowledge conveyed                
in class. Accurate prediction of such scores enables teachers to provide remedial support to weak students and                 
to recommend appropriate tasks to excellent students. 
 
In this work, we consider data from the Danish online learning platform Clio Online (Clio Online n.d.) is                  
currently the largest Danish supplier of online learning materials, covering 90% of Danish elementary schools               
and hundreds of thousands of students. Their platform includes texts, videos, quizzes, exercises, and more,               
spanning several different elementary school subjects. We study the performance of students on the quizzes;               
specifically we will focus on predicting how a student perform on an unseen quiz. More formally, given ​n                  
students ​S ​= {s​1​, ..., s​n​}​, and a set of ​m quizzes ​Q = {q​1​, ..., q​m​}​, any student ​s​i will answer some quizzes in ​Q and                           
we need to predict the score of the other quizzes that he has not finished yet. In other words, given an                     
incomplete matrix ​X of size ​n x m reflecting the scores of ​n students over ​m quizzes, our task is to efficiently                      
complete such matrix ​X​ given its partial known values.  
 
Matrix completion (Candes and Recht 2012) has recently become a very attractive problem in the machine                
learning community due to its extensive applications in collaborative filtering (Goldberg 1992). The objective of               
this task is filling in missing entries in a partially observed matrix. One example is the movie-rating matrix in the                    
Netflix problem (Netflix Price n.d.) where rows and columns correspond to users and movies, respectively, and                
entries are the ratings. Filling in a missing entry corresponds to estimating the unknown rating of the                 
corresponding {user, movie} pair.  
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If we do not restrict the number of degrees of freedom in the completed matrix, this problem is                  
under-determined since we can assign any arbitrary values to the missing entries. Therefore, one often tries to                 
estimate a low-rank matrix from the sparse, observed matrix, i.e. a matrix of rank r that matches the known                   
entries best. In the Netflix problem, the ratings matrix is expected to be low-rank since one can use a few                    
latent factors to reflect the tastes and movie preferences of users (Koren, Bell and Volinsky 2009). Therefore,                 
we can cast the matrix completion problem as the ​weighted low-rank matrix factorization (LRMF) (Srebro and                
Jaakkola 2003) where the weights are ​1s for observed entries and ​0s for missing entries. More formally, given                  
an incomplete matrix ​X ​of size n x m​, a ​binary ​weight matrix ​W ​of size n x m and an integer ​r > 0​. The weighted                           
LRMF, with respect to the Frobenius norm, would like to find the low-rank matrices ​U ​of size n x r​, and ​V ​of size                        
r x m​, such that F is minimum where is the entrywise product (Hadamard product). The     W⊗(X V )‖‖ − U     ⊗         
missing entry ​X​ij can simply be estimated by ​(UV)​ij​. ​It is worth noting that by adding the non-negative constraint                   
to the matrices ​U and ​V​, i.e. all values in ​U​, and ​V are non-negative, we have the weighted non-negative LRMF                     
problem. The weighted non-negative LRMF has been successfully used in many collaborative prediction tasks              
(Koren, Bell and Volinsky 2009; Lee and Seung 2000). 
 
We view our problem as the weighted LRMF since we represent the observed scores of students as an                  
incomplete matrix ​X​. Furthermore, this is also due to the fact that we can assume that there are a small                    
number of latent features revealing the students and tasks preferences. Such assumption is natural and has                
been widely used in research and application work in educational data (Barnes 2005; Desmarais 2011; van der                 
Linden and Hambleton 2010). It is worth noting that there are prior work using matrix factorization for                 
predicting student performance (Desmarais 2011; Elbadrawy et al. 2016; Thai-Nghe et al. 2010). Since matrix               
factorization in general requires iterative methods (Koren, Bell and Volinsky 2009; Lee and Seung 2000; Srebro                
and Jaakkola 2003) to solve the non-convex optimization, the initialization stage is essential in the design of                 
successful methods. Unsuitable initial values can result in either bad local minima or slow convergence.  

Contribution 

Our contribution is as follows. 

● We formalize the problem of predicting the scores of students from their partial observed scores as                
the weighted LRMF problem. We study the well-known Expectation-Maximization procedure (​EM​)           
(EM algorithm n.d.) for solving it. 

● We investigate the ​non-negative constrained problem, i.e. all entries of the estimated low-rank             
matrices ​U​, ​V are non-negative, and make use of the ​EM method for solving the non-negative                
constrained problem. 

● Since the behaviour of the ​EM method is sensitive to the initial values, we propose using the singular                  
value decomposition (SVD) (Golub and Loan 1999) and the non-negative double SVD (Boutsidis and              
Gallopoulos 2008) as the initialization stages for the standard weighted and non-negative weighted             
LRMF, respectively. Experimental results show that the proposed initialization methods lead to fast             
convergence ratio for both constrained and non-constrained problems. 

● We implement and measure the performance of the proposed methods on new real-life data from a                
Clio Online learning platform. We compare the mean squared error of the ​EM method with the simple                 
baseline approach based on the global mean score and student/quiz bias. Surprisingly, the advanced              
EM method is only slightly better or comparable to the baseline approach. We visualize the               
eigenvalue spectrum of a dense subset of the data set to explain our interesting findings. 

● We conclude that since the ​active students in the platform perform very similarly and the current                
version of the data set is very sparse, the very low-rank approximation can capture enough               
information. This means that the simple baseline approach (rank at most 2) achieves similar              
performance compared to other advanced methods. We believe that by restricting the quiz data set,               
e.g. only including quizzes with a time limit, students will behave differently and the advanced ​EM                
methods might improve the prediction accuracy. 

2. Related Work  

Depending on the available information of students, different data mining techniques can be used to tackle                
this issue. Koprinska, Stretton, and Yacef 2015; Strecht et al. 2015 made use of classification and regression                 
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techniques over characteristics, activities and historic assessments of students in order to predict their scores.               
Such methods demand significant meta-data about students and tasks. 
 
Other work take advantages of collaborative filtering techniques since these solutions require no knowledge of               
students and tasks, and therefore avoid the need for extensive data collection. Bydzovska 2016 exploited the                
neighbourhood models and other work (Desmarais 2011; Elbadrawy et al. 2016; Thai-Nghe et al. 2010)               
leveraged LRMF approaches, i.e. matrix factorization on latent factor models. In spite of the simplicity, the                
results of such methods indicate that there is sufficient information in the historical student-task score data to                 
make the prediction feasible. 

3. Our Approach 

We consider the problem of predicting the scores of students based on some of their observed scores as the                   
weighted LRMF since the set of known scores can be represented as an incomplete matrix. We study both the                   
standard weighted LRMF and non-negative weighted LRMF problems. In general, weighted LRMF problems             
require non-convex optimization solvers and do not admit a closed-form solution. We study the popular               
Expectation-Maximization (​EM​) algorithm (Srebro and Jaakkola 2003; Zhang et al. 2006) for these two variants               
since it can handle the non-negative constraint. We also study the SVD-based initialization methods (Boutsidis               
and Gallopoulos 2008; Srebro and Jaakkola 2003) for the ​EM​ methods. 

The baseline approach (mean/bias) 

Similar to the Netflix solution (Koren, Bell and Volinsky 2009), we investigate the role of student/quiz bias or                  
intercept in prediction. Given the incomplete matrix ​X of size ​n x m where the row/column corresponds to the                   
student/quiz and the corresponding weighted matrix ​W of size ​n x m​, ​W​ij Є {0, 1}​, we define the global mean                     
score and student/quiz bias as follows. 

● Denote by ​µ the average over all known values of ​X​, i.e. ​µ = . It is clear that ​µ is the             / ∑
 

ij
X ij ∑

 

ij
W ij         

average performance of all students. 
● Define the ​student (row) bias​ ​α​i​ and ​quiz (column) bias​ ​β​j​ as follows: 

 
α​i describes how much better/worse the student ​s​i is compared to the average student, while ​β​j describes                 

how much easier/harder the quiz ​q​j​ is compared to the average quiz. 
 
The natural assumption of the baseline approach is that the student performance is consistent over all kinds of                  
quizzes. In other words, if any student is good/bad, he will be good/bad at ​all quizzes. Therefore, we can                   
simply predict the score of a given student ​s​i on the quiz ​q​j as ​µ + α​i + β​j​. Define the ​bias matrix ​B with entries                          
B​ij​ = ​µ + α​i​ + β​j​, the complete matrix will be  

                                        
where ​1​n x m​ is the matrix of size ​n x m​ filled with 1s.  

The EM approach 

The ​EM method alternates between the ​E​xpectation step, in which values from the current estimate are filled                 
in for the missing values in ​X​, and the ​M​aximization step, in which ​X is re-estimated as a low-rank                   
approximation. These two steps are repeated until the rate of convergence decreases. For simplicity, we               
denote by ​X​(0)​ the original incomplete matrix ​X​. 
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For the expectation step, we make use of the bias matrix ​B in the initialization stage. In particular, we impute                    
missing entries of ​X​(0) by entries in ​B as shown in the baseline approach. Depending on the non-negative                  
constraint, we use different SVD-based approaches to initialize ​U​(0) ​and​ V​(0) ​. 
  
Standard weighted LRMF: Init-step and E-step 
We compute the truncated SVD of rank r of the imputed matrix X as initial values and the E-step is                    
straightforward. 

 
Weighted non-negative LRMF: Init-step and E-step 
Since SVD can introduce negative values, we use of a modified SVD called the non-negative double SVD                 
(NNDSVD) (Boutsidis and Gallopoulos 2008) with the rank ​r in the initialization stage. NNDSVD utilizes an                
algebraic property of unit rank matrices to approximate positive sections of the partial SVD factors of the data                  
matrix. It provides fast convergence and small approximation error for many non-negative matrix factorization              
algorithms. Here, we apply NNDSVD on the imputed matrix ​X as initial values. The E-step is identical to the                   
standard case. 

 
For the maximization step, we make use of the truncated SVD with rank ​r for the standard weighted LRMF                   
since it is the optimal solution (Golub and Loan 1999; Srebro and Jaakkola 2003). For the non-negative case,                  
we use the popular multiplicative update rules (Lee and Seung 2000) in place of the truncated SVD procedure.  
 
Standard weighted LRMF: M-step 

      
Non-negative weighted LRMF: M-step 

 
 
We note that the multiplicative update rules might not converge to a stationary point if the initial values ​U​(0)                   

and V​(0) have some zero row/column (Lin 2007). We observe that the factorization given by NNDSVD might                 
provide zero row/column values. Hence we modify the update rules for the M-step as suggested by Lin 2007.  
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4. Experiments 

Following the approach described above, we have tested the ​EM algorithm with and without the               
non-negativity constraint.  
For short notation, we use ​EM-NMF and ​EM-MF for the non-negative case and the standard case, respectively.                 
Furthermore, we have experimented with using (NND-)SVD for initializing ​U and ​V​, with the goal of reducing                 
the number of required iterations. All tests have been run on the data from Clio Online. The bias matrix ​B in                     
itself turns out to be a good predictor for the missing students' scores of X; hence we have used it as a baseline                       
comparison for the ​EM​ algorithms. 

Data 

A quiz in the Clio Online system consists of several pages, each of which may contain one of several types of                     
tasks, e.g. multiple choice questions or gap-fill tasks. When the student has finished all tasks, they are awarded                  
a score for the quiz. We pre-process the data such that all scores are between 0 and 1, 0 being all questions                      
wrong and 1 being all questions right. Furthermore, all repeated attempts at the same quiz are removed, so                  
that only the first attempt remains. Thus, the data consists of a list of tuples ​(i,j,v)​, where ​v ​Є ​[0,1] is the score                       
of student ​i​ on quiz ​j​, and combinations of ​i​ and ​j​ are unique. 
While very large, the full data set is also very sparse; thus we extract a subset of the data such that for each                       
student ​s​i​, the set contains at least 15 tuples for that student, and for each quiz ​q​j ​, the set contains at least 15                       
tuples for that quiz. This means that each student/quiz has at least 15 answers. Correspondingly, the matrix ​X                  
with entries ​X​ij ​= ​v has at least 15 known values in each row and column. The resulting data set contains data                      
for ​n = 1141 students and ​m = 245 quizzes. The data set is split into a training and a test set by sampling data                         
points for the test set with probability 0.25. Table 1 shows the resulting size and density of each data set, ​n                     
being the number of students and ​m​ the number of quizzes. 

Experimental setup 

For each of the two methods, ​EM-MF and ​EM-NMF​, we run the method on the training data in order to obtain                     
U and ​V​, which admits the approximation ​UV of ​X​. Having obtained the model, we then measure the                  
training/test error ​e​, given by the ​root mean square error​ (RMSE) on the training/test set ​S​: 

 
We test each method for ​r = 1,2,...,6​. For each ​r​, we perform the following experiments: 

● The method is run with random initialization of ​U and ​V​. The method is run 10 times, and the average                    
training/test errors are reported, together with the average number of iterations. 

● The method is run with ​U and ​V initialized using the mean/bias method. Since the               
initialization/method is deterministic, we only report the training/test error and iterations for a single              
run. 

The results for ​EM-MF can be found in Table 3, while the results for ​EM-NMF can be found in Table 4. As                      
mentioned, we use the bias matrix ​B as the baseline. The results from using ​B as the approximation is given in                     
Table 2. 

 
Table 1: Data overview. ​n = 1141​, ​m = 245. 

 
Table 2: Training/test error when using the bias matrix.  
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Table 3: Training/test error and iterations for ​EM-MF​. 

 
Table 4: Training/test error and iterations for ​EM-NMF​. 
 

Analysis 

From the results, we clearly see that the methods converge faster, when ​U and ​V are initialized using the                   
mean/bias based methods, described in the previous section. Furthermore, both methods achieve lower             
training and test errors, when using the mean/bias method for initialization, compared to using random ​U and                 
V​. This observation is also confirmed in Figure 1, which plots the training error after each iteration for each                   
method/initialization. 

 
Figure 1: Convergence of the ​EM-MF​ and ​EM-NMF​ algorithms on the large data set with ​r = 3​ and using 
random initialization and SVD based initialization of ​U ​and ​V​. 
 
Regarding the training/test errors, we see that both methods perform better when initialized with the               
mean/bias method. With random initialization, ​EM-MF performs better than ​EM-NMF​, but it does still not beat                
the baseline method, and appears to overfit for ​r > 1​. When using the bias matrix initialization, both methods                   
achieve lower training/test errors, and actually outperform the bias matrix approximation, although not to any               
significant degree. 
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This indicates that the bias matrix is quite close to a local minima for this data set. It also explains the fast                      
convergence, since the algorithm starts quite close to the local minima. Considering the training/test errors for                
the random initializations, it seems unlikely that we can find a better local minima. The best results (​r = 1 for                     
EM-MF and ​r = 2 for ​EM-NMF​) also indicates that the data has low rank. This fits with the bias matrix, which                      
can easily be seen to have rank at most 2. The good low rank results also explain why the results for ​EM-NMF                      
with NNDSVD initialization are identical (within the given number of decimals) for ​r ≥ 2​, since the extra                  
rows/columns of ​U and ​V are initially all 0 (from the NNDSVD method), and very little extra improvement is                   
gained by changing that. 

 
Figure 2: A small, dense subset of the data. Black tiles indicate unknown values. 
  
Figure 2 visualizes a smaller, almost complete subset of the data, with only three unknown entries. Looking at                  
the visualization, some row/column patterns definitely emerge, e.g. quizzes 1-7 and 19-22 appear to be more                
difficult than the rest. Such patterns are easily captured by the bias matrix. However, Figure 3 plots the                  
eigenvalues for the small dense matrix of Figure 2 (with the three unknown values imputed using the bias                  
matrix). Here we see that only the first eigenvalue is very significant (17.3 compared to 2nd, 3rd and 4th eigen                    
values, which are close to 1), which supports the findings from the experiment, e.g. that very low rank                  
approximations seem to be optimal for this data. 
  

 
Figure 3: The eigenvalues spectrum of the small, dense subset of the data. 
 

Discussion 

Since the quizzes span several topics, we expected the approximation to have higher rank, to fully capture the                  
different skills needed in order to obtain a good score within the different topics. However, it seems to not be                    
the case. As the analysis shows, only few latent features are needed to obtain a good model of the data. It                     
seems that these few latent features rather relate to the 'base' skill of a student/difficulty of a quiz, i.e.                   
students are either good or bad at everything. 
While the experiment and analysis suggests that only a single skill determines the score of a student, this may                   
come down to the sparsity of the data. It may be that good, high rank approximations actually exists, but does                    
not show up in the experiment due to the low number of answers for many quizzes. 
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5. Conclusions 

We have successfully applied Expectation-Maximization matrix factorization methods, both the unconstrained           
version and the non-negative constrained version, on the quiz data from Clio Online. Experiments indicate that                
matrix factorization does not improve significantly on the results obtained by the simpler method based on the                 
global score mean and student/quiz biases, and that only a few latent factors are needed in the optimal                  
approximation. As a result, the number of iterations can be significantly reduced by initializing the methods by                 
using the bias matrix, when compared to using a random initialization. 
The fact that very low rank approximations gave better accuracy, together with further examination of a                
smaller, almost complete subset, indicates that the Clio Online data set can be described by a very low rank                   
matrix. Thus it may be difficult to improve upon the mean/bias method, by use of advanced matrix                 
factorization, at least when the data is sparse. 
With regards to interpreting the results, our hypothesis is that the few latent features relate to the skill of the                    
students/difficulty of the quiz. If this hypothesis holds, it provides useful information for e.g. recommending               
the appropriately difficult quizzes to students. 

Future work 

In regards to the Clio Online data, it may be interesting to apply other matrix factorization techniques. Adding                  
regularization may also improve the prediction. It could also be interesting to include more meta data about                 
the quizzes from the Clio Online system; e.g. we expect that only considering quizzes with a time limit may                   
admit a higher rank approximation. Furthermore, it could also be interesting to apply the techniques tested in                 
this paper to quiz/test scores from other sources. 
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Abstract​: A new Big Data research team called DABAI have been launched in Denmark, which aims at                 
integrating cutting edge computer science research from machine learning, algorithms and visualization into             
the education sector. The educational part of the DABAI project is a cooperation between Danish universities                
and multiple enterprises providing e-Learning solutions for the Danish market. The companies’ services cover              
over 90% of the Danish schools, with more than one million students, who on a daily basis do millions of                    
exercises and interactions using the involved companies’ solutions. The study presented in this paper is an                
initial investigation of the needs of the three largest companies in e-Education in Denmark directly involved in                 
DABAI, as well as other companies, with the goal being to continue providing novel and high-demand features                 
for their customers. The three companies are MaCom, Clio Online, and Edulab. Clio Online together with                
Edulab provide an online platform for teaching material and exercises for the primary school level covering all                 
subjects. MaCom provides a lecture management system used by most Danish high schools. Overall the study                
shows that the problems encountered at the different companies are varied, but can be categorized into three                 
general sub categories: Student Profiling, Content Profiling, and Content Recommendation. Some problem            
types fall into multiple sub categories, and in general to accomplish the goal of providing e-Learning of the                  
highest quality, research into all of them is necessary. This paper presents the fundamental problems in                
e-Learning. For each encountered problem, we describe its objectives and challenges in detail, followed by the                
current state of the art for solving it. 
 
Keywords​: e-Learning, e-Learning challenge categorization, Big Data 

1. Introduction 

A new Big Data research team called Danish Center for Big Data Analytics driven Innovation (DABAI) has been                  
launched in Denmark, which aims at integrating cutting edge computer science research from machine              
learning, algorithms, and visualization into the domains encompassing Food Supply Chain Data, Societal Data,              
and Education Data. DABAI is funded by Innovation Fund Denmark, with a total funding of 17M euro. In this                   
paper we will present our initial finding for problems in the educational sector. The educational part of the                  
DABAI project is a cooperation between Danish universities and multiple enterprises providing e-Learning             
solutions for the Danish market. The companies’ services cover over 90% of the Danish schools, with more                 
than one million students, who daily do millions of exercises using the involved companies’ solutions. In                
Denmark there is a strong political focus and funding to ensure the education system being more data driven,                  
and e-Learning tools developed being integrated quickly. Such a hard political push on the software level is                 
now possible, since it has been ensured that the schools have the necessary hardware level over the past                  
years.  
 
This work is an initial investigation of the needs of the three largest companies in e-Education in Denmark                  
directly involved in DABAI, with the goal being to continue providing novel and high-demand features for their                 
customers. The three companies are MaCom, Clio Online, and Edulab. Clio Online together with Edulab provide                
an online platform for teaching materials and exercises for the primary school level covering all topics. MaCom                 
provides a lecture and assignment management system used by most Danish high schools.  
 
Overall our study shows that the problems encountered at the different companies are very diverse, but can                 
be categorized into three general sub categories: Student Profiling, Content Profiling, and Content             
Recommendation. Some problem types fall into multiple sub categories, and in general, to accomplish the goal                
of providing e-Learning of the highest quality, research into all of them is necessary.  
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In this paper we present the fundamental problems in e-Learning, and for each encountered problem we                
describe its objectives and challenges in detail, followed by the current state of the art for solving it. We                   
strongly believe that, even though this work is done in Danish context, the encountered problems and                
solutions generalize worldwide.  

1.1 Introduction of companies 

In this section we will briefly introduce the three companies we are working with, such that the challenges,                  
they are facing, can be better understood in the setting they are going to be used in. 
 
Clio Online is a complete digital learning platform for the primary school level, and aims at offering everything                  
a teacher and student need. They offer all subjects except mathematics, which Edulab provides. The material is                 
tailored to the national targets for education, such that the material always follows the national curriculum for                 
each subject. They want the teachers to be able to focus more on teaching, and less on preparing and finding                    
the right material. 
 
Edulab is a complete digital learning platform for mathematics, with the goal of making every child in the                  
world better at mathematics. Edulab's products offer many different ways of learning mathematics, ranging              
from question heavy workloads to video and text lessons, as well as other activities depending on if the                  
student is in class or at home. 
 
MaCom ​provides ​Lectio​, which is a lecture management system used in high schools. They provide a tool to                  
manage the lessons carried out, and in a way that is transparent to the students and the parents. They also                    
provide a tool to manage homework and for handing in assignments, giving them a big repository of student                  
work. 
 
Together these companies service over 90% of all schools in Denmark. 

1.2 Categorization of e-Learning challenges 

One of the end goals for educational software is obtaining differentiable teaching materials fitted to each                
student’s needs, such that the overall progression of the students is as high as possible. The current generation                  
of educational software offers personalization options, but not as in depth compared to what a real human                 
personal tutor could provide, and bridging this gap is one of the major challenges for current educational                 
software providers. However, this task is complex and can be split in many subtasks, which also independently                 
can provide great value. Our cooperation with the three largest e-Learning companies in Denmark have               
revealed that their needs can be put into three categories: 
 

1. Student Profiling 
2. Content Profiling 
3. Content Recommendation 

 
Student profiling is the broadest of the categories and cover modelling of students' skills, knowledge, and/or                
behaviour. These can be modelled by how the students interact with the educational systems, and how they                 
perform in these systems. We present two cases on student profiling, one from modelling how students                
interact with the website and material, and another on modelling a student's writing style.  
 
Content profiling is the task of understanding the material provided by the educational system, the               
understanding can be in the case of finding material that students generally perform much worse on than                 
expected, or finding relations between material necessary for building solid material recommender systems.             
We present a case on content profiling with the task of finding similarities among a large number of quizzes. 
  
Content Recommendation is in its essence the combination of student and content profiling, where the task is                 
to recommend the right learning material to the student. A detailed profiling of both students and content can                  
be used for creating optimal learning paths for the individual students. We present three cases on this                 
category from improving personalized learning, to predicting student performance on quizzes based on other              
students' performance, and a system to train specific parts of a subject curriculum. 
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2. Company faced e-Learning challenges 

In this section we will present our initial work and related literature on six e-Learning challenges faced by the                   
companies. 

2.1 Optimize e-Learning personalization 

E-Learning personalization refers to an online educational approach that provides differentiated instruction to             
support the individual student’s need. Currently, EduLab is deploying and developing an online learning              
platform called ​“​SuperTrainer​” to optimize the e-Learning personalization for individual student on learning             
Mathematics. In a nutshell, SuperTrainer can be seen as a specific recommender system that recommends               
“the best question at the right time” ​to students to optimize their mathematical learning process in primary                 
school. Such adaptive recommender system provides a sequence of math questions in order to maximize               
student’s learning gain while taking into account the limited amount of time and number of questions. One                 
traditional mechanism is that students will be assigned easier/harder questions if they answer             
incorrectly/correctly on previous questions. This is due to the argument in psychology (Berlyne, 1960) and               
neuroscience (Gottlieb et al., 2013) that the human brain shows intrinsic pleasure in activities of optimal                
difficulty, i.e. balance between interest (not too difficult) and challenge (not too easy).  
 
While traditional recommender systems are focusing on “one-shot” recommendations, e-Learning          
personalization investigates a ​“personal path” through the questions and adjusts this path depending on how               
students progress in learning. Therefore, it is essential to have a systematic measurement of individual               
students’ performance when using personalized products. Currently, to the best of our knowledge, there is no                
measurement of students’ performance when using e-Learning personalization. This means that we do not              
know how well we could do with e-Learning personalized platforms. Furthermore, there is no efficient               
mechanism with guarantees to recommend “​the best question at the right time” ​to students.  
 
To handle recent problems of e-Learning personalization, we aim to introduce and formalize important              
progress factors to measure students’ performance, and then exploit such measurements to evaluate and              
improve an e-Learning personalization mechanism. In particular, we decompose students’ progress into three             
factors as follows: 
 

▫ Ability of understanding: Given a fixed number of questions, for each student we want to ​maximize                
the correctness/difficulty level of the given questions. 

▫ Learning speed: Given a fixed amount of questions, we want to ​minimize the total amount of time                 
that each student has to spend on solving them. 

▫ Balance of challenge and interest: Given a fixed amount of questions, we want to maintain a                
well-defined correct ratio to balance between the ​challenge (i.e., student feels difficult to answer              
correctly) and the ​interest​ (i.e., student feels happy when answering correctly). 

 
After formalizing students’ performance measurements, our goal is to model the e-Learning personalization             
problem, i.e., recommending the best question at the right time to students, as an optimization problem.                
Following very recent machine learning approaches (Lopes et al., 2015; Tekin, Braun, and van der Schaar,                
2015), we are investigating the ​“Multi-Arm bandit models” for our optimization. Assume that an e-Learning               
personalization has to recommend a sequence of questions to each individual student. Each question will give                
the student a reward value that highly depends on the student’s level at that time. Note that such reward                   
value must express the three progress factors above so that we are able to measure the student’s progress.                  
Then, we develop the optimization algorithms to maximize the sum of rewards earned by each student                
through a sequence of recommended questions. Our collaboration with EduLab will deploy a scalable and               
efficient algorithm for optimizing their e-Learning personalization platform – SuperTrainer – since EduLab is              
now dealing with very large-scale data, i.e., millions of questions answered every day.  

2.2 Student behavior modelling 

Most learning platforms allow a student to access the material through many different paths. An example                
could be a video lesson which could be given as homework, it could come up as recommended material to an                    
exercise if the student needs help solving it, or the student could simply find the video lesson themselves                  
because they want to review the material without being asked to do it. Edulab is interested in the paths users                    
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take for two primary reasons: 1) as for every other company providing a web solution, knowledge of user                  
behavior can be used directly when planning further extensions of the system. 2) Educational systems are built                 
based on knowledge of didactics which guide the usage of the system, and unintended usage of the system can                   
therefore in some cases correspond to sessions with suboptimal learning for the user. 
 
The number of daily user sessions is too large to make any meaningful qualitative study of the individual user                   
sessions, where session in this context is defined as the interactions a user does from logging into the system                   
to the time they log out. It is therefore necessary to do some clustering of sessions and analyze the resulting                    
clusters, to extract general trends. A common approach (Köck, M. and Paramythis, A. 2011) for modelling the                 
sessions, is to consider them as a sequence over an action space. A simple action space is that the user either                     
answers a quiz (Q) or watches a video (V). A user session would then consist of entering the system, a                    
sequence of actions, e.g. QQQVVQ, and then logging off. A clustering over such a simple space, would still                  
allow us to ask questions like, does students in general start with videos or quizzes, and are the user                   
interactions very binary such that they either answer questions or watch lessons? This is a very trivial example                  
of an action space, but it can be made arbitrarily complex according to the system we wish to model, with the                     
limitation being that larger action spaces require more data to find meaningful insights. The method of                
considering user sessions as sequences over an action space have been used with success in deriving insights                 
from educational systems (Klingler, S. et al. 2016; Faucon, L., Kidzinski, L., and Dillenbourg, P. 2016). 
 
We are currently in the process of clustering all sessions done in Edulab’s system on multiple different state                  
spaces with the focus on finding "unproductive" sessions, where the students use the system in an unintended                 
way. An initial study on a subset of the available data have been done (Hansen, C. et al. 2017), where the                     
clustering lead to insight into a significant number of sessions where students had very binary behavior,                
meaning they either always watched lessons, answered questions correctly or answered wrongly. This study              
used an action space of considering video lesson, if a question was correctly and incorrectly answered, and if                  
the student switched to material of different topics. The overall goal of this work is to provide Edulab with a                    
new tool for future development of their system. 

2.3 Predicting student performance 

Prediction of student performance, estimating the unknown score of a given task, is one of the important                 
problems in e-Learning. The scores given by an individual student reflect how a student understands and                
applies the knowledge conveyed in class. A reliable performance prediction of such scores enables teachers to                
provide remedial support for weak students, recommend appropriate tasks to excellent students, generate             
adaptive hints, and improve the learning of students. This section focuses on predicting the score of students                 
in the quiz system of the Clio Online learning platform, where a student has answered only a subset of the                    
quizzes.  
 
Currently, Clio Online learning platform is maintaining a quiz system that contains thousands of quizzes with                
several types, including multiple choice quizzes, gap-filling quizzes, etc., spanning several different elementary             
school subjects. We study the performance of students on the quiz data; specifically we will focus on                 
predicting how a student performs on an unseen quiz. More formally, given ​n students ​S = {s​1​, ..., s​n ​}​, and a set                      
of ​m quizzes ​Q = {q​1​, ..., q​m ​}​, any student ​s​i will answer some quizzes in ​Q and we need to predict the score of                         
the other quizzes that he has not finished yet. In other words, given an incomplete matrix ​X of size ​n × m                      
reflecting the scores of ​n students over ​m quizzes, our task is to efficiently complete such matrix ​X given its                    
partial known values. Since we can view a student/quiz as a user/item, we view our prediction task as the                   
collaborative filtering problem (Collaborative Filtering, 2017) and investigate state of the art techniques for              
solving it.  
 
In particular, we have studied the ​matrix factorization techniques (Koren, Bell, and Volinsky, 2009; Lee and                
Seung, 2000) for improving our prediction. This is due to the fact that we can assume that there are a small                     
number of latent features, e.g., skill sets, revealing the students and tasks preferences. Such assumption is                
natural and has been used widely in research and application work in educational data (Barnes, 2005;                
Desmarais, 2011). It is also worth noting that these solutions require no knowledge of students and tasks, and                  
therefore avoid the need for extensive data collection. Prior work using matrix factorization for predicting               
student performance (Elbadrawy et al., 2016; Thai-Nghe et al., 2010) indicates that there is sufficient               
information in the historical student-task score data to make the prediction feasible. 
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2.4 Similarity among quizzes 

Given a pair of quizzes, Quiz 1 and Quiz 2, how similar are they? There exist many qualitative ways of                    
addressing this question and some quantitative like Pearson correlation measures and cosine similarity. Deary              
et al (2007) research correlation among intelligence tests and how well kids perform in different subjects. Even                 
with the high number of answers in the Clio Online setting (millions of quiz answers), the thousands of quizzes                   
results in many pairs of quizzes which have only a few or even no students who have taken both quizzes. This                     
results in very high variance for the usual techniques. One could combat this by densifying the data with                  
prediction values for the quizzes which would reduce the similarity problem to predicting student              
performance. The other option is to infer similarity in the sparse quizzes going through a third quiz taking                  
advantage of the "transitive" property of objects being similar. 
 
Formally we solve the problem of making the best prediction on normalized quiz scores (0 mean and unit                  
variance for each quiz). The prediction we make is a weighted average of the other quizzes taken and the                   
weights are the similarities. We require the similarities to be symmetric and non-negative, but other than that                 
there is no restriction. This allow us to both train and check different overfitting measures to capture the                  
"transitive property" of objects being similar. 
 
The knowledge of similarities would give insight to the teachers. If for example a student suddenly does worse                  
on a writing test than he usually does, one can find the similarities of more specific quizzes (like grammar                   
quizzes) and thus pinpoint why this student has trouble with the specific writing quiz. Furthermore, taking                
advantage of similarities is likely to improve prediction (Khajah, Lindsey, and Mozer 2016). Chen,              
Gonxáles-Brenes and Tian (2016) suggest that spurious similarities could be due to the quiz requiring multiple                
skills. 

2.5 Authorship verification 

The competition for high grades in Danish secondary education (high school) is tougher than ever. This has led                  
to an increase in fraud in written assignments. While efficient techniques for detecting simple copy-paste               
plagiarism exist and are deployed in Denmark (Frølich and Hansen, 2012), there have recently been an increase                 
in students resorting to ghost-writing, i.e. handing in assignments written by someone else (e.g. a teacher,                
college student, or other professional). Normal plagiarism control does not detect this kind of fraud, since the                 
assignment is original work. The problem has been highlighted recently by the emergence of so-called               
paper-mills in Denmark; online services providing academic ghost-writing (e.g. www.fixminopgave.dk), a           
phenomenon already seen in other pars of the world, e.g. the U.S., where paper mills have existed for several                   
years (Tomar, 2014). MaCom wishes to combat this emerging trend by deploying a system for detecting cases                 
of ghost-writing in Lectio. With data for more than 150,000 Danish students, including more than 15 million                 
handed-in assignments, there is large potential. 
 
Formally, we can define the problem of detecting ghost-writing as the ​Authorship Verification Problem​: Given               
an author ​a​, a set of texts ​S = {s​1​, s​2​, …, s​n ​} written by ​a and a text ​x​, determine whether ​a is the author of ​x​.                            
This problem (and the related problem of Authorship Attribution) has been considered in the literature               
(Koppel, Schler and Bonchek-Dokow, 2007; van Halteren, 2004; Stamatatos 2009), and is in general considered               
challenging, since only limited data about the author is available. Most approaches take inspiration from the                
study of ​stylometrics and employ techniques from natural language processing and machine learning.             
Approaches usually follow either the ​profile-based paradigm (​x ​is compared to a constructed profile of ​a​) or                 
the ​instance-based ​paradigm (​x is compared to all instances ​s​1​, ​s​2 ​,...); in either case, the problem can be seen                   
as a case of ​Student Profiling​. 
 
For the case of authorship verification in Danish high schools, there are several important considerations to be                 
made. Most notably the fact that: 
 

1. Students are still learning, and their writing style may change over time. 
2. We have access to a large corpus of text consisting of the 15 million assignments, which may be                  

utilized in order to improve verification. 
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These considerations are already investigated in two studies using the data from MaCom: (Hansen et al., 2014)                 
considers authorship attribution with the temporal aspect, and concludes that, using SVMs, good accuracy can               
be obtained even when ​S only contains the most recent assignments for a student, while (Aalykke, 2016)                 
utilizes the corpus by performing verification through a profile-based authorship attribution approach. 
 
We hope to improve upon the previous studies by utilizing both (1) and (2), coupled with comprehensive                 
feature selection and state-of-the-art techniques for authorship verification and outlier detection.           
Furthermore, we hope that our student profiling may also aid in measuring progress of the student in terms of                   
writing style. 

2.6 Curriculum trainer 

Every week teachers all over the world plan lessons to teach their kids. Much of this work is overlapping                   
between teachers since what the students need to learn is in many cases the same. Now, in the era of "sharing                     
economy", it is possible to utilize the community of teachers via large lecture management systems, such as                 
Lectio, which is made by MaCom. Lectio is used by almost all high schools in Denmark (90%).  
 
Curriculum trainer is a small step in the utilization of taking advantage of "sharing economy". It is a system                   
made for high school students. They can use it to prepare them for their exams. The system is to be                    
implemented in Lectio. 
 
The system is made such that all high school teachers in Denmark (who use Lectio) can pose questions directly                   
into the system. The teacher only has to state the question, the correct answer, some wrong answers and in                   
which subject the question is related to. When the students use the system it adaptively estimates the                 
difficulty of the question and the skill of the student. This is done by the ELO rating from chess (Elo, 1978),                     
where the game is between a question and the student, similar to (Pelanek, 2016) and (Antal, 2013). The                  
student wins if the question is answered correctly and is thus rewarded with an increase in his skill score. The                    
difficulty index of the question is then decreased. How much depend on both the skill level of the student and                    
the difficulty index of the question. The opposite happens if the student answers incorrectly. However unlike                
in chess the update rules can be different for students and questions, since the skill level of a student is                    
expected to change whereas the difficulty level of a question is expected to be static at least over shorter                   
periods of time, like a school year. The ELO ratings are also used to make sure that students get question at the                      
level which is optimal for their learning. The initialisation of a student’s skill level is based on his/her grades in                    
the subject. In the future, log files could be studied to personalize how difficult question should be for a                   
student to keep motivation high. The ELO rating is preferred for its simplicity since we need to minimize the                   
amount of information the teacher needs to give. 
 
The possibility of using “sharing economy” in the teaching scene has huge potential for generating teaching                
material of high quality, since all teachers can contribute. There are of course some barriers, the most often                  
mentioned is the fear of being judged for their work. Hence starting at a small level and share questions should                    
help overcome this barrier and in this case anonymity could easily be granted. 

3. Conclusion 

The overall goal of the study was to find a wide array of interesting problems that companies providing                  
e-Education in Denmark have, and present early work in the direction we plan to go to solve them. The                   
uncovered problems are interesting from an educational point of view, but they also raise interesting problems                
from a computer science perspective, showing the importance of the cooperation between the fields for               
e-Learning. 
 
None of the presented problems were novel for the e-Learning community, and there are varying levels of                 
existing work that potentially can be used directly by the companies without further improvement. This               
demonstrate the potential value between industry and university cooperation in the e-Learning community,             
where a cooperation will help reduce the gap between current state of the art research in academia, and what                   
solutions are currently available for students.  
 
The goal of the educational part of DABAI is to go one step beyond bridging the gap between industry and                    
academia. With access to data generated from more than a million students, the goal is to push the state of                    
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the art in cooperation with the companies, with the advantage of having access to extremely large amounts of                  
real-world data to verify the methods against. 
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ABSTRACT
Analysis of log data generated by online educational sys-
tems is an essential task to better the educational systems
and increase our understanding of how students learn. In
this study we investigate previously unseen data from Clio
Online, the largest provider of digital learning content for
primary schools in Denmark. We consider data for 14,810
students with 3 million sessions in the period 2015-2017.
We analyze student activity in periods of one week. By
using non-negative matrix factorization techniques, we ob-
tain soft clusterings, revealing dependencies among time of
day, subject, activity type, activity complexity (measured
by Bloom’s taxonomy), and performance. Furthermore, our
method allows for tracking behavioral changes of individual
students over time, as well as general behavioral changes
in the educational system. Based on the results, we give
suggestions for behavioral changes, in order to optimize the
learning experience and improve performance.

Keywords
Student clustering, Non-negative matrix factorization, Edu-
cational Systems

1. INTRODUCTION + RELATED WORK
How students behave in educational systems is an impor-
tant topic in educational data mining. Knowledge of this
behavior in an educational system can help us understand
how students learn, and help guide the development for op-
timal learning based on actual use. This behaviour can be
understood both through an explicit study [5], or as in this
paper through the automatically generated log data of the
system.

The analysis of log data is usually done as an unsupervised
clustering of students [2, 3, 4, 7]. A popular approach is
to extract action sequences and transform them into an ag-
gregated representation using Markov models [4, 7]. The
Markov chains can then be clustered by different methods.

Klingler et al. did student modeling with the use of ex-
plicit Markov chains and the clustering with different dis-
tance measures defined on the Markov chains [7]. Hansen
et al. assumed the actions sequences to be generated by a
mixture of Markov chains and used an heuristic algorithm
to find the generating Markov chains [4]. Gelman et al.
used non-negative matrix factorization to find clusters for
different measures of activity aggregated in weekly periods
during a MOOC course. These clusters are then matched
from week to week by cosine similarity.

Our work is similar to Gelman et al. [3] in that we also
use Non-negative Matrix Factorization (NMF) to make a
soft clustering at the student level in a given time period,
however our clustering is only made once, and we are looking
at primary school data over a vastly longer period of time,
(2 years compared to 14 weeks).

Our soft clustering by non-negative matrix factorization is
based on log data from Clio Online.1 Clio Online is the
largest provider of digital learning for all subjects in the
Danish primary school (except mathematics), having 90%
of all primary schools in Denmark as customers.

Using NMF, we assume that the set of features chosen can
be represented by a set of fewer underlying behaviors. These
underlying behaviours would each be represented by a clus-
ter in the non-negative matrix factorization. Each student
will then get a number for each cluster in each time period
representing how much of that underlying behavior he has
shown in the given time period. Non-negativity gives the
behaviors an additive structure, which is more natural than
showing a negative amount of a given behavior. We reason
that the soft clustering will show both the behaviors of in-
dividual students, as well as how the behaviors change over
time, both individually and on a system-wide level.

In this paper, we will consider two main questions: a) how
does student activity in the system affect performance, and
b) how does student activity distribute between different lev-
els of Bloom’s taxonomy in different subjects. Both ques-
tions are important in regards to optimizing learning; the
first in relation to performance, the latter in relation to uti-
lization of all taxonomy levels.

1This data is proprietary and not publicly available.
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Figure 1: Number of students active in each period.
Note that period 0 starts on 2015-01-08, while pe-
riod 111 ends on 2017-03-01. The drops in activity
occur due to vacation in Danish primary school, with
the two large drops around periods 25 and 79 being
due to the summer vacation.

2. EXPERIMENTAL SETUP
This section describes our experimental setup and methods.
We start by describing our data and how it is preprocessed,
and then move on to describing our clustering method.

2.1 Data Preprocessing
As mentioned, we consider log data generated in the Dan-
ish online educational system Clio Online. The system is
used in Danish primary schools and contains learning ob-
jects across all Danish subjects (except mathematics), for
instance texts, videos, sound clips and exercises. Further-
more, the system includes a large number of quizzes, used
for evaluating students. Students may use the system for
self study, but they may also be assigned homework by their
teacher. Our data covers 14,810 students.

The raw data consists of logs detailing page accesses for in-
dividual students in the system. For quizzes, the final score
(between 0 and 1) and total time spent for the quiz is also
available. In our preprocessing, we combine these log entries
to sessions. Two consecutive entries are considered in the
same session, if they have the same subject, and their times-
tamps differ by less than some threshold. For our study, we
choose this threshold to be 600 seconds, based on recom-
mendations from Clio Online, who have a deeper knowledge
of the content and flow of the system (e.g. expected time
per page). Furthermore, quizzes are considered separate ses-
sions. A total of 3 million sessions is obtained in this way.

With the sessions defined, we consider student activity in
activity periods, with a length of one week. The data spans
a total of 112 activity periods, starting January 2015 and
ending in March 2017. For each activity period, we add an
entry for a student, if the student is active (accesses the
system) within that period. The entry for the given student
contains all sessions for that student, which starts within
the activity period. We end up with approximately 677,000
student entries across the 112 periods. Figure 1 shows the

active number of students in each period. Note the drop
in active students around periods 25 and 79; these drops in
activity occur due to summer vacation.

The final step of data preprocessing is the feature extrac-
tion. For each activity period, a set of activity/performance
related features are extracted. The features are chosen so
as to answer the questions posed in the previous section. A
complete overview of all features considered in our exper-
iments is given in Table 1, including the maximum, mean
and variance across all active students in all periods. Not
all features are used for each experiment, see section 3.

All features are aggregates over the activity period. Below
follows a detailed description:

• f1 describes the activity during the period of day, where
Danish students are normally in school, while f2 de-
scribes the activity during non-school hours.
• f3, f4 and f5 describe time spent doing exercises, read-

ing texts and taking quizzes respectively.
• f6, f7 and f8 describe time spent working with differ-

ent topics: languages (Danish, English, German), soci-
etal (social studies, history, etc.) and science (physics,
biology, etc.), respectively.
• f9 is the average session length during the activity pe-

riod.
• f10 is the average quiz score; this feature may be miss-

ing, if a student takes no quizzes during an activity
period, but our analysis methods can handle this, see
section 2.2.
• f11, f12, f13 and f14 describe the time spent doing exer-

cises of different complexity, measured by their level in
Bloom’s taxonomy. We regroup the levels of Bloom’s
taxonomy into 4 levels:

f11 Remember/Understand: Exercises involving
reading and describing, e.g. ”Read a map”.

f12 Apply: Exercises involving application of previ-
ously learned concepts, e.g. ”Practice adjectives”.

f13 Analyze/Evaluate: Exercises involving discus-
sion, analysis and experimenting, e.g. ”Work with
the poem”, ”Analyze the game”.

f14 Create: Exercises involving creation of a prod-
uct, e.g. ”Create a cartoon”, ”Write a story”.

Having extracted m features for each student in each period,
we construct the matrix X ∈ Rn×m, where each of the n
rows consists of the feature vector for an active student in
a given activity period. Thus each student occurs several
times in X; once for each period, where they are active.

2.2 Soft Clustering using Non-negative Matrix
Factorization

We will utilize non-negative matrix factorization for our soft
clustering. The use of NMF as a soft clustering technique
has become popular in recent times [10], with applications
within several fields, such as clustering of images and docu-
ments [8, 13]. NMF has also seen success in the educational
data mining community, for clustering tasks, as well as other
tasks such as performance prediction [3, 12].
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i fi Max Mean Variance

1 Hours between 8AM and 4PM 31.85 0.940 0.862
2 Hours before 8AM and after 4PM 71.84 0.174 0.283
3 Hours doing exercises 3.61 0.048 0.019
4 Hours reading texts 7.73 0.344 0.148
5 Hours taking quizzes 23.76 0.231 0.297
6 Hours working with language subjects 58.28 0.531 0.693
7 Hours working with societal subjects 45.96 0.294 0.285
8 Hours working with science subjects 103.69 0.277 0.326
9 Average session length in hours 7.91 0.268 0.027
10 Average quiz score (in [0, 1]) 1.00 0.733 0.034
11 Hours working with Bloom level 1 2.83 0.016 0.006
12 Hours working with Bloom level 2 1.64 0.008 0.002
13 Hours working with Bloom level 3 1.51 0.014 0.003
14 Hours working with Bloom level 4 2.04 0.009 0.003

Table 1: Overview of features.

f1 f2 f3

x1

x2

x3

x4

X

0.0

0.5'
C1 C2

x1

x2

x3

x4

U

f1 f2 f3

C1

C2

V

Figure 2: The soft clustering given by NMF.

NMF is a dimensionality reduction method, in which we are
given a non-negative matrix X ∈ Rn×m

+ and k ∈ N, and wish

to determine U ∈ Rn×k
+ ,V ∈ Rk×m

+ , such that X ' UV.
More specifically, we search for U and V, such that the error
||X − UV||F is minimized, where || · ||F is the Frobenious
norm. For our analysis, we need to be able to handle missing
values in X. In this case the NMF problem is reformulated
as the weighted non-negative matrix factorization, in which
we are also given a binary weight matrix W ∈ {0, 1}n×m,
where a 0 indicates missing data. Now, we wish to find U,V
such that ||W � (X−UV) ||F is minimized2.

U and V admits a soft k-clustering as shown in Figure 2; V
describes the importance of each feature for each cluster (for
instance, f1 has high importance in C1), while U describes
the membership of each data point to the different clusters
(for instance, x3 is mostly in C1, while x4 is in both clusters).

Note, that for NMF, we have X ' UV = UIV = UA−1AV,
where I is the k× k identity matrix and A is a k× k invert-
ible matrix. This means that we may rescale U and V by
this matrix, A, and its inverse. In our analysis, we use this
to rescale V, such that all rows of V (the clusters) sum to
one, thus making the clusters comparable, and membership
of the different clusters easier interpretable.

There exist several algorithms for obtaining the non-negative
matrix factorization of X, for instance basic gradient de-

2� denotes the Hadamard product (element-wise multipli-
cation).

scent, multiplicative update rules and alternating least squares;
[1] gives a good overview in the non-weighted setting. Sev-
eral of these algorithms have been adapted for the WNMF
case, while approaches based on expectation maximization
have also been proposed, see [6]. For our analysis, we will use
the weighted version of the multiplicative update method,
proposed by Lee and Seung [9].

The NMF algorithm given in [9], adopted to WNMF [6], is
as follows:

1. Initialize U and V.
2. Repeatedly update U and V by the following rules:

U← U� (W �X) VT

(W � (UV)) VT

V← V � UT (W �X)

UT (W � (UV))

where division is done element-wise.

The literature explores several ways of initializing U and V;
in our case, we will simply use random initialization. The
alternating optimization steps are applied until the decrease
in error reaches below a set threshold. Finally, Lin has noted
that the procedure described above may not converge to
a stationary point, hence we modify the update rules as
proposed by them [11]. Furthermore, since we in our case
know all missing values of X to be bounded by a constant c,
we modify the above procedure such that 0-weight values of
UV that deviate above c are penalized, i.e. whenever a value
(UV)ij with Wij = 0 gets larger than c, we set Xij = c and
Wij = 1, before the next update step. If (UV)ij decreases
below c again, the weight is reset to 0.

It remains to be seen, how we select the number of clusters,
k. For each experiment, we construct clusterings with k =
1, 2, ..., and stop when the decrease in error going from k
clusters to k + 1 clusters is below some threshold, which
depends on the initial error. As a consequence clusters will
be uncorrelated on a student level, since otherwise we would
pick a lower k.

A.3



f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

C1

C2

C3

C4

C5

0 0.1 0.2 0.3 0.4 0.5

Figure 3: The cluster matrix for the first experi-
ment.

3. EXPERIMENTS AND RESULTS
In this section, we present two different experiments using
the setup described above. In the first experiment, we inves-
tigate the relation between activity, activity type, subject,
time of day, average session length and performance. In
the second experiment, we investigate the relation between
complexities of exercises and subjects.

3.1 Performance and Optimal Behavior
In the first experiment, we investigate the relation between
activity, activity type, subject, time of day, average session
length and performance, i.e. we consider features f1, ..., f10.
The features are extracted and k = 5 is selected, as described
in section 2. We run the WNMF algorithm, and obtain the
cluster matrix V as shown in Figure 3. From the figure, we
can make several observations about the clusters:

C1 In this cluster, we find students mostly working with
the science subjects (f8). These students seem to work
mostly during school hours (f1). The students also
seem to spent a lot of time reading (f4).

C2 Students in this cluster spend a lot of time taking
quizzes (f5). They will spend some time during school
hours (f1) and some time working with language sub-
jects (f6). Furthermore, students in this cluster seem
to both have fairly long average session length and high
performance (f9 and f10).

C3 In cluster C3, we see students working with societal
subjects (f7). They work during school hours (f1) and
spend time reading texts in the system (f4).

C4 This cluster shows a relationship between being ac-
tive in school (f1) and spending time in the language
subjects (f6). Students in this cluster also spend time
reading texts (f4) and doing some exercises (f3).

C5 The most important feature for C5 is f2, i.e. the stu-
dents in this cluster spend most time using the system
during non-school hours. These students spent time in
all subjects, but mostly languages (f6), and they spent
time taking quizzes (f5).

From the clusters, we can see that the impact on perfor-
mance from different behaviors depends on the subject. From
cluster C2, we see that students working mostly with lan-
guage subjects gain most performance from spending time
taking quizzes and working during school hours, whereas
students working mostly with societal (cluster C3) and sci-
ence (cluster C1) subjects gain most from reading texts,
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Figure 4: The distribution of cluster membership
for the first experiment.
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Figure 5: The average cluster membership in each
activity period for the first experiment.

while working mostly during school hours. Note that cluster
C4 indicates that students working with languages may also
improve performance by reading texts, but to a lesser degree
than students working in other subjects. Finally, C5 indi-
cates that working mostly from home and primarily taking
quizzes, does not improve performance. While C5 indicates
this for all subjects, the high importance of f4 indicates
that this most often occur for students working with lan-
guages, confirming the observations from C2. Finally, it is
also worth noticing, that there is a strong relation between
performance and average session length (clusters C1, C2 and
C3), indicating that students, who perform well, also have
longer sessions on average.

From the above discussion, it appears that the behavior in
clusters C4 and C5 are sub-optimal, when considering per-
formance, while students gain more from being in C1, C2 or
C3, i.e. by working during school hours, having longer ses-
sions and taking quizzes (in the case of languages) or reading
texts (in the case of societal or science subjects).

Figure 4 describes the distribution of cluster membership
across all students and all activity periods , i.e. the columns
of the first interval [0, 0.1) gives for each cluster the fraction
of students with 0%-10% membership. We see, that we do
indeed get a soft clustering, with students often belonging
to more than one cluster. Only C3 seems to be the sin-
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Figure 6: The cluster matrix for the second experi-
ment. Note, that a logarithmic scale is used for this
plot.

gle dominant cluster of some students. From the figure, we
also see that students are typically never exclusively in C5,
which is positive, as the behavior observed in that cluster
was not very productive in terms of performance. Other
than that, we generally observe that students seem to dis-
tribute fairly well between the top four clusters, indicating
most time spent during school hours and a varied use of both
quizzes and texts across all subjects.

Next, we analyze how the membership of different clusters
change over time. Figure 5 plots the average membership
for each period, i.e. the average of rows from U belonging to
the given period. The first observation we make from Fig-
ure 5, is that clusters C1, C2, C3 and C4 appear correlated
at the system-wide level. This is due to these clusters being
dependent on the general activity in the online system; most
of the sudden drops occur at the same time as Danish school
vacations, most notably the two larger drops around activity
periods 25 and 79 (see Figure 1). C5 seems to be relatively
unaffected by the general activity, but this makes sense, as
C5 contains mostly students, who work outside school hours,
and thus a lower membership is expected in that cluster in
general, which is also the pattern we see in periods with no
vacation.

Looking at the general distribution between the different
clusters, C3 and C4 seem to be the most dominant, indi-
cating that most students are working with language and
societal subjects and reading texts. Cluster C1 (science sub-
jects) is fairly constant in the non-vacation periods, and C2

seems to increase starting period 80, indicating that more
students spend time taking quizzes. Finally, as mentioned,
C5 is the least active cluster across most periods. One gen-
eral trend for the top four clusters seem to be an increase
in activity during the 112 periods, indicating that students
are spending more time in the system on average.

3.2 Subject and Exercise Complexity
In the second experiment we look at the relation between
subjects and exercises grouped by Bloom’s taxonomy level,
i.e. we consider features f6, f7, f8, f11, f12, f13, f14

We expect three clusters, one for each of the subject classes,
which will tell us how much each Bloom level is used within
each subject class. Figure 6 shows the cluster matrix found.
From Figure 6, we make the following observations:
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Figure 7: The distribution of cluster membership
for the second experiment.
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Figure 8: The average cluster membership in each
activity period for the second experiment.

C1 In the science subjects, only very little of the 3 higher
levels are used, and almost none of reading and under-
standing.

C2 For societal subjects, students have only little activity
in the first 2 levels, a lot in analyzing and evaluating,
and very little activity in creation.

C3 In languages, students have a tendency to read and
understand a lot, and then distribute almost evenly
on the 3 higher levels.

This implies that if we want to attract students to use an
online educational system for languages, focus should be on
exercises with Bloom’s taxonomy level read and understand.
For societal subjects the focus should be on exercises with
analyzing and evaluating. For science we see no preference.

From Figure 7, we see that the clustering has many high
values which is most likely explained by having a teacher
who uses the system exclusively in only one of the subjects,
which we can see happens most often for languages.

As we can see in Figure 8 all three clusters share similar cur-
vature, which is partly explained by holidays. Especially the
science and societal clusters behave seem highly correlated
on a general level. We also see that in all three subjects, the
average time spent during a week has gone from 15 minutes,
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to 45 minutes for languages and 25 minutes for both societal
subjects and sciences. A clear indication that teachers and
students in Denmark are using online educational systems
more, especially for languages.

4. CONCLUSIONS AND FUTURE WORK
Several points can be taken from our analysis. We have
identified three optimal and two sub-optimal behaviors in
relation to subject and performance. One notably conclu-
sion is that students using the Clio Online system during
non-school hours (at home) do not seem to gain any signifi-
cant boost to performance. We also saw how taking quizzes
seems to increase the performance of students in languages,
more so than in other subjects, where reading texts are of
more importance. This fits the intuition that skills such as
grammar need to be trained, in order to be learned. We in-
form how exercises are used depending both on their subject
and their level in Bloom’s taxonomy. And lastly we see that
the average amount of time spent in the system is increasing
both generally and for the individual students in all subjects,
but especially for students working with languages. Further-
more, both experiments show how behaviors can have high
correlation on a system-wide level, despite being uncorre-
lated on the individual student level. While the change of
behavior for individual students was not directly analyzed in
this paper (due to privacy concerns), our method allows for
tracking such individual changes, hopefully helping teachers
encourage optimal student behavior, e.g. by recommend-
ing training quizzes for students working with languages, or
making sure that students are allowed more time to use the
system in school.

In our setting, the number of clusters is fixed. It may be
interesting to use an adaptive clustering strategy instead,
as done in [7], as one might expect clusters to change over
time. In the future, it might also be interesting to include
other features, that were not available to us at this time, for
instance whether a text (or quiz) have been assigned by a
teacher, or whether the student reads it by themselves. For
this study, we also only had access to a limited amount of
data; better and more reliable results might be obtained by
including more data.
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Abstract. Students hiring ghostwriters to write their assignments is
an increasing problem in educational institutions all over the world, with
companies selling these services as a product. In this work, we develop
automatic techniques with special focus on detecting such ghostwriting in
high school assignments. This is done by training deep neural networks on
an unprecedented large amount of data supplied by the Danish company
MaCom, which covers 90% of Danish high schools. We achieve an accuracy
of 0.875 and a AUC score of 0.947 on an evenly split data set.

1 Introduction

The number of Danish high school students using ghostwriters for their assign-
ments has been rising at an alarming rate due to the emergence of several new
online services, allowing students to hire others to write their assignments[1].

We consider in this paper the problem of detecting such ghostwriting, or as
it is more commonly known: authorship verification. Authorship verification is
a common task in natural language processing [2, 3, 4]: Given author α with
known texts t ∈ Tα and unknown text x, determine whether α is the author of x.
Often, a set of texts Tα = T \Tα (T denoting the complete set of available texts)
not written by α is also available, which can be utilized as examples of different
writing styles, when training a model. Note however, that Tα is unlikely to
contain examples written by the true author of x, unlike in the related authorship
identification problem, in which the task is to determine the exact author of x,
given a set of candidate authors and their texts [5, 6].

In this paper, we focus on the problem in high schools. We have access to a
large data set consisting of 130K Danish essays, written by more than 10K high
school students1. Thus we have access to a lot of different authors, each with a
large amount of text. We suggest a generalizing technique for authorship verifi-
cation (as opposed to author specific models); using a Siamese network working
at character level (an approach inspired by [5]), writing style representations
are learned and compared, in order to compute the style similarity between two
texts. Using the similarity measure provided by this network, x are compared to
previous works t ∈ Tα, and a final answer is given by a weighted combination of
the individual similarities. The data used is supplied by MaCom, the company
behind Lectio, the largest learning management system in Denmark.

∗Supported by the Innovation Fund Denmark through the Danish Center for Big Data
Analytics Driven Innovation (DABAI). The authors would like to thank MaCom.

1The data set is proprietary and not publicly available.
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Many previous approaches for authorship verification/identification are based
on excessive feature selection [7, 2], but neural network approaches have also
been considered, for instance [3] who utilize recurrent neural networks for iden-
tification. Previous work on Danish high school essays have used author specific
models for verification/identification [6], but this work is the first neural network
based approach used on this data (and, to our knowledge, in this setting).

2 Method

As mentioned, we solve the authorship verification problem in two steps. First,
we solve the problem of computing the writing style similarity between two texts
by learning the similarity function s : T × T → [0, 1] using a Siamese network
(Section 2.1). Second, we solve the authorship verification problem for author α
by combining similarities computed between the unknown text x and the known
texts t ∈ Tα. We consider several different ways to combine these similarities,
based on their value and relevant meta data. (Section 2.2).

2.1 Network

Several different architectures are considered, using different input channels (e.g.
char, word, POS-tags), and evaluated on a validation set. The architecture of
our best performing network is shown in Figure 1.

Encoding

Comparison

t1

t2

M
e
r
g
e

Embd
d=5

Conv8
k=8, n=700

Conv4
k=4, n=500

GMP

GMP

Embd
d=5

Conv8
k=8, n=700

Conv4
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GMP

GMP

Dense
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s(t1, t2,)

1− s(t1, t2,)

SoftMax

Fig. 1: Network architecture.

The Siamese network can be considered in two parts: encoding and compari-
son, the main idea being to learn an encoding of writing style, that the network
is then able to distinguish. Our network uses only character level inputs.

The encoding part consists of a character embedding (Embd), followed by
two different convolutional layers: Conv8 using kernel size k = 8 and n = 700
filters, and Conv4 using k = 4 and n = 500. Each convolutional layer is followed
by a global max pooling layer (GMP). The weights of Embd andConv8/Conv4
are shared between encoding t1 and t2.

In the comparison part, we first compute the absolute difference between
the encodings in the Merge layer. Afterwards, 4 dense layers with 500 neurons
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each are applied (Dense), and finally, the output is normalized by use of a
softmax layer with two outputs.

2.2 Combining similarities

Having a good estimate of s(t1, t2) for any two texts, we consider different ways
to combine these similarities, in order to give the final answer to an authorship
verification query. More specifically, we consider functions Cs : P (T ) × T →
[0, 1], such that, given x and Tα, we will answer the query positively (i.e. α is
the author of x) if:

Cs (Tα, x) ≥ δ

where δ is a configurable threshold, which describes how likely we are to answer
positively. In the experiments, we consider several different ways to combine
similarities, for instance using weighted sums, the min/max similarity or major-
ity vote, while utilizing meta data such as time stamps and text length. From
the experiments, we found that the optimal strategy was a weighted sum with
weights decaying exponentially with time:

Cs (Tα, x) =
∑

t∈Tα

e−λτ(t)s(t, x) (1)

where τ (t) denotes the time in months since t was written, and λ is a configurable
parameter, which is determined experimentally.

3 Experiment

This section describes our experiments performed on the MaCom data. Sec-
tion 3.1 will describe the preprocessing and partitioning of data. Baselines will
be described in Section 3.2. Finally, Section 3.3 lists and discusses the final re-
sults. We use accuracy, false accusation rate, FAR = FN/(TN+FN), and catch
rate, CR = TN/(TN + FP) as performance metrics.

3.1 Data

The data is partitioned into three sets: Ttrain used for training, Tval used for
early stopping and selecting Cs, and Ttest used only for estimating the metrics
of the final models. The three sets are author disjoint, meaning no author will
appear in more than one of the sets. In an effort to remove invalid data (blank
hand-ins, etc.), we clean the data by filtering according to length (keeping texts
with lengths between 400 and 30,000 characters). Furthermore, some texts were
found to include author revealing information (such as name, address); hence we
removed all proper pronouns from the texts, as well as the first 200 characters.
Finally, authors with less than 5 texts were removed.

After cleaning, the data set contains a total of 131,095 Danish essays, written
by 10095 authors, with an average 13.0 texts per author, and an average text
length of 5894.8 characters.
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For each data set, we construct two types of problem instances: Sim and AV,
used for training the network and selecting the combination strategy respectively.
The data set has no labelled ghostwriters, so we assume all authors to be correct2,
and construct balanced (50/50) data sets as follows:

A Sim instance simply consists of two texts t1, t2 and a label indicating
whether the texts are by the same author. Positive samples are generated by
using t1, t2 ∈ Tα, while negative samples are generated by using t1 ∈ Tα and
t2 ∈ Tα. An AV instance consists of a set of known texts T ′

α, an unknown text x,
and a label indicating whether α is (positive) or is not (negative) the author of
x. Letting tlast denote the most recent text of Tα, samples are generated using
T ′
α = Tα \ {tlast} with x = tlast for the positive sample, and x ∈ Tα chosen at

random for the negative sample.
Table 1 provides an overview of the data after partitioning and preprocessing.

Data set #authors #texts #Sim #AV
Ttrain 5418 70432 934720 10836
Tval 989 12997 173536 1978
Ttest 3688 47666 627744 7376

Table 1: Data set overview.

3.2 Baselines

We will compare our method to Burrows’s Delta method and author specific
SVMs:

Burrows’s Delta method (Burrows) [7] is a method for authorship identi-
fication based on the l1-distance between the z-scores of word frequencies in x
and in the corpus for each of the candidate authors β1, ..., βk. We adapt it for
verification by sampling a set of ’wrong’ authors, β2, ...βk, and querying with x
and β1 = α, β2, ..., βk. answering positively, if x is attributed to α. The top 150
word frequencies are considered. The optimal k is determined using Ttrain.

An author specific SVM [6, 2] is trained for each author in order to recognize
Tα from Tα. Hyper parameters and features are selected using cross validation.
Forward feature selection is used, considering char, word and POS-tag n-grams
for varying n. The SVM will be trained on a balanced set, meaning that only a
limited amount of data is available for each SVM. However, they have previously
been shown to work well in this data set [6].

3.3 Results

Methods were trained and validated on Ttrain and Tval. For Burrows, we found
k = 4 to give the best results, while the parameters C = 10, γ = 103 were found
optimal for the RBF kernel SVM. The optimal combination strategy Cs was

2An undoubtedly false assumption, which will be discussed in Section 3.3
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Fig. 2: ROC (left) and plot of false accusation rate/catch rate (right) on Ttest.

found to be exponentially decaying weights (see (1)) with λ = 0.1. Furthermore,
δ = 0.57 was found to be optimal. Using these parameters, the baselines and
our method were evaluated on Ttest; Table 2 presents the results, while Figure 2
shows the ROC/AUC and a plot of false accusation/catch rate for our method.
As it can be seen, our method clearly outperforms the baselines, on all metrics.

Method Accuracy FAR CR
Burrows 0.677 0.357 0.806

SVM 0.720 0.266 0.689
Our method 0.875 0.141 0.896

Table 2: Results obtained on Ttest

The false accusation rate is especially important considering the use case:
when trying to detect ghostwriting in high schools, making false accusation can
be especially devastating, as students found guilty of cheating could risk se-
vere punishment and maybe even be expelled. Using this metric, our method
performs very well, as illustrated in Figure 2 (right), a fairly low FAR can be
obtained, while still catching a lot of ghostwriters. Optimizing the method on
Tval while restricting FAR < 0.1, we achieved an accuracy of 0.864, FAR = 0.106
and CR = 0.825 on Ttest (with exponential weighting and parameter λ = 0.16).
However, even if these results are promising, the system should only be used as
a warning system for the teacher, who should always have the final say.

An interesting aspect to note about the combination strategy Cs, is that it
takes time into account with λ = 0.1, weighing recent assignments more than
older ones. Since τ (t) measures in months, this means that a recent assignment
gets e12·0.1 ≈ 3.3 times the weight of a one year old assignment. This corresponds
well with the idea that high school students writing style changes over time, as
also observed in [6].

When looking at the low false accusation rates of Figure 2 (right), one have
to consider two things before translating them into practice: a) Ttest is balanced,
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while in reality much less than half of assignments are written by a ghostwriter,
and b) ghostwriting does happen, also in our data set, and thus most likely some
of our labels are wrong. A possible remedy for the second point could be to adjust

FN to FN − TN
TN+FPγT (where γ is the estimated fraction of ghostwriters and

T = TP+FN), and similar for TP, under the assumption that a negative sample
and a corrupted positive sample are indistinguishable. Adjusting for this would
obviously lead to improved accuracy and false accusation rate, but requires a
good estimate of γ.

4 Conclusion

We achieved an accuracy of 0.875, with a false accusation rate of 0.141 and a
catch rate of 0.896. We show how false accusation rate can be improved at
the cost of catch rate and accuracy. Results are good enough for practical use,
and even with a slightly lower catch rate, the system is still expected to have a
preventive effect. However, one has to keep in mind that, in practice, the data
set is not 50/50 balanced, which obviously will affect the results. Making a split
imitating the real world is hard for two reasons: one needs a good approximation
of the actual fraction of ghostwriters, and even if this fraction is known, the
number of corrupt labels would be approximately the same as the number of
negatives, making it impossible to beat a false accusation rate of 0.5, even for
a perfect classifier. Finding a clean data set or establishing ground truth would
alleviate these problems, and could be interesting prospects for future work.

Another interesting direction is to analyze writing style changes over time
more in depth, motivated by the chosen combination strategy and preliminary
experiments, which show how two texts written within a shorter time span have
higher similarity on average.
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ABSTRACT
In this paper we do the first large scale analysis of writing
style development among Danish high school students. More
than 10K students with more than 100K essays are analyzed.
Writing style itself is often studied in the natural language
processing community, but usually with the goal of verifying
authorship, assessing quality or popularity, or other kinds of
predictions.

In this work, we analyze writing style changes over time,
with the goal of detecting global development trends among
students, and identifying at-risk students. We train a Siamese
neural network to compute the similarity between two texts.
Using this similarity measure, a student’s newer essays are
compared to their first essays, and a writing style develop-
ment profile is constructed for the student. We cluster these
student profiles and analyze the resulting clusters in order to
detect general development patterns. We evaluate clusters
with respect to writing style quality indicators, and identify
optimal clusters, showing significant improvement in writing
style, while also observing suboptimal clusters, exhibiting
periods of limited development and even setbacks.

Furthermore, we identify general development trends be-
tween high school students, showing that as students progress
through high school, their writing style deviates, leaving stu-
dents less similar when they finish high school, than when
they start.

Keywords
Student clustering, Writing style analysis, Siamese Neural
Network, Educational Systems

1. INTRODUCTION
One of the most essential skills, learned during the course of
primary, secondary and high school, is writing. While the
main focus of primary school are on basic writing skills (such
as grammar), secondary or high school will be more focused

on improving the linguistic writing style of a student, that
is, the quality of the written text as perceived by the reader.
With many jobs being highly dependent on producing rela-
tively large amounts of well-written text, no justification is
needed for why good writing is an essential skill.

The definition of quality in linguistic writing style is widely
discussed [3, 23]. While correct grammar being a prerequi-
site, several other measures are also correlated to writing
style being perceived as good, for instance use of vocabu-
lary, sentence structure and readability [18]. Our focus in
this work will mainly be writing style development through
the course of high school, while writing style quality will
have a secondary role. We consider data from Danish high
schools, consisting of Danish essays, and investigate the gen-
eral development patterns among the students during the
three years of study. The end goal is to be able to pro-
vide feedback to teachers about the development of their
students’ writing styles. We identify patterns among thou-
sands of students across different classes and institutions,
allowing us to provide teachers with new insights, which the
data available to the teacher might not show. For instance
insights about students, whose writing style development
patterns may be unique within their own classes.

By itself, our method potentially allows for identifying stu-
dents with deviating writing styles development (which might
be good or bad), or students with sudden significant changes
in writing style, which could be an indicator of cheating.
However, we also consider several measures for the quality
of writing. We investigate how these measures correlate with
the different patterns of writing style development found, as
a mean to detect optimal and suboptimal development pro-
files with respect to text quality. Information of this kind
could be used to help teachers tailor their teaching style to
specific groups of students, who may need training in specific
areas challenging to their development profile.

1.1 Our Contribution
As mentioned, we concern ourselves with the development
of linguistic writing style (as opposed to e.g. handwriting)
during the course of high school. Specifically, we investigate
the development of writing style in Danish essays handed-in
by students in Danish high schools 1.

1Note, that high school in Denmark usually consists of three
years of study with students normally starting at age 15-17
and finishing at age 18-20.
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We are interested in determining general patterns of devel-
opment, and to discuss which of the patterns are optimal, in
the sense of improving writing style quality. In particular,
we consider the following questions:

• How does the writing style of a student develop, and
what are the typical kinds of development in writing
style?

• How does writing style changes correlate with mea-
sures of quality?

• How does writing style similarity between students be-
have, with respect to how far the students are in their
education?

Our study is based on data from the company MaCom2, who
is behind the learning management system Lectio, a system
used by 90% of Danish high schools. Students submit their
written essays through Lectio, giving MaCom access to a
huge corpus of Danish texts by high school students, marked
with author and date of submission.

Our approach is based on methods from authorship verifica-
tion; in order to learn a similarity measure for writing style,
we consider examples of writing styles in texts from the same
or different authors, similar to how it is done in verification
tasks. We use a Siamese neural network for learning this
similarity measure. While training, time is not taken into
account. Assuming that writing style actually changes over
time, this will lead to a suboptimal network. However, test-
ing the network, we see clear patterns in how the ”errors”
distribute for a single author, indicating that the network
simulates the best similarity measure possible, and the ”er-
rors” are actual changes in writing style. Using this method,
writing style development profiles are generated and clus-
tered for a large set of students. Analyzing the clusters, we
see optimal and suboptimal types of development. In gen-
eral, the average similarity is found to decay with time to a
great extend, which corresponds well with the general per-
ception, that writing style changes during high school, and
also matches conclusions made in the literature [4,9,25].

While this paper presents a case study of the data from
MaCom, the methods used for analysis are of independent
interest, and not specific to the Danish language or high
school, except for the neural network, which would at least
require retraining in the given language. Considering other
network architectures than the one used in this work, might
also improve upon the analysis, see for instance [19] for a
network used with English.

1.2 Related Work
Writing style analysis, in one way or another, has been stud-
ied in the natural language community for many years. Typ-
ically, the analysis of writing style is used as a middle link
for tasks such as authorship verification [19,24,25], in which
a text of unknown authorship is given, together with a set of
texts by some known author, and we wish to verify, whether

2The data set is proprietary and not publicly available

the given author is the author of the unknown text. Simi-
larly, in authorship attribution the unknown text must be at-
tributed to one of several known authors. Traditional meth-
ods for verification and attribution utilize both unsupervised
methods from the field of outlier detection [24], as well as
standard supervised learning techniques, such as SVMs [9]
and techniques based on neural networks [19,25].

Other uses of writing style analysis include distinguishing
features of the writer (e.g. sex and age [1,17,21,22], demo-
graphics [2], or nationality [12]), using supervised learning
algorithms such as SVMs, random forest, and neural net-
works. Other studies have investigated written conversa-
tions on online forums, trying to infer whether one person
is trying to convince another [8].

Some studies investigate the quality of writing, for instance
prediction of popularity of news articles [27], or the quality
of scientific articles [14]. The former uses the popularity of
an article on social media as a measure of quality, while the
quality measure of scientific papers considered in the latter
is based on acceptance of a paper to ”The Best American
Science Writing”, an anthology of popular science articles
published in the United States on a yearly basis.

Few studies consider development of writing style as the
main objective. [5] uses neural network models to track style
of handwriting (i.e. not linguistic writing style) and investi-
gate the development of handwriting among young students,
and how similar it is when compared to different students,
in the same/different grade level. [3] shows how students in
higher grades get higher scores for their essays from teach-
ers, in a blind experiment, where all student information is
hidden from the grading teacher. [4] considers two famous
Turkish writers, investigating their change in writing style
over time, the most significant finding being average word
length increasing with the age of the author.

Finally, several studies related to writing style have been
conducted using the data available from MaCom. [9] in-
vestigates temporal aspects of authorship attribution, and
concludes that considering more recent essays improves au-
thorship attribution algorithms, indicating that the writing
style among high school students does indeed change with
time. [25] also uses the MaCom data for testing their neural
network based authorship verification methods; their results
also support these findings.

2. METHODS AND SETUP
This section describes our experimental setup and methods.
We start by giving some basic notation.

We consider a set of students A, and let α ∈ A denote a
single student with texts t ∈ Tα. Furthermore, let T =
∪α∈ATα denote the entire corpus of texts.

Since our main focus is how the writing style of a student
develops during the time they spend in high school, we are
interested in computing a similarity function s : T × T →
[0, 1], allowing us to compare the writing style between two
texts. As mentioned, we utilize a Siamese neural network
to compute s; this approach is widely used for computing
writing style similarity [7, 19, 25], specifically, our network
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Figure 1: Network architecture.

will be similar to that of [25]. Section 2.1 will describe our
network in detail.

The similarity measure s found will then be utilized for writ-
ing style analysis. Primarily, we will focus on determining
development patterns by generating a writing style develop-
ment profile Pα for each student α. These profiles are then
clustered and analyzed with respect to different measures
for text quality. The profile generation and clustering are
described in more detail in Section 2.2.

Finally, we also explore how the similarity between random
students change depending on their current progress through
high school. This is done by sampling random pairs of texts
t1 ∈ Tα, t2 ∈ Tβ and computing their similarity. We then
consider how the similarity changes depending on if α and
β are in the same grade or not.

2.1 Text Similarity using a Siamese Neural Net-
work

As mentioned, we use a Siamese neural network for com-
puting the similarity s(t1, t2) between two texts t1 and t2.
We considered several different architectures, using different
input channels (e.g. char, word, part of speech tags). These
architectures were evaluated using a validation set (see Sec-
tion 3.1), and the best architecture was selected, as shown in
Figure 1. The network relies only on character level inputs.

The basic philosophy behind the network is to a) encode the
two texts in some space using a replicated encoder network
with shared weights, and b) compare the two texts in this
space.

• The encoder network in the encoding part of our net-
work consists of a character embedding (using ReLu
activation functions), followed by two different convo-
lutional layers (CONV): one using kernel size k = 8
and n = 700 filters, and one using k = 4 and n = 500,
each followed by global max pooling layers (GMP).

• In the comparison part of the network, the MERGE
layer first computes the absolute difference between
the outputs of the two encoder networks. Afterwards,
four dense layers (DENSE) with 500 neurons each are
applied, using ReLu for activation function and with a
dropout of 0.3. Finally a two neuron softmax layer is
used to normalize the output.

Using the convolutional layers, the network extracts charac-
ter n-grams. Specifically, it compares 8- and 4-grams. Char-
acter n-grams have been shown to be an important feature
in writing style analysis tasks such as authorship attribu-
tion [24]. We did also consider architectures using recurrent
networks, however none of them performed as well as con-
volutional networks.

2.2 Student Profiling and Clustering
As mentioned, we construct writing style development pro-
files for the students, in order to analyze the general develop-
ment patterns. The profile Pα for student α is constructed
by first determining their initial writing style. The natu-
ral way to do so, and indeed our approach, is to consider
their early work. One or more texts may be used to rep-
resent the initial writing style, as a trade off between the
amount of data available for the profile and the robustness
of the initial writing style estimation. Pα then consists of
a chronologically ordered sequence of similarities, between
any t ∈ Tα and this initial writing style. More specifically, if
t1, t2, ..., t|Tα|, ti ∈ Tα is a chronologically ordering of Tα, we
compute the similarity pi between ti and the initial writing
style by:

pi =
1

m

m∑

j=1

s(ti, tj),

where m is the number of texts used for representing the
initial writing style. Since the first m texts are part of the
initial writing style, p1, p2, ..., pm are not independent, and
thus we exclude the first m−1 texts, and re-index such that
pj = pi−m+1. Furthermore, for each text, we let τj denote
the time in months since tm was written, i.e. the time since
p0, with τ0 = 0. Now, the final profile becomes the sequence
consisting of pairs (τj , pj) of length |Tα| −m+1. Note that
the profile now describes a curve.

These profiles are now clustered using a slightly modified k-
means clustering. Before clustering, for each profile Pα, an
approximate profile P̂α is constructed by interpolating val-
ues between any two consecutive pairs (τj , pj) and (τj+1, pj+1),

in intervals of 0.05 months. Thus P̂α becomes a vector
P̂α ∈ [0, 1]ℓα consisting of similarities for every 0.05 month,
with length ℓα.

These approximate profiles are then clustered. The cluster-
ing is complicated by profiles having variable length: P̂α has
length ℓα depending on τ|Tα|−m+1 (the time span between
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tm and tTα), specific to α. Hence, distance computation used
in the clustering algorithm is modified slightly; we compute
the distance dist(P̂α, P̂β) between two profiles P̂α and P̂β

by computing the Euclidean distance between the prefixes
of length ℓ = min {ℓα, ℓβ} of the two profiles:

dist(P̂α, P̂β) = distE(P̂α[1...ℓ], P̂β[1...ℓ]),

where distE denotes the Euclidean distance, and v[1...n] de-
notes the prefix of length n of vector v.

Similarly, when computing centroid Cr for cluster Cr, profile
P̂α contributes only to the ℓα first entries of Cr. Thus, with

Cj
r =

{
P̂α|P̂α ∈ Cr, ℓα ≤ j

}
, the j’th entry of Cr is then

computed as:

Cr[j] =
1

|Cj
r |

∑

P̂α∈Cj
r

P̂α[j]

where v[j] denotes the j’th entry of vector v.

The clustering is initiated by selecting k profiles at random
as the initial clusters, and then continually reassigning pro-
files and recomputing centroids for clusters. Having reas-
signed the profiles, the EC is computed:

EC =
1

|A|
k∑

r=1

∑

α∈Cr

dist(P̂α, Cr)

The algorithm iterates until the change in cluster error EC
is sufficiently small (EC ≤ 10−6), or until a set number of
maximum iterations (100) is reached.

Selecting the number of clusters k is an inherent problem in
all unsupervised learning task. One approach is to base the
decision on domain knowledge, and select the ”right”number
of clusters. We will instead make use of the so called elbow
heuristic which relies on looking at how the error decreases
with the number of cluster and pick at the ”elbow” in the
resulting curve [26].

Having determined the parameter k and found k clusters, we
compute a few statistics and writing quality indicators for
each cluster. Specifically, we will compute the average noun
and verb phrases, defined as the ratio between nouns and
sentences, and the ratio between main verbs and sentences
respectively. These measures, especially verb phrases, have
been shown to correlate well with readability, which corre-
lates with text quality [18]. Furthermore, we compute the
simple measure of Gobbledygook (SMOG) grade [16], a mea-
sure estimating the grade level required for understanding
the text. The SMOG grade is computed as:

SMOG = 1.0430

√
30nw∗
ns

+ 3.1291,

where nw∗ is the number of words of 3 or more syllables,
and ns is the number of sentences [16].

Note that the study showing correlation between noun and
verb phrases, and readability, is done on English texts. The
SMOG grade as well is defined with the purpose of evaluat-
ing English texts. Hence, one must be careful when basing
conclusion on these measures when used on Danish. How-
ever, we believe they can still provide information about the

development, even if the exact computed value might be
hard to interpret.

3. EXPERIMENTS AND RESULTS
In this section, we present the data, the experimental setup,
and the results obtained. Section 3.1 presents the data, how
it is preprocessed and split for training and analysis and
some basic statistics. Section 3.2 describes the training of
the Siamese neural network, while Section 3.3 describes the
clustering and shows the resulting clusters.

3.1 Data
The full data set made available to us by MaCom contains
around 130K essays by approximately 10K students, with
an average length of about 6K characters. The data set
was cleaned by removing very short (≤ 400) and very long
(≥ 30, 000) texts, in order to get rid of outliers/invalid essays
(blank hand-ins, garbled texts, etc.). Furthermore, proper
pronouns were substituted with placeholder tokens and the
first 200 characters of each text were removed, in an effort
to remove any data identifying the real author of the text,
as such clues could be picked up by the neural network and
lead to overfitting. Finally, authors with less than 5 texts
were removed. Following this cleaning, the data set contains
a total of 131,095 Danish essays, written by 10095 authors,
with an average 13.0 texts per author, and an average text
length of 5894.8 characters.

We partition the clean data into two author disjoint sets:
Tnetwork used for training the neural network, and Tanalyze,
which we analyze using the trained similarity function. Tnetwork

is further split into a training set Ttrain and a validation
set Tval (also author disjoint), used for early stopping when
training the network. As the analysis relies heavily on a
strong similarity function, the majority of the data (around
two thirds) is used for Tnetwork. The exact sizes are given
in Table 1.

Data set #students #texts #Sim
Ttrain 5418 70432 934720
Tval 989 12997 173536

Tanalyze 3688 47666 N/A
Total 10095 131,095 1108256

Table 1: Data set overview. The table lists the num-
ber of students and texts, as well as the number of
problem instances #Sim for training the Siamese
neural network.

Data for network training
For training and evaluating the Siamese neural network, we
require problem instances consisting of a pair of texts, and a
label indicating whether they are by the same author (pos-
itive sample) or by different authors (negative sample). We
refer to these instances as Sim-instances, and generate them
for the training set Ttrain and the validation set Tval.

Positive Sim-instances are generated by using ti, tj ∈ Tα

with i 6= j, while negative instances are generated by using
ti ∈ Tβ1 and tj ∈ Tβ2 , where i, j, β1, β2 are selected at ran-
dom, with β1 6= β2. A balanced 50:50 data set is generated
by generating the maximum number of positive instances
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Figure 2: Statistics for Tanalyze. Distribution of stu-
dents according to number of essays written (left)
and total number of essays written at any time dur-
ing a students stay in high school (right).

for each student, and an equal number of negative instances.
The final numbers of Sim-instances for Ttrain and Tval are
shown in Table 1.

Note, that in generating these samples, we assume all claimed
authors in the data to be the real authors; in reality, sev-
eral students may use ghostwriters or plagiarism, in which
case the labels will be wrong. However, we expect that the
number of invalid labels is low.

Data for clustering and analysis
The clustering is performed on the remaining data in Tanalyze.
Each data point consists of a single student and their texts.
As mentioned, an author has around 13 texts in average, dis-
tributed over three years; the actual distribution is shown
in Figure 2 (left)3.

Figure 2 (right) shows the number of essays handed in during
the three years of high school. The summer vacations are
clearly visible in the plot. Note also, that the number of
hand-ins drops during the third year. A few students spend
more than three years (not shown in the figure), but as only
a few students hand-in after 30 months, we consider only
the data within 30 months in the experiments4.

3.2 Neural Network Training
The similarity network described in Section 2.1 was imple-
mented using TensorFlow. We generate Sim-instances for
Ttrain and Tval, and optimize the network for cross en-
tropy using the Adam optimizer. The final network ob-
tains a training loss of 0.5026 and a validation loss of 0.5357.
Rounding the computed similarity to 0 or 1, we can compute
an accuracy of 0.7451 for the training set and an accuracy
of 0.7178 for the validation set. Figure 3 shows a plot of the
loss and accuracy, as the network was trained.

3.3 Clustering
Using the similarity network to compute the similarity func-
tion s, we construct profiles as described in Section 2.2. We
found that using m = 2 texts for determining the initial

3Recall that, students with less than 5 essays is not consid-
ered in this study.
4The time span considered is smaller than three years (36
months), since we measure the time from first hand-in until
the last. Combining this with vacation and finals, most stu-
dents appear to only be active within the 30 month period.
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Figure 3: Plot of training (solid) and validation
(dashed) loss (left) and accuracy (right), the latter
computed by rounding the output. Minimum vali-
dation loss was obtained at epoch 5.
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Figure 4: The cluster error EC obtained for various
values of k.

writing style yielded good results. Thus, profile Pα consists
of |Tα| − 1 pairs (τj , pj) with:

pj =
s(tj+1, t1) + s(tj+1, t2)

2
.

and τj being the time in months since hand-in of t2. With
a single profile constructed per student, the total number
of profiles is equal to the number of students, as given in
Table 1. As mentioned, the lengths of the profiles depend on
the number of texts written during the time, they spend in
high school. Thus the distribution of the lengths of profiles
follows that presented in Figure 2 (left).

We now apply the elbow method in order to determine the
optimal number of clusters k. We compute a clustering for
k = 2, 3, ..., 9, and plot the resulting cluster error EC in
Figure 4.

Based on Figure 4, we select k = 5, as the curve flattens
considerable for k = 6. The final clustering is performed,
obtaining five clusters: C1, C2, C3, C4, and C5, with a cluster
error of EC = 0.01407. The curves representing the final
clusters are shown in Figure 5, while Table 2 lists the num-
ber of members in each cluster. Furthermore, we sampled
two million random pairs of texts with random (different)
authors, and computed the similarity for these samples, ob-
taining an average of 0.3470. This average is also plotted in
Figure 5, while the similarity with respect to time is plotted
as a heat map in Figure 7.

Finally, Figure 6 shows a more detailed view for each cluster.
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Figure 5: The curves representing the five clusters
found. The average similarity between random texts
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Cluster #students
C1 603
C2 720
C3 884
C4 969
C5 512

Table 2: The number of students in each cluster.

The similarity curve plots include a plot of the middle 90%
of profiles in each cluster. The SMOG score, the noun and
verb phrases, and the average text length (in words) are
also plotted, as indicators for writing quality changes for
the given cluster, see also Section 2.2.

Note, that in visualizing and inspecting the clusters, we con-
sider only data until 30 months, since, as mentioned, only
few students are active after 30 months, and the number of
data points contributing to that part of the cluster curve
becomes small.

4. ANALYSIS AND DISCUSSION
This section presents our analysis and discussion of the five
clusters found. Section 4.1 describes and discusses the char-
acteristics of each cluster. Section 4.2 discussed how simi-
larity between random students behaves with time.

4.1 Cluster Analysis
When analyzing the clusters, three properties are important
in order to understand a cluster: the initial value of the
curve, the shape of the curve, and the total change from start
to end. The initial value of the curve describes the similarity
between the second text of a student and their initial writing
style, which is based on the first two texts of the student.
Thus a smaller initial value indicates a high initial variance

in writing style, which could be an indication of a developing
writing style. The shape of the curve describes the rate of
change in writing style. And finally the total change tells us
how much the writing style has evolved.

While the similarity curves themselves give no information
about the quality of the writing, we will use the indicators of
writing style, described in Section 2, in the discussion: the
SMOG grade, and the noun and verb phrases per sentences.
For each of these indicators, the average curves for each
cluster are plotted in Figure 6.

Before discussing each cluster in detail, we note some pat-
terns common for all clusters. Across all clusters, it seems
the number of words written increases (with the exception
of C5), and the increase seems to be correlated with the cor-
responding decrease in similarity. Furthermore, on average,
students in all clusters appear to be improving with respect
to the quality metrics. While positive, some clusters see a
smaller increase than others, indicating that these clusters
represents suboptimal development profiles. Finally, we note
for the SMOG grade, that the maximum increase, occurring
in C1, is only slightly above 1, which might not seem impres-
sive across three years. However, as discussed in Section 2.2,
the SMOG grade is a measure designed for readability of En-
glish texts, and thus may not be entirely accurate for Danish
texts.

Below follow detailed descriptions of each cluster:

C1 The initial similarity of C1 is the lowest among the clus-
ters found. Furthermore, the similarity drops rapidly
during the first year, and continues the decline, leading
to C1 having the lowest final similarity with the initial
writing style, among all the clusters. In fact, the sim-
ilarity between the first and the last assignments for
students in this cluster is so low, that they could just
as well have been written by different students, as can
be seen when comparing to the average similarity be-
tween random students plotted in Figure 5. Thus, C1

contains students with a significant change in writing
style, happening mostly during the first year of high
school. Considering the other metrics plotted in Fig-
ure 6, we first note the increase in number of words
written, as it is particular extreme in the case of C1,
increasing by almost a factor 2 from start till end. This
increase also helps explain the decrease in similarity in
two ways: a) length is itself a part of writing style rec-
ognized by the network, and b) it seems that writing
style changes is correlated with when you start writing
more. Looking at the SMOG grade, we see an over-
all large increase, indicating that the students of C1

does indeed improve, especially compared to the other
clusters. Nouns and verbs per sentence are also both
increasing, which also indicates that the students in
this cluster write longer sentences.

C2 The initial value of cluster C2 of about 0.84 (third high-
est among the clusters) indicates an initial low variance
in writing style, but the following drop to about 0.4 is
quite significant, indicating that the writing style of
students in C2 change a lot during high school, simi-
lar to C1. However, where C1 had a sudden drop in
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similarity, the change in C2 is more constant.

Considering the other metrics, we see the number of
words written is increasing from about 800 to almost
1200, while the SMOG grade is again showing a large
increase from about 10.3 to 11.3. Noun and verb phrases
see modest increases. All in all, the metrics indicate a
good development of writing style among students in
C2, similar to C1. However, the more gradual change
in similarity of C2 is preferable to that of C1, as the
development does not stagnate already after the first
year.

C3 After a significant initial drop in similarity in C3, the
similarity actually increases again after the first year,
showing the students in this cluster actually reverts to
writing style more similar to their original work, before
dropping a bit again in the last months. This corre-
sponds well with a smaller improvement in e.g. SMOG
grade (around 0.5) compared to the other clusters.

The setback seems to start around the first summer va-
cation. While not necessarily bad (as students could be
reverting back from a worsened writing style), the in-
crease in similarity could indicate reverting to a worse
writing style. As such, students in C3 may be at risk.
Many remedies for helping these students could be
imagined, from simply encouraging the student to write
during their vacation, to going to summer school.

C4 The similarity of C4 drops slightly at first, but then de-
creases slowly at a constant pace, until it reaches a sim-
ilarity of about 0.6. The total change is smaller than
several of the other clusters, as is the improvement in
both SMOG grade and noun/verb phrases, indicating
that students in the cluster improve less than students
in e.g. C1 and C2.

This indicates suboptimal development among students
in C4; while we do not see students reverting back, as
in C3, the lower increase in SMOG grade is alarming,
indicating students in this cluster may be at risk, and
in need of extra attention or encouragement. As for C3,
the total number of words also increases only slightly
at a steady pace, from around 900 to 1100.

C5 Cluster C5 seems quite distinct from the other clus-
ters. Most notably, students in this cluster have the
highest initial similarity, while also decreasing the least
amount, ending with a very high similarity of about
0.75. Furthermore, the number of words written is
quite high and remains fairly stable, which is quite
different from the other clusters, and might be part
of the reason the decrease in similarity is as low as it
is. Despite the fall in similarity being so low, we still
see an increase in SMOG score from about 10.5 to a
bit below 11.5, indicating that students are, in fact,
improving. A similar pattern occurs for the noun and
verb phrases.

The higher-than-average initial SMOG grade and num-
ber of words written, indicates that students in C5 are
the initially strong students. While they do develop
their writing style, they do not improve as much as stu-
dents in C1 and C2; this could be an indication, that
schools do not manage to properly encourage/teach
students, who are initially strong.

While not included in the plots, we also investigated sev-
eral other metrics for the clusters and the set of students
in general. Most notably, the average word length increases
with time for all clusters. A similar trend was seen in [4],
although the study was in a very different setting and time
frame.

Summarizing the clusters, the development in SMOG grade
was greatest for C1 and C2, making those clusters appear the
most beneficial for writing style development. While stu-
dents in C5 also increased their SMOG grade, they started
higher than the students in the other clusters, and did not
manage to improve as much as C1 and C2. As to C3 and C4,
they seem to be suboptimal with regards to writing style
development, and students in these clusters may need at-
tention.

Looking at Table 2, we see that C3 and C4 are the largest indi-
vidually, indicating that quite a few students are exhibiting
suboptimal writing style development. However, the major-
ity of students included in our data are located in C1, C2 and
C5, indicating optimal or at least fair development through
high school.

4.2 Investigating Similarity Between Random
Students

As mentioned, we also investigated how the similarity de-
velops between different students, across the time spent in
high school. Based on roughly 2 million sampled text pairs
from different students, we computed the average similarity
between random students to be 0.3470. As seen in Figure 5,
the similarity observed among students in C1 actually drops
below this value. This motivated a further investigation of
how the similarity between different authors behave on av-
erage, conditioned on how long time they each have spend
in high school. Based on the samples, we constructed the
heat map shown in Figure 7.

The plot shows students starting out similar in writing style
and then becoming less similar as time passes. The most
surprising thing to notice is that a student in their first year
and a student in their third year are equally or even more
similar in writing style on average, compared to two different
students in their third year. One explanation could be that
the initial space of possible writing styles start out small and
grows as students are educated, i.e. writing styles among
students coming from primary school are fairly similar, but
grow more diverse during high school. One would expect
some writing styles to diminish or even disappear, but from
this data it looks like more new and diverse writing styles
develop, than disappear. And not only that; the amount
of possible directions for the writing style to develop is so
large, that we see first and third year students as equally
or more similar on average, than two students both within
their third year.

Education is sometimes accused of destroying individuality
and/or creativity; these findings indicate the opposite to
such claims, at least in regards to writing style.
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Figure 7: Heat map showing the average similarity
between different authors, depending on how long
time the two authors have been in high school.

5. CONCLUSIONS AND FUTURE WORK
We trained a Siamese neural network to be able to tell people
apart by their writing, and used this network as a similar-
ity function for analyzing the development of writing style in
Danish high schools. Writing style development profiles were
constructed for 3688 students, and five clusters were found
and discussed. Based on quality indicated by noun/verb
phrases and SMOG grade, two were found to be optimal,
while three were found to be suboptimal, especially two clus-
ters exhibited limited improvement.

The optimal clusters both exhibited a large degree of change
in writing style, although at different rates, while the sub-
optimal clusters showed less development, with one cluster
even reverting back to an earlier writing style. The setback
in similarity occurred around the summer vacation after the
first year. The effect of summer vacation on student learn-
ing is highly discussed topic among researchers, teachers,
and parents [15]; in the case of the found cluster, the effect
appears to be negative.

One tendency, we saw in all clusters, was that writing style
changed more when students start writing more words in
their essays. It does not seem surprising that your writing
style changes as you write more, but it could be an indica-
tion of even more: writing style changes, when students are
pushed out of their comfort zone, i.e. in the end of their as-
signments, when they write more than what they usually do.
It could be interesting to investigate the scenario, where a
student starts writing longer texts: does changes in writing
style occur in the entire text, or only near the end, where
the student is literally writing more than before?

Furthermore, we saw from Figure 7 how students become
less alike, as they go through high school. Specifically, we
saw how first year and third year students had higher or
equal writing style similarity than two students both in third

year, indicating that as Danish students go through high
school, their writing styles diverge and become more indi-
vidual.

5.1 Future Work
It is easy to pose several new questions based on the clusters
found and the conclusions made above.

With regards to improving the analysis, using different qual-
ity measures tailored to Danish instead of SMOG would be
interesting. Another way would be to consider the grades
given to the students (as many essays in Danish high school
are graded individually), although good writing style is only
a requirement for a good grade, but not sufficient.

As mentioned above, one could also consider a more fine
grained analysis, by investigating style changes within texts,
and maybe even being able to pinpoint exactly where in a
text the writing style develops/changes. One could easily
imagine drawing inspiration from studies of style breach de-
tection [10,11,20].

One could also investigate prediction of writing style devel-
opment, possibly based on the methods used in this study.
This would allow for an early warning system, allowing iden-
tification of at-risk students, e.g. students likely to have a
setback in writing style due to summer vacation.

The methods used in this study build upon methods used
for authorship verification, in which Siamese networks are
utilized directly in order to verify authorship [25]. While a
sudden deviation in writing style could be an indication of a
ghost writer, detecting these reliably using our method will
probably not be able to compete with the more direct meth-
ods. However, the results obtained here could potentially be
used to improve authorship verification techniques, with re-
spect to the fairness perspective: The fact, that the clusters
found show such different similarity development, is of in-
terest from a fairness perspective. Fairness is a general issue
in machine learning algorithms where the predictions have
severe consequences [6, 13]. In the setting of ghost writing
detection in high school it is extremely difficult to get non-
artificial negative samples and even guaranteeing correctness
of labels is rare in large scale data sets. Which makes fair-
ness even more difficult to measure than usual. It could be
interesting to check that clusters such as C5, which would
be the cluster most likely to be classified as a false negative,
have a representative distribution in regards to gender, race,
social status, etc.

Another interesting course of study, would be to further in-
vestigate the fact that students seem to become less similar
during high school. It could be interesting to pursue this on
a larger timescale, perhaps all the way from primary school
and on through college. Another take could be to look at
how similarity in writing among people behaves with age
after they have finished their education. Will the trend con-
tinue?

Finally, one could investigate how similarity in writing de-
velops among the genders. Several studies have shown, with
some success, that gender can be predicted from writing
[17,21,22], but no one has settled whether this is due to bi-
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ology or environment. One could try to answer this question
by looking at how similarity in writing style changes with
age, while considering three groups: female-female, male-
male, female-male. If the cross gender similarity changes
faster than same gender similarity, it would be an indication
that the differences in writing style are taught, more than it
is something you are born with.
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Abstract Existing guarantees in terms of rigorous upper bounds on the generalization error
for the original random forest algorithm, one of the most frequently used machine learning
methods, are unsatisfying. We discuss and evaluate various PAC-Bayesian approaches to
derive such bounds. The bounds do not require additional hold-out data, because the out-of-
bag samples from the bagging in the training process can be exploited.

A random forest predicts by taking a majority vote of an ensemble of decision trees.
The first approach is to bound the error of the vote by twice the error of the corresponding
Gibbs classifier (classifying with a single member of the ensemble selected at random).
However, this approach does not take into account the effect of averaging out of errors
of individual classifiers when taking the majority vote. This effect provides a significant
boost in performance when the errors are independent or negatively correlated, but when
the correlations are strong the advantage from taking the majority vote is small. The second
approach based on PAC-Bayesian C-bounds takes dependencies between ensemble members
into account, but it requires estimating correlations between the errors of the individual
classifiers. When the correlations are high or the estimation is poor, the bounds degrade.

In our experiments, we compute generalization bounds for random forests on various
benchmark data sets. Because the individual decision trees already perform well, their
predictions are highly correlated and the C-bounds do not lead to satisfactory results. For
the same reason, the bounds based on the analysis of Gibbs classifiers are typically superior
and often reasonably tight. Bounds based on a validation set coming at the cost of a smaller
training set gave better performance guarantees, but worse performance in most experiments.
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2 S. Lorenzen et al.

1 Introduction

A random forest is one of the most successful machine learning algorithms (Breiman,
2001). It is easy to use and to parallelize and often achieves high accuracies in practice
(Fernández-Delgado et al., 2014). In a survey on the machine learning competition website
kaggle.com1, 46% of 16.000 surveyed users claimed to use the algorithm in their daily work.
A random forest for classification predicts based on the (possibly weighted) majority vote
of a set (an ensemble) of weaker classifiers, concretely decision trees. The model was first
presented by Breiman (2001), who provides an initial analysis and some theoretical bounds,
showing that the strength of the random forest depends on the strength of individual trees and
their correlation. Despite its popularity in practice, the algorithm is still not well understood
theoretically (Arlot and Genuer, 2014; Biau, 2012; Denil et al., 2014), the main reason being
that the model is difficult to analyse because of the dependencies between the induced par-
titions of the input space and the predictions within the partitions (Arlot and Genuer, 2014).
The conceptually simpler purely random forests (Breiman, 2002) avoids these dependencies
by creating a random partitioning independent of the training data. This is done by selecting
features and splits at random. Biau et al. (2008) show the purely random forests to be consis-
tent under some assumptions on the distribution of the input variables. Several modification
of the random forest have been introduced in the literature, most of them being in between
the standard random forest and the purely random forest in the sense that extra random-
ness is added to get independent partitions (Geurts et al., 2006; Genuer, 2010). For instance,
Wang et al. (2016) introduce the Bernoulli random forests, which relies on Bernoulli random
variables for randomly choosing the strategy for partitioning the input space, and prove this
model to be consistent. Likewise, Denil et al. (2014) give a variant based on sampling of
predictions in a partition for determining best splits, and prove this variant to be consistent.
Theoretical bounds on the expected loss have been considered by Genuer (2010) in the
case of regression tasks when the input space is one-dimensional. Arlot and Genuer (2014)
consider the generalization error for the purely random forest in relation to the number of
trees. All these have nice analytical properties, but these come at the expense of degradation
in empirical performance compared to the standard random forest. Accordingly, the original
random forest still remains the best choice in practice (Wang et al., 2016), despite the lack
of strong theoretical guarantees.

This study considers the application of theoretical bounds based on PAC-Bayesian anal-
ysis to the standard random forest as given by Breiman (2001). Here PAC stands for the
Probably Approximately Correct frequentist learning model (Valiant, 1984). PAC-Bayesian
approaches are usually used for analysing the expected loss of Gibbs classifiers. Gibbs clas-
sifiers are randomized classifiers that make predictions by applying a hypothesis drawn from
a hypothesis class H according to some distribution ρ on H (McAllester, 1998; Seeger,
2002; Thiemann et al., 2017). While generalization bounds for Gibbs classifier may at first
not seem directly applicable to majority vote classifiers, they are in fact closely related. It
can be shown that the loss of a ρ-weighted majority vote classifier is at most twice that
of the associated Gibbs classifier, meaning that any bound for a Gibbs classifier leads to a
bound for the majority vote (Germain et al., 2015). However, such adaptation of the bounds
for Gibbs classifiers typically provides relatively weak bounds for majority vote classifiers,
because the bounds for Gibbs classifiers do not take into account dependencies between
individual classifiers. One of the main reasons for the good performance of majority vote
classifiers is that when the errors of individual classifiers are independent they tend to av-

1 http://www.kaggle.com/surveys/2017

A.6



On PAC-Bayesian Bounds for Random Forests 3

erage out (Breiman, 2001). Therefore, the majority vote may perform very well even when
the individual classifiers are weak (i.e., only slightly better than random guessing). In this
case, application of PAC-Bayesian bounds for the Gibbs classifier to the majority vote yields
suboptimal results.

This has motivated the development of PAC-Bayesian bounds designed specifically for
averaging and majority vote classifiers (Germain et al., 2015; McAllester, 1999; Oneto et al.,
2018). One such bound is the C-bound, given by Germain et al. (2015), which is based on
the margin of the classifier. In contrast to the bounds for Gibbs classifiers, the C-bound
takes the correlations between the individual classifiers into account and could potentially
yield tighter bounds in the case described above. However, in the case with strong individual
classifiers and high correlation (as is the case for random forests), the C-bound deteriorates
(Germain et al., 2015) – in contrast to the Gibbs classifier bounds.

In this study, several of the above mentioned bounds are applied to the standard random
forest setting, where trees are trained using bagging, that is, using different random subsets
of the training data (Breiman, 2001, 1996a). Since validation sets for individual trees are
constructed as part of the training procedure when using bagging, the theoretical bounds
come “for free” in the sense that no separate data needs to be reserved for evaluation. We
compare the quality of bounds obtained in this setting with bounds obtained by leaving out
a validation set for evaluation. We also consider optimization of the weighting of the voters
by minimization of the theoretical bounds (Thiemann et al., 2017; Germain et al., 2015).

2 Background

We consider supervised learning. Let S = {(X1,Y1), . . ., (Xn,Yn)} be an independent identically
distributed sample from X×Y, drawn according to an unknown distribution D. A hypothesis
is a function h : X → Y, and H denotes a space of hypotheses. We evaluate a hypothesis
h by a bounded loss function ℓ : Y2 → [0,1]. The expected loss of h is denoted by L(h) =
E(X,Y )∼D [ℓ(h(X),Y )] and the empirical loss of h on a sample S is denoted by L̂(h, S) =
1
n

∑n
i=1 ℓ(h(Xi ),Yi). In this study, we focus on classification. Given a set of hypotheses H and

a distribution ρ on H , the Gibbs classifier hG is a stochastic classifier, which for each input
X randomly draws a hypothesis h ∈ H according to ρ and predicts h(X) (Seeger, 2002). The
expected loss of the Gibbs classifier is given by LGibbs(hG) = Eh∼ρ [L(h)], and the empirical
loss of hG on a sample S is given by L̂Gibbs(hG, S) = Eh∼ρ

[
L̂(h, S)] .

Closely related to the random Gibbs classifier are aggregate classifiers, whose predictions
are based on weighted aggregates overH . The ρ-weighted majority vote hM predicts hM (X)=
argmaxY ∈Y

∑
h∈H∧h(X)=Y ρ(h). When discussing majority vote classifiers, it is convenient to

define the margin realised on a pattern (X,Y ) (Breiman, 2001):

Mρ(X,Y ) = Ph∼ρ [h(X) = Y ]−max
j,Y
Ph∼ρ [h(X) = j], (1)

and the expected value of the margin Mρ = E(X,Y)∼D
[Mρ (X,Y )

]
. Note, that a large mar-

gin indicates a strong classifier. The expected loss of hM is then given by LMV(hM ) =
P(X,Y)∼D

[Mρ(X,Y ) ≤ 0
]
, and the empirical loss L̂MV(hM, S) = P(X,Y)∼S

[Mρ(X,Y ) ≤ 0
]
,

where we use (X,Y ) ∼ S to denote a uniform distribution over the sample.
The Kullback-Leibler divergence between two distributions π and ρ is denoted by

KL(ρ‖π) and between Bernoulli distributions with biases p and q by kl(p‖q). Further-
more, let ED[·] denote E(X,Y )∼D[·] and Eρ[·] denote Eh∼ρ[·]. Finally, u denotes the uniform
distribution.
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2.1 Random Forests.

Originally described by Breiman (2001), the random forest is a majority vote classifier,
where individual voters are decision trees. In the standard random forest setting, every voter
has equal weight (i.e., ρ = u). Let T ⊂ X ×Y denote training patterns drawn according to
D. A random forest is constructed by independently constructing decision trees h1, h2, ..., hm
(Hastie et al., 2009), where each hi is trained on Ti ⊆ T . A tree is constructed recursively,
starting at the root. At each internal node, a threshold θ and a feature j are chosen, and the data
set T ′ corresponding to the current node is then split into {X | Xj ≤ θ} and {X | Xj > θ}. θ and
j are chosen according to some splitting criterion, usually with the goal of maximizing the
information gain for each split, making the new subsets more homogeneous (Hastie et al.,
2009). Splitting is stopped when a node is completely pure (only one class is present)
or by some other stopping criterion (e.g., maximum tree depth). The tree construction is
randomized (Breiman, 1996a, 2001). First, the selection of data sets Ti for training individual
trees is randomized. They are generated by the bagging procedure described below. Second,
only a random subset of all features is considered when splitting at each node (Breiman,
2001; Hastie et al., 2009).

Bagging is a general technique used for aggregated predictors (Breiman, 1996a), which
generates the training sets Ti for the individual predictors by sampling |T | points from T with
replacement. The individual training sets T1,T2, ... are known as bootstrap samples. Because
of sampling with replacement, not all patterns of T are expected to be in each Ti . Let T̄i =T \Ti
denote the patterns not sampled for Ti . T̄i can now be used to give an unbiased estimate of
the individual classifier hi . The expected number of unique patterns in Ti is approximately(
1− 1

e

)
|T | ≃ 0.632|T |, leaving us with slightly more than one third of the training patterns

for the validation sets (Breiman, 1996a).
Bagging also allows us to compute out-of-bag (OOB) estimates. For each training pattern

(X,Y ) ∈ T , a majority vote prediction is computed over all voters hi with (X,Y ) < Ti . The
empirical loss computed over these predictions is known as the OOB estimate, which we
denote by L̂MV

OOB(hM,T). Empirical studies have shown that the OOB estimate on the training
data is a good estimator of the generalization error (Breiman, 1996b).

Furthermore, the sets T̄1, T̄2, ..., T̄m can be used to compute the empirical error of the
associated ρ-weighted Gibbs classifier hG by

L̂Gibbs
OOB (hG,T) = Eρ


1
|T̄i |

∑
(X,Y)∈T̄i

ℓ (hi(X),Y )

,

and by considering T̄i ∩ T̄j , we can also estimate the correlation between trees hi and hj , an
important ingredient in bounds for majority vote classifiers.

3 PAC-Bayesian Bounds for Majority Vote Classifiers

We now give an overview of the PAC-Bayesian bounds we apply to bound the expected
loss of random forests. PAC-Bayesian bounds have a form of a trade-off between ρ-weighted
empirical loss of hypotheses inH and the complexity of ρ, which is measured by its Kullback-
Leibler divergence from a prior distribution π. The prior must be selected before the data is
observed and can be used to incorporate domain knowledge, while the posterior ρ can be
chosen based on the data.
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3.1 PAC-Bayesian Bounds for Gibbs Classifiers.

The ρ-weighted majority vote classifier hM is closely related to the ρ-parameterized Gibbs
classifier hG . Whenever the majority vote makes a mistake, it means that more than a ρ-
weighted half of the voters make a mistake. Thus, the expected loss of the majority vote
classifier LMV(hM ) is at most twice the expected loss of the Gibbs classifier LGibbs(hG ),

LMV(hM ) ≤ 2LGibbs(hG) (2)

(Mcallester, 2003; Langford and Shawe-Taylor, 2002; Germain et al., 2015). Therefore, any
bound on LGibbs(hG) provides a bound on the corresponding LMV(hM ). We consider the
following inequality originally due to Seeger (2002), which we refer to as the PBkl-bound
(PAC-Bayesian kl):

Theorem 1 (PBkl-bound, Seeger, 2002) For any probability distribution π over H that is
independent of S and any δ ∈ (0,1), with probability at least 1− δ over a random draw of a
sample S, for all distributions ρ over H simultaneously:

kl
(
L̂Gibbs(hG, S)



LGibbs(hG )
)
≤ KL(ρ‖π)+ ln 2

√
n

δ

n
.

A slightly tighter bound can be obtained by using

ξ(n) =
n∑

k=0

(
n
k

) (
k
n

)k (
1− k

n

)n−k
(3)

instead of 2
√

n in the bound above, because we have
√

n ≤ ξ(n) ≤ 2
√

n (Maurer, 2004).
In order to use Theorem 1 in the bagging setting, we need to make a small adjustment.

The empirical Gibbs loss L̂Gibbs(hG,T) is computed using T̄1, T̄2, ..., and since these sets have
different sizes, in order to apply the PBkl-bound, we use n =mini

( |T̄i |). That this is a valid
strategy can easily be seen by going through the proof of Theorem 1, see Thiemann et al.
(2017).

Theorem 1 may also be applied to the final majority vote classifier hG if a separate
validation set is left out. In this case, |H | = 1, KL(ρ‖π)= 0, and L̂Gibbs(hM, S)= L̂MV(hM, S).
A separate validation set implies that the data available at training time has to be split, and,
therefore, the actual training set gets smaller. While L̂Gibbs(hM, S) may be larger due to the
smaller training data set size, the bound does no longer suffer from the factor 2 in (2). We
will consider this way of bounding LMV(hM ) as an additional baseline denoted as SH-bound
(Single Hypothesis). Note that this bound requires the separate validation set and, thus,
cannot be applied in the bagging setting.

3.2 PAC-Bayesian Bounds for Majority Vote Classifiers.

The PBkl-bound provides a tight bound for the Gibbs classifier, but the associated bound
for the majority vote classifier may be loose. This is because the bound for the Gibbs
classifier does not take correlation between individual classifiers into account. The individual
classifiers may be weak (i.e., L(hi) close to 1

2 ) leading to a weak Gibbs classifier, but if the
correlations between the classifiers are low, the errors tend to cancel out when voting, giving
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a stronger majority vote classifier (Germain et al., 2015). The generalization bounds for
Gibbs classifiers do not capture this, as they depend only on the strength of the individual
classifiers. In order to get stronger generalization guarantees for majority vote classifiers, we
need bounds that incorporate information about the correlations between errors of classifiers
as well, as already pointed out by Breiman (2001).

Germain et al. (2015) propose to use the C-bound for this purpose, which is based on
the margin of the majority vote classifier. They consider only the case where the output
space is binary, Y = {−1,1}, and (1) becomes Mρ(X,Y ) =Y (∑h∈H ρ(h)h(X)). With the first
moment Mρ = ED

[Mρ(X,Y )
]
, the second moment is given by Mρ2 = ED

[ (Mρ(X,Y )
)2

]
=

Eh1,h2∼ρ2 [ED [h1(X)h2(X)]]. Then the C-bound for the expected loss of the ρ-weighted
majority vote classifier reads:

Theorem 2 (C-bound, Germain et al., 2015) For any distribution ρ over H and any dis-
tribution D on X×{−1,1}, if Mρ > 0, we have

L(hM ) ≤ 1−
M2

ρ

Mρ2
.

The theorem follows from the one-sided Chebyshev inequality applied to the loss of hM . As
the first and second moments are usually not known, Germain et al. offer several ways to
bound them empirically. They start by showing that

Mρ = 1−2LGibbs(hG) (4)

meaning that the first moment of the margin can be bounded by the use of the PBkl-bound
(Theorem 1). For the second moment, we have that

Mρ2 = 1−2dρ, (5)

where dρ = 1
2

[
1−ED

[ (
Eρ [h(X)]

)2
] ]

is the disagreement between individual classifiers.
Together with the C-bound, the relations above confirm the observations made by Breiman
(2001): The strength of hM depends on having strong individual classifiers (low LGibbs(hG),
i.e., large Mρ) and low correlation between classifiers (high disagreement dρ, i.e., low Mρ2 ).

By (4), the first moment of the margin can be bounded by the use of the PBkl-bound
(Theorem 1), while by (5) the second moment can be bounded using a lower bound on dρ.
With d̂S

ρ denoting the empirical disagreement computed on S, dρ can be lower bounded by
the smallest d satisfying (Germain et al., 2015)

kl
(
d̂S
ρ



d
)
≤ 2KL (ρ‖π)+ ln ξ(n)

δ

n
.

Like in the case of Theorem 1, solutions to the above inequality can be computed by a
root-finding method. This leads to the following empirical C-bound, which we denote the
C1-bound:

Theorem 3 (C1-bound, Germain et al., 2015) For any probability distribution π over H
that is independent of S and any δ ∈ (0,1), with probability at least 1−δ over a random draw
of a sample S, for all distributions ρ over H simultaneously

LMV(hM ) ≤ 1− (1−2b)2
(1−2d) .
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Here b is an upper bound on LGibbs(hG), which can be found by Theorem 1, and d is a lower
bound on dρ.

The C1-bound allows direct bounding of LMV(hM ). However, Germain et al. (2015) also
provide another bound based on Theorem 2, which does not require bounding LGibbs(hG )
and dρ separately. First, we let eρ = Eh1,h2∼ρ2 [ED [I (h1(X) , Y ) I (h2(X) , Y )]] denote the
expected joint error and êSρ denote the empirical joint error computed on S. Then the loss of
the associated Gibbs classifier can be written as LGibbs(hG) = 1

2
(
2eρ + dρ

)
. The next bound is

then based on bounding dρ and eρ simultaneously, by bounding the KL-divergence between
two trivalent random variables. A variable X is trivalent if P (X = x1) = p1, P (X = x2) =
p2 and P (X = x3) = 1− p1 − p2, and similar to kl (·‖·), kl (p1, p2‖ q1,q2) denotes the KL-
divergence between two trivalent random variables with parameters (p1, p2,1− p1 − p2) and
(q1,q2,1− q1 − q2).

Using the above and a generalization of the PAC-Bayes inequality to trivalent random
variables, Germain et al. derive the following bound, which we refer to as the C2-bound:

Theorem 4 (C2-bound, Germain et al., 2015) For any probability distribution π over H
independent of S and any δ ∈ (0,1), with probability at least 1− δ over a random draw of a
sample S, for all distributions ρ over H simultaneously

LMV(hM ) ≤ sup
d,e

(
1− (1−(2e+ d))2

1−2d

)
,

where the supremum is over all d and e satisfying

kl
(
d̂S
ρ , ê

S
ρ



d, e
)
≤ 2KL (ρ‖π)+ ln ξ(n)+n

δ

n
, d ≤ 2

(√
e− e

)
, 2e+ d < 1. (6)

Again, we need to make adjustments in order to apply the C1-bound and C2-bound in the
bagging setting. When lower bounding the disagreement and the joint error in Theorem (4),
we consider the empirical disagreement d̂T

ρ (and joint error êTρ ) between hi and hj estimated
on T̄i ∩ T̄j and choose n =mini, j

( |T̄i ∩ T̄j |
)

accordingly.

3.3 Optimizing the Posterior Distribution.

Aside from providing guarantees on expected performance, PAC-Bayesian bounds can be
used to tune classifiers. The prior distribution π must be chosen before observing the data,
but we are free to choose the posterior distribution ρ afterwards, for instance one could
choose ρ such that the empirical loss L̂MV(hM, S) is minimized.

Breiman has applied boosting (Schapire and Singer, 1999) to random forests in order
to optimize the weighting of the vote, finding that it improved the accuracy in some cases
(Breiman, 2001). We instead consider optimization of the posterior by minimizing the
theoretical bounds (Thiemann et al., 2017; Germain et al., 2015). However, none of the
bounds provided above can easily be used to directly optimize ρ, because they are non-
convex in ρ (Thiemann et al., 2017). Thiemann et al. (2017) and Germain et al. (2015) came
up with two different ways to resolve the convexity issue.

Thiemann et al. apply a relaxation of Theorem 1 based on Pinsker’s inequality, which
leads to the following result that we refer to as the λ-bound:
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Theorem 5 (λ-bound, Thiemann et al., 2017) For any probability distribution π over H
that is independent of S and any δ ∈ (0,1), with probability at least 1−δ over a random draw
of a sample S, for all distributions ρ over H and λ ∈ (0,2) simultaneously

LGibbs(hG) ≤ L̂Gibbs(hG, S)
1− λ

2
+

KL(ρ‖π)+ ln 2
√
n

δ

λ
(
1− λ

2
)
n

. (7)

They show that the λ-bound is convex in ρ and in λ (but not jointly convex). They give an
iterative update procedure, which alternates between updating λ and ρ, and prove that, under
certain conditions, the procedure is guaranteed to converge to the global minimum.

Germain et al. (2015) state a version of the C-bound that is suited for optimization of
ρ. However, the bound is restricted to self-complemented hypothesis classes and posteriors
aligned on the prior. A hypothesis class is said to be self-complemented, if h ∈H ⇔−h ∈H ,
where −h is a hypothesis that always predicts the opposite of h (in binary prediction). A
posterior ρ is said to be aligned on π if ρ(h)+ ρ(−h) = π(h)+π(−h). Thus, the final statement
of the bound, which we denote by C3-bound, becomes:

Theorem 6 (C3-bound, Germain et al., 2015) For any self-complemented hypothesis set
H , any probability distribution π overH independent of S and any δ ∈ (0,1), with probability
at least 1− δ over a random draw of a sample S, for all distributions ρ aligned with π
simultaneously

LMV(hM ) ≤ 1− (1−2r)2
(1−2d) ,

where

r =min
©­­
«

1
2
, L̂Gibbs(hG, S)+

√
ln 2ξ(n)

δ

2n

ª®®¬
, d =max

©­­
«
0, d̂S

ρ −

√
ln 2ξ(n)

δ

2n

ª®®¬
.

The authors show how to minimize the bound in Theorem 6 over the posterior ρ, by solving
a quadratic program. The quadratic program requires a hyperparameter µ, used to enforce
a minimum value of the first moment of the margin. µ can be chosen by cross validation
(Germain et al., 2015). Furthermore, they note how the restriction to aligned posteriors acts
as regularization.

For both the λ-bound and the C3-bound, we need to make the same adjustments as for
the PBkl-bound and the C-bound, that is, we choose n = mini, j

( |T̄i ∩ T̄j |
)
. When applying

the optimization procedure of the C3-bound, we also need to make sure that the H is self-
complemented; given a set of hypotheses, this can be done by copying all hypotheses and
inverting their predictions.

4 Experiments

We have applied the bounds of Section 3, summarized in Table 1, in different random forest
settings. First, we considered the standard setting with bagging and used the sets T̄1, T̄2, ...
for evaluation and computation of the bounds as described in Section 3. The posterior
distribution ρ was taken uniform and not optimized. Then we considered a setting with
a separate validation set Tval. The majority vote bounds suffer from the low number of
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Table 1 Overview of the bounds that we apply in Section 4 with references to the corresponding theorems in
Section 3.

Name Bound Theorem Reference

PBkl-bound kl
(
L̂Gibbs(hG, S)



LGibbs(hG )
)
≤ KL(ρ‖π)+ln 2

√
n

δ
n Thm. 1 Seeger, 2002

C1-bound LMV(hM ) ≤ 1− (1−2b)2
(1−2d) Thm. 3 Germain et al., 2015

C2-bound LMV(hM ) ≤ supd,e

(
1− (1−(2e+d))2

1−2d

)
Thm. 4 Germain et al., 2015

SH-bound kl
(
L̂MV(hM , S)



LMV(hM )
)
≤ ln 2

√
n

δ
n PBkl with |H | = 1

λ-bound LGibbs(hG ) ≤ L̂Gibbs(hG ,S)
1− λ

2
+

KL(ρ‖π)+ln 2
√
n

δ

λ
(
1− λ

2

)
n

Thm. 5 Thiemann et al., 2017

C3-bound LMV(hM ) ≤ 1− (1−2r )2
(1−2d) Thm. 6 Germain et al., 2015

training patterns available for evaluating the correlation between classifiers. Therefore, we
also evaluated the quality of the bounds when a separate validation set Tval was set aside
before training. Tval was then used in addition to T̄1, T̄2, ..., when evaluating and computing
the bounds. Again, the posterior distribution ρ = u was not optimized. Finally, we looked at
random forests with optimized posteriors. We used bagging and the bounds in Theorems 5
and 6 to optimize the posterior distribution ρ.

For all settings, the accuracy of the final majority vote classifier hM is also of interest.
Hence, a separate test set Text is left out in each setting. This set is used only for evaluating the
final classifier by L̂MV(hM,Text). We are mainly concerned with the tightness of the bounds
when individual voters are strong. Therefore, all features are considered in each split during
the training of the random forest (using Gini impurity as splitting criterion), and trees are
trained until all leaves are pure (see, e.g., Gieseke and Igel, 2018, for arguments why this can
be beneficial).

To study how the bounds depend on the strengths of the individual classifiers, we varied
the maximum tree depth and the number of features considered in each split in the first two
settings. This allows us to investigate the evolution of the bounds as the strength of individual
classifiers increases by going from decision stumps to full-grown trees. We either set the
number of random features considered for splitting to the maximum number or, to further
weaken the classifiers, to a single random feature. We restricted these experiments to two
data sets.

Experiments were run on several binary UCI data sets (see left part of Table 2). For each
data set, all patterns with one or more missing features were removed. Since the C-bound is
only analysed for binary classification, we restrict ourselves to binary tasks. The number of
trees m for any data set of size N was chosen as the largest value from {100,200,500,1000}
that was smaller than N/4.

For each setting, N/2 patterns were randomly sampled for Text. In the first and third
settings, all remaining patterns were used for training. In the second setting, a further N/4
patterns were sampled for Tval, with the remaining patterns used for training, see Figure 1
for an illustration.

When evaluating the bounds, we chose π = u and δ = 0.05.
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4.1 Random forest with bagging.

We started with the original random forest setting, where an individual tree hi is trained on a
bootstrap sample Ti of size |T |, drawn with replacement from the training set T consisting of
half the data with the other half Text used for evaluating the final classifier. As mentioned, the
posterior distribution ρ was chosen uniform. In this experiment, T comprised all available
data. The empirical Gibbs loss was evaluated using T̄i =T \Ti and the empirical disagreement
and joint error between two trees hi and hj using T̄i ∩ T̄j .

We considered the PBkl-bound and the two empirical C-bounds, C1-bound and C2-
bound, with sample sizes n calculated as described in Section 3. Furthermore, the trained
classifier hM was evaluated on Text.

Table 2 (middle) lists the results. The test score L̂MV(hM,Text) provides an estimate of
the accuracy of the classifier. The PBkl-bound always gave the tightest bounds. For 6 out
of the 14 data sets the bound was below 0.5. The better performance of the PBkl-bound is
explained by the high accuracy of the individual trees. As mentioned by Germain et al. (2015)
and discussed in Section 3, the C-bound degrades when the individual classifiers are strong.
Thus, the PBkl-bound including the factor of 2 coming from (2) is tighter. Furthermore,
for the C-bounds the bagging setting is particularly difficult, because there is only a small
amount of data available for estimating correlations. This is especially true for the C2-bound,
since it relies only on the intersection between the two samples T̄i and T̄j , which may be
small.

In the bagging setting we get the bounds “for free” in the sense that all evaluations are
based on the T̄i sets, which are by-products of the training, and we do not have to set aside a
separate validation set. Thus, more data is available for selecting the hypothesis.

Figure 2 shows the evolution of the bounds as the strength of the individual voters varies
for the data sets Letter:AB and Mushroom. Voter strength was controlled by increasing the
maximum allowed tree depth until only pure trees were obtained, and by feature selection
during splits, that is, using either the best feature (stronger voters) or a random feature (weaker
voters).

From the figure, we see that the PBkl-bound is tighter than both the C1-bound and
the C2-bound, even though the C-bounds are expected to perform better, when individual
classifiers are weak. However, this theoretical advandtage is outweighed by the low amount
of data available for bounding the disagreement/joint error, that is, n = mini, j

( |T̄i ∩ T̄j |
)

is
very small, leading to loose bounds.

4.2 Random forest with a separate validation set.

As a reference, we considered the scenario where a separate validation set Tval was set aside
before the random forest was trained, which allows for a better estimate of the correlations
in the C-bounds. Recall that a separate test set Text was set aside for evaluating the classifier
beforehand. Now the remaining half of the data set was split into two equal sized parts, T
and Tval. The random forest was then trained on T as before using bagging, but the empirical
Gibbs loss and disagreement were now measured on the sets T̄1, T̄2, ... combined with Tval.
We also considered the setting in which only Tval was used for computing the bounds. This,
as expected, led to slightly worse bounds. The results can be found in Table 4 in the appendix.
As in the previous setting, we had to take care when applying the bounds. Again, the sample
sizes n for the theorems were calculated as described in Section 3, but now with extra N/4
points available. As before, we applied the PBkl-bound, the C1-bound and the C2-bound,
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L̂MV(hM ,Text) d̂ρ PBkl C1 C2

Fig. 2 Evolution of bounds depending on voter strength (measured by Gibbs risk) on data sets Letter:AB
(top) and Mushroom (bottom) in the bagging setting, using the best feature for splits (left) or a random feature
(right). In addition, the empirical disagreement d̂ρ between the trees is plotted.

but now with the addition of the SH-bound. Having the separate validation set allowed us to
apply this single hypothesis bound, which is based only on Tval.

Table 2 (right) lists the results. Again, the loss of hM on Text is given as an estimate of
the accuracy of the classifier. As before, we see that the PBkl-bound was tighter than the
C-bounds in almost all cases, and again the explanation lies in the strength of the individual
classifiers. We also see that the C2-bound was tighter than C1-bound. This is in accordance
with the observation by Germain et al. (2015) that the C2-bound is often tighter when there
is an equal amount of data available for estimating the empirical Gibbs loss and the empirical
correlation between any two classifiers. However, we see in all cases that the single hypothesis
bound gives the best guarantees. This indicates that the PBkl-bound does indeed suffer from
not taking correlations into account, even if it outperforms the C-bounds.

Comparing the results to the bounds obtained in the previous experiment, we see that,
with the exception of the SH-bound, the bounds overall were very similar, some bounds
better, some worse. This can be explained by the trade-off between using data for training
the classifier and using data for evaluating the classifier as part of computing the bounds.
In the previous experiment, more data was used to train the random forest, which typically
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gives a better classifier (as also indicated by the performance on the test set Text), resulting
in a lower empirical Gibbs loss. Still, in this experiment the bound can be tighter because
more data is used to evaluate the classifiers. This is demonstrated in Figure 6 in Appendix B
which shows a comparison of the two settings on two exemplary data sets, Letter:DO and
Adult. The figure illustrates the difference in tightness of the bounds.

The SH-bound provides the best guarantees for all data sets across both experiments,
indicating that the other bounds are still too loose. The SH-bound does not come for free
though, as data must be set aside, whereas the bounds computed in the bagging setting often
provide useful guarantees and a better classifier.

The dependence of the bounds on the strengths of the individual voters is shown in
Figure 3 for the data sets Letter:AB and Mushroom. As in the previous setting, maximum
tree depth and feature selection at splits (using the best or a random feature) were used to
control voter strength.
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L̂MV(hM ,Text) d̂ρ PBkl C1 C2 SH

Fig. 3 Evolution of bounds depending on voter strength (measured by Gibbs risk) on data sets Letter:AB
(top) and Mushroom (bottom) in the setting with a separate validation set, using the best feature for splits
(left) or a random feature (right). In addition, the empirical disagreement d̂ρ between the trees is plotted.

Even when individual voters got weaker, the SH-bound remained tighter. As expected,
the C2-bound now outperformed the PBkl-bound when individual voters are weak and
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Table 3 Loss onText obtained when ρ is chosen by minimizations of the λ-bound (ρ = ρλ) and the C3-bound
(ρ = ρC ), compared to loss obtained with ρ = u.

Data set u ρλ ρC

Adult 0.152 0.170 0.152
Mushroom 0.000 0.000 0.000
Letter:AB 0.010 0.010 0.010
Letter:DO 0.044 0.051 0.044
Letter:OQ 0.051 0.061 0.051
Tic-Tac-Toe 0.079 0.069 0.086
Credit-A 0.144 0.153 0.144

disagreement is high. However, to observe this effect it was necessary to consider a single
random feature for splitting. Considering the best feature with shallow trees also results
in weak voters, but because of lower disagreement (due to trees being very similar), the
C-bounds are still loose.

Comparing to the bagging setting, we see the impact of having extra data from the left
out validation set, Tval, when evaluating the bounds. Still, the PBkl-bound remained tighter
for strong voters, that is, when the Gibbs risk is close to zero.

4.3 Random Forest with Optimized Posterior.

Finally, we optimized the posteriors based on the λ-bound (Theorem 5) and the C3-bound
(Theorem 6). The former was updated by iterative application of the update rules given
by Thiemann et al. (2017). For the latter, we made sure that the hypothesis set is self-
complemented (Germain et al., 2015) by adding a copy of all trained trees with their
predictions reversed. The quadratic program was then solved using the solver CVXOPT
(Dahl and Vandenberghe, 2007).

For each experiment, we split the data set into a training set T and an external test
set Text not used in the model building process, see Figure 1. We only considered larger
benchmark data sets, because T and Text needed to be of sufficient size. The random forest
was then trained using bagging, and the posteriors were then optimized using the individual
sets T̄1, T̄2, .... We selected the hyperparameter µ for the quadratic program of Theorem 6
that minimized the OOB estimate. Once the optimal ρ was found, the random forest with
optimized weights was evaluated on Text. A random forest with uniform posterior was trained
and evaluated in the same setting as a baseline.

Table 3 lists the loss on Text for the seven largest data sets when optimizing ρ by
minimzation of the λ-bound and C3-bound. ρλ and ρC denotes the optimal posteriors found
using the optimization with the λ-bound and the C3-bound respectively. Note that for ρC ,
the hypothesis set is modified such that it is self-complemented.

For the optimization using the λ-bound, we see that, except on the Tic-Tac-Toe data
set, the test loss for the optimized posterior was equal or slightly higher. The reason is that,
because the λ-bound does not consider interactions between ensemble members, it tends to
put most weight on only a few trees. Thus, the effect of cancellation of errors vanishes.

Figure 4 demonstrates that indeed most of the probability mass was centered on the few
trees. However, recomputing the PBkl-bound, C1-bound and C2-bound using posterior ρλ,
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Fig. 4 Optimized distribution ρλ and for each tree i the error on the subset T̄i of the training data not used
for building the tree. Shown are the results for the Credit-A data set using 50 trees.
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Fig. 5 Optimized distribution ρC and for each tree i the error on the subset T̄i of the training data not used
for building the tree. Shown are the results for the Credit-A data set using 100 self-complemented trees.

we observed that the PBkl-bound (and actually also the C-bounds) became tighter, indicating
that the bounds are still quite loose.

Optimizing using the C-bound in Theorem 6 does not suffer from the probability mass
being concentrated on very few tress, because of the restriction to posteriors aligned on the
prior (which is uniform in our case) and the fact that the individual trees were rather strong.
The probability mass can only be moved between a tree and its complement. If hi has a small
loss, ρC(hi) is close to 1/m, since−hi is very weak. Figure 5 shows an example. The algorithm
selected almost exclusively the strong classifiers, and due to the required alignment, the ρC
was basically the uniform distribution on the original (non-self-complemented) hypothesis
set, explaining the similarities in accuracy and bounds.

5 Conclusions

PAC-Bayesian generalization bounds can be used to obtain rigorous performance guarantees
for the standard random forest classifier used in practice. No modification of the algorithm is
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necessary and no additional data is required because the out-of-bag samples can be exploited.
In our experiments using the standard random forest, bounds inherited from the corresponding
Gibbs classifiers clearly outperformed majority vote bounds that take correlations between
ensemble members into account. The reason is that the individual decision trees are already
rather accurate classifiers, which makes it difficult to estimate the correlations of errors. As
expected, we could observe the opposite result when using weaker individual classifiers.
However, this required enough disagreement between the classifiers (which we enforced
by increasing randomization) and using a separate validation set, because the out-of-bag
samples alone provided not enough data for reliably estimating the correlation between two
voters. We also replaced the majority vote by a weighted majority vote and optimized the
weights by minimizing the PAC-Bayesian bounds. This led to better performance guarantees,
but weaker empirical performance.

When we split the data available at training time into a training and a validation set, we
can use the hold-out validation set to compute a generalization bound. In our experiments,
this led to considerably tighter bounds compared to the PAC-Bayesian approaches. However,
because less data was available for training, the resulting classifiers performed worse on
an external test set in most cases. Thus, using a validation set gave us better performance
guarantees, but worse performance.

Our conclusion is that existing results that are derived for ensemble methods and take
correlations of predictions into account are not sufficiently strong for guiding model selection
and/or weighting of ensemble members in majority voting of powerful classifiers, such as
decision trees. While the C-bounds are empirically outperformed by the generalization
bounds based on the Gibbs classifier, the latter ignore the effect of cancellation of errors
in majority voting and, thus, are of limited use for optimizing a weighting of the ensemble
members and guiding model selection. Therefore, more work is required for tightening the
analysis of the effect of correlations in majority voting. Nevertheless, to our knowledge, the
PAC-Bayesian approach in this study provides the tightest upper bounds for the performance
of the canonical random forest algorithm without requiring hold-out data.
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A Extra Results for Second Setting

Table 4 lists the bounds and losses obtained in the validation set setting using only Tval for computing the
bounds.

Table 4 The PBkl-bound, C1-bound, C2-bound and SH-bound computed for the binary UCI data sets in
the validation set setting, where only Tval is used for computing the bounds. The majority vote loss on Text is
given as an estimate of the accuracy of the trained classifier denoted as test score. The best bound is marked
with bold, while italics is used to indicate trivial bounds (≥ 0.5).

Data set n d Test score PBkl C1 C2 SH

Adult 45222 14 0.154 0.432 0.510 0.483 0.169
Credit-A 653 15 0.135 0.632 0.854 0.812 0.294
Haberman 306 3 0.333 >1 >1 >1 0.577
Heart 297 13 0.282 0.893 0.992 0.990 0.412
ILPD 579 10 0.307 >1 >1 >1 0.441
Ionosphere 351 34 0.125 0.728 0.931 0.910 0.299
Letter:AB 20000 16 0.015 0.152 0.266 0.192 0.035
Letter:DO 20000 16 0.067 0.237 0.383 0.300 0.072
Letter:OQ 20000 16 0.059 0.352 0.519 0.418 0.119
Mushroom 8124 22 0.001 0.017 0.036 0.041 0.008
Sonar 208 60 0.250 >1 >1 >1 0.510
Tic-Tac-Toe 958 9 0.142 0.765 0.908 0.807 0.221
USvotes 232 16 0.052 0.513 0.784 0.739 0.228
WDBC 569 30 0.063 0.342 0.567 0.490 0.102

B Comparison Plots for the Bagging and Validation Set Settings

Figure 6 shows the comparison of the bounds obtained for the Letter:DO and Adult data set. The figure
includes all three settings: using only the hold-out sets from bagging (T̄ ), using only the validation set (Tval),
and using a combination of both (T̄+Tval)
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Fig. 6 Comparison of the bounds obtained for a random forest with 500 trees trained on the Letter:DO data
set. Comparison of the bounds obtained for a random forest with 500 trees trained on the Letter:DO data set
(left) and for a random forest with 1000 trees trained on the Adult data set (right).
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ABSTRACT
Top-k maximum inner product search (MIPS) is a central task in
many machine learning applications. This paper extends top-k
MIPS with a budgeted setting, that asks for the best approxi-
mate top-k MIPS given a limit of B computational operations.
We investigate recent advanced sampling algorithms, including
wedge and diamond sampling to solve it. Though the design of
these sampling schemes naturally supports budgeted top-k MIPS,
they suffer from the linear cost from scanning all data points
to retrieve top-k results and the performance degradation for
handling negative inputs.

This paper makes two main contributions. First, we show that
diamond sampling is essentially a combination between wedge
sampling and basic sampling for top-k MIPS. Our theoretical
analysis and empirical evaluation show that wedge is competi-
tive (often superior) to diamond on approximating top-k MIPS
regarding both efficiency and accuracy.

Second, we propose a series of algorithmic engineering tech-
niques to deploy wedge sampling on budgeted top-k MIPS. Our
novel deterministic wedge-based algorithm runs significantly
faster than the state-of-the-art methods for budgeted and exact
top-k MIPS while maintaining the top-5 precision at least 80% on
standard recommender system data sets.

1 INTRODUCTION
Maximum inner product search (MIPS) is the task of, given a
point set X ⊂ Rd of size n and a query point q ∈ Rd , finding the
point p ∈ X such that,

p = argmax
x∈X

x · q .

MIPS and its variant top-k MIPS, which finds the top-k largest
inner product points with a query, are central tasks in the retrieval
phase of standard collaborative filtering based recommender
systems [7, 16]. They are also algorithmic ingredients in a variety
of machine learning tasks, for instance prediction tasks on multi-
class learning [8, 25] and neural network [6, 28], and as a black-
box procedure to speed up learning and inference algorithms [21].

Modern real world online recommender systems, e.g. Xbox
or Netflix often deal with very large-scale data sets and limited
amount of response time [2, 4]. Such collaborative filtering based
systems often present users and items as low-dimensional vec-
tors. A large inner product between these vectors indicates that
the item is relevant to the user preferences and should be in the
recommendation list to the user. The recommendation is often
performed in the online manner since the user vector is updated
online with ad-hoc contextual information only available during

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN XXX-X-XXXXX-XXX-X on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

the interaction [2, 15, 16]. For instance, new users in a recom-
mendation system often want to see the list of recommended
items immediately when they already input their preferences.
A personalized recommender needs to infer user preferences
based on online user behavior, e.g. recent search queries and
browsing history, as implicit feedback in order to return relevant
results [13, 24]. Since the retrieval of recommended items is only
performed online, the result of this task might not be “perfect”
given a small amount of waiting time but its accuracy/relevance
should be improved given more waiting time. Hence, it is chal-
lenging to not only speed up the MIPS process, but to trade the
search efficiency for the search quality for improving perfor-
mance of recommender systems.

Motivated by the computational bottleneck in the retrieval
phase ofmodern recommendation systems, this work investigates
the budgeted MIPS problem, a natural extension of MIPS with a
computational limit for the search efficiency and quality trade-
off. Given that d = O (logn), our budgeted MIPS addresses the
following question:

Given a data structure built in Õ (n) time1 and a budget B
computational operations, can we have an algorithm to return the
best approximate top-k MIPS?

In our budgeted setting, we limit the time complexity of build-
ing a data structure to Õ (n) since when a context is used in a
recommender system, the learning phase cannot be done entirely
offline [2, 15]. In other words, the items vectors are also computed
online and hence a high cost of constructing the data structure
will degrade the performance. Furthermore, since user prefer-
ences often change over time, a recommender system needs to
frequently update its factorization model to address such drifting
user preferences. This means that the items vectors and our data
structure will be updated frequently.

It is worth noting that the budgeted MIPS has been recently
studied in [31] given a budget of B = ηn inner product compu-
tations where η is a small constant, e.g. 5%. Furthermore, such
budget constraints on the number of computational operations or
on accessing a limit number of data points are widely studied not
only on search problems [18, 23] but also on clustering [19, 26]
and other problems [11, 32] when dealing with large-scale com-
plex data sets.

1.1 Prior art on solving MIPS and its limit on
budgeted MIPS

It is well-known that due to the “curse of dimensionality”, any
exact solution for MIPS based on data or space partitioning in-
dexing data structures generally degrades when dimensionality
increases. It is no better than a simple sequential scanning when
dimensionality is larger than 10 [17, 30]. Hence recent work on
solving MIPS focuses on speeding up sequential scanning by
1Polylogarithmic factors, e.g. logn is absorbed in the Õ-notation.
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pruning the search space [17, 29]. Even though such methods
can solve MIPS exactly, it requires Θ(n) operations. Hence it does
not fit well to the budgetedMIPS setting since wemight need o(n)
operations for some query. Furthermore, these methods do not
provide any trade-off between the search quality and efficiency
for online queries.

Another research direction is investigating approximation so-
lutions which trade accuracy for efficiency. Since locality-sensitive
hashing (LSH) [1, 12] has emerged as a basic algorithmic tool for
similarity search in high dimensions due to the sublinear query
time guarantee, several approaches have followed this direction
to obtain sublinear solutions for approximate MIPS [14, 22, 27].
Due to the inner product not being a metric, these LSH-based
solutions have to convert MIPS to near neighbor search problem
by applying order preserving transformations, in order to exploit
the LSH framework.

Although LSH-based approaches can guarantee sublinear query
time, the top-k inner product values are often very small com-
pared to the vector norms in high dimensions. This means that
the distance gap between “close” and “far apart” points in the
LSH framework is arbitrary small. That leads to not only the
space usage (i.e. number of hash tables) blow up, but also degrad-
ing LSH performance. Furthermore, the LSH trade-off between
search quality and search efficiency is somewhat “fixed” for any
query since it is governed by specific parameters of the LSH
data structure, e.g. number of hash tables. More important, the
learning phase of a recommender system has to be executed in
the online manner when a context is used [2, 15]. Hence, the
subquadratic cost of building LSH tables will be a bottleneck for
handling online recommendations.

An alternative efficient solution is applying sampling methods
to estimate the vector-matrix multiplication derived by top-k
MIPS [3, 5]. The basic idea is to sample a point x with probability
proportional to the inner product x · q. The larger inner product
values the point x has, the more occurrences of x in the sample set.
By the end of the sampling process, we retrieve top-m budgeted
points (m > k) with largest occurrences in the sample set via
a counting histogram. The top-k points, with the largest inner
product with the query among thesem points, will be returned
as an approximation for top-k MIPS. It is clear that sampling
schemes naturally fit to the budgeted setting since the more
sampleswe use, the higher accuracywe can achieve. However, the
linear cost of scanning all data points to return top-m candidate
points limits sampling methods to o(n) budget.

1.2 Our contribution
This work investigates sampling methods for solving the bud-
geted MIPS since these methods naturally fit to the class of bud-
geted problems. Sampling schemes provide not only the trade-off
between search quality and search efficiency but also a flexible
mechanism to control this trade-off via the number of samples.
Our contributions are as follows:

(1) We revise popular sampling methods for MIPS, including
basic sampling, wedge sampling [5], and the state-of-the-
art diamond sampling methods [3]. We show that diamond
sampling is essentially a combination between basic sam-
pling and wedge sampling.

(2) Our novel theoretical analysis and empirical evaluation
illustrate that wedge is competitive (often superior) to
diamond on approximating top-k MIPS regarding both
efficiency and accuracy.

(3) In order to deploy wedge sampling on budgeted top-k
MIPS, we propose a series of algorithmic engineering tech-
niques, including (1) a simple shifting technique which
transforms a MIPS with general inputs to a non-negative
one while preserving the inner products order; (2) a novel
greedy sampling generator which carefully selects rep-
resentative modes of a discrete distribution, leading to
a deterministic version of wedge sampling; and (3) a fast
wedge-based algorithm running in O (B) time, which com-
pletely governs the trade-off between search quality and
efficiency in the budgeted setting.

(4) Our empirical results confirm the efficiency of our pro-
posed algorithm on standard recommender system data
sets. In particular, our deterministic wedge-based method
returns top-5 MIPS with the accuracy at least 80%, and
runs significantly faster than the state-of-the-art methods
for budgeted [31] and exact top-k MIPS [17].

2 NOTATION AND PRELIMINARIES
We use lower-case fonts for scalars, upper-case fonts for ran-
dom variables, bold lower-case fonts for vectors, and bold upper-
case fonts for matrices. For convenience, we present the point
set X as a matrix X ⊂ Rn×d where each point xi corresponds
to the ith row, and the query point q as a column vector q =
(q1, . . . ,qd )T . We use i ∈ [n] to index row vectors of X, i.e.,
xi = (xi1, . . . ,xid ) ∈ Rd . Since we will describe our inves-
tigated methods using the column-wise matrix-vector multi-
plication Xq, we use j ∈ [d] to index column vectors of X,
i.e. yj = (x1j , . . . ,xnj )T ∈ Rn . For each column j, we define
c j =

∑n
i=1 xi j . We also define the minimum and maximum val-

ues of yj as α j = min(yj ) = min(x1j ,x2j , . . . ,xnj ) and βj =
max(yj ) = max(x1j ,x2j , . . . ,xnj ), respectively.

We briefly review sampling approaches for estimating inner
products xi · q and provide corresponding algorithms for MIPS
and its potential extension for budgeted MIPS. For simplicity,
we first assume that X and q are non-negative. Then we show
how to extend these approaches to handle negative inputs with
their limits. We will present sampling algorithms based on the
column-wise matrix-vector multiplication Xq, i.e. sum of d rank-
one matrices, as follows.

Xq =


x11
...

xn1


q1 +


x12
...

xn2


q2 + . . . +


x1d
...

xnd


qd

= y1q1 + y2q2 + . . . + ydqd

(1)

2.1 Basic Sampling
Basic sampling is a very straightforward method to estimate the
inner product xi · q for the point xi . For any row i , we sample
a column j with probability qj/∥q∥1 and return xi j . Define a
random variable Zi = xi j , we have

E [Zi ] =
d∑
j=1

xi j
qj

∥q∥1 =
xi · q
∥q∥1

The basic sampling suffers large variance when most of the
contribution of xi · q are from a few of coordinates. In particular,
the variance will be significantly large when the main contri-
butions of xi · q are from a few coordinates xi jqj and qj are
very small. Note that this basic sampling approach has been
used in [10] as an efficient sampling technique for approximating
matrix-matrix multiplication.
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Negative cases: To handle the negative cases, one can change
the sampling probability to |qj |/∥q∥1 and return Zi = sgn(qj )xi j
where sgn is the sign function, i.e. sgn(u) = −1 if u < 0 and
sgn(u) = 1 if u ≥ 0. It is clear that E [Zi ] = xi · q/∥q∥1. This
scheme also incurs large variance when the contributions of inner
product are skewed.

Given that a sample requires a constant cost, the basic sam-
pling needs s = Ω(n) samples for estimating n inner products
and an additional O (n logk) cost to return top-k MIPS. Hence
it is not suitable for budgeted MIPS settings with o(n) required
computational resources.

2.2 Wedge Sampling
Cohen and Lewis [5] proposed an efficient sampling approach,
called wedge sampling, to approximate matrix multiplication
and to isolate the largest inner products as a byproduct. Wedge
sampling needs to pre-compute some statistics, including the
sum of all inner products, i.e. z =

∑
i zi where zi = xi · q and

norm-1 of columns c j = ∥yj ∥1. Since we can precompute c j in
advance, computing z =

∑
j c jqj clearly takes O (d) time.

The basic idea of wedge sampling is to randomly sample a
row index i corresponding to xi with probability zi/z. Hence,
the larger the inner product zi = xi · q, the larger the number
of occurrences of i in the sample set. Consider Equation (1),
wedge sampling first samples a column j corresponding to yj
with probability qjc j/z, and then samples a row i corresponding
to xi from yj with probability xi j/c j . By Bayes’s theorem,

Pr [Sampling i] =
d∑
j=1

Pr [Sampling i |Sampling j] · Pr [Sampling j]

=

d∑
j=1

xi j

c j
· qjc j

z
=

∑d
j=1 xi jqj

z
=

zi
z
.

Applying wedge sampling method on Xq, we obtain a sample
set where each index i corresponding to xi is sampled accord-
ing to an independent Bernoulli distribution with parameter
pi = zi/z. Next, a counting algorithm will be used to find the
points with largest counters. Given s samples and a constant cost
for each sample, such counting algorithm runs in O (s + n logk)
time to answer approximate top-k MIPS. Note that we can com-
pute the exact inner products for them > k points with largest
counters for post-processing. The post-processing phase with
an additional O (dm +m logk) computational cost will provide
higher accuracy for top-k MIPS in practice.

We note that since wedge sampling uses the term qjc j when
sampling the column j , it alleviates the effect of skewness of xi ·q
where large contributions are from a few coordinates. Hence
wedge sampling achieves lower variance than the basic sampling
in practice. At the query phase, wedge sampling with careful im-
plementation [5] needs only simple counting and sequential mem-
ory access operations, which are always faster than expensive
floating-point multiply-add operations required by any brute-
force method.

Negative cases: Again, we can use the sign trick to deal with
negative cases. We note that this trick has been also exploited
in the diamond sampling approach [3]. In particular, we exe-
cute wedge sampling on absolute values of X and q, and return
Zi = sgn(xi j )sgn(qj ) for the point xi . It is clear that E [Zi ] is

j

i 1

j

i 1

j'

(a) Wedge (i, j, 1) (b) Diamond (i, j, 1, j')

Figure 1: Given that n = 3,d = 2, Xq is presented as a
weighted tripartite graph above. Diamond sampling ran-
domly picks awedge (i, j, 1) byfirst choosing column j with
probability qjc j/z, then choosing xi j for xi with probabil-
ity xi j/c j . After that, it randomly chooses column j ′ with
probability q′j/∥q∥1 to form a diamond (i, j, 1, j ′).

proportional to xi · q. Hence we can leverage an efficient imple-
mentation of wedge sampling [5] to answer top-k MIPS with
negative inputs.

2.3 Diamond Sampling
Ballard et al. [3] proposed diamond sampling to find the largest
magnitude elements from a matrix-matrix multiplication XQ
without computing directly the final matrix. The method presents
XQ as a weighted tripartite graph. The number of nodes on the
left (right) present the number of rows (columns) of X (Q) while
the number of nodes in the middle correspond to the number of
columns (rows) of X (Q). Then it samples a diamond, i.e. four
cycles from such graph with probability proportional to the value
(XQ)2i j , which claims to amplify the focus on the largest magni-
tude elements.

Consider a vector q as an one-column matrix Q, it is clear that
diamond sampling can be applied to solve MIPS. Indeed, for the
matrix-vector multiplication Xq, diamond sampling is essentially
a combination between wedge sampling and basic sampling, as
shown in Figure 1. In particular, diamond sampling first makes
use of wedge sampling to return a random row i corresponding
to xi with probability zi/z. Given such row i , it then applies basic
sampling to sample a random column j ′ with probability q′j/∥q∥1
and return xi j′ as a scaled estimate of (xi · q)2. Define a random
variable Zi = xi j′ corresponding to xi , using the properties of
wedge sampling and basic sampling we have

E [Zi ] =
d∑
j′=1

xi j′
qj′

∥q∥1 ·
zi
z
=
(xi · q)2
z∥q∥1

Since diamond sampling builds on basic sampling, it suffers
from the same drawback as basic sampling. To answer top-k
MIPS, diamond sampling follows the same procedure as wedge
sampling; hence it shares the same asymptotic running time,
O (s + n logk).

Negative cases: Handling negative cases using diamond is
similar to wedge. We apply diamond sampling on absolute values
of X and q then return Zi = sgn(qj )sgn(xi j )sgn(qj′)xi j′ where
j is the column sampled by wedge sampling first and j ′ is the
column sampled by basic sampling later. We can verify that E [Zi ]
is proportional to (xi · q)2.

Although diamond sampling can deal with negative inputs,
its concentration bound only works on non-negative cases. This
is due to the complex analysis of dependent sign random vari-
ables. Furthermore, the implementation of diamond sampling [3]
requires significant time overhead due to the sampling process
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from a discrete distribution derived from the query q and random
access operations to access xi j′ .

2.4 Sampling Methods for Budgeted Top-k
MIPS

It is clear that the design of sampling algorithms naturally sup-
ports budgeted MIPS. Since the more samples used the less vari-
ance of the estimate, these methods are able to govern the trade-
off between search efficiency and search quality.

Note that in practice advanced sampling algorithms with the
post-processing step often achieves higher search quality [3, 5,
31]. Hence, given a budgetB of computational operations, we dis-
tribute it into the two procedures, including candidate screening
and candidate ranking. The candidate screening will return top-
m candidate point indexes with largest estimate values. This step
requires O (s + n logm) time where s is the total sampling cost.
Then a post-processing of O (dm +m logk) time manipulates the
candidate ranking procedure by computing exactly thesem inner
products and returning top-k MIPS.

Drawbacks of advanced sampling: In theory, the time com-
plexity of the candidate screening O (s + n logm) limits the use
of these sampling methods on budgeted MIPS with B = o(n)
operations. In practice, these sampling schemes are not suitable
to solve MIPS with general inputs. Diamond sampling indeed
solves a different problem, i.e. argmaxi (xi · q)2, which will give
a completely different result on negative inputs. Although wedge
sampling can handle general inputs, it is executed on absolute
values of X and q, similar to diamond sampling. Hence it essen-
tially uses more samples for the largest magnitude dot products
since it tends to sample the point xi with large

∑
j |xi jqj |.

3 WEDGE SAMPLING FOR BUDGETED
TOP-k MIPS

This section presents a series of algorithmic engineering tech-
niques to deploy wedge sampling on budgeted top-k MIPS. We
first propose a simple shifting technique to convert a MIPS with
general inputs to non-negative MIPS while preserving the inner
product order, which enables advanced sampling methods for
various MIPS applications. Exploiting the shifting technique, we
then propose a fast wedge sampling algorithm which runs in
time O (B), completely governing the trade-off between search
efficiency and quality for the budgeted setting.

Our new theoretical concentration bound shows that wedge
sampling requires fewer samples than diamond sampling on top-
k MIPS. Finally, we introduce a novel greedy sampling generator
which carefully selects representativemodes of a discrete distribu-
tion, leading to efficient deterministic versions of both wedge and
diamond sampling. The combination of these techniques yields
a novel deterministic wedge-based algorithm, called dfsWedge,
which runs significantly faster than the state-of-the-art methods
for budgeted and exact top-k MIPS.

3.1 Order Preserving Transformations
This subsection will present a simple shifting technique to map
a MIPS with some negative inputs to a non-negative MIPS while
preserving the inner product order. This enables proposed ad-
vanced sampling methods to solve MIPS with a negligible loss of
efficiency.

Considering the column-wise matrix-vector multiplication in
Equation (1), our intuition is that shifting each vector yj a con-
stant factor preserves the order of xi ·q. Hence, we can transform

both X and q to non-negative representations while preserving
their inner product order.

Definition 3.1. Given a point set x1, . . . , xn ∈ Rd and a query
q ∈ Rd , we assume that x1 ·q ≤ x2 ·q ≤ . . . ≤ xn ·q. Asymmetric
non-negative transformations f : x 7→ x′ ∈ Rd+ and д : q 7→
q′ ∈ Rd+ are called order preserving regarding inner product if
x′1 · q′ ≤ x′2 · q′ ≤ . . . ≤ x′n · q′. It follows that argmaxi xi · q =
argmaxi x′i · q′.

Note that we restrict the new transformation space to have
d dimensions since this will not affect the running time of algo-
rithms in this space. We now describe f and д which transform
X and q, respectively, to non-negative representations while pre-
serving their inner product order.

First, let us consider the case where X has some negative
values. We compute the minimum value for each column j of X,
i.e. α j = min(yj ) and consider the mapping

yj 7→ y′j = yj − α j1
=

(
x1j − α j ,x2j − α j , . . . ,xnj − α j

)T ∈ Rn+ .
According to this mapping, we have a new representation of xi
as follows.

xi 7→ x′i = (xi1 − α1,xi2 − α2, . . . ,xid − αd ) ∈ Rd+. (2)
It is clear that x′i is non-negative. The following lemma states that
this transformation is order preserving regarding inner product.

Lemma 3.2. Given a query q, the non-negative transforma-
tion (2) satisfies argmaxi xi · q = argmaxi x′i · q and xi1 · q −
xi2 · q = x′i1 · q − x

′
i2 · q for any i1, i2 ∈ [n].

Proof. Consider the vector α = (α1,α2, . . . ,αd ), it is clear
that x′i · q = (xi −α ) · q = xi · q−α · q. Since α is fixed regarding
any query q, the lemma holds. �

We now examine the case where q has some negative values
and without loss of generality, let us assume that qj < 0 for some
j. Since the Equation (1) can be written as Xq = y1q1 + . . . +
(−yj )(−qj ) + . . . + ydqd , flipping the sign of both vector yj and
qj preserves all inner product values.

We denote by βj = max(yj ), the maximum value of each col-
umn j of X. Note that βj = −min(−yj ) and −yj + βj1 ∈ Rn+.
Combine the sign flipping trick with the non-negative transfor-
mation (2), the following theorem holds.

Theorem 3.3. The non-negative transformation f : x 7→ x′,
such that x j 7→ x j −α j if qj ≥ 0; otherwise, x j 7→ −x j +βj and the
non-negative transformation д : q 7→ q′ = |q| are order preserving
regarding inner product. Moreover, xi1 ·q−xi2 ·q = x′i1 ·q

′−x′i2 ·q
′

for any i1, i2 ∈ [n].
Since we do not know the sign of qj in advance, we will keep

two mapping values x j − α j and −x j + βj . In other words, we
maintain two mapping vectors y+j = yj −α j1 and y−j = −yj +βj1
corresponding to qj ≥ 0 and qj < 0, respectively. Exploiting
these order-preserving transformations, we are able to apply
advanced sampling methods to solve MIPS with general inputs.

3.2 Fast Wedge-based Algorithm for
Budgeted Top-k MIPS

We now describe our novel wedge-based algorithms, including
query-independent and query-dependent phases, for answering
top-k MIPS with a budget B.
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Algorithm 1 Pre-processing

Require: Matrix X ∈ Rn×d presenting for the data set X, the
maximum number of pre-samples smax

Ensure: Vectors c+, c− ∈ Rd+ contain norm-1 of columns of the
data in the transform space, matrices X+,X− ∈ Nsmax×d

+ as
pre-sample sets for non-negative and negative coordinates
of q

1: for each column vector yj of X do
2: Compute α j = min(yj ) and βj = max(yj ).
3: Compute y+j = yj − α j1 and y−j = −yj + βj1.
4: Compute and store norm-1 c+j = ∥y+j ∥1 and c−j = ∥y−j ∥1

in the dimension j of c+ and c−, respectively.
5: Generate and store smax random variables from the dis-

crete distributions y+j and y−j as the column j of X+ and
X−, respectively.

6: end for
7: return X+ and X−, c+ and c− corresponding to non-

negative and negative coordinates of q, respectively.

Algorithm 2 fsWedge
Require: Matrices X+ and X−, vectors c+ and c−, the query q,

and the budget B
Ensure: Approximate top-k MIPS for q
1: Step 1: Determine the total number of samples s based on

the budget B.
2: Step 2: Compute statistics values: z =

∑
i x′i · q′ and the

number of samples sj for each dimension j based on s .
3: Step 3: For each dimension j, randomly access sj point in-

dexes from the column j of X+ if qj ≥ 0; otherwise, X−, and
insert them into the counting and tracking histograms.

4: Step 4: Return top-m points with largest estimate values
from the histograms.

5: Step 5 (post-processing): Compute thesem inner products
and return top-k points with largest inner product values.

In the offline query-independent phase, we execute order-
preserving transformations to convert to non-negative MIPS,
and pre-compute some statistics needed for wedge sampling.
Then we pre-sample point indexes based on specific discrete
distributions for speeding up the query-dependent process.

In the online query-dependent phase, we determine the total
number of samples s based on the budget B. Then we compute
the number of samples sj for each dimension j and access these
sj samples from the pre-sample set. For each sampled point xi ,
we insert it into additional data structures which support fast
retrieval of the top-m points with the largest counter values in
only O (s) time. A post-processing step for candidate ranking
will compute thesem inner products and return top-k MIPS.

3.2.1 Query-independent constructions: We perform se-
quential operations by traversing column vectors yj of X, as
shown in Algorithm 1. First, we execute order-preserving trans-
formationswhich generate column vectors y+j and y

−
j correspond-

ing to non-negative and negative values of q, respectively. We
also store their norm-1 in vectors c+ and c− in order to compute
the statistics needed for wedge sampling in O (d) time.

We sample the point xi based on the discrete distribution
presented by y+j (and y−j ) and store them as the columns j of the
matrix X+ (and X−) for non-negative (and negative) coordinates

Counting

xnxi

1 1 2

x1

Tracking 1 2 s3

x1

xi

xn

Sample xi

xnxi

1 2 2

x1

1 2 s3

x1

xi

xn

Figure 2: Updating histograms when processing xi . Before
processing xi , its counter value is 1, hence xi locates in the
1st cell of the tracking histogram. After processing xi , its
counter value is updated to 2, hence xi moves to the 2nd
cell of the tracking histogram.

of q. One of the most popular and fastest method to generate
random variables from a discrete distribution κ ∈ Rd+ is the so-
called alias method [9], which requires O (d) time for setup and
O (1) for each sample. This alias method has been used in both
diamond and wedge sampling [3]. Given the maximum number
of samples smax for each dimension, the query-independent step
takes O (dn + dsmax ) time and requires O (dsmax ) additional
space to store the two pre-sample sets. In practice, we often set
the budget B = o(n), hence the setting smax = n suffices and the
space overhead and time complexity of this step is O (dn).

3.2.2 Query-dependent construction: Given a querywith
a budget B of computational operations, we execute Algorithm 2,
called fsWedge, to answer budgeted top-k MIPS. Step 1 computes
the total number of samples s based on the budget B and spe-
cific settings. In Step 2, we compute some statistics for wedge
sampling. We compute the sum of all inner products in the new
transformed space z =

∑
i x′i · q′ =

∑
j c j |qj | and number of

samples sj = ⌈sc j |qj |/z⌉ required for each dimension j in O (d)
time. Note that c j = ∥y+j ∥1 if qj ≥ 0 and c j = ∥y−j ∥1 otherwise.
Then, we randomly access sj point indexes from the column j of
X+ if qj ≥ 0; otherwise of X−, and insert them into the counting
and tracking histograms (Step 3).

In Step 4, we extract the top-m points with largest estimate
values using these histograms. In Step 5, we compute thesem
inner products, and use the standard priority queue to return
more accurate top-k MIPS.

Counting and trackinghistograms to return top-m points
in Step 4:We now describe new data structures that enable us
to retrieve top-m points with largest occurrences in O (s) time,
as illustrated in Figure 2. First, we need a counting histogram of
size n to count up-to-date occurrences of n points. Second, we
need a tracking histogram to keep track of all point indexes with
the same number of occurrences. Such tracking histogram can be
implemented as an array and its cell is a hash table containing all
point indexes with the same counter value. When sampling xi ,
we get its old occurrences in the counting histogram in order to
find it in the tracking histogram. Then, we increase the counter of
xi by 1 and move it into the hash table of the next cell. When we
finish Step 3, we simply traverse the tracking array from end to
front and return them different points with largest occurrences.
It is clear that we only spend O (1) cost for each sample, which
leads to O (s) time for Step 3 and O (m) time for Step 4.

3.3 Parameter Settings and Time complexity
3.3.1 Parameter settings: If the post-processing is not al-

lowed, we simply set the total samples s = B. In practice, we ob-
serve that the post-processing often increases the search quality.
Hence we will exploit this step with additional O (dm +m logk)
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time. For the time balance between the post-processing step and
the other steps, we set s = dm = B/2. Note that this setting has
been used on the very recent work on budgeted MIPS [31].

3.3.2 Time complexity: It is clear that the cost of Step 1
is negligible and Step 2 takes O (d) time. Using our proposed
histograms with O (s + n) space overhead, Step 3 and Step 4 run
in O (s) and O (m) time, respectively. Hence fsWedge runs in
O (s) time, which completely depends on the budget B using the
above settings.

3.4 Analysis of Wedge Sampling
Given a query q, we denote byδ =

∑d
j=1,qj ≥0 α jqj+

∑d
j=1,qj<0 βjqj

the shifting value for any point xi . This shifting value is fixed
given a query q. Applying wedge sampling in the new transfor-
mation space, we have the sampling probability for the point xi
is p′i =

xi ·q−δ∑
i xi ·q−nδ .

For simplicity, we will show the analysis on the transform
space since the input values are now non-negative. One can
easily derive the analysis in the original space with the shifting
value δ defined above. Consider the counting histogram counter
of n counters corresponding to n point indexes, the following
theorem states the number of samples required to distinguish
between two inner product values τ1 and τ2.

Theorem 3.4. Fix two thresholds τ1 > τ2 > 0 and suppose
s ≥ 3z lnn

(√τ1−√τ2)2 where z =
∑
i xi · q. With probability at least

1 − 1
n , the following holds for all pairs i1, i2 ∈ [n]: if xi1 · q ≥ τ1

and xi2 · q ≤ τ2, then counter [i1] > counter [i2].

Proof. Define p1 =
xi1 ·q
z ≥ τ1

z and p2 =
xi2 ·q
z ≤ τ2

z . For
l = 1, . . . , s , we consider independent pair of random variables
(Xl ,Yl ) where

Xl =

{
1 if xi1 is chosen at lth sample;
0 otherwise

Yl =

{
1 if xi2 is chosen at lth sample;
0 otherwise

Define X =
∑s
l=1 Xl and Y =

∑s
l=1 Yl . We only consider the

failure case where Y − X ≥ 0. Applying Markov inequality for
any λ > 0, we have

Pr [Y − X ≥ 0] = Pr
[
eλ(Y−X ) ≥ 1

]
≤ E

[
eλ(Y−X )

]

= E
[
eλ(

∑
l Yl−

∑
l Xl )

]
=

s∏
l=1

E
[
eλ(Yl−Xl )

]
.

We also have

E
[
eλ(Yl−Xl )

]
= eλp2 + (1 − p1 − p2) + e−λp1
≥ 2√p1p2 + 1 − p1 − p2 = 1 − (√

p1 − √p2
)2
.

The equality holds when λ = ln
√
p1/p2 > 0. In other words, by

choosing λ = ln
√
p1/p2, we have

Pr [Y − X ≥ 0] ≤
(
1 − (√

p1 − √p2
)2)s ≤ e−s(

√
p1−√p2)2 .

By choosing s ≥ 3z lnn
(√τ1−√τ2)2 ≥

3 lnn
(√p1−√p2)2 and the union bound,

the theorem holds with probability at least 1 − 1/n. �

Algorithm 3 GreedySam
Require: Number of samples s , and a discrete distribution κ =
{κ1, . . . ,κn } ∈ [0, 1]n and ∥κ ∥1 = 1

Ensure: A pre-sample set s of size s
1: s← [0]s
2: For all indexes i ∈ [n], insert (i,κi ) into a max heap H based

on the value κi
3: for j = 1 to s do
4: Extract from H the element (l ,κl )
5: s[j] ← l
6: Insert (l ,κl − 1/s) into H
7: end for
8: return Return s

3.4.1 Trade-off between search quality and efficiency:

By choosing s as Theorem 3.4, we have √τ1 − √τ2 ≥
√

3z lnn
s .

Assume that the top-k value is τ1, it is clear that the number
of samples s controls the trade-off between search quality and
efficiency. That is that the larger the budget B of computational
operations (i.e. the larger s) we have, the smaller gap between
the top-k largest inner product value and the other values we are
able to distinguish.

3.4.2 Comparison to diamond sampling: For a fair the-
oretical comparison, we consider the similar setting as in [3]
where we want to distinguish xi1 · q ≥ τ and xi2 · q ≤ τ/4, and
all entries in X and q are non-negative2. Applying Theorem 3.4,
wedge sampling needs sw ≥ 12z lnn/τ . Diamond sampling [3,
Theorem 4] needs sd ≥ 12K ∥W∥1 lnn/τ 2 where all entries in X
are at most K , and ∥W∥1 = z∥q∥1. Since K ∥q∥1 ≥ τ for any τ ,
wedge sampling requires less samples than diamond sampling.

3.5 A Greedy Sampling Generator for a
Discrete Distribution

This subsection presents implementation details of advanced
sampling approaches, including wedge and diamond sampling
for budgeted top-k MIPS. We first discuss a significant drawback
on generating random samples from a discrete distribution, the
core operation of these methods, when applying these schemes
with budget B = o(n). Then, we introduce a greedy approach
to carefully select these samples, which leads to deterministic
versions of both sampling schemes. For simplicity, we assume
that q and X are non-negative.

One big advantage of wedge sampling compared to diamond
sampling is the ability of generating the pre-sample vectors from
discrete distributions presented by column vectors ofX (i.e. line 5
in Algorithm 1) on the query-independent phase. Furthermore,
we can avoid the randomness provided by the Step 3 of Algo-
rithm 2 by simply accessing the top-sj point indexes from these
pre-sample vectors yj . This suggested modification in [5] leads
to a very efficient implementation which requires only simple
counting and sequential memory access operations.

It is obvious that the more accurately these sj sampled points
represent their corresponding discrete distribution yj , the higher
accuracy wedge sampling provides. However, in the budgeted
setting with a very limited budget, i.e. B = o(n), the number of
sample points sj required for each dimension j is B/d ≪ n in
expectation. Since the number of samples sj is much smaller than
the size of the distribution, n, and since the data set is often dense,
2Diamond sampling’s analysis only works on non-negative inputs.
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it is impossible to approximate the distribution well. Hence the
performance of both wedge and diamond sampling dramatically
degrades, as can be seen in the empirical evaluation section.

To overcome this drawback, we propose a greedy approach to
select sj samples to present themodes of yj , instead of yj itself. In
other words, our greedy strategy selects indexes i corresponding
to the largest values xi j of yj . Since these local maxima reflect
the distinguishable contributions of the dimension j on n inner
products, they work well for differentiating the largest inner
product values. Our approach can be seen as a greedy simulation
of the condensed table lookup method [20] to select s samples
from a discrete distribution yj . We first fill the table with s values
from the vector ⌈syj/∥yj ∥1⌉. Then we greedily choose samples
corresponding to the largest value, and continue to the next
largest ones.

Algorithm 3 shows howour greedy approach, calledGreedySam,
selects s ≪ n samples from a discrete distributionκ = {κ1, . . . ,κn }
where ∥κ ∥1 = 1. We use a max heap H to keep track the largest
value κi in order to priority sample them (Step 2). When we sam-
ple an index l with the largest value κl , we decrease κl by 1/s
and insert it into the heap again (Step 6). The intuition behind
the heuristic approach of subtracting 1/s for each sample, is that
we expect any κl ≥ 1/s will be sampled at least one time.

It is clear that GreedySam runs in O (n logn + s logn) time
using the priority queue. Since we need to generate smax =

n samples for each dimension, the pre-sampling process takes
O (dn logn) time. GreedySam leads to deterministic versions of
wedge and diamond sampling, called dWedge and dDiamond,
respectively. These deterministic versions provide much higher
accuracy than the randomized schemes with the alias generator,
as can be seen in the experiment section.

3.6 A Fast and Deterministic Wedge-based
Algorithm: dfsWedge

The combination of our series of algorithmic engineering tech-
niques, including shifting technique, GreedySam and the fast
wedge-based algorithm, yields a novel deterministic wedge-based
algorithm, called dfsWedge for budgeted top-k MIPS. Our empiri-
cal evaluation shows that dfsWedge runs significantly faster than
the state-of-the-art methods for budgeted and exact top-k MIPS
while achieving at least 80% accuracy for top-5 MIPS on standard
recommender system data sets.

4 EXPERIMENT
We implemented sampling schemes and other competitors in
C++ and conducted experiments on a 2.80 GHz core i5-8400
32GB of RAM. We first show the empirical evaluation to com-
pare GreedySam and the alias method on wedge and diamond
sampling. Then we show a comparison between wedge and dia-
mond on both efficiency and accuracy of top-k MIPS to confirm
our theoretical findings. Finally, we compare the performance of
our proposed deterministic wedge-based algorithms, dfsWedge,
with other state-of-the-art methods, including Greedy [31] as a
budgeted top-k MIPS and FEXIPRO [17] as an exact top-k MIPS

Data set Movielens1M Movielens10M Netflix Yahoo
d 150 150 200 50
n 3,952 65,133 17,770 624,961

Table 1: Overview of the data sets.
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Figure 3: Accuracy comparison between wedge/diamond-
based schemes using GreedySam/Alias generators on
Movielens1M when fixing k = 10 and varying B (left); and
fixing B = n and varying k (right).

on standard recommender system data sets. For measuring the
accuracy and efficiency, we used the standard Precision@k and
the speedup over the brute force algorithm, defined as follows.

Precision@k =
|Retrieved top-k ∩ True top-k |

k

Speedup =
Running time of bruteforce

Running time of algorithm

4.1 Experiment Setup
Since both shifting technique and GreedySam can apply to both
wedge and diamond, we implement their corresponding versions.
Below is the list of all implemented algorithms used in our ex-
periment.
• Wedge-based schemes: the randomized wedge sampling
with the alias generator (Wedge), the deterministic version
with GreedySam (dWedge), the fast and deterministic ver-
sion with GreedySam and shifting (dfsWedge).
• Diamond-based schemes: the randomized diamond sam-
pling with the alias generator (Diamond), the deterministic
version with GreedySam (dDiamond), and the determinis-
tic version with shifting (dsDiamond).
• Greedy: A greedy approach for approximate top-k MIPS
on the budgeted setting [31].
• FEXIPRO: The start-of-the-art approach for exact top-k
MIPS [17].
• Bruteforce: We use the Eigen library3 which provides ex-
tremely fast C++ matrix-vector multiplication. Our brute-
force algorithm runs nearly 2 times faster than FEXIPRO
for top-5 MIPS on the Yahoo data set.

We do not implement LSH-based approaches since they are not
suitable for budgeted MIPS. Instead, we compare our sampling
method to Greedy, a recent work on budgetedMIPS, which empir-
ically outperforms LSH-based methods on budgeted MIPS [31].

Parameter settings: For the budgeted methods, including
wedge, diamond and greedy, we simply set B/2 for candidate
screening and B/2 candidate ranking. This means that we need
s = B/2 samples for sampling schemes and compute B/2d inner
products to answer approximate top-k MIPS. Since diamond is
a combination between wedge and basic sampling, its number
of samples sd is double that of wedge sampling sw . For a fair
comparison between wedge and diamond, we set sd = sw /2 =
B/4. We note that the candidate screening of Greedy is extremely
fast. For a fair comparison between wedge-based schemes and

3http://eigen.tuxfamily.org/index.php?title=Main_Page
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Figure 4: Comparison of Precision@5 (left) and speedup
(right) between wedge/diamond-based algorithms when
varying B on Movielens10M.

Greedy, we reduce the number of samples sw = B/20 to achieve
similar running time.

4.2 Data Sets
We conducted experiments on standard recommender system
data sets, including Movielens1M, Movielens10M, Netflix, and
Yahoo, as shown in Table 1.
• Movielens1M and 10M: We execute PureSVD [7] to gen-
erate user and item matrices of 150 dimensions.
• Netflix: We use the version of 200 dimensions provided
by Greedy [31].
• Yahoo: We use the version of 50 dimensions provided by
Greedy [31].

For all data sets, we randomly pick 100 items from the item
matrices as the query sets.

4.3 Comparison between GreedySam and the
alias method

This subsection conducted experiments on evaluating the pe-
formance of GreedySam and the alias generator on both wedge
and diamond. We computed the exact values of top-10 MIPS
and executed the wedge-based and diamond-based schemes with
GreedySam and alias generator. Note that sd = sw /2 for all com-
parison settings between wedge and diamond. Due to the similar
results on other data sets, we only report the representative re-
sults of Movielens1M here.

Figure 3 shows that GreedySam provides superior perfor-
mance compared to Alias since the Precision@10 of all sampling
schemes with GreedySam are mostly 2 times higher than that of
Alias. These gaps are persistent for both settings when we vary
B (left) and the k (right). It is worth noting that the wedge-based
algorithms, including dfsWedge and dWedge, achieve higher ac-
curacy than diamond-based algorithms, including dsDiamond
and dDiamond.

4.4 Comparison between wedge and diamond
based schemes

In this subsection, we compare the top-k performance of wedge-
based and diamond-based schemeswithGreedySam since GreedySam
outperforms the alias methods on these sampling schemes. For
each sampling scheme, we consider two versions with and with-
out the shifting technique, including dfsWedge, dWedge and dsDi-
amond, dDiamond.Wemeasured their performance on Precision@5
value and speedup over the bruteforce search where we varied
B and k . The parameter setting was the same as described in the

previous subsection, i.e sd = sw /2 = B/4, for the sake of compar-
ison. Figure 4 reveals the performance of dWedge and dfsWedge
compared to dDiamond and dsDiamond on Movilens10M.

It is clear that the shifting technique provides superior per-
formance as illustrated on the left figure. In particular, both df-
sWedge and dsDiamond achieve at least 80% when usingB = n/5
and reach the exact solution with B = n, whereas without shift-
ing, dWedge and dDiamond’s accuracy are at most 80% even with
B = n.

Regarding the efficiency, wedge-based schemes significantly
outperform diamond-based ones, as shown on the right figure.
Note that we set sd = sw /2 since diamond sampling requires 2
times larger number of samples than wedge sampling. Diamond
is still much slower than wedge because it has to execute the basic
sampling on the query phase. This step requires costly random
access operations while wedge only needs sequential access. We
note that on Yahoo, the larger data set, the speedup gap of these
methods is very significant, but not reported here.

In general, regarding accuracy and efficiency, dfsWedge il-
lustrates substantial advantages with the highest accuracy and
largest speedup on a wide range B. In particular, dfsWedge runs
several orders of magnitude faster than bruteforce, approximately
2 times faster than dWedge and 3 times faster than diamond-based
methods. When B = n, the speedup of dWedge is similar to that
of dfsWedge. This is due to the fact that the complexity of df-
sWedge O (B) = O (n) is nearly matching with the bottleneck of
the candidate screening process of dWedge, i.e. O (n logn) times
in practice.

4.5 Comparison between wedge, Greedy and
FEXIPRO

This subsection presents experiments to measure the perfor-
mance of wedge-based algorithms, including dWedge and df-
sWedge, and Greedy and FEXIPRO on the Netflix, Movilens10M
and Yahoo data sets. We again use Precicision@5 and speedup
as our standard measures.

We note that Greedy has very fast candidate screening pro-
cess. Hence, we decreased the number of samples for wedge
sw = B/20 to achieve similar running time. For candidate rank-
ing, we computed m = B/2d inner products for both wedge-
based and Greedy methods. For a fair comparison, we investi-
gated two different settings for Greedy. The first setting is stan-
dard with the same budgetB as wedge. For the second setting, we
increase the budget B by a factor of 2 for Netflix, called Greedy2B,
and a factor 1.5 for Movielens10M, called Greedy1.5B. This means
that Greedy2B and Greedy1.5B have, respectively, 2 times and
1.5 times more dot product computations than the wedge-based
methods. Figure 5 shows the accuracy and efficiency of dfsWedge,
dWedge and the two versions of Greedy, including Greedy and
Greedy2B for Netflix, and Greedy and Greedy1.5B for Movie-
lens10M.

On Netflix, wedge-based approaches achieve dramatically
higher accuracy than bothGreedy andGreedy2B although dWedge
provides slightly higher accuracy than dfsWedge. In particular,
Greedy methods suffer from very low accuracy when varying B
on Figure 5(a) and (b). With B = 6n, both Greedy approaches pro-
vide up to 40% Precision@5, whereas wedge-based algorithms
return top-5 with nearly 70% accuracy. Figure 5(b), when fixing
B = 4n, the accuracy gap of these methods is at least 30% for a
wide range of k .
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Figure 5: Comparison between dfsWedge, dWedge, Greedy and Greedy2B on Netflix when fixing k = 5 and varying B (a);
fixing B = 4n and varying k (b); and between dfsWedge, dWedge, Greedy and Greedy1.5B on Movielens10M when fixing
k = 5 and varying B (c); fixing B = n/3 and varying k (d).

On Movielens10M, the accuracy of dfsWedge is consistenly
between that of Greedy and Greedy1.5B while dWedge suffers
from prominent loss compared to the other methods.When fixing
B = n on Figure 5(c), dWedge provides up to 70% Precision@5,
while dfsWedge and Greedy reach the exact result. When fixing
B = n/3 on Figure 5(d), dfsWedge and Greedy achieve at least 80%
Precision@10 while dWedge only gives 55%. Both dfsWedge and
Greedy1.5B present very high accuracy, at least 80% and higher
than 90% Precision@5 when B = n/5 and B = n/2, respectively.

Figure 6 reveals the comparison of speedup between wedge-
based and greedy-based approaches. While all methods run sev-
eral orders of magnitudes faster than the bruteforce algorithm,
the speedup of dfsWedge is consistently between the two Greedy
versions on both data sets. For Netflix, Greedy2B is the slowest
algorithm with B ≥ n while dWedge is the slowest one with
B ≥ 3n. It is natural since the bottleneck cost of dWedge is the
candidate screening, i.e. O (n logm), to find top-m for candidate
ranking. This observation is also consistent with Greedy1.5B on
Movilens10M when B = n. dfsWedge and Greedy offer signifi-
cantly larger speedup compared to dWedge. In general, regard-
ing both accuracy and efficiency, dfsWedge outperforms both
dWedge and Greedy on Netflix and is comparable to Greedy on
Movilens10M.

Figure 7 shows the observed Precision@k and speedup of
dfsWedge, dWedge and Greedy on Yahoo, the large-scale data
sets. dfsWedge still outperforms both dWedge and Greedy when
varying B on top-5 MIPS. While Greedy obtains significantly
higher Precision@5 than dWedge, the gap between dfsWedge
and Greedy is considerable. The most dramatic difference is
around 10% with B = 3n when dfsWedge achieves over 80%
Precision@5 and Greedy offers less than 70%. Regarding the
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Figure 6: Comparison of speedup between dfsWedge,
dWedge, Greedy and Greedy2B on Netflix and Movie-
lens10M when varying B for top-5 MIPS.
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Figure 7: Comparison of Precision@5 (left) and speedup
(right) between dfsWedge, dWedge, Greedy on Yahoo
when varying B for top-5 MIPS.

speedup, dfsWedge also runs faster than Greedy and up to 3
times faster than dWedge when B = n/3.

We conclude our experiment by comparing dfsWedge, Greedy
and FEXIPRO, an exact MIPS method on both accuracy and
efficiency. Table 2 show that given at least 80% Precision@5,
dfsWedge runs significantly faster than both Greedy and FEX-
IPRO. Furthermore, dfsWedge also achieves higher accuracy than
Greedy on these data sets. In conclusion, regarding both accuracy
and efficiency on the budgeted setting, dfsWedge has superior
performance compared to dWedge and Greedy on the three data
sets.

Data sets dfsWedge Greedy FEXIPRO
Acc Time Acc Time Acc Time

Netflix (B = 10n) 0.80 9× 0.60 7× 1 1×
Movie10M (B = n/4) 0.84 118× 0.84 118× 1 101×

Yahoo (B = 3n) 0.82 3× 0.72 2× 1 _
Table 2: Comparison of accuracy and speedup between df-
sWedge, Greedy and FEXIPRO on the three data sets.

5 CONCLUSIONS
This paper studies top-k MIPS given a limit of B computational
operations and investigates recent advanced sampling algorithms,
including wedge and diamond sampling to solve it. We theoret-
ically and empirically show that wedge is competitive (often
superior) to diamond on approximating top-k MIPS regarding
both efficiency and accuracy. We also propose a series of algo-
rithmic engineering techniques to deploy wedge sampling on
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budgeted top-k MIPS. Our novel deterministic wedge-based algo-
rithm runs significantly faster than the state-of-the-art methods
on budgeted MIPS and exact MIPS while maintaining the accu-
racy at least 80% on standard real-word recommender system
data sets.
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