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Abstract

In recent years, demand has immensely increased for algorithms for handling
and analyzing large-scale data. The data often arrives in a stream, and
if it is not processed in time, the information is lost. Indeed, the high
volume of the data makes storing a complete copy and performing exact
computations an intractable task. These challenges motivate the following
general question. Can we design efficient algorithms and data structures that
provide reliable statistical analyses in large-scale data scenarios?

A powerful tool in designing such algorithms is randomization, and in
particular, randomization through the use of hash functions. In the analysis
of randomized algorithms, such hash functions are commonly assumed to be
truly random. However, this ignores the practical issue that efficiently imple-
menting a truly random hash function is impossible, and further, that using
too weak a hash function may completely undermine the strong theoretical
guarantees attained in an idealised analysis. Often, particular structured
data sets will cause the strong theoretical guarantees to vanish. This thesis
presents new results on theoretical guarantees that can be obtained using
practical tabulation-based hashing schemes. First, we introduce a new fam-
ily of hash functions, tabulation-permutation, which is simple to implement
and demonstrated to be extremely fast in practice. We prove that it pro-
vides strong concentration bounds on hash-based sums. We further show
how access to such a hashing scheme leads to speedups of various streaming
algorithms. Second, we study the number of non-empty bins when hashing
n balls to m bins using simple tabulation hashing, another fast and practical
hash function. In several ways, this distribution is shown to resemble that
from the truly random scenario.

Along a slightly different line of research, we present new results on the
streaming algorithm Count-Min and Count-Sketch for estimating frequen-
cies of the elements of a data stream. We show how access to an oracle
which can decide whether an item is a heavy hitter, can be used to obtain
better frequency estimates.

Finally, we present a basic graph algorithm. The algorithm takes as input
a graph, the edges of which have been partitioned into trails, and decides
in linear time whether the trails can be consistently oriented to make the
resulting directed graph strongly connected. Moreover, it finds such a strong
trail orientation if it exists.
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Dansk resumé

I de seneste år er efterspørgslen p̊a algoritmer til at h̊andtere og analysere
store mængder af data steget dramatisk. Typisk er der tale om strømme af
data, hvis information g̊ar tabt, hvis de ikke behandles i tide. Det er nemlig
umuligt at gemme en komplet kopi af data i s̊a stor skala og udføre præcise
analyser og beregninger. Disse udfordringer motiverer følgende generelle
spørgsm̊al. Kan vi designe algoritmer og datastrukturer, som effektivt og
p̊alideligt kan analysere data i stor skala?

Et vigtigt redskab i arbejdet med s̊adanne algoritmer er randomisering,
specielt randomisering ved brug af hashfunktioner. I analysen af randomis-
erede algoritmer der bruger hashfunktioner antages det ofte, at disse hash-
funktioner er fuldt tilfældige. Desværre er det umuligt at implementere fuldt
tilfældig hashing i praksis, og ved brug af for svage hashfunktioner risikerer
man at underminere de stærke teoretiske garantier, man f̊ar fra den idealis-
erede analyse med fuld tilfældighed. Ofte vil d̊arligt struktureret data f̊a de
stærke teoretiske garantier til at forsvinde.

Denne afhandling præsenterer nye resultater om de teoretiske garantier,
som kan opn̊as ved brug af praktiske hashfunktioner baseret p̊a tabulering.
Vi introducerer først en ny familie af hashfunktioner, tabulation-permutation,
som er let at implementere og ekstremt hurtig i praksis. Vi viser, at denne
type hashing giver stærke koncentrationsresultater for hashbaserede sum-
mer. Vi viser ogs̊a, hvordan adgangen til en hashfunktion med s̊adanne
egenskaber giver hurtigere algoritmer til p̊alideligt at analysere strømme af
data. Derefter studerer vi fordelingen af ikke-tomme spande n̊ar n bolde
fordeles i m spande ved brug af simple tabulation hashing, som er en an-
den hurtig og praktisk hashfunktion. Vi viser, at denne fordeling p̊a mange
m̊ader ligner den tilsvarende fordeling med fuldt tilfældig hashing.

I en lidt anden forskningsretning præsenterer vi nye resultater om algorit-
merne Count-Min og Count-Sketch, der kan bruges til at estimere frekvenserne
af elementerne fra en strøm af data. Vi viser, hvordan adgang til et orakel,
der kan afgøre hvorvidt et element optræder hyppigt eller ej, kan bruges til
at opn̊a bedre estimater.

Til sidst præsenterer vi en basal grafalgoritme. Som input f̊ar algoritmen
en graf hvis kanter er opdelt i stier, og algoritmen afgør i lineær tid, om
disse stier kan ensrettes konsistent s̊aledes, at den resulterende orienterede
graf bliver stærkt sammenhængende. Algoritmen finder desuden en s̊adan
orientering af stierne hvis det er muligt.
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Preface

The General rules and guidelines for the PhD programme at the Faculty
of Science, University of Copenhagen allows for a PhD dissertation to be
written “as a synopsis with manuscripts of papers or already published papers
attached”. The present dissertation has this form.

To get a coherent thesis I have chosen to only present a selected subset of
my work. For completeness, I will now provide a very brief introduction to
all my papers, including those not presented in this thesis. Throughout my
PhD, I have been the co-author of nine papers, five of which are published
at peer-reviewed conferences or journals and the remaining four being in
submission. The full list of papers is as follows.

[AAKR19] Anders Aamand, Mikkel Abrahamsen, Jakob B. T. Knud-
sen, and Peter M. R. Rasmussen. Classifying convex bod-
ies by their contact and intersection graphs. CoRR, 2019.
https://arxiv.org/abs/1902.01732. In submission.

[AAT20] Anders Aamand, Mikkel Abrahamsen, and Mikkel Thorup.
Disks in curves of bounded convex curvature. The American
Mathematical Monthly, 127(7):579–593, 2020.

[ADK+20] Anders Aamand, Debarati Das, Evangelos Kipouridis, Jakob
B. T. Knudsen, Peter M. R. Rasmussen, and Mikkel Thorup.
No repetition: Fast streaming with highly concentrated hash-
ing. CoRR, 2020. arxiv.org/abs/2004.01156. In submis-
sion.

[AHHR18] Anders Aamand, Niklas Hjuler, Jacob Holm, and Eva Roten-
berg. One-way trail orientations. In 45th International Col-
loquium on Automata, Languages, and Programming, ICALP
2018, pages 6:1–6:13, 2018.
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[AIV19] Anders Aamand, Piotr Indyk, and Ali Vakilian. (learned)
frequency estimation algorithms under zipfian distribution.
CoRR, 2019. https://arxiv.org/abs/1908.05198. In sub-
mission.

[AKK+20] Anders Aamand, Jakob B. T. Knudsen, Mathias B. T. Knud-
sen, Peter M. R. Rasmussen, and Mikkel Thorup. Fast hash-
ing with strong concentration bounds. Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing,
2020.

[AK L+20] Anders Aamand, Adam Karczmarz, Jakub  Lacki, Nikos Parot-
sidis, Peter M. R. Rasmussen, and Mikkel Thorup. Ran-
domized decremental connectivity in linear time for less dense
graphs, 2020. In submission.

[AKT18] Anders Aamand, Mathias B. T. Knudsen, and Mikkel Tho-
rup. Power of d choices with simple tabulation. In 45th
International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2018, pages 5:1–5:14, 2018. (Based on
my Master’s thesis).

[AT19] Anders Aamand and Mikkel Thorup. Non-empty bins with
simple tabulation hashing. In Proceedings of the Thirtieth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, pages 2498–2512, 2019.

Roughly speaking, these papers can be partitioned into three topics.
The first is hash functions and hashing based algorithms, which is the main
topic of this thesis [AKK+20, ADK+20, AKT18, AT19, AIV19]. The two
remaining topics are graph algorithms [AHHR18, AK L+20] and finally (com-
putational) geometry [AAKR19, AAT20].

Hash functions and hashing based algorithms The primary focus of
of my work within the field of hashing has been on the design of fast and
practical hash functions that provably have some of the same good theoreti-
cal guarantees as fully random hashing [AKK+20, ADK+20, AT19, AKT18].
These papers are joint work with, among others, my advisor Mikkel Thorup.
First, [AKK+20] presents a new tabulation-based hashing scheme which sat-
isfies Chernoff-style concentration bounds. The hashing is easy to implement
and is demonstrated to be very fast in practice. Second, [ADK+20] demon-
strates how the access to a family of hash functions with such concentration
guarantees yields speed-ups in different streaming algorithms. Third, [AT19]
analyses the distribution of the number of non-empty bins when m balls are
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hashed to n bins using simple tabulation hashing. This paper has practi-
cal applications for the implementation of Bloom filters, filter hashing, and
multi-choice cuckoo hashing. Finally, [AKT18] analyses the expected max-
imum load of a bin when m = O(n) balls are distributed into n bins using
the d-choice balanced allocation scheme with the hashing implemented as
simple tabulation hashing.

Along a slightly different line of research is the paper [AIV19] on the fre-
quency estimation algorithms Count-Min and Count-Sketch. It is a follow-
up to a previous paper by, among others, my two co-authors which explored
the classic frequency estimation algorithms Count-Min and Count-Sketch
when augmented by an oracle that can predict if an item is a heavy hitter,
in that case allocating it a unique bucket. Their paper showed empirical im-
provements using a machine learning oracle but it lacked a tight theoretical
analysis. This is what is provided in [AIV19], which is a purely theoretical
paper.

Graph algorithms I have further been involved in two projects on graph
algorithms. The first one, [AHHR18], asks the following question. Suppose
that the edges of the graph is partitioned into trails. Can we consistently
orient the trails such that the resulting directed graph becomes strongly
connected? The paper presents a simple necessary and sufficient criterion
and a linear time algorithm for finding such a strongly connected trail ori-
entation if it exists. The second paper, [AK L+20], considers decremental
connectivity, that is, connectivity in a graph as edges are deleted. Start-
ing with m = Ω(n3/2 polylog n) edges, it present a Monte Carlo algorithm
that supports all deletions in O(m) total time, and can answer connectivity
queries in constant time.

Geometry Finally, I have been involved in two projects within geometry.
First, [AAKR19] classifies convex bodies by their contact, union and inter-
section graphs. Secondly, [AAT20] introduces the new notion of bounded
convex curvature. The paper proves that any simple closed curve of bounded
convex curvature contains a unit disk in its interior. Both of these papers
are joint work with, among others, my advisor Mikkel Abrahamsen.

Papers included in this thesis This thesis first contains a general intro-
duction which motivates the study of practical hashing and hashing based
algorithms. It then proceeds to introduce the papers included in the thesis
which are [AKK+20, AT19, ADK+20, AIV19, AHHR18]. The former four
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are all concerned with hashing or hashing based algorithms. The latter is
an outlier, a basic graph algorithm, included to illustrate the breath of my
PhD project.
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Chapter 1

Introduction

Recent years have brought with them an immense demand for methods
for handling and analyzing large-scale data. The data often arrives in a
streaming-like fashion and due to the high volume of the data, storing the
full data stream and performing exact computation is an intractable task.
One example of such a streaming scenario comes from the Internet. When
processing packages passing through a high-end Internet router, each appli-
cation only gets very limited time to look at each packet before it is for-
warded. If it is not done in time, the information is lost and slowing down
the Internet is typically not an option. These challenges motivate the follow-
ing general question. Can we design efficient algorithms and data structures
that provide reliable statistical analyses in large-scale data scenarios

Many interesting problems and influential algorithmic solutions have
been studied within this line of research. A powerful common tool in de-
signing algorithms for solving such problems is to use randomization, and
in particular, randomization through the use of hash functions. A simpli-
fying assumption when analysing the performance of these algorithms is
that the hash functions are fully random, i.e., that the hash values of keys
are independent and uniformly distributed. This assumption typically leads
to a much simpler analysis. However, implementing fully random hashing
is impossible in practice. If on the other hand a too weak hash function
is used, the strong theoretical guarantees vanish, and the algorithms may
break down completely on certain structured sets of data. It is therefore
desirable to find implementable and practical hash functions which provably
have some of the same good theoretical guarantees as fully random hashing.

A large part of this thesis is focused on new results on the theoreti-
cal guarantees that can be obtained with tabulation-based hashing schemes.
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CHAPTER 1. INTRODUCTION 3

Trail Orientations
Ch. 9

Frequency Estimation
Algorithms
Ch. 8

Non-Empty Bins
Ch. 7

Hashing with
Strong Concentration

Ch. 5

No Repetitions
Ch. 6

Introduction
to Thesis
Ch. 1

Hash Functions

Ch.2

Tabulation-Based
Hashing
Ch. 3

Concentration Bounds
Ch. 4

Figure 1.1: The nine chapters of this thesis in a tree. We present these
chapters in depth-first search order. Each leaf represents a paper. In order
to obtain a complete introduction to a given paper, the reader is encouraged
to follow the path from the root to the corresponding leaf, reading each
chapters met along the way.

First, it presents a new family of hash functions, tabulation-permutation
hashing which is shown to provide strong concentration guarantees of hash-
based sums. It is simple to implement and demonstrated to be extremely
fast in practice. It is shown how such concentration guarantees give speedups
of different streaming algorithms, namely when estimating set similarity or
estimating the number of distinct elements of the stream. Second, the thesis
studies the number of non-empty bins when hashing n balls to m bins us-
ing simple tabulation hashing, another simple and practical hashing scheme.
In several ways, this distribution is shown to resemble that from the fully
random scenario. For example, this yields an asymptotically space-optimal
implementation of Bloom filters.



CHAPTER 1. INTRODUCTION 4

Along a slightly different line of research, the thesis presents new results
on the streaming algorithm Count-Min and Count-Sketch for estimating
frequencies of the elements of a data stream. In [HIKV19], it was shown
empirically that these algorithms can be improved using a machine learning
oracle that predicts whether an item of the stream is a heavy hitter. Under
the common assumption that the input follows a Zipfian distribution, the
paper also presented a preliminary analysis of Count-Min assuming that the
heavy hitter oracle is perfect. Unfortunately, their analysis was not tight
and they provided no analysis of Count-Sketch. In this thesis we present
the first tight bounds for Count-Min and Count-Sketch, both their standard
variants and when augmented by an oracle for detecting heavy hitters.

Finally, to demonstrate the breath of this PhD project, the thesis presents
a basic graph algorithm. The input to the algorithm is a graph, the edges of
which have been partitioned into trails, and the algorithm decides in linear
time whether the trails can be consistently oriented making the resulting
directed graph strongly connected. It moreover finds such a strong trail
orientation if it exists.

Structure of this thesis. The thesis consists of nine chapters presented
in Figure 1.1 as nodes of a rooted tree. Each leaf represents a paper and the
corresponding chapter is an introduction to that paper. The chapter presents
the main results of the paper and their relation to international state-of-the-
art. In order to obtain a complete introduction to a given paper, the reader
is encouraged to follow the path from the root to the corresponding leaf,
reading each chapters met along the way. The thesis presents the chapters
of the tree in depth-first search order. The dashed line in the tree indicates
that Chapter 5 is very relevant for Chapter 6 even though the two chapters
can be read independently. We do not provide any proofs of our main results
in the introductory chapters, but refer the reader to the full papers in the
appendix. Chapters 5 to 9 are slightly modified subsets of the introductions
from the full papers, so the reader might just as well read these papers.



Chapter 2

Hash Functions

In this chapter, we provide a very brief introduction to the field of hashing
and hashing based algorithms.

The concept of a hash function dates back to the 1950s [Dum56] and today
it is one of the fundamental tools in the design of randomized algorithms
and data structures. A hash function is a random map h : U → R from
a universe of keys, U , to a range, R, chosen with respect to some proba-
bility distribution, D, on the set of all such functions. Here both U and
R are typically bounded integer ranges, U = [u] = {0, 1, . . . , u − 1} and
R = [m] = {0, 1, . . . ,m − 1}. In this thesis, D will always be the uniform
distribution restricted to some subset H ⊆ RU of the set of all such func-
tions. In this case, we say that H is a family of hash functions, implicitly
assuming that D is the uniform distribution over H. It is common to refer
to the keys of U as balls and to R as a set of bins. With this terminology, the
hash function can be thought of as throwing the balls of U into the bins of R
randomly according to the distribution D. If D is the uniform distribution
on RU , h is said to be a truly random or a fully random hash function. A
truly random hash function h : U → R thus assigns a uniformly random
hash value h(x) ∈ R to each key x ∈ U and the hash values (h(x))x∈U are
mutually independent.

Truly random hash functions play a special role in the study of hashing-
based algorithms and data structures. Indeed, assuming access to truly
random hash functions, the mutual independence of the hash values often
leads to a simple probabilistic analysis that demonstrates quite strong theo-
retical guarantees on the performance of the algorithm. Unfortunately, truly
random hash functions cannot be implemented in practice. To represent a
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CHAPTER 2. HASH FUNCTIONS 6

truly random hash function, we need to store |U | log2 |R| random bits and
in most applications the universe, U , is far too large for such a representa-
tion. In fact, the whole idea behind hashing is that for large U , we hope
to get away with using a much smaller random seed and still preserve the
good properties of the hash function. More precisely, we seek practical fam-
ilies of hash functions that can be sampled using a small random seed and
quickly evaluated, that are still ’random enough’ to provide the same good
theoretical guarantees as truly random hashing.

An example of a hash function that uses a small random seed is the map
h : [p] → [p] defined by h(x) = (ax + b) mod p, where p is prime and a
and b are independent and uniformly random members of [p]. To represent
h, we only require 2dlog2 pe bits and the hash function can be evaluated
in constant time. However, in many applications, h would be too weak to
provide the desired theoretical guarantees.

Let us provide an example of a hashing-based algorithm, namely the clas-
sic hashing with chaining. In hashing with chaining (see, e.g., [Knu98]),
we distribute the keys of a set X ⊆ U into a table using a hash function
h : U → R, storing x ∈ X at entry h(x). Collisions are handled by making
a linked list of all keys hashing to the same entry. Consider the special case
where |X| = |R| = n, i.e., where we distribute n balls into n bins. If h is
truly random, the probability that there exists a bin receiving more than k
balls is at most

n

(
n

k

)
n−k ≤ n

( e
k

)k
,

using a simple union bound. Choosing k = O(log n/ log logn) sufficiently
large, it follows from standard calculations that the maximum load of a bin
is at most k with high probability, and this is also a high probability upper
bound on the length of any of the linked lists. In this analysis we used that
any k = O(log n/ log logn) distinct keys have mutual independent hash val-
ues — which in particular is the case when h is truly random.

When studying a family of hash functions, H, we are fundamentally in-
terested in its performance on three parameters

1. Time. The time needed to evaluate the hash function.

2. Space. The space needed to represent the hash function.

3. Theoretical guarantees. In principle, for any property of a truly
random hash function or of randomized algorithm that assumes access
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to a truly random hash function, we can ask whether there exists a
practical hash family that provides similar theoretical guarantees. The
theoretical guarantees of the idealized truly random hash functions are
nearly always our baseline.

Examples of the theoretical guarantees in 3. come in abundances. Relevant
to this thesis are concentration bounds on hash-based sums, distribution
on the number of non-empty bins, and the level of independence of the
hashing scheme. Another example comes from [AKT18], which considers
the maximum load of a bin when n = O(m) balls are distributed into n bins
in the d-choice balanced allocation scheme from [ABKU99].

k-independence In 1979 Wegman and Carter [WC81] introduced the im-
portant notion of k-independence of a hash function. A hash function, h,
drawn from a family of hash functions, H, is said to be k-independent or
k-universal if

1. For any k distinct keys, x1, . . . , xk ∈ U , the hash values h(x1), . . . , h(xk)
are mutually independent.

2. For each x ∈ U , h(x) is uniformly in R.

When analysing the performance of a hash function in a given application, it
is common to use its independence. For example, we are typically interested
in how well a hash based sum, X, is concentrated around its mean, µ. If the
hash function is k-independent (k even), we can use the classic k’th moment
bound

Pr[|X − µ| ≥ t] ≤ E
[
|X − µ|k

]
/tk.

The k-independence ensures that E
[
|X − µ|k

]
is the same as if h were a

truly random hash function. An important special case of the definition of
k-independence is the choice k = 2. A hash function that is 2-independent is
said to be strongly universal and for a strongly universal hash function, the
moment bound above is just an application of Chebyshev’s inequality. In
Chapter 6, we will see an example of such a moment bound in the analysis
of two streaming algorithms.

The classic construction of a k-independent hash function is the polyno-
mial hashing scheme introduced by Wegman and Carter [WC81]. Here, the
hash function h : [p] → [p], p prime, is obtained by choosing a0, . . . , ak−1 ∈
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[p] independently and uniformly at random and defining

h(x) =

(
k−1∑

i=0

aixi

)
mod p. (2.1)

If one wish to hash to R = [m], one can choose p � m and define h1(x) =
h(x) mod m. Then part 2. of the definition of k-independence is only ap-
proximately satisfied but usually this is not a problem. In hashing based
algorithms, the truly random hash function can often be replaced with a
k-independent hash function for a sufficiently large k and still give the same
theoretical guarantees. For example, in the analysis of hashing with chain-
ing above, it is enough to assume that the hash function is k-independent
for k = O(log n/ log log n) sufficiently large.

The drawback of resorting to the k-independent hash function as defined
in (2.1) is that in applications involving n objects, we often have to choose
k = Ω(log n), or k = Ω(log n/ log log n) as in our running example. With
an evaluation time of Θ(k), this is typically too large. In the next chapter,
we introduce tabulation-based hashing which uses more space, but can be
evaluated in constant time and which provides surprisingly strong theoretical
guarantees even though it is often only 3-independent.



Chapter 3

Tabulation-Based Hashing

We next proceed to introduce tabulation-based hashing. Parts of this chap-
ter are taken from the introduction of [AKK+20].

If we aim for strong theoretical guarantees using k-independent hashing,
e.g., the polynomial hashing scheme in (2.1), we are often required to put
k = Ω(log n) in problems that involve the hashing of n keys from U . With
an evaluation time of Ω(k), this is typically too slow in practice. It turns
out that this problem is inherent to k-independent hashing that use little
space in the following sense: Siegel [Sie04] has shown that any k-independent
hash function, which requires less that k memory probes to be evaluated,
must use space Ω(|U |1/k) to be represented. If we want highly independent
hashing that can be evaluated in constant time, we thus have to use a lot
of space. Siegel also presents a family of hash functions which uses space
O(|U |1/c), can be evaluated in time cO(c) and which is |U |Ω(1/c2)-independent.
However, in the same paper he writes that it is “far too slow for any practical
applications”.

The hashing scheme presented by Siegel in [Sie04] is an example of a
tabulation-based hashing scheme. What these hashing schemes have in com-
mon is that they need access to large tables of random entries. We think
of these tables as functions T : A → R, where A is some set, typically of
size |A| = |U |ε for some ε = Ω(1), or |A| = O(n) in applications involving
the hashing of n items. Let us highlight the two fundamental differences
between the polynomial hashing scheme in (2.1) and tabulation-based hash-
ing. First, to sample a polynomial hash function, we require a random seed
of size proportional to its independence and we need the same amount of
space to store the hash function. In contrast, storing the tables T : A→ R

9
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requires significantly more space1, typically |U |ε or O(n). Second, when
evaluating polynomial hashing on a key, we need to access the entire ran-
dom seed, whereas for tabulation-based hashing methods, we only access a
small subset of the table.

Since Siegel’s paper [Sie04], the theoretical and practical properties of
tabulation-based hashing have studied extensively. Several new tabulation-
based hashing schemes have been proposed for k-independence with eval-
uation times better than O(k) (see, e.g., [Tho13b, CPT15]). While these
schemes are significantly faster than Siegel’s initial hash family, they are
still not very useful in practice when k becomes too large, e.g., k = log |U |.
These issues motivate the study of practical families of hash functions which
provide strong theoretical guarantees via different properties than their in-
dependence. Surprisingly, it turns out that tabulation-based hashing of-
ten gives such strong guarantees. One of the earliest results in this vein
is a simple and elegant construction by Dietzfelbinger and Meyer auf der
Heide [DM92]. They present a family of hash functions that to some de-
gree provides Chernoff-style bounds on the number of balls in a bin when
n balls are hashed to m bins. In a different direction, Dietzfelbinger and
Rink [DR09] create a tabulation-based hash function that is highly inde-
pendent (building on previous works [DW07, DW03, FPSS05, HT01]) but,
contrasting the double tabulation from [Tho13b], only within a fixed set S,
not the entire universe. The construction requires an upper bound n on the
size of S, and a polynomial error probability of n−γ is tolerated. Assuming
no such error has occurred, the hash function is fully independent on S.
In the same setting, Pagh and Pagh [PP08] have presented a hash function
that uses (1 + o(1))n space and which is fully independent on any given
set S of size at most n with high probability. This result is very useful,
e.g., as part of solving a static problem of size n using linear space, since,
with high probability, we may assume fully-random hashing as a subrou-
tine. However, the hashing scheme in [PP08] uses the highly independent
hashing of Siegel [Sie04] as a subroutine and, as such, is not very practical.
Dietzfelbinger and Woelfel [DW03] found a simpler subroutine that worked
in the setting of [PP08] even though it was not highly independent. The
most efficient hashing scheme known to provide full randomness on a fixed
set, as in [PP08], is the double tabulation scheme by Thorup [Tho13b] (see
the analysis in [DKRT15]).

1Here it should be mentioned that it is often enough to fill the tables using an O(log |U |)-
independent random number generator. We can therefore get away with using a small
random seed, so the crucial difference from polynomial hashing is that we require a lot of
space to store the hash function if we want to evaluate it quickly.
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In this thesis, we present several new results on the theoretical guarantees
provided by different tabulation-based hashing schemes. To get started,
we need to define and introduce the most basic tabulation-based hashing
scheme, namely simple-tabulation hashing.

Simple Tabulation Hashing Simple tabulation hashing dates back to
Zobrist [Zob70]. In simple tabulation hashing, we consider the key domain
U to be of the form U = Σc for some character alphabet Σ and c = O(1),
such that each key consists of c characters of Σ. Let m = 2` be given and
identify [m] = {0, 1, . . . ,m−1} with [2]`. A simple tabulation hash function,
h : Σc → [m], is then defined as follows. For each j ∈ {1, . . . , c}, store a fully
random character table hj : Σ → [m] mapping characters of the alphabet
Σ to `-bit hash values. To evaluate h on a key x = (x1, . . . , xc) ∈ Σc, we
compute

h(x) = h1(x1)⊕ · · · ⊕ hc(xc),
where ⊕ denotes bitwise XOR – an extremely fast operation. With charac-
ter tables in cache, this scheme is the fastest known 3-independent hashing
scheme [PT12]. We will denote by u = |U | the size of the key domain, iden-
tify U = Σc with [u], and always assume the size of the alphabet, |Σ|, to be a
power of two. For instance, we could consider 32-bit keys consisting of four
8-bit characters. For a given computer, the best choice of c in terms of speed
is easily determined experimentally once and for all, and is independent of
the problems considered.

As stated, simple tabulation is only 3-independent. Indeed, in the sim-
plest case c = 2 we can let a1, a2, b1, b2 ∈ Σ with a1 6= a2 and b1 6= b2
and define x = (a1, b1), y = (a1, b2), z = (a2, b1) and w = (a2, b2). Then
h(x)⊕h(y)⊕h(z)⊕h(w) = 0, regardless of the randomness of h, so the keys
x, y, z, w do not hash independently. Despite its low independence, simple
tabulation turns out to have surprisingly strong theoretical properties. The
first systematic study of these properties appeared in [PT12], which provides
analyses of its concentration guarantees and its performance in linear prob-
ing, cuckoo hashing, and min-wise hashing. In [DKRT15], it is shown that
it satisfies k-moment bounds for any constant k. Finally [DKRT16, AKT18]
studies its performance in the 2-and d-choice balanced allocation schemes.

Several hashing schemes building on simple tabulation have since been
proposed, e.g., twisted tabulation [PT13], double tabulation [Tho13b] and
mixed tabulation [DKRT15] and they have been proven to have even stronger
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theoretical guarantees in several ways. As they are not of direct importance
to the results presented in this thesis, we will not dive into further detail
with these guarantees. See, however, Chapter 5 for a discussion of the
concentration guarantees provided by these hashing schemes.

In this thesis, we will present two new results on tabulation-based hash-
ing schemes.

Hashing with Strong Concentration. In Chapter 5, we introduce a new
tabulation-based hashing scheme, tabulation-permutation hashing [AKK+20]
which is proven to satisfy Chernoff-style concentration bounds in a very
strong sense. Leading up to the presentation of this result, we start out by
providing an introduction to such Chernoff-style concentration bounds in
Chapter 4. In chapter 6, we present the paper [ADK+20] which shows how
hashing with strong concentration bounds can be used to obtain speedups
in different streaming algorithms. As such, the results of [ADK+20] are in-
dependent of those of [AKK+20], but the hashing scheme from [AKK+20]
provides the strong concentration guarantees needed for a reliable imple-
mentation of the algorithms of [ADK+20].

Non-Empty Bins with Simple Tabulation In Chapter 7, we present
the paper [AT19] which studies the distribution of non-empty bins when a
set of keys X ⊂ U is distributed into [m] bins using a simple tabulation hash
function h : U → [m].



Chapter 4

Chernoff-Style Concentration
Bounds

This chapter introduces Chernoff-style concentration bounds. What follows
is a subset of the introduction of the paper [AKK+20].

Chernoff’s concentration bounds [Che52] date back to the 1950s but bounds
of this types go even further back to Bernstein in the 1920s [Ber24]. Orig-
inating from the area of statistics they are now one of the most basic tools
of randomized algorithms [MR95]. A canonical form considers the sum
X =

∑n
i=1Xi of independent random variables X1, . . . , Xn ∈ [0, 1]. Writing

µ = E [X] it holds for every ε ≥ 0 that

Pr[X ≥ (1 + ε)µ] ≤ exp(−µ C(ε))
[
≤ exp(−ε2µ/3) for ε ≤ 1

]
, (4.1)

Pr[X ≤ (1− ε)µ] ≤ exp(−µ C(−ε))
[
≤ exp(−ε2µ/2) for ε ≤ 1

]
. (4.2)

Here C : (−1,∞) → [0,∞) is given by C(x) = (x + 1) ln(x + 1) − x, so
exp(−C(x)) = ex

(1+x)(1+x) . Textbook proofs of 4.1 and 4.2 can be found in

[MR95, §4]1. Writing σ2 = Var [X], a more general bound is

Pr[|X − µ| ≥ t] ≤ 2 exp(−σ2C(t/σ2))
[
≤ 2 exp(−(t/σ)2/3) for t ≤ σ2

]
.

(4.3)

Since σ2 ≤ µ and C(−ε) ≤ 1.5 C(ε) for ε ≤ 1, (4.3) is at least as good as
(4.1) and (4.2), up to constant factors, and often better. The bound of (4.3)
is known as Bennett’s inequality [Ben62].

1The bounds in [MR95, §4] are stated as working only for Xi ∈ {0, 1}, but the proofs
can easily handle any Xi ∈ [0, 1].

13
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4.1 Concentration of Hash-Based Sums

In Chapter 5 of this thesis, we will be concerned with Chernoff-style concen-
tration bounds on hash-based sums. The setting is as follows. We choose a
random hash function, h : U → R, which assigns a hash value, h(x) ∈ R, to
every key x ∈ U . Here, R = [m] for some m ∈ N. We aim to obtain con-
centration bounds on a random variable, X, which is of one of the following
forms of increasing generality.

1. Let S ⊆ U be a set of balls and assign to each ball, x ∈ S, a weight,
wx ∈ [0, 1]. We wish to distribute the balls of S into a set of bins R =
[m] = {0, 1, . . . ,m− 1}. For a bin, y ∈ [m], X =

∑
x∈S wx · [h(x) = y]

is then the total weight of the balls landing in bin y.

2. We may instead be interested in the total weight of the balls with
hash values in the interval [y1, y2) for some y1, y2 ∈ [m], that is, X =∑

x∈S wx · [y1 ≤ h(x) < y2].

3. More generally, we may consider a fixed value function v : U × R →
[0, 1]. For each key x ∈ U , we define the random variable Xx =
v(x, h(x)), where the randomness of Xx stems from that of h(x). We
write X =

∑
x∈U v(x, h(x)) for the sum of these values.

To exemplify applications, the first case is common when trying to allocate
resources; the second case arises in streaming algorithms; and the third case
handles the computation of a complicated statistic, X, on incoming data.
In each case, we wish the variable X to be concentrated around its mean,
µ = E [X], according to the Chernoff-style bound of (4.3). If we had fully
random hashing, this would indeed be the case. However, as discussed in
Chapter 2, storing a fully random hash function is impossible in practice.

To measure the strength of the concentration of a hash-based random
variable as above, we require the following definition of strong concentration.

Definition 4.1 (Strong Concentration). Let h : [u] → [m] be a hash func-
tion, S ⊆ [u] be a set of hash keys of size n = |S|, and X = X(h, S) be
a random variable, which is completely determined by h and S. Denote by
µ = E [X] and σ2 = Var [X] the expectation and variance of X. We say
that X is strongly concentrated with added error probability f(u, n,m) if
for every t > 0,

Pr [|X − µ| ≥ t] ≤ O
(
exp

(
−Ω(σ2C(t/σ2)

))
+ f(u, n,m). (4.4)
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Note that strong concentration resembles that of (4.3) except for the
constant delay in the exponential decrease and the added error probability
of f(u, n,m). In Chapter 5, we will present the paper [AKK+20] which
introduces a very practical constant-time hash family. For any γ = O(1)
the hash family provides strong concentration with added error probability
u−γ on random variables, X, as in each of the three cases described above.
In Chapter 6, we will present the paper [ADK+20] which demonstrate how
such a hash family leads to speedups in different streaming algorithms.



Chapter 5

Hashing with Strong
Concentration

This chapter presents the results of the paper “Fast Hashing with Strong
Concentration Bounds” [AKK+20] of Appendix A. What follows is an ex-
tracted and slightly modified subset of the introduction from the paper.

5.1 Introduction

Pǎtraşcu and Thorup have shown that Chernoff-style bounds on hash based
sums can be achieved in constant time with tabulation based hashing meth-
ods; namely simple tabulation [PT12] for case 1. of Section 4.1 and twisted
tabulation [PT13] for all three cases. However, their results suffer from
some severe restrictions on the expected value, µ, of the sum. More pre-
cisely, the speed of these methods relies on using space small enough to fit
in fast cache, and the Chernoff-style bounds [PT12, PT13] all require that
µ is much smaller than the space used. For larger values of µ, Pǎtraşcu and
Thorup [PT12, PT13] offered some weaker bounds with a deviation that
was off by several logarithmic factors. It can be shown that some of these
limitations are inherent to simple and twisted tabulation. For instance, they
cannot reliably distribute balls into m = 2 bins, as in case 1. of Section 4.1,
if the expected number of balls in each bin exceeds the space used.

In [AKK+20], we introduce and analyse a new family of fast hash func-
tions, tabulation-permutation hashing, that provides strong concentration
with added added error probability u−γ for any γ = O(1) without any re-
strictions on µ (see Definition 4.1). Our bounds hold for all of the three cases
described in Section 4.1 and all possible inputs. Furthermore, tabulation-

16
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permutation hashing is an order of magnitude faster than any other known
hash function with similar concentration bounds, and almost as fast as sim-
ple and twisted tabulation. This is demonstrated both theoretically and
experimentally in [AKK+20].

The main theoretical contribution of [AKK+20] lies in the field of anal-
ysis of algorithms, and is in the spirit of Knuth’s analysis of linear prob-
ing [Knu63], which shows strong theoretical guarantees for a very practical
algorithm. We show that tabulation-permutation hashing has strong theo-
retical Chernoff-style concentration bounds. Moreover, on the practical side,
we perform experiments, summarized in Table 5.1, demonstrating that it is
comparable in speed to some of the fastest hash functions in use, none of
which provide similar concentration bounds.

Concrete examples of the utility of our new hash-family are discussed in
Chapter 6 which presents the paper [ADK+20]. In [ADK+20] it is shown
that some classic streaming algorithms enjoy very substantial speed-ups
when implemented using tabulation-permutation hashing; namely the orig-
inal similarity estimation of Broder [Bro97] and the estimation of distinct
elements of Bar-Yossef et al. [BYJK+02]. The strong concentration bounds
makes the use of independent repetitions unnecessary, allowing the imple-
mentations of the algorithms to be both simpler and faster. We stress that
in high-volume streaming algorithms, speed is of critical importance.

Tabulation-permutation hashing builds on top of simple tabulation hash-
ing, and to analyse it, we require a new and better understanding of the
behaviour and inherent limitations of simple tabulation. Let S ⊆ U and
consider hashing n = |S| weighted balls or keys into m = 2` bins using a
simple tabulation function, h : [u]→ [m], in line with case 1. of Section 4.1.
In [AKK+20], we prove the following new theorem on the concentration
guarantees provided by simple tabulation.

Theorem 5.1 ([AKK+20]). Let h : [u] → [m] be a simple tabulation hash
function with [u] = Σc, c = O(1). Let S ⊆ [u] be given of size n = |S|
and assign to each key/ball x ∈ S a weight wx ∈ [0, 1]. Let y ∈ [m], and
define X =

∑
x∈S wx · [h(x) = y] to be the total weight of the balls hashing

to bin y. Then for any constant γ > 0, X is strongly concentrated with
added error probability n/mγ, where the constants of the asymptotics are
determined solely by c and γ.

In Theorem 5.1, we note that the expectation, µ = E [X], and the vari-
ance, σ2 = Var [X], are the same as if h were a fully random hash function
since h is 3-independent. The bound provided by Theorem 5.1 is therefore
the same as the variance based Chernoff bound (4.3) except for a constant
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delay in the exponential decrease and an added error probability of n/mγ .
Since σ2 ≤ µ, Theorem 5.1 also implies the classic one-sided Chernoff bounds
(4.1) and (4.2), again with the constant delay and the added error proba-
bility as above, and a leading factor of 2.

Pǎtraşcu and Thorup [PT12] proved an equivalent probability bound,
but without weights, and, more importantly, with the restriction that the
number of bins m ≥ n1−1/(2c). In particular, this implies the restriction
µ ≤ |Σ|1/2. Our new bound gives Chernoff-style concentration with high
probability in n for any m ≥ nε, ε = Ω(1). Indeed, letting γ′ = (γ + 1)/ε,
the added error probability becomes n/mγ′ ≤ 1/nγ .

However, for small m the error probability n/mγ is prohibitive. For
instance, unbiased coin tossing, corresponding to the case m = 2, has an
added error probability of n/2γ which is useless. In [AKK+20], we show that
it is inherently impossible to get good concentration bounds using simple
tabulation hashing when the number of bins m is small. To handle all
instances, including those with few bins, and to support much more general
Chernoff bounds, we introduce a new hash function: tabulation-permutation
hashing.

5.1.1 Tabulation-Permutation Hashing

We start by defining tabulation-permutation hashing from Σc to Σd with
c, d = O(1). A tabulation-permutation hash function h : Σc → Σd is given
as a composition, h = τ ◦g, of a simple tabulation hash function g : Σc → Σd

and a permutation τ : Σd → Σd. The permutation is a coordinate-wise fully
random permutation: for each j ∈ {1, . . . , d}, pick a uniformly random char-
acter permutation τj : Σ → Σ. Now, τ = (τ1, . . . , τd) in the sense that for
z = (z1, . . . , zd) ∈ Σd, τ(z) = (τ1 (z1) , . . . , τd (zd)). In words, a tabulation-
permutation hash function hashes c characters to d characters using simple
tabulation, and then randomly permutes each of the d output characters.

The main result of [AKK+20] is that with tabulation-permutation hashing,
we get high probability Chernoff-style bounds for the very general case 3. de-
scribed in Section 4.1 dealing with arbitrary value functions.

Theorem 5.2 ([AKK+20]). Let h : [u] → [r] be a tabulation-permutation
hash function with [u] = Σc and [r] = Σd, c, d = O(1). Let v : [u] × [r] →
[0, 1] be a fixed value function that to each key x ∈ [u] assigns a value
Xx = v(x, h(x)) ∈ [0, 1] depending on the hash value h(x) and define X =∑

x∈[u]Xx. For any constant γ > 0, X is strongly concentrated with added
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error probability 1/uγ, where the constants of the asymptotics are determined
solely by c, d, and γ.

5.1.2 Tabulation-1Permutation

Above we introduced tabulation-permutation hashing which yields Chernoff-
style bounds with an arbitrary value function. This is the same general sce-
nario as was studied for twisted tabulation in [PT13]. However, for almost all
applications we are aware of, we only need the generality of case 2. discussed
in Section 4.1. Recall that in this case we are only interested in the total
weight of the balls hashing to a certain interval. As it turns out, a significant
simplification of tabulation-permutation hashing suffices to achieve strong
concentration bounds. We call this simplification tabulation-1permutation.
Tabulation-permutation hashing randomly permutes each of the d output
characters of a simple tabulation function g : Σc → Σd. Instead, tabulation-
1permutation only permutes the most significant character.

More precisely, a tabulation-1permutation hash function h : Σc → Σd

is a composition, h = τ ◦ g, of a simple tabulation function, g : Σc → Σd,
and a random permutation, τ : Σd → Σd, of the most significant charac-
ter, τ(z1, . . . , zd) = (τ1(z1), z2, . . . , zd) for a random character permutation
τ1 : Σ→ Σ.

This simplified scheme, needing only c+1 character lookups, is powerful
enough for concentration within an arbitrary interval.

Theorem 5.3 ([AKK+20]). Let h : [u] → [r] be a tabulation-1permutation
hash function with [u] = Σc and [r] = Σd, c, d = O(1). Consider a key/ball
set S ⊆ [u] of size n = |S| where each ball x ∈ S is assigned a weight
wx ∈ [0, 1]. Choose arbitrary hash values y1, y2 ∈ [r] with y1 ≤ y2. Define
X =

∑
x∈S wx · [y1 ≤ h(x) < y2] to be the total weight of balls hashing to the

interval [y1, y2). Then for any constant γ > 0, X is strongly concentrated
with added error probability 1/uγ, where the constants of the asymptotics are
determined solely by c, d, and γ.

One application of Theorem 5.3 is in the following sampling scenario: We
set y1 = 0, and sample all keys with h(x) < y2. Each key is then sampled
with probability y2/r, and Theorem 5.3 gives concentration on the number
of samples. In [ADK+20], to be presented in Chapter 6, this is used for
more efficient implementations of streaming algorithms.
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Running time (ms)
Computer 1 Computer 2

Hash function 32 bits 64 bits 32 bits 64 bits

Multiply-Shift 4.2 7.5 23.0 36.5
2-Independent PolyHash 14.8 20.0 72.2 107.3
Simple Tabulation 13.7 17.8 53.1 55.9
Twisted Tabulation 17.2 26.1 65.6 92.5
Mixed Tabulation 28.6 68.1 120.1 236.6

Tabulation-1Permutation 16.0 19.3 63.8 67.7
Tabulation-Permutation 27.3 43.2 118.1 123.6

Double Tabulation 1130.1 – 3704.1 –
“Random” (100-Independent PolyHash) 2436.9 3356.8 7416.8 11352.6

Table 5.1: The time for different hash functions to hash 107 keys of length
32 bits and 64 bits, respectively, to ranges of size 32 bits and 64 bits. The
experiment was carried out on two computers. The hash functions written
in italics are those without general Chernoff-style bounds. Hash functions
written in bold are the contributions of this paper. The hash functions in
regular font are known to provide Chernoff-style bounds. Note that we were
unable to implement double tabulation from 64 bits to 64 bits since the hash
tables were too large to fit in memory.

5.1.3 Experiments and Comparisons

To better understand the real-world performance of our new hash functions
in comparison with well-known and comparable alternatives, we performed
some simple experiments on regular laptops, as presented in Table 5.1. We
did two types of experiments.

• On the one hand we compared with potentially faster hash functions
with weaker or restricted concentration bounds to see how much we
lose in speed with our theoretically strong tabulation-permutation
hashing. These other hashing schemes were Multiply-Shift [Die96],
2-independent PolyHash [WC81], simple-tabulation [PT12], twisted
tabulation [PT13], mixed-tabulation [DKRT15]. We observed that
our tabulation-permutation is very competitive in speed.

• On the other hand we compared with the fastest previously known
hashing schemes with strong concentration bounds like ours (double
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tabulation [Tho13b], 100-independent PolyHash [WC81]). Here we
observed a gain of a factor of 30 in speed.

The results of our experiments are presented in Table 5.1. We refer the
reader to Appendix A for a thorough discussion of these experiments. Here,
the reader will also find a theoretical comparison to other hashing schemes
that are relevant to the goal of fast constant-time hashing with strong con-
centration bounds with high probability, i.e., bounds of the form

Pr[|X − µ| ≥ t] ≤ 2 exp(−Ω(σ2C(t/σ2))) + u−γ .

5.1.4 Concluding Remarks

To sum up, in [AKK+20], we have introduced a family of hash functions,
tabulation-permutation hashing, which provides Chernoff-style concentra-
tion bounds for hash-based sums with a constant delay in the exponential
decrease and an added error probability of u−γ . We have moreover, demon-
strated that tabulation-permutation is comparable in speed to some of the
fastest strongly universal hashing schemes that do not provide such general
concentration bounds. In the next chapter, we will provide examples of two
streaming algorithms that can be sped up with the access to such a hash
family.



Chapter 6

No Repetitions with Highly
Concentrated Hashing

This chapter presents the results of the paper “No Repetition: Fast Stream-
ing with Highly Concentrated Hashing” [ADK+20] of Appendix B. What
follows is an extracted and slightly modified subset of the introduction from
the paper.

6.1 Introduction

To get estimators that work within a certain error bound with high probabil-
ity, a common strategy is to design one that works with constant probability,
and then boost the probability using independent repetitions. A classic ex-
ample of this approach is the algorithm of Bar-Yossef et al. [BYJK+02]
to estimate the number of distinct elements in a stream. Using standard
strongly universal hashing to process each element, we get an estimator
where the probability of a too large error is, say, 1/4. By performing r
independent repetitions and taking the median of the estimators, the er-
ror probability falls exponentially in r. However, running r independent
experiments increases the processing time by a factor r.

In [ADK+20] we make the point that if we have a hash function with
strong concentration bounds, then we get the same high probability bounds
without any need for repetitions. Instead of r independent sketches, we
have a single sketch that is Θ(r) times bigger, so the total space is essen-
tially the same. However, we only apply a single hash function, process-
ing each element in constant time regardless of r, and the overall algo-
rithms just get simpler. Using the hashing scheme tabulation-1permutation
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from [AKK+20] (presented in Chapter 5), we get a very fast implementa-
tion of the above streaming algorithm, suitable for online processing of high
volume data streams.

To illustrate a streaming scenario where the constant in the processing
time is critical, consider the Internet. Suppose we want to process packets
passing through a high-end Internet router. Each application only gets very
limited time to look at the packet before it is forwarded. If it is not done
in time, the information is lost. Since processors and routers use some of
the same technology, we never expect to have more than a few instructions
available. Slowing down the Internet is typically not an option. The papers
of Krishnamurthy et al. [KSZC03] and Thorup and Zhang [TZ12] explain
in more detail how high speed hashing is necessary for their Internet traffic
analysis. Incidentally, the hash function we use from [AKK+20] is a bit faster
than the ones from [KSZC03, TZ12], which do not provide Chernoff-style
concentration bounds.

The idea is generic and can be applied to other algorithms. The pa-
per, [ADK+20] also applies it to Broder’s original min-hash algorithm [Bro97]
to estimate set similarity, which can now be implemented efficiently, giving
the desired estimates with high probability.

6.1.1 Chebyshev vs. Chernoff for Estimating Distinct Ele-
ments and Set Similarity

Let us now be more specific about the algorithmic context. Below, we
state the theoretical improvements using hashing with strong concentration
bounds. We refer the reader to Appendix B for the analysis of the algorithms
and for a thorough discussion of implementation and alternatives. In both
the set similarity and the min-hash algorithm, we have a key universe, U ,
e.g., 64-bit keys, and we will use a random hash function h mapping U
uniformly into R = (0, 1].

Estimating the number of distinct elements The goal is to estimate
the number of distinct elements in a data stream, x1, . . . , xs, from a universe,
U , to within some relative error ε with a desired small error probability
δ. Let S be the set of distinct elements of the stream and assume that
|S| = n. The algorithm from [BYJK+02] uses a hash function h : U → (0, 1]
and maintains the k smallest distinct hash values of the stream for some
k > 1. The space required is thus O(k), so we want k to be small. Let
x(k) be the key having the k’th smallest hash value under h and let h(k) =
h(x(k)). As in [BYJK+02], we use n̂ = k/h(k) as an estimator for n (we note
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that [BYJK+02] suggests several other estimators, but the points we will
make below apply to all of them).

If h is strongly universal (see Chapter 2), the analysis from [BYJK+02]
shows that,

Pr [|n̂− n| > εn] ≤ 2/(kε2),

for ε < 1. With this choice of hashing, we can let let k = 8/ε2 and use the
median trick over O(log 1/δ) independent repetitions of the experiments to
obtain the error probability of δ.

The point made in [ADK+20] is that if we replace h with a hash func-
tion which provides strong concentration bounds, we remove the need for
independent repetitions. What we need is a hash function that satisfies Def-
inition 4.1 of Chapter 4 with added error E when X is a random variable
counting the number of keys hashing to a given interval. With such a hash
function, the bound above gets replaced by

Pr [|n̂− n| ≥ εn] ≤ 2 exp(−Ω(kε2)) + E .

For δ = ω(E), we can just perform the experiment a single time, instead
choosing k = O(log(1/δ)/ε2), to obtain the desired error probability of δ.
Like with strongly universal hashing and the median trick, we need to store
k = O(log(1/δ)/ε2) hash values. The big advantage is that (1) with no
independent repetitions we avoid applying r = Θ(log(1/δ)) hash functions
to each key, so we basically save a factor Θ(log(1/δ)) in speed, and (2) with
independent repetitions, we are tuning the algorithm depending on ε and δ,
whereas with hashing with strong concentration, we get the concentration
from above for every ε < 1.

Estimating set-similarity We next consider Broder’s [Bro97] original
algorithm for Jaccard similarity f = |A ∩ B|/|A ∪ B| between sets A,B ⊆
U . For the discussion, it is simpler to consider the case where we want to
estimate the frequency f = |T |/|S| of a subset T ⊆ S. Naturally, we would
put S = A ∪ B and T = A ∩ B for Jaccard similarity. Again the algorithm
uses a hash function h : U → [0, 1]. Let h(k) be the kth smallest hash value
from S as in the above algorithm for estimating distinct elements. For any
p, let Y ≤p be the number of elements from T with hash value at most p.
The algorithm uses Y ≤h(k) as an estimator for fk.

Following the analysis from [Tho13a], we show in [ADK+20] that

Pr
[
|Y ≤h(k) − fk| > εfk

]
= 2 exp(−Ω(fkε2)) +O(E).
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In contrast, using strongly universal hashing, one only obtains the variance-
based bound

Pr
[
|Y ≤h(k) − fk| > εfk

]
= O

(
1

fkε2

)
.

Again, the difference of the two bounds shows that hashing with strong
concentration removes the need for independent repetitions when aiming to
obtain a desired error probability of δ = ω(E).

Using Tabulation-1permutation Tabulation-1permutation exactly pro-
vides strong concentration bounds with added error probability u−γ on the
number of keys from S that hashes to a given interval by Theorem 5.3.
With this choice of hashing, we thus remove the need for independent rep-
etitions for any δ = u−O(1). Thus, using tabulation-1permutation, the two
algorithms above can be efficiently implemented giving the desired estimates
with high probability.

6.1.2 Concluding Remarks

We have demonstrated how hashing with strong concentration bounds leads
to speedups in streaming algorithms for estimating the number of distinct
elements and estimating set similarity. Such a hashing scheme essentially re-
moves the need for making O(log(1/δ)) independent repetitions to obtain an
error probability of δ. It will be interesting to investigate the quality of these
improvements in practice by performing experiments. For example, one can
implement the above algorithms both using (1) a fast strongly universal hash
function and independent repetitions and (2) tabulation-1permutation, and
compare the speed and accuracy of the two implementations.



Chapter 7

Non-Empty Bins with
Simple Tabulation Hashing

This chapter presents the results of the paper “Non-Empty Bins with Simple
Tabulation Hashing” [AT19] of Appendix C. What follows is an extracted
and slightly modified subset of the introduction from the paper.

7.1 Introduction

In [AT19], we consider the balls and bins paradigm where a set X ⊆ U of
|X| = n balls are distributed into a set of m bins according to a hash function
h : U → [m]. We are interested in questions relating to the distribution of
|h(X)|, for example: What is the expected number of non-empty bins? How
well is |h(X)| concentrated around its mean? And what is the probability
that a query ball lands in an empty bin? These questions are important in
applications such as Bloom filters [Blo70] and Filter hashing [FPSS05].

When h is truly random, the situation is well understood. In this case,
the probability that a bin becomes empty is (1− 1/m)n. Thus, the ex-
pected number of non-empty bins is µ0 = m(1− (1−1/m)n), and unsurpris-
ingly, the number of non-empty bins turns out to be sharply concentrated
around µ0 (see for example [KMPS95] for several such concentration re-
sults). In [AT19], we study the number of non-empty bins when the hash
function h is chosen to be a simple tabulation hash function. We pro-
vide estimates on the expected size of |h(X)| which asymptotically match1

those with fully random hashing on any possible input. To get a similar

1Here we use “asymptotically” in the classic mathematical sense to mean equal to
within low order terms, not just within a constant factor.
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match within the classic k-independence paradigm, we would generally need
k = Ω((log n)/(log log n)). In [AT19] we also study to what extend |h(X)|
is concentrated around its mean.

Our results complement those from [PT12], which provides certain con-
centration bounds on the number of balls in a given bin when n � m. For
example, their results imply that when n = ω(m logm), all bins are non-
empty with high probability. On the other hand, [PT12] does not provide
any good bounds on the probability that a bin is non-empty when, say,
n = Θ(m). Our results show that in this case, a bin is non-empty with
probability (1 − 1/m)n ± o(1), as in the fully random case. It is precisely
the setting of parameters n = Θ(m) which becomes important when imple-
menting Bloom filters [Blo70] and Filter hashing [FPSS05].

7.1.1 Main Results

We will now present some of the results of [AT19].

The expected number of non-empty bins. The first theorem of [AT19]
concerns the expected number of non-empty bins when n balls are dis-
tributed into m bins. Denote by p0 = 1−(1− 1/m)n ≤ n/m the probability
that a bin is non-empty and by µ0 = mp0 the expected number of non-empty
bins when n balls are distributed into m bins using fully random hashing.

Theorem 7.1 ([AT19]). Let X ⊆ U be a fixed set of |X| = n balls. Let
y ∈ [m] be any bin and suppose that h : U → [m] is a simple tabulation hash
function. If p denotes the probability that y ∈ h(X) then

|p− p0| ≤
n2−1/c

m2
and hence |E [|h(X)|]− µ0| ≤

n2−1/c

m
.

When n increases, the bound in Theorem 7.1 gets weaker, but then the
high probability bound from [PT12] takes over. Combining the analysis of
the two papers one can prove that the relative error is always small in the
sense that |E [|h(X)|]− µ0| /µ0 = Õ(m−1/c), regardless of the values of m
and n.

Application to Bloom filters. A Bloom filter [Blo70] is a simple data
structure which space efficiently represents a set X ⊆ U and supports mem-
bership queries of the form “is q in X”. It uses k independent hash functions
h0, . . . , hk−1 : U → [m] and k arrays A0, . . . , Ak−1, each of m bits, which are
initially all 0. For each x ∈ X and each i ∈ [k], we update Ai[hi(x)] ← 1
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noting that an entry may be set to 1 several times. To answer a membership
query q, we output yes if for each i ∈ [k], Ai[hi(x)] = 1 and no otherwise.
If q ∈ X, we will certainly output the correct answer but if q /∈ X we po-
tentially get a false positive in the case that all the bits corresponding to
(hi(q))i∈[k] are set to 1 by other keys in X. The probability of a false positive
if q /∈ X is

k−1∏

i=0

Pr[hi(q) ∈ hi(X)],

which with fully random hashing is pk0. Normally, Bloom filters are pro-
portioned for a desired low false-positive probability assuming full random-
ness. A slightly more general version of Theorem 7.1 (which includes the
conditioning on the hash value of a query ball), implies that with filters pro-
portioned the same way, but with the hashing implemented with as simple
tabulation, we obtain a false positive probability of (1 + o(1))pk0, asymptot-
ically the same as with fully random hashing.

Concentration of the number of non-empty bins. In [AT19] we also
study the concentration of |h(X)| around its mean. In the fully random
setting, it was shown by Kamath et al. [KMPS95] that the concentration of
|h(X)| around µ0 is sharp: For any λ ≥ 0 it holds that

Pr(||h(X)| − µ0| ≥ λ) ≤ 2 exp

(
− λ2

2µ0

)
,

which for example yields that |h(X)| = µ0 ±O(
√
µ0 logm) with high prob-

ability, that is, with probability 1 − O(m−γ) for any choice of γ = O(1).
Unfortunately, we cannot hope to obtain a similar concentration with simple
tabulation. Aiming for high probability, the following lower bound on|h(X)|
is asymptotically optimal.

Theorem 7.2 ([AT19]). Let X ⊆ U be a fixed sets of |X| = n keys. Let
h : U → [m] be a simple tabulation hash function. Then with high probability

|h(X)| ≥ m
(

1−
(

1− 1

m

)Ω(n)
)

It turns out however, that settling with a weaker requirement than high
probability, |h(X)| is somewhat concentrated around µ0. We will not state
the results in this introduction as they are of a rather technical nature.
Instead, we refer the reader to Appendix C.
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Applications to Filter Hashing In Filter hashing [FPSS03], we wish to
store as many elements as possible of a set X ⊆ U of size |X| = n in d hash
tables (Ti)i∈[d]. The total number of entries in the tables is at most n and
each entry can store just a single key. For i ∈ [d], we pick independent hash
functions hi : U → [mi] where mi is the number of entries in Ti. The keys
are allocated as follows: We first greedily store a key from h−1

0 ({y}) in T0[y]
for each y ∈ h0(X). This allows us to store exactly |h0(X)| keys. Letting
S0 be the so stored keys and X1 = X\S0 the remaining keys, we repeat the
process, storing |h(X1)| keys in T1 using h1, etc.

With fully random hashing, it can be argued that at least Ω(log2(1/ε))
filters are needed to store all but εn keys with high probability. To achieve a
matching bound, [FPSS03] uses the (12dlog(4/ε)+1e)-independent PolyHash
scheme from [WC81]. If we instead use simple tabulation hashing, it follows
from Theorem 7.2 that we again only require O(log2(1/ε)) filters. Here,
however, the hashing can be done in constant time, so we essentially save a
factor of O(log(1/ε)) in speed. The hash functions used in [FPSS03] depends
on ε and becomes more unrealistic the smaller ε is. A further advantage of
using simple tabulation is that we only need to change the number of filters,
not the hashing, when ε varies.

7.1.2 Concluding Remarks

In [AT19], we have studied the distribution of the number of non-empty
bins, X, when n balls are distributed into m bins using a simple tabula-
tion hash function. We analysed both the expectation of X, µ, and to
what extend X is concentrated around µ. Although, obtaining some degree
of concentration, simple tabulation has some inherent limitations that pre-
vent us from getting concentration bounds similar to those from the fully
random setting. An interesting direction for future research is therefore
to search for other practical hashing schemes that give a better distribu-
tion of X. For example, it is conceivable, that the bound of Theorem 7.2
should hold with high probability in the size of the universe when using the
tabulation-permutation scheme from [AKK+20]. Still, even with the pow-
erful tabulation-permutation scheme, there exists sets of n balls such that
when hashing to n bins, X deviates by a constant factor from µ with prob-
ability at least |Σ|−1 . It would be interesting to find a hashing scheme for
which the distribution of non-empty bins is asymptotically the same as in
the fully random setting but with an added error probability of u−γ for any
γ = O(1) — in the style of Theorem 5.2 and 5.3.



Chapter 8

(Learned) Frequency
Estimation Algorithms under
Zipfian Distribution

This chapter presents the results of the paper “(Learned) Frequency Estima-
tion Algorithms under Zipfian Distribution” [AIV19] of Appendix D. What
follows is an extracted and slightly modified subset of the introduction from
the paper.

8.1 Introduction

The last few years have witnessed a rapid growth in using machine learn-
ing methods to solve “classical” algorithmic problems. For example, they
have been used to improve the performance of data structures [KBC+18,
Mit18], online algorithms [LV18, PSK18, GP19, Kod19, CGT+19, ADJ+20,
LLMV20, Roh20, ACE+20], combinatorial optimization [KDZ+17, BDSV18,
Mit20], similarity search [WLKC16, DIRW19], compressive sensing [MPB15,
BJPD17] and streaming algorithms [HIKV19, IVY19, JLL+20, CGP20].
Multiple frameworks for designing and analyzing such algorithms have been
proposed [ACC+11, GR17, BDV18, AKL+19]. The rationale behind this
line of research is that machine learning makes it possible to adapt the be-
havior of the algorithms to inputs from a specific data distribution, making
them more efficient or more accurate in specific applications.

In [AIV19], we focus on classic and learning-augmented streaming al-
gorithms for frequency estimation. The frequency estimation problem is
formalized as follows: given a sequence S of elements from some universe
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U , construct a data structure that for any element i ∈ U computes an es-
timation f̃i of fi, the number of times i occurs in S. Many of the most
popular algorithms for this problem, such as Count-Min (CM) [CM05] or
Count-Sketch (CS) [CCFC02] are based on hashing. Specifically, these al-
gorithms hash stream elements into B buckets, count the number of items
hashed into each bucket, and use the bucket value as an estimate of item
frequency. To improve the accuracy, the algorithms use k > 1 such hash
functions and aggregate the answers, e.g., using the median trick. These
algorithms have several useful properties: they can handle item deletions
(implemented by decrementing the respective counters), and some of them
(Count-Min) never underestimate the true frequencies, i.e., f̃i ≥ fi.

In a recent work [HIKV19], the authors showed that the aforementioned
algorithm can be improved by augmenting them with machine learning.
Their approach is as follows: During the training phase, they construct a
classifier (neural network) to detect whether an element is “heavy” (e.g.,
whether fi is among top k frequent items). After such a classifier is trained,
they scan the input stream, and apply the classifier to each element i. If
the element is predicted to be heavy, it is allocated a unique bucket, so that
an exact value of fi is computed. Otherwise, the element is forwarded to a
“standard” hashing data structure C, e.g., CM or CS. To estimate f̃i, the
algorithm either returns the exact count fi (if i is allocated a unique bucket)
or an estimate provided by the data structure C. An empirical evaluation,
on networking and query log data sets, shows that this approach can reduce
the overall estimation error.

Their paper also presents a preliminary analysis of the algorithm. Under
the common assumption that the frequencies follow the Zipfian law, i.e.,
fi ∝ 1/i, for i = 1, . . . , n for some n, and further that item i is queried with
probability proportional to its frequency, the expected error incurred by
the learning-augmented version of CM is shown to be asymptotically lower
than that of the “standard” CM. However, the exact magnitude of the gap
between the error incurred by the learned and standard CM algorithms was
left as an open problem. Furthermore, no analysis was presented for CS.

8.1.1 Main Results

In [AIV19], we resolve the aforementioned questions left open in [HIKV19].
Assuming that the frequencies follow a Zipfian law, we show:

• An asymptotically tight bound of Θ(k log(kn/B)
B ) for the expected error

incurred by the CM algorithm with k hash functions and a total of
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B buckets. Together with a prior bound for Learned CM (Table 8.1),
this shows that learning-augmentation improves the error of CM by a
factor of Θ(log(n)/ log(n/B)) if the heavy hitter oracle is perfect.

• The first error bounds for CS and Learned CS (see Table 8.1). In
particular, we show that for Learned CS, a single hash function as
in [HIKV19] leads to an asymptotically optimal error bound, improv-
ing over standard CS by a factor of Θ(log(n)/ log(n/B)) (same as
CM).

k = 1 k > 1

Count-Min (CM) Θ
(

logn
B

)
[HIKV19] Θ

(
k·log( kn

B
)

B

)

Learned Count-Min (L-CM) Θ
(

log2( n
B

)

B logn

)
[HIKV19] Ω

(
log2( n

B
)

B logn

)
[HIKV19]

Count-Sketch (CS) Θ
(

logB
B

)
Ω
(

k1/2

B log k

)
and O

(
k1/2

B

)

Learned Count-Sketch (L-CS) Θ
(

log n
B

B logn

)
Ω
(

log n
B

B logn

)

Table 8.1: This table summarizes our and previously known results on the
expected frequency estimation error of Count-Min (CM), Count-Sketch (CS)
and their learned variants (i.e., L-CM and L-CS) that use k functions and
overall space k× B

k under Zipfian distribution. For CS, we assume that k is
odd (so that the median of k values is well defined).

The results on L-CS in Table 8.1 assume that the heavy hitter oracle
is perfect, i.e., that it makes no mistakes when classifying the heavy items.
We complement the results with an analysis of L-CS when the heavy hitter
oracle may err with probability at most δ on each item. As δ varies in
[0, 1], we obtain a smooth trade-off between the performance of L-CS and
its classic counterpart. Specifically, as long as δ = O(1/ logB), the bounds
are as good as with a perfect heavy hitter oracle.

In addition to clarifying the gap between the learned and standard vari-
ants of popular frequency estimation algorithms, our results provide inter-
esting insights about the algorithms themselves. For example, for both CM
and CS, the number of hash functions k is often selected to be Θ(log n), in
order to guarantee that every frequency is estimated up to a certain error
bound. In contrast, we show that if instead the goal is to bound the ex-
pected error, then setting k to a constant (strictly greater than 1) leads to
the asymptotic optimal performance. The same phenomenon holds not only
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for a Zipfian query distribution but in fact for an arbitrary distribution on
the queries.

8.1.2 Concluding Remarks

We have shown how access to an oracle that can predict whether an item
of a data stream is a heavy hitter, can be used to obtain improved per-
formances of the streaming algorithms Count-Min and Count-Sketch. The
results of [AIV19] are specific to input that follows a Zipfian distribution.
It is interesting whether one can obtain similar improvements for arbitrary
distributions, perhaps parametrized in some properties of the distribution.
The idea of augmenting classic algorithm with machine learning oracles is
relatively new. Taking a step back, it is therefore interesting to study in
which other settings classic algorithms can be improved using advice from a
(machine learning) oracle which predicts some property of the input data.



Chapter 9

One-Way Trail Orientations

This chapter presents the results of the paper “One-Way Trail Orienta-
tions” [AHHR18] of Appendix E. What follows is an extracted and slightly
modified subset of the introduction from the paper.

9.1 Introduction and Motivation

Suppose that the mayor of a small town decides that it will be beneficial to
make all the streets of the town one-way1. Naturally, she wants to ensure
that it is remains possible to get from any place to any other place without
violating the orientations of the streets, and she asks herself whether this is
possible. Modelling the road network as a graph, we can similarly ask when
the edges of a graph, G, can be oriented such that the resulting directed
graph is strongly connected. Robbins’ theorem [Rob39] asserts that this can
be done exactly when G is 2-edge connected. Moreover, if some edges of
G are already oriented, the generalised Robbins’ theorem by Boesch [BT80]
asserts it can be done exactly when the corresponding “mixed” graph is
strongly connected and the underlying graph is bridgeless. In the town
analogy, this would correspond to some streets initially being one-way.

The model above assumes that every street of the city corresponds to
exactly one edge in the graph. There’s hardly a city in the world where this
assumption holds and therefore a more natural assumption is that every
street corresponds to a trail (informally, a potentially self-crossing path) in
the graph and that the edges of each trail must be oriented consistently2.

1Her motivation is that the long and narrow streets cause big inconveniences when two
cars unexpectedly meet.

2This version of the problem was given to us through personal communication with
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In [AHHR18], we consider such graphs, the edges of which are partitioned
into trails. We prove that the trails can be oriented making the resulting
directed graph strongly connected exactly if the initial graph is 2-edge con-
nected (note that this is the same condition as in Robbins’ theorem).

Not only do we show that the strong trail orientation problem in undi-
rected 2-edge connected graphs always has a solution, we also provide a
linear time algorithm for finding such an orientation. In doing so, we use
an interesting combination of techniques that allow us to reduce to a graph
with a number of 3-edge connected components that is linear in the num-
ber of edges. Using that the average size of these components is constant
and that we can piece together solutions for the individual components we
obtain an efficient algorithm.

Finally, we consider the generalised Robbins’ theorem in this new setting
by allowing some initially oriented edges and supposing that the remaining
edges are partitioned into trails. We show that if each cut, (V1, V2), in the
graph has either at least two undirected edges going between V1 and V2 or at
least one directed edge in each direction, then it is possible to orient the trails
making the resulting graph strongly connected. In fact, we show that if this
condition is satisfied we may start the trail orientation process by orienting
an arbitrary trail in an arbitrary direction. Although this condition is not
necessary it does give a simple algorithm for finding a trail orientation if
it exists. Indeed, initially the graph may contain undirected edges that are
forced in one direction by some cut. Here, an edge e is forced if it is the
single undirected edge of some cut, (V1, V2), and all the directed edges of the
cut go from V1 to V2. Aiming for a strong orientation, we are then clearly
forced to orient e from V2 to V1. For finding a trail orientation (if it exists),
we can thus orient forced trails in their forced direction. If there are no
forced trails we orient and arbitrary trail in an arbitrary direction.

Figure 9.1: The graph is strongly connected and the underlying graph is 2-
edge connected, but irrespective of the choice of orientation of the red trail,
the graph will no longer be strongly connected.

Note that in the setting with mixed graph, the feasibility depends on

Professor Robert E. Tarjan.
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the trail decomposition which is not the case for the other results. That
the condition from the generalised Robbins’ theorem is not sufficient can be
seen from Figure 9.1.

9.1.1 Concluding Remarks

In [AHHR18], we presented a simple criterion for when the one-way trail
orientation problem can be solved in an undirected graph. We further pro-
vided a linear time algorithm for finding a strongly connected trail orienta-
tion when it exists. We mention two directions for future work. First, our
linear time algorithm for finding strongly connected trail orientations only
works for undirected graphs and it does not seem to generalise to mixed
graphs. It would be interesting to know whether there exists a linear time
algorithm for mixed graphs too. If so, this would complete the picture of
how fast any variant of the trail orientation problem can be solved. Second,
our condition for when the trail orientation problem can be solved for mixed
graphs is not necessary. It would be interesting to know whether there is a
simple necessary and sufficient criterion like in the undirected setting.
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Abstract

Previous work on tabulation hashing by Pǎtraşcu and Thorup from STOC’11 on simple tabulation
and from SODA’13 on twisted tabulation offered Chernoff-style concentration bounds on hash based
sums, e.g., the number of balls/keys hashing to a given bin, but under some quite severe restrictions on
the expected values of these sums. The basic idea in tabulation hashing is to view a key as consisting of
c = O(1) characters, e.g., a 64-bit key as c = 8 characters of 8-bits. The character domain Σ should be
small enough that character tables of size |Σ| fit in fast cache. The schemes then use O(1) tables of this
size, so the space of tabulation hashing is O(|Σ|). However, the concentration bounds by Pǎtraşcu and
Thorup only apply if the expected sums are � |Σ|.

To see the problem, consider the very simple case where we use tabulation hashing to throw n balls
into m bins and want to analyse the number of balls in a given bin. With their concentration bounds,
we are fine if n = m, for then the expected value is 1. However, if m = 2, as when tossing n unbiased
coins, the expected value n/2 is � |Σ| for large data sets, e.g., data sets that do not fit in fast cache.

To handle expectations that go beyond the limits of our small space, we need a much more advanced
analysis of simple tabulation, plus a new tabulation technique that we call tabulation-permutation hashing
which is at most twice as slow as simple tabulation. No other hashing scheme of comparable speed offers
similar Chernoff-style concentration bounds.
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1 Introduction
Chernoff’s concentration bounds [12] date back to the 1950s but bounds of this types go even further back
to Bernstein in the 1920s [7]. Originating from the area of statistics they are now one of the most basic tools
of randomized algorithms [36]. A canonical form considers the sum X =

∑n
i=1Xi of independent random

variables X1, . . . , Xn ∈ [0, 1]. Writing µ = E [X] it holds for every ε ≥ 0 that

Pr[X ≥ (1 + ε)µ] ≤ exp(−µ C(ε))
[
≤ exp(−ε2µ/3) for ε ≤ 1

]
, (1)

Pr[X ≤ (1− ε)µ] ≤ exp(−µ C(−ε))
[
≤ exp(−ε2µ/2) for ε ≤ 1

]
. (2)

Here C : (−1,∞) → [0,∞) is given by C(x) = (x + 1) ln(x + 1) − x, so exp(−C(x)) = ex

(1+x)(1+x)
. Textbook

proofs of (1) and (2) can be found in [36, §4]1. Writing σ2 = Var [X], a more general bound is

Pr[|X − µ| ≥ t] ≤ 2 exp(−σ2C(t/σ2))
[
≤ 2 exp(−(t/σ)2/3) for t ≤ σ2

]
. (3)

Since σ2 ≤ µ and C(−ε) ≤ 1.5 C(ε) for ε ≤ 1, (3) is at least as good as (1) and (2), up to constant factors,
and often better. In this work, we state our results in relation to (3), known as Bennett’s inequality [6].

Hashing is another fundamental tool of randomized algorithms dating back to the 1950s [23]. A random
hash function, h : U → R, assigns a hash value, h(x) ∈ R, to every key x ∈ U . Here both U and R are
typically bounded integer ranges. The original application was hash tables with chaining where x is placed
in bin h(x), but today, hash functions are ubiquitous in randomized algorithms. For instance, they play a
fundamental role in streaming and distributed settings where a system uses a hash function to coordinate
the random choices for a given key. In most applications, we require concentration bounds for one of the
following cases of increasing generality.

1. Let S ⊆ U be a set of balls and assign to each ball, x ∈ S, a weight, wx ∈ [0, 1]. We wish to distribute
the balls of S into a set of bins R = [m] = {0, 1, . . . ,m−1}. For a bin, y ∈ [m], X =

∑
x∈S wx·[h(x) = y]

is then the total weight of the balls landing in bin y.

2. We may instead be interested in the total weight of the balls with hash values in the interval [y1, y2)
for some y1, y2 ∈ [m], that is, X =

∑
x∈S wx · [y1 ≤ h(x) < y2].

3. More generally, we may consider a fixed value function v : U × R → [0, 1]. For each key x ∈ U , we
define the random variable Xx = v(x, h(x)), where the randomness of Xx stems from that of h(x). We
write X =

∑
x∈U v(x, h(x)) for the sum of these values.

To exemplify applications, the first case is common when trying to allocate resources; the second case arises in
streaming algorithms; and the third case handles the computation of a complicated statistic, X, on incoming
data. In each case, we wish the variable X to be concentrated around its mean, µ = E [X], according to
the Chernoff-style bound of (3). If we had fully random hashing, this would indeed be the case. However,
storing a fully random hash function is infeasible. The goal of this paper is to obtain such concentration with
a practical constant-time hash function. More specifically, we shall construct hash functions that satisfy the
following definition when X is a random variable as in one of the three cases above.

Definition 1 (Strong Concentration). Let h : [u]→ [m] be a hash function, S ⊆ [u] be a set of hash keys of
size n = |S|, and X = X(h, S) be a random variable, which is completely determined by h and S. Denote
by µ = E [X] and σ2 = Var [X] the expectation and variance of X. We say that X is strongly concentrated
with added error probability f(u, n,m) if for every t > 0,

Pr [|X − µ| ≥ t] ≤ O
(
exp

(
−Ω(σ2C(t/σ2)

))
+ f(u, n,m). (4)

Throughout the paper we shall prove properties of random variables that are determined by some hash
function. In many cases, we would like these properties to continue to hold while conditioning the hash
function on its value on some hash key.

1The bounds in [36, §4] are stated as working only for Xi ∈ {0, 1}, but the proofs can easily handle any Xi ∈ [0, 1].
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Definition 2 (Query Invariant). Let h : [u]→ [m] be a hash function, let X = X(h) be a random variable
determined by the outcome of h, and suppose that some property T is true of X. We say that the property is
query invariant if whenever we choose x ∈ [u] and y ∈ [m] and consider the hash function h′ = (h|h(x) = y),
i.e., h conditioned on h(x) = y, property T is true of X ′ = X(h′).

Remark. For example, consider the case (1) from above. We are interested in the random variable X =∑
x∈S wx · [h(x) = y]. Suppose that for every choice of weights, (wx)x∈S , X is strongly concentrated and

that this concentration is query invariant. Let x0 ∈ [u] be a distinguished query key. Then since for every
y0 ∈ [m], the hash function h′ = (h|h(x0) = y0) satisfies that X ′ =

∑
x∈S wx · [h′(x) = y0] is strongly

concentrated, it follows that X ′′ =
∑
x∈S wx · [h(x) = h(x0)] is strongly concentrated. Thus, h allows us to

get Chernoff-style concentration on the weight of the balls landing in the same bin as x0.
This may be generalized such that in the third case from above, the weight function may be chosen as a

function of h(x0). Thus, the property of being query invariant is very powerful. It is worth noting that the
constants of the asymptotics may change when conditioning on a query. Furthermore, the expected value
and variance of X ′ may differ from that of X, but this is included in the definition.

One way to achieve Chernoff-style bounds in all of the above cases is through the classic k-independent
hashing framework of Wegman and Carter [48]. The random hash function h : U → R is k-independent if
for any k distinct keys x1, . . . , xk ∈ U , (h(x1), . . . , h(xk)) is uniformly distributed in Rk. Schmidt and Siegel
[43] have shown that with k-independence, the above Chernoff bounds hold with an added error probability
decreasing exponentially in k. Unfortunately, a lower bound by Siegel [44] implies that evaluating a k-
independent hash function takes Ω(k) time unless we use a lot of space (to be detailed later).

Pǎtraşcu and Thorup have shown that Chernoff-style bounds can be achieved in constant time with
tabulation based hashing methods; namely simple tabulation [38] for the first case described above and
twisted tabulation [41] for all cases. However, their results suffer from some severe restrictions on the
expected value, µ, of the sum. More precisely, the speed of these methods relies on using space small enough
to fit in fast cache, and the Chernoff-style bounds [38, 41] all require that µ is much smaller than the space
used. For larger values of µ, Pǎtraşcu and Thorup [38, 41] offered some weaker bounds with a deviation
that was off by several logarithmic factors. It can be shown that some of these limitations are inherent to
simple and twisted tabulation. For instance, they cannot even reliably distribute balls into m = 2 bins, as
described in the first case above, if the expected number of balls in each bin exceeds the space used.

In this paper, we construct and analyse a new family of fast hash functions tabulation-permutation
hashing that has Chernoff-style concentration bounds like (3) without any restrictions on µ. This generality
is important if building a general online system with no knowledge of future input. Later, we shall give
concrete examples from streaming where µ is in fact large. Our bounds hold for all of the cases described
above and all possible inputs. Furthermore, tabulation-permutation hashing is an order of magnitude faster
than any other known hash function with similar concentration bounds, and almost as fast as simple and
twisted tabulation. We demonstrate this both theoretically and experimentally. Stepping back, our main
theoretical contribution lies in the field of analysis of algorithms, and is in the spirit of Knuth’s analysis of
linear probing [29], which shows strong theoretical guarantees for a very practical algorithm. We show that
tabulation-permutation hashing has strong theoretical Chernoff-style concentration bounds. Moreover, on
the practical side, we perform experiments, summarized in Table 1, demonstrating that it is comparable in
speed to some of the fastest hash functions in use, none of which provide similar concentration bounds.

When talking about hashing in constant time, the actual size of the constant is of crucial importance.
First, hash functions typically execute the same instructions on all keys, in which case we always incur the
worst-case running time. Second, hashing is often an inner-loop bottle-neck of data processing. Third, hash
functions are often applied in time-critical settings. Thus, even speedups by a multiplicative constant are
very impactful. As an example from the Internet, suppose we want to process packets passing through a
high-end Internet router. Each application only gets very limited time to look at the packet before it is
forwarded. If it is not done in time, the information is lost. Since processors and routers use some of the
same technology, we never expect to have more than a few instructions available. Slowing down the Internet
is typically not an option. The papers of Krishnamurthy et al. [30] and Thorup and Zhang [47] explain in
more detail how high speed hashing is necessary for their Internet traffic analysis. Incidentally, our hash
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function is a bit faster than the ones from [30, 47], which do not provide Chernoff-style concentration bounds.
Concrete examples of the utility of our new hash-family may be found in [1]. In [1] it is shown that

some classic streaming algorithms enjoy very substantial speed-ups when implemented using tabulation-
permutation hashing; namely the original similarity estimation of Broder [8] and the estimation of distinct
elements of Bar-Yossef et al. [5]. The strong concentration bounds makes the use of independent repetitions
unnecessary, allowing the implementations of the algorithms to be both simpler and faster. We stress that
in high-volume streaming algorithms, speed is of critical importance.

Tabulation-permutation hashing builds on top of simple tabulation hashing, and to analyse it, we require
a new and better understanding of the behaviour and inherent limitations of simple tabulation, which we
proceed to describe. Afterwards we break these limitations by introducing our new powerful tabulation-
permutation hashing scheme.

1.1 Simple Tabulation Hashing
Simple tabulation hashing dates back to Zobrist [49]. In simple tabulation hashing, we consider the key
domain U to be of the form U = Σc for some character alphabet Σ and c = O(1), such that each key
consists of c characters of Σ. Let m = 2` be given and identify [m] = {0, 1, . . . ,m − 1} with [2]`. A simple
tabulation hash function, h : Σc → [m], is then defined as follows. For each j ∈ {1, . . . , c} store a fully
random character table hj : Σ→ [m] mapping characters of the alphabet Σ to `-bit hash values. To evaluate
h on a key x = (x1, . . . , xc) ∈ Σc, we compute h(x) = h1(x1)⊕ · · · ⊕ hc(xc), where ⊕ denotes bitwise XOR –
an extremely fast operation. With character tables in cache, this scheme is the fastest known 3-independent
hashing scheme [38]. We will denote by u = |U | the size of the key domain, identify U = Σc with [u], and
always assume the size of the alphabet, |Σ|, to be a power of two. For instance, we could consider 32-bit
keys consisting of four 8-bit characters. For a given computer, the best choice of c in terms of speed is easily
determined experimentally once and for all, and is independent of the problems considered.

Let S ⊆ U and consider hashing n = |S| weighted balls or keys into m = 2` bins using a simple tabulation
function, h : [u]→ [m], in line with the first case mentioned above. We shall prove the theorem below.

Theorem 1. Let h : [u] → [m] be a simple tabulation hash function with [u] = Σc, c = O(1). Let S ⊆ [u]
be given of size n = |S| and assign to each key/ball x ∈ S a weight wx ∈ [0, 1]. Let y ∈ [m], and define
X =

∑
x∈S wx · [h(x) = y] to be the total weight of the balls hashing to bin y. Then for any constant γ > 0,

X is strongly concentrated with added error probability n/mγ , where the constants of the asymptotics are
determined solely by c and γ. Furthermore, this concentration is query invariant.

In Theorem 1, we note that the expectation, µ = E [X], and the variance, σ2 = Var [X], are the same
as if h were a fully random hash function since h is 3-independent. This is true even when conditioning on
the hash value of a query key having a specific value. The bound provided by Theorem 1 is therefore the
same as the variance based Chernoff bound (3) except for a constant delay in the exponential decrease and
an added error probability of n/mγ . Since σ2 ≤ µ, Theorem 1 also implies the classic one-sided Chernoff
bounds (1) and (2), again with the constant delay and the added error probability as above, and a leading
factor of 2.

Pǎtraşcu and Thorup [38] proved an equivalent probability bound, but without weights, and, more
importantly, with the restriction that the number of bins m ≥ n1−1/(2c). In particular, this implies the
restriction µ ≤ |Σ|1/2. Our new bound gives Chernoff-style concentration with high probability in n for any
m ≥ nε, ε = Ω(1). Indeed, letting γ′ = (γ + 1)/ε, the added error probability becomes n/mγ′ ≤ 1/nγ .

However, for small m the error probability n/mγ is prohibitive. For instance, unbiased coin tossing,
corresponding to the case m = 2, has an added error probability of n/2γ which is useless. In Section 8, we
will show that it is inherently impossible to get good concentration bounds using simple tabulation hashing
when the number of bins m is small. To handle all instances, including those with few bins, and to support
much more general Chernoff bounds, we introduce a new hash function: tabulation-permutation hashing.
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1.2 Tabulation-Permutation Hashing
We start by defining tabulation-permutation hashing from Σc to Σd with c, d = O(1). A tabulation-
permutation hash function h : Σc → Σd is given as a composition, h = τ ◦ g, of a simple tabulation hash
function g : Σc → Σd and a permutation τ : Σd → Σd. The permutation is a coordinate-wise fully ran-
dom permutation: for each j ∈ {1, . . . , d}, pick a uniformly random character permutation τj : Σ → Σ.
Now, τ = (τ1, . . . , τd) in the sense that for z = (z1, . . . , zd) ∈ Σd, τ(z) = (τ1 (z1) , . . . , τd (zd)). In words,
a tabulation-permutation hash function hashes c characters to d characters using simple tabulation, and
then randomly permutes each of the d output characters. As is, tabulation-permutation hash functions yield
values in Σd, but we will soon see how we can hash to [m] for any m ∈ N.

If we precompute tables Ti : Σ→ Σd, where

Ti(zi) =




i−1︷ ︸︸ ︷
0, . . . , 0, τi(zi),

d−i︷ ︸︸ ︷
0, . . . , 0


 , zi ∈ Σ,

then τ(z1, . . . , zd) = T1(z1) ⊕ · · · ⊕ Td(zd). Thus, τ admits the same implementation as simple tabulation,
but with a special distribution on the character tables. If in particular d ≤ c, the permutation step can be
executed at least as fast as the simple tabulation step.

Our main result is that with tabulation-permutation hashing, we get high probability Chernoff-style
bounds for the third and most general case described in the beginning of the introduction.

Theorem 2. Let h : [u] → [r] be a tabulation-permutation hash function with [u] = Σc and [r] = Σd,
c, d = O(1). Let v : [u] × [r] → [0, 1] be a fixed value function that to each key x ∈ [u] assigns a value
Xx = v(x, h(x)) ∈ [0, 1] depending on the hash value h(x) and define X =

∑
x∈[u]Xx. For any constant

γ > 0, X is strongly concentrated with added error probability 1/uγ , where the constants of the asymptotics
are determined solely by c, d, and γ. Furthermore, this concentration is query invariant.

Tabulation-permutation hashing inherits the 3-independence of simple tabulation, so as in Theorem 1,
µ = E [X] and σ2 = Var [X] have exactly the same values as if h were a fully-random hash function. Again,
this is true even when conditioning on the hash value of a query key having a specific value.

Tabulation-permutation hashing allows us to hash into m bins for any m ∈ N (not necessarily a power
of two) preserving the strong concentration from Theorem 2. To do so, simply define the hash function
hm : [u] → [m] by hm(x) = h(x) mod m. Relating back to Theorem 1, consider a set S ⊆ U of n balls
where each ball x ∈ S has a weight wx ∈ [0, 1] and balls x outside S are defined to have weight wx = 0.
To measure the total weight of the balls landing in a given bin y ∈ [m], we define the value function
v(x, z) = wx · [z mod m = y]. Then

X =
∑

x∈[u]

v(x, h(x)) =
∑

x∈S
wx · [hm(x) = y]

is exactly the desired quantity and we get the concentration bound from Theorem 2. Then the big advantage
of tabulation-permutation hashing over simple tabulation hashing is that it reduces the added error prob-
ability from n/mγ of Theorem 1 to the 1/uγ of Theorem 2, where u is the size of the key universe. Thus,
with tabulation-permutation hashing, we actually get Chernoff bounds with high probability regardless of
the number of bins.

Pǎtraşcu and Thorup [41] introduced twisted tabulation that like our tabulation-permutation achieved
Chernoff-style concentration bounds with a general value function v. Their bounds are equivalent to those
of Theorem 2, but only under the restriction µ ≤ |Σ|1−Ω(1). To understand how serious this restriction is,
consider again tossing an unbiased coin for each key x in a set S ⊆ [u], corresponding to the case m = 2 and
µ = |S|/2. With the restriction from [41], we can only handle |S| ≤ 2 |Σ|1−Ω(1), but recall that Σ is chosen
small enough for character tables to fit in fast cache, so this rules out any moderately large data set. We are
going to show that for certain sets S, twisted tabulation has the same problems as simple tabulation when
hashing to few bins. This implies that the restrictions from [41] cannot be lifted with a better analysis.
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Pǎtraşcu and Thorup [41] were acutely aware of how prohibitive the restriction µ ≤ |Σ|1−Ω(1) is.
For unbounded µ, they proved a weaker bound; namely that with twisted tabulation hashing, X =
µ ± O(σ(log u)c+1) with probability 1 − u−γ for any γ = O(1). With our tabulation-permutation hash-
ing, we get X = µ ± O(σ(log u)1/2) with the same high probability, 1 − u−γ . Within a constant factor on
the deviation, our high probability bound is as good as with fully-random hashing.

More related work, including Siegel’s [44] and Thorup’s [45] highly independent hashing will be discussed
in Section 1.7.

1.3 Tabulation-1Permutation
Above we introduced tabulation-permutation hashing which yields Chernoff-style bounds with an arbitrary
value function. This is the same general scenario as was studied for twisted tabulation in [41]. However,
for almost all applications we are aware of, we only need the generality of the second case presented at the
beginning of the introduction. Recall that in this case we are only interested in the total weight of the
balls hashing to a certain interval. As it turns out, a significant simplification of tabulation-permutation
hashing suffices to achieve strong concentration bounds. We call this simplification tabulation-1permutation.
Tabulation-permutation hashing randomly permutes each of the d output characters of a simple tabulation
function g : Σc → Σd. Instead, tabulation-1permutation only permutes the most significant character.

More precisely, a tabulation-1permutation hash function h : Σc → Σd is a composition, h = τ ◦ g, of a
simple tabulation function, g : Σc → Σd, and a random permutation, τ : Σd → Σd, of the most significant
character, τ(z1, . . . , zd) = (τ1(z1), z2, . . . , zd) for a random character permutation τ1 : Σ→ Σ.

To simplify the implementation of the hash function and speed up its evaluation, we can precompute a
table T : Σ→ Σd such that for z1 ∈ Σ,

T (z1) =


z1 ⊕ τ1(z1),

d−1︷ ︸︸ ︷
0, . . . , 0


 .

Then if g(x) = z = (z1, . . . , zd), h(x) = z ⊕ T (z1).
This simplified scheme, needing only c+1 character lookups, is powerful enough for concentration within

an arbitrary interval.

Theorem 3. Let h : [u] → [r] be a tabulation-1permutation hash function with [u] = Σc and [r] = Σd,
c, d = O(1). Consider a key/ball set S ⊆ [u] of size n = |S| where each ball x ∈ S is assigned a weight
wx ∈ [0, 1]. Choose arbitrary hash values y1, y2 ∈ [r] with y1 ≤ y2. Define X =

∑
x∈S wx · [y1 ≤ h(x) < y2]

to be the total weight of balls hashing to the interval [y1, y2). Then for any constant γ > 0, X is strongly
concentrated with added error probability 1/uγ , where the constants of the asymptotics are determined solely
by c, d, and γ. Furthermore, this concentration is query invariant.

One application of Theorem 3 is in the following sampling scenario: We set y1 = 0, and sample all keys
with h(x) < y2. Each key is then sampled with probability y2/r, and Theorem 3 gives concentration on the
number of samples. In [1] this is used for more efficient implementations of streaming algorithms.

Another application is efficiently hashing into an arbitrary numberm ≤ r of bins. We previously discussed
using hash values modulo m, but a general mod-operation is often quite slow. Instead we can think of hash
values as fractions h(x)/r ∈ [0, 1). Multiplying by m, we get a value in [0,m), and the bin index is then
obtained by rounding down to the nearest integer. This implementation is very efficient because r is a
power of two, r = 2b, so the rounding is obtained by a right-shift by b bits. To hash a key x to [m], we
simply compute hm(x) = (h(x) ∗ m) >> b. Then x hashes to bin d ∈ [m] if and only if d ∈ [y1, y2) ⊆ [r]
where y1 = brd/mc and y2 = br(d + 1)/mc, so the number of keys hashing to a bin is concentrated as in
Theorem 3. Moreover, hm uses only c+ 1 character lookups and a single multiplication in addition to some
very fast shifts and bit-wise Boolean operations.
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1.4 Subpolynomial Error Probabilities
In Theorem 2 and 3, we have Pr[|X − µ| ≥ t] = O(exp(−Ω(σ2C(t/σ2)))) + 1/uγ which holds for any fixed γ.
The value of γ affects the constant hidden in the Ω-notation delaying the exponential decrease. In Section 8,
we will show that the same bound does not hold if γ is replaced by any slow-growing but unbounded
function. Nevertheless, it follows from our analysis that for every α(u) = ω(1) there exists β(u) = ω(1) such
that whenever exp(−σ2C(t/σ2)) < 1/uα(u), Pr[|X − µ| ≥ t] ≤ 1/uβ(u).

1.5 Generic Remarks on Universe Reduction and Amount of Randomness
The following observations are fairly standard in the literature. Suppose we wish to hash a set of keys S
belonging to some universe U . The universe may be so large compared to S that it is not efficient to directly
implement a theoretically powerful hashing scheme like tabulation-permutation hashing. A standard first
step is to perform a universe reduction, mapping U randomly to “signatures” in [u] = {0, 1, . . . , u−1}, where
u = nO(1), e.g. u = n3, so that no two keys from S are expected to get the same signature [9]. As the
only theoretical property required for the universe reduction is a low collision probability, this step can be
implemented using very simple hash functions as described in [46]. In this paper, we generally assume that
this universe reduction has already been done, if needed, hence that we only need to deal with keys from a
universe [u] of size polynomial in n. For any small constant ε > 0 we may thus pick c = O(1/ε) such that the
space used for our hash tables, Θ(|Σ|), is O(nε). Practically speaking, this justifies focusing on the hashing
of 32- and 64-bit keys.

When we defined simple tabulation above, we said the character tables were fully random. However, for
the all the bounds in this paper, it would suffice if they were populated with a O(log u)-independent pseudo-
random number generator (PNG), so we only need a seed of O(log u) random words to be shared among all
applications who want to use the same simple tabulation hash function. Then, as a preprocesing for fast
hashing, each application can locally fill the character tables in O(|Σ|) time [13]. Likewise, for our tabulation
permutation hashing, our bounds only require a O(log u)-independent PNG to generate the permutations.
The basic point here is that tabulation based hashing does not need a lot of randomness to fill the tables,
but only space to store the tables as needed for the fast computation of hash values.

1.6 Techniques
I don?t know. The only thing I know is the effect of your actions. You say I didn’t disclose who I was when
we met. Actually, who you met was the real version of me, the version of me I can’t wait to get back. It was
the things you did that gradually turned me into the version of me that you so much despise. I don’t know
why you did the things that you did. Only you know yourself well enough to answer that question.

The paper relies on three main technical insights to establish the concentration inequality for tabulation-
permutation hashing of Theorem 2. We shall here describe each of these ideas and argue that each is in fact
necessary towards an efficient hash function with strong concentration bounds.

1.6.1 Improved Analysis of Simple Tabulation

The first step towards proving Theorem 2 is to better understand the distribution of simple tabulation
hashing. We describe below how an extensive combinatorial analysis makes it possible to prove a generalised
version of Theorem 1.

To describe the main idea of this technical contribution, we must first introduce some ideas from previous
work in the area. This will also serve to highlight the inherent limitations of previous approaches. A simplified
account is the following. Let h : Σc → [m] be a simple tabulation hash function, let y ∈ [m] be given, and
for some subset of keys S ⊆ Σc, let X =

∑
x∈S [h(x) = y] be the random variable denoting the number

of elements x ∈ S that have hash value h(x) = y. Our goal is to bound the deviation of X from its
mean µ = |S| /m. We first note that picking a random simple tabulation hash function h : Σc → [m]
amounts to filling the c character tables, each of size Σ, with uniformly random hash values. Thus, picking
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a simple tabulation hash function h : Σc → [m] corresponds to picking a uniformly random hash function
h : [c] × Σ → [m]. We call [c] × Σ the set of position characters. Viewing a key x = (x1, . . . , xc) ∈ Σc

as a set of position characters, x = {(1, x1), . . . , (c, xc)}, and slightly abusing notation, it then holds that
h(x) =

⊕
α∈x h(α). Now let α1, . . . , αr be a (for the sake of the proof) well-chosen ordering of the position

characters. For each k ∈ [r+1], we define the random variable Xk = E [X | h(α1), . . . , h(αk)], where h(αi) is
the value of the entry of the lookup table of h corresponding to αi. The process (Xk)rk=0 is then a martingale.
We can view this as revealing the lookup table of h one entry at a time and adjusting our expectation of
the outcome of X accordingly. Defining the martingale difference Yk = Xk − Xk−1, we can express X
as a sum X = µ +

∑c·|Σ|
k=1 Yk. Previous work has then bounded the sum using a Chernoff inequality for

martingales as follows. Due to the nature of the ordering of {αi}ri=1, we can find M > 0 such that with
high probability, |Yk| ≤ M for every k. Then conditioned on each of the Yks being bounded, X satisfies
the Chernoff bounds of (1) and (2) except the exponent is divided by M . As long as the expectation, µ,
satisfies µ = O(|Σ|), it is possible2 that M = O(1), yielding Chernoff bounds with a constant in the delay of
the exponential decrease. However, since there are only c · |Σ| variables, Yk, it is clear that M ≥ µ/(c · |Σ|).
Thus, whenever µ = ω(|Σ|), the delay of the exponential decrease is super-constant, meaning that we do not
get asymptotically tight Chernoff-style bounds. This obstacle has been an inherent issue with the previous
techniques in analysing both simple tabulation [38] as well as twisted tabulation [41]. Being unable to bound
anything beyond the absolute deviation of each variable Yk, it is impossible to get good concentration bounds
for large expectations, µ.

Going beyond the above limitation, we dispense with the idea of bounding absolute deviations and instead
bound the sum of variances, σ2 =

∑c·|Σ|
k=1 Var [Yk]. This sum has a combinatorial interpretation relating to

the number of collisions of hash keys, i.e., the number of pairs y1, y2 ∈ Σc with h(y1) = h(y2).
An extensive combinatorial analysis of simple tabulation hashing yields high-probability bounds on the

sum of variances that is tight up to constant factors. This is key in establishing an induction that allows
us to prove Theorem 1. Complementing our improved bounds, we will show that simple tabulation hashing
inherently does not support Chernoff-style concentration bounds for small m.

1.6.2 Permuting the Hash Range

Our next step is to consider the hash function h = τ ◦ g : Σc → Σ where g : Σc → Σ is a simple tabulation
hash function and τ : Σ→ Σ is a uniformly random permutation. Our goal is to show that h provides good
concentration bounds for any possible value function. To showcase our approach, we consider the example
of hashing to some small set, [m], of bins, e.g., with m = 2 as in our coin tossing example. This can be done
using the hash function hm : Σc → [m] defined by hm(x) = (h(x) mod m). For simplicity we assume that
m is a power of two, or equivalently, that m divides |Σ|. We note that the case of small m was exactly the
case that could not be handled with simple tabulation hashing alone.

Let us look at the individual steps of hm. First, we use simple tabulation mapping into the “character
bins”, Σ. The number of balls in any given character bin is nicely concentrated, but only because |Σ| is large.
Next, perform a permutation followed by the mod m operation. The last two steps correspond to the way
we would deal a deck of |Σ| cards into m hands. The cards are shuffled by a random permutation, then dealt
to the m players one card at a time in cyclic order. The end result is that each of the final m bins is assigned
exactly |Σ|/m random character bins. An important point is now that because the partitioning is exact, the
error in the number of balls in a final bin stems solely from the errors in the |Σ|/m character bins, and because
the partitioning is random, we expect the positive and negative errors to cancel out nicely. The analysis,
which is far from trivial, requires much more than these properties. For example, we also need the bound
described in Section 1.6.1 on the sum of variances. This bound ensures that not only is the number of balls
in the individual character bins nicely concentrated around the mean, but moreover, there is only a small
number of character bins for which the error is large. That these things combine to yield strong concentra-
tion, not only in the specific example above, but for general value functions as in Theorem 2, is quite magical.

2In [38], the actual analysis of simple tabulation using this approach achieves µ = O(
√

|Σ|).
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We finish the discussion by mentioning two approaches that do not work and highlight how a per-
mutation solves the issues of these strategies.

First, one may ask why we need the permutation at all. After all, the mod m operation also partitions
the |Σ| character bins into groups of the same size, |Σ|/m. The issue is that while a simple tabulation hash
function, g : Σc → Σ, has good concentration in each of the individual character bins, the |Σ|/m character
bins being picked out by the mod m operation constitute a very structured subset of Σ, and the errors from
this set of bins could be highly correlated. We indeed show that the structure of simple tabulation causes
this to happen for certain sets of keys, both theoretically (Section 8) and experimentally (Section 9).

Second, the reader may wonder why we use a permutation, τ : Σ→ Σ, instead of a random hash function
as in double tabulation [45]. In terms of the card dealing analogy, this would correspond to throwing the |Σ|
cards at the m astonished card players one at a time with a random choice for each card, not guaranteeing
that the players each get the same number of cards. And this is exactly the issue. Using a fully random hash
function τ ′, we incur an extra error stemming from τ ′ distributing the |Σ| character bins unevenly into the
final bins. This is manifested in the variance of the number of balls hashing to a specific bin: Take again the
coin tossing example with n ≥ |Σ| balls being distributed into m = 2 bins. With a permutation τ the hash
function becomes 2-independent, so the variance is the same as in the fully random setting, n/4. Now even
if the simple tabulation hash function, g, distributes the n keys into the character bins evenly, with exactly
n/Σ keys in each, with a fully random hash function, τ ′, the variance becomes (n/|Σ|)2 · |Σ|/4 = n2/(4|Σ|),
a factor of n/|Σ| higher.

1.6.3 Squaring the Hash Range

The last piece of the puzzle is a trick to extend the range of a hash function satisfying Chernoff-style bounds.
We wish to construct a hash function h : Σc → [m] satisfying Chernoff-style bounds for m arbitrarily large
as in Theorem 2. At first sight, the trick of the previous subsection would appear to suffice for the purpose.
However, if we let g = τ ◦ h be the composition of a simple tabulation hash function h : Σc → [m] and τ a
random permutation of [m], we run into trouble if for instance [m] = Σc. In this case, a random permutation
of [m] would require space equal to that of a fully random function f : Σc → [m], but the whole point
of hashing is to use less space. Hence, we instead prove the following. Let a : C → D and b : C → D
be two independent hash functions satisfying Chernoff-style bounds for general value functions. Then this
property is preserved up to constant factors under “concatenation”, i.e., if we let c : C → D2 be given by
c(x) = (a(x), b(x)), then c is also a hash function satisfying Chernoff-style bounds for general value functions,
albeit with a slightly worse constant delay in the exponential decrease than a and b. Thus, this technique
allows us to “square” the range of a hash function.

With this at hand, let h1, h2 : Σc → Σ be defined as h1 = τ1 ◦ g1 and h2 = τ2 ◦ g2, where g1, g2 : Σc → Σ
are simple tabulation hash functions and τ1, τ2 : Σ → Σ are random permutations. Then the concatenation
h : Σc → Σ2 of h1 and h2 can be considered a composition of a simple tabulation function g : Σc → Σ2

given by g(x) = (g1(x), g2(x)) and a coordinate-wise permutation τ = (τ1, τ2) : Σ2 → Σ2, where the latter is
given by τ(x1, x2) = (τ1(x1), τ2(x2)), x1, x2 ∈ Σ. Applying our composition result, gives that g also satisfies
Chernoff-style bounds. Repeating this procedure dlog(d)e = O(1) times, yields the desired concentration
bound for tabulation-permutation hashing h : Σc → Σd described in Theorem 2.

1.7 Related Work – Theoretical and Experimental Comparisons
In this section, we shall compare the performance of tabulation-permutation and tabulation-1permutation
hashing with other related results. Our comparisons are both theoretical and empirical. Our goal in this
paper is fast constant-time hashing having strong concentration bounds with high probability, i.e., bounds
of the form

Pr[|X − µ| ≥ t] ≤ 2 exp(−Ω(σ2C(t/σ2))) + u−γ ,

as in Definition 1 and Theorems 2 and 3, or possibly with σ2 replaced by µ ≥ σ2. Theoretically, we
will only compare with other hashing schemes that are relevant to this goal. In doing so, we distinguish
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Running time (ms)
Computer 1 Computer 2

Hash function 32 bits 64 bits 32 bits 64 bits
Multiply-Shift 4.2 7.5 23.0 36.5
2-Independent PolyHash 14.8 20.0 72.2 107.3
Simple Tabulation 13.7 17.8 53.1 55.9
Twisted Tabulation 17.2 26.1 65.6 92.5
Mixed Tabulation 28.6 68.1 120.1 236.6
Tabulation-1Permutation 16.0 19.3 63.8 67.7
Tabulation-Permutation 27.3 43.2 118.1 123.6
Double Tabulation 1130.1 – 3704.1 –
“Random” (100-Independent PolyHash) 2436.9 3356.8 7416.8 11352.6

Table 1: The time for different hash functions to hash 107 keys of length 32 bits and 64 bits, respectively, to
ranges of size 32 bits and 64 bits. The experiment was carried out on two computers. The hash functions
written in italics are those without general Chernoff-style bounds. Hash functions written in bold are the
contributions of this paper. The hash functions in regular font are known to provide Chernoff-style bounds.
Note that we were unable to implement double tabulation from 64 bits to 64 bits since the hash tables were
too large to fit in memory.

Hash function Time Space Concentration Guarantee Restriction
Multiply-Shift O(1) O(1) Chebyshev’s inequality None

k-Independent PolyHash O(k) O(k) Chernoff-style bounds Requires k = Ω(log u) for
added error probability O(1/uγ)

Simple Tabulation O(c) O(u1/c) Chernoff-style bounds Added error probability: O(n/mγ)

Twisted Tabulation O(c) O(u1/c) Chernoff-style bounds Requires: µ ≤ |Σ|1−Ω(1)

Mixed Tabulation O(c) O(u1/c) Chernoff-style bounds Requires: µ = o(|Σ|)
Tabulation-Permutation O(c) O(u1/c) Chernoff-style bounds Added error probability: O(1/uγ)
Double Tabulation O(c2) O(u1/c) Chernoff-style bounds Added error probability: O(1/uγ)

Table 2: Theoretical time and space consumption of some of the hash functions discussed.

between the hash functions that achieve Chernoff-style bounds with restrictions on the expected value and
those that, like our new hash functions, do so without such restrictions, which is what we want for all
possible input. Empirically, we shall compare the practical evaluation time of tabulation-permutation and
permutation-1permutation to the fastest commonly used hash functions and to hash functions with similar
theoretical guarantees. A major goal of algorithmic analysis is to understand the theoretical behavior of
simple algorithms that work well in practice, providing them with good theoretical guarantees such as worst-
case behavior. For instance, one may recall Knuth’s analysis of linear probing [29], showing that this very
practical algorithm has strong theoretical guarantees. In a similar vein, we not only show that the hashing
schemes of tabulation-permutation and tabulation-1permutation have strong theoretical guarantees, we also
perform experiments, summarized in Table 1, demonstrating that in practice they are comparable in speed
to some of the most efficient hash functions in use, none of which have similar concentration guarantees.
Thus, with our new hash functions, hashing with strong theoretical concentration guarantees is suddenly
feasible for time-critical applications.
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1.7.1 High Independence and Tabulation

Before this paper, the only known way to obtain unrestricted Chernoff-style concentration bounds with hash
functions that can be evaluated in constant time was through k-independent hashing. Recall that a hash
function h : U → R is k-independent if the distribution of (h(x1), . . . , h(xk)) is uniform in Rk for every choice
of distinct keys x1, . . . , xk ∈ U . Schmidt, Siegel, and Srinivasan [43] have shown that with k-independent
hashing, we have Chernoff-style concentration bounds in all three cases mentioned at the beginning of the
introduction up to an added error probability decreasing exponentially in k. With k = Θ(γ log u), this means
Chernoff-style concentration with an added error probability of 1/uγ like in Theorem 2 and 3. However,
evaluating any k-independent hash function takes time Ω(k) unless we use a lot of space. Indeed, a cell probe
lower bound by Siegel [44] states that evaluating a k-independent hash function over a key domain [u] using
t < k probes, requires us to use at least u1/t cells to represent the hash function. Thus, aiming for Chernoff
concentration through k-independence with k = Ω(log u) and with constant evaluation time, we would
have to use uΩ(1) space like our tabulation-permutation. Here it should be mentioned that k-independent
PolyHash modulo a prime p can be evaluated at k points in total time O(k log2 k) using multipoint evaluation
methods. Then the average evaluation time is O(log2 k), but it requires that the hashing can be done to
batches of k keys at a time. We can no longer hash one key at a time, continuing with other code before we
hash the next key. This could be a problem for some applications. A bigger practical issue is that it is no
longer a black box implementation of a hash function. To understand the issue, think of Google’s codebase
where thousands of programs are making library calls to hash functions. A change to multipoint evaluation
would require rewriting all of the calling programs, checking in each case that batch hashing suffices — a
huge task that likely would create many errors. A final point is that multipoint evaluation is complicated
to implement yet still not as fast as our tabulation-permutation hashing. Turning to upper bounds, Siegel
designed a uΩ(1/c2)-independent hash function that can be represented in tables of size u1/c and evaluated
in cO(c) time. With c = O(1), this suffices for Chernoff-style concentration bounds by the argument above.
However, as Siegel states, the hashing scheme is “far too slow for any practical application”.

In the setting of Siegel, Thorup’s double tabulation [45] is a simpler and more efficient construction of
highly independent hashing. It is the main constant-time competitor of our new tabulation-permutation
hashing, and yet it is 30 times slower in our experiments. In the following, we describe the theoretical
guarantees of double tabulation hashing and discuss its concrete parameters in terms of speed and use of
space towards comparing it with tabulation-permutation hashing.

A double tabulation hash function, h : Σc → Σc is the composition of two independent simple tabulation
hash functions h1 : Σc → Σd and h2 : Σd → Σc, h = h2 ◦ h1. Evaluating the function thus requires c + d
character lookups. Assuming that each memory unit stores an element from [u] = Σc and d ≥ c, the space
used for the character tables is (c(d/c) + d)u1/c = 2du1/c. Thorup [45] has shown that if d ≥ 6c, then with
probability 1−o(Σ2−d/(2c)) over the choice of h1, the double tabulation hash function h is k-independent for
k = |Σ|1/(5c) = uΩ(1/c2). More precisely, with this probability, the output keys (h1(x))x∈Σc are distinct, and
h2 is k-independent when restricted to this set of keys. If we are lucky to pick such an h1, this means that
we get the same high indepence as Siegel [44]. With d = 6c, the space used is 12cu1/c = O(cu1/c) and the
number of character lookups to compute a hash value is 7c = O(c). Tabulation-permutation hashing is very
comparable to Thorup’s double tabulation. As previously noted, it can be implemented in the same way,
except that we fill the character tables of h2 with permutations and padded zeros instead of random hash
values. To compare, a tabulation-permutation hash function h : Σc → Σc requires 2c lookups and uses space
2cu1/c, which may not seem a big difference. However, in the following, we demonstrate how restrictions
on double tabulation cost an order of magnitude in speed and space compared with tabulation-permutation
hashing when used with any realistic parameters.

With Thorup’s double tabulation, for (log u)-independence, we need log u ≤ |Σ|1/(5c) = u1/(5c2). In
choosing values for u and c that work in practice, this inequality is very restrictive. Indeed, even for c = 2,
log u ≤ u1/20, which roughly implies that log u ≥ 140. Combined with the fact that the character tables use
space 12c|Σ|, and that |Σ| ≥ (log u)5c, this is an intimidating amount of space. Another problem is the error
probability over h1 of 1−o(Σ2−d/(2c)). If we want this to be O(1/u), like in the error bounds from Theorem 2
and 3, we need d ≥ 2(c2 + 2c). Thus, while things work well asymptotically, these constraints make it hard
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to implement highly independent double tabulation on any normal computer. However, based on a more
careful analysis of the case with 32-bit keys, Thorup shows that using c = 2 characters of 16 bits, and d = 20
derived characters, gives a 100-independent hash function with probability 1−1.5×10−42. According to [45]
we cannot use significantly fewer resources even if we just want 4-independence. For hashing 32-bit keys,
this means making 22 lookups for each query and using tables of total size 40 · 216. In contrast, if we hash
32-bit keys with tabulation-permutation hashing, we may use 8-bit characters with d = c = 4, thus making
only 8 lookups in tables of total size 8 · 28. For this setting of parameters, our experiments (summarized in
Table 1) show that double tabulation is approximately 30 times slower than tabulation-permutation hashing.
For 64-bit keys, Thorup [45] suggests implementing double tabulation with c = 3 characters of 22 bits and
d = 24. This would require 26 lookups in tables of total size 48 · 222. We were not able to implement this on
a regular laptop due to the space requirement.

We finally mention that Christani et al. [14] have presented a hash family which obtains the even higher
independence uΩ(1/c). The scheme is, however, more complicated with a slower evaluation time of Θ(c log c).

1.7.2 Space Bounded Independence and Chernoff Bounds

One of the earliest attempts of obtaining strong concentration bounds via hashing is a simple and elegant
construction by Dietzfelbinger and Meyer auf der Heide [19]. For some parameters m, s, d, their hash family
maps to [m], can be represented with O(s) space, and uses a (d+1)-independent hash function as a subroutine,
where d = O(1), e.g., a degree-d polynomial. In terms of our main goal of Chernoff-style bounds, their result
can be cast as follows: Considering the number of balls from a fixed, but unknown, subset S ⊆ U , with
|S| = n, that hashes to a specific bin, their result yields Chernoff bounds like ours with a constant delay in
the exponential decrease and with an added error probability of n

(
n
ms

)d. The expected number of balls in a
given bin is µ = n/m, so the added error probability is n(µ/s)d. To compare with tabulation-permutation,
suppose we insist on using space O(|Σ|) and that we moreover want the added error probability to be
u−γ = |Σ|−cγ like in Theorems 2 and 3. With the hashing scheme from [19], we then need µ = O(|Σ|1−γc/d).
If we want to be able to handle expectations of order, e.g. |Σ|1/2, we thus need d ≥ 2cγ. For 64-bit key,
c = 8, and γ = 1, say, this means that we need to evaluate a 16-independent hash function. In general,
we see that the concentration bound above suffers from the same issues as those provided by Pǎtraşcu and
Thorup for simple and twisted tabulation [38, 41], namely that we only have Chernoff-style concentration if
the expected value is much smaller than the space used.

Going in a different direction, Dietzfelbinger and Rink [20] use universe splitting to create a hash function
that is highly independent (building on previous works [21, 22, 25, 27]) but, contrasting double tabulation
as described above, only within a fixed set S, not the entire universe. The construction requires an upper
bound n on the size of S, and a polynomial error probability of n−γ is tolerated. Here γ = O(1) is part of
the construction and affects the evaluation time. Assuming no such error has occurred, which is not checked,
the hash function is highly independent on S. As with Siegel’s and Thorup’s highly independent hashing
discussed above, this implies Chernoff bounds without the constant delay in the exponential decrease, but
this time only within the fixed set S. In the same setting, Pagh and Pagh [37] have presented a hash
function that uses (1 + o(1))n space and which is fully independent on any given set S of size at most n with
high probability. This result is very useful, e.g., as part of solving a static problem of size n using linear
space, since, with high probability, we may assume fully-random hashing as a subroutine. However, from a
Chernoff bound perspective, the fixed polynomial error probability implies that we do not benefit from any
independence above O(log n), using the aforementioned results from [43]. More importantly, we do not want
to impose any limitations to the size of the sets we wish to hash in this paper. Consider for example the
classic problem of counting distinct elements in a huge data stream. The size of the data stream might be
very large, but regardless, the hashing schemes of this paper will only use space O(u1/c) with c chosen small
enough for hash tables to fit in fast cache.

Finally, Dahlgaard et al. [16] have shown that on a given set S of size |S| ≤ |Σ|/2 a double tabulation
hash function, h = h2 ◦ h1 as described above, is fully random with probability 1 − |Σ|1−bd/2c over the
choice of h1. For an error probability of 1/u, we set d = (2c + 2) yielding a hash function that can be
evaluated with 3c+ 2 character lookups and using (4c+ 4)|Σ| space. This can be used to simplify the above
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construction by Pagh and Pagh [37]. Dahlgaard et al. [16] also propose mixed tabulation hashing which
they use for statistics over k-partitions. Their analysis is easily modified to yield Chernoff-style bounds
for intervals similar to our bounds for tabulation-1permuation hashing presented in Theorem 3, but with
the restriction that the expectation µ is at most |Σ|/ log2c |Σ|. This restriction is better than the earlier
mentioned restictions µ ≤ |Σ|1/2 for simple tabulation [38] and µ ≤ |Σ|1−Ω(1) for twisted tabulation [41].
For mixed tabulation hashing, Dahlgaard et al. use 3c + 2 lookups and (5c + 4)|Σ| space. In comparison,
tabulation-1permutation hashing, which has no restriction on µ, uses only c+1 lookups and (c+1)|Σ| space.

1.7.3 Small Space Alternatives in Superconstant Time

Finally, there have been various interesting developments regarding hash functions with small representation
space that, for example, can hash n balls to n bins such that the maximal number of balls in any bin is
O(log n/ log log n), corresponding to a classic Chernoff bound. Accomplishing this through independence
of the hash function, this requires O(log n/ log log n)-independence and evaluation time unless we switch to
hash functions using a lot of space as described above. However, [10, 33] construct hash families taking a
random seed of O(log log n) words and which can be evaluated using O((log logn)2) operations, still obtaining
a maximal load in any bin of O(log n/ log log n) with high probability. This is impressive as it only uses a
small amount of space and a short random seed, though it does require some slightly non-standard operations
when evaluating the hash functions. The running time however, is not constant, which is what we aim for
in this paper.

A different result is by [26] who construct hash families which hash n balls to 2 bins. They construct
hash families that taking a random seed of O((log log n)2) words get Chernoff bounds with an added error
probability of n−γ for some constant γ, which is similar to our bounds. Nothing is said about the running
time of the hash function of [26]. Since one of our primary goals is to design hash functions with constant
running time, this makes the two results somewhat incomparable.

1.7.4 Experiments and Comparisons

To better understand the real-world performance of our new hash functions in comparison with well-known
and comparable alternatives, we performed some simple experiments on regular laptops, as presented in Ta-
ble 1. We did two types of experiments.

• On the one hand we compared with potentially faster hash functions with weaker or restricted concen-
tration bounds to see how much we lose in speed with our theoretically strong tabulation-permutation
hashing. We shall see that our tabulation-permutation is very competitive in speed.

• On the other hand we compared with the fastest previously known hashing schemes with strong con-
centration bounds like ours. Here we will see that we gain a factor of 30 in speed.

Concerning weaker, but potentially faster, hashing schemes we have chosen two types of hash functions for
the comparison. First, we have the fast 2-independent hash functions multiply-shift (with addition) and 2-
independent PolyHash. They are among the fastest hash functions in use and are commonly used in streaming
algorithms. It should be noted that when we use 2-independent hash functions, the variance is the same as
with full randomness, and it may hence suffice for applications with constant error probability. Furthermore,
for data sets with sufficient entropy, Chung, Mitzenmacher, and Vadhan [15] show that 2-independent hashing
suffices. However, as previously mentioned, we want provable Chernoff-style concentration bounds of our
hash functions, equivalent up to constant factors to the behavior of a fully random hash function, for any
possible input. Second, we have simple tabulation, twisted tabulation, and mixed tabulation, which are
tabulation based hashing schemes similar to tabulation-1permutation and tabulation-permutation hashing,
but with only restricted concentration bounds. It is worth noting that Dahlgaard, Knudsen, and Thorup [17]
performed experiments showing that the popular hash functions MurmurHash3 [3] and CityHash [40] along
with the cryptographic hash function Blake2 [4] all are slower than mixed tabulation hashing, which we shall
see is even slower than permutation-tabulation hashing. These hash functions are used in practice, but given
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that our experiments show mixed tabulation to be slightly slower than tabulation-permutation hashing, these
can now be replaced with our faster alternatives that additionally provide theoretical guarantees as to their
effectiveness.

Concerning hashing schemes with previous known strong concentration bounds, we compared with double
tabulation and 100-independent PolyHash, which are the strongest competitors that we are aware of using
simple portable code.

The experiment measures the time taken by various hash functions to hash a large set of keys. Since the
hash functions considered all run the same instructions for all keys, the worst- and best-case running times
are the same, and hence choosing random input keys suffices for timing purposes. Further technical details
of the experiments are covered in Section 9. We considered both hashing 32-bit keys to 32-bit hash values
and 64-bit keys to 64-bits hash values. We did not consider larger key domains as we assume that a universe
reduction, as described in Section 1.5, has been made if needed. The results are presented in Table 1. Below,
we comment on the outcome of the experiment for each scheme considered.

Multiply-Shift. The fastest scheme of the comparison is Dietzfelbinger’s 2-independent Multiply-
Shift [18]. For 32-bit keys it uses one 64-bit multiplication and a shift. For 64-bit keys it uses one 128-bit
multiplication and a shift. As expected, this very simple hash function was the fastest in the experiment.

2-Independent PolyHash. We compare twice with the classic k-independent PolyHash [48]. Once with
k = 2 and again with k = 100. k-independent PolyHash is based on evaluating a random degree (k − 1)-
polynomial over a prime field, using Mersenne primes to make it fast: 261 − 1 for 32-bit keys and 289 − 1
for 64-bit keys. The 2-independent version was 2-3 times slower in experiments than multiply-shift. It is
possible that implementing PolyHash with a specialized carry-less multiplication [31] would provide some
speedup. However, we do not expect it to become faster than multiply-shift.

Simple Tabulation. The baseline for comparison of our tabulation-based schemes is simple tabulation
hashing. Recall that we hash using c characters from Σ = [u1/c] (in this experiment we considered u = 232

and u = 264). This implies c lookups from the character tables, which have total size c |Σ|. For each lookup,
we carry out a few simple AC0 operations, extracting the characters for the lookup and applying an XOR.
Since the size of the character alphabet influences the lookup times, it is not immediately clear, which choice
of c will be the fastest in practice. This is, however, easily checkable on any computer by simple experiments.
In our case, both computers were fastest with 8-bit characters, hence with all character tables fitting in fast
cache.

Theoretically, tabulation-based hashing methods are incomparable in speed to multiply-shift and 2-
independent PolyHash, since the latter methods use constant space but multiplication which has circuit
complexity Θ(logw/ log logw) for w-bit words [11]. Our tabulation-based schemes use only AC0 operations,
but larger space. This is an inherent difference, as 2-independence is only possible with AC0 operations using
a large amount of space [2, 32, 34]. As is evident from Table 1, our experiments show that simple tabulation
is 2-3 slower than multiply-shift, but as fast or faster than 2-independent PolyHash. Essentially, this can be
ascribed to the cache of the two computers used being comparable in speed to arithmetic instructions. This
is not surprising as most computation in the world involves data and hence cache. It is therefore expected
that most computers have cache as fast as arithmetic instructions. In fact, since fast multiplication circuits
are complex and expensive, and a lot of data processing does not involve multiplication, one could imagine
computers with much faster cache than multiplication [28].

Twisted Tabulation. Carrying out a bit more work than simple tabulation, twisted tabulation performs c
lookups of entries that are twice the size, as well as executing a few extra AC0 operations. It hence performs
a little worse than simple tabulation hashing.

Mixed Tabulation. We implemented mixed tabulation hashing with the same parameters (c = d) as
in [17]. With these parameters the scheme uses 2c lookups from 2c character tables, where c of the lookups
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Figure 1: Hashing the arithmetic progression {a · i | i ∈ [50000]} to 16 bins for a random integer a. The
dotted line is a 100-independent PolyHash.

are to table entries that are double as long as the output, which may explain its worse performance with
64-bit domains. In our experiments, mixed tabulation performs slightly worse than tabulation-permutation
hashing. Recall from above that mixed tabulation is faster than many popular hash functions without
theoretical guarantees, hence so is our tabulation-permutation.

Tabulation-1Permutation. Also only slightly more involved than simple tabulation, tabulation-
1permutation performs c+1 lookups using c+1 character tables. In our experiments, tabulation-1permutation
turns out to be a little bit faster than twisted tabulation, at most 30% slower than simple tabulation, and at
most 4 times slower than multiply-shift. Recall that tabulation-1permutation is our hash function of choice
for streaming applications where speed is critical.

Tabulation-Permutation. Tabulation-permutation hashing performs 2c lookups from 2c character tables.
In our experiments, it is slightly more than twice as slow as simple tabulation, and at most 8 times slower
than multiply-shift. It is also worth noting that it performs better than mixed tabulation.

Double Tabulation. Recall that among the schemes discussed so far, only tabulation-permutation and
tabulation-1permutation hashing offer unrestricted Chernoff-style concentration with high probability. Dou-
ble tabulation is the first alternative with similar guarantees and in our experiments it is 30 times slower
for 32-bit keys. For 64-bit keys, we were unable to run it on the computers at our disposal due to the
large amount of space required for the hash tables. As already discussed, theoretically, double tabulation
needs more space and lookups. The 32-bit version performed 26 lookups in tables of total size 48 · 222, while
tabulation-permutation only needs 8 lookups using 8 · 28 space. It is not surprising that double tabulation
lags so far behind.

100-Independent PolyHash. Running the experiment with 100-independent PolyHash, it turned out
that for 32-bit keys, it is slower than 100-independent double tabulation. A bit surprisingly, 100-independent
PolyHash ran nearly 200 times slower than the 2-independent PolyHash, even though it essentially just runs
the same code 99 times. An explanation could be that the 2-independent scheme just keeps two coefficients
in registers while the 100-independent scheme would loop through all the coefficients. We remark that the
number 100 is somewhat arbitrary. We need k = Θ(log u), but we do not know the exact constants in
the Chernoff bounds with k-independent hashing. The running times are, however, easily scalable and for
k-independent PolyHash, we would expect the evaluation time to change by a factor of roughly k/100.

Bad instances for Multiply-Shift and 2-wise PolyHash We finally present experiments demonstrat-
ing concrete bad instances for the hash functions Multiply-Shift [18] and 2-wise PolyHash, underscoring
what it means for them to not support Chernoff-style concentration bounds. In each case, we compare
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with our new tabulation-permutation hash function as well as 100-independent PolyHash, which is our ap-
proximation to an ideal fully random hash function. We refer the reader to Section 9 for bad instances for
simple-tabulation [49] and twisted tabulation [41] as well as a more thorough discussion of our experiments.

Bad instances for Multiply-Shift and 2-independent PolyHash are analyzed in detail in [39, Appendix B].
The specific instance we consider is that of hashing the arithmetic progression A = {a · i | i ∈ [50000]} into 16
bins, where we are interested in the number of keys from A that hashes to a specific bin. We performed this
experiment 5000 times, with independently chosen hash functions. The cumulative distribution functions
on the number of keys from A hashing to a specific bin is presented in Figure 1. We see that most of the
time 2-independent PolyHash and Multiply-Shift distribute the keys perfectly with exactly 1/16 of the keys
in the bin. By 2-independence, the variance is the same as with fully random hashing, and this should
suggest a much heavier tail, which is indeed what our experiments show. For contrast, we see that the
cumulative distribution function with our tabulation-permutation hash function is almost indistinguishable
from that of 100-independent Poly-Hash. We note that no amount of experimentation can prove that
tabulation-permutation (or any other hash function) works well for all possible inputs. However, given the
mathematical concentration guarantee of Theorem 2, the strong performance of tabulation-permutation in
the experiment is no surprise.

2 Technical Theorems and how they Combine
We now formally state our main technical results, in their full generality, and show how they combine to yield
Theorems 1, 2, and 3. A fair warning should be given to the reader. The theorems to follow are intricate
and arguably somewhat inaccessible at first read. Rather than trying to understand everything at once, we
suggest that the reader use this section as a roadmap for the main body of the paper. We will, however,
do our best to explain the contents of the results as well as disentangling the various assumptions in the
theorems.

As noted in Section 1.6, the exposition is subdivided into three parts, each yielding theorems that we
believe to be of independent interest. First, we provide an improved analysis of simple tabulation (Section 4).
We then show how permuting the output of a simple tabulation hash function yields a hash function having
Chernoff bounds for arbitrary value functions (Section 5). Finally, we show that concatenating the output
of two independent hash functions preserves the property of having Chernoff bounds for arbitrary value
functions (Section 6).

It turns out that the proofs of our results become a little cleaner when we assume that value functions
take values in [−1, 1], so from here on we state our results in relation to such value functions. Theorems 1, 2,
and 3 will still follow, as the value functions in these theorems can also be viewed as having range [−1, 1].

2.1 Improved Analysis of Simple Tabulation
Our new and improved result on simple tabulation is the subject of Section 4. It is stated as follows.

Theorem 4. Let h : Σc → [m] be a simple tabulation hash function and S ⊆ Σc be a set of keys of size
n = |S|. Let v : Σc× [m]→ [−1, 1] be a value function such that the set Q = {i ∈ [m] | ∃x ∈ Σc : v(x, i) 6= 0}
satisfies |Q| ≤ mε, where ε < 1

4 is a constant.

1. For any constant γ ≥ 1, the random variable V =
∑
x∈S v(x, h(x)) is strongly concentrated with added

error probability Oγ,ε,c(n/m
γ), where the constants of the asymptotics are determined by c and γ.

Furthermore, this concentration is query invariant.

2. For j ∈ [m] define the random variable Vj =
∑
x∈S v(x, h(x)⊕ j) and let µ = E [Vj ], noting that this is

independent of j. For any γ ≥ 1,

Pr


∑

j∈[m]

(Vj − µ)2 > Dγ,c

∑

x∈S

∑

k∈[m]

v(x, k)2


 = Oγ,ε,c(n/m

γ) (5)
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for some constant Dγ,c and this bound is query invariant up to constant factors.

The technical assumption involving Q states that the value function has bounded support in the hash
range: The value v(x, h(x)) can only possibly be non-zero if h(x) lies in the relatively small set Q of size
at most mε. In fact, when proving Theorem 1 it suffices to assume that |Q| = 1, as we shall see below,
but for our analysis of tabulation-permutation hashing we need the more general result above. Another nice
illustration of the power of Theorem 4 holding with value functions of any bounded support will appear
when we prove Theorem 3 in Section 2.4.

To see that Theorem 1 is implied by Theorem 4, one may observe that the latter is a generalization of the
former. Let y ∈ [m] be the bin and (wx)x∈S be the weights of the balls from S in the setting of Theorem 1.
Then defining the value function v : Σc × [m]→ [0, 1],

v(x, y′) =

{
wx · [y′ = y], x ∈ S,
0, x 6∈ S,

we find that X =
∑
x∈S wx · [h(x) = y] =

∑
x∈S v(x, h(x)) is strongly concentrated by part 1 of Theorem 4

and the concentration is query invariant.
Finally, the bound (5) requires some explaining. For this, we consider the toy example of Theorem 1.

Suppose we have a set S ⊆ [u] of balls with weights (wx)x∈S and we throw them into the bins of [m] using
a simple tabulation hash function. We focus on the total weight of balls landing in bin 0, defining the value
function by v(x, y) = wx for x ∈ S and y = 0, and v(x, y) = 0 otherwise. In this case, µ = 1

m

∑
x∈S wx

denotes the expected total weight in any single bin and Vj =
∑
x∈S wx · [h(x) = j] denotes the total weight

in bin j ∈ [m]. Then (5) states that
∑
j∈[m](Vj − µ)2 = O(‖w‖22) with high probability in m. This is

exactly a bound on the variance of the weight of balls landing in one of the bins when each of the hash
values of the keys of S are shifted by an XOR with a uniformly random element of [m]. Note that this
example corresponds to the case where |Q| = 1. In its full generality, i.e., for general value functions of
bounded support, (5) is similarly a bound on the variance of the value obtained from the keys of S when
their hash values are each shifted by a uniformly random XOR. This variance bound turns out to be an
important ingredient in our proof of the strong concentration in the first part of Theorem 4. As described
in Section 1.6.1 the proof proceeds by fixing the hash values of the position characters [c]×Σ in a carefully
chosen order, α1 ≺ · · · ≺ αr. Defining Gi to be those keys that contain αi as a position character but no
αj with j > i, the internal clustering of the keys of Gi is determined solely by (h(αj))j<i and fixing h(αi)
“shifts” each of these keys by an XOR with h(αi). Now (5), applied with S = Gi, exactly yields a bound
on the variance of the total value obtained from the keys from Gi when fixing the random XOR h(αi).
Thus, (5) conveniently bounds the variance of the martingale described in Section 1.6.1. As such, (5) is
merely a technical tool, but we have a more important reason for including the bound in the theorem. As it
turns out, for any hash function satisfying the conclusion of Theorem 4, composing with a uniformly random
permutation yields a hash family having Chernoff-style concentration bounds for any value function as we
describe next.

2.2 Permuting the Hash Range
Our next step in proving Theorem 2 is to show that, given a hash function with concentration bounds like
in Theorem 4, composing with a uniformly random permutation of the entire range yields a hash function
with Chernoff-style concentration for general value functions. The main theorem, proved in Section 5, is as
follows.

Theorem 5. Let ε ∈ (0, 1] and m ≥ 2 be given. Let g : [u] → [m] be a 3-independent hash function
satisfying the following. For every γ > 0, and for every value function v : [u] × [m] → [−1, 1] such that the
set Q = {i ∈ [m] | ∃x ∈ [u] : v(x, i) 6= 0} is of size |Q| ≤ mε, the two conclusions of Theorem 4 holds with
respect to g.

Let v′ : [u]→ [−1, 1] be any value function, τ : [m]→ [m] be a uniformly random permutation independent
of g, and γ > 0. Then the for the hash function h = τ ◦g, the sum

∑
x∈[u] v

′(x, h(x)) is strongly concentrated
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with added error probability Oγ,ε(u/mγ), where the constants of the asymptotics are determined solely by ε
and γ. Furthermore, this concentration is query invariant.

We believe the theorem to be of independent interest. From a hash function that only performs well for
value functions supported on an asymptotically small subset of the bins we can construct a hash function
performing well for any value function – simply by composing with a random permutation. Theorem 4 shows
that simple tabulation satisfies the two conditions in the theorem above. It follows that if m = |U |Ω(1),
e.g., if m = |Σ|, then composing a simple tabulation hash function g : Σc → [m] with a uniformly random
permutation τ : [m] → [m] yields a hash function h = τ ◦ g having Chernoff-style bounds for general value
functions asymptotically matching those from the fully random setting up to an added error probability
inversely polynomial in the size of the universe. In particular these bounds hold for tabulation-permutation
hashing from Σc to Σ, that is, using just a single permutation, which yields the result of Theorem 2 in the
case d = 1. If we desire a range of size m � |Σ| the permutation τ becomes too expensive to store. Recall
that in tabulation-permutation hashing from Σc to Σd we instead use d permutations τ1, . . . , τd : Σ → Σ,
hashing

Σc
gsimple

−−−−→ Σd
(τ1,...,τd)−−−−−−→ Σd.

Towards proving that this is sensible, the last step in the proof of Theorem 2 is to show that concatenating
the outputs of independent hash functions preserves the property of having Chernoff-style concentration for
general value functions.

2.3 Squaring the Hash Range
The third and final step towards proving Theorem 2 is showing that concatenating the hash values of two
independent hash functions each with Chernoff-style bounds for general value functions yields a new hash
function with similar Chernoff-style bounds up to constant factors. In particular it will follow that tabulation-
permutation hashing has Chernoff-style bounds for general value functions. However, as with Theorem 5,
the result is of more general interest. Since it uses the input hash functions in a black box manner, it is
a general tool towards constructing new hash functions with Chernoff-style bounds. The main theorem,
proved in Section 6, is the following.

Theorem 6. Let h1 : A → B1 and h2 : A → B2 be 2-wise independent hash functions with a common
domain such that for every pair of value functions, v1 : A × B1 → [−1, 1] and v2 : A × B2 → [−1, 1], the
random variables X1 =

∑
a∈A v1(a, h1(a)) and X2 =

∑
a∈A v2(a, h2(a)) are strongly concentrated with added

error probability f1 and f2, respectively, and the concentration is query invariant. Suppose further that h1

and h2 are independent. Then the hash function h = (h1, h2) : A → B1 × B2, which is the concatenation
of h1 and h2, satisfies that for every value function v : A × (B1 × B2) → [−1, 1], the random variable
X =

∑
a∈A v(a, h(a)) =

∑
a∈A v(a, h1(a), h2(a)) is strongly concentrated with additive error O(f1 + f2) and

the concentration is query invariant.

We argue that Theorem 6, combined with the previous results, leads to Theorem 2.

Proof of Theorem 2. We proceed by induction on d. For d = 1 the result follows from Theorem 4 and 5
as described in the previous subsection. Now suppose d > 1 and that the result holds for smaller values
of d. Let γ = O(1) be given. Let d1 = bd/2c and d2 = dd/2e. A tabulation-permutation hash function
h : Σc → Σd is the concatenation of two independent tabulation-permutation hash functions h1 : Σc → Σd1

and h2 : Σc → Σd2 . Letting A = Σc, B1 = Σd1 , B2 = Σd2 , the induction hypothesis gives that the conditions
of Theorem 6 are satisfied and the conclusion follows. Note that since d = O(1), the induction is only
applied a constant number of times. Hence, the constants hidden in the asymptotics of Definition 1 are still
constant.
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2.4 Concentration in Arbitrary Intervals.
We will now show how we can use our main result, Theorem 2, together with our improved understand-
ing of simple tabulation Theorem 4 to obtain Theorem 3 which shows that the extra efficient tabulation-
1permutation hashing provides Chernoff-style concentration for the special case of weighted balls and inter-
vals. This section also serves as an illustration of how our previous results play in tandem, and it illustrates
the importance of Theorem 4 holding, not just for single bins, but for any value function of bounded support.

Proof of Theorem 3. Let S ⊆ [u] be a set of keys, with each key x ∈ S having a weight wx ∈ [0, 1]. Let
h = τ ◦ g : Σc → Σd = [r] be a tabulation-1permutation hash function, with g : Σc → Σd a simple tabulation
hash function and τ : Σd → Σd a random permutation of the most significant character, τ(z1, . . . , zd) =
(τ1(z1), z2, . . . , zd) for a uniformly random permutation τ1 : Σ → Σ. Let y1, y2 ∈ Σd and X be defined as
in Theorem 3, X =

∑
x∈S wx · [y1 ≤ h(x) < y2]. Set µ = E [X], and σ2 = Var [X]. For simplicity we assume

that |I| ≥ r/2. Otherwise, we just apply the argument below with I replaced by [r] \ I = [0, y1) ∪ [y2, r),
which we view as an interval in the cyclic ordering of [r]. We will partition I = [y1, y2) into a constant
number of intervals in such a way that our previous results yield Chernoff style concentration bound on the
total weight of keys landing within each of these intervals. The desired result will follow.

To be precise, let t > 0 and γ = O(1) be given. Let P1 = {x ∈ Σ | ∀y ∈ Σd−1 : (x, y) ∈ I} and
I1 = {(x1, . . . , xd) ∈ Σd | x1 ∈ P1}. Whether or not h(x) ∈ I1 for a key x ∈ Σc depends solely on the most
significant character of h(x). With X1 =

∑
x∈S wx · [h(x) ∈ I1], µ1 = E [X1], and σ2

1 = Var [X1], we can
therefore apply Theorem 2 to obtain that for any t′ > 0 and γ′ = O(1),

Pr[|X1 − µ1| ≥ t′] ≤ C exp(−Ω(σ2
1C(t′/σ2

1))) + 1/uγ
′ ≤ C exp(−Ω(σ2C(t′/σ2))) + 1/uγ

′
, (6)

for some constant C. Here we used that σ2
1 ≤ σ2 as |I1| ≤ |I| ≤ |Σd|/2. Next, let d1 = lg |Σ| and d2, . . . , d` ∈

N be such that for 2 ≤ i ≤ `, it holds that 2di ≤ (2d1+d2+···+di)1/4, and further 2d1+d2+···+d` = |Σ|d. We may
assume that u and hence |Σ| is larger than some constant as otherwise the bound in Theorem 3 is trivial.
It is then easy to check that we may choose ` and the (di)2≤i≤` such that ` = O(log d) = O(1). We will
from now on consider elements of Σd as numbers written in binary or, equivalently, bit strings of length
d′ := d1 + · · ·+ d`. For i = 1, . . . , ` we define a map ρi : Σd → [2]d1+···+di as follows. If x = b1 . . . bd′ ∈ [2]d

′
,

then ρi(x) is the length d1 + · · ·+ di bit string b1 . . . bd1+···+di Set J1 = I. For i = 2, . . . , ` we define Ji ⊆ I
and Ii ⊆ I recursively as follows. First, we let Ji = Ji−1 \ Ii−1. Second, we define Ii to consist of those
elements of x ∈ Ji such that if y ∈ Σc has ρi(y) = ρi(x), then y ∈ Ji. In other words, Ii consists of those
elements of Ji that remain in Ji when the least significant di+1 + · · ·+d` bits of x are changed in an arbitrary
manner. It is readily checked that for i = 1, . . . , `, Ii is a disjoint union of two (potentially empty) intervals
Ii = I

(1)
i ∪ I(2)

i such that for each j ∈ {1, 2} and x, y ∈ I(j)
i , ρi(x) = ρi(y). Moreover, the sets (Ii)

`
i=1 are

pairwise disjoint and I =
⋃`
i=1 Ii.

We already saw in (6) that we have Chernoff-style concentration for the total weight of balls landing in I1.
We now show that the same is true for I(j)

i for each i = 2, . . . , ` and j ∈ {0, 1}. So let such an i and j be fixed.
Note that whether or not h(x) ∈ I(j)

i , for a key x ∈ Σc, depends solely on the most significant d1 + · · ·+ di
bits of h(x). Let h′ : Σc → [2]d1+···+di be defined by h′(x) = ρi(h(x)). Then h′ is itself a simple tabulation
hash function and h′(x) is obtained by removing the di+1 + · · · + d` least significant bits of h(x). Letting
I ′ = ρi(I

(j)
i ), it thus holds that h(x) ∈ I(j)

i if and only if h′(x) ∈ I ′. Let now X
(j)
i =

∑
x∈S wx · [h(x) ∈ I(j)

i ],

µ
(j)
i = E

[
X

(j)
i

]
, and σ2

1 = Var
[
X

(j)
i

]
≤ σ2. As |I ′| ≤ 2di ≤ (2d1+···+di)1/4, we can apply Theorem 4 to

conclude that for t′ > 0 and γ′ = O(1),

Pr[|X(j)
i − µ

(j)
i | ≥ t′] ≤ C exp(−Ω(σ2

1C(t′/σ2
1))) + 1/uγ

′ ≤ C exp(−Ω(σ2C(t′/σ2))) + 1/uγ
′
. (7)
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Now applying (6) and (7) with t′ = t/(2`− 1) and γ′ = γ + log(2`)
log u = O(1), it follows that

Pr[|X − µ| ≥ t] ≤Pr[|X1 − µ1| ≥ t′] +
∑̀

i=2

2∑

j=1

Pr[|X(j)
i − µ

(j)
i | ≥ t′] ≤ 2C` exp(−Ω(σ2C(t′/σ2))) + 2`/uγ

′

=O(exp(−Ω(σ2 C(t/σ2)))) + 1/uγ ,

as desired.

3 Preliminaries
Before proceeding, we establish basic definitions and describe results from the literature which we will use.

3.1 Notation
Throughout the paper, we use the following general notation.

• We let [n] denote the set {0, 1, . . . , n− 1}.

• For a statement or event Q we let [Q] be the indicator variable on Q, i.e.,

[Q] =

{
1, Q occurred or is true,
0, otherwise.

• Whenever Y0, . . . , Yn−1 ∈ R are variables and i ∈ [n + 1], we shall denote by Y<i the sum
∑
j<i Yj .

Likewise, whenever A0, . . . , An−1 are sets and i ∈ [n+ 1], we shall denote by A<i the set
⋃
j<iAj .

• Suppose we have a hash function h : A → B with domain A and range B. We shall often associate
weight and value functions with h as follows.

– A function w : A→ R is called a weight function, corresponding to the idea that every ball or key
x ∈ A has an associated weight, w(x) ∈ R. Occasionally, we shall write wx for w(x).

– A function v : A × B → R is called a value function, with the interpretation that a key x ∈ A
yields a value v(x, h(x)) depending on the bin/hash value h(x) ∈ B.

For weight functions w : A → R, a subset of balls, S ⊂ A, and a bin y0 ∈ B, we will be interested in
sums of the form W =

∑
x∈S w(x)[h(x) = y0], i.e., the total weight of the balls in S that are hashed

to bin y0. Defining the value function v : A×B → R by v(x, y) = w(x)[y = y0], W is exactly equal to∑
x∈S v(x, h(x)), i.e., the total value obtained by the balls in S. From this perspective, value functions

are more general objects than weight functions.

3.2 Probability Theory and Martingales
In the following, we introduce the necessary notions of probability theory. A note of caution is in order.
The paper at hand relies on results from the theory of martingales to arrive at its conclusion. Working with
martingales, we shall require probability theoretic notions of a fairly general and abstract character. For an
introduction to measure and probability theory, see, for instance, [42].

For the most basic notation, let (Ω,F ,Pr) be a probability space.

• Let X1, . . . , Xn : Ω → R be F-measurable random variables. We denote by G = σ(X1, . . . , Xn) ⊂ F
the smallest σ-algebra such that X1, . . . , Xn are all G-measurable. We say that G is the sigma algebra
generated by X1, . . . , Xn. Intuitively, σ(X1, . . . , Xn) represents the collective information regarding the
outcome of the joint distribution (X1, . . . , Xn).
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• Let X : Ω → R be an F-measurable random variable, and let G be a σ-algebra with G ⊂ F . If
E [|X|] < ∞, we may define the random variable E [X | G] to be the conditional expectation of X
given G. It is important to note that E [X | G] is G-measurable. In the context of the above notation,
E [X | σ(X1, . . . , Xn)] = E [X | X1, . . . , Xn] is the expectation of X as a function of the outcomes of
X1, . . . , Xn.

We proceed to discuss martingales and martingale differences. For convenience we shall assume all random
variables to be bounded, i.e., whenever X is a random variable, we assume that there exists a constantM ≥ 0
such that |X| ≤M almost surely.

Definition 3 (Filtration). Let (Ω,P(Ω),Pr) be a finite measure space. A sequence of σ-algebras, (Fi)ri=0, is
a filtration of (Ω,P(Ω),Pr) if {∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fr = P(Ω). We shall usually omit explicit reference
to the background space.

Definition 4 (Adapted Sequence). Let (Fi)ri=0 be a filtration. A sequence of random variables (Xi)
r
i=0 is

adapted to (Fi)ri=0 if for every i ∈ [r + 1], Xi is Fi-measurable. In that case, we say that (Xi,Fi) is an
adapted sequence.

Definition 5 (Martingale). A martingale is an adapted sequence, (Xi,Fi), satisfying that for every i ∈
{1, . . . , r}, E [Xi | Fi−1] = Xi−1.

Definition 6 (Martingale Difference). A martingale difference is a an adapted sequence, (Yi,Fi)r0=1, such
that Y0 = 0 almost surely and for every i ∈ {1, . . . , r}, E [Yi | Fi−1] = 0.

If (Xi,Fi)ri=0 is a martingale, we may define the sequence of random variables (Yi)
r
i=0 by Y0 = 0 and

Yi = Xi −Xi−1 for i = 1, . . . , r. Then (Yi,Fi)ri=0 is a martingale difference. Conversely, if (Yi,Fi)ri=0 is a
martingale difference, a martingale (Xi,Fi)ri=0 can be constructed by letting Xi = Y<i+1 =

∑
j≤i Yj . Under

this correspondence, martingales and martingale differences are in a sense two sides of the same coin.
Concluding the section, we describe canonical constructions of a martingale and a martingale difference,

respectively, that we shall use later on.

• Let X be a random variable and consider a filtration (Fi)ri=0. We may define a martingale from X
with respect to (Fi)ri=0 by defining the sequence of random variables (Xi)

r
i=0 by Xi = E [X | Fi] for

each i ∈ [r + 1]. Clearly, E [Xi | Fi−1] = E [X | Fi−1] = Xi−1, so (Xi,Fi)ri=0 is indeed a martingale.

We shall apply this construction in the following situation. Suppose we have random variables
Z1, . . . , Zr taking values in the measure spaces A1, . . . , Ar and denote by Z the joint distribution
(Z1, . . . , Zr). For some function f : A1 × . . . Ar → R, we wish to assess the value of f(Z). We may
then define the filtration Fi = σ(Z1, . . . , Zi) for i ∈ [r + 1] and set Xi = E [f(Z) | Fi]. This yields a
martingale (Xi,Fi)ri=0 with X0 = E [f(Z)] and Xr = f(Z). This is known as a Doob martingale and
the construction will be used in Section 5 to prove Theorem 5.

• Let (Zi,Fi)ri=0 be an adapted sequence and define Y0 = 0 and Yi = Zi−E [Zi | Fi−1] for i ∈ {1, . . . , r}.
Then (Yi,Fi)ri=1 is a martingale difference. This construction is applied in Section 4 to prove Theorem 4.

3.3 Martingale Concentration Inequalities
In applications of probability theory, we often consider a sequence of random variables X0, . . . , Xr. If
we are lucky, the random variables are independent, pair-wise independent, or a derivative thereof. It is
unfortunately often the case, however, that there is no such independence notion that apply to X0, . . . , Xr.
One reason that martingales have been as successful as they are, is that frequently, one may instead impose a
martingale structure on the variables, and martingales satisfy many of the same theorems that independent
variables do. In this exposition, we shall consider sums of the form X =

∑r
i=0Xi where the Xi are far from

independent, yet we would like X to satisfy Chernoff-style bounds.
To this end, we state a martingale version of Bennett’s inequality due to Fan et al [24]. The reader may

note the similarity to Eq. (3).
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Definition 7. We denote by C : (−1,∞)→ [0,∞) the function given by C(x) = (x+ 1) ln(x+ 1)− x.
Theorem 7 (Fan et al. [24]). Let σ > 0 be given. Let (Xi,Fi)ri=0 be a martingale difference such that almost
surely |Xi| ≤ 1 for all i ∈ {1, . . . , r} and ∑r

i=1 E
[
X2
i | Fi−1

]
≤ σ2. Writing X =

∑r
i=1Xi, it holds for any

t ≥ 0 that

Pr [X ≥ t] ≤ et ·
(

σ2

σ2 + t

)σ2+t

.

Simple calculations yield the following corollary.

Corollary 8. Suppose that (Xi,Fi)ri=0 is a martingale difference and there existM,σ ≥ 0 such that |Xi| ≤M
for all i ∈ {1, . . . , r} and ∑r

i=1 E
[
X2
i | Fi−1

]
≤ σ2. Define X =

∑r
i=1Xi. For any t ≥ 0 it holds that

Pr [X ≥ t] ≤ exp

(
− σ2

M2
C
(
tM

σ2

))
,

where C(x) = (x+ 1) ln(x+ 1)− x.
Finally, we present three lemmas describing the asymptotic behavior of C. We omit the proofs of the first

two since the results are standard and follow by elementary calculus.

Lemma 9. For any x ≥ 0
1

2
x ln(x+ 1) ≤ C(x) ≤ x ln(x+ 1) .

For any x ∈ [0, 1]
1

3
x2 ≤ C(x) ≤ 1

2
x2 ,

where the right hand inequality holds for all x ≥ 0.

Lemma 10. For any a ≥ 0. If b ≥ 1 then

bC(a) ≤ C(ab) ≤ b2C(a) .

If 0 ≤ b ≤ 1 then
b2C(a) ≤ C(ab) ≤ bC(a) .

Note that as a corollary, if b = Θ(1) and a ≥ 0, then C(ba) = Θ(C(a)). The final lemma shows that the
bound of Corollary 8 only gets worse when σ2 or M is replaced by some larger number.

Lemma 11. Let a ≥ 0 be given. On R+, the following two functions are decreasing

x 7→ xC
(a
x

)
,

x 7→ C(ax)

x2
.

Proof. Let 0 < x ≤ y be given. We then observe that the first function is indeed decreasing since by the
first bound of Lemma 10, xC(a/x) = xC ((a/y) · (y/x)) ≥ yC (a/y). That the second function is decreasing
follows from a similar argument.

4 Analysis of Simple Tabulation
In this section, we analyze the simple tabulation hashing scheme. The section is divided in three parts.
First, there will be an introductory section regarding simple tabulation hashing and associated notation.
Second, we shall prove the sum of squares result (Eq. (5)). The final section presents a proof of Theorem 4.
In order to make the exposition slightly simpler and more accessible, we postpone the argument that our
concentration bounds are query invariant to Section 7.
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4.1 Simple Tabulation Basics
Simple tabulation hashing as introduced by Zobrist [49] is defined as follows.

Definition 8 (Simple Tabulation Hashing). Let Σ be an alphabet, c ≥ 1 an integer, and m = 2k, k > 0, a
power of two. A simple tabulation hash function, h : Σc → [m], is a random variable taking values in the set
of functions from Σc to [m], chosen with respect to the following distribution. For each j ∈ {1, . . . , c}, let
hj : Σ → [m] be a fully random hash function, in other words, a uniformly random function from Σ to [m].
We evaluate h on the key x = (x1, . . . , xc) ∈ Σc by computing h(x) =

⊕c
j=1 hj(xj), where ⊕ denotes bitwise

XOR.

Now, towards analyzing simple tabulation hashing, we add the following notation.

Definition 9 (Position Character). Let Σ be an alphabet and c ≥ 1 an integer. We call an element
α = (a, y) ∈ {1, . . . , c} × Σ a position character of Σc.

Let h : Σc → [m] be a simple tabulation hash function. We may consider a key x = (x1, . . . , xc) ∈ Σc

as a set of c position characters, {(1, x1), . . . , (c, xc)} ⊆ {1, . . . , c} × Σ. Recall that h(x) =
⊕c

i=1 hi(xi)
for uniformly random functions hi : Σ → [m]. For a position character α = (a, y) ∈ {1, . . . , c} × Σ, we may
overload notation and write h(α) = ha(y). Extending this, for a set of position characters A = {α1, . . . , αn} ⊆
{1, . . . , c} × Σc, h(A) =

⊕n
i=1 h(αi). Note that this agrees with the correspondence between keys of Σc and

sets of position characters mentioned before, since for x = (x1, . . . , xc) ∈ Σc, h(x) = h({(1, x1), . . . , (c, xc)}).
If finally A,B ⊂ {1, . . . , c} × Σ are sets of position characters we write A ⊕ B for the symmetric difference
between A and B, i.e., A ⊕ B = (A \ B) ∪ (B \ A). We note that for a simple tabulation hash function h,
h(A⊕B) = h(A)⊕ h(B).

Definition 10 (Projection Onto an Index). Let c ≥ 1 be an integer and i ∈ {1, . . . , c} be given. We denote
by πi : Σc → {1, . . . , c} × Σ the projection onto the ith coordinate given by πi(x1, . . . , xc) = (i, xi), i.e.,
projecting a key x to its ith position character. We extend this to sets of keys, such that for S ⊆ Σc,
πi(S) = {πi(x) | x ∈ S}.

The following lemma by Thorup and Zhang [47] describes the independence of sets of position characters
of Σc under a simple tabulation function h : Σc → [2r]. We provide a proof for completeness.

Lemma 12 (Thorup and Zhang [47]). Let h : Σc → [2r] be a simple tabulation hash function. For each
i ∈ {1, . . . , t}, let si ⊆ {1, . . . , c}×Σ be a set of position characters of Σc. Let j ∈ {1, . . . , t}. If every subset
of indices B ⊆ {1, . . . , t} containing j satisfies

⊕
i∈B si 6= ∅, then the distribution of h(sj) is independent of

the joint distribution (h(si))i 6=j.

Proof. Let F2 be the field Z/2Z and V the F2-vector space F{1,...,c}×Σ
2 . For a set of position characters A,

we define vA ∈ V as follows: For (a, y) ∈ {1, . . . , c} × Σ we let vA(a, y) = 1 if and only if (a, y) ∈ A, and
vA(a, y) = 0 otherwise. Picking a random simple tabulation hash function h : Σc → [2r] is equivalent to
picking a random linear function h′ : V → [2r]. Here [2r] is identified with the F2-vector space Fr2. Indeed,
(v{α})α∈{1,...,c}×Σ forms a basis for V , and choosing a random linear map h′ : V → [2r] can be done by
picking independent and uniformly random values for h′ on the basis elements, and extending by linearity.
To define h from h′, we simply put h(x) =

⊕
α∈x h

′(v{α}) for a key x ∈ Σ viewed as a set of position
characters. Conversely, a simple tabulation hash function h : Σc → [2r] uniquely extends to a linear map
h′ : V → [2r]. Now under this identification, the condition in the lemma is equivalent to vsj being linearly
independent of the vectors (vsi)i 6=j . As h′ is a random linear map, it follows by elementary linear algebra
that h′(vsj ) = h(sj) is independent of the joint distribution (h′(vsi))i 6=j = (h(si))i 6=j , as desired.

4.2 Bounding the Sum of Squared Deviations
In the following section we shall prove the bound (5) of Theorem 4 from Section 2.1, stated independently
here as Theorem 16. It is a technical, albeit crucial, step on the way to proving Theorem 4 itself. The
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foundation of the proof of Theorem 16 is a series of combinatorial observations regarding simple tabulation
hashing.

Recall from Section 1.6.1 our general proof strategy when proving concentration bounds for simple tab-
ulation hashing. For a set of keys S ⊆ Σc to be hashed, we fix an ordering of the position characters of Σc.
We then fix the hash table entries corresponding to the position characters one at a time according to this
ordering. Crucial to the success of this strategy is fixing an ordering where each position character “decides”
only a small part of the final outcome.

Definition 11 (Group of Keys). Let S ⊆ Σc be a set of keys and A = {α ∈ x | x ∈ S} be the set of
position characters of the keys of S. For an enumeration or ordering of the position characters of A as
{α1, . . . , αr} = A, we denote by Gi ⊆ S the ith group of keys with respect to S and the ordering of the
position characters. The set is given by Gi = {x ∈ S | {αi} ⊆ x ⊆ {α1, . . . , αi}}.

Put in other words, let ≺ denote the ordering on A, let x be a key of S, and let β1, . . . , βc be the position
characters of x such that β1 ≺ β2 ≺ · · · ≺ βc, i.e., βc is last in the ordering of A. Then x ∈ Gi if and only
if αi = βc. In relation to simple tabulation, this has the following meaning. In the proof, we shall fix the
values h(αj) one at a time starting at j = 1 and ending at j = r. For every x ∈ Gi, the value of h(x) is
then undecided before h(αi) is known, but is known once h(α1), . . . , h(αi) are all fixed. In analyzing the
contribution of each group to the final outcome of the process, we start by proving a generalization of a
result from [38]. It says that if we assign each key a weight, it is always possible to choose the ordering of the
position characters such that the total weight of each group is relatively small. The original lemma simply
assigned weight 1 to every key.

Lemma 13. Let S ⊆ Σc be given and let A = {α ∈ x | x ∈ S} be the position characters of the keys of S. Let
w : Σc → R≥0 be a weight function. Then there exists an ordering of the position characters, {α1, . . . , αr} = A
such that for every i ∈ {1, . . . , r}, the group Gi = {x ∈ S | {αi} ⊆ x ⊆ {α1, . . . αi}} satisfies

∑

x∈Gi
w(x) ≤

(
max
x∈S

w(x)

)1/c
(∑

x∈S
w(x)

)1−1/c

.

Proof. We define the ordering recursively and backwards as αr, . . . , α1. Let Ti = A \ {αi+1, . . . , αr} and
Si = {x ∈ S | x ⊆ Ti}. We prove that we can find an αi ∈ Ti such that

Gi = {x ∈ Si | αi ∈ x} ,

satisfies
∑

x∈Gi
w(x) ≤

(
max
x∈Si

w(x)

)1/c
(∑

x∈Si
w(x)

)1−1/c

,

which will establish the claim. Let Bk be the set of position characters at position k contained in Ti, i.e.,
Bk = {(k, y) ∈ Ti} = πk(Ti). Then as

∏c
k=1 |Bk| ≥ |Si|, we have |Bk| ≥ |Si|1/c for some k.

Since each key of Si contains at most one position character from Bk, we can choose αi such that

∑

x∈Gi
w(x) ≤

∑
x∈Si w(x)

|Bk|
≤
∑
x∈Si w(x)

|Si|1/c
≤
(

max
x∈Si

w(x)

)1/c
(∑

x∈Si
w(x)

)1−1/c

.

Suppose we have keys x1, . . . , xt ∈ Σc. It follows as a corollary of Lemma 12 that with a simple tabulation
hash function h : Σc → [m], the values h(x1), . . . , h(xt) are completely independent if and only if there does
not exist a subset of indices B ⊆ {1, . . . , t} with⊕i∈B xi = ∅. In this vein, it turns out to be natural, given
sets of keys A1, . . . , A` ⊆ Σc, to bound the number of tuples x1 ∈ A1, . . . , x` ∈ A` with

⊕`
i=1 xi = ∅. This

is the content of Lemma 3 of [16]. We prove the following generalization of this result, which deals with
weighted keys. Note that the statements would be identical if each key was assigned the weight 1.
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Lemma 14. Let ` ∈ N be even, w1, . . . , w` : Σc → R be weight functions, and A1, . . . , A` ⊆ Σc be sets of
keys. Then

∑

x1∈A1,...,x`∈A`⊕`
k=1 xk=∅

∏̀

k=1

wk(xk) ≤ ((`− 1)!!)c ·
∏̀

k=1

√∑

x∈Ak
wk(x)2.

Proof. For every (x1, . . . , x`) ∈ A1 × · · · × A` satisfying
⊕`

k=1 xk = ∅ we have
⊕`

k=1{π(xk, c)} = ∅. This
implies that each character in the c-th position occurs an even number of times in (x1, . . . , x`). Thus, for any
such tuple we can partition the indices 1, . . . , ` into pairs (i1, j1), . . . , (i`/2, j`/2) satisfying π(xik , c) = π(xjk , c)
for every k ∈ {1, . . . , `}. Fix such a partition and let X ⊆ A1 × · · · ×A` be the set

X = {(x1, . . . , x`) ∈ A1 × . . .×A` | ∀k ∈ {1, . . . , `/2} : π(xik , c) = π(xjk , c)}.

We proceed by induction on c.
For c = 1, π(xik , c) = π(xjk , c) implies xik = xjk such that

X = {(x1, . . . , x`) ∈ A1 × . . .×A` | ∀k ∈ {1, . . . , `/2} : xik = xjk}.

Thus, by the Cauchy-Schwartz inequality,

∑

(x1,...,x`)∈X

∏̀

k=1

wk(xk) =

`/2∏

k=1

∑

x∈Aik∩Ajk

wik(x)wjk(x)

≤
`/2∏

k=1



√ ∑

x∈Aik

wik(x)2 ·
√ ∑

x∈Ajk

wjk(x)2




≤
∏̀

k=1

√∑

x∈Ak
wk(x)2.

Since this is true for any partition into pairs, (i1, j1), . . . , (i`/2, j`/2), there are exactly (`−1)!! such partitions,
and every term in the original sum is counted by some partition, we get the desired bound for c = 1.

Let c > 1 and assume that the statement holds when each key has < c characters. For each a ∈ Σ and
k ∈ {1, . . . , `} define the set

Ak[a] = {x ∈ Ak | π(x, c) = a}.

Fixing the last character of each pair in our partition by picking a1, . . . , a`/2 ∈ Σ and considering the sets
Aik [ak] and Ajk [ak], we can consider the keys of

∏`/2
k=1Aik [ak] × Ajk [ak] as only having c − 1 characters,
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which allows us to apply the induction hypothesis. This yields

∑

(x1,...,x`)∈X⊕`
k=1 xk=∅

∏̀

k=1

wk(xk) =
∑

(ak)
`/2
k=1∈Σ`/2




∑

(xik ,xjk )
`/2
k=1∈

∏`/2
k=1 Aik [ak]×Ajk [ak]⊕`
k=1 xk=∅

`/2∏

k=1

wik(xik)wjk(xjk)




≤
∑

(ak)
`/2
k=1∈Σ`/2


((`− 1)!!)c−1 ·

`/2∏

k=1



√ ∑

x∈Aik [ak]

wik(x)2 ·
√ ∑

x∈Ajk [ak]

wjk(x)2






= ((`− 1)!!)c−1 ·
`/2∏

k=1


∑

a∈Σ



√ ∑

x∈Aik [a]

wik(x)2 ·
√ ∑

x∈Ajk [a]

wjk(x)2






≤ ((`− 1)!!)c−1 ·
`/2∏

k=1



√∑

a∈Σ

∑

x∈Aik [a]

wik(x)2 ·
√∑

a∈Σ

∑

x∈Ajk [a]

wjk(x)2




= ((`− 1)!!)c−1 ·
`/2∏

k=1



√ ∑

x∈Aik

wik(x)2 ·
√ ∑

x∈Ajk

wjk(x)2


 ,

where the last inequality follows from the Cauchy-Schwartz inequality. Since the indices can be partitioned
into pairs in (`− 1)!! ways, the same argument as in the induction start yields

∑

x1∈A1,...,x`∈A`⊕`
k=1 xk=∅

∏̀

k=1

wk(xk) ≤ ((`− 1)!!)c ·
∏̀

k=1

√∑

x∈Ak
wk(x)2,

which was the desired conclusion.

The following rather technical lemma bounds the moments of collisions between sets of keys. However,
we shall dwell on it for a moment as it reflects considerations that will come up repeatedly going forward.
Consider a simple tabulation function h : Σc → [m] and a value function v : Σc× [m]→ R. Hashing the keys
of some subsets A1, . . . , An ⊆ Σc into [m] using h, we are interested in the sums Xi =

∑
x∈Ai v(x, h(x)) for

1 ≤ i ≤ n and, in particular, in properties of the joint distribution (X1, . . . , Xn). Here, the actual values
of Xi are not as important as how much Xi deviates form its mean. For 1 ≤ i ≤ n, We thus consider the
variables

Yi = Xi − E [Xi] =
∑

x∈Ai

∑

b∈[m]

v(x, b)

(
[h(x) = b]− 1

m

)
,

and for a level of generality required for proving the main theorems of this section, we consider the shifted
variables

Y
(j)
i =

∑

x∈Ai

∑

b∈[m]

v(x, b)

(
[h(x) = j ⊕ b]− 1

m

)
,

for j ∈ [m], corresponding to shifting the hash function h by j ∈ [m].

Lemma 15. Let h : Σc → [m] be a simple tabulation hash function and v : Σc×[m]→ R a value function. Let
Q = {i ∈ [m] | ∃x ∈ Σc : v(x, i) 6= 0} be the support of v and write ` = |Q|. Let n ∈ N and A1, . . . , An ⊆ Σc.
For every i ∈ {1, . . . , n} and j ∈ [m] define the random variable

Y
(j)
i =

∑

x∈Ai

∑

b∈Q
v(x, b)

(
[h(x) = j ⊕ b]− 1

m

)
,
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and set

T =
∑

j1,...,jn∈[m]⊕n
j=1 jk=0

n∏

k=1

Y
(jk)
k .

Then for every constant t ∈ N,

∣∣E
[
T t
]∣∣ = Ot,n,c


`tn/2

n∏

k=1


∑

x∈Ak

∑

b∈Q
v(x, b)2



t/2

 .

Proof. We rewrite T as follows

T =
∑

j1,...,jn∈[m]⊕n
k=1 jk=0

n∏

k=1

Y
(jk)
k

=
∑

j1,...,jn∈[m]⊕n
k=1 jk=0




n∏

k=1

∑

x∈Ak

∑

b∈Q
v(x, b)

(
[h(x) = jk ⊕ b]−

1

m

)


=
∑

(x1,...,xn)∈A1×...×An

∑

b1,...bn∈Q




∑

j1,...,jn∈[m]⊕n
k=1 jk=0

(
n∏

k=1

(
v(xk, bk)

(
[h(xk) = jk ⊕ bk]− 1

m

)))



=
∑

(x1,...,xn)∈A1×...×An

∑

b1,...bn∈Q




(
n∏

k=1

v(xk, bk)

)
·




∑

j1,...,jn∈[m]⊕n
k=1 jk=0

(
n∏

k=1

(
[h(xk) = jk ⊕ bk]− 1

m

))






=
∑

(x1,...,xn)∈A1×...×An

∑

b1,...bn∈Q

((
n∏

k=1

v(xk, bk)

)
·
([

n⊕

k=1

h(xk) =
n⊕

k=1

bk

]
− 1

m

))

Here the last equality is derived by observing that for fixed (x1, . . . , xn) ∈ An× . . .×An and fixed b1, . . . bn ∈
Q,

∑

j1,...,jn∈[m]⊕n
k=1 jk=0

(
n∏

k=1

(
[h(xk) = jk ⊕ bk]− 1

m

))
=

∑

j1,...,jn∈[m]⊕n
k=1 jk=0


 ∑

B⊆{1,...,n}
(−m)−(n−|B|) ∏

k∈B
[h(xk) = jk ⊕ bk]




and since for ∅ ⊆ B ( {1, . . . , n} there are exactly mn−|B|−1 tuples (j1, . . . , jn) ∈ [m]n satisfying jk ⊕ bk =
h(xk) for every k ∈ B and

⊕n
k=1 jk = 0, we get

∑

j1,...,jn∈[m]⊕n
k=1 jk=0

(
n∏

k=1

(
[h(xk) = jk ⊕ bk]− 1

m

))
=

∑

j1,...,jn∈[m]⊕n
k=1 jk=0

(
n∏

k=1

[h(xk) = jk ⊕ bk]

)
+

1

m

∑

B({1,...,n}
(−1)n−|B|

=

[
n⊕

k=1

h(xk) =

n⊕

k=1

bk

]
+

1

m

∑

B({1,...,n}
(−1)n−|B|.

By the principle of inclusion-exclusion, the last term is − 1
m , which concludes the rearrangement.
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Write S = A1 × . . .×An and let f : S → R be the function

f(x1, . . . , xn) =
∑

b1,...bn∈Q

((
n∏

k=1

v(xk, bk)

)
·
([

n⊕

k=1

h(xk) =
n⊕

k=1

bk

]
− 1

m

))
.

By the above rearrangement, we have T t =
∑

(si)i∈[t]∈St
∏
i=1∈[t] f(si), such that,

E
[
T t
]

=
∑

(si)ti=1∈St
E

[
t∏

i=1

f(si)

]
.

Now, for a t-tuple (si)
t
i=1 ∈ St, we overload notation by for a subset T ⊆ {1, . . . , t} defining

⊕
i∈T si =⊕

i∈T
⊕n

j=1(si)j , where we still think of the keys (si)j as sets of input characters, and where ⊕ is the
symmetric difference. Let (si)

t
i=1 ∈ St and let T1, . . . , Tr ⊆ {1, . . . , t} be all subsets of indices satisfying⊕

i∈Tj si = ∅, 1 ≤ j ≤ t. If for some i ∈ {1, . . . , t}, i 6∈ ⋃rj=1 Ti then by Lemma 12, h(si) is independent of
the joint distribution (h(sj))j 6=i and uniformly distributed in [m]. It follows that f(si) is independent of the
joint distribution (f(sj))j 6=i. Since it further holds that E [f(si)] = 0, this implies

E




t∏

j=1

f(sj)


 = E [f(si)] · E


∏

j 6=i
f(sj)


 = 0 .

Hence, we shall only sum over the t-tuples (si)
t
i=1 ∈ St satisfying that there exist subsets of indices

T1, . . . , Tr ⊆ {1, . . . , t} such that
⊕

i∈Tj si = ∅ for every j ∈ {1, . . . , r} and ⋃rj=1 Tj = {1, . . . , t}.
Fix such subsets T1, . . . , Tr ⊆ {1, . . . , t} and for i ∈ {1, . . . , r} let Bi = Ti \

(⋃
j<i Tj

)
. Then we can write

∑

(si)
t
i=1∈St

∀j∈{1,...,r} :
⊕
i∈Tj si=∅

t∏

i=1

f(si)

=
∑

(si)i∈{1,...,t}\Br∈St−|Br|
∀j∈{1,...,r−1} :

⊕
i∈Tj si=∅

∏

i∈{1,...,t}\Br
f(si)

∑

(si)i∈Br∈S|Br|⊕
i∈Br si=

⊕
i∈Tr\Br si

∏

i∈Br
f(si) (8)

Now fix (si)i∈{1,...,t}\Br ∈ St−|Br| such that for all j ∈ {1, . . . , r − 1} it holds that
⊕

i∈Tj si = ∅. We wish
to upper bound the inner sum in (8) for this choice of (si)i∈{1,...,t}\Br . In order to do this, observe that for
s = (x1, . . . , xn) ∈ S we always have

|f(s)| ≤
∑

b1,...bn∈Q

∏

k∈[n]

|v(xk, bk)| =
n∏

k=1

∣∣∣∣∣∣
∑

b∈Q
v(xk, b)

∣∣∣∣∣∣
≤

n∏

k=1

√
`
∑

b∈Q
v(xk, b)2 ,

by the QA-inequality. We now wish to combine this bound with Lemma 14 to obtain a bound on the
inner sum in (8). For this, we define let ` = |Tr|n and define sets of keys F1, . . . , F` and weight functions
w1, . . . , w` : Σc → R as follows. Enumerate Tr = {i1, . . . , i|Tr|} such that {i1, . . . , i|Br|} = Br. Now for
0 ≤ k < |Br| and 1 ≤ j ≤ n we define Fkn+j = Aj . We further define the weight function wkn+j : Σc → R
by wkn+j(x) =

√
`
∑
b∈Q v(x, b)2 for x ∈ Σc. Observe that these weight functions are all identical. Secondly,

for |Br| ≤ k < |Tr| and 1 ≤ j ≤ n, we define Fkn+j = {sik(j)}, and wkn+j : Σc → R by wkn+j(x) = 1 for all
x ∈ Σc. Then,
∣∣∣∣∣∣∣∣∣

∑

(si)i∈Br∈S|Br|⊕
i∈Br si=

⊕
i∈Tr\Br si

∏

i∈Br
f(si)

∣∣∣∣∣∣∣∣∣
≤

∑

x1∈B1,...,x`∈B`⊕`
k=1 xk=∅

∏̀

k=1

wk(xk) ≤ (n|Tr|−1)!!)c
n∏

k=1


` ·

∑

x∈Ak

∑

b∈Q
v(x, b)2



|Br|/2

,
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where the last inequality follows from Lemma 14. Note that this upper bound does not depend on the choice
of (si)i∈{1,...,t}\Br ∈ St−|Br| in the outer sum in (8). Repeating this argument another r−1 times, and using
that {1, . . . , t} is the disjoint union of B1, . . . , Br, we obtain that

∣∣∣∣∣∣∣∣∣∣

∑

(si)
t
i=1∈St

∀j∈{1,...,r} :
⊕
i∈Tj si=∅

t∏

i=1

f(si)

∣∣∣∣∣∣∣∣∣∣

≤ ((nt− 1)!!)cr ·
n∏

k=1


`

∑

x∈Ak

∑

b∈Q
v(x, b)2



t/2

.

Since there are at most 22t ways of choosing r and the subsets T1, . . . , Tr and since r ≤ 2t, summing over
these choices yields

∣∣E
[
T t
]∣∣ ≤ 22t((nt− 1)!!)cr ·

n∏

k=1


`

∑

x∈Ak

∑

b∈Q
v(x, b)2



t/2

≤ Ot,n,c


`nt/2

n∏

k=1


∑

x∈Ak

∑

b∈Q
v(x, b)2



t/2

 .

We are now ready to prove the main theorem of the subsection, a bound on the sum of squared deviations
of the value function from its deviation when shifting by every j ∈ [m], the second part of Theorem 4. As
described in Section 2.1, this bound is an important ingredient in the proof of the first part of Theorem 4.
Namely, in our inductive proof, it bounds the variance of the value obtained from the keys of one of the
groups Gi when the keys from this group are shifted by a uniformly random XOR with h(αi).

Theorem 16. Let h : Σc → [m] be a simple tabulation hash function and S ⊆ Σc a set of keys. Let
v : Σc × [m] → [−1, 1] be a value function such that the set Q = {i ∈ [m] | ∃x ∈ Σc : v(x, i) 6= 0} satisfies
|Q| ≤ mε, where ε < 1

4 is a constant. For j ∈ [m] define the random variable Vj =
∑
x∈S v(x, h(x)⊕ j) and

let µ = E [Vj ], noting that this is independent of j. For any γ ≥ 1,

Pr


∑

j∈[m]

(Vj − µ)2 > Ccγ
∑

x∈S

∑

k∈[m]

v(x, k)2


 = Oγ,ε,c(n/m

γ) (9)

where Cγ = 3 · 26 · γ2 and this bound is query invariant up to constant factors.

Proof. First, note that we may write

Vj − µ =
∑

x∈S

∑

k∈Q
v(x, k)[h(x) = j ⊕ k]− 1

m

∑

x∈S

∑

k∈Q
v(x, k) =

∑

x∈S

∑

k∈Q
v(x, k)

(
[h(x) = j ⊕ k]− 1

m

)
(10)

Now, define v′(x) =
∑
k∈Q v(x, k)2 and for X ⊆ Σc we let v′(X) =

∑
x∈X v

′(x) and define
v′∞(X) = maxx∈X v′(x). Now applying Lemma 13 with respect to v′ we get position characters α1, . . . , αr
with corresponding groups G1, . . . , Gr, such that, ·∪ri=1Gi = S and for every i ∈ {1, . . . , r}, v′(Gi) ≤
v′(S)1−1/cv′∞(S)1/c. For i ∈ {1, . . . , r}, j ∈ [m] we define the random variables

X
(j)
i =

∑

x∈Gi

∑

k∈Q
v(x, k)

(
[h(x \ αi) = j ⊕ k]− 1

m

)
, Y

(j)
i = X

(j⊕h(αi))
i ,
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where we recall that x \αi denotes the set containing the position characters of x except αi. Notice that by

(10), Vj − µ =
∑
i∈[r] Y

(j)
i . Writing V =

∑
j∈[m](Vj − µ)2 =

∑
j∈[m]

(∑
i∈[r] Y

(j)
i

)2

, the statement we wish
to prove is

Pr
[
V > Ccγv

′(S)
]
≤ Oγ,c

(
|S|m−γ

)
.

We proceed by induction on c. The induction start, c = 1, and the induction step are almost identical, so
we carry them out in parallel. Note that when c = 1 each group has size at most 1, i.e. |Gi| ≤ 1 for every
i ∈ {1, . . . , r}.

Let γ ≥ 1 be fixed. We write

V =
∑

j∈[m]

r∑

i=1

(
Y

(j)
i

)2

︸ ︷︷ ︸
V1

+
∑

j∈[m]

r∑

i=1

Y
(j)
i Y

(j)
<i

︸ ︷︷ ︸
V2

(11)

and bound V1 and V2 separately starting with V1.

Interchanging summations, V1 =
∑r
i=1

∑
j∈[m]

(
Y

(j)
i

)2

. In the case c = 1, let i ∈ {1, . . . , r} be given. If

|Gi| = 0,
∑
j∈[m]

(
Y

(j)
i

)2

= 0. If on the other hand Gi = {xi} for some xi ∈ Σc,

∑

j∈[m]

(
Y

(j)
i

)2

=
∑

j∈[m]


∑

k∈Q
v(xi, k)

(
[h(xi) = j ⊕ k]− 1

m

)


2

=
∑

j∈[m]


 ∑

k∈[m]

v(xi, k)

(
[h(xi)⊕ j = k]− 1

m

)


2

=
∑

j∈[m]


 ∑

k∈[m]

v(xi, k)

(
[j = k]− 1

m

)


2

=
∑

j∈[m]


v(xi, j)−

1

m

∑

k∈[m]

v(xi, k)




2

≤
∑

j∈[m]

v(xi, j)
2

where the last inequality follows from the inequality E
[
(X − E [X])2

]
≤ E

[
X2
]
. Thus, we always have

V1 ≤ v′(S) ≤ Ccγ
2 v
′(S). In the case c > 1 we observe that the keys of Gi have a common position character.

Hence, we can apply the induction hypothesis on the keys of Gi with the remaining c− 1 position characters
to conclude that

Pr


∑

j∈[m]

(
Y

(j)
i

)2

> Cc−1
γ v′(Gi)


 ≤ Oγ,c(|Gi|m−γ) .

By a union bound,

Pr

[
V1 >

Ccγ
2
v′(S)

]
≤ Pr

[
V1 > Cc−1

γ v′(S)
]
≤
∑

i∈[r]

Oγ,c(|Gi|m−γ) = Oγ,c(|S|m−γ) . (12)

Next we proceed to bound V2. For 0 ≤ i ≤ r define Zi =
∑
j∈[m] Y

(j)
i Y

(j)
<i with Z0 = 0 and Fi =

σ((h(αj))
i
j=1) with F0 = {∅,Ω}. As Y (j)

<i is Fi−1 measurable for j ∈ [m] it holds that

E [Zi | Fi−1] =
∑

j∈[m]

E
[
Y

(j)
i

∣∣∣ Fi−1

]
Y

(j)
<i = 0 ,
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and so (Zi,Fi)ri=0 is a martingale difference. We will define a modified martingale difference (Z ′i,Fi)ri=0

recursively as follows: We define the events Ai, Bi and Ci for i ∈ {1, . . . , r} as

Ai =
i⋂

k=1


∑

j∈[m]

(
Y

(j)
k

)2

≤ Cc−1
γ v′(Gk)


 ,

Bi =

i⋂

k=1

(
Var [Zk | Fk−1] ≤ m−1/2v′(Gk)v′(G<k)

)
,

Ci =

(
max

1≤k≤i
{Z ′<k} ≤

Ccγ
2
v′(S)

)
.

Finally, we let Z ′i = [Ai ∩Bi ∩Ci] ·Zi. Clearly Bi, Ci ∈ Fi−1. To see that this is also the case for Ai we note
that for k ≤ i, ∑

j∈[m]

(Y
(j)
k )2 =

∑

j∈[m]

(X
(j⊕h(αk))
k )2 =

∑

j∈[m]

(X
(j)
k )2 ,

and as each X(j)
k is Fk−1-measurable it follows that Ai ∈ Fi−1. Now, as [Ai ∩Bi ∩ Ci] is Fi−1-measurable,

E [Z ′i | Fi−1] = [Ai ∩Bi ∩ Ci]E [Zi | Fi−1] = 0,

which implies that (Z ′i,Fi)ri=0 is a martingale difference.
If Ar, Br, and Cr all occur then

∑r
i=1 Zi =

∑r
i=1 Z

′
i. In particular

Pr

[
V2 >

Ccγ
2
v′(S)

]
= Pr


∑

i∈[r]

Zi >
Ccγ
2
v′(S)


 ≤ Pr

[
r∑

i=1

Z ′i >
Ccγ
2
v′(S)

]
+ Pr [Acr ∪Bcr ∪ Ccr ] .

If Cr does not occur then
∑
i∈[r] Z

′
i >

Ccγ
2 v
′(S) so a union bound yields

Pr

[
V2 ≥

Ccγ
2
v′(S)

]
≤ 2 Pr

[
r∑

i=1

Z ′i >
Ccγ
2
v′(S)

]
+ Pr [Acr] + Pr [Bcr ] . (13)

We now wish to apply Corollary 8 to the martingale difference (Z ′i,Fi)ri=0. Thus, we have to bound |Z ′i| as
well as the conditional variances Var [Z ′i | Fi−1]. For the bound on Z ′i, observe that by the Cauchy-Schwarz
inequality,

|Z ′i| = [Ai ∩Bi ∩ Ci]

∣∣∣∣∣∣
∑

j∈[m]

Y
(j)
i Y

(j)
<i

∣∣∣∣∣∣
≤ [Ai ∩Bi ∩ Ci]

√√√√
∑

j∈[m]

(
Y

(j)
i

)2
√√√√
∑

j∈[m]

(
Y

(j)
<i

)2

.

If Ai occurs we obtain

∑

j∈[m]

(
Y

(j)
i

)2

≤ Cc−1
γ v′(Gi) ≤ Cc−1

γ v′(S)1−1/cv′∞(S)1/c ,

by Lemma 13 and if Ai, Bi, and Ci all occur then

∑

j∈[m]

(
Y

(j)
<i

)2

=
∑

j∈[m]

∑

k<i

(
Y

(j)
k

)2

+ 2Z ′<i ≤ Cc−1
γ v′(G<i) + 2Ccγv

′(G<i) ≤ 3Ccγv
′(S) .

In conclusion
|Z ′i| ≤ Cc−1/2

γ

√
3v′(S)1−1/(2c)v′∞(S)1/(2c) .
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For the bound on the conditional variance note that if Bi occurs then Var [Zi | Fi−1] ≤ m−1/2v′(Gk)v′(G<k)
and thus,

Var [Z ′i | Fi−1] = [Ai][Bi][Ci]Var [Zi | Fi−1] ≤ m−1/2v′(Gk)v′(G<k) .

It follows that
∑r
i=1 Var [Z ′i | Fi−1] ≤ m−1/2v′(S)2. Letting

σ2 = m−1/2v′(S)2

and
M = Cc−1/2

γ

√
3v′(S)1−1/(2c)v′∞(S)1/(2c)

in Corollary 8 we thus obtain

Pr

[
r∑

i=1

Z ′i >
Ccγ
2
v′(S)

]
≤ exp

(
− v′(S)1/c

3C2c−1
γ · √m · v′∞(S)1/c

C
(

(Cγ)2c−1/2 ·
√

3 · √m · v′∞(S)1/2c

2v′(S)1/2c

))
.

Applying Lemma 10 first with b =
(
v′∞(S)
v′(S)

)1/(2c)

≤ 1 and then with b =
√
m > 1 yields

v′(S)1/c

3C2c−1
γ
√
mv′∞(S)1/c

C
(
C

2c−1/2
γ

√
3
√
mv′∞(S)1/2c

2v′(S)1/2c

)
≥ 1

3C2c−1
γ

C
(
C

2c−1/2
γ

√
3
√
m

2

)
.

We then use Lemma 9 to get

1

3C2c−1
γ

C
(
C

2c−1/2
γ

√
3
√
m

2

)
≥
√
Cγ√

3 · 4
log

(
1 +

(Cγ)2c−1/2
√

3
√
m

2

)
≥
√
Cγ√

3 · 8
log(m) = γ log(m) ,

where we have used that Cγ = 3 · 8 · γ2 and γ ≥ 1. Combining this we get that

Pr

[
r∑

i=1

Z ′i >
Ccγ
2
v′(S)

]
≤ m−γ . (14)

It thus suffices to bound the probabilities Pr[Acr−1] and Pr[Bcr−1]. For Acr−1, if c = 1 the discussion from
the bound on V1 proves that Acr−1 never occurs. If c > 1, the inductive hypothesis on the groups Gi and a
union bound yields

Pr
[
Acr−1

]
= Oγ,ε,c

(
r∑

i=1

|Gi|m−γ
)

= O(|S|m−γ) . (15)

For Bcr−1, we can for each i ∈ {1, . . . , r} write

Var [Zi | Fi−1] = E





∑

j∈[m]

X
(j⊕h(αi))
i Y

(j)
<i




2
∣∣∣∣∣∣∣
Fi−1




=
1

m

∑

k∈[m]


∑

j∈[m]

X
(j⊕k)
i Y

(j)
<i




2

=
1

m

∑

k∈[m]

∑

(j1,j2)∈[m]2

Y
(j1⊕k)
i Y

(j2⊕k)
i Y

(j1)
<i Y

(j2)
<i

=
1

m

∑

(j1,j2,j3,j4)∈[m]4

j1⊕j2⊕j3⊕j4=0

Y
(j1)
i Y

(j2)
i Y

(j3)
<i Y

(j4)
<i
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Call this quantity Ti. It follows from Lemma 15 and Markov’s inequality that

Pr
[
Ti ≥ m−1/2v′(Gk)v′(G<k)

]
≤

E
[
T

2γ/(1−4ε)
i

]

mγ/(1−4ε) (v′(Gk)v′(G<k))
2γ/(1−4ε)

≤ Oγ,ε,c(m−γ).

Thus, Pr[Bcr−1] = O(|S|m−γ) by a union bound.
Combining equations (11)-(15) we conclude that indeed Pr

[
V ≥ Ccγv′(S)

]
= Oγ,ε,c(|S|m−γ).

4.3 Establishing the Concentration Bound
With the results of the previous subsection at hand, we proceed to prove the first part of Theorem 4. We
show that for a value function of support bounded in size by mε for some ε < 1/4, simple tabulation supports
Chernoff-style bounds with added error probability inversely polynomial in m. For convenience, we restate
the first part of Theorem 4 as Theorem 17. The statement is equivalent to Theorem 4 but for precision, we
have chosen to write out the statement more explicitly.

Theorem 17. Let h : Σc → [m] be a simple tabulation hash function and S ⊆ Σc be a set of keys. Let
v : Σc × [m] → [−1, 1] be a value such that the set Q = {i ∈ [m] | ∃x ∈ Σc : v(x, i) 6= 0} satisfies |Q| ≤ mε,
where ε < 1

4 is a constant. Define the random variable W =
∑
x∈S v(x, h(x)) and write µ = E [W ] and

σ2 = Var [W ]. Then for any constant γ ≥ 1,

Pr [|W − µ| ≥ Cγ,ct] ≤ 2 exp

(
−σ2C

(
t

σ2

))
+Oγ,ε,c

(
|S|m−γ

)
,

where Cγ,c =
(

1 + 1
γ

)3
c(c−1)

2

(Ccγ)
3c for some large enough universal constant C.

Proof. First, akin to the proof of Theorem 16, we may write

V = W − µ =
∑

x∈S

∑

k∈Q
v(x, k)

(
[h(x) = j ⊕ k]− 1

m

)
,

and note that

Var [V ] = Var [W ] =
∑

x∈S



∑

k∈Q

1

m
v(x, k)2 −


∑

k∈Q

1

m
v(x, k)




2

 .

We proceed by induction on c. For c = 1 we have full randomness and it follows immediately from Corol-
lary 8 that

Pr [|V | ≥ t] ≤ 2 exp

(
−σ2C

(
t

σ2

))
.

Now assume that c > 1 and inductively that the result holds for smaller values of c. We define v′(x) =∑
k∈Q v(x, k)2 and for X ⊆ Σc we let v′(X) =

∑
x∈X v

′(x) and define v′∞(X) = maxx∈X v′(x). Now,
applying Lemma 13 with respect to w = v′ we get position characters α1, . . . , αr with corresponding groups
G1, . . . , Gr, such that ·∪ri=1Gi = S and for every i ∈ {1, . . . , r}, v′(Gi) ≤ v′(S)1−1/cv′∞(S)1/c. For a bin
j ∈ [m] and an i ∈ {1, . . . , r} we again define

X
(j)
i =

∑

x∈Gi

∑

k∈Q
v(x, k) ·

(
[h(x \ αi) = j ⊕ k]− 1

m

)
, Yi = X

(h(αi))
i .

Note that
∑r
i=1 Yi = V . For i ∈ {1, . . . , r} we define the σ-algebra Fi = σ((h(αj))

i
j=1). We furthermore

define Y0 = 0 and F0 = {∅,Ω}. As Yi is Fi-measurable for i ∈ [r+ 1] and E [Yi | Fi−1] = 0 for i ∈ {1, . . . , r},
(Yi,Fi)ri=0 is a martingale difference. Furthermore, for i ∈ {1, . . . , r},

Var [Yi | Fi−1] =
1

m

∑

j∈[m]

(
X

(j)
i

)2

.
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According to Theorem 16 there exists a constant K = 3 · 26 · γ2 such that

Pr


∑

j∈[m]

(
X

(j)
i

)2

> Kc−1v′(Gi)


 ≤ Oγ,ε,c (|Gi|mγ) . (16)

For i ∈ {1, . . . , r} we define the events

Ai =
⋂

k≤i


∑

j∈[m]

(X
(j)
k )2 ≤ Kc−1v′(Gk)


 ,

Bi =


max

k≤i
j∈[m]

|X(j)
k | ≤ Cγ+1,c−1M


 ,

for some M to be specified later. We define Zi = [Ai ∩ Bi]Yi for i ∈ {1, . . . , r} and Z0 = 0. As both
Ai, Bi ∈ Fi−1 we have that E [Zi | Fi−1] = [Ai ∩ Bi]E [Yi | Fi−1] = 0 for {1, . . . , r} so (Zi,Fi)ri=0 is a
martingale difference. By definition of Ai and Bi it moreover holds for i ∈ {1, . . . , r} that

|Zi| ≤ Cγ+1,c−1M and Var [Zi | Fi−1] ≤ Kc−1v′(Gi)
m

.

Setting σ2
0 = Kc−1v′(S)

m and applying Corollary 8 we obtain

Pr

[∣∣∣∣∣
r∑

i=1

Zi

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
− σ2

0

C2
γ+1,c−1M

2
C
(
tCγ+1,c−1M

σ2
0

))
. (17)

If Ar−1 and Br−1 both occur then
∑r
i=1 Zi =

∑r
i=1 Yi so it must hold that

Pr [|V | ≥ t] ≤ Pr

[∣∣∣∣∣
r∑

i=1

Zi

∣∣∣∣∣ ≥ t
]

+ Pr
[
Acr−1

]
+ Pr

[
Bcr−1

]
.

We may assume thatm > 1, i.e., the number of bins exceeds one, and then by the Cauchy-Schwarz inequality,

σ2 =
∑

x∈S



∑

k∈Q

1

m
v(x, k)2 −


∑

k∈Q

1

m
v(x, k)




2

 ≥

∑

x∈S


∑

k∈Q

1

m
v(x, k)2 − 1

m2(1−ε)
∑

k∈Q

1

mε
v(x, k)2




=
v′(S)

m

(
1− 1

m1−ε

)

≥ v′(S)

3m

≥ σ2
0

3Kc−1

so using (17) we obtain

Pr [|V | ≥ Cγ,ct] ≤ 2 exp

(
− 3Kc−1σ2

C2
γ+1,c−1M

2
C
(
Cγ,c · t · Cγ+1,c−1M

3Kc−1σ2

))
+ Pr

[
Acr−1

]
+ Pr

[
Bcr−1

]
. (18)

By (16) and a union bound Pr
[
Acr−1

]
≤ O(|S|m−γ). For bounding Pr

[
Bcr−1

]
we use the induction hypothesis

on the groups, concluding that for i ∈ {1, . . . , r} and j ∈ [m],

Pr
[∣∣∣X(j)

i

∣∣∣ > Cγ+1,c−1M
]
≤ 2 exp

(
−σ2

i C
(
M

σ2
i

))
+O(|Gi|m−γ−1) ,
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where σ2
i = Var

[
Y

(j)
i

]
≤ v′(Gi)/m. By the initial assumption on the groups, this implies σ2

i ≤
v′(S)1−1/cv′∞(S)/m and we denote the latter quantity τ2. Combining with Lemma 11 we obtain by a
union bound that

Pr
[
Bcr−1

]
≤ 2 |S|m exp

(
−τ2C

(
M

τ2

))
+O(|S|m−γ) .

We fix M to be the unique real number with τ2C
(
M
τ2

)
= (γ+ 1) log(m). With this choice of M , Pr

[
Bcr−1

]
≤

O(|S|m−γ), so by (18) it suffices to show that

3Kc−1σ2

C2
γ+1,c−1M

2
C
(
Cγ,c · t · Cγ+1,c−1M

3Kc−1σ2

)
≥ min

{
σ2C

(
t

σ2

)
, γ log(m)

}
. (19)

First since Cγ,cCγ+1,c−1

3Kc−1 ≥ 1 Lemma 10 give us that

3 (Kγ)
c−1

σ2

C2
γ+1,c−1M

2
C
(
Cγ,c · t · Cγ+1,c−1M

3 (Kγ)
c−1

σ2

)
≥ Cγ,c
Cγ+1,c−1

σ2

M2
C
(
tM

σ2

)
.

Now by definition of Cγ,c and Cγ+1,c−1 we get that

Cγ,c
Cγ+1,c−1

=

(
1 + 1

γ

)3
c(c−1)

2

(Ccγ)
3c

(
1 + 1

γ+1

)3
(c−1)(c−2)

2

(Cc(γ + 1))
3(c−1)

≥ (Ccγ)3 .

So we have reduced the problem to showing that

(Ccγ)3 σ
2

M2
C
(
tM

σ2

)
≥ min

{
σ2C

(
t

σ2

)
, γ log(m)

}
.

For that we have to check a couple of cases.

Case 1. tM
σ2 ≤ 1: Using Lemma 9 twice and the fact that (Ccγ)3 ≥ 3

2 , we get that

(Ccγ)3σ2C
(
tM

σ2

)
≥ (Ccγ)3

3

t2

σ2
≥ σ2C

(
t

σ2

)
.

Case 2. v′(S) ≤ m(1−ε/c)(1+ 1
2c−1 ): We then get that

τ2 ≤ v′(S)1−1/cv′∞(S)

m
≤ m(1−ε/c)(1− 1

2c−1 )

m1−ε/c = m−
1−ε/c
2c−1 .

Now we note that M ≤ 12γc since

τ2C
(

12γc

τ2

)
≥ 12γc log

(
1 +

12γc

τ2

)
/2 ≥ 6γc log(1/τ2) ≥ 6γc

1− ε/c
2c− 1

log(m) ≥ (γ + 1) log(m) ,

where we have used that ε ≤ 1
4 and γ ≥ 1.

We then get that

(Ccγ)3 σ
2

M2
C
(
tM

σ2

)
≥ (Ccγ)3

M
σ2C

(
t

σ2

)
≥ (Ccγ)3

12cγ
σ2C

(
t

σ2

)
≥ σ2C

(
t

σ2

)
.
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Case 3. tM
σ2 > 1 and v′(S) > m(1−ε/c)(1+ 1

2c−1 ): We see that M ≤ max
{

6γ log(m),
√

6γ log(m)τ
}

since

τ2C




max
{

6γ log(m),
√

6γ log(m)τ
}

τ2


 ≥ max

{
6γ log(m)

3
,

6γ log(m)

3

}
≥ (γ + 1) log(m) ,

where we have used Lemma 9 and that γ ≥ 1. Now we have that σ2 ≥ v′(S)
3m > m

1−2ε
2c−1 /3 and τ2 ≤

v′(S)1−1/cv′∞(S)1/c

m . Combining this we get that

σ2

M2
≥ min

{
σ2

36γ2 log(m)2
,

σ2

6γ log(m)τ2

}

≥ min

{
m

1−2ε
2c−1

108γ2 log(m)2
,

(
v′(S)

v′∞(S)

)1/c

· 1

3 · 6γ log(m)

}

≥ min

{
m

1−2ε
2c−1

108γ2 log(m)2
,m

1−2ε
2c · 1

18γ log(m)

}

≥ m
1
4c

108γ2 log(m)2

≥ log(m)

108 · 43c3γ2
,

where have used that ε < 1
4 and that m

1
4c

log(m)2 ≥
log(m)
43c3 . Now we get that

(Ccγ)3 σ
2

M2
C
(
tM

σ2

)
≥ (Ccγ)3 log(m)

108 · 43c3γ2
/3 ≥ γ log(m) .

5 General Value Functions – Arbitrary Bins
The goal of this section is to prove Theorem 5, the second step towards Theorem 2. Again, we postpone the
argument that our concentration bounds are query invariant to Section 7. Recall that Theorem 5 is concerned
with a hash function of the form h = τ ◦ g, where g : Σc → [m] is a simple tabulation hash function and τ is
a uniformly random permutation. Our goal is to prove that for any value function v : Σc× [m]→ [−1, 1], the
sum

∑
x∈Σc v(x, h(x)) is strongly concentrated with high probability in m. This result follows by combining

the distributional properties of g with the randomness of τ .
We start out by proving a lemma. The lemma describes properties we need g to possess for the final

composition with τ to yield Chernoff-style concentration.

Lemma 18. Let m ≥ 2 be an integer and C, T ∈ R+ positive reals. Furthermore, let V : [m]× [m]→ R be a
value function satisfying

∑
i∈[m] V(i, j) = 0 for every j ∈ [m] and such that

max
i,j∈[m]

|V(i, j)| ≤M := max

{
C,
σ2

T

}
,

where σ2 = 1
m

∑
i∈[m]

∑
j∈[m] V(i, j)2. If τ : [m]→ [m] is a uniformly random permutation, then the random

variable Z =
∑
i∈[m] V(τ(i), i) satisfies

Pr [|Z| ≥ Dt] ≤ 4

(
exp

(
−σ2C

(
t

σ2

))
+ exp

(
− T 2

2σ2

))
,

where D = max {8C, 12} is a universal constant depending on C.
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Proof. We define Y1 =
∑dm/2e−1
i=0 V(τ(i), i) and Y2 =

∑m−1
i=dm/2e V(τ(i), i). Since Z = Y1 + Y2 it follows that

if Z > Dt then there exists i ∈ {1, 2} such that Yi ≥ D
2 t. It suffices to show that

Pr

[
Yi ≥

D

2
t

]
≤ exp

(
−σ2C

(
t

σ2

))
+ exp

(
−σ2C

(
T

σ2

))
, (20)

for i ∈ {1, 2}. A union bound over i then yields a bound on Pr[Z ≥ Dt]. Since we may instead consider the
value function −V, the same argument yields a bound on Pr[Z ≤ −Dt], which concludes the proof.

Thus, we shall prove (20) for Y1 – the proof is completely analogous for Y2. Define the filtration (Fi)dm/2ei=0

by Fi = σ
(
(τ(j))j∈[i]

)
and let Xi = E [Y1 | Fi] such that (Xi,Fi)dm/2ei=0 is a martingale, X0 = E [Y1], and

Xdm/2e = Y1. Towards applying Corollary 8, we bound |Xi −Xi−1| and
∑dm/2e
i=1 Var [Xi −Xi−1 | Fi−1].

First, we bound |Xi −Xi−1|. We start by writing

Xi −Xi−1 = E [Y1 | Fi]− E [Y1 | Fi−1]

= V(τ(i− 1), i− 1)− E [V(τ(i− 1), i− 1) | Fi−1] +

dm/2e−1∑

k=i

(E [V(τ(k), k) | Fi]− E [V(τ(k), k) | Fi−1]) .

Now, note that for k ≥ i,

E [V(τ(k), k) | Fi] = − 1

m− i
i−1∑

j=0

V(τ(j), k) ,

since
∑
`∈[m] V(`, k) = 0, and furthermore,

E [V(τ(k), k) | Fi−1] = − 1

m− i


E [V(τ(i− 1), k) | Fi−1] +

i−2∑

j=0

V(τ(j), k)


 .

Hence, it follows that

Xi −Xi−1 = V(τ(i− 1), i− 1)− E [V(τ(i− 1), i− 1) | Fi−1]

− 1

m− i

dm/2e−1∑

k=i

(V(τ(i− 1), k)− E [V(τ(i− 1), k) | Fi−1]) .

Since |V(i, j)| ≤M for all i, j ∈ [m], it follows that |Xi −Xi−1| ≤ 4M .
Second, we bound Var [Xi −Xi−1 | Fi−1]. To this end, observe that

Var [Xi −Xi−1 | Fi−1] = Var


V(τ(i− 1), i− 1)− 1

m− i

dm/2e−1∑

k=i

V(τ(i− 1), k)

∣∣∣∣∣∣
Fi−1




≤ 2


Var [V(τ(i− 1), i− 1) | Fi−1] +

1

m− i

dm/2e−1∑

k=i

Var [V(τ(i− 1), k) | Fi−1]


 ,

where the inequality follows from the fact that 2Cov (A,B | H) ≤ Var [A | H] + Var [B | H], for any random
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variables A and B and any sigma algebra H. For any k ∈ [m],

Var [V(τ(i− 1), k) | Fi−1] ≤ E
[
V(τ(i− 1), k)2

∣∣ Fi−1

]

=
1

m− i+ 1

∑

j∈[m]\τ([i−1])

V(j, k)2

≤ 1

m− i+ 1

∑

j∈[m]

V(j, k)2

≤ 2

m

∑

j∈[m]

V(j, k)2 ,

where the last inequality follows from the fact that i ≤ dm/2e. Hence,

Var [Xi −Xi−1 | Fi−1] ≤ 2


Var [V(τ(i− 1), i− 1) | Fi−1] +

1

m− i

dm/2e−1∑

k=i

Var [V(τ(i− 1), k) | Fi−1]




≤ 4

m

∑

j∈[m]

V(j, i)2 +
2

m− i ·
2

m

dm/2e−1∑

k=i

∑

j∈[m]

V(j, k)2

≤ 4

m

∑

j∈[m]

V(j, i)2 +
16

m2

∑

k∈[m]

∑

j∈[m]

V(j, k)2 ,

again using that i ≤ dm/2e. We now see that

dm/2e∑

i=1

Var [Xi −Xi−1 | Fi−1] ≤
dm/2e∑

i=1


 4

m

∑

j∈[m]

V(j, i)2 +
16

m2

∑

k∈[m]

∑

j∈[m]

V(j, k)2




≤
∑

i∈[m]


 4

m

∑

j∈[m]

V(j, i)2 +
16

m2

∑

k∈[m]

∑

j∈[m]

V(j, k)2




≤ 20σ2 .

The assumption on V implies that E [V(τ(i), i)] = 0 for each i ∈ [m], so also E [Y1] = 0. Applying Corol-
lary 8 then yields,

Pr

[
Y1 ≥

D

2
t

]
≤ exp

(
− 20σ2

(4M)2
C
(

(D/2)t · 4M
20σ2

))
= exp

(
− 5σ2

4M2
C
(
DMt

10σ2

))
.

The goal is now to show that

5σ2

4M2
C
(
DMt

10σ2

)
≥ min

{
σ2C

(
t

σ2

)
,
T 2

2σ2

}
. (21)

Because if this is the case, then as desired

Pr

[
Y1 ≥

D

2
t

]
≤ exp

(
−min

{
σ2C

(
t

σ2

)
,
T 2

2σ2

})
≤ exp

(
−σ2C

(
t

σ2

))
+ exp

(
− T 2

2σ2

)
.

We check (21) by cases. This completes the proof.

Case 1. M ≤ 10
D : In this case, DM10 ≤ 1. Thus, by Lemma 10,

5σ2

4M2
C
(
DMt

10σ2

)
≥ D2

80
σ2C

(
t

σ2

)
≥ σ2C

(
t

σ2

)
,

using that D ≥ 12 ≥
√

80.
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Case 2. 10
D ≤M ≤ C: In this case, DM10 ≥ 1. Thus, by Lemma 10,

5σ2

4M2
C
(
DMt

10σ2

)
≥ D

8M
σ2C

(
t

σ2

)
≥ D

8C
σ2C

(
t

σ2

)
≥ σ2C

(
t

σ2

)
,

using that D ≥ 8C.

Case 3. M ≤ σ2

T : In this case, recall that D ≥ 12 such that D
10 ≥ 1 and we may apply Lemma 10, yielding

5σ2

4M2
C
(
DMt

10σ2

)
≥ 5

4

T 2

σ2
C
(
D

10

t

T

)
≥ D

8

T 2

σ2
C
(
t

T

)
.

By Lemma 9,

C
(
t

T

)
≥ C

(
min

{
t

T
, 1

})
≥ min

{
t2

3T 2
,

1

3

}
.

So finally,

5σ2

4M2
C
(
DMt

10σ2

)
≥ min

{
D

24

t2

σ2
,
D

24

T 2

σ2

}
≥ min

{
D

12
σ2C

(
t

σ2

)
,
D

24

T 2

σ2

}
≥ min

{
σ2C

(
t

σ2

)
,
T 2

2σ2

}
,

where we have used Lemma 9 and the fact that D ≥ 12.

With this result in hand we are ready to prove Theorem 5. We restate it here in a more technically
explicit version. For a more intuitive understanding, please refer back to the original statement. Note that
we only require the hash function h of the theorem to be 2-independent, whereas Theorem 5 requires the
hash function to be 3-independent. The difference lies in that the statement of Theorem 5 is slightly stronger,
guaranteeing query invariance. Having deferred the treatment of query invariance until later, we only need
2-independence for now.

Theorem 19. Let ε ∈ (0, 1] and m ≥ 2 be given. Let h : A → [m] be a 2-independent hash function
satisfying the following. For every γ > 0 and every value function ṽ : A × [m] → [−1, 1] such that Q =
{i ∈ [m] | ∃x ∈ A : ṽ(x, i) 6= 0} has size |Q| ≤ mε, the random variables W =

∑
x∈A ṽ(x, h(x)) and Wj =∑

x∈A ṽ(x, h(x) ⊕ j), j ∈ [m] with mean µW = E [W ] = E [Wj ] and variance σ2
W = Var [W ] satisfy the

inequalities

Pr [|W − µW | ≥ C · t] ≤ 2 exp

(
−σ2

WC
(

t

σ2
W

))
+O(|A|m−γ), (22)

Pr


∑

j∈[m]

(Wj − µW )
2 ≥ D ·

∑

x∈A

∑

k∈Q
ṽ(x, k)2


 = O(|A|m−γ), (23)

for every t > 0, where C and D are universal constants depending on γ and ε.
Let v : A×[m]→ [−1, 1] be any value function, τ : [m]→ [m] a uniformly random permutation independent

of h, and γ > 0. The random variable U =
∑
x∈A v(x, τ(h(x))) with expectation µ = E [U ] and variance

σ2 = Var [U ] satisfies

Pr [|U − µ| ≥ E · t] ≤ 6 exp

(
−σ2C

(
t

σ2

))
+O(|A|m−γ) (24)

for every t > 0, where E is a universal constant depending on γ and ε.
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Proof. Define v′ : A× [m]→ [−1, 1] by letting v′(x, i) = 1
2

(
v(x, i)− 1

m

∑
j∈[m] v(x, j)

)
and write V = U−µ.

Since
∑
i∈[m]

(
[τ(h(x)) = i]− 1

m

)
= 0, we may write

V =
∑

x∈A

∑

i∈[m]

v(x, i)[τ(h(x)) = i]− 1

m

∑

x∈A

∑

i∈[m]

v(x, i) +
∑

x∈A




∑

i∈[m]

(
[τ(h(x)) = i]− 1

m

)
 ·


 1

m

∑

j∈[m]

v(x, j)






=
∑

x∈A

∑

i∈[m]


v(x, i)− 1

m

∑

j∈[m]

v(x, j)



(

[τ(h(x)) = i]− 1

m

)

=2
∑

x∈A

∑

i∈[m]

v′(x, i)

(
[τ(h(x)) = i]− 1

m

)
.

We write V ′ =
∑
x∈A

∑
i∈[m] v

′(x, i)
(
[τ(h(x)) = i]− 1

m

)
such that V = 2V ′. We note that by 2-independence

σ2 =
∑

x∈A
Var [v(x, τ(h(x)))] =

∑

x∈A
E





v(x, τ(h(x)))− 1

m

∑

j∈[m]

v(x, j)




2

 =

4

m

∑

x∈A

∑

i∈[m]

v′(x, i)2.

Thus, we may write σ′2 = Var [V ′] = 1
m

∑
x∈A

∑
i∈[m] v

′(x, i)2. We proceed to show that for some constant
E′ depending on γ and ε,

Pr [|V ′| ≥ E′ · t] ≤ 6 exp

(
−σ′2h

(
t

σ′2

))
+O(|A|m−γ) ,

As σ′ ≤ σ and V = 2V ′ the theorem then follows with E = 2E′ by applying Lemma 11.
For i ∈ [m] we define σ2

i = 1
m

∑
x∈A v

′(x, i)2, so that
∑
i∈[m] σ

2
i = σ′2. Assume without loss of generality

that σ2
0 ≥ · · · ≥ σ2

m−1. Now define V : [m]× [m]→ R by

V(i, j) =
∑

x∈A
v′(x, j)

(
[h(x) = i]− 1

m

)
.

Note that for any j ∈ [m],
∑
i∈[m] V(i, j) = 0, regardless of the (random) choice of h. With this definition,

V ′ =
∑
i∈[m] V(i, τ(i)) =

∑
j∈[m] V(τ−1(j), j). Now let

V1 =
∑

j∈[mε]

V(τ−1(j), j) and V2 =
∑

j∈[m]\[mε]
V(τ−1(j), j),

and note that V1 + V2 = V ′. Defining value functions v′1, v′2 : A× [m]→ [−1, 1] by

v′1(x, i) =

{
v′(x, i), if i ∈ [mε]

0, otherwise
and v′2(x, i) =

{
v′(x, i), if i ∈ [m] \ [mε]

0, otherwise
,

we observe that

V1 =
∑

x∈A
v′1(x, τ(h(x)))− E

[∑

x∈A
v′1(x, τ(h(x)))

]
and V2 =

∑

x∈A
v′2(x, τ(h(x)))− E

[∑

x∈A
v′2(x, τ(h(x)))

]

Let D ≥ 1 be such that Eq. (23) holds with added error probability O(|A|m−γ−1) and let M =

max
{
C, σ′√

2Dγ logm

}
for some large constant C to be fixed later. Define the two events

A =
⋂

j∈[m]\[mε]

(
max
i∈m
|V(i, j)| ≤M

)
and B =

⋂

j∈[m]


∑

i∈[m]

V(i, j)2 < Dσ2
jm


 .
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By a union bound,

Pr[|V ′| ≥ E′t] ≤ Pr[|V1| ≥ E′t/2] + Pr[|[A] · [B] · V2| ≥ E′t/2] + Pr[Ac] + Pr[Bc],

and we proceed to bound each of these terms individually.
First, we bound Pr[|V1| ≥ E′t/2]. To do so, suppose we fix the permutation τ = τ0. With this conditioning

and by 2-independence,

Var [V1 | τ = τ0] =Var

[∑

x∈A
[τ0(h(x)) ∈ [mε]] · v′(x, τ0(h(x)))

]
≤
∑

x∈A
E
[
[τ0(h(x)) ∈ [mε]] · v′(x, τ0(h(x)))2

]

=
1

m

∑

x∈A

∑

j∈[mε]

v′(x, j)2 ≤ σ′2.

Defining v : A× [m]→ [−1, 1] by v(x, i) = v′1(x, τ0(i)) it holds that

V1 =
∑

x∈A

∑

i∈τ−1
0 ([mε])

v(x, i)

(
[h(x) = i]− 1

m

)
.

As v has support of size at most mε we can apply Eq. (22) to conclude that

Pr[|V1| ≥ E′t/2 | τ = τ0] ≤ 2 exp

(
−σ′2C

(
t

σ′2

))
+O(|A|m−γ),

if the constant E′ is large enough. Since this holds for any fixed τ0, it also holds for the unconditioned
probability.

We now bound Pr[|[A] · [B] · V2| ≥ E′t/2]. It suffices to condition on h = h0 for some h0 satisfying that
[A] = [B] = 1 and make the bound over the randomness of τ . For this we may use Lemma 18. Indeed if h = h0

for some h0 such that [A] = [B] = 1, then
∑
i∈[m]

∑
j∈[m]

1
mV(i, j)2 ≤ Dσ′2. Here we used the conditioning

on A. Define the function V0 : [m] × [m] → R by V0(i, j) = V(i, j) when j ∈ [m] \ [mε] and V0(i, j) = 0
otherwise. Then also

∑
i∈[m]

∑
j∈[m]

1
mV0(i, j)2 ≤ Dσ′2 and further, for each j ∈ [m],

∑
i∈[m] V0(i, j) = 0.

Finally, the conditioning on B gives that maxi,j∈[m] V0(i, j) ≤ M . Note that V2 =
∑
j∈[m] V0(τ−1(j), j).

Applying Lemma 18 to V0, noting that the bound obtained in that lemma is increasing in σ, we obtain that

Pr [|V2| ≥ E′t/2] ≤ 4

(
exp

(
−Dσ′2C

(
t

Dσ′2

))
+ exp (−γ logm)

)
= 4 exp

(
−Ω

(
σ′2C

(
t

σ′2

)))
+O(m−γ),

if E′ is sufficiently large. From this it follows that,

Pr[[A] · [B] · |V2| ≥ E′t/2] ≤ 4 exp

(
−σ′2C

(
t

σ′2

))
+O(m−γ).

We finally need to bound Pr[Ac] and Pr[Bc]. By the choice of D and a union bound we obtain that
Pr[Bc] = O(|A|m−γ), so for completing the proof it suffices to bound Pr[Ac] which we proceed to do now.
More specifically we bound Pr[|V(i, j)| ≥ M ] for each (i, j) ∈ [m] × ([m] \ [mε]), finishing with a union
bound over the m2 choices. So let (i, j) ∈ [m] × ([m] \ [mε]) be fixed and define ṽ : A × [m] → [−1, 1] by
ṽ(x, i) = v′2(x, j) and ṽ(x, k) = 0 for k 6= i. Then ṽ has support A× {i},

V(i, j) =
∑

x∈A

∑

k∈[m]

ṽ(x, k)

(
[τ(h(x)) = i]− 1

m

)
,

and Var [V(i, j)] ≤ 1
m

∑
x∈A v

′
2(x, j)2 = σ2

j ≤ σ′2/mε. The last inequality follows from our assumption that
σ2

0 ≥ · · · ≥ σ2
m−1 and j ≥ mε.
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By the assumption of Eq. (22) with γ replaced by γ + 2 it follows that

Pr[|V(i, j)| ≥M ] ≤ 2 exp

(
−Ω

(
σ2
jC
(
M

σ2
j

)))
+O(|A|m−γ−2) ≤ 2 exp

(
−D′ σ

′2

mε
C
(
Mmε

σ′2

))
+O(|A|m−γ−2),

for some constant D′. We finish the proof by showing that if the constant C from the definition of M is
large enough, then

2 exp

(
−D′ σ

′2

mε
C
(
Mmε

σ′2

))
= O(m−γ−2).

For this it suffices to show that if C is large enough and m is greater than some constant, then

σ′2

mε
C
(
Mmε

σ′2

)
≥ (γ + 2) logm

D′
.

Suppose first that σ′2 ≤ mε/2. In that case we use Lemma 9 to conclude that

σ′2

mε
C
(
Mmε

σ′2

)
≥ M

2
log

(
Mmε

σ′2
+ 1

)
≥ C

2
log
(
Cmε/2 + 1

)
≥ Cε

4
logm,

so if C ≥ 4γ+2
D′ε this is at least (γ+2) logm

D′ . Now suppose mε/2 < σ′2 ≤ m2ε/(2Dγ logm). In that case we

recall that M = max
{
C, σ′√

2Dγ logm

}
and use the bound

σ′2

mε
C
(
Mmε

σ′2

)
≥ M

2
log

(
Mmε

σ′2
+ 1

)
≥ σ′√

8Dγ logm
log

(
mε

σ′
√

2Dγ logm
+ 1

)
= Ω

(
mε/4

√
logm

)
.

If m is larger than some constant, this is certainly at least (γ+2) logm
D′ . Finally suppose that σ′2 >

m2ε/(2Dγ logm). Using the inequality log(1 + x) ≥ x
2 holding for 0 ≤ x ≤ 1 we find that

σ′2

mε
C
(
Mmε

σ′2

)
≥ σ′√

8Dγ logm
log

(
mε

σ′
√

2Dγ logm
+ 1

)
≥ mε

8Dγ logm
.

Again it holds that if m is greater than some constant, this is at least (γ+2) logm
D′ . It follows that if C is large

enough, then Pr[|V(i, j)| ≥M ] = O(|A|m−γ−2). Union bounding over (i, j) ∈ [m]× ([m] \ [mε]) we find that
Pr[Ac] = O(|A|m−γ). Combining the bounds we find that

Pr[|V ′| ≥ E′t] ≤ 6 exp

(
−σ′2h

(
t

σ′2

))
+O(|A|m−γ),

which completes the proof.

6 Extending the Hash Range
This section is dedicated to proving Theorem 6, which we will restate shortly. Again, we will postpone the
argument that our concentration bounds are query invariant to Section 7. First, we prove the following
technical lemma.

Lemma 20. Let σ2 > 0 and t > 0. Writing s = max
{
σ2,
√
tσ2
}
,

s · C
(
t

s

)
≥ σ2C

(
t

σ2

)
/4 .
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Proof. For t ≤ σ2 the inequality is trivial, so suppose t > σ2. We note that for x ≥ 0, 1 +
√
x ≥

√
1 + x,

such that lg(1 +
√
x) ≥ lg(1 +x)/2 for every x ≥ 0. Using this fact in between two applications of Lemma 9,

we find that

√
tσ2C

(
t√
tσ2

)
≥ t lg

(
1 +

√
t

σ2

)
/2 ≥ t lg

(
1 +

t

σ2

)
/4 ≥ σ2C

(
t

σ2

)
/4 .

Next, we recall the law of total variance.

Lemma 21 (Law of Total Variance). For every pair of random variables X,Y ,

Var [Y ] = E [Var [Y | X]] + Var [E [Y | X]] .

In particular, Var [Y ] ≥ Var [E [Y | X]].

We are now ready to prove the main theorem of the section, which informally states that concatenating
the output values of hash functions preserves the property of having Chernoff-style bounds. Note that the
following is a much more explicit and elaborate statement of Theorem 6. The purpose of this restatement
is to make a formal proof more readable. The reader is encouraged to refer back to Theorem 6 for intuition
regarding the theorem statement. Again, we highlight that we have left out the part of Theorem 6 concerning
query independence. How query independence is obtained will be discussed in Section 7

Theorem 22. Let A be a finite set. Let (Xa)a∈A and (Ya)a∈A be pairwise independent families of random
variables taking values in BX and BY , respectively, and satisfying that the distributions of (Xa)a∈A and
(Ya)a∈A are independent. Suppose that there exist universal constants DX , DY ≥ 1, KX ,KY > 0, and
RX , RY ≥ 0 such that for every choice of value functions vX : A×BX → [0, 1] and vY : A×BY → [0, 1] and
for every t > 0,

Pr

[∣∣∣∣∣
∑

a∈A
vX(a,Xa)− µX

∣∣∣∣∣ > t

]
< KX exp

(
−σ2

XC
(

t

σ2
X

)
/DX

)
+RX , (25)

Pr

[∣∣∣∣∣
∑

a∈A
vY (a, Ya)− µY

∣∣∣∣∣ > t

]
< KY exp

(
−σ2

Y C
(

t

σ2
Y

)
/DY

)
+RY . (26)

where µX = E
[∑

a∈A vX(a,Xa)
]
, µY = E

[∑
a∈A vY (a, Ya)

]
, σ2

X = Var
[∑

a∈A vX(a,Xa)
]
, and σ2

Y =

Var
[∑

a∈A vY (a, Ya)
]
. Then for every value function v : A×BX ×BY → [0, 1] and every t > 0,

Pr

[∣∣∣∣∣
∑

a∈A
v(a,Xa, Ya)− µXY

∣∣∣∣∣ > t

]
< KKY exp

(
−σ2

XY C
(

t

σ2
XY

)
/DXY

)
+RXY ,

where µXY = E
[∑

a∈A v(a,Xa, Ya)
]
, σ2

XY = Var
[∑

a∈A v(a,Xa, Ya)
]
, DXY = max {144DX , 72DY },

KXY = 3KX +KY , and RXY = 3RX +RY .

Proof. Let a value function, v : A × BX × BY → [0, 1], and a positive real, t > 0, be given. Define Va =
v(a,Xa, Ya), µa = E [Va], and σ2

a = Var [Va]. We shall be concerned with the variance of Va when conditioned
on Xa. Hence, we define

La =

[
Var [Va | Xa] >

√
6σ2

XY

t

]
and Sa =

[
Var [Va | Xa] ≤

√
6σ2

XY

t

]
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to be the indicators on the conditional variance of Va given Xa being larger or smaller, respectively, than

the threshold
√

6σ2
XY

t . Noting that La + Sa = 1, we split the sum
∑
a∈A(Va − µa) into three parts.

∑

a∈A
(Va − µa) =

∑

a∈A
(E [Va | Xa]− µa)

︸ ︷︷ ︸
T1

+
∑

a∈A
La(Va − E [Va | Xa])

︸ ︷︷ ︸
T2

+
∑

a∈A
Sa(Va − E [Va | Xa])

︸ ︷︷ ︸
T3

Now, the triangle inequality and a union bound yields

Pr

[∣∣∣∣∣
∑

a∈A
v(a,Xa, Ya)− µXY

∣∣∣∣∣ > t

]
= Pr

[∣∣∣∣∣
∑

a∈A
(Va − µa)

∣∣∣∣∣ > t

]
≤

3∑

i=1

Pr [|Ti| > t/3] .

We shall bound each of the three terms T1, T2, and T3 individually.
For bounding Pr [|T1| > t/3], define the value function v

(1)
X : A × BX → [0, 1] by v

(1)
X (a, x) =

E [Va | Xa = x]. Note that E [E [Va | Xa]] = µa and Var [E [Va | Xa]] ≤ σ2
a, by the law of total variance,

such that Var
[∑

a∈A v
(1)
X (a,Xa)

]
≤ σ2

XY . Thus, by Equation (25) and Lemma 10,

Pr [|T1| > t/3] = Pr

[∑

a∈A

(
v

(1)
X (a,Xa)− µa

)
> t/3

]

< KX exp

(
−σ2

XY C
(
t/3

σ2
XY

)
/DX

)
+RX

≤ KX exp

(
−σ2

XY C
(

t

σ2
XY

)
/(9DX)

)
+RX .

For bounding Pr [|T2| > t/3], we may assume that t > 6σ2
XY since otherwise T2 = 0 almost surely. Now,

recall that La =
[

Var [Va | Xa] >
√

6σ2
XY /t

]
and write Z =

∑
a∈A La. We observe that since Va ∈ [0, 1]

almost surely, Z ≥ |T2| almost surely. By the law of total variance, E [Var [Va | Xa]] ≤ σ2
a, so by Markov’s

inequality,

E [La] = Pr

[
Var [Va | Xa] >

√
6σ2

XY

t

]
≤ σ2

a

√
t

6σ2
XY

.

Now, Var [La] ≤ E [La] ≤ σ2
a

√
t/(6σ2

XY ) as La ∈ [0, 1] almost surely. Thus, E [Z] ≤
√
tσ2
XY /6 and Var [Z] ≤√

tσ2
XY /6. Combining this with t > 6σ2

XY , we may write

Pr [|T2| > t/3] ≤ Pr

[
Z − E [Z] > t/3−

√
tσ2
XY /6

]
≤ Pr [|Z − E [Z]| > t/6] .

Applying Equation (25) with the value function v
(2)
X : A × BX → [0, 1] given by v

(2)
X (a,Xa) = La to
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Pr [|Z − E [Z]| > t/6] yields

Pr [|T2| > t/3] < KX exp

(
−
√
tσ2
XY /6 · C

(
t/6√
tσ2
XY /6

)
/DX

)
+RX

≤ KX exp

(
−σ2

XY C
(
t/6

σ2
XY

)
/(4DX)

)
+RX

≤ KX exp

(
−σ2

XY C
(

t

σ2
XY

)
/(144 ·DX)

)
+RX ,

where the second follows from Lemma 20 and the third inequality follows from Lemma 10.
Lastly, we shall bound Pr [|T3| > t/3]. By a union bound,

Pr [|T3| > t/3] ≤ Pr

[
(|T3| > t/3) ∧

(
Var [T3 | (Xa)a∈A] ≤ 2 max

{
σ2
XY ,

√
tσ2
XY

})]

︸ ︷︷ ︸
R1

+ Pr

[
Var [T3 | (Xa)a∈A] > 2 max

{
σ2
XY ,

√
tσ2
XY

}]

︸ ︷︷ ︸
R2

.

First, we bound R1. For each a ∈ A, let xa ∈ BX be given such that P (∀a ∈ A : Xa = xa) > 0. We bound
the probability of R1 conditioned on (Xa = xa)a∈A and since our bound will be the same for every choice
of (xa)a∈A, the bound will hold unconditionally. Now, if Var [T3 | (Xa = xa)a∈A] > 2 max

{
σ2
XY ,

√
tσ2
XY

}
,

then R1 = 0. So assume otherwise and define the value function v
(1)
Y : A × BY → [0, 1] by v

(1)
Y (a, y) =

Sa · v(a, xa, y), where Sa =
[
Var [Va | Xa = xa] ≤

√
6σ2

XY /t
]
. Then T3 =

∑
a∈A

(
v

(1)
Y (Ya)− E

[
v

(1)
Y (Ya)

])

and by assumption, Var
[∑

a∈A v
(1)
Y (a, Ya)

]
≤ 2 max

{
σ2
XY ,

√
tσ2
XY

}
. Thus, we may apply Equation (26)

with v(1)
Y to obtain

Pr

[
(|T3| > t/3) ∧

(
Var [T3 | (Xa)a∈A] ≤ 2 max

{
σ2
XY ,

√
tσ2
XY

}) ∣∣∣∣ (Xa = xa)a∈A

]

≤ KY exp


−2 max

{
σ2
XY ,

√
tσ2
XY

}
C


 t/3

2 max
{
σ2
XY ,

√
tσ2
XY

}


 /DY


+RY

≤ KY exp


−max

{
σ2
XY ,

√
tσ2
XY

}
C


 t

max
{
σ2
XY ,

√
tσ2
XY

}


 /(18DY )


+RY

≤ KY exp

(
−σ2

XY C
(

t

σ2
XY

)
/(72DY )

)
+RY ,

where the second follows from Lemma 10 and the third inequality follows from Lemma 20. In conclusion,

R1 ≤ KY exp

(
−σ2

XY C
(

t

σ2
XY

)
/(72DY )

)
+RY .

Second, we bound R2. Define the value function v(3)
X : A×BX → [0, 1] by

v
(3)
X (a, xa) =

[
Var [Va | Xa = xa] ≤

√
6σ2

XY

t

]
·Var [Va | Xa = xa] .
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Then Var [T3 | (Xa)a∈A] =
∑
a∈A v

(3)
X (a,Xa). Now, by the law of total variance,

E [Var [T3 | (Xa)a∈A]] ≤ Var [T3] ≤ σ2
XY ,

and since
√

t
6σ2
XY

v
(3)
X (Xa) ∈ [0, 1] almost surely for every a ∈ A, pairwise independence yields

Var

[√
t

6σ2
XY

Var [T3 | (Xa)a∈A]

]
≤ E

[√
t

6σ2
XY

Var [T3 | (Xa)a∈A]

]
≤
√
tσ2
XY /6 .

Applying Equation (25) with v(3)
X , Lemma 20, and Lemma 10, we obtain

R2 ≤ Pr

[
|Var [T3 | (Xa)a∈A]− E [Var [T3 | (Xa)a∈A]]| > max

{
σ2
XY ,

√
tσ2
XY

}]

= Pr

[√
t

6σ2
XY

|Var [T3 | (Xa)a∈A]− E [Var [T3 | (Xa)a∈A]]| > max

{√
tσ2
XY /6, t/6

}]

≤ Pr

[√
t

6σ2
XY

|Var [T3 | (Xa)a∈A]− E [Var [T3 | (Xa)a∈A]]| > t/6

]

< KX exp

(
−
√
tσ2
XY /6C

(
t/6√
tσ2
XY /6

)
/DX

)
+RX

≤ KX exp

(
−σ2

XY C
(
t/6

σ2
XY

)
/(4DX)

)
+RX

≤ KX exp

(
−σ2

XY C
(

t

σ2
XY

)
/(144DX)

)
+RX .

Combining the bounds on Pr [|Ti| > t/3] for i ∈ {1, 2, 3} completes the proof.

7 Query invariance
In the following, we will briefly explain for each of the main sections of the paper, why all theorems still
hold when adding the condition of query invariance of Definition 2. Recall that query invariance comes into
play when we have a hash function and a concentration bound in the following manner. The concentration
bound is query invariant if for any hash key q, a query key, the concentration bound still holds whenever we
condition the hash function on the hash value of q.

Simple Tabulation Hashing. In [38] it is observed that ordering the position characters α1 ≺ · · · ≺ αr
such that α1, . . . , αc are the position characters of the query key q only worsens the bound on the groups,
Gi, by a factor of 2. We consider a slightly more general case, but exactly the same argument still applies.
Always imposing this ordering in our proofs lets us condition on the hash value of q and only causes some
of the constants to increase by a small factor.

Tabulation-Permutation In the proof of Theorem 5 we consider some specific value function w. We
proceed by considering separately the mε bins S ⊂ [m] of largest contribution to the variance, σ2, and then
the remaining bins, [m] \ S. The contribution of each subset of bins is then individually bounded. In the
first case, we simply use the assumption on the hash function h that we received in a black box manner and
use no properties of the permutation. Now, say towards query invariance that we require that τ ◦ h(q) = i.
To support this, we instead chose S to have have size |S| = mε/2. This does not change the proof by more
than constant factors and simply adding i to S yields a set S′ = S ∪ {i} of size S′ < mε, such that the
assumption on h directly yields the result. In conclusion, the proof goes through exactly as before.
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Extending the Codomain In this section nothing in the proof requires us to take into special consider-
ation the conditioning on a query key. We simply consider families of hash functions in a black box manner
and thus, we may as well consider families that have already been condition on the hash value of the query
key q.

8 Tightness of Concentration: Simple Tabulation into Few Bins
Recall the result of Theorem 1. If h : [u] → [m] is a simple tabulation hash function with [u] = Σc and
c = O(1), and S ⊆ [u] is a set of hash keys of size n = |S| where each key x ∈ S is given a weight wx ∈ [0, 1].
Then for arbitrary y ∈ [m] and a constant γ > 0 the total weight of the balls landing in bin y, given by the
random variable X =

∑
x∈S wx[h(x) = y], satisfies the concentration bound

Pr [|X − µ| ≥ t] ≤ 2 exp(−Ω(σ2C(t/σ2))) + n/mγ , (27)

where µ = E [X] and σ2 = Var [X] are the expectation and variance, respectively, of X, and the constant
in the Ω-notation depends on γ. As mentioned in the introduction, the added error probability n/mγ

renders the theorem nearly useless for small m, the prime example being the tossing of an unbiased coin
corresponding to m = 2. The purpose of this section is to show that the bound of (27) is optimal in the
sense that an added error probability of at least m−γ for some constant γ is inevitable so long as we insist on
strong concentration according to Definition 1. In other words, we must accept an added error probability
of m−γ to have Chernoff-style bounds on the sum X. In fact, it will turn out that unless allowing an error
term of the form m−γ , the deviation from the case of a fully random hash function can be quite significant.

The example where simple tabulation does not concentrate well, which we shall use in the formal proof
below, is the following. For some k < |Σ|, we consider the key set S = [k]c−1 ×Σ ⊂ Σc with weights wx = 1
for every x ∈ S. We shall think of k as slightly superconstant and mutually dependent on γ. Recall that h is
defined by c fully random functions h0, . . . , hc−1 : Σ → [m] and that h(x) =

⊕c
i=0 hi(xi). With probability

m−(k−1)(c−1), hi is constant on [k] for each 0 ≤ i ≤ c − 2. Under such a collapse it holds for every α ∈ Σ
that every key from the set [k]c−1×{α} hashes to the same value in [m] under h. Hence, each entry of hc−1

decides where kc−1 keys hash to. Thus, during such a collapse, we may view the hashing of S into [m] as
throwing |Σ| balls each of weight kc−1 into m bins. This increases the variance by a factor of kc−1 affecting
the Chernoff bounds accordingly.

Without further ado, let us present the formal statement of the above. Essentially, it states that there
is a delay of the exponential decrease which depends on γ. If γ is superconstant, so is the delay, and hence,
we do not have strong concentration according to Definition 1.

Theorem 23. Let m ≤ |Σ|1−ε for some constant ε > 0 and h : [u] → [m] be a simple tabulation hash
function. Let 0 < ε′ < ε be a constant and suppose that C : R+ → R+ is a function such that for all
0 ≤ γ ≤ |Σ|ε

′/c, all sets S ⊆ [u], all choices of weights wx ∈ [0, 1], x ∈ S, and every y ∈ [m], the random
variable X =

∑
x∈S wx[h(x) = y] satisfies

Pr[|X − µ| ≥ t] ≤ 2 exp

(−σ2C(t/σ2)

C(γ)

)
+m−γ (28)

for all t > 0. Then C(γ) = Ω(γc−2).

Proof. Assume the existence of the function C. As suggested above, consider the set of keys S = [k]c−1 ×Σ
for some k to be determined. Denote by E the event that the first c−1 position characters of S collapse, i.e.,
that each hi, 0 ≤ i ≤ c− 2 is constant on [k]. We easily calculate Pr[E ] = m−(k−1)(c−1). Now, conditioning
on E , we may consider the situation as follows. Let y′ be the random variable satisfying

⊕c−2
i=0 hi(xi) = y′

for all x0, . . . , xc−2 ∈ [k]. The last positional hash function hc−1 is a fully random hash function Σ → m
such that the conditioned variable (X|E) satisfies

(X|E) =
∑

α∈πc−1(S)

kc−1[hc−1(α) = y ⊕ y′] d
=
∑

α∈Σ

kc−1[hc−1(α) = 0] =: X ′,
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where d
= denotes equality of distribution. We write σ′2 = Var [X ′] = k2(c−1) |Σ| m−1

m2 and note that E [X ′] = µ.
Now, since hc−1 is a uniformly random hash function, tightness of the Bennet inequality, Eq. (3), implies
that for t = O(σ′2),

Pr [|X ′ − µ| ≥ t] = Ω
(
exp

(
−σ′2C(t/σ′2)

))
= Ω

(
exp

(
− t2

3σ′2

))
(29)

where we have applied Lemma 9.
Towards our main conclusion, observe that σ2 = kc−1 |Σ| m−1

m2 = σ′2/kc−1. Letting t = σ′
√

logm, t ≤ σ′2
since σ′ >

√
logm by the assumption on the size of m, so we may apply (29) to get

Pr [|X − µ| ≥ t] ≥ Pr [E ] · Pr [|X ′ − µ| ≥ t] ≥ Ω
(
m−ck

)
.

On the other hand, (28) demands that whenever k ≤ γ,

Pr [|X − µ| ≥ t] ≤ 2 exp


−

σ2C
(√

log(m)kc−1/σ
)

C(γ)


+m−γ ≤ 2m−

kc−1

C(γ) +m−γ ,

where the last inequality used Lemma 9 and
√

log(m)kc−1 < σ. Let k = γ
2c and combine the above

inequalities to conclude that 2m−
(γ/(2c))c−1

C(γ) +m−γ = Ω(m−γ/2). It follows that indeed, C(γ) = Ω(γc−2).

Twisted Tabulation and “permutation-tabulation” Variations upon the example above can also be
used to show that the analysis of twisted tabulation hashing is tight in the sense that the added error
probability cannot be improved while maintaining strong concentration. In twisted tabulation we twist the
last position character of the input before applying simple tabulation. The twist is a Feistel permutation
that for the key set S = [k]b × Σc−b, will only permute the keys within the set. Since the set of twisted
keys is the same as the original set S, this has no effect on the filling of bins. For almost the same reason, a
reversal of the order of operations in our new tabulation-permutation hashing, i.e., if is first permuted each
position character and the applied simple tabulation, would not improve the analysis, since the set S while
not invariant under the operation, would retain the same structure.

9 Experiments
This section is dedicated to provide further details regarding the timing experiments presented in the intro-
duction in Section 1.7.4. Furthermore, we present experiments which demonstrate concrete bad input sets
for several hash functions that do not guarantee strong concentration bounds.

As explained in Section 1.7.4, we ran experiments on various basic hash functions. More precisely, we
compared our new hashing schemes tabulation-permutation and tabulation-1permutation with the following
hashing schemes: k-independent PolyHash [9], Multiply-Shift [18], simple tabulation [49], twisted tabula-
tion [41], mixed tabulation [16], and double tabulation [45]. We were interested in both the speed of the
hash functions involved, and the quality of the output. For our timing experiments we studied the hashing of
32-bit keys to 32-bit hash values, and 64-bit keys to 64-bit hash values. Aside from having strong theoretical
guarantees, our experiments show that tabulation-permutation and tabulation-1permutation are very fast in
practice.

All experiments are implemented in C++11 using a random seed from https://www.random.org. The
seed for the tabulation based hashing methods uses a random 100-independent PolyHash function. PolyHash
is implemented using the Mersenne primes p = 261−1 for 32 bits and p = 289−1 for 64 bits. Furthermore, it
has been implemented using Horner’s rule, and GCC’s 128-bit integers to ensure an efficient implementation.
Double tabulation is implemented as described in [45] with Σ = [216], c = 2, d = 20.
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Running time (ms)
Computer 1 Computer 2

Hash function 32 bits 64 bits 32 bits 64 bits
Multiply-Shift 4.2 7.5 23.0 36.5
2-Independent PolyHash 14.8 20.0 72.2 107.3
Simple tabulation 13.7 17.8 53.1 55.9
Twisted tabulation 17.2 26.1 65.6 92.5
Mixed tabulation 28.6 68.1 120.1 236.6
Tabulation-1permutation 16.0 19.3 63.8 67.7
Tabulation-permutation 27.3 43.2 118.1 123.6
Double tabulation 1130.1 – 3704.1 –
“Random” (100-Independent PolyHash) 2436.9 3356.8 7416.8 11352.6

Table 3: The time for different hash functions to hash 107 keys of length 32 bits and 64 bits, respectively, to
ranges of size 32 bits and 64 bits. The experiment was carried out on two computers. The hash functions
written in italics are those without general Chernoff-style bounds. Hash functions written in bold are the
contributions of this paper. The hash functions in regular font are known to provide Chernoff-style bounds.
Note that we were unable to implement double tabulation from 64 bits to 64 bits since the hash tables were
too large to fit in memory.

Timing We timed the speed of the hash functions on two different computers. The first computer (Com-
puter 1 in Table 3) has a 2.4 GHz Quad-Core Intel Core i5 processor and 8 GB RAM, and it is running
macOS Catalina. The second computer (Computer 2 in Table 3) has 1.5 GHz Intel Core i3 processor and 4
GB RAM, and it is running Windows 10. We restate the results of our experiments in Table 3 and refer the
reader to Section 1.7.4 for a discussion of these results and of the choice of parameters used in the various
hashing schemes.

Quality We will now present experiments with concrete bad instances for the schemes without general
concentration bounds, that is, Multiply-Shift, 2-independent PolyHash, simple tabulation, and twisted tab-
ulation. In each case, we compare with our new tabulation-permutation scheme as well as 100-independent
PolyHash, which is our approximation to an ideal fully random hash function. We note that all schemes
considered are 2-independent, so they all have exactly the same variance as fully-random hashing. From 2-
independence, it also follows that the schemes work perfectly on sufficiently random input [35]. Our concern
is therefore concrete inputs making them fail in the tail.

First, we consider simple bad instances for Multiply-Shift and 2-independent PolyHash. These are an-
alyzed in detail in [39, Appendix B]. The specific instance we consider is that of hashing the arithmetic
progression A = {a · i | i ∈ [50000]} into 16 bins, where we are interested in the number of keys from A
that hashes to a specific bin. We performed this experiment 5000 times, with independently chosen hash
functions. The cumulative distribution functions on the number of keys from A hashing to a specific bin is
presented in Figure 2. We see that most of the time 2-independent PolyHash and Multiply-Shift distribute
the keys perfectly with exactly 1/16 of the keys in our bin. Since the variance is the same as with fully
random hashing, this should suggest a much heavier tail, which is indeed what our experiments show. For
contrast, we see that the cumulative distribution function with our tabulation-permutation hash function
is almost indistinguishable from that of 100-independent Poly-Hash. We note that our experiments with
tabulation-permutation is only a sanity check: No experiment can prove good performance on all possible
inputs.

Our second set of experiments shows bad instances for simple tabulation and twisted tabulation. We
already know theoretically from Section 8 that these bad instances exist, but we shall now see that, in a
sense, things can be even worse than described in Section 8 for certain sets of keys. The specific instance
we consider is hashing the discrete cube Q = [2]7 × [26] to m = 2 bins using simple tabulation, twisted
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Figure 2: Hashing the arithmetic progression {a · i | i ∈ [50000]} to 16 bins for a random integer a. The
dotted line is a 100-independent PolyHash.
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Figure 3: Hashing the discrete cube [2]7 × [26] to 2 bins. The dotted line is a 100-independent PolyHash.

tabulation, and tabulation-permutation. We performed this experiment 5000 times, with independently
chosen hash functions, and again we were interested in the number of keys from Q hashing to one of the
bins. The cumulative distribution functions of the number of such keys is presented in Figure 3. Let us
explain the appearance of the curves for simple and twisted tabulation. In general, if we hash the set of keys
[2] × R to [2] with simple tabulation, then if h1(0) 6= h1(1), each bin will get exactly the same amount of
keys. When we hash the set of keys [2]7 × [26] this happens with probability 1− 2−7. If on the other hand
hi(0) = hi(1) for each i = 1, . . . , 7, which happens with probability 2−7, the distribution of the balls in the
bins is the same as that when 26 balls, each of weight 27, are distributed independently and uniformly at
random into the two bins. If this happens, the variance of the number of balls in a bin is a factor of 27 higher,
so we expect a much heavier tail than in the completely independent case. These observations agree with the
results in Figure 3. Most of the time, the distribution is perfect, but the tail is very heavy. We believe that this
instance is also one of the worst instances for tabulation-permutation hashing. We would therefore expect to
see that on this instance it performs slightly worse than 100-independent PolyHash, which is indeed what our
experiments show. We note that that no amount of experimentation can prove that tabulation-permutation
always works well for all inputs. We do, however, have mathematical concentration guarantees, and the
experiments performed here give us some idea of the impact of the constant delay hidden in the exponential
decrease in the bounds of Theorem 2. For completeness, we note that the situation with mixed tabulation
is unresolved. Neither do we have strong concentration bounds, nor any bad instances showing that such
bounds do not hold. Running experiments is not expected to resolve this issue since mixed tabulation, as
any other 2-independent hashing scheme, performs well on almost all inputs [35].
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Abstract

To get estimators that work within a certain error bound with high probability, a common strategy
is to design one that works with constant probability, and then boost the probability using independent
repetitions. Important examples of this approach are small space algorithms for estimating the number of
distinct elements in a stream, or estimating the set similarity between large sets. Using standard strongly
universal hashing to process each element, we get a sketch based estimator where the probability of a too
large error is, say, 1/4. By performing r independent repetitions and taking the median of the estimators,
the error probability falls exponentially in r. However, running r independent experiments increases the
processing time by a factor r.

Here we make the point that if we have a hash function with strong concentration bounds, then we get
the same high probability bounds without any need for repetitions. Instead of r independent sketches,
we have a single sketch that is r times bigger, so the total space is the same. However, we only apply a
single hash function, so we save a factor r in time, and the overall algorithms just get simpler.

Fast practical hash functions with strong concentration bounds were recently proposed by Aamand
et al. (to appear in STOC 2020). Using their hashing schemes, the algorithms thus become very fast
and practical, suitable for online processing of high volume data streams.

∗Basic Algorithms Research Copenhagen (BARC), University of Copenhagen.
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1 Introduction
To get estimators that work within a certain error bound with high probability, a common strategy is to design
one that works with constant probability, and then boost the probability using independent repetitions. A
classic example of this approach is the algorithm of Bar-Yossef et al. [3] to estimate the number of distinct
elements in a stream. Using standard strongly universal hashing to process each element, we get an estimator
where the probability of a too large error is, say, 1/4. By performing r independent repetitions and taking
the median of the estimators, the error probability falls exponentially in r. However, running r independent
experiments increases the processing time by a factor r.

Here we make the point that if we have a hash function with strong concentration bounds, then we get the
same high probability bounds without any need for repetitions. Instead of r independent sketches, we have
a single sketch that is Θ(r) times bigger, so the total space is essentially the same. However, we only apply
a single hash function, processing each element in constant time regardless of r, and the overall algorithms
just get simpler.

Fast practical hash functions with strong concentration bounds were recently proposed by Aamand et
al. [1]. Using their hashing schemes, we get a very fast implementation of the above streaming algorithm,
suitable for online processing of high volume data streams.

To illustrate a streaming scenario where the constant in the processing time is critical, consider the
Internet. Suppose we want to process packets passing through a high-end Internet router. Each application
only gets very limited time to look at the packet before it is forwarded. If it is not done in time, the
information is lost. Since processors and routers use some of the same technology, we never expect to have
more than a few instructions available. Slowing down the Internet is typically not an option. The papers
of Krishnamurthy et al. [19] and Thorup and Zhang [25] explain in more detail how high speed hashing is
necessary for their Internet traffic analysis. Incidentally, the hash function we use from [1] is a bit faster
than the ones from [19, 25], which do not provide Chernoff-style concentration bounds.

The idea is generic and can be applied to other algorithms. We will also apply it to Broder’s original
min-hash algorithm [7] to estimate set similarity, which can now be implemented efficiently, giving the desired
estimates with high probability.

Concentration Let us now be more specific about the algorithmic context. We have a key universe U ,
e.g., 64-bit keys, and a random hash function h mapping U uniformly into R = (0, 1].

For some input set S and some fraction p ∈ [0, 1), we want to know the number X of keys from S that
hash below p. Here p could be an unknown function of S, but p should be independent of the random hash
function h. Then the mean µ is E [X] = |S|p.

If the hash function h is fully random, we get the classic Chernoff bounds on X (see, e.g, [20]):

Pr [X ≥ (1 + ε)µ] ≤ exp(−ε2µ/3) for 0 ≤ ε ≤ 1, (1)

Pr [X ≤ (1− ε)µ] ≤ exp(−ε2µ/2) for 0 ≤ ε ≤ 1. (2)

Unfortunately, we cannot implement fully random hash functions as it requires space as big as the universe.
To get something implementable in practice, Wegman and Carter [26] proposed strongly universal hash-

ing. The random hash function h : U → R is strongly universal if for any given distinct keys x, y ∈ U ,
(h(x), h(y)) is uniform in R2. The standard implementation of a strongly universal hash function into [0, 1)
is to pick large prime ℘ and two uniformly random numbers a, b ∈ Z℘. Then ha,b(x) = ((ax+ b) mod ℘)/℘
is strongly universal from U ⊆ Z℘ to R = {i/℘|i ∈ Z℘} ⊂ [0, 1). Obviously it is not uniform in [0, 1), but
for any p ∈ [0, 1), we have Pr [h(x) < p] ≈ p with equality if p ∈ R. Below we ignore this deviation from
uniformity in [0, 1).

Assuming we have a strongly universal hash function h : U → [0, 1), we again let X be the number of
elements from S that hash below p. Then µ = E [X] = |S|p and because the hash values are 2-independent,
we have Var [X] ≤ E [X] = µ. Therefore, by Chebyshev’s inequality,

Pr [|X − µ| ≥ εµ] < 1/(ε2µ).
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As ε2µ gets large, we see that the concentration we get with strongly universal hashing is much weaker than
the Chernoff bounds with fully random hashing. However, Chebyshev is fine if we just aim at a constant
error probability like 1/4, and then we can use the median over independent repetitions to reduce the error
probability.

In this paper we discuss benefits of having hash functions with strong concentration akin to that of fully
random hashing:

Definition 1. A hash function h : U → [0, 1) is strongly concentrated with added error probability E if for
any set S ⊆ U and p ∈ [0, 1), if X is the number of elements from S hashing below p, µ = p|S| and ε ≤ 1,
then

Pr [|X − µ| ≥ εµ] = 2 exp(−Ω(ε2µ)) + E .
If E = 0, we simply say that h is strongly concentrated.

Another way of viewing the added error probability E is as follows. We have strong concentration as long
as we do not aim for error probabilities below E , so if E is sufficiently low, we can simply ignore it.

What makes this definition interesting in practice is that Aamand et al. [1] recently presented a fast
practical small constant time hash function that for U = [u] = {0, . . . , u− 1} is strongly concentrated with
added error probability u−γ for any constant γ. This term is so small that we can ignore it in all our
applications. The speed is obtained using certain character tables in cache that we will discuss later.

Next we consider our two streaming applications, distinct elements and set-similarity, showing how
strongly concentrated hashing eliminates the need for time consuming independent repetitions. We stress
that in streaming algorithms on high volume data streams, speed is of critical importance. If the data is not
processed quickly, the information is lost.

Distinct elements is the simplest case, and here we will also discuss the ramifications of employing the
strongly concentrated hashing of Aamand et al. [1] as well as possible alternatives.

2 Counting distinct elements in a data stream
We consider a sequence of keys x1, . . . , xs ∈ [u] where each element may appear multiple times. Using only
little space, we wish to estimate the number n of distinct keys. We are given parameters ε and δ, and the
goal is to create an estimator, n̂, such that (1− ε)n ≤ n̂ ≤ (1 + ε)n with probability at least 1− δ.

Following the classic approach of Bar-Yossef et al. [3], we use a strongly universal hash function h : U →
(0, 1]. For simplicity, we assume h to be collision free over U .

For some k > 1, we maintain the k smallest distinct hash values of the stream. We assume for simplicity
that k ≤ n. The space required is thus O(k), so we want k to be small. Let x(k) be the key having the k’th
smallest hash value under h and let h(k) = h(x(k)). As in [3], we use n̂ = k/h(k) as an estimator for n (we
note that [3] suggests several other estimators, but the points we will make below apply to all of them).

The point in using a hash function h is that all occurrences of a given key x in the stream get the same
hash value, so if S is the set of distinct keys, h(k) is just the k smallest hash value from S. In particular,
n̂ depends only on S, not on the frequencies of the elements of the stream. Assuming no collisions, we will
often identify the elements with the hash values, so xi is smaller than xj if h(xi) ≤ h(xj).

We would like 1/h(k) to be concentrated around n/k. For any probability p ∈ [0, 1], let X<p denote the
number of elements from S that hash below p. Let p− = k/((1 + ε)n) and p+ = k/((1 − ε)n). Note that
both p− and p+ are independent of the random hash function h. Now

1/h(k) ≤ (1− ε)n/k ⇐⇒ X<p+ < k = (1− ε)E
[
X<p+

]

1/h(k) > (1 + ε)n/k ⇐⇒ X<p− ≥ k = (1 + ε)E
[
X<p−

]
,

and these observations form a good starting point for applying probabilistic tail bounds as we now describe.
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2.1 Strong universality and independent repetitions
Since h is strongly universal, the hash values of any two keys are independent, so for any p, we have
Var [X<p] ≤ E [X<p], and so by Chebyshev’s inequality,

Pr
[
1/h(k) ≤ (1− ε)n/k

]
< (1− ε)/(kε2)

Pr
[
1/h(k) > (1 + ε)n/k

]
≤ (1 + ε)/(kε2).

Assuming ε ≤ 1, we thus get that

Pr [|n̂− n| > εn] = Pr
[∣∣1/h(k) − n/k

∣∣ > εn/k
]
≤ 2/(kε2).

To get the desired error probability δ, we could now set k = 2/(δε2), but if δ is small, e.g. δ = 1/u, k becomes
way too large. As in [3] we instead start by aiming for a constant error probability, δ0, say δ0 = 1/4. For
this value of δ0, it suffices to set k0 = 8/ε2. We now run r (to be determined) independent experiments
with this value of k0, obtaining independent estimators for n, n̂1, . . . , n̂r. Finally, as our final estimator, n̂,
we return the median of n̂1, . . . , n̂r. Now for each 1 ≤ i ≤ r, Pr[|n̂i − n| > εn] ≤ 1/4 and these events are
independent. If |n̂− n| ≥ εn, then |n̂i − n| ≥ εn for at least half of the 1 ≤ i ≤ r. By the standard Chernoff
bound (1), this probability can be bounded by

Pr [|n̂− n| > εn] ≤ exp(−(r/4)/3) = exp(−r/12).

Setting r = 12 ln(1/δ), we get the desired error probability 1/δ. The total number of hash values stored is
k0r = (8/ε2)(12 ln(δ)) = 96 ln(1/δ)/ε2.

2.2 A better world with fully random hashing
Suppose instead that h : [u] → (0, 1] is a fully random hash function. In this case, the standard Chernoff
bounds (1) and (2) with ε ≤ 1 yield

Pr
[
1/h(k) ≤ (1− ε)n/k

]
< exp(−(k/(1− ε))ε2/2)

Pr
[
1/h(k) > (1 + ε)n/k

]
≤ exp(−(k/(1 + ε))ε2/3).

Hence
Pr [|n̂− n| > εn] = Pr

[
|1/h(k) − n/k| ≥ εn/k

]
≤ 2 exp(−kε2/6). (3)

Thus, to get error probability δ, we just use k = 6 ln(2/δ)/ε2. There are several reasons why this is much
better than the above approach using 2-independence and independent repetitions.

• It avoids the independent repetitions, so instead of applying r = Θ(log(1/δ)) hash functions to each
key we just need one. We thus save a factor of Θ(log(1/δ)) in speed.

• Overall we store fewer hash values: k = 6 ln(2/δ)/ε2 instead of 96 ln(1/δ)/ε2.

• With independent repetitions, we are tuning the algorithm depending on ε and δ, whereas with a
fully-random hash function, we get the concentration from (3) for every ε ≤ 1.

The only caveat is that fully-random hash functions cannot be implemented.

2.3 Using hashing with strong concentration bounds
We now discuss the effect of relaxing the abstract full-random hashing to hashing with strong concentration
bounds and added error probability E . Then for ε ≤ 1,

Pr
[
1/h(k) ≤ (1− ε)n/k

]
= 2 exp(−Ω(k/(1− ε))ε2) + E

Pr
[
1/h(k) > (1 + ε)n/k

]
= 2 exp(−Ω(k/(1 + ε))ε2) + E .
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so
Pr [|n̂− n| ≥ εn] = Pr

[
|1/h(k) − n/k| ≥ εn/k

]
≤ 2 exp(−Ω(kε2)) +O(E). (4)

To obtain the error probability δ = ω(E), we again need to store k = O(log(1/δ)/ε2) hash values. Within
a constant factor this means that we use the same total number using 2-independence and independent
repetitions, and we still retain the following advantages from the fully random case.

• With no independent repetitions we avoid applying r = Θ(log(1/δ)) hash functions to each key, so we
basically save a factor Θ(log(1/δ)) in speed.

• With independent repetitions, we only address a given ε ≤ 1 and δ, while with a fully-random hash
function we get the concentration from (3) for every ε ≤ 1.

2.4 Implementation and alternatives
We briefly discuss how to maintain the k smallest elements/hash values. The most obvious method is using a
priority queue, but this takes O(log k) time per element, dominating the cost of evaluating the hash function.
However, we can get down to constant time per element if we have a buffer for k. When the buffer gets
full, we find the median in linear time with (randomized) selection and discard the bigger elements. This is
standard to de-amortize if needed.

A different, and more efficient, sketch from [3] identifies the smallest b such that the number X<1/2b

of keys hashing below 1/2b is at most k. For the online processing of the stream, this means that we
increment b whenever X<1/2b > k. At the end, we return 2bX<1/2b . The analysis of this alternative sketch
is similar to the one above, and we get the same advantage of avoiding independent repetitions using strongly
concentrated hashing, that is, for error probability δ, in [3], they run O(log(1/δ)) independent experiments
with independent hash functions, each storing up to k = O(1/ε2) hash values, whereas we run only a single
experiment with a single strongly concentrated hash function storing k = O(log(1/δ)/ε2) hash values. The
total number of hash values stored is the same, but asymptotically, we save a factor log(1/δ) in time.

Other alternatives Estimating the number of distinct elements in a stream began with the work of
Flajolet and Martin [13] and has continued with a long line of research [2, 3, 4, 5, 8, 9, 11, 12, 13, 14, 15, 16,
17, 27]. In particular, there has been a lot of focus on minimizing the sketch size. Theoretically speaking,
the problem finally found an asymptotically optimal, both in time and in space, solution by Kane, Nelson
and Woodruff [18], assuming we only need 2

3 probability of success. The optimal space, including that of
the hash function, is O(ε−2 + log n) bits, improving the O(ε−2 · log n) bits needed by Bar-Yossef et al. [3]
to store O(ε−2) hash values. Both [3] and [18], suggest using O(log(1/δ)) independent repetitions to reduce
the error probability to 1/δ, but then both time and space blow up by a factor O(log(1/δ)).

Recently Blasiok [6] found a space optimal algorithm for the case of small error probability 1/δ. In this
case, the bound from [18] with independent repetitions was O(log(1/δ)(ε−2 + log n)) which he reduces to
O(log(1/δ)ε−2 + log n), again including the space for hash functions. He no longer has O(log(1/δ)) hash
functions, but this only helps his space, not his processing time, which he states as polynomial in log(1/δ)
and log n.

The above space optimal algorithms [6, 18] are very interesting, but fairly complicated, seemingly in-
volving some quite large constants. However, here our focus is to get a fast practical algorithm to handle a
high volume data stream online, not worrying as much about space. Assuming fast strongly concentrated
hashing, it is then much better to use our implementation of the simple algorithm of Bar-Yossef et al. [3]
using k = O(ε−2 log(1/δ)).

2.5 Implementing Hashing with Strong Concentration
As mentioned earlier, Aamand et al. [1] recently presented a fast practical small constant time hash function,
Tabulation-1Permutation, that for U = [u] = {0, . . . , u− 1} is strongly concentrated with additive error u−γ
for any constant γ. The scheme obtains its power and speed using certain character tables in cache.
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More specifically, we view keys as consisting of a small number c of characters from some alphabet Σ,
that is, U = Σc. For 64-bit keys, this could be c = 8 characters of 8 bits each. Let’s say that hash values
are also from U , but viewed as bit strings representing fractions in [0, 1).

Tabulation-1Permutation needs c + 1 character tables mapping characters to hash values. To compute
the hash value of a key, we need to look up c + 1 characters in these tables. In addition we need O(c) fast
AC0 operations to extract the characters and xor the hash values. The character tables can be populated
with an O(log n) independent pseudo-random number generator, needing a random seed of O((log n)(log u))
bits.

Computer dependent versus problem dependent view of resources for hashing We view the
resources used for Tabulation-1Permutation as computer dependent rather than problem dependent. When
you buy a new computer you can decide how much cache you want to allocate for your hash functions. In
the experiments performed in [1], using 8-bit characters and c = 8 for 64-bit keys was very efficient. On
two computers, it was found that tabulation-1permutation was less than 3 times slower than the fastest
known strongly universal hashing scheme; namely Dietzfelbinger’s [10] which does just one multiplication
and one shift. Also, Tabulation-1Permutation was more than 50 times faster than the fastest known highly
independent hashing scheme; namely Thorup’s [24] double tabulation scheme which, in theory also works in
constant time.

In total, the space used by all the character tables is 9 × 28 × 64 bits which is less than 20 KB, which
indeed fits in very fast cache. We note that when we have first populated the tables with hash values, they
are not overwritten. This means that the cache does not get dirty, that is different computer cores can access
the tables and not worry about consistency.

This is different than the work space used to maintain the sketch of the number of distinct keys represented
via k = O(ε−2 log(1/δ)) hash values, but let’s compare anyway with real numbers. Even with a fully random
hash function with perfect Chernoff bounds, we needed k = 6 ln(2/δ)/ε2, so with, say, δ = 1/230 and ε = 1%,
we get k > 220, which is much more than the 9× 28 hash values stored in the character tables for the hash
functions. Of course, we would be happy with a much smaller k so that everything is small and fits in fast
cache.

We note that any k > |Σ| = 28 rules out the concentration of previous tabulation schemes such a simple
tabulation [21] and twisted tabulation [22]. The reader is referred to [1] for a thorough discussion of the
alternatives.

Finally, we relate our strong concentration from Definition 1 to the exact concentration result from [1]:

Theorem 1. Let h : [u] → [r] be a tabulation-1permutation hash function with [u] = Σc and [r] = Σd,
c, d = O(1). Consider a key/ball set S ⊆ [u] of size n = |S| where each ball x ∈ S is assigned a weight
wx ∈ [0, 1]. Choose arbitrary hash values y1, y2 ∈ [r] with y1 ≤ y2. Define X =

∑
x∈S wx · [y1 ≤ h(x) < y2]

to be the total weight of balls hashing to the interval [y1, y2). Write µ = E [X] and σ2 = Var [X]. Then for
any constant γ and every t > 0,

Pr[|X − µ| ≥ t] ≤ 2 exp(−Ω(σ2 C(t/σ2))) + 1/uγ . (5)

Here C : (−1,∞)→ [0,∞) is given by C(x) = (x+ 1) ln(x+ 1)− x, so exp(−C(x)) = ex

(1+x)(1+x) . The above
also holds if we condition the random hash function h on a distinguished query key q having a specific hash
value.

The above statement is far more general than what we need. All our weights are unit weights. We fix
r = u and y1 = 0. Viewing hash values as fractions in [0, 1), the random variable X is the number of items
hashing below p = y2/u. Also, since Var [X] ≤ E [X], (5) implies the same statement with µ instead of σ2.
Moreover, our ε ≤ 1 corresponds to t = εµ ≤ µ, and then we get

Pr[|X − µ| ≥ εµ] ≤ 2 exp(−Ω(µ C(ε))) + 1/uγ ≤ 2 exp(−Ω(µε2)) + 1/uγ .

which is exactly as in our Definition 1. Only remaining difference is that Definition 1 should work for any
p ∈ [0, 1) while the bound we get only works for p that are multiples of 1/u. However, this suffices by the
following general lemma:
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Lemma 2. Suppose we have a hash function h : [u] → [0, 1) such that for any set S ⊆ U and for any
p ∈ [0, 1) that is a multiple of 1/u, for the number X<p of elements from S that hash below p, with µp = p|S|
and ε ≤ 1, it holds that

Pr
[
|X<p − µp| ≥ εµp

]
≤ 2 exp(−Ω(ε2µp)) +O(E).

Then the same statement holds for all p ∈ [0, 1)

Proof. First we note that the statement is trivially true if ε2µp = O(1), so we can assume ε2µp = ω(1). Since
ε ≤ 1, we also have µp = ω(1).

We are given an arbitrary p ∈ [0, 1). Let p+ = i/u be the nearest higher multiple of 1/u. Since |S| ≤ u
and µp = p|S| we have i ≥ µp, implying i = ω(1). We also let p− = (i− 1)/u.

It is now clear that since p− < p ≤ p+, it holds that X<p− ≤ X<p ≤ X<p+ . We first show that

X<p ≤ (1− ε)µp =⇒ X<p− ≤ (1− ε/2)µp− .

Indeed, X<p ≤ (1− ε)µp implies X<p− ≤ (1− ε)p|S| ≤ (1− ε)(p−+ 1/u)|S| = µp− − εµp− + (1− ε)|S|/u.
But |S| ≤ u and (1− ε) < 1, so X<p− ≤ µp− − εµp− + 1 ≤ (1− ε/2)µp− . The last follows from the fact

that (ε/2)µp− ≥ (ε/2)µp − (ε/2)|S|/u ≥ (ε2/2)µp − 1, but ε2µp = ω(1) and so (ε/2)µp− = ω(1).
The exact same reasoning gives

X<p ≥ (1 + ε)µp =⇒ X<p+ ≥ (1 + ε/2)µp+ .

But then

Pr
[
|X<p − µp| ≥ εµp

]
= Pr

[
X<p ≤ (1− ε)µp

]
+ Pr

[
X<p ≥ (1 + ε)µp

]
≤

Pr
[
X<p− ≤ (1− ε/2)µp−

]
+ Pr

[
X<p+ ≥ (1 + ε/2)µp+

]
≤

Pr
[
|X<p− − µp− | ≥ (ε/2)µp−

]
+ Pr

[
|X<p+ − µp+ | ≥ (ε/2)µp+

]
≤

Notice that µp − 1 ≤ µp− ≤ µp+ , and p− and p+ are multiples of 1/u, so we can use the bounds of the
statement. Thus Pr [|X<p − µp| ≥ εµp] is upper bounded by

4 exp(−Ω((ε/2)2(µp − 1))) +O(E) = 2 exp(−Ω(ε2µp)) +O(E)

We note that [1] also presents a slightly slower scheme, Tabulation-Permutation, which offers far more
general concentration bounds than those for Tabulation-1Permutation in Theorem 1. However, Tabulation-
1Permutation is faster and sufficient for the strong concentration needed for our streaming applications.

3 Set similarity
We now consider Broder’s [7] original algorithm for set similarity. As above, it uses a hash function h : [u]→
[0, 1] which we assume to be collision free. The bottom-k sample MINk(S) of a set S ⊆ [u] consists of the k
elements with the smallest hash values. If h is fully random then MINk(S) is a uniformly random subset of
k distinct elements from MINk(S). We assume here that k ≤ n = |S|. With MINk(S), we can estimate the
frequency f = |T |/|S| of any subset T ⊆ S as |MINk(S) ∩ T |/k.

Broder’s main application is the estimation of the Jaccard similarity f = |A∩B|/|A∪B| between sets A
and B. Given the bottom-k samples from A and B, we may construct the bottom-k sample of their union
as MINk(A ∪ B) = MINk(MINk(A) ∪MINk(B)), and then the similarity is estimated as |MINk(A ∪ B) ∩
MINk(A) ∩MINk(B)|/k.

We note again the crucial importance of having a common hash function h. In a distributed setting,
samples MINk(A) and MINk(B) can be generated by different entities. As long as they agree on h, they
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only need to communicate the samples to estimate the Jaccard similarity of A and B. As noted before, for
Tabulation-1Permutation h can be shared by exchanging a random seed of O((log n)(log u)) bits.

For the hash function h, Broder [7] first considers fully random hashing. Then MINk(S) is a fully random
sample of k distinct elements from S, which is very well understood.

Broder also sketches some alternatives with realistic hash functions, but Thorup [23] showed that even if
we just use 2-independence, we get the same expected error as with fully random hashing, but here we want
strong concentration. Our analysis follows the simple union-bound approach from [23].

For the analysis, it is simpler to study the case where we are sampling from a set S and want to estimate
the frequency f = |T |/|S| of a subset T ⊆ S. Let h(k) be the kth smallest hash value from S as in the above
algorithm for estimating distinct elements. For any p let Y ≤p be the number of elements from T with hash
value at most p. Then |T ∩MINk(S)| = Y ≤h(k) which is our estimator for fk.

Theorem 3. For ε ≤ 1, if h is strongly concentrated with added error probability E, then

Pr
[
|Y ≤h(k) − fk| > εfk

]
= 2 exp(−Ω(fkε2)) +O(E). (6)

Proof. Let n = |S|. We already saw in (4) that for any εS ≤ 1, PS = Pr
[
|1/h(k) − n/k| ≥ εSn/k

]
≤

2 exp(−Ω(kε2S)) + O(E). Thus, with p− = k/((1 + εS)n) and p+ = k/((1 − εS)n), we have h(k) ∈ [p−, p+]

with probability 1− PS , and in that case, Y ≤p− ≤ Y ≤h(k) ≤ Y ≤p+ .
Let µ− = E

[
Y ≤p−

]
= fk/(1 + εS) ≥ fk/2. By strong concentration, for any εT ≤ 1, we get that

P−T = Pr
[
Y ≤p− ≤ (1− εT )µ−

]
≤ 2 exp(−Ω(µ−ε

2
T )) + E = 2 exp(−Ω(fkε2T )) + E .

Thus
Pr

[
Y ≤h(k) ≤ 1− εT

1 + εS
fk

]
≤ P−T + PS .

Likewise, with µ+ = E
[
Y ≤p+

]
= fk/(1− εS), for any εT , we get that

P+
T = Pr

[
Y ≤p+ ≥ (1 + εT )µ+

]
≤ 2 exp(−Ω(µ+ε

2
T )) + E = 2 exp(−Ω(fkε2T )) + E ,

and

Pr

[
Y ≤h(k) ≥ 1 + εT

1− εS
fk

]
≤ P+

T + PS .

To prove the theorem for ε ≤ 1, we set εS = εT = ε/3. Then 1+εT
1−εS ≤ 1 + ε and 1−εT

1+εS
≥ 1− ε. Therefore

Pr
[
|Y ≤h(k) − fk| ≥ εfk

]
≤ P−T + P+

T + 2PS ≤ 8 exp(−Ω(fkε2T )) +O(E) = 2 exp(−Ω(fkε2T )) +O(E).

This completes the proof of (6).

As for the problem of counting distinct elements in a stream, in the online setting we may again modify
the algorithm above to obtain a more efficient sketch. Assuming that the elements from S appear in a
stream, we again identify the smallest b such that the number of keys from S hashing below 1/2b, X≤1/2

b

,
is at most k. We increment b by one whenever X≤1/2

b

> k and in the end we return Y ≤1/2
b

/X≤1/2
b

as an
estimator for f . The analysis of this modified algorithm is similar to the analysis provided above.
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Abstract

We consider the hashing of a set X ⊆ U with |X| = n using a simple tabulation hash
function h : U → [m] = {0, . . . ,m− 1} and analyse the number of non-empty bins, that is,
the size of h(X). We show that the expected size of h(X) matches that with fully random
hashing to within low-order terms. We also provide concentration bounds. The number of
non-empty bins is a fundamental measure in the balls and bins paradigm, and it is critical in
applications such as Bloom filters and Filter hashing. For example, normally Bloom filters
are proportioned for a desired low false-positive probability assuming fully random hashing
(see en.wikipedia.org/wiki/Bloom_filter). Our results imply that if we implement the
hashing with simple tabulation, we obtain the same low false-positive probability for any
possible input.



1 Introduction

We consider the balls and bins paradigm where a set X ⊆ U of |X| = n balls are distributed
into a set of m bins according to a hash function h : U → [m]. We are interested in questions
relating to the distribution of |h(X)|, for example: What is the expected number of non-empty
bins? How well is |h(X)| concentrated around its mean? And what is the probability that a
query ball lands in an empty bin? These questions are critical in applications such as Bloom
filters [3] and Filter hashing [7].

In the setting where h is a fully random hash function, meaning that the random variables
(h(x))x∈U are mutually independent and uniformly distributed in [m], the situation is well
understood. The random distribution process is equivalent to throwing n balls sequentially into
m bins by for each ball choosing a bin uniformly at random and independently of the placements
of the previous balls. The probability that a bin becomes empty is thus (1− 1/m)n; so the
expected number of non-empty bins is exactly µ0 := m (1 − (1 − 1/m)n) and, unsurprisingly,
the number of non-empty bins turns out to be sharply concentrated around µ0 (see for example
Kamath et al. [8] for several such concentration results).

In practical applications fully random hashing is unrealistic and so it is desirable to replace
the fully random hash functions with realistic and implementable hash functions that still provide
at least some of the probabilistic guarantees that were available in the fully random setting.
However, as the mutual independence of the keys is often a key ingredient in proving results in
the fully random setting most of these proofs do not carry over. Often the results are simply no
longer true and if they are one has to come up with alternative techniques for proving them.

In this paper, we study the number of non-empty bins when the hash function h is chosen
to be a simple tabulation hash function [14, 21]; which is very fast and easy to implement
(see description below in Section 1.1). We provide estimates on the expected size of |h(X)|
which asymptotically match1 those with fully random hashing on any possible input. To get
a similar match within the classic k-independence paradigm [20], we would generally need k =
Ω((log n)/(log log n)). For comparison, simple tabulation is the fastest known 3-independent
hash function [14]. We will also study how |h(X)| is concentrated around its mean.

Our results complements those from [14], which show that with simple tabulation hashing,
we get Chernoff-type concentration on the number of balls in a given bin when n � m. For
example, the results from [14] imply that all bins are non-empty with high probability (whp)
when n = ω(m logm). More precisely, for any constant γ > 0, there exists a C > 0 such that if
n ≥ Cm logm, all bins are non-empty with probability 1−O(m−γ). As a consequence, we only
have to study |h(X)| for n = O(m logm) below. On the other hand, [14] does not provide any
good bounds on the probability that a bin is non-empty when, say, n = m. In this case, our
results imply that a bin is non-empty with probability 1 − 1/e ± o(1), as in the fully random
case. The understanding we provide here is critical to applications such as Bloom filters [3] and
Filter hashing [7], which we describe in section 2.1 and 2.2.

We want to emphasize the advantage of having many complementary results for simple
tabulation hashing. An obvious advantage is that simple tabulation can be reused in many
contexts, but there may also be applications that need several strong properties to work in
tandem. If, for example, an application has to hash a mix of a few heavy balls and many light
balls, and the hash function do not know which is which, then the results from [14] give us
the Chernoff-style concentration of the number of light balls in a bin while the results of this
paper give us the right probability that a bin contains a heavy ball. For another example where
an interplay of properties becomes important see section 2.2 on Filter hashing. The reader is

1Here we use “asymptotically” in the classic mathematical sense to mean equal to within low order terms, not
just within a constant factor.
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referred to [18] for a survey of results known for simple tabulation hashing, as well as examples
where simple tabulation does not suffice and where slower more sophisticated hash functions are
needed.

1.1 Simple tabulation hashing

Recall that a hash function h is a map from a universe U to a range R chosen with respect to some
probability distribution on the set of all such functions. If the distribution is uniform (equiva-
lently the random variables (h(x))x∈U are mutually independent and uniformly distributed in
R) we will say that h is fully random.

Simple tabulation was introduced by Zobrist [21]. For simple tabulation U = [u] = {0, . . . , u−
1} and R = [2r] for some r ∈ N. The keys x ∈ U are viewed as vectors x = (x[0], . . . , x[c − 1])
of c = O(1) characters with each x[i] ∈ Σ := [u1/c]. The simple tabulation hash function h is
defined by

h(x) =
⊕

i∈[c]

hi(x[i]),

where h0, . . . , hc−1 : Σ→ R are independent fully random hash functions and where ⊕ denotes
the bitwise XOR. What makes it fast is that the character domains of h0, . . . , hc−1 are so small
that they can be stored as tables in fast cache. Experiments in [14] found that the hashing of
32-bit keys divided into 4 8-bit characters was as fast as two 64-bit multiplications. Note that
on machines with larger cache, it may be faster to use 16-bit characters. As useful computations
normally involve data and hence cache, there is no commercial drive for developing processors
that do multiplications much faster than cache look-ups. Therefore, on real-world processors, we
always expect cache based simple tabulation to be at least comparable in speed to multiplication.
The converse is not true, since many useful computations do not involve multiplications. Thus
there is a drive to make cache faster even if it is too hard/expensive to speed up multiplication
circuits.

Other important properties include that the c character table lookups can be done in parallel
and that when initialised the character tables are not changed. For applications such as Bloom
filters where more than one hash function is needed another nice property of simple tabulation
is that the output bits are mutually independent. Using (kr)-bit hash values is thus equivalent
to using k independent simple tabulation hash functions each with values in [2r]. This means
that we can get k independent r-bit hash values using only c lookups of (kr)-bit strings.

1.2 Main Results

We will now present our results on the number of non-empty bins with simple tabulation hashing.

The expected number of non-empty bins. Our first theorem compares the expected num-
ber of non-empty bins when using simple tabulation to that in the fully random setting. We
denote by p0 = 1 − (1− 1/m)n < n/m the probability that a bin becomes non-empty and by
µ0 = mp0 the expected number of non-empty bins when n balls are distributed into m bins
using fully random hashing.

Theorem 1.1. Let X ⊆ U be a fixed set of |X| = n balls. Let y ∈ [m] be any bin and suppose
that h : U → [m] is a simple tabulation hash function. If p denotes the probability that y ∈ h(X)
then

|p− p0| ≤
n2−1/c

m2
and hence |E[|h(X)|]− µ0| ≤

n2−1/c

m
.
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If we let y depend on the hash of a distinguished query ball q ∈ U\X, e.g., y = h(q), then the
bound on p above is replaced by the weaker |p− p0| ≤ 2n2−1/c

m2 .

The last statement of the theorem is important in the application to Bloom filters where we
wish to upper bound the probability that h(q) ∈ h(X) for a query ball q /∈ X.

To show that the expected relative error |E[|h(X)|]− µ0| /µ0 is always small, we have to com-
plement Theorem 1.1 with the result from [14] that all bins are full, whp, when n ≥ Cm logm
for some large enough constant C. In particular, this implies |E[|h(X)|]− µ0| /µ0 ≤ 1/m when
n ≥ Cm logm. The relative error from Theorem 1.1 is maximized when n is maximized, and with
n = Cm logm, it is bounded by n2−1/c

m2 = O((log2m)/m1/c) = Õ(m−1/c). Thus we conclude:

Corollary 1.2. Let X ⊆ U be a fixed sets of |X| = n balls and let h : U → [m] be a simple
tabulation hash function. Then |E[|h(X)|]− µ0| /µ0 = Õ(m−1/c).

As discussed above, the high probability bound from [14] takes over when the bounds from
Theorem 1.1 get weaker. This is because the analysis in this paper is of a very different nature
than that in [14].

Concentration of the number of non-empty bins: We now consider the concentration of
|h(X)| around its mean. In the fully random setting it was shown by Kamath et al. [8] that the
concentration of |h(X)| around µ0 is sharp: For any λ ≥ 0 it holds that

Pr(||h(X)| − µ0| ≥ λ) ≤ 2 exp

(
−λ

2(m− 1/2)

µ0(2n− µ0)

)
≤ 2 exp

(
− λ2

2µ0

)
,

which for example yields that |h(X)| = µ0 ± O(
√
µ0 logm) whp, that is, with probability 1 −

O(m−γ) for any choice of γ = O(1). Unfortunately we cannot hope to obtain such a good
concentration using simple tabulation hashing. To see this, consider the set of keys [2]`× [n/2`]
for any constant `, e.g. ` = 1, and let E be the event that hi(0) = hi(1) for i = 0, . . . , `−1. This
event occurs with probability 1/m`. Now if E occurs then the keys of Xi = [2]`×{i} all hash to
the same value namely h0(0)⊕· · ·⊕h`−1(0)⊕h`(i). Furthermore, these values are independently
and uniformly distributed in [m] for i ∈ [n/2`] so the distribution of |h(X)| becomes identical to
the distribution of non-empty bins when n/2` balls are thrown into m bins using truly random
hashing. This observation ruins the hope of obtaining a sharp concentration around µ0 and
shows that the lower bound in the theorem below is best possible being the expected number of
non-empty bins when Ω(n) balls are distributed into m bins.

Theorem 1.3. Let X ⊆ U be a fixed sets of |X| = n keys. Let h : U → [m] be a simple
tabulation hash function. Then whp

|h(X)| ≥ m
(

1−
(

1− 1

m

)Ω(n)
)

As argued above, the lower bound in Theorem 1.3 is optimal. Settling with a laxer require-
ment than high probability, it turns out however that |h(X)| is somewhat concentrated around
µ0. This is the content of the following theorem which also provides a high probability upper
bound on |h(X)|.
Theorem 1.4. Let X ⊆ U be a fixed sets of |X| = n keys. Let h : U → [m] be a random simple
tabulation hash function. For t ≥ 0 it holds that

Pr [|h(X)| ≥ µ0 + 2t] = O

(
exp

( −t2
2m2−1/c

))
, and (1.1)

Pr [|h(X)| ≤ µ0 − 2t] = O

(
exp

( −t2
2n2−1/c

)
+

n2

mt2

)
. (1.2)
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The term n2/(mt2) in the second bound in the theorem may be unexpected but it has to be
there (at least when n = O(m)) as we will argue after proving the theorem.

Theorem 1.4 is proved using Azuma’s inequality (which we will state and describe later). It
turns out that when n� m one can obtain stronger concentration using a stronger martingale
inequality. For intuition, the reader is encouraged to think of the fully random setting where
n balls are thrown sequentially into m bins independently and uniformly at random: In this
setting the allocation of a single ball can change the conditionally expected number of non-
empty bins by at most 1 and this is the type of observation that normally suggests applying
Azuma’s inequality. However, when n� m, it is unlikely that the allocation of a ball will change
the conditional expectation of the number of non-empty bins by much — for that to happen
the ball has to hit a bin that is already non-empty, and the probability that this occurs is at
most n/m� 1. Using a martingale inequality by Mcdiarmid [9], that takes the variance of our
martingale into consideration, one can obtain the following result which is an improvement over
Theorem 1.4 when n� m, and matches within O-notation when n = Θ(m).

Theorem 1.5. Let X ⊆ U be a fixed sets of |X| = n keys. Let h : U → [m] be a random simple
tabulation hash function. Assume n ≤ m. For t ≥ 0 it holds that

Pr [|h(X)| ≥ µ0 + t] = exp

(
−Ω

(
min

{
t2

n3−1/c

m

,
t

n1−1/c

}))
, and (1.3)

Pr [|h(X)| ≤ µ0 − t] = exp

(
−Ω

(
min

{
t2

n3−1/c

m

,
t

n1−1/c

}))
+O

(
n2

mt2

)
. (1.4)

The above bounds are unwieldy so let us disentangle them. First, one can show using simple
calculus that when 2 ≤ n ≤ m then µ0 = n − Θ(n2/m). If n1+1/c = o(m) we thus have that
µ0 = n − o(n1−1/c). To get a non-trivial bound from (1.3) we have to let t = Ω(n1−1/c) and
then µ0 + t = m + ω(n1−1/c). This means that (1.3) is trivial when n1+1/c = o(m) as we can
never have more than n non-empty bins. For comparison, (1.1) already becomes trivial when
n1+1/(2c) = o(m).

Suppose now that n1+1/c = Ω(m). For a given δ put

t0 = ηmax

{√
n3−1/c

m
log

1

δ
, n1−1/c log

1

δ

}
,

for some sufficiently large η = O(1). Then (1.3) gives that Pr [|h(X)| ≥ µ0 + t0] ≤ δ. It remains

to understand t0: Assuming that n1+1/c ≥ m log 1
δ , we have that t0 = O

(√
n3−1/c

m log 1
δ

)
. For

comparison, to get the same guarantee on the probability using (1.1) we would have to put

t0 = Ω
(√

n2−1/c log 1
δ

)
, which is a factor of

√
m/n larger.

Turning to (1.4), it will typically in applications be the term O
(
n2

mt2

)
that dominates the

bound. For a given δ we would choose t = max{t0, n/
√
mδ} to get Pr [|h(X)| ≤ µ0 − t] = O(δ).

1.3 Projecting into Arbitrary Ranges

Simple tabulation is an efficient hashing scheme for hashing into r-bit hash values. But what
do we do if we want hash values in [m] where 2r−1 < m < 2r, say m = 3 × 2r−2? Besides
being of theoretical interest this is an important question in several practical applications. For
example, when designing Bloom filters (which we will describe shortly), to minimize the false
positive probability, we have to choose the size m of the filters such that m ≈ n/ ln(2). When
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m has to be a power of two, we may be up to a factor of
√

2 off, and this significantly affects the
false positive probability. Another example is cuckoo hashing [13], which was shown in [14] to
succeed with simple tabulation with probability 1 − O(m−1/3) when 2n(1 + ε) ≤ m. If n = 2r

we have to choose m as large as 2r+2 = 4n to apply this result, making it much less useful.
The way we remedy this is a standard trick, see e.g. [17]. We choose r such that 2r � m,

and hash in the first step to r-bit strings with a simple tabulation hash function h : U → [2r].
Usually 2r ≥ m2 suffices and then the entries of the character tables only becomes twice as
long. Defining s : [2r]→ [m] by s(y) = bym/2rc our combined hash function U → [m] is simply
defined as s ◦ h. Note that s is very easy to compute since we do just one multiplication and
since the division by 2r is just an r-bit right shift. The only property we will use about s is that
it is most uniform meaning that for z ∈ [m] either, |s−1({z})| = b2r

m c or |s−1({z})| = d2r

m e. For
example, we could also use s′ : [2r] → [m] defined by s′(y) = y (mod m), but s is much faster
to compute. Note that if 2r ≥ m2, then

∣∣∣ |s
−1({z})|

2r − 1
m

∣∣∣ ≤ 2−r ≤ m−2.
A priori it is not obvious that s ◦ h has the same good properties as “normal” simple tabu-

lation. The set of bins can now be viewed as {s−1({z}) : z ∈ [m]}, so each bin consists of many
“sub-bins”, and a result on the number of non-empty sub-bins does not translate directly to any
useful result on the number of non-empty bins. Nonetheless, many proofs of results for simple
tabulation do not need to be modified much in this new setting. For example, the simplified
proof given by Aamand et al. [1] of the result on cuckoo hashing from [14] can be checked to carry
over to the case where the hash functions are implemented as described above if r is sufficiently
large. We provide no details here.

For the present paper the relevant analogue to Theorem 1.1 is the following:

Theorem 1.6. Let X ⊆ U be a fixed set of |X| = n balls, and let S ⊆ [2r] with |S|/2r = ρ.
Suppose h : U → [2r] is a simple tabulation hash function. Define p′0 = 1− (1−ρ)n. If p denotes
the probability that h(X) ∩ S 6= ∅, then

|p− p′0| ≤ n2−1/cρ2

If we let S (and hence ρ) depend on the hash of a distinguished query ball q ∈ U\X, then the
bound on p above is replaced by the weaker |p− p0| ≤ 2n2−1/cρ2.

If we assume 2r ≥ m2, say, and let S = s−1({z}) be a bin of S ⊂ [2r] we obtain the following
estimate on p:

|p− p0| ≤ |p− p′0|+ |p′0 − p0|

≤ n2−1/c

(
1

n
+

1

2r

)2

+
n

2r
=
n2−1/c

m2
(1 + o(1))

This is very close to what is obtained from Theorem 1.1 and to make the difference smaller
we can increase r further.

There are also analogues of Theorem 1.3, 1.4 and 1.5 in which the bins are partitioned into
groups of almost equal size and where the interest is in the number of groups that are hit by a
ball. To avoid making this paper unnecessarily technical, we refrain from stating and proving
these theorems, but in Section 5 we will show how to modify the proof of Theorem 1.1 to obtain
Theorem 1.6.

1.4 Alternatives

One natural alternative to simple tabulation is to use k-independent hashing [20]. Using an easy
variation2 of an inclusion-exclusion based argument by Mitzenmacher and Vadhan [11], one can
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show that if k is odd and if n ≤ m the probability p that a given bin is non-empty satisfies

p0 −O
(( n

m

)k 1

k!

)
≤ p ≤ p0 +O

(( n
m

)k+1 1

(k + 1)!

)
, (1.5)

and this is optimal, at least when k is not too large, say k = o(
√
n) — there exist two (different)

k-independent families making respectively the upper and the lower bound tight for a certain
set of n keys. A similar result holds when k is even. Although p approaches p0 when k increases,
for k = O(1) and n = Ω(m), we have a deviation by an additive constant term. In contrast, the
probability that a bin is non-empty when using simple tabulation is asymptotically the same as
in the fully random setting.

Another alternative when studying the number of non-empty bins is to assume that the
input comes with a certain amount of randomness. This was studied in [11] too and a slight
variation2 of their argument shows that if the input X ⊆ U has enough entropy the probability
that a bin is empty is asymptotically the same as in the fully random setting even if we only
use 2-independent hashing. This is essentially what we get with simple tabulation. However,
our results have the advantage of holding for any input with no assumptions on its entropy.
Now (1.5) also suggests the third alternative of looking for highly independent hash functions.
For the expectation (1.5) shows that if n ≤ m we would need k = Ω(logm/ log logm) to get
guarantees comparable to those obtained for simple tabulation. Such highly independent hash
functions were first studied by Siegel [15], the most efficient known construction today being
the double tabulation by Thorup [16] which gives independence uΩ(1/c2) � logm using space
O(cu1/c) and time O(c). While this space and time matches that of simple tabulation within
constant factors, it is slower by at least an order of magnitude. As mentioned in [16], double
tabulation with 32-bit keys divided into 16-bit characters requires 11 times as many character
table lookups as with simple tabulation and we lose the same factor in space. The larger space
of double tabulation means that tables may expand into much slower memory, possibly costing
us another order of magnitude in speed.

There are several other types of hash functions that one could consider, e.g., those from [6,
12], but simple tabulation is unique in its speed (like two multiplications in the experiments
from [14]) and ease of implementation, making it a great choice in practice. For a more thorough
comparison of simple tabulation with other hashing schemes, the reader is refered to [14].

2 Applications

Before proving our main results we describe two almost immediate applications.

2.1 Bloom Filters

Bloom filters were introduced by Bloom [3]. We will only discuss them briefly here and argue
which guarantees are provided when implementing them using simple tabulation. For a thorough
introduction including many applications see the survey by Broder and Mitzenmacher [4]. A
Bloom filter is a simple data structure which space efficiently represents a set X ⊆ U and
supports membership queries of the form “is q in X”. It uses k independent hash functions
h0, . . . , hk−1 : U → [m] and k arrays A0, . . . , Ak−1 each of m bits which are initially all 0. For
each x ∈ X we calculate (hi(x))i∈[k] and set the hi(x)’th bit of Ai to 1 noting that a bit may

2Mitzenmacher and Vadhan actually estimate the probability of getting a false positive when using k-
independent hashing for Bloom filters, but this error probability is strongly related to the expected number
of non-empty bins E[|h(X)|] (in the fully random setting it is E[|h(X)|]/m). Thus only a slight modification of
their proof is needed.
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be set to 1 several times. To answer the query “is q in X” we check if the bits corresponding
to (hi(q))i∈[k] are all 1, outputting “yes” if so and “no” otherwise. If q ∈ X we will certainly
output the correct answer but if q /∈ X we potentially get a false positive in the case that all
the bits corresponding to (hi(q))i∈[k] are set to 1 by other keys in X. In the case that q /∈ X the
probability of getting a false positive is

k−1∏

i=0

Pr[hi(q) ∈ hi(X)],

which with fully random hashing is pk0 = (1− (1− 1/m)n)k ≈ (1− e−n/m)k.
It should be noted that Bloom filters are most commonly described in a related though not

identical way. In this related setting we use a single (km)-bit array A and let h1, . . . , hk−1 : U →
[km], setting the bits of A corresponding to (hi(x))i∈[k] to 1 for each x ∈ X. With fully random
hashing the probability that a bit is set to 1 is then q0 := 1 −

(
1− 1

km

)nk and the probability

of a false positive is thus at most qk0 =
(

1−
(
1− 1

km

)nk)k ≤ pk0. Despite the difference, simple
calculus shows that p0 − q0 = O(1/m) and so

pk0 − qk0 = (p0 − q0)
k−1∑

i=0

pi0q
k−i−1
0 = O

(
kpk−1

0

m

)
.

In particular if p0 = 1− Ω(1) or if the number of filters k is not too large (both being the case
in practice) the failure probability in the two models are almost identical. We use the model
with k different tables each of size m as this makes it very easy to estimate the error probability
using Theorem 1.1 and the independence of the hash functions. We can in fact view hi as a map
from U to [km] but having image in [(i+ 1)n]\[im] getting us to the model with just one array.

From Theorem 1.1 we immediately obtain the following corollary.

Corollary 2.1. Let X ⊆ U with |X| = n and y ∈ U\X. Suppose we represent X with a
Bloom filter using k independent simple tabulation hash functions h0, . . . , hk−1 : U → [m]. The
probability of getting a false positive when querying q is at most

(
p0 +

2n2−1/c

m2

)k
.

At this point one can play with the parameters. In the fully random setting one can show
that if the number of balls n and the the total number of bins km are fixed one needs to choose
k and m such that p0 ≈ 1/2 in order to minimise the error probability (see [4]). For this, one
needs n ≈ m ln(2) and if m is chosen so, the probability above is at most (p0 + O(m−1/c))k.
In applications, k is normally a small number like 10 for a 0.1% false positive probability. In
particular, k = mo(1), and then (p0 + O(m−1/c))k = pk0(1 + o(1)), asymptotically matching the
fully random setting.

To resolve the issue that the range of a simple tabulation function has size 2r but that we
wish to choose m ≈ n/ ln(2), we choose r such that 2r ≥ m2 and use the combined hash function
s ◦h : U → [m] described in Section 1.3. Now appealing to Theorem 1.6 instead of Theorem 1.1
we can again drive the false positive probability down to pk0(1 + o(1)) when k = mo(1).

Alternatives: The argument by Mitzenmacher and Vadhan [11] discussed in relation to (1.5)
actually yields a tight bound on the probability of a false positive when using `-independent
hashing for Bloom filters. We do not state their result here but mention that when ` is constant
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the error probability may again deviate by an additive constant from that of the fully random
setting. It is also shown in [11] that if the input has enough entropy we can get the probability
of a false positive to match that from the fully random setting asymptotically even using 2-
independent hashing, yet it cannot be trusted for certain types of input.

Now, imagine you are a software engineer that wants to implement a Bloom filter, pro-
portioning it for a desired low false-positive probability. You can go to a wikipedia page
(en.wikipedia.org/wiki/Bloom_filter) or a texbook like [10] and read how to do it assuming
full randomness. If you read [11], what do you do? Do you set ` = 2 and cross your fingers,
or do you pay the cost of a slower hash function with a larger `, adjusting the false-positive
probabilities accordingly? Which ` do you pick?

With our result, there are now hard choices. The answer is simple. We just have to add
that everything works as stated for any possible input if the hashing is implemented with simple
tabulation hashing (en.wikipedia.org/wiki/Tabulation_hashing) which is both very fast and
very easy to implement.

2.2 Filter Hashing

In Filter hashing, as introduced by Fotakis et al. [7], we wish to store as many elements as
possible of a set X ⊆ U of size |X| = n = m in d hash tables (Ti)i∈[d]. The total number of
entries in the tables is at most m and each entry can store just a single key. For i ∈ [d] we pick
independent hash functions hi : U → [mi] where mi is the number of entries in Ti. The keys are
allocated as follows: We first greedily store a key from h−1

0 ({y}) in T0[y] for each y ∈ h0(X).
This lets us store exactly |h0(X)| keys. Letting S0 be the so stored keys and X1 = X\S0 the
remaining keys, we repeat the process, storing |h(X1)| keys in T1 using h1 etc.

An alternative and in practice more relevant way to see this is to imagine that the keys
arrive sequentially. When a new key x arrives we let i be the smallest index such that Ti[hi(x)]
is unmatched and store x in that entry. If no such i exists the key is not stored. The name
Filter hashing comes from this view which prompts the picture of particles (the keys) passing
through filters (the tables) being caught by a filter only if there is a vacant spot.

The question is for a given ε > 0 how few filters that are needed in order to store all
but at most εm keys with high probability. Note that the remaining εm keys can be stored
using any hashing scheme which uses linear space, for example Cuckoo hashing with simple
tabulation [13, 14], to get a total space usage of (1 +O(ε))m.

One can argue that with fully random hashing one needs Ω(log2(1/ε)) filters to achieve
that whp at least (1− ε)m keys are stored. To see that we can achieve this bound with simple
tabulation we essentially proceed as in [7]. Let γ > 0 be any constant and choose δ > 0 according
to Theorem 1.3 so that if X ⊆ U with |X| = n and h : U → [m] is a simple tabulation hash
function, then |h(X)| ≥ m(1− (1− 1/m)δn) with probability at least 1−m−γ .

Let m0 = n. For i = 0, 1, . . ., we pick ni to be the largest power of two below δmi/ log(1/ε).
We then set mi+1 = n−∑i

j=0 nj , terminating when mi+1 ≤ εn. Then Ti is indexed by (log2 ni)-
bit strings — the range of a simple tabulation hash function hi. Letting d be minimal such that
nd ≤ εm we have that (1 − ε)m ≤ ∑i∈[d]mi ≤ m and as ni decreases by at least a factor of(

1− δ
2 log(1/ε)

)
in each step, d ≤ d2 log(1/ε)2/δe.

How many bins of Ti get filled? Even if all bins from filters (Tj)j<i are non-empty we have
at least ni balls left and so with probability 1−O(m−γi ) the number of bins we hit is at least

mi(1− (1− 1/mi)
δni) ≥ mi(1− e−δni/mi) ≥ mi(1− ε).

Thus, with probability at least 1 − O(dm−γd ), for each i ∈ [d], filter i gets at least (1 − ε)mi

balls. Since
∑

i∈[d]mi ≥ (1− ε)m, the number of overflowing balls is at most 2εm in this case.
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Assuming for example that ε = Ω(m−1/2), as would be the case in most applications, we get
that the fraction of balls not stored is O(ε) with probability at least 1− Õ(m−γ/2).

Alternatives The hashing scheme for Filter hashing described in [7] uses (12dln(4/ε) + 1e)-
independent polynomial hashing to achieve an overflow of at most εm balls. In particular the
choice of hash functions depends on ε and becomes more unrealistic the smaller ε is. In contrast
when using simple tabulation (which is only 3-independent) for Filter hashing we only need to
change the number of filters, not the hashing, when ε varies. It should be mentioned that only
dln(4/ε)2e filters are needed for the result in [7] whereas we need a constant factor more. It
can however be shown (we provide no details) that we can get down to d = d2 log(1/ε)2e filters
by applying (1.2) of Theorem 1.4 if we settle for an error probability of O(m−1+η) for a given
constant η > 0.

Taking a step back we see the merits of a hashing scheme giving many complementary prob-
abilistic guarantees. As shown by Pǎtraşcu and Thorup [14], Cuckoo hashing [13] implemented
with simple tabulation succeeds with probability 1 − O(m−1/3) (for a recent simpler proof of
this result, see Aamand et al. [1]). More precisely, for a set X ′ of n′ balls, let m′ be the least
power of two bigger than (1 + Ω(1))n′. Allocating tables T ′0, T ′1 of size m′, and using simple
tabulation hash functions h′0, h′1 : U → [m′], with probability 1 − O(m−1/3) Cuckoo hashing
succeeds in placing the keys such that every key x ∈ X ′ is found in either T ′0[h′0(x)] or T ′1[h′1(x)].
In case it fails, we just try again with new random h′0, h

′
1. We now use Cuckoo hashing to

store the m′ = O(εm) keys remaining after the filer hashing, appending the Cuckoo tables to
the filter tables so that Td+i = T ′i and hd+i = h′i for i = 0, 1. Then x ∈ X if and only if for
some i ∈ [d+ 2], we have x = Ti[hi(x)]. We note that all these d+ 2 lookups could be done in
parallel. Moreover, as the output bits of simple tabulation are mutually independent, the d+ 2
hash functions hi : U → [2ri ], 2ri = ni, can be implemented as a single simple tabulation hash
function h : U → [2r1+···+rd+2 ] and therefore all be calculated using just c = O(1) look-ups in
simple tabulation character tables.

3 Preliminaries

As in [16] we define a position character to be an element (j, a) ∈ [c]× Σ. Simple tabulation
hash functions are initially defined only on keys in U but we can extend the definition to sets of
position characters S = {(ij , aj) : j ∈ [k]} by letting h(S) =

⊕
j∈[k] hij (aj). This coincides with

h(x) when the key x ∈ U = [Σ]c is viewed as the set of position characters {(i, x[i]) : i ∈ [c]}.
We start by describing an ordering of the position characters, introduced by Pǎtraşcu and

Thorup [14] in order to prove that the number of balls hashing to a specific bin is Chernoff
concentrated when using simple tabulation. If X ⊆ U is a set of keys and ≺ is any ordering of the
position characters [c]×Σ we for α ∈ [c]×Σ defineXα = {x ∈ X | ∀β ∈ [c]×Σ : β ∈ x⇒ β � α}.
Here we view the keys as sets of position characters. Further define Gα = Xα\(

⋃
β≺αXβ) to be

the set of keys in Xα containing α as a position character. Pǎtraşcu and Thorup argued that
the ordering may be chosen such that the groups Gα are not too large.

Lemma 3.1 (Pǎtraşcu and Thorup [14]). Let X ⊆ U with |X| = n. There exists an ordering
≺ of the position characters such that |Gα| ≤ n1−1/c for all position characters α. If q is any
(query) key in X or outside X, we may choose the ordering such that the position characters of
q are first in the order and such that |Gα| ≤ 2n1−1/c for all position characters α.

Let us throughout this section assume that ≺ is chosen as to satisfy the properties of
Lemma 3.1. A set Y ⊆ U is said to be d-bounded if |h−1({z}) ∩ Y | ≤ d for all z ∈ R.
In other words no bin gets more than d balls from Y .
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Lemma 3.2 (Pǎtraşcu and Thorup [14]). Assume that the number of bins m is at least n1−1/(2c).
For any constant γ, and d = min

{
2c(3 + γ)c, 22c(3+γ)

}
all groups Gα are d-bounded with prob-

ability at least 1−m−γ.
Lemma 3.2 follows from another lemma from [14] which we restate here as we will use it in

one of our proofs.

Lemma 3.3 (Pǎtraşcu and Thorup [14]). Let ε > 0 be a fixed constant and assume that n ≤
m1−ε. For any constant γ no bin gets more than min

(
((1 + γ)/ε)c, 2(1+γ)/ε

)
= O(1) balls with

probability at least 1− n−γ.
Let us describe heuristically why we are interested in the order ≺ and its properties. We will

think of h as being uncovered stepwise by fixing h(α) only when (h(β))β≺α has been fixed. At
the point where h(α) is to be fixed the internal clustering of the keys in Gα has been settled and
h(α) acts merely as a translation, that is, as a shift by an XOR with h(α). This viewpoint opens
up for sequential analyses where for example it may be possible to calculate the probability of
a bin becoming empty or to apply martingale concentration inequalities. The hurdle is that the
internal clustering of the keys in the groups are not independent as the hash value of earlier
position characters dictate how later groups cluster so we still have to come up with ways of
dealing with these dependencies.

4 Proofs of main results

In order to pave the way for the proofs of our main results we start by stating two technical
lemmas, namely Lemma 4.1 and 4.2 below. We provide proofs at the end of this section.
Lemma 4.1 is hardly more than an observation. We include it as we will be using it repeatedly
in the proofs of our main theorems.

Lemma 4.1. Assume α ≥ 1 and m,m0 ≥ 0 are real numbers. Further assume that 0 ≤
g1, . . . , gk ≤ n0 and

∑k
i=1 gi = m. Then

k∑

i=1

gαi ≤ nα−1
0 n. (4.1)

If further n0 ≤ m for some real m then
k∏

i=1

(
1− gi

m

)
≥
(

1− n0

m

)n/n0

. (4.2)

In our applications of Lemma 4.1, g1, . . . , gk will be the sizes of the groups Gα described in
Lemma 3.1, and n0 will be the upper bound on the group sizes provided by the same lemma.

For the second lemma we assume that the set of keys X has been partitioned into k groups
(Xi)i∈[k]. Let Ci denote the number of sets {x, y} ⊆ Xi such that x 6= y but h(x) = h(y), that is,
the number of pairs of colliding keys internal to Xi. Denote by C =

∑k
i=1Ci the total number

of collisions internal in the groups. The second lemma bounds the expected value of C as well
as its variance in the case where the groups are not too large.

Lemma 4.2. Let X ⊆ U with |X| = n be partitioned as above. Suppose that there is an n0 ≥ 1
such that for all i ∈ [k], |Xi| ≤ n0. Then

E[C] ≤ n · n0

2m
, and (4.3)

Var[C] ≤ (3c + 1)n2

m
+
n · n2

0

m2
. (4.4)
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For a given query ball q ∈ U\X and a bin z ∈ [m], the upper bound on E[C] is also an upper
bound on E[C | h(q) = z]. For the variance estimate note that if in particular n2

0 = O(nm), then
Var[C] = O(n2/m).

We will apply this lemma when the Xi are the groups arising from the order ≺ of Lemma 3.1.
With these results in hand we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let us first prove the theorem in the case where y is a fixed bin not
chosen dependently on the hash value of a query ball. If n1−1/c ≥ m the result is trivial as then
the stated upper bound is at least 1. Assume then that n1−1/c ≤ m. Consider the ordering
α1 ≺ · · · ≺ αk of the position characters obtained from Lemma 3.1 such that all groupsGi := Gαi

have size at most n1−1/c. We will denote by n0 := n1−1/c the maximal possible group size.
We randomly fix the h(αi) in the order obtained from ≺ not fixing h(αi) before having fixed

h(αj) for all j < i. If x ∈ Gi then h(x) = h(αi)⊕h(x\{αi}) and since β ≺ αi for all β ∈ x\{αi}
only h(αi) has to be fixed in order to settle h(x). The number of different bins hit by the keys
of Gi when fixing h(αi) is thus exactly the size of the set {h(x\{αi}) : x ∈ Gi} which is simply
translated by an XOR with h(αi) and for x ∈ Gi we have that h(x) is uniform in its range when
conditioned on the values (h(αj))j<i.

To make it easier to calculate the probability that y ∈ h(X) we introduce some dummy balls.
At the point where we are to fix h(αi) we dependently on (h(αj))j<i in any deterministic way
choose a set Di ⊆ R = [m] of dummy balls, disjoint from {h(x\{αi}) : x ∈ Gi}, such that
{h(x\{αi}) : x ∈ Gi}∪Di has size exactly |Gi|. We will say that a bin z is hit if either z ∈ h(X)
or there exists an i such that z = d⊕h(αi) for some d ∈ Di. In the latter case we will say that z
is hit by a dummy ball. This modified random process can be seen as ensuring that when we are
to finally fix the hash values of the elements of Gi by the last translation with h(αi), we modify
the group by adding dummy balls to ensure that exactly |Gi| bins are hit by either a ball in Gi
or a dummy ball in Di. We let D =

∑k
i=1 |Di| denote the total number of dummy balls.

Let H denote the event that y is hit and D denote the event that y is hit by a dummy ball.
With the presence of the dummy balls, Pr[H] is easy to calculate:

Pr[H] = 1−
k∏

i=1

(
1− |Gi|

m

)
≥ 1−

k∏

i=1

(
1− 1

m

)|Gi|
= p0.

Clearly Pr[y ∈ h(X)] ≥ Pr[H] − Pr[D] so for a lower bound on Pr[y ∈ h(X)] it suffices to
upper bound Pr[D]. Let Di denote the event that y is hit by a dummy ball from Di. We
can calculate Pr[Di] =

∑∞
`=0 Pr[Di | |Di| = `] × Pr[|Di| = `]. The conditional probability

Pr[Di | |Di| = `] is exactly `/m as the choice of Di only depends on the hash values (h(αj))j<i
and when translated by an XOR with h(αi) the bin y is hit with probability |Di|/m. It follows
that Pr[Di] = E[|Di|]/m and thus that Pr[D] ≤ ∑k

i=1 Pr[Di] = E[D]/m. Finally the total
number of dummy balls is upper bounded by the number C of internal collisions in the groups,
so Lemma 4.2 gives that Pr[D] ≤ E[C]/m ≤ n2−1/c

2m2 . This gives the desired lower bound on p
(throwing away the factor of 1/2, in order to simplify the statement in the theorem).

For the upper bound note that Pr[y ∈ h(X)] ≤ Pr[H] so by Lemma 4.1

p ≤ Pr[H] ≤ 1−
(

1− n0

m

)n/n0

.

Using the inequality
(
1 + x

`

)` ≥ ex
(

1− x2

`

)
holding for ` ≥ 1 and |x| ≤ ` with x = −n/m and

` = n/n0 (note that |x| ≤ ` as we assumed that n1−1/c ≤ m) we obtain that

p ≤ 1− e−n/m
(

1− n · n0

m2

)
≤ 1− e−n/m +

n · n0

m2
≤ p0 +

n2−1/c

m2
,
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as desired. The bound on E[|h(X)|] follows immediately as E[|h(X)|] =
∑

y∈[m] Pr[y ∈ h(X)].
Finally consider the case where y is chosen conditioned on h(q) = z for a query ball q /∈ X

and a bin z. Here we may assume that 2n1−1/c ≤ m as otherwise the claimed upper bound
is at least 1. We choose the ordering ≺ such that the position characters of q are first in the
order and such that all groups have size at most 2n1−1/c which is possible by Lemma 3.1. Let
n0 = min(n, 2n1−1/c) denote the maximal possible group size. Introducing dummy balls the
same way as before and repeating the arguments, the probability of the event H that y is hit
satisfies

p0 ≤ Pr[H | h(q) = z] ≤ 1−
(

1− n0

m

)n/n0 ≤ 1− e−n/m
(

1− n · n0

m2

)
≤ p0 +

2n2−1/c

m2
.

The desired upper bound follows immediately as Pr[y ∈ h(X) | h(q) = z] ≤ Pr[H | h(q) = z].
For the lower bound we again let D denote the event that y is hit by a dummy ball and Di
denote the event that y is hit by a dummy ball from Di. Then

Pr[Di | h(q) = z] =
∞∑

`=0

Pr[Di | h(q) = z ∧ |Di| = `]× Pr[|Di| = ` | h(q) = z].

As before we have that Pr[Di | h(q) = z ∧ |Di| = `] = `/m since the hash values of the position
characters of q are fixed before h(αi). Thus,

Pr[Di | h(q) = z] =

∞∑

`=0

`

m
Pr[|Di| = ` | h(q) = z] =

E[|Di| | h(q) = z]

m
,

and another union bound gives that

Pr[D | h(q) = z] ≤ E[D | h(q) = z]

m
≤ E[C | h(q) = z]

m
≤ n2−1/c

m2
,

where we in the last step used Lemma 4.2.

We are now going to prove Theorem 1.3. We start out by recalling Azuma’s inequality.

Theorem 4.3 (Azuma’s inequality [2]). Suppose (Xi)
k
i=0 is a martingale satisfying that |Xi −

Xi−1| ≤ si almost surely for all i = 1, . . . , k. Let s =
∑k

i=1 s
2
i . Then for any t ≥ 0 it holds that

Pr(Xk ≥ X0 + t) ≤ exp

(−t2
2s

)
, and Pr(Xk ≤ X0 − t) ≤ exp

(−t2
2s

)
.

To apply Azuma’s inequality we need to recall a little measure theory. Suppose (Ω,F ,Pr)
is a finite measure space (that is Ω is finite), and that Y : Ω → R is an F-measurable random
variable. A sequence of σ-algebras (Fi)ki=1 on Ω is called a filter of the σ-algebra F if {∅,Ω} =
F0 ⊆ · · · ⊆ Fk = F . Defining Yi = E[Y |Fi], the sequence (Yi)

k
i=0 becomes a martingale with

Y0 = E[Y ] and Yk = Y . It is for such martingales that we will apply Azuma’s inequality.

Proof of Theorem 1.3. By the result by Pǎtraşcu and Thorup [14] we may assume that n ≤
Cm logm for some constant C as otherwise all bins are full whp from which the results of the
theorem immediately follow.

Let G1, . . . , Gk be the groups described in Lemma 3.1 and α1, . . . , αk be the corresponding
position characters. Again we think of the h(αi) as being fixed sequentially. We let (Ω,F ,Pr) be
the underlying probability space when choosing h, that is, Ω is the set of all simple tabulation
hash functions, F = P(Ω), and Pr is the uniform probability measure on Ω. For i = 0, . . . , k we
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define Fi = σ(h(α1), . . . , h(αi)) to be the σ-algebra generated by the hash values of the first i
position characters. Then {∅,Ω} = F0 ⊆ · · · ⊆ Fk = F is a filter of F .

Ideally we would hope that for the martingale (Xi)
k
i=0 = (E[|h(X)| | Fi])ki=0 we could effec-

tively bound |Xi−Xi−1| and thus apply Azuma’s inequality. This is however too much to hope
for — the example with keys [2]× [n/2] shows that the hash value of a single position character
can have a drastic effect on the conditionally expected number of non-empty bins. To remedy
this we will again be using dummy balls but this time in a different way.

First of all, we let γ > 0 be any constant. Since n ≤ Cm logm, Lemma 3.2 gives that there
exists a d = d(γ) = O(1) such that all groups are d-bounded with probability at least 1−m−γ .
Here is how we use the dummy balls: After having fixed (h(αj))j≺i we again look at the set
G′i := {h(x\{αi}) : x ∈ Gi} letting I− = {i ∈ [k] : |G′i| ≥ d|Gi|/d e} and I+ = {i ∈ [k] :
|G′i| < d|Gi|/d e}. For i ∈ I− we dependently on (h(αj))j≺i choose a set D−i ⊆ G′i such that
|G′i\D−i | = d|Gi|/d e. Similarly we for i ∈ I+ choose a set D+

i ⊆ R disjoint from G′i such that
|G′i ∪D+

i | = d|Gi|/d e. We say that bin z is hit if there exists an i such that either

1. i ∈ I− and z = y ⊕ h(αi) for some y ∈ G′i\D−i , or

2. i ∈ I+ and z = y ⊕ h(αi) for some y ∈ G′i ∪D+
i .

This modified random process obtained by adding balls if |G′i| is too large and removing balls
if it is too small can be seen as ensuring that when we are to finally fix the hash values of the
elements of Gi by the last translation by h(αi) we first modify the group to ensure that we hit
exactly d|Gi|/d e bins.

Importantly, we observe that if Gi is d-bounded then |G′i| ≥ |Gi|/d and since |G′i| is integral
|G′i| ≥ d|Gi|/d e. Thus if all groups are d-bounded I+ = ∅, and no dummy balls are added.

Letting H denote the number of bins hit, we have that

E[H] = m

(
1−

k∏

i=1

(
1− d|Gi|/d e

m

))
≥ m

(
1−

k∏

i=1

(
1− 1

m

)d|Gi|/d e
)
≥ m

(
1−

(
1− 1

m

)n/d)
.

We now wish to apply Azuma’s inequality to the martingale (Hi)
k
i=0 = (E[H | Fi])ki=0. To do

this we require a good upper bound on |Hi−Hi−1| and we claim that in fact |Hi−Hi−1| ≤ |Gi|.
To see this, let the random variable Ni denote the number of bins not hit when the hash values
of the first i position characters has been settled. Then Hi = m−Ni

∏
j>i

(
1− d|Gj |/de

m

)
and so

|Hi −Hi−1| =
∏

j>i

(
1− d|Gj |/de

m

) ∣∣∣∣Ni −
(

1− d|Gi|/de
m

)
Ni−1

∣∣∣∣ ≤
∣∣∣∣Ni −Ni−1 +

d|Gi|/de ·Ni−1

m

∣∣∣∣ .

Now Ni−1−d|Gi|/de ≤ Ni ≤ Ni−1 as at least 0 and most d|Gi|/de bins are hit after fixing h(αi)
and from this it follows that |Hi −Hi−1| ≤ d|Gi|/de ≤ |Gi|.

Letting si = |Gi| we have that
∑k

i=1 s
2
i ≤ n2−1/c by Lemma 4.1 and thus we can apply

Azuma’s inequality to obtain that

Pr(H ≤ E[H]− t) ≤ exp

( −t2
2n2−1/c

)
.

Putting t =
√
γ · 2n2−1/c logm we obtain that with probability at least 1−m−γ

H ≥ `(n,m) := m

(
1−

(
1− 1

m

)n/d)
−
√
γ · 2n2−1/c logm.
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As I+ = ∅ with probability at least 1 −m−γ and as we in this case have that |h(X)| ≥ H we
have that |h(X)| ≥ `(n,m) with probability at least 1− 2n−γ .

The remaining part of proof is just combining what we have together with a little calculus! We
first consider the case n ≤ m. In this case the lower bound simply states that |h(X)| = Ω(n). To
see that this bound holds observe that if (for example) n ≤ m1/2 then by Lemma 3.3 no bin gets
more than a constant number of balls with probability at least 1−m−γ . In particular |h(X)| =
Ω(n) with probability at least 1−m−γ . If on the other hand n ≥ m1/2 then

√
γ · 2n2−1/c logm =

o(n) and `(n,m) = Ω(n)− o(n) = Ω(n) which again gives the desired result.
Finally suppose n ≥ m. Let α := (1− 1/m)m/(2d) ≤ e−1/(2d) and let β be a constant so large

that β ≥ 2d and m (1− 1/m)n/β ≥ 1
1−α

√
γ · 2n2−1/c logm, the last requirement being possible

as we assumed n ≤ Cm logm. Then

`(n,m)

m
≥ 1−

(
1− 1

m

)n/d
− (1− α)

(
1− 1

m

)n/β

≥ 1−
(

1− 1

m

)n/β ((
1− 1

m

)n/(2d)

+ (1− α)

)
≥ 1−

(
1− 1

m

)n/β
.

Since |h(X)| ≥ `(n,m) with probability at least 1− 2n−γ this gives the desired result.

We now prove Theorem 1.4.

Proof of Theorem 1.4. When n1−1/(2c) ≥ m the probability bounds of the theorem are trivial
since they are Ω(1) when t ≤ n . We therefore assume henceforth that n1−1/(2c) ≤ m.

Again consider the order≺ obtained from Lemma 3.1 such that for all i we have |Gi| ≤ n1−1/c.
We again think of the hash values of the position characters as being fixed in the order obtained
from ≺. We also introduce dummy balls in exactly the same way as we did in the proof of
Theorem 1.1 using the same definition of a bin being hit.

Letting H denote the number of bins hit (by an x ∈ X or a dummy ball) we have that
E[H] = m

(
1−∏k

i=1

(
1− |Gi|

m

))
, like in the proof of Theorem 1.1, and

µ0 ≤ E[H] ≤ µ0 +
n2−1/c

m
.

Furthermore letting Fi = σ(h(α1), . . . , h(αi)) be the σ-algebra generated by (h(αj))j≤i, the
same argument as in the proof of Theorem 1.3 gives that Hi = E[H|Fi] is a martingale satisfying
that |Hi − Hi−1| ≤ |Gi| for all i. We can thus apply Azuma’s inequality with si = |Gi| and
s =

∑k
i=1 s

2
i ≤ n2−1/c (here we used Lemma 4.1) to obtain that

Pr[H ≥ E[H] + t] ≤ exp

( −t2
2n2−1/c

)
, and (4.5)

Pr[H ≤ E[H]− t] ≤ exp

( −t2
2n2−1/c

)
. (4.6)

We now wish to translate this concentration result on the number of bins hit when the dummy
balls are included to a concentration result on |h(X)|. We begin with the bound in (1.1). As
|h(X)| ≤ H it suffices to bound the probability Pr[H ≥ µ0 + 2t]. Since E[H] ≤ µ0 + n2−1/c

m ,

Pr[H ≥ µ0 + 2t] ≤ Pr

[
H − E[H] ≥ 2t− n2−1/c

m

]
,
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so when t ≥ n2−1/c

m the result follows immediately from (4.5). If on the other hand t < n2−1/c

m

then t2

n2−1/c <
n2−1/c

m2 ≤ 1 and the result is trivial as the right hans size in (1.1) can be as large
as Ω(1) which is a valid upper bound on any probability.

We now turn to the proof of (1.2). Letting E denote the event that |h(X)| ≤ µ0 − 2t and A
the event that H ≤ µ0 − t we have that

Pr[|h(X)| ≤ µ0 − 2t] = Pr[E ] ≤ Pr[A] + Pr[E ∧ ¬A].

By (4.6) and since µ0 ≤ E[H] we can upper bound Pr[A] ≤ exp
(
−t2

2n2−1/c

)
. For the other term

we note that E ∧ ¬A entails that at least t bins are hit by a dummy ball. In particular the
number of dummy balls is at least t. As the number C of internal collisions of the groups is
an upper bound on the number of dummy balls this in turn implies, t ≤ C. We may assume
that t ≥ n1−1/(2c) as otherwise (1.1) is trivial. As we assumed, n1−1/(2c) ≤ m it follows from
Lemma 4.2 that E[C] ≤ n2−1/c

2m ≤ tn1−1/(2c)

2m ≤ t/2 and so t− E[C] ≥ t/2. Applying Chebychev’s
inequality as well as (4.4) of Lemma 4.2 we thus obtain,

Pr[E ∧ ¬A] ≤ Pr[C ≥ t] ≤ Pr[C − E[C] ≥ t/2] ≤ 4 Var[C]

t2
= O

(
n2

t2m

)
.

Combining the two bounds completes the proof.

We promised to argue why we cannot dispose with the term n2/(mt2) in general. Suppose
that n = O(m) and let t = n1/2+α for an α ∈ [1/2, 1) such that n1/2+α ∈ [

√
n, n/2], and con-

sider the set of keys [n/t] × [t]. With probability Ω((n/t)2/m) = Ω(n2/(t2m)) we have that
h0(a0) = h0(a1) for two distinct a0, a1 ∈ [n/t]. Conditioned on this event the expected number

of non-empty bins is at most m
(

1−
(

1− n/t−1
m

)t)
which can be shown to be µ0 − Ω(t) by

standard calculus. The additive term Ω(t) comes from the fact that the t pairs of colliding keys
{(a0, b), (a0, b)}b∈[t] causes the expected number of non-empty bins to decrease by Ω(t) when
n = O(m). Thus the deviation by Ω(t) from µ0 occurs with probability Ω(n2/(mt2)).

We will now set the stage for the proof of Theorem 1.5. As mentioned in the introduction
we require a stronger martingale inequality than that by Azuma. The one we use is due to
Mcdiarmid [9]. Again assume that (Ω,F ,Pr) is a finite probability space, that X : Ω→ R is an
F-measurable random variable, that (Fi)ki=0 is a filter of F , and that Xi = E[X | Fi]. Also recall
the definition of conditional variance: If G ⊆ F is a σ-algebra, then Var[X | G] = E[(X − E[X |
G])2 | G] = E[X2 | G]− E[X | G]2.

Theorem 4.4 (Mcdiarmid [9]). Assume that Var[Xi | Fi−1] ≤ σ2
i for i = 1, . . . , k and further

that Xi −Xi−1 ≤M for i = 1, . . . , k. Then for t ≥ 0,

Pr[X − E[X] ≥ t] ≤ exp


 −t2

2
(∑k

i=1 σ
2
i +Mt/3

)


 .

With this tool in hand we are ready to prove Theorem 1.5, the main technical challenge
being to argue why we can apply Theorem 4.4.

Proof of Theorem 1.5. We introduce dummy balls exactly in the proof of Theorem 1.4 and
Theorem 1.1 and consider the same martingale (Hi)

k
i=0 = (E[H|Fi])ki=0, where H is the number
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of bins hit (by either a dummy ball or a ball from X). We already saw that |Hi−Hi−1| ≤ |Gi| ≤
n1−1/c, so we let M := n1−1/c. What remains is to upper bound Var[Hi | Fi−1]. First note that

Var[Hi | Fi−1] =E[(Hi − E[Hi | Fi−1])2 | Fi−1]

=E[(Hi −Hi−1)2 | Fi−1].

We denote by Ni the number of bins that are empty after the hash values of the first i position
characters has been settled. Then, by the same reasoning as in the proof of Theorem 1.3, we
have that

|Hi −Hi−1| ≤
∣∣∣∣Ni −Ni−1 +

|Gi| ·Ni−1

m

∣∣∣∣ .

Now let Ti = |Gi| −Ni−1 +Ni denote the number of bins hit in the i’th step that were already
hit in the (i− 1)’st step. As E[Ti | Fi−1 ] = (m−Ni−1)|Gi|/m, the above inequality reads

|Hi −Hi−1| ≤ |Ti − E[Ti | Fi−1]|,

and so,
Var[Hi | Fi−1] ≤ Var[Ti | Fi−1] ≤ E[T 2

i | Fi−1].

Now, T 2
i counts the number of 2-tuples (y, z) with y, z ∈ {h(x\{αi}) : x ∈ Gi} ∪Di such that

h(y) and h(z) are already hit after the (i− 1)’st step. Conditioned on Fi−1 the probability that
this occurs for a given such pair is at most m−Ni−1

m ≤ n
m , and there are exactly |Gi|2 such pairs.

Hence
Var[Hi | Fi−1] ≤ n

m
|Gi|2 := σ2

i .

By Lemma 4.2,
∑k

i=1 σ
2
i ≤ n3−1/c

m so Theorem 4.4 gives that for t ≥ 0

Pr[H − E[H] ≥ t] ≤ exp


 −t2

2
(
n3−1/c

m + n1−1/ct/3
)


 (4.7)

≤ exp

(
−min

{
t2

4n
3−1/c

m

,
3t

2n1−1/c

})
.

As E[H] ≤ µ0 + n2−1/c

m this is also an upper bound on Pr
[
|h(X)| ≥ µ0 + t+ n2−1/c

m

]
. Now the

same argument as in the proof of Theorem 1.4 leads to the upper bound (1.3).

Finally, to prove (1.4) we use the same strategy as above but this time we define H ′ = −H
and the martingale (H ′i)

k
i=0 = (E[H ′ | Fi])ki=0. Then |H ′i − H ′i−1| = |Hi − Hi−1| ≤ M and

Var[H ′i | Fi−1] = Var[Hi | Fi−1] for i = 1, . . . , k, so we get a bound as in (4.7), but this time on
Pr[H ′ − E[H ′] ≥ t] = Pr[H − E[H] ≤ −t].

As in the proof of Theorem 1.4, the event |h(X)| ≤ µ0− t implies that either A: H−E[H] ≤
−t/2 or B: the number of internal collisions C is at least t/2. Pr[A] is bounded using (4.7), giving
us the first term of the bound in (1.4). For Pr[B], note that we may assume that t ≥ 4n1−1/c

as otherwise (4.7) is trivial. In that case E[C] ≤ n2−1/c/m ≤ t
4
n
m ≤ t

4 , so t/2 − E[C] ≥ t/4.
Lemma 4.2 thus gives that Pr[B] = O( n2

mt2
) — the second term in the bound (1.4). The proof is

complete.
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4.1 Proofs of technical lemmas

For proving Lemma 4.2 and Lemma 4.1 we need to briefly discuss the independence of simple
tabulation. In the notion of k-independence introduced by Wegman and Carter [20] simple tab-
ulation is only 3-independent as shown by the set of keys S = {(a0, b0), (a0, b1), (a1, b0)(a1, b1)}.
Indeed

⊕
x∈S h(x) = 0 showing that the keys do not hash independently. The issue is that since

each position character appears an even number of times in S the addition over Z2 causes the
terms to cancel out. This property in a sense characterises dependencies of keys as shown by
Thorup and Zhang [19]

Lemma 4.5 (Thorup and Zhang [19]). The keys x1, . . . , xk ∈ U are dependent if and only
if there exists a non-empty subset I ⊆ {1, . . . , k} such that each position character in (xi)i∈I
appears an even number of times. In this case we have that

⊕
i∈I h(xi) = 0.

For keys x, y ∈ U we write x ⊕ y for the symmetric difference of x and y when viewed as
sets of position characters. Then the property that each position character appearing an even
number of times in (xi)i∈I can be written as

⊕
i∈I xi = ∅. As shown by Dahlgaard et al. [5] we

can efficiently bound the number of such tuples (xi)i∈I .

Lemma 4.6 (Dahlgaard et al. [5]). Let A1, . . . , A2t ⊆ U . The number of 2t-tuples (x1, . . . , x2t) ∈
A1 × · · · ×A2t such that x1 ⊕ · · · ⊕ x2t = ∅ is at most ((2t− 1)!!)c

∏2t
i=1

√
|Ai|. Here a!! denotes

the product of all the positive integers in {1, . . . , a} having the same parity as a.

We now provide the proofs of Lemma 4.2 and Lemma 4.1. Since we need Lemma 4.1 in the
proof of Lemma 4.2 we prove that first.

Proof of Lemma 4.1. We prove the following more general statement: Let f : [0, n0] → R
be convex with f(0) = 0. Let 0 ≤ g1, . . . , gk ≤ n0 be such that m =

∑k
i=1 gi. Define S :=∑k

i=1 f(gi). Then S ≤ (n/n0)f(n0).
To see why the statement holds note that by convexity, f(x) + f(y) ≤ f(x− t) + f(y + t) if

0 ≤ t ≤ x ≤ y ≤ n0 − t. To maximize S we thus have to set k = dn/ n0e, g1 = · · · = gk−1 = n0

and gk = n−∑k−1
i=1 gi = εn0, where ε ∈ [0, 1). It follows that

S ≤
(
n

n0
− ε
)
f(n0) + f (εn0) .

Finally f(εn0) ≤ εf(n0) using convexity and that f(0) = 0, so S ≤ (n/n0)f(n0) as desired.
The first inequality (4.1) of the lemma follows immediately from the above statement with

f(x) = xα which is convex since α ≥ 1. For inequality (4.2) we may assume that m > n0 as
the result is trivial when m = n0. We then define f(x) = − log(1 − x/n) which is convex with
f(0) = 0. Then

S = −
k∑

i=1

log
(

1− gi
n

)
≤ − n

n0
log
(

1− n

m

)
,

which upon exponentiation leads to inequality (4.2).

Proof of Lemma 4.2. We define gi = |Xi| for i ∈ [k]. Now (4.3) is easily checked. Indeed,
since simple tabulation is 2-independent,

E[C] =

k∑

i=1

(
gi
2

)
1

m
≤ 1

2m

t∑

i=1

g2
i ≤

n · n0

2m
,
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where in the last step we used Lemma 4.1. The last statement of the lemma concerning E[C |
h(q) = z] follows from the same argument this time however using that simple tabulation is
3-independent.

We now turn to (4.4). Writing Var[C] = E[C2] − (E[C])2 our aim is to bound E[C2]. Note
that C2 counts the number of tuples ({x, y}, {z, w}) such that x 6= y and z 6= w but h(x) = h(y)
and h(z) = h(w) and furthermore x, y ∈ Gi and z, w ∈ Gj for some i, j ∈ [k]. We denote the set
of such tuples T and for τ = ({x, y}, {z, w}) ∈ T we let Xτ be the indicator for the event that
both h(x) = h(y) and h(z) = h(w). Then

E[C2] =
∑

τ∈T
Pr(Xτ = 1). (4.8)

We now partition T by letting

• T1 be the elements of T for which {x, y} = {z, w}.

• T2 be the elements of T for which |{x, y, z, w}| = 3.

• T3 be the elements of T for which x, y, z, w are distinct and independent.

• T4 be the elements of T for which x, y, z, w are distinct and dependent and there is an
i ∈ [k] such that x, y, z, w ∈ Gi.

• T5 be the remaining elements of T , that is, those element ({x, y}, {z, w}) such that x, y, z, w
are distinct and dependent and such that {x, y} ⊆ Gi and {z, w} ⊆ Gj for some distinct
i, j ∈ [k].

Putting Sj =
∑

τ∈Tj Pr(Xτ = 1) the sum in (4.8) can be written as
∑5

j=1 Sj and we can
efficiently upper bound each of the inner sums as we now show. Clearly,

S1 =

k∑

i=1

(
gi
2

)
1

m
= E[C].

For the second sum we use that simple tabulation is 3-independent and that |{x, y, z, w}| = 3
implies that x, y, z, w belongs to the same group Gi for some i ∈ [k]. Hence

S2 =

k∑

i=1

(
gi
2

)
· 2 ·

(
gi − 2

1

)
1

m2
≤ 1

m2

k∑

i=1

g3
i ≤

n · n2
0

m2
,

again using Lemma 4.1 to bound the sum of cubes. Finally we upper bound S3 as

S3 ≤
1

m2




k∑

i=1

(
gi
2

)(
gi − 2

2

)
+

∑

i,j∈[k]:i 6=j

(
gi
2

)(
gj
2

)
 ≤ 1

m2

(
k∑

i=1

(
gi
2

))2

= E[C]2.

Note that in the first three steps we have not been using anything about simple tabulation
except it being 3-independent. However, if ({x, y}, {z, w}) ∈ T4 ∪ T5 then by Lemma 4.5 we
have that x ⊕ y ⊕ z ⊕ w = ∅ and thus that h(x) = h(y) exactly if h(z) = h(w) which happens
with probability m−1. Thus in this case we have to efficiently bound the sizes of T4 and T5.
Luckily Lemma 4.6 comes to our rescue and we can bound

S4 + S5 ≤
3c

m




k∑

i=1

g2
i +

∑

i,j∈[k]:i 6=j
gigj


 =

3c

m

(
k∑

i=1

gi

)2

=
3cn2

m
.
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Combining all this we find that

Var[C] = E[C2]− E[C]2 ≤ E[C] +
n · n2

0

m2
+

3cn2

m
≤ n · n2

0

m2
+

(3c + 1)n2

m
,

as desired.

5 Handling bins consisting of many subbins

In this section we show how to modify the proof of Theorem 1.1 to obtain Theorem 1.6.

Proof of Theorem 1.6. We may assume that ρn1−1/c ≤ 1 as otherwise the result is trivial.
As usual we consider the ordering on the position characters, α1 ≺ · · · ≺ αk, obtained

from Lemma 3.1, and we fix the values h(αi) in this order. Suppose that (h(αj))j<i are fixed
and let Vi = {y ∈ [2r] | ∃x ∈ Gi : h(x\{αi}) + y ∈ S} denote those hash values h(αi) that
would cause S ∩ h(Gi) 6= ∅. Note that Vi is a random variabel depending only on (h(αj))j<i.
Let Di ⊆ [2r]\Vi be a set of dummy hash values chosen dependently on (h(αj))j<i such that
(|Di| + |Vi|)/2r = ρ|Gi|. As |Gi| ≤ n1−1/c and so ρ|Gi| ≤ ρn1−1/c ≤ 1 this is in fact possible.
We say that S is hit if there exists and i ∈ {1, . . . , k} such that h(αi) ∈ Vi ∪Di, and we denote
this event H. Defining n0 = n1−1/c we then have

Pr[H] = 1−
k∏

i=1

(1− |Gi|ρ) ≤ 1− (1− n0ρ)n/n0 ≤ 1− e−nρ(1− nn0ρ
2) ≤ p′0 + n2−1/cρ2,

using the same inequality as in the proof of Theorem 1.1. This is clearly also an upper bound
on p = Pr[h(X) ∩ S 6= ∅] = Pr[

⋃k
i=1(h(αi) ∈ Vi)].

Now for the lower bound: For i ∈ {1, . . . , k} we let Di and Ri denote events that h(αi) ∈ Di

and that h(αi) ∈ Vi respectively. Then

Pr

[
k⋃

i=1

Di
]
≤

k∑

i=1

Pr[Di] =
k∑

i=1

(Pr[Ri ∪ Di]− Pr[Ri]) = ρn−
k∑

i=1

Pr[Ri].

By the Bonferroni inequality, and 2-independence

Pr[Ri] = Pr[h(Gi) ∩ S 6= ∅] ≥ |Gi|ρ−
(|Gi|

2

)
ρ2,

so it follows that Pr[
⋃k
i=1Di] ≤

∑k
i=1

(|Gi|
2

)
ρ2 ≤ n2−1/cρ2. Finally

p ≥ Pr[H]− Pr

[
k⋃

i=1

Di
]
≥ p′0 − n2−1/cρ2,

which completes the proof of the lower bound.
The case where we condition on the event E that h(q) = z for a z ∈ [2r] is handled analogously

but this time choosing the order ≺ as described in the second part of Lemma 3.1. The upper
bound on p then follows as before and for the lower bound we use 3-independence of simple
tabulation when applying the Bonferroni inequality to lower bound Pr[Vi | E ].
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(Learned) Frequency Estimation Algorithms under Zipfian

Distribution

Anders Aamand∗ Piotr Indyk† Ali Vakilian‡

Abstract

The frequencies of the elements in a data stream are an important statistical measure and the
task of estimating them arises in many applications within data analysis and machine learning.
Two of the most popular algorithms for this problem, Count-Min and Count-Sketch, are widely
used in practice.

In a recent work [Hsu et al., ICLR’19], it was shown empirically that augmenting Count-
Min and Count-Sketch with a machine learning algorithm leads to a significant reduction of
the estimation error. The experiments were complemented with an analysis of the expected
error incurred by Count-Min (both the standard and the augmented version) when the input
frequencies follow a Zipfian distribution. Although the authors established that the learned
version of Count-Min has lower estimation error than its standard counterpart, their analysis of
the standard Count-Min algorithm was not tight. Moreover, they provided no similar analysis
for Count-Sketch.

In this paper we resolve these problems. First, we provide a simple tight analysis of the
expected error incurred by Count-Min. Second, we provide the first error bounds for both the
standard and the augmented version of Count-Sketch. These bounds are nearly tight and again
demonstrate an improved performance of the learned version of Count-Sketch.

In addition to demonstrating tight gaps between the aforementioned algorithms, we believe
that our bounds for the standard versions of Count-Min and Count-Sketch are of independent
interest. In particular, it is a typical practice to set the number of hash functions in those
algorithms to Θ(log n). In contrast, our results show that to minimize the expected error, the
number of hash functions should be a constant, strictly greater than 1.
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1 Introduction

The last few years have witnessed a rapid growth in using machine learning methods to solve
“classical” algorithmic problems. For example, they have been used to improve the performance
of data structures [KBC+18, Mit18], online algorithms [LV18, PSK18, GP19, Kod19, CGT+19,
ADJ+20, LLMV20, Roh20, ACE+20], combinatorial optimization [KDZ+17, BDSV18, Mit20], sim-
ilarity search [WLKC16, DIRW19], compressive sensing [MPB15, BJPD17] and streaming algo-
rithms [HIKV19, IVY19, JLL+20, CGP20]. Multiple frameworks for designing and analyzing such
algorithms have been proposed [ACC+11, GR17, BDV18, AKL+19]. The rationale behind this line
of research is that machine learning makes it possible to adapt the behavior of the algorithms to
inputs from a specific data distribution, making them more efficient or more accurate in specific
applications.

In this paper we focus on learning-augmented streaming algorithms for frequency estimation.
The latter problem is formalized as follows: given a sequence S of elements from some universe U ,
construct a data structure that for any element i ∈ U computes an estimation f̃i of fi, the number
of times i occurs in S. Since counting data elements is a very common subroutine, frequency
estimation algorithms have found applications in many areas, such as machine learning, network
measurements and computer security. Many of the most popular algorithms for this problem, such
as Count-Min (CM) [CM05a] or Count-Sketch (CS) [CCFC02] are based on hashing. Specifically,
these algorithms hash stream elements into B buckets, count the number of items hashed into each
bucket, and use the bucket value as an estimate of item frequency. To improve the accuracy, the
algorithms use k > 1 such hash functions and aggregate the answers. These algorithms have several
useful properties: they can handle item deletions (implemented by decrementing the respective
counters), and some of them (Count-Min) never underestimate the true frequencies, i.e., f̃i ≥ fi.

In a recent work [HIKV19], the authors showed that the aforementioned algorithm can be
improved by augmenting them with machine learning. Their approach is as follows. During the
training phase, they construct a classifier (neural network) to detect whether an element is “heavy”
(e.g., whether fi is among top k frequent items). After such a classifier is trained, they scan the
input stream, and apply the classifier to each element i. If the element is predicted to be heavy, it
is allocated a unique bucket, so that an exact value of fi is computed. Otherwise, the element is
forwarded to a “standard” hashing data structure C, e.g., CM or CS. To estimate f̃i, the algorithm
either returns the exact count fi (if i is allocated a unique bucket) or an estimate provided by the
data structure C.1 An empirical evaluation, on networking and query log data sets, shows that this
approach can reduce the overall estimation error.

The paper also presents a preliminary analysis of the algorithm. Under the common assumption
that the frequencies follow the Zipfian law, i.e.,2 fi ∝ 1/i, for i = 1, . . . , n for some n, and further
that item i is queried with probability proportional to its frequency, the expected error incurred
by the learning-augmented version of CM is shown to be asymptotically lower than that of the
“standard” CM.3 However, the exact magnitude of the gap between the error incurred by the
learned and standard CM algorithms was left as an open problem. Specifically, [HIKV19] only
shows that the expected error of standard CM with k hash functions and a total of B buckets is

1See Figure 1 for a generic implementation of the learning-based algorithms of [HIKV19].
2In fact we will assume that fi = 1/i. This is just a matter of scaling and is convenient as it removes the

dependence of the length of the stream in our bounds
3This assumes that the error rate for the “heaviness” predictor is sufficiently low.
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between k
B log(k) and k log(k+2)/(k−1)(kn/B)

B . Furthermore, no such analysis was presented for CS.

1.1 Our results

In this paper we resolve the aforementioned questions left open in [HIKV19]. Assuming that the
frequencies follow a Zipfian law, we show:

• An asymptotically tight bound of Θ(k log(kn/B)
B ) for the expected error incurred by the CM

algorithm with k hash functions and a total of B buckets. Together with a prior bound for
Learned CM (Table 1), this shows that learning-augmentation improves the error of CM by
a factor of Θ(log(n)/ log(n/B)) if the heavy hitter oracle is perfect.

• The first error bounds for CS and Learned CS (see Table 1). In particular, we show that for
Learned CS, a single hash function as in [HIKV19] leads to an asymptotically optimal error
bound, improving over standard CS by a factor of Θ(log(n)/ log(n/B)) (same as CM).

We highlight that our results are presented assuming that we use a total of B buckets. With k
hash functions, the range of each hash functions is therefore [B/k]. We make this assumption since
we wish to compare the expected error incurred by the different sketches when the total sketch size
is fixed.

k = 1 k > 1

Count-Min (CM) Θ
(

logn
B

)
[HIKV19] Θ

(
k·log( kn

B
)

B

)

Learned Count-Min (L-CM) Θ
(

log2( n
B

)

B logn

)
[HIKV19] Ω

(
log2( n

B
)

B logn

)
[HIKV19]

Count-Sketch (CS) Θ
(

logB
B

)
Ω
(

k1/2

B log k

)
and O

(
k1/2

B

)

Learned Count-Sketch (L-CS) Θ
(

log n
B

B logn

)
Ω
(

log n
B

B logn

)

Table 1: This table summarizes our and previously known results on the expected frequency esti-
mation error of Count-Min (CM), Count-Sketch (CS) and their learned variants (i.e., L-CM and
L-CS) that use k functions and overall space k× B

k under Zipfian distribution. For CS, we assume
that k is odd (so that the median of k values is well defined).

For our results on L-CS in Table 1 we initially assume that the heavy hitter oracle is perfect,
i.e., that it makes no mistakes when classifying the heavy items. This is unlikely to be the case in
practice, so we complement the results with an analysis of L-CS when the heavy hitter oracle may err
with probability at most δ on each item. As δ varies in [0, 1], we obtain a smooth trade-off between
the performance of L-CS and its classic counterpart. Specifically, as long as δ = O(1/ logB), the
bounds are as good as with a perfect heavy hitter oracle.

In addition to clarifying the gap between the learned and standard variants of popular frequency
estimation algorithms, our results provide interesting insights about the algorithms themselves. For
example, for both CM and CS, the number of hash functions k is often selected to be Θ(log n),
in order to guarantee that every frequency is estimated up to a certain error bound. In contrast,
we show that if instead the goal is to bound the expected error, then setting k to a constant
(strictly greater than 1) leads to the asymptotic optimal performance. We remark that the same
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phenomenon holds not only for a Zipfian query distribution but in fact for an arbitrary distribution
on the queries (see Remark 2.2).

Let us make the above comparison with previous known bounds for CM and CS a bit more

precise. With frequency vector f and for an element x in the stream, we denote by f
(B)
−x , the vector

obtained by setting the entry corresponding to x as well as the B largest entries of f to 0. The classic
technique for analysing CM and CS (see, e.g., [CCFC02]) shows that using a single hash function
and B buckets, with probability Ω(1), the error when querying the frequency of an element x is

O(‖f(B)
−x ‖1/B) for CM and O(‖f(B)

−x ‖2/
√
B) for CS. By creating O(log(1/δ)) sketches and using the

median trick, the error probability can then be reduced to δ. For the Zipfian distribution, these two
bounds become O(log(n/B)/B) and O(1/B) respectively, and to obtain them with high probability
for all elements we require a sketch of size Ω(B log n). Our results imply that to obtain similar
bounds on the expected error, we only require a sketch of size O(B) and a constant number of hash
functions. The classic approach described above does not yield tight bounds on the expected errors
of CM and CS when k > 1 and to obtain our bounds we have to introduce new and quite different
techniques as to be described in Section 1.3.

Our techniques are quite flexible. To illustrate this, we study the performance of the classic
Count-Min algorithm with one and more hash functions, as well as its learned counterparts, in the
case where the input follows the following more general Zipfian distribution with exponent α > 0.
This distribution is defined by fi ∝ 1/iα for i ∈ [n]. We present the precise results in Table 3
in Appendix A.

In Section 6, we complement our theoretical bounds with empirical evaluation of standard and
learned variants of Count-Min and Count-Sketch on a synthetic dataset, thus providing a sense of
the constant factors of our asymptotic bounds.

1.2 Related work

The frequency estimation problem and the closely related heavy hitters problem are two of the
most fundamental problems in the field of streaming algorithms [CM05a, CM05b, CCFC02, M+05,
CH08, CH10, BICS10, MP14, BCIW16, LNNT16, ABL+17, BCI+17, BDW18]. In addition to
the aforementioned hashing-based algorithms (e.g., [CM05a, CCFC02]), multiple non-hashing algo-
rithms were also proposed, e.g., [MG82, MM02, MAEA05]. These algorithms often exhibit better
accuracy/space tradeoffs, but do not posses many of the properties of hashing-based methods, such
as the ability to handle deletions as well as insertions.

Zipf law is a common modeling tool used to evaluate the performance of frequency estimation
algorithms, and has been used in many papers in this area, including [MM02, MAEA05, CCFC02].
In its general form it postulates that fi is proportional to 1/iα for some exponent parameter α > 0.
In this paper we focus mostly on the “original” Zipf law where α = 1. We do, however, study
Count-Min for more general values of α and the techniques introduced in this paper can be applied
to other values of the exponent α for Count-Sketch as well.

1.3 Our techniques

Our main contribution is our analysis of the standard Count-Min and Count-Sketch algorithms
for Zipfians with k > 1 hash functions. Showing the improvement for the learned counterparts is
relatively simple (for Count-Min it was already done in [HIKV19]). In both of these analyses we
consider a fixed item i and bound E[|fi− f̃i|] whereupon linearity of expectation leads to the desired
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results. In the following we assume that fj = 1/j for each j ∈ [n] and describe our techniques for
bounding E[|fi − f̃i|] for each of the two algorithms.

Count-Min. With a single hash function and B buckets it is easy to see that the head of
the Zipfian distribution, namely the items of frequencies (fj)j∈[B], contribute with logB/B to

the expected error E[|fi − f̃i|], whereas the light items contribute with log(n/B)/B. Our main
observation is that with more hash functions the expected contribution from the heavy items
drops to 1/B and so, the main contribution comes from the light items. To bound the expected
contribution of the heavy items to the error |fi− f̃i| we bound the probability that the contribution
from these items is at least t, then integrate over t. The main observation is that if the error is at
least t then for each of the hash functions, either there exist t/s items in [B] hashing to the same
bucket as i or there is an item j 6= i in [B] of weight at most s hashing to the same bucket as i. By
a union bound, optimization over s, and some calculations, this gives the desired bound. The lower
bound follows from simple concentration inequalities on the contribution of the tail. In contrast
to the analysis from [HIKV19] which is technical and leads to suboptimal bounds, our analysis is
short, simple, and yields completely tight bounds in terms of all of the parameters k, n and B.

Count-Sketch. Simply put, our main contribution is an improved understanding of the
distribution of random variables of the form S =

∑n
i=1 fiηiσi. Here the ηi ∈ {0, 1} are

i.i.d Bernouilli random variables and the σi ∈ {−1, 1} are independent Rademachers, that is,
Pr[ηi = 1] = Pr[ηi = −1] = 1/2. Note that the counters used in CS are random variables having
precisely this form. Usually such random variables are studied for the purpose of obtaining large de-
viation results. In contrast, in order to analyze CS, we are interested in a fine-grained picture of the
distribution within a “small” interval I around zero, say with Pr[S ∈ I] = 1/2. For example, when
proving a lower bound on E[|fi− f̃i|], we must establish a certain anti-concentration of S around 0.
More precisely we find an interval J ⊂ I centered at zero such that Pr[S ∈ J ] = O(1/

√
k). Com-

bined with the fact that we use k independent hash functions as well as properties of the median
and the binomial distribution, this gives that E[|fi − f̃i|] = Ω(|J |). Anti-concentration inequali-
ties of this type are in general notoriously hard to obtain but it turns out that we can leverage
the properties of the Zipfian distribution, specifically its heavy head. For our upper bounds on
E[|fi − f̃i|] we need strong lower bounds on Pr[S ∈ J ] for intervals J ⊂ I centered at zero. Then
using concentration inequalities we can bound the probability that half of the k relevant counters
are smaller (larger) than the lower (highter) endpoint of J , i.e., that the median does not lie in J .
Again this requires a precise understanding of the distribution of S within I.

1.4 Structure of the paper

In Section 2 we describe the algorithms Count-Min and Count-Sketch. We also formally define the
estimation error that we will study as well as the Zipfian distribution. In Sections 3 and 4 we provide
our analyses of the expected error of Count-Min and Count-Sketch. In Section 5 we analyze the
performance of learned Count-Sketch both when the heavy hitter oracle is perfect and when it may
misclassify each item with probability at most δ. In Section 6 we present our experiments. Finally,
in Appendix A, we analyse Count-Min for the generalized Zipfian distribution with exponent α > 0
both in the classic and learned case and prove matching lower bounds for the learned algorithms.

4



2 Preliminaries

We start out by describing the sketching algorithms Count-Min and Count-Sketch. Common to
both of these algorithms is that we sketch a stream S of elements coming from some universe U of
size n. For notational convenience we will assume that U = [n] := {1, . . . , n}. If item i occurs fi
times then either algorithm outputs an estimate f̃i of fi.

Count-Min. We use k independent and uniformly random hash functions h1, . . . , hk : [n]→
[B]. Letting C be an array of size [k] × [B] we let C[`, b] =

∑
j∈[n][h`(j) = b]fj . When querying

i ∈ [n] the algorithm returns f̃i = min`∈[k]C[`, h`(i)]. Note that we always have that f̃i ≥ fi.

Count-Sketch. We pick independent and uniformly random hash functions h1, . . . , hk : [n]→
[B] and s1, . . . , sk : [n] → {−1, 1}. Again we initialize an array C of size [k] × [B] but now we let
C[`, b] =

∑
j∈[n][h`(j) = b]s`(j)fj . When querying i ∈ [n] the algorithm returns the estimate

f̃i = median`∈[k] s`(i) · C[`, h`(i)].

Remark 2.1. The bounds presented in Table 1 assumes that the hash functions have codomain
[B/k] and not [B], i.e., that the total number of buckets is B. In the proofs to follows we assume for
notational ease that the hash functions take value in [B] and the claimed bounds follows immediately
by replacing B by B/k.

Estimation Error. To measure and compare the overall accuracy of different frequency es-
timation algorithms, we will use the expected estimation error which is defined as follows: let
F = {f1, · · · , fn} and F̃A = {f̃1, · · · , f̃n} respectively denote the actual frequencies and the esti-
mated frequencies obtained from algorithm A of items in the input stream. We remark that when
A is clear from the context we denote F̃A as F̃ . Then we define

Err(F , F̃A) := Ei∼D|fi − f̃i|, (1)

where D denotes the query distribution of the items. Here, similar to previous work (e.g., [RKA16,
HIKV19]), we assume that the query distribution D is the same as the frequency distribution of
items in the stream, i.e., for any i∗ ∈ [n], Pri∼D[i = i∗] ∝ fi∗ (more precisely, for any i∗ ∈ [n],
Pri∼D[i = i∗] = fi∗/N where N =

∑
i∈[n] fi denotes the total sum of all frequencies in the stream).

Remark 2.2. As all upper/lower bounds in this paper are proved by bounding the expected error
when estimating the frequency of a single item, E[|f̃i − fi|], then using linearity of expectation, in
fact we obtain bounds for any query distribution (pi)i∈[n].

Zipfian Distribution. In our analysis we assume that the frequency distribution of items
follows Zipf’s law. That is, if we sort the items according to their frequencies with no loss of
generality assuming that f1 ≥ f2 ≥ · · · ≥ fn, then for any i ∈ [n], fi ∝ 1/i. In fact, we shall assume
that fi = 1/i, which is just a matter of scaling, and which conveniently removes the dependence on
the length of the stream in our bounds. Assuming that the query distribution is the same as the
distribution of the frequencies of items in the input stream (i.e., Pri∼D[i∗] = fi∗/N = 1/(i∗ ·Hn)
where Hn denotes the n-th harmonic number), we can write the expected error in eq. (1) as follows:

Err(F , F̃A) = Ei∼D[|fi − f̃i|] =
1

N
·
∑

i∈[n]

|f̃i − fi| · fi =
1

Hn
·
∑

i∈[n]

|f̃i − fi| ·
1

i
(2)
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Throughout this paper, we present our results with respect to the objective function at the right
hand side of eq. (2), i.e., (1/Hn) ·∑n

i=1 |f̃i − fi| · fi. However, it is easy to use our results to obtain
bounds for any query distribution as stated in Remark 2.2.

Later we shall study the generalized Zipfian distribution with exponent α > 0. Sorting the
items according to their frequencies, f1,≥ f2 ≥ · · · ≥ fn, it holds for any i ∈ [n] that fi ∝ 1/iα.
Again we present our result with respect to the objective function

∑n
i=1 |f̃i − fi| · fi.

Algorithm 1 Learning-Based Frequency Estimation

1: procedure LearnedSketch(B, Bh, HH-Oracle, SketchAlg)
2: for each stream element i do
3: if HH-Oracle(i) = 1 then . predicts whether i is heavy (in top Bh- frequent items)
4: if a unique bucket is already assigned to item i then
5: counteri ← counteri + 1
6: else
7: allocate a new unique bucket to item i and counteri ← 1
8: end if
9: else

10: feed i to SketchAlg(B −Bh) . an instance of SketchAlg with B −Bh buckets
11: end if
12: end for
13: end procedure

Figure 1: A generic learning augmented algorithm for the frequency estimation problem.
HH-Oracle denotes a given learned oracle for detecting whether the item is among the top Bh
frequent items of the stream and SketchAlg is a given (sketching) algorithm (e.g., CM or CS)
for the frequency estimation problem.

Learning Augmented Sketching Algorithms for Frequency Estimation. In this paper,
following the approach of [HIKV19], the learned variants of CM and CS are algorithms augmented
with a machine learning based heavy hitters oracle. More precisely, we assume that the algorithm
has access to an oracle HH-Oracle that predicts whether an item is “heavy” (i.e., is one of the Bh
most frequent items) or not. Then, the algorithm treats heavy and non-heavy items differently: (a)
a unique bucket is allocated to each heavy item and their frequencies are computed with no error,
(b) the rest of items are fed to the given (sketching) algorithm SketchAlg using the remaining
B − Bh buckets and their frequency estimates are computed via SketchAlg (see Figure 1). We
shall assume that Bh = Θ(B − Bh) = Θ(B), that is, we use asymptotically the same number
of buckets for the heavy items as for the sketching of the light items. One justification for this
assumption is that in any case we can increase both the number of buckets for heavy and light
items to B without affecting the overall asymptotic space usage.

Note that, in general the oracle HH-Oracle can make errors. In our analysis we first obtain
a theoretical understanding, by assuming that the oracle is perfect, i.e., the error rate is zero. We
later complement this analysis, by studying the incurred error when the oracle misclassifies each
item with probability at most δ.
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Concentration bounds. We finally collect some concentration inequalities for reference in
the the proofs of our results. The inequality we will use the most is Bennett’s inequality. However,
we remark that for our applications, several other variance based concentration result would suffice,
e.g., Bernstein’s inequality.

Theorem 2.3 (Bennett’s inequality [Ben62]). Let X1, . . . , Xn be independent, mean zero random
variables. Let S =

∑n
i=1Xi, and σ2,M > 0 be such that Var[S] ≤ σ2 and |Xi| ≤M for all i ∈ [n].

For any t ≥ 0,

Pr[S ≥ t] ≤ exp

(
− σ2

M2
h

(
tM

σ2

))
,

where h : R≥0 → R≥0 is defined by h(x) = (x+ 1) log(x+ 1)− x. The same tail bound holds on the
probability Pr[S ≤ −t].

Remark 2.4. For x ≥ 0, 1
2x log(x+1) ≤ h(x) ≤ x log(x+1). We will use these asymptotic bounds

repeatedly in this paper.
A corollary of Bennett’s inequality is the classic Chernoff bounds.

Theorem 2.5 (Chernoff [Che52]). Let X1, . . . , Xn ∈ [0, 1] be independent random variables and
S =

∑n
i=1Xi. Let µ = E[S]. Then

Pr[S ≥ (1 + δ)µ] ≤ exp(−µh(δ)).

Even weaker than Chernoff’s inequality is Hoeffding’s inequality.

Theorem 2.6 (Hoeffding [Hoe63]). Let X1, . . . , Xn ∈ [0, 1] be independent random variables. Let
S =

∑n
i=1Xi. Then

Pr[S − E[S] ≥ t] ≤ e− 2t2

n .

3 Tight Bounds for Count-Min with Zipfians

For both Count-Min and Count-Sketch we aim at analyzing the expected value of the variable∑
i∈[n] fi · |f̃i − fi| where fi = 1/i and f̃i is the estimate of fi output by the relevant sketching

algorithm. Throughout this paper we use the following notation: For an event E we denote by
[E] the random variable in {0, 1} which is 1 if and only if E occurs. We begin by presenting our
improved analysis of Count-Min with Zipfians. The main theorem is the following.

Theorem 3.1. Let n,B, k ∈ N with k ≥ 2 and B ≤ n/k. Let further h1, . . . , hk : [n] → [B]
be independent and truly random hash functions. For i ∈ [n] define the random variable f̃i =

min`∈[k]

(∑
j∈[n][h`(j) = h`(i)]fj

)
. For any i ∈ [n] it holds that E[|f̃i − fi|] = Θ

(
log( nB )
B

)
.

Replacing B by B/k in Theorem 3.1 and using linearity of expectation we obtain the desired
bound for Count-Min in the upper right hand side of Table 1. The natural assumption that B ≤ n/k
simply says that the total number of buckets is upper bounded by the number of items.

To prove Theorem 3.1 we start with the following lemma which is a special case of the theorem.
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Lemma 3.2. Suppose that we are in the setting of Theorem 3.1 and further that4 n = B. Then

E[|f̃i − fi|] = O

(
1

n

)
.

Proof. It suffices to show the result when k = 2 since adding more hash functions and corresponding
tables only decreases the value of |f̃i − fi|. Define Z` =

∑
j∈[n]\{i}[h`(j) = h`(i)]fj for ` ∈ [2] and

note that these variables are independent. For a given t ≥ 3/n we wish to upper bound Pr[Z` ≥ t].
Let s < t be such that t/s is an integer, and note that if Z` ≥ t then either of the following two
events must hold:

E1: There exists a j ∈ [n] \ {i} with fj > s and h`(j) = h`(i).

E2: The set {j ∈ [n] \ {i} : h`(j) = h`(i)} contains at least t/s elements.

To see this, suppose that Z` ≥ t and that E1 does not hold. Then

t ≤ Z` =
∑

j∈[n]\{i}
[h`(j) = h`(i)]fj ≤ s|{j ∈ [n] \ {i} : h`(j) = h`(i)}|,

so it follows that E2 holds. By a union bound,

Pr[Z` ≥ t] ≤ Pr[E1] + Pr[E2] ≤ 1

ns
+

(
n

t/s

)
n−t/s ≤ 1

ns
+
(es
t

)t/s
.

Choosing s = Θ( t
log(tn)) such that t/s is an integer, and using t ≥ 3

n , a simple calculation yields

that Pr[Z` ≥ t] = O
(

log(tn)
tn

)
. Note that |f̃i − fi| = min(Z1, Z2). As Z1 and Z2 are independent,

Pr[|f̃i − fi| ≥ t] = O

((
log(tn)
tn

)2
)

, so

E[|f̃i − fi|] =

∫ ∞

0
Pr[Z ≥ t] dt ≤ 3

n
+O

(∫ ∞

3/n

(
log(tn)

tn

)2

dt

)
= O

(
1

n

)
.

We can now prove the full statement of Theorem 3.1.

Proof of Theorem 3.1. We start out by proving the upper bound. Let N1 = [B] \ {i} and N2 =
[n] \ ([B] ∪ {i}). Let b ∈ [k] be such that

∑
j∈N1

fj · [hb(j) = hb(i)] is minimal. Note that b is itself
a random variable. We also define

Y1 =
∑

j∈N1

fj · [hb(j) = hb(i)], and Y2 =
∑

j∈N2

fj · [hb(j) = hb(i)].

Then, |f̃i− fi| ≤ Y1 + Y2. Using Lemma 3.2, we obtain that E[Y1] = O( 1
B ). For Y2 we observe that

E[Y2 | b] =
∑

j∈N2

fj
B

= O

(
log
(
n
B

)

B

)
.

4In particular we dispose with the assumption that B ≤ n/k.
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We conclude that

E[|f̃i − fi|] ≤ E[Y1] + E[Y2] = E[Y1] + E[E[Y2 | b]] = O

(
log
(
n
B

)

B

)
.

Next we prove the lower bound. We have already seen that the main contribution to the error comes
from the tail of the distribution. As the tail of the distribution is relatively “flat” we can simply
apply a concentration inequality to argue that with probability Ω(1), we have this asymptotic
contribution for each of the k hash functions. To be precise, for j ∈ [n] and ` ∈ [k] we define

X
(j)
` = fj ·

(
[h`(j) = h`(i)]− 1

B

)
. Note that the variables (X

(j)
` )j∈[n] are independent. We also

define S` =
∑

j∈N2
X

(j)
` for ` ∈ [k]. Observe that |X(j)

` | ≤ fj ≤ 1
B for j ≥ B, E[X

(j)
` ] = 0, and that

Var[S`] =
∑

j∈N2

f2
j

(
1

B
− 1

B2

)
≤ 1

B2
.

Applying Bennett’s inequality(Theorem 2.3 of Section 2), with σ2 = 1
B2 and M = 1/B thus gives

that

Pr[S` ≤ −t] ≤ exp (−h (tB)) .

Defining W` =
∑

j∈N2
fj · [h`(j) = h`(i)] it holds that E[W`] = Θ

(
log( nB )
B

)
and S` = W` − E[W`],

so putting t = E[W`]/2 in the inequality above we obtain that

Pr[W` ≤ E[W`]/2] = Pr[S` ≤ −E[W`]/2] ≤ exp
(
−h
(

Ω
(

log
n

B

)))
.

Appealing to Remark 2.4 and using that B ≤ n/k the above bound becomes

Pr[W` ≤ E[W`]/2] ≤ exp
(
−Ω

(
log

n

B
· log

(
log

n

B
+ 1
)))

= exp(−Ω(log k · log(log k + 1))) = k−Ω(log(log k+1)). (3)

By the independence of the events (W` > E[W`]/2)`∈[k], we have that

Pr

[
|f̃i − fi| ≥

E[W`]

2

]
≥ (1− k−Ω(log(log k+1)))k = Ω(1),

and so E[|f̃i − fi|] = Ω(E[W`]) = Ω

(
log( nB )
B

)
, as desired.

Remark 3.3. We have stated Theorem 3.1 for truly random hash functions but it suffices with
O(logB)-independent hashing to prove the upper bound. Indeed, the only step in which we require
high independence is in the union bound in Lemma 3.2 over the

(
n
t/s

)
subsets of [n] of size t/s. To

optimize the bound we had to choose s = t/ log(tn), so that t/s = log(tn). As we only need to
consider values of t with t ≤∑n

i=1 fi = O(log n), in fact t/s = O(log n) in our estimates. Finally,
we applied Lemma 3.2 with n = B so it follows that O(logB)-independence is enough to obtain
our upper bound.
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4 (Nearly) Tight Bounds for Count-Sketch with Zipfians

In this section we proceed to analyze Count-Sketch for Zipfians either using a single or more hash
functions. We start with two simple lemmas which for certain frequencies (fi)i∈[n] of the items

in the stream can be used to obtain respectively good upper and lower bounds on E[|f̃i − fi|] in
Count-Sketch with a single hash function. We will use these two lemmas both in our analysis of
standard and learned Count-Sketch for Zipfians.

Lemma 4.1. Let w = (w1, . . . , wn) ∈ Rn, η1, . . . , ηn Bernoulli variables taking value 1 with proba-
bility p, and σ1, . . . , σn ∈ {−1, 1} independent Rademachers, i.e., Pr[σi = 1] = Pr[σi = −1] = 1/2.
Let S =

∑n
i=1wiηiσi. Then, E[|S|] = O

(√
p‖w‖2

)
.

Proof. Using that E[σiσj ] = 0 for i 6= j and Jensen’s inequality E[|S|]2 ≤ E[S2] = E
[∑n

i=1w
2
i ηi
]

=
p‖w‖22, from which the result follows.

Lemma 4.2. Suppose that we are in the setting of Lemma 4.1. Let I ⊂ [n] and let wI ∈ Rn be
defined by (wI)i = [i ∈ I] · wi. Then

E[|S|] ≥ 1

2
p (1− p)|I|−1 ‖wI‖1.

Proof. Let J = [n] \ I, S1 =
∑

i∈I wiηiσi, and S2 =
∑

i∈J wiηiσi. Let E denote the event that S1

and S2 have the same sign or S2 = 0. Then Pr[E] ≥ 1/2 by symmetry. For i ∈ I we denote by Ai
the event that {j ∈ I : ηj 6= 0} = {i}. Then Pr[Ai] = p(1 − p)|I|−1 and furthermore Ai and E are
independent. If Ai ∩ E occurs, then |S| ≥ |wi| and as the events (Ai ∩ E)i∈I are disjoint it thus

follows that E[|S|] ≥∑i∈I Pr[Ai ∩ E] · |wi| ≥ 1
2p (1− p)|I|−1 ‖wI‖1.

With these tools in hand, we proceed to analyse Count-Sketch for Zipfians with one and more
hash functions in the next two sections.

4.1 One hash function

By the same argument as in the discussion succeeding Theorem 3.1, the following theorem yields
the desired result for a single hash function as presented in Table 1.

Theorem 4.3. Suppose that B ≤ n and let h : [n] → [B] and s : [n] → {−1, 1} be truly random
hash functions. Define the random variable f̃i =

∑
j∈[n][h(j) = h(i)]s(j)fj for i ∈ [n]. Then

E[|f̃i − s(i)fi|] = Θ

(
logB

B

)
.

Proof. Let i ∈ [n] be fixed. We start by defining N1 = [B] \ {i} and N2 = [n] \ ([B]∪ {i}) and note
that

|f̃i − s(i)fi| ≤

∣∣∣∣∣∣
∑

j∈N1

[h(j) = h(i)]s(j)fj

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

j∈N2

[h(j) = h(i)]s(j)fj

∣∣∣∣∣∣
:= X1 +X2.
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Using the triangle inequality E[X1] ≤ 1
B

∑
j∈N1

fj = O( logB
B ). Also, by Lemma 4.1, E[X2] = O

(
1
B

)

and combining the two bounds we obtain the desired upper bound. For the lower bound we
apply Lemma 4.2 with I = N1 concluding that

E[|f̃i − s(i)fi|] ≥
1

2B

(
1− 1

B

)|N1|−1 ∑

i∈N1

fi = Ω

(
logB

B

)
.

4.2 Multiple hash functions

Let k ∈ N be odd. For a tuple x = (x1, . . . , xk) ∈ Rk we denote by medianx the median of the
entries of x. The following theorem immediately leads to the result on CS with k ≥ 3 hash functions
claimed in Table 1.

Theorem 4.4. Let k ≥ 3 be odd, n ≥ kB, and h1, . . . , hk : [n]→ [B] and s1, . . . , sk : [n]→ {−1, 1}
be truly random hash functions. Define f̃i = median`∈[k]

(∑
j∈[n][h`(j) = h`(i)]s`(j)fj

)
for i ∈ [n].

Assume that5 k ≤ B. Then

E[|f̃i − s(i)fi|] = Ω

(
1

B
√
k log k

)
, and E[|f̃i − s(i)fi|] = O

(
1

B
√
k

)

The assumption n ≥ kB simply says that the total number of buckets is upper bounded by
the number of items. Again using linearity of expectation for the summation over i ∈ [n] and

replacing B by B/k we obtain the claimed upper and lower bounds of
√
k

B log k and
√
k
B respectively.

We note that even if the bounds above are only tight up to a factor of log k they still imply that it
is asymptotically optimal to choose k = O(1), e.g. k = 3. To settle the correct asymptotic growth
is thus of merely theoretical interest.

In proving the upper bound in Theorem 4.4, we will use the following result by Minton and
Price (Corollary 3.2 of [MP14]) proved via an elegant application of the Fourier transform.

Lemma 4.5 (Minton and Price [MP14]). Let {Xi : i ∈ [n]} be independent symmetric random
variables such that Pr[Xi = 0] ≥ 1/2 for each i. Let X =

∑n
i=1Xi and σ2 = E[X2] = Var[X]. For

ε < 1 it holds that Pr[|X| < εσ] = Ω(ε)

Proof of Theorem 4.4. If B (and hence k) is a constant, then the results follow easily
from Lemma 4.1, so in what follows we may assume that B is larger than a sufficiently large
constant. We subdivide the exposition into the proofs of the upper and lower bounds.

Upper bound Define N1 = [B] \ {i} and N2 = [n] \ ([B] ∪ {i}). Let for ` ∈ [k], X
(`)
1 =∑

j∈N1
[h`(j) = h`(i)]s`(j)fj and X

(`)
2 =

∑
j∈N2

[h`(j) = h`(i)]s`(j)fj and let X(`) = X
(`)
1 +X

(`)
2 .

As the absolute error in Count-Sketch with one pair of hash functions (h, s) is always upper
bounded by the corresponding error in Count-Min with the single hash function h, we can use the

bound in the proof of Lemma 3.2 to conclude that Pr[|X(`)
1 | ≥ t] = O( log(tB)

tB ), when t ≥ 3/B. Also

5This very mild assumption can probably be removed at the cost of a more technical proof. In our proof it can
even be replaced by k ≤ B2−ε for any ε = Ω(1).
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Var[X
(`)
2 ] = ( 1

B − 1
B2 )

∑
j∈N2

f2
j ≤ 1

B2 , so by Bennett’s inequality (Theorem 2.3) with M = 1/B

and σ2 = 1/B2 and Remark 2.4,

Pr[|X(`)
2 | ≥ t] ≤ 2 exp (−h(tB)) ≤ 2 exp

(
−1

2
tB log (tB + 1)

)
= O

(
log(tB)

tB

)
,

for t ≥ 3
B . It follows that for t ≥ 3/B,

Pr[|X(`)| ≥ 2t] ≤ Pr[(|X(`)
1 | ≥ t)] + Pr(|X(`)

2 | ≥ t)] = O

(
log(tB)

tB

)
.

Let C be the implicit constant in the O-notation above. If |f̃i − s(i)fi| ≥ 2t, at least half of the
values (|X(`)|)`∈[k] are at least 2t. For t ≥ 3/B it thus follows by a union bound that

Pr[|f̃i − s(i)fi| ≥ 2t] ≤ 2

(
k

dk/2e

)(
C

log(tB)

tB

)dk/2e
≤ 2

(
4C

log(tB)

tB

)dk/2e
. (4)

If α = O(1) is chosen sufficiently large it thus holds that

∫ ∞

α/B
Pr[|f̃i − s(i)fi| ≥ t] dt = 2

∫ ∞

α/(2B)
Pr[|f̃i − s(i)fi| ≥ 2t] dt

≤ 4

B

∫ ∞

α/2

(
4C

log(t)

t

)dk/2e
dt

≤ 1

B2k
≤ 1

B
√
k
.

Here the first inequality uses eq. (4) and a change of variable. The second inequality uses that(
4C log t

t

)dk/2e
≤ (C ′/t)2k/5 for some constant C ′ followed by a calculation of the integral. Now,

E[|f̃i − s(i)fi|] =

∫ ∞

0
Pr[|f̃i − s(i)fi| ≥ t] dt,

so for our upper bound it therefore suffices to show that
∫ α/B

0 Pr[|f̃i − s(i)fi| ≥ t] dt = O
(

1
B
√
k

)
.

For this we need the following claim:

Claim 4.6. Let I ⊂ R be the closed interval centered at the origin of length 2t, i.e., I = [−t, t].
Suppose that 0 < t ≤ 1

2B . For ` ∈ [k], Pr[X(`) ∈ I] = Ω(tB).

Proof. Note that Pr[X
(`)
1 = 0] ≥ Pr[

∧
j∈N1

(h`(j) 6= h`(i))] = (1 − 1
B )N1 = Ω(1). Secondly

Var[X
(`)
2 ] = ( 1

B − 1
B2 )

∑
j∈N2

f2
j ≤ 1

B2 . Using that X
(`)
1 and X

(`)
2 are independent and Lemma 4.5

with σ2 = Var[X
(`)
2 ], it follows that Pr[X(`) ∈ I] = Ω

(
Pr[X

(`)
2 ∈ I]

)
= Ω(tB).

Let us now show how to use the claim to establish the desired upper bound. For this let
0 < t ≤ 1

2B be fixed. If |f̃i − s(i)fi| ≥ t, at least half of the values (X(`))`∈[k] are at least t or at
most −t. Let us focus on bounding the probability that at least half are at least t, the other bound
being symmetric giving an extra factor of 2 in the probability bound. By symmetry and Claim 4.6,
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Pr[X(`) ≥ t] = 1
2 − Ω(tB). For ` ∈ [k] we define Y` = [X(`) ≥ t], and we put S =

∑
`∈[k] Y`. Then

E[S] = k
(

1
2 − Ω(tB)

)
. If at least half of the values (X(`))`∈[k] are at least t then S ≥ k/2. By

Hoeffding’s inequality (Theorem 2.6) we can bound the probability of this event by

Pr[S ≥ k/2] = Pr[S − E[S] = Ω(ktB)] = exp(−Ω(kt2B2)).

It follows that Pr[|f̃i − s(i)fi| ≥ t] ≤ 2 exp(−Ω(kt2B2)). Thus

∫ α/B

0
Pr[|f̃i − s(i)fi| ≥ t] dt ≤

∫ 1
2B

0
2 exp(−Ω(kt2B2)) dt+

∫ α/B

1
2B

2 exp(−Ω(k)) dt

≤ 1

B
√
k

∫ √k/2

0
exp(−t2) dt+

2α exp(−Ω(k))

B
= O

(
1

B
√
k

)
.

Here the second inequality used a change of variable. The proof of the upper bound is complete.

Lower Bound Fix ` ∈ [k] and let M1 = [B log k] \ {i} and M2 = [n] \ ([B log k] ∪ {i}). Write

S :=
∑

j∈M1

[h`(j) = h`(i)]s`(j)fj +
∑

j∈M2

[h`(j) = h`(i)]s`(j)fj := S1 + S2.

We also define J := {j ∈ M1 : h`(j) = h`(i)}. Let I ⊆ R be the closed interval around s`(i)fi of
length 1

B
√
k log k

. We now upper bound the probability that S ∈ I conditioned on the value of S2.

To ease the notation, the conditioning on S2 has been left out in the notation to follow. Note first
that

Pr[S ∈ I] =

|M1|∑

r=0

Pr[S ∈ I | |J | = r] · Pr[|J | = r]. (5)

For a given r ≥ 1 we now proceed to bound Pr[S ∈ I | |J | = r]. This probability is the same as
the probability that S2 +

∑
j∈R σjfj ∈ I, where R ⊆ M1 is a uniformly random r-subset and the

σj ’s are independent Rademachers. Suppose that we sample the elements from R as well as the
corresponding signs (σi)i∈R sequentially, and let us condition on the values and signs of the first
r− 1 sampled elements. At this point at most B log k√

k
+ 1 possible samples for the last element in R

can cause that S ∈ I. Indeed, the minimum distance between distinct elements of {fj : j ∈M1} is
at least 1/(B log k)2 and furthermore I has length 1

B
√
k log k

. Thus, at most

1

B
√
k log k

· (B log k)2 + 1 =
B log k√

k
+ 1

choices for the last element of R ensure that S ∈ I. For 1 ≤ r ≤ (B log k)/2 we can thus upper
bound

Pr[S ∈ I | |J | = r] ≤
B log k√

k
+ 1

|M1| − r + 1
≤ 2√

k
+

2

B log k
≤ 3√

k
.

Note that µ := E[|J |] ≤ log k so for B ≥ 6, it holds that

Pr[|J | ≥ (B log k)/2] ≤ Pr

[
|J | ≥ µB

2

]
≤ Pr

[
|J | ≥ µ

(
1 +

B

3

)]
≤ exp (−µh(B/3)) = k−Ω(h(B/3)),
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where the last inequality follows from the Chernoff bound of Theorem 2.5. Thus, if we assume that
B is larger than a sufficiently large constant, then Pr[|J | ≥ B log k/2] ≤ k−1. Finally, Pr[|J | = 0] =
(1− 1/B)B log k ≤ k−1. Combining the above, we can continue the bound in (5) as follows.

Pr[S ∈ I] ≤Pr[|J | = 0] +

(B log k)/2∑

r=1

Pr[S ∈ I | |J | = r] · Pr[|J | = r]

+

|M1|∑

r=(B log k)/2+1

Pr[|J | = r] = O

(
1√
k

)
, (6)

which holds even after removing the conditioning on S2. We now show that with probability
Ω(1) at least half the values (X(`))`∈[k] are at least 1

2B
√
k log k

. Let p0 be the probability that

X(`) ≥ 1
2B
√
k log k

. This probability does not depend on ` ∈ [k] and by symmetry and (6), p0 =

1/2−O(1/
√
k). Define the function f : {0, . . . , k} → R by

f(t) =

(
k

t

)
pt0(1− p0)k−t.

Then f(t) is the probability that exactly t of the values (X(`))`∈[k] are at least 1
B
√
k log k

. Using

that p0 = 1/2 − O(1/
√
k), a simple application of Stirling’s formula gives that f(t) = Θ

(
1√
k

)
for

t = dk/2e, . . . , dk/2 +
√
ke when k is larger than some constant C. It follows that with probability

Ω(1) at least half of the (X(`))`∈[k] are at least 1
B
√
k log k

and in particular

E[|f̃i − fi|] = Ω

(
1

B
√
k log k

)
.

Finally we handle the case where k ≤ C. It follows from simple calculations (e.g., using Lemma 4.2)
that X(`) = Ω(1/B) with probability Ω(1). Thus this happens for all ` ∈ [k] with probability Ω(1)
and in particular E[|f̃i − fi|] = Ω(1/B), which is the desired for constant k.

5 Learned Count-Sketch for Zipfians

We now proceed to analyze the learned Count-Sketch algorithm. In Section 5.1 we estimate the
expected error when using a single hash function and in Section 5.2 we show that the expected
error only increases when using more hash functions. Recall that we assume that the number of
buckets Bh used to store the heavy hitters that Bh = Θ(B −Bh) = Θ(B).

5.1 One hash function

By taking B1 = Bh = Θ(B) and B2 = B − Bh = Θ(B) in the theorem below, the result on L-CS
for k = 1 claimed in Table 1 follows immediately.

Theorem 5.1. Let h : [n]\ [B1]→ [B2] and s : [n]→ {−1, 1} be truly random hash functions where
n,B1, B2 ∈ N and6 n−B1 ≥ B2 ≥ B1. Define the random variable f̃i =

∑n
j=B1+1[h(j) = h(i)]s(j)fj

6The first inequality is the standard assumption that we have at least as many items as buckets. The second
inequality says that we use at least as many buckets for non-heavy items as for heavy items (which doesn’t change
the asymptotic space usage).
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for i ∈ [n] \ [B1]. Then

E[|f̃i − s(i)fi|] = Θ

(
log B2+B1

B1

B2

)

Proof. Let N1 = [B1 +B2] \ ([B1] ∪ {i}) and N2 = [n] \ ([B1 +B2] ∪ {i}). Let X1 =
∑

j∈N1
[h(j) =

h(i)]s(j)fj and X2 =
∑

j∈N2
[h(j) = h(i)]s(j)fj . By the triangle inequality and linearity of expec-

tation,

E[|X1|] = O

(
log B2+B1

B1

B2

)
.

Moreover, it follows directly from Lemma 4.1 that E [|X2|] = O
(

1
B2

)
. Thus

E[|f̃i − s(i)fi|] ≤ E[|X1|] + E[|X2|] = O

(
log B2+B1

B1

B2

)
,

as desired. For the lower bound on E
[∣∣∣f̃i − s(i)fi

∣∣∣
]

we apply Lemma 4.2 with I = N1 to obtain

that,

E
[∣∣∣f̃i − s(i)fi

∣∣∣
]
≥ 1

2B2

(
1− 1

B2

)|N1|−1 ∑

i∈N1

fi = Ω

(
log B2+B1

B1

B2

)
.

Corollary 5.2. Let h : [n] \ [Bh]→ [B−Bh] and s : [n]→ {−1, 1} be truly random hash functions
where n,B,Bh ∈ N and Bh = Θ(B) ≤ B/2. Define the random variable f̃i =

∑n
j=Bh+1[h(j) =

h(i)]s(j)fj for i ∈ [n] \ [Bh]. Then E[|f̃i − s(i)fi|] = Θ(1/B).

Remark 5.3. The upper bounds of Theorem 5.1 and Corollary 5.2 hold even without the as-
sumption of fully random hashing. In fact, we only require that h and s are 2-independent. In-
deed Lemma 4.1 holds even when the Rademachers are 2-independent (the proof is the same).
Moreover, we need h to be 2-independent as we condition on h(i) in our application of Lemma 4.1.
With 2-independence the variables [h(j) = h(i)] for j 6= i are then Bernoulli variables taking value
1 with probability 1/B2.

5.2 More hash functions

We now show that, like for Count-Sketch, using more hash functions does not decrease the expected
error. We first state the Littlewood-Offord lemma as strengthened by Erdős.

Theorem 5.4 (Littlewood-Offord [LO39], Erdős [Erd45]). Let a1, . . . , an ∈ R with |ai| ≥ 1 for
i ∈ [n]. Let further σ1, . . . , σn ∈ {−1, 1} be random variables with Pr[σi = 1] = Pr[σi = −1] = 1/2
and define S =

∑n
i=1 σiai. For any v ∈ R it holds that Pr[|S − v| ≤ 1] = O(1/

√
n).

Setting B1 = Bh = Θ(B) and B2 = B−B2 = Θ(B) in the theorem below gives the final bound
from Table 1 on L-CS with k ≥ 3.
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Theorem 5.5. Let n ≥ B1 + B2 ≥ 2B1, k ≥ 3 odd, and h1, . . . , hk : [n] \ [B1] → [B2/k] and
s1, . . . , sk : [n] \ [B1] → {−1, 1} be independent and truly random. Define the random variable

f̃i = median`∈[k]

(∑
j∈[n]\[B1][h`(j) = h`(i)]s`(j)fj

)
for i ∈ [n] \ [B1]. Then

E[|f̃i − s(i)fi|] = Ω

(
1

B2

)
.

Proof. Like in the proof of the lower bound of Theorem 4.4 it suffices to show that for each
i the probability that the sum S` :=

∑
j∈[n]\([B1]∪{i})[h`(j) = h`(i)]s`(j)fj lies in the interval

I = [−1/(2B2), 1/(2B2)] is O(1/
√
k). Then at least half the (S`)`∈[k] are at least 1/(2B2) with

probability Ω(1) by an application of Stirling’s formula, and it follows that E[|f̃i−s(i)fi|] = Ω(1/B2).
Let ` ∈ [k] be fixed, N1 = [2B2] \ ([B2] ∪ {i}), and N2 = [n] \ (N1 ∪ {i}), and write

S` =
∑

j∈N1

[h`(j) = h`(i)]s`(j)fj +
∑

j∈N2

[h`(j) = h`(i)]s`(j)fj := X1 +X2.

Now condition on the value of X2. Letting J = {j ∈ N1 : h`(j) = h`(i)} it follows by Theorem 5.4
that

Pr[S` ∈ I | X2] = O


 ∑

J ′⊆N1

Pr[J = J ′]√
|J ′|+ 1


 = O

(
Pr[|J | < k/2] + 1/

√
k
)
.

An application of Chebyshev’s inequality gives that Pr[|J | < k/2] = O(1/k), so Pr[S` ∈ I] =
O(1/

√
k). Since this bound holds for any possible value of X2 we may remove the conditioning and

the desired result follows.

Remark 5.6. The bound above is probably only tight for B1 = Θ(B2). Indeed, we know that it
cannot be tight for all B1 ≤ B2 since when B1 becomes very small, the bound from the standard
Count-Sketch with k ≥ 3 takes over — and this is certainly worse than the bound in the theorem.
It is an interesting open problem (that requires a better anti-concentration inequality than the
Littlewood-Offord lemma) to settle the correct bound when B1 � B2.

5.3 Learned Count-Sketch using a noisy heavy hitter oracle

In [HIKV19] it was demonstrated that if the heavy hitter oracle is noisy, misclassifying an item
with probability δ, then the expected error incurred by Count-Min for Zipfians is

O

(
1

log n

δ2 ln2Bh + ln2(n/Bh)

B −Bh

)
.

Here Bh is the number of buckets used to store the heavy hitters and B is the total number of

buckets. Taking Bh = Θ(B) = Θ(B − Bh), this bound becomes O
(
δ2 ln2B+ln2(n/B)

B logn

)
. As δ varies

in [0, 1], this interpolates between the expected error incurred in respectively the learned case
with a perfect heavy hitter oracle and the classic case. In particular it is enough to assume that
δ = O(ln(n/B)/ ln(B)) in order to obtain the results in the idealized case with a perfect oracle.

We now provide a similar analysis for the learned Count-Sketch. More precisely we assume that
we allocate Bh buckets to the heavy hitters and B −Bh to the lighter items. We moreover assume
access to a heavy hitter oracle HHδ such that for each i ∈ [n], Pr[HHδ(i) 6= HH0(i)] ≤ δ, where
HH0 is a perfect heavy hitter oracle that correctly classifies the Bh heaviest items.
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Theorem 5.7. Learned Count-Sketch with a single hash functions, a heavy hitter oracle HHδ,
Bh = Θ(B) bins allocated to store the Bh items classified as heavy and B − Bh = Θ(B) bins
allocated to a Count-Sketch of the remaining items, incurs an expected error of

O

(
(δ logB + log(n/B))(1 + δ logB)

B log n

)
.

Proof. Let h : [n]→ [B−Bh] and s : [n]→ {−1, 1} be the hash functions used for the Count-Sketch.
In the analysis to follow, it is enough to assume that they are 2-independent. Suppose item i is
classified as non-heavy. For j ∈ [n], let ηj = [h(j) = h(i)], and let αj be the indicator for item j
being classified as non-heavy. Then

|f̃i − fi| =

∣∣∣∣∣∣
∑

j∈[n]\{i}
αjηjs(j)fj

∣∣∣∣∣∣
≤

∑

j∈[Bh]\{i}
αjηjfj +

∣∣∣∣∣∣
∑

j∈[n]\(Bh∪{i})
αjηjs(j)fj

∣∣∣∣∣∣
:= S1 + S2

Note that E[S1] = O
(
δ logBh
B−Bh

)
= O

(
δ logB
B

)
. For S2, we let pj = Pr[αjηj = 1] ≤ 1

B−Bh = O( 1
B ).

Then

E[S2] ≤ (E[S2
2 ])1/2 =


 ∑

j∈[n]\(Bh∪{i})
pjf

2
j




1/2

= O

(
1

B

)
,

using that E[s(i)s(j)] = 0 for i 6= j as s is 2-independent. It follows that E[|f̃i−fi|] = O
(

1+δ logB
B

)
,

given that item i is classified as non-heavy. Let N =
∑

i∈[n] fi = Θ(log n). As the probability of
item i ∈ [Bh] being classified as non-heavy is at most δ, the the expected error is upper bounded
by

1

N


δ

∑

j∈[Bh]\{i}
fi +

∑

j∈[n]\(Bh∪{i})
fi


 ·O

(
1 + δ logB

B

)
= O

(
(δ logB + log(n/B))(1 + δ logB)

B log n

)
,

as desired.

We see that with δ = 1, we recover the bound of logB
B presented in Table 1 for the classic

Count-Sketch. On the other hand, it is enough to assume that δ = O(1/ logB) in order to obtain

the bound of O
(

log(n/B)
B logn

)
, which is what we obtain with a perfect heavy hitter oracle.

6 Experiments

In this section, we provide the empirical evaluation of CountMin, CountSketch and their learned
counterparts under Zipfian distribution. Our empirical results complement the theoretical analysis
provided earlier in this paper.

Experiment setup. We consider a synthetic stream of n = 10K items where the frequencies
of the items follow the standard Zipfian distribution (i.e., with α = 1). To be consistent with our
assumption in our theoretical analysis, we scale the frequencies so that the frequency of item i is
1/i. In our experiments, we vary the values of the number of buckets (B) and the number of rows
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in the sketch (k) as well as the number of predicted heavy items in the learned sketches. We remark
that in this section we assume that the heavy hitter oracle predicts without errors.

We run each experiment 20 times and take the average of the estimation error defined in eq. (2).
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Figure 2: The performance of (Learned) Count-Min with different number of rows.
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Figure 3: The performance of (Learned) Count-Sketch with different number of rows.

Sketches with the same number of buckets but different shapes. Here, we compare
the empirical performances of both standard and learned variants of Count-Min and Count-Sketch
with varying choices for the parameter. More precisely, we fix the sketch size and vary the number
of rows (i.e., number of hash functions) in the sketch.

As predicted in our theoretical analysis, Figures 2 and 3 show that setting the number of rows
to some constant larger than 1 for standard CM and CS, leads to a smaller estimation error as
we increase the size of the sketch. In contrast, in the learned variant, the average estimation error
increases in k being smallest for k = 1, as was also predicted by our analysis.
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B CM (k = 1) CM (k = 2) L-CM CS (k = 1) CS (k = 3) L-CS

1000 0.085934 0.080569 0.026391 0.058545 0.054315 0.000577138
1200 0.077913 0.06266 0.020361 0.054322 0.047214 0.000460688
1400 0.074504 0.052464 0.016036 0.03972 0.033348 0.00036492
1600 0.071528 0.043798 0.01338 0.056626 0.032925 0.000312238
1800 0.059898 0.038554 0.011142 0.036881 0.025003 0.000275648
2000 0.046389 0.033746 0.009556 0.035172 0.022403 0.000237371
2200 0.036082 0.029059 0.008302 0.029388 0.02148 0.000209376
2400 0.032987 0.025135 0.007237 0.02919 0.020913 0.00018811
2600 0.041896 0.023157 0.006399 0.032195 0.018271 0.00016743
2800 0.026351 0.021402 0.005694 0.036197 0.017431 0.000152933
3000 0.032624 0.020155 0.005101 0.023175 0.016068 0.000138081
3200 0.023614 0.018832 0.004599 0.051132 0.01455 0.000127445
3400 0.021151 0.016769 0.004196 0.022333 0.013503 0.000122947
3600 0.021314 0.015429 0.003823 0.022012 0.014316 0.000109171
3800 0.027798 0.014677 0.003496 0.025378 0.013082 0.000102035
4000 0.021407 0.013279 0.00322 0.017303 0.012312 0.0000931
4200 0.020883 0.012419 0.002985 0.017719 0.011748 0.0000878
4400 0.022383 0.011608 0.002769 0.016037 0.011097 0.0000817
4600 0.020378 0.011151 0.002561 0.015941 0.010202 0.0000757
4800 0.015114 0.010612 0.002406 0.011642 0.010757 0.0000725
5000 0.01603 0.009767 0.002233 0.014829 0.009451 0.0000698

Table 2: The estimation error of different sketching methods under Zipfian distribution. In this
example, the number of unique items n is equal to 10K. In the learned variants, number of rows,
k, is equal to 1 and the perfect heavy hitter oracles detect top c-frequent items where c = B/10.
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Figure 4: The comparison of the performance of learned and standard variants of Count-Min and
Count-Sketch.

Learned vs. Standard Sketches. In Figure 4, we compare the performance of learned
variants of Count-Min and Count-Sketch with the standard Count-Min and Count-Sketch. To be
fair, we assume that each bucket that is assigned a heavy hitter consumes two bucket of memory:
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one for counting the number of times the heavy item appears in the stream and one for indexing
the heavy item in the data structure.

We observe that the learned variants of Count-Min and Count-Sketch significantly improve
upon the estimation error of their standard “non-learned” variants. We note that the estimation
errors for the learned Count-Sketches in Figure 4 are not zero but very close to zero; see Table 2
for the actual values.
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A Count-Min for General Zipfian (with α 6= 1)

In this appendix we provide an analysis of the expected error with Count-Min in the case with
input coming from a general Zipfian distribution, i.e., fi ∝ 1

iα , for some fixed α > 0. By scaling we
can assume that fi = 1

iα with no loss of generality. Our results on the expected error is presented
in Table 3 below. We start by analyzing the standard Count-Min sketch that does not have access
to a machine learning oracle.

A.1 Standard Count-Min

We begin by considering the case α < 1, in which case we have the following result.

Theorem A.1. Let 0 < α < 1 be fixed and fi = 1/iα for i ∈ [n]. Let n,B, k ∈ N with k ≥ 1 and
B ≤ n/k. Let further h1, . . . , hk : [n] → [B] be independent and truly random hash functions. For

i ∈ [n] define the random variable f̃i = min`∈[k]

(∑
j∈[n][h`(j) = h`(i)]fj

)
. For any i ∈ [n] it holds

that E[|f̃i − fi|] = Θ
(
n1−α
B

)
.
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k = 1 k > 1

CM, α < 1 Θ
(
n2−2α

B

)
Θ
(
kn2−2α

B

)

CM, α > 1 O
(

1
B

)
(O(1))k(log(B))k/α+1 ·

(
kk

Bk
+ kα

Bα

)
and Ω

(
kk

Bk
+ kα

(B log k)α

)

L-CM, α < 1 Θ
(
n2−2α

B

)
Ω
(
n2−2α

B

)

L-CM, α > 1 Θ
(
B1−2α

)
Ω
(
B1−2α

)

Table 3: The (scaled) expected errors Err(F , F̃A) =
∑

i∈[n] fi|fi − f̃i| of classic and learned Count-
Min with k hash functions when the input has a Zipfian distribution with exponent α 6= 1. The
expected errors can be found by normalizing with

∑
i∈[n] fi which is Θ(n1−α) for α < 1 and Θ(1)

for α > 1. We note that when k > 1 is a constant, the upper and lower bounds for CM for
α > 1 are within logarithmic factors of each other. In particular we obtain the combined bound
of Θ̃

(
1
Bk

+ 1
Bk

)
in this case, demonstrating that the bounds, even if they appear complicated, are

almost tight.

We again note the phenomenon that with a total of B buckets, i.e., replacing B by B/k in the

theorem, the expected error is Θ
(
kn1−α
B

)
, which only increases as we use more hash functions.

Proof. For a fixed ` ∈ [k] we have that

E


 ∑

j∈[n]\{i}
[h`(j) = h`(i)]fj


 =

1

B

∑

j∈[n]\{i}

1

jα
= O

(
n1−α

B

)
,

and so E[|f̃i − fi|] = O
(
n1−α
B

)
.

For the lower bound, we define N = [n]\([B]∪{i}) and for ` ∈ [k], X` =
∑

j∈N [h`(j) = h`(i)]fj .

Simple calculations yield that E[X`] = Θ
(
n1−α
B

)
and

Var[X`] =





Θ

(
log( nB )
B

)
, α = 1/2,

Θ
(
n1−2α

B

)
, α < 1/2,

Θ
(
B−2α

)
, α > 1/2.

Using Bennett’s inequality (Theorem 2.3), with M = B−α we obtain that

Pr[X` ≤ E[X`]/2] ≤





exp
(
−Ω(log(n/B)h(

(
n
B

)1/2 1
log(n/B)))

)
, α = 1/2,

exp
(
−Ω

((
n
B

)1−2α
h
((

n
B

)α)))
, α < 1/2,

exp
(
−Ω

(
h
((

n
B

)1−α)))
, α > 1/2.

Using that n ≥ kB and Remark 2.4 we in either case obtain that

Pr[X` ≤ E[X`]/2] = exp
(
−Ω(k1−α log k)

)
= k−Ω(k1−α).
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As the events (X` > E[X`]/2)`∈[k] are independent, they happen simultaneously with probability

(1−k−Ω(k1−α))k = Ω(1). If they all occur, then |f̃i−fi| = Ω
(
n1−α
B

)
, so it follows that E[|f̃i−fi|] =

Ω
(
n1−α
B

)
, as desired.

Next, we consider the case α > 1. In this case we have the following theorem where we obtain
the result presented in Table 3 by replacing B with B/k.

Theorem A.2. Let α > 1 be fixed and fi = 1/iα for i ∈ [n]. Let n,B, k ∈ N with k ≥ 2 and
B ≤ n/k. Let further h1, . . . , hk : [n] → [B] be independent and truly random hash functions. For

i ∈ [n] define the random variable f̃i = min`∈[k]

(∑
j∈[n][h`(j) = h`(i)]fj

)
. For any i ∈ [n] it holds

that

E[|f̃i − fi|] ≤ Ck(log(B))k/α+1 ·
(

1

Bk
+

1

Bα

)
,

for some constant C depending only on α. Furthermore, E[|f̃i − fi|] = Ω
(

1
Bk

+ 1
(B log k)α

)
.

Proof. Let us start by proving the lower bound. Let N = [bB log kc]. With probability
(

1− (1− 1/B)|N\{i}|
)k
≥
(

1− e
|N\{i}|
B

)k
= Ω(1)

it holds that for each ` ∈ [k] there exists j ∈ N \ {i} such that h`(j) = h`(i). In this case
|f̃i − fi| ≥ 1

(B log k)α , so it follows that also E[|f̃i − fi|] ≥ 1
(B log k)α . Note next that with probability

1/Bk, h`(1) = h`(i) for each ` ∈ [k]. If this happens, |f̃i−fi| ≥ 1, so it follows that E[|f̃i−fi|] ≥ 1/Bk

which is the second part of the lower bound.
Next we prove the upper bound. The technique is very similar to the proof of Theorem 3.1. We

define N1 = [B] \ {i} and N2 = [n] \ ([B] ∪ {i}). We further define X
(`)
1 =

∑
j∈N1

[h`(j) = h`(i)]fj

and X
(`)
2 =

∑
j∈N2

[h`(j) = h`(i)]fj for ` ∈ [k]. Note that for any ` ∈ [k], E[X
(`)
2 ] = O

(
1
Bα

)
, so it

suffices to bound E[min`∈[k](X
(`)
1 )]. Let t ≥ 3/Bα be given. A similar union bound to that given

in the proof of Theorem 3.1 gives that for any s ≤ t,

Pr[X
(`)
1 ≥ t] ≤

(
B

t/s

)
1

Bt/s
+

1

Bs1/α
≤
(es
t

)t/s
+

(t/s)1/α

Bt1/α
.

Choosing s such that t/s = Θ(log(Bt1/α)) is an integer, we obtain the bound

Pr[X
(`)
1 ≥ t] ≤ C1

(log(Bt1/α))1/α

Bt1/α
= C1

(log(Btγ))γ

Btγ
,

where we have put γ = 1/α and C1 is a universal constant. Let Z = min`∈[k](X
(`)
1 ). Note that

Z ≤∑∞j=1 1/jα ≤ C2, where C2 is a constant only depending on α. Thus

E[Z] ≤ 3

Bα
+

∫ C2

3/Bα
Pr[Z ≥ t] dt ≤ 3

Bα
+

∫ C2

3/Bα

(
C1

(log(Btγ))γ

Btγ

)k
dt

≤ 3

Bα
+
Ck3 log(B)k/α

Bk

∫ C2

3/Bα

1

tk/α
dt

for some constant C3 (depending on α). If k ≤ α, the integral is O(logB) and this bound suffices.
If k > α, the integral is O(Bk−α), which again suffices to give the desired bound.
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Remark A.3. As discussed in Remark 3.3 we only require the hash functions to be O(logB)-
independent in the proof of the upper bound of Theorem A.2. In the upper bound of Theorem A.1
we only require the hash functions to be 2-independent.

A.2 Learned Count-Min

We now proceed to analyse the learned Count-Min algorithm which has access to an oracle which,
given an item, predicts whether it is among the B heaviest items. The algorithm stores the
frequencies of the B heaviest items in B individual buckets, always outputting the exact frequency
when queried one of these items. On the remaining items it performs a regular Count-Min sketch
with a single hash function hashing to B buckets.

Theorem A.4. Let α > 0 be fixed and fi = 1/iα for i ∈ [n]. Let n,B ∈ N with 2B ≤ n
and h : [n] → [B] be a 2-independent hash functions. For i ∈ [n] define the random variable
f̃i =

∑
j∈[n]\[B][h(j) = h(i)]fj. Then

E[|f̃i − fi|] =

{
Θ
(
n1−α
B

)
, α < 1

Θ (B−α) , α > 1.

Proof. Both results follows using linearity of expectation.

E[|f̃i − fi|] =
1

B

∑

j∈[n]\([B]∪{i})

1

jα
=

{
Θ
(
n1−α
B

)
, α < 1,

Θ (B−α) , α > 1.

Corollary A.5. Using the learned Count-Min on input coming from a Zipfian distribution with
exponent α, it holds that

E


∑

i∈[n]

fi · |f̃i − fi|


 =

{
Θ
(
n2−2α

B

)
, α < 1,

Θ
(
B1−2α

)
, α > 1.

Why are we only analysing learned Count-Min with a single hash function? After all, might it
not be conceivable that more hash functions can reduce the expected error? It turns out that if
our aim is to minimize the expected error Err(F , F̃A) we cannot do better than in Corollary A.5.
Indeed, we can employ similar techniques to those used in [HIKV19] to prove the following lower
bound extending their result to general exponents α 6= 1.

Theorem A.6. Let α > 0 be fixed and fi = 1/iα for i ∈ [n]. Let n,B ∈ N with n ≥ cB for some
sufficiently large constant c and let h : [n] → [B] be any function. For i ∈ [n] define the random
variable f̃i =

∑
j∈[n][h(j) = h(i)]fj. Then

∑

i∈[n]

fi · |f̃i − fi|] =

{
Ω
(
n2−2α

B

)
, α < 1

Ω
(
B1−2α

)
, α > 1.

A simple reduction shows that Count-Min with a total of B buckets and any number of hash
functions cannot provide and expected error that is lower than the lower bound in Theorem A.6
(see [HIKV19]).

Proof. We subdivide the exposition into the cases 0 < α < 1 and α > 1.
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Case 1: 0 < α < 1. In this case

∑

i∈[n]

fi · |f̃i − fi| ≥
∑

i∈[n]\[B]

fi · |f̃i − fi| =
∑

b∈[B]


 ∑

j∈[n]\[B]:h(j)=b

fj




2

−
∑

i∈[n]\[B]

f2
i

=
∑

b∈[B]

S2
b −

∑

i∈[n]\[B]

f2
i , (7)

where we have put Sb =
∑

j∈[n]\[B]:h(j)=b fj , the total weight of items hashing to bucket b. Now by
Jensen’s inequality

∑

b∈[B]

S2
b ≥

1

B


 ∑

i∈[n]\[B]

fi




2

Furthermore, we have the estimates

∑

i∈[n]\[B]

fi =
n∑

i=B

1

iα
− 1

Bα
≥
∫ n

B
x−α dx− 1

Bα
=

1

1− α(n1−α −B1−α)− 1

Bα
,

and

∑

i∈[n]\[B]

f2
i ≤

∫ n

B
x−2α =

{
1

1−2α(n1−2α −B1−2α), α 6= 1/2

log(n/B), α = 1/2.

Here we have used the standard technique of comparing a sum to an integral. Assuming that n ≥ cB
for some sufficiently large constant c (depending on α), it follows that

∑
b∈[B] S

2
b = Ω

(
n2−2α

B

)
. It

moreover follows (again for n sufficiently large) that,

∑

i∈[n]\[B]

f2
i =





O(log(n/B)), α = 1/2,

O(n1−2α), α < 1/2,

O(B1−2α), α > 1/2.

Plugging into (7), we see that in each of the three cases α < 1/2, α = 1/2 and α > 1/2 it holds

that
∑

b∈[B] S
2
b −

∑
i∈[n] f

2
i = Ω

(
n2−2α

B

)
.

Case 2: 0α > 1. For this case we simply assume that n ≥ 3B. Let I ⊆ [3B] \ [B] consist of
those i satisfying that h(i) = h(j) for some j ∈ [3B] \ [B], j 6= i. Then |I| ≥ B and if i ∈ I, then
fi ≥ (3B)−α and |f̃i − fi| ≥ (3B)−α. Thus

∑

i∈[n]

fi · |f̃i − fi| ≥
∑

i∈I
fi · |f̃i − fi| ≥ B(3B)−2α = Ω(B1−2α).
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A.3 Learned Count-Min using a noisy oracle

As we did in the case α = 1 (Theorem 5.7), we now present an analogue to Theorem A.4 when
the heavy hitter oracle is noisy. Note that the results in Table 3 demonstrates that we obtain
no asymptotic improvement using the heavy hitter oracle when 0 < α < 1 and therefore we only
consider the case α > 1. We show the following trade-off between the classic and learned case, as
the error probability, δ, that the heavy hitter oracle misclassifies an item, varies in [0, 1].

Theorem A.7. Suppose that the input follows a generalized Zipfian distribution with n ≥ B dif-
ferent items and exponent α for some constant α > 1. Learned Count-Sketch with a single hash
functions, a heavy hitter oracle HHδ, Bh = Θ(B) bins allocated to the Bh items classified as heavy
and B − Bh = Θ(B) bins allocated to a Count-Sketch of the remaining items, incurs an expected
error of

O

(
1

B

(
δ +B1−α)2

)

Proof. The proof is very similar to that of Theorem 5.7 Let h : [n]→ [B−Bh] be the hash function
used for the Count-Min. In the analysis to follow, it is enough to assume that it is 2-independent.
Suppose item i is classified as non-heavy. The expected error incurred by item i is then

1

B −Bh


δ

∑

j∈[Bh]\{i}
fj +

∑

j∈[n]\([Bh]∪{i})
fj


 = O

(
δ +B1−α

B

)
.

Letting N =
∑

i∈[n] fi = O(1), the expected error (as defined in (2)) is at most

1

N


δ

∑

j∈[Bh]\{i}
fj +

∑

j∈[n]\([Bh]∪{i})
fj


 ·O

(
δ +B1−α

B

)
= O

(
1

B

(
δ +B1−α)2

)
,

as desired.

For δ = 1, we recover the bound for the classic Count-Min. We also see that it suffices that
δ = O(B1−α) in order to obtain the same bound as with a perfect heavy hitter oracle.
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Abstract

Given a graph, does there exist an orientation of the edges such that the resulting directed
graph is strongly connected? Robbins’ theorem [Robbins, Am. Math. Monthly, 1939] asserts that
such an orientation exists if and only if the graph is 2-edge connected. A natural extension of this
problem is the following: Suppose that the edges of the graph are partitioned into trails. Can
the trails be oriented consistently such that the resulting directed graph is strongly connected?

We show that 2-edge connectivity is again a sufficient condition and we provide a linear time
algorithm for finding such an orientation.

The generalised Robbins’ theorem [Boesch, Am. Math. Monthly, 1980] for mixed multigraphs
asserts that the undirected edges of a mixed multigraph can be oriented to make the resulting
directed graph strongly connected exactly when the mixed graph is strongly connected and the
underlying graph is bridgeless.

We consider the natural extension where the undirected edges of a mixed multigraph are
partitioned into trails. It turns out that in this case the condition of the generalised Robbin’s
Theorem is not sufficient. However, we show that as long as each cut either contains at least 2
undirected edges or directed edges in both directions, there exists an orientation of the trails such
that the resulting directed graph is strongly connected. Moreover, if the condition is satisfied, we
may start by orienting an arbitrary trail in an arbitrary direction. Using this result one obtains
a very simple polynomial time algorithm for finding a strong trail orientation if it exists, both in
the undirected and the mixed setting.
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1 Introduction and motivation
Suppose that the mayor of a small town decides to make all the streets one-way such that it is
possible to get from any place to any other place without violating the orientations of the streets1.
If all the streets are initially two-way then Robbins’ theorem [10] asserts that this can be done
exactly when the corresponding graph is 2-edge connected. If, on the other hand some of the streets
were already one-way in the beginning then the generalised Robbins’ theorem by Boesch [1] states
that it can be done exactly when the corresponding “mixed” graph is strongly connected and the
underlying graph is bridgeless.

However, the proofs of both of these results assume that every street of the city corresponds to
exactly one edge in the graph. This assumption hardly holds in any city in the world and therefore
a more natural assumption is that every street corresponds to a trail (informally, a potentially
self-crossing path) in the graph and that the edges of each trail must be oriented consistently2.

In this paper we consider such graphs having their edges partitioned into trails. We prove that
the trails can be oriented to make the resulting directed graph strongly connected exactly if the
initial graph is 2-edge connected (note that this is precisely the condition of Robbins’ theorem).

Not only do we show that the strong trail orientation problem in undirected 2-edge connected
graphs always has a solution, we also provide a linear time algorithm for finding such an orientation.
In doing so, we use an interesting combination of techniques that allow us to reduce to a graph
with a number of 3-edge connected components that is linear in the number of edges. Using that
the average size of these components is constant and that we can piece together solutions for the
individual components we obtain an efficient algorithm.

Finally, we will consider the generalised Robbins’ theorem in this new setting by allowing some
edges to be oriented initially and supposing that the remaining edges are partitioned into trails.
We will show that if each cut (V1, V2) in the graph has either at least 2 undirected edges going
between V1 and V2 or at least 1 directed edge in each direction then it is possible to orient the trails
making the resulting graph strongly connected. In fact, we show that if this condition is satisfied
we may start by orienting an arbitrary trail in an arbitrary direction. Although this condition is not
necessary it does give a simple algorithm for finding a trail orientation if it exists. Indeed, initially
the graph may contain undirected edges that are forced in one direction by some cut. For finding a
trail orientation if it exists we can thus orient forced trails in the forced direction. If there are no
forced trails we orient any trail arbitrarily.

Note that in the mixed setting the feasibility depends on the trail decomposition which is not
the case for the other results. That the condition from the generalised Robbins’ theorem is not
sufficient can be seen from Figure 1.

Earlier methods Several methods have already been applied for solving orientation problems in
graphs where the goal is to make the resulting graph strongly connected.

One approach used by Robbins [10] is to use that a 2-edge connected graph has an ear-
decomposition. An ear decomposition of a graph is a partition of the set of edges into a cycle C and
paths P1, . . . , Pt such that Pi has its two endpoints but none of its internal vertices on C∪

(⋃i−1
j=1 Pj

)
.

Given the existence of an ear decomposition of a 2-edge connected graph it is easy to prove Robbins’
1The motivation for doing so is that the streets of the town are very narrow and thus it is a great hassle when two

cars unexpectedly meet.
2This version of the problem was given to us through personal communication with Professor Robert E. Tarjan.
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Figure 1: The graph is strongly connected and the underlying graph is 2-edge connected, but
irrespective of the choice of orientation of the red trail, the graph will no longer be strongly
connected.

theorem. Indeed, any choice of consistent orientations of the paths and the cycle gives a strongly
connected graph.

A second approach introduced by Tarjan [4] gives another simple proof of Robbins’ theorem.
One can create a DFS tree in the graph rooted at a vertex v and orient all edges in the DFS tree
away from v. The remaining edges are all back edges (see [4]) and are oriented towards v. It is easily
verified that this gives a strong orientation if the graph is 2-edge connected. A similar approach was
used by Chung et al. [2] in the context of the generalized Robbins’ theorem for mixed multigraphs.

The above methods not only prove Robbins’ theorem, they also provide linear time algorithms
for finding strong orientations of undirected or mixed multigraphs.

However, none of the above methods have proven fruitful in our case. In case of the ear
decomposition we would need one that is somehow compatible with the partitioning into trails, and
this seems hard to guarantee. Similar problems appear when trying a DFS-approach. Neither does
the proof by Boesch [1] of Robbins’ theorem for mixed multigraphs generalise to prove our result.
Most importantly, the corresponding theorem would no longer be true for trail orientations as is
shown by the example in Figure 1.

Since the classical linear time algorithms rely on ear-decompositions and DFS searches, and
since these approaches do not immediately work for trail partitions, our linear time algorithm will
be a completely new approach to solving orientation problems.

Structure of the paper The structure of this paper is as follows. In section 3 we prove our
generalisation of Robbins’ theorem for undirected graphs partitioned into trails. In section 4 we
study the case of mixed graphs. Finally in section 5 we provide our linear time algorithm for trail
orientation in an undirected graph.

2 Preliminaries
Let us briefly review the concepts from graph theory that we will need.

A graph having some subset of its edges oriented is said to be a mixed graph. We will write
{u, v} for an undirected edge between u and v and (u, v) for an edge directed from u to v.

A walk in a graph is an alternating sequence of vertices and edges v0, e1, v1, e2, . . . , vk, such that
for 1 ≤ i ≤ k the edge ei has vi−1 and vi as its two endpoints. In a directed or mixed graph we
further require that either ei be undirected or directed from vi−1 to vi

A trail is a walk without repeated edges. A path is a trail without repeated vertices (except
possibly v0 = vk). Finally, a cycle is a path for which v0 = vk.

Next, a mixed multigraph G = (V, E) is called strongly connected if for each pair of vertices
u, v ∈ V there exists a walk from u to v. In case the graph is undirected this is equivalent to
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saying that it consists of exactly one connected component. If A ⊆ V we will say that A is strongly
connected in G if for each pair of vertices u, v ∈ A there is a walk in G from u to v.

A cut or edge-cut (V1, V2) in a graph is a partition of its vertices into two non-empty subsets
V1, V2. We recall the definition of k-edge connectivity. A graph G = (V, E) is said to be k-edge
connected if and only if G′ = (V, E −X) is connected for all X ⊆ E where |X| < k. A trivially
equivalent condition is that each cut (V1, V2) in the graph has at least k edges going between V1
and V2.

Finally, if G = (V, E) is a mixed multigraph and A ⊆ V we define G/A to be the graph obtained
by contracting A to a single vertex (maintaining duplicate edges and self-loops) and G[A] to be the
subgraph of G induced by A. The following simple observation will be used repeatedly in this paper.

Observation 2.1. If G = (V, E) is k-edge connected and A ⊆ V then G/A is k-edge connected.
Also, if G is a strongly connected mixed multigraph then G/A is too.

3 Robbins Theorem Revisited
We are now ready to state and prove our generalisation of Robbins’ theorem.

Theorem 3.1. Let G = (V, E) be an undirected multigraph with E partitioned into trails. An
orientation of each trail such that the resulting directed graph is strongly connected exists if and only
if G is 2-edge connected.

We note that this theorem could also be proven using a general result from Király and Szigeti [6]
which relies on theorems by Nash-Willams [9]. However, our proof is significantly simpler (in fact
we believe that restating the theorem by Király and Szigeti and explaining the reduction would be
more cumbersome) and more suitable for constructing algorithms.

Proof. If G is not 2-edge connected, such an orientation obviously doesn’t exist, so we only need to
prove the converse. Suppose therefore that G is 2-edge connected.

Our proof is by induction on the number of edges in G. If there are no edges, the graph consists of
a single vertex, and the statement is obviously true. Assume now the statement holds for all graphs
with strictly fewer edges than G. Pick an arbitrary edge e that sits at the end of its corresponding
trail.

If G− e is 2-edge connected, then by the induction hypothesis there is a strong orientation of
G− e that respects the trails of G. Such an orientation clearly extends to the required orientation
of G.

V1 V2

u1

w1

u2

w2

e

b

V1 V2

u1

w1

u2

w2

Figure 2: A 2-edge cut and the two graphs G1 = G[V1] ∪ {{u1, w1}} and G2 = G[V2] ∪ {{u2, w2}}.
The orientations of the two new edges are obtained from the strong trail orientations of G1 and G2.
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If G− e is not 2-edge connected, there exists a bridge b in G− e (see Figure 2). Let V1, V2 be
the two connected components of G− {e, b}, and let e = {u1, u2} and b = {w1, w2} such that for
i ∈ {1, 2}, ui, wi ∈ Vi (note that we don’t necessarily have that ui and wi are distinct for i ∈ {1, 2}).

Now for i ∈ {1, 2} construct the graph Gi = G[Vi] ∪ {{ui, wi}} (note that {ui, wi} might be
a self-loop but this causes no problems for the argument), and define the trails in Gi to be the
trails of G that are completely contained in Gi, together with a single trail combined from the
(possibly empty) partial trail of e contained in Gi and ending at ui, followed by the edge {ui, wi},
followed by the (possibly empty) partial trail of b contained in Gi starting at wi. Both G1 and G2
are 2-edge connected since they can each be obtained as contractions of G with some self-loops
deleted. Furthermore, they each have strictly fewer edges than G, so inductively each has a strong
orientation that respects the given trails. Further, we can assume that the orientations are such
that the new edges are oriented (u1, w1) and (w2, u2) by flipping the orientation of all edges in
either graph if necessary. We claim that this orientation, together with e oriented as (u1, u2) and b
oriented as (w2, w1), is the required orientation of G. To see this first note that (by our choice of
flips) this orientation respects the trails. Secondly, suppose v1 ∈ V1 and v2 ∈ V2 are arbitrary. Since
G1 is strongly connected G[V1] contains a directed path from v1 to u1. Similarly, G[V2] contains a
directed path from u2 to v2. Thus G contains a directed path from v1 to v2. A similar argument
gives a directed path from v2 to v1 and since v1 and v2 were arbitrary this proves that G is strongly
connected and our induction is complete.

The construction in the proof can be interpreted as a naive algorithm for finding the required
orientation when it exists.

Corollary 3.2. The one-way trail orientation problem on a graph with n vertices and m edges can
be solved in O(n + m · f(m, n)) time, where f(m, n) is the time per operation for fully dynamic
bridge finding (a.k.a. 2-edge connectivity).

At the time of this writing [3], this is O(n + m(log n log log n)2). In Section 5 we will provide a
less naive algorithm which runs in linear time.

4 Extension to Mixed graphs
Now we will extend our result to the case of mixed graphs. We are going to prove the following.

Theorem 4.1. Let G = (V, E) be a strongly connected mixed multigraph. Then G− e is strongly
connected for all undirected e ∈ E if and only if for any partition P of the undirected edges of G into
trails, and any T ∈ P, any orientation of T can be extended to a strong trail orientation of (G,P).

Suppose G = (V, E) is as in the theorem. We will say that e ∈ E is forced if it is undirected
and satisfies that G− e is not strongly connected. This terminology is natural as it is equivalent to
saying that there exists a cut (V1, V2) in G such that e is the only undirected edge in this cut and
such that all the directed edges go from V1 to V2. If we want an orientation of the trails making the
graph strongly connected we are clearly forced to orient e from V2 to V1.

Theorem 4.1 is a proper extension of Theorem 3.1 since if G is undirected and 2-edge connected
then no e ∈ E is forced. Furthermore, the theorem suggests a very simple polynomial time algorithm
(see Algorithm 1) for finding a strong orientation of the trails if it exists. Indeed, if the mixed graph
contains forced edges we direct the corresponding trails in the forced direction. If there are no
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forced edges then either the graph is no longer strongly connected in which case we know that a
strong trail orientation doesn’t exist. Otherwise, we may by Theorem 4.1 orient any trail in an
arbitrary direction.

Algorithm 1: Algorithm for mixed graphs.
Input: A mixed multigraph G and a partition P of the undirected edges of G into trails.
Output: True if (G,P) has a strong trail orientation, otherwise false. If G has a bridge or is

not strongly connected, G is left unmodified. Otherwise G is modified, either to
have such a strong trail orientation, or to a forced graph that is not strongly
connected.

1 if G has a bridge or is not strongly connected then
2 return false
3 end
4 while |P| > 0 do
5 if for some undirected edge e, G− e is not strongly connected then
6 Let T ∈ P be the trail containing e.
7 if some orientation of T leaves G strongly connected then
8 Apply such an orientation of T to G
9 else

10 return false
11 end
12 else
13 Let T ∈ P be arbitrary.
14 Update G by orienting T in an arbitrary direction.
15 end
16 Remove T from P.
17 end
18 return true

For proving Theorem 4.1 we will need the following lemma.

Lemma 4.2. Let G be a directed graph, and let (A, B) be a cut with exactly one edge crossing from
A to B. Then G is strongly connected if and only if G/A and G/B are.

Proof. Strong connectivity is preserved by contractions, so if G is strongly connected then G/A
and G/B both are. For the other direction, let (a1, b1) be the edge going from A to B. As G/A
is strongly connected and (a1, b1) is the only edge going from A to B we can for any edge (b2, a2)
going from B to A find a path from b1 to b2 that stays in B. Since G/B is strongly connected, it
follows that A is strongly connected in G. By a symmetric argument, B is also strongly connected
in G and since the cut has edges in both directions (as e.g. G/A is strongly connected), G must be
strongly connected.

Now we provide the proof of Theorem 4.1.

Proof of Theorem 4.1. If there exists an undirected edge e such that G−e is not strongly connected,
then the trail T containing e can at most be directed one way since e is forced, so there is an
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orientation of T that does not extend to a strong trail orientation of (G,P). To prove the converse
suppose G− e is strongly connected for all undirected e ∈ E.

The proof is by induction on |P|. If |P| = 0 the result is trivial. So suppose |P| ≥ 1 and that
the theorem holds for all (G′,P ′) with |P ′| < |P|.

Consider the chosen trail T ∈ P. If both orientations of T leave a graph where the condition in
the theorem is still satisfied we are home by induction. Otherwise, there must exist a cut (A, B)
of the following form: (1) T crosses the cut exactly once, (2) exactly one undirected edge from a
different undirected trail T ′ ∈ P crosses the cut and (3) every directed edge crossing the cut goes
from A to B.

A B
T

T ′
A

b
TA

Figure 3: A cut with two undirected edges and all directed edges going from A to B followed by a
contraction of B.

Now suppose there is such a cut (A, B) (see Figure 3). Consider the graph G/B and let b be the
node corresponding to B in G/B. Let PA consist of all trails in P that are completely contained in
A, together with a single trail TA combined from the (possibly empty) fragments of T and T ′, joined
at b. Since any cut in G/B corresponds to a cut in G, G/B is strongly connected and remains so
after deletion of any single undirected edge. By construction |PA| ≤ |P| − 1, so by induction any
orientation of TA in G/B extends to a strong orientation of (G/B,PA). Let G/A, a, PB and TB

be defined symmetrically, then by the same argument any orientation of TB in G/A extends to a
strong orientation of (G/A,PB). Now for any orientation of T , we can choose orientations of TA

and TB that are compatible. The result then follows by Lemma 4.2.

Theorem 4.1 gives a sufficient condition for the existence of a strong orientation and we deal
with the other cases by first orienting all forced edges. However, the generalised Robbins’ theorem
provides a simple equivalent condition, which we lack. Finding such an equivalent condition in our
setting is an essential open problem for strong trail orientations. As seen by the example of Figure 1
such a condition will necessarily have to depend on the structure of the trail partition.

5 Linear time algorithm
In this section we provide our linear time algorithm for solving the trail orientation problem in
undirected graphs. For this, we make two crucial observations. First, we show that there is an easy
linear time reduction from general graphs or multigraphs to cubic multigraphs. Second, we show
that in a cubic multigraph with n vertices, we can in linear time find and delete a set of edges that
are at the end of their trails, such that the resulting graph has Ω(n) 3-edge connected components.
We further show that we can compute the required orientation recursively from an orientation of
each 3-edge connected component together with the cactus graph of 3-edge connected components.
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Since the average size of these components is constant, we can compute the orientations of most of
them in constant time individually and thus in linear time taken together. The rest contains at
most a constant fraction of the vertices, and so a simple geometric sum argument tells us that the
total time is also linear.

We start out by making the following reduction.

Lemma 5.1. The one-way trail problem on a 2-edge connected graph or multigraph with n vertices
and m edges, reduces in O(m + n) time to the same problem on a 2-edge connected cubic multigraph
with 2m vertices and 3m edges.

Proof. Cyclically order the edges adjacent to each vertex such that two edges that are adjacent
on the same trail are consecutive in the order. Replace each single vertex v with a cycle of length
deg(v), with each vertex of the new cycle inheriting a corresponding neighbour of v such that the
order of the vertices on the cycle corresponds to the cyclic ordering (see Figure 4). Note that for a
vertex of degree 2, this creates a pair of parallel edges, so the result may be a multigraph. By the
choice of cyclic ordering, we can make the cycle-edge between the two vertices on the same trail
belong to that trail. The rest of the cycle edges form new length 1 trails. Clearly the new graph
is also 2-edge connected so by Theorem 3.1 it has a strong trail orientation, and any strong trail
orientation on this graph translates to a strong trail orientation of the original graph. The new
graph has exactly 2m vertices and 3m edges, and is constructed in O(m + n) time.

v

Figure 4: A node of degree 5 turns into a cycle of length 5.

Recall now that a multigraph C is called a cactus if it is connected and each edge is contained in
at most one cycle. If G is any connected graph we let C1, . . . , Ck be its 3-edge connected components.
It is well known that if we contract each of these we obtain a cactus graph. For a proof of this result
see section 2.3.5 of [8]. As the cuts in a contracted graph are also cuts in the original graph we have
that if G is 2-edge connected then the cactus graph is 2-edge connected. The edges of the cactus
are exactly the edges of G which are part of a 2-edge cut. We will call these edges 2-edge critical.

It is easy to check that if a cactus has m edges and n vertices then m ≤ 2(n− 1). We will be
using this result in the proof of the following lemma.

8



Lemma 5.2. Let G = (V, E) be a cubic 2-edge connected multigraph, let X ⊆ E, and let F ⊆ E
with F ⊇ E \X minimal (w.r.t inclusion) such that H = (V, F ) is 2-edge connected. Then H has at
least 2

5 |X| distinct 3-edge connected components.

Proof. Let Xdel = X \ F be the set of edges deleted from G to obtain H, and let Xkeep = X \Xdel
be the remaining edges in X.

By minimality of H there are at least |Xkeep| 2-edge-critical edges in H i.e. edges of the
corresponding cactus, and thus, if |Xkeep| ≥ 4

5 |X|, there are at least 1
2 |Xkeep|+1 ≥ 2

5 |X|+1 distinct
3-edge connected components.

If |Xkeep| ≤ 4
5 |X| then |Xdel| ≥ 1

5 |X|, and since G is cubic and the removal of each edge creates
two vertices of degree 2 we must have that H has at least 2 |Xdel| ≥ 2

5 |X| distinct 3-edge connected
components.

Lemma 5.3. Let G = (V, E) be a connected cubic multigraph with E partitioned into trails. Then
G has a spanning tree that contains all edges that are not at the end of their trail.

Proof. Let F be the set of edges that are not at the end of their trail. Since G is cubic, the graph
(V, F ) is a collection of vertex-disjoint paths, and in particular it is acyclic. Since G is connected, F
can be extended to a spanning tree.

Note that we can find this spanning tree in linear time e.g. by contracting all edges internal to a
trail, finding a spanning tree of the resulting graph, and adding the internal trail edges to the edges
of this spanning tree.

Lemma 5.4. Let G = (V, E) be a cubic 2-edge connected multigraph with E partitioned into trails.
Let T be a spanning tree of G containing all edges that are not at the end of their trail. Let H be
a minimal subgraph of G (w.r.t inclusion) that contains T and is 2-edge connected. Then for any
k ≥ 5, less than 4

5
k

k−1 |V | of the vertices in H are in a 3-edge connected component with at least k
vertices.

Proof. Let X be the set of edges that are not in T . Since G is cubic, |X| = 1
2 |V |+ 1. By Lemma 5.2

H has at least 2
5 |X| > 1

5 |V | 3-edge connected components. Each such component contains at
least one vertex, so the total number of vertices in components of size at least k is less than

k
k−1

(
|V | − 1

5 |V |
)

= 4
5

k
k−1 |V |.

Definition 5.5. Let C be a 3-edge connected component of some 2-edge connected graph H, whose
edges are partitioned into trails. Define ΓH(C) to be the 3-edge connected graph obtained from C
by inserting a new edge {e1, f1} for each min-cut {e, f} where e = {e1, e2} and f = {f1, f2} and
e1, f1 ∈ C. Define the corresponding partition of the edges of ΓH(C) into trails by taking every
trail that is completely contained in C, together with new trails combined from the fragments of
the trails that were broken by the min-cuts together with the new edges that replaced them. See
Figure 5.

At this point the idea of the algorithm can be explained. We remove as many of the edges
that sit at the end of their trails as possible, while maintaining that the graph is 2-edge connected.
Lemma 5.4 guarantees that we obtain a graph H with Ω(|V |) many 3-edge connected components
of size O(1). We solve the problem for each ΓH(C) for every 3-edge connected component. Finally,
we combine the solutions for the different components like in the proof of Theorem 3.1.
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C ΓH(C)

Figure 5: The 3-edge connected components of a 2-edge connected graph. Notice that every edge
leaving a 3-edge connected component C becomes part of a cycle if all 3-edge components are
contracted. The right hand side shows ΓH(C) where C is the component in the middle.

Theorem 5.6. The one-way trail orientation problem can be solved in O(m+n) time on any 2-edge
connected undirected graph or multigraph with n vertices and m edges.

Proof. By Lemma 5.1, we can assume the graph is cubic. For the algorithm we will use two
subroutines. First of all, when we have found a minimum spanning tree T containing the edges that
are not on the end of their trail we can use the algorithm of Kelsen et al. [5] to, in linear time, find
a minimal (w.r.t. inclusion) subgraph H of G that contains T and is 2-edge connected. Secondly,
we will use the algorithm by Mehlhorn et al. [7] to, in linear time, build the cactus graph of 3-edge
connected components. The algorithm runs as follows:

1. Construct a spanning tree T of G that contains all edges that are not at the end of their trail.

2. Construct a minimal subgraph H of G that contains T and is 2-edge connected3.

3. Find the cactus of 3-edge connected components of4 H.

4. For each 3-edge connected component Ci, construct ΓH(Ci).

5. Recursively compute an orientation for each5 ΓH(Ci).

6. Combine the orientations from each component to a strong trail orientation of H. A such is
also a strong trail orientation of G.

First we will show correctness and then we will determine the running time.
Recall that we can flip the orientation in each ΓH(Ci) and still obtain a strongly connected

graph respecting the trails in ΓH(Ci). The way we construct the orientation of the edges of G is by
flipping the orientation of each ΓH(Ci) in such a way that each cycle in the cactus graph becomes a

3See Kelsen [5].
4See Mehlhorn [7].
5Note that ΓH(Ci) is cubic unless it consists of exactly one node. In this case however we don’t need to do anything.
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directed cycle6. This can be done exactly because no edge of the cactus is contained in two cycles.
By construction this orientation respects the trails so we need to argue that it gives a strongly
connected graph.

For showing that the resulting graph is strongly connected, consider the graph in which every
3-edge connected component is contracted to a single point. This is exactly the cactus of 3-edge
connected component of G which is strongly connected as the cycles of the cactus graph have
become directed cycles. Now assume inductively that we have uncontracted some of the 3-edge
connected components obtaining a graph G1 which is strongly connected. We then uncontract
another component C (see Figure 6) and obtain a new graph G2 which we will show is strongly
connected. If u, v ∈ C, then since ΓH(C) is strongly connected there is a path from u to v in ΓH(C).
If this path only contains edges which are edges of C it will also exist in G2. If the path uses one of
the added (now oriented) edges (e1, f1), it is because there are edges (e1, e2) and (f2, f1) forming a
cut and thus being part of a cycle in the cactus. In this case we use edge (e1, e2) to leave component
C and then go from e2 back to component C which is possible since G1 was strongly connected.
When we get back to the component C we must arrive at f1 since otherwise there would be two
cycles in the cactus containing the edge (e1, e2). Hence we succeeded in disposing of the edge (e1, f1)
with a directed path in G2. This argument can be used for any of the edges of ΓH(C) that are not
in C and thus C is strongly connected in G2. Since G1 was strongly connected this suffices to show
that G2 is strongly connected. By induction this implies that after uncontracting all components
the resulting graph is strongly connected.

C

C

Figure 6: Before and after uncontracting component C. The blue edges are the edges of the cactus
i.e. the 2-edge critical edges of H. The red edges are the ones obtained from the 2-edge cuts of H
as described in the construction of the ΓH(Ci).

Now for the running time. By Lemma 5.4 each level of recursion reduces the number of vertices
in “large” components by a constant fraction, for instance for k = 10 we reduce the number of
vertices in components of size at least 10 by a factor of 8

9 . Let f(n) be the worst case running time
with n nodes for a cubic graph, and pick c large enough such that cn is larger than the time it takes
to go through steps 1-4 and 6 as well as computing the orientations in the “small” components.
This includes the linear time needed to construct the new set of trails (in 4), and the linear time to

6In practice this is done by making a DFS (or any other search tree one likes) of the cactus and repeatedly orienting
each component in a way consistent with the previous ones.
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reassemble the directed trails (in 6). Let a1, . . . , ak be the number of vertices in the “large” 3-edge
connected components. Then ∑i ai ≤ 8n

9 and

f(n) ≤ cn +
∑

i

f(ai).

Inductively, we may assume that f(ai) ≤ 9cn and thus obtain

f(n) ≤ cn +
∑

i

f(ai) ≤ cn +
∑

i

9cai = cn + 8cn = 9cn

proving that f(n) ≤ 9cn for all n.

Algorithm 2: Linear time algorithm for cubic graphs.
Input: A 2-edge connected undirected cubic multigraph G and a partition P of the edges of

G into trails.
Output: G is modified to a strong trail orientation of (G,P).

1 Construct a spanning tree T of G that contains all edges that are not at the end of their trail.
2 Construct a minimal subgraph H of G that contains T and is 2-edge connected.
3 Find the cactus C of 3-edge connected components of H.
4 for each 3-edge connected component Ci in C in DFS preorder do
5 Construct Gi = ΓH(Ci).
6 Recursively compute an orientation for Gi.
7 if the orientation of Gi is not compatible with its DFS parent then
8 Flip orientation of Gi

9 end
10 end
11 for each edge e deleted from G to create H do
12 if no edge on the trail of e has been oriented yet then
13 Pick an arbitrary orientation for e.
14 else
15 Set the orientation of e to follow the trail.
16 end
17 end

6 Open problems
We here mention two problems concerning trail orientations which remain open.

First of all, our linear time algorithm for finding trail orientations only works for undirected
graphs and it doesn’t seem to generalise to the trail orientation problem for mixed graphs. It would
be interesting to know whether there also exists a linear time algorithm working for mixed graphs.
If so it would complete the picture of how fast an algorithm we can obtain for any variant of the
trail orientation problem.

Secondly, our sufficient condition for when it is possible to solve the trail orientation problem
for mixed multigraphs is clearly not necessary. It would be interesting to know whether there is a

12



simple necessary and sufficient condition like there is in the undirected case. Since in the mixed
case the answer to the problem actually depends on the given trail decomposition and not just
on the structure of the mixed graph it is harder to provide such a condition. One can however
give the following condition. It is possible to orient the trails making the resulting graph strongly
connected if and only if when we repeatedly direct the forced trails end up with a graph satisfying
our condition in Theorem 4.1. This condition is not simple and is not easy to check directly. Is
there a more natural condition?
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