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Abstract

During the past decade, machine learning has established itself as the foundation of
artificial intelligence, viewing learning as a statistical task that can be well quantified.
An increasingly popular toolkit in machine learning is provided by geometry, which is
utilized in two main areas as we describe below: (i) studying the geometry induced by
machine learning models; (ii) designing machine learning models that respect specified
geometric properties of data.

First, most machine learning approaches quantify learning objectives by minimizing
a loss function between a model and given data. The model can be deterministic
or probabilistic, outputting point predictions or stochastic predictions, respectively.
In contrast to deterministic models, probabilistic modelling allows us to carry out
uncertainty quantification, which helps assess whether a prediction is trustworthy or
not. The loss function often describes some kind of geometric similarity between the
model and the data, and thus in the case of probabilistic modelling requires studying
the geometry of probability measures. Two main approaches exist for this, information
geometry and optimal transport, of which the latter is the main focus of this thesis.

Second, all data has structure. Sometimes, the data structure is not very restrictive,
e.g., when the data lives in a vector space, in which case any appropriate vector could
a priori be a data point. However, depending on the application, the data structure
could be more restrictive. For example, if we are interested in location data on earth,
then all possible data points have to lie approximately on a sphere. More generally, the
data structure might be described as living on a Riemannian manifold. This restricts
us to models that take the known geometry into account, which can be enforced by the
machinery of Riemannian geometry, instead of linear algebra in the vector space case.

This thesis studies both realisations of geometry in machine learning. We start by
considering Gaussian processes ; on one hand, we study the optimal transport geometry
between Gaussian processes, which can be utilized to define statistics with Gaussian
process covariates. On the other hand, we generalize Gaussian process regression
to Riemannian manifolds, thus allowing Gaussian processes to be used in statistics
with variates living on manifolds. Finally, we also consider the natural gradient on
statistical manifolds, and study optimal transport in relation to Wasserstein generative
adversarial networks.
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Resumé

Igennem det sidste årti har maskinlæring (machine learning) etableret sig som funda-
mentet for kunstig intelligens, hvor læring er et statistisk begreb der kan kvantificeres.
Geometri er et remedie hvis popularitet er voksende inden for maskinlæring, hvilket
bliver udnyttet inden for to hovedområder, som beskrives nedenfor: (i) studiet af
geometrien induceret af maskinlæringsmodeller; (ii) designe maskinlæringsmodeller
der respekterer specificerede geometriske egenskaber ved data.

For det første kvantificerer de fleste maskinlæringsmetoder læringsmål ved at minimere
en tabsfunktion mellem en model og givent data. Modellen kan enten være deter-
ministisk eller baseret på sandsynligheder, med henholdsvis punkt prædiktioner eller
prædiktioner med støj. Sandsynlighedsbaserede modeller tillader os, i modsætning
til deterministiske modeller, at udføre usikkerhedskvantificering som hjælper med at
klassificere en prædiktion som troværdig eller ej. Tabsfunktionen beskriver ofte en form
for geometrisk lighed mellem modellen og data og derfor, i tilfældet af sandsynligheds-
baserede modeller, er det nødvendigt at studere geometrien af sandsynlighedsmål. Der
eksisterer to overordnede metoder til dette studie, informationsgeometri og optimal
transport, af hvilke den sidste metode er afhandlingens hovedfokus.

For det andet har alt data struktur. Nogle gange er data strukturen ikke særlig
restriktiv, for eksempel når data lever i et vektorrum. I et sådanne tilfælde vil enhver
passende vektor a priori være et datapunkt. Dog, alt afhængigt af anvendelsen,
kan datastrukturen være mere restriktiv. Hvis vi for eksempel er interesserede i
placeringsdata på jorden, da vil alle de mulige datapunkter approksimativt ligge på en
kugleoverflade. Mere generelt vil datastrukturen muligvis beskrives som tilhørende
en Riemannsk mangfoldighed. Dette restringerer os til modeller der tager den kendte
geometri i betragtning, hvilket kan håndhæves af Riemannsk geometri, i stedet for
lineær algebra i tilfældet af et vektorrum.

Denne afhandling studerer begge realisationer af geometri i maskinlæring. Vi starter
med at betragte Gaussiske processer; på den ene side studerer vi geometrien af optimal
transport mellem Gaussiske processer, som kan udnyttes til at definere statistik med
kovariater fra Gaussiske processer. På den anden side generaliserer vi Gaussisk process
regression til Riemannske mangfoldigheder og derved tillade Gaussiske processer at
blive benyttet i statistik med variater liggende på manfoldigheder. Sluttelig betragter
vi også den naturlige gradient på statistiske mangfoldigheder og studerer optimal
transport i relation til Wasserstein generative adversarial networks.
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Chapter 1

Introduction and Background

The thesis at hand is formatted as a compilation of the articles written during
the author’s enrollment in the PhD School of Science at University of Copen-
hagen. The structure is as follows: in this chapter, we begin by reviewing the
essential mathematical background needed in the articles, which are presented
in Appendices A–G.

The aim of the background is to provide the grounds for discussing the interplay
between probabilistic modelling and geometry. There are two important ways
that probability and geometry come together: we can either study the geometry
of the space of probability measures, in order to define statistical tools for
populations of uncertain data-objects represented by these measures; or we can
study probabilistic models on data with geometric structure we wish to respect
in a statistical pipeline.

Section 1.1 starts with introducing the most common probabilistic objects
considered in this thesis – Gaussian processes (GPs) – which are considered
in the work presented in Appendices A–C, where in Appendix A the optimal
transport (OT) geometry between GPs is considered, and in Appendices B–C,
GPs are generalized to Riemannian manifolds to be used as probabilistic models
in learning tasks involving geometric data.

In Section 1.2, we discuss the OT framework, which geometrizes the space of
probability measures. OT carries out this task by extending the geometry of the
sample space, resulting from a cost function between two samples, to the space of
probabilities, by computing a transportation plan that minimizes the total cost of
transporting one measure to another. This is in contrast to information geometry,
another popular approach to geometrizing the space of probability measures,
which studies divergences that only considers the difference in mass assignment
between two measures. There are two definite pros of OT over information
geometry: the sample space geometry is taken into account, and actual distance
metrics can be derived between probabilities. In addition to Appendix A, OT is
considered in Appendix D, where an OT distance between wrapped Gaussian
distributions is derived, and Appendices F–G, where OT defines a loss function
in generative modelling, specifically in Wasserstein generative adversial networks.
Summarizing, the applications of OT in these works fall into two categories:
defining statistical machinery for data objects that are intrinsically noisy; or
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using OT to define a loss function for learning tasks concerning probabilistic
models.

In special cases, the geometry induced by optimal transport can be studied
through the lens of Riemannian geometry. Not only that, the data objects
considered might naturally live on a Riemannian manifold, in which case Rie-
mannian geometry, which we discuss in Section 1.3, provides a standard toolkit
for generalizing statistical methods from Euclidean spaces to be used with the
geometrical data. Riemannian geometry can be found in all the works included
in this thesis; In Appendices A–B, the data objects considered naturally live on
a Riemannian manifold, and in the rest of the work, the geometry induced by
OT is studied through the lens of Riemannian geometry.

After reviewing these basics, we discuss the nature of geometric data in more
detail in Section 1.4. Especially, we focus on how we can tackle uncertainty
quantification, by viewing uncertain data objects as elements of the manifold of
probability measures. Finally, we consider the geometry in learning probabilistic
models by first discussing statistical manifolds in Section 1.5, for which we
consider generative modelling as a use case. Our aim in the use of statistical
manifolds is to pull the geometry of probability measures to the space of param-
eters of the probabilistic models, which we take an advantage of in Appendix E,
where the geometry is used to improve optimization in the learning of a model.

1.1 Gaussian Processes

The following discussion on Gaussian processes is loosely based on [56], which
provides a thorough exposition for the use of GPs in machine learning.

A random variable X taking values in Rn has an n-dimensional multivariate
Gaussian law with mean µ and covariance matrix K, if

P{X = x} = ((2π)n det(K))−
1
2 exp

(
−1

2
(x− µ)TK−1(x− µ)

)
, (1.1)

which we denote by X ∼ N (µ,K), and write N (x|µ,K) = P{X = x}. Given
two Gaussian random variables Xi ∼ N (µi, Ki), i = 1, 2, we say that they have
a joint Gaussian distribution, if we can write

[
X1

X2

]
∼ N

([
µ1

µ2

]
,

[
K1 K12

KT
12 K2

])
, (1.2)

for some matrix K12.

A Gaussian process (GP) can be viewed as an infinite-dimensional Gaussian
distribution, defined as a collection f of random variables, such that any finite
subcollection (f(ωi))

N
i=1 has a joint Gaussian distribution, where ωi ∈ Ω ⊂ Rl,
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and Ω is the index set. A GP is entirely characterized by the pair

m(ω) = E [f(ω)] , (1.3)
k(ω, ω′) = E

[
(f(ω)−m(ω))(f(ω′)−m(ω′))T

]
, (1.4)

wherem and k are called the mean function and covariance function, respectively.
We denote such a GP by f ∼ GP(m, k). It follows from the definition that the
covariance function (kernel) k is symmetric and positive semi-definite.

Figure 1.1: Gaussian process re-
gression, with the prior distribu-
tion for f given in gray, which is
then conditioned on the black data
points to yield the red posterior
distribution. The mean functions
are given in dashed lines, and the
variance is illustrated with shaded
color.

The importance of Gaussian processes for ma-
chine learning comes from our ability to ex-
press their conditional distributions in closed
form. This fits the Bayesian statistics frame-
work, where models are learned by condition-
ing a prior distribution on observed data, re-
sulting in the posterior conditional distribu-
tion. As an example, we consider a regression
task utilizing GPs. Let D = {(xi, yi) | xi ∈
x ⊂ Rl, yi ∈ y ⊂ Rn, i = 1, ..., N} be the
training data, and assume the model

yi = f(xi) + εi, i = 1, ..., N (1.5)

holds, where f is a relation between the inde-
pendent variable xi and the dependent variable
yi. Furthermore, εi is independent, identically
distributed noise, given by εi ∼ N (0, ε2

errI),
where εerr gives the variance of the noise
model. Then, assuming a prior distribution
f ∼ GP(0, k), we can compute the predictive distribution p for the outputs y∗
at the inputs x∗, given in vector form, by

p(y∗|D,x∗) = N (µ∗,Σ∗), (1.6)
µ∗ = kT∗ (k +Kerr)

−1y, (1.7)
Σ∗ = k∗∗ − kT∗ (k +Kerr)

−1k∗, (1.8)

where we use the notation k = k(x,x), k∗ = k(x,x∗), k∗∗ = k(x∗,x∗) and Kerr

is the measurement error variance. In the notation above, the functions f and k
are applied elementwise on the vectors x,x∗. This is known as Gaussian process
regression, which is illustrated in Fig. 1.1.

Typically in model selection, the kernel k is picked from a parametric family
{kθ|θ ∈ Θ} of covariance functions, such as the radial basis function (RBF)
kernels, of which a popular choice is the Gaussian kernel

kσ2,λ(x, y) = σ2 exp

(
−‖x− y‖

2

2λ

)
, σ2, λ > 0, (1.9)
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choosing the parameters (σ2, σ2
err, λ) so that themarginal likelihood P{y|(σ2, σ2

err, λ)}
is maximized.

1.2 Optimal Transport

Figure 1.2: Optimal transport
between the red and blue mea-
sures with assignments in magenta.
Note how the mass distribution
crucially affects the way mass is
transported. In the figure above,
both measures have uniform dis-
tributions, whereas in the figure
below, the blue measure has non-
uniform distribution.

Optimal transport forms an intriguing subfield
of mathematics that concerns the geometry
of probability distributions. The rich struc-
ture induced comes as quite a surprise, as the
essence of optimal transport stems from a very
elementary question: how to transport goods
produced at given factories in the most eco-
nomical way to satisfy the demand at given
outlets? The answering the question requires
specifying three factors: the distribution of
production over the factories, the distribution
of demand over the outlets, and the cost of
transportation. An excellent resource of OT
is given by Villani [62], and a reference for its
computational aspects can be found in [53].

Let X and Y be two Polish spaces, that is,
separable and complete metric spaces. Given
a continuous and lower-bounded cost function
c : X ×Y → R, the optimal transport problem
between two probability measures µ ∈ P(X )
and ν ∈ P(Y) is defined as

OTc(µ, ν) = min
γ∈ADM(µ,ν)

Eγ[c], (1.10)

where Eµ[f ] =
∫
X f(x)dµ(x) is the expectation

of a measurable function f with respect to µ,
and the set ADM(µ, ν) is defined to be the set
of joint probability distributions of µ and ν. A
γ minimizing (1.10) is called a transport plan.

Dual problem. (1.10) can be viewed as a linear program, as the objective is
linear, and the constraints are given by projections of the transport plan γ onto
its two marginals. As such, the program, admits a dual formulation. Denote
by L1(µ) = {f : X → R | Eµ[f ] <∞} the set of measurable functions of µ that
have finite expectations under µ, and by ADM(c) the set of admissible pairs
(ϕ, ψ) ∈ L1(µ)× L1(ν) that for any x, y ∈ X × Y satisfy

ϕ(x) + ψ(y) ≤ c(x, y). (1.11)
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Then, the following duality holds [62, Sec. 5]

OTc(µ, ν) = sup
(ϕ,ψ)∈ADM(c)

{Eµ[ϕ] + Eν [ψ]} . (1.12)

When the supremum is attained, the optimal ϕ∗, ψ∗ in (1.12) are called Kan-
torovich potentials, which, in particular, satisfy ϕ∗(x) + ψ∗(y) = c(x, y) for any
(x, y) ∈ Supp(γ∗), where γ∗ solves (1.10). Given ϕ, we can obtain ψ satisfying
(1.12) through the c-transform of ϕ,

ϕc : Y → R, y 7→ inf
x∈X
{c(x, y)− ϕ(x)} . (1.13)

Moreover, the Kantorovich potentials satisfy ψ∗ = (ϕ∗)c, and therefore (1.12)
can be written as [62, Thm. 5.9]

OTc(µ, ν) = max
(ϕ,ϕc)∈ADM(c)

{Eµ[ϕ] + Eν [ϕc]} . (1.14)

In other words, the ADM(c) constraints given in (1.11) can be enforced with the
c-transform, and reduces the optimization in (1.14) to be carried over a single
function.

Monge formulation. Optimal transport was originally introduced by the
french mathematician Gaspard Monge in his work Mémoire sur la théorie des
déblais et des remblais [46]. The formulation by Monge differs from (1.10),
which resulted from the soviet mathematician Leonid Kantorovich relaxing
Monge’s formulation. This relaxation was the birth of linear programming,
which subsequently brought Kantorovich the Nobel prize in economics.

Instead of a transport plan representing a joint distribution between the two
margins µ and ν, Monge considered a transport map T ∗ satisfying

T ∗ = arg min
T

∫
c(x, T (x))dµ(x), (1.15)

where the T pushes forward µ to ν, denoted by

ν = T#µ(A) := µ(T−1(A)), (1.16)

for any measurable set A ⊂ Y. Assuming µ or ν is absolutely continuous, the
two formulations 1.10 and 1.15 are equivalent. As the Monge formulation is
more restrictive, a minimizer is not guaranteed. However, when a minimizing
map exists, the two formulations are equivalent. In practice, having access to a
transport map is appreciated, as then no mass splitting occurs when interpolating
between two measures under the OT framework.

Wasserstein Metric. Consider the case when X = Y and c(x, y) = dpX (x, y),
p ≥ 1, where we refer to dX as the ground metric. Then, the optimal transport
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problem (1.10) defines the p-Wasserstein metric Wp(µ, ν) := OTdpX
(µ, ν)

1
p on

PpdX (X) =

{
µ ∈ P(X)

∣∣∣∣
∫
dpX (x0, x)dµ(x) <∞

}
, for some x0 ∈ X , (1.17)

that is the space of probability measures with finite p-moments. It can be shown
that (PpdX (X ),Wp) forms a complete, separable metric space [62, Sec. 6, Thm
6.16]. Specifically, in the case p = 2, the metric space (P2

dX (X ),W2) can be
endowed with a weak Riemannian metric inducing W2, which we will describe in
detail in Sec. 1.3.1. When p 6= 2, an associated Finsler structure can be found,
instead, as shown by Agueh [3].

1.3 Riemannian Geometry

Figure 1.3: Illustration of the
logarithmic and exponential map
on a Riemannian manifoldM . The
geodesic associated with (p, v) is
given by the dashed curve.

As mentioned above, the principal geome-
try considered in this thesis is the Rieman-
nian geometry [16, 39], which studies smooth
manifolds endowed with a Riemannian met-
ric. The metric provides a smoothly chang-
ing local inner product, which allows us to
compare tangent vectors in a fixed tangent
space to each other. Furthermore, the met-
ric induces a distance function on the man-
ifold itself, telling us how far apart points
are. A Riemannian manifold is a smooth n-
dimensional manifoldM with a Riemannian
metric gp : TpM× TpM → R, which gives
an inner product at each tangent space TpM,
p ∈ M. A frame E(p) = (e1(p), ..., en(p)) is

an orthonormal basis for TpM, that varies smoothly with p. Such a frame allows
us to define the Riemannian metric tensor Gp as gp(u, v) = uTGpv, for any
u, v ∈ TpM. The inner product also allows us to define a norm at each tangent
space TpM by

‖v‖2
p = gp(v, v)2, v ∈ TpM. (1.18)

The Riemannian metric also induces a metric distance function d between points
p, q ∈M by

dM(p, q) = inf
γ

{∫ 1

0

‖γ̇(t)‖γ(t)dt

}
, (1.19)

where γ ∈ C1([0, 1],M), satisfying

γ(0) = p,

γ(1) = q,

dM(γ(s), γ(t)) = |s− t|,
(1.20)
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and γ̇(t) = d
dt
γ(t). A curve γ achieving the infimum is called a geodesic between p

and q. In general, a geodesic is a curve onM that locally minimizes the distance
between its points, which generalizes straight lines to Riemannian manifolds.

Figure 1.4: At any point p on
the 2-sphere S2, the injectivity ra-
dius is π, with area of injectivity
consisting of all but the antipodal
points point.

A relation between geodesics and elements of
the tangent bundle is given as follows: each
element (p, v) in the tangent bundle TM =⋃
p∈M (p× TpM) defines a geodesic γ onM,

so that γ(0) = p and γ̇(0) = v. This con-
nection allows us to define the basic algebraic
tools needed for defining machine learning on
manifolds: the exponential and logarithmic
maps, which generalizes addition and subtrac-
tion, respectively, to Riemannian manifolds.
The exponential map is defined as

Exp : TM→M,

(p, v) 7→ Expp(v) = γ(1),
(1.21)

where γ is the geodesic corresponding to (p, v).
The exponential map Expp at p is a diffeomor-
phism between a neighborhood 0 ∈ Up ⊂ TpM and neighbourhood p ∈ Vp ⊂M,
which is chosen in a maximal way, so if Vp ( V ′p , then a diffeomorphism between
V ′p and a neighborhood in the tangent space cannot be defined anymore. We
also call Vp the area of injectivity at p, and the minimum distance from p to the
boundary of a maximal Vp is the injectivity radius of Expp. The inverse of the
exponential map is the logarithmic map

Logp : Vp → TpM, q 7→ Logp(q) = γ̇(0), (1.22)

which we illustrate together with the exponential map in Fig. 1.3.

Related to the area of injectivity, is the cut-locus. The cut-locus of p in TpM is
defined as the set of elements v ∈ TpM, so that γ(t) = Expp(tv) is a minimizing
geodesic for t ∈ [0, 1], but fails to be minimizing for t > 1. The cut-locus of p in
M is the image of the cut-locus in TpM under the exponential map, denoted
by Cp. The manifolds with non-positive curvature form an important class of
manifolds with infinite injectivity radius, which also translates into them having
an empty cut-locus Cp for every p ∈M.

Using a frame E(p) = (e1(p), ..., en(p)), that induces a basis on the tangent
space TpM, yields a chart on Vp, called the normal coordinate chart, through
the exponential map as

x 7→ Expp

(
n∑

i=1

xiei(p)

)
. (1.23)

The normal coordinate chart is commonly used in applications. One reason for
this is its radial isometry, resulting from Gauss’s lemma, which gives us the
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identity
d2
M(p,Expp(v)) = ‖v‖2

p. (1.24)

Euclidean space as a Riemannian manifold. Riemannian geometry general-
izes Euclidean geometry, as the Euclidean space (Rn, 〈, ·, ·〉) forms a Riemannian
manifold. First, note that Rn is homeomorphic to itself, an open Euclidean
space, and thus forms a smooth manifold. Secondly, the inner product

〈v, u〉p = vTu, v, u ∈ TpRn, (1.25)

varies smoothly with any p ∈ Rn. Under this metric, the exponential map is
given by

ExpEuc
x (v) = p+ v, (1.26)

and the logarithmic map by

LogEuc
p (q) = q − p. (1.27)

1.3.1 Weak Riemannian Structure of the 2-Wasserstein
metric

In Section 1.2 we mentioned how the metric space
(
P2
dX (X ),W2

)
is induced

by a weak Riemannian structure (weak, as P2
dX (X ) does not form a smooth

manifold). This viewpoint is commonly referred to as Otto calculus [48], which
we will describe now in more detail based on [8, Sec. 2.3.2] and [17]. For
simplicity, we look at AC(Rn), the space of absolutely continuous distributions
on (Rn, dEuc), where dEuc is the standard Euclidean distance. Then, what
we mean by the Riemannian structure, stems from the following Benamou–
Brenier [12] formulation (also known as the dynamic formulation) of optimal
transport, which states

W 2
2 (µ, ν) = inf

(µt,Φt)

{∫ 1

0

‖∇Φt‖2
µtdt

}
, (1.28)

where ‖∇Φt‖2
µ =

∫
‖∇Φt(x)‖2

Eucdµ(x), and (µt,Φt) ∈ AC(Rn) × C∞(Rn) is a
weak solution to the continuity equation

d

dt
µt +∇ · (µt∇Φt) = 0, t ∈ [0, 1], µ0 = µ, µ1 = ν. (1.29)

In (1.29), d
dt
µt gives the rate of change of mass at each point at time t, and Φt

is a potential field, such that ∇Φt is a velocity field giving the transfer of mass
at each point. At each point µ ∈ AC(Rn), the tangent space is given by

TµAC(Rn) =

{
v ∈ C∞(Rn) :

∫
v(x)dx = 0

}
, (1.30)
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and so d
dt
µt ∈ TµAC(Rn). Now, as a shorthand notation, when (µ,Φ) is fixed,

we denote by V(µ,∇Φ) the tangent space element solving

V(µ,∇Φ) +∇ · (µ∇Φ) = 0. (1.31)

Then, the continuity equation gives an isomorphism between the space of smooth
real-valued functions on Rn, modulo additive constants, and the tangent space,
by

C∞(Rn)/R→ TµAC(Rn), Φ 7→ V(µ,∇Φ). (1.32)

Due to this isomorphism, we denote T ∗µAC(Rn) = C∞(Rn)/R.

Now, (1.28) can be seen as the distance induced by the Riemannian metric

gµ(v1, v2) =

∫
〈∇Φv1 ,∇Φv2〉dµ, (1.33)

where Φvi solves the continuity equation

vi +∇ · (µ∇Φvi) = 0, i = 1, 2, (1.34)

such that ∇Φvi is of minimal norm of all the possible solutions to (1.34). This
induction can be seen, as

W 2
2 (µ, ν) = inf

(µt,Φt)

{∫ 1

0

‖∇Φt‖2
µtdt

}

= inf
µt

{∫ 1

0

gµt (∇Φvt ,∇Φvt) dt

}
,

(1.35)

where (µt,Φt) has to satisfy (1.29), and vt = d
dt
µt.

Let Id denote the identity map on Rn. Then, under this metric, the exponential
map is defined as

Expµ(v) = (Id +∇Φv)# µ, (1.36)

and the logarithmic map is given by

Logµ(ν) = V(µ,T νµ−Id) (1.37)

where T νµ is the transport map from µ to ν (which exists as the measures are
absolutely continuous).
Remark 1. As can be seen in expressions (1.33), (1.36) and (1.37), the metric
structure acts on elements of TµAC(RN) through the gradients of elements of
T ∗µAC(RN). Due to this, another convention is to define the L2 closure of

{
∇Φ : Φ ∈ T ∗µAC(RN)

}
, (1.38)

as the tangent space at µ.

Gaussian example. Denote byN (Rn) the space of non-degenerate multivariate
Gaussian distributions on Rn. Its 2-Wasserstein geometry as a Riemannian
manifold was studied in [42, 61], which we will summarize below. After the
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summary, we also provide a novel derivation as an example of the Otto calculus
discussed above.

The 2-Wasserstein metric between Xi ∼ N (µi, Ki) ∈ N (Rn), i = 1, 2, is given
by

W 2
2 (X1, X2) = ‖µ1 − µ2‖2

Euc + TrK1 + TrK2 − 2Tr (K1K2)
1
2 , (1.39)

where TrK =
∑n

i=1Kii denotes the trace of K. Based on (1.39), we have the
isometry

N (Rn) ' L2(Rn)×N0(Rn) (1.40)

where N0(Rn) is the space of centered Gaussian distributions. For simplicity, we
can view the tangent space of N0(Rn) (seen as the space of symmetric positive
definite matrices) as the space of symmetric matrices Sym(Rn), that is,

TµN0(Rn) ' Sym(Rn), µ ∈ N0(Rn). (1.41)

Then, the distance (1.39) is induced by

gN (0,K)(V, U) = Tr(v(K,V )Kv(K,U)), (1.42)

and the exponential and logarithmic maps are given by

LogK1
(K2) = K1T

2
1 + T 2

1K1 − I,
ExpK(V ) = (I + v(K,V ))K(I + v(K,V )),

(1.43)

where v(K,V ) is the unique symmetric matrix solving the Sylvester equation

V = Kv(K,V ) + v(K,V )K, (1.44)

and T 2
1 is the Monge transport map between N (0, K1) and N (0, K2), given by

T 2
1 = K

− 1
2

1

(
K

1
2
1 K2K

1
2
1

) 1
2

K
− 1

2
1 , (1.45)

Now, we will derive this structure. Note, that N0(Rn) is isomorphic to PD(Rn),
the space of n-by-n symmetric positive definite matrices, through

ϕ : K 7→ N (0, K). (1.46)

This isomorphism induces on PD(Rn) the metric

W 2
2 (K1, K2) = TrK1 + TrK2 − 2Tr (K1K2)

1
2 . (1.47)

As the Euclidean geometry of L2(Rn) is trivial, we focus on the geometry of
(PD(Rn),W2).

First, recall that PD(Rn) forms an open cone of Sym(Rn), which is a Euclidean
space. An immediate consequence is that PD(Rn) is a smooth manifold, and
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shares the same tangent space with Sym(Rn), i.e.,

TKPD(Rn) = TKSym(Rn) = Sym(Rn), ∀K ∈ PD(Rn). (1.48)

Now, we wish to pullback the Riemannian metric gN0(Rn) inducingW2 on N0(Rn)
to PD(Rn). To do this, we define

g
PD(Rn)
K (V, U) = g

N0(Rn)
N (0,K) ([DKϕ]V, [DKϕ]U) , (1.49)

where DKϕ is the differential of ϕ at K, acting on any V ∈ TKPD(Rn) by

([DKϕ]V ) (x) =
1

2

(
−Tr

(
K−1V

)
+ xTK−1V K−1x

)
N (x | 0, K), (1.50)

Then, we find that

([DKϕ]V )(x) +∇ ·
(
N (x | 0, K)v(K,V )(x)

)
= 0, ∀x ∈ Rn, (1.51)

is solved by the linear map v(K,V ) with the associated matrix being the unique
symmetric element solving (1.44).

Thus, using (1.33), we can write (1.49) as

g
PD(Rn)
K (V, U) =

∫

Rd
〈v(K,V ), v(K,U)〉N (x | 0, K)dx

= Tr
(
v(K,V )Kv(K,U)

)
.

(1.52)

Now, for the exponential and logarithmic maps, recall the Monge transport
map between N (0, K1) and N (0, K2) given in (1.45), and that pushing N (0, K)
forward by a linear map A results in

A#N (0, K) = N (0, AKAT ). (1.53)

This allows us to write the exponential map in (1.36) as

ExpK(V ) = (I + v(K,V ))K(I + v(K,V )), (1.54)

and the logarithmic map in (1.37) as

LogK1
(K2) = K1T

2
1 + T 2

1K1 − I, K1, K2 ∈ PD(Rn). (1.55)

Remark 2. We could as well have associated a Gaussian distribution with its
precision matrix, i.e.,

ϕ : K 7→ N (0, K−1), K ∈ PD(Rn). (1.56)

In this case, the resulting metric, following from a similar derivation as above,
would be

g
PD(Rn)
K (V, U) = Tr

(
v(K,−V )K

−1v(K,−U)

)
. (1.57)
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Remark 3. The derivation in [61] follows the convention mentioned in Remark 1,
and thus the metric provided there is given by

gK(V, U) = Tr(V KU), K ∈ PD(Rn), V, U ∈ Sym(Rn). (1.58)

1.4 Statistics of Geometric Data

Much of statistics is based on the premise of the data living in a Euclidean
space Rn, which allows the utilization of its vector space properties of being
closed under addition and scalar multiplication. In modern data analysis, a
plethora of examples of data with non-Euclidean structure exists. Essentially
what this means, is that the data cannot be well represented by such a vector in
Rn. In many such cases, the data instead lives on a smooth manifoldM, which
then consists of all the plausible data points. Such examples include shapes
(that are invariant with respect to translation, scaling and rotation), diffusion
tensors in magnetic resonance imaging (MRI) (that can be modelled as positive
semi-definite matrices), and directional data (that lives on the unit sphere Sn−1).

On top of the spatial constraints provided byM, we often want to relate elements
ofM to each other in a way that further allows us to define certain statistical
tools. These include for example the definition of the mean of a population, and
the ability to interpolate between data points, and this is typically achieved
through the definition of a metric d onM. The chosen metric has a significant
impact on the resulting statistics, and is thus an important part of the modelling
choices done prior to statistical analysis. Notably, one might want to consider
statistical models that are invariant with respect to given transformations, which
can be incorporated via an invariant metric. For example, the distance between
two shapes should remain invariant with respect to translations, scalings and
rotations. In this thesis, we will consider metrics d induced by Riemannian
metrics g, and so our data space forms a Riemannian manifold (M, g). Statistics
on manifolds can be divided into extrinsic and intrinsic approaches.

1.4.1 Extrinsic Statistics on Manifolds

According to the Whitney embedding theorem, any n-dimensional smooth
manifold can be smoothly embedded into R2n, which allows the manifold to
be considered in a global coordinate system. This then allows one to utilize
Euclidean statistical analysis in the ambient space, the result of which can then
be projected back onto the embedded manifold, by mapping to the nearest point
on the manifold. This is called the extrinsic approach. The extrinsic approach
is straightforward and computationally favorable, however, as describe above, it
fails to take the intrinsic geometry into account. This can be fixed, by considering
the Nash embedding theorem, which states that any Riemannian manifold can be
isometrically embedded into Rm, for somem ≤ 1

2
n(n+1)(3n+11). Unfortunately,

computing the Nash embedding is usually infeasible in practice.
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The extrinsic approach [10, 13] is straightforward and computationally favor-
able [14], however, it fails to take the intrinsic geometry into account, as the
Riemannian metric is entirely ignored, and as the Euclidean models do not take
the manifold geometry into account. For example, consider a population of ele-
ments {pi}Ni=1 on a Riemannian manifoldM with an embedding ψ :M→ R2n.
Then, one could compute the mean p̄ of this population as

p̄ = ψ−1

(
πψ(M)

(
1

N

N∑

i=1

ψ(pi)

))
, (1.59)

where πψ(M) : R2n → R2n is the projection onto the embedded manifold, given
by

πψ(M) : x 7→ arg min
y∈ψ(M)

d2
Euc(x, y). (1.60)

To further illustrate this example, assumeM = Sn−1, then the embedded mean
would be given by

ψ(p̄) =

∑N
i=1 ψ(pi)

‖∑N
i=1 ψ(pi)‖

. (1.61)

As can be seen, this approach fails to take into account the metric g on M,
unless the embedding is isometric. However, in practice, computing an isometric
embedding is highly non-trivial, and therefore not considered here.

1.4.2 Intrinsic Statistics on Manifolds

Intrinsic statistics on manifolds [51] is defined independently of charts (coordinate
systems) using the machinery of differential geometry. In practice, the normal
coordinate charts given by the exponential map are commonly used for computing
the statistics. This approach allows one to completely ignore the ambient space,
as the statistical models only see the manifold, nothing else. Furthermore, the
intrinsic approach allows us to employ the chosen Riemannian metric in the
design of models. In this thesis, we focus on the intrinsic approach.

Generalizing statistics from the linear world to Riemannian manifolds poses
many challenges, due to nonlinearity and changes in topology. However, a
principled approach exists, where the Euclidean geometry in statistical machinery
is replaced with the Riemannian geometry. Below, we demonstrate this in a
couple of examples, to give an overview. For the interested reader, more details
about regression on manifolds can be found in [11, 23,34], submanifold learning
in [24,33,35], and probabilistic methods in [25,55,58].

Population mean. Consider the mean element of a population of elements
{xi}Ni=1 ⊂ Rn in a Euclidean space, which is defined as

x̄ =
1

N

N∑

i=1

xi. (1.62)
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Note, how in the definition scalar multiplication and addition are used, which
are not available in the Riemannian setting. Instead, we want to express x̄
geometrically, which can be done by noticing that x̄ is the unique element
satisfying

x̄ = arg min
x∈Rn

N∑

i=1

d2
Euc(x, xi), (1.63)

where dEuc(x, xi) = ‖x − xi‖ is the standard Euclidean distance in Rn. Now
consider a population of elements {pi}Ni=1 ⊂ M on a Riemannian manifold.
Substituting the Euclidean distance dEuc with the distance dM on the Riemannian
manifold in (1.63) results in the definition of the Fréchet mean [26, 31] p̄, which
satisfies

p̄ ∈ arg min
p∈M

N∑

i=1

d2
M(p, pi). (1.64)

Note that in the Riemannian case, the minimizers need not be unique, although
it is unique in special cases such as non-positively curved manifolds.

In practice, we can numerically approximate the Fréchet mean by gradient
descent, using the identity

∇pd
2
M(p, q) = −2Logp(q). (1.65)

Where in the Euclidean case the gradient descent updates are given by

x← x− λv, (1.66)

where v is the gradient and λ the learning rate, in the Riemannian case one
needs to replace the addition with the Riemannian exponential

p← Expp(−λv). (1.67)

Residuals. A common way to define an error function in statistics is through
the residuals, which give the discrepancy between a model and observations:
given a data point (xi, yi), where yi ∈ Rn, and a predictive model f , the residual
is defined as rEuc(xi) = yi − f(xi). In the Riemannian case such a subtraction
is not possible, however, we are able to substitute addition and subtraction
with other operations, as we did the in the gradient descent update. For a
data point (xi, pi) with pi ∈ M, we can define the Riemannian residual as
rM(xi) = Logf(xi)

(pi) [23]. This generalization is actually quite straightforward:
the Euclidean space Rn with the Euclidean metric 〈·, ·〉 also forms a Riemannian
manifold as detailed in Section 1.3, and in particular, rEuc(xi) = LogEuc

f(xi)
(y).

Gaussian distribution. As an example where the generalization process is not
as straightforward, we consider the Gaussian distribution. The difficulty arises
due to the Gaussian distribution having many equivalent characterizations in
the Euclidean domain, that do not end up being equivalent in the Riemannian
case. To name a few, we list generalizations of these characterizations onto
Riemannian manifolds
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Figure 1.5: Interpolations (dashed) between two univariate
Gaussians (red and blue) in the different geometries. The means
are given by the middlemost interpolants.

1. The distribution with fixed mean µ and covariance matrix K maximizing
entropy is [50].

2. The istropic distribution with a density satisfying [57]

p(x) ∝ exp

(
− 1

2σ2
d2
M (µ, x)

)
. (1.68)

3. The density is given by the heat kernel, which is the smallest positive
solution to the heat equation [21]

∂f

∂t
−∆f = 0, (1.69)

where ∆ is the Laplace–Beltrami operator on the manifold (only provides
an isotropic distribution).

4. The push-forward with respect to Expµ of N (0, K) defined in the tangent
space TµM [43] (

Expµ
)

#
N (0, K). (1.70)

We consider 4., which is referred to as the wrapped Gaussian distribution (WGD).
As the name suggests, WGDs might wrap mass around a compact manifold, in
which case analytical evaluation of the density function becomes too difficult in
practice. However, it is the only distribution of the above generalizations that
can be conditioned with ease, owing to its analytical expression, which is used
in the articles presented in Appendices B and C.

Note that, we can also characterize the population mean as the maximum
likelihood estimator for the mean parameter of a Gaussian distribution. This is
no longer true in the WGD case.
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1.4.3 Comparative Example

We further illustrate the differences between the extrinsic and intrinsic approaches
in the context of this thesis: By considering populations of univariate Gaussian
distributions. Ideally, in the extrinsic approach, one would embed the space
of Gaussians in a way that respects the geometry through Nash embeddings,
however, in practice it is usually infeasible, as is the case here. Therefore, we
consider the embedding of the measures through their densities into L2(R). On
the other hand, intrinsic statistics requires defining a suitable metric, which in
this example we choose to be the 2-Wasserstein metric discussed in Section 1.3.1.

Euclidean geometry. Absolutely continuous probability measures on R can
be embedded in the Euclidean space (also a Hilbert space) L2(R) through their
density functions, which we denote by

ψ : AC(R)→ L2(R), ψ : ν 7→ ρν (1.71)

With the inherited geometry, the distance between the embeddings of ν1 =
N (m1, σ

2
1) and ν2 = N (m2, σ

2
2) is given by

dEuc(ψ(ν1), ψ(ν2)) =

(∫

R
(ρν1(x)− ρν2(x))2 dx

) 1
2

(1.72)

realised by the geodesic

γ : t 7→ (1− t)ρν1 + tρν2 , t ∈ [0, 1], (1.73)

where the sum of functions is defined by (f + g)(x) = f(x) + g(x). Note how
for t ∈ (0, 1) the geodesic γ exits the manifold of Gaussian densities, returning
a multimodal distribution, instead. Furthermore, the embedded mean ρ̄ of a
population of univariate Gaussians {N (µi, σ

2
i )}

N
i=1 is given by

ρ̄ =
1

N

N∑

i=1

ρνi , (1.74)

which can then be projected back onto the space of Gaussians as N (µ̄, σ̄2), where

(µ̄, σ̄2) = arg min
(µ,σ2)

∫

R

(
ρ̄(x)−N (x|µ, σ2)

)2
dx. (1.75)

Wasserstein geometry. Now, we view the space of univariate Gaussians as a
finite-dimensional submanifold of the metric space (P2(R),W2). From (1.39) we
get the distance between two univariate Gaussians as

W2(ν1, ν2) =
(
|µ1 − µ2|2 + σ2

1 + σ2
2 − 2σ1σ2

) 1
2 , (1.76)

realised by the geodesic, given by (1.36) and (1.37)

γ : t 7→ N
(
(1− t)µ1 + tµ2, ((1− t)σ1 + tσ2)2) . (1.77)
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Finally, the Fréchet mean ν̄ of the population {N (µi, σ
2
i )}Ni=1 minimizing (1.64)

is given by

ν̄ = N


 1

N

N∑

i=1

µi,

(
1

N

N∑

i=1

σi

)2

 , (1.78)

Comparison. The means and geodesic interpolations between two Gaussians
densities are given in Fig. 1.5, where the means are given by the middlemost
interpolants. In the 2-Wasserstein case, the mean and variance parameters are
independent in the geometry, and so the mean parameter of the Fréchet mean
only depends on the mean parameters of the population, likewise, the covariance
only depends on the covariance matrices of the population. In the Euclidean
case, the interpolations and means generally fail to be Gaussian, as the resultants
are multimodal. Projecting the resulting densities onto the space of Gaussians
returns a density with high variance that tries to cover all the modalities.

1.5 Statistical Manifolds

Figure 1.6: Illustration of a sta-
tistical manifold (X ,Θ, ρ), with
the divergence measure c∗ and its
pull-back c on Θ.

Statistical manifolds are the central objects
studied in information geometry [7]. They
consist of a parametrized family of probability
distributions and a divergence function on the
space of probabilities, which quantifies the dis-
similarity between two elements. A common
choice is the Kullback–Leibler (KL) divergence,
but we could also choose the p-Wasserstein
metric, for example, leading to Wasserstein in-
formation geometry [40]. The parametrization
can be viewed as a chart, and thus a statistical
manifold is a submanifold, in a weak sense, of
the space of probability measures.

From the practical point of view, relating the
geometry endowed on the space of probabilities
to the parameter space helps us in optimiza-
tion problems related to learning tasks. This
is because changes in the parameters would
then correspond to appropriate changes in the
probability measures.

We define a statistical manifold as a triple
(X ,Θ, ρ), where X is the sample space, Θ ⊆ Rn

the parameter space, and

ρ : Θ→ P(X ), ρ : θ 7→ ρθ (1.79)
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associates each parameter to a probability measure in P(X ). By abuse of
language, we also call Θ a statistical manifold. We equip Θ with a geometry, by
choosing a divergence measure

c∗ : P(X )× P(X )→ R≥0

c∗(ρ1, ρ2) = 0 ⇐⇒ ρ1 = ρ2,
(1.80)

on the probability space P(X ). This divergence can then be pulled back to the
statistical manifold Θ, by defining

c : Θ× P(X )→ R≥0, c : (θ1, ρ) 7→ c∗(ρθ1 , ρ). (1.81)

By abuse of notation, we write c(θ1, ρθ2) = c(θ1, θ2). As a technical condition,
we require θ 7→ c(θ, θ2) to be C2 whenever θ 6= θ2. A natural context where such
a similarity measure arises is when learning a probabilistic model. See Fig. 1.6
for an illustration.

The given divergence measure c∗ can be approximated by a Riemannian metric
through a local second order approximation,

G∗p = ∇2
q=pc

∗(q, p), (1.82)

called the Riemannian metric associated with the divergence c∗, whose pull-back
Riemannian metric tensor on Θ is then given by

Gθ = JTθ ∇2
η=θc(η, θ)Jθ, (1.83)

where Jθ stands for the Jacobian of the chart

Jθ =
∂

∂θ
ρθ (1.84)

A practical application of the statistical manifold is studied in the paper presented
in Appendix E, where the pull-back metric tensor is used for natural gradient
descent in the parameter space.

1.5.1 Wasserstein Generative Adversial Networks

As an example of a statistical manifold, we consider generative adversial networks
(GANs) in generative modelling. In this context, the role of ρ is played by the
model distribution µm, defined through a generator. Then, we wish to learn the
parameters of the generator, so that a divergence on P(X ) between the model
and given target data distribution µt is minimized. Especially, after a general
formulation, we will consider Wasserstein GANs, where the divergence is given
by the 1-Wasserstein distance. GANs have found numerous applications, e.g., in
medical imaging [36], inverse problems [2, 41], and 3D object generation [27,63].
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The model distribution is defined by pushing a source distribution µs forward
by a parametrized map gω′ , the generator, with parameter ω′, yielding

µm = (gω′)# µs. (1.85)

The generator is typically given by a neural network, such as a multilayer
perceptron (MLP), or a convolutional neural network (ConvNet). The source
distribution µs is usually chosen to be a standard Gaussian in a low dimen-
sional space, for example, µs = N (0, I) ∈ P (R100). The low dimensionality is
commonly justified by the manifold hypothesis [22] in machine learning, which
assumes that the data lies on a low dimensional submanifold of the ambient
data space (such as R3×64×64 for 64× 64 color images).

GANs. The type of GAN is determined by the divergence c∗ minimized on the
space of probabilities. Choosing c∗, the objective becomes

min
ω′

c∗
(

(gω′)# µs, µt

)
. (1.86)

The original formulation by Goodfellow et al. [30] minimizes an approximation
to the Jensen–Shannon (JS) divergence, given by

JS(ν‖µ) ≈ max
ω
{Ex∼µ[log(ϕω(x))] + Ey∼ν [log(1− ϕω(y))]} , (1.87)

where, the function
ϕω : X → [0, 1], (1.88)

is the discriminator with parameters ω. In this formulation, the discriminator
plays the adversial part, assigning a probability describing whether an element
of the sample space comes from the target µt, or not. Putting (1.86) and (1.87)
together yields the minimax objective

min
ω′

max
ω
{Ex∼µt [log(ϕω(x))] + Ez∼µs [log(1− ϕω(gω′(z)))]} . (1.89)

In practice, this objective is solved by Monte Carlo methods and stochastic
gradient descent: at each iteration we sample minibatches {xi}Ni=1 and {zi}Ni=1

from the target µt and source µs, respectively. The GAN pipeline is illustrated
in Fig. 1.7.

Wasserstein GANs. An alternative to (1.87) is given by the 1-Wasserstein
metric, and especially its dual formulation, introduced in Section 1.2, which can
be written as

W1(µ, ν) = max
(ϕ,ϕc))∈ADM(c

{Eµ[ϕ] + Eν [ϕc]}, (1.90)

where c = dEuc. In the special case where ϕ is 1-Lipschitz and c = d for any
metric distance d, the c-transform is given by

ϕc = −ϕ. (1.91)
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Figure 1.7: Illustration of the GAN setting, where the similarity
measure c∗ is minimized between the model (gω′)# µs and µt.

Additionally, one can show that any Kantorovich potential ϕ maximizing (1.90)
is indeed a 1-Lipschitz function, and therefore

W1(µ, ν) = max
ϕ is 1-Lipschitz

{Eµ[ϕ]− Eν [ϕ]}. (1.92)

Letting c∗ = W1, and approximating the Kantorovich potential by a neural
network

ϕω : X → R, (1.93)

yields the Wasserstein GAN (WGAN) objective

min
ω′

max
ω
{Ex∼µt [ϕω(x)]− Ez∼µs [ϕω(gω′(z))]} . (1.94)

This time, ϕω is called a critic and not a discriminator, as it can assign any
value from R to the samples. Note that one has to take care of enforcing the 1-
Lipschitzness of the critic, which poses to be the main implementational difficulty
of WGANs. In Appendix F we consider not enforcing the 1-Lipschitzness, but
instead computing a discrete version of the c-transform. In Appendix G, we
compare the ability of different methodologies enforcing these constraints in
approximating and estimating the optimal transport quantity.
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Chapter 2

Summary and Future Work

This chapter is devoted to summarizing the work presented in the appendices,
and to discussing possible future directions for the research carried out during
this PhD project. The summary is kept brief, as more detailed summaries will
be given in each appendix.

In Chapter 1, we introduced the background required to describe the interplay
between geometry and probabilistic modelling that is present in the work in
Appendices A–G. This interplay can naturally be divided into two categories:
modelling of geometric data, and geometry of probabilistic models. Below, we
will discuss the relation of these two categories to the articles in the appendices,
and how they relate to uncertainty quantification.

Modelling geometric data. As described in Section 1.4, data that naturally
posses geometric structure can be studied with models, that are constrained to
respect the geometric structure. As examples of such data, we mentioned shapes,
diffusion tensors and directional data. On top of such deterministic objects,
data that can be represented as probability measures can also be endowed with
such geometric structure, as is one of the key takeaways of Chapter 1.

In Appendix A, we consider the geometrization of GPs under the OT framework.
This is done in order to utilize the toolkit of geometric statistics on stochastic
curves, which can be represented as GPs. The main motivation of this, is to
incorporate the uncertainty of the curves to the statistical pipeline. Otherwise,
the resulting statistics would be blind to this intrinsic uncertainty, preventing
us from carrying out accurate uncertainty quantification.

In Appendices B and C, we focus on general methodology for statistics on
manifolds. Particularly, we generalize GPs onto manifolds by wrapped GPs
(WGPs), which are then utilized in non-parametric regression on geometric
data in Appendix B, and for unsupervised learning of submanifolds formed
by geometric data in Appendix C. This provides us with non-parametric, non-
linear models for statistics on manifolds, whose conditional distributions provide
uncertainty estimates.

Data objects living on Riemannian manifolds can also be stochastic, i.e., they
can be represented as random points on the given manifold. In Appendix D,
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we consider the OT geometry of wrapped Gaussian distributions, which can be
utilized in similar vain to Appendix A.

Future work in this direction includes studying the OT geometry for more
complicated representations of random curves than GPs. Furthermore, we
utilized WGPs to generalize only two popular GP tools to manifolds, that is, GP
regression and Gaussian process latent variable models (GPLVMs). We could
further study the extension of GP statistics on the Euclidean space to manifolds.

Geometry of probabilistic models. Learning probabilistic models can often
be cast as minimizing a geometric quantity between the model and a given
data distribution, which we can cast into the context of statistical manifolds
presented in Section 1.5. This allows us to relate the geometry of the model to
its parameter space. On the other hand, computing the geometric quantity is
often non-trivial, making studying its approximations worthwhile.

In Appendix E we study the natural gradient for an arbitrary divergence, which
results from preconditioning the Euclidean gradient with the pull-back of the
Riemannian metric associated with the divergence on the space of probabilities.
The natural gradient can be utilized when learning the model as part of optimizing
the model’s parameters via natural gradient descent. This accelerates and
smoothens the optimization process, as changes in the parameters are not
allowed to make large deviations in the model, when measured with respect to
the geometry of the space of probabilities. Due to computational bottlenecks,
the natural gradient has not been widely considered in deep learning. Future
work could entail Monte Carlo methods that make natural gradient compatible
with deep learning, in the spirit of [65].

Wasserstein GANs are studied in Appendices F and G. In particular, approxi-
mating the 1-Wasserstein distance, with the use of discriminator neural networks,
is considered. Appendix F studies the use of the c-transform in enforcing the
constraints associated with the dual formulation of the 1-Wasserstein distance,
whereas in Appendix G, we consider the ability of different heuristic schemes to
approximate and estimate the 1-Wasserstein distance. This work can naturally
be continued, by considering in more detail, how the different schemes affect the
resulting Kantorovich potentials. On the other hand, it would be interesting
to have results stating, how complicated Kantorovich potentials are required
between given families of distributions. Finally, applying the methodology of
WGANs in the multimarginal OT setting [28,49] would be an interesting new
direction.
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Appendix A

Learning from Uncertain Curves:
The 2-Wasserstein Metric for

Gaussian Processes

The following chapter presents (up to formatting) the article

Anton Mallasto, and Aasa Feragen. "Learning from uncertain curves:
The 2-Wasserstein metric for Gaussian processes." Advances in Neural
Information Processing Systems (NeurIPS). 2017.

This work studies the 2-Wasserstein geometry of GPs and covariance operators,
in particular, how the metric between GPs relates to the metric between their
finite-dimensional marginals in the sense of continuity. The framework is derived
in order to carry out simple statistics such as interpolation and computing
Fréchet means for a population of GPs, that can be used to model curves with
uncertainty. The continuity results justify practical computations that have to
rely on finite-dimensional marginals. The framework was demonstrated on GPs
modelling yearly temperature variation [15], and GPs representing uncertain
estimates of trajectories in diffusion MRI [33,59].

The work can be seen as a natural continuation of the study of the 2-Wasserstein
metric between Gaussian distributions [19, 29,37, 47], whose related Riemannian
structure has been explored in [42, 61]. On the other hand, it continues the
geometric study of covariance operators, see [45,54]. Briefly after the publication
of this work, another article with similar contribution to ours appeared, with a
more general exposition [44].



Learning from uncertain curves:
The 2-Wasserstein metric for Gaussian processes

Anton Mallasto Aasa Feragen

Department of Computer Science, University of Copenhagen

Abstract

We introduce a novel framework for statistical analysis of popula-
tions of non-degenerate Gaussian processes (GPs), which are natural
representations of uncertain curves. This allows inherent variation or
uncertainty in function-valued data to be properly incorporated in the
population analysis. Using the 2-Wasserstein metric we geometrize the
space of GPs with L2 mean and covariance functions over compact in-
dex spaces. We prove uniqueness of the barycenter of a population of
GPs, as well as convergence of the metric and the barycenter of their
finite-dimensional counterparts. This justifies practical computations.
Finally, we demonstrate our framework through experimental validation
on GP datasets representing brain connectivity and climate develop-
ment. A Matlab library for relevant computations will be published at
https://sites.google.com/view/antonmallasto/software.

1 Introduction

Figure 1: An illustration of
a GP, with mean function (in
black) and confidence bound (in
grey). The colorful curves are
sample paths of this GP.

Gaussian processes (GPs, see Fig. 1) are the
counterparts of Gaussian distributions (GDs)
over functions, making GPs natural objects
to model uncertainty in estimated functions.
With the rise of GP modelling and probabilis-
tic numerics, GPs are increasingly used to
model uncertainty in function-valued data such
as segmentation boundaries [17, 19, 30], image
registration [38] or time series [28]. Centered
GPs, or covariance operators, appear as image
features in computer vision [12, 16, 25, 26] and
as features of phonetic language structure [23].
A natural next step is therefore to analyze pop-
ulations of GPs, where performance depends

crucially on proper incorporation of inherent uncertainty or variation. This
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Figure 2: Left: Example GPs describing the daily minimum temperatures in
a Siberian city (see Sec. 4). Right top: The mean GP temperature curve,
computed as a Wasserstein barycenter. Note that the inherent variability in the
daily temperature is realistically preserved, in contrast with the naïve approach.
Right bottom: A naïve estimation of the mean and standard deviation of
the daily temperature, obtained by taking the day-by-day mean and standard
deviation of the temperature. All figures show a 95% confidence interval.

paper contributes a principled framework for population analysis of GPs based
on Wasserstein, a.k.a. earth mover’s, distances.

The importance of incorporating uncertainty into population analysis is em-
phasized by the example in Fig. 2, where each data point is a GP representing
the minimal temperature in the Siberian city Vanavara over the course of one
year [9,34]. A naïve way to compute its average temperature curve is to compute
the per-day mean and standard deviation of the yearly GP mean curves. This is
shown in the bottom right plot, and it is clear that the temperature variation is
grossly underestimated, especially in the summer season. The top right figure
shows the mean GP obtained with our proposed framework, which preserves a
far more accurate representation of the natural temperature variation.

We propose analyzing populations of GPs by geometrizing the space of GPs
through the Wasserstein distance, which yields a metric between probability
measures with rich geometric properties. We contribute i) closed-form solutions
for arbitrarily good approximation of the Wasserstein distance by showing that
the 2-Wasserstein distance between two finite-dimensional GP representations
converges to the 2-Wasserstein distance of the two GPs; and ii) a characterization
of a non-degenerate barycenter of a population of GPs, and a proof that such
a barycenter is unique, and can be approximated by its finite-dimensional
counterpart.

We evaluate the Wasserstein distance in two applications. First, we illustrate
the use of the Wasserstein distance for processing of uncertain white-matter
trajectories in the brain segmented from noisy diffusion-weighted imaging (DWI)
data using tractography. It is well known that the noise level and the low
resolution of DWI images result in unreliable trajectories (tracts) [24]. This
is problematic as the estimated tracts are e.g. used for surgical planning [8].
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Recent work [17, 30] utilizes probabilistic numerics [29] to return uncertain
tracts represented as GPs. We utilize the Wassertein distance to incorporate the
estimated uncertainty into typical DWI analysis tools such as tract clustering [37]
and visualization. Our second study quantifies recent climate development based
on data from Russian meteorological stations using permutation testing on
population barycenters, and supplies interpretability of the climate development
using GP-valued kernel regression.

Related work. Multiple frameworks exist for comparing Gaussian distribu-
tions (GDs) represented by their covariance matrices, including the Frobenius,
Fisher-Rao (affine-invariant), log-Euclidean and Wasserstein metrics. Particu-
larly relevant to our work is the 2-Wasserstein metric on GDs, whose Riemannian
geometry is studied in [33], and whose barycenters are well understood [1,4].

A body of work exists on generalizing the aforementioned metrics to the infinite-
dimensional covariance operators. As pointed out in [23], extending the affine-
invariant and Log-Euclidean metrics is problematic as covariance operators are
not compatible with logarithmic maps and their inverses are unbounded. These
problems are avoided in [25, 26] by regularizing the covariance operators, but
unfortunately, this also alters the data in a non-unique way. The Procrustes
metric from [23] avoids this, but as it is, only defines a metric between covariance
operators.

The 2-Wasserstein metric, on the other hand, generalizes naturally from GDs to
GPs, does not require regularization, and can be arbitrarily well approximated by
a closed form expression, making the computations cheap. Moreover, the theory
of optimal transport [5, 6, 36] shows that the Wasserstein metric yields a rich
geometry, which is further demonstrated by the previous work on GDs [33].

After this work was presented in NIPS, a preprint appeared [20] which also
studies convergence results and barycenters of GPs in the Wasserstein geometry,
in a more general setting.

Structure. Prior to introducing the Wasserstein distance between GPs, we
review GPs, their Hilbert space covariance operators and the corresponding
Gaussian measures in Sec. 2. In Sec. 3 we introduce the Wasserstein metric
and its barycenters for GPs and prove convergence properties of the metric and
barycenters, when GPs are approximated by finite-dimensional GDs. Experi-
mental validation is found in Sec. 4, followed by discussion and conclusion in
Sec. 5.

2 Prerequisites

Gaussian processes and measures. A Gaussian process (GP) f is a collec-
tion of random variables, such that any finite restriction of its values (f(xi))

N
i=1
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has a joint Gaussian distribution, where xi ∈ X, and X is the index set. A GP
is entirely characterized by the pair

m(x) = E [f(x)] , k(x, x′) = E [(f(x)−m(x))(f(x′)−m(x′))] , (1)

wherem and k are called the mean function and covariance function, respectively.
We use the notation f ∼ GP(m, k) for a GP f with mean function m and
covariance function k. It follows from the definition that the covariance function
k is symmetric and positive semidefinite. We say that f is non-degenerate,
if k is strictly positive definite. We will assume the GPs used to be non-
degenerate.

GPs relate closely to Gaussian measures on Hilbert spaces. Given probability
spaces (X,ΣX , µ) and (Y,ΣY , ν), we say that the measure ν is a push-forward
of µ if ν(A) = µ(T−1(A)) for a measurable T : X → Y and any A ∈ ΣY . Denote
this by T#µ = ν. A Borel measure µ on a separable Hilbert space H is a
Gaussian measure, if its push-forward with respect to any non-zero continuous
element of the dual space of H is a non-degenerate Gaussian measure on R (i.e.,
the push-forward gives a univariate Gaussian distribution). A Borel-measurable
set B is a Gaussian null set, if µ(B) = 0 for any Gaussian measure µ on X. A
measure ν on H is regular if ν(B) = 0 for any Gaussian null set B. Note that
regular Gaussian measures correspond to non-degenerate GPs.

Covariance operators. Denote by L2(X) the space of L2-integrable functions
from X to R. The covariance function k has an associated integral operator
K : L2(X)→ L2(X) defined by

[Kφ](x) =

∫

X

k(x, s)φ(s)ds, ∀φ ∈ L2(X) , (2)

called the covariance operator associated with k. As a by-product of the 2-
Wasserstein metric on centered GPs, we get a metric on covariance operators.
The operator K is Hilbert-Schmidt, self-adjoint, compact, positive, and of trace
class, and the space of such covariance operators is a convex space. Furthermore,
the assignment k 7→ K from L2(X ×X) is an isometric isomorphism onto the
space of Hilbert-Schmidt operators on L2(X) [7, Prop. 2.8.6]. This justifies us
to write both f ∼ GP(m,K) and f ∼ GP(m, k).

Trace of an operator. The Wasserstein distance between GPs admits an
analytical formula using traces of their covariance operators, as we will see below.
Let (H, 〈·, ·〉) be a separable Hilbert space with the orthonormal basis {ek}∞k=1.
Then the trace of a bounded linear operator T on H is given by

Tr T :=
∞∑

k=1

〈Tek, ek〉 , (3)

which is absolutely convergent and independent of the choice of the basis if
Tr (T ∗T )

1
2 < ∞, where T ∗ denotes the adjoint operator of T and T

1
2 is the

square-root of T . In this case T is called a trace class operator. For positive
self-adjoint operators, the trace is the sum of their eigenvalues.
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The Wasserstein metric. The Wasserstein metric on probability measures
derives from the optimal transport problem introduced by Monge and made
rigorous by Kantorovich. The p-Wasserstein distance describes the minimal
cost of transporting the unit mass of one probability measure into the unit
mass of another probability measure, when the cost is given by a Lp distance
[5, 6, 36].

Let (M,d) be a Polish space (complete and separable metric space) and denote by
Pp(M) the set of all probability measures µ onM satisfying

∫
M
dp(x, x0)dµ(x) <

∞ for some x0 ∈ M . The p-Wasserstein distance between two probability
measures µ, ν ∈ Pp(M) is given by

Wp(µ, ν) =

(
inf

γ∈Γ[µ,ν]

∫

M×M
dp(x1, x2)dγ(x1, x2)

) 1
p

, (x1, x2) ∈M ×M, (4)

where Γ[µ, ν] is the set of joint measures on M × M with marginals µ and
ν. Defined as above, Wp satisfies the properties of a metric. Furhermore, a
minimizer in (4) is always achieved.

3 The Wasserstein metric for GPs

We will now study the Wasserstein metric with p = 2 between GPs. For GDs,
this has been studied in [11,14,18,22,33].

From now on, assume that all GPs f ∼ GP(m, k) are indexed over a compact
X ⊂ Rn so that H := L2(X) is separable. Furthermore, we assume m ∈ L2(X),
k ∈ L2(X × X), so that observations of f live almost surely in H. Let f1 ∼
GP(m1, k1) and f2 ∼ GP(m2, k2) be GPs with associated covariance operators
K1 and K2 , respectively. As the sample paths of f1 and f2 are in H, they
induce Gaussian measures µ1, µ2 ∈ P2(H) on H, as there is a 1-1 correspondence
between GPs having sample paths almost surely on a L2(X) space and Gaussian
measures on L2(X) [27].

The 2-Wasserstein metric between the Gaussian measures µ1, µ2 is given by [13]

W 2
2 (µ1, µ2) = d2

2(m1,m2) + Tr (K1 +K2 − 2(K
1
2
1 K2K

1
2
1 )

1
2 ), (5)

where d2 is the canonical metric on L2(X). Using this, we get the following
definition
Definition 1. Let f1, f2 be GPs as above, and the induced Gaussian measures of
f1 and f2 be µ1 and µ2, respectively. Then, their squared 2-Wasserstein distance
is given by

W 2
2 (f1, f2) := W 2

2 (µ1, µ2) = d2
2(m1,m2) + Tr (K1 +K2 − 2(K

1
2
1 K2K

1
2
1 )

1
2 ) .

Remark 2. Note that the case m1 = m2 = 0 defines a metric for the covariance
operators K1, K2, as (5) shows that the space of GPs is isometric to the cartesian
product of L2(X) and the covariance operators. We will denote this metric by
W 2

2 (K1, K2). Furthermore, as GDs are just a subset of GPs, W 2
2 yields also the

2-Wasserstein metric between GDs studied in [11,14,18,22,33].
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Barycenters of Gaussian processes. Next, we define and study barycenters
of populations of GPs, in a similar fashion as the GD case in [1].

Given a population {µi}Ni=1 ⊂ P2(H) and weights {ξi ≥ 0}Ni=1 with
∑N

i=1 ξi = 1,
and H a separable Hilbert space, the solution µ̄ of the problem

(P) inf
µ∈P2(H)

N∑

i=1

ξiW
2
2 (µi, µ),

is the barycenter of the population {µi}Ni=1 with barycentric coordinates {ξi}Ni=1.
The barycenter for GPs is defined to be the barycenter of the associated Gaussian
measures.
Remark 3. The following theorems require the assumption that the barycenter
is non-degenerate; it is still a conjecture that the barycenter of non-degenerate
GPs is nondegenerate [20], but this holds in the finite-dimensional case of GDs.

We now state the main theorem of this section, which follows from Prop. 5 and
Prop. 6 below.
Theorem 4. Let {fi}Ni=1 be a population of GPs with fi ∼ GP(mi, Ki), then
there exists a unique barycenter f̄ ∼ GP(m̄, K̄) with barycentric coordinates
(ξi)

N
i=1. If f̄ is non-degenerate, then m̄ and K̄ satisfy

m̄ =
N∑

i=1

ξimi,
N∑

i=1

ξi

(
K̄

1
2KiK̄

1
2

) 1
2

= K̄.

Proposition 5. Let {µi}Ni=1 ⊂ P2(H) and µ̄ be a barycenter with barycentric
coordinates (ξi)

N
i=1. Assume µi is regular for some i, then µ̄ is the unique

minimizer of (P).

Proof. We first show that the map ν 7→ W 2
2 (µ, ν) is convex, and strictly convex

if µ is a regular measure. To see this, let νi ∈ P2(H) and γ∗i ∈ Γ[µ, νi] be the
optimal transport plans between µ and νi for i = 1, 2, then λγ∗1 + (1− λ)γ∗2 ∈
Γ[µ, λν1 + (1− λ)ν2] for λ ∈ [0, 1]. Therefore

W 2
2 (µ, λν1 + (1− λ)ν2) = inf

γ∈Γ[µ,λν1+(1−λ)ν2]

∫

H×H
d2(x, y)dγ

≤
∫

H×H
d2(x, y)d(λγ∗1 + (1− λ)γ∗2)

= λW 2
2 (µ, ν1) + (1− λ)W 2

2 (µ, ν2),

which gives convexity. Note that for λ ∈]0, 1[, the transport plan λγ∗1 + (1−λ)γ∗2
splits mass. Therefore it cannot be the unique optimal plan between µ and
(1 − t)ν1 + tν2. As µ is regular, the optimal plan does not split mass, as it is
induced by a map [3, Thm. 6.2.10], so we have strict convexity. From this
follows the strict convexity of the object function in (P).

Next we characterize the barycenter, assuming it is non-degenerate, in the spirit
of the finite-dinemsional case in [1, Thm. 6.1].
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Proposition 6. Let {fi}Ni=1 be a population of centered GPs, fi ∼ GP(0, Ki).
Then (P) has a unique solution f̄ ∼ GP(0, K̄). If f̄ is non-degenerate, then K̄
is the unique bounded self-adjoint positive linear operator satisfying

N∑

i=1

ξi

(
K

1
2KiK

1
2

) 1
2

= K. (6)

Proof. Existence can be shown following the proof for the finite dimensional
case [1, Prop. 4.2], which uses multimarginal optimal transport ; this appears
in the preprint [20, Cor. 9]. For the characterization, assume f̄ to be non-
degenerate, and let

BC(f) =
N∑

i=1

ξiW
2
2 (fi, f),

be the barycentric expression, and assume that the minimizer f̄ of BC is non-
degenerate. Let 0 < λ1, λ2, ... be the eigenvalues of K̄ with eigenfunctions
e1, e2, .... Then, by [10, Prop. 2.2.] the transport map between f̄ and fk is given
by

Tk(x) =
∞∑

i=1

∞∑

j=1

〈x, ej〉〈(K̄
1
2KkK̄

1
2 )

1
2 ej, ei〉

λ
1
2
i λ

1
2
j

ei(x) . (7)

Using [6, Thm. 8.4.7], we can write the gradient of the barycentric expression.
We furthermore know that the expression is strictly convex, thus the gradient
at f̄ equals zero if and only if f̄ is the minimizer. Now let Id be the identity
operator, then

∇BC(f̄) =
N∑

i=1

(Tk − Id ) = 0,

substituting in (7), we get

N∑

i=1

ξi

(
K

1
2KiK

1
2

) 1
2

= K.

Proof of Theorem 4. Use Prop. 6, the properties of a barycenter in a Hilbert
space, and that the space of GPs is isometric to the cartesian product of L2(X)
and the covariance operators.

Remark 7. For the practical computations of barycenters of GDs approximating
GPs, to be discussed below, a fixed-point iteration scheme with a guarantee of
convergence exists [4, Thm. 4.2].
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Convergence properties. Now, we show that the 2-Wasserstein metric for
GPs can be approximated arbitrarily well by the 2-Wasserstein metric for GDs.
This is important, as in real-life we observe finite-dimensional representations of
the covariance operators.

Let {ei}∞i=1 be an orthonormal basis for L2(X). Then we define the GDs given
by restrictions min and Kin of mi and Ki, i = 1, 2, on Vn = span(e1, ..., en) by

min(x) =
n∑

k=1

〈mi, ek〉ek(x), Kinφ =
n∑

k=1

〈φ, ek〉Kiek, ∀φ ∈ Vn, ∀x ∈ X , (8)

and prove the following:
Theorem 8. The 2-Wasserstein metric between GDs on finite samples converges
to the Wasserstein metric between GPs, that is, if fin ∼ N (min, Kin), fi ∼
GP(mi, Ki) for i = 1, 2, then

lim
n→∞

W 2
2 (f1n, f2n) = W 2

2 (f1, f2).

By the same argument, it also follows that W 2
2 (·, ·) is continuous in both argu-

ments in operator norm topology.

Proof. Kin → Ki in operator norm as n→∞. Because taking a sum, product
and square-root of operators are all continuous with respect to the operator
norm, it follows that

K1n +K2n − 2(K
1
2
1nK2nK

1
2
1n)

1
2 → K1 +K2 − 2(K

1
2
1 K2K

1
2
1 )

1
2 .

Note that for any sequence An → A with convergence in operator norm, we have

|Tr A−Tr An| ≤
∞∑

k=1

|〈(A−An)ek, ek〉|
Cauchy-Schwarz

≤
∞∑

k=1

‖(A−An)ek‖L2
MCT→ 0 ,

(9)
as lim

n→∞
sup

v∈L2
ω(X)

‖(A − An)v‖L2 = 0 due to the convergence in operator norm.

Here MCT stands for the monotone convergence theorem. Thus we have

W 2
2 (f1n, f2n) = d2

2(m1n,m2n) + Tr (K1n +K2n − 2(K
1
2
1nK2nK

1
2
1n)

1
2 )

n→∞→ d2
2(m1,m2) + Tr (K1 +K2 − 2(K

1
2
1 K2K

1
2
1 )

1
2 )

= W 2
2 (f1, f2).

The importance of Proposition 8 is that it justifies computations of distances
using finite representations of GPs as approximations for the infinite-dimensional
case.

Next, assuming the barycenter is non-degenerate, we show that we can also
approximate the barycenter of a population of GPs by computing the barycenters
of populations of GDs converging to these GPs. In the degenerate case, see [20,
Thm. 11].
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Theorem 9. Assuming the barycenter of a population of GPs is non-degenerate,
then it varies continuously, that is, the map (f1, ..., fN) 7→ f̄ is continuous
in the operator norm. Especially, this implies that the barycenter f̄n of the
finite-dimensional restrictions {fin}Ni=1 converges to f̄ .

First, we show that if fi ∼ GP(mi, Ki) and f̄ = GP(m̄, K̄), then that the map
(K1, ..., KN) 7→ K̄ is continuous. Continuity of (m1, ...,mN) 7→ m̄ is clear.

Let K be a covariance operator, denote its maximal eigenvalue by λmax(K).
Note that this map is well-defined, as K is also bounded, normal operator,
thus λmax(K) = ‖K‖op < ∞ holds. Now let a = (K1, ..., KN) be a population
of covariance operators, denote ith as a(i) = Ki, then define the continuous
function β and correspondence (a set valued map) Φ as follows

β : a 7→
(

N∑

i=1

ξi
√
λmax(a(i))

)2

, Φ : a 7→ Kβ(a) = {K ∈ HS(H) | β(a)I ≥ K ≥ 0}.

Then the fixed point of (6) can be found in Φ(a), as the map

F (K) =
N∑

i=1

ξi

(
K

1
2KiK

1
2

) 1
2
,

is a compact operator, Φ(a) is bounded, and so the closure of F (Φ(a)) is compact.
Furthermore, do note that F is a map from Φ(a) to itself, so by Schauder’s fixed
point theorem, there exists a fixed point.

Now, we want to show that this correspondence is continuous in order to put the
Maximum theorem to use. A correspondence Φ : A→ B is upper hemi-continuous
at a ∈ A, if all convergent sequences (an) ∈ A, (bn) ∈ Φ(an) satisfy lim

n→∞
bn = b,

lim
n→∞

an = a and b ∈ Φ(a). The correspondence is lower hemi-continuous at
a ∈ A, if for all convergent sequences an → a in A and any b ∈ Φ(a), there is a
subsequence ank

, so that we have a sequence bk ∈ Φ(ank
) which satisfies bk → b.

If the correspondence is both upper and lower hemi-continuous, we say that
it is continuous. For more about the Maximum theorem and hemi-continuity,
see [2].
Lemma 10. The correspondence Φ : a 7→ Kβ(a) is continuous as correspondence.

Proof. First, we show the correspondence is lower hemi-continuous. Let (an)∞n=1

be a sequence of populations of covariance operators of size N , that converges
an → a. Use the shorthand notation βn := β(an), then βn → β∞ := β(a), and
let b ∈ Φ(a) = Kβ∞ .

Pick subsequence (ank
)∞k=1 so that (βnk

)∞k=1 is increasing or decreasing. If it was
decreasing, then Kβ∞ ⊆ Kβnk

for every nk. Thus the proof would be finished by
choosing bk = b for every k. Hence assume the sequence is increasing, so that
Kβnk

⊆ Kβnk+1
. Now let γ(t) = (1− t)b1 + tb, where b1 ∈ Kβ1 , and let tnk

be
the solution to (1− t)β1 + tβ∞ = βnk

, then bk := γ(tnk
) ∈ Kβnk

and bk → b.

For upper hemicontinuity, assume that an → a, bn ∈ Kβn and that bn → b.
Then using the definition of Φ, we get the positive sequence 〈(βnI−bn)x, x〉 ≥ 0
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indexed by n, then by continuity and the positivity of this sequence it follows
that

0 ≤ lim
n→∞
〈(βnI − bn)x, x〉 = 〈(β∞I − b)x, x〉.

One can check the criterion b ≥ 0 similarly, and so we are done.

Proof of Theorem 9. Now let a = (K1, ..., Kn), f(K, a) :=
∑N

i=1 ξiW
2
2 (K,Ki)

and F (K) :=
∑N

i=1 ξi(K
1
2KiK

1
2 )

1
2 , then the unique minimizer K̄ of f is the fixed

point of F . Furthermore, the closure cl(F (Kβ(a))) is compact, a 7→ cl(F (Kβ(a)))
is a continuous correspondence as the closure of composition of two continuous
correspondence. Additionally, we know that K̄ ∈ cl(F (Kβ(a))), so applying
the maximum theorem, we have shown that the barycenter of a population
of covariance operators varies continuously, i.e. the map (K1, ..., KN) 7→ K̄ is
continuous, finishing the proof.

4 Experiments

We illustrate the utility of the Wasserstein metric in two different applications:
Processing of uncertain white-matter tracts estimated from DWI, and analysis
of climate development via temperature curve GPs.

Experimental setup. The white-matter tract GPs are estimated for a single
subject from the Human Connectome Project [15, 32, 35], using probabilistic
shortest-path tractography [17]. See the supplementary material for details on
the data and its preprocessing. From daily minimum temperatures measured
at a set of 30 randomly sampled Russian metereological stations [9, 34], GP
regression was used to estimate a GP temperature curve per year and station
for the period 1940− 2009 using maximum likelihood parameters. All code for
computing Wasserstein distances and barycenters was implemented in MATLAB
and ran on a laptop with 2,7 GHz Intel Core i5 processor and 8 GB 1867 MHz
DDR3 memory. On the temperature GP curves (represented by 50 samples), the
average runtime of the 2-Wasserstein distance computation was 0.048± 0.014
seconds (estimated from 1000 pairwise distance computations), and the average
runtime of the 2-Wasserstein barycenter of a sample of size 10 was 0.69± 0.11
seconds (estimated from 200 samples).

White-matter tract processing. The inferior longitudinal fasiculus is a
white-matter bundle which splits into two separate bundles. Fig. 3 (top) shows
the results of agglomerative hierarchical clustering of the GP tracts using average
Wasserstein distance. The per-cluster Wasserstein barycenter can be used to
represent the tracts; its overlap with the individual GP mean curves is shown in
Fig. 3 (bottom).

The individual GP tracts are visualized via their mean curves, but they are in fact
a population of GPs. To confirm that the two clusters are indeed different also
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when the covariance function is taken into account, we perform a permutation
test for difference between per-cluster Wasserstein barycenters, and already with
50 permutations we observe a p-value of p = 0.0196, confirming that the two
clusters are significantly different at a 5% significance level.

Quantifying climate change. Using the Wasserstein barycenters we per-
form nonparametric kernel regression to visualize how yearly temperature curves
evolve with time, based on the Russian yearly temperature GPs. Fig. 4 shows
snapshots from this evolution, and a continuous movie version climate.avi
is found in the supplementary material. The regressed evolution indicates an
increase in overall temperature as we reach the final year 2009. To quantify this
observation, we perform a permutation test using the Wasserstein distance be-
tween population Wasserstein barycenters to compare the final 10 years 2000-2009
with the years 1940-1999. Using 50 permutations we obtain a p-value of 0.0392,
giving significant difference in temperature curves at a 95% confidence level.

Figure 3: Top: The mean func-
tions of the individual GPs, col-
ored by cluster membership, in
the context of the corresponding
T1-weighted MRI slices. Bot-
tom: The tract GP mean func-
tions and the cluster mean GPs
with 95% confidence bounds.

Significance. Note that the state-of-the-art
in tract analysis as well as in functional data
analysis would be to ignore the covariance of
the estimated curves and treat the mean curves
as observations. We contribute a framework
to incorporate the uncertainty into the popu-
lation analysis – but why would we want to
retain uncertainty? In the white-matter tracts,
the GP covariance represents spatial uncer-
tainty in the estimated curve trajectory. The
individual GPs represent connections between
different endpoints. Thus, they do not repre-
sent observations of the exact same trajectory,
but rather of distinct, nearby trajectories. It
is common in diffusion MRI to represent such
sets of estimated trajectories by a few proto-
type trajectories for visualization and compar-
ative analysis; we obtain prototypes through
the Wasserstein barycenter. To correctly in-
terpret the spatial uncertainty, e.g. for a brain
surgeon [8], it is crucial that the covariance of
the prototype GP represents the covariances
of the individual GPs, and not smaller. If
you wanted to reduce uncertainty by increas-
ing sample size, you would need more images,
not more curves – because the noise is in the

image. But more images are not usually available. In the climate data, the
GP covariance models natural temperature variation, not measurement noise.
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Increasing the sample size decreases the error of the temperature distribution,
but should not decrease this natural variation (i.e. the covariance).

Figure 4: Snapshots from the kernel regression giving yearly temperature curves
1940-2009. We observe an apparent temperature increase which is confirmed by
the permutation test.

5 Discussion and future work

We have shown that the Wasserstein metric for GPs is both theoretically and
computationally well-founded for statistics on GPs: It defines unique barycenters,
and allows efficient computations through finite-dimensional representations.
We have illustrated its use in two different applications: Processing of uncertain
estimates of white-matter trajectories in the brain, and analysis of climate
development via GP representations of temperature curves. We have seen that
the metric itself is discriminative for clustering and permutation testing, and we
have seen how the GP barycenters allow truthful interpretation of uncertainty
in the white matter tracts and of variation in the temperature curves.

Future work includes more complex learning algorithms, starting with prepro-
cessing tools such as PCA [31], and moving on to supervised predictive models.
This includes a better understanding of the potentially Riemannian structure of
the infinite-dimensional Wasserstein space, which would enable us to draw on
existing results for learning with manifold-valued data [21].

The Wasserstein distance allows the inherent uncertainty in the estimated GP
data points to be appropriately accounted for in every step of the analysis, giving
truthful analysis and subsequent interpretation. This is particularly important in
applications where uncertainty or variation is crucial: Variation in temperature
is an important feature in climate change, and while estimated white-matter
trajectories are known to be unreliable, they are used in surgical planning,
making uncertainty about their trajectories a highly relevant parameter.
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Appendix B

Wrapped Gaussian Process
Regression on Riemannian

Manifolds

The following chapter presents (up to formatting) the article

Anton Mallasto, and Aasa Feragen. "Wrapped Gaussian process regres-
sion on Riemannian manifolds." Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2018.

This work introduces wrapped Gaussian processes (WGPs), which generalize
GPs to a Riemannian manifold M as a collection of random points on the
manifold, such that any finite subcollection of size N forms a WGD on the
product manifoldMN . An explicit expression for the conditional distribution of
a WGD is derived, which is then utilized in supervised learning through WGP
regression. The method is demonstrated on data on the 2-sphere, on a DTI
dataset lying in the space of symmetric positive definite matrices, and landmark
shape data living in the Kendall shape space.

The fundamental contribution of the work is the generalization of GPs to
manifolds as WGPs, as this opens the door for the rich statistical machinery of
GPs, providing flexible non-parametric, non-linear probabilistic models, to be
applied in manifold valued statistics.

On the other hand, the particular application in regression continues in the tra-
dition of generalizing regression in Euclidean spaces to manifolds, which includes
methods such as the geodesic regression [23] and its probabilistic counterpart [25].
Other relevant non-geodesic work includes kernel based methods [11], and espe-
cially the local kriging method introduced in [55], which closely relates to the
WGP regression method introduced here.



Wrapped Gaussian Process Regression on
Riemannian Manifolds

Anton Mallasto Aasa Feragen

Department of Computer Science, University of Copenhagen

Abstract

Gaussian process (GP) regression is a powerful tool in non-parametric
regression providing uncertainty estimates. However, it is limited to data
in vector spaces. In fields such as shape analysis and diffusion tensor
imaging, the data often lies on a manifold, making GP regression non-
viable, as the resulting predictive distribution does not live in the correct
geometric space. We tackle the problem by defining wrapped Gaussian
processes (WGPs) on Riemannian manifolds, using the probabilistic set-
ting to generalize GP regression to the context of manifold-valued targets.
The method is validated empirically on diffusion weighted imaging (DWI)
data, directional data on the sphere and in the Kendall shape space, en-
dorsing WGP regression as an efficient and flexible tool for manifold-
valued regression.

1 Introduction

Regressing functions from Euclidean training data {(xi, yi)}Ni=1 is well studied.
Manifold-valued yi, on the other hand, pose difficulties due to the lack of the
vector space structure: Euclidean statistics do not respect the intrinsic structure
of manifold-valued data, and the product of inference might not belong to the
object category of the data. For example, see Fig. 1, where Gaussian process
regression escapes the 2-sphere.

Sometimes the data observed is uncertain. In this case, it is favorable to estimate
a distribution over possible regressed functions, yielding uncertainty estimates
of the resulting inference. Gaussian process (GP) regression achieves this in
a tractable manner. Furthermore, GP regression is an example of Bayesian
inference, where it is possible to incorporate prior knowledge to aid the infer-
ence. These qualitative properties motivate us to generalize GP regression to
Riemannian manifolds.

Related work. Fletcher [5] generalized linear regression to handle manifold-
valued data with real covariates by geodesic regression; this was later extended
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Figure 1: Why geometrically intrinsic regression is important. Consider
data points (black) on the 2-sphere. In a), we apply ordinary GP regression.
The black curve is the prediction and the colorful curves are samples from the
predictive distribution, which clearly escape the sphere. In b), we visualize the
result using WGP regression, which respects the geometrical constraints of the
data.

Method Non-geod. Priors Uncert. Global
Geod. reg.[5, 16, 23] No No No Yes
Poly. reg.[9] Yes No No Yes
Mani. Kriging [23] Yes Yes Yes No
Kernel reg. [2, 3] Yes Yes No Yes
Stoch. dev. [17] No No Yes Yes
Hong et al.[10] No Yes Yes Yes
WGP reg. Yes Yes Yes Yes

Table 1: Qualitative comparison of manifold regression models mentioned in
this paper. Global means, that regression is not carried out in a single tangent
space, uncert. is short for uncertainty and Non-geod short for non-geodesic.

to include multi-dimensional covariates [16]. Prior work also consider uncer-
tainty estimates for geodesic regression; by a Kalman filter approach [10] and
by stochastic development [17].

Manifold-valued data, however, does not always follow a geodesic trend. Ap-
proaches for this non-geodesic setting include kernel-based approaches [2, 3] and
a generalization of polynomial regression [9]. Unfortunately, these models do
not provide uncertainty estimates.

Improving on this, Pigoli et al. [23] consider a kriging (GP regression) method.
The method uses multivariate geodesic regression to form a reference coordinate
system, which is used to compute residuals of the manifold-valued data points.
Regular GP regression is then applied on the residuals and the result is mapped
back onto the manifold. The procedure, however, depends heavily on the local-
ization of the problem to a single tangent space, and does not offer an intrinsic
probabilistic interpretation. Relying on WGPs, our method offers interpretabil-
ity, and the prior basepoint function used in WGP regression allows avoiding
being too local. Furthermore, the kriging method in [23] took advantage of the
geodesic submanifold regression to initialize a reference coordinate system. Our
method, enables one to take advantage of more general priors, including the use
of geodesic submanifold regression.

Steinke and Hein [27] consider the problem of approximating a function between
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manifolds via minimizing regularized empirical risk. In this setting, also the
independent variables are manifold-valued. The WGP regression proposed in
this paper can be extended to this setting, as long as a kernel can be defined
on the domain, carrying on all the advantages of WGPs mentioned.

Wrapped Gaussian processes appear in directional statistics [13], where a wrapped
normal distribution is defined on a 1-sphere S1, which is then generalized to a
multivariate version, and this is then used to define a WGP. This is a special case
of our setting, when the manifold is chosen to be the torus S1×S1×...×S1.

The contribution can be summarized as follows: We generalize GPs to
Riemannian manifolds as wrapped Gaussian procesess (WGPs), and provide a
novel framework for non-parametric regression with uncertainty estimates us-
ing WGP regression. We demonstrate the method in Section 5 on the 2-sphere
by considering a toy example and orientations of the left femur of a walking
person, on the manifold of symmetric positive definite matrices for DTI upsam-
pling, and on Kendall shape space, using a data set of Corpus Callosum shapes.
The method is analytically tractable for manifolds with infinite injectivity ra-
dius, such as manifolds with non-positive curvature. Otherwise, we suggest
the approximation in Remark 2. Computationally, the method is relatively
cheap, as the only addition compared to GP regression is a single application of
the logarithmic map per data point and single exponential map per predicted
point.

2 Preliminaries

We briefly summarize the mathematical prerequisities needed. First, we recall
how GPs are used in non-parametric regression in the Euclidean case, after
which we turn to basic concepts in Riemannian geometry and briefly discuss
geodesic submanifold regression.

2.1 Gaussian process regression

Denote by N (µ,Σ) the multivariate Gaussian distribution with mean vector
µ ∈ Rn and covariance matrix Σ ∈ Rn×n, and write the probability density
function p as p(v) = N (v|µ,Σ) for v ∈ Rn.

A Gaussian process (GP) [24] is a collection f of random variables, such that
any finite subcollection (f(ωi))

N
i=1 has a joint Gaussian distribution, where ωi ∈

Ω ⊂ Rl, and Ω is the index set. A GP is entirely characterized by the pair

m(ω) = E [f(ω)] , (1)
k(ω, ω′) = E

[
(f(ω)−m(ω))(f(ω′)−m(ω′))T

]
, (2)

where m and k are called the mean function and covariance function, respec-
tively. We denote such a GP by f ∼ GP(m, k). It follows from the defini-
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tion that the covariance function (kernel) k is symmetric and positive semidef-
inite.

Let D = {(xi, yi) | xi ∈ x ⊂ Rl, yi ∈ y ⊂ Rn} be the training data. The
GP predictive distribution for outputs y∗ at the test inputs x∗, given in vector
form, is

p(y∗|D,x∗) = N (µ∗,Σ∗), (3)
µ∗ = kT∗ (k +Kerr)

−1y, (4)
Σ∗ = k∗∗ − kT∗ (k +Kerr)

−1k∗, (5)

where, given a kernel k : R × R → R we use the notation k = k(x,x),
k∗ = k(x,x∗), k∗∗ = k(x∗,x∗) and Kerr is the measurement error variance.
In the notation above, the function and k is applied elementwise on the vectors
x,x∗.

Typically in model selection, the kernel k is picked from a parametric family
{kθ|θ ∈ Θ} of covariance functions, such as the radial basis function (RBF)
kernels

kσ2,λ(x, y) = σ2 exp

(
−‖x− y‖

2

2λ

)
, σ2, λ > 0, (6)

choosing the parameters (σ2, λ) so that the marginal likelihood P{y|(σ2, λ)} is
maximized.

2.2 Riemannian geometry

To fix notation, we briefly present the essentials of Riemannian geometry. For
a thorough presentation, see [4]. A Riemannian manifold is a smooth mani-
fold M with a smoothly varying inner product gp(·, ·) (we will often use the
notation 〈·, ·〉p) on the tangent space TpM at each p ∈ M , called a Rieman-
nian metric, inducing the distance function d between points on the M . Each
element (p, v) in the tangent bundle TM =

⋃
p∈M (p× TpM) defines a geodesic

γ (a curve locally minimizing distance between two points) on M , so that
γ(0) = p and d

dt
γ(t) |t=0= v. The exponential map Exp : TM → M given

by (p, v) 7→ Expp(v) = γ(1), where γ is the geodesic corresponding to (p, v).
The exponential map Expp at p is a diffeomorphism between a neighborhood
0 ∈ U ⊂ TpM and neighbourhood p ∈ V ⊂ M , which is chosen in a maxi-
mal way, so if V ( V ′, then a diffeomorphism between V ′ and a neighborhood
in the tangent space cannot be defined anymore. We also call V the area of
injectivity.

We can define the inverse map Logp : V → TpM , characterized by

Expp(Logp(p
′)) = p′. (7)

Outside of V , we use Logp(p
′) to denote a smallest v ∈ TpM chosen in a measur-

able, consistent way. We call the the minimun distance from p to the boundary
of a maximal V the injectivity radius of Expp and the complement of V in M
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the cut-locus at p denoted by Cp. The manifolds with non-positive curvature
form an important class of manifolds with infinite injectivity radius, that is,
they have an empty cut-locus Cp for every p ∈M .

Let Mi be Riemannian manifolds with metrics gi, exponential maps Expi and
logarithmic maps Logi for i = 1, 2. ThenM = M1×M2 turns into a Riemannian
manifold when endowed with the metric g = g1 + g2, which has the component-
wise computed exponential map Exp(p1,p2)((v1, v2)) =

(
Exp1

p1
(v1),Exp2

p2
(v2)

)
,

akin to the logarithmic map Log on the product manifold.

2.2.1 Probabilistic notions

Let X be a random point on a Riemannian manifold M , the set

E[X] :=

{
p | p ∈ argmin

q∈M
(E[d(q,X)2])

}
. (8)

is called the Fréchet means of X. If there is a unique mean p̄, then by abuse of
notation we write E[X] = p̄. Given a data set p = {pi ∈ M}Ni=1, an empirical
Fréchet mean is a minimizer of the quantity

min
q∈M

N∑

i=1

d(q, pi)
2. (9)

The set of empirical Fréchet means is denoted by E[p].

Given two probability spaces (Xi,Si, νi) for i = 1, 2 and a measurable map
F : X1 → X2, we say that the measure ν2 is the push-forward of the measure ν1

with respect to F , if ν2(A) = ν1(F−1(A)) for every A in the sigma-algebra S2.
We denote this by ν2 = F#ν1.

For more about intrinsic statistics on manifolds, see [21].

2.2.2 Geodesic submanifold regression

Geodesic regression on a Riemannian manifold M was introduced by Fletcher
[5]. It is a generalization of linear regression, that seeks the geodesic parametrized
by (p, v) ∈ TM that minimizes the quantity

E(p, v) =
1

2

N∑

i=1

d(Expp(tiv), pi)
2, (10)

given the training data (ti, pi) ∈ R×M for i = 1, ..., N .

This framework has been generalized to deal with more covariates [16]; assume
we are given data (xi, pi) ∈ Rl ×M for i = 1, ..., N . Then, we want to solve for
the submanifold γ parametrized by (p, v1, ..., vl) that minimizes

E(p, v1, ..., vl) =
1

2

N∑

i=1

d

(
Expp

(
l∑

j=1

xi(j)vj

)
, pi

)2

. (11)
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This is analogous to fitting a hyperplane in the Euclidean case. Another gen-
eralization for multiple independent variables was carried out in [23]. Later on
in this work, we propose a way to construct priors for the GP regression on
manifolds by regressing a geodesic model.

Tangent space geodesic regression is a Naïve generalization of linear regression,
achieved by linearizing the space by picking p ∈ M , transforming the data set
(xi, pi) ∈ Rl ×M for i = 1, ..., N into images of the Riemannian logarithmic
map at p. Then, one can carry out linear regression in the tangent space and
map the result onto the manifold using the exponential map, yielding a quick
approximation of geodesic submanifold regression.

3 Wrapped Gaussian processes

We are now ready to introduce wrapped Gaussian distributions (WGDs), com-
puting the conditional distribution of two jointly WGD random points on the
manifold. This is an essential part of wrapped Gaussian process (WGP) regres-
sion on manifolds introduced in the next chapter, alike in the Euclidean case.
In this chapter we also introduce WGPs in a formal way, without studying their
properties further.

3.1 Wrapped Gaussian distributions

Wrapped Gaussian distributions (WGDs) originated in directional statistics
[18]. There exist multiple different ways of generalizing Gaussian distributions
to manifolds. For example, Sommer [25] uses an instrinsic, anisotropic diffusion
process for the generalization. Pennec [20], on the other hand, generalizes the
Gaussian as the distribution maximizing entropy with a fixed mean and covari-
ance. WGDs rely on linearizing the manifold through a wrapping function, in
our case the Riemannian exponential map.

Let (M,d) be an n-dimensional Riemannian manifold. We say that a random
point X on M follows a wrapped Gaussian distribution (WGD), if for some
µ ∈M and symmetric positive definite matrix K ∈ Rn×n

X ∼
(
Expµ

)
#

(N (0, K)) , (12)

denoted by X ∼ NM(µ,K). To sample from this distribution, draw v from
N (0, K) and map the sample to the manifold by Expµ(v). Now, define the
basepoint and tangent space covariance of X as

µNM (X) := µ, CovNM (X) := K. (13)

In the case of infinite injectivity radius µNM (X) ∈ E[X], but not in general [19,
Prop. 2.11]. The random points Xi ∼ NMi

(µi, Ki), i = 1, 2, are jointly WGD,
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if the random point (X1, X2) on M1 ×M2 is WGD, that is,

(X1, X2) ∼ NM1×M2

((
µ1

µ2

)
,

(
K1 K12

K21 K2

))
, (14)

for some matrix K12 = KT
21.

We now compute the conditional distribution of two jointly WGD random
points, which is the core of WGP regression in Section 4.
Theorem 1. Assume X1, X2 are jointly WGD as in (14), then we have the
conditional distribution

X1|(X2 = p2) ∼
(
Expµ1

)
#

(∑

v∈A
λvN (µv, Kv)

)
, (15)

where
µv = K12K

−1
2 v,

Kv = K1 −K12K
−1
2 KT

12,

λv =
N (v|0, K2)

P{A} ,

A = {v ∈ Tµ2M | Expµ2(v) = p2},
P{A} =

∑

v∈A
N (v|0, K2).

(16)

Proof. Pick p1 ∈ M . Let B = Exp−1
µ1

(p1) be the preimage of p1 in Tµ1M ,
similarly A = Exp−1

µ2
(p2) as above for p2, and furthermore K be the tangent

space covariance of (X1, X2) given in (14), then

P{X1 = p1|(X2 = p2)}

=
P{u ∈ B, v ∈ A}

P{v ∈ A}

=
∑

v∈A,u∈B

N (v|0, K2)

P{A}
N ((u, v)|0, K)

N (v|0, K2)

=
∑

v∈A,u∈B
λvN (u|µv, Kv)

=P{Z = p1},

(17)

where Z ∼
(
Expµ1

)
#

(∑
v∈A λvN (µv, Kv)

)
, and N (u|µv, Kv) is the predictive

distribution calculated as in the Euclidean case in (3).

Remark 2. If the injectivity radius of the exponential map is infinite, then

X1|(X2 = p2)

∼
(
Expµ1

)
#

(
N
(
µLogµ2 (p2), KLogµ2 (p2)

))
,

(18)

following the notation in (16). Furthermore, if the probability mass on the area
of injectivity of the exponential map is large enough, we can use this expression
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as a reasonable approximation for the predictive distribution, as the Gaussian
mixture distribution in the tangent space can be well approximated by a single
Gaussian.

3.2 Wrapped Gaussian processes

A collection f of random points on a manifold M indexed over a set Ω is
a wrapped Gaussian process (WGP), if every finite subcollection (f(ωi))

N
i=1 is

jointly WGD on MN . We define

m(ω) := µNM (f(ω)) (19)
k(ω, ω′) := CovNM (f(ω), f(ω′)), (20)

called the basepoint function (BPF) and tangent space covariance function
(TSCF) of f , respectively. The restriction we have on Ω, is being able to
define a kernel on it.

A WGP f can be viewed as a WGD on the possibly infinite-dimensional product
manifold M |Ω|. To elaborate, formally one can state

f ∼ (Expm)#(GP(0, k)). (21)

The difference is, that the tangent space distribution is a GP instead of a GD.
The WGP is entirely characterized by the pair (m, k), similar to the Euclidean
case. Therefore, we introduce the notation f ∼ GPM(m, k).

4 Gaussian process inference on manifolds

In the following, we discuss two different methods of GP regression on a Rie-
mannian manifoldM with infinite injectivity radius (or using the approximation
in Remark 2), given the noise-free training data

DM = {(xi, pi) | xi ∈ Rl, pi ∈M, i = 1, ..., N}. (22)

For shorthand notation, we denote x = (xi)
N
i=1 and p = (pi)

N
i=1. Additionally,

x∗ is used for the test inputs, and p∗ for the test outputs. Later, we remark that
the first approach is actually a special case of the latter one, see Fig. 2.

4.1 Naïve tangent space approach

Choose p ∈ M (typically p ∈ E[p]), and transfrom the training data DM into
DTpM by

DTpM = (x,y) := {(xi, yi) | yi = Logp(pi)}, (23)

see Fig. 2 a). As DTpM ⊂ Rl × TpM now lives in a Euclidean space, fit a
GP feuc ∼ GP(meuc, keuc) to the data using GP regression, resulting in the
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Figure 2: a) Tangent space GP data transformation. Data point pi (in black) is
transformed into Logp(pi) ∈ TpM . This can be seen as a special case of WGP
regression, with a fixed prior BPF m(x) = p. In b), the data transformation is
visualized with a more general prior BPF m (black curve).

predictive distribution y∗|y ∼ N (µ∗,Σ∗). Then, reversing the previous data
transformation, we can map the random vector to a random point p∗|p on the
manifold M , resulting in

p∗|p = Expp(y∗) ∼
(
Expp

)
#

(N (µ∗,Σ∗)) . (24)

4.2 Wrapped Gaussian process regression

Now we generalize GP regression inside a probabilistic framework, relying on the
results presented in Section 3, by assuming a WGP prior fprior ∼ GPM(m, k).
According to the prior, the joint distribution between the training outputs p
and test outputs p∗ at x∗ is given by

(
p∗
p

)
∼ NM1×M2

((
m∗
m

)
,

(
k∗∗ k∗
kT∗ k

))
, (25)

where m = m(x), m∗ = m(x∗), k = k(x,x), k∗ = k(x∗,x), and k∗∗ =
k(x∗,x∗). Therefore, by Theorem 1 and using the approximation in Remark 2
(if necessary)

p∗|p ∼
(
Expm∗

)
#

(N (µ∗,Σ∗)) ,

µ∗ = k∗k
−1Logmp,

Σ∗ = k∗∗ − k∗k−1kT∗ .

(26)

The predictive distribution p∗|p is not necessarily WGD, as µ∗ might be non-
zero. The distribution can be sampled from, but computing exactly quantities
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such as E[p∗|p] is not trivial. As in [8, Sect. 3.1.1], the distribution can be
approximated via Riemannian unscented transform or by using a WGD with the
basepoint at Expm∗(µ∗) and parallel transporting the tangent space covariance
to this point along the geodesic γ(t) = Expm∗(tµ∗).
Remark 3. Expm∗(µ∗) is not necessarily a Fréchet mean of p∗|p. However,
it is the maximum a posteriori (MAP) estimate. For this reason, we will use
Expm∗(µ∗) as a point prediction in Section 5.

4.2.1 Choosing a prior

The prior WGP fprior ∼ GPM(m, k) indexed over Ω is chosen by picking a
kernel k on Ω to be the TSCF, and picking a BPF m so that p and m(xi) live
in the same connected component of M for every data-point (xi, pi).

In Section 5, two kinds of prior BPFs are used. The first BPF m1 is a gener-
alization of a centered GP, given by m1(ω) = p̄, for all x ∈ Ω and a p̄ ∈ E[p].
The second kind m2, uses a previous regression (such as geodesic submanifold
regression) γ on the dataset DM . That is, m2(ω) = γ(ω) for all ω ∈ Ω. For
computational reasons, we only consider TSCFs that assume each tangent space
coordinate independent, resulting in the diagonal RBF kernel

k(x,x′) = diag(k1(x,x′), k2(x,x′), ..., kn(x,x′)), (27)

where each ki are chosen to be RBF kernels, diag(A,B) is a block-diagonal
matrix with blocks A and B, x,x′ ⊂ Ω, and n is the dimension of M . The
diagonal RBF yields uncertainty estimates, but not a generative model, as this
would need covariance between coordinates.

Optimizing hyperparameters. We choose the TSCF from a parametric
family of kernels {kθ}θ∈Θ maximizing themarginal likelihood, as in the Euclidean
case. In the setting of WGPs, the marginal likelihood becomes

P{p|θ} =
∑

v∈Exp−1
m (p)

N (v|0, Kθ), (28)

where Kθ = kθ(x,x). To improve the approximation discussed in Remark 2,
we propose to maximize the quantity

P{p|θ} ≈ N (Logm(y)|0, Kθ) , (29)

as maximizing this quantity increases the probability mass given by the prior
distribution to the area of injectivity. The diagonal RBF kernel (Eq. (27))
can be optimized by choosing each ki to maximize the marginal likelihood of
the respective tangent space coordinate independently. That is, ki is chosen to

maximize the marginal likelihood of the data set
{(
xj, πi

(
Logm(xj)

(pj)
))}N

j=1
,

where πi is the projection onto the ith component.

A part of engineering the kernel is to pick a frame for the manifold. A frame is
a smooth map ρ : M → Rn×n, so that the columns of ρ(p) form an orthonormal
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basis for TpM . This way, there is a relation between tangent vectors in different
tangent spaces, and so the covariance becomes meaningful.

The WGP regression process is summarized in Alg. 4.
Algorithm 4 (WGP regression.). The following describes step-by-step how to
carry out WGP regression.

Input Manifold-valued training data DM = {(xi, pi)}ni=1.

Output Predictive distribution for p∗|p at x∗.

i. Choose a prior BPF m.

ii. Transform DTmM ← {(xi,Logm(xi)
(pi))}Ni=1.

iii. Choose a prior TSCF k from a parametric family by optimizing the hy-
perparameters.

iv. Using GP prior GP(0, k), carry out Euclidean GP regression for the trans-
formed data DTmM , yielding the mean and covariance (µ∗,Σ∗).

vi. End with the predictive distribution
p∗|p ∼ (Expm∗)#(N (µ∗,Σ∗))

4.2.2 Observations with noise

A difficulty arises, when introducing a noise model on our observations. In the
Euclidean case, a popular noise model on the observations (xi, pi) is given by
pi = f(xi)+ε, where f is the function we approximate and ε ∼ N (0, Kerr) is the
noise term. In [5], this model is generalized to the manifold setting implicitely
as

pi = Expf(xi)
(ε), (30)

which is also supported by the central limit theorem provided in [15]. How-
ever, this makes the WGP analytically intractable. To allow computations, we
propose the error model Logm(xi)

(pi) = Logm(xi)
(f(xi)) + ε, that is, the error

lives in the tangent space of the prior mean at xi. This can be viewed as a first
order approximation of (30) around m(xi). Introduction of this error changes
the regression procedure only slighty; the joint distribution of p and p∗ changes
into (

p∗
p

)
∼ NM1×M2

((
m∗
m

)
,

(
k∗∗ k∗
kT∗ k +Kerr

))
. (31)

Rest of the computations are then carried out similarly, with the replacement
of k with k +Kerr everywhere.

5 Experiments

We demonstrate WGP regression on three manifolds. First, we visualize our
algorithm on the 2-sphere using both an illustrative toy dataset and fitting a
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Figure 3: Depicted in a) is WGP regression using a prior BPF given by geodesic
regression (dotted black) on a toy data set (grey dots) on S2. The predictive
distribution is visualized using the MAP estimate (black line, see Remark 3)
and 20 samples from the distribution (in gray) with three samples emphasized
(in red, green and blue). In b), a motion capture dataset of the orientation of
the left femur of a walking person. The independent variables were estimated
by principal curve analysis, and a WGP was fitted.

WGP to motion capture data of the left femur of a person walking in a circular
pattern. Next, we illustrate DTI upsampling with uncertainty estimates as
a tensor field prediction task on a single DTI slice living on the manifold of
symmetric and positive definite matrices, and finally we study the effect of age
on the shape of Corpus Callosum in Kendall’s shape space.

5.1 Data on 2-sphere

As a sanity check, we first visualize our method on a toy dataset on the 2-
sphere seen as a Riemannian manifold with the Riemannian metric induced by
the Euclidean metric on R3. This manifold has a finite injectivity radius, thus
the approximation presented in Remark 2 is used. A regressed geodesic γ is used
as the prior BPF (Sec.3.2), and a diagonal RBF kernel (as in Eq. (27)) with
optimized hyperparameters is chosen as the prior TSCF. See Fig. 3 a).

Next, we consider motion capture data of the orientation of the left femur of
a person walking in a circular pattern [12, 11, 7]. This data naturally lives on
S2 and is periodic. We estimate the periodic independent variables of the data
by computing its principal curve as described in [7]. Then, we fit a WGP using
Fréchet mean BPF and the TSCF is chosen to be diagonal with the periodic
kernel k given by

k(t, t′) = σ2 exp

(
−2 sin2(|t− t′|/2)

l2

)
, (32)

where the hyperparameters σ2 and l2 are optimized as described in Sect. 4.2.1.
Note that the Fréchet mean BPF was used, as the data is not geodesic in trend.
The resulting WGP is depicted in Fig. 3 b).
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Figure 4: Upsampling DTI tensor field by WGP regression. Colors depict the
direction of the principal eigenvector of the respective tensor. a)Tthe slice
shown as a tensor field, b) MAP estimate of the predictive distribution of WGP
regression on the original data set with uncertainty visualized below (white
indicates maximum relative error, black indicates no error). The relative error
is computed by dividing by the maximal error over the experiment here and in
Fig. 5 c) and e).

5.2 Diffusion tensor imaging data

We consider a patch of estimated voxel-wise DTI tensors from a coronal slice
of an HCP subject [6, 26, 28]. The tensors reside on the manifold R2 × PD(3),
where PD(n) is the set of n × n positive definite matrices. When endowed
with the affine-invariant metric [22], PD(n) forms a Riemannian manifold of
non-positive curvature, meaning we can perform exact WGP regression with
values in PD(n). The data set consists of 15 × 19 tensors (elements of PD(3))
with isotropic spacing, see Fig. 4 a). DTI upsampling is performed as an
interpolation task on a 30× 30 grid, fitting a WGP to the data and estimating
up-sampled values using the estimated WGP. As a measure of uncertainty of
the result, we calculate the sum of variances of each tangent space coordinate
at the interpolated points; this is visualized as a background intensity in Fig. 4
b).

To illustrate the flexibility of WGP regression, we perform a second upsampling
experiment, where we randomly subsample only a fifth of the original DTI
tensors, see Fig. 5 a). In Fig. 5 c) is shown the corresponding MAP estimate
of the predictive distribution (see Remark 3), where empirical Fréchet mean
was used as the prior BPF (Fig. 5 b)) and diagonal RBFs with optimized
hyperparameters as the prior TSCFs. Finally, to illustrate the effect of the
choice of prior BPF, a final experiment used the result of geodesic submanifold
regression as the prior BPF, see Fig. 5 d), e).

Note that the tensor field can be reconstructed well even from just 20% of the
data, although with increased uncertainty, as can be seen when comparing Figs.
5 c), e) to Fig. 4 a). The predictive WGPs in Figs. 5 c) and e) do not differ
vastly, although different BPFs were used. They yield a different result in the
upper-left corner area, where the subsampled dataset is not dense, hence the
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Figure 5: Upsampling DTI tensor field by WGP regression. This time, we carry
out the regression on a subsampled tensor field (shown in a)), where only 20%
of the elements of the original tensor field (see Fig. 4 a)) are present. We carry
out the regression using two different prior WGP BPFs. In b), the first prior
BPF using the Fréchet mean is shown and the corresponding predictive WGP
is visualized in c), using the MAP estimate to plot the tensors. The second
prior BPF is given by geodesic regression, shown in d), with the corresponding
predictive WGP in e). For color descriptions, refer to the caption of Fig. 4. The
uncertainty fields in c) and e) have similar shapes, but the magnitudes differ.
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Figure 6: WGP regression applied to a population of Corpus Callosum shapes
labeled by age. Red shapes are data points from the test set, not used for
training. In black, the MAP estimates of the predictive distributions, in green
values of the prior BPF at corresponding ages. Drawn in blue are 20 samples
from the predictive distribution.

regressed result is influenced by the prior BPF. In the middle, where we also
lack information, the resulting tensor fields look similar. The error structures
are very similar, seen in Figs. 5c), e). This can be explained by the optimized
prior hyperparameters of the TSCFs being similar in both cases (the residu-
als do not affect the posterior covariance other than through hyperparameter
optimization).

5.3 Corpus Callosum data

Next, we turn to a dataset of landmark representations of Corpus Callosum
(CC) shapes [5]. A landmark representation is a set of k points in R2, so that
length, translation and rotation factors have been quotiented out, resulting in
a point in the Kendall’s shape space [14]. The dataset consists of 65 shapes, of
which we pick randomly 6 to be the test set, the rest are used for training.

Results are presented in Fig. 6. A tangent space geodesic regression is used
as the prior BPF, and a diagonal RBF kernel with optimized hyperparameters
is used as the prior TSCF. As the CC shapes vary considerably even in the
same age group, the WGP predictive mean does not yield notable gains on
the tangent space geodesic regression used as prior BPF. However, it provides
uncertainty estimates of the shape. Notably, the results imply that aging brings
about wider variation in the upper-right part of the CC.
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6 Conclusion and discussion

This paper introduced WGP regression on Riemannian manifolds in a novel
Bayesian inference framework relying on WGPs, defined via WGDs. Then, the
conditional distribution of two jointly WGD random points was computed for
WGP regression. We demonstrated the method on three manifolds; on the 2-
sphere using a toy data set and motion capture data of the femur of a walking
person, tensor data originating from DTI and on a set of Corpus Callosum
shapes. The results of the experiments imply that WGP regression can be
used effectively on Riemannian manifolds, providing meaningful uncertainty
estimates.

This being the first step, there are still open questions; how to engineer prior
distributions efficiently, and how to treat the predictive distribution? The pre-
dictive distribution admits an explicit expression, but the prediction is not a
WGP anymore. Therefore, we do not have same closure properties of the family
of distributions as in the Euclidean case. This leaves open the question, whether
one should consider other generalizations of GDs than the wrapped one when
carrying out GP regression on manifolds?

We suggested an approximation in Remark 2, not quantifying how reliable it
is in the case of non-infinite injectivity radius. In practice the approximation
seems plausible (see Fig. 3), but should be studied in more detail. Furthermore,
it is of interest, in which cases the computations can be carried out analytically,
when the injectivity radius is non-infinite.

The central limit theorem presented in [15] suggests to use WGD distributed
error terms, but this poses the difficulty of incorporating the noise term into
the prior, when the noise term might live in a different tangent space. The
workaround used in this paper was to approximate this error term linearly
in the tangent space of the prior BPF, however, other models should also be
considered.

Finally, GP regression could be generalized to a broader family of spaces than
Riemannian manifolds. In WGP regression, the key is having a wrapping func-
tion from a model vector space onto the manifold. For example, another context
where such structure appears, is the weak Riemannian structure of the space of
probability measures under the Wasserstein metric [1].
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Appendix C

Probabilistic Riemannian
Submanifold Learning with

Wrapped Gaussian Process Latent
Variable Models

The following chapter presents (up to formatting) the article

Anton Mallasto, Søren Hauberg, and Aasa Feragen. "Probabilistic Rieman-
nian submanifold learning with wrapped Gaussian process latent variable
models." Proceedings of Machine Learning Research (AISTATS). 2019.

This work applies the WGP framework in Appendix B to the unsupervised
learning setting. This is done through generalizing Gaussian process latent
variable models (GPLVMs) [38] to Riemannian manifolds with the use of WGPs.
Doing so, allows learning stochastic submanifolds of data lying on the given
Riemannian manifold. The method is demonstrated on directional data lying on
the 2-sphere, landmark representations of diatom organisms living in the Kendall
shape space, on DTI diffusion tensors living in the space of 3-by-3 symmetric
positive matrices, and on 20-by-20 covariance matrices between crypto-currency
prices.

This work falls into the category of submanifold learning, where one takes into
account differential geometric constraints on given data, and then learns a
submanifold of data living in the constrained ambient Riemannian manifold.
Work in this direction includes principal geodesic analysis [24,60], its probabilistic
counterpart [64], and non-geodesic approaches such as barycentric subspace
analysis [52]. Our work extends the literature, by allowing for non-geodesic,
non-parametric learning of the submanifolds, and provides probabilistic results,
whose uncertainty can be quantified.



Probabilistic Riemannian submanifold learning
with wrapped Gaussian process latent variable
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Anton Mallasto1 Søren Hauberg2 Aasa Feragen1

1Department of Computer Science,University of Copenhagen
2DTU Compute, Technical University of Denmark

Abstract

Latent variable models (LVMs) learn probabilistic models of data man-
ifolds lying in an ambient Euclidean space. In a number of applications,
a priori known spatial constraints can shrink the ambient space into a
considerably smaller manifold. Additionally, in these applications the
Euclidean geometry might induce a suboptimal similarity measure, which
could be improved by choosing a different metric. Euclidean models ignore
such information and assign probability mass to data points that can never
appear as data, and vastly different likelihoods to points that are similar
under the desired metric. We propose the wrapped Gaussian process
latent variable model (WGPLVM), that extends Gaussian process latent
variable models to take values strictly on a given ambient Riemannian
manifold, making the model blind to impossible data points. This allows
non-linear, probabilistic inference of low-dimensional Riemannian sub-
manifolds from data. Our evaluation on diverse datasets show that we
improve performance on several tasks, including encoding, visualization
and uncertainty quantification.

1 Introduction

Unsupervised learning aims at modelling structure in unlabeled data, such as its
geometry. Sometimes, information on this geometry is available through spatial
constraints or a non-Euclidean metric, e.g. the data lives on a Riemannian
manifold. Incorporating the known Riemannian manifold in a probabilistic
model should improve model fit, and save us from learning what we already
know. In this work, we study a probabilistic latent variable model that takes
the geometry into account.

Where do manifolds come from? Data points on a sphere are forced to have
norm one, covariance matrices are symmetric and positive definite, and shapes
do not depend on scale, rotation or placement. Enforcing such constraints or
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Figure 1: The ambient manifold SPD(2) is the open subset on the inside of the
visualized grey cone in the ambient Euclidean space R3. Top row: A Euclidean
Gaussian distribution fitted to a set of SPD(2) matrices (black dots) escapes
outside of SPD(2). Bottom row: The Riemannian Log-Euclidean metric yields
a wrapped Gaussian distribution that remains inside SPD(2), providing a better
fit to the data. The colored trust regions are confidence regions of the (W)GDs.

invariances, one replaces the ambient Euclidean space by an ambient manifold.
The ambient space refers to the set of all those points, which the model views
as possible data points. The constraints alter the shortest paths between data
objects, giving rise to a Riemannian metric. Riemannian metrics can also
be imposed by modelling choices; closeness under the Euclidean metric does
not always express desired similarity of data objects. These metrics can be
learned from data (Hauberg et al., 2012) or imposed based on domain knowledge
(Arsigny et al., 2006).

Euclidean probabilistic models on manifold data assign probability mass
to impossible data points under spatial constraints. Furthermore, points that
are similar under the chosen non-Euclidean metric can be assigned very dif-
ferent likelihoods, which can cause a poor fit to the data. Both issues affect
especially the uncertainty estimates. These issues can be avoided by exploiting
the Riemannian geometry in the model. Fig. 1 shows points in SPD(2), the
space of 2× 2 symmetric positive-definite matrices, with fitted Euclidean and
Riemannian models. The points outside the cone are not SPD(2) matrices.
Under the Log-Euclidean metric, which generalizes the log transform to matrices,
elements on the boundary (in gray) lie infinitely far from interior points. The
metrics, and hence the induced models, are vastly different. This results in the
Riemannian model with an improved model fit.

Contributions. Motivated by these observations, we introduce the wrapped
Gaussian process latent variable model (WGPLVM). This extends the Gaussian
process latent variable model (GPLVM) to data on Riemannian manifolds
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by employing wrapped Gaussian processes (WGPs). Like the GPLVM, the
WGPLVM defines a probabilistic model between elements in a lower dimensional
latent space and the data, providing uncertainty estimates. As WGPs take
values strictly on a given Riemannian manifold, the WGPLVM enforces known
constraints and invariances, and accounts for modelling choices concerning the
metric.

We demonstrate the WGPLVM on several different manifolds and tasks. We
show that our method provides more efficient encoding of the original data
compared to the Euclidean GPLVM, provides superior uncertainty estimates
and better captures trends in the data, resulting in improved visualization
results.

Related Literature. First, we discuss methods in manifold learning, which
view data points as elements of a Euclidean space. Then, we discuss related work
in submanifold learning, that works strictly on Riemannian manifolds. Note that
some manifold learning methods can impose known geometry on the latent space.
Models relying on kernels (e.g. the GPLVM and WGPLVM) can encode such
structure on the latent space (Lin et al., 2017). This is different from imposing
geometric constraints on the data space.

Manifold learning infers a low-dimensional manifold that captures the trend of
given data. Classical algorithms (Belkin and Niyogi, 2003; Roweis and Saul,
2000; Tenenbaum et al., 2000) learn a low distortion projection from a data
submanifold of the original, Euclidean ambient space, onto a low-dimensional
Euclidean space. Latent variable models (LVMs) (Goodfellow et al., 2014;
Kingma and Welling, 2014; Lawrence, 2005) learn the reverse latent embedding
from the latent space into the ambient space, associating each point in the
latent space with an ambient space point. In the well-known Gaussian process
latent variable model (GPLVM) (Lawrence, 2005), the latent embedding is
a Gaussian process (GP) over the latent space, and hence learns not only a
manifold embedding into Rn, but also a model of its uncertainty. GPLVMs have
inspired other LVMs (Lawrence and Moore, 2007; Titsias and Lawrence, 2010;
Urtasun and Darrell, 2007), that all rely on Euclidean geometry. Urtasun et al.
(2008) consider topologically constrained LVMs and Varol et al. (2012) consider
GPLVMs with spatial constraints, where the constraints are enforced through
slack variables and local linearization. Our method works intrinsically on the
specific Riemannian manifold, taking the topology, spatial constraints and the
Riemannian metric into account. Thus the WGPLVM falls into the category of
submanifold learning.

Submanifold learning algorithms, illustrated in Fig. 2, aim to infer a model ϕ
from a latent space L to a submanifold M (dashed red) of a known ambient
manifold M of points that satisfy the constraints. The map ϕ associates the
data pi ∈M (dark grey) with latent variables xi ∈ L (blue). Principal geodesic
analysis (PGA) (Fletcher et al., 2004; Huckemann et al., 2010) estimates geodesic
submanifolds, Riemannian principal curves (Hauberg, 2016) and barycentric
subspaces (Pennec, 2015) estimate less constrained submanifolds. Probabilistic
PGA (Zhang and Fletcher, 2013) introduces uncertainty by estimating probabilis-
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Figure 2: Illustration of submanifold learning.

tic geodesic subspaces. The WGPLVM contributes non-geodesic, probabilistic
learning of the submanifold from a prior model, allowing considerable flexibility
compared to previous models.

Examples of manifold valued data include directional statistics, which consider
spherical data (Mardia and Jupp, 2009; Urtasun et al., 2006), covariance matrices
as data objects in economics and computer vision (Tuzel et al., 2006; Wilson and
Ghahramani, 2011) and in diffusion MRI or materials science (Batchelor et al.,
2005; Fletcher and Joshi, 2004), and statistics of shape, which is of fundamental
interest in computer vision (Freifeld and Black, 2012; Kendall, 1984). In each
example, the common approach is to incorporate the Riemannian structure in
the statistical analysis.

2 Preliminaries

This section introduces the necessary preliminaries and notation. We first
review Gaussian processes (GPs) and the Gaussian process latent variable model
(GPLVM) (Lawrence, 2004). Next, we summarize the necessary concepts from
Riemannian geometry. Subsequently, we review the wrapped Gaussian processes
(WGPs) introduced by Mallasto and Feragen (2018), which form the cornerstone
of the present work.

Gaussian processes. Let N (µ,Σ) denote a multivariate Gaussian distribution
(GD) with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d, and write the
associated probability density function as N (v|µ,Σ) for v ∈ Rd. A Gaussian
process (GP) is a collection f of random variables, so that any finite subcollection
(f(ωi))

N
i=1 is jointly Gaussian, where ωi ∈ Ω are elements of the index set. Any

GP f is uniquely characterized by

m(ω) = E [f(ω)] ,

k(ω, ω′) = E
[
(f(ω)−m(ω))(f(ω′)−m(ω′))T

]
,

(1)

called the mean function m and covariance function k, denoted f ∼ GP(m, k).
For more about GPs and their applications, see Rasmussen (2004).
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Gaussian process latent variable model. The Gaussian process latent
variable model (GPLVM) is a GP-based dimensionality reduction technique,
which aims to learn a probabilistic model relating elements in the low dimensional
latent space L ⊆ Rn′ to observed data Y = {yi}Ni=1 ⊂ Rn, with n′ < n. The
model approximates the manifold that Y lives on. The probabilistic model is
computed by choosing a prior GP f ∼ GP(m, kθ) with hyper-parameters θ ∈ Θ.
The hyper-parameters are optimized with the latent variables X = {xi}Ni=1 ∈ L
to maximize the log-likelihood

log(P(Y |X, θ)) =− nN

2
ln(2π)− n

2
ln |KX,θ|

− 1

2
Tr
(
K−1
X,θY Y

T
)
,

(2)

where (KX,θ)ij = kθ(xi, xj), and X, Y denote the corresponding data matrices.
Finally, we condition the optimal prior f on the chosen latent variables X
and data Y , to yield the predictive distribution of the model. Note that any
prediction f(x) has support in the whole Rn, thus ignoring any constraints or
invariances.

In differential geometric terms, a GPLVM can be viewed to learn a stochastic
chart for the approximate manifold on which the dataset Y lives.

Riemannian geometry. A Riemannian manifold is a smooth manifold M
with a Riemannian metric, i.e. a smoothly varying inner product gp(·, ·) on the
tangent space TpM at each p ∈M , which induces a distance function dM on M .
Each (p, v) in the tangent bundle TM =

⋃
p∈M ({p} × TpM) defines a geodesic

γ (locally shortest path) on M , so that γ(0) = p and γ̇(0) = v.

The Riemannian exponential map Exp: TM →M is given by (p, v) 7→ Expp(v) =
γ(1), where γ is the geodesic corresponding to (p, v). The exponential Expp
at p is a diffeomorphism between a neighborhood 0 ∈ Up ⊂ TpM and a neigh-
borhood p ∈ Vp ⊂ M , which is chosen in a maximal way to preserve injec-
tivity. The logarithmic map Logp : Vp → TpM is characterized by the identity
Expp(Logp(p

′)) = p′. Outside of Vp, we use Logp(p
′) to denote v ∈ Exp−1

p (p′)
with a minimal norm, chosen in a measurable way. The complement of Vp in M
is called the cut-locus at p, where unique geodesics cannot be defined. Multiple
useful manifolds have empty cut-locus, so that Vp = M , including manifolds
with non-positive curvature as well as the space of positive-definite symmetric
matrices used below.

Let Expp(v) = q and γ(t) = Expp(tv). The differential DpLogp(q) (in some
coordinate chart) is given by (see supplementary material for (Pennec, 2016))

DpLogp(q) = (J0(1))−1 J1(1), (3)

where Ji are Jacobi fields solving the linear ordinary differential equation

J̈i(t) +R(t)Ji(t) = 0, (4)

with initial conditions J0(0) = 0, J̇0(0) = In, and J1(0) = In, J̇1(0) = 0. Here
R(t) is given by Rij = 〈Riemγ(t)(γ̇(t), ei(t))γ̇(t), ej(t)〉γ(t) and (e1(t), ..., en(t)) is
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Figure 3: WGDs defined as a Gaussian N (0, K) in the tangent space TµM over
the basepoint µ, which is pushed forward by the exponential map Expµ to M .

an orthonormal basis for Tγ(t)M , defined by e1(0) = v
‖v‖2 and each ej(t) evolves

through parallel transportation. Furthermore, Riemγt denotes the curvature
tensor and In is the n-by-n identity matrix, where n is the dimension of the
manifold. For a thorough exposition in Riemannian geometry, see (Do Carmo,
1992).

Let Mi be Riemannian manifolds with metrics gi, exponential maps Expi and
logarithmic maps Logi for i = 1, 2. ThenM = M1×M2 turns into a Riemannian
manifold when endowed with the metric g = g1 + g2, which has the component-
wise computed exponential map Exp(p1,p2)((v1, v2)) =

(
Exp1

p1
(v1),Exp2

p2
(v2)

)
.

The logarithmic map Log on the product manifold is defined likewise.

Wrapped Gaussian distributions. Let (M, g) be an n-dimensional geodesi-
cally complete Riemannian manifold. Let ν be a measure on X and f : X → Y
be a measurable map. We define the push-forward as f#ν(A) := ν(f−1(A)) for
any measurable set A in Y . A random point X onM follows a wrapped Gaussian
distribution (WGD), if for some µ ∈M and a symmetric positive definite matrix
K ∈ Rn×n

X ∼
(
Expµ

)
#

(N (0, K)) , (5)

denoted by X ∼ NM (µ,K). The WGD is thus defined by a GD N (0, K) in the
tangent space TµM , that is pushed-forward ontoM by the exponential map Expµ
(see Fig. 3). We call µ =: µNM

(X) the basepoint of X, and K =: CovNM
(X) the

tangent space covariance.

Two random points Xi ∼ NMi
(µi, Ki), i = 1, 2 are jointly WGD, if (X1, X2) is a

WGD on the product manifold M1 ×M2, given by

(X1, X2) ∼ NM1×M2

((
µ1

µ2

)
,

(
K1 K12

K21 K2

))
, (6)

for some matrix K12 = KT
21. Then, X1 can be conditioned on X2, resulting in a
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Figure 4: A WGP f can be viewed as defining a GP fEuc in the tangent
spaces TmM ⊂ M over the basepoint function, so that each marginal f(xi) is
pushed-forward onto M by (Expm(xi)

)#(f(xi)).

push-forward of a Gaussian mixture in Tµ1M1 by the exponential map

X1|(X2 = p2) ∼
(
Expµ1

)
#

(∑

v∈A
λvN (µv, Kv)

)
, (7)

where A = {v ∈ Tµ2M | Expµ2(v) = p2} is the preimage of p2. The means and
covariance matrices of the Gaussian mixture components are given by

µv = K12K
−1
2 v, Kv = K1 −K12K

−1
2 KT

12, (8)

and the component weights are

λv =
N (v|0, K2)

P{A} , P{A} =
∑

v∈A
N (v|0, K2). (9)

Wrapped Gaussian processes. Wrapped Gaussian processes generalize GPs
to Riemannian manifolds (Mallasto and Feragen, 2018). A collection f of random
points on a Riemannian manifold M indexed over a set Ω is a wrapped Gaussian
process (WGP), if every finite subcollection (f(ωi))

N
i=1 is jointly WGD on MN .

The functions
m(ω) = µNM

(f(ω)),

k(ω, ω′) = CovNM
(f(ω), f(ω′)),

(10)

are called the basepoint function and the tangent space covariance function of
f (also called as kernel of f), respectively. To denote such a WGP, we use the
notation f ∼ GPM(m, k).
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Formally, a WGP f can be viewed as a GP fEuc on TmM ⊂ TM , the family of
tangent spaces over the basepoint function m. Then, the resulting GP is pushed
forward to M using the Riemannian exponential map Expm over m to obtain
the WGP, see Fig. 4.

Figure 5: The WGPLVM pipeline. 1. The data pi ∈M (blue and red dots)
is transformed to the tangent bundle by pi 7→ Logm(xi)

(pi) ∈ Tm(xi)M⊂ TmM
along the prior basepoint function m (dotted black line) at initial latent variables
xi. 2. A GPLVM is learned, yielding the latent variables x̂i ∈ L and the GP
fEuc from L to the tangent bundle. 3. The GP fEuc is then pushed forward onto
M by (Exp)#(fEuc), resulting in the predicted data submanifold.

3 Wrapped Gaussian Process Latent Variable Model

We now introduce the wrapped Gaussian process latent variable model (WG-
PLVM) for data P = {pi}Ni=1 lying on an n-dimensional ambient Riemannian
manifoldM. The goal of WGPLVM is to learn a lower-dimensional submanifold
MPred ⊂ M, where the data is assumed to reside. The WGPLVM model is a
straight-forward generalization of the GPLVM model, where instead of GPs, we
maximize the likelihood of our data combined with the latent variables under

Appendix C. Probabilistic Submanifold Learning with WGPLVMs 77



the WGPs that are suitable for the manifold context. The WGPLVM pipeline
is illustrated in Fig. 5.

We consider a family of WGPs f ∼ GPM(m, kθ) from the latent space L onto the
ambient manifoldM, where θ ∈ Θ are hyperparameters, that will be optimized
over. The basepoint function m can be utilized to delocalize the learning process
in order to avoid distortions of the metric caused by linearization of the curved
M. The kernel kθ affects how observations in different tangent spaces affect
each other. For coherence, the kernel should be adapted to a smooth frame
(a smoothly changing basis over m). Such a frame can e.g. be constructed by
parallel transporting a basis along m.

The likelihood assigned by the prior f to a data point p with associated latent
variable x is

P{p|x, θ} =
∑

v∈Exp−1
m(x)

(p)

N (v|0, Kx,θ)

≈ N
(
Logm(x)(p)|0, Kx,θ

)
,

(11)

where (Kx,θ)ij = kθ(x
i, xj) and x = (x1, x2, ..., xn).

The approximation in Eq. (11) only takes into account the preimage of p with
a minimal norm (and thus maximal likelihood), denoted by Logm(x)(p). The
expression gives a lower bound for P{p|x, θ}, thus, maximizing the likelihood
of Logm(x)(p) maximizes the lower bound for P{p|x, θ}. It also enforces the
WGPLVM to prefer local models over ones that wrap considerably around the
manifold. Note that, for manifolds with empty cut-locus (such as ones with
non-positive curvature), the approximation in (11) is exact.

The objective function to be maximized is then the approximated log-
likelihood

ln (P{p|x, θ}) ≈− dN

2
ln(2π)− d

2
ln |Kx,θ|

−1

2
Logm(x)(p)

TK−1
x,θLogm(x)(p),

(12)

for which the gradient with respect to x is given by

∂

∂xj
ln (P{p|x, θ}) ≈

−d
2

Tr

(
K−1
x,θ

∂Kx,θ

∂xj

)

−1

2
Logm(x)(p)

TK−1
x,θDm(x)Logm(x)(p)

∂m

∂xj
(x)

−1

2
Logm(x)(p)

T
∂K−1

x,θ

∂xj
Logm(x)(p),

(13)

The differentialDm(x)Logm(x)(p) can be computed using Jacobi fields as explained
in expression (3), if no analytical expression exists.

Assuming that the data is i.i.d, the approximate log-likelihood for the data set
P can be written using Eq. (12), by considering P as a single element of the
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product manifold PN . This quantitity is then maximized by optimizing over
the latent variables and the hyperparameters θ, resulting in the optimal latent
variables X̂ and hyperparameters θ̂ for the kernel.

The approximate submanifold can then be predicted at arbitrary latent
variables XPred, by conditioning f̂ ∼ GPM(m, kθ̂) on the data P with the as-
sociated latent variables X̂ (using Eq. (7)). The conditional distribution will
then be a non-centered GP fEuc ∼ GP(mEuc, kEuc) defined on TmM pushed
forward by the exponential map (see Fig. 5), resulting in the predictive dis-
tribution ϕpred ∼ (Expm(x))#(fEuc). Then, the mean prediction is given by
ϕ̄pred(x) = (Expm(x))#(mEuc)(x)).

In Eq. (7), if the preimage Exp−1
µ2

(p2) is not uniquely defined, the conditional
distribution is approximated by using a preimage with minimal norm, as previ-
ously. This approximation is justified as the weights λv of the components of
the Gaussian mixture decrease exponentially as ‖v‖p2 increases.

The initial latent variables X = {xi}Ni=1 can be chosen strategically to aid
optimization. We use principal geodesic analysis (PGA) (Fletcher et al., 2004)
and principal curves (Hauberg, 2016). PGA is appropriate when the data
expresses a geodesic trend (analogy of linearity on Riemannian manifolds),
which is not the case for the femur dataset, see Fig. 6 in Section 4.

The Computational complexity for the method is O(NL+N3), where L is
the cost of computing the Riemannian logarithm. This varies from manifold
to manifold, but for example, in Section 4, the most expensive is O(d3) for the
Log-Euclidean metric on d× d symmetric, positive-definite matrices.

We provide a pseudo-algorithm for the method in the supplementary mate-
rial.

4 Experiments

Figure 6: WGPLVM, GPLVM and GPLVMProj submanifold predictions for the
femur data set. Mean predictions are in black, with 20 samples from the noise
models (in blue). Training data in black, with test points in red.
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The WGPLVM is demonstrated on three different manifolds, arising from three
different applications: The sphere, Kendall’s shape space (Kendall, 1984), and
the space of symmetric, positive definite (SPD) matrices. Furthermore, the
WGPLVM is compared with the Euclidean GPLVM, whose predictive distribution
is expected not to lie on the manifold. This effect is clearly visible in Fig. 6. A
third model, also shown in Fig. 6, is a modification of the Euclidean GPLVM,
where the GP predictions are projected onto the manifold in order to make them
satisfy the desired constraints.

We first introduce the datasets and their associated tasks, along with dataset-
specific details related to training the models. In each case, we train the
model assuming independent coordinates, applying the same kernel to each
coordinate.

Femur dataset on S2. A set of directions P = {pi}Ni=1 ∈ S2 of the left
femur bone of a person walking in a circular pattern (CMU Graphics Lab,
2003; Hauberg, 2016) is measured at N = 338 time points. The movement is
expected to be one dimensional and periodic, and thus we learn a 1-dimensional
submanifold homeomorphic to a circle to approximate the data manifold. The
latent variable optimization is initialized using principal curves (Hauberg, 2016),
and the prior WGP and GP had kernel

k(t, t′) = σ2 exp

(
−2 sin2(|t− t′|)/2

l2

)
, (14)

and mean m(t) = µS2 and m(t) = 0, respectively, where µS2 is the Fréchet mean
of the training set and σ2, l2 are hyperparameters optimized to maximize the
likelihood of the dataset P with the latent variables X. The trained models are
visualized in Fig. 6.

Diatom shapes in Kendall’s shape space. Diatoms are unicellular algae,
whose species are related to their shapes. In Kendall’s shape space MK we
analyze a set of outline shapes of 780 diatoms (du Buf and Bayer, 2002; Jalba
et al., 2006) from 37 different species. For visualization, a two dimensional latent
space is learned, using the prior f ∼ GPMK

(m, k), with constant basepoint
function m(t) = µMK

set to be the Fréchet mean of the population and k given
by the radial basis function (RBF) kernel

k(x, x′) = σ2 exp

(
−‖x− x

′‖2
2

2l2

)
. (15)

We initialize the GPLVM and WGPLVM models with PGA and PCA, respec-
tively.

Diffusion tensors in SPD(3). In the space of 3×3 SPD matrices with the Log-
Euclidean metric (Arsigny et al., 2006), we collect a set of 750 diffusion tensors
from a diffusion MRI dataset, sampled with approximately uniform fractional
anisotropy (FA) values. The FA is a well-known tensor shape descriptor; see
the supplementary material for the definition. As SPD matrices form an open
subset of the Euclidean space of symmetric matrices, we do not get a “for
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free” dimensionality reduction by restricting to SPD matrices. Instead, the
data is transformed nonlinearly according to the Log-Euclidean metric, which
is commonly used for diffusion tensors (Arsigny et al., 2006). The diffusion
MRI image was a single subject from the Human Connectome Project (Glasser
et al., 2013; Sotiropoulos et al., 2013; Van Essen et al., 2013). In diffusion
MRI, low-dimensional encoding with uncertainty estimates may speed up image
acquisition and processing.

Riemannian Femur Diatoms Diffusion tensors Crypto-tensors

GPLVMProj (9.22± 0.55)× 10−2 (2.48± 0.25)× 10−2 0.582± 0.025 21.91± 2.26

WGPLVM (9.20± 0.53)× 10−2 (2.39± 0.15)× 10−2 0.391± 0.035 3.04± 0.26

Euclidean Femur Diatoms Diffusion tensors Crypto-tensors

GPLVM (9.21± 0.55)× 10−2 (2.48± 0.25)× 10−2 (6.03± 0.34)× 10−2 (7.36± 5.27)× 105

GPLVMProj (9.21± 0.55)× 10−2 (2.48± 0.25× 10−2 (6.03± 0.34)× 10−2 (5.49± 3.17)× 105

WGPLVM (9.19± 0.53)× 10−2 (2.39± 0.15)× 10−2 (7.54± 0.36)× 10−2 (8.69± 7.12)× 105

Table 1: Mean ± standard error of mean reconstruction errors, measured in
RMSE, over 10 repetitions of the experiment. Top table: Deviations measured
in the intrinsic distance on the manifold. Bottom table: Deviations measured
in the Euclidean distance.

Crypto-tensors in SPD(10). On SPD(10) we collect the price of 10 popular
crypto-currencies1 in the time 2.12.2014-15.5.2018. The crypto-currency intra-
relationship at a given time is encoded in the covariance matrix between the
prices in the past 20 days; we include every 7th day in the period, resulting
in 126 10 × 10 covariance matrices. Wilson and Ghahramani (2011) provide
a discussion of covariance descriptors in economy. As the acquired covariance
matrices in SPD(10) have eigenvalues in different orders of magnitude, we use
the Log-Euclidean metric (Arsigny et al., 2006), capturing this trend better.

For both SPD(n) datasets, the basepoint function, the kernel and the latent
variable initialization are chosen as for Kendall’s shape space. The latent spaces
are chosen to be 2-dimensional for visualization purposes.

Application 1: Encoding. The datasets are divided into training and test
sets (consisting of 8/10 and 2/10 of the data, respectively), and we learn the models
ϕpred on the training set. Each test element p is “encoded” by the projection
π : p 7→ argmaxx∈L P{ϕpred(x) = p}. We assess the quality of this encoding by
measuring the root-mean-square error (RMSE) of the reconstruction, where
the error is measured both by the Euclidean metric and the intrinsic metric.
Each experiment was repeated 10 times with different training and test sets; the
results are reported in Table 1.

Under the intrinsic metric, the WGPLVM performs significantly better on
the tensor datasets, and marginally better in the two other cases. Under the
Euclidean metric the WGPLVM encoding is better in two cases, worse in one,
and inconclusive for the crypto-tensors where no model is significantly better
than the others.

Application 2: Uncertainty quantification. Importantly, GPLVM learns a
probabilistic model, producing an estimate of uncertainty. We evaluate these

1Bitcoin, Dash, Digibyte, Dogecoin, Litecoin, Vertcoin, Stellar, Monero, Ripple, and Verge.
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Figure 7: The latent space for the crypto-tensor dataset, with days visualized
by color. Note that for GPLVM, the dark blue points corresponding to early
times are hidden underneath the green points.

Figure 8: Uncertainty estimates given by the WGPLVM, GPLVM and projected
GPLVM models for the four datasets. The bars represent the frequency of
occurances, where the fraction of samples, given by the x-value, lie closer to
the mean prediction than a test point. The continuous curves represent the
cumulative distributions. Whenever the cumulative distribution lies above x = y,
we are overestimating the corresponding quantile.

uncertainty estimates on all four datasets. Since the predictive distributions
live in different spaces, the likelihoods of observed data under the different
models are not directly comparable. However, all three models yield confidence
intervals, which we compare using 10 resampled training and test sets (8⁄10 and
8⁄10 of the data). The test set is projected onto the predicted submanifold via
π. Then, we sample the respective predictive distributions 50 times, computing
the fraction of samples closer to the mean prediction than the test point. The
results are visualized in Fig. 8, where the densities of these fractions are shown
with corresponding cumulative distributions. For a perfect model fit, we would
observe the x = y curve (dashed line) as the cumulative distribution. The
experiment shows that all models estimate uncertainty incorrectly, but that
WGPLVM obtains the best estimate.

Application 3: Visualization. In Fig. 7, we illustrate the latent spaces of
WGPLVM versus GPLVM on the crypto-tensor dataset, which comes with an
associated time variable, shown in color. The WGPLVM provides a smoother
and more consistent transition in color, while the GPLVM plots all the earlier
(dark blue) tensors on top of each other. Similar visualizations for the other
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datasets can be found in the supplementary material; in these examples, the two
visualizations are not significantly different in quality.

In the supplementary material, we provide a discussion on why our model might
perform better in the SPD(n) experiments, including a comparison between the
Euclidean and Riemannian geometries.

5 Discussion and Conclusion

We introduced the WGPLVM for non-parametric and probabilistic submanifold
learning on Riemannian manifolds. The model encodes known constraints or
invariances, and provides model flexibility, as metrics other than the Euclidean
one can be incorporated. This is useful if a different metric captures trends
in the data better. The model was evaluated on several manifolds and tasks
against the GPLVM and a modified GPLVM, which projects predictions onto
the manifold.

The experimental results show that the WGPLVM provides a better probabilistic
model to fit the data; in particular the uncertainty estimates are superior to the
Euclidean models on three out of four datasets, and virtually identical on the
fourth. We note that for Euclidean models, the uncertainty is visibly higher.
These are strong indications that our model carries out modelling the data
distribution better. The mean predictions of the WGPLVM encode the data
space significantly better than the GPLVM and projected GPLVM models on
two of the datasets, and marginally better on the other two, when measured in
the Riemannian metric. Under the Euclidean metricr, the GPVLM performs
notably better in one experiment, and WGPLVM marginally better in two. On
crypto-tensors, we deem the results inconclusive due to high variance. The
aforementioned effects are also seen in the latent space visualizations, e.g. on
the cryptotensors the WGPLVM better detects small-scale differences in the
early time steps.

One might suspect that the improved performance stems from a “for free”
dimensionality reduction through constraints. However, we note that the most
significant improvement in both reconstruction error and visualization was
obtained on SPD(n), where the Riemannian manifold is a full-dimensional,
convex subset of the Euclidean ambient space. This might still be due to the
constraints, which forces the distributions to lie in the manifold. The difference
could also be caused by the choice of metric. For the crypto-tensors in particular,
we observe that some of the eigenvalues are very small; the Log-Euclidean metric
essentially acts as a log-transform and therefore converts the data to a scale on
which changes in the smaller eigenvalues can be detected.

In three of the experiments, the mean predictions of GPLVM lie essentially on the
manifold, thus the projected version does not improve the mean reconstruction
error. However, in the femur experiment, the uncertainty estimates are clearly
improved, but also notably outperformed by WGPLVM. Due to the metric and
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curvature of the manifold, interpolation between two points in the ambient space
Rn does not necessarily project even closely onto the manifold interpolation
between the projected points. This distortion affects the statistics relying on
interpolation, and explains both the reduced reconstruction capability and the
increased variance. Furthermore, the projected model ignores any metric choices
imposed on the manifold.

Although the WGPLVM provides flexibility through the prior basepoint function,
we fixed this to be the Fréchet mean of the training set in our experiments. The
choice is well justified if the data is local enough, and makes the comparison
to GPLVM fair. The flexibility to delocalize the learning process through the
basepoint function is, however, important for inference on manifolds when the
locality assumption fails. The non-trivial optimization of the basepoint function
thus provides a venue for future research.

In summary, the WGPLVM is a probabilistic submanifold learning algorithm
that respects known Riemannian manifold structure in the data by taking values
in the associated Riemannian manifold. We compare the model to its Euclidean
counterparts on a number of manifolds, datasets and tasks, and show that it has
superior representation capabilities more faithful visualizations and improved
uncertainty estimates.
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Supplementary Material

A Pseudo-Algorithm forWGPLVM

A pseudo-code algorithm for training the WGPLVM is provied in Alg. 1.
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Algorithm 1 Training WGPLVM. Input: basepoint function m, kernel kΘ,
initial latent variables x = {xi}Ni=1, dataset p = {pi}Ni=1, learning rate λ. Each
logarithmic map should be express with respect to a frame W on the manifold.
while Not converged do

# Compute logarithmic maps and save into a matrix as rows
[Logm(x)(p)]i ← Logm(xi)

(pi)
# Compute prior covariance matrix:
[Kx,Θ]ij ← kΘ(xi, xj)
# Compute objective:
L← −− dN

2
ln(2π)− d

2
ln |Kx,Θ| − 1

2
Logm(x)(p)

TK−1
x,ΘLogm(x)(p)

# Compute gradients and update parameters
x← x+ λ∇xL
Θ← Θ + λ∇ΘL

end while

B Details on Manifolds Used

The n-sphere Sn is a Riemannian manifold with exponential and logarithmic
maps given by

Expp(v) = cos(‖v‖2)p+ sin(‖v‖2)
v

‖v‖2

,

Logp(q) = arccos (〈p, q〉) q − 〈p, q〉p
‖q − 〈p, q〉p‖2

,
(16)

where ‖ · ‖2 is the 2-norm induced by the standard Euclidean innerproduct
〈·, ·〉.
Kendall’s shape space forms a quontient manifold of the sphere, so the opera-
tions defined for Sn apply, when working with the right quotient representatives.
Kendall’s shape space has the additional constraint of representing shapes with
respect to an optimal translation between a pair of shapes. Let X, Y be the
2×N data matrices of two shapes, where N is the amount of landmarks, and
each column represents the x, y-coordinates after quontienting away scale and
translation. Then, the Procrustean distance between the shapes X, Y is given
by

min
R
‖X −RY ‖2, (17)

where R is a rotation matrix. The shapes are aligned by choosing a reference
point, and aligning the population elements by minimizing the Procrustean
distance.

The space SPD(n) of symmetric, positive definite matrices can be given
the structure of a Riemannian manifold, by endowing it with the Log-Euclidean
metric. The tangent space at each point is the space of n-by-n symmetric
matrices, and the affine-invariant metric is given by

gP (V, U) = Trace[V TU ], (18)
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and the exponential and logarithmic maps are given by

ExpP (A) = exp(log(p) + v), LogP (Q) = log(Q)− log(P ), (19)

where exp stands for the matrix exponential and log for the matrix loga-
rithm.

C Latent Space Visualization

Here we provide the latent space visualizations for the diffusion-tensor and
diatom datasets.
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Figure 9: The latent spaces for the diffusion-tensor dataset learned using the
WGPLVM and GPLVM models. The colors indicate the FA of the given tensor.

The fractional anisotropy (FA) of a 3×3 SPD matrix is a shape descriptor taking
values between 0 and 1, where an FA of 0 corresponds to a round tensor, and an
FA near 0 corresponds to a very thin one. Given the eigenvalues λ1, λ2, λ3 for
an SPD matrix, its FA is defined as

√
3

2

√
(λ1 − λ̂)2 + (λ2 − λ̂)2 + (λ3 − λ̂)2

√
λ2

1 + λ2
2 + λ2

3

,

where λ̂ is the mean of the eigenvalues. In the latent space shown in Fig. 9,
the latent variables are colored according to the FA of their associated tensor,
and we see that both models provide a smooth transition between different FA
values.

The latent space visualization of the diatom dataset is found in Fig. 10; here
the latent variables are colored by the species of the corresponding diatom, see
Fig. 11 for a visualization of species representatives.

D Comparing the Geometries

In this section, we compare the geometries in Euclidean and Riemannian cases.
The aim is to try and understand, when the performance is improved. We do this
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Figure 10: The latent spaces for the diatom dataset learned using the WGPLVM
and GPLVM models. The colors indicate the species of the diatom corresponding
to the latent variable, see Fig. 11.

Figure 11: Representatives of each of the 37 diatom classes with corresponding
class colors used in Fig. 10. Note that variation inside of each class can be
considerable.

Figure 12: Distributions of distances between the data points and the population
means. The bar plots indicate the density of data points that lie x-fraction of
the maximum distance away from the mean. The corresponding continuous
curves represent the cumulative distributions.

by visualizing the distribution of data point distances to the corresponding popu-
lation means, the distances and means computed according to the corresponding
metrics.

As can be seen in Fig. 12, in the femur (2-sphere) and diatom (Kendall’s shape
space) cases, the distributions look very similar. In fact, in the diatom case, they
are essentially the same. The Kendall’s shape space forms a quotient manifold
of the sphere, which in this case is high dimensional (d = 180). In such high
dimension, escaping the manifold becomes increasingly more difficult (most of
the volume of the sphere is close to the boundary), and thus both the metrics are
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essentially the same. This might explain, why the WGPLVM did not improve
notably on the GPLVM.

In the crypto-tensor experiment, the distribution implies the presence of extreme
outliers under the Euclidean metric. The Log-Euclidean metric, on the other
hand, transforms the metric scale, evening out the distribution. This could very
well explain, why we see large improvement with the WGPLVM compared to
the GPLVM.

In the DTI experiment, the distribution of Euclidean distances looks more even.
This might imply, that in this occasion, the Euclidean distance is better at
capturing the trend of the data. However, the improved uncertainty estimates
of the WGPLVM could be explained, as the Euclidean models are not confined
to SPD(n). Therefore, the distributions do not follow the conic shape of
SPD(n).
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Appendix D

Optimal Transport Distance
between Wrapped Gaussian

Distributions

The following chapter presents (up to formatting) the article

Anton Mallasto, and Aasa Feragen. "Optimal Transport Distance be-
tween Wrapped Gaussian Distributions." 38th International Workshop
on Bayesian Inference and Maximum Entropy Methods in Science and
Engineering (MaxEnt). 2018.

Akin to Appendix A, this work builds on the work on 2-Wasserstein metric
between Gaussian distributions, by considering an optimal transport metric
between WGDs. To do this, we consider the pullback-WGD, that is, the Gaussian
distribution on a tangent space before pushing it forward to the manifold using
the exponential map. The distributions live in the tangent bundle, for which a
metric has to be introduced before any OT can be carried out. A distance for
tangent vectors is then introduced using parallel transport to a reference point,
which allows us to compute analytically the 2-Wasserstein distance between
pullback-WGDs under the parallel transport distance.

The theory of OT on Riemannian manifolds is well known [8], however, in
practice, only OT between discrete measures has been considered. This work is
one of the first in its kind, deriving an analytical expression for a 2-Wasserstein
distance between continuous distributions on manifolds.

As a little bit of trivia, the image on the cover of this thesis visualizes a non-
minimizing geodesic between two WGDs on the 2-sphere under the framework
developed in this work.



Optimal Transport Distance between Wrapped
Gaussian Distributions

Anton Mallasto and Aasa Feragen

Department of Computer Science, University of Copenhagen

Abstract

Optimal mass transport has recently become increasingly popular in
data sciences, where it provides metric distances between probability mea-
sures. Mostly, it finds applications in the Euclidean setting, although
the theoretical framework is also well studied in the case of Riemannian
manifolds. In this work, we study an optimal transport distance between
wrapped Gaussian distributions on a complete Riemannian manifold by
pulling them back to the tangent bundle. We provide an analytical for-
mula for a 2-Wasserstein distance between pullback wrapped Gaussian
distributions, and show that it is induced by a Riemannian structure.
We illustrate the framework on the 2-sphere, by plotting geodesics and
Fréchet means.

1 Introduction

Figure 1: A geodesic interpo-
lation between two WGDs (red
and blue) on the 2-sphere.

Optimal mass transport (OMT), originating
from the works of Monge [21] and Kantorovich
[17], defines a geometric theory for comparing
probability distributions, naturally extending
the geometry of the underlying space on which
the distributions are defined, to the space of
the distributions. The idea is to transport
minimally the mass of two distributions to
each other (for intuition, think of transporting
goods produced at a factory to outlets) when
there exists a known cost of moving a unit
mass between two points (such as the cost of
the fuel used by a delivery truck). A common
cost function is the squared L2-distance, re-
sulting in the 2-Wasserstein distance between
distributions. OMT naturally finds applica-
tions in economics [13], computer vision and

medical imaging [16, 26], but also more recently in statistics and machine
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learning [2, 3, 22] thanks to appealing theoretical and computational proper-
ties [25, 29].

Between multivariate Gaussian distributions, the 2-Wasserstein distance can
be expressed analytically [11, 14, 18, 24]. For Gaussian distributions, the 2-
Wasserstein distance corresponds to the Bures metric originating in quantum
information geometry [5], and finds recent applications in machine learning
[8, 19, 23]. Gaussian distributions are also theoretically interesting in optimal
transport, as the Wasserstein distance between Gaussian distributions formed
using the two first moments of the distributions, gives a lower bound for the
Wasserstein distance between the distributions [9].

The Wasserstein distance can be defined over any Polish space (a separable
and complete metric space). It also defines a metric between distributions on
complete Riemannian manifolds, where the Wasserstein distance is induced by
a weak Riemannian structure [1]. Even though the theory of optimal transport
on Riemannian manifolds enjoys many nice theoretical properties, due to the
nonlinearity of the manifold, explicit formulas and tools for computations be-
tween distributions are scarce. The only known examples to the authors consist
of optimal transport between discrete measures on manifolds, such as [7].

In this paper, we aim to define a Wasserstein metric on the space of wrapped
Gaussian distributions (WGDs) on Riemannian manifolds. This is formalized
by pulling the WGDs back to the tangent bundle of the manifold (yielding a
pullback-WGD), and analytically computing the 2-Wasserstein metric between
the pullback distributions.

The 2-Wasserstein distance between pullback distributions requires a metric
distance on the tangent bundle. While one could, in theory, use a well-known
metric, such as the Sasaki metric or the Cheeger-Gromoll metric [6, 15, 27], we
define a metric using parallel transportation as this allows us to derive analytical
formulas for distances and geodesics with desirable properties. For instance, in
the case of Sasaki metric, projection of geodesics between tangent vectors onto
the manifold does not result in a geodesic between the basepoints, hence, in
general, an optimal transport of WGDs would not be a WGD anymore. Another
compelling idea, is to use the complete lift of the metric on M to TM , under
which Jacobi fields form geodesics [30]. However, the associated metric is not
positive definite, resulting in paths with negative distances.

In summary, we contribute: A Wasserstein distance between pullback-WGDs
with an analytical expression, along with a proof that this metric is induced by
a Riemannian metric on the space of pullback-WGDs. The resulting framework
can be used to metrisize the space of WGDs over a manifold, when the pullback
is uniquely defined. We illustrate the computation of geodesics and Fréchet
means between WGDs on a 2-sphere for ease of visualization.
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2 Preliminaries

2.1 Probabilistic Notions

Denote by N (µ,K) the multivariate Gaussian distribution with mean vector
µ ∈ Rn and symmetric and positive definite covariance matrix K ∈ Rn×n, and
write the probability density function of a random variable X ∼ N (µ,K) as
P{X = v} = N (v|µ,K) for v ∈ Rn. We write N (n) for the set of all n-
variate Gaussian distributions. For convenience, we drop n when not explicitely
required.

Given probability spaces (X,ΣX), (Y,ΣY ), and a measurable map f : X → Y ,
the push-forward f#ν of a measure ν, defined on X, is defined as

f#ν(A) = ν(f−1(A)), (1)

for any measurable set A in the sigma-algebra ΣY .

Let T : Rn → Rn be a linear map, then the push-forward of a Gaussian distri-
bution is given by T#N (µ,K) = N (Tµ, TKT T ). For convenience, we extend
the push-forward to an operation on linear maps by T#K := TKT T .

2.2 Optimal Transport

TheWasserstein metric on probability measures derives from the optimal trans-
port problem introduced by Monge and made rigorous by Kantorovich. The
p-Wasserstein distance describes the minimal cost of transporting the mass of
a probability measure into the mass of another probability measure, when the
cost is given by a Lp distance. For more on optimal transport, see [1,29].

Let (X, d) be a complete and separable metric space, and denote by Pp(X) the
set of all probability measures ν on X satisfying

∫
X
dp(x, x′)dν(x) <∞ for some

x′ ∈ X, where dp(x, x′) is used instead of d(x, x′)p. The p-Wasserstein distance
between two probability measures ν, ν ′ ∈ Pp(X) is given by

Wp(ν, ν
′) =

(
inf

γ∈Adm[ν,ν′]

∫

X×X
dp(x0, x1)dγ(x0, x1)

) 1
p

, (2)

where Adm[ν, ν ′] is the set of joint probability measures onX×X with marginals
ν and ν ′. Defined as above, Wp satisfies the properties of a metric. Furhermore,
a minimizer in (2) is always achieved.

The 2-Wasserstein metric between two Gaussians N (µ0, K0) and N (µ1, K1) is
given by [11,14,18,24]

W 2
2 (N (µ0, K0),N (µ1, K1)) = d2

Euc(µ0, µ1) + Tr(K0 +K1− 2(K
1
2
0 K1K

1
2
0 )

1
2 ), (3)

where dEuc is the canonical metric on Rn. The metric can then be defined for
any random variables Xi ∼ N (µi, Ki), i = 1, 2, as the distance between their
distributions.
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The linear map T = K
1
2
1

(
K

1
2
1 K0K

1
2
1

)− 1
2

K
1
2
1 pushesN (0, K0) forward toN (0, K1),

and is called the optimal map between K0 and K1. The metric space (N ,W2)
can be shown to be the induced metric space of the Riemannian manifold
(N , gN ), where gNN (µ,K)(v, u) = vT0 u0 + vT1 Ku1 [28], and v = (v0, v1), u =

(u0, u1) ∈ TN (µ,K)N ' Rn × Sym(n) are tangent vectors at N (µ,K). Here,
Sym(n) denotes the vector space of symmetric n-by-n matrices.

The Riemannian exponential and logarithm maps for the manifold N are given
by

LogNN (µ0,K0)(N (µ1, K1)) = (µ1 − µ0, T − I),

ExpNN (µ0,K0)((v0, v1)) = N (µ0 + v0, (I + v1)#K0),
(4)

where v = (v0, v1) is a tangent vector and T is the optimal map between
N (0, K0) and N (0, K1).

2.3 Riemannian Geometry

We briefly recall Riemannian geometry required in this work. For more, see [10].
A smooth manifold M is Riemannian, if it admits a smoothly varying inner
product gp(·, ·) in the tangent space TpM for any p ∈ M , called a Riemannian
metric. The metric g induces a distance function d between two points p, q ∈M ,
by measuring the length of curves minimally connecting p and q. These curves
are called geodesics. Any geodesic γ originating from some p ∈M , is uniquelly
defined by a pair (p, v) in the tangent bundle TM of M , where v = γ̇(0). The
tangent bundle is defined as the disjoint union of the tangent spaces TpM of all
p ∈M .

The Riemannian exponential Exp : TM → M takes a point in the tangent
bundle, and maps it to the point on the associated geodesic γ(p,v) at time one,
that is,

Exp : TM →M, (p, v) 7→ Expp(v) := γ(p,v)(1). (5)

The exponential at p forms a diffeomorphism between a neighborhood 0 ∈ Up ⊂
TpM and a neighborhood p ∈ Vp ⊂M , where Vp is chosen maximally to preserve
injectivity. Then, the set Vp is the area of injectivity at p. Inside of Vp, the
exponential Expp admits the inverse Logp : Vp → TpM , called the Riemannian
logarithm at p, characterized by Expp(Logp(p

′)) = p′, for any p′ ∈ Vp. The
complement of Vp is called the cut-locus at p, denoted by Cp. If the cut-locus
is empty, then Vp = M , and so the logarithmic map is defined everywhere.
An important class of such manifolds consists of manifolds with non-positive
curvature.

Given the Levi-Civita connection ∇ on M , we can define the parallel transport
Pp0,p1 : Tp0M → Tp1M , that intuitively moves a vector in a parallel manner
along the geodesic γ connecting p0 and p1. More rigorously, fix v ∈ Tp0M .
Then, there exists a unique vector field V : [0, 1] → TM , Vt ∈ Tγ(t)M along γ
with

∇γ̇V = 0, (6)
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Figure 2: An illustration of the metric dpref . We measure the distance between
the basepoints p0 and p1 along the geodesic (dashed line). Then, we parallel
transport v0 and v1 to the tangent space TprefM at the reference point, where
the distance between the vectors is computed.

satisfying V (0) = v. Then, we define Pp0,γ(t)v := V (t), and note that Pγ(s),γ(t)

is a linear isometry between Tγ(s)M and Tγ(t)M . Finally, when we fix bases for
TpM and TqM , by abuse of notation, we use Pp,q to denote the matrix associated
with the parallel transport from TpM to TqM .

3 Metric on the Tangent Bundle

Let (M, g) be a Riemannian manifold with the induced metric function dM , and
TM its tangent bundle. We wish to define a metric function dpref on TM , that
allows an analytical expression for the Wasserstein distance between wrapped
Gaussian distributions, to be defined in Section 4. The idea is to form a distance
using two terms: a basepoint distance given by dM , and a parallel transport
scheme for comparing the tangent vectors in different tangent spaces. For this,
we will have to fix a reference point pref , where the tangent vectors will be
transported. If we were to compare the tangent vectors by parallel transporting
one to the other’s tangent space, the resulting "distance" would not satisfy the
triangle inequality.

Due to the reference point pref , we get a family of distances on the tangent
bundle TM . Effectively, the tangent space TprefM at pref gives us a reference
orientation system for the tangent vectors in the tangent bundle. In practice,
for a given data set, we will choose pref to be the Fréchet mean of the data set
(see Section 7 for definition). See Fig. 2 for an illustration of the construction
of dpref .
Proposition 1. Let (M, g) be a Riemannian manifold with the induced metric
function dM , furthermore let xi = (pi, vi) ∈ TM for i = 0, 1 and fix a reference
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Figure 3: Illustrating a WGD on a manifold M . First, a pullback WGD
NTM(p,K) is defined in the tangent space TpM , which is then pushed-forwad
onto M by the exponential map Expp.

point pref ∈M . Now define dpref : TM × TM → R by

dpref (x0, x1)2 =

{
dM(p0, p1)2 + ‖Pp0,pref (v0)− Pp1,pref (v1)‖2

pref
, p0, p1 6∈ Cpref ,

∞, otherwise.

(7)
Here, ‖ · ‖pref is the norm in TprefM induced by the Riemannian metric at pref .
The condition p0, p1 6∈ Cpref is required for the parallel translations to be well-
defined. Then, (TM, dpref ) forms a metric space.

Proof. This follows immediately from the fact, that the parallel transportation
between tangent spaces forms an isometry, and that dpref can be viewed as a
product metric on M × TprefM .

4 Wrapped Gaussian Distributions

We now recall wrapped Gaussian distributions (WGDs) on a manifold M . We
start by defining pullback wrapped Gaussian distributions (pullback-WGD) on
the tangent bundle TM , which are then pushed forwad using the Riemannian
exponential map, yielding a WGD. The idea of WGDs originated in directional
statistics [20].

Fix p ∈ M and let N (x|0, K) be the probability density function of N (0, K).
A random point X on TM is said to be distributed according to a pullback
wrapped Gaussian distribution (pullback-WGD) with basepoint µ and tangent
space covariance K, if it follows the distribution

P{X = (q, v)} = χp(q)N (v|0, K), (8)
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where χp is the indicator function satisfying χp(q) = 1 if p = q, χp(q) = 0
otherwise. In other words, X is a Gaussian random vector living in TpM . We
use the notation X ∼ NTM(p,K)

A random point Y on M is said to be distributed according to a wrapped
Gaussian distribution (WGD) on M , if

Y = Exp(X), (9)

for some random point X ∼ NTM(p,K) on TM . Then, the distribution of Y is
given by

Y ∼ (Expp)#NTM(p,K), (10)

which we denote by Y ∼ NM(p,K). We callX a pullback of Y .This construction
is illustrated in Fig. 3.

5 2-Wasserstein Distance between Wrapped Gaus-
sian Distributions

Let Xi ∼ NTM(pi, Ki) be distributed according to pullback-WGDs on TM , and
denote their laws by µi for i = 0, 1. Then, the 2-Wasserstein distance between
them, with the tangent bundle metric given by dpref , is computed as

W 2
2 (X0, X1) = inf

γ∈Adm(µ0,µ1)

∫

TM

d2
pref

((q0, v0), (q1, v1))dγ((q0, v0), (q1, v1))

= inf
γ∈Adm(µ0,µ1)

∫

TprefM

‖Pp0,pref (v0)− Pp1,pref (v1)‖2
pref
dγ

+ d2
M(p0, p1),

(11)

where the last term is the 2-Wasserstein distance between (Pp0,pref )#N (0, K0)
and (Pp1,pref )#N (0, K1) in the tangent space TprefM , which is given by

W 2
2 ([Pp0,pref ]#N (0, K0), (Pp1,pref )#N (0, K1))

=W 2
2 (N (0, P T

p0,pref
K0Pp0,pref ),N (0, P T

p1,pref
K1Pp1,pref ))

=Tr
(
P T
p1,pref

K1Pp1,pref + P T
p0,pref

K0Pp0,pref
)

− 2Tr
(

(P T
p1,pref

K1Pp1,pref )
1
2P T

p0,pref
K0Pp0,pref (P

T
p1,pref

K1Pp1,pref )
1
2

) 1
2

=Tr(K1) + Tr(K2)− 2Tr
(
K

1
2
1 Pp1,prefP

T
p0,pref

K0Pp0,prefP
T
p1,pref

K
1
2
1

)
,

(12)

where we used the fact that the parallel transport is an isometry, and thus the
associated matrix is orthogonal. Recall, that for an orthogonal matrix P and
symmetric, positive definite K, we have Tr(P TKP ) = Tr(K), and (P TKP )

1
2 =

P TK
1
2P . Combining the above, we get the following proposition.
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Figure 4: The exponential map ExpNTM at NTM(p,K) acts on a tangent vector
(v0, v1) by sending the basepoint p to ExpMp (v0). 1. The covariance matrix
K is parallel transported to TprefM , 2. where it functions as the basepoint
for the exponential ExpN , mapping the parallel translation of the tangent vec-
tor component v1. 3. The result is then parallel transported from TprefM to
TExpM

p (v0)M .

Proposition 2. Let Xi ∼ NTM(pi, Ki) be distributed as pullback-WGDs for
i = 1, 2. Their 2-Wasserstein distance is then given by

W 2
2 (X0, X1) = d2

M(p0, p1) +W 2
2 ([Pp0,pref ]#N (0, K0), [Pp1,pref ]#N (0, K1))

= d2
M(p0, p1) + Tr(K1) + Tr(K2)

− 2Tr
(
K

1
2
1 Pp1,prefP

T
p0,pref

K0Pp0,prefP
T
p1,pref

K
1
2
1

)
.

(13)

Proof.

Proposition 2 yields a formula for the 2-Wasserstein distanceW2 between pullback-
WGDs on TM . As the pullback of a WGD on M might not be unique, we
quotient the space of pullback WGDs by definining an equivalence class: the
pullbacks are equivalent if their push-forwards are equal. Then, we may define a
quotient pseudometric [4] dW,pref between the wrapped Gaussian distributions on
M . For manifolds with empty cut locus, each WGD on M is the push-forward
of exactly one WGD in TM , and hence the quotient pseudometric dW,pref is a
metric and is given by the following equation:
Definition 1. Assume thatM has an empty cut locus. For any Yi ∼ NM(pi, Ki),
i = 0, 1, distributed as WGDs on M , let Xi ∼ NTM(pi, Ki) have the correspond-
ing unique pullback-WGDs on TM . Then, the quotient metric dW,pref between
Y0 and Y1 on M is given as

dW,pref (Y0, Y1) := W2(X0, X1). (14)

An important class of manifolds with an empty cut-locus is the set complete and
connected manifolds with non-positive curvature (Hadamard manifolds).
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We now turn to study the geodesics between two WGDs onM under the metric
dW,pref .
Proposition 3. Let Yi ∼ NM(pi, Ki) for i = 0, 1. Assuming that v = Logp0p1

exists, we define the geodesic pt = Expp0(tv) between the basepoints. Further-
more, let T be the optimal map between [Pp0,pref ]#N (0, K0) and [Pp1,pref ]#N (0, K1),
so that the geodesic Kt between their covariance matrices is given by

Kt = [(1− t)I + tT ]#[Pp0,pref ]#K0. (15)

Then, the path
γ(t) = Yt ∼ NM(pt, [Ppref ,pt ]#Kt), (16)

defines a geodesic between Y0 and Y1 under the metric dW,pref in NM , the space
of WGDs on M .

Proof. By a straight-forward computation, we get

d2
W,pref

(Yt0 , Yt1)

=W 2
2

(
NTM(pt0 , [Ppref ,pt0 ]#Kt0),NTM(pt1 , [Ppref ,pt1 ]#Kt1)

)

=d2
M(pt0 , pt1) +W 2

2

(
N (0, [Ppt0 ,pref ]#[Ppref ,pt0 ]#Kt0),N (0, [Ppt1 ,pref ]#[Ppref ,pt1 ]#Kt1)

)

=d2(pt0 , pt1) +W 2
2 (N (0, Kt0),N (0, Kt1))

=(t1 − t0)2d2(p0, p1) + (t1 − t0)2W 2
2 ([Pp0,pref ]#N (0, K0), [Pp1,pref ]#N (0, K1))

=(t1 − t0)2d2
W,pref

(Y0, Y1),

(17)

where the first equation follows from the definition of dW,pref , the second from
Proposition 2, third from the parallel transports forth and back cancelling each
other, and fourth follows from pt and Kt being geodesics on M and N , re-
spectively. The computations shows that Yt forms a geodesic, as it is unit
parametrized with length equal to the distance between Y0 and Y1.

The intuition behind this result, is that the geodesics of WGDs under dW,pref
are given by following geodesics between the basepoints on M while parallel
transporting the geodesic between Gaussian distributions in (NTprefM ,W2) in
the reference tangent space. Here NTprefM denotes the space of Gaussian distri-
butions on TprefM . See Fig. 1 for an illustration on the 2-sphere.

6 Riemannian Structure of (NTM ,W2)

The space (NTM ,W2) of pullback-WGDs can be viewed as the product manifold
M ×NTprefM with the Riemannian metric given by

gNTM

NM (p,K)((v0, v1), (u0, u1)) = gMp (v0, u0) + gN[Pp,pref
]#N (0,K)(Pp,pref (v1), Pp,pref (u1)),

(18)
for tangent vectors (v0, v1) and (u0, u1) in the tangent space

TNTM (p,K) ' TpM × TN (0,K)NTprefM . (19)
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Here gM denotes the Riemannian metric on M , and gN the Riemannian metric
on NTprefM .

Note, how the Riemannian structure of M × NTprefM is naturally extended to
the whole of NTM via parallel transportation. Furthermore, as Proposition 3
shows that the geodesics on NTM are given by combining geodesics on M and
NTprefM , we conclude that W2 is induced by gNTM .

Then, the Riemannian exponential and logarithm on (NTM , gNTM ) are given
by

LogNTM

NM (p0,K0)(NM(p1, K1))

:=
(

LogMp0 (p1), [Ppref ,p0 ]#LogN[Pp0,pref
]#N (0,K0) ([Pp1,pref ]#N (0, K1))

)

ExpNTM

NM (p,K)((v0, v1))

:=NTM
(

ExpMp (v0), [Ppref ,ExpM
p (v0)]#ExpN[Pp,pref

]#N (0,K)([Pp,pref ]#v1)
)
,

(20)

see Fig. 4 for an illustration of the exponential map. Summarizing the above,
we get the following result
Theorem 1. The metric space (NTM ,W2) is induced by the Riemannian metric
(NTM , gNTM ).

Proof.

Remark, that when the pullbacks of WGDs on M are uniquely defined, we can
extend this Riemannian structure to (NM , dW,pref ).

7 Fréchet Means on (NTM ,W2)

A Fréchet mean [12] is a generalization of the Euclidean population mean to
metric spaces. Formally, x̄ is a Fréchet mean of a population x1, x2, ..., xN ∈ X
on a metric space (X, d), if it satisfies

x̄ ∈ arg min
x

N∑

i=1

d2(xi, x). (21)

Note that unlike in the Euclidean case, the Fréchet mean is not necessarily
unique.

Let NTM(pi, Ki), i = 1, 2, ..., N be a population of pullback-WGDs on TM .
Then, by (21), the Fréchet mean NTM(p̄, K̄) minimizes

N∑

i=1

W 2
2 (NTM(pi, Ki),NTM(p,K))

=
N∑

i=1

(
d2
M(pi, p) +W 2

2 (N (0, [Ppi,pref ]#Ki), [Pp,pref ]#N (0, K))
)
.

(22)
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The two terms on the right-hand side can be minimized independently. Thus,
we split the computation into two: first, compute p̄ as the Fréchet mean on M
and use it as the reference point pref for the metric dpref on TM. Then, Pp,pref
is the identity transformation, so it suffices to compute N (0, K̄) as the Fréchet
mean of the population N (0, [Ppi,pref ]#Ki), i = 1, 2, ..., N on the manifold N of
Gaussian distributions. See Fig. 5 for an example of a Fréchet mean on the
2-sphere, where we have computed the Fréchet mean of three pullback-WGDs,
and visualized them by their push-forward WGDs on M .

As NTM is a Riemannian manifold, and the optimization of the two terms are
carried on submanifolds, a common strategy for the computation of the mean
is to note that on a Riemannian manifold (N, g), we have

d

dp
d2
N(p, pi)

∣∣∣∣
p=p̄

= −2LogNp̄ (pi), (23)

which can then be applied with a gradient based minimization algorithm.

8 Discussion

Figure 5: A population of
WGDs (in red) on the 2-sphere,
visualized by mapping σ con-
fidence intervals from corre-
sponding pullback-WGDs. The
Fréchet mean is given in blue.
As the 2-sphere has non-empty
cut-locus, the pullback dis-
tributions are not necessar-
ily uniquely defined. Here,
the Fréchet mean is computed
between chosen represenative
pullback WGDs.

We provided an analytical formula for the 2-
Wasserstein metric between pullback-WGDs,
and showed that the distance is induced
by a Riemannian structure on the space of
pullback-WGDs. We then extended the re-
sults to a class of WGDs on a Riemannian
manifold M , and visualized a geodesic and a
Fréchet mean on the 2-sphere.

The extension to WGDs is well defined when-
ever the base manifold M allows uniqueness
of the pullback-WGDs. As we remarked, this
follows immediately, if M has an empty cut-
locus. Other cases have not been as well
studied, which poses an open question; what
are the sufficient conditions for a pullback of
WGD to be uniquely defined?

An alternative to our approach would be to
compute a distance (or a similarity measure)
directly between distributions on M . How-
ever, tackling the expressions for theKullback-
Leibler (KL) divergence or the 2-Wasserstein
distance seems quite challenging. In contrast
to this, the pullback approach seems attrac-
tive for its analytical formulas, even though
the aforementioned complications are encoun-
tered.
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Appendix E

A Formalization of the Natural
Gradient Method for General

Similarity Measures

The following chapter presents (up to formatting) the article

Anton Mallasto, Tom Dela Haije, and Aasa Feragen. "A Formalization of
The Natural Gradient Method for General Similarity Measures." Proceed-
ings of 4th International Conference on Geometric Science of Information
(GSI). 2019.

This work presents a generalization of the natural gradient to arbitrary diver-
gences. Traditionally, the natural gradient [4] has been associated with the
Riemannian gradient resulting from pulling back the Fisher–Rao metric onto
the statistical manifold. The Fisher–Rao metric can also be viewed as the
Riemannian metric associated with the Kullback–Leibler divergence [5]. A more
modern approach is to define the natural gradient with respect to any chosen
Riemannian geometry on the statistical manifold [6, Sec. 12]. However, this
poses the question, whether the chosen Riemannian geometry relates reasonably
to the geometry induced on the space of probabilities by the divergence.

The article aims at motivating the use of the pullback metric on the statistical
manifold associated with the divergence being minimized, which we interpret
as a local Hessian of the divergence. Furthermore, relations between different
optimization methods, such as the proximal method, trust-region method, and
the natural gradient are discussed. The article ends with providing example
computations for the natural gradient under different divergences, notably in
the p-Wasserstein case, yielding in the p = 2 case the Wasserstein natural
gradient [17,40].



A Formalization of the Natural Gradient
Method for General Similarity Measures

Anton Mallasto Tom Dela Haije Aasa Feragen

Department of Computer Science, University of Copenhagen

Abstract

In optimization, the natural gradient method is well-known for likeli-
hood maximization. The method uses the Kullback–Leibler (KL) diver-
gence, corresponding infinitesimally to the Fisher–Rao metric, which is
pulled back to the parameter space of a family of probability distributions.
This way, gradients with respect to the parameters respect the Fisher–
Rao geometry of the space of distributions, which might differ vastly from
the standard Euclidean geometry of the parameter space, often leading to
faster convergence. The concept of natural gradient has in most discus-
sions been restricted to the KL-divergence / Fisher–Rao case, although
in information geometry the local C2 structure of a general divergence
has been used for deriving a closely related Riemannian metric analogous
to the KL-divergence case. In this work, we wish to cast natural gradi-
ents into this more general context and provide example computations,
notably in the case of a Finsler metric and the p-Wasserstein metric. We
additionally discuss connections between the natural gradient method and
multiple other optimization techniques in the literature.

1 Introduction

The natural gradient method [2] in optimization originates from information
geometry [4], which utilizes the Riemannian geometry of statistical manifolds
(the parameter spaces of model families) endowed with the Fisher–Rao met-
ric. The natural gradient is used for minimizing the Kullback–Leibler (KL)
divergence, a similarity measure between a model distribution and a target
distribution, that can be shown to be equivalent to maximizing model like-
lihood of given data. The success of natural gradient in optimization stems
from accelerating likelihood maximization and providing infinitesimal invari-
ance to reparametrizations of the model, providing robustness towards arbitrary
parametrization choices.

In the modern formulation of the natural gradient, a Riemannian metric on
the statistical manifold is chosen, with respect to which the gradient of the
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Iteration

Figure 1: Maximizing prior likelihood for Gaussian process regression using nat-
ural gradients under different metrics on Gaussian distributions. Convergence
plots on left. Data and model fit, with optimal exponentiated quadratic kernel
parameters, on right.

given similarity is computed [4, Sec. 12]. The choice of the Riemannian met-
ric should, however, relate closely to the similarity measure being minimized.
We have illustrated this in Fig. 1, where model selection for Gaussian process
regression is carried out by maximizing the prior-likelihood of the data with
natural gradients stemming form different metrics. Clearly, the Fisher–Rao
metric—which infinitesimally corresponds to the KL-divergence—achieves the
fastest convergence.

An example of an approach to choose a related Riemannian metric is the clas-
sical Newton’s method that derives a metric from the Hessian of a convex ob-
jective function, or its absolute value in the non-convex case [7]. Unfortunately,
evaluating the Hessian is not feasible in some cases. Instead, we can compute
a local Hessian, which corresponds to a local second order expansion of the
similarity measure [3]. This approach generalizes the natural gradient from the
KL-divergence case to general similarity measures, and to avoid confusion with
the well-known KL-divergence setting, we refer to this approach as the formal
natural gradient. We furthermore discuss the similarities between the trust re-
gion, proximal, and natural gradient methods in Section 3 and provide example
computations in Section 4.

2 Useful Metrics via Formalizing the Natural Gra-
dient

The natural gradient is computed with respect to a chosen metric on the sta-
tistical manifold, which often results from pulling back a metric between dis-
tributions. This way, the gradient takes into account how the metric on distri-
butions penalizes movement into different directions. We will now review how
the natural gradient is computed given a Riemannian metric. Then, we intro-
duce the formal natural gradient, which derives this metric from the similarity
measure.

Statistical manifold. Let AC(X) denote the set of absolutely continuous
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probability distributions on some manifold X. A statistical manifold is defined
by a triple (X,Θ, ρ), where X is called the sample space and Θ ⊆ Rn the
parameter space. Then, ρ : Θ → AC(X) maps a parameter to a density, given
by ρ : θ 7→ ρθ(·), for any θ ∈ Θ. Abusing terminology, we also call Θ the
statistical manifold.

Cost function. Let a similarity measure c∗ : AC(X)× AC(X) → R≥0 (e.g. a
metric or an information divergence) be defined on AC(X) satisfying c∗(ρ, ρ′) =
0 if and only if ρ = ρ′. Assume c∗ to be strictly convex in ρ. Given a target dis-
tribution ρ ∈ AC(X) and a statistical manifold (X,Θ, ρ), we wish to minimize
the cost function c→ Θ× AC(X)→ R≥0 given by

c(θ, ρ) = c∗(ρθ, ρ). (2.1)

If ρ = ρθ′ for some θ′ ∈ Θ, then by abuse of notation we write c(θ, θ′). We
finally assume that θ 7→ c(θ, θ′) is C2 whenever θ 6= θ′.

Natural gradient. Assume a Riemannian structure (Θ, gΘ) on the statistical
manifold. The Riemannian metric gΘ induces a metric tensor GΘ, given by
gΘ
θ (u, v) = uTGΘ

θ v and a distance function which we denote by dΘ. The vectors
u, v belong to the tangent space TθΘ at θ. It is common intuition that the
negative gradient v = −∇θc(θ, ρ) gives the direction of maximal descent for c.
However, this is only true on a Euclidean manifold. Consider

v̂ = arg min
v∈TθΘ:dΘ(θ,θ+v)=∆

c(θ + v, ρ), (2.2)

where θ + v is to be understood in a chart of Θ, and ∆ > 0 defines the radius
of the trust region. Linearly approximating the objective and quadratically
approximating the constraint, this is solved using Lagrangian multipliers, giving
the natural gradient

v̂ = −1

λ

[
GΘ
θ

]−1∇θc(θ, ρ), (2.3)

for some Lagrangrian multiplier λ > 0, which we refer to as the learning rate.
Below, a similar derivation is carried out in more detail.

Formal natural gradient. Traditionally, the natural gradient uses the Fisher–
Rao metric when the similarity measure used is the KL-divergence. We will
now show, how a trust region formulation with respect to the chosen similarity
measure can be used to derive a natural metric under which the natural gradient
can be computed, resulting in the formal natural gradient. Thus, consider the
minimization task

v̂ := arg min
v∈TθΘ, c(θ+v,θ)=∆

c(θ + v, ρ). (2.4)

We approximate the constraint by the second degree Taylor expansion

c(θ + v, θ) ≈ 1

2
vT
(
∇2
η→θc(η, θ)

)
v, (2.5)

where the 0th and 1st degree terms disappear as c(θ+ v, θ) has a minimum 0 at
v = 0. We call the symmetric positive definite matrix Hc

θ := ∇2
η→θc(η, θ) the

112 Appendix E. Formalization of Natural Gradients



local Hessian. Then, we further approximate the objective function

c(θ + v, ρ) ≈ c(θ, ρ) +∇θc(θ, ρ)Tv. (2.6)

Writing the approximate Langrangian L(v) of (2.4) with a multiplier λ > 0, we
get

L(v) ≈ c(θ, ρ) +∇θc(θ, ρ)Tv +
λ

2
vT
(
∇2
η→θc(η, θ)

)
v. (2.7)

Thus by the method of Langrangian multipliers, (2.4) is solved as

v̂ = −1

λ
[Hc

θ ]
−1∇θc(θ, ρ). (2.8)

We refer to v̂ as the formal natural gradient with respect to c.
Remark 1. We could have just substituted η = θ in the local Hessian if ∇2

ηc(η, θ)
was continuous at η. However, when studying Finsler metrics later in this work,
the expression has a discontinuity at η = θ. Therefore, a direction for a limit
has to be chosen, and as a straight-forward candidate we compute the limit from
the direction of the gradient.

Metric interpretation. The local Hessian Gc
θ can be seen as a metric tensor

at any θ ∈ Θ, inducing an inner product gcθ : TθΘ×TθΘ→ R given by gcθ(v, u) =
vTHc

θu. This imposes a pseudo-Riemannian structure on Θ, forming the pseudo-
Riemannian manifold (Θ, gc). Therefore, Gc

x provides us a natural metric under
which to compute the natural gradient for a general c∗. If ρ has a full rank
Jacobian everywhere, then a Riemannian metric is retrieved. Also, there is an
obvious pullback structure at play. Recall, that the cost is defined by c(θ, θ′) =
c∗(ρθ, ρθ′). Then, computing the local Hessian yields

Hc
θ = JTθ H

c∗
ρθ
Jθ, (2.9)

where Hc∗
ρθ

= ∇2
ρ→ρθc

∗(ρ, ρθ). Thus, Hc results from pulling back the c∗ induced
metric tensor Hc∗ on AC(X) to the statistical manifold Θ. In information
geometry, this Riemannian metric is said to be induced by the corresponding
divergence (similarity measure) [3]. Therefore, the formal natural gradient is
just the Riemannian gradient under the aforementioned induced metric.

Asymptotically Newton’s method. We provide a straightforward result,
stating that the local Hessian approaches the actual Hessian in the limit, thus
the formal natural gradient method approaches Newton’s method. This is well
known in the Fisher–Rao case, but for completeness we provide the result for
the formal natural gradient.
Proposition 1. Assume c(θ, ρ) = c(θ, θ′) for some θ′ ∈ Θ, and that c is C2 in
θ. Then, the natural gradient yields asymptotically Newton’s method.

Proof. The Hessian at θ is given by ∇2
θc(θ, θ

′). Then, as c is C2 in the first
argument, passing the limit θ → θ′ yields

Hc
θ = ∇2

η→θc(η, θ)
θ→θ′→ ∇2

η→θ′c(η, θ
′) = ∇2

η=θ′c(η, θ
′), (2.10)

where the last expression is the Hessian at θ′.
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3 Loved Child Has Many Names – Related Meth-
ods

In this section, we discuss connections between seemingly different optimization
methods. Some of these connections have already been reported in the litera-
ture, some are likely to be known to some extent in the community. However,
the authors are unaware of previous work drawing out these connections in
their full extent. We provide such a discussion, and then present other related
connections.

As discussed in [13], proximal methods and trust region methods are equivalent
up to learning rate. Trust region methods employ an l2-metric constraint

xt+1 = arg min
x:‖x−xt‖2≤∆

f(x), ∆ > 0, (3.1)

whereas proximal methods include a l2-metric penalization term

xt+1 = arg min
x

{
f(x) +

1

2λ
‖x− xt‖2

2

}
, λ > 0, (3.2)

The two can be shown to be equivalent up to learning rate via Lagrangian
duality.

Instead of the l2 metric penalization, mirror gradient descent [12] employs a
more general proximity function Ψ: Rn × Rn → R>0, that is strictly convex in
the first argument. Then, the mirror descent step is given by

xt+1 = arg min
x

{
〈x− xt,∇f(xt)〉+

1

λ
Ψ(x, xt)

}
. (3.3)

Commonly, Ψ is chosen to be a Bregman divergence Dg, defined by choosing a
strictly convex C2 function g and writing

Dg(x, x
′) = g(x)− g(x′)− 〈∇g(x′), x− x′〉. (3.4)

To explain how these methods are related to the natural gradient, assume that
we are minimizing a general similarity measure c(x, y) with respect to x, as in
Sec. 2. Recall, that we first defined the natural gradient as a trust region step.
In order to derive an analytical expression for the iteration, we approximated the
objective function with the first order Taylor polynomial and the constraints
by the local Hessian and then used Lagrangian duality to yield a proximal
expression, which yields the formal natural gradient when solved. In Sec. 4,
we will show how this workflow indeed corresponds to known examples of the
natural gradient.

Further connections. Raskutti and Mukherjee [15] showed, that Bregman di-
vergence proximal mirror gradient descent is equivalent to the natural gradient
method on the dual manifold of the Bregman divergence. Khan et al. [8], con-
sider a KL divergence proximal algorithm for learning conditionally conjugate
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exponential families, which they show to correspond to a natural gradient step.
For exponential families, the KL-divergence corresponds to a Bregman diver-
gence, and so the natural gradient step is on the primal manifold of the Bregman
divergence. Thus the result seems to conflict with the resut in [15]. However,
this can be explained, as the gradient is taken with respect to a different argu-
ment of the divergence, i.e., they consider ∇xDg(x

′, x) and not ∇xDg(x, x
′). It

is intriguing how two different geometries are involved in this choice.

Pascanu and Bengio [14] remarked on the connections between the natural gra-
dient method and Hessian-free optimization [10], Krylov Subspace Descent [17],
and TONGA [16]. The main connection between Hessian-free optimization and
Krylov subspace descent is the use of extended Gauss–Newton approximation
of the Hessian [18], which gives a similar square form involving the Jacobian
as the pullback Fisher–Rao metric on a statistical manifold. The connection
was further studied by Martens [11], where an equivalence criterion between
the Fisher–Rao natural gradient and extended Gauss–Newton was given.

4 Example Computations

We will now provide example computations for the local Hessian Hc of different
similarity measures c, as it is the essential object in computing the natural
gradient given in (2.8). We first show that in the cases of KL-divergence and
a Riemannian metric, the definition of the formal natural gradient matches
the classical definition, as expected. Furthermore, we contribute local Hessians
for general f -divergences and Finsler metrics, specifically for the p-Wasserstein
metrics.

Natural gradient of f-divergences. Let ρ, ρ′ ∈ AC(X) and f : R>0 → R≥0

be a convex function satisfying f(1) = 0. Then, the f -divergence from ρ′ to ρ
is

Df (ρ||ρ′) =

∫

X

ρ(x)f

(
ρ′(x)

ρ(x)

)
dx. (4.1)

Now, consider the statistical manifold (Rd,Θ, ρ), and compute the local Hes-
sian [

H
Df
θ

]
ij

= ∇2f(1)

∫

X

∂ log ρθ(x)

∂θi

∂ log ρθ(x)

∂θj
ρθ(x)dx. (4.2)

Substituting f = − log in (4.1) results in the KL-divergence, denoted byDKL(ρ||ρ′).
Noticing that ∇2f(1) = 1 with this substitution, we can write (4.2) as HDf

θ =
∇2f(1)HDKL

θ , where the local HessianHDKL
θ is also the Fisher–Rao metric tensor

at θ, and thus the natural gradient of Amari [2] is retrieved.

Natural gradient of Riemannian distance. Let (M, g) be a Riemannian
manifold with the induced distance function dg and the metric tensor at ρ ∈M
denoted by GM

ρ . Finally, denote by ρθ a submanifold of M parametrized by
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θ ∈ Θ. Then, when c = 1
2
d2, we compute G

1
2
dg

θ as follows
[
H

1
2
d2

θ

]
ij

=
1

2

(
∂

∂θj
ρθ

)T [
∇2
ρη→ρθd

2(ρη, ρθ)
]( ∂

∂θi
ρθ

)

+
1

2

[
∂2

∂θj∂θi
ρθ

] [
∇ρη→ρθd

2(ρη, ρθ)
]
,

(4.3)

as θ′ → θ, the second term vanishes. Finally,∇2
ρη→ρθd

2(ρη, ρθ) = 2GM
ρθ
, thus

H
1
2
dg

θ = JTθ G
M
xθ
Jθ, (4.4)

where Jθ = ∂
∂θ
ρθ denotes the Jacobian. Therefore, the formal natural gradi-

ent corresponds to the traditional coordinate-free definition of a gradient on a
Riemannian manifold, when the metric is given by the pullback

Natural gradient of Finsler distance. Let (M,F ) denote a Finsler manifold,
where Fρ : TρM → R≥0, for any ρ ∈ M , is a Finsler metric, satisfying the
properties of strong convexity, positive 1-homogeneity and positive definiteness.
Then, a distance dF is induced on M by

dF (ρ, ρ′) = inf
γ

∫ 1

0

Fγ(t)(γ̇(t))dt, ρ, ρ′ ∈M (4.5)

where γ is any continuous, unit-parametrized curve with γ(0) = ρ and γ(1) =
ρ′.

The fundamental tensor GF of F at (ρ, v) is defined as GF
ρ (v) = 1

2
∇2
vF

2
ρ (v).

Then, GF
ρ is 0-homogeneous as the second differential of a 2-homogeneous func-

tion. Therefore, GF
ρ (λv) = GF

ρ (v) for any λ > 0. Furthermore, GF
ρ (v) is

positive-definite when v 6= 0. Now, let u = −Jθ∇θd
2
F (ρθ, ρ

′), and as we can
locally write d2

F (ρ, ρ′) = F 2
ρθ(v) for a suitable v, then

H
1
2
d2
F

θ =
1

2
∇2
η→θd

2
F (ρη, ρθ) =

1

2
lim
λ→0
∇2
v=λuF

2
ρθ

(v) = JTθ G
F
ρθ

(u)Jθ. (4.6)

Coordinate-free gradient descent on Finsler manifolds has been studied by
Bercu [5]. The formal natural gradient differs slightly from this, as we use
v = −Jθ∇θd

2
F (ρθ, ρ

′) in the preconditioning matrix GF
(ρθ,v) (see Remark 1),

where as in [5], v is chosen to maximize the descent. Thus the natural gra-
dient descent in the Finsler case approximates the geometry in the direction of
the gradient quadratically to improve the descent, but fails to take the entire
local geometry into account.

p-Wasserstein metric. Let X = Rn and ρ ∈ Pp(X) if
∫

X

dp2(x0, x)ρ(x)dx, for some x0 ∈ X, (4.7)

where d2 is the Euclidean distance. Then, the p-Wasserstein distance Wp be-
tween ρ, ρ′ ∈ Pp(X) is given by

Wp(ρ, ρ
′) =

(
inf

γ∈ADM(ρ,ρ′)

∫

X×X
dp2(x, x′)dγ(x, x′)

) 1
p

, (4.8)
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where ADM(ρ, ρ′) is the set of joint measures with marginal densities ρ and ρ′.
The p-Wasserstein distance is induced by a Finsler metric [1], given by

Fρ(v) =

(∫

X

‖∇Φv‖p2dρ
) 1

p

, (4.9)

where v ∈ TρPp(X) and Φv satisfies v(x) = −∇ · (ρ(x)∇xΦv(x)) for any x ∈ X,
where ∇· is the divergence operator. Now, choose v = −Jθ∇θW

2
p (ρθ, ρ). Then,

through a cumbersome computation, we compute how the local Hessian acts on
two tangent vectors dθ1, dθ2 ∈ TθΘ

H
1
2
W 2
p

θ (dθ1, dθ2)

=(2− p)F 2(1−p)
ρθ

(v)

(∫

X

‖∇Φv‖p−2
2 〈∇Φdθ1 ,∇Φv〉dρθ

)

×
(∫

X

‖∇Φv‖p−2
2 〈∇Φdθ2 ,∇Φv〉dρθ

)

+ F 2−p
ρθ

(v)

∫

X

‖∇Φv‖p−2
2 〈∇Φdθ1 ,∇Φdθ2〉dρθ

+ (p− 2)F 2−p
ρθ

(v)

∫

X

‖∇Φv‖p−4
2 〈∇Φdθ1 ,∇Φv〉〈∇Φdθ2 ,∇Φv〉dρθ,

(4.10)

where Jθdθi = −∇ · (ρθ∇Φdθi) for i = 1, 2. The case p = 2 is special, as the
2-Wasserstein metric is induced by a Riemannian metric, whose pullback can
be recovered by substituting p = 2 in (4.10), yielding

H
1
2
W 2

2

θ (dθ1, dθ2) =

∫

X

〈∇Φdθ1 ,∇Φdθ2〉dρθ. (4.11)

This yields the natural gradient of W 2
2 as introduced in [6, 9].
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Appendix F

(q,p)-Wasserstein GANs:
Comparing Ground Metrics for

Wasserstein GANs

The following chapter presents (up to formatting) the preprint

Anton Mallasto, Jes Frellsen, Wouter Boomsma, and Aasa Feragen "(q,
p)-Wasserstein GANs: Comparing Ground Metrics for Wasserstein GANs."
arXiv preprint arXiv:1902.03642. 2019.

This work considers incorporating constraints, arising from the dual formulation
of OT, in the WGAN setting. The vanilla WGAN [9] is based on the 1-
Wasserstein metric, in which case the dual constraints translate into enforcing 1-
Lipschitzness over the discriminator neural network. In practice, this enforcement
forms the main implementational difficulty of WGANs. To allow for more general
cost functions in the WGAN setting, we consider utilizing the discrete c-transform
for enforcing the constraints. With this novel methodology, we study the effect
of choosing the lq ground metric for q ≥ 1 in WGANs, and the effect of using
different p-Wasserstein metrics over the different ground metrics for p ≥ 1.

As the metric chosen on the sample space affects the resulting OT task signifi-
cantly, it is important to be able to have control over it. In computer vision, it
is well known that the l2 metric does not yield an optimal similarity measure
between two images. This has inspired work that changes the sample metric
used in WGANs [1,20]. However, the models specified are still very restricted to
specific metrics, which is why studying the c-transform is worthwhile, allowing
the inclusion of a general sample metric.
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Abstract

Generative Adversial Networks (GANs) have made a major impact in
computer vision and machine learning as generative models. Wasserstein
GANs (WGANs) brought Optimal Transport (OT) theory into GANs,
by minimizing the 1-Wasserstein distance between model and data dis-
tributions as their objective function. Since then, WGANs have gained
considerable interest due to their stability and theoretical framework. We
contribute to the WGAN literature by introducing the family of (q, p)-
Wasserstein GANs, which allow the use of more general p-Wasserstein
metrics for p ≥ 1 in the GAN learning procedure. While the method is
able to incorporate any cost function as the ground metric, we focus on
studying the lq metrics for q ≥ 1. This is a notable generalization as in the
WGAN literature the OT distances are commonly based on the l2 ground
metric. We demonstrate the effect of different p-Wasserstein distances in
two toy examples. Furthermore, we show that the ground metric does
make a difference, by comparing different (q, p) pairs on the MNIST and
CIFAR-10 datasets. Our experiments demonstrate that changing the
ground metric and p can notably improve on the common (q, p) = (2, 1)
case.

1 Introduction

Generative modelling considers learning models to generate data, such as images,
text or audio. Prominent generative models include the Variational Auto-
Encoders (VAEs) Kingma & Welling (2013) and Generative Adversial Networks
(GANs) Goodfellow et al. (2014), the latter of which will be studied in this work.
The generative models can be trained on unlabelled data, which is a considerable
advantage over supervised models, as data labelling is expensive. The usual
approach employs the manifold assumption, stating that all meaningful data lies
on a low-dimensional manifold of the sample space. Based on this assumption,
one is then able to learn a map from a low dimensional distribution to the
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true data distribution. In this step, it is essential to quantitatively measure the
discrepancy between the two distributions. To this end, one chooses a metric or a
divergence between probability distributions. The metric should reflect modelling
choices with respect to which properties of the distributions are deemed similar,
or what kind of invariances one wants the metric to respect.

Traditionally, probability measures have been compared using non-metric di-
vergence measures from information geometry, e.g. the Kullback-Leibler (KL)
divergence and Bregman divergences. The KL-divergence has deep connections
with Bayesian statistics, where likelihood maximization in model selection can
be cast as minimizing the KL-divergence.

Recently, a popular family of metrics has been provided by the theory of
Optimal Transport (OT), which studies probability distributions through a
geometric framework. At its heart lie the Wasserstein metrics, which extend the
underlying metric between sample points to entire distributions. Consequently,
the metrics can be used to e.g. derive statistics between populations of probability
distributions, allowing the inclusion of stochastic data objects in statistical
pipelines Mallasto & Feragen (2017). Recent algorithmic advances Peyré &
Cuturi (2017) have made OT widespread in the fields of machine learning and
computer vision, where it has been used for e.g. domain adaption Courty et al.
(2017), point embeddings Muzellec & Cuturi (2018) and VAEs Tolstikhin et al.
(2017).

Quite notably, OT has impacted GANs. The original formulation of Goodfellow
et al. (2014) defines GANs through a minimax game of two neural networks.
One of the networks acts as a generator, whereas the other network discriminates
samples based on whether they originate from the data population or not. The
minimax game results in the minimization of the Jensen-Shannon divergence be-
tween the generated distribution and the data distribution. Arjovsky et al. (2017)
then propose to minimize the 1-Wasserstein distance, instead, demonstrating
that the new loss function provides stability to the training. This stability was
mainly attributed to the Wasserstein metric being well defined even when the
two distributions do not share the same support. This results in the Wasserstein
GAN (WGAN). Other notable OT inspired variations of the original GAN are
discussed below.

Notably, Adler & Lunz (2018) consider Banach Wasserstein GANs for minimizing
the 1-Wasserstein metric when the ground metric is induced by a norm, by
imposing a dual norm penalty of the gradient. The method thus allows for any
lq norm, but is restricted to the p = 1 case.

1.1 Related Literature

The original WGAN architecture Arjovsky et al. (2017) enforces k-Lipschitz
constraints through weight clipping. An alternative to clipping the weights is
provided in Spectral Normalization GANs (SNGANS) Miyato et al. (2018), which
impose Lipschitzness through l2-normalization of the network weights. A body
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of work includes the constraints through gradient penalties, first introduced
in Gulrajani et al. (2017), where a penalty term for non-unit-norm gradients
of the discriminator is added, resulting in the WGAN-GP. Consistency Term
GANs (CTGANs), on the other hand, penalize exceeding the Lipschitz constraint
directly.

The aforementioned work focuses on training the GAN when the 1-Wasserstein
metric with the l2 ground metric forms the objective function. On top of
this, a body of work exists exploring the use of other OT inspired metrics and
divergences. Below, we discuss some notable examples.

Deshpande et al. (2018) propose using the sliced Wasserstein distance Bonneel
et al. (2015), which computes the expectation of the Wasserstein distance between
one dimensional projections of the measures. This approach allows omitting
learning a discriminator, but in practice a discriminator is trained for choosing
meaningful projections, essential when working with high-dimensional data.
The authors report increased stability in training and show that the training
objective is an upper bound for the true distance between the generator and
target distribution.

Genevay et al. (2017), on the other hand, rely on the favorable computational
properties of relaxing the original OT problem with entropic penalization. Instead
of relying on the dual Rubinstein-Kantorovich formulation, they compute the
Sinkhorn divergence Cuturi (2013) between minibatches in the primal formulation.
This also allows omitting learning a discriminator, however, the authors do
propose learning a cost function, as they argue the l2 ground metric is not
suitable in every application. The hyperparameters of the Sinkhorn divergence
allows interpolating between the 2-Wasserstein distance and Maximum Mean
Discrepancy (MMD), providing more freedom the in the metric model choice.
This method also allows for a general cost function to be used, like our (q, p)−
WGAN method, but the experiments are limited to the p = 2 and learned
distance function cases without comparison.

Wu et al. (2018) introduce the Wasserstein divergence, motivated by the gradient
penalty approach on the 1-Wasserstein metric. The divergence builds on the
dual formulation, by relaxing the Lipschitz constraint. Additionally, a gradient
norm penalty is included, that is considered over the support of a fixed test
distribution.

1.2 Our Contribution

We wish to add more flexibility to WGANs by using the p-Wasserstein distance
on top of more general lq ground metrics for p, q ≥ 1. This is achieved through
the (q, p)-Wasserstein GAN ((q, p)-WGAN), which generalizes Wasserstein GANs
to allow arbitrary cost functions for the OT problem, however, we limit the
scope of this paper to the lq metric case. This generalization broadens the
existing WGAN literature, as mostly the 1-Wasserstein distance with l2 metric
is considered. We demonstrate the importance of the resulting flexibility in
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our experiements. Moreover, (2, 1)-WGAN provides a novel way of taking into
account the 1-Lipschitz constraints required in the original WGAN minimizing
the 1-Wasserstein distance.

Given our (q, p)-WGAN implementation, we study the effect of p when we fix
q = 2 in two toy examples. Additionally, we compare p-Wasserstein metrics
based on the lq ground metric between samples for p = 1, 2 and q = 1, 2 on the
MNIST and CIFAR-10 datasets. The (q, p)-WGANs are compared to WGAN
and WGAN-GP on the CIFAR-10 dataset to assess the performance of our
implementation. The experiments show, that choosing q = 1 outperforms q = 2
on colored image data, where as p = 2 slightly outperforms p = 1. Based on the
results, it is clear that the metric used for GANs should be tailored to fit the
needs of the application.

Finally, the OT theory suggests that the Kantorovich potentials (or discrim-
inators) can also function as generators through their gradients. We try this
on the MNIST dataset, and conclude that the generator clearly improves the
results.

2 Background

We briefly summarize the prequisites for this work. The methodology is founded
on optimal transport, which we will revise first. We finish the section by reviewing
the mathematical details of GANs with a focus on WGANs.

2.1 Optimal Transport

The aim in Optimal Transport (OT) is to define a geometric framework for the
study of probability measures. This is carried out by defining a cost function
between samples (e.g. the l2 metric), and then studying transport plans that
relate two compared probability measures to each other while minimizing the
total cost. A common example states the problem as moving a pile of dirt into
another with minimal effort, by finding an optimal allocation for each grain of
dirt so that the cumulative distance of dirt moved is minimized.

We start with basic definitions, and conclude by discussing the Wasserstein
metric. The interested reader may refer to Villani (2008) for theoretical and
Peyré & Cuturi (2017) for computational aspects of OT.

Optimal Transport Problem. Let µ be a probability measure on a metric
space X, denoted by µ ∈ M(X). Let f : X → Y be a measurable map. Then
f#µ(A) := µ(f−1(A)) denotes the push-forward of µ with respect to f . Here
A is any measurable set in another metric space Y . The push-forwad can be
also explained from a sampling perspective; assume ξ is a random variable with
distribution µ. Then f(ξ) has distribution f#µ.
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Given two probability measures µ ∈M(X), and ν ∈M(Y ), we define the set of
admissable plans by

ADM(µ, ν)

={γ ∈M(X × Y )| (π1)#γ = µ, (π2)#γ = ν}, (1)

where πi denotes the projection onto the ith coordinate. In layman’s terms, a
joint measure on X × Y is admissable, if its marginals are µ and ν.

Now, given a lower semi-continuous cost function c : X × Y → R (such as the lq
metric dq), the task in optimal transport is to compute

OTc(µ, ν) := min
γ∈ADM(µ,ν)

Eγ[c], (2)

where we use Eµ[f ] to denote the expectation of a function f under the measure
µ, that is,

Eµ[f ] =
∫

X

f(x)dµ(x). (3)

Next, denote by L1(µ) = {f | Eµ[f ] <∞} the set of functions that have finite
expectations with respect to µ. Let ϕ ∈ L1(µ), ψ ∈ L1(ν). Then, assume ϕ, ψ
satisfy

ϕ(x) + ψ(y) ≤ c(x, y), ∀(x, y) ∈ X × Y. (4)

We denote the set of all such pairs by ADM(c). Then, OTc(µ, ν) can be expressed
in the dual formulation

OTc(µ, ν) = max
(ϕ,ψ)∈ADM(c)

{Eµ[ϕ] + Eν [ψ]} . (5)

The optimal functions ϕ, ψ are called Kantorovich potentials, and they sat-
isfy

ϕ(x) + ψ(y) = c(x, y), ∀(x, y) ∈ Supp(γ). (6)

The Kantorovich potentials ϕ and ψ are intimately related. Define the c-
transform of ϕ as

ϕc : Y → R, y 7→ inf
x∈X
{c(x, y)− ϕ(x)} , (7)

then according to the fundamental theorem of optimal transport, the Kantorovich
potentials satisfy ψ = ϕc, and thus (5) can be written as

OTc(µ, ν) = max
(ϕ,ϕc)∈ADM(c)

{Eµ[ϕ] + Eν [ϕc]} , (8)

reducing the optimization to be carried out over a single function.

Wasserstein Metric. It turns out that the OT framework can be used to
define a distance between probability distributions. Define the set

Ppd (X) =

{
µ ∈M(X)

∣∣∣∣
∫
dp(x0, x)dµ(x) <∞

}
(9)
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for any x0 ∈ X. Then, OTc(µ, ν) defines a metric between µ, ν ∈ Ppd (X), if we
choose the cost c to be related to a metric d on X, called the ground metric, in
the following way.

The p-Wasserstein metric Wp between µ, ν ∈ Ppd(X), where (X, d) is a metric
space, is given by

Wp(µ, ν) :=
(
OTdp/p(µ, ν)

) 1
p . (10)

When µ, ν are absolutely continuous measures on X = Y = Rn with the
Euclidean l2 metric and p > 1, the optimal transport plan is induced by a unique
transport map T : X 7→ X, for which T#µ = ν, given by

T = (I − ‖∇ϕ‖p′−2∇ϕ), (11)

where ϕ stands for the optimal Kantorovich potential in the dual formulation
(5), and p−1 + (p′)−1 = 1. Therefore, computing the p-Wasserstein distance by
the dual formulation yields us a map between the distributions, which we will
later employ in the experimental section.

The Ground Metric. When X = Y = Rd, commonly the l2 metric is chosen
as the ground metric for the p-Wasserstein distance. However, depending on
the application, any other distance can be also considered, for example any lq
distance dq for q ≥ 1, given by

dq(x, y) =

(
n∑

i=1

|xi − yi|q
) 1

q

. (12)

In the experimental section, we study the effect of the ground metric, when
minimizing the p-Wasserstein distance in the context of GANs. To emphasize
the ground metric, we introduce the (q, p)-Wasserstein distance notation

Wq,p(µ, ν) =
(
OTdpq/p(µ, ν)

) 1
p . (13)

To not diverge too far from the standard notation, we assume that q = 2 for the
p-Wasserstein distance denoted by Wp.

2.2 Generative Adversial Networks

Generative Adversial Networks (GANs) are a popular tool for learning data
distributions Goodfellow et al. (2014). The GAN approach consists of a compet-
itive game between two networks, the generator gω and the discriminator ϕω′ ,
with parameters ω and ω′, respectively. Given the target distribution µt of the
data, and a low-dimensional source distribution µs, the GAN minimax objective
is given by

min
ω

max
ω′
{Ex∼µt [log(ϕω′(x))]

+ Ez∼µs [log(1− ϕω′(gω(z)))]} .
(14)
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At optimality, this corresponds to minimizing the Jensen-Shannon divergence
between µt and (gω)#µs, the push-forward of the source with respect to the
generator. The discriminator has range [0, 1], expressing the probability of a
sample being from the original data distribution.

The Wasserstein GAN introduced by Arjovsky et al. (2017) minimizes the
1-Wasserstein metric instead. The authors argue that divergences such as
Jensen-Shannon, or Kullback-Leibler do not behave well with respect to the
generator’s parameters. This is due to these divergences being singular when
the two distributions do not share the same support. They then demonstrate,
that the 1-Wasserstein distance behaves in a more continuous way, and provides
a meaningful loss, whose decrease corresponds to increased image quality when
generating images.

Writing the 1-Wasserstein metric in the dual form, and using that for the
(q, p) = (2, 1) case ϕcω′ = −ϕω′ , and (ϕω′ , ϕcω′) ∈ ADM(c) implies that ϕω′ is
1-Lipschitz, the minimax objective for WGANs is written as

min
ω

max
ω′
{Ex∼µt [ϕω′(x)]− Ez∼µs [ϕω′(gω(z))]} . (15)

This time ϕω′ is called the critic and not the discriminator, as its range is not
limited. However, in this paper, we use either name interchangeably, or might
also use the name Kantorovich potential.

In the original paper Arjovsky et al. (2017), the Lipschitz constraints are enforced
through weight-clipping. This, however, only quarantees k-Lipschitzness for
some k, and thus a scalar multiple of the 1-Wasserstein distance is computed.
Remarking that a function is 1-Lipschitz if and only if its gradient has norm at
most 1 everywhere, a gradient norm penalty was introduced in the WGAN-GP
method of Gulrajani et al. (2017). See Subsec. 1.1 for more discussion on
imposing the constraints.

3 (q, p)-Wasserstein GAN

Algorithm 1. (q, p)-WGAN. Batch size m = 64, learning rate α = 10−4, search
space B, and the Adam parameters β0 = 0.5 and β1 = 0.999.

for iter = 1, ..., NIterations do
Sample from target xi ∼ µt and source zi ∼ µs, i = 1, 2, ...,m, where m is
the batch-size. Denote Bx = {xi}mi=1.
yi ← gω(zi), denote By = {yi}mi=1.
for t = 1, ..., Ncritic do
#Define ψω′ :
ψω′(y)← min

x∈B

{
1
p
dpq(y, x)− ϕω′(x)

}
.

#Compute penalties:
P1 =

1
m2

∑m
i,j=1 ξ(xi, yj)

2

P2 =
1

4m2

∑
x,y∈Bx∪By

ξ(x, y)2
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#Compute objective:
L← 1

m

∑m
i=1 (ϕω′(xi) + ψω′(yi))− P1 − P2.

#Update critic:
ω′ ← ω′ +Adam(∇ω′L, α, β0, β1).

end for
#Compute Wasserstein loss:
← 1

m

∑m
i=1 (ϕω′(xi) + ψω′(yi))

#Update generator:
ω ← ω − Adam(∇ωW,α, β0, β1).

end for

Figure 1: Comparing the p-Wasserstein metrics for p = 1, 2, 5 with the Euclidean
metric. We minimize W p

p between a discrete target distribution µ with 10 atoms
(blue), by optimizing the support of a model distribution gθ with 7 atoms (in
red). The trail of the changing support is drawn in dashed red, starting from the
origo (cross). The magenta lines express the optimal mass transport between the
two measures after optimization. Both measures have uniform weights. Plot on
the right shows convergence for each case in distance W p

p (dashed) and gradient
norm ‖∇θW

p
p (gθ, µ)‖2 (solid).

We will now introduce the novel (q, p)-Wasserstein GAN ((q, p)-WGAN) ar-
chitecture, which minimizes the (q, p)-Wasserstein distance between the target
distribution µt and the approximation (gω)#µs. That is, the cost function is
given by c = dpq/p. The objective reads

min
ω
W p
q,p((gω)#µs, µt)

=min
ω

max
(ϕω′ ,ϕc

ω′ )∈ADM(c)
{Ex∼µt [ϕω′(x)]

+ Ez∼µs [ϕcω′(gω(z))]} .

(16)

This formulation requires one to approximate the c-transform defined in (7) and
to enforce the constraint (ϕω′ , ϕcω′) ∈ ADM(c).
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The c-transform. For computing the c-transform, we choose a search space
B for the minimization. For example, the learning procedure of the GAN
is carried out through mini-batches. Hence, we can compute the discrete c-
transform over the mini-batches. That is, given sets of samples Bx = {xi}mi=1

and By = {yi}mi=1, from the target µt and generator (gω)#µs, respectively, we
compute the approximation ϕcω′ over B = Bx ∪By

ϕcω′(yj) ≈ min
x∈B
{c(x, yj)− ϕω′(x)} . (17)

In the experiments, we use both B = Bx and B = Bx ∪By.

Enforcing the constraints. Define

ξ(x, y) = c(x, y)− ϕω′(x)− ϕcω′(y). (18)

Then, when training the discriminator, we add two penalty terms given by

P1(ϕ) = λ1

m∑

i,j=1

ξ(xi, yj)
2,

P2(ϕ) = λ2
∑

x,y∈Bx∪By

min(ξ(x, y), 0)2.
(19)

Here P2 enforces (ϕ, ϕc) ∈ ADM(c) over all elements in Bx ∪By, and P1 encour-
ages pairs (xi, yj) to belong in the support of the optimal plan.

The (q, p)-WGAN method is summarized in Algorithm 1.

4 Comparison of p-Wasserstein Metrics

To give some intuition about the differences between different p-Wasserstein
metrics Wp, we compare the behavior of Wp for p = 1, 2, 5 on two toy examples.
The first example consists of approximating a discrete probability measure
with another discrete measure with smaller support. This example is intended
to give general intuition of the behavior of the p-Wasserstein distance when
compromises are required, however, the intuition might not translate directly into
the GAN setting. The second example demonstrates fitting a (2, p)-WGAN to a 2-
dimensional Gaussian mixture. We abbreviate (2, p)-WGAN as p-WGAN.

In the first example, the target distribution µ has 10 atoms with uniform
weights. We approximate the target with a model distribution ν with 7 atoms and
uniform weights. This objective is closely related to k-means clustering Canas
& Rosasco (2012); Pollard (1982). In fact, the objective would be equivalent
to k-means, if each model distribution atom was assigned the mass of the
corresponding cluster of target distribution atoms.

In Fig. 1, it is clearly seen that in the p = 1 case, the model distribution prefers
to have a support that overlaps with the target. When p = 2, the model prefers
cluster means as its support, and thus samples from the model are not exactly
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Figure 2: Convergence of model distributions for the Gaussian mixture model.
Objective function (approximation of the p-Wasserstein distance) after each
epoch (for WGAN, this has been renormalized with the estimated Lipschitz
constant) in blue. The true p-Wasserstein distance computed between the data
set and the same amount of generator samples in red.

Figure 3: Approximating a Gaussian mixture distribution (samples in blue)
with different WGAN architectures. Presented are the results after 100 and 500
epochs for (2, p)-WGAN, abbreviated p-WGAN, for p = 1, 2, 5. Furthermore,
we present the results for the original WGAN and WGAN-GP.
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the same as the real samples of the target. Looking at the p = 5 case, it seems
that the model starts shrinking to the interior of the convex hull of the target’s
support, reducing the variance of the model distribution. Higher p-value seems
to imply faster and more stable optimization, however, we do not witness this
in the second example below (Fig. 2).

In the second example, we model a Gaussian mixture model with three
clusters (cluster sizes 60, 30 and 50) using a GAN that minimizes W p

p . The
critic and generator are Multi-Layer Perceptrons (MLPs) with ReLU activations
(the output is without activation) and two fully connected hidden layers of size
128. In addition to comparing the p-Wasserstein distances for p = 1, 2, 5, we
also compare the results to WGAN and WGAN-GP architectures.

In Fig. 3, the learned distributions are visualized after 100 and 500 epochs
under the original dataset. When comparing to the true distribution, 1-WGAN,
2-WGAN and WGAN-GP seem to converge the fastest and provide qualitatively
the best results. 5-WGAN seems to fail separating the clusters from each other,
whereas WGAN expresses mode collapse.

The convergence of each model is demonstrated in Fig. 2, where the objective
function value and p-Wasserstein distance between the original dataset and the
same amount of generator samples are visualized. For 1-WGAN and 2-WGAN,
the objective function approximates well the real p-Wasserstein distance, whereas
5-WGAN is more unstable. Note that in the WGAN case, the Lipschitz constant
is estimated to normalize the objective function for an approximation of the
1-Wasserstein distance. WGAN convergence is clearly more unstable than the
others.

Conclusion. From the toy examples it is obvious, that different p values result
in differently behaving optimization problems. If the model is given extreme
freedom (but still limited expressive power), as in the first example on discrete
probability measures, higher p-values result in stabler optimization, but also
reduces the variance. On the other hand, p = 1 overfits by trying to overlap
with the target distribution. However, this does not directly translate to the
GAN example, which might be because of the model being expressive enough to
match the data distribution well. Nevertheless, this example demonstrates that
the (q, p)-WGAN models the objective Wasserstein distance well.

5 Experiments

We evaluate the performance of the (q, p)-WGAN method on two different
datasets; MNIST LeCun et al. (1998) and CIFAR-10 Krizhevsky & Hinton
(2009). The effect of ground metric is explored on the MNIST dataset by visually
assessing the image quality. We quantify the performance of different (q, p)-
WGANs by computing the Inception Score (IS) Salimans et al. (2016) and the
Fréchet Inception Distance (FID) Heusel et al. (2017) on the CIFAR-10 dataset.
We use the DCGAN architecture from Radford et al. (2015) for CIFAR-10, and
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Model IS FID
(1,1)-WGAN 4.18± 0.08 80.7
(1,2-WGAN) 4.11± 0.11 78.7
(2,1)-WGAN 3.79± 0.09 100.0
(2,2)-WGAN 4.09± 0.13 82.5
WGAN, N = 1 2.87± 0.07 152.9
WGAN, N = 5 2.33± 0.05 164.7

WGAN-GP, N = 1 3.65± 0.09 117.6
WGAN-GP, N = 5 2.85± 0.07 162.6

Table 1: The Inception Score (IS) and Fréchet Inception Distance (FID) for
the CIFAR-10 dataset reported for four different (q, p)-WGANs, the original
WGAN, and WGAN-GP. Here N implies discriminator iterations per generator
iteration. The models are trained for 50K discriminator iterations.

.

Multi-Layer Perceptrons (MLP) for MNIST, which are trained for 50K generator
iterations. We use m = 64 as the batch-size for every experiment and Ncritic = 1
for (q, p)-WGANs.

5.1 Effect of Ground Metric on MNIST.

The MNIST dataset consists of 28× 28 greyscale images of hand-written digits,
grouped into training and validation sets of sizes 60k and 10k, respectively. We
train five different (q, p)-WGAN models, listed in Fig. 4, on the training set. We
also show the distribution of distances of generated samples to closest training
samples for each model, to quantify whether we are creating new digits or just
memorizing the ones from the training set. Based on the first toy-example in
Fig. 1, the hypothesis is that 1-Wasserstein GAN tends to overfit to the data
compared to a higher p value. However, this is not evident in Fig. 4.

The neural networks used are simple MLPs with 3 hidden layers (specifics in the
supplementary material), that are trained for 50K generator and discriminator
iterations. For the discrete c-transform, the search space for the minimizer is
restricted to Bx and λ1 = λ2 = 0, as otherwise the model tended to collapse to
single point, and α = 10−4 was used as the learning rate.

The ground metric clearly affects the sharpness of produced images. When
q = 2, the generated digits have quite blurry edges. On the other hand, when
q = 1, the digits are sharp, but also more degenerate samples are produced.
The sharpness can be adjusted, as shown by the samples generated by the
(1.2, 1.2)-WGAN.
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5.2 Assessing the Quality on CIFAR-10.

The CIFAR-10 dataset consists of 50K 32× 32 color images for training. We
train four different (q, p)-WGANs, the original WGAN, and WGAN-GP. The
methods are compared by computing the IS and FID after 50K discriminator
iterations. As the original WGAN and WGAN-GP propose to use 5 critic
iterations per generator iteration, for fair comparison we carry out the training
with Ncritic = 1, 5.

This time, we use the DCGAN architecture for the generator and discriminator,
see supplementary for details. We use the hyperparameters proposed for WGAN
and WGAN-GP by the original papers, except for the different critic iteration
amounts. For (q, p)-WGANs, α = 10−4 is the learning rate, λ1 = 0.1 and
λ2 = 10, and we use Bx ∪ By as the c-transform search space. Restricting the
search space to Bx produced very blurry images.

The scores are presented in Table 1, and example samples in Fig. 5. Based on
Table 1, the (q, p)-WGANs outperform WGAN and WGAN-GP. The IS and FID
scores are notably higher when q = 1. In the q = 2 case, the (2, 2)-Wasserstein
metric scores better than the (2, 1)-Wasserstein metric, but in the q = 1 case
the difference is marginal.

5.3 Kantorovich Potentials as Generators

As pointed out earlier, the learned Kantorovich potentials can also be used as
generators by computing the optimal transport map using (11). To see if this is
applicable in practice, we train the Kantorovich potentials for the (2, 2)-WGAN
for 100K iterations on MNIST. Although the samples clearly look like digits, we
conclude that the quality of the samples in Fig. 6 is much worse than with a
generator.

6 Conclusion

We introduced the (q, p)-WGAN to allow the study of different p-Wasserstein
metrics and lq ground metrics in the GAN setting. We show that these parameters
do have a definite effect on GAN training; 1-Wasserstein metric encourages
models to overfit, whereas too high p causes too low variance in the model. The
FID scores from the CIFAR-10 dataset indicate that p = 2 performs better
compared to p = 1. We also demonstrate that the l1 metric outperforms l2 when
learning the distribution of colored images of the CIFAR-10 dataset. Moreover,
the experiments show that our implementation is competitive with the literature,
outperforming the WGAN and WGAN-GP implementations.

The (q, p)-WGAN incorporates the ADM(c) constraints directly on the neural
network modelling the Kantorovich potential ϕ. The other WGAN implemen-
tations, on the other hand, seem to focus on enforcing Lipschitzness and using
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the knowledge ψ = ϕc, which are implications of the ADM(d2) constraints.
Working with the general constraint allows for more flexibility in the modelling
choices, resulting in improved performance, as we demonstrated. However, our
implementation of taking the constraints into account leaves room for improve-
ment, as we had to use considerably different hyperparameters on MNIST and
CIFAR-10 to achieve stable training. We hope that our results on the importance
of the ground metric and the p parameter inspire research into more efficient
implementations to incorporate general cost functions.

Although the generative properties of the Kantorovich potentials did not perform
well in our experiment, this might be implementation dependant. We learned
the Kantorovich potential field, but in some applications, learning the gradient
field directly can be more fruitful Chmiela et al. (2017).

Finally, from the theoretical perspective, choosing p = 2 and a Riemannian
ground metric d results in a Riemannian structure over the manifold of probability
measures, shown by Otto (2001). Thus Riemannian geometry can be used to
study the probability distributions. When p 6= 2, a Finslerian structure is induced
instead Agueh (2012). In layman’s terms, Riemannian structure allows the study
of lengths and comparison of directions through local inner-products, whereas
Finslerian structures provide only direction dependant length-structures. Thus
the Riemannian structure results in a more powerful framework for studying the
geometry of probability distributions, and possibly GANs.
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Figure 4: Generated samples from different (q, p)-WGANS trained on the MNIST
training set. Furthermore, plotted is the distribution of l2 distances to closest
training points of 5000 generated samples from each model.
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Figure 5: Generated samples from different (q, p)-WGANS, the original WGAN
and WGAN-GP trained on the CIFAR-10 training set. Here N refers to the
amount of critic iterations, for (q, p)-WGANS, this is 1. The IS and FID scores
are reported in Table 1.

Figure 6: Samples generated by only the discriminator on the MNIST dataset.
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Appendix G

How Well Do WGANs Estimate
the Wasserstein Metric?

The following chapter presents (up to formatting) the preprint

Anton Mallasto, Guido Montúfar, and Augusto Gerolin. "How Well Do
WGANs Estimate the Wasserstein Metric?" arXiv preprint arXiv:1910.03875
2019.

Different heuristics have been introduced in WGANs to incorporate the con-
straints of the dual formulation of optimal transport induced on the discriminator
neural networks. For example, in the vanilla WGAN [9], this was carried out
through clipping the weights of the discriminator network, whereas the gradient
penalty WGAN (WGAN-GP) [32] penalizes the deviation of the gradient norm
from 1, and the (q, p)-WGANs presented in Appendix F through the c-transform.

This work studies how well these different heuristics approximate and estimate
the 1-Wasserstein distance. In addition, we consider computing the entropic
relaxation of the 1-Wasserstein distance [18], instead, which is achieved by
utilizing the (c, ε)-transform for ε > 0, determining the strength of the relaxation.
An important question relevant to the results of this work, is that how exactly
do we actually want to compute the optimal transport quantity in GANs? The
results indicate that the method best at approximation does not produce the
best quality images.
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Abstract

Generative modelling is often cast as minimizing a similarity measure
between a data distribution and a model distribution. Recently, a popular
choice for the similarity measure has been the Wasserstein metric, which
can be expressed in the Kantorovich duality formulation as the optimum
difference of the expected values of a potential function under the real
data distribution and the model hypothesis. In practice, the potential
is approximated with a neural network and is called the discriminator.
Duality constraints on the function class of the discriminator are enforced
approximately, and the expectations are estimated from samples. This
gives at least three sources of errors: the approximated discriminator and
constraints, the estimation of the expectation value, and the optimization
required to find the optimal potential. In this work, we study how
well the methods, that are used in generative adversarial networks to
approximate the Wasserstein metric, perform. We consider, in particular,
the c-transform formulation, which eliminates the need to enforce the
constraints explicitly. We demonstrate that the c-transform allows for a
more accurate estimation of the true Wasserstein metric from samples,
but surprisingly, does not perform the best in the generative setting.

1 Introduction

Recently, optimal transport (OT) has become increasingly prevalent in computer
vision and machine learning, as it allows for robust comparison of structured
data that can be cast as probability measures, e.g., images, point clouds and
empirical distributions (Lai and Zhao, 2014; Rubner et al., 2000), or more
general measures (Gangbo et al., 2019). Key properties of OT include its non-
singular behavior, when comparing measures with disjoint supports, and the fact
that OT inspired objectives can be seen as lifting similarity measures between
samples to similarity measures between probability measures. This is in stark
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contrast to the more traditional information theoretical divergences, which rely
on only comparing the difference in mass assignment. Additionally, when the
cost function c is related to a distance function d by c(x, y) = dp(x, y), p ≥ 1,
the OT formulation defines the so called Wasserstein metric, which is a distance
on the space of probability measures, i.e. a symmetric and positive definite
function that satisfies the triangle inequality. Despite its success, scaling OT
to big data applications has not been without challenges, since it suffers from
the curse of dimensionality (Dudley, 1969; Weed and Bach, 2017). However,
significant computational advancements have been made recently, for which a
summary is given by Peyré et al. (2019). Notably, the entropic regularization of
OT introduced by Cuturi (2013) preserves the geometrical structure endowed
by the Wasserstein spaces and provides an efficient way to approximate optimal
transport between measures.

Generative modelling, where generators are trained for sampling from given
data distributions, is a popular application of OT. In this field, generative
adversarial networks (GANs) by Goodfellow et al. (2014) have attracted sub-
stantial interest, particularly due to their success in generating photo-realistic
images (Karras et al., 2017). The original GAN formulation minimizes the Jensen-
Shannon divergence between a model distribution and the data distribution,
which suffers from unstable training. Wasserstein GANs (WGANs) (Arjovsky
et al., 2017) minimize the 1-Wasserstein distance over the l2-metric, instead,
resulting in more robust training.

The main challenge in WGANs is estimating the Wasserstein metric, consisting
of estimating expected values of the discriminator from samples (drawn from a
model distribution and a given data distribution), and optimizing the discrimi-
nator to maximize an expression of these expected values. The discriminators
are functions from the sample space to the real line, that have different inter-
pretations in different GAN variations. The main technical issue is that the
discriminators have to satisfy specific conditions, such as being 1-Lipschitz in
the 1-Wasserstein case. In the original paper, this was enforced by clipping the
weights of the discriminator to lie inside some small box, which, however, proved
to be inefficient. The Gradient penalty WGAN (WGAN-GP) (Gulrajani et al.,
2017) was more successful at this, by enforcing the constraint through a gradient
norm penalization. Another notable improvement was given by the consistency
term WGAN (CT-WGAN) (Wei et al., 2018), which penalizes diverging from
1-Lipschitzness directly. Other derivative work of the WGAN include differ-
ent OT inspired similarity measures between distributions, such as the sliced
Wasserstein distance (Deshpande et al., 2018), the Sinkhorn divergence (Genevay
et al., 2018) and the Wasserstein divergence (Wu et al., 2018). Another line of
work studies how to incorporate more general ground cost functions than the
l2-metric (Adler and Lunz, 2018; Dukler et al., 2019; Mallasto et al., 2019).

Recent works have studied the convergence of estimates of the Wasserstein
distance between two probability distributions, both in the case of continuous
(Klein et al., 2017) and finite (Sommerfeld, 2017; Sommerfeld and Munk, 2018)
sample spaces. The decay rate of the approximation error of estimating the true
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distance with minibatches of size N is of order O(N−1/d) for the Wasserstein
distances, where d is the dimension of the sample space (Weed and Bach, 2017).
Entropic regularized optimal transport has more favorable sample complexity of
order O(1/

√
N) for suitable choices of regularization strength (see Genevay et al.

2019 and also Feydy et al. 2018; Mena and Weed 2019). For this reason, entropic
relaxation of the 1-Wasserstein distance is also considered in this work.

Contribution. In this work, we study the efficiency and stability of computing
the Wasserstein metric through its dual formulation under different schemes
presented in the WGAN literature. We present a detailed discussion on how
the different approaches arise and differ from each other qualitatively, and
finally measure the differences in performance quantitatively. This is done by
quantifying how much the estimates differ from accurately computed ground
truth values between subsets of commonly used datasets. Finally, we measure
how well the distance is approximated during the training of a generative model.
This results in a surprising observation; the method best approximating the
Wasserstein distance does not produce the best looking images in the generative
setting.

2 Optimal Transport

In this section, we recall essential formulations of optimal transport to fix
notation.

Probabilistic Notions. Let (X , dX ) and (Y , dY) be Polish spaces, i.e., complete
and separable metric spaces, denote by P(X ) the set of probability measures on
X , and let f : X → Y be a measurable map. Then, given a probability measure
µ ∈ P(X ), we write f#µ for the push-forward of µ with respect to f , given by
f#µ(A) = µ(f−1(A)) for any measurable A ⊆ Y. Intuitively speaking, if ξ is a
random variable with law µ, then f(ξ) has law f#µ. Then, given ν ∈ P(Y), we
define

ADM(µ, ν) = {γ ∈ P(X × Y)| (π1)#γ = µ, (π2)#γ = ν}, (1)

where πi denotes the projection onto the ith marginal. An element γ ∈ ADM(µ, ν)
is called an admissible plan and defines a joint probability between µ and ν.

Optimal Transport Problem. Given a continuous and lower-bounded cost
function c : X × Y → R, the optimal transport problem between probability
measures µ ∈ P(X ) and ν ∈ P(Y) is defined as

OTc(µ, ν) := min
γ∈ADM(µ,ν)

Eγ[c], (2)

where Eµ[f ] =
∫
X f(x)dµ(x) is the expectation of a measurable function f with

respect to µ.

Note that (2) defines a constrained linear program, and thus admits a dual
formulation. From the perspective of WGANs, the dual is more important than
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the primal formulation, as it can be approximated using discriminator neural
networks. Denote by L1(µ) = {f : X → R | Eµ[f ] <∞} the set of measurable
functions of µ that have finite expectations under µ, and by ADM(c) the set of
admissible pairs (ϕ, ψ) that satisfy

ϕ(x) + ψ(y) ≤ c(x, y), ∀(x, y) ∈ X × Y , ϕ ∈ L1(µ), ψ ∈ L1(ν). (3)

Then, the following duality holds (Peyré et al., 2019, Sec. 4)

OTc(µ, ν) = sup
(ϕ,ψ)∈ADM(c)

{Eµ[ϕ] + Eν [ψ]} . (4)

When the supremum is attained, the optimal ϕ∗, ψ∗ in (4) are called Kantorovich
potentials, which, in particular, satisfy ϕ∗(x) + ψ∗(y) = c(x, y) for any (x, y) ∈
Supp(γ∗), where γ∗ solves (2). Given ϕ, we can obtain an admissable ψ satisfying
(4) through the c-transform of ϕ,

ϕc : Y → R, y 7→ inf
x∈X
{c(x, y)− ϕ(x)} , (5)

so that (ϕ, ϕc) ∈ ADM(c) for any ϕ ∈ L1(µ). Moreover, the Kantorovich
potentials satisfy ψ = ϕc, and therefore (4) can be written as (Villani, 2008,
Thm. 5.9)

OTc(µ, ν) = max
(ϕ,ϕc)∈ADM(c)

{Eµ[ϕ] + Eν [ϕc]} . (6)

In other words, the ADM(c) constraint can be enforced with the c-transform,
and reduces the optimization in (6) to be carried out over a single function.

Wasserstein Metric. Consider the case when X = Y and c(x, y) = dpX (x, y),
p ≥ 1, where we refer to dX as the ground metric. Then, the optimal transport
problem (2) defines the p-Wasserstein metric Wp(µ, ν) := OTdpX

(µ, ν)
1
p on the

space

PpdX (X) =

{
µ ∈ P(X)

∣∣∣∣
∫
dpX (x0, x)dµ(x) <∞

}
, for some x0 ∈ X , (7)

of probability measures with finite p-moments. It can be shown that (PpdX (X ),Wp)
forms a complete, separable metric space (Villani, 2008, Sec. 6, Thm 6.16).

Entropy Relaxed Optimal Transport. We can relax (2) by imposing en-
tropic penalization introduced by Cuturi (2013). Recall the definition of the
Kullback-Leibler (KL) divergence from ν to µ as

KL(µ‖ν) =

∫

X
log

(
pµ
pν

)
pµdχ, (8)

where we assume that µ, ν are absolutely continuous with respect to the Lebesgue
measure χ on X with densities pµ, pν , respectively. Using the KL-divergence as
penalization, the entropy relaxed optimal transport is defined as

OTε
c(µ, ν) := min

γ∈ADM(µ,ν)
{Eγ[c] + εKL(γ‖µ⊗ ν)} , (9)
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where ε > 0 defines the magnitude of the penalization, and µ⊗ ν denotes the
independent joint distribution of µ and ν. We remark that when ε → 0, any
minimizing sequence (γε)ε>0 solving (9) converges to a minimizer of (2), and in
particular, OTε

c(µ, ν)→ OTc(µ, ν).

Analogously to (4), the entropy relaxed optimal transport admits the following
dual formulation (Di Marino and Gerolin, 2019; Feydy et al., 2018; Peyré et al.,
2019)

OTε
c(µ, ν) = sup

ϕ∈L1(µ),ψ∈L1(ν)

{
Eµ[ϕ] + Eν [ψ]− εEµ⊗ν

[
exp

(−c+ (ϕ⊕ ψ)

ε

)
− 1

]}
,

(10)
where (ϕ⊕ ψ)(x, y) = ϕ(x) + ψ(y). In contrast to (4), this is an unconstrained
optimization problem, where the entropic penalization can be seen as a smooth
relaxation of the constraint.

As shown by Di Marino and Gerolin (2019); Feydy et al. (2018), a similar
approach to (6) for computing the Kantorovich potentials can be taken in
the entropic case, by generalizing the c-transform. Let Lexp

ε (µ) := {g : X →
R | Eµ[exp(g/ε)] <∞}, and consider the (c, ε)-transform of ϕ ∈ Lexp

ε (µ),

ϕ(c,ε)(y) = −ε log

(∫

X
exp

(
−c(x, y)− ϕ(x)

ε

)
dµ(x)

)
. (11)

As ε → 0, ϕ(c,ε)(y) → ϕc(y), making the (c, ε)-transform consistent with the
c-transform. Analogously to (6), one can show under mild assumptions on the
cost c (Di Marino and Gerolin, 2019), that

OTε
c(µ, ν) = max

ϕ∈Lexp
ε (µ)

{
Eµ[ϕ] + Eν [ϕ(c,ε)]

}
. (12)

Sinkhorn Divergence. Since the functional OTε
c fails to be positive-definite

(e.g. OTε
c(µ, µ) 6= 0), it is convenient to introduce the (p, ε)-Sinkhorn divergence

Sεp with parameter ε > 0, given by

Sεp(µ, ν) = OTε
dpX

(µ, ν)
1
p − 1

2

(
OTε

dpX
(µ, µ)

1
p + OTε

dpX
(ν, ν)

1
p

)
, (13)

where the terms OTε
dpX

(µ, µ)
1
p and OTε

dpX
(ν, ν)

1
p are added to avoid bias, as in

general OTε
dpX

(µ, µ)
1
p 6= 0. The Sinkhorn divergence was introduced by Genevay

et al. (2018), and has the following properties: (i) it metrizes weak convergence
in the space of probability measures; (ii) it interpolates between maximum mean
discrepancy (MMD), as ε → ∞, and the p-Wasserstein metric, as ε → 0. For
more about the Sinkhorn divergence, see Feydy et al. (2018).

3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are popular for learning to sample
from distributions. The idea behind GANs can be summarized as follows: given
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a source distribution µs ∈ P(Rns), we want to push it forward by a parametrized
generator gω′ : Rns → Rnt , so that a chosen similarity measure ρ between the
pushforward distribution and the target distribution µt ∈ P(Rnt) is minimized.
Usually the target distribution is only accessible in form of a dataset of samples,
and one considers an ‘empirical’ version of the distributions. Note that ns � nt
is chosen, which is justified by the manifold hypothesis. This objective can be
expressed as

min
ω′

ρ((gω′)#µs, µt). (14)

The similarity ρ is commonly estimated with a discriminator ϕω : Rnt → R,
parametrized by ω, whose role will become apparent below.

The vanilla GAN (Goodfellow et al., 2014) minimizes an approximation to
the Jensen-Shannon (JS) divergence between the push-forward and target, given
by

JS(ν‖µ) ≈ max
ω
{Ex∼µ [log(ϕω(x))] + Ey∼ν [log(1− ϕω(y))]} , (15)

for probability measures µ and ν. The discriminator ϕω is restricted to take
values between 0 and 1, assigning a probability to whether a point lies in µ or ν.
It can be shown (Goodfellow et al., 2014), that at optimality the JS-divergence
is recovered in (15), if optimized over all possible functions. Substituting µ = µt
and ν = (gω′)#µs in (15) yields the minimax objective for the vanilla GAN

min
ω′

max
ω
{Ex∼µt [log(ϕω(x))] + Ez∼µs [log(1− ϕω(gω′(z)))]} . (16)

As mentioned above, in practice one considers empirical versions of the distribu-
tions so that the expectations are replaced by sample averages.

The Wasserstein GANs (WGANs) (Arjovsky et al., 2017) minimize an ap-
proximation to the 1-Wasserstein metric over the l2 ground metric, instead. The
reason why the p = 1 Wasserstein case is considered is motivated by a special
property of the c-transform of 1-Lipschitz functions, when c = d for any metric
d: if f is 1-Lipschitz, then f c = −f (Villani, 2008, Sec. 5). It can also be shown,
that a Kantorovich potential ϕ∗ solving the dual problem (6) is 1-Lipschitz when
c = d, and therefore the WGAN minimax objective can be written as

min
ω′

max
ω
{Ex∼µt [ϕω(x)]− Ez∼µs [ϕω(gω′(z))]} . (17)

In the WGAN case, there is no restriction on the range of ϕω as opposed to the
GAN case above. The assumptions above require enforcing ϕω to be 1-Lipschitz.
This poses a main implementational difficulty in the WGAN formulation, and
has been subjected to a considerable amount of research.

In this work, we will investigate the original approach by weight clipping (Ar-
jovsky et al., 2017) and the popular approach by gradient norm penalties for
the discriminator (Gulrajani et al., 2017). We furthermore consider a more
direct approach that computes the c-transform over minibatches (Mallasto et al.,
2019), avoiding the need to ensure Lipschitzness. We also discuss an entropic
relaxation approach through (c, ε)-transforms over minibatches, introduced by
Genevay et al. (2016). In the original work, the discriminator ϕω is expressed
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as a sum of kernel functions, however, in this work we will consider multi-layer
perceptrons (MLPs), as we do with the other methods we consider.

3.1 Estimating the 1-Wasserstein Metric

In the experimental section, we will consider four ways to estimate the 1-
Wasserstein distance between two measures µ and ν, these being the weight
clipping (WC), gradient penalty (GP), c-transform and (c, ε)-transform methods.
To this end, we now discuss how these estimates are computed in practice by
sampling minibatches of size N from µ and ν, yielding {xi}Ni=1 and {yi}Ni=1,
respectively, at each training iteration. Then, with each method, the distance is
estimated by maximizing a model specific expression that relates to the dual
formulation of the 1-Wasserstein distance in (6) over the minibatches. In practice,
this maximization is carried out via gradient ascent or one of its variants, such as
Adam (Kingma and Ba, 2014) or RMSprop (Tieleman and Hinton, 2012).

Weight clipping (WC). The vanilla WGAN enforces K-Lipschitzness of the
discriminator at each iteration by forcing the weights W k of the neural network
to lie inside some box −ξ ≤ W k ≤ ξ, considered coordinate-wise, for some
small ξ > 0 (ξ = 0.01 in the original work). Here k stands for the kth layer
in the neural network. Then, the identity for the c-transform (with c = d) of
1-Lipschitz maps is used, and so (17) can be written as

max
ω

{
1

N

N∑

i=1

ϕω(xi)−
1

N

N∑

i=1

ϕω(yi)

}
. (18)

Gradient penalty (GP). The weight clipping is omitted in WGAN-GP, by
noticing that the 1-Lipschitz condition implies that ‖∇xϕω(x)‖ ≤ 1 holds for
x almost surely under µ and ν. This condition can be enforced through the
penalization term Ex∼χ

[
max (0, 1− ‖∇xϕω(x)‖)2

]
, where χ is some reference

measure, proposed to be the uniform distribution between pairs of points of the
minibatches by Gulrajani et al. (2017). The authors remarked that in practice
it suffices to enforce ‖∇xϕω(x)‖ = 1, and thus the objective can be written as

max
ω

{
1

N

N∑

i=1

ϕω(xi)−
1

N

N∑

i=1

ϕω(yi)−
λ

M

M∑

i=1

(1− ‖∇z=ziϕω(z)‖)2
}
, (19)

where λ is the magnitude of the penalization, which was chosen to be λ = 10 in
the original paper, and {zi}Mi=1 are samples from χ.

c-transform. Enforcing 1-Lipschitzness has the benefit of reducing the compu-
tational cost of the c-transform, but the enforcement introduces an additional
cost, which in the gradient penalty case is substantial. The ADM(c) constraint
can be taken into account directly, as done in (q, p)-WGANs (Mallasto et al.,
2019), by directly computing the c-transform over the minibatches as

ϕcω(yi) ≈ ϕ̂cω(yi) = min
j
{c(xj, yi)− ϕω(xj)} , (20)
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where c = d2 in the 1-Wasserstein case. This amounts to the relatively cheap
operation of computing the row minima of the matrix Aij = c(xj, yi)− ϕω(xj).
The original paper proposes to include penalization terms to enforce the discrim-
inator constraints, however, this is unnecessary as the c-transform enforces the
constraints. Therefore, the objective can be written as

max
ω

{
1

N

N∑

i=1

ϕω(xi) +
1

N

N∑

i=1

ϕ̂cω(yi)

}
. (21)

(c, ε)-transform. As discussed in Section 2, entropic relaxation applied to W1

results in the (1, ε)-Sinkhorn divergence Sε1, which satisfies Sε1 → W1 as ε→ 0.
Then, Sε1 can be viewed as a smooth approximation to W1. The benefits of
this approach are that ϕω is not required to satisfy the ADM(c) constraint, and
the resulting transport plan is smoother, providing robustness towards noisy
samples.

The expression (13) for Sε1 consists of three terms, where each results from
solving an entropy relaxed optimal transport problem. As stated by Feydy et al.
(2018, Sec. 3.1), the terms OTε

1(µ, µ) and OTε
1(ν, ν) are straight-forward to

compute, and tend to converge within couple of iterations of the symmetric
Sinkhorn-Knopp algorithm. For efficiency, we approximate these terms with
one Sinkhorn-Knopp iteration. The discriminator is employed in approximating
OTε

1(µ, ν), which is done by computing the (c, ε)-transform defined in (11) over
the minibatches

ϕcω(yi) ≈ ϕ̂
(c,ε)
ω (yi) = −ε log

(
1

N

N∑

j=1

exp

(
−1

ε
(ϕω(xj)− c(xj, yi))

))
, (22)

and so we write the objective (12) for the discriminator as

max
ω

{
1

N

N∑

i=1

ϕω(xi) +
1

N

N∑

j=1

ϕ̂
(c,ε)
ω (yj)

}
. (23)

4 Experiments

We now study how efficiently the four methods presented in Section 3.1 estimate
the 1-Wasserstein metric. The experiments use the MNIST (LeCun et al., 1998),
CIFAR-10 (Krizhevsky et al., 2009), and CelebA (Liu et al., 2015) datasets. On
these datasets, we focus on two tasks: approximation and stability. By approxi-
mation we mean how well the minibatch-wise distance between two measures
can be computed, and by stability how well these minibatch-wise distances relate
to the 1-Wasserstein distance between the two full measures.

Implementation. In the approximation task, we model the discriminator as
either (i) a simple multilayer perceptron (MLP) with two hidden layers of width
128 and ReLU activations, and a linear output, or (ii) a convolutional neural net-
work architecture (CNN) used in DCGAN (Radford et al., 2015). In the stability
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task we use the simpler MLPs for computational efficiency. The discriminator is
trained by optimizing the objective function using stochastic or batch gradient as-
cent. For the gradient penalty method, we use the Adam optimizer with learning
rate 10−4 and beta values (0, 0.9). For weight clipping we use RMSprop with learn-
ing rate 5× 10−5 as specified in the original paper by Arjovsky et al. (2017). Fi-
nally, for the c-transform and the (c, ε)-transform, we use RMSprop with learning
rate 10−4.

Figure 1: Estimating the dis-
tance between two standard 2-
dimensional Gaussian distribu-
tions that have been shifted by
±[1, 1].

The estimated distances dest obtained from the
optimization are compared to ground truth
values dground computed by POT1. The (c, ε)-
transform might improve on the POT esti-
mates when dest > dground, as both values re-
sult from maximizing the same unconstrained
quantity. This discrepancy cannot be viewed
as error, which we quantify as

err(dest, dground) = max(0, dground−dest). (24)

Note that this is a subjective error based on the
POT estimate that can also err, and not abso-
lute error. In practice POT is rather accurate,
and we found this to make only a small differ-
ence (see Figure 2 with the ground truth and
estimated distances visualized). The weight
clipping and the gradient penalty methods
might also return a higher value than POT,
but in this case it is not guaranteed that the

discriminators are admissible, meaning that the constraints of the maximization
objective would not be satisfied. In the case of the c-transform, the discrim-
inators are always admissible. However, the POT package’s ot.emd (used to
compute the 1-Wasserstein distance ground truth) does not utilize the dual
formulation for computing the optimal transport distance, and therefore we
cannot argue in the same way as in the (c, ε)-transform case. As the Sinkhorn
divergence (13) consists of three terms that are each maximized, we measure
the error as the sum of the errors given in (24) of each term.

Approximation. We divide the datasets into two, forming the two measures µ
and ν, between which the distance is approximated, and train the discriminators
on 500 training minibatches µk ⊂ µ and νk ⊂ ν, k = 1, ..., 500, of size 64. See
Section 3.1 for how the discriminator objectives. Then, without training the
discriminators further, we sample another 100 evaluation minibatches µ′l ⊂ µ and
ν ′l ⊂ ν, l = 1, ..., 100, and use the discriminators to approximate the minibatch-
wise distance between each µ′l and ν ′l . This approximation will then be compared
to the ground-truth minibatch-wise distance computed by POT. We run this
experiment 20 times, initializing the networks again each time, and report the

1Python Optimal Transport, https://pot.readthedocs.io/.
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MLP MNIST CIFAR10 CelebA
WC 14.98± 0.32 27.26± 0.61 48.65± 1.29
GP 14.89± 0.38 27.14± 0.87 48.00± 2.88
c-transform 0.82± 0.16 1.53± 0.29 2.84± 0.49
(c, 0.1)-transform 0.43± 0.17 1.29± 0.48 2.52± 1.28
(c, 1)-transform (1.12± 4.76)× 10−10 (0.26± 5.97)× 10−4 0.04± 0.26

ConvNet MNIST CIFAR10 CelebA
WC 20.73± 18.59 27.28± 0.63 48.72± 1.33
GP 14.78± 0.54 25.20± 24.32 96.19± 77.90
c-transform 0.79± 0.16 1.00± 0.26 2.11± 0.46
(c, 0.1)-transform 0.42± 0.17 0.60± 0.41 1.74± 1.13
(c, 1)-transform (0.23± 1.90)× 10−8 (0.40± 3.60)× 10−13 0.02± 0.17

Table 1: Approximation. For each method, the discriminators are trained 20
times for 500 iterations on minibatches of size 64 drawn without replacement,
after which training is stopped and the error between the ground truth and the
estimate are computed.

average error in Table 1. Note that the discriminators are not updated for
the last 100 iterations. Results for a toy example between two Gaussians are
presented in Fig. 1.

As Table 1 shows, the c-transform approximates the minibatch-wise 1-Wasserstein
distance far better than weight clipping or gradient penalty, and (c, ε)-transform
does even better at approximating the 1-Sinkhorn divergence. The low errors in
this case are due to the (c, ε)-transform outperforming the POT library, which
results in an error of 0 on many iterations, which also explains why the error
variance is so high in the ε = 1 case.

Stability. We train the discriminators for 500 iterations on small datasets of
size 512, that form subsets of the datasets mentioned above. We train with
two minibatch sizes N = 64 and N = 512. We then compare how the resulting
discriminators estimate the minibatch-wise and total distances, that is, the
evaluation minibatches are of size M = 64 and M = 512. Letting ΨMethod be
the objective presented in 3.1 for a given method, we train the discriminator
by maximizing ΨMethod(φ, µN , νN), and finally compare ΨMethod(φ, µM , νM) for
different M . The results are presented in Table 2. An experiment on CIFAR10
was carried out to illustrate how the distance estimate between the full measures
behaves when trained minibatch-wise, which is included in Appendix A.

The ground truth values computed using POT are also included, but are not of
the main interest in this experiment. The focus is on observing how different
batch-sizes on training and evaluation affect the resulting distance. For the
c-transform and (c, ε)-transform, the results varies depending on whether the
distances are evaluated minibatch-wise or on the full datasets. On the other
hand, for the gradient penalty and weight clip methods, the training batch-size
has more effect on the result, but the minibatch-wise and full evaluations are
comparable.

WGAN training. Finally, we measure how the different methods fare when
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MNIST (c, 1)-transform c-transform GP WC
N = 512, M = 64 17.20± 0.16 13.87± 0.23 4.25± 0.49 2.10± 0.26
N = 512, M = 512 16.95 12.64 4.21 2.03
N = 64, M = 64 17.45± 0.06 14.12± 0.13 1.54± 0.25 1.12± 0.13
N = 64, M = 512 16.76 11.4 1.49 1.08
Ground truth 14.22 12.65 12.65 12.65

CIFAR10 (c, 1)-transform c-transform GP WC
N = 512, M = 64 29.98± 0.28 26.44± 0.25 11.04± 1.16 3.85± 0.67
N = 512, M = 512 29.41 24.77 11.10 4.00
N = 64, M = 64 29.67± 0.41 26.21± 0.40 3.25± 0.53 2.19± 0.23
N = 64, M = 512 29.18 24.16 3.59 2.34
Ground truth 26.10 24.78 24.78 24.78

CelebA (c, 1)-transform c-transform GP WC
N = 512, M = 64 50.55± 0.86 46.56± 0.89 28.07± 10.61 19.18± 73.86
N = 512, M = 512 48.42 43.06 28.17 20.93
N = 64, M = 64 50.80± 0.91 46.83± 0.86 10.24± 7.31 13.98± 39.54
N = 64, M = 512 47.60 41.80 10.10 15.20
Ground truth 43.74 43.07 43.07 43.07

Table 2: Stability. The discriminators are trained using two training batch sizes,
N = 64 and N = 512. Then, the distances between the measures are estimated,
by evaluating the discriminators on the full measures (of size M = 512), or
by evaluating minibatch-wise with batch size M = 64. Presented here are the
distances approximated by each way of training the discriminators.

Figure 2: Approximating the minibatch-wise distances while training a generator.
Left: generated faces after 5×104 generator iterations. Right: True and estimated
log-distances between sampled batches. The large values of GP and WC can
be attributed to the fact that they are susceptible to failure in enforcing the
Lipschitz constraints on the discriminator.
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training a Wasserstein GAN. For this, we use the architecture from DCGAN
(Radford et al., 2015) to learn a generative model on the CelebA dataset.
During this training, we compute the POT ground truth distance between
presented minibatches, and compare these to the estimated distances given by
the discriminators. This is carried out for a total of 5× 104 generator iterations,
each of which is accompanied by 5 discriminator iterations. For (c, ε)- and
c-transform the discriminators are evaluated on the fake samples, which gave
similar results to evaluating on the real samples. The results are presented
in Fig. 2. The results clearly show how the (c, ε)-transform and c-transform
estimate the Wasserstein distances at each iteration better than gradient penalty
or weight clipping. However, the resulting images are blurry and look like
averages of clusters of faces. The best quality images are produced by the
gradient penalty method, whereas weight clipping does not yet converge to
anything meaningful. We include the same experiment ran with the simpler
MLP architecture for the discriminator, while the generator still is based on
DCAN, in Appendix B.

5 Discussion

Based on the experiments, (c, ε)-transform and c-transform are more accurate
at computing the minibatch distance and estimating the batch distance than
the gradient penalty and weight clipping methods. However, despite the lower
performance of the latter methods, in the generative setting they produce more
unique and compelling samples than the former. This raises the question,
whether the exact 1-Wasserstein distance between batches is the quantity that
should be considered in generative modelling, or not. On the other hand, an
interesting direction is to study regularization strategies in conjunction with the
(c, ε)- and c-transforms to improve generative modelling with less training.

The results of Table 2 indicate that the entropic relaxation provides stability
under different training schemes, endorsing theoretical results implying more
favorable sample complexity in the entropic case. In contrast to what one could
hypothetise, the blurriness in Fig. 2 seems not to be produced by the entropic
relaxation, but the c-transform scheme.

Finally, it is interesting to see how the gradient penalty method performs so
well in the generative setting, when based on our experiments, it is not able to
approximate the 1-Wasserstein distance so well. What is it, then, that makes it
such a good objective in the generative case?
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A Appendix: Stability during Training

Related to the Stability experiment, we train discriminators modelled by the
simple MLPs (see Section 4) to approximate the distance between two measures
µ and ν, which both are subsets of the CIFAR10 dataset of size 512. We train
for 15000 iterations with training minibatch size of 64, and report the estimated
minibatch-wise distances with the estimated distances between the full measures
in Fig. 3.

The experiments demonstrate, how (c, ε)-transform and c-transform converge
rapidly compared to gradient penalty and weight clipping method, which have not
entirely converged after 15000 iterations. Also visible is the bias resulting form
minibatch-wise computing of the distances compared to the distance between
the full measures.

B Appendix: WGAN Training with MLP

We repeat the WGAN training experiment with the simpler MLP architecture
(see Section 4) for the discriminators. The distance estimates at each iteration
are given in Fig. 4, and generated samples in Fig. 5.

The training process for (c, ε)- and c-transforms is more unstable with the MLP, as
notable in the sudden jumps in the true distance between minibatches. This seems
to be caused when the discriminator underestimates the distance. The fluctuation
between estimated distances is much higher in the gradient penalty and weight
clipping cases, but the decrease in the true distance between minibatches is still
consistent. Notice how the fluctuation decreases considerably when we use a
ConvNet architecture for the gradient penalty method in Fig. 2.
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Figure 3: Stability. While training the discriminators on minibatches, taken
from two measures consisting of 512 samples from CIFAR10, we also report the
estimated distance between the full measures.
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Figure 4: Repeating the experiment presented in Fig. 2, but with the simpler
MLP architecture for the discriminator. Presented here are the estimated
batchwise distances at each iteration against the ground truth.
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Figure 5: Repeating the experiment presented in Fig. 2, but with the simpler
MLP architecture for the discriminator. Presented here are generated samples
after 5× 104 iterations.
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