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Summary

The increasingly complex modern railways require advanced management systems to

automate costly and time consuming maintenance processes. Such systems incor-

porate detailed maps of the railway assets such as signs, signals, control boxes etc.

In addition, railway maps are the foundation of railway simulators used for training

locomotive operators. Currently, development and update of these maps is carried

out by trained personnel through manual inspection of multi-sensor data. Recent

advances in machine learning and computer vision have paved the way for designing

deep learning detection models able to achieve very high accuracies in challenging

tasks. The performance of these methods has attracted the interest of the industry

providing reliable automatic solutions to complex and large scale problems such as

railway mapping. This dissertation proposes a pipeline that automates two main

tasks of mapping development:(i) Image based object detection and (ii) 3D object

localisation. For the detection task, we apply state-of-the-art deep learning detection

algorithms in panoramic images. Then, we combine the image based detections with

known 3D camera positions to estimate the 3D positions of the objects.
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Resumé (Danish)

Den voksende kompleksitet af moderne jernbaner kræver avancerede styringssystemer

for at automatisere dyre og tidskrævende vedligeholdelsesprocesser. Sådanne syste-

mer indeholder detaljerede kort over f.eks. skilte, signaler, kontrolbokse osv. Kortene

kan desuden udgøre grundlaget for jernbanesimulatorer, som bruges til uddannelse af

lokomotivoperatører. I øjeblikket udføres og opdateres sådanne kort manuelt af ud-

dannet personale påbasis af multisensordata. Den seneste udvikling af maskinlæring

og datamatsyn har banet vejen for at designe modeller til dyb læring (eng. Deep

Learning) til billedbaseret detektering. Sådanne metoder har vist sig i stand til at

opnåen meget høj nøjagtighed. Dette har tiltrukket industriel interesse for at levere

pålidelige automatiske løsninger til store komplekse opgaver som f.eks. kortlægning

af jernbaner. I denne afhandling foreslås en pipeline, der automatiserer to hovedop-

gaver i kortlægning: (i) Billedbaseret objektdetektering og (ii) 3D-objektlokalisering.

Til detekteringsopgaven anvendes avancerede algoritmer til "Deep Learning" baseret

påpanoramabilleder. Derefter kombineres de billedbaserede detekteringer med kendte

3D-kamerapositioner for at estimere 3D-positionerne for objekterne.
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Chapter 1

Introduction

1.1 Motivation

Railways have been continuously renewed and improved, optimising and consolidat-

ing their operations. Examples of major complex design activities taking place today,

in Denmark as well as abroad, include large scale modernisation of signal systems and

electrification of major railway lines [1]. After completion, these increasingly complex

systems are handed over to operational organisations subject to sharp demands for

rationalisation and efficiency, which translates into more tasks to be handled by a

constant or decreasing number of staff. The response to both challenges are advanced

management systems, which incorporate a detailed representation of the network, its

assets and surroundings. Such systems in particular facilitate automation of processes

and improved decision support, minimising the requirement for expensive and ineffi-

cient on-site activities [1]. A fundamental requirement of such management systems is

detailed and current maps and databases of railway assets, such as poles, signs, wires,

switches, cabinets, signalling equipment, as well as the surrounding environment in-

cluding trees, buildings and adjacent infrastructure [1]. The detailed maps may also

form the basis for a simulation of the railway view as seen from the locomotive driver

viewpoint. Such simulations/videos are used in the training of locomotive operators

and support personnel. Ideally, the maps should be constantly updated to ensure

currency of the databases as well as to facilitate detailed documentation and support
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of maintenance and construction processes in the networks.

1.2 Objectives

Currently, mapping of railway assets is largely a manual and highly labour intensive

process, limiting the possible levels of detail and revisit times [1]. By automating the

asset mapping process, the cost may be reduced significantly and the mapping can be

applied more regularly with improved quality and consistency. This project aims to

employ advanced algorithms from the fields of computer vision and machine learning

to automate major parts of the asset map production process. Recent advances in the

fields of computer vision and machine learning [2–4] offer compelling prospects that

it is possible to overcome existing limitations and realize considerable automation

of the mapping process. We aim to develop, test and demonstrate a prototype of a

system for railway asset mapping with a high accuracy in detection, recognition, and

localization on available data with manually labelled ground truth. We endeavour

to automate a major fraction of the manual work, leaving only final verification to

human specialists, while improving the quality and production speed of the output.

To ease manual post processing, high detection rate is required whereas a somewhat

high false detection rate is accepted.

To our knowledge, no such system exists and only little research has been carried

out in the specific field. Railway asset detection is an application almost ignored in

the literature. Different from e.g. the Google Street-view 360 degree image capture

and modelling, the interesting objects for railways are not (large) buildings, but tiny

structures like signs, signals,poles and wires. Detection and accurate localization of

such objects is challenging but only sporadically investigated in the literature. While

asset maps are relevant in many contexts, railways in their complexity and impor-

tance to society are a particularly significant case. A number of recent industrial

projects in COWI (the company who partially funded this PhD), with highly re-

solved input datasets and requirements for extreme detail, provided the conditions
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for exploring and evaluating new technological solutions to overcome the challenges.

The state-of-art in image-based object detection and classification is very advanced

and competitive [5–7].

While the focus of this thesis is on railways, mapping of railway assets is not

very different in concept to mapping of assets related to other major infrastructure,

such as roads and power lines where similar requirements for improved management

systems exist. We expect this project to provide a significant knowledge gain about

the procedures for automation of manual work. One may therefore regard this PhD

as an initial step towards a general unlocking of opportunities and benefits in a far

wider context for industrial applications in COWI.

1.3 Pipeline of industrial railway projects

Here we will describe briefly how a railway mapping project is currently conducted in

COWI. This is important because the focus of this PhD is to fully or partially auto-

mate parts of these processes. The first step of such projects is data acquisition. A set

of panoramic cameras mounted on a train wagon travel along a railway capturing im-

ages continuously. These images are then stitched and afterwards, trained operators

mark objects of interest on them. Simultaneously, the operators find the location of

each detected object on an aerial image. It is important to note that the main purpose

of the panoramic images is to help operators identify the objects on the aerial images.

Detection on the aerial images are preferred because they are georeferenced with high

accuracy (below 10 centimetres) [1]. This is why for these projects there is no need

for a very high GPS accuracy on the panoramic cameras. Here, for the dataset on

which we performed our experiments on geolocation, the camera positions are known

with two metres accuracy. The next step of the process is the classification of the

objects according to strict specifications provided by the client. The high similarity

of railway objects makes this process time consuming. The full manual process from

the detection on panoramic images, the identification on aerial imagery to the final
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classification can take up to 7 minutes per image depending on the amount of objects

present [1]. Given that an image is captured every 5 metres, a railway segment might

consist of hundreds of thousand images [1]. Taking into account processing time per

image we can see that the cost of such projects is extremely high. The main reason

behind the amount of time spent per image is the demand on high accuracy for the

final result. The requirements on completeness is 99% and on 3D position it is 10

centimetres [1]. These numbers make clear why such projects are so labour intensive

and therefore expensive.

The partial or full automation of some of the steps will lead to a crucial reduction

in cost and delivery times. The full automation of the process is the ideal scenario

but given the requirements in accuracy it is not yet feasible to the best of our knowl-

edge. However, a partial automation remains important. A system that can detect

automatically the objects on the panoramic images, even with lower than 99% accu-

racy can save thousand man-hours. The reason is that the operators will spend less

time on each image only correcting inaccuracies. In addition, if an automatic object

detector can be combined with an accurate geolocation algorithm, the man-hours will

be minimised.

Finally, depending on the purpose of each railway mapping project there might

be additional steps in the process. One common type of project is the creation

of a railway simulator whose purpose is to train locomotive operators. The railway

mapping consists a part of such projects. The next steps include Computer Generated

Imagery (CGI) and are out of scope for this thesis. Figure 1.1 shows a view of how

the final simulation looks like and figure 1.2 a panoramic image based on which the

simulator was created.

1.4 Thesis Outline

In the following chapters, we will first present previous and current, relevant work on

the fields of object detection, classification and localisation. Next, we will present the

4



Figure 1.1: Simulation of a railway in Brisbane, Australia [8]

Figure 1.2: Example of panormamic image of a railway in Brisbane, Australia used
for the development the railway simulator shown in figure 1.1

two datasets on which we performed our experiments. The data consists of panoramic

images obtained from trains for projects carried out by COWI in the past years. . In

the following chapter we introduce our work on detection of signs and signals based

on state-of-the-art detection algorithms. Afterwards, we will present our suggested
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solutions to the problem of 3D localisation of detected objects based on the camera

3D positions. The chapters of the object detection and 3D localisation consist of our

scientific contributions in the original layout of the journals in which they have been

published/submitted. Finally, we will discuss our conclusions, the challenges of the

tasks and suggestions for future work.
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Chapter 2

Background

In this chapter, we will present relevant scientific work on the two main topics that

concern this thesis in general and in association to railway asset mapping: automatic

object detection and object geolocation. Both areas are of very high scientific interest

resulting in a high publishing rate. This high rate turns state of the art methods of

today to be outdated in a time span of a few months or even a few weeks. For this

reason, we will focus primarily on scientific methods available to us at the time we

worked on each task and in addition we will discuss the most recent findings on these

topics.

2.1 Object Detection

Automatic object detection in images is one of the oldest topics of interest in com-

puter vision [9]. The last decade this field was revolutionised by the development of

deep learning methods [2, 3, 10–26] . These methods have outperformed significantly

older traditional approaches [27] in competitions such as ImageNet Large Scale Vi-

sual Recognition Challenge (ILSVRC) [5]. For this reason, on our experiments in

this thesis, we used only deep learning methods and thus, we will discuss only such

approaches.

A milestone in the deep learning era on object detection algorithms has been the

Regional-based Convolutional Neural Network (R-CNN) presented by Girshick et al.
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in 2014 [10]. The authors suggest a two-stage detection method. First, they gener-

ate 2000 region proposals on the original image using selective search [28] where it is

most likely to find an object of interest. Then, these regions are fed to a Convolu-

tiona Neural Network (CNN) which acts as a feature extractor and performs object

classification and detection. This approach was the base for a number of significant

methods including its descendants Fast R-CNN [11], Faster R-CNN [2] and Mask R-

CNN [29]. These methods have shown very high accuracy in competitive challenges

such as ILSVRC [5], COCO[6] and PascalVOC [7]. Two-stage detectors show high

accuracy compared to other methods, however, they are computationally expensive.

Faster R-CNN, which is among the fastest two-stage detectors, needs one second to

process an image of 500 × 500 image [16].

In parallel, researchers have focused on improving the speed of object detectors

towards real-time processing by introducing one-stage detectors. One-stage detectors

treat object detection as a simple regression problem by taking an input image and

learning the class probabilities and bounding box coordinates. The most prominent

one-stage detectors are YOLO [14] and SSD [12] with their descendants DSSD [13],

YOLO9000 [15] and YOLOv3 [16]. These approaches can process from about 40

[12] up to 60 [16] frames per second which makes them significantly faster than the

two-stage detectors. However, the improvement in speed comes at a cost in detec-

tion accuracy, especially in small sized objects [3]. In COCO dataset, Faster R-CNN

achieves 36.2 % mean Average Precision (mAP) while YOLO9000 only 21.6 % and

SSD 31.2 %. In large objects Faster R-CNN achieves 52.1%, YOLO9000 35.5 % and

SSD 49.8 %. However, in small objects, Faster R-CNN achieves 16.2% compared to

5.0% and 10.2% of YOLO9000 and SSD respectively [3]. One-stage detectors experi-

ence this drop in accuracy mainly due to extreme class imbalance encountered during

training between "easy" and "hard" foreground and background samples. In general,

the majority of the pixels correspond to background and only few to the objects we

would like to detect. Also, the background objects are more easily identifiable (sky,
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grass, sea etc.) compared to more complex objects that we may be interested to

detect (pedestrians, cars, signs). The loss functions used in most one-stage detectors

treat all training samples with the same weight. Therefore, during training, they are

overwhelmed by the vast majority of "easy" background or foreground samples defying

the more "hard" objects. This problem was tackled in RetinaNet [3] by introducing

the Focal Loss. The loss function used in RetinaNet introduces a balancing parame-

ter to the cross-entropy loss function which multiplies the loss with the inverse class

frequency. This way high populated classes do not dominate training. Moreover, the

authors introduced a focusing parameter to the cross-entropy loss which adds high

weight to hard foreground samples and little weight to the easy ones. RetinaNet, a

one-stage detector, based on Focal Loss has achieved higher accuracy than two-stage

detectors in COCO (40.8 % overall mAP and 24.1 % on small objects) at a higher

processing rate (5 frames per second).

All the aforementioned approaches achieve detection based on the concept of region

proposals. Faster R-CNN [2] introduced the concept of anchors as an alternative to

region proposals towards higher efficiency. Anchors are a set of bounding boxes

of different yet predefined scales and aspect ratios which are selected according to

statistical characteristics of the dataset. They represent the scales and aspect ratios

that the objects of interest have. So, instead of looking for any aspect ratio at

any scale for an object, based on the training dataset, we roughly predefine the

shapes that the objects are expected to have. In Faster R-CNN the authors use three

different scales at three different aspect ratios each, resulting in nine anchors in total.

The concept of anchors was later adapted by most detectors (eg. YOLO9000, SSD

and RetinaNet). Recently, anchor-free detectors have shown promising results both

in terms of accuracy and speed [25, 30–39]. These approaches are focused on the

detection of anchor-points [31, 32, 35–37, 39] or key-points [25, 33, 34] rather than

anchor boxes. Anchor-points are pixels on the feature maps of the CNN associated

with the features at their locations at each level of the feature pyramid. Based on
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the distance of the anchor points from the boundaries of the bounding boxes, the

model can encode or decode the bounding boxes accordingly[30]. On the other hand,

key-point detectors predict different key-points of the bounding boxes such as corners

[25], the centre [33] or extreme points [34]. These key-points are then used to create

a bounding box. These methods are all one-stage detectors (except [37]) their speed

rate between 15 frames per second [30] to 5 frames per second [33] in COCO. Also,

they achieve very high accuracy rates ranging from 38.2% [34] to 41.0% [30] mAP.

For this thesis, we performed experiments in our datasets based on some [2, 3, 11–

15, 17, 20] of the aforementioned approaches. Others [19, 22–24, 30, 33, 34, 36–39]

were presented at a time after we had concluded our experiments for the detection

task and therefore we did not perform any experiments based on them. More details

for Faster-RCNN, YOLO, SSD and RetinaNet follow in chapter 4, where we present

thoroughly the methods and our experiments.

2.2 Object Geolocation

The estimation of the 3-dimensional (3D) world coordinates of objects combining

known camera positions and image coordinates of objects is a concept that traces

back to the 1980’s [40]. It spans across multiple scientific fields such as Photogram-

metry, Remote Sensing and Computer Vision. Essentially, we would like to estimate

projection matrices and 3D points which project to image points with a minimum

reprojection error. Hence, it is a multi-view 3D reconstruction problem [41]. A very

popular method to tackle this problem is called bundle adjustment [41], an iterative

optimisation algorithm who aims to adjust the bundle of rays connecting the 3D ob-

jects and the centres of the cameras. It is usually the last step for most feature based

3D reconstruction approaches [41–51]. The minimisation problem posed in bundle ad-

justment is solved by applying optimisation algorithms such as Levenberg–Marquardt

(LM) [52, 53] or Powell’s Dog Leg (DL) [54, 55]. Depending on the amount of cameras

and objects involved the optimisation can become extremely costly and in order to
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address this drawback, a sparse version of LM is applied [41].

A specific case of a 3D reconstruction problem is when a controlled and calibrated

set of cameras is not available. This is known as a Structure from Motion (SfM)

problem and the goal is to estimate 3D structures from 2D views by finding corre-

spondences among the different views. There are multiple techniques to find these

correspondences with the most prominent being feature detector algorithms such

as Sclae-Invariant Feature Transform (SIFT) [56] and Speeded-Up Robust Features

(SURF) [57]. Another form of 3D reconstruction worth mentioning is Simultaneous

Localization and Mapping (SLAM) [58]. This approach is applied when neither the

environment nor the location of the camera is known, however it is out of the scope

of this thesis.

More details and our experiments regarding bundle adjustment and 3D reconstruc-

tion are provided in chapter 5.
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Chapter 3

Data

3.1 General Information

Two datasets were used in all our implementations. The images have been acquired

and stitched by COWI on behalf of their customers. We have obtained the rights

to use these datasets from COWI and the their particular customers. However, the

datasets are not publicly available. Both datasets are from Australia, they show

different railways and were acquired from different sets of cameras. They share some

similarities but have important differences. The first dataset, which is from Brisbane,

Australia was obtained in 2013 using a ladybug 3 set of cameras [59] (Figure 3.1).

The second shows a part of the railway from Melbourne to Sydney, Australia. Here,

the images were acquired using a custom made set of cameras (Figure 3.2). The first

dataset was used to train and validate the object detection and classification models

while the second was used mainly for the geolocation task of this thesis.

An important note related to both datasets is that they were acquired and pro-

cessed for the purpose of industrial projects in COWI and not for our project. As we

mentioned in section 1.3, the main purpose of these datasets is to ease the identifica-

tion of objects on aerial images, there was no intention to automatically detect objects

on them or perform a 3D reconstruction. The simplicity of this purpose brings several

inconveniences to our project related to stitching, annotations and camera positioning

accuracy.
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Stitching: First, the objective of stitching was to have good looking images. Thus,

there was no interest in possible geometric inaccuracies. The only information avail-

able to us regarding stitching is the software used. For the first dataset the ladybug

3 SDK [61] was used and for the second, the open source software Hugin [62]. Both

software have numerous user-defined parameters and we were unable to retrieve any

information on the selected values in both cases. Thus, we cannot present any specific

information regarding the stitching process on any of the datasets here. In sections

3.2 and 3.3 we will point to the specific inaccuracies that we discovered on images

from visual inspection.

Figure 3.1: Ladybug3 omnidirectional camera system [59].

Figure 3.2: Custom made omnidirectional camera system mounted on the train loco-
motive[60].
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Annotations: The annotations on both datasets have been carried out manually

by trained operators in COWI India Private Ltd. (CIL). The operators annotated

only the panoramic images eliminating the possibility of using the raw images on our

experiments (the images before stitching). Also, each dataset annotated by multiple

operators resulting in inconsistencies in class labelling and the borders of the bounding

boxes. We manually corrected most of these inconsistencies.

Finally, in the next two sections we will present the two datasets. They are also

presented in our publications (sections 4.2, 4.3 and 5.2). Therefore, the information

in this chapter overlaps at some extent with the data sections on each publication.

3.2 First Dataset

This is the main dataset used in this project. It consists of 47,912 360◦ images of

5400×2700 pixels and contains in total 121,528 samples of signs and signals combined.

Figure 3.3 shows an image form this dataset at full resolution. The position of the

objects in this figure is representative of the whole dataset. The majority of the

objects (76 %) are located at the centre or at the two sides along the horizontal axis

of the image. In total, 42% of the objects are located at the edges of the image

and 34% around the centre. Moreover, the objects located at the edges of the image

appear smaller in size compared to the ones at the centre because they are more

distant from the camera (see small yellow bounding box in figure 3.3 at the right edge

compared to yellow bounding boxes at the centre). A heat map of all the available

samples shows that the position of the objects along the vertical axis of the image

range from just above the centre and below. This allowed us to remove parts of the

image where no objects are expected to be and reduce the size of the image on our

experiments to 5400×1957 pixels.

The objects are separated in 25 classes which belong into three main categories:

signs, signals and position lights (green, yellow and red bounding boxes in figure

3.3). Ten classes represent signs, ten signals and five position lights. In total, 53,689
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Figure 3.3: Example of image of the main dataset. Bounding boxes with different
colours represent objects of different main class categories: green-signs, yellow-signals
and red-position lights.

Figure 3.4: Samples of each sign class. From left to right in first row: speed sign,
diverging right speed sign, diverging left speed sign, diverging left and right speed
sign. From left to right in second row: other type of signs, utility sign, back view
of diamond shaped sign, back view of circular shaped sign, back view of rectangular
shaped sign, signal identification sign.

samples correspond to signs, 59,427 to signals and 8,412 to position lights. Figures

3.4, 3.5 and 3.6 show examples of each different class. For clarity we used large

samples on these examples. The average size of samples is significantly smaller.

The interclass similarity is apparent on the examples shown in figures 3.4, 3.5 and

3.6, resulting in a challenging classification task. Specifically, the signs on the first

row in figure 3.4 differ only by a small extension (attached arrows). This extension

can be barely distinguished in small samples. Similarly, the position lights shown in
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Figure 3.5: Samples of each position light class. From left to right in first row:
position light with two elements, position light with three elements, position light
with two elements and letter. From left to right in second row: back view of any
position light, side view of any position light.

Figure 3.6: Samples of each signal class. From left to right in pairs for both rows:
single element signal front view (top) and side view (bottom), double element signal
front view (top) and side view (bottom), triple element signal front view (top) and
side view (bottom), quadruple element signal front view (top) and side view (bottom),
other signals (top) and back view of any signal (bottom).

figure 3.5 have all the same shape and differ only by a small element at the bottom

right side where on the first type there is nothing, on the second there is a light and

on the third a letter. The interclass similarity on signals classes is akin to position

lights. From a distance, the differences among the two, three and four element signals

are almost indiscernible.
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An unusual characteristic of this dataset is that there are classes representing the

back views and side views of objects. A back view class may include samples of

objects corresponding to different front views. For instance, there are three different

front view classes of position lights but one side view class and one back view class for

all of them. The reason is that from a side or back view it is only possible to identify

the object as position light but cannot specify which one exactly. The usefulness of

these classes is to improve the possibilities of detection of all the objects of interest

even with classification inaccuracies. The reason is that in industrial railway projects

like this handled in COWI, completeness is unconditionally mandatory for the client.

Thus, detecting the objects of interest is significantly more important than accurate

classification. This convention also alleviates with the effect of interclass similarities

discussed previously. For the same reason, the toll of increased amount of false

positives is acceptable when it comes with increased detection rate. Though, this

statement is treated as a guideline and we cannot specify a threshold on acceptable

precision (eg. the number of correct positive predictions divided by the total number

of positive predictions). This dataset is presented thoroughly in sections 4.2 and 4.3.

3.3 Second Dataset

The second dataset consists of panoramic images along a railway in Melbourne, Aus-

tralia acquired in 2017. In the dataset there are 1,755 unique objects each of them

observed on average in 4 images. In total, there are 8,210 images where at least

one object of interest is present. The size of the images is significantly larger com-

pared to the previous dataset (8192 × 4096). The higher resolution of the images

on this dataset resulted in significantly larger samples compared to the ones of the

first dataset (1102 and 302 pixels size on average respectively). However, the samples

of this size are still considered small compared to samples in competitive datasets

[6]. Figure 3.7 shows an image example of this dataset. A significant difference com-

pared to the first dataset (figure 3.3) is the camera set-up. In this case the camera is
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Figure 3.7: A sample image of the second dataset. The main difference with figure 3.3
is the higher resolution. We can also see that the blending of the individual images
is smoother in this case.

mounted in front of the locomotive and not on top of it. This reduces the amount of

instances seen for each object because the train blocks the objects that appear at the

centre of the image.

This dataset was used for the geolocation task of this project. The reason is

that for the first dataset there was no GPS information available. It is significantly

smaller compared to the first, however, it was possible to perform the full pipeline

of this thesis (detection - classification - geolocation) only on this dataset. On the

other hand, the ground truth annotations were created based on a different class

guide which has no one-to-one correspondence to the first dataset. Thus, we could

not validate the performance of the models trained on one dataset to the other. In

figure 3.8, we show an example of the different classification standards between the

two datasets. The classification on the first dataset is object oriented while on the

second it is structure oriented. This difference between the two datasets shows that

depending on the project and the client specifications, the classification standards

may vary.
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Figure 3.8: Difference in classification standards between our two datasets. For the
standards of the first dataset, we see four single-element signals in this image (green
bounding boxes). For the standards second dataset, we see two different structures
(red and blue bounding boxes).

To overcome this problem we manually converted the classes to match some of

the classes on the first dataset and we fine-tuned the trained models on this dataset.

Specifically, this dataset consists of only front views of objects (no side or back view

classes). Also, because of the smaller size of the dataset (9,317 compared to 121,528),

we had no samples available for the class diverging left and right speed sign. For these

two reasons, the classes on this dataset are 13 instead of 25: single, double, triple and

quadruple element signal front view (4 classes for signals); position light with two

elements, position light with three elements, position light with two elements and

letter (3 classes for position lights); speed sign, diverging right speed sign, diverging

left speed sign, other type of signs, utility sign, signal identification sign (6 classes

for signs). Figure 3.9 shows the amount of samples available for each class. We

can see that there is significant imbalance among the different classes. To achieve
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a better distribution, we augmented the samples of the least populated classes (all

three position light classes, diverging right speed sign, diverging left speed sign, other

type of signs and utility sign). Specifically, on each sample of these classes we applied

two random crops and two rotations. Also, this dataset was mainly used for the

geolocation task and the only object detector we applied on this dataset (RetinaNet

[3]) is robust against class imbalance (more details follow in chapter 4).

Figure 3.9: Availability of samples per class for the second dataset.

The GPS accuracy of the camera positions on this dataset is two metres on average.

However, very often the GPS is higher than two metres. High positioning error is

observed when objects such as trees, buildings or bridges interfere with the signal,

especially in areas around train stations. In such cases, the GPS error is above ten

metres and sometimes above thirty metres. Fortunately, the accurate positions of

the track centrelines were available from an independent source. The accuracy of

the centrelines is in the order of centimetres and thus, they were used in order to

further improve the camera positions. When the train travels in the open, away

from stations and urban areas, there are only two tracks and most often the camera

positions match the track centreline. Since the trip of the camera was performed on a

single track, we force all camera positions to be on this specific track. This provides a

significant improvement on the camera position accuracy, especially in places where
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multiple tracks are present like the example shown in Figure 3.10. More details on

this dataset follow in section 5.2.

Figure 3.10: Camera positions (green dots) along with the track centrelines (red
lines). The blue line is the track along which the camera was moving. We can see
that the green dots are not on top of the blue line. The positions shown have an
average perpendicular distance of 8 metres from the track. On the left side of the
figure we mark some extreme positions with a black circle. We ignored such positions
on our computations.
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Chapter 4

Object Detection

4.1 Introduction

Detection of the railway signs and signals has been the main focus of this thesis. To

solve this task, we focused solely on deep learning state of the art methods based on

the achievements of methods on competitive detection challenges such as COCO [6]

and ILSVRC [63]. For this thesis the achievement of highest possible accuracy has

been significantly more important than optimum efficiency. Given this principle, our

first approach was the implementation of Faster R-CNN, a method which at the time

outperformed other state of the art methods in terms of accuracy with a high toll on

efficiency. Afterwards, we implemented three more methods with varying accuracy/-

efficiency ratios in order to determine the most appropriate method or combination

of methods suitable for our task. In total, we implemented on the first of the two

datasets presented in chapter 3 the following methods: YOLO, SSD, Faster R-CNN

and RetinaNet. Our experiments resulted in two scientific publications (one still un-

der peer review). In the following two sections (4.2 and 4.3) we present these two

publications. In chapter 6, section 6.1 we discuss our conclusions on sign and signal

detection.
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4.2 Deep Learning for Detection of Railway Signs
and Signals

This paper has been presented in Computer Vision Conference in Las Vegas, USA on

April 2019. Later it was published in the Springer magazine Advances in Computer

Vision:

G. Karagiannis, S. Olsen, and K. Pedersen, “Deep learning for detection of railway

signs and signals”, in Advances in Computer Vision, K. Arai and S. Kapoor, Eds.,

Cham: Springer International Publishing, 2020, pp. 1–15
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Abstract. Major railway lines need advanced management systems based
on accurate maps of their infrastructure. Asset detection is an important
tool towards automation of processes and improved decision support on
such systems. Due to lack of available data, limited research exists in-
vestigating railway asset detection, despite the rise of Artificial Neural
Networks and the numerous investigations on autonomous driving. Here,
we present a novel dataset used in real world projects for mapping rail-
way assets. Also, we implement Faster R-CNN, a state of the art deep
learning object detection method, for detection of signs and signals on
this dataset. We achieved 79.36% on detection and a 70.9% mAP. The
results were compromised by the small size of the objects, the low reso-
lution of the images and the high similarity across classes.

Keywords: Railway, object detection, object recognition, deep learn-
ing, Faster R-CNN

1 Introduction

The ever increasing modernisation of signal systems and electrification of major
railway lines lead to increasingly complex railway environments. These environ-
ments require advanced management systems which incorporate a detailed rep-
resentation of the network, its assets and surroundings. The aim of such systems
is to facilitate automation of processes and improved decision support, minimis-
ing the requirement for expensive and inefficient on-site activities. Fundamental
requirements are detailed maps and databases of railway assets, such as poles,
signs, wires, switches, cabinets, signalling equipment, as well as the surrounding
environment including trees, buildings and adjacent infrastructure. The detailed
maps may also form the basis for a simulation of the railway as seen from the
train operator’s viewpoint. Such simulations/videos are used in the training of
train operators and support personnel. Ideally, the maps should be constantly
updated to ensure currency of the databases as well as to facilitate detailed
documentation and support of maintenance and construction processes in the
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networks. However, with currently available methods, mapping of railway assets
is largely a manual and highly labour intensive process, limiting the possible
levels of detail and revisit times. The response to this challenge is to automate
railway asset mapping based on different sensor modalities (2D images or 3D
point clouds) acquired from ground or air.

Despite the high demand for automatic asset detection along railways, there
is very little research on this field[1]. Here, we present an approach on detection
of signs and signals as a first step towards automatic generation and update
of maps of railway environments. We implent an object detection model based
on Faster R-CNN (Region-based Convolutional Neural Network) presented by
Ren et al. in[2] on a dataset used to map a railway of 1,700 kilometres in 2015.
The mapping was carried out manually from a private company3 with a lot
of experience in such projects. Currently, many such projects exist around the
world and to the best of our knowledge are still carried out manually (people
going through all images and mark objects of interest). Our approach aims to
show the performance of an advanced object detection algorithm, such as Faster
R-CNN, on a novel dataset used in a real world project.

2 Literature Review

2.1 Previous approaches

The research on automatic object detection along railways is sparse, compared
to the analogous, popular field of road furniture detection, mainly due to the lack
of available railway traffic data[1]. Most of the research is focused on passenger
detection[3, 4] or track detection[5–9] for different purposes. The limited research
existing focused on detection of only a single type of object (sign recognition[10],
sign detection[11] or wire detection[12]).

Marmo et al. [10] presented a classical approach for railway signal detection.
It is focused on detecting a specific type of signals (single element) in video
frames and classify it according to the colour of the light (green-pass, red-no
pass). The implementation is based on simple image processing techniques such
as histogram analysis, template matching and shape feature extraction. The
method resulted in 96% detection accuracy and 97% classification accuracy in a
total of 955 images which is impressing for this type of approaches. The advan-
tage of this method is efficiency, however it is focused on a very specific type of
signals and the examples presented are scenes of low complexity.

Arastounia[12] presented an approach for detection of railway infrastructure
using 3D LiDAR data. The approach is focused on detection of cables related to
the railway (i.e. catenary, contact or return current cables), track bed, rail tracks
and masts. The data covers about 550 meters of Austrian railways. The approach
is based mainly on the topology of the objects and their spatial properties. Points
on the track bed are first detected from a spatially local statistical analysis. All
the other objects of interest are recognised depending on their spatial relation

3 Second Affiliation.
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with the track bed. The overall average detection achieved by this method is
96.4%. The main drawback of this approach is that it depends on a sophisticated
type of data that needs special equipment to capture and it is more complicated
to process.

Agudo et al. in[1] presented a real-time railway speed limit and warning
signs recognition method on videos. After noise removal, Canny edge detection
is applied and an optimised Hough voting scheme detects the sign region of
interest on the edge image. Based on gradient directions and distances of points
on the edge of a shape, candidate central points of signs occur. Then, recognition
is achieved by applying shape criteria since the signs are either circular, square
or rectangular. The method scored 95.83% overall accuracy on classification.
However, even though the dataset had more than 300,000 video frames, only
382 ground truth signs existed and the authors do not provide any score for the
detection accuracy.

2.2 Convolutional Neural Networks

All of the above approaches are using traditional image analysis methods to
solve object detection problems. To the best of our knowledge, there are no
published methods that attempt to solve object detection in railways based on
Convolutional Neural Networks (CNNs). CNNs represent the state of the art
concept in Computer Vision for classification, detection and semantic segmenta-
tion. Regarding object detection, we can divide most CNN-based methods into
two categories: region-based and single shot methods. The most characteristic
representative of the first is Region-based CNN (R-CNN) and its descendants
Fast, Faster and the recent Mask R-CNNs[13],[14],[2],[15]. From the second cat-
egory, most representative methods are You Only Look Once (YOLO)[16] and
Single Shot multibox Detector (SSD)[17]. In general, region based methods are
considerably slower but more effective. Also, region based methods show better
performance on smaller objects[16, 2]. Given the performance shown in com-
petitive challenges and the fact that our dataset consists mainly of very small
objects, we Faster R-CNN[2] consider more suitable for our problem.

3 Data Analysis

3.1 Dataset

In our case, the dataset consists of 47,912 images acquired in 2013 and show the
railway from Brisbane to Melbourne in Australia. The images were acquired in
three different days in the morning with similar sunlight conditions. The camera
used is a Ladybug3 spherical camera system and the images are panoramic views
of size 5400 × 2700 pixels. The images were processed manually by the produc-
tion team of the company4 for annotations and resulted in 121,528 instances of
railway signs and signals.

4 Second Affiliation.
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Fig. 1. Instances of signals and signs. First row from left to right (class name in paren-
theses when it is different from the description): speed sign (Sign S), unit sign (Sign
U), speed standard letter (Sign Other), position light main (PL 2W), position light
separately (PL 2W& 1R), signal with two elements (Signal2 F). Second row: diverging
left-right speed sign (Sign LR), diverging left speed sign (Sign L), signal number (Sign
Signal), signal with one element (Signal1 F), signal with three elements (Signal3 F),
signal with four elements (Signal4 F).

Fig. 2. Instances of speed signs at different lighting conditions, viewpoints and scales.

The samples are originally separated into twenty five classes. Each class is in
fact a subclass of two parent classes, signs and signals. Fifteen classes correspond
to signals: three different types of position lights with their back and side view,
signals with one, two, three or four elements (lights), their side and back view
and other type of signals. Also, ten classes correspond to different types of signs:
speed signs, diverging left speed signs, diverging right speed signs, diverging
left-right speed signs, unit signs, signal number signs, other signs, back views of
circular signs, back views of diamond signs and back views of rectangular signs.
From the total amount of samples, 67,839 correspond to signals and 53,689 to
signs. Figure 1 shows some instances of signs and signals. Each of these instances
correspond to a different class. We can see the high similarity among the classes
both for signs and signals. Specifically, diverging left, diverging right, diverging
left-right and regular speed signs are very similar and especially when they are
smaller than the examples shown in figure 1. Similarly, even for humans it is
often hard to distinguish between signals with three or four elements when they
are small. All examples shown here are larger than their average size on the
dataset for clarity.

Figure 2 shows examples of regular speed signs. with different viewpoint, size
and illumination. These examples illustrate the scale, viewpoint and illumination
variation of the objects but at the same time the high similarity among the
classes.
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Fig. 3. Instances of signals with one element (Signal1). All four examples belong to
the same class even though they have different characteristics. From left to right: Some
have long (first and second), no top cover at all (third) or short cover(last). Also, some
have no back cover (first), other have circular (second and third) or semicircular (last)

Figure 3 shows examples of the same class of signals (Signal1). It is important
to note that the class is one of the least represented in the dataset with only a
few hundred samples available. Though, despite the low availability we can see
that there is significant intra-class variability. The same is observed in all the
other classes of signals except the ones corresponding to position lights.

Figure 4 shows the amount of available samples for each class. These quan-
tities vary widely for the different classes. For instance, there are about 23,000
samples available for the front view of 4-lamp signals but only a few hundreds
for position lights with two lamps or for diverging left-right speed signs. Our
dataset reflects the real distribution of objects along a railway, which means
that in a railway there exist very few position lights with two lamps and diverg-
ing left-right speed signs. Therefore, this level of imbalance among the classes
is unavoidable in real applications. However, in deep learning, large amounts of
samples are necessary to train a robust model.

A common workaround to ensure adequate balance among classes is to apply
some data augmentation techniques (e.g. apply random crops, rotations, scal-
ing, illumination changes etc. on the existing samples). However,such techniques
cannot solve the problem, without causing bias to the dataset, in our case be-
cause the difference in available samples is too high. Past observations[18], have
found that non-iconic samples may be included during training only if the over-
all amount of samples is large enough to capture such variability. In any other
case, these samples may act as noise and pollute the model. Thus, it is necessary
for some classes with similar characteristics to be merged. By merging all signs
except speed and signal number signs to a general class signs other, we get a
class with about 30,000 samples. Also, we merged all position lights to a single
class, resulting in about 10,000 samples for this class. Finally, the front and side
views of each signal class were merged into a single class. The back views of all
signals remained a separate class because there was no specific information avail-
able on which type of signal each back view belonged to. After these operations,
we end up with ten classes of at least a few thousand samples each (figure 5).
This way, the misrepresentation problem is softened, however we introduce high
intra-class variability. The least represented class is the single element signals
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Fig. 4. Amount of sample instances per class before merging some classes. The imbal-
ance among the classes is too high.

Fig. 5. Amount of sample instances per class. After merging some classes with similar
characteristics we end up with a more balanced dataset.

(Signal 1) with about 6,000 samples which is still about four times less than the
most dominant class, but more manageable.

Another important aspect of the samples is their size. Figure 6 is a histogram
of the size of the samples in square pixels. About 65% of the samples have area
less than 1000 pixels (≈ 322) and 89% less than 2500 pixels (502). Given the
size of the panoramic images, a 502 sample corresponds to 0.018% of the whole
image. In COCO[18], one of the most challenging datasets in Computer Vision,
the smallest objects correspond to 4% of the entire image. The winners for the
2017 COCO Detection: Bounding Box challenge achieved less than 55% accuracy.
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Fig. 6. Amount of samples according to their size in pixel2. Most samples (89%) are
smaller than 502 pixels.

This is an indication of the difficulty of our problem, in terms of relative size of
objects.

A reason behind the high amount of very small objects in our dataset is that
the data was acquired by driving on a single track. However, in many sectors
along the railway there are multiple parallel tracks and the signs and signals
corresponding to these tracks appear in the dataset only in small sizes since
the camera never passed close to them. One way to limit the small object size
problem in our dataset is to split each panoramic image into smaller patches with
high overlap, small enough to achieve a less challenging relative size between
objects and image. Specifically, in our approach, each image is split into 74
patches of size 6002 pixels with 200 pixels overlap on each side. Even at this
level of fragmentation, a 502 object corresponds to 0.69% of a patch size. A
consequence of splitting the images into smaller patches is that the same object
may now appear in more than one patches due to overlap. In fact, while on
the panoramic images there exist 121,528 object instances, on the patches that
were extracted, there exist 203,322 instances. The numbers shown in Figure 6
correspond to the objects existing on the patches.

3.2 Railway vs road signs and signals

Here, it is important to highlight the difference between the problem described in
this paper and the more popular topic of the detection of road signs and signals.
The most important difference is the size of the objects. The height of a road
sign varies from 60 to 150 centimetres depending on the type of road[19] while in
railways it is usually less than 40 centimetres high[20]. Given also that most of
the times the signs are located only a few centimetres from the ground supported
by a very short pole, it much harder to detect. Also, in railways, signs are often
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very similar but have different meaning like the first two examples of the second
row in figure 1. At the same time, it is very common along the same railway
objects of the same class to look different as shown in figure 3. Thus, a detector
of railway signs and signals needs to be able to distinguish objects based on fine
details. Finally, in railways the signs and the signals are often combined creating
more complex structures posing an extra challenge on a detection algorithm (eg.
the detected signals shown in figure 10). Given the above differences, we consider
railway signs a more challenging detection problem.

4 Methodology

4.1 Faster R-CNN

For the detection of signs and signals, we applied the Faster R-CNN presented
by Ren et al. in[2] using ResNet-101[21] as feature extractor. We decided to
implement this approach mainly motivated by its high performance on competi-
tive datasets such as Pascal VOC 2007 (85.6% mAP), Pascal VOC 2012 (83.8%
mAP) and COCO (59% mAP). The main drawback of this approach compared
to other acknowledged object detection methods such as YOLO[16]) or SSD is
its high processing time (three to nine times slower depending on the implemen-
tation[17]). However, the sacrifice in time pays off in accuracy, especially in this
dataset since this method performs better on small objects[2].

Here we will present some key points of Faster R-CNN. First, Faster R-
CNN is the descendant of Fast R-CNN[2] which in turn is the descendant of
R-CNN[13]. As their names imply, Fast and Faster R-CNNs are more efficient
implementations of the original concept in[13], R-CNN. The main elements of
Faster R-CNN are: (1) the base network, (2) the anchors, (3) the Region Proposal
Network (RPN) and (4) the Region based Convolutional Neural Network (R-
CNN). The last element is actually Fast R-CNN, so with a slight simplification
we can state that Faster R-CNN = RPN + Fast R-CNN.

The base network is a, usually deep, CNN. This network consists of multi-
ple convolutional layers that perform feature extraction by applying filters at
different levels. A common practice[14],[2],[16] is to initialize training using a
pre-trained network as a base network. This helps the network to have a more re-
alistic starting point compared to random initialization. Here we use ResNet[21].
The second key point of this method is the anchors, a set of predefined possible
bounding boxes at different sizes and aspect ratios. The goal of using the anchors
is to catch the variability of scales and sizes of objects in the images. Here we
used nine anchors consisting of three different sizes (152, 302 and 602 pixels) and
three different aspect ratios 1 : 1, 1 : 2 and 2 : 1.

Next, we use RPN, a network trained to separate the anchors into foreground
and background given the Intersection over Union (IoU) ratio between the an-
chors and a ground-truth bounding box (foreground if IoU > 0.7 and background
if IoU < 0.1). Thus, only the most relevant anchors for our dataset are used.
It accepts as input the feature map output of the base model and creates two
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Fig. 7. Right: The architecture of Faster R-CNN. Left: The Region Proposal Network
(RPN). Source: Figures 2 and 3 of [2]

outputs: a 29 box-classification layer containing the foreground and background
probability for each of the nine different anchors and a 4 9 box-regression layer
containing the offset values on x and y axis of the anchor bounding box compared
to the ground-truth bounding boxes. To reduce redundancy, due to overlapping
bounding boxes, non-maximum suppression is used on the proposed bounding
boxes based on their score on the box-classification output. A threshold of 0.7
on the IoU is used resulting in about 1,800 proposal regions per image in our
case (about 2,000 in the original paper).

Afterwards, for every region proposal we apply max pooling on the features
extracted from the last layer of the base network. Finally, the Fast RCNN is
implemented, mainly by two fully-connected layers as described originally in[14].
This network outputs a 1 × (N + 1) vector (a probability for each of the N
number of classes plus one for the background class) and a 4×N matrix (where
4 corresponds to the bounding box offsets across x and y axis and N on the
number of classes). Figure 7 shows the structure of Faster R-CNN and the RPN.

The RPN and R-CNN are trained according to the 4-step alternate training
to learn shared features. At first, the RPN is initialized with ResNet and fine
tuned on our data. Then, the region proposals are used to train the R-CNN
separately, again initialized by the pre-trained ResNet. Afterwards, the RPN is
initialized by the trained R-CNN with the shared convolutional layers fixed and
the non-shared layers of RPN are fine tuned. Finally, with the shared layers
fixed, the non-shared layers of R-CNN are fine tuned. Thus, the two networks
are unified.

4.2 Evaluation method

For the evaluation of detection, an overlap criterion between the ground truth
and predicted bounding box is defined. If the Intersection over Union (IoU) of
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these two boxes is greater than 0.5, the prediction is considered as True Positive
(TP). Multiple detections of the same ground truth objects are not considered
true positives, each predicted box is either True-Positive or False-Positive (FP).
Predictions with IoU smaller than 0.5 are ignored and count as False Negatives
(FN). Precision is defined as the fraction of the correct detections over the total
detections ( TP

TP+FP ). Recall is the fraction of correct detections over the total

amount of ground truth objects ( TP
TP+FN )[22].

For the evaluation of classification and overall accuracy of our approach, we
adopted mean Average Precision (mAP)[23] as a widely accepted metric[22].
For each class, the predictions satisfying the overlap criterion are assigned to
ground truth objects in descending order by the confidence output. The preci-
sion/recall curve is computed and the average precision(AP) is the mean value
of interpolated precision at eleven equally spaced levels of recall[22]:

AP =
1

11

∑

r∈{0,0.1,...,1}
pinterp(r) (1)

where

pinterp(r) = maxr̃:r̃≥rp(r̃) (2)

Then, the mean of all APs across the classes is the mAP metric. This metric
was used as evaluation method for the Pascal VOC 2007 detection challenge
and from that time is the most common evaluation metric on object detection
challenges[18].

5 Results

The network was trained on a single Titan-X GPU implementation for approx-
imately two days. We trained it for 200k iterations with a learning rate of 0.003
and for 60k iterations with learning rate 0.0003. The model achieved an overall
precision of 79.36% on the detection task and a 70.9% mAP.



Railway Signs and Signals 11

Fig. 8. Percentage of objects detected according to their size in pixels2. The algorithm
performed very well on detecting objects larger than 400 pixels (more than 79% in
all size groups). On the other hand, it performed poorly on very small objects (less
than 200 pixels) detecting only 24% of them. The performance was two times better
on objects with size 200-400 pixels (57%), which is the most dominant size group with
about 45,000 samples (see figure 6).

The precision level of detection is considered high given the challenges im-
posed by the dataset as they are presented in section 3. Figure 8 shows the
detection performance of the algorithm with respect to the size of the samples.
We can see that the algorithm fails to detect very small objects. About 76%
of objects smaller than 200 pixels are not detected. A significantly better, but
still low, performance is observed for objects of 200-400 pixels size (57% detec-
tion rate). On the other hand, the algorithm performs uniformly well for objects
larger than 400 pixels (79% for sizes 400-600 and more than 83% for larger than
600 pixels). These results show that, in terms of object size, there is a threshold
above which the performance of Faster-RCNN is stable and it is unaffected by
the size of the objects. Therefore, if there are enough instances and the objects
are large enough, object size is not a crucial factor. In our case, this threshold
is about 500 pixels.

An interesting metric for our problem would be to measure the amount of
unique physical objects detected. The goal of object detection in computer vision,
usually, is to detect all the objects that appear in an image. In mapping, most
of the times, it is important to detect the locations of the physical objects. If we
have multiple images showing the same physical object from different point of
views and at different scales, in mapping, it would be sufficient to detect it at
least in one image and not necessarily in all images. We expect that our approach
will perform better in this metric, however, information about unique physical
objects is not available for this dataset.
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Fig. 9. Example of detection. Two successful detections and one false positive. We
can see the illumination variance even in a single image with areas in sunlight and in
shadow. The sign is detected successfully despite its small size and the partial occlusion
from the bush. The entrance of the tunnel was falsely detected as a signal with three
elements.

Figures 9 and 10 show two representative examples of the results. We can see
in these figures the variance in illumination conditions and the small size of the
objects. The speed signs that appear on these images are very small but they
belong to the most common object size interval for this dataset (200 - 400 pixels).
By looking at these figures, we can also realise the difficulty of the classification
task of this dataset. Even for a human, it is hard to decide on which class the
objects on these images belong to.

Figure 11 is a confusion matrix that summarises the performance of the
method on classification. The diagonal represents the Average Precision (as de-



Railway Signs and Signals 13

Fig. 10. Example of detection. A successful detection of more complex object struc-
tures. Different signals mounted on top of each other did not confuse the algorithm.

scribed in section 4.2) for each class and the bottom right cell is the mean of
these precisions. A first observation is that there is significant variation in ac-
curacy for the different classes. As expected, the accuracy is decreased for the
classes trained with few samples (position lights) and for those with high simi-
larities with other classes (back view of signals). An interesting exception to this
observation is the class signals with one element (S1). Despite the low amount
of training samples and the fact that all classes of signals show high resemblance
among each other, the classification accuracy is above the overall and among the
highest.
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Fig. 11. Confusion matrix showing the classification AP of the detected objects. Rows
represent the predictions and columns the ground truth objects. Last row and last
column (red colour) summarise the performance per class. Bottom right cell (blue
colour) is the mAP of the method. See Figure 2 for class name explanation.

6 Conclusions

In this paper, we presented a novel dataset used in real world projects for map-
ping of railway infrastructure. The dataset is very challenging mainly because
the objects are very small relatively to the size of the entire images but also
absolutely in terms of pixels2. We implemented a state of the art deep learn-
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ing method for detection and classification of signs and signals on this dataset
scoring 79.36% on the detection task and 70.9% on the classification task. We
believe that the accuracy of the model will be higher in a similar dataset with
better resolution images. Also, given that the object positions along a railway
follow specific regulations, taking into account the spatial relationships among
the objects can improve accuracy. Moreover, it would be interesting to apply
other state of the art methods on this dataset and analyse the strengths and
weaknesses of each method on the same tasks. In addition, for mapping tasks
such as the current, a more appropriate metric would be to evaluate detections
based on the amount of physical objects and not on objects existing in the im-
ages. In conclusion, our results are promising and suggest further investigation
into the use of deep learning for railway asset detection and mapping.
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1 Introduction

The importance of railway asset mapping is ever in-

creasing due to increased modernisation and complexity
of railways. Advanced management systems are devel-
oped to automate maintenance processes and minimise

on-site activities which are inefficient and costly. Such
systems are dependent on detailed and accurate maps
of the railway assets such as signs, signals, poles, control
boxes etc. Detailed maps are also used to create simu-

lations of railways from the train operator’s viewpoint.
Such simulators are used for training train operators
therefore, it is important to update them frequently.

These two different uses of railway asset maps form a
multi million USD market around the world in which
COWI A/S is actively involved. Currently, creation and

update of detailed railway maps is largely manual thus,
labour intensive and very costly. The high cost limits
the level of detail and the update frequency of the maps.
The solution to this problem is to automate as many

processes as possible, starting with detection and ge-
olocation of assets using images.

Despite the high demand for automation of the map-
ping task and the large market, there is very little re-

search on this field[1]. In this paper, we apply state
of the art object detection algorithms to detect rail-
way signs and signals on a dataset used to map the

railway that connects Brisbane and Melbourne in Aus-
tralia. The dataset consists of 47,912 360◦ panoramic
images of size 5400×2700 pixels acquired in 2013 using a
Ladybug 3 camera and corresponds to 1,700 kilometres

railway. We train, test and compare four different Con-
volutional Neural Network (CNN) architectures which
are acclaimed methods for object detection in the field

of computer vision: Faster R-CNN[2], Single Shot multi-
box Detector (SSD) [3], You Only Look Once [4] and
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RetinaNet [5]. The four approaches vary in efficiency
and accuracy performances and all of them have won
or were ranked high in international object detection
challenges such as ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC) [6] and Common Objects
in Context (COCO) [7].

In contrary to railway asset detection, road asset de-

tection is a field in which high amount of research has
been conducted for the past decades [8–14]. Thus, it
is important to underline the differences between these

two similar tasks. First, road signs are much larger in
size compared to railway signs. A road sign can have a
height from 60 to 150 centimetres [15] while a railway
sign can rarely have a height of more than 40 centime-

tres [16]. Also, a railway sign detector needs to be able
to distinguish objects of different classes (which often
have significantly different meaning) based on fine de-

tails because there is high level of resemblance across
different types of railway signs. At the same time, in
most classes, there is high intra-class variability. More-
over, railway signs are often supported by very short

poles challenging the detection process because they are
very close to the ground. Furthermore, along railways, it
is very common to see many different objects combined

on complex structures sometimes without space among
them. In these cases, an automatic detector (even the
human eye sometimes) struggles to distinguish the dif-

ferent objects. Examples of the above challenges are
shown in Figures 1, 3 and 6 in section 3. These differ-
ences combined with the low amount of available data
make railway asset detection an arduous task.

This paper aims to show the performance of ad-
vanced object detection algorithms on a field with low
amount of research conducted, on a novel dataset used

in a real world commercial project. We compare the
strengths and the weaknesses of these methods for such
problems and we propose when it is more suitable to
choose one of them.

2 Literature Review

2.1 Previous approaches

Despite the high demand for automated railway sign
detection, the research is sparse mainly because at the

best of our knowledge there are no annotated publicly
available datasets for this field[1]. Computer vision re-
search in railways is mostly focused on passenger detec-

tion [17,18], track detection [19–23] or obstacle detec-
tion [24] for different purposes, mainly safety. The lim-
ited number of existing work is focused on only a spe-
cific type of object (sign detection [25,26], sign recog-

nition [27] or wire detection [28]).

Also, the vast majority of the research was con-

ducted before the outburst of CNNs in Computer Vi-
sion and the approaches used are classical. Marmo et al.
[27] detected a specific type of signals (single element)

in video frames using template matching, histogram
analysis and shape feature extraction. The dataset used
consisted of 955 images and they achieved 96% and
97% accuracy on detection and classification respec-

tively. The achieved accuracy is impressive considering
the methods used and very efficient. However, the im-
ages used were of low complexity and they focused on

a very specific type of signal.

Arastounia [28] presented a solution that detects
multiple types of objects along railways namely the

track bed, the tracks, masts and different types of cables
(i.e. catenary, contact or return current cables). The
method uses 3D LiDAR data and is tested on half kilo-

metre long railway in Austria. The approach is based on
the spatial relationship among these objects and mainly
in relation to the track bed. The track bed is detected

by applying local statistical analysis and from that each
different object is detected depending on their distance
in all spatial dimensions from the trackbed and their
shape. The method achieved 96.4% accuracy. The main

disadvantage of this method is that it is based on a so-
phisticated type of dataset which is inefficient to acquire
for long railways. Apart from the expensive special type

of equipment, the acquisition of this type of data needs
more time and the railway needs to be inactive dur-
ing this process. This is the reason that RGB images
are preferred over LiDAR on projects of railway asset

mapping.

Agudo et al. in [1] performed recognition of speed

limit and warning signs on videos in real time. Their
approach is based on Canny edge detection and an
optimised Hough voting scheme to detect the ROI of

signs on the edge image. Then, according to the direc-
tions of gradients and the distances of points on the
edges of the detected shapes they define the centres of
the signs. Finally, given that the sign shapes are ei-

ther square, circular or rectangular, shape criteria are
used to recognise the signs. This approach was tested
on video with 300,000 frames but only 382 instances

of signs and achieved 95.83% on classification. The au-
thors do not provide any accuracy scores on detection.

Finally, even more recent approaches [29,26] that

use deep learning methods are focused on very specific
objects. Mikrut et al. [29] use a CNN to detect a specific
type of sign along a railway in Poland and Ritika et al.

use a CNN to detect a specific type of signal. Both
approaches have high detection scores (90% and 94.7%
respectively), however, neither of them provide details

on the models and architectures used.



Detection of Railway Signs and Signals 3

3 Data Analysis

3.1 Dataset

The dataset used here consists of 47,912 panoramic im-
ages of size 5400× 2700 pixels. The images acquired in

2013 using a Ladybug3 spherical camera system. The
reason that the images are panoramic in such projects
is to be able to see objects belonging to multiple track
lines (opposing or parallel) by a single pass avoiding

multiple trips. The annotation process was performed
manually by experts resulting into 121,528 instances of
railway signs and signals.

The samples are separated in twenty five classes
which belong in two main categories: signs (10 classes)

and signals (15 classes). The different classes of signs
are (in parentheses the way we refer to them in figures
and tables in this paper): speed signs (Sign S), diverg-
ing left speed signs (Sign L), diverging right speed signs

(Sign R), diverging left-right speed signs (Sign LR),
unit signs (Sign U), signal number signs (Sign Signal),
other signs (Sign Other), back views of circular shaped

signs (Sign-C B), back views of diamond shaped signs
(Sign-D B) and back views of rectangular shaped signs
(Sign-R B). Also, the 15 classes corresponding to signals
are: front views of three different types of position lights

(PL 2W&1R, PL 2W, PL 2W&C), side views of all po-
sition lights (PL S), back views of all position lights (PL
B), front and side views of signals with one (Siganl1 F,

Signal1 S), two (Siganl2 F, Signal2 S), three (Siganl3 F,
Signal3 S) or four elements (Siganl4 F, Signal4 S), side
view of any signal (Signals S) and finally, one class for

any other type of signals (Signals B). In total, 53,689
samples correspond to signs and 67,839 correspond to
signals. In figure 1 examples of different signs and sig-
nals are shown. Each of the examples shown belong to

a different class and, for clarity, they are larger than
the average size of the training samples in the dataset.
We can observe the high similarity among classes of

the same main category (signs and signals). The three
different types of speed signs (speed sign-top row first,
diverging left-right speed sign-bottom row first and di-

verging left sign-bottom row second) shown in figure 1
differ only on the sides where the ”diverging” signs have
an extension. Even more challenging is the distinction
of signals with two, three or four elements (top row-

last, bottom row-fifth and bottom row-last), especially,
when the intensity values of the background is dark.

Figure 2 illustrates the intraclass diversity of sam-
ples for the class of speed signs depending on the dif-
ferent viewpoint, scale and illumination. Similarly, in

figure 3 we can see the variation of the single element
signals class. In this case, apart from the viewpoint,

Fig. 1: Instances of signals and signs. First row from

left to right (class name in parentheses when it is dif-
ferent from the description): speed sign (Sign S), unit
sign (Sign U), speed standard letter (Sign Other), posi-

tion light main (Position Light 2W), position light sep-
arately (Position Lights 2W&1R), signal with two ele-
ments (Signal2 Front). Second row: diverging left-right

speed sign (Sign LR), diverging left speed sign (Sign
L), signal number (Sign Signal), signal with one ele-
ment (Signal1 Front), signal with three elements (Sig-
nal3 Front), signal with four elements (Signal4 Front).

Fig. 2: Instances of speed signs at different lighting con-
ditions, viewpoints and scales.

Fig. 3: Variability of signals with one element (Signal1).
From left to right: Some have long (first and second), no

top cover at all (third) or short cover(last). Also, some
have no back cover (first), other have circular (second
and third) or semicircular (last)

illumination and scale, there is variation on the over-
all look of the actual objects due to inconsistent selec-

tion of manufacturer. Also, for this class (single element
signals) there are only a few hundred samples avail-
able thus, the difficulty of grasping the variability is
increased. The intra-class variability is a characteristic

of all classes of signals.

The availability of samples for all 25 classes is shown
in figure 4. We can see that the availability of samples
varies significantly. For some classes there are only a few

hundred samples available while for others more than
10,000. This distribution is a reflection of a real railway
where several types of objects appear rarely along it,

while others appear very often. However, in order to
train a robust machine learning model, it is necessary
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Fig. 4: Amount of sample instances per class showing
the high imbalance in quantity among different classes.

to have a large amount of samples per class and avoid
extreme imbalances in the amount of samples among
classes.

In order to increase the availability of data for the
classes with the fewest amount of samples, we imple-

mented some data augmentation processes. We applied
random horizontal (and vertical for the signs) shear,
random horizontal and vertical translations, scaling by

down-sampling (for larger objects we used more scales
and for smaller less or even no scaling) and brightness
variations (in HSV colorspace). After training and eval-
uating some models, we discovered that the data aug-

mentation was adequate for the models to converge and
thus we decided to perform the comparisons without
applying any further class balancing techniques, like,

for instance, merging some of the classes. This decision
comes with the side effect that the intraclass variation
is limited to the level of the original dataset.

The most significant characteristic of the samples of
our dataset is their size. Figure 5 shows the amount of

samples in relation to their area in pixels2. Most sam-
ples in this dataset have size smaller than 322 pixels
(approximately 65%) and the vast majority (89%) are

smaller than 502 pixels. The reasons behind the high
amount of small samples are mainly two. First, rail-
way signs, that represent almost half of the data, are

small objects (less than 40 centimetres high, see Section
??). Secondly, the data acquisition is carried out from
a train, thus, the distance between the camera and the
objects is always at least a few meters. This distance

is longer for signs given that they exist only a few cen-
timetres above the ground and therefore, they are not
visible for the camera when the train is close to them.

In addition, the data was acquired by a train along a
single track. However, along the railway there are at
least two parallel tracks for the different directions and
very often more than two parallel tracks, with signs and

signals dedicated for each of them. These signs and sig-
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Fig. 5: Cumulative amount of samples according to
their size in pixel2. About 89% of the data samples are

smaller than 502 pixels.

nals will produce small training samples considering the

longer distance between them and the camera.

Small objects in a image are considered objects with
small absolute area in pixels2. However, the authors of

the COCO dataset [7] (the most competitive dataset
for general purpose detection tasks) claim that it is not
only the absolute size of the samples that affects per-
formance but also the relative size of the objects to

the total size of the image. Given the size of the im-
ages in our dataset (5400× 2700), a sample of size 502

corresponds to only 0.018% of the entire image. In the

COCO dataset, the smallest objects correspond to 4%
of the entire image. This indicates that in terms of ab-
solute and relative size, the objects in our dataset are
very small.

In order to increase the relative size of the objects,
we decided to split the panoramic images in smaller
patches (6002 pixels) with overlap of 2002 pixels on

each direction. In cases where the same object appeared
in multiple patches due to the overlap, we kept only
one for training to avoid overfitting. Also, in model
evaluation, a detection of the same object in multiple

patches counted for only one true positive and the rest
were ignored (we did not count them as false positives).
Now, using this patch size, an object of 502 pixels cor-

responds to 0.69% of the image size. This is circa 14
times more than originally but still it is approximately
6 times smaller than the smallest objects in COCO.

4 Methodology

In this section , we will present the keypoints and our
implementations of the four different models, namely
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Faster R-CNN, YOLO, SSD and RetinaNet, used in
chronological order they were originally published. We
have chosen to test these four methods as they are the
state of the art in terms of accuracy and efficiency.

4.1 Faster R-CNN

Faster R-CNN [2] is the most representative of two-

stage object detection methods. Two-stage detectors
are considered those which perform an intermediate
task (a region proposal step in this case) in order to

produce an output. Faster R-CNN has achieved high
performance in competitions such as Pascal VOC 2007
(85.6% mAP), Pascal VOC 2012 (83.8% mAP) and

COCO (36% mAP). In comparison with one-stage de-
tectors, such as YOLO, SSD and RetinaNet, the two-
stage detectors lack in efficiency. Depending on the im-
plementation Faster R-CNN can be three to nine times

slower [3]. The toll in efficiency is balanced with higher
accuracy and especially in detection of small objects [2]
where YOLO and SSD struggle.

Faster R-CNN is the evolution of its predecessors
R-CNN [30] and Fast R-CNN [31]. Fast and Faster R-
CNN are more efficient and more accurate versions of
the original R-CNN concept. The key elements of Faster

R-CNN are: (1) the base network, (2) the anchors, (3)
the Region Proposal Network (RPN) and (4) the Region
based Convolutional Neural Network (R-CNN). The last

element is in fact Fast R-CNN and in a simplified way
we can state that Faster R-CNN = RPN + Fast R-
CNN.

In [2] Ren et al. used as a base network the VGG-16
[32] to produce a feature map. Here we use Resenet-
101 which is more accurate and more tolerant to over-
fitting [33]. Next, we selected anchors appropriate our

detection task. Anchors are predefined boxes of differ-
ent scales and aspect ratios which describe as best as
possible the objects we want to detect. The anchors are

ranked from the RPN and classified in foreground and
background according to their score. In our implemen-
tation we use three different sizes of anchors (152, 302

and 602 pixels) and three different aspect ratios (1 : 1,
1 : 2 and 2 : 1) resulting in nine anchors in total.

The RPN takes as input the feature map output
of the base network and classifies the anchors into fore-

ground and background based on their Intersection over
Union (IoU) between them and the ground-truth bound-
ing boxes (we use an IoU threshold of 0.7). The outputs

of RPN are a 2 × 9 classification layer and a 4 × 9 re-
gression layer. The classification layer contains the fore-
ground and background probability for each of the nine
anchors and the regression layer the x and y axis off-

sets between each anchor and the ground truth boxes.

To compute the probabilities, the RPN minimizes the

objective function shown in Equation 1. In addition,
non-maximum suppression is implemented based on the
classification output to reduce multiple overlapping bound-

ing boxes.

L ({pi} , {ti}) =
1

Ncls

∑
Lcls(pi, p

∗
i )

+λ
1

Nreg

∑
p∗iLreg(ti, t

∗
i ) (1)

where pi is the predicted probability of an anchor
in a mini-batch with index i to be foreground, p∗i is the
ground truth label which is equal to 1 if pi is foreground

and 0 otherwise. Similarly, ti is a vector containing the
predicted bounding box coordinates and t∗i the ground
truth coordinates corresponding to a successfully pre-
dicted foreground anchor. The classification loss Lcls is

log loss over two classes (foreground and background
and the regression loss (Lreg) is Lreg(ti, t

∗
i ) = R(ti, t

∗
i )

where R is the loss function smoothL1
presented in [31]

and shown in Equation 2. Classification and regression
losses are normalised by Ncls and Nreg, the mini-batch
size and the number of anchor locations respectively.
Finally, λ is a parameter that ensures equal weight on

classification and regression losses. The reason is that
Ncls is 32 in our case while Nreg is roughly 2400. There-
fore, we use a λ equal to 80.

R = smoothL1
(x) =

{
0.5x2, if |x| < 1

|x| − 0.5, otherwise.
(2)

4.2 You Only Look Once approach

YOLO suggested a new approach for object detection.
Redmon et al. reframe object detection as a single re-
gression problem which is simpler compared to the more
complex pipeline suggested on Faster R-CNN. It is a

single stage object detection method that computes the
bounding boxes and the classification in one pass of the
single image. The main strengths and weaknesses of

YOLO are [4]:

+ Approaches detection as a regression problem.
+ It is very fast (45 frames per second and 155 fps for

the smaller version Fast YOLO).
+ Processes the whole image at once (accounts for con-

textual information of the objects).

+ Shows good generalization performance.
− Struggles with small objects.
− Lacks on accuracy.

The authors of YOLO divide the images in a S×S
grid and for each grid cell they predict B bounding
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boxes. For each bounding box, a confidence score is pre-
dicted reflecting the confidence that the box contains an
object of interest and how accurately the box describes
the object. Ideally, when there is no object in the grid

cell, the score should be zero, otherwise, it should be
equal to the IoU between the bounding box and the
ground truth. Thus, each bounding box has 5 values:

x and y coordinates of the center of the bounding box,
width, height and confidence score. In addition, for each
grid cell, a conditional class probability is predicted for

each class. At test time, the conditional class probabil-
ities are multiplied by the box predictions producing
confidence scores per class for each predicted bounding
box:

Pr(Classi|Object)× Pr(Object)× IoU truthpred

= Pr(Classi)× IoU truthpred (3)

During training, from the predicted bounding boxes
per grid cell, only one is responsible for each object, the

one that has higher IoU with the ground truth. This
results to specialised bounding box predicors because
eventually each of them becomes better at predicting
specific sizes, aspect ratios or even classes.

This process is implemented by a CNN inspired by
GoogLeNet architecture [?]. The network consists of
24 convolutional layers and two fully connected lay-

ers. The first twenty convolutional layers are used for
feature extraction. They are pre-trained on ImageNet
[?] using half resolution images followed by an aver-
age pooling and a fully connected layer. The last four

convolutional and the two fully connected are used for
detection. They are trained using randomly initialized
weights on full resolution images. Finally, the inception

modules of GoogleNet are substituted by 1×1 reduction
layers followed by 3× 3 convolutional layers.

Also, the authors use a leaky rectified linear activa-

tion function:

φ(x) =

{
x, if x > 0

0.1 · x, otherwise
(4)

Also, for efficiency they choose to optimise for sum-

squared error. This optimisation weighs equally the er-
rors for classification and localisation, but also indepen-
dently of the bounding box size. To partially address
the latter, they compute the square root of the width

and height of the bounding box. Moreover, this optimi-
sation approach favours gradients from cells containing
objects since the ones that do not contain have confi-

dence close to zero. To avoid this, they use two parame-
ters (λcoord = 5 and λnoobj = 0.5) to increase the loss
for predictions containing an object and decrease pre-

dictions without an object. Finally, the following multi-
part loss function is optimised during training:

λcoord

S2∑

i=0

B∑

j=0

1
obj
ij

[(
xi − x̂i

)2
+
(
yi − ŷi

)2]

+λcoord

S2∑

i=0

B∑

j=0

1
obj
ij

[(√
wi −

√
ŵi
)2

+
(√
hi −

√
ĥi
)2]

+

S2∑

i=0

B∑

j=0

1
obj
ij

(
ci − ĉi

)2
+ λnoobj

S2∑

i=0

B∑

j=0

1
noobj
ij

(
ci − ĉi

)2

+

S2∑

i=0

1
noobj
i

∑

c∈classes

(
pi(c)− p̂i(c)

)2
(5)

where 1obji denotes if an object of interest appears
in grid cell i and 1

obj
ij represents that the jth bounding

box of grid cell i is responsible to that prediction.

In our implementation, we use similar training pa-

rameters that the authors of YOLO suggested in [4].
We use a 12 × 12 grid size (instead of 7 × 7) and 2
bounding box predictors B per grid cell (same as origi-
nal YOLO). We choose a different grid size because our

image patches are slightly larger than the ones in Pas-
cal VOC (6002 compared to approximately 5002) and
the objects of interest in our dataset are smaller. The

reason is to avoid a known drawback of YOLO. Due to
the cell grid approach and the single ”responsible” pre-
dictor per cell, YOLO struggles with overlapping small
objects. By selecting a more dense grid we minimise the

amount of multi-class grid cells. Given the number of
classes C (10 in our case), we end up with a tensor:
S × S × (B · 5 + C) = 12 × 12 × 20. The number of B

bounding box predictors is multiplied by 5 because they
consist of 5 predictions as we described in the previous
section (x, y, width, height and confidence).

Moreover, we use a batch size of 16, a momentum

of 0.9 and a decay of 0.0005 as suggested in [4].

4.3 Single Shot MultiBox Detector approach

SSD is asingle-stage approach inspired by some key
components of Faster R-CNN. On COCO and Pascal

VOC challenges, SSD has shown lower but comparable
accuracy with Faster R-CNN while it is significantly
faster. SSD uses the concept of predefined anchors pre-
sented in Faster R-CNN (they are called default boxes

in [3]) and a similar loss function but it performs detec-
tion and classification simultaneously in a single pass of
the image. The most significant characteristic of SSD is

that it computes classification scores and bounding box
offsets based on multi-scale predictions on multi-scale
feature maps. This is achieved by adding convolutional

layers of different size to the end of the base network
(VGG-16 in the original paper).
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The default boxes in SSD are different for feature
maps with different resolutions which leads to more ac-
curate prediction bounding boxes. For the mth feature
map, the scale of the kth default box is calculated by:

sk = smin +
smax − smin

m− 1
(k − 1), k ∈ [1,m] (6)

where smin and smax are the scales of the lowest

and the highest layers (0.2 and 0.9 respectively in both
our and the original implementations).

In our implementation we use the same aspect ratios
as in the original paper (1:1, 1:2, 1:3 , 2:1, 3:1) and one
extra default box for the 1:1 aspect ratio whose scale

is sk =
√
sksk + 1, resulting in 6 default boxes for each

location in each feature map.

During training and similarly to Faster and Fast
R-CNN, SSD minimises the following weighted sum of

localisation and confidence losses:

L(x, c, l, g) =
1

N
(Lconf (x, c) + Lloc(x, l, g)) (7)

where N is the amount of correctly matched default
boxes (when N = 0, the loss is set to 0). The confidence

loss (Lconf (x, c)) between the ith default box and the jth
ground truth box is the softmax loss over confidences
(c) of multiple classes (p):

Lconf (x, c) = −
N∑

i∈Pos
xpij log(ĉpi )−

∑

i∈Neg
log(ĉ0i ) (8)

where

ĉpi =
exp(cpi )∑
p exp(cpi )

(9)

The localisation loss (Lloc) is the loss between the
predicted (l) and ground truth (g) boxes. It is the same

smoothL1 loss function used in Fast and Faster R-CNN.
Regression is performed to offsets for the center (cx, cy),
the width (w) and the height (h) of the ith default box

d to the jth ground truth box g :

Lloc(x, l, g) =
N∑

i∈Pos

∑

m∈{cx,cy,w,h}
xkijsmoothL1(lmi − ĝmj )

(10)

ĝcxj = (gcxj − dcxi )/dwi ĝcyj = (gcyj − dcyi )/dwi (11)

ĝwj = log
gwj
dwi

ĝhj = log
ghj
dhi

(12)

A significant problem of this method is the high
imbalance between the amount of default boxes corre-
sponding to negative examples and corresponding amount

of positive examples because of the background in the
image is more dominant than the foreground. To limit

this imbalance, the authors suggest a hard negative
mining technique which limits the selection of negative
boxes to be based on the highest confidence loss. This
tactic results in an imbalance of at most 3:1.

4.4 RetinaNet

RetinaNet is signle-stage approach that aims to perform
as fast as single-stage detectors such as SSD and as ac-

curately as two-stage detectors like Faster R-CNN. The
concept of this model is based on the Feature Pyramid
Network (FPN) [?] and a new loss function presented
in [5], called Focal Loss (FL).

The Focal Loss function is based on the Cross En-
tropy (CE) function and by adding a modulating factor
which reduces the contribution of easy examples (ex-

amples that have very high probability scores and are
easily identified as foreground or background) to the
total loss. This twist to the CE function solves a ma-
jor problem of single-stage detectors, the foreground-

background high imbalance. The Cross Entropy func-
tion is CE(p, y) = CE(pt) = −log(pt) where y ∈ {±1}
is the ground truth class, p ∈ [0, 1] is the probabil-

ity computed by the model for the class y = 1 and pt
equals to:

pt =

{
p, if y = 1

1− p, otherwise
(13)

Based on CE, the Focal Loss is then defined as:

FL(pt) = −(1− pt)γ log(pt) (14)

where γ ≥ 0 is a focusing parameter. The authors
in [5] show that the effect of the γ factor has minor im-
pact on the distribution of the loss for positive examples

while it has massive impact on the loss distribution of
the negative examples, forcing the loss to focus on the
hard negative examples. The authors achieved best re-

sults with a γ equal to 2. We performed our tests using
different γ values (0-3) and have achieved best results
with γ = 2.3. In general, higher γ value means that sam-
ples with very high probability have significantly lower

contribution to the loss. Also, the authors suggest to
use an α-balanced FL where for y = 1 the FL is multi-
plied by a balancing factor α and by 1 − α otherwise.

In our implementaion the factor α is set as the inverse
class frequency in order to limit the class representation
imbalance problem of our dataset.

The architecture of RetinaNet is fairly simple. First,
a Feature Pyramid Network built on top of a Resid-
ual Network (ResNet101 in our case) is used as back-
bone for feature extraction and two sub-networks are

attached to the FPN for classification and bounding
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box regression. The FPN creates a multi-scale feature
pyramid from the input image using a top-down path-
way. Top-down pathway in this particular set-up means
that moving down through the convolutional layers C5

to C2 of ResNet, each time we up-sample the previous
layer by a factor of 2 using 4 nearest neighbours and
apply a 1× 1 convolutional filter to them. Afterwards,

a 1×1 convolutional filter is applied to the correspond-
ing feature map. Then, we add the convolved convo-
lutional layer and feature map element-wise and apply

a 3 × 3 convolutional filter. This technique improves
multi-scale detection and minimizes the aliasing effect.

In FPN, the concept of anchors presented in Faster-

RCNN (described in section 4.1) is used. In our imple-
mentation at each level of the FPN we use the same set
of anchors each time rescaled accordingly (aspect ratios
remain the same). Also, at each FPN level two parallel

Fully Convolutional sub-Networks (FCN) are attached,
one for classification and one for regression. Both sub-
networks have four 3 × 3 convolutional layers followed

by ReLU (Rectified Linear Unit) activation functions.
The classification sub-network computes for each class
at each anchor the probability containing an object and
the regression sub-network computes the offset of the

predicted bounding box with the ground truth box.

4.5 Summary

Our implementations of the four different methods are
performed on the basis of fair comparison and main-
taining intact as much as possible the components and

parameters suggested by the authors at the original pa-
pers. The main change to ensure fair comparison is that
for all methods we used ResNet-101 as base network.

Besides, Residual Networks were presented after most
of these methods and given their advantages over other
architectures [33] we believe it is more suitable to use

one of them. All the other changes, that we made and
described in each subsection, were made to address our
specific task and dataset.

All the networks were trained on a single NVIDIA
Tesla P100 GPU. All models were trained for 200k it-
erations with a learning rate of 0.003 and for 60k iter-
ations with learning rate 0.0003. As expected, YOLO

was the most efficient among all spending 64 millisec-
onds to process a frame while SSD needs 72 ms, Reti-
naNet 121 ms and F-RCNN 174 ms respectively. The

frame processing rate of SSD is slightly contradicting
to the claims of its authors when compared to SSD. In
[3], the authors report that SSD is as fast as fast as
YOLO but in all our experiments it was always slightly

slower. This difference can be justified from the differ-

ences in our implementation since we did not use the

source code provided by the authors.

4.6 Evaluation method

The evaluation of the predicted detections for each model
is based on overlap between the ground truth and the

predicted bounding boxes. A predicted box is consid-
ered True Positive (TP) if the Intersection over Union
(IoU) is greater than 0.5 and the assigned class fits the

ground truth class. In case of multiple detections of
the same ground truth object, only one prediction is
accepted as TP, the rest are considered as False Pos-
itives (FP). Predicted boxes with IoU lower than 0.5

are considered False Negatives (FN). The fraction of
correct detections over the total amount of detections
( TP
TP+FP ) is the definition of Presicion and the frac-

tion of the number correct detections over the number
of ground truth objects ( TP

TP+FN ) is the definition of
Recall [?].

As evaluation metric of the overall accuracy of the
models we use the mean Average Presicion metric [?].
For this metric, class-wise predictions with IoU greater

than 0.5 are sorted in descending order according their
confidence. Then, for each class, on the precision/recall
curve, at eleven equally spaced levels of recall, the in-
terpolated precision is precision is computed (this is the

class-wise average precision-AP):

AP =
1

11

∑

r∈{0,0.1,...,1}
pinterp(r) (15)

where

pinterp(r) = maxr̃:r̃≥rp(r̃) (16)

The mean value of all APs is the mAP expressed
as percentage. This is the most common metric used in

computer vision detection competitions [?,7].

5 Results

Table 1 contains the average precisions per class for the
four different models and on the last row of this table,

the mAP for each model is shown. We can see that Reti-
naNet has performed significantly better compared to
the rest. A first significant observation is that the mod-
els that perform worse (YOLO and SSD) show lower

performance on every class, showing that at least class-
wise they have no other advantage against F-RCNN and
RetinaNet apart from their computational efficiency. In

general, the level of detection accuracy is considered
high, especially for Faster R-CNN and RetinaNet, given
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the challenges imposed by the dataset as they are pre-
sented in section 3.

As an indication we compare the relative overall

mAP of the four models here to the relative overall
mAP of these models on the COCO dataset as shown
in [5]. In COCO, YOLO achieved 21.6% mAP, SSD
33.2 %, Faster R-CNN 36.2% and RetinaNet 40.8%. As

a general indication, we can say that in COCO, Reti-
naNet performed about 1.9 times better than YOLO,
1.23 times better than SSD and 1.13 times better than

Faster R-CNN. On our dataset, RetinaNet performed
1.56, 1.42 and 1.15 times better than YOLO, SSD and
Faster R-CNN respectively. We can say that Faster
R-CNN had a similar relative performance, however,

YOLO performed significantly better in our dataset and
SSD significantly worse. The low performance of SSD
is not surprising because our dataset is dominated by

small objects which is a drawback for this method ac-
cording to [3]. For the same reason, the performance of
YOLO is surprising since, according to the authors of

this method, YOLO struggles to detect small objects
[4]. The explanation of the drop in performance of SSD
is given in Figure 7 where we can see the percentage of
objects that were not detected by each model accord-

ing to their area. In this figure we can see that YOLO
and SSD failed to detect about the same amount of ob-
jects smaller than 6002 pixels. Though, the amount of

objects smaller than 6002 pixels represent almost 50%
of the total amount of samples (see Figure 5 in Section
3). Therefore, this size of objects is very small for both

YOLO and SSD resulting in a similar relative perfor-
mance by these two compared to COCO. On the other
hand, the relatively higher performance of YOLO can
be explained by the lower complexity of our dataset

compared to COCO.

Furthermore, in Table 1 we can see that YOLO per-
formed better on signals than signs, SSD shows similar

performance on both while Faster R-CNN and Reti-
naNet perform slightly better on signs. In general, sig-
nals are significantly larger objects than signs but the

different types of signals differ little from each other. If
we combine this information with the findings in Fig-
ure 7, we can deduce that YOLO is more affected than
Faster R-CNN and RetinaNet by the size of the ob-

jects and thus performs worse on signs. At the same
time, RetinaNet and Faster R-CNN less affected by the
size of the objects show similar performance on the two

categories. In summary, the performance of all mod-
els in signs is compromised because some of them are
too small to detect (RetinaNet and Faster R-CNN are
less affected). At the same time, the performance of

the models on signals is compromised mainly because

of misclassification and not lack of detection (see also

below analysis of Table 2).

Also, all models performed significantly worse on

position lights. One reason is the resemblance of po-
sition lights with signals as we shown in Figure 1 in
Section 3. Given the resemblance of these objects we
believe that the main reason is the effect of the im-

balance in the total amount of samples for each class.
The dataset contained ten times more samples of sig-
nals than position lights. We believe that this lead to

some level of overfit for the signal classes against the
position lights. Attempting to solve this problem, we
adjusted the balance among classes by removing sam-

ples from the most populated classes keeping maximum
5,000 samples per class. However, the models that we
trained on the balanced dataset performed worse over-
all and particularly on the most populated classes with

not any significant gain in accuracy on the less popu-
lated classes. For this reason, we decided to keep the
models presented here despite this drawback.

By looking at the results of specific classes, the most
notable scores for all models belong to the class of po-

sition lights 2W C. For this class the available samples
were less than 100 and the partition of the dataset used
for testing contained only eight samples. The results on
this class are not informative but they are included for

completeness. Another interesting result is the low ac-
curacy of all models on front view of signals with three
elements (Signals3 Ft). This class is among the most

populated and these signals among the largest objects
in size in our dataset. However, it was highly confused
with the front views of signals with two and four el-

ements (see Table 2 for distribution of misclassifica-
tions). On the other hand, the front views of signals
with two and four elements were among the most suc-
cessfully detected objects. Regarding signs, all models

performed well on speed signs but struggled to detect
the signal signs despite the fact that this is the third
most populated class of signs. We believe that the main

reason is because these signs are located on the pole of
a signal which is often thick and dark in colour (like
this specific type of signs) and makes the signs indis-
tinguishable.

In addition, by observing the class-wise average pre-
cisions for each model, we can see that RetinaNet and

Faster R-CNN are more stable and have a uniform accu-
racy across the classes in contrast to YOLO and SSD.
The standard deviation of the Average Precisions for

each model, excluding the outlier class PL 2W C, is
0.15, 0.14, 0.08 and 0.05 for YOLO, SSD, Faster R-
CNN and RetinaNet, respectively. The low values of
the standard deviations (especially for Faster R-CNN
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Class
Name

YOLO SSD F-
RCNN

RetinaNet

Signals1
Ft

48% 44% 56% 81%

Signals1
Side

30% 31% 72% 84%

Signals2
Ft

75% 74% 83% 93%

Signals2
Side

86% 85% 89% 95%

Signals3
Ft

67% 66% 76% 81%

Signals3
Side

56% 60% 71% 85%

Signals4
Ft

87% 86% 91% 94%

Signals4
Side

62% 66% 77% 85%

Signals
Back

64% 67% 80% 87%

Other
Signals

39% 76% 89% 92%

mAP
Signals

61.39% 65.52% 78.41% 87.74%

PL 2W
1R

59% 60% 75% 85%

PL 2W 45% 48% 72% 89%
PL 2W
C

12% 12% 12% 50%

PL Side 29% 36% 66% 82%
PL
Back

58% 60% 78% 86%

mAP
PL

40.62% 43.24% 60.62% 78.38%

Speed
Sign

77% 77% 85% 92%

Sign L 58% 67% 82% 91%
Sign R 60% 66% 83% 94%
Sign
LR

52% 70% 81% 91%

Sign U 42% 53% 72% 88%
Sign
Other

55% 61% 76% 87%

Circular
B

68% 69% 81% 88%

Diamond
B

54% 79% 89% 94%

Rectangle
B

50% 59% 74% 89%

Signal
Sign

53% 53% 69% 81%

mAP
Signs

56.93% 65.43% 79.19% 89.56%

mAP 55.41% 61.04% 75.16% 86.56%

Table 1: Average precision per class for the four differ-
ent methods.

and RetinaNet) is very important because they prove

that these models are very robust.

Table 2 is the distribution of the misclassified false
positives per class of the RetinaNet model. The table
shows, for each class, the three most popular classes

at which the false positives were assigned to. The per-
centage in the parentheses refers to the total amount of
the false positives for this specific class. For this table,

we considered only the model predictions that accu-
rately detected an existing object with IoU higher than

0.5, but classified it incorrectly. Based on the statis-
tics of this table, we can claim that, in most cases, the
model falsely assigned, to a successfully detected object,
a class with high resemblance with the correct one. For

all the front and side views of signals, the model as-
signed the front view of another signal. The level of
resemblance among the different types of signals, es-

pecially when observed from long distance, is so high
that it is hard even for a human to classify them suc-
cessfully. However, in a railway mapping project, these
objects belong to different classes and despite the level

of similarity it is important to classify them appropri-
ately otherwise, the produced map will be inaccurate.

Another interesting observation is that for the back
views of the signals there is not a class that dominates
the false positives. The three most dominant classes

range from 12-15%. Interestingly, the two most domi-
nant of the three are not other signal classes but the
back views of circular and rectangular shaped signs.
The explanation for this is that even though the front

views of signals are painted black, their back views are
often painted gray as the back sides of the signs. More-
over, in Table 2 we can see that the classes representing

position lights are mostly misclassified as signals and
not as other position lights. As we described before, we
believe that this is a consequence of the imbalance in
the amount of samples per class causing overfitting of

signals over position lights. The false positive distribu-
tions of the sign classes show similar behaviour with the
signals. Classes with high similarity like speed signs,

diverging left, diverging right and diverging left-right
speed signs dominate the false positives distributions
of each others. The same is observed for the back views

of the different shapes of signs.

Figure 7 shows how many objects were not detected
as percentages according to their area in pixels2. We

can see that all models struggled to find small objects.
YOLO and SSD did not detect any object smaller than
4002 pixels and about 20% of the ones of area from

4002 to 6002 pixels. The RetinaNet implementation is
performing significantly better than any of the other
three, even from Faster R-CNN. This result is surpris-
ing because according to [5] and [7], Faster R-CNN is

performing better on smaller objects in general object
detection datasets like COCO. Also, for all models, we
can see that their performance is unrelated to the size

of the objects from a size and above. For YOLO, this
size is about 10002 pixels, for SSD around 8002 pixels
and Faster R-CNN and RetinaNet about 6002 pixels.

Moreover, an interesting metric for our problem is
to measure the amount of unique physical objects de-
tected. The goal of object detection in computer vision,

usually, is to detect all the objects that appear in an
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Sign S
Sign S

Sign-C B

Fig. 6: Example of detection. Red boxes represent a successful detection with a false classification. The green box

is an object that was detected and classified successfully. We can see that it is hard even for a human to detect
the objects on the red boxes. The true classes of the red boxes are: sign other and diverging-right speed sign for
the left and right red box respectively.
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(b) SSD
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(c) F-RCNN
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(d) RetinaNet

Fig. 7: Amount of the objects that each model did not
detect in terms of area size in pixels2.

image. In mapping, most of the times, it is important to
detect the locations of the physical objects. If we have
multiple images showing the same physical object from

different point of views and at different scales, in map-
ping, it is sufficient to detect it at least in one image and

not necessarily in all images. For this reason, in a semi-
automatic way we estimated the corresponding phys-

ical object ID for each sample on this dataset. Based
on these IDs, we counted how many unique physical
objects were detected at least once from each model.

Finally, the recall of each model based on the phys-
ical objects are 74.13%, 77.59%, 87.34% and 95.22%
for YOLO, SSD, Faster R-CNN and RetinaNet, respec-
tively. The score of RetinaNet on this metric is very

high, however, in a real world project, it is not suf-
ficient to fully automate the process (a result is con-
sidered satisfactory when it is above 99%). However, a

detector with this high level of accuracy can be used
to suggest positions of objects leaving only the quality
control to human operators. Overall, the integration of

the RetinaNet model on a project saves some thousands
man hours.

Figure 6 shows a detection example of RetinaNet
of a scene with multiple objects present. In the image,

there are three different signs which were detected suc-
cessfully but the two of them were misclassified (red
boxes). In this example, we can see the high difficulty

of the problem. The two misclassified objects are very
small that we can barely see, however, RetinaNet man-
aged to detect but misclassify them. These signs belong

to the most common object size interval for this dataset
(200 - 400 pixels).
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Class
Name

1st 2nd 3rd

Signal1 F Other sig-
nals(47%)

Sign-C
B(37%)

Sign
Signal(2%)

Signal1 S Signal1
F(45%)

Signal2
F(20%)

Sign-C
B(15%)

Signal2 F Signal1
F(73%)

Other sig-
nals(14%)

Sign-C
B(4%)

Signal2 S Signal1
F(10%)

Signal3
S(10%)

PL S(10%)

Signal3 F Signal4F(44%) Signal2
F(40%)

Other sig-
nals(10%)

Signal3 S Signal4
F(11%)

Signal4
S(11%)

Signal2
F(10%)

Signal4 F Signal3
F(20%)

Other sig-
nals(13%)

Signal4
S(11%)

Signal4 S Signal1
F(40%)

Other sig-
nals(33%)

Signal3
F(7%)

Signals B Sign-C
B(15%)

Sign-R
B(13%)

Signal4
F(12%)

Other
signals

Signals
B(74%)

Sign-C
B(4%)

Sign
Signal(4%)

PL
2W&1R

Sign
Signal(15%)

Other sig-
nals(11%)

PL 2W(9%)

PL 2W Signal1
F(23%)

Signal2
F(17%)

Signal1
S(16%)

PL 2W&C Signal1
F(14%)

Signal2
F(14%)

Signal3
F(14%)

PL S PL
2W(21%)

Signal1
S(20%)

Sign
Signal(12%)

PL B Sign-R
B(19%)

Signals
B(16%)

Sign
Signal(14%)

Sign S Sign
R(33%)

Sign
Other(24%)

Sign
L(15%)

Sign L Sign S(33%) Sign
R(25%)

Sign
Other(20%)

Sign R Sign S(25%) Sign
L(23%)

Sign
Other(12%)

Sign LR Sign S(24%) Sign
L(23%)

Sign-C
B(18%)

Sign U Sign S(13%) Sign
LR(13%)

Sign
Other(13%)

Sign
Other

Signal1
F(44%)

Other sig-
nals(32%)

Sign-C
B(17%)

Sign-C B Sign S(27%) Sign-D
B(12%)

Sign L(9%)

Sign-D B Sign-C
B(40%)

Sign S(18%) Sign
L(11%)

Sign-R B Sign
Other(36%)

Sign-D
B(33%)

Sign-C
B(17%)

Sign
Signal

Sign
Other(44%)

Other sig-
nals(22%)

Signal4
S(6%)

Table 2: Distribution of misclassified false positives per
class of RetinaNet model. The three columns show, for
each class, in descending popularity order, to which

classes the model erroneously classified the false pos-
itives. The percentages in parentheses refer to the pro-
portion of the total amount of false positives for that
specific class.

6 Conclusions

In this paper, we applied four state of the art detec-

tion algorithms in a novel dataset used in real world
projects. The four models showed high performance de-
spite the challenges imposed by the size of the objects,
the imbalance in the amount of samples per class, the

intraclass variability and high resemblance of objects
belonging to different classes. The order in performance
of the models was the same as in the COCO dataset [5]

but with different relative performances. The Retina
network showed the best overall performance and the
best combination of efficiency and effectiveness. YOLO

showed the lowest performance but best efficiency. Also,
in our dataset YOLO performed relatively better than
on COCO. SSD showed the third overall performance
and efficiency. Finally, Faster R-CNN was the least ef-

ficient model and second most accurate. We conclude
that Faster R-CNN does not have any advantage over
the Retina network in the detection task that we tested

them.

The main challenge for the all four models proved

to be the small size of the objects. All of them showed
low recall values on objects smaller than 2002 pixels
which are mainly signs. We discovered that for each
model there is a different threshold in size that above

which size is no more a factor that affects performance.
For objects above this size, signals prove to be more
challenging to classify than signs due to the fact that

different types of signals differ little. We believe that
the Feature Pyramid Network and the α-balanced Focal
Loss used in RetinaNet where the main reasons for the
high performance of this method because they handle

better the two main challenges of our dataset: small size
of objects and class representation imbalance.

All models showed the lowest performance on po-
sition lights. We believe that the low performance is
caused by the imbalance in amount of samples in these

classes. To tackle this issue, we modified the dataset
to achieve better balance among the classes. The per-
formance of the models in these classes were improved
when we performed tests on the balanced dataset how-

ever, with a toll on the overall performance. For this
reason, we presented here the models with higher per-
formance. As an evaluation metric we used the widely

used mean Average Precision (mAP) metric. In addi-
tion, we measured the accuracy of the models in a met-
ric more relevant to a railway mapping project, which

measures the amount of physical objects detected in-
stead of instances in images. In this metric, the best
model, RetinaNet, showed 95.22% recall. Finally, we
believe that the performance of the models can be im-

proved by taking into account the spatial relationships
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among objects of different classes along railways based
on the railway specifications that they follow.

For future work, we believe that a dataset with

higher resolution images will improve results. Also, we
believe that, as a post-processing step, a statistical anal-
ysis on the multiple detections of the same physical
objects will lead in a more accurate classification and

therefore in higher mAP. RetinaNet could detect almost
every object but the accuracy was affected mostly from
misclassifications (objects of interest were detected but

misclassified). Finally, along a railway, there are topo-
logical relationships among the objects. The presence of
a type of object foretells the presence of other types of

objects. The railway authorities possess this knowledge
but in our case was not available.
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Chapter 5

Object Geolocation

5.1 Introduction

The geolocation of railway objects based on detections is the secondary focus of this

thesis. A detailed map requires knowledge of object positions with high accuracy (be-

low 10 centimetres). For this task, we could perform experiments only on the second

dataset presented in chapter 3. For the first dataset we did not have camera positions

at our disposal and for the second this information was available with an average

accuracy of 2 metres. For the estimation of the object positions we applied a bundle

adjustment. In bundle adjustment, we aim to estimate the projection matrices and

the 3D points who project exactly their corresponding image points by minimising

the reprojection error. Bundle adjustment is usually the final step of 3D reconstruc-

tion algorithms [41]. For the minimisation of the reprojection error we applied the

Levenberg-Marquard (LM) algorithm [52, 53]. We performed our experiments based

on the 2D positions of the objects on the images and the known camera positions. We

used two different sets of 2D positions. The first set was the ground truth bounding

boxes annotated manually by experts. The second set consisted of the detections after

applying the RetinaNet as presented in section 4.3. By using automatically detected

objects we create an automatic pipeline that receives as input a set of panoramic

images and outputs the 3D positions of the objects that are present in the images.

This pipeline is the goal of this thesis and can reduce significantly the time and cost

55



of the current production processes on industrial railway mapping projects. In the

following section we present our experiments which led to a scientific paper which is

currently under peer review. In chapter 6, section 6.1 we discuss our findings on 3D

position estimation along with our findings in automatic object detection.

5.2 Geolocation of Railway Signs and Signals

This paper is currently under peer review for publishing in ISPRS Journal of Pho-

togrammetry and Remote Sensing:

G. Karagiannis, S. Olsen, and K. Pedersen, “Geolocation of railway signs and sig-

nals”, Under peer review in ISPRS Journal of Photogrammetry and Remote Sensing,

2020
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Abstract

Detection and geolocalisation of railway objects is an important aspect of
railway maintenance. These tasks require high accuracy and in real world
projects are performed manually using panoramic images. It is a very time
consuming and expensive procedure, therefore, automating partially or fully
these tasks will result in a significant improvement on cost and delivery times.
Here, we address the automation of geolocalisation of railway signs and sig-
nals based on detections on panoramic images. We apply bundle adjustment
on initial object position estimations of objects and achieve accuracy lower
than 2 meters which is the accuracy of the camera GPS. In addition, we
propose a pipeline towards full automation from data acquisition to object
UTM coordinates. We fine tune a pre-trained RetinaNet detector and apply
the geolocation algorithm on the detected bounding boxes. The detector
achieved 94.5% recall and the UTM coordinates were estimated with a 1.82
meters error.

Keywords: Railway Mapping, Bundle Adjustment, Geolocation, Object
Detection, Deep Learning

1. Introduction

The accurate knowledge of geographic locations of railway objects is a
key component for maintenance and safety. Currently, railway object local-
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isation is carried out with traditional surveying methods and manual image
processing which include manual detection of objects in panoramic images
and aerial photos simultaneously. These methods are time demanding, re-
quire expensive equipment and trained personnel. The process of object
detection and geolocalisation based on known camera positions can be auto-
mated by applying modern and traditional methods of computer vision and
photogrammetry.

Here we propose a cheap and efficient pipeline for geolocating railway
objects based on panoramic images. First, a camera system mounted on a
wagon acquires panoramic images along the railway. The camera system is
also equipped with a GPS receiver to provide camera position in a global
coordinate system. Next, an object detector is applied on the images [1] to
obtain the image coordinates of objects of interest. Based on the camera po-
sitions and the camera model we can derive an initial estimation of the global
coordinates of the objects. Finally, the estimated positions are optimized by
bundle adjustment. In this paper, we focus mainly on the 3D position es-
timations given bounding boxes on images and less on the object detection
part. However, we will present results of the full pipeline. For more details
on detection of railway objects in panoramic images, we refer the reader to
[1].

The final steps of the aforementioned pipeline, namely the computa-
tion of three dimensional positions or structures (3D) from images (2D) is
called Structure-from-Motion (SfM) or 3D reconstruction in the fields of Pho-
togrammetry and Computer Vision. It is a problem that numerous tasks in
these fields face and has enabled high amount of conducted research over
the past decades. For a feature-based 3D reconstruction, such as our case,
Bundle Adjustment (BA) [2, 3, 4, 5, 6, 7] and Simultaneous Localization and
Mapping (SLAM) [8, 9, 10, 11, 12] are the most popular approaches.

SLAM until recently was used mostly for sensors such as sonars or laser
scanners and not cameras [13]. When SLAM is applied on images is com-
monly referred as visual-SLAM (vSLAM). This is a probabilistic method that
maps the environment around the sensor and then localizes the sensor in this
environment. This is achieved by triangulating the 3D positions of a set of
points that are tracked in a sequence of frames and simultaneously, using
these positions, estimating the camera pose. These estimations occur in a
probabilistic way and therefore, the disadvantage of SLAM in regard to our
problem is that it needs a high amount of observations in each view since, in
a railway, only a handful of objects are visible in an image.
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Bundle Adjustment is an optimization algorithm originally conceived in
1958 in [14] that minimises the reprojection error between the observed and
predicted image points. This is expressed as a sum of squares of non-linear
functions and is computed by non-linear least squares algorithms [7]. A very
popular and efficient algorithm for Bundle Adjustment [2, 7] is Levenberg-
Marquardt (LM) [15, 16]. This algorithm has a relatively simple implemen-
tation and an efficient convergence strategy [17]. This method suits best on
our problem due to the limited amount of observations on each view and the
inaccurate knowledge of the camera position and intrinsics matrix.

In the following sections, we will describe the dataset used, analyse the
localisation method and present the results based on a) manual annotations
of objects on images and b) output of an object detector.

2. Methodology

In this section, we will present the dataset, the problem and the steps we
propose to obtain 3D positions of objects observed in the images.

2.1. Data

The dataset used in our experiments consists of panoramic images along
a railway located in Melbourne, Australia and was acquired in 2017. In the
dataset there are 1755 unique objects each of them observed on average in 4
images. In total, there are 8210 images where at least one object of interest
is present. The objects belong to 13 different classes (4 classes for signals, 3
for position lights and 6 for signs). The detector we used [1] was trained in a
similar dataset for 25 classes. Our classes do not correspond one to one with
the ones used in [1], thus, we fine-tuned the detector on this dataset. We will
not present fully the dataset on object detection terms here because our main
focus is the 3D positions estimations and not the detection. Figure 1 shows an
example of a panoramic image from this dataset. The two red ellipses show
two errors in stitching of the top view camera (directed to see the sky) with
the side view cameras. These errors appear only in areas where no objects
are present and therefore are insignificant for our purpose. Finally, the blue
bounding boxes show examples of the objects of interest. On the right side
and closer to the camera we see 2 single-element signals. On the left side
we see 2 double-element signals located at ground level and on their right 2
single-element signals. Note the difference in size among the samples. Small
objects are common in this dataset. The detection of such small objects is
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Figure 1: Full panoramic image of the dataset used. We can see the sinusoidal behaviour
of distortion by observing the cables on top of the image. The two red ellipses at the
middle top and top left area of the image show two visible stitching errors (there is a
small cable discontinuity). The blue bounding boxes show the objects of interest on the
image. On the right side there are 2 single-element signals while on the left side we see 2
double-element signals (placed at ground level) and 2 single-element signals.

crucial to our method because they provide more observations per object and
hence, more degrees of freedom during optimisation.

In order to estimate the initial 3D positions of the objects, at least two ob-
servations of an object (different images) are necessary. Though, to optimize
the initial estimations we need at more than two (see section 2.2) observations
of each object. Moreover, along a railway there are areas where no objects
of interest exist followed by areas in which some objects are observed. This
lack in continuity in observations means that the dataset consists of smaller
independent sequences of images where objects are continuously observed
following and followed by areas with no objects. This characteristic prevents
us from applying the optimization in the whole dataset at once and thus
we can only optimize the positions of the objects only in the independent
sequences. There are 428 such sequences in the dataset averaging 4.7 images
per sequence. From these sequences 363 consist of two or more images (there
are 65 isolated images showing at least an object). In total, we can compute
initial positions for 1371 unique objects (objects visible in more than one im-
age) and only 232 out of 428 image sequences are qualified for optimization
given the restrictions defined previously.

The accuracy of the camera GPS sets the limit on the computed object
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positions, since the they are derived based on the camera position. In this
dataset, the camera positions are known with two meters accuracy on average
and occasionally is above ten meters which is considered poor in a real world
project. However, a map of the centrelines of the railway were available to
us with high accuracy. Based on these centrelines and given that the data
acquired by driving on a single rail track, we adjusted the camera positions
forcing them (by orthogonal projection) to be on top of this specific track
centreline. Note that this improves the accuracy of the camera positions
only across the track but not along it and also, we cannot compute the
exact level of improvement achieved. Figure 2 shows an example where the
camera positions are many meters off the track. The red line represents
the track along which the camera travelled during image acquisition and the
green dots are the camera GPS positions. Indicatively, we measured the
perpendicular distances of two camera to the red track (short blue lines at
the centre and right side of the figure). These distances are 8.9 and 18.1
meters respectively. Note that this error is only along the vertical axis. The
misplacement along the horizontal axis (roughly along the track) cannot be
specified. This is a representative example of errors in camera GPS positions
around train stations. The replacement of the initial camera positions with
their orthogonal projection to the train track softens at some extent the
magnitude of the error but not entirely (unknown error along track). Finally,
we evaluate our final position estimations with ground truth object positions
available. Ground truth positions are known with 10 centimetres accuracy.

2.2. Initial position estimation

We geolocate the detected objects on images based on the recorded GPS
location of the camera and the geometry of the images. The images are
panoramic meaning that the horizontal axis corresponds to a full circle. Also,
the panoramic images occur from six cameras and hence, there is no principal
point. We assume a virtual principal point at the middle of the horizontal
axis of the image initially estimated at cx = 4096 in pixels (the size of the
images is 8192×4096 pixels). The angular projection α of an object detected
at position x along the horizontal axis of the image is:

x =
(α
π

)
cx =

x− cx
cx

(1)

An object O detected at x will be located at position (X,Z). Let X be
the perpendicular distance of the object to the virtual optical axis defined by
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Figure 2: Map of part of the railway in Melbourne, Australia. Black lines represent all
track centrelines while the red line represents the track on which the camera moved during
data acquisition. Green dots are camera positions. We can see that many camera points
are completely off the red line. Indicatively, we measured we measured the perpendicular
distance to the red line for two camera positions (short blue lines at centre and right side
of the image). The two examples are 8.9 and 18.1 meters off only in perpendicular distance
(no information of error along horizontal axis). This is a common error, especially in areas
close to train stations or when the signal is obstructed.

the virtual principal point cx and Z the distance from the optical center along
the optical axis to the projection. Then, the horizontal projection through
equation 1 is given by:

X = Ztan(α) (2)

In addition, each object is detected in multiple consecutive images which
allows the computation of object locations through triangulation. We assume
that the object O = (X,Z) is observed in two images with known camera
positions P1, P2. Then, the two camera positions are connected through
equation 3.

P2 = P1 + ∆(cosγ, sinγ) = (v1, v2) (3)

where Pi is the camera position in a global Cartesian coordinate system
(UTM), ∆i is the distance between consecutive camera positions and γi the
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orientation change of the camera axis between consecutive camera positions.
On our experiments, we consider γ = 0 as this angle is minor compared to
the two meters error of GPS (see section 2.4).

Also, we assume that the optical axis of the camera is oriented horizontally
to make an angle u with the train. We consider that the train orientation at
P2 is (cosδ, sinδ) . Then, the position of an object in UTM coordinates can
be computed by:

X = v1 + b1
β2v1 − beta1v2
beta1b2 − beta2b1

(4)

Y = v2 + b2
beta2v1 − beta1v2
beta1b2 − beta2b1

(5)

where beta1 = cos(u + a1), beta2 = sin(u + a1), b1 = cos(δ + a2), b2 =
cos(δ + a1), v1 = ∆1cos(γ) and v2 = ∆1sin(γ). This is a system of two
equations with two unknowns.

We may now expand the computation of object UTM coordinates to
multiple objects observed in multiple different images. The position x of the
ith object in jth image is given by:

X = Pj + [cos(δi + ai), sin(δi + aj)]kj (6)

where kj is an unknown scaling parameter. For n physical objects ob-

served in m images there are 2n + m unknowns x = (X, Y, k1, ...km)>. Let
p = (P x

1 , P
y
1 , P

x
2 , P

y
2 , ...P

x
m, P

y
m, ) be the 2m vector of camera positions for m

observations. Also, ci = cos(δi + ai) and si = sin(δi + ai). Then we can
construct a 2m× (2n+m) matrix:

A =




1 0 −c1 0
0 1 −s1 0
1 0 0 −c2
0 1 0 −s2
...

...
...

...
. . .

1 0 0 · · · 0 −cn
0 1 0 · · · 0 −sn




(7)

By solving Ax = p can compute the position of the objects in UTM
coordinates. Figure 3 shows a drawing of the camera positions, an object
along with the distances and angles used for the estimation of the object
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position. In summary, in order to estimate the positions of the objects we
need at least 2n+m equations for n number of objects observed in m images.
Each image gives two equations per object, therefore, we can estimate the
position of an object from two images. However, in order to minimise the
error in estimated positions we need to apply an optimisation algorithm which
requires more than two observations per object. The more observations of
an object, the more accurate the estimated positions will be.

Figure 3: Drawing of camera and object positions. Pi represents camera positions in UTM
coordinates, ∆i the distance between camera positions in meters, Di the distance between
the cameras and the object in meters, O the position of an object in UTM coordinates.
The blue line shows the direction of the camera while the dashed orange line the direction
of the train. The angle between these two lines is u.

2.3. Bundle Adjustment

In practice, when reconstructing from multiple views, a final bundle ad-
justment, i.e. a non-linear optimisation involving all the parameters, and
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using the reprojection error as loss, is usually applied. In the present case,
using a batch approach where we search for all poses and all object positions
in one optimisation process is not be tractable due to discontinuities in object
presence along the railway. Instead an incremental approach is appropriate.

Assume that for each new images we first apply the procedure sketched
in section 2.2 to estimate initial positions for objects that have been seen
just a single time before. Then we apply bundle adjustment on all positions
(Xi, Zi) of all visible objects and on the pose (Pj, vj) local to the current
position. Since only a few objects may be simultaneously visible the number
of unknowns is small allowing a fast update.

Here we will formulate the basic minimisation expression. Let (X0
i , Z

0
i )

be the initially derived position of object i visible from the actual location
Pj and let ij be the angular observed position of object i at position j. Let,
as before P 0

j and 0
j be the initial estimate of the pose related to image j. For

all i and j (where object i is visible in frame j) we may compute the squared
reprojection error:

ri,j = ‖aij − δj − arctan
(
Xi − Pj

Zi − Zj

)
‖2 (8)

The combined model error E for a group of images is then the sum of all
ri,j over all indices where it is (locally) defined. To this error we also add the
deviation of the camera GPS since it is noisy:

EGPS = ε1‖Pj −GPSj‖2 + ε2‖δj −GPSor‖2 (9)

where GPSj is the GPS camera position in jth image and GPSor the
corresponding orientation.

Then the total model error forms to:

Em =
∑
‖aij − δj − arctan

(
Xi − Pj

Yi − Yj

)
‖2

+ε1‖Pj −GPSj‖2 + ε2‖δj −GPSor‖2
(10)

In our case, the optimisation method used is Levenberg-Marquard (LM).
The LM is an iterative estimation algorithm. It behaves as a Gauss-Newton
(GN) method when the solution on an iteration is close to a local minimum,
causing rapid convergence. On the other hand, when the current solution is
far from a local minimum it behaves as a gradient descent (GD), taking a
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short step in the steepest descent direction. Here, we will present the basic
principles of LM since an extensive analysis of the algorithm is beyond the
scope of this paper. For a detailed analysis of LM algorithm we refer the
reader to [18, 19, 17, 20].

2.3.1. Gauss-Newton

Let X = f(P ) be a non-linear, functional relation a measurement vector
X and a parameter vector P . Assume that we measure X0, an approximation
of the true value X̄. Then, we want to compute P̂ which satisfies X =
f(P̂ ) − ε where ‖ε‖ is minimised. We assume that the function f is locally
linearly represented by the Jacobian matrix J = ∂f

∂P
evaluated at Pi. Let P0

be an estimated initial estimation of P , ε0 = f(P0)−X and the approximation
of f at P0 be f(P0 + ∆) = f(P0) + J∆. The next step is to find a set of
parameters P1 = P0 + ∆ for which f(P1)−X = f(P0) + J∆−X = ε0 + J∆
is minimum [18]. It is then a matter of minimising the term ‖ε0 + J∆ over
∆. We can estimate the vector ∆ by solving the normal equations [18]:

J>J∆ = −J>ε0 (11)

In summary, based on the initial estimation P0 we iteratively approxi-
mate the solution P̂ following the formula Pi+1 = Pi + ∆i where ∆i is the
solution[18]:

J∆i = −Jεi (12)

2.3.2. Levenberg-Marquard

In LM, the normal equations 11 become the augmented normal equations
[18]:

(J>J + λI)∆ = −J>ε (13)

where I is the Identity matrix and the damping term λ has multiple effects:

• When λ > 0, the coefficient matrix is positive definitive. This guar-
antees that ∆ moves in along a descent direction (gradient descent)
[19].

• For large λ, through equation 13 the solution ∆ is [19]:

∆ = − J>ε

(J>J + λI)
' −1

λ
J>ε (14)
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which means that the algorithm takes a small step in the steepest
direction [19].

• When λ is small, the method essentially becomes the Gauss-Newton
(section 2.3.1) converging quickly to the final solution

In summary, the Levenberg-Marquard algorithm switches between Gauss-
Newton and gradient descent depending on how close the current solution is
to the minimum. When the solution is far from the minimum, GD is applied
to direct the solution slowly but surely towards the minimum. On the other
hand, when the solution is close to the minimum, the GN is applied to achieve
fast convergence [18]. The initial value of λ is defined as λ0 = τmax{J>Jii}
where τ is a user defined value [17]. If X0 is a good approximation of X̄,
then a small τ is suggested (10−6) [19]. In our case we used τ = 10−3. Each
time we solve the augmented equations 13, the value of λ is updated. If
the solution obtained leads to smaller error, then λi+1 = λi/10, otherwise
λi+1 = λi · 10

As we mentioned in previous sections, the nature of our problem dictates
that an LM optimization cannot be applied in all observations in all images
because of lack of continuity. Thus, we apply the optimization for sequences
of images where there is continued presence of observed objects. This re-
duces the amount of the parameters involved allowing us to use the bare LM
algorithm and not its sparse version.

2.4. Error Sources

In the model described in the previous section, we have addressed some
sources of errors but ignored others. Firstly, we assumed that the direction
of the camera axis for consecutive frames does not change (angle gamma
in equation 3). In reality, this is not true since there is a slight change in
the direction of the camera at each position. However, we have tested this
assumption using synthetic data. We have set the camera positions with an
average of two meters error and the change in camera direction between two
consecutive frames varying by 1%. On average, the difference on estimated
positions with versus without adding the angular error ranged below one
centimetre which is insignificant compared to the two meters error provided
from the GPS. We selected a low error in this angle because the railways are
designed with high precision to follow a straight line.

Also, in previous section we described that the angle between the camera
position and the object is obtained by the horizontal image coordinate. This
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Figure 4: Impact of error in annotations. We applied 1-10% of each bounding box dimen-
sion error on the retrieved centres. The impact on the 3D position estimation ranges from
a few millimetres to 2.3 centimetres for 10% error in annotations.

coordinate is the center of the bounding box of each detected object. In our
dataset the bounding boxes are carefully annotated by an expert, however
inaccuracies cannot be avoided. Similar inaccuracies are expected also by
automatic detection of bounding boxes, if not higher. The impact of this
inaccuracy can be tested in synthetic data. Figure 4 shows the error in
centimetres when we add noise on the image coordinates of the bounding
box centres. We choose to add percentage based noise and not absolute
values in pixels. In cases where the object is large or closer to the camera,
the bounding box is large and thus the center is obtained with more pixels
error compared to a small bounding box. In addition, every pixel of a small
bounding box, that shows an object further away, corresponds to higher error
in distance. For these two reasons, we believe that percentage based noise is
more appropriate here. The noise levels range from 1-10% of the bounding
box dimensions and the corresponding error ranges from a few millimetres to
2.3 centimetres. Again, this error is a small fraction of the two meters error
from the GPS.

Moreover, the stitching process to create the panoramas introduces errors
leading to position inaccuracies. Unfortunately, there was no specific infor-
mation available to us regarding the parameters and the model used during
stitching which made our task more challenging. We would like to men-
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tion here that the manual annotations have been implemented only on the
panoramas. Therefore, we can perform our experiments only on the panora-
mas and accept any errors introduced from stitching. The only problem that
we could identify by visual inspection were some discontinuities at the top of
the image 1. These errors exist because of the poor stitching of the vertical
camera (camera that looks in the sky) with the rest. The errors exist only at
the stitching borders of this camera where no objects exist. Also,, the levels
of distortion on the images vary on different locations in a sinusoidal way
(see figure 1). This means that observations to the center and the edges of
the image are more accurate compared to the ones in the space between.

In addition, the distance of a specific object (observed on multiple views)
from each camera position may vary by several meters. We have verified
by testing in multiple objects on multiple sequences that the accuracy of
the computed object positions is related to the distance of the object to the
camera. The observations from cameras closer to the object lead to more
accurate computations. Specifically, for this test we considered all objects
that are visible in more than six images (570 total objects) and estimated the
positions of these objects in UTM by taking into account different amounts
of observations. We estimated the position of each object four times: using
all available observations, using only the five closest to the camera, the four
closest and the three closest. Figure 5 shows the accuracy in meters for each
different case. We can see that there is a significant loss in accuracy when
cameras far away from the objects are used in the computations of initial
positions.

However, for the optimisation process the amount of observations per ob-
ject has the opposite effect. Figure 6 shows the resulted error in estimated
positions depending on the amount of observations per object used in optimi-
sation. We can see that even though the five closest objects gives estimated
positions with 3.8 meters error on average, in optimisation results in best ac-
curacy with 1.41 meters error on average. This is because more observations
allow more degrees of freedom and also the optimisation takes into account
all objects in a sequence of views where continuity is preserved. Therefore,
we only use the three closest observations for the initial position estimation
and five in optimisation.
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Figure 5: Error in estimated initial positions of objects depending on the amount of
observations used in computations. When the available observations are more than 6 for
an object, we see that we obtain on average up to two times more accurate estimation by
using only the observations closest to the camera.

Figure 6: Error in estimated initial positions of objects depending on the amount of
observations used in computations. When the available observations are more than 6 for
an object, we see that we obtain on average up to two times more accurate estimation by
using only the observations closest to the camera.
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3. Results

We applied the methodology described in the previous section in two
ways. First, we use the ground truth image coordinates of the objects and
validate the accuracy of geolocation on the ground truth locations. Secondly,
we apply an object detection CNN trained in a different, larger dataset and
fine tuned in this dataset. Then, we apply the geolocation process on the
detections of the CNN in order to evaluate a fully automated pipeline from
data acquisition to object geographical coordinates. For both experiments
we tested the original camera locations and the adjusted to the centrelines.
Here we present only the results using the adjusted camera locations as they
are more meaningful.

3.1. Ground Truth bounding boxes

In this scenario, we used the image coordinates of the objects as provided
by the manual annotation of the images (we refer to these as ground truth).
Based on the centres of the ground truth bounding boxes and the camera
positions we computed the UTM coordinates of the objects according to
the methodology described in section 2. To evaluate the accuracy of the
computations, we measured the Euclidean distance between the estimated
positions and the known accurate UTM coordinates of the objects. Figure 7
is a histogram showing this distance for each of the 1371 objects. The average
of all distances is 1.41 meters which is below the 2 meters accuracy of the
camera positions. We consider these estimations acceptable based only on the
camera GPS accuracy and the assumptions made (camera model, stitching
etc.). Though, for a railway map estimated positions should be known with
no more than 10 centimetres accuracy. As we see from our experiments, the
optimisation process can improve at some extent the final positions, however
it is strictly limited to the scale of error of the GPS.

3.2. Detected bounding boxes

The image coordinates of the objects in this experiment were acquired
by applying a pre-trained CNN based on RetinaNet as presented in [1]. The
detected objects from the CNN were filtered according to the amount of
images they appeared. Only objects detected in at least two images were
used in order to, at least, be able to estimate the initial positions. Thus, even
though RetinaNet resulted in around 89.0% accuracy ( True Positives

Number of Objects
), this

number dropped to 83.9% due to the filtering (removed true positives where
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Figure 7: Error in computed positions of objects detected from RetinaNet in meters
(Euclidean distance from ground truth)

only one detection is available for an object). In total, before filtering, the
algorithm detected, at least once, 1669 objects out of 1755 along with 129
false positives (95.1% accuracy in terms of physical objects). After filtering,
1296 unique objects were detected (out of the 1371 possible). Also, the
filtering had a positive side effect of reducing the false positive rate from
7.6% to only 1.1% (14 false positives among 1310 detections). The drop in
accuracy is significant, however, this is expected since the same behaviour is
observed in the ground truth as we discussed in section 2.1 (out of 1755 total
objects only 1371 existed in at least two images). In summary, if we assume
that the available objects to geolocate in this dataset are 1371, RetinaNet
detected 1296 which translates into 94.5% accuracy.

Afterwards, the positions of the 1296 objects were estimated according to
the methodology describe in section 2. Then we computed the Euclidean dis-
tance between each estimated position and the corresponding ground truth.
The average distance in this scenario is 1.82 meters which is again below
the camera GPS accuracy. It seems like a paradox that the estimated posi-
tions are more accurate compared to the camera GPS positions . Even if the
camera model, the stitching processing and all the assumptions made were
error-less, we should expect an accuracy equal to the camera GPS at best.
The improvement in accuracy is justified by the adjustment of the camera
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Figure 8: Error in computed positions of objects in meters (Euclidean distance from
ground truth)

positions to the railway centrelines. Without this adjustment, the computed
positions vary from two to tens of meters depending on the sequence of im-
ages. In cases where the GPS signal is obstructed, the error is low but, for
instance, when the train is passing through a station this error is higher than
twenty meters. Figure 8 shows the Euclidean distance between the com-
puted position and its corresponding ground truth in meters for each object
detected from RetinaNet. For better quality of the graph we removed 17 out-
lier positions which were exceeding 20 meters error in distance. Compared
to the first scenario, the positions are on average 0.41 meters less accurate.
We believe that this difference exists due to two reasons. First, the bounding
boxes of the ground truth data are very tight to the object leading to an
accurate value of the bounding box center. In the contrary, the bounding
boxes of RetinaNet are larger and contain also some pixels of background.
The second reason is that sometimes the bounding box created from the de-
tection algorithm is misplaced. The detection algorithm has an Intersection
over Union (IoU) criteria of 50% to accept a detection. This means that the
detected object is not required to match perfectly the ground truth bounding
box in order to be accepted. Therefore, a detected bounding box of 51% IoU
will be accepted but will possibly give a center several pixels away from the
ground truth. However, this is a favourable trade-off because an increase of
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the IoU criteria would result in fewer correct detections.

4. Conclusions

In this paper, we presented a pipeline to automatically estimate sign and
signal positions along a railway from panoramic images. We estimated the
positions based on automatic detections of objects on images and known
camera positions. The detection of objects based on RetinaNet achieved a
94.5% accuracy. This number reflects the amount of objects detected multiple
times over the amount of objects that appear multiple times in images. Our
method estimated object positions with an average error of 1.82 meters on
automatic detections and 1.42 on ground truth bounding boxes, given a GPS
error of 2 meters. The method improved the positions by almost 30% when
applied in ground truth bounding boxes and almost 10% based on automatic
detections. We believe that the assumptions made here have minor impact to
the final accuracy compared to the GPS error. Therefore, we firmly believe
that if the camera positions are known with an error of the order of a few
centimetres, the methodology presented here can match the same accuracy.
We verified this claim on synthetic data experiments, although we could
not perform experiments on the real dataset due to unavailability of more
accurate camera locations.

However, in an industrial project, an accuracy at the order of meters is
considered low. From our experience in such industrial projects, we know that
the requirements for completeness in objects is above 99% and in position
accuracy below 10 centimetres. However, such numbers are unseen by fully
automated methods in such complex projects. The achieved accuracies here,
in both detection and geolocation, are significant. Although this pipeline
cannot fully automate an industrial project, it can reduce or eliminate some
expensive, labour intensive and time consuming processes. The reason is that
by applying this pipeline, the manual processes are limited to only correct
the inaccuracies. At the moment we do not have specific numbers on the cost
reduction impact of our method on an industrial project because it has not
fully integrated yet. In addition, the pipeline can be of use in tasks where
the requirements in accuracy are less strict.

In summary, the accuracy of GPS proves to be crucial for this task. More
accurate knowledge of camera positions will allow further investigation on the
impact of other parameters involved in position estimation. Such parameters
are the stitching process, the camera model, the mounting of the camera on
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the vehicle, the bounding box accuracy etc. We partially investigated some
of these aspects using synthetic data but clear conclusions can be made by
experimenting in real data.

Acknowledgement

Our research has been funded partially by Innovations Fund Denmark
and COWI A/S as part of an industrial PhD.

References

[1] G. Karagiannis, S. Olsen, K. Pedersen, Detection of railway signs and
signals, Under peer review.

[2] B. Triggs, P. F. McLauchlan, R. I. Hartley, A. W. Fitzgibbon, Bun-
dle adjustment - a modern synthesis, in: Proceedings of the Interna-
tional Workshop on Vision Algorithms: Theory and Practice, ICCV
’99, Springer-Verlag, London, UK, UK, 2000, pp. 298–372.
URL http://dl.acm.org/citation.cfm?id=646271.685629

[3] P. Beardsley, P. Torr, A. Zisserman, 3d model acquisition from extended
image sequences, Computer Vision - Eccv ’96. 4th Eurpean Conference
on Computer Proceedings (1996) 683–95 vol.2.

[4] A. W. Fitzgibbon, A. Zisserman, Automatic camera recovery for closed
or open image sequences, in: European Conference on Computer Vision,
Springer-Verlag, 1998, pp. 311–326.

[5] R. I. Hartley, Euclidean reconstruction from uncalibrated views, in: Pro-
ceedings of the Second Joint European - US Workshop on Applications
of Invariance in Computer Vision, Springer-Verlag, Berlin, Heidelberg,
1994, pp. 237–256.
URL http://dl.acm.org/citation.cfm?id=647302.760233

[6] M. I. A. Lourakis, A. A. Argyros, Efficient, causal camera tracking in
unprepared environments, Comput. Vis. Image Underst. 99 (2) (2005)
259–290. doi:10.1016/j.cviu.2005.02.001.
URL https://doi.org/10.1016/j.cviu.2005.02.001

19



[7] M. Lourakis, A. Argyros, Sba: A software package for generic sparse
bundle adjustment, ACM Trans. Math. Softw. 36 (1) (2009) 2:1–2:30.
doi:10.1145/1486525.1486527.
URL http://doi.acm.org/10.1145/1486525.1486527

[8] H. Durrant-Whyte, T. Bailey, Simultaneous localization and mapping:
part i, IEEE Robotics Automation Magazine 13 (2) (2006) 99–110. doi:
10.1109/MRA.2006.1638022.

[9] A. J. Davison, I. D. Reid, N. D. Molton, O. Stasse, Monoslam: Real-
time single camera slam, IEEE Transactions on Pattern Analysis and
Machine Intelligence 29 (6) (2007) 1052–1067. doi:10.1109/TPAMI.

2007.1049.

[10] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,
M. Csorba, A solution to the simultaneous localization and map building
(slam) problem, IEEE Transactions on Robotics and Automation 17 (3)
(2001) 229–241. doi:10.1109/70.938381.

[11] R. Mur-Artal, J. M. M. Montiel, J. D. Tards, Orb-slam: A versatile and
accurate monocular slam system, IEEE Transactions on Robotics 31 (5)
(2015) 1147–1163. doi:10.1109/TRO.2015.2463671.

[12] Davison, Real-time simultaneous localisation and mapping with a sin-
gle camera, in: Proceedings Ninth IEEE International Conference on
Computer Vision, 2003, pp. 1403–1410 vol.2. doi:10.1109/ICCV.2003.
1238654.

[13] A. J. Davison, I. D. Reid, N. D. Molton, O. Stasse, Monoslam: Real-
time single camera slam, IEEE Trans. Pattern Analysis and Machine
Intelligence 29 (2007) 2007.

[14] D. Brown, A Solution to the General Problem of Multiple Station An-
alytical Stereotriangulation, RCA Data reducation technical report, D.
Brown Associates, Incorporated, 1958.
URL https://books.google.gr/books?id=FikPPwAACAAJ

[15] K. LEVENBERG, A method for the solution of certain non-linear prob-
lems in least squares, Quarterly of Applied Mathematics 2 (2) (1944)
164–168.
URL http://www.jstor.org/stable/43633451

20



[16] D. W. Marquardt, An algorithm for least-squares estimation of nonlinear
parameters, SIAM Journal on Applied Mathematics 11 (2) (1963) 431–
441. doi:10.1137/0111030.
URL http://dx.doi.org/10.1137/0111030

[17] M. L. A. Lourakis, A. A. Argyros, Is levenberg-marquardt the most effi-
cient optimization algorithm for implementing bundle adjustment?, in:
Tenth IEEE International Conference on Computer Vision (ICCV’05)
Volume 1, Vol. 2, 2005, pp. 1526–1531 Vol. 2. doi:10.1109/ICCV.2005.
128.

[18] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision,
2nd Edition, Cambridge University Press, USA, 2003.

[19] K. Madsen, H. Nielsen, O. Tingleff, Methods for non-linear least squares
problems (April 2004).
URL http://www2.imm.dtu.dk/pubdb/views/edoc download.php/
3215/pdf/imm3215.pdf

[20] C. T. Kelley, Iterative methods for optimization, SIAM, 1999.

21



Chapter 6

Discussion & Future Work

In this chapter, we will discuss our findings on automatic object detection and 3D

position estimation presented in previous chapters. In addition, we will present our

thoughts on how this pipeline can be further improved in the future.

6.1 Discussion

On the detection task we achieved 86.56% mAP and 95.22% recall on physical objects

on all classes with RetinaNet on the first dataset. On the second dataset, we achieved

89.0% mAP and 94.5% recall on objects that appear more than once in the dataset.

Mean average precision is a strict evaluation method for our purpose. Many objects

have been detected successfully but were misclassified. Completeness in detection is

the number one priority on an industrial railway mapping project, even if misclassified

because the manual work is limited only to the correction of the class.

In both papers on object detection, we claim that a more fair evaluation method

would be based on physical objects. Also, we claim that a single detection of a

physical object is sufficient for purpose. However, this statement is not entirely true.

First of all, as we described in the geolocation paper (section 5.2), we need at least

two detections per object in order to estimate the 3D position of an object and

more than two to apply an optimisation algorithm. However, since the human in

the loop (i.e. the full pipeline is not fully automated) cannot be avoided until we
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reach the specifications described in chapter 1 (99% mAP on automatic detection

and 10 centimetres on 3D position estimation), a single detection per object is very

valuable. The reason is that an operator will spend less time to mark the same object

in the consequent frames, based on the single detection, than search the whole image

without any prior knowledge.

Moreover, the major hindrance of the detection task has been the small size of

objects. Small sized objects has been the weak spot for all state of the art detection

algorithms [3, 13, 15, 30]. Our dataset is dominated by very small samples. In litera-

ture there are several suggested methods to address this weakness including attentive

feature selection [67], a Super Resolution technique based on Generative Adversarial

Networks (GAN) [68] or Multiple Receptive Fields (MRF) [69]. All these methods

show great potential but the improvements on detection of small objects are limited.

We believe that the simplest way out in our specific task is higher resolution images.

Ultra high resolution (8K) panoramic sets of cameras (8K) are now available at a

cost of a few thousand dollars [70]. This claim is supported by the improved mAP of

Retina between the two datasets (86.56 % vs 89.0%). The model showed improved

accuracy despite the fact that it was only fine tuned on the second dataset while

it was fully trained on the first. The main difference between the two datasets has

been the resolution of the images which resulted in significantly larger objects in the

second dataset (1102 pixels average object size compared to 302 pixels on the first

dataset). In chapter 4 we analysed the impact of object sizes in pixels on the detec-

tion accuracy. Thus, we believe that the detection accuracy on the second dataset

increased thanks to the higher resolution images. An obvious problem with very high

resolution imagery (such as 8K) is their size which will increase significantly the pro-

cessing time. However, railway objects appear in very specific areas of the image. By

applying detection only in these areas, we can achieve reasonable processing rates.

After all, high detection accuracy is the ultimate goal on railway mapping and not

real time processing.
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In addition, the improved accuracy of RetinaNet on the second dataset shows that

generalisation is possible for different datasets with minimum additional training.

However, in order to verify the level of transferability, it is necessary to perform more

tests in different datasets of Australian or other national railways.

Finally, on the geolocation task, our method achieved high accuracy (1.82 metres),

bearing in mind the 2-metres average accuracy of the camera positions. We were able

to test the impact of other minor sources of errors only in synthetic data. Therefore,

if certain conditions are met (more accurate camera positions and known stitching

process) we believe that the method presented in chapter 5 can estimate object po-

sitions with an even better accuracy. However, we were unable to define the exact

potential of the method due to lack of more accurate camera positions. Moreover,

we evaluated our estimated positions on ground truth positions of the objects. Nev-

ertheless, the ground truth positions are not free of errors. In fact, in our case the

ground truth positions are known with a 10 centimetre accuracy (the accuracy of the

aerial imagery) thus, even if we minimise the effects from all error sources, we will

not be able to verify our estimations with an accuracy below 10 centimetres.

6.2 Future Work

In the introduction of this dissertation (section 1.1) we noted that the panoramic

image datasets are auxiliary to the specialists for the identification of objects on

aerial imagery. Their role is served even with less accurate stitching, GPS positions

or resolution. In addition, the camera set-up was very different between the two

datasets. In the first dataset, the camera had a clear front view while in the second the

front view was blocked by the train. Despite the better detection accuracy achieved

on the second dataset, we believe that the camera set-up on the first dataset is more

appropriate. The reason is that the objects that appear at the centre of the image

are clear front views and are larger in size. In the second dataset, the camera set-up

did not come at a cost in accuracy because of the high resolution of the images. In
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general, we believe that if the data acquisition is carried out with the intention for use

in our proposed pipeline, the results will improve both the automatic object detection

and 3D position estimation tasks.

Specifically, it is important to back the camera with a more reliable and accurate

GPS receiver. Currently there are commercially available devices claiming accuracies

below 10 centimetres [71] at a cost of a few hundred US dollars. They can achieve such

accuracies by combining multiple Global Navigation Satellite Systems (GNSS) like

GPS, Glonass, Galilleo and Beidou along with their differential counterparts (DGPS)

[72]. In addition, a number of tie points along the railway will be of assistance for

improved positions in post processing.

Similarly, it is important to perform stitching with all parameters available. In our

experiments, the errors originated from stitching were insignificant because at best,

we could only outmatch the two metres accuracy of the camera positions. However,

in cases where an accuracy close to 10 centimetres is feasible, stitching errors will

affect the final position error to a greater extent and therefore need to be addressed.

Regarding the detection on images, we believe that improvements can be made

by acquisition of higher resolution imagery and a consistent training set. Most chal-

lenges on the detection task were raised by the small size of the objects. A training

set that contains more and larger objects can improve the detection accuracy and

simultaneously, minimise the false positive rate. This can be achieved in two ways.

First, a set of cameras able to capture higher resolution images. Second, the creation

of a database containing carefully annotated samples from multiple projects. We can

continuously enrich this database with future similar projects from around the globe.

This will help also towards generalisation of the detector for use in different datasets

in multiple countries. To achieve this, we can introduce a step to this pipeline where

the models are constantly improving through addition of new samples and elimination

of incorrect samples. In this step, depending on the available data, we can perform

either full retrain of the model or on-line training based on stochastic gradient descent
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(in contrast to batch gradient descent in our batch-based training). The advantage of

on-line training is that it does not make any assumption about the data distribution.

This means that the data can adapt on the fly to changes in the dataset [73] caused

by new samples.

Furthermore, the detection accuracy can be improved by applying optical flow and

tracking to improve detections. The outcome of our limited experiments with optical

flow was not satisfactory, mainly due to the misclassification rate of the detectors.

However, we believe optical flow and tracking algorithms have the potential to improve

detections. The improvement can be achieved based on object detections with high

confidence. Then, a tracking algorithm [74–82] can predict the position of the same

object on previous and consequent frames. The knowledge provided by the tracking

algorithm can then be combined with the automatic detection results to improve

classification accuracy (by correcting the class on detections with low confidence).

Some tracking algorithms [78, 79, 81, 82] are robust to complete occlusion as well.

This means that in cases where in a frame an object is not visible (eg. a tree covers

it), the detector may completely fail to detect an object but the tracker will predict

its position. Similarly, we can accept detections with a lower confidence in case they

are located in areas where the tracker expects an object. Finally, tracking algorithms

are computationally cheaper than deep learning detectors (even [82], a deep learning

tracker, reports a 100 fps processing rate.). This allows us to substitute the object

detector with a tracker after a single high-confidence detection of an object. In these

cases, a single detection of a physical object will be even more valuable.

In addition, the equally high detection accuracy on the second dataset shows a po-

tential in generalisation and transferability of CNNs in different datasets. However,

the two datasets we used here are both from the same country (Australia) and there-

fore the railway objects follow the same rules. In general, railway signs and signals in

different countries may vary a lot in sizes colours and configurations. We could not

test the performance of our detector on a railway of a different country due to data

82



unavailability. We believe that it would be interesting to test the detector in railways

of multiple different countries in order to define the level of generalisation.

Finally, we believe that the pipeline presented here for railway signs and signals

can be applied on other types of objects with few or no adjustments. Such objects

can be control boxes, poles, catenaries or even cables. Of course, in order to extend

the pipeline to more objects, data for training the models would be necessary.
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Chapter 7

Conclusion

In this thesis we developed, tested and demonstrated a full pipeline for the estimation

of 3D positions of railway signs and signals from panoramic images. The pipeline

consists of two main parts: automatic object detection and 3D object localisation.

For the first task, we applied multiple state-of-the-art object detection algorithms

in two different datasets of railway objects. Our best implementation (RetinaNet)

achieved 86.56% and 89.0% mAP on the first and second dataset respectively. The

models used in both datasets were trained on the first dataset while for the second, we

only fine-tuned the model. The high mAP on the second dataset shows the potential

of transferability and generalisation of the method with minimum extra training. We

believe that the accuracy can be improved by continuous training of the models with

supplementary samples and by using higher resolution cameras.

For the second task, we applied bundle adjustment on object 3D positions based

on known camera 3D positions. We achieved a 1.82 metres accuracy on average

on objects of the second dataset. This accuracy is a slight improvement to the 2

metre average accuracy of the available camera positions. The accuracy in estimated

positions is highly dependent to the accuracy of the known camera positions. The

2-metre accuracy of the camera positions did not allow us to investigate in depth

the impact of other sources of error on the final position estimations such as the

panorama stitching, bounding box misplacement on detection, camera orientation
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change between consecutive frames. We believe that the approach we presented can

match the accuracy of the camera positions even when they are known with less than

two metres accuracy on average.

In summary, the accuracies achieved here can highly improve the existing manual,

expensive and time consuming processes on railway map development both in terms

of cost reduction and product delivery times. Finally, we presented our view on how

we can improve this pipeline in the future.

85



Bibliography

[1] COWI, Personal communication with people from mapping and geoservices,
2020. [Online]. Available: https ://www.cowi . com/tags/mapping- and- geo-
services.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks”, eng, Advances in Neural Information
Processing Systems, vol. 2015-, pp. 91–99, 2015, issn: 10495258.

[3] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for dense
object detection”, CoRR, 2017. eprint: 1708.02002.

[4] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual transfor-
mations for deep neural networks”, 2017, pp. 5987–5995. doi: 10.1109/CVPR.
2017.634.

[5] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks”, CoRR, 2017.
eprint: 1709.01507.

[6] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar,
and C. L. Zitnick, “Microsoft coco: Common objects in context”, eng, Lec-
ture Notes in Computer Science, vol. 8693, pp. 740–755, 2014, issn: 16113349,
03029743.

[7] M. Everingham, L. Gool, C. K. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes (voc) challenge”, Int. J. Comput. Vision, vol. 88,
no. 2, pp. 303–338, 2010, issn: 0920-5691. doi: 10.1007/s11263-009-0275-4.

[8] Corys, Corys train simulators, 2020. [Online]. Available: https://www.youtube.
com/watch?v=t4cSsNuudXI.

[9] J. M. S. Prewitt, “Object enhancement and extraction”, in Picture Processing
and Psychopictorics, New York: Academic, 1970, pp. 75–149.

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation”, eng, Ieee Conference
on Computer Vision and Pattern Recognition (cvpr), pp. 580–587, 2014, issn:
2332564x, 10636919.

[11] R. Girshick, “Fast r-cnn”, eng, Proceedings (ieee International Conference on
Computer Vision), vol. 2015, pp. 1440–1448, 2015, issn: 15505499, 23807504.
doi: 10.1109/ICCV.2015.169.

86

https://www.cowi.com/tags/mapping-and-geo-services
https://www.cowi.com/tags/mapping-and-geo-services
1708.02002
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1109/CVPR.2017.634
1709.01507
https://doi.org/10.1007/s11263-009-0275-4
https://www.youtube.com/watch?v=t4cSsNuudXI
https://www.youtube.com/watch?v=t4cSsNuudXI
https://doi.org/10.1109/ICCV.2015.169


[12] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector”, eng, Lecture Notes in Computer Science,
vol. 9905, pp. 21–37, 2016, issn: 16113349, 03029743. doi: 10.1007/978-3-319-
46448-0_2.

[13] C. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “DSSD : Deconvolutional
single shot detector”, CoRR, vol. abs/1701.06659, 2017. arXiv: 1701 . 06659.
[Online]. Available: http://arxiv.org/abs/1701.06659.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection”, eng, Ieee Conference on Computer Vision
and Pattern Recognition (cvpr), vol. 2016-, pp. 779–788, 2016, issn: 2332564x,
10636919. doi: 10.1109/CVPR.2016.91.

[15] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger”, CoRR, vol. abs/1612.08242,
2016. arXiv: 1612.08242. [Online]. Available: http://arxiv.org/abs/1612.08242.

[16] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement”, CoRR,
vol. abs/1804.02767, 2018. arXiv: 1804.02767. [Online]. Available: http://arxiv.
org/abs/1804.02767.

[17] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based fully
convolutional networks”, in Advances in neural information processing systems,
2016, pp. 379–387.

[18] Z. Shen, Z. Liu, J. Li, Y.-G. Jiang, Y. Chen, and X. Xue, “Dsod: Learning
deeply supervised object detectors from scratch”, in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 1919–1927.

[19] Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high quality object de-
tection”, in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 6154–6162.

[20] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie,
“Feature pyramid networks for object detection”, CoRR, 2016.

[21] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li, “Single-shot refinement neu-
ral network for object detection”, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 4203–4212.

[22] J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, and D. Lin, “Libra r-cnn:
Towards balanced learning for object detection”, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 821–830.

[23] X. Zhang, F. Wan, C. Liu, R. Ji, and Q. Ye, “Freeanchor: Learning to match an-
chors for visual object detection”, in Advances in neural information processing
systems, 2019.

[24] Y. Li, Y. Chen, N. Wang, and Z. Zhang, “Scale-aware trident networks for object
detection”, in Proceedings of the IEEE International Conference on Computer
Vision, 2019.

87

https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1701.06659
http://arxiv.org/abs/1701.06659
https://doi.org/10.1109/CVPR.2016.91
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767


[25] H. Law and J. Deng, “Cornernet: Detecting objects as paired keypoints”, in
Proceedings of the European Conference on Computer Vision (ECCV), 2018,
pp. 734–750.

[26] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks”, in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 764–773.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks”, in Advances in Neural Information Pro-
cessing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger, Eds., Curran Associates, Inc., 2012, pp. 1097–1105.

[28] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders, “Selective search
for object recognition”, International Journal of Computer Vision, 2013. doi:
10.1007/s11263- 013- 0620- 5. [Online]. Available: http://www.huppelen.nl/
publications/selectiveSearchDraft.pdf.

[29] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN”, in Proceedings
of the International Conference on Computer Vision (ICCV), 2017.

[30] C. Zhu, F. Chen, Z. Shen, and M. Savvides, Soft anchor-point object detection,
2019. arXiv: 1911.12448 [cs.CV].

[31] L. Huang, Y. Yang, Y. Deng, and Y. Yu, “Densebox: Unifying landmark lo-
calization with end to end object detection”, arXiv preprint arXiv:1509.04874,
2015.

[32] J. Yu, Y. Jiang, Z. Wang, Z. Cao, and T. Huang, “Unitbox: An advanced object
detection network”, in Proceedings of the 24th ACM international conference on
Multimedia, ACM, 2016, pp. 516–520.

[33] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet: Object
detection with keypoint triplets”, in Proceedings of the IEEE International Con-
ference on Computer Vision, 2019.

[34] X. Zhou, J. Zhuo, and P. Krahenbuhl, “Bottom-up object detection by grouping
extreme and center points”, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 850–859.

[35] T. Kong, F. Sun, H. Liu, Y. Jiang, and J. Shi, “Foveabox: Beyond anchor-based
object detector”, arXiv preprint arXiv:1904.03797, 2019.

[36] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-stage ob-
ject detection”, in Proceedings of the IEEE International Conference on Com-
puter Vision, 2019.

[37] J. Wang, K. Chen, S. Yang, C. C. Loy, and D. Lin, “Region proposal by guided
anchoring”, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 2965–2974.

[38] Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin, “Reppoints: Point set representa-
tion for object detection”, in Proceedings of the IEEE International Conference
on Computer Vision, 2019.

88

https://doi.org/10.1007/s11263-013-0620-5
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://arxiv.org/abs/1911.12448


[39] C. Zhu, Y. He, and M. Savvides, “Feature selective anchor-free module for
single-shot object detection”, in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

[40] P. Maillard and F. Cavayas, “Automatic map-guided extraction of roads from
spot imagery for cartographic database updating”, International Journal of
Remote Sensing - INT J REMOTE SENS, vol. 10, pp. 1775–1787, 1989. doi:
10.1080/01431168908904007.

[41] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
2nd ed. USA: Cambridge University Press, 2003, isbn: 0521540518.

[42] M. Lourakis and A. Argyros, “Sba: A software package for generic sparse bundle
adjustment”, ACM Trans. Math. Softw., vol. 36, 2009.

[43] R. I. Hartley, “Euclidean reconstruction from uncalibrated views”, in Applica-
tions of Invariance in Computer Vision, Springer-Verlag, 1993, pp. 237–256.

[44] R. Szeliski and S. B. Kang, “Recovering 3d shape and motion from image
streams using nonlinear least squares”, eng, Journal of Visual Communication
and Image Representation, vol. 5, no. 1, pp. 10–28, 10–28, 1994, issn: 10959076,
10473203. doi: 10.1006/jvci.1994.1002.

[45] P. Beardsley, P. Tort, and A. Zisserman, “3d model acquisition from extended
image sequences”, eng, Lecture Notes in Computer Science (including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 1065, pp. 684–695, 1996, issn: 16113349, 03029743. doi: 10.1007/3-540-
61123-1_181.

[46] A. W. Fitzgibbon and A. Zisserman, “Automatic camera recovery for closed
or open image sequences”, eng, Lecture Notes in Computer Science (including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), vol. 1406, pp. 311–326, 1998, issn: 16113349, 03029743. doi: 10.1007/
bfb0055675.

[47] H. Y. Shum, Q. Ke, and Z. Zhang, “Efficient bundle adjustment with virtual
key frames: A hierarchical approach to multi-frame structure from motion”,
eng, Proceedings of the Ieee Computer Society Conference on Computer Vision
and Pattern Recognition, vol. 2, pp. 538–543, 1999, issn: 2332564x, 10636919.

[48] Z. Zhang and Y. Shan, “Incremental motion estimation through modified bundle
adjustment”, eng, Proceedings 2003 International Conference on Image Process-
ing (cat. No.03ch37429), vol. 2, II–343–6 vol.3, 2003.

[49] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops,
and R. Koch, “Visual modeling with a hand-held camera”, eng, International
Journal of Computer Vision, vol. 59, no. 3, pp. 207–232, 2004, issn: 15731405,
09205691.

89

https://doi.org/10.1080/01431168908904007
https://doi.org/10.1006/jvci.1994.1002
https://doi.org/10.1007/3-540-61123-1_181
https://doi.org/10.1007/3-540-61123-1_181
https://doi.org/10.1007/bfb0055675
https://doi.org/10.1007/bfb0055675


[50] M. I. Lourakis and A. A. Argyros, “Efficient, causal camera tracking in unpre-
pared environments”, eng, Computer Vision and Image Understanding, vol. 99,
no. 2, pp. 259–290, 2005, issn: 1090235x, 10773142. doi: 10.1016/j.cviu.2005.
02.001.

[51] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: Exploring photo col-
lections in 3d”, eng, 2010.

[52] K. Levenberg, “A method for the solution of certain non-linear problems in
least squares”, und, Quarterly of Applied Mathematics, vol. 2, no. 2, pp. 164–
168, 164–168, 1944, issn: 15524485, 0033569x. doi: 10.1090/qam/10666.

[53] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear pa-
rameters”, SIAM Journal on Applied Mathematics, vol. 11, no. 2, pp. 431–441,
1963. doi: 10.1137/0111030. [Online]. Available: http://dx.doi.org/10.1137/
0111030.

[54] P. Rabinowitz, Numerical methods for nonlinear algebraic equations, eng. Gor-
don and Breach, 1970, 199 s.

[55] M. L. A. Lourakis and A. A. Argyros, “Is levenberg-marquardt the most efficient
optimization algorithm for implementing bundle adjustment?”, in Tenth IEEE
International Conference on Computer Vision (ICCV’05) Volume 1, vol. 2,
2005, 1526–1531 Vol. 2. doi: 10.1109/ICCV.2005.128.

[56] D. G. Lowe, “Distinctive image features from scale-invariant keypoints”, Inter-
national Journal of Computer Vision, vol. 60, pp. 91–110, 2004.

[57] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features
(surf)”, Comput. Vis. Image Underst., vol. 110, no. 3, 346–359, 2008, issn: 1077-
3142. doi: 10.1016/j.cviu.2007.09.014. [Online]. Available: https://doi.org/10.
1016/j.cviu.2007.09.014.

[58] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and mapping (slam):
Part i the essential algorithms”, IEEE ROBOTICS AND AUTOMATION MAG-
AZINE, vol. 2, p. 2006, 2006.

[59] https://www.flir.com. (2019). Ladybug3 firewire, [Online]. Available: https://
www.flir.com/products/ladybug3-firewire/.

[60] A. S. View, Tailored camera system, 2017. [Online]. Available: http://www.
applied-streetview.com/products/recording/cameras/.

[61] FLIR, Overview of the ladybug image stitching process, 2013. [Online]. Available:
https://www.flir.com/support-center/iis/machine-vision/application-note/
overview-of-the-ladybug-image-stitching-process/.

[62] Hugin, Hugin - panorama photo stitcher, 2016. [Online]. Available: http://hugin.
sourceforge.net.

[63] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large
Scale Visual Recognition Challenge”, International Journal of Computer Vision
(IJCV), vol. 115, no. 3, pp. 211–252, 2015. doi: 10.1007/s11263-015-0816-y.

90

https://doi.org/10.1016/j.cviu.2005.02.001
https://doi.org/10.1016/j.cviu.2005.02.001
https://doi.org/10.1090/qam/10666
https://doi.org/10.1137/0111030
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1137/0111030
https://doi.org/10.1109/ICCV.2005.128
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1016/j.cviu.2007.09.014
https://www.flir.com/products/ladybug3-firewire/
https://www.flir.com/products/ladybug3-firewire/
http://www.applied-streetview.com/products/recording/cameras/
http://www.applied-streetview.com/products/recording/cameras/
https://www.flir.com/support-center/iis/machine-vision/application-note/overview-of-the-ladybug-image-stitching-process/
https://www.flir.com/support-center/iis/machine-vision/application-note/overview-of-the-ladybug-image-stitching-process/
http://hugin.sourceforge.net
http://hugin.sourceforge.net
https://doi.org/10.1007/s11263-015-0816-y


[64] G. Karagiannis, S. Olsen, and K. Pedersen, “Deep learning for detection of
railway signs and signals”, in Advances in Computer Vision, K. Arai and S.
Kapoor, Eds., Cham: Springer International Publishing, 2020, pp. 1–15.

[65] G. Karagiannis, S. Olsen, and K. Pedersen, “Detection of railway signs and
signals”, Under peer review in Machine Vision and Applications, 2019.

[66] G. Karagiannis, S. Olsen, and K. Pedersen, “Geolocation of railway signs and
signals”, Under peer review in ISPRS Journal of Photogrammetry and Remote
Sensing, 2020.

[67] K. Yi, Z. Jian, S. Chen, and N. Zheng, “Feature selective small object detection
via knowledge-based recurrent attentive neural network”, 2019.

[68] J. Noh, W. Bae, W. Lee, J. Seo, and G. Kim, “Better to follow, follow to be
better: Towards precise supervision of feature super-resolution for small object
detection”, in The IEEE International Conference on Computer Vision (ICCV),
2019.

[69] S. Sun, “Multiple receptive fields and small-object-focusing weakly-supervised
segmentation network for fast object detection”, CoRR, vol. abs/1904.12619,
2019. arXiv: 1904.12619. [Online]. Available: http://arxiv.org/abs/1904.12619.

[70] TECHE, Te720 pro, 2019. [Online]. Available: https://www.teche720.com/en/
te720.html.

[71] hemisphere, C321+, 2020. [Online]. Available: https://insidegnss.com/hemisphere-
gnss-releases-next-generation-s321-and-c321-gnss-smart-antennas/.

[72] G. P. S. (GPS), Nationwide differential gps system (ndgps), 2016. [Online].
Available: https://www.gps.gov/systems/augmentations/.

[73] J. Duchi and Y. Singer, “Efficient online and batch learning using forward back-
ward splitting”, Journal of Machine Learning Research, vol. 10, pp. 2899–2934,
2009. doi: 10.1145/1577069.1755882.

[74] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of
simple features”, eng, Proceedings of the 2001 Ieee Computer Society Conference
on Computer Vision and Pattern Recognition. Cvpr 2001, vol. 1, I–511–18 vol.1,
2001, issn: 2332564x, 10636919.

[75] P. Viola and M. Jones, “Robust real-time face detection”, eng, Proceedings of
the Ieee International Conference on Computer Vision, vol. 2, p. 747, 2001. doi:
10.1109/iccv.2001.937709.

[76] B. D. Lucas and T. Kanade, “Iterative image registration technique with an
application to stereo vision”, eng, Proceedings of the 7th International Joint
Conference on Artificial Intelligence, vol. 2, pp. 674–679, 1981.

[77] C. Tomasi and T. Kanade, “Detection and tracking of point features”, eng,
2010.

91

http://arxiv.org/abs/1904.12619
http://arxiv.org/abs/1904.12619
https://www.teche720.com/en/te720.html
https://www.teche720.com/en/te720.html
https://insidegnss.com/hemisphere-gnss-releases-next-generation-s321-and-c321-gnss-smart-antennas/
https://insidegnss.com/hemisphere-gnss-releases-next-generation-s321-and-c321-gnss-smart-antennas/
https://www.gps.gov/systems/augmentations/
https://doi.org/10.1145/1577069.1755882
https://doi.org/10.1109/iccv.2001.937709


[78] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking
with kernelized correlation filters”, eng, Ieee Transactions on Pattern Analysis
and Machine Intelligence, vol. 37, no. 3, pp. 6870486, 583–596, 2015, issn:
19393539, 01628828, 21609292. doi: 10.1109/tpami.2014.2345390.

[79] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7,
pp. 1409–1422, 2012, issn: 1939-3539. doi: 10.1109/TPAMI.2011.239.

[80] B. Babenko, M. Yang, and S. Belongie, “Visual tracking with online multiple
instance learning”, in 2009 IEEE Conference on Computer Vision and Pattern
Recognition, 2009, pp. 983–990. doi: 10.1109/CVPR.2009.5206737.

[81] A. Lukezic, T. Vojir, L. Cehovin Zajc, J. Matas, and M. Kristan, “Discriminative
correlation filter with channel and spatial reliability”, in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[82] D. Held, S. Thrun, and S. Savarese, “Learning to track at 100 fps with deep
regression networks”, eng, Lecture Notes in Computer Science (including Sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), vol. 9905, pp. 749–765, 2016, issn: 16113349, 03029743. doi: 10.1007/978-
3-319-46448-0_45.

92

https://doi.org/10.1109/tpami.2014.2345390
https://doi.org/10.1109/TPAMI.2011.239
https://doi.org/10.1109/CVPR.2009.5206737
https://doi.org/10.1007/978-3-319-46448-0_45
https://doi.org/10.1007/978-3-319-46448-0_45

	Introduction
	Motivation
	Objectives
	Pipeline of industrial railway projects
	Thesis Outline

	Background
	Object Detection
	Object Geolocation

	Data
	General Information
	First Dataset
	Second Dataset

	Object Detection
	Introduction
	Deep Learning for Detection of Railway Signs and Signals
	Detection of Railway Signs and Signals

	Object Geolocation
	Introduction
	Geolocation of Railway Signs and Signals

	Discussion & Future Work
	Discussion
	Future Work

	Conclusion

