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Abstract

In the past decade, multi-armed bandits have attracted significant attention from the online
learning and machine learning community due to many relevant applications in both theory and
practice. A majority of the literature assumes that the environment is fundamentally stochastic.
This assumption underlies popular algorithms such as Ucb1 or Thompson Sampling. These
algorithms enjoy provably fast learning, as long as the model assumptions hold. In practice,
there is little guarantee that the environment is actually stochastic. That is why there has
been extensive research into robust algorithms that perform even in adversarial environments,
a setting that includes complete absence of stochasticity. Although there exist algorithms, e.g.
Exp3, that achieve robustness in the adversarial regime, they come at the cost of significantly
slower learning.

Naturally the question arises if a combination of both properties is achievable. Are there
algorithms that enjoy optimal worst-case guarantees in adversarial regimes but adapt automat-
ically to easier, i.e. stochastic, environments? Although a number of algorithms have been
suggested, all of them are suboptimal in theory and underperforming in practice.

We derive the first algorithm that achieves the optimal (within constants) pseudo-regret in
both adversarial and stochastic multi-armed bandits without prior knowledge of the regime
and time horizon. The algorithm is based on Online Mirror Descent (Omd) and Follow the
Regularised Leader (Ftrl) with Tsallis entropy regulariser. In addition, the proposed algorithm
enjoys improved regret guarantees in several intermediate regimes. We provide an empirical
evaluation of the algorithm demonstrating that it significantly outperforms Ucb1 and Exp3
in stochastic environments. We also provide examples of adversarial environments, where
Ucb1 and Thompson Sampling exhibit almost linear regret, whereas our algorithm suffers
only logarithmic regret. To the best of our knowledge, this is the first example demonstrating
vulnerability of Thompson Sampling in adversarial environments.

We extend our results to semi-bandits, a generalisation of multi-armed bandits with appli-
cations in online routing and recommender systems. This algorithm is based on a novel hybrid
regulariser applied in the Ftrl framework and also obtains optimality in both the stochastic
and adversarial regimes.

In another extension, we propose a new algorithm for adversarial multi-armed bandits
with unrestricted delays. It achieves optimal dependency on the time horizon and cumulative
delays, without knowledge of these quantities. Additionally, we propose a refined tuning of the
algorithm, which achieves improved regret guarantees when the delays are highly unbalanced.
All our bounds strictly improve the state of the art and the algorithm requires less information
from the environment.

Finally, we provide additional insights into the class of algorithms studied in this thesis by
showing a fundamental connection between Omd and the Bayesian regret analysis of Thompson
Sampling. We derive the best known bound for adversarial bandits and further improve regret
bounds in several bandit and online learning problems.
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Resumé

Det seneste årti har multi-armed bandits oplevet stor interesse fra forskere inden for online
learning og machine learning grundet relevante anvendelser i b̊ade teori og praksis. Størstedelen
af litteraturen arbejder under antagelser om, at læringsscenariet fundamentalt set er stokastisk.
Denne antagelse ligger til grund for populære algoritmer som Ucb1 og Thompson Sampling.
Disse algoritmer lærer beviseligt hurtigt s̊a længe antagelserne holder. I praksis er der ikke
garanti for at læringsscenariet faktisk er stokastisk. Derfor har der været omfattende forskning
i robuste algoritmer, der virker selv i modarbejdende scenarier, hvilket ogs̊a dækker over den
totale mangel p̊a stokastisitet. Selvom der findes algoritmer, f.eks. Exp3, der opn̊ar robusthed
overfor modarbejdende scenarier, har det en omkostning i form af væsentligt langsommere
læring.

Et naturligt spørgsmål er, om en kombination af disse egenskaber kan opn̊as. Findes
der algoritmer, der b̊ade har optimale worst-case garantier i modarbejdende scenarier, men
automatisk tilpasser sig nemmer, dvs. stokastiske, scenarier? Selvom en række algoritmer
tidligere er blevet foresl̊aet, er de alle teoretisk suboptimale og fungerer d̊arligt i praksis.

Vi udleder den første algoritme med optimal pseudo-regret (op til konstanter) overfor b̊ade
modarbejdende og stokastiske multi-armed bandits uden forh̊andskendskab til læringsscenarie
eller tidshorisont. Algoritmen er baseret p̊a Online Mirror Descent (Omd) og Follow the
Regularised Leader (Ftrl) med Tsallis-entropi som regulariser. I tillæg har algoritmen ogs̊a
forbedrede garantier i flere mellemliggende scenarier. Vi udfører en empirisk evaluering af
algoritmen, som demonstrerer, at den er væsentligt bedre end Ucb1 og Exp3 i stokastiske
scenarier. Vi designer derudover ogs̊a eksempler p̊a modarbejdende scenarier, hvor Ucb1 og
Thompson Sampling har tæt p̊a lineær regret, hvorimod vores algoritme kun har logaritmisk
regret. Vi har ikke kendskab til tidligere eksempler, der demonstrerer Thompson Samplings
s̊arbarhed overfor modarbejdende scenarier.

Vi udvider vores resultater til semi-bandits, en generalisering af multi-armed bandit som
anvendes i online routing og recommender-systemer. Denne algoritme er baseret p̊a en ny
hybrid regulariser sammen med algoritmeklassen Ftrl, og er optimal indenfor b̊ade stokastiske
og modarbejdende scenarier.

I en anden udvidelse udvikler vi en ny algoritme til modarbejdende multi-armed bandits
med forsinket feedback uden begrænsninger p̊a forsinkelserne. Algoritmens afhængighed af
tidshorisonten og de kumulative forsinkelser er optimal uden at kræve forh̊andskendskab til
disse. Derudover giver vi en fintuning af algoritmen som giver forbedret regret-garantier, n̊ar
forsinkelserne er ubalancerede. Alle vores regret-begrænsninger forbedrer state-of-the-art, og
algoritmen kræver mindre information om scenariet.

Endelig giver vi ny indsigt i klassen af algoritmer studeret i denne afhandling ved at p̊avise
en fundamental forbindelse mellem Omd og den Bayesianske regret-analyse af Thompson
Sampling. Vi udleder de hidtil bedste regret-begrænsninger for modarbejdende bandits og
forbedrer derudover regret-begrænsninger for flere problemer indenfor bandits og online learning.
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Chapter 1

Introduction

Multi-armed bandits are a fundamental paradigm in online learning which have seen an
exponential growth in publications over the last two decades. The origins date back to
Thompson [96], who studied optimal experimental design for medical studies. His point of
departure was the observation, that blind controlled studies seem highly inefficient. In the later
stages of such studies, there might be sufficient data available to focus the treatment on the
most promising approaches, thereby improving the quality of treatment for the participants
of the controlled study. If we truly care about providing the best treatment for the highest
number of people, we should not divide the process into a clinical trial and a market phase, or
in the bandit language, an exploration and exploitation phase.

Even though medical studies motivated the initial research in multi-armed bandits, to the
best of our knowledge, it is a field where bandits have not actually been used. However, there
are many applications in which bandits already play a fundamental role today. Major internet
companies use bandit algorithms to optimise user interfaces, provide personalised news or
content, deliver targeted ads and much more [38, 66, 73]. Bandit algorithms are also playing an
important role in Monte-Carlo Tree Search, which is a crucial part of surpassing world experts
in the game of Go [93].

Besides these applications, multi-armed bandits are perhaps the simplest model for decision
making under uncertainty. Therefore, they can serve as an entry problem to gain elementary
insights before tackling more complex problems. For example, many algorithms for reinforcement
learning and partial monitoring have their roots in the bandit setting [19, 20]. For further
reading on different bandit models and their importance in practise, we refer to Lattimore and
Szepesvári [70].

This thesis focuses on bridging two distinct lines of work in the bandit literature, the
stochastic and adversarial regimes. In multi-armed bandit games, an agent has to repeatedly
choose an action (also called arm) from a finite set. The stochastic setting assumes that the
outcomes of an agent’s actions are drawn from i.i.d. distributions that only depend on the
agent’s choice. The seminal work of Lai and Robbins [67] provided an asymptotic lower bound
on the performance of multi-armed bandit algorithms in the stochastic regime. We also have a
multitude of optimal algorithms in various models, including Thompson’s original algorithm
from 1933 [61]. For a comprehensive overview of stochastic bandits, we refer to Bubeck and
Cesa-Bianchi [26], Lattimore and Szepesvári [70], Slivkins et al. [94].

In real life applications, the stochastic model is often violated. Considering, for example,
targeted ads, where the performance is measured in terms of clicks or interactions of the user.
One can easily imagine that the weather strongly influences the user’s temporary engagement,
breaking the i.i.d. assumption.

To tackle this problem, the adversarial regime abandons all stochasticity assumption and
replaces it with the assumption that outcomes are bounded in [0, 1]. At the beginning of the
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2 CHAPTER 1. INTRODUCTION

game, an adversary is allowed to allocate outcomes to counter our algorithm and we care about
the worst-case guarantee against any adversary. Surprisingly, it is still possible to learn in that
regime and algorithms are known with almost matching upper and lower bounds [14].

In recent years, the focus shifted towards the question of combining both regimes. Is it
possible to design an “adversarially robust stochastic multi-armed bandit”? In other words,
is there an algorithm that is optimal in the stochastic regime, which also obtains worst-case
guarantees if the stochasticity assumption is violated?

One line of work initiated by Bubeck and Slivkins [31] and later improved by Auer and
Chiang [18] starts with a stochastic algorithm and performs sophisticated tests whether the
environment might violate the i.i.d. assumption. If and only if such a violation is detected,
the learner switches irreversibly to an adversarial algorithm. An obvious disadvantage of this
approach is the need to know the time horizon in advance to tune the confidence intervals.
While there are doubling tricks to turn finite-time algorithms into anytime algorithms, no
doubling trick can do so for both the adversarial and the stochastic setting simultaneously,
without extra cost in the regret [23].

A different approach introduced by Seldin and Slivkins [91] and improved by Seldin and
Lugosi [90] and Wei and Luo [103] starts with an adversarial algorithm and improves the
performance guarantees in stochastic regimes. These algorithms are more useful in practice,
since they are natively anytime, i.e. they work without knowing how long the game lasts.
However, all previously proposed algorithms are suboptimal in at least one of the regimes.
Furthermore the logarithmic bounds in the stochastic regime are asymptotical results. As we
show in our experiments, their empirical performances over realistic time horizons (up to 107

timesteps) do not surpass the performance of the adversarial baseline.
It has remained an open problem since the work of Bubeck and Slivkins [31] whether

simultaneous optimality in both worlds with no prior knowledge about the regime is possible at
all. Auer and Chiang [18] have shown that high probability bounds on the adversarial regret
are incompatible with optimal pseudo-regret in the stochastic regime. Abbasi-Yadkori et al. [1]
have shown that in the pure exploration setting it is also impossible to obtain the optimal rates
in both stochastic and adversarial regimes.

We show that for pseudo-regret, however, optimality in both regimes is indeed achievable.

1.1 Outline of the thesis

The thesis is structured in the following way.
Chapter 2 introduces Factored Bandits, a stochastic bandit problem in which each arm

consists of taking independent actions over several sets. For example, an advertiser might
choose a picture, a design, and a text for an online ad, each selected from a pool of arbitrarily
combinable options. We assume that the identity of the optimal action in each set is independent
of actions taken in other sets, however the reward distribution is dependent on the ensemble
of actions. The main result of this chapter is an efficient meta-algorithm that runs almost
communication-free sub-algorithms for each set and obtains up to constants optimal regret.
From the inside of any sub-algorithm, the problem becomes an intermediate regime between
stochastic and adversarial. Although the environment is stochastic, the sub-algorithm does not
observe the full context, i.e. it does not observe the choices of the sub-algorithms dedicated to
other sets.

Chapter 3 contains the main result of this thesis. We optimally solve the aforementioned
problem of “adversarially robust stochastic multi-armed bandits”. This is achieved by developing
a novel proof technique for Omd algorithms in stochastic regimes. Moreover, we define a
more general adversarial regime with a self-bounding constraint, which includes the stochastic,
stochastically constrained adversarial [103], and adversarially corrupted stochastic [76] regimes
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as special cases. We propose an algorithm that achieves logarithmic pseudo-regret guarantee
in the adversarial regime with a self-bounding constraint simultaneously with the adversarial
regret guarantee. The algorithm is based on Omd with regularisation by Tsallis entropy with
power 1

2 . We name it Tsallis-INF, where INF stands for Implicitly Normalised Forecaster
[14]. The proposed algorithm is anytime: it requires neither the knowledge of the time horizon
nor doubling schemes.

Chapter 4 extends the results to combinatorial semi-bandits, which is a natural generalisation
of multi-armed bandits with applications in online routing and item recommendation. The
learner has to pick a subset of actions, also called a combinatorial action and receives feedback
for an action if and only if it was selected. Our algorithm is based on a novel hybrid regulariser
applied in the follow the regularised leader (Ftrl) framework and also obtains optimality in
both the stochastic and adversarial regimes.

Chapter 5 extends the problem definition to arbitrarily delayed feedback. While the
stochastic version of bandits with delay is well understood [57], the adversarial problem is
significantly more challenging. We present the first simple anytime algorithm to obtain optimal
performance in the adversarial setting.

Chapter 6 provides further insight into the family of algorithms used throughout this thesis.
It shows that there is a remarkable relationship between Omd and the information theoretic
analysis of the Bayesian regret of Thompson Sampling.

1.2 Main contributions

The main contributions of this thesis are as follows:

1. We provide an anytime algorithm for playing factored bandits in stochastic environments
and analyse its regret. We also provide a lower bound matching up to constants.

2. We show that the algorithm can also be applied to utility-based dueling bandits, where
the additive factor in the regret bound is reduced by a multiplicative factor of K compared
to state-of-the-art (where K is the number of actions).

3. We propose the Tsallis-INF algorithm, which is based on Omd with regularisation
by Tsallis entropy with power α = 1

2 . The algorithm achieves the optimal logarithmic
pseudo-regret rate in the stochastic regime simultaneously with the optimal square-root
adversarial regret guarantee with no prior knowledge of the regime. This resolves an open
question of Bubeck and Slivkins [31].

4. When combined with reduced-variance loss estimators proposed by Zimmert and Lattimore
[108], the leading constant of the stochastic regret bound for the Tsallis-INF algorithm
matches the asymptotic lower bound of Lai and Robbins [67] within a multiplicative
factor of 2.

5. The leading constant of the adversarial regret bound for the same combination matches the
minimax lower bound of Cesa-Bianchi and Lugosi [35, Theorem 6.1] within a multiplicative
factor of less than 15, simultaneously with the stochastic bound. To the best of our
knowledge, this is the best leading constant in an adversarial regret bound known today,
matching the result of Zimmert and Lattimore [108].

6. We introduce an adversarial regime with a self-bounding constraint, which includes
stochastic, stochastically constrained adversarial, and adversarially corrupted stochastic
regimes as special cases. We show that Tsallis-INF achieves logarthmic regret in the
new regime simultaneously with the worst-case adversarial regret bound.
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7. We improve the regret bound for adversarially corrupted stochastic regimes.

8. We use Tsallis-INF in a Sparring framework [8] to obtain an algorithm that achieves
stochastic and adversarial optimality in utility-based dueling bandits.

9. We provide an empirical comparison of Tsallis-INF with standard algorithms from the
literature. In one of the comparisons we design a stochastically constrained adversarial
environment, where Thompson Sampling suffers almost linear regret. To the best of
our knowledge, this is the first evidence that Thompson Sampling is not suitable for
adversarial environments.

10. We propose a simple and general semi-bandit algorithm based on the Ftrl framework
with a novel hybrid regulariser.

11. For any combinatorial action set, we prove that our algorithm achieves O(Csto log T )
regret for stochastic environments and O(Cadv

√
T ) regret for adversarial environments,

where Csto and Cadv are problem-dependent factors (that do not depend on T ) and are
worst-case optimal.

12. We conduct experiments with synthetic data to show that our algorithm indeed adapts
well to the nature of the environment. Additionally, we present a simple intermediate
setting where our algorithm outperforms all baselines.

13. We provide an anytime Ftrl algorithm based on a novel hybrid regulariser. The
regulariser combines 1

2 -Tsallis entropy and negative entropy, each with its own learning
rate. The algorithm requires no advance knowledge of the delays and achieves a regret
bound of O(

√
kn+

√
D log(k)), which matches the lower bound within constants.

14. We provide a novel “skipping” technique, which allows to “ignore” rounds with excessively
large delays with no advance knowledge of the delays. We put “skipping” and “ignore”
in quotation marks, because the observations are still used by the algorithm and the
“skipped” rounds are only excluded from the update of the learning rate. We prove an
O(
√
kn+ minS |S|+

√
DS̄ log(k)) regret bound for the refined algorithm. The bound is

slightly tighter than the refined regret bound of Thune et al. [98], but most importantly
it requires no advance knowledge of the delays.

15. We prove a formal connection between the information-theoretic analysis and OMD.
Specifically, we show how tools for analysing OMD can be applied to a modified version
of Thompson sampling that uses the same sampling strategy as OMD, but replaces the
mirror descent update with a Bayesian update.

16. We provide an efficient algorithm for adversarial k-armed bandits with regret
√

2kn+O(k),
matching the information-theoretic upper bound except for small lower-order terms.

17. Finally, we improve the regret guarantees for two online learning problems. First, for
bandits with graph feedback we improve the minimax regret in the “easy” setting by a
log(n) factor, matching the lower bound up to a factor of log3/2(k). Second, for online
linear optimisation over the `p-balls we improve existing bounds by arbitrarily large
constant factors.



Chapter 2

Factored bandits

The work presented in this chapter is based on a paper that has been accepted as [110].

[110] Zimmert, J. and Seldin, Y. (2018). Factored bandits. In Advances in Neural Information
Processing Systems (NeurIPS), pages 2835–2844

5



6 CHAPTER 2. FACTORED BANDITS

Abstract

We introduce the factored bandits model, which is a framework for learning with limited
(bandit) feedback, where actions can be decomposed into a Cartesian product of atomic
actions. Factored bandits incorporate rank-1 bandits as a special case, but significantly relax
the assumptions on the form of the reward function. We provide an anytime algorithm for
stochastic factored bandits and up to constants matching upper and lower regret bounds for
the problem. Furthermore, we show how a slight modification enables the proposed algorithm
to be applied to utility-based dueling bandits. We obtain an improvement in the additive terms
of the regret bound compared to state-of-the-art algorithms (the additive terms are dominating
up to time horizons that are exponential in the number of arms).

2.1 Introduction

We introduce factored bandits, which is a bandit learning model, where actions can be decom-
posed into a Cartesian product of atomic actions. As an example, consider an advertising task,
where the actions can be decomposed into (1) selection of an advertisement from a pool of
advertisements and (2) selection of a location on a web page out of a set of locations, where
it can be presented. The probability of a click is then a function of the quality of the two
actions, the attractiveness of the advertisement and the visibility of the location it was placed
at. In order to maximise the reward the learner has to maximise the quality of actions along
each dimension of the problem. Factored bandits generalise the above example to an arbitrary
number of atomic actions and arbitrary reward functions satisfying some mild assumptions.

explicit
reward models

weakly constrained
reward models

Combin.
Bandits

relaxation
Chen et al.
(2016)

A = {0,1}d

Generalised
Linear
Bandits

Factored
Bandits

Stochastic
Rank-1

Utility
Based

Uniformly
Identifiable

Dueling
Bandits

Condorcet
Winner

Figure 2.1: Relations between factored bandits and other bandit models.

In a nutshell, at every round of a factored bandit game the player selects L atomic actions,
a1, . . . , aL, each from a corresponding finite set A` of size |A`| of possible actions. The player
then observes a reward, which is an arbitrary function of a1, . . . , aL satisfying some mild
assumptions. For example, it can be a sum of the quality of atomic actions, a product of the
qualities, or something else that does not necessarily need to have an analytical expression.
The learner does not have to know the form of the reward function.

Our way of dealing with combinatorial complexity of the problem is through introduction
of unique identifiability assumption, by which the best action along each dimension is uniquely
identifiable. A bit more precisely, when looking at a given dimension we call the collection
of actions along all other dimensions a reference set. The unique identifiability assumption
states that in expectation the best action along a dimension outperforms any other action along
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the same dimension by a certain margin when both are played with the same reference set,
irrespective of the composition of the reference set. This assumption is satisfied, for example,
by the reward structure in linear and generalised linear bandits, but it is much weaker than the
linearity assumption.

In Fig. 2.1, we sketch the relations between factored bandits and other bandit models. We
distinguish between bandits with explicit reward models, such as linear and generalised linear
bandits, and bandits with weakly constrained reward models, including factored bandits and
some relaxations of combinatorial bandits. A special case of factored bandits are rank-1 bandits
[60]. In rank-1 bandits the player selects two actions and the reward is the product of their
qualities. Factored bandits generalise this to an arbitrary number of actions and significantly
relax the assumption on the form of the reward function.

The relation with other bandit models is a bit more involved. There is an overlap between
factored bandits and (generalised) linear bandits [2, 47], but neither is a special case of the other.
When actions are represented by unit vectors, then for (generalised) linear reward functions
the models coincide. However, the (generalised) linear bandits allow a continuum of actions,
whereas factored bandits relax the (generalised) linearity assumption on the reward structure
to uniform identifiability.

There is a partial overlap between factored bandits and combinatorial bandits [36]. The
action set in combinatorial bandits is a subset of {0, 1}d. If the action set is unrestricted, i.e.
A = {0, 1}d, then combinatorial bandits can be seen as factored bandits with just two actions
along each of the d dimensions. However, typically in combinatorial bandits the action set is a
strict subset of {0, 1}d and one of the parameters of interest is the permitted number of non-zero
elements. This setting is not covered by factored bandits. While in the classical combinatorial
bandits setting the reward structure is linear, there exist relaxations of the model, e.g. Chen
et al. [40].

Dueling bandits are not directly related to factored bandits and, therefore, we depict them
with faded dashed blocks in Fig. 2.1. While the action set in dueling bandits can be decomposed
into a product of the basic action set with itself (one for the first and one for the second action
in the duel), the observations in dueling bandits are the identities of the winners rather than
rewards. Nevertheless, we show that the proposed algorithm for factored bandits can be applied
to utility-based dueling bandits.

The main contributions of the paper can be summarised as follows:

1. We introduce factored bandits and the uniform identifiability assumption.

2. Factored bandits with uniformly identifiable actions are a generalisation of rank-1 bandits.

3. We provide an anytime algorithm for playing factored bandits under uniform identifiability
assumption in stochastic environments and analyse its regret. We also provide a lower
bound matching up to constants.

4. Unlike the majority of bandit models, our approach does not require explicit specification
or knowledge of the form of the reward function (as long as the uniform identifiability
assumption is satisfied). For example, it can be a weighted sum of the qualities of atomic
actions (as in linear bandits), a product thereof, or any other function not necessarily
known to the algorithm.

5. We show that the algorithm can also be applied to utility-based dueling bandits, where
the additive factor in the regret bound is reduced by a multiplicative factor of K compared
to state-of-the-art (where K is the number of actions). It should be emphasised that
in state-of-the-art regret bounds for utility-based dueling bandits the additive factor
is dominating for time horizons below Ω(exp(K)), whereas in the new result it is only
dominant for time horizons up to O(K).
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6. Our work provides a unified treatment of two distinct bandit models: rank-1 bandits and
utility-based dueling bandits.

This chapter is organised in the following way. In Section 2.2 we introduce the factored
bandit model and uniform identifiability assumption. In Section 2.3 we provide algorithms for
factored bandits and dueling bandits. In Section 2.4 we analyse the regret of our algorithm
and provide matching upper and lower regret bounds. In Section 2.5 we compare our work
empirically and theoretically with prior work. We finish with a discussion in Section 2.6.

2.2 Problem Setting

2.2.1 Factored bandits

We define the game in the following way. We assume that the set of actions A can be represented
as a Cartesian product of atomic actions, A =

⊗L
`=1A`. We call the elements of A` atomic

arms. For rounds t = 1, 2, ... the player chooses an action At ∈ A and observes a reward rt
drawn according to an unknown probability distribution pAt (i.e., the game is “stochastic”).
We assume that the mean rewards µ(a) = E[rt|At = a] are bounded in [−1, 1] and that the
noise ηt = rt − µ(At) is conditionally 1-sub-Gaussian. Formally, this means that

∀λ ∈ R E
[
eληt |Ft−1

]
≤ exp

(
λ2

2

)
,

where Ft := {A1, r1,A2, r2, ...,At, rt} is the filtration defined by the history of the game up to
and including round t. We denote a∗ = (a∗1, a∗2, ..., a∗L) = arg maxa∈A µ(a).

Definition 2.1 (uniform identifiability). An atomic set Ak has a uniformly identifiable best
arm a∗k if and only if

∀a ∈ Ak \ {a∗k} : ∆k(a) := min
b∈
⊗

` 6=k A
`
µ(a∗k,b)− µ(a,b) > 0. (2.1)

We assume that all atomic sets have uniformly identifiable best arms. The goal is to
minimise the pseudo-regret, which is defined as

RT = E
[
T∑
t=1

µ(a∗)− µ(At)
]
.

Due to generality of the uniform identifiability assumption we cannot upper bound the instan-
taneous regret µ(a∗)− µ(At) in terms of the gaps ∆`(a`). However, a sequential application of
Eq. (2.1) provides a lower bound

µ(a∗)− µ(a) = µ(a∗)− µ(a1, a
∗
2, ..., a

∗
L) + µ(a1, a

∗
2, ..., a

∗
L)− µ(a)

≥ ∆1(a1) + µ(a1, a
∗
2, ..., a

∗
L)− µ(a) ≥ ... ≥

L∑
`=1

∆`(a`). (2.2)

For the upper bound let κ be a problem dependent constant, such that µ(a∗) − µ(a) ≤
κ
∑L
`=1 ∆`(a`) holds for all a. Since the mean rewards are in [−1, 1], the condition is always

satisfied by κ = mina,` 2∆−1
` (a`) and by Eq. (2.2) κ is always larger than 1. The constant

κ appears in the regret bounds. In the extreme case when κ = mina,` 2∆−1
` (a`) the regret

guarantees are fairly weak. However, in many specific cases mentioned in the previous section,
κ is typically small or even 1. We emphasise that algorithms proposed in the paper do not
require the knowledge of κ. Thus, the dependence of the regret bounds on κ is not a limitation
and the algorithms automatically adapt to more favorable environments.
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2.2.2 Dueling bandits

The set of actions in dueling bandits is factored into A×A. However, strictly speaking the
problem is not a factored bandit problem, because the observations in dueling bandits are not
the rewards.1 When playing two arms, a and b, we observe the identity of the winning arm,
but the regret is typically defined via average relative quality of a and b with respect to a “best”
arm in A.

The literature distinguishes between different dueling bandit settings. We focus on utility-
based dueling bandits [106] and show that they satisfy the uniform identifiability assumption.

In utility-based dueling bandits, it is assumed that each arm has a utility u(a) and that the
winning probabilities are defined by P[a wins against b] = ν(u(a)− u(b)) for a monotonously
increasing link function ν. Let w(a, b) be 1 if a wins against b and 0 if b wins against a. Let
a∗ := arg maxa∈A u(a) denote the best arm. Then for any arm b ∈ A and any a ∈ A \ a∗, it
holds that E[w(a∗, b)]− E[w(a, b)] = ν(u(a∗)− u(b))− ν(u(a)− u(b)) > 0, which satisfies the
uniform identifiability assumption. For the rest of the paper we consider the linear link function
ν(x) = 1+x

2 . The regret is then defined by

RT = E
[
T∑
t=1

u(a∗)− u(At)
2 + u(a∗)− u(Bt)

2

]
. (2.3)

2.3 Algorithms

Although in theory an asymptotically optimal algorithm for any structured bandit problem was
presented in [42], for factored bandits this algorithm does not only require solving an intractable
semi-infinite linear program at every round, but it also suffers from additive constants which
are exponential in the number of atomic actions L. An alternative naive approach could
be an adaptation of sparring [105], where each factor runs an independent K-armed bandit
algorithm and does not observe the atomic arm choices of other factors. The downside of
sparring algorithms, both theoretically and practically, is that each algorithm operates under
limited information and the rewards become non i.i.d. from the perspective of each individual
factor.

Our Temporary Elimination Algorithm (TEA, Algorithm 1) avoids these downsides. It runs
independent instances of the Temporary Elimination Module (TEM, Algorithm 3) in parallel,
one per each factor of the problem. Each TEM operates on a single atomic set. The TEA is
responsible for the synchronisation of TEM instances. Two main ingredients ensure information
efficiency. First, we use relative comparisons between arms instead of comparing absolute mean
rewards. This cancels out the effect of non-stationary means. The second idea is to use local
randomisation in order to obtain unbiased estimates of the relative performance without having
to actually play each atomic arm with the same reference, which would have led to prohibitive
time complexity.

1In principle, it is possible to formulate a more general problem that would incorporate both factored bandits
and dueling bandits. But such a definition becomes too general and hard to work with. For the sake of clarity
we have avoided this path.
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Algorithm 1: Factored Bandit TEA
1 ∀` : TEM` ← new TEM(A`)
2 t← 1
3 for s = 1, 2, . . . do
4 Ms ← arg max` |TEM` . getActiveSet(f(t)−1)|
5 Ts ← (t, t+ 1, . . . , t+Ms − 1)
6 for ` ∈ {1, . . . , L} in parallel do
7 TEM` . scheduleNext(Ts)
8 for t ∈ Ts do
9 rt ← play((TEM` .At)`=1,...,L)

10 for ` ∈ {1, . . . , L} in parallel do
11 TEM` . feedback((rt′)t′∈Ts )
12 t← t+ |Ts|

Algorithm 2: Dueling Bandit
TEA
1 TEM← new TEM(A)
2 t← 1
3 for s = 1, 2, . . . do
4 As ← TEM . getActiveSet(f(t)−1)
5 Ts ← (t, t+ 1, . . . , t+ |As| − 1)
6 TEM . scheduleNext(Ts)
7 for b ∈ As do
8 rt ← play(TEM .At, b)
9 t← t+ 1

10 TEM . feedback((rt′)t′∈Ts )

The TEM instances run in parallel in externally synchronised phases. Each module selects
active arms in getActiveSet(δ), such that the optimal arm is included with high probability.
The length of a phase is chosen such that each module can play each potentially optimal arm at
least once in every phase. All modules schedule all arms for the phase in scheduleNext. This is
done by choosing arms in a round robin fashion (random choices if not all arms can be played
equally often) and ordering them randomly. All scheduled plays are executed and the modules
update their statistics through the call of feedback routine. The modules use slowly increasing
lower confidence bounds for the gaps in order to temporarily eliminate arms that are with high
probability suboptimal. In all algorithms, we use f(t) := (t+ 1) log2(t+ 1).

Dueling bandits For dueling bandits we only use a single instance of TEM. In each phase
the algorithm generates two random permutations of the active set and plays the corresponding
actions from the two lists against each other. (The first permutation is generated in Line 5 and
the second in Line 6 of Algorithm 2.)

2.3.1 TEM

The TEM tracks empirical differences between rewards of all arms ai and aj in Dij . Based on
these differences, it computes lower confidence bounds for all gaps. The set K∗ contains those
arms where all LCB gaps are zero. Additionally the algorithm keeps track of arms that were
never removed from B. During a phase, each arm from K∗ is played at least once, but only
arms in B can be played more than once. This is necessary to keep the additive constants at
M log(K) instead of MK.
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Algorithm 3: Temporary Elimina-
tion Module (TEM) Implementation

global :Ni,j , Di,j ,K∗,B
1 Function initialize(K)
2 ∀ai, aj ∈ K : Ni,j , Di,j ← 0, 0
3 B ← K
4

5 Function getActiveSet(δ)
6 if ∃Ni,j = 0 then
7 K∗ ← K
8 else
9 for ai ∈ K do

10 ∆̂LCB(ai)← maxaj 6=ai

Dj,i

Nj,i
−√

12 log(2Kf(Nj,i)δ−1)
Nj,i

11 K∗ ← {ai ∈ K|∆̂LCB(ai) ≤ 0}
12 if |K∗| = 0 then
13 K∗ ← K
14 B ← B ∩ K∗
15 if |B| = 0 then
16 B ← K∗

17 return K∗

19

20 Function scheduleNext(T )
21 for a ∈ K∗ do
22 t̃← random unassigned index in T
23 At̃ ← a

24 while not all Ats , . . . , Ats+|T |−1 assigned
do

25 for a ∈ B do
26 t̃← random unassigned index in

T
27 At̃ ← a

28

29 Function feedback({Rt}ts,...,ts+Ms−1)
30 ∀ai : N i

s, R
i
s ← 0, 0

31 for t = ts, . . . , ts +Ms − 1 do
32 RAt

s ← RAt
s +Rt

33 NAt
s ← NAt

s + 1
34 for ai, aj ∈ K∗ do
35 Di,j ← Di,j + min{Ns

i , N
s
j }(

Ri
s

Ni
s
− R

j
s

N
j
s

)
36 Ni,j ← Ni,j + min{Ns

i , N
s
j }

2.4 Analysis

We start this section with the main theorem, which bounds the number of times the TEM pulls
sub-optimal arms. Then we prove upper bounds on the regret for our main algorithms. Finally,
we prove a lower bound for factored bandits that shows that our regret bound is tight up to
constants.

2.4.1 Upper bound for the number of sub-optimal pulls by TEM

Theorem 2.1. For any TEM submodule TEM` with an arm set of size K = |A`|, running
in the TEA algorithm with M := max` |A`| and any suboptimal atomic arm a 6= a∗, let Nt(a)
denote the number of times TEM has played the arm a up to time t. Then there exist constants
C(a) ≤M for a 6= a∗, such that

E[Nt(a)] ≤ 120
∆(a)2

(
log(2Kt log2(t)) + 4 log

(
48 log(2Kt log2(t))

∆(a)2

))
+ C(a),

where
∑
a6=a∗ C(a) ≤M log(K) + 5

2K in the case of factored bandits and C(a) ≤ 5
2 for dueling

bandits.

Proof sketch. [The complete proof is provided in the Appendix.]

Step 1 We show that the confidence intervals are constructed in such a way that the probability
of all confidence intervals holding at all epochs up from s′ is at least 1−maxs≥s′ f(ts)−1. This
requires a novel concentration inequality Lemma 2.3) for a sum of conditionally σs-sub-gaussian
random variables, where σs can be dependent on the history. This technique might be useful
for other problems as well.
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Step 2 We split the number of pulls into pulls that happen in rounds where the confidence
intervals hold and those where they fail: Nt(a) = N conf

t (a) +N conf
t (a).

We can bound the expectation of N conf
t (a) based on the failure probabilities given by

P[conf failure at round s] ≤ 1
f(ts) .

Step 3 We define s′ as the last round in which the confidence intervals held and a was not
eliminated. We can split N conf

t (a) = N conf
ts′

(a) +C(a) and use the confidence intervals to upper
bound N conf

ts′
(a). The upper bound on

∑
aC(a) requires special handling of arms that were

eliminated once and carefully separating the cases where confidence intervals never fail and
those where they might fail.

2.4.2 Regret Upper bound for Dueling Bandit TEA

A regret bound for the Factored Bandit TEA algorithm, Algorithm 1, is provided in the
following theorem.

Theorem 2.2. The pseudo-regret of Algorithm 1 at any time T is bounded by

RT ≤ κ

 L∑
`=1

∑
a` 6=a∗`

120
∆`(a`)

(
log(2|A`|t log2(t)) + 4 log

(
48 log(2|A`|t log2(t))

∆`(a`)

)))

+ max
`
|A`|

∑
`

log(|A`|) +
∑
`

5
2 |A

`|.

Proof. The design of TEA allows application of Theorem 2.1 to each instance of TEM. Using
µ(a∗)− µ(a) ≤ κ

∑L
`=1 ∆`(a`), we have that

RT = E[
T∑
t=1

µ(a∗)− µ(at)]] ≤ κ
L∑
l=1

∑
a` 6=a∗`

E[NT (a`)]∆`(a`).

Applying Theorem 2.1 to the expected number of pulls and bounding the sums
∑
aC(a)∆(a) ≤∑

aC(a) completes the proof.

2.4.3 Dueling bandits

A regret bound for the Dueling Bandit TEA algorithm (DBTEA), Algorithm 2, is provided in
the following theorem.

Theorem 2.3. The pseudo-regret of Algorithm 2 for any utility-based dueling bandit problem
at any time T (defined in Eq. (2.3)) satisfies RT ≤ O

(∑
a6=a∗

log(T )
∆(a)

)
+O(K).

Proof. At every round, each arm in the active set is played once in position A and once in
position B in play(A,B). Denote by NA

t (a) the number of plays of an arm a in the first position,
NB
t (a) the number of plays in the second position, and Nt(a) the total number of plays of the

arm. We have

RT =
∑
a6=a∗

E[Nt(a)]∆(a) =
∑
a6=a∗

E[NA
t (a) +NB

t (a)]∆(a) =
∑
a6=a∗

2E[NA
t (a)]∆(a).

The proof is completed by applying Theorem 2.1 to bound E[NA
t (a)].
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2.4.4 Lower bound

We show that without additional assumptions the regret bound cannot be improved. The
lower bound is based on the following construction. The mean reward of every arm is given by
µ(a) = µ(a∗)−

∑
` ∆`(a`). The noise is Gaussian with variance 1. In this problem, the regret

can be decomposed into a sum over atomic arms of the regret induced by pulling these arms,
RegT =

∑
`

∑
a`∈A` E[NT (a`)]∆`(a`). Assume that we only want to minimise the regret induced

by a single atomic set A`. Further, assume that ∆k(a) for all k 6= ` are given. Then the problem
is reduced to a regular K-armed bandit problem. The asymptotic lower bound for K-armed
bandit under 1-Gaussian noise goes back to [67]: For any consistent strategy θ, the asymptotic
regret is lower bounded by lim infT→∞

RegθT
log(T ) ≥

∑
a6=a∗

2
∆(a) . Due to regret decomposition, we

can apply this bound to every atomic set separately. Therefore, the asymptotic regret in the
factored bandit problem is

lim inf
T→∞

RegθT
log(T ) ≥

L∑
`=1

∑
a` 6=a`∗

2
∆`(a`) .

This shows that our general upper bound is asymptotically tight up to leading constants and κ.

κ-gap We note that there is a problem-dependent gap of κ between our upper and lower
bounds. Currently we believe that this gap stems from the difference between information
and computational complexity of the problem. Our algorithm operates on each factor of
the problem independently of other factors and is based on the “optimism in the face of
uncertainty” principle. It is possible to construct examples in which the optimal strategy
requires playing surely sub-optimal arms for the sake of information gain. For example, this
kind of constructions were used by Lattimore and Szepesvári [69] to show suboptimality of
optimism-based algorithms. Therefore, we believe that removing κ from the upper bound is
possible, but requires a fundamentally different algorithm design. What is not clear is whether
it is possible to remove κ without significant sacrifice of the computational complexity.

2.5 Comparison to Prior Work

2.5.1 Stochastic rank-1 bandits

Stochastic rank-1 bandits introduced by Katariya et al. [60] are a special case of factored
bandits. The authors published a refined algorithm for Bernoulli rank-1 bandits using KL
confidence sets in Katariya et al. [59]. We compare our theoretical results with the first paper
because it matches our problem assumptions. In our experiments, we provide a comparison to
both the original algorithm and the KL version.

In the stochastic rank-1 problem there are only 2 atomic sets of size K1 and K2. The matrix
of expected rewards for each pair of arms is of rank 1. It means that for each u ∈ A1 and
v ∈ A2, there exist u, v ∈ [0, 1] such that E[r(u, v)] = u · v. The proposed Stochastic rank-1
Elimination algorithm introduced by Katariya et al. is a typical elimination style algorithm. It
requires knowledge of the time horizon and uses phases that increase exponentially in length. In
each phase, all arms are played uniformly. At the end of a phase, all arms that are sub-optimal
with high probability are eliminated.

Theoretical comparison It is hard to make a fair comparison of the theoretical bounds
because TEA operates under much weaker assumptions. Both algorithms have a regret bound
of O

((∑
u∈A1\u∗

1
∆1(u) +

∑
v∈A2\v∗

1
∆2(v)

)
log(t)

)
. The problem independent multiplicative
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factors hidden under O are smaller for TEA, even without considering that rank-1 Elimination
requires a doubling trick for anytime applications. However, the problem dependent factors are
in favor of rank-1 Elimination, where the gaps correspond to the mean difference under uniform
sampling (u∗ − u)

∑
v∈A2 v/K2. In factored bandits, the gaps are defined as (u∗ − u) minv∈A2 v,

which is naturally smaller. The difference stems from different problem assumptions. Stronger
assumptions of rank-1 bandits make elimination easier as the number of eliminated suboptimal
arms increases. The TEA analysis holds in cases where it becomes harder to identify suboptimal
arms after removal of bad arms. This may happen when highly suboptimal atomic actions in
one factor provide more discriminative information on atomic actions in other factors than
close to optimal atomic actions in the same factor (this follows the spirit of illustration of
suboptimality of optimistic algorithms in [69]). We leave it to future work to improve the upper
bound of TEA under stronger model assumptions.

In terms of memory and computational complexity, TEA is inferior to regular elimination
style algorithms, because we need to keep track of relative performances of the arms. That
means both computational and memory complexities are O(

∑
` |A`|2) per round in the worst

case, as opposed to rank-1 Elimination that only requires O
(
|A1|+ |A2|

)
.

Empirical comparison The number of arms is set to 16 in both sets. We always fix
u∗ − u = v∗ − v = 0.2. We vary the absolute value of u∗v∗. As expected, rank1ElimKL
has an advantage when the Bernoulli random variables are strongly biased towards one side.
When the bias is close to 1

2 , we clearly see the better constants of TEA. In the evaluation
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Figure 2.2: Comparison of Rank1Elim, Rank1ElimKL, and TEA for K = L = 16. The results
are averaged over 20 repetitions of the experiment.

we clearly outperform rank-1 Elimination over different parameter settings and even beat the
KL optimised version if the means are not too close to zero or one. This supports that our
algorithm does not only provide a more practical anytime version of elimination, but also
improves on constant factors in the regret. We believe that our algorithm design can be used
to improve other elimination style algorithms as well.

2.5.2 Dueling Bandits: Related Work

To the best of our knowledge, the proposed Dueling Bandit TEA is the first algorithm that
satisfies the following three criteria simultaneously for utility-based dueling bandits:

• It requires no prior knowledge of the time horizon (nor uses the doubling trick or restarts).

• Its pseudo-regret is bounded by O(
∑
a6=a∗

log(t)
∆(a) ).

• There are no additive constants that dominate the regret for time horizons T > O(K).

We want to stress the importance of the last point. For all state-of-the-art algorithms known
to us, when the number of actions K is moderately large, the additive term is dominating for
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any realistic time horizon T . In particular, Ailon et al. [8] introduces three algorithms for the
utility-based dueling bandit problem. The regret of Doubler scales with O(log2(t)). The regret
of MultiSBM has an additive term of order

∑
a6=a∗

K
∆(a) that is dominating for T < Ω(exp(K)).

The last algorithm, Sparring, has no theoretical analysis.
Algorithms based on the weaker Condorcet winner assumption apply to utility-based

setting, but they all suffer from equally large or even larger additive terms. The RUCB
algorithm introduced by Zoghi et al. [114] has an additive term in the bound that is defined as
2D∆max log(2D), for ∆max = maxa6=a∗ ∆(a) and D > 1

2
∑
ai 6=a∗

∑
aj 6=ai

4α
min{∆(ai)2,∆(aj)2} . By

unwrapping these definitions, we see that the RUCB regret bound has an additive term of order
2D∆max ≥

∑
a6=a∗

K
∆(a) . This is again the dominating term for time horizons T ≤ Ω(exp(K)).

The same applies to the RMED algorithm introduced by Komiyama et al. [62], which has an
additive term of O(K2). (The dependencies on the gaps are hidden behind the O-notation.)
The D-TS algorithm by Wu and Liu [104] based on Thompson Sampling shows one of the best
empirical performances, but its regret bound includes an additive constant of order O(K3).

Other algorithms known to us, Interleaved Filter [105], Beat the Mean [107], and SAVAGE
[100], all require knowledge of the time horizon T in advance.

Empirical comparison We have used the framework provided by Komiyama et al. [62]. We
use the same utility for all sub-optimal arms. In Fig. 2.3, the winning probability of the optimal
arm over suboptimal arms is always set to 0.7, we run the experiment for different number of
arms K. TEA outperforms all algorithms besides RMED variants, as long as the number of
arms are sufficiently big. To show that there also exists a regime where the improved constants
gain an advantage over RMED, we conducted a second experiment in 2.4 (in the Appendix),
where we set the winning probability to 0.952 and significantly increase the number of arms.
The evaluation shows that the additive terms are indeed non-negligible and that Dueling Bandit
TEA outperforms all baseline algorithms when the number of arms is sufficiently large.

104 105 106

t

103

104

105

R
eg
re
t

K=64

RMED1

RMED2

RUCB

BTM

IF

Savage

Sparring

MultiSBM

TEA

104 105 106

t

103

104

105

R
eg
re
t

K=128

104 105 106

t

103

104

105

R
eg
re
t

K=256

Figure 2.3: Comparison of Dueling Bandits algorithms with identical gaps of 0.4. The results
are averaged over 20 repetitions of the experiment.

2.6 Discussion

We have presented the factored bandits model and uniform identifiability assumption, which
requires no knowledge of the reward model. We presented an algorithm for playing stochastic
factored bandits with uniformly identifiable actions and provided matching upper and lower

2Smaller gaps show the same behavior but require more arms and more timesteps.
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bounds for the problem up to constant factors. Our algorithm and proofs might serve as a
template to turn other elimination style algorithms into improved anytime algorithms.

Factored bandits with uniformly identifiable actions generalise rank-1 bandits. We have
also provided a unified framework for the analysis of factored bandits and utility-based dueling
bandits. Furthermore, we improve the additive constants in the regret bound compared to
state-of-the-art algorithms for utility-based dueling bandits.

There are multiple potential directions for future research. One example mentioned in the
text is the possibility of improving the regret bound when additional restrictions on the form
of the reward function are introduced or improvements of the lower bound when algorithms are
restricted in computational or memory complexity. Another example is the adversarial version
of the problem.

Appendix

Auxiliary Lemmas

Lemma 2.1. Given positive real numbers σ1, σ2, . . . , σn.. If (Xi)i=1,...,n is a sequence of random
variables such that Xi conditioned on Xi−1, Xi−2, . . . is σi-sub-Gaussian. Then Z =

∑n
i=1Xi

is
√∑n

i=1 σ
2
i -sub-Gaussian.

We believe this is a standard result, however we only found references for independent
sub-Gaussian random variables.

Proof of Lemma 2.1. For t = 1, ..., n defineMs,t = exp(s
∑t
i=1Xi−1

2
∑t
i=1 s

2σ2
i ). We claimMs,t

is a super-martingale. Given thatXi are conditionally sub-Gaussian, we have E[exp(sXt+1)|Xt, Xt−1, ...] ≤
exp( s

2σ2
t+1
2 ). So

E[Ms,t+1|Ms,t] = E[exp(sXt+1 −
1
2s

2σ2
t+1)Ms,t|Ms,t]

= E[exp(sXt+1 −
1
2s

2σ2
t+1)|Ms,t]Ms,t ≤Ms,t.

Additionally by definition of sub-Gaussian E[Ms,1] ≤ 1. Therefore E[Ms,n] ≤ 1. Finally we
get that E[exp(sZ)] = E[Ms,n · exp(

∑n
i=1

s2σ2
i

2 )] ≤ exp(
∑n
i=1

s2σ2
i

2 ). So Z is
√∑n

i=1 σ
2
i -sub-

Gaussian.

Lemma 2.2. Let y ≥ 1, z ≥ 10, then for any x > zy + 4z log(zy):

z(log(f(x)) + y)
x

< 1.

Proof. We can reparameterise x = zy + αz log(zy) for α > 4. Then

zy + z log(f (zy + αz log(zy)))
zy + αz log(zy) < 1

⇔ log(f (zy + αz log(zy)))
α log(zy) < 1

⇔ f (zy + αz log(zy)) < (zy)α

⇐ f (zy + αzy log(zy)) < (zy)α.

Using log(x) ≤
√
x− 1

2 and α > 4, we have that

f (zy + αzy log(zy)) < f

(
zy + αzy(√zy − 1

2)
)
< f(α(zy)

3
2 − 1) = α(zy)

3
2 log2(α(zy)

3
2 ).
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It is therefore sufficient to prove that for all x̃ > 10 and α > 4:

α log2(αx̃
3
2 ) < x̃α−

3
2

⇐ α(
√
α+ x̃

3
4 )2 < x̃α−

3
2

⇔
√
α(
√
αx̃

3
4−

α
2 + x̃

3
2−

α
2 ) < 1.

The minimum on the left hand side is obtained for α = 4 and x̃ = 10 for with it holds true.

Lemma 2.3. Let σ ∈ R and X1, X2, . . . be a sequence of sub-Gaussian random variables

adapted to the filtration F1,F2, . . . , i.e. E[esXt |X1, X2, . . . , Xt−1] ≤ e−
σ2
t s

2

2 . Assume for all
t :
∑t
i=1 σ

2
i = ntσ

2, with nt ∈ N almost surely. Then

P

∃t ∈ N :
t∑
i=1

Xi ≥

√
2σ2nt log

(
f(nt)
δ

) ≤ δ,
where f(nt) = 2(1 + nt) log2(1 + nt).

Note that unlike in Lemma 2.1, we do not require σt to be independent of X1, . . . , Xt−1.

Proof. The proof follows closely the arguments presented in the proofs of Lemma 8 in Abbasi-
yadkori et al. [2] and Lemma 14 in Lattimore and Szepesvári [69]. For ψ ∈ R define

Mt,ψ = exp
(

t∑
s=1

ψXs −
ψ2σ2

s

2

)
.

If t0 ≤ τ ≤ t is a stopping time with respect to F , then as in the proof of Abbasi-yadkori et al.
[2, Lemma 8] we have E[Mτ,ψ] ≤ 1. By Markov’s inequality, we have

P[Mτ,ψ ≥ 1/δ] ≤ δ ⇔ P
[
τ∑
s=1

Xs ≥
log(δ−1)

ψ
+ ψnτσ

2

2

]
≤ δ.

An optimal choice of ψ would be ψ =
√

2 log(1/δ)
nτσ2 , however ψXt would not be Ft-measurable

for t ≤ τ and Mt,ψ would not be well defined. Instead, for k ≥ 1 we define

ψk :=

√
2 log(f(k)δ−1)

kσ2 .

With a union bound, we get that

P
[
∃k ≥ 1 :

τ∑
s=1

Xs ≥
log(f(k)δ−1)

ψk
+ ψnτσ

2

2

]
≤
∞∑
k=1

δ

f(k) ≤ δ.

Using now k = nτ , for which this also holds, we get that

P

 τ∑
s=1

Xs ≥

√
2σ2nτ log

(
f(nτ )
δ

) ≤ δ.
The proof is completed by choosing a stopping time τ :

τ = min

∞∪
t ≥ 1 :

t∑
s=1

Xs ≥

√
2ntσ2 log

(
f(nt)
δ

)
 .
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Lemma 2.4. Given X1, X2, . . . , Xn random variables with means p1, p2, . . . , pn ∈ [−1, 1], such
that all Xi−pi are 1-sub-Gaussian. (e.g. Bernoulli random variables) Given further two sample
sizes m, k ≥ 1, such that m+ k ≤ n. Then for Im : |Im| = m and Ik : |Ik| = k disjoint uniform
samples of indices in (1, 2, . . . , n) without replacement, the random variable

Z = 1
m

∑
i∈Im

Xi −
1
k

∑
i∈Ik

Xi,

is
√

3(m+k)
mk -sub-Gaussian.

Proof. Without loss of generality, we set m ≤ k. By definition, the random variables Xi can be
decomposed into Xi = pi + ηi, where ηi are conditionally independent 1-sub-Gaussian random
variables. Decomposing Z gives:

Z = 1
m

∑
i∈Im

pi −
1
k

∑
i∈Ik

pi + 1
m

∑
i∈Im

ηi −
1
k

∑
i∈Ik

ηi.

We define I = {1, ..., n} \ (Im ∪ Ik), the indices of remaining Xi’s and p = 1
n

∑n
i=1 pi the mean

of means. In order to show that 1
m

∑
i∈Im pi −

1
k

∑
i∈Ik pi is sub-Gaussian, we first draw the

elements in (pi)i∈I = (P i)i=1,...,n−m−k and then the set (pi)i∈Im = (Pmi )i=1,...,m. Drawing the
first element P 1 can be written as P 1 = p + ζ1, where ζ1 is sub-Gaussian. With continuous
drawings, it holds that

E[P 2|P 1] = p− 1
n− 1ζ1

P 2 = p− 1
n− 1ζ1 + ζ2

E[P 3|P 1, P 2] = p− 1
n− 1ζ1 −

1
n− 2ζ2

P 3 = p− 1
n− 1ζ1 −

1
n− 2ζ2 + ζ3

...

E[Pn−m−k|P 1, ..., Pn−m−k−1] = p−
n−m−k−1∑

i=1

1
n− i

ζi

Pn−m−k = p−
n−m−k−1∑

i=1

1
n− i

ζi + ζn−m−k

n−m−k∑
i=1

P i = (n−m− k)p+
n−m−k∑
i=1

m+ k

n− i
ζi

The noise variables ζi are all conditionally independent and 1-sub-Gaussian.
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We continue with Pmi in the same fashion:

E[Pm1 |P ] = p−
n−m−k∑
i=1

1
n− i

ζi

Pm1 = p−
n−m−k∑
i=1

1
n− i

ζi + ζn−k−m+1

E[Pm2 |P , Pm1 ] = p−
n−m−k+1∑

i=1

1
n− i

ζi

Pm2 = p−
n−m−k∑
i=1

1
n− i

ζi + ζn−k−m+2

...

E[Pmm |P , Pm1 , ..., Pmm−1] = p−
n−k−1∑
i=1

1
n− i

ζi

Pmm = p−
n−k−1∑
i=1

1
n− i

ζi + ζn−k

m∑
i=1

Pmm = (n− k)p+
n−k∑
i=1

k

n− i
ζi −

n−m−k∑
i=1

P i

= mp−
n−m−k∑
i=1

m

n− i
ζi +

n−k∑
i=n−m−k+1

k

n− i
ζi.

We can now use
1
k

∑
i∈Ik

pi = 1
k

(
np−

n−m−k∑
i=1

P i −
m∑
i=1

Pmi

)
,

to substitute
1
m

∑
i∈Im

pi −
1
k

∑
i∈Ik

pi = 1
m

m∑
i=1

Pmi −
1
k

(
np−

n−m−k∑
i=1

P i −
m∑
i=1

Pmi

)

= m+ k

mk

m∑
i=1

Pmi + 1
k

n−m−k∑
i=1

P i −
n

k
p

= m+ k

mk

mp− n−m−k∑
i=1

m

n− i
ζi +

n−k∑
i=n−m−k+1

k

n− i
ζi


+ 1
k

(
(n−m− k)p+

n−m−k∑
i=1

m+ k

n− i
ζi

)
− n

k
p

=
n−k∑

i=n−m−k+1

m+ k

m(n− i)ζi

=
m−1∑
i=0

m+ k

m(k + i)ζn−k−i.

With these substitutions Z can be written as a weighted sum of conditionally independent
sub-Gaussian random variables:

Z =
m−1∑
i=0

m+ k

m(k + i)ζn−k−i + 1
m

∑
i∈Im

ηi −
1
k

∑
i∈Ik

ηi.
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Therefore Z is according to Lemma 2.1 at least√√√√m−1∑
i=0

(
m+ k

m(k + i)

)2
+

m∑
i=1

1
m2 +

k∑
i=1

1
k2 ≤

√
3(m+ k)
mk

-sub-Gaussian.
The last step uses the inequality

m−1∑
i=0

1
(k + i)2 =

∫ m

0

1
(k + x)2 dx+

m−1∑
i=0

( 1
(k + i)2 −

∫ i+1

x=i

1
(k + x) dx

)

= m

(k +m)k +
m−1∑
i=0

1
(k + i)2(k + i+ 1)

≤ m

(k +m)k + 1
k + 1

m−1∑
i=0

1
(k + i)2

≤ m(k + 1)
(k +m)k2

≤ 2m
(k +m)k .

Proof of Theorem 2.1

With the Lemmas from the previous section, we can proof our main theorem.

Proof of Theorem 2.1. We follow the steps from the sketch.

Step 1 We define the following shifted random variables.

R̃t := Rt + µt(a∗)− µt(At)
R̃is :=

∑
t∈Ts

I{At = ai}R̃t

∆D̃i
s := R̃∗s

N∗s
− R̃is
N i
s

D̃s(ai) :=
s∑

k=1
min{N i

s, N
∗
s }∆D̃i

k

∆̃s(ai) := D̃s(ai)
N∗,i(s)

.

The reward functions satisfy µt(a∗)− µt(at) > ∆(at) for all at. Therefore Rt > R̃t −∆(At). So
we can bound D∗,i

N∗,i
> ∆(ai) + ∆̃s(ai) and Di,∗

Ni,∗
< −∆(ai)− ∆̃s(ai).

Define the events

Es :=

∀i : |∆̃s(ai)| ≤
√

12 log(2Kf(N∗,i)δ−1
s )

N∗,i

 , F :=
⋂
s≥2
Es

and their complements Es,F .
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According to lemma 1, ∆D̃i
s is

√
6

min{N∗s ,N i
s}

-sub-Gaussian. So D̃s(ai) is a sum of condition-
ally σi-sub-Gaussian random variables, such that

∑s
i=1 σ

2
i = 6N∗,i(s), Therefore we can apply

Lemma 2.3. For both cases δs = 1
f(ts) and δs = δ, the probability never increases in time.

P

∃s′ ≥ s : ∆̃s′(ai) ≥
√

12 log(2Kf(δs′)N∗,i)
δs′


≤ P

[
∃s′ ≥ s : D̃s′(ai) ≥ N∗,i

√
12 log(2Kf(N∗,i)δs)

N∗,i

]
≤ δs

2K .

Using a union bound over ±D̃s(ai) for ai ∈ A, we get

P[Es] ≤ δs and P[F ] ≤ δ2.

step 2 We split the number of pulls in two categories: those that appear in rounds where
the confidence intervals hold, and those that appear in rounds where they fail: NEt (ai) =∑s(t)
s′=1 I{Es}N i

s, NEt (ai) =
∑s(t)
s′=1 I{Es}N i

s.

Nt(ai) ≤ NEt (ai) +NEt (ai)
E[NEt (ai)] = P[F ]E[NEt (ai)|F ] + P[F ]E[NEt (ai)|F ].

In the high probability case, we are with probability 1 − δ in the event F and NEt (ai) is
0. In the setting of δs = f(ts)−1, we can exclude the first round and start with s = 2 and
t2 = M + 1. This is because we do not use the confidence intervals in the first round.

E[NEt (ai)] ≤
∞∑
s=2

ts+1 − ts
f(ts)

≤
∞∑
s=1

M

f(Ms)

≤ M

f(M) +
∞∑
s=2

M

f(Ms) ≤
1
2 +

∞∑
s=1

1
f(s) ≤

3
2

We use the fact that 1
f(ts) is monotonically decreasing, so the expression gets minimized if all

rounds are maximally long.

Step 3: bounding E[NEt (ai)|F ],E[NEt (ai)|F ]
Let s′ be the last round at which the arm ai is not eliminated. We claim that Ni,∗ at the be-

ginning of round s′ must be surely smaller or equal to 48
∆(ai)2

(
log(2Kδ−1

s′ ) + 4 log(48 log(2Kδ−1
s′ )

∆(ai)2 )
)

.

Assume the opposite holds, then according to Lemma 2.2 with z = 48
∆(ai)2 and y = log(2Kδ−1

s′ ):

48
∆(ai)2 (log(f(Ni,∗(s′))) + log(2Kδ−1

s′ ))
Ni,∗(s′)

< 1 ⇔

√
12 log(2Kf(N∗,i)δ−1

s )
N∗,i

<
1
2∆(ai).

So we have that

∆̂LCB
s′ (ai) ≥ ∆(ai)− 2

√
12 log(2Kf(N∗,i)δ−1

s )
N∗,i

> 0,

and ai would have been excluded at the beginning of round s′, which is a contradiction.
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Let C(ai) denote the number of plays of ai in round s′. Then for the different cases we
have:

NEt (ai)− C(ai) ≤


M ·Ni,∗(s′), under the event F
2 ·Ni,∗(s′), under the event F
Ni,∗(s′), if Ms = |AA|

∑
a6=a∗

C(a) ≤


MK, under the event F
M log(K) +K, under the event F
K if Ms = |AA|

The first case is trivial because each arm can only be played M times in a single round and
min{N i

s, N
∗
s } ≥ 1 in rounds with Es. The second case follows from the fact that a∗ is always in

set B under the event F . So N∗s ≥ max{1, N i
s − 1} and min{N i

s, N
∗
s } ≥

N i
s

2 . The amount of
pulls in a single round is naturally bounded by dM|B|e ≤M . Given that under the event F , the
set B never resets and the set B only decreases if an arm is eliminated, we can bound

∑
ai 6=a∗

C(ai) ≤
K∑
i=2
dM
i
e ≤M log(K) +K.

Finally the last case follows trivially because in the case of Ms = |AA|, we have N i
s = N∗s =

C(ai) = 1.

Step 4: combining everything
In the high probability case, we have with probability at least 1− δ:

Nt(ai) ≤ NEt (ai) +NEt (ai)
≤ 2Ni,∗(s′) + C(ai)

≤ 96
∆(a)2

(
log(2Kδ−1) + 4 log

(
48 log(2Kδ−1)

∆(a)2

))
+ C(ai)

and also ∑
a6=a∗

C(a) ≤M log(K) +K.

If additionally Ms = |AA|, then the bound improves to

Nt(ai) ≤ NEt (ai) +NEt (ai)
≤ Ni,∗(s′) + 1

≤ 48
∆(a)2

(
log(2Kδ−1) + 4 log

(
48 log(2Kδ−1)

∆(a)2

))
+ 1.

In the setting of δs = f(ts)−1, we have

E[NEt (ai)− C(ai)] ≤ 2Ni,∗(s′) + 1
f(M)MNi,∗(s′)

≤ 120
∆(a)2

(
log(2Kt log2(t)) + 4 log

(
48 log(2Kt log2(t))

∆(a)2

))
.
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So

E[Nt(ai)] ≤ E[C(a) +NEt (ai)] + 120
∆(a)2

(
log(2Kt log2(t)) + 4 log

(
48 log(2Kt log2(t))

∆(a)2

))
.

where ∑
a6=a∗

E[C(a) +NEt (ai)] ≤M log(K) +K + 1
f(M)MK + 3

2K

≤M log(K) + 5
2K.

Finally if additionally Ms = |AA|, this bound improves to

E[Nt(ai)] ≤ E[NEt (ai)] +N∗,i(s′) + 1

≤ 5
3 + 48

∆(a)2

(
log(2Kt log2(t)) + 4 log

(
48 log(2Kt log2(t))

∆(a)2

))
.

Additional experiment

The winning probability is set to 0.95. All sub-optimal arms are identical

104 105 106 107

t

104

R
eg
re
t

K=256

TEA

RMED1

104 105 106 107

t

104

105

R
eg
re
t

K=1024

TEA

RMED1

104 105 106 107

t

103

104

105

106

R
eg
re
t

K=4096

TEA

RMED1

Figure 2.4: Comparison with identical gaps of 0.9. The results are averaged over 20 repetitions
of the experiment.
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Chapter 3

Multi-armed bandits

The work presented in this chapter is an extended version of a paper that has been accepted as
[111]. The extended version is currently under submission as [113]. It has been accepted under
minor revisions.

[111] Zimmert, J. and Seldin, Y. (2019). An optimal algorithm for stochastic and adversarial
bandits. In Proceedings on the International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 467–475

[113] Zimmert, J. and Seldin, Y. (2020b). Tsalls-INF: An optimal algorithm for stochastic and
adversarial bandits. arXiv preprint arXiv:1807.07623

25
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Abstract

We derive an algorithm that achieves the optimal (within constants) pseudo-regret in both
adversarial and stochastic multi-armed bandits without prior knowledge of the regime and
time horizon.1 The algorithm is based on online mirror descent (Omd) with Tsallis entropy
regularisation with power α = 1/2 and reduced-variance loss estimators. More generally, we
define an adversarial regime with a self-bounding constraint, which includes stochastic regime,
stochastically constrained adversarial regime Wei and Luo [103], and stochastic regime with
adversarial corruptions [76] as special cases, and show that the algorithm achieves logarithmic
regret guarantee in this regime and all of its special cases simultaneously with the adversarial
regret guarantee. The algorithm also achieves adversarial and stochastic optimality in the utility-
based dueling bandit setting. We provide empirical evaluation of the algorithm demonstrating
that it significantly outperforms Ucb1 and Exp3 in stochastic environments. We also provide
examples of adversarial environments, where Ucb1 and Thompson Sampling exhibit almost
linear regret, whereas our algorithm suffers only logarithmic regret. To the best of our knowledge,
this is the first example demonstrating vulnerability of Thompson Sampling in adversarial
environments. Last, but not least, we present general stochastic and adversarial analyses of
Omd algorithms with Tsallis entropy regularisation for α ∈ [0, 1] and explain the reason of why
α = 1/2 works best.

3.1 Introduction

Stochastic (i.i.d.) and adversarial multi-armed bandits are two fundamental sequential decision
making problems in online learning [16, 17, 67, 83, 96]. When prior information about the
nature of environment is available, it is possible to achieve O

(∑
i:∆i>0

log(T )
∆i

)
pseudo-regret in

the stochastic case [16, 67] and O(
√
KT ) pseudo-regret in the adversarial case [13, 14], where

T is the time horizon, K is the number of actions (a.k.a. arms), and ∆i are suboptimality gaps.
Both results match the lower bounds within constants, see [26] for a survey.2 The challenge in
recent years has been to achieve the optimal regret rates without prior knowledge about the
nature of the problem.

One approach pursued by Bubeck and Slivkins [31] and later refined by Auer and Chiang [18]
is to start playing under the assumption that the environment is i.i.d. and constantly monitor
whether the assumption is satisfied. If a deviation from the i.i.d. assumption is detected, the
algorithm performs an irreversible switch into an adversarial operation mode. This approach
recovers the optimal bound in the stochastic case, but suffers from a multiplicative logarithmic
factor in the regret in the adversarial case. Furthermore, the time horizon needs to be known
in advance. The best known doubling schemes lead to extra multiplicative logarithmic factors
in either the stochastic or the adversarial regime [23].

Another approach pioneered by Seldin and Slivkins [91] alters algorithms designed for
adversarial bandits to achieve improved regret in the stochastic setting without losing the
adversarial guarantees. They have introduced EXP3++, a modification of the EXP3 algorithm
for adversarial bandits, which was later improved by Seldin and Lugosi [90] to achieve an
anytime regret of O

(∑
i:∆i>0

log(T )2

∆i

)
in the stochastic case while preserving optimality in the

adversarial case. A related approach by Wei and Luo [103] uses log-barrier regularisation

1The paper expands and improves our earlier work [111].
2To be precise, the O(

∑
i:∆i>0

log(T )
∆i

) stochastic regret rate is optimal when the means of the rewards are
close to 1

2 , see Lai and Robbins [67], Cappé et al. [32], and Kaufmann et al. [61] for refined lower and upper
bounds otherwise. However, the refined analysis applies to stochastic bandits, whereas we consider a more
general setting, see Section 3.2 for details.
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instead of entropic regularisation behind the EXP3. Their stochastic regret bound scales with
log(T ), although the constants are not spelled out explicitly and by empirical evaluation seem
to be very large. Their adversarial regret guarantee scales with a square root of the cumulative
loss of the best action in hindsight rather than a square root of the time horizon, but has an
extra log T factor.

Seldin and Slivkins [91], Lykouris et al. [76], and Wei and Luo [103] also define a number of
intermediate regimes between stochastic and adversarial bandits and provide improved regret
guarantees for them.

The question of whether it is at all possible to achieve simultaneous optimality in both
worlds with no prior knowledge about the regime has remained open since the work of Bubeck
and Slivkins [31]. Auer and Chiang [18] have shown that no algorithm obtaining the optimal
stochastic pseudo-regret bound can simultaneously achieve the optimal high-probability ad-
versarial regret bound. Neither can an algorithm obtain the optimal stochastic pseudo-regret
guarantee simultaneously with the optimal expected regret guarantee for adaptive adversaries.3
In addition, Abbasi-Yadkori et al. [1] have shown that in the pure exploration setting it is also
impossible to obtain the optimal rates in both stochastic and adversarial regimes.

We show that for pseudo-regret it is possible to achieve optimality in both regimes with a
surprisingly simple algorithm. Moreover, we define a more general adversarial regime with a
self-bounding constraint, which includes the stochastic, stochastically constrained adversarial
[103], and adversarially corrupted stochastic [76] regimes as special cases. We propose an
algorithm that achieves logarithmic pseudo-regret guarantee in the adversarial regime with a
self-bounding constraint simultaneously with the adversarial regret guarantee. The algorithm is
based on online mirror descent with regularisation by Tsallis entropy with power α. We name it
α-Tsallis-INF, or simply Tsallis-INF for α = 1

2 , where INF stands for Implicitly Normalised
Forecaster [14]. The proposed algorithm is anytime: it requires neither the knowledge of the
time horizon nor doubling schemes.

The main contributions of the paper are summarised in the following bullet points:

1. We propose the Tsallis-INF algorithm, which is based on online mirror descent with
regularisation by Tsallis entropy with power α = 1

2 . The algorithm achieves the optimal
logarithmic pseudo-regret rate in the stochastic regime simultaneously with the optimal
square-root adversarial regret guarantee with no prior knowledge of the regime. This
resolves an open question of Bubeck and Slivkins [31].

2. When combined with reduced-variance loss estimators proposed by Zimmert and Lattimore
[108], the leading constant of the stochastic regret bound for the Tsallis-INF algorithm
matches the asymptotic lower bound of Lai and Robbins [67] within a multiplicative
factor of 2.

3. The leading constant of the adversarial regret bound for the same combination matches the
minimax lower bound of Cesa-Bianchi and Lugosi [35, Theorem 6.1] within a multiplicative
factor of less than 15, simultaneously with the stochastic bound. To the best of our
knowledge, this is the best leading constant in an adversarial regret bound known today,
matching the result of Zimmert and Lattimore [108].

4. We introduce an adversarial regime with a self-bounding constraint, which includes
stochastic, stochastically constrained adversarial, and adversarially corrupted stochastic
regimes as special cases. We show that Tsallis-INF achieves logarthmic regret in the
new regime simultaneously with the worst-case adversarial regret bound.

3This does not contradict our result, because we bound the pseudo-regret, which is weaker than the expected
regret.
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Regime Upper Bound
Lower Bound

Broad [103]
Corresponds to Tsallis entropy regularisation with α = 0.

Doubling is used for tuning the learning rate.

Sto.
Adv.

O(K)
O
(√

log T
)

α = 1
2 (This paper)

Anytime. No need for gap estimation, doubling, or mixing. Sto. & Adv. O(1)

Exp3++ [90]
Corresponds to Tsallis entropy regularisation with α = 1.
Anytime. Mixed-in exploration is used for gap estimation.

Sto.
Adv.

O(log T )
O
(√

logK
)

Table 3.1: Ratio of regret upper to lower bound for Tsallis-INF and the closest prior work,
BROAD and EXP3++.

5. We improve the regret bound for adversarially corrupted stochastic regimes.

6. We use Tsallis-INF in a Sparring framework [8] to obtain an algorithm that achieves
stochastic and adversarial optimality in utility-based dueling bandits.

7. We provide a general analysis of Omd with Tsallis-Entropy regularisation with power
α ∈ [0, 1] and explain the intuition of why α = 1

2 works best.

8. We provide an empirical comparison of Tsallis-INF with standard algorithms from the
literature. In one of the comparisons we design a stochastically constrained adversarial
environment, where Thompson Sampling suffers almost linear regret. To the best of
our knowledge, this is the first evidence that Thompson Sampling is not suitable for
adversarial environments.

The paper is structured in the following way: In Section 3.2 we provide a formal definition
of the problem setting, including the adversarial environment and the adversarial environment
with a self-bounding constraint. Stochastic environments are a special case of the latter. In
Section 3.3 we briefly review the framework of online mirror descent. We follow the techniques
of Bubeck [25] to derive an anytime version of the family of algorithms based on regularisation
by α-Tsallis Entropy [6, 99]. Section 3.4 contains the main theorems. We show that α = 1

2
provides an algorithm that is optimal in both adversarial regime and adversarial regime with a
self-bounding constraint. The latter implies optimality in the stochastic regime. Interestingly, it
is the same regularisation power α = 1

2 that has been used by Audibert and Bubeck [13, 14] in
Poly-INF algorithm to achieve the optimal regret rate in the adversarial regime. We analyse
the algorithm with standard importance-weighted loss estimators and with reduced-variance
loss estimators proposed by [108]. The latter further reduces the constants and gets within
a multiplicative factor of 15 from the minimax lower bound in the adversarial case and a
multiplicative factor of 2 from the asymptotic lower bound in the stochastic case. Table 3.1
relates our results to the closest prior work on best-of-both-worlds algorithms. Wei and Luo
[103] use logarithmic regularisation, which corresponds to Tsallis entropy with power α = 0 and
apply doubling for tuning the learning rate. Seldin and Lugosi [90] use entropic regularisation,
which corresponds to Tsallis entropy with power α = 1, and mix in additional exploration for
estimation of the gaps. Tsallis-INF with α = 1

2 requires neither doubling nor mixing nor
estimation of the gaps. At the end of Section 3.4 we also provide a general analysis of the regret
of α-Tsallis-INF with α ∈ [0, 1] in adversarial environments and adversarial environments
with a self-bounding constraint. We show that for α 6= 1

2 the optimal form of regularisation
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and learning rate for the adversarial regime and for the adversarial regime with a self-bounding
constraint differ. Thus, for α 6= 1

2 the algorithm does not achieve simultaneous optimality in
both regimes. Furthermore, for α 6= 1

2 the optimal regulariser for the adversarial regime with a
self-bounding constraint requires oracle access to the unknown gaps. Prior work [90, 91, 103]
used additional techniques, such as mixed-in exploration or doubling, to control the regret, but
as we show in Table 3.1 the results were suboptimal. In Section 3.5 we show that the stochastic
regime with adversarial corruptions of Lykouris et al. [76] is a special case of adversarial regime
with a self-bounding constraint and that Tsallis-INF achieves the optimal regret rate there
as well. In Section 3.6 we apply Tsallis-INF to dueling bandits. Section 3.7 contains proofs
of our main theorems. In Section 3.8 we provide an empirical comparison of Tsallis-INF
with baseline stochastic and adversarial bandit algorithms from the literature. We show that in
stochastic environments with loss means close to 1

2 Tsallis-INF with reduced-variance loss
estimators significantly outperforms UCB1, EXP3, EXP3++, and Broad, and follows closely
behind Thompson Sampling, whereas in certain adversarial environments it significantly
outperforms UCB1 and Thompson Sampling, which suffer almost linear regret, and also
significantly outperforms EXP3, EXP3++, and Broad. To the best of our knowledge, this is
also the first evidence that Thompson Sampling is vulnerable in adversarial environments.
We conclude with a summary in Section 3.9.

3.2 Problem Setting

At time t = 1, 2, . . . , the agent chooses an arm It ∈ {1, . . . ,K} out of a set of K arms. The
environment picks a loss vector `t ∈ [0, 1]K and the agent observes and suffers only the loss of
the arm played, `t,It . The performance of an algorithm is measured in terms of pseudo-regret:

RegT := E
[
T∑
t=1

`t,It

]
−min

i
E
[
T∑
t=1

`t,i

]
= E

[
T∑
t=1

(
`t,It − `t,i∗T

)]
,

where i∗T ∈ arg mini E
[∑T

t=1 `t,i
]

is defined as a best arm in expectation in hindsight and the
expectation is taken over internal randomisation of the algorithm and the environment.

In the (adaptive) adversarial setting, the adversary selects the losses arbitrarily, potentially
based on the history of the agent’s actions (I1, . . . , It−1) and the adversary’s own internal
randomisation. For deterministic oblivious adversaries the definition of pseudo-regret coincides
with the expected regret defined as E[RegT ] := E

[
mini

∑T
t=1 (`t,It − `t,i)

]
.

We further define an adversarial regime with a (∆, C, T ) self-bounding constraint, where
the adversary selects losses such that at time T there exists a vector of gaps ∆ ∈ [0, 1]K and a
constant C for which the regret satisfies

R ≥
T∑
t=1

∑
i

∆iP(It = i)− C. (3.1)

The above condition should be satisfied at time T , but there is no requirement that it is satisfied
for all t < T .

A simple instance of an adversarial regime with a self-bounding constraint is the stochastic
regime. In the stochastic regime the losses `t,i are drawn from distributions with fixed means,
E[`t,i] = µi independently of t, and the pseudo-regret can be written as

R =
T∑
t=1

∑
i

∆iP(It = i), (3.2)
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where ∆i = E[`t,i] −mini E[`t,i] is the suboptimality gap of action i. Thus, (3.1) is satisfied
with ∆ being the vector of suboptimality gaps and C = 0. In the stochastic regime the best
arm i∗ = arg mini µi is the same for all the rounds, i∗T = i∗ for all T (if there is more than one
best arm we can pick one arbitrarily).

Another instance of an adversarial regime with a self-bounding constraint is the stochastically
constrained adversarial setting [103]. In this setting the losses `t,i are drawn from distributions
with fixed gaps, E[`t,i−`t,j ] = ∆̃i,j independently of t, but the means, as well as other parameters
of the distributions of all arms, are allowed to change with time and may depend on the agent’s
past actions I1, . . . , It−1. Obviously, the stochastic regime is a special case of a stochastically
constrained adversary. By using i∗ = arg mini ∆̃i,1 to denote an optimal arm (if there is more
than one, we can pick one arbitrarily) we define a vector of suboptimality gaps ∆ by taking
∆i = ∆̃i,i∗ and then the pseudo-regret satisfies the identity in (3.2) and the condition in equation
(3.1) is satisfied with ∆ and C = 0. In the stochastically constrained adversarial setting the
best arm is also the same for all rounds, i∗T = i∗ for all T .

In Section 3.5 we show that stochastic bandits with adversarial corruptions [76] are also a
special case of an adversarial regime with a self-bounding constraint.

The motivation behind the definition of the adversarial regime with a self-bounding constraint
will become clear when we explain the analysis. For simplified intuition, the reader can think
about its special case, the stochastic regime, where the constraint (3.1) is satisfied by the
identity in (3.2).

3.3 Online Mirror Descent

We recall a number of basic definitions and facts from convex analysis. The convex conjugate
(a.k.a. Fenchel conjugate) of a function f : RK → R is defined by

f∗(y) = max
x∈RK

{〈x, y〉 − f(x)} .

We use

IA(x) :=

0, if x ∈ A

∞, otherwise

to denote the characteristic function of a closed and convex set A ⊂ RK . Hence, (f +IA)∗(y) =
maxx∈A {〈x, y〉 − f(x)}. By standard results from convex analysis [84], for differentiable and
convex f with invertible gradient (∇f)−1 it holds that

∇(f + IA)∗(y) = arg max
x∈A

{〈x, y〉 − f(x)} ∈ A.

3.3.1 General Framework

The traditional online mirror descent (Omd) framework uses a fixed regulariser Ψ with certain
regularity constraints [92]. The update rule is

w1 = min
w∈A

Ψ(w) , wt+1 = min
w∈A

at〈w, `t〉+DΨ(w,wt) ,

where `t is the observed loss at time t, A is the convex body of the action set, and DΨ is the
Bregman divergence DΨ(x, y) = Ψ(x)−Ψ(y)− 〈x− y,∇Ψ(y)〉. If the norm of the gradient of
the regulariser ||∇Ψ(x)|| is unbounded at the boundary of A, then the update rule is equivalent
to wt+1 = ∇(Ψ + IA)∗(−

∑t
s=1 as`s), where

∑t
s=1 as`s is a weighted sum of past losses. This

setting has been generalised to time-varying regularizers Ψt [81], where the updates are given
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by wt+1 = ∇(Ψt + IA)∗(−
∑t
s=1 `s). Note that this formulation uses no weighting as of the

losses. In the bandit setting we do not observe the complete loss vector `t. Instead, an unbiased
estimator ˆ̀

t : EIt∼wt
[
ˆ̀
t

]
= `t is used for updating the cumulative losses. The common way of

constructing unbiased loss estimators is by using importance-weighted sampling:

ˆ̀
t,i = 1t(i)`t,i

wt,i
, where 1t(i) := 1(It = i) is the indicator function. (IW)

We use (IW) to denote these estimators. Zimmert and Lattimore [108] proposed reduced-
variance importance-weighted loss estimators, which we call for brevity reduced-variance
estimators or (RV)-estimators, and they are defined by

ˆ̀
t,i = 1t(i)(`t,i − Bt(i))

wt,i
+ Bt(i) , where Bt(i) := 1

21(wt,i ≥ η2
t ) . (RV)

For any Bt(i) ∈ [0, 1] the loss estimators remain unbiased, but their second moment E[ˆ̀2
t,i] and

variance are reduced. The value Bt(i) = 1
2 minimizes the worst-case variance of ˆ̀

t,i. However,
the reduced-variance estimators can take negative values, ˆ̀

t,i ≥ −1
2

(
1
wt,i
− 1

)
, while the analysis

relies on non-negativity of the loss estimators. Zimmert and Lattimore [108] show that negative
loss estimators can be dealt with, as long as they satisfy ˆ̀

t,i ≥ −1
2η
−2
t . We achieve this by only

reducing variance of the estimators with wt,i ≥ η2
t .

At every step, we need to choose a probability distribution over arms wt, so we add I∆K−1 to
the regularizers Ψt, thereby ensuring that wt ∈ ∆K−1, where ∆K−1 is the probability simplex.

The algorithm is provided in Algorithm 4. Note that the framework is equivalent to
what Abernethy et al. [5] call Gradient-Based Prediction (Gbp), where they replace
∇(Ψt + I∆K−1)∗ with suitable functions ∇Φt : RK → ∆K−1. We adopt the notation Φt :=
(Ψt + I∆K−1)∗.

Algorithm 4: Online Mirror Descent for bandits
Input: (Ψt)t=1,2,...

1 Initialize: L̂0 = 0K (where 0K is a vector of K zeros)
2 for t = 1, . . . do
3 choose wt = ∇(Ψt + I∆K−1)∗(−L̂t−1) % see Alg. 5 for an explicit calculation
4 sample It ∼ wt
5 observe `t,It
6 use (IW) or (RV) to construct ˆ̀

t

7 update L̂t = L̂t−1 + ˆ̀
t

3.3.2 Omd with Tsallis Entropy Regularisation

We now consider a family of algorithms, which are regularised by the (negative) α-Tsallis
entropy Hα(x) := 1

1−α (1−
∑
i x

α
i ) [99]. We change the scaling and add linear terms, resulting

in the following regulariser with learning rate ηt:

Ψ(w) := −
∑
i

wαi − αwi
α(1− α)ξi

,

Ψt(w) := 1
ηt

Ψ(w).

Unless stated otherwise, we assume that ξi = 1 for all i, which leads to symmetric regularisation.
In the stochastic analysis of α-Tsallis-INF with α 6= 1

2 we take ξi = ∆1−2α
i , which leads to
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asymmetric regularisation. Since the gaps are unknown, the latter is mainly interesting from a
theoretical point of view.

The resulting family of algorithms is a subset of Inf [14], which we call α-Tsallis-INF. α-
Tsallis-INF with symmetric regularisation is related to the Poly-INF algorithm of Audibert
and Bubeck [13, 14] and equivalent to the Gbp algorithm proposed by Abernethy et al. [6].

As has been observed earlier [6, 7], α-Tsallis-INF includes Exp3 based on the nega-
tive Shannon entropy

∑K
i=1wi log(wi) [44] and algorithms based on the log-barrier potential∑K

i=1− log(wi) [49] as special cases.4 This can be seen by adding a constant term to the
regularizer, so that Ψ(w) = −

∑
i
wαi −αwi−(1−α)

α(1−α)ξi , and taking the respective limits α → 0 and
α→ 1. It gives:

lim
α→0
−w

α
i − αwi − (1− α)
α(1− α)ξi

= lim
α→0
− log(wi)wαi − wi + 1

(1− 2α)ξi
= −ξ−1

i (log(wi)− wi + 1),

lim
α→1
−w

α
i − αwi − (1− α)
α(1− α)ξi

= lim
α→1
− log(wi)wαi − wi + 1

(1− 2α)ξi
= ξ−1

i (log(wi)wi − wi + 1),

which are within linear and constant terms identical to the log-barrier potential and the negative
Shannon entropy, respectively. Note that for symmetric regularisation neither the constant nor
the linear terms influence the algorithm’s choice of w, since it is normalised.

3.3.3 Implementation Details

The weights wt,i in Tsallis-INF are given implicitly through a solution of a constrained
optimisation problem:

wt = arg max
w∈∆K−1

〈w,−L̂t〉+ 4
ηt

∑
i

√
wi.

The solution takes the form
wt,i = 4

(
ηt
(
L̂t,i − x

))−2
,

where the normalisation factor x is defined implicitly through the constraint
∑
i 4
(
ηt
(
L̂t,i − x

))−2
=

1. The normalisation factor can be efficiently approximated by Newton’s Method, reaching
a sufficient precision in a very few iterations. Details of the computation are provided in
Algorithm 5.

Algorithm 5: Newton’s Method approximation of wt in Tsallis-INF (α = 1
2)

Input: x, L̂t, ηt %we use x from the previous iteration as a warmstart
1 repeat
2 ∀i : wt,i ← 4(ηt(L̂t,i − x))−2

3 x← x− (
∑
iwt,i − 1)/(ηt

∑
iw

3
2
t,i)

4 until convergence

3.4 Main Results

In this section we present our main result, the Tsallis-INF algorithm with α = 1
2 that

achieves the optimal regret bounds in both adversarial and stochastic bandits. We show that
4We use log to denote the natural logarithm throughout the paper.
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it also achieves a logarithmic regret guarantee in the more general adversarial regime with a
self-bounding constraint. In fact, the stochastic regret bound follows as a special case of the
more general analysis. We then present a general analysis of α-Tsallis-INF with α ∈ [0, 1]
and explain the intuition of why α = 1

2 works best.

3.4.1 Analysis of Tsallis-INF with α = 1/2
We show that Tsallis-INF with α = 1

2 and symmetric regulariser achieves the optimal√
T regret scaling in the adversarial regime and simultaneously log(T ) regret scaling in the

adversarial regime with a self-bounding constraint. The latter ensures the same regret scaling in
stochastic and stochastically constrained adversarial environments as special cases. We analyse
the algorithm with (IW) and (RV) loss estimators. Both estimators achieve the optimal regret
scaling in both regimes, but the (RV) estimator yields better constants. The results for the two
estimators are presented alongside each other using cases brackets and marked by (IW) and
(RV), respectively.

Theorem 3.1. The pseudo-regret of Tsallis-INF with α = 1
2 , symmetric regularisation

(ξi = 1), and learning rate

ηt =

2
√

1
t , with (IW) estimators

4
√

1
t , with (RV) estimators

in any adversarial bandit problem satisfies:

RegT ≤
{

4
√
KT + 1, with (IW)

2
√
KT + 10K log(T ) + 16, with (RV)

.

If there exists a vector ∆ ∈ [0, 1]K with a unique zero entry i∗ (i.e., ∆i∗ = 0 and ∆i > 0 for all
i 6= i∗) and a constant C, such that the pseudo-regret at time T satisfies

E

 T∑
t=1

∑
i 6=i∗

wt,i∆i

− C ≤ RegT , (3.3)

then the pseudo-regret further satisfies

RegT ≤


(∑

i 6=i∗
4 log(T )+12

∆i

)
+ 4 log(T ) + 1

∆min
+
√
K + 8 + C, with (IW)(∑

i 6=i∗
log(T )+3

∆i

)
+ 20K log(T ) + 1

∆min
+
√
K + 32 + C, with (RV)

,

where ∆min := min∆i>0 ∆i. If C satisfies

C >
(∑

i 6=i∗
4 log(T )+12

∆i

)
+ 1

∆min
, with (IW)

C >
(∑

i 6=i∗
log(T )+3

∆i

)
+ 1

∆min
, with (RV)

,

then the regret additionally satisfies

Regt ≤


2
√((∑

i 6=i∗
4 log(T )+12

∆i

)
+ 1

∆min

)
C + 4 log(T ) +

√
K + 8, with (IW)

2
√((∑

i 6=i∗
log(T )+3

∆i

)
+ 1

∆min

)
C + 20K log(T ) +

√
K + 32, with (RV)

.

The proof is postponed to Section 3.7.
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Remark 3.1. We call the condition in equation (3.3) a self-bounding property of the regret.
As we have mentioned in Section 3.2, in the stochastically constrained adversarial environments
and stochastic bandits as their special case RegT = E

[∑T
t=1

∑
i 6=i∗ wt,i∆i

]
, where ∆ is the vector

of suboptimality gaps, and under the assumption that the best arm is unique the condition in
equation (3.3) is satisfied with C = 0, leading to a regret bound

RegT ≤

∑
i 6=i∗

log(T ) + 3
∆i

+ 20K log(T ) + 1
∆min

+
√
K + 32.

Remark 3.2. The assumption that ∆ has a unique zero entry and the corresponding assumption
on uniqueness of the best arm in the stochastically constrained adversarial setting is a technical
assumption we had to use in our proofs, but our experiments suggest that this is an artifact of
the analysis. We conjecture that it can be removed, but explain the challenges in achieving the
goal Section 3.7.

The worst case lower bound for Stochastic MAB with Bernoulli losses is achieved when the
expectations of the losses are close to 1

2 . Let ∆ denote the vector of gaps and let E[`t,i] = 1
2 +∆i,

then for any consistent algorithm

lim
||∆||→0


 ∑
i:∆i>0

1
∆i

−1

lim inf
t→∞

E
[
Regt

]
log(t)

 ≥ 1
2 .

The above lower bound follows from the well known divergence dependent lower bound of Lai
and Robbins [67], see Appendix 3.9 for details. Therefore, the asymptotic regret upper bound
of Tsallis-INF with RV-estimators is optimal within a multiplicative factor of 2, which is
arguably a small price for a significant gain in robustness against adversaries. We leave it to
future work to close the gap or prove that it is impossible to do so without compromising on
the adversarial guarantees.

To the best of our knowledge, the leading constant 2 in the adversarial regret bound of
Tsallis-INF with RV estimators provides the tightest adversarial regret guarantee known today.
It matches the minimax adversarial lower bound in Cesa-Bianchi and Lugosi [35, Theorem 6.1]
within a multiplicative factor of less than 15. Under the assumption of known time horizon,
Zimmert and Lattimore [108] provide an adversarial regret bound with leading constant

√
2.

The
√

2 multiplicative difference between their result and ours is the standard conversion rate
between fixed-horizon and anytime regret bounds.

3.4.2 A General Alanysis of α-Tsallis-INF with α ∈ [0, 1]

Now we provide a general analysis of α-Tsallis-INF with α ∈ [0, 1] and then explain the
intuition of why α = 1

2 works best. Since α 6= 1
2 anyway leads to suboptimal regret rates

and in order to keep things simple we restrict the general analysis to IW estimators. We
note that in Theorem 3.1 the RV estimators helped improving the constants, but they did
not change the rates and, therefore, we save the effort of optimising the constants in a priori
suboptimal bounds. To keep things even simpler, we derive logarithmic bounds for stochastically
constrained adversarial environments rather than the more general adversarial regime with a
self-bounding constraint (technically speaking, we take C = 0).

Put attention that the adversarial analysis in Theorem 3.2 and stochastic analysis in
Theorem 3.3 consider different versions of α-Tsallis-INF. The adversarial analysis uses
symmetric regularisation, whereas stochastic analysis uses asymmetric regularisation. We get
back to this point after we present the results.
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Adversarial Regime

α-Tsallis-INF with symmetric regularisation has been previously analysed in the adversarial
setting by Abernethy et al. [6] and Agarwal et al. [7]. Abernethy et al. provide a finite-time
analysis for α ∈ (0, 1], while Agarwal et al. analyse the case of α = 0. The main contribution of
the following theorem is that it provides a unified and anytime treatment for all α ∈ [0, 1]. The
bound recovers the constants from Abernethy et al. without the need of tuning the learning
rate by the time horizon T .

Theorem 3.2. For any α ∈ [0, 1], and any adversarial bandit problem the pseudo-regret of
α-Tsallis-INF with symmetric regularizer, learning rate ηt =

√
K1−2α−K−α

1−α
1−t−α
αt , and IW

loss estimators at any time T satisfies

RegT ≤ 2
√

min
{ 1
α− α2 ,

log(K)
α

,
log(T )
1− α

}
KT + 1.

(At the boundaries α = 0 and α = 1 the learning rates are defined by limα→0 ηt =
√

(K−1) log(t)
t

and limα→1 ηt =
√

log(K)(1−t−1)
t , respectively.)

The proof is postponed to Section 3.7.

Stochastically Constrained Adversarial Regime

Now we present an analysis of α-Tsallis-INF with α ∈ [0, 1] and asymmetric regularisation
in the stochastically constrained adversarial setting. We let t = max{e, t}. For learning rates
ηt = 16α

4
1−t−1+α

(1−α)tα and asymmetric regulariser with ξi = ∆1−2α
i for i 6= i∗ and ξi∗ = ∆1−2α

min , where
∆min = mini 6=i∗ ∆i, we prove the following theorem.

Theorem 3.3. For any α ∈ [0, 1] and any stochastically constrained adversarial regime with
a unique best arm (i.e., ∆i > 0 for all i except a unique index i∗ for which ∆i∗ = 0), the
pseudo-regret of α-Tsallis-INF with learning rate ηt = 16α

4
1−t−1+α

(1−α)tα and asymmetric regulariser
with parameters ξi = ∆1−2α

i for i 6= i∗ and ξi∗ = ∆1−2α
min at any time T satisfies

RegT ≤
∑
i 6=i∗

(
(8 min{ 1

1−α , log(T )}+ 64) log(T )
∆i

)
+

16 log4( 16
∆2

min
log2( 16

∆2
min

))
∆min

+ 4.

The proof is provided in Appendix 3.9.

Remark 3.3. We emphasise that for α 6= 1
2 the result in Theorem 3.3 requires knowledge

of the gaps ∆i for tuning the regularisation parameters ξi. For α = 1
2 this knowledge is

not required. Therefore, Theorem 3.3 is primarily interesting from the theoretical perspective
of characterisation of behavior of α-Tsallis-INF in stochastically constrained adversarial
environments, whereas α = 1

2 is the only practically interesting value with the refined analysis
in Theorem 3.1.

Remark 3.4. For α 6= 1
2 the version α-Tsallis-INF in Theorem 3.3 uses asymmetric

regularisation, whereas α-Tsallis-INF in Theorem 3.2 uses symmetric regularisation. The
corresponding learning rates also differ. Therefore, for α 6= 1

2 neither of the two versions of
α-Tsallis-INF achieves simultaneous optimality in the stochastic and adversarial setting. In
fact, the time dependence of the adversarial regret guarantee for α-Tsallis-INF in Theorem 3.3
is in the order of Tα + T 1−α.
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Remark 3.5. We note that while Tsallis entropy with α = 0 corresponds to log-barrier potential
used in Broad, and Tsallis entropy with α = 1 corresponds to entropic regularisation used
in EXP3++, the two algorithms (Broad and EXP3++) use symmetric regularisation,
whereas α-Tsallis-INF in Theorem 3.3 uses asymmetric regularisation. Therefore, there is
no direct relation between the result of Theorem 3.3 and these two algorithms. In particular,
Broad and EXP3++ use other techniques to achieve slightly suboptimal, but simultaneous
stochastic and adversarial regret guarantees (as described in Table 3.1), which is not the case
for α-Tsallis-INF with asymmetric regularisation in Theorem 3.3.

3.4.3 Intuition Behind the Success of Tsallis-INF with α = 1
2

It has been previously shown that regularisation by Tsallis entropy with power α = 1/2 leads
to the minimax optimal regret rate in the adversarial regime [14]. Here we provide some basic
intuition on why the same value of α works well in the stochastic case. We also highlight the
key breakthroughs that allow us to overcome challenges faced in prior work.

We start with a simple “back of the envelope” approximation of the form of the weights wt
played by Tsallis-INF. By definition of Algorithm 4, at round t we have

wt = arg max
w∈∆K−1

{〈
w,−L̂t−1

〉
+ 1
ηt

∑
i

wαi − αwi
α(1− α)ξi

}
.

Taking a derivative of the Langrangian of the above expression with respect to wi and equating
it to zero, we obtain that

−L̂t−1,i + 1
ηt(1− α)ξi

(wα−1
t,i − 1)− ν = 0,

where ν is a Lagrange multiplier corresponding to the constraint that w is a probability
distribution. We can express ν as

ν = 1
ηt(1− α)ξi∗

(wα−1
t,i∗ − 1)− L̂t−1,i∗ .

For i 6= i∗ this gives

wt,i =
(
ηt(1− α)ξi

(
L̂t−1,i + ν

)
+ 1

) 1
α−1

=
(
ηt(1− α)ξi

(
L̂t−1,i − L̂t−1,i∗ + 1

ηt(1− α)ξi∗
(wα−1

t,i∗ − 1)
)

+ 1
) 1
α−1

=
(
ηt(1− α)ξi

(
L̂t−1,i − L̂t−1,i∗

)
+ ξi
ξi∗

(wα−1
t,i∗ − 1) + 1

) 1
α−1

≈
(
ηt(1− α)ξi

(
L̂t−1,i − L̂t−1,i∗

)) 1
α−1 ,

where the approximation holds because asymptotically the first term dominates the sum. A bit
more explicitly, in order for the algorithm to deliver non-trivial regret guarantee, wt,i∗ should
be close to 1. Thus, the last two terms in the brackets are roughly a constant. At the same
time, as we discuss below, the whole expression in the brackets must grow roughly as (∆2

i t)1−α.
Thus, the first term must dominate. In the stochastic regime E

[
L̂t,i − L̂t,i∗

]
= ∆it. If we use

this in our back-of-the-envelope calculation, we obtain that for i 6= i∗ in the stochastic regime
E[wt,i] ≈ E

[(
ηt(1− α)ξi(L̂t−1,i − L̂t−1,i∗)

) 1
α−1

]
∝ (ηtξi∆it)

1
α−1 . (Strictly speaking, when we

take the expectation inside the power we obtain an inequality, but we ignore this detail in the
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high-level discussion. We also ignore the (1− α) factor, which can be seen as a constant for
α < 1.)

In order to achieve a regret rate of Θ(
∑
i 6=i∗

log t
∆i

) in the stochastic regime the suboptimal arms
should be explored at a rate of Θ( 1

∆2
i t

) per round (if E[wt,i] = Θ( 1
∆2
i t

), then ∆iE
[∑t

s=1ws,i
]

=
Θ( log t

∆i
), as desired). Exploring more than that leads to excessive regret from the exploration

alone. Exploring less is also prohibitive, because it leads to an overly high probability of
misidentifying the best arm. By looking at the approximation of E[wt,i] from the previous
paragraph, we obtain that we should have (ηtξi∆it)

1
α−1 ∝ 1

∆2
i t

or, equivalently, ηtξi ∝ t−α∆1−2α
i .

The learning rate takes care of the time-dependent quantities, i.e., ηt ∝ t−α, and ξi should
take care of the arm-dependent quantities, i.e., we should have ξi ∝ ∆1−2α

i . Note that α = 1
2

leads to a symmetric regulariser Ψ (i.e., ξi = 1), whereas for α 6= 1
2 the regulariser must be

tuned using unknown gaps ∆i. The necessity to tune the regulariser based on unknown gaps
has hindered progress in the work of Wei and Luo [103], who used the log-barrier regulariser
corresponding to α = 0.

Another crucial novelty behind the success of our analysis is basing it on the self-bounding
property of the regret in equation (3.3). The new proof technique uses the same mechanism
for controlling the regret in stochastic and adversarial regimes and we explain the intuition
behind it in Section 3.7.1. The earlier approach by Seldin and Slivkins [91] and Seldin and
Lugosi [90] has controlled the regret in stochastic and adversarial regimes through separate
mechanisms. The stochastic analysis was based on using empirical estimates of the gaps and
high-probability control of the weights wt,i. However, gap estimation is challenging, because
the variance of L̂t,i is of the order of

∑t
s=1

1
ws,i

. If the arms are played according to the target
probabilities of wt,i ≈ 1

t∆2
i
, then the variance of (L̂t,i − L̂t,i∗) is of the order of Θ(∆2

i t
2). This

is prohibitively large, because the square root of the variance is of the same order as the
expected cumulative gap and standard tools, such as Bernstein’s inequality, cannot guarantee
concentration of (L̂t,i − L̂t,i∗) around ∆it. Seldin and Slivkins [91] have coped with this by
mixing in additional exploration, but this has led to a regret growth rate of the order of
(log T )3 in the stochastic regime. Seldin and Lugosi [90] have mixed in less exploration and
used unweighted losses for the gap estimates, which has decreased the regret growth rate down
to (log T )2. It is currently unknown whether direct gap estimation can be further improved
to support the desired log T stochastic regret rates. Additionally, existing oracle analysis in
Seldin and Slivkins [91, Theorem 2] and Theorem 3.3 here only support (log T )2 regret rate
for EXP3-based algorithms (corresponding to α = 1) in the stochastic regime. It is currently
unknown whether this rate can be improved either. To summarize, the main breakthrough
compared to this line of work is moving from α = 1 to α = 1

2 and shifting from an analysis
based on gap estimation to an analysis based on self-boundedness of the regret. The proposed
algorithm does not mix in any additional exploration.

3.5 Additional Intermediate Regimes Between Stochastic and
Adversarial

In this section we show that stochastic bandits with adversarial corruptions proposed by Lykouris
et al. [76] are also a special case of an adversarial environment with a self-bounding constraint.
We further propose an extension of their regime by combining it with a stochastically constrained
adversary. We show that the combination is also a special case of an adversarial environment
with a (∆, 2C, T ) self-bounding constraint, where Tsallis-INF achieves logarithmic regret.
We finish the section with an open question on whether Tsallis-INF can achieve logarithmic
regret guarantees in the intermediate regimes defined by Seldin and Slivkins [91].
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3.5.1 Stochastic Bandits with Adversarial Corruptions

Lykouris et al. [76] have proposed a regime in which an adversary is allowed to make corruptions
to an otherwise stochastic environment. Let LT = (¯̀1, . . . , ¯̀

T ) and LT = (`1, . . . , `T ) be two
sequences of losses, then the amount of corruption is measured by

∑T
t=1 ‖¯̀t − `t‖∞.

Let LT be a sequence of losses generated by a stochastically constrained adversary with best
arm i∗ and gaps ∆i, and let LT be its adaptively corrupted version with corruption amount
bounded by C. The regret of an algorithm executed on LT satisfies

RegT = max
i

E
[
T∑
t=1

`t,It − `t,i

]
≥ E

[
T∑
t=1

`t,It − `t,i∗
]

=E
[
T∑
t=1

`t,It − `t,i∗
]

+ E
[
T∑
t=1

`t,It − `t,It

]
+ E

[
T∑
t=1

`t,i∗ − `t,i∗
]

≥
T∑
t=1

∑
i 6=i∗

∆iE[wt,i]− 2C. (3.4)

Thus, a stochastically constrained adversary with adversarial corruptions is an adversarial regime
with a (∆, 2C, T ) self-bounding constraint. This leads to a direct corollary of Theorem 3.1,
which improves upon the pseudo-regret bounds of Lykouris et al. [76] and Gupta et al. [55], the
latter providing an O

(∑
i 6=i∗

log(T )
∆i

+KC
)

guarantee. We note that Lykouris et al. [76] and
Gupta et al. [55] do not assume uniqueness of the best arm and also provide high-probability
regret guarantees, but they only consider the more restricted stochastic setting with adversarial
corruptions.

Corollary 3.1. The regret of Tsallis-INF in a stochastically constrained adversarial envi-
ronment with a unique best arm i∗, adaptively corrupted with corruption amount bounded by C
satisfies

RegT = O

∑
i 6=i∗

log(T )
∆i

+

√√√√∑
i 6=i∗

log(T )
∆i

C

 .

Remark 3.6. We emphasise that the assumption of best arm uniqueness is on the stochastically
constrained adversary before corruption. After the adaptive corruption it is allowed to have
multiple best arms and the identity of the best arm is allowed to change.

Proof. By equation (3.4) the self-bounding condition of Theorem 3.1 is satisfied with ∆ being
the vector of gaps of the underlying stochastically constrained adversary and the constant being
2C. Thus, with RV loss estimators for 2C ≤

(∑
i 6=i∗

log(T )+3
∆i

)
+ 1

∆min
Tsallis-INF achieves

RegT ≤

∑
i 6=i∗

log(T ) + 3
∆i

+ 20K log(T ) + 1
∆min

+
√
K + 32 + 2C

and otherwise

Regt ≤2

√√√√√
∑

i 6=i∗

log(T ) + 3
∆i

+ 1
∆min

 2C + 20K log(T ) +
√
K + 32 .
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3.5.2 Open Problem: The Performance in Seldin and Slivkins’ Environ-
ments

Seldin and Slivkins [91] define moderately contaminated stochastic regime and an adversarial
regime with a gap. In the moderately contaminated stochastic regime the adversary is allowed
to change up to t∆i

4 arbitrarily selected observations for a suboptimal arm i and up to t∆min
4

observations for the optimal arm i∗ (where ∆min = min∆i>0 ∆i). The logic behind the definition
is that in expectation the adversary can reduce the gap ∆i by a factor of 2, but cannot eliminate
it completely. The adversarial regime with a gap is an adversarial regime, where starting from
a certain time τ (unknown to the algorithm) the cumulative loss of an optimal arm maintains
a certain gap ∆τ to all other arms until the end of the game. Seldin and Slivkins show that
their EXP3++ algorithm achieves “logarithmic” regret in both regimes. Note that in the
moderately contaminated stochastic regime the amount of contamination is allowed to grow
linearly with time. While the regime could be seen as a special case of stochastic bandits
with adversarial corruptions discussed earlier, the regret bound in Corollary 3.1 only supports
“logarithmic” regret for “logarithmic” amount of corruption C. So far we have been unable to
obtain “logarithmic” regret guarantees for Tsallis-INF in the intermediate regimes of Seldin
and Slivkins (the analysis proposed in Zimmert and Seldin [111] is incorrect). The challenge is
that the gaps are defined through cumulative rather than instantaneous quantities. Deriving
“logarithmic” regret guarantees for Tsallis-INF in these regimes is an interesting open problem.

3.6 Dueling Bandits

In the sparring approach to stochastic utility-based dueling bandits [8] each side in the sparring
can be modeled as a stochastically constrained adversarial environment. This makes it a perfect
application domain for Tsallis-INF. The problem is defined by K arms with utilities ui ∈ [0, 1].
At each round, an agent has to select two arms, It and Jt, to “duel”. The feedback is the winner
Wt of the “duel”, which is chosen according to P[Wt = It] = 1+uIt−uJt

2 . The regret is defined
by the distance to the optimal utility:

RegT =
T∑
t=1

2ui∗T − E
[
T∑
t=1

(uIt + uJt)
]
.

In the adversarial version of the problem, the utilities ui are not constant, but time dependent,
ut,i, and selected by an adversary. The regret in this case is the difference to the optimal utility
in hindsight:

RegT = max
i

E
[
T∑
t=1

2ut,i

]
− E

[
T∑
t=1

(ut,It + ut,Jt)
]
.

Ailon et al. [8] have proposed the Sparring algorithm, in which two black-box MAB algorithms
spar with each other. The first algorithm selects It and receives the loss `t,It = 1(Wt 6= It).
The second algorithm selects Jt and receives the loss `t,Jt = 1(Wt 6= Jt). They have shown that
the regret is the sum of individual regret values for both MABs, thereby recovering O(

√
KT )

regret in the adversarial case, if MABs with O(
√
KT ) adversarial regret bound are used. In the

stochastic case each black-box MAB is a system with a stochastically constrained adversary,
because the relative winning probability of the arms stays fixed, but depending on the arm choice
of the sparring partner the baseline shifts up and down. Since no algorithm has been known to
achieve log(T ) regret in stochastically constrained adversarial setting, Ailon et al. [8] provide
no analysis of Sparring in the stochastic case. Indeed, as we demonstrate in our experiments,
standard algorithms for stochastic multiarmed bandits, such as UCB or Thompson Sampling,
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may exhibit almost linear regret in stochastically constrained adversarial setting and, therefore,
are not suitable for sparring.

By applying Theorem 3.1, we directly obtain the following corollary.

Corollary 3.2. In a utility-based dueling bandit problem Sparring with two independent
versions of Tsallis-INF suffers a regret of

RegT ≤ O

 ∑
i:∆i>0

log(T )
∆i


in the stochastic case with a unique best arm and

RegT ≤ O
(√

KT
)

in the adversarial case.

3.7 Proofs

In this section, we first revise the general proof framework of Omd and provide a compact
summary of how to modify it to obtain stochastic guarantees. Afterward, we provide proofs
of Theorems 3.2 and 3.1. A proof of Theorem 3.3 along with proofs of all the lemmas in this
section are provided in the appendix.

3.7.1 High-Level Overview of Omd Modification for Stochastic Analysis

We follow the standard Omd analysis [70, Chapter 28] and introduce the potential function
Φt(−L) = maxw∈∆K−1{〈w,−L〉 − Ψt(w)} to decompose the regret into stability and penalty
terms.

RegT = E
[
T∑
t=1

(
`t,It − `t,i∗T

)]

= E
[
T∑
t=1

`t,It + Φt(−L̂t)− Φt(−L̂t−1)
]

︸ ︷︷ ︸
stability

+E
[
T∑
t=1
−Φt(−L̂t) + Φt(−L̂t−1)− `t,i∗T

]
︸ ︷︷ ︸

penalty

.
(3.5)

The Omd analysis bounds the stability and penalty terms separately. For Tsallis-entropy
regularizers, Abernethy et al. [6] have proven the following bounds

stability ≤
T∑
t=1

ηt

K∑
i=1

f(E[wt,i]),

penalty ≤
T∑
t=1

(ηt+1
−1 − ηt−1)

K∑
i=1

g(E[wt,i]),

where f(x) and g(x) are proportional to x1−α and xα, respectively. Adversarial bounds that scale
with

√
T are obtained by applying

∑K
i=1 f(E[wt,i]) ≤ maxw∈∆K−1

∑K
i=1 f(w),

∑K
i=1 g(E[wt,i]) ≤

maxw∈∆K−1
∑K
i=1 g(w), and choosing an appropriate learning rate. In particular, for α = 1

2 we
have f(x) = θ(

√
x) and g(x) = θ(

√
x) and we use ηt = θ(1/

√
t), for which η−1

t+1−η
−1
t = θ(1/

√
t).

This gives

RegT ≤
T∑
t=1

c
1√
t

K∑
i=1

√
E[wt,i] ≤

T∑
t=1

c
1√
t

max
z∈∆K−1

K∑
i=1

√
zi ≤

T∑
t=1

c
1√
t

√
K ≤ 2c

√
KT,
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where c is a small constant and we replace E[wt,i] with zi in the maximisation.
The main insight of the paper is that the same framework can be used to obtain “logarithmic”

bounds in the stochastic case. The key novelty is that if we constrain the maximisation of
E[wt,i] by the self-bounding property of the regret (3.3), the space of solutions excludes the
worst-case scenario, where the regret grows with the square root of the time horizon. For
simplicity we first explain the approach with C = 0. By the self-bounding property (3.3) we
then have R ≥

∑T
t=1

∑
i 6=i∗ ∆iE[wt,i] =

∑T
t=1

∑
i ∆iE[wt,i] (since ∆i∗ = 0 by definition), which

we can use to write

R ≤ 2R−
T∑
t=1

∑
i

∆iE[wt,i]. (3.6)

The negative contributions −∆iE[wt,i] are used to achieve better control of the growth of E[wt,i],
but they are only helpful for i with ∆i > 0, i.e., only for i 6= i∗. In order to exploit them we
derive refined bounds for the stability and penalty terms:

stability ≤
T∑
t=1

ηt
∑
i 6=i∗

f̃(E[wt,i]),

penalty ≤
T∑
t=1

(ηt+1
−1 − ηt−1)

∑
i 6=i∗

g(E[wt,i]),

where the summation excludes the best arm i∗, which has no negative contribution in (3.6).
The cost of excluding the best arm is an addition of a linear term to f : f̃(x) = f(x) + c′x,
where c′ is a small constant. In particular, for α = 1

2 and learning rate ηt = θ(1/
√
t) we have

R ≤ 2R−
T∑
t=1

∑
i 6=i∗

∆iE[wt,i]

≤
T∑
t=1

∑
i 6=i∗

(
2c 1√

t

(√
E[wt,i] + c1E[wt,i]

)
−∆iE[wt,i]

)

≤
T∑
t=1

∑
i 6=i∗

max
z

(
2c 1√

t

(√
z + c1z

)
−∆iz

)

≤
T∑
t=1

∑
i 6=i∗

(
c2

∆it
+ c3

∆it(∆i

√
t− 1)

)

= O

∑
i 6=i∗

log T
∆i

 ,
where c1, c2, c3 are small constants and in the second line we use the refined stability and
penalty bounds to bound 2R. The negative contribution is exploited in the maximisation in
the third line, which is now done coordinate-wise and the constraint that wt is a probability
distribution is dropped.

We assume uniqueness of the zero-entry in ∆, because currently we are only able to exclude
one arm from the summation in refined bounds on stability and penalty. Had there been
multiple arms with ∆i = 0 they would have no negative contributions to control E[wt,i]. The
challenge in excluding more than one arm from the summation is explained in Lemma 3.1,
where we derive the refined bound.

In the more general analysis with C > 0 we write R ≤ (1+λ)R−λ
(∑T

t=1
∑
i 6=i∗ ∆iE[wt,i]− C

)
and use the parameter λ for optimizing the dependence on C. The parameter λ can also be
seen as a Lagrange multiplier in a constrained optimisation problem of maximizing the regret
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bound (stability bound + penalty bound) under the self-bounding constraint that (stability
bound + penalty bound) ≥

∑T
t=1

∑
i 6=i∗ ∆iE[wt,i]− C.

3.7.2 Key Lemmas

The proofs of Theorems 3.2, 3.1, and 3.3 are based on the following two lemmas that bound
the stability and penalty terms. The proofs of the lemmas are provided in Appendix 3.9.
Lemma 3.1. For a positive learning rate, the instantaneous stability of α-Tsallis-INF
satisfies at any time t

E
[
`t,It + Φt(−L̂t)− Φt(−L̂t−1)

]
≤



min
{∑K

i=1
ηtξi

2 E [wt,i]1−α , 1
}
, if 1.

η2
t
2 +

∑K
i=1

ηt
2 E[wt,i]

1
2 (1− E[wt,i]), if 2.

5η2
t

8 K +
∑K
i=1

ηt
8 E[wt,i]

1
2 (1− E[wt,i]), if 3.∑

i 6=j

(
ηtξi

2 E [wt,i]1−α + ηt(ξi+2ξj)
2 E [wt,i]

)
, if 4. ,

where
1. L̂t is based on importance weighted estimators. The inequality holds for any ηt > 0 and

α ∈ [0, 1].

2. L̂t is based on importance weighted estimators, 1 ≥ ηt > 0, and α = 1
2 .

3. L̂t is based on reduced-variance estimators, 1 ≥ ηt > 0, and α = 1
2 .

4. L̂t is based on importance weighted estimators and ηtξi ≤ 1
4 for all i. The inequality holds

for any j and α ∈ [0, 1].
The first part of the Lemma is due to Abernethy et al. [6]. The remaining parts are

non-trivial refinements that are crucial for our analysis, as outlined in the previous section.
The first inequality is used in the proof of Theorem 3.2, the second and third inequalities are
used for the two results in Theorem 3.1, the last inequality is used in the proof of Theorem 3.3.
In the proof of Theorem 3.1 we use E[wt,i]

1
2 (1− E[wt,i]) ≤ E[wt,i]

1
2 for i 6= i∗, and for i∗ we use

E[wt,i∗ ]
1
2 (1− E[wt,i∗) ≤ (1− E[wt,i∗ ]) =

∑
i 6=i∗ E[wt,i]. This eliminates E[wt,i∗ ] from the regret

bound and allows to exploit the self-bounding property. This approach only allows to eliminate
one arm from the regret bound, which is the reason we rely on the assumption of uniqueness of
the best arm.
Lemma 3.2. For any α ∈ [0, 1] and any unbiased loss estimators the penalty term of α-
Tsallis-INF satisfies:

1. For the symmetric regulariser and non-increasing learning rate

E
[
T∑
t=1

(
Φt(−L̂t−1)− Φt(−L̂t)− `t,i∗T

)]
≤ (K1−α − 1)(1− T−α)

(1− α)αηT
+ 1.

2. For an arbitrary regularizer, non-increasing learning rate, and any x ∈ [1,∞]

E
[
T∑
t=1

(
Φt(−L̂t−1)− Φt(−L̂t)− `t,i∗T

)]

≤ 1− T−αx

α

∑
i 6=i∗T

(
E[w1,i]α − αE[w1,i]

η1ξi(1− α) +
T∑
t=2

( 1
ηt
− 1
ηt−1

) E[wt,i]α − αE[wt,i]
ξi(1− α)

)
+ T 1−x.

The first part of the Lemma is a straightforward improvement of the penalty bound in
Abernethy et al. [6] with the techniques from Agarwal et al. [7]. The second part is again
a crucial refinement. It is obtained by exploiting the negative contribution of ΨT (ei∗) in an
intermediate step of the proof, which Abernethy et al. [6] trivially bounded by 0.
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3.7.3 Proofs of Theorems 3.1 and 3.2

Now we are ready to present the proofs of the main theorems.

Proof of Theorem 3.1. We provide a proof of regret bounds for Tsallis-INF with reduced-
variance (RV) estimators. The analysis of Tsallis-INF with IW estimators in the adversarial
case is analogous to the proof of Theorem 3.2 and under the self-bounding constraint (3.3) it is
analogous to the analysis of RV estimators with the bound in Part 3 of Lemma 3.1) replaced by
the bound in Part 2. Therefore, the proofs of both results for the IW estimators are omitted.

To analyse the regret we start by bounding the stability term. We use Lemma 3.1, where
for t < 16 we have ηt > 1 and the RV estimators are equivalent to IW estimators. Thus, we
can apply the first part of the lemma to bound the instantaneous stability by 1. For t ≥ 16, we
use the third part of the lemma.

stability = E
[
T∑
t=1

`t,It + Φt(−L̂t)− Φt(−L̂t−1)
]

≤ 15 +
T∑

t=16

(
5η2
t

8 K +
K∑
i=1

ηt
8

√
E[wt,i](1− E[wt,i])

)

≤ 15 + 10K log(T ) +
T∑

t=16

K∑
i=1

√
E[wt,i](1− E[wt,i])

2
√
t

. (3.7)

Adversarial bound. We bound
∑K
i=1

√
E[wt,i](1−E[wt,i]) ≤

∑K
i=1

√
E[wt,i] ≤

√
K
∑K
i=1 E[wt,i] =

√
K, which holds by Jensen’s inequality. Then we have

stability ≤ 15 + 10K log(T ) +
T∑

t=16

√
K

2
√
t

≤ 15 + 10K log(T ) +
√
KT .

For the penalty term, we use the first part of Lemma 3.2 to obtain

penalty ≤
√
KT + 1 .

Combining stability and penalty completes the proof.

Bound under the self-bounding constraint (3.3). We continue bounding the stability
up from equation (3.7). For i 6= i∗ we use

√
E[wt,i](1 − E[wt,i]) ≤

√
E[wt,i]. For i∗ we use√

E[wt,i∗ ](1 − E[wt,i∗ ]) ≤ (1 − E[wt,i∗ ]) =
∑
i 6=i∗ E[wt,i]. For a constant 0 < λ ≤ 1 that will

be specified at a later stage of the proof and t ≤ T0 =
⌈
( 1

2λ∆min
)2
⌉

we further bound the last
expression as

∑
i 6=i∗ E[wt,i] ≤ 1. Altogether, this gives

T∑
t=16

K∑
i=1

√
E[wt,i](1− E[wt,i])

2
√
t

≤
T0∑
t=16

1
2
√
t

+
∑
i 6=i∗

 T∑
t=T0+1

E[wt,i]
2
√
t

+
T∑

t=16

√
E[wt,i]
2
√
t


≤
√
T0 +

∑
i 6=i∗

 T∑
t=1

√
E[wt,i]
2
√
t

+
T∑

t=T0+1

E[wt,i]
2
√
t
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and

stability ≤ 15 + 10K log(T ) +
√
T0 +

∑
i 6=i∗

 T∑
t=1

√
E[wt,i]
2
√
t

+
T∑

t=T0+1

E[wt,i]
2
√
t

 .

In order to bound the penalty term, we use the second part of Lemma 3.2 with x =∞. We drop
the linear terms since they are all negative. Note that 2

√
T = 1 +

∫ T
t=1

1√
t
dt ≤ 1 +

∑T
t=1

1√
t
.

penalty = E
[
T∑
t=1
−Φt(−L̂t) + Φt(−L̂t−1)− `t,i∗

]

≤ 4
∑
i 6=i∗


√
E[w1,i]− 1

2E[wt,i]
η1

+
T∑
t=2

( 1
ηt
− 1
ηt−1

)(√
E[wt,i]−

1
2E[wt,i]

)
=
∑
i 6=i∗

((√
E[w1,i]−

1
2E[wt,i]

)
+

T∑
t=2

(√
t−
√
t− 1

)(√
E[wt,i]−

1
2E[wt,i]

))

=
T∑
t=1

∑
i 6=i∗

√
E[wt,i]− 1

2E[wt,i]
2
√
t

+
∑
i 6=i∗

(√E[w1,i]− 1
2E[w1,i]

2

+
T∑
t=2

(√
t−
√
t− 1− 1

2
√
t

)(√
E[wt,i]−

1
2E[wt,i]

))

≤
T∑
t=1

∑
i 6=i∗

√
E[wt,i]− 1

2E[wt,i]
2
√
t

+
(

1
2 +

T∑
t=2

(√
t−
√
t− 1− 1

2
√
t

))√
K

=
T∑
t=1

∑
i 6=i∗

√
E[wt,i]− 1

2E[wt,i]
2
√
t

+
(
√
T −

T∑
t=1

1
2
√
t

)
√
K

≤
T∑
t=1

∑
i 6=i∗

√
E[wt,i]− 1

2E[wt,i]
2
√
t

+
√
K

2 .

Combining penalty and stability gives the bound

RegT ≤
∑
i 6=i∗

 T∑
t=1

√
E[wt,i]
√
t

+
T∑

t=T0+1

E[wt,i]
4
√
t

+
√
T0 +

√
K

2 + 15 + 10K log(T )︸ ︷︷ ︸
=:M

.
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By using the self-bounding property (3.3) and (1 + λ) ≤ 2 we obtain

RegT ≤ RegT + λ

RegT − T∑
t=1

∑
i 6=i∗

∆iE[wt,i] + C


≤
∑
i 6=i∗

 T∑
t=1

2
√
E[wt,i]
√
t

+
T∑

t=T0+1

E[wt,i]
2
√
t

+ 2
√
T0 + 2M − λ

T∑
t=1

∑
i 6=i∗

∆iE[wt,i] + λC

=
T0∑
t=1

∑
i 6=i∗

2
√
E[wt,i]
√
t

− λ∆iE[wt,i]

+
T∑

t=T0+1

∑
i 6=i∗

2
√
E[wt,i] + 1

2E[wt,i]
√
t

− λ∆iE[wt,i]


+ 2

√
T0 + 2M + λC

≤
T0∑
t=1

∑
i 6=i∗

max
z≥0

(
2
√
z√
t
− λ∆iz

)
+

T∑
t=T0+1

∑
i 6=i∗

max
z≥0

(
2
√
z + 1

2z√
t

− λ∆iz

)

+ 2
√
T0 + 2M + λC.

Simple optimisation shows that maxz>0 2α
√
z − βz = α2

β . Thus, we have

max
z≥0

2
√
z√
t
− λ∆iz = 1

λ∆it
.

and

max
z≥0

2
(√

z + 1
4z
)

√
t

− λ∆iz = 1
(λ∆i − 1

4
√
t
)t

= 1
λ∆it

+ 1
(λ∆i − 1

4
√
t
)t
− 1
λ∆it

= 1
λ∆it

+ 1
4λ2∆2

i t
3
2 − λ∆it

.

In order to bound the summation of the above terms we use the following bound from Lemma 3.4
in the appendix:

T∑
t=T0+1

1
bt

3
2 − ct

≤ 2
b
√
T0 − c

.

By definition of T0 we have 1
2λ∆min

≤
√
T0 ≤ 1

2λ∆min
+ 1 and

1
2λ2∆2

i

√
T0 − 1

2λ∆i
= 2
λ∆i

· 1
4λ∆i

√
T0 − 1

≤ 2
λ∆i

· 1
2 ∆i

∆min
− 1
≤ 2
λ∆i

.

By plugging the calculations into the regret bound above we obtain:

RegT ≤
T∑
t=1

∑
i 6=i∗

1
λ∆it

+
T∑

t=T0+1

∑
i 6=i∗

1
4λ2∆2

i t
3
2 − λ∆it

+ 2
√
T0 + 2M + λC

≤
T∑
t=1

∑
i 6=i∗

1
λ∆it

+ 1
2λ2∆2

i

√
T0 − 1

2λ∆i
+ 2

√
T0 + 2M + λC

≤
∑
i 6=i∗

log(T ) + 3
λ∆i

+ 1
λ∆min

+ 2(M + 1) + λC.
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Finally choosing λ = min
{

1,
√(∑

i 6=i∗
log(T )+3

∆i
+ 1

∆min

)/
C

}
completes the proof.

Proof of Theorem 3.2. We start from equation (3.5). Since the regularisation is symmetric, we
have ξi = 1 for all i. Using Lemma 3.1 we bound the stability term as

stability = E
[
T∑
t=1

`t,It + Φt(−L̂t)− Φt(−L̂t−1)
]
≤

T∑
t=1

K∑
i=1

ηt
2 E [wt,i]1−α

≤
(

T∑
t=1

ηt
2

)
max

w∈∆K−1

K∑
i=1

w1−α
i =

 T∑
t=1

√
K1−2α −K−α

1− α
1− t−α
αt

 Kα

2

≤

 T∑
t=1

√
1−Kα−1

1− α
1− T−α
αt

 √K
2 ≤

√
1−Kα−1

1− α
1− T−α

α
KT.

The penalty is bounded according to Lemma 3.2

penalty = E
[
T∑
t=1
−Φt(−L̂t) + Φt(−L̂t−1)− `t,i∗T

]

≤ (K1−α − 1)(1− T−α)
(1− α)αηT

+ 1 =

√
1−Kα−1

1− α
1− T−α

α
KT + 1.

The proof is completed by noting that the first factor is bounded by
√

1
1−α and monotonically

increasing in α with the limit limα→1
√

1−Kα−1

1−α =
√

log(K) (details in Lemma 3.3 in the

appendix). By the same argument, the second factor is bounded by
√

1
α and monotonically

decreasing in α with the limit limα→0

√
1−T−α

α =
√

log(T ).

3.8 Experiments

We provide an empirical comparison of Tsallis-INF with the classical algorithms for stochastic
bandits, Ucb1 [16, with parameter α = 1.5] and Thompson Sampling [96]5, and the classical
algorithm for adversarial bandits, Exp3, implemented for the losses [26]. We also compare
with the state-of-the-art algorithms for stochastic and adversarial bandits, EXP3++ with
parametrisation proposed in Seldin and Lugosi [90] and Broad [103]. The pseudo-regret is
estimated by 100 repetitions of the corresponding experiments and two standard deviations
of the empirical pseudo-regret,

∑T
t=1 ∆It , over the 100 repetitions are depicted by the shaded

areas on the plots. We always show the first 10000 time steps on a linear plot and then the
time steps from 104 to 107 on a separate log-log plot.

The first experiment, shown in Figures 3.1 and 3.2, is a standard stochastic MAB, where the
mean rewards are (1+∆)/2 for the single optimal arm and (1−∆)/2 for all the suboptimal arms.
The number of arms K and the gaps ∆ are varied as described in the figures. Unsurprisingly,
Thompson Sampling exhibits the lowest regret, but Tsallis-INF takes a confident second

5Another leading stochastic algorithm, KL-UCB [32], has performed comparably to Thompson Sampling in
our experiments and, therefore, is not reported in the figures.
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place, outperforming all other competitors. UCB1, EXP3, and EXP3++ fall roughly in the
same league, while Broad suffers from extremely large constant factors and is out of question
for practical applications.

The second experiment, shown in Figures 3.3 and 3.4, simulates stochastically constrained
adversaries. The mean loss of (optimal arm, all sub-optimal arms) switches between (1−∆, 1)
and (0,∆), while staying unchanged for phases that are increasing exponentially in length. Both
Ucb1 and Thompson-Sampling suffer almost linear regret. To the best of our knowledge, this
is the first empirical evidence clearly demonstrating that Thompson Sampling is unsuitable
for the adversarial regime. All other algorithms are almost unaffected by the shifting of the
means, with Tsallis-INF being the only algorithm that achieves log(T ) regret with practical
constant factors.

3.8.1 Multiple Optimal Arms

Since our theoretical results for the stochastic setting do not include multiple optimal arms, we
explore this setting empirically. We use a single suboptimal arm with mean loss of 9/16. All
other arms are optimal with mean loss 7/16. We run the experiment with 1000 repetitions and
increase the number of arms. Figure 3.5 clearly shows that the regret does not suffer if the
optimal arm is not unique. Moreover, we observe that the regret decreases with the growth of
the number of suboptimal arms. Therefore, we conjecture that the requirement of uniqueness
is merely an artifact of the analysis.

3.9 Discussion

We have presented a general analysis of online mirror descent algorithms regularised by Tsallis
entropy with α ∈ [0, 1]. As the main contribution, we have shown that the special case of α = 1

2
achieves optimality in both adversarial and stochastic regimes, while being oblivious to the
environment at hand. Thereby, we have closed logarithmic gaps to lower bounds, which were
present in existing best-of-both-worlds algorithms. We introduced a novel proof technique based
on the self-bounding property of the regret, circumventing the need of controlling the variance
of loss estimates. We have provided an empirical evidence that our algorithm outperforms
UCB1 in stochastic environments and is significantly more robust than UCB1 and Thompson
Sampling in non-i.i.d. settings. We have introduced an adversarial regime with a self-bounding
constraint, which includes stochastically constrained adversaries and adversarially corrupted
stochastic bandits as special cases and improved regret bounds for the latter two regimes.
We have also shown that Tsallis-INF can be applied to achieve stochastic and adversarial
optimality in utility-based dueling bandits.

A weak point of the current analysis is the assumption of uniqueness of the zero entry in a
vector of suboptimality gaps in the adversarial regime with a self-bounding constraint. In the
stochastic and stochastically constrained adversarial settings it corresponds to assumption of
uniqueness of the best arm. Our experiments suggest that this is most likely an artifact of the
analysis and we aim to address this shortcoming in future work.

Another open question is whether it is possible to remove the remaining factor 2 in the
asymptotic gap-dependent stochastic bound. A complimentary open question is the possibility
of derivation of tighter lower bounds for the adversarial regime with a self-bounding constraint.

One more open question is whether logarithmic regret is achievable by Tsallis-INF in the
intermediate regimes defined by Seldin and Slivkins [91]. We have discussed this question in
more details in Section 3.5.2.

An additional direction for future research is application of Tsallis-INF to other problems.
The fact that the algorithm relies solely on importance weighted losses makes it a suitable
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Figure 3.1: Comparison of Tsallis-INF with Thompson Sampling, Ucb1, Exp3, Exp3++,
and Broad in a stochastic environment with fixed mean losses of 1−∆

2 for the optimal arm
and 1+∆

2 for all sub-optimal arms. The experiment is repeated for different number of arms
K and different gaps ∆. The figure shows the first 10000 time steps on a linear plot. The
pseudo-regret is estimated by 100 repetitions and we depict 2 standard deviations of the
empirical pseudo-regret by the shaded areas.
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Figure 3.2: Comparison of Tsallis-INF with Thompson Sampling, Ucb1, Exp3, Exp3++,
and Broad in a stochastic environment with fixed mean losses of 1−∆

2 for the optimal arm
and 1+∆

2 for all sub-optimal arms. The experiment is repeated for different number of arms
K and different gaps ∆. The figure shows the time steps from 104 to 107 on a log-log plot.
The pseudo-regret is estimated by 100 repetitions and we depict 2 standard deviations of the
empirical pseudo-regret by the shaded areas.
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Figure 3.3: Comparison of Tsallis-INF with Thompson Sampling, Ucb1, Exp3, Exp3++,
and Broad in a stochastically constrained adversarial environment. The environment (unknown
to the agent) alternates between two stochastic settings. In the first setting the expected loss of
the optimal arm is 0 and ∆ for sub-optimal arms. In the second the expected losses are 1−∆
and 1, respectively. The time between alternations increases exponentially (with factor 1.6)
after each switch. The experiment is repeated for different number of arms K and different
gaps ∆. The figure shows the first 10000 time steps on a linear plot. The pseudo-regret is
estimated by 100 repetitions and we depict 2 standard deviations of the empirical pseudo-regret
by the shaded areas.
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Figure 3.4: Comparison of Tsallis-INF with Thompson Sampling, Ucb1, Exp3, Exp3++,
and Broad in a stochastically constrained adversarial environment. The environment (unknown
to the agent) alternates between two stochastic settings. In the first setting the expected loss
of the optimal arm is 0 and ∆ for sub-optimal arms. In the second the expected losses are
1−∆ and 1 respectively. The time between alternations increases exponentially (with factor
1.6) after each switch. The experiment is repeated for different number of arms K and different
gaps ∆. The figure shows the time steps from 104 to 107 on a log-log plot. The pseudo-regret is
estimated by 100 repetitions and we depict 2 standard deviations of the empirical pseudo-regret
by the shaded areas.
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Figure 3.5: Increasing number of copies of the best arm

candidate for partial monitoring games. One step in this direction has already been taken by
Zimmert et al. [109].
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the previous version of the work [111] and Haipeng Luo for the idea on how to improve our
regret bounds for stochastic bandits with adversarial corruptions in the large C case.

Appendix

Asymptotic Lower Bound

If the optimal arm has mean reward 1
2 and suboptimal arms have the gaps ∆i then the following

lower bound for any consistent algorithm follows from Lai and Robbins [67, Theorem 2]

lim
t→∞

Regt
log(t) ≥

∑
i:∆i>0

∆i

kl(1
2 + ∆i,

1
2)
.

For any ∆i ∈ [0, 0.5] the kl term can be upper bounded as

kl(1
2 + ∆i,

1
2) ≤ 2∆2

i + 3∆3
i ,

which can be verified by taking Taylor’s expansion at ∆i = 0. Therefore,∑
i:∆i>0

∆i

kl(1
2 + ∆i,

1
2)
≥

∑
i:∆i>0

1
2∆i + 3∆2

i

= 1
2
∑

i:∆i>0

1
∆i
−

∑
i:∆i>0

3
2∆i

2∆i + 3∆2
i

≥ 1
2

 ∑
i:∆i>0

1
∆i
− 3

2K

 .
Thus, for any consistent algorithm we obtain

lim
||∆||→0


 ∑
i:∆i>0

1
∆i

−1

lim inf
t→∞

E
[
Regt

]
log(t)

 ≥ lim
||∆||→0

1
2 −

3
4

 ∑
i:∆i>0

1
∆i

−1

K

 = 1
2 ,

since lim||∆||→0
(∑

i:∆i>0 ∆−1
i

)−1
K = 0.
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Technical Lemmas

Lemma 3.3. For any y > 0, x > 0, the function 1−y−x
x is non-increasing in x and has the limit

lim
x→0

1− y−x

x
= log(y),

therefore, 1−y−x
x ≤ min{x−1, log(y)}.

Proof. Taking the derivative and using the inequality z ≤ ez − 1:

∂

∂x

(
1− y−x

x

)
= log(y)y−xx− (1− y−x)

x2 ≤ (elog(y)x − 1)y−x − (1− y−x)
x2 = 0.

The limit by L’Hôpital’s rule is

lim
x→0

1− y−x

x
= lim

x→0

log(y)y−x

1 = log(y).

Lemma 3.4. For any b, c > 0 and T0, T ∈ N such that T0 < T and b
√
T0 > c, it holds that

T∑
t=T0+1

1
bt

3
2 − ct

≤ 2
b
√
T0 − c

.

Proof. In the domain (c2/b2,∞), the function f(t) = 1
bt

3
2−ct

is positive, monotonically decreasing
and has the antiderivative

F (t) = 1
c

(
2 log(b

√
t− c)− log(t)

)
,

which can be verified by taking the respective derivatives. Therefore, we can bound
T∑

t=T0+1
f(t) ≤

∫ ∞
T0

f(t) dt = lim
t→∞

F (t)− F (T0) = 1
c

(
2 log(b)− 2 log(b

√
T0 − c) + log(T0)

)

= 2
c

log
(

b
√
T0

b
√
T0 − c

)
≤ 2
c

(
b
√
T0

b
√
T0 − c

− 1
)

= 2
b
√
T0 − c

.

Lemma 3.5. For any α ∈ [0, 1] and z ≥ 1, it holds that

1− z−1+α

1− α ≤ log(z)α .

Proof. The cases α ∈ {0, 1} are trivial, since

lim
α→0

1− z−1+α

1− α = 1− z−1 < log(z)0

lim
α→1

1− z−1+α

1− α = log(z) = log(z)1 .

We only need to verify the statement for α ∈ (0, 1). Consider the function

f(z) = log(z)α − 1− z−1+α

1− α .
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The function is continuous for z ≥ 1, takes the value 0 at z = 1 and goes to infinity for z →∞.
If there is a point where the function is negative, there must also exist an extreme point. Setting
the derivative to 0 shows that all extreme points z∗ satisfy

z∗ = log(z∗)α
1

α−1 .

The function values at the extreme points are therefore lower bounded by

f(z∗) ≥ min
z≥1

log(z)α − 1− (log(z)α
1

α−1 )−1+α

1− α

 = min
z̃≥0

(
z̃α − 1− z̃−1+αα

1− α

)
,

where we apply the substitution z̃ = log(z). The RHS goes to infinity for z̃ → 0 and z̃ →∞,
which means the only extreme point (can be verified by taking the derivative) at z̃ = 1 is the
minimum. Since 1α − 1−1−1+αα

1−α = 0, the function f is always positive, which concludes the
proof.

Support Lemmas for Section 3.7

We use v = (vi)i=1,...,K to denote a column vector v ∈ RK with elements v1, . . . , vK and diag(v)
to denote a K ×K matrix with v1, . . . , vK on the diagonal and 0 elsewhere. For a positive
semidefinite matrix M we use || · ||M :=

√
〈·,M ·〉 to denote the canonical norm with respect to

M . We also use the following properties of the potential function.

Ψt(w) = −
∑
i

wi
α − αwi

α(1− α)ηtξi
,

∇Ψt(w) = −
(
wi

α−1 − 1
(1− α)ηtξi

)
i=1,...,K

,

∇2Ψt(w) = diag

(wiα−2

ηtξi

)
i=1,...,K

 ,
For Y ≤ 0 :

Ψ∗t (Y ) = max
w
〈w, Y 〉+ 1

ηt

∑
i

wαi − αwi
α(1− α)ξi

,

∇Ψ∗t (Y ) = arg max
w

〈w, Y 〉+ 1
ηt

∑
i

wαi − αwi
α(1− α)ξi

=
(
(−ηt(1− α)ξiYi + 1)

1
α−1

)
i=1,...,K

. (3.8)

As we have shown in Section 3.4.3, there exists a Lagrange multiplier ν, such that the algorithm
picks the probabilities

wt = ∇Φt(−L̂t−1) = ∇Ψ∗(−L̂t−1 + ν1K). (3.9)

Ψt is a Legendre function, which implies that its gradient is invertible and ∇Ψ−1
t = ∇Ψ∗t [84].

Furthermore, by the Inverse Function theorem,

∇2Ψ∗t (∇Ψt(w)) = ∇2Ψt(w)−1 = diag
(
ηtξiwi

2−α
)
i=1,...,K

. (3.10)

The Bregman divergence associated with a Legendre function f is defined by

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 .

Due to Taylor’s theorem, it satisfies for some z ∈ conv(x, y)

Df (x, y) ≤ 1
2 ||x− y||

2
∇2f(z). (3.11)
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Controlling the stability Term

Equation (3.11) gives us a way of bounding the stability term. The following lemma allows us
to control the eigenvalues of the Hessian ∇2Ψ∗t .

Lemma 3.6. Let w ∈ ∆K−1 and w̃ = ∇Ψ∗t (∇Ψt(w) − `). If ηtξi ≤ 1
4 for all i, then for all

` ∈ RK with `i ≥ −1 for all i, it holds that w̃2−α
i ≤ 2w2−α

i for all i.

Proof. Since ∇Ψt is the inverse of ∇Ψ∗t , we have

∇Ψt(w)i −∇Ψt(w̃)i = `i ≥ −1,
wα−1
i − 1

(1− α)ηtξi
− w̃α−1

i − 1
(1− α)ηtξi

≤ 1,

w̃1−α
i ≤ w1−α

i

1− ηtξi(1− α)w1−α
i

≤ w1−α
i

1− ηtξi(1− α) ,

w̃2−α
i ≤ w2−α

i

(1− ηtξi(1− α))
2−α
1−α

.

It remains to bound (1− ηtξi(1− α))−
2−α
1−α . Note that this function is monotonically decreasing

in α, which can be verified by confirming that the derivative is negative in [0, 1]. Using the fact
that ηtξi ≤ 1

4 , we have

(1− ηtξi(1− α))−
2−α
1−α ≤ (1− ηtξi)−2 ≤ 42

32 ≤ 2.

For the reduced-variance estimators and α = 1/2 we provide a tighter bound for the stability
term by using the following two lemmas. For α = 1/2 and ξi = 1 we have

Ψt(w) = −4η−1
t

K∑
i=1

(w
1
2
i −

1
2wi)

∇Ψt(w) =
(
−2η−1

t (w−
1
2

i − 1)
)
i=1,...,K

.

Lemma 3.7. The convex conjugate of Ψt(w) = −4η−1
t

∑K
i=1(w

1
2
i − 1

2wi) is

Ψ∗t (Y ) =


∑K
i=1

2η−1
t

1−ηtYi/2 , if Yi < 2η−1
t for all i

∞, otherwise.

Proof.

Ψ∗t (Y ) = sup
w∈RK

〈w, Y 〉 −Ψt(w)

=
K∑
i=1

sup
w∈R

w(Yi − 2η−1
t ) + 4η−1

t w
1
2 .

For Yi ≥ 2η−1, the term goes to infinity as w →∞. Otherwise, the maximum is obtained by
w = 1

(1− 1
2ηtYi)2 , which concludes the proof.

Using the explicit form of the convex conjugate, we can show a general bound on the
stability.
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Lemma 3.8. Let α = 1/2 and ξi = 1. Then for any x, such that mini ηt(ˆ̀
t,i− x)w

1
2
ti ≥ −1, the

instantaneous stability satisfies

〈wt, ˆ̀
t〉+ Φt(−L̂t)− Φt(−L̂t−1) ≤

K∑
i=1

ηt
2 wt,i

3
2 (ˆ̀

t,i − x)2 + η2
t

2 wt,i
2
∣∣∣x− ˆ̀

t,i

∣∣∣3
+
,

where |z|+ = max{z, 0}.

Proof. By equation (3.9) and since ∇Ψ−1
t = ∇Ψ∗t , there exists a Lagrange multiplier ν such

that

−L̂t−1 = ∇Ψt(wt)− ν1K .

Furthermore, Φt(−L− ν1K) = Φt(−L)− ν, since the maximisation over w is restricted to the
probability simplex. Using these two properties, we have for any x ∈ R

〈wt, ˆ̀
t〉+ Φt(−L̂t)− Φt(−L̂t−1)

= 〈wt, ˆ̀
t〉+ Φt(−ˆ̀

t +∇Ψt(wt)− ν1K)− Φt(∇Ψt(wt)− ν1K)
= 〈wt, ˆ̀

t〉+ Φt(−ˆ̀
t +∇Ψt(wt))− Φt(∇Ψt(wt))

= 〈wt, ˆ̀
t − x1K〉+ Φt(x1K − ˆ̀

t +∇Ψt(wt))− Φt(∇Ψt(wt))
≤ 〈wt, ˆ̀

t − x1K〉+ Ψ∗t (x1K − ˆ̀
t +∇Ψt(wt))−Ψ∗t (∇Ψt(wt)) ,

where the last line uses Φt(∇Ψt(w)) = Ψ∗t (∇Ψt(w)) for any w ∈ ∆K−1, which holds because
the argmax in both terms is w, and the inequality Φt(L) ≤ Ψ∗t (L), which holds because Φt is a
constrained version of Ψ∗t .

Using the explicit expression for the convex conjugate in Lemma 3.7 and assuming that x is
in the range defined in the statement of Lemma 3.8, which ensures that the convex conjugate is
bounded, we have

〈wt, ˆ̀
t − x1K〉+ Ψ∗t (x1K − ˆ̀

t +∇Ψt(wt))−Ψ∗t (∇Ψt(wt))

=
K∑
i=1

wt,i(ˆ̀
t,i − x) + 2

ηt

(
wt,i
− 1

2 + ηt
2 (ˆ̀

t,i − x)
)−1
− 2
ηt
wt,i

1
2

=
K∑
i=1

2
ηt
wt,i

1
2

(
ηt
2 (ˆ̀

t,i − x)wt,i
1
2 +

(
1 + ηt

2 (ˆ̀
t,i − x)wt,i

1
2

)−1
− 1

)

=
K∑
i=1

ηt
2 wt,i

3
2 (ˆ̀

t,i − x)2
(

1 + ηt
2 (ˆ̀

t,i − x)wt,i
1
2

)−1
. (3.12)

From mini ηt(ˆ̀
t,i − x)w

1
2
ti ≥ −1 it follows that ∀i : (1 + ηt

2 (ˆ̀
t,i − x)wt,i

1
2 )−1 ≤ 2, so(

1 + ηt
2 (ˆ̀

t,i − x)wt,i
1
2

)−1
= 1− ηt

2 (ˆ̀
t,i − x)wt,i

1
2

(
1 + ηt

2 (ˆ̀
t,i − x)wt,i

1
2

)−1

≤ 1 + ηt|x− ˆ̀
t,i|+wt,i

1
2 . (3.13)

Combining equations (3.12) and (3.13) completes the proof.

Now we have all the tools to prove the main stability lemma.

Proof of Lemma 3.1. We begin by proving the first and the last part of the lemma followed by
the second and third.
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First part of the lemma. First we bound the stability by 1. By convexity of Φt, we have

`t,It + Φt(−L̂t)− Φt(−L̂t−1) ≤ `t,It − 〈∇Φt(−L̂t), ˆ̀
t〉 ≤ 1 ,

where the second inequality uses the non-negativity of the loss estimator under importance
sampling.

Recall that wt = ∇Φt(−L̂t−1) and `t,It =
〈
wt, ˆ̀

t

〉
. Furthermore, Φt(L+ x1K) = Φt(L) + x,

where 1K is a vector of K ones, since we take the argmax over probability distributions. Finally,
from equation (3.9) follows the existence of a constant ct, such that ∇Ψt(wt) = −L̂t−1 + ct1K .
Hence, for any x ∈ R

E
[
`t,It + Φt(−L̂t)− Φt(−L̂t−1)

]
= E

[〈
wt, ˆ̀

t

〉
+ Φt(−L̂t)− Φt(−L̂t−1)

]
= E

[〈
wt, ˆ̀

t

〉
+ Φt(∇Ψt(wt)− ˆ̀

t)− Φt(∇Ψt(wt))
]

= E
[〈
wt, ˆ̀

t − x1K
〉

+ Φt(∇Ψt(wt)− ˆ̀
t + x1K)− Φt(∇Ψt(wt))

]
≤ E

[〈
wt, ˆ̀

t − x1K
〉

+ Ψ∗t (∇Ψt(wt)− ˆ̀
t + x1K)−Ψ∗t (∇Ψt(wt))

]
(3.14)

= E
[
DΨ∗t (∇Ψt(wt)− ˆ̀

t + x1K ,∇Ψt(wt))
]

≤ E
[

max
z∈conv(∇Ψt(wt),∇Ψt(wt)−ˆ̀

t+x1K)

1
2 ||

ˆ̀
t − x1K ||2∇2Ψ∗t (z)

]
(3.15)

= E
[

max
w∈conv(wt,∇Ψ∗t (∇Ψt(wt)−ˆ̀

t+x1K))

1
2 ||

ˆ̀
t − x1K ||2∇2Ψt(w)−1

]
(3.16)

≤ E
[
K∑
i=1

max
wi∈[wt,i,∇Ψ∗t (∇Ψt(wt)−ˆ̀

t+x1K)i]

ηtξi
2 (ˆ̀

t,i − x)2w2−α
i

]
,

where in equation (3.14) we have Φt(x) ≤ Ψ∗t (x), because Φt is a constrained version of Ψ∗t ,
and Φt(∇Ψt(wt)) = Ψ∗t (∇Ψt(wt)), because arg maxw∈RK 〈w,∇Ψt(wt)〉 −Ψ(w) = wt is in the
probability simplex and the constraint is inactive. Inequality (3.15) follows by equation (3.11),
and (3.16) by equation (3.10).

In order to prove the first part of the Lemma, we set x = 0 and observe that ∇Ψ∗t (∇Ψt(wt)−
ˆ̀
t)i ≤ ∇Ψ∗t (∇Ψt(wt))i = wt,i because of non-negativity of the losses and the fact that ∇Ψ∗t

is monotonically increasing, see (3.8). (The observation implies that the highest value of
wi ∈ [wt,i,∇Ψ∗t (∇Ψt(wt)− ˆ̀

t)i] is wt,i.) Since the importance weighted losses are 0 for the arms
that were not played, we have

E
[
K∑
i=1

max
wi∈[wt,i,∇Ψ∗t (∇Ψt(wt)−ˆ̀

t)i]

ηtξi
2

ˆ̀2
t,iw

2−α
i

]
= E

[
K∑
i=1

ηtξi
2

ˆ̀2
t,iwt,i

2−α
]

= ηtξi
2 E

[
K∑
i=1

`2t,i
wt,i2

wt,i
2−α1t(i)

]
= ηtξi

2 E
[
K∑
i=1

`2t,i
wt,i2

wt,i
3−α

]
≤

K∑
i=1

ηtξi
2 E [wt,i]1−α ,

where we use that E[1t(i)|`1, . . . , `t−1, I1, . . . , It−1] = wt,i. The last inequality follows by Jensen’s
inequality.

Fourth part of the lemma. We set x = 1t(j)`t,j . In the calculation below, for the events
It ∈ {1, . . . ,K} \ j, we have x = 0 and use the same derivation as in the previous case. When
It = j, for i 6= j we have ˆ̀

t,i − x = −x ≥ −1 and for j we have ˆ̀
t,j − x ≥ 0. For i 6= j
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we use Lemma 3.6 to bound
(
∇Ψ∗t (∇Ψt(wt)− ˆ̀

t + x1K)i
)2−α

≤ 2w2−α
t,i and for j we use

∇Ψ∗t (∇Ψt(wt)− ˆ̀
t)j ≤ ∇Ψ∗t (∇Ψt(wt))j = wt,j .

E
[
K∑
i=1

max
w̃i∈[wt,i,∇Ψ∗t (∇Ψt(wt)−ˆ̀

t+x1K)i]

ηtξi
2 (ˆ̀

t,i − x)2w̃2−α
i

]

≤
∑
i 6=j

ηtξi
2 E [wt,i]1−α + E

1t(j)
ηtξj

2

(
`t,j
wt,j
− `t,j

)2

w2−α
t,j +

∑
i 6=j

ηtξi
2 `2t,j2wt,i2−α


≤
∑
i 6=j

ηtξi
2 E [wt,i]1−α + E

ηtξj
2 (1− wt,j)2w1−α

t,j +
∑
i 6=j

ηtξiwt,i
2−αwt,j


≤
∑
i 6=j

(
ηtξi
2 E [wt,i]1−α + ηt(ξj + 2ξi)

2 E [wt,i]
)
,

where in the last step for the middle term we use (1− wt,j)2w1−α
t,j ≤ 1− wt,j =

∑
i 6=j wt,i and

for the last term w2−α
t,i ≤ 1.

Second part of the lemma. We set x = `t,It and first verify that Lemma 3.8 can be applied.
We have for any i:

ηt(ˆ̀
t,i − x)w

1
2
t,i ≥ −ηtw

1
2
t,i ≥ −ηt ≥ −1 ,

where the last inequality is by the assumption of the lemma. Since E[`t,It ] = E[〈wt, `t〉〉] =
E[〈wt, ˆ̀

t〉〉], applying Lemma 3.8 we have

E
[
`t,It + Φt(−L̂t)− Φt(−L̂t−1)

]
≤ E

[
K∑
i=1

ηt
2 wt,i

3
2 (ˆ̀

t,i − `t,It)2 + η2
t

2 wt,i
2
∣∣∣`t,It − ˆ̀

t,i

∣∣∣3
+

]

≤ ηt
2 E

wt,It− 1
2 (1− wt,It)2 +

∑
i 6=It

wt,i
3
2

+ η2
t

2 (3.17)

= ηt
2 E

[
K∑
i=1

wt,i
1
2 (1− wt,i)2 + (1− wt,i)wt,i

3
2

]
+ η2

t

2 (3.18)

= ηt
2 E

[
K∑
i=1

wt,i
1
2 (1− wt,i)

]
+ η2

t

2

≤ ηt
2

K∑
i=1

E[wt,i]
1
2 (1− E[wt,i]) + η2

t

2 , (3.19)

where equation (3.17) uses that the loss estimators are positive and hence
∣∣∣`t,It − ˆ̀

t,i

∣∣∣
+
≤ 1 and

that the losses are bounded in [0, 1]; equation (3.18) uses that the conditional probability of
It = i is wt,i; and equation (3.19) follows by concavity of the function f(z) = z

1
2 (1 − z) and

Jensen’s inequality.

Third part of the lemma. We set x = `t,It and first verify that Lemma 3.8 can be applied.
Recall that Bt(i) := 1

21(wt,i ≥ η2
t ). For i 6= It we have ˆ̀

t,i = Bt(i) and

ηt(ˆ̀
t,i − x)w

1
2
ti = ηt(Bt(i)− `t,It)w

1
2
ti ≥ −ηt ≥ −1 ,
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while for It we have ˆ̀
t,It = `t,It−Bt(It)

wt,It
+ Bt(It) and

ηt(ˆ̀
t,It − `t,It)w

1
2
t,i = ηt(`t,It − Bt(It))(

1
wt,It

− 1)wt,It
1
2 ≥ −ηtBt(It)wt,It−

1
2 ≥ −1 .

Since E[`t,It ] = E[〈wt, `t〉〉] = E[〈wt, ˆ̀
t〉〉], applying Lemma 3.8 we have

E
[
`t,It + Φt(−L̂t)− Φt(−L̂t−1)

]
≤ E

[
K∑
i=1

ηt
2 wt,i

3
2 (ˆ̀

t,i − `t,It)2 + η2
t

2 wt,i
2
∣∣∣`t,It − ˆ̀

t,i

∣∣∣3
+

]

≤ E
[
K∑
i=1

ηt
2 wt,i

3
2 (ˆ̀

t,i − `t,It)2 + η2
t

2 wt,i
2
∣∣∣ˆ̀t,i − `t,It ∣∣∣3

]
. (3.20)

For any ` ∈ [0, 1] and any i, we have |` − Bt(i)| ≤ |1 − Bt(i)|. For It, we have |ˆ̀t,It − `t,It | =
|`t,It −Bt(It)|

1−wt,It
wt,It

≤ |1−Bt(It)|
1−wt,It
wt,It

, while for i 6= It we have |ˆ̀t,i− `t,It | ≤ |1−Bt(i)|. Let
B̄t(i) = 1

21(wt,i < η2
t ) = 1

2 − Bt(i), then |1− Bt(i)| = |12 + B̄t(i)|. We have

|12 + B̄t(i)|2 = 1
4 + 3

2 B̄t(i) ,

|12 + B̄t(i)|3 ≤ 1 .

Plugging these into equation (3.20) leads to

E
[
K∑
i=1

ηt
2 wt,i

3
2 (ˆ̀

t,i − `t,It)2 + η2
t

2 wt,i
2
∣∣∣ˆ̀t,i − `t,It ∣∣∣3

]

≤ E
[(1

4 + 3
2 B̄t(It)

)
ηt
2 wt,It

− 1
2 (1− wt,It)2 + η2

t

4 wt,It
−1(1− wt,It)3

+
∑
i 6=It

(1
4 + 3

2 B̄t(i)
)
ηt
2 wt,i

3
2 + η2

t

4 wt,i
2
]

= E
[
K∑
i=1

((1
4 + 3

2 B̄t(i)
)
ηt
2 wt,i

1
2 (1− wt,i)2 + η2

t

4 (1− wt,i)3

+ (1− wt,i)
(1

4 + 3
2 B̄t(i)

)
ηt
2 wt,i

3
2 + (1− wt,i)

η2
t

4 wt,i
2
)]

≤ E
[
K∑
i=1

(
ηt
8 wt,i

1
2 (1− wt,i) + 3

2 B̄t(i)
ηt
2 wt,i

1
2 + η2

t

4

)]

≤ 5η2
t

8 K + E
[
K∑
i=1

ηt
8 wt,i

1
2 (1− wt,i)

]

≤ 5η2
t

8 K +
K∑
i=1

ηt
8 E[wt,i]

1
2 (1− E[wt,i]) ,

where the last step is by concavity of f(z) = z
1
2 (1− z) and Jensen’s inequality.

Controlling the penalty Term

We begin with a standard lemma to simplify the penalty term.
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Lemma 3.9. For any α ∈ [0, 1], any positive learning rate, and any fixed v, u ∈ ∆K−1, the
penalty term satisfies

E
[
T∑
t=1

(
Φt(−L̂t−1)− Φt(−L̂t)− `t,i∗T

)]
≤ E

[Ψ(v)−Ψ(w1)
η1

+
T∑
t=2

(
ηt
−1 − ηt−1

−1
)

(Ψ(v)−Ψ(wt)) + Ψ(u)−Ψ(v)
ηT

]
+
〈
u− ei∗T , LT

〉
.

Proof. First, note that all the terms involving Ψ(v) in the lemma sum up to 0. Then, recall
that wt is defined as arg maxw∈∆K−1

{〈
w,−L̂t−1

〉
− Ψ(w)

ηt

}
. Therefore,

Φt(−L̂t−1) = −
〈
wt, L̂t−1

〉
− Ψ(wt)

ηt
.

Furthermore, by definition of the potential function, for any w̃ ∈ ∆K−1 it holds that:

−Φt(−L̂t) = − max
w∈∆K−1

{〈
w,−L̂t

〉
− Ψ(w)

ηt

}
≤
〈
w̃, L̂t

〉
+ Ψ(w̃)

ηt
.

Setting w̃ to wt+1 for t < T and to u for t = T , and using L̂0 = 0K , where 0K is a vector of K
zeros, the sum of potential differences can be bounded as follows:

T∑
t=1

(
Φt(−L̂t−1)− Φt(−L̂t)

)

≤
T∑
t=1

(
−
〈
wt, L̂t−1

〉
− Ψ(wt)

ηt

)
+
T−1∑
t=1

( 〈
wt+1, L̂t

〉
+ Ψ(wt+1)

ηt

)
+
〈
u, L̂T

〉
+ Ψ(u)

ηT

= −Ψ(w1)
η1

−
T∑
t=2

(
ηt
−1 − ηt−1

−1
)

Ψ(wt) + Ψ(u)
ηT

+
〈
u, L̂T

〉
.

The proof is finalised by taking the expectation and subtracting the optimal loss. Due to
unbiasedness of the loss estimators, for a fixed u we have E[〈u, L̂T 〉] = 〈u, LT 〉.

Proof of Lemma 3.2. The proof of both parts of the lemma is based on Lemma 3.9.

Part 1: We set v = w1. Since w1 = arg maxw∈∆K−1 −Ψ1(w) = arg maxw∈∆K−1 −Ψ(w),
we have Ψ(w1) − Ψ(wt) ≤ 0 for any t. Since the learning rate is non-increasing, the terms(
ηt
−1 − ηt−1

−1) are all positive, so

E
[
T∑
t=1

(
Φt(−L̂t−1)− Φt(−L̂t)− `t,i∗T

)]

≤ E
[Ψ(w1)−Ψ(w1)

η1
+

T∑
t=2

(
ηt
−1 − ηt−1

−1
)

(Ψ(w1)−Ψ(wt)) + Ψ(u)−Ψ(w1)
ηT

]
+
〈
u− ei∗T , LT

〉
≤ E

[Ψ(u)−Ψ(w1)
ηT

]
+
〈
u− ei∗T , LT

〉
.

Following the trick of Agarwal et al. [7], we set ui∗T = 1− T−1 and ui = T−1

K−1 for i 6= i∗T . The
losses are bounded in [0, T ], so this choice of u implies 〈u− ei∗T , LT 〉 ≤ 1. Since we assume that
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the regulariser is symmetric, the explicit form of w1 is w1,i = K−1 and

E
[
T∑
t=1

(
Φt(−L̂t−1)− Φt(−L̂t)− `t,i∗T

)]

≤ K1−α

α(1− α)ηT
− (K − 1)1−αT−α + (1− T−1)α

α(1− α)ηT
+ 1.

It remains to bound K1−α − (K − 1)1−αT−α − (1 − T−1)α. Since xα and x1−α are concave
functions, by Taylor’s expansion around X − 1 we have X1−α ≤ (X − 1)1−α + (1−α)(X − 1)−α
and Xα ≤ (X − 1)α + α(X − 1)α−1 for any X > 1, thus

K1−α + Tα ≤ (K − 1)1−α + (1− α)(K − 1)−α + (T − 1)α + α(T − 1)α−1

≤ (K − 1)1−α + (T − 1)α + 1,

where the last line uses (T − 1)α−1, (K − 1)−α ≤ 1. Therefore,

K1−α − (K − 1)1−αT−α − (1− T−1)α = K1−α + T−α(−(K − 1)1−α − (T − 1)α)
≤ K1−α + T−α(−K1−α − Tα + 1)
= (K1−α − 1)(1− T−α).

Part 2: Set

w̃ = arg max
w∈∆K−1

−Ψ
(
(1− T−x)ei∗T + T−xw

)
,

v = u = (1− T−x)ei∗T + T−xw̃,

vt = (1− T−x)ei∗T + T−xwt.

By definition, Ψ(v) ≤ Ψ(vt) for all t. So

Ψ(v)−Ψ(wt) ≤ Ψ(vt)−Ψ(wt) ≤
∑
i 6=i∗T

(wt,iα − αwt,i)(1− T−αx)
α(1− α)ξi

.

In the last inequality we have used the fact that the contribution of the optimal arm i∗T is
non-positive, since vt,i∗T ≥ wt,i∗T and wα − αw is monotonically increasing in w over [0, 1]. The
choice of u ensures that 〈u− ei∗T , LT 〉 ≤ T

1−x. Starting again with Lemma 3.9, we have:

E
[
T∑
t=1

(
Φt(−L̂t−1)− Φt(−L̂t)− `t,i∗T

)]

≤ E
[Ψ(v)−Ψ(w1)

η1
+

T∑
t=2

(
ηt
−1 − ηt−1

−1
)

(Ψ(v)−Ψ(wt)) + Ψ(u)−Ψ(v)
ηT

]
+
〈
u− ei∗T , LT

〉
≤ 1− T−αx

α

∑
i 6=i∗T

E
[
w1,i

α − αw1,i
(1− α)η1ξi

+
T∑
t=2

(
ηt
−1 − ηt−1

−1
) wt,iα − αwt,i

(1− α)ξi

]
+ T 1−x

≤ 1− T−αx

α

∑
i 6=i∗T

E[w1,i]α − αE[w1,i]
(1− α)η1ξi

+
T∑
t=2

(
ηt
−1 − ηt−1

−1
) E[wt,i]α − αE[wt,i]

(1− α)ξi
+ T 1−x.
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Proof of Theorem 3.3

We follow the same strategy as outlined in Section 3.7. In order to cover the limit cases
α ∈ {0, 1}, the proof is significantly more technical than the proof of Theorem 3.1.

Proof of Theorem 3.3. Recall that the learning rate is ηt = 16α
4

1−t−1+α

(1−α)tα , where t = max{e, t},
and regularisation parameters are ξi = ∆1−2α

i , where ∆min = mini 6=i∗ ∆i.

Bounding the stability term We start by bounding the stability term. When t ≤ T0 we
use the first part of Lemma 3.1 and otherwise the second with j = i∗. T0 will be later chosen,
so that ηT0ξi ≤ 1

4 .

stability = E
[
T∑
t=1

`t,It + Φt(−L̂t)− Φt(−L̂t−1)
]

≤
T∑
t=1

∑
i 6=i∗

ηtξiE[wt,i]1−α

2︸ ︷︷ ︸
concave

+
T0∑
t=1

ηtξi∗E[wt,i∗ ]1−α

2︸ ︷︷ ︸
constant

+
T∑

t=T0+1

∑
i 6=i∗

ηt(ξi + 2ξi∗)
2 E[wt,i]︸ ︷︷ ︸

linear

.

Bounding the concave part Since w1−α is a concave function of w, it can be upper bounded
by the first order Taylor’s approximation for all w∗:

wt,i
1−α ≤ w∗1−α + (1− α)w∗−α(wt,i − w∗)

= αw∗1−α + (1− α)w∗−αwt,i.

Taking w∗ = 16
∆2
i t

(with ηt = 16α
4

1−t−1+α

(1−α)tα , ξi = ∆1−2α
i ):

T∑
t=1

ηtξi
2 E[wt,i]1−α ≤

T∑
t=1

∆1−2α
i

16α
4

1−t−1+α

(1−α)tα

2

(
α

(
16

∆2
i t

)1−α

+ (1− α)
(

16
∆2
i t

)−α
E[wt,i]

)

=
T∑
t=1

1− t−1+α

1− α

( 2α
∆it

+ 1− α
8 ∆iE[wt,i]

)

≤ 1− T−1+α

1− α
2(log(T ) + 1)

∆i
+

T∑
t=1

∆iE[wt,i]
8 . (3.21)

Finally, we bound the leading factor of the log term with Lemma 3.3:

1− T−1+α

1− α ≤ min{ 1
1− α, log(T )}.

Bounding the linear part We first show that all t > T0 = 16
∆2

min
log2( 16

∆2
min

) satisfy ηtξi ≤ ∆i
4 .

ηtξi = ∆1−2α
i

16α

4
1− t−1+α

(1− α)tα <
∆i

4

( 16
∆2

minT0

)α 1− T0
−1+α

1− α

≤ ∆i

4
1− ( 16

∆2
min

log2( 16
∆2

min
))−1+α

(1− α)(log( 16
∆2

min
))2α .
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It remains to show that
1−( 16

∆2
min

log2( 16
∆2

min
))−1+α

(1−α)(log( 16
∆2

min
))2α ≤ 1. By Lemma 3.5 we have

1− ( 16
∆2

min
log2( 16

∆2
min

))−1+α

1− α ≤
(

log
( 16

∆2
min

log2( 16
∆2

min
)
))α

≤
(

2 log( 16
∆2

min
)
)α
≤
(

log( 16
∆2

min
)
)2α

,

which concludes the proof. Therefore,

∑
i 6=i∗

T∑
t=T0+1

ηt(ξi + 2ξi∗)
2 E[wt,i] ≤

∑
i 6=i∗

T∑
t=1

∆i + 2∆min
8 E[wt,i] ≤

∑
i 6=i∗

T∑
t=1

3∆iE[wt,i]
8 . (3.22)

Bounding the constant part Recall T0 = 16
∆2

min
log2

(
16

∆2
min

)
≥ 16. We can use the estimation∑T0

t=1 t
−α ≤ 1 +

∫ T0
1 t−α dt = 1 + T 1−α

0 −1
1−α ≤ 2T

1−α
0 −1
1−α :

T0∑
t=1

ηtξi∗

2 ≤
T0∑
t=1

∆1−2α
min 16α(1− T−1+α

0 )
8(1− α)tα = ∆1−2α

min 16α(1− T−1+α
0 )

8(1− α)

T0∑
t=1

1
tα

≤ ∆1−2α
min 16α(1− T−1+α

0 )(T 1−α
0 − 1)

4(1− α)2

= 16αT 1−α
0 (1− T−1+α

0 )2

4∆2α−1
min (1− α)2 =

4 log2−2α( 16
∆2

min
)

∆min

(
1− T−1+α

0
1− α

)2

≤
4 log2( 16

∆2
min

) log2(T0)
∆min

≤ 4 log4(T0)
∆min

, (3.23)

where the last line uses Lemma 3.3. Combining (3.21), (3.22), and (3.23) we obtain:

stability ≤
∑
i 6=i∗

(
min

{ 1
1− α, log(T )

} 2(log(T ) + 1)
∆i

+
T∑
t=1

∆iE[wt,i]
2

)
+ 4 log4(T0)

∆min
. (3.24)

Bounding the penalty term For the penalty term we start with the second part of
Lemma 3.2 with x = 1. We have

penalty = E
[
T∑
t=1
−Φt(−L̂t) + Φt(−L̂t−1)− `t,i∗T

]

≤ 1− T−α

α

∑
i 6=i∗

(
E[w1,i]α − αE[w1,i]

η1ξi(1− α) +
T∑
t=2

( 1
ηt
− 1
ηt−1

) E[wt,i]α − αE[wt,i]
(1− α)ξi

)
+ 1

≤
∑
i 6=i∗

E[w1,i]α − αE[w1,i]
η1ξi(1− α)︸ ︷︷ ︸
constant

log(T ) +
T∑
t=2

( 1
ηt
− 1
ηt−1

) E[wt,i]α − αE[wt,i]
(1− α)αξi︸ ︷︷ ︸

concave

+ 1,

where in the first term we use 1−T−α
α ≤ log(T ) and in the second 1−T−α

α ≤ 1
α , both bounds

following from Lemma 3.3.
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Bounding the concave term Since wα is a concave function of w it can be upper bounded
by the first order Taylor’s approximation:

wt,i
α ≤ w∗α + αw∗α−1(wt,i − w∗) = (1− α)w∗α + αw∗α−1wt,i.

Taking w∗ = 16
∆2
i t

(with ηt = 16α
4

1−t−1+α

(1−α)tα and ξi = ∆1−2α
i ):

T−1∑
t=1

( 1
ηt+1

− 1
ηt

) E[wt+1,i]α − αE[wt+1,i]
(1− α)αξi

(3.25)

≤
T−1∑
t=1

(
(t+ 1)α

1− (t+ 1)−1+α −
tα

1− t−1+α

)

·4∆2α−1
i

α16α
(

(1− α)
(

16
∆2
i t

)α
+ α

(
16

∆2
i t

)α−1

E[wt+1,i]− αE[wt+1,i]
)

≤
T−1∑
t=1

((t+ 1)α − tα

1− t−1+α

)(4(1− α)
α∆itα

+ ∆iE[wt+1,i]
4tα−1

1−
(

16
∆2
i t

)1−α
)

(by Taylor’s approximation (t+ 1)α ≤ tα + αtα−1 and also use 16
∆2
i

> 1)

≤
T−1∑
t=1

(
αtα−1

1− t−1+α

)(4(1− α)
α∆itα

+ ∆iE[wt+1,i]
4tα−1

(
1−

(1
t

)1−α
))

≤
T−1∑
t=1

( 1− α
1− e−1+α

4
∆it

+ ∆iE[wt+1,i]
4

1− t−1+α

1− t−1+α

)

≤ 1− α
1− e−1+α

4(log(T ) + 1)
∆i

+
T∑
t=1

∆iE[wt,i]
4

≤ 8(log(T ) + 1)
∆i

+
T∑
t=1

∆iE[wt,i]
4 . (3.26)

The last step follows from the leading factor 1−α
1−e−1+α being bounded by 2.

Bounding the constant term Since wα−αw
1−α is monotonically decreasing in α and ξi is

monotonically increasing in α, we have

E[w1,i]α − αE[w1,i]
(1− α)η1ξi

≤ 4
∆i(1− e−1) ≤

8
∆i
. (3.27)

Combining (3.26) and (3.27) we obtain

penalty ≤
∑
i 6=i∗

(
16(log(T ) + 1)

∆i
+

T∑
t=1

∆iE[wt,i]
4

)
+ 1. (3.28)
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Finishing the proof Finally, we combine (3.24) and (3.28), rearrange the terms to get

RegT ≤
T∑
t=1

∑
i 6=i∗

3∆iE[wt,i]
4 +

∑
i 6=i∗

((2 min{ 1
1−α , log(T )}+ 16

)
(log(T ) + 1)

∆i

)

+ 4 log4(T0)
∆min

+ 1.

= 3RegT
4 +

∑
i 6=i∗

((2 min{ 1
1−α , log(T )}+ 16

)
(log(T ) + 1)

∆i

)
+ 4 log4(T0)

∆min
+ 1.

Rearranging and multiplying by 4 finishes the proof.
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Chapter 4

Combinatorial semi-bandits

The work presented in this chapter is based on a paper that has been accepted as [109].

[109] Zimmert, J., Luo, H., and Wei, C.-Y. (2019). Beating stochastic and adversarial semi-
bandits optimally and simultaneously. In Proceedings of the International Conference on
Machine Learning (ICML)

67
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Abstract

We develop the first general semi-bandit algorithm that simultaneously achieves O(log T )
regret for stochastic environments and O(

√
T ) regret for adversarial environments without

prior knowledge of the regime or the number of rounds T . The leading problem-dependent
constants of our bounds are not only optimal in a certain worst-case sense studied previously,
but also optimal for two concrete instances of semi-bandit problems. Our algorithm and
analysis extend the recent work of Zimmert and Seldin [111] for the special case of multi-armed
bandits, but importantly requires a novel hybrid regularizer designed specifically for semi-bandit.
Experimental results on synthetic data show that our algorithm indeed performs well over
different environments. Finally, we provide a preliminary extension of our results to the full
bandit feedback.

4.1 Introduction

The multi-armed bandit is one of the most fundamental online learning problems with partial
information feedback. In this problem a learner repeatedly selects one of d arms and observes
its loss generated by the environment, with the goal of minimizing her regret, the difference
between her total loss and the loss of the best fixed arm in hindsight. It is well known that in the
stochastic environment where each arm’s loss is drawn independently from a fixed distribution,
the minimax optimal regret is of order O(log T ) where T is the number of rounds (dependence
on all other parameters is omitted) [67], while in the adversarial environment where each arm’s
loss can be completely arbitrary, the minimax optimal regret is of order O(

√
T ) [17].

Several recent works [18, 31, 90, 91, 103, 111] develop “best-of-both-worlds” results for
multi-armed bandits and propose adaptive algorithms that achieve O(log T ) regret in stochastic
environments while simultaneously ensuring worst-case robustness, that is, O(

√
T ) regret even

for adversarial environments. Importantly, this is achieved without any prior knowledge of the
nature of the environment.

In this work, we extend such best-of-both-worlds results to the combinatorial bandit problem,
a generalization of multi-armed bandits, where the learner has to pick a subset of arms (called
a combinatorial action) at each time (see Section 4.2 for formal definitions). In particular, we
consider the semi-bandit feedback, meaning that the learner observes the loss of each arm in
the selected subset. Our main contributions include the following:

1. We propose a simple and general semi-bandit algorithm based on the Follow-the-Regularized-
Leader (Ftrl) framework with a novel regularizer (Section 4.2.1).

2. For any combinatorial action set, we prove that our algorithm achieves O(Csto log T )
regret for stochastic environments and O(Cadv

√
T ) regret for adversarial environments,

where Csto and Cadv are problem-dependent factors (that do not depend on T ) and
are optimal in some worst-case sense. This is the first best-of-both-worlds result for
combinatorial bandit to the best of our knowledge (Section 4.3.1).

3. For two common special cases of combinatorial action sets: the set of all subsets of arms
and the set of all subsets with a fixed size m (so called m-set), we further derive refined
bounds for the problem-dependent constants Csto and Cadv, which are optimal for each of
these special cases. As a side result, our bounds imply that for the m-set with m > d/2,
semi-bandit feedback is no harder than full-information feedback in the adversarial case
(Sections 4.3.2 and 4.3.3).

4. We conduct experiments with synthetic data to show that our algorithm indeed adapts
well to the nature of the environment. Additionally, we present a simple intermediate
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setting where our algorithm outperforms all baselines (Section 4.4).

5. We also provide a preliminary extension of our results to a special case of the more
challenging bandit feedback (Section 4.6).

Our techniques are close to those of [111]: we make use of the Ftrl algorithm, a well-
known framework for adversarial environments, and show that with a simple time-decaying
learning rate schedule (that is, 1/

√
t for time t), the regret admits a certain self-bounding

property under the stochastic environment which eventually leads to logarithmic regret in this
case. Importantly, however, our results require the use of a novel hybrid regularizer, designed
specifically for semi-bandit. Roughly speaking, the idea is that for arms outside of the optimal
subset, the problem of identifying their suboptimality is analogous to the multi-armed bandit
problem, and we apply the regularizer of Zimmert and Seldin [111] to these arms; and on the
other hand for arms in the optimal subset, the problem behaves like the full-information expert
problem [50], and we thus apply the classical Shannon entropy as the regularizer to these arms.

4.1.1 Related work

Semi-bandits. The combinatorial semi-bandit problem is a natural generalization of multi-
armed bandits and captures many real-life applications. There are many algorithms for stochastic
semi-bandits based on the well-known optimistic principle [39, 43, 51, 65]. Optimistic algorithms
are provably not instance-optimal [69] and a recent work developed a general instance-optimal
algorithm for any structured stochastic bandits (including semi-bandit as a special case [42]).
Specifically, they obtain the optimal regret O(C log T ) where C is an instance-dependent term
expressed as the solution of a certain optimization problem. The constant Csto in our stochastic
bound O(Csto log T ) is also expressed as an optimization problem (see Theorem 4.1), but it is
not clear how it compares to the instance-optimal constant C in general, except for the two
special cases we discuss in Section 4.3. Two advantages of our algorithm compared to prior
work are: a) our stochastic assumption is weaker than others (see Section 4.2) and b) our
algorithm ensures worst-case robustness even when the stochastic assumption does not hold.

Algorithms with O(
√
T ) regret for the adversarial semi-bandit setting are also well-

studied [15, 43, 79, 80, 103]. These algorithms are either based on Follow-the-Regularized-Leader
(equivalently Online Mirror Descent) or Follow-the-Perturbed-Leader, both of which are stan-
dard frameworks for designing adversarial online learning algorithms (see Hazan [56] for an
introduction). It is easy to show that even if the environment is stochastic, the regret of these
algorithms is still Θ(

√
T ), indicating the lack of adaptivity. Moreover, even for the adversarial

case the leading constant in previous bounds is only worst-case optimal but not instance-optimal.
In contrast, our adversarial regret bound O(Cadv

√
T ) is instance-dependent through the term

Cadv, again expressed as the solution of a certain optimization problem (see Theorem 4.1). To
the best of our knowledge, there is no known general instance-dependent lower bound for this
term, but again we show the optimality of our bound in two special cases in Section 4.3.

Best-of-both-worlds. Algorithms that are optimal for both stochastic and adversarial
environments were studied for multi-armed bandits [18, 31, 90, 91, 103, 111], and also for the
easier full-information (the expert problem) [52, 63, 74] and intermediate version [97]. Notably,
among these works the recent two [103, 111] discovered that sophisticated hypothesis testing or
gap estimations used in earlier works are in fact not needed for such adaptivity. Instead, their
algorithms are based on the Ftrl framework with special regularizers. As mentioned, our work
also follows this route by designing a new regularizer for the more general semi-bandit setting.
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Hybrid regularizers. The idea of using hybrid regularizers for Ftrl was first proposed
by Bubeck et al. [27] for sparse bandit and bandit with a specific form of adaptive regret bound,
and also recently used by Luo et al. [75] for the online portfolio selection problem. The form of
the hybrid regularizers and the way they are used in the analysis, however, are different both
among these two prior works and with ours.

4.2 Problem Setting and Algorithm

The semi-bandit problem is a sequential game between a learner and an environment with d
fixed arms. We call a subset of arms a combinatorial action,1 and the learner is given a fixed
set of combinatorial actions X ⊂ {0, 1}d. At any time t = 1, 2, . . . , the learner chooses an
action Xt ∈ X and at the same time the environment chooses a loss vector `t ∈ [−1, 1]d. The
learner suffers the loss 〈Xt, `t〉 and receives the feedback ot = Xt ◦ `t, where ◦ stands for the
element-wise multiplication. In other words, the learner only observes the loss of each arm in
the selected subset (the so-called semi-bandit feedback).

The environment can be either stochastic or adversarial. In the stochastic case, we adopt
and extend the broader “stochastically constrained adversarial setting” [103, 111] and assume
that there is a fixed action x∗ ∈ X such that for any x ∈ X\{x∗} there exists a constant
∆x > 0, such that E[〈x− x∗, `t〉] ≥ ∆x for all t. Note that this clearly subsumes the traditional
stochastic setting where `1, . . . , `T are i.i.d. samples from a fixed unknown distribution, and
is much more general since neither independence nor identical distributions are required. In
the adversarial case, on the other hand, `t is chosen in an arbitrary way based on the history
`1, X1, . . . , `t−1, Xt−1 and possibly an internal randomization by the environment.

The performance of a learner is measured by pseudo-regret:

RT := E
[
T∑
t=1
〈Xt − x∗, `t〉

]
,

where x∗ = arg minx∈X E
[∑T

t=1〈x, `t〉
]

is the best action in hindsight and the expectation is
with respect to the randomness of both the learner and the environment. Note that in the
stochastic case we are overloading the notation x∗ since clearly they are the same action.

It is well known that in terms of the dependence on T , the optimal regret is Θ(log T )
in the stochastic case and Θ(

√
T ) in the adversarial case (see, for example, Audibert et al.

[15], Combes et al. [42]).

Notations. We denote by Et[·] the conditional expectation E[·|Ft−1] where Ft is the filtration
σ(X1, o1, . . . , Xt, ot). We also use a shorthand It(i) for the indicator function I{Xti = 1} (Xti

is the i-th component of the vector Xt ∈ X ⊂ {0, 1}d) and write the characteristic function of a
set A as IA(x) which is 0 if x ∈ A and +∞ otherwise. We denote the d-dimensional vector
with all 1s as 1d.

4.2.1 Our algorithm

Our algorithm is based on the general Ftrl framework.2 In this framework, each time the
algorithm computes the regularized leader xt = arg minx∈conv(X )

〈
x, L̂t−1

〉
+ η−1

t Ψ(x), where
conv(X ) is the convex hull of X , L̂t−1 =

∑t−1
s=1

ˆ̀
s is the cumulative estimated loss, ηt > 0 is a

1In some works a combinatorial action is also referred to as “an arm”, but here we exclusively use the term
“arm” for one of the d elements and “combinatorial action” for a subset of these elements.

2For linear objectives and Legendre regularizers, Ftrl is equivalent to Online Mirror Descent as defined in
[81]. The same framework is also known under the names Omd, Osmd, or Inf.
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Algorithm 6: Ftrl with hybrid regularizer for semi-bandits
Input: 0 < γ ≤ 1, sampling scheme P

1 Initialize: L̂0 = (0, . . . , 0), ηt = 1/
√
t

2 for t = 1, 2, . . . do
3 compute xt = arg min

x∈conv(X )

〈
x, L̂t−1

〉
+ η−1

t Ψ(x), where Ψ(·) is defined in Eq. (4.1)

4 sample Xt ∼ P (xt)
5 observe ot = Xt ◦ `t
6 construct estimator ˆ̀

t, ∀i : ˆ̀
ti = (oti+1)It(i)

xti
− 1

7 update L̂t = L̂t−1 + ˆ̀
t

learning rate, and Ψ(x) : conv(X )→ R ∪ {+∞} is a regularizer. Then the algorithm samples
Xt ∼ P (xt) for a sampling rule P that provides a distribution over X satisfying EX∼P (x)[X] = x.
As long as conv(X ) can be described by a polynomial number of constraints, one can always
find an efficient sampling rule P (see concrete examples in Section 4.3). Finally, the algorithm
constructs a loss estimator ˆ̀

t based on the observed information and proceeds to the next
round.

The novelty of our algorithm lies in the use of the hybrid regularizer

Ψ(x) =
d∑
i=1
−
√
xi + γ(1− xi) log(1− xi) (4.1)

with a parameter 0 < γ ≤ 1 to be chosen later based on the action set X (in most cases we
use γ = 1). This is a combination of the Tsallis entropy (with power 1/2)

∑
i−
√
xi, and the

Shannon entropy
∑
i(1− xi) log(1− xi) on the complement of x. The

∑
i−
√
xi regularizer was

first implicitly introduced by Audibert and Bubeck [14], and later discovered as a member
of the Tsallis entropy regularizers by Abernethy et al. [6]. It was also recently shown to be
optimal for both stochastic and adversarial multi-armed bandits [111].

In addition, similar to Zimmert and Seldin [111], our algorithm uses a very simple time-
decaying learning rate schedule ηt = η. The loss estimators ˆ̀

t are defined as ˆ̀
ti = (oti+1)It(i)

xti
− 1

for all i. It is clear the estimators are unbiased, Et[ˆ̀t] = `t, just as common importance weighted
estimators. The shift by 1 is used to ensure that the range of the loss estimates is bounded
from one side, ˆ̀

t,i ≥ −1. See Algorithm 6 for a complete pseudocode.

Intuition behind the new regularizer. It is known that the classical Shannon entropy
regularizer [50] is optimal for both adversarial and stochastic environments in the full-information
setting. In fact, the Shannon entropy on the complement of x is also optimal for full-information.
This can be verified by considering the complementary problem: the problem with action set
1d −X and reversed losses −`t. Both problems describe the exact same game with the same
information, and using Shannon entropy in the complementary problem is the same as using it
on the complement of x in the original problem.

The intuition behind combining Tsallis and Shannon entropy is that when xi is close to 0,
the learner is starved of information and has to act similarly to a regular bandit problem. The
magnitude of the gradient and its slope in that regime are dominated by the Tsallis entropy,
which again is known to be optimal for bandits.

On the other hand, when xi is close to 1, the game resembles a full-information game, and
Shannon entropy on the complement becomes the dominating part of the regularizer in that
regime. Effectively, this allows us to regularize arms in the optimal combinatorial set differently
than arms outside the optimal set, without the need to know which arms are in the optimal set.
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4.3 Main Results

In this section we present general regret guarantees for our algorithm, followed by concrete
instantiations in two special cases.

4.3.1 Arbitrary action set

To state the general regret bound for our algorithm for any arbitrary action set X , we define
the following two functions:

f(x) =
∑
i:x∗i=0

√
xi

g(x) =
∑
i:x∗i=1

(γ−1 − γ log(1− xi))(1− xi)

and the instantaneous regret function r : [0,∞)|X | → R as

r(α) =
∑

x∈X\{x∗}
αx∆x

(recall the definition of x∗ and ∆x from Section 4.2). We also define α =
∑
x∈X αxx for any

α ∈ [0,∞)|X |, and let ∆(X ) denote the simplex of distributions over X .

Theorem 4.1. For any γ ≤ 1 the pseudo regret of Algorithm 6 is upper bounded by

RT ≤ O (Csto log T ) +O (Cadd)

in the stochastic case and

RT ≤ O
(
Cadv
√
T
)

in the adversarial case, where Csto, Cadd and Cadv are defined as

Csto := max
α∈[0,∞)|X|

f(α)− r(α),

Cadd :=
∞∑
t=1

max
α∈∆(X )

(100√
t
g(α)− r(α)

)
,

Cadv := max
x∈conv(X )

f(x) + g(x).

Moreover, it always holds that Csto = O
(
md

∆min

)
, Cadd = O

(
m2

γ2∆min

)
, and Cadv = O

(
1
γ

√
md
)

,
where m = maxx∈X ||x||1 and ∆min = minx∈X\{x∗}∆x.

We defer the proof to Section 4.5. The dependence of our bounds on T is optimal in both
cases. The leading problem-dependent constants Csto and Cadv are expressed as solutions to
optimization problems. Recent works [42, 43, 69] also expressed the instance-optimal leading
constant in the stochastic case in a similar way, but it is not clear how to compare the results.

The explicit upper bounds on these constants stated at the end of the theorem immediately
imply that for γ = 1 our bounds are worst-case optimal according to [65] and [15]. Here,
worst-case optimality refers to the minimax regret over all environments with the same value
m of maxx∈X ||x||1 and also the same value ∆min of minx∈X\{x∗}∆x in the stochastic case.

However, for explicit instances, one can hope to achieve even better bounds. By exploiting
the structure of the problem and providing better bounds on the constants Csto, Cadd and
Cadv, we show in the next two sections that our algorithm is optimal in two special cases. For
better interpretability, in the stochastic case we consider the more traditional setting where
`1, . . . , `T are i.i.d. samples from an unknown distribution D. It is clear that we can define
∆x = E`∼D[〈x− x∗, `〉] in this case.
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4.3.2 Special case: full combinatorial set

The simplest semi-bandit problem is when X = {0, 1}d, that is, the learner can pick any subset
of arms. In this case conv(X ) = [0, 1]d and a trivial sampling rule is P (x) =

⊗d
i=1 Ber(xi)

where Ber(·) stands for Bernoulli distribution.
It is clear that in this case each dimension/arm can be treated completely independently.

Note, however, that the problem of each dimension is not exactly a two-armed bandit problem
since the loss of “not choosing the arm” is known to be 0, and the problem is asymmetric
between positive and negative losses. Specifically, we prove the following regret guarantee for our
algorithm, where in the stochastic case with a slight abuse of notation we define ∆i = E`∼D [`i].

Theorem 4.2. If X = {0, 1}d, the pseudo-regret of Algorithm 6 with γ = 1 is

RT ≤ O

∑
∆i>0

log(T )
∆i

+O

∑
∆i<0

1
|∆i|


in the stochastic case and

RT ≤ O
(
d
√
T
)

in the adversarial case. Moreover, both bounds are optimal.

Proof. Note that in this case the algorithm is equivalent to the following: for each coordinate,
run a copy of Algorithm 6 for a one-dimensional problem with X = {0, 1} as the action set. We
can thus apply Theorem 4.1 to such one-dimensional problems and finally sum up the regret
along each coordinate. Below we focus on a fixed coordinate i.

In particular, in the stochastic case, if ∆i > 0, it implies x∗i = 0 and thus g(·) ≡ 0 and
Cadd =

∑
t maxα∈[0,1]−α∆i = 0. For Csto we apply the general bound from Theorem 4.1 and

obtain Csto = O (1/∆i) (since m = d = 1 and ∆min = ∆i). This gives the bound O
(

log(T )
∆i

)
for

∆i > 0.
On the other hand if ∆i < 0 then x∗i = 1 and f(·) ≡ 0, so Csto = maxα≥0 α∆i = 0. For Cadd

we apply the general bound from Theorem 4.1 and obtain Cadd = O (1/∆i) (since m = γ = 1
and ∆min = ∆i). This gives the bound O

(
1

∆i

)
for ∆i < 0.

In the adversarial case, we apply the general bound of Theorem 4.1 and obtain Cadv = O(1).
This finishes the proof for the regret upper bounds. The optimality of the adversarial bound is
trivial since it matches the full-information lower bound. Obtaining a matching lower bound
in the stochastic regime is a simple adaptation of the regular two-armed bandit lower bound.
We believe this result is well known, but provide a proof in the appendix in absence of a
reference.

4.3.3 Special case: m-set

Another common instance of semi-bandit is when the learner can only select subsets of a fixed
size. Specifically, let m ∈ {1, . . . , d− 1} be a fixed parameter and define the m-set as

X =
{
x ∈ {0, 1}d

∣∣∣∣∣
d∑
i=1

xi = m

}
. (4.2)

Note that we are overloading the notation m = maxx∈X ||x||1 since clearly they are the same in
this case. It is well-known that the convex hull ofm-set is conv(X ) =

{
x ∈ [0, 1]d |

∑d
i=1 xi = m

}
,

and in the appendix we provide a simple sampling rule P with O(d log(d)) time complexity.
This improves over previous work that requires O(d2) time complexity [95, 102].
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In the stochastic case, we assume without loss of generality that the expected losses of
arms are increasing in i. Overloading the notation again we define the stochastic gaps as
∆i = E`∼D [`i − `m] for all i. Note that the uniqueness of x∗ also implies ∆i 6= 0 for all i > m.
The next theorem shows that our algorithm is optimal for both environments. As a side result,
we also show that when m > d/2, semi-bandit feedback is no harder than full-information
feedback in the adversarial case. To the best of our knowledge, this was previously unknown.

Theorem 4.3. If X is the m-set defined by Eq. (4.2), then the pseudo-regret of Algorithm 6
with

γ =
{

1 if m ≤ d/2
min{1, 1/

√
log(d/(d−m))} otherwise,

satisfies

RT ≤ O

 d∑
i=m+1

log(T )
∆i

+O

 d∑
i=m+1

(log d)2

∆i


in the stochastic case and

RT ≤

O
(√

mdT
)

if m ≤ d/2
O
(
(d−m)

√
log( d

d−m)T
)

otherwise

in the adversarial case. Moreover, both bounds are optimal.

Proof sketch. We provide a proof sketch here and defer some details to Section 4.7.3.
Cadv : The optimization problem is concave in x and symmetric for all i with the same

value of x∗i . Therefore the optimal solution takes the form(
arg max
x∈conv(X )

f(x) + g(x)
)
i

=
{
λ if x∗i = 0
1− d−m

m λ if x∗i = 1

for some λ ∈ [0,min{1, m
d−m}]. In Section 4.7.3 we show that the function is increasing in λ,

and that inserting λ = min{1, m
d−m} leads to the stated adversarial bound.

Csto : With the definitions of the gaps, we can express ∆x =
∑
i:xi 6=x∗i

|∆i|, which is lower
bounded by

∑
i:x∗i=0,xi=1 ∆i =

∑
i:x∗i=0 ∆ixi. So the immediate regret function r(α) can be

bounded as

r(α) =
∑
x 6=x∗

∆xαx ≥
∑
x 6=x∗

∑
i:x∗i=0

∆iαxxi

=
∑
i:x∗i=0

∆i

∑
x 6=x∗

αxxi

 =
∑
i:x∗i=0

∆iαi.

The optimization problem can now be bounded as

Csto = max
α∈[0,∞)|X|

∑
i:x∗i=0

√
αi −

∑
x 6=x∗

αx∆x

≤ max
α∈[0,∞)d

∑
i:x∗i=0

(√
αi −∆iαi

)
=

∑
i:x∗i=0

1
4∆i

,

which is the same as
∑d
i=m+1

1
4∆i

.
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Cadd : We bound the function g as follows:

g(α) =
∑
i:x∗i=1

(γ−1 − γ log(1− αi))(1− αi)

≤

γ−1 − γ log

 ∑
i:x∗i=1

1− αi
m

 ∑
i:x∗i=1

(1− αi)

=

γ−1 − γ log

 ∑
i:x∗i=0

αi
m

 ∑
i:x∗i=0

αi

≤
∑
i:x∗i=0

(
γ−1 − γ log

(
αi
m

))
αi

where the first inequality is by the concavity of g; the second equality is by the fact
∑
i:x∗i=1 1−

αi =
∑
i:x∗i=0 αi since α is in the convex hull of m-set.

Recall the lower bound r(α) ≥
∑
i:x∗i=0 ∆iαi as derived previously. We can thus bound Cadd

as

∑
i:x∗i=0

∞∑
t=1

max
A∈[0,1]

100√
t

(
γ−1 − γ log

(
A

m

))
A−∆iA

Solving the one-dimensional optimization problems above independently for each i (see Sec-
tion 4.7.3) proves Cadd ≤ O

(∑
i:x∗i=0

(log d)2

∆i

)
.

Optimality: The optimality for the stochastic case is implied by [11, 42]. For the adversarial
case, only a matching lower bound Ω(

√
mdT ) for m ≤ d/2 is known (Theorem 2 of [68]). We

close this gap by making a simple observation that when m > d/2, our bound in fact matches
the lower bound of the same problem with full-information feedback. This clearly implies the
optimality of our bound since semi-bandit feedback is harder.

Indeed, Koolen et al. [64] prove the lower bound Ω(m
√
T log(d/m)) for full-information

m-set when m ≤ d/2. When m > d/2, one can simply work on the complementary problem
with action set 1d −X and reversed losses. This is exactly a (d−m)-set problem and thus a
lower bound Ω((d−m)

√
T log(d/(d−m))) applies. This exactly matches our upper bound.

4.4 Empirical Comparisons

We compare our novel algorithm with four baselines from the literature. For stochastic algo-
rithms, we choose CombUCB [65] and Thompson Sampling [53]; for adversarial algorithms,
we choose Exp2 [15] and LogBarrier [103], which are respectively Ftrl with generalized
Shannon entropy and log-barrier regularizer. For each adversarial algorithm, we tune the time-
independent part of the learning rate by choosing from the grid of {2i|i ∈ {−5,−4, . . . , 5}}, and
the optimal value happens to be identical for both adversarial and stochastic environment in our
experiments. Specifically the final learning rates ηt for our algorithm, Exp2 and LogBarrier
are respectively 1/

√
t, 1/(4

√
t) and 4

√
log(t)/t.

We test the algorithms on concrete instances of the m-set problem with parameters: d = 10,
m = 5, T = 107. Below, we specify the mean of each arm’s loss at each time. With mean µti
the actual loss of arm i at time t will be −1 with probability (1−µti)/2 and +1 with probability
(1 + µti)/2, independent of everything else. We create the following two environments:

Stochastic environment. In this case the losses are drawn from a fixed distribution with
µti = −∆ if i ≤ 5 and µti = ∆ otherwise, where ∆ = 1/8.
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“Adversarial” environment. Since it is difficult to create truly adversarial data, here we in
fact use a stochastically constrained adversarial setting defined in Section 4.2. The construction
is similar to that of Zimmert and Seldin [111]. Specifically, the time is split into phases

1, . . . , t1︸ ︷︷ ︸
T1

, t1 + 1, . . . , t2︸ ︷︷ ︸
T2

, . . . , tn−1, . . . , T︸ ︷︷ ︸
Tn

.

The length of phase s is Ts = 1.6s, and the means of the losses are set to

µti =
{
−∆/2± (1−∆/2) if i ≤ 5,
+∆/2± (1−∆/2) otherwise,

,

where ± represents + if t belongs to an odd phase and − otherwise. This model is not only
a nice toy example, but could also be justified by real world applications. For example, in a
network routing problem, an adversary might periodically attack the network, making the delay
of every edge increase by roughly the same amount.

We measure the performance of the algorithms by the average pseudo-regret over at least 20
runs. For CombUCB and Thompson Sampling in the adversarial environment, we increase
the number of runs to 500 and 1000 respectively due to the high variance of the pseudo-regret.
Fig. 4.1 shows the average pseudo-regret of all algorithms at each time, where plot (a) uses the
stochastic data and plot (b) uses the adversarial data. We use log-log scale after 104 rounds.
Shaded areas in the plot show the confidence intervals.

The plots clearly confirm our theoretical results. Our algorithm outperforms Exp2 and
LogBarrier (in the later stage) in both environments. In the stochastic case our algorithm is
competitive with CombUCB, while Thompson Sampling has the best performance (a well-
known phenomenon). However, these two stochastic algorithms clearly fail in the adversarial
case and exhibit nearly-linear regret.

4.5 Proof of Main Theorem

We provide the key steps of the proof for our general result (Theorem 4.1) in this section.
Define Ψt(·) = η−1

t Ψ(·) and potential function Φt(·) = maxx∈conv(X ) 〈x, ·〉 −Ψt(x), which is the
convex conjugate of Ψt + Iconv(X ).

Following a standard analysis of FTRL, we decompose the regret

RT = E
[
T∑
t=1
〈Xt, `t〉+ Φt(−L̂t)− Φt(−L̂t−1)

]
︸ ︷︷ ︸

Rstab

+ E
[
T∑
t=1
−Φt(−L̂t) + Φt(−L̂t−1)− 〈x∗, `t〉

]
,︸ ︷︷ ︸

Rpen

(4.3)

into terms corresponding to the stability and the regularization penalty of the algorithm.
We then further bound these two terms respectively in the following two lemmas using

mostly standard Ftrl analysis (see Section 4.7 for the proofs).
Lemma 4.1. The regularization penalty is bounded as

Rpen ≤
T∑
t=1

3
2
√
t

( ∑
i:x∗i=0

√
E[xti]

−
∑
i:x∗i=1

γ(1− E[xti]) log(1− E[xti])
)
.
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Figure 4.1: Comparisons of our new algorithm (Hybrid) and several existing algorithms with
d = 10,m = 5 and T = 107 under a) stochastic and b) stochastically constrained adversarial
setting. The left side is in linear scale and the right is in log-log scale.
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Lemma 4.2. The stability term is bounded as

Rstab ≤
T∑
t=1

16
√

2√
t

( ∑
i:x∗i=0

√
E[xti]

+
∑
i:x∗i=1

γ−1(1− E[xti])
)

+ c.

where c = 58m/γ2 (recall that m = maxx∈X ||x||1).

We now proceed to the proof of Theorem 4.1.

Proof of Theorem 4.1. Using Lemma 4.1 and Lemma 4.2 in Eq. (4.3) and the definition of
functions f and g, we can bound the regret by

RT ≤
T∑
t=1

25√
t

(f(E[xt]) + g(E[xt])) + c (4.4)

≤ 50
√
T max
x∈conv(X )

(f(x) + g(x)) + c

= O
(
Cadv
√
T
)
,

which concludes the adversarial case.
For the stochastic case we use a self-bounding technique similar to Wei and Luo [103], Zimmert

and Seldin [111]. First, by the definition of the function r and the stochastic assumption we
have

RT = E
[
T∑
t=1
〈E[xt]− x∗, `t〉

]
≥

T∑
t=1

r(P (E[xt])).

Together with Eq. (4.4) we have

T∑
t=1

25√
t

(f(E[xt]) + g(E[xt])) + c−
T∑
i=1

r(P (E[xt])) ≥ 0.

Combining the above with Eq. (4.4) again we bound RT by

T∑
t=1

( 50√
t

(f(E[xt]) + g(E[xt]))− r(P (E[xt]))
)

+ 2c.

We next decompose the summation above into two terms and upper bound them as Csto log T
and Cadd respectively:

T∑
t=1

50√
t
f(E[xt])−

1
2r(P (E[xt]))

≤
T∑
t=1

max
α∈∆(X )

50√
t
f(α)− 1

2r(α)

≤
T∑
t=1

max
α∈[0,∞)|X|

50√
t
f

(
104

t
α

)
− 1

2r
(

104

t
α

)
(?)=

T∑
t=1

104

2t max
α∈[0,∞)|X|

f(α)− r(α) = O (Csto log(T ))
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where (?) follows since r is linear and f satisfies for any scalar a ≥ 0: f(ax) =
√
af(x). On the

other hand,

T∑
t=1

50√
t
g(E[xt])−

1
2r(P (E[xt]))

≤ 1
2

∞∑
t=1

max
α∈∆(X )

(100√
t
g(α)− r(α)

)
= O(Cadd),

where the last inequality uses the fact: for all t > 0, maxα∈∆(X )
(

100√
t
g(α)− r(α)

)
≥ 0. This is

because a particular α that puts all the weight on x∗ attains the value of 0.
The above finishes the proof of the general regret bounds. Due to space limitations we defer

the derivation of upper bounds on the constants Csto, Cadd and Cadv to Section 4.7.

4.6 Extensions to Bandit Feedback

The most natural extension of our work is to consider the full bandit feedback setting, where
each time after playing an action Xt the learner only observes 〈Xt, `t〉. Again, both stochastic
and adversarial versions of the problem are well-studied in the literature, but there is no best-
of-both-worlds result. Here, we provide a preliminary result for the simplest case X = {0, 1}d.
Following convention for this setting we also restrict `t to be such that ‖`t‖1 ≤ 1. Similar to
Section 4.3.2, in the stochastic case we assume `t ∼ D and define ∆i = E`∼D[`i].

Theorem 4.4. For the full bandit feedback setting with X = {0, 1}d and ‖`t‖1 ≤ 1, Ftrl
with regularizer Ψ(x) =

∑d
i=1
√
xi +

√
1− xi, learning rate ηt = 1/

√
t and loss estimators

ˆ̀
ti = 〈Xt,`t〉Xti

xti
− 〈Xt,`t〉(1−Xti)1−xti ensures:

RT ≤ O

 ∑
i:∆i 6=0

log(T )
|∆i|


in the stochastic case and

RT ≤ O
(
d
√
T
)

in the adversarial case. Moreover, both bounds are optimal.

Proof sketch. In this case, the optimization of Ftrl decomposes over the coordinates and it
is clear that the stated algorithm is equivalent to the following: for each coordinate i, apply
the algorithm of Zimmert and Seldin [111] to a two-armed bandit problem where the loss of
arm 1 at time t is `ti +

∑
j 6=iXtj`tj and the loss of arm 2 is

∑
j 6=iXtj`tj .3 In the stochastic

case this exactly fits into the stochastically constrained adversarial setting of Zimmert and
Seldin [111] with gap |∆i| and, therefore, applying their Theorem 2 and summing up the regret
over each coordinate finishes the proof for the stated regret bounds. The optimality of the
stochastic bound follows from Combes et al. [42] and the optimality of the adversarial bound
follows from Dani et al. [45].

For general action sets, however, the problem becomes significantly harder, because all
known adversarial algorithms, e.g. Cesa-Bianchi and Lugosi [36], require implicit or explicit
exploration of order 1/

√
T , which prohibits log(T ) regret in the stochastic case. We leave this

as question for future work.
3The losses are well defined since they do not depend on Xti.
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4.7 Conclusions

We provide the first best-of-both-worlds results for combinatorial bandits, via an Ftrl-based
algorithm with a novel hybrid regularizer. Our bounds are worst-case optimal and also optimal
in two particular instances of the problem. Empirical evaluations also confirm our theory.

Other than the open problem under bandit feedback mentioned in Section 4.6, another open
question is whether our stochastic bound is instance-optimal as in Combes et al. [42], and if not,
whether there is a best-of-both-worlds algorithm that is instance-optimal in the stochastic case.
One can also ask the same question for the adversarial case, however, next to nothing is known
regarding the instance-optimality of the adversarial case, let alone best-of-both-worlds results.

Acknowledgments HL and CYW are supported by NSF Grant #1755781. We thank
Yevgeny Seldin for valuable feedback and discussions, and Shinji Ito for pointing us to missing
references and unclarities in Section 4.6.

Appendix

Omitted details for the Proof of Theorem 4.1

In this section we provide omitted details for the proof of Theorem 4.1. We first prove Lemma 4.1
Lemma 4.2, then continue on Section 4.5 and prove the upper bounds for Csto, Cadd and Cadv.

4.7.1 Regularization penalty

In order to bound the regularization penalty, we make use of the following standard result for
Ftrl.

Lemma 4.3. The penalty term defined in Eq. (4.3) is upper bounded by

Rpen ≤ E
[
−Ψ(x1) + Ψ(x∗)

η1
+

T∑
t=2

(η−1
t − η−1

t−1) (−Ψ(xt) + Ψ(x∗))
]
.

Proof. We proceed as follows:

T∑
t=1

(
−Φt(−L̂t) + Φt(−L̂t−1)− 〈x∗, ˆ̀

t〉
)

=
T∑
t=1

(
min

x∈conv(X )

{
〈x, L̂t〉+ η−1

t Ψ(x)
}
−
(
〈xt, L̂t−1〉+ η−1

t Ψ(xt)
)}
−

T∑
t=1
〈x∗, ˆ̀

t〉

(by the definitions of Φt and xt)

≤ 〈x∗, L̂T 〉+ η−1
T Ψ(x∗) +

T−1∑
t=1

(
〈xt+1, L̂t〉+ η−1

t Ψ(xt+1)
)
−

T∑
t=1

(
〈xt, L̂t−1〉+ η−1

t Ψ(xt)
)
− 〈x∗, L̂T 〉

= η−1
T Ψ(x∗) +

T∑
t=2

η−1
t−1Ψ(xt)−

T∑
t=1

η−1
t Ψ(xt) (by telescoping and L̂0 = 0)

= −Ψ(x1) + Ψ(x∗)
η1

+
T∑
t=2

(η−1
t − η−1

t−1) (−Ψ(xt) + Ψ(x∗)) .

Finally using E [`t] = E[ˆ̀t] and plugging in the definition of Rpen finish the proof.
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Proof of Lemma 4.1. We directly plug into Lemma 4.3 the learning rate ηt = η and the
regularizer Ψ(x) =

∑d
i=1−

√
xi+γ(1−xi) log(1−xi). Since γ ≤ 1 and −(1−x) log(1−x) ≤

√
x

2
for x ∈ [0, 1], we get

−Ψ(xt) + Ψ(x∗) =
d∑
i=1

√
xti − γ(1− xti) log(1− xti)−

∑
i:x∗i=1

√
1

≤
∑
i:x∗i=0

3
2
√
xti −

∑
i:x∗i=1

γ(1− xti) log(1− xti)

≤ 3
2

 ∑
i:x∗i=0

√
xti −

∑
i:x∗i=1

γ(1− xti) log(1− xti)

 .
It further holds that η1 = η−1

1 and

η−1
t − η−1

t−1 =
√
t−
√
t− 1 ≤ 1

2
√
t− 1

≤ 1√
t

= ηt.

Inserting everything into Lemma 4.3:

Rpen ≤ E
[
−Ψ(x1) + Ψ(x∗)

η1
+

T∑
t=2

(η−1
t − η−1

t−1) (−Ψ(xt) + Ψ(x∗))
]

≤ E
[
T∑
t=1

ηt (−Ψ(xt) + Ψ(x∗))
]

≤ E

 T∑
t=1

3
2
√
t

 ∑
i:x∗i=0

√
xti −

∑
i:x∗i=1

γ(1− xti) log(1− xti)


≤

T∑
t=1

3
2
√
t

 ∑
i:x∗i=0

√
E[xti]−

∑
i:x∗i=1

γ(1− E[xti]) log(1− E[xti])

 .
where the last step follows from Jensen’s inequality and the concavity of functions

√
x and

−(1− x) log(1− x).

4.7.2 Stability term

Bounding the stability term defined in Eq. (4.3) requires tools from convex analysis. First
we extend the domain of Ψ to Rd by setting Ψ(x) =∞, ∀x ∈ Rd \ [0, 1]d. Recall the convex
conjugate of a convex function f is defined as

f∗(·) = max
x∈Rd
〈x, ·〉 − f(x),

and the Bregman divergence associated with f is defined as

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉.

By the above definition, Φt can be written as (Ψt + Iconv(X ))∗. Note that Ψ∗t differs from Φt

because it does not constrain its maximizer to be within conv(X ). The following properties
hold (see, e.g., Chapter 7 of [22]):

∇Φt(·) = arg max
x∈conv(X )

〈x, ·〉 −Ψt(x), (4.5)

∇Ψ∗t (·) = arg max
x∈[0,1]d

〈x, ·〉 −Ψt(x). (4.6)
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For Ψt and Ψ∗t , we have

∇Ψt = (∇Ψ∗t )−1, (4.7)

∇2Ψt(x) =
(
∇2Ψ∗t (∇Ψt(x))

)−1
. (4.8)

Furthermore, by Taylor’s theorem, for any x, y ∈ Rd there exists a z ∈ conv({x, y}) such that

DΨ∗t (x, y) = 1
2 ||x− y||

2
∇2Ψ∗t (z). (4.9)

The explicit expressions for ∇Ψt,∇2Ψt and a convenient upper bound for (∇2Ψt)−1 in the
domain (0, 1)d are

Ψt(x) = η−1
t

(
d∑
i=1
−
√
xi + γ(1− xi) log(1− xi)

)
,

∇Ψt(x) = η−1
t

(
− 1

2√xi
− γ log(1− xi)− γ

)
i=1,...,d

,

∇2Ψt(x) = η−1
t diag


 1

4
√
x3
i

+ γ

1− xi


i=1,...,d

 , (4.10)

(
∇2Ψt(x)

)−1
� ηt diag

[(
min

{
4
√
x3
i , γ
−1(1− xi)

})
i=1,...,d

]
, (4.11)

where (vi)i=1,...,d denotes (v1, . . . , vd), diag[(vi)i=1,...,d] denotes a diagonal matrix with (vi)i=1,...,d
on the diagonal, and A � B for two matrices A and B means B −A is positive semidefinite.
Note ∇Ψt is a bijection from (0, 1)d to Rd. Therefore ∇Ψ∗t (L) ∈ (0, 1)d for any L ∈ Rd, and all
xt’s we consider here are in the domain (0, 1)d.

The following Lemma will be useful to show that the stability term can be bounded
independently of the action set X .

Lemma 4.4. For any L, let L̃ = ∇Ψt(∇Φt(L)). Then it holds for any ` ∈ Rd:

DΦt(L+ `, L) ≤ DΨ∗t (L̃+ `, L̃).

Proof. First we state two equalities that follow from the previously stated properties.

∇Ψ∗t (L̃) = ∇Ψ∗t (∇Ψt(∇Φt(L))) Eq. (4.7)= ∇Φt(L), (4.12)

Ψ∗t (L̃) Eq. (4.6)= 〈∇Ψ∗t (L̃), L̃〉 −Ψt(∇Ψ∗t (L̃))
= 〈∇Φt(L), L̃〉 −Ψt(∇Φt(L))
Eq. (4.5)= Φt(L) + 〈∇Φt(L), L̃− L〉. (4.13)
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We then proceed as follows:

DΨ∗t (L̃+ `, L̃)

= Ψ∗t (L̃+ `)−Ψ∗t (L̃)−
〈
∇Ψ∗t (L̃), `

〉
(definition of Bregman divergence)

= Ψ∗t (L̃+ `)− Φt(L)−
〈
∇Φt(L), L̃− L

〉
− 〈∇Φt(L), `〉 (by Eqs. (4.12) and (4.13))

= Ψ∗t (L̃+ `)− Φt(L)−
〈
∇Φt(L), L̃− L+ `

〉
≥ 〈∇Φt(L+ `), L̃+ `〉 −Ψt(∇Φt(L+ `))− Φt(L)−

〈
∇Φt(L), L̃− L+ `

〉
(Ψ∗t is defined as the maximum)

= 〈∇Φt(L+ `), L+ `〉 −Ψt(∇Φt(L+ `)) +
〈
∇Φt(L+ `), L̃− L

〉
− Φt(L)−

〈
∇Φt(L), L̃− L+ `

〉
= Φt(L+ `) +

〈
∇Φt(L+ `), L̃− L

〉
− Φt(L)−

〈
∇Φt(L), L̃− L+ `

〉
(by the definition of Φt and Eq. (4.5))

= DΦt(L+ `, L) +
〈
∇Φt(L+ `)−∇Φt(L), L̃− L

〉
= DΦt(L+ `, L) + 〈∇Φt(L+ `)−∇Φt(L),∇Ψt(∇Φt(L))− L〉
≥ DΦt(L+ `, L).

The last step is by the first-order optimality condition: for the maximizer ∇Φt(L) :=
arg maxx∈conv(X )〈x, L〉 − Ψt(x) it must hold that 〈y − ∇Φt(L), L − ∇Ψt(∇Φt(L))〉 ≤ 0 for
any y ∈ conv(X ).

The next Lemma will be useful to bound the eigenvalues of the Hessian of Ψ∗t .

Lemma 4.5. If ηt ≤ min{
√

2−1
2 , γ log(2)

4 }, then for any x ∈ (0, 1)d and ˆ̀ such that −1 ≤ ˆ̀
i ≤ 2

xi
for all i, we have

2xi − 1 ≤ ∇Ψ∗t (∇Ψt(x)− ˆ̀)i ≤ 2xi.

Proof. The functions ∇Ψt and ∇Ψ∗t are symmetric and independent in each dimension. There-
fore it is sufficient to consider d = 1 and drop the index i.

For the upper bound we can assume x < 1
2 ; otherwise the statement is trivial since the

range of ∇Ψ∗t is (0, 1)d. Now assume the opposite holds: ∇Ψ∗t (∇Ψt(x)− ˆ̀) > 2x, then we have

ˆ̀= ∇Ψt(x)−∇Ψt(x) + ˆ̀= ∇Ψt(x)−∇Ψt(∇Ψ∗t (∇Ψt(x)− ˆ̀))
< ∇Ψt(x)−∇Ψt(2x) (∇Ψt(x) is strictly increasing in (0, 1))

= η−1
t

(
− 1

2
√
x
− γ log(1− x) + 1

2
√

2x
+ γ log(1− 2x)

)
< −η−1

t

(√
2− 1
2
√

2

)
1√
x

< −η−1
t

(√
2− 1
2

)
. (x ≤ 1

2)

The last line is a contradiction to the conditions ηt ≤
√

2−1
2 and ˆ̀≥ −1.

For the lower bound we can assume x > 1
2 , otherwise the statement is again trivial. Assume
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the opposite holds: ∇Ψ∗t (∇Ψt(x) + ˆ̀) < 2x− 1, then we have

ˆ̀= ∇Ψt(x)−∇Ψt(∇Ψ∗t (∇Ψt(x)− ˆ̀))
> ∇Ψt(x)−∇Ψt(2x− 1) (∇Ψt(x) is strictly increasing in (0, 1))

= η−1
t

(
− 1

2
√
x
− γ log(1− x) + 1

2
√

2x− 1
+ γ log(2− 2x)

)
> η−1

t log(2) > η−1
t

γ log(2)
4

2
x
. (γ ≤ 1 and x > 1/2)

which again leads to a contradiction to the conditions ηt ≤ γ log(2)
4 and ˆ̀≤ 2

x . This finishes the
proof.

Finally we are ready to prove Lemma 4.2.

Proof of Lemma 4.2. Let x̃t = ∇Ψ∗(∇Ψ(xt)− ˆ̀
t). Define At =

⊗d
i=1[xti, x̃ti]. For any t0 ≥ 0,

we bound the stability term by

Rstab = E
[
T∑
t=1
〈Xt, `t〉+ Φt(−L̂t)− Φt(−L̂t−1)

]
(1)
≤ E

 T∑
t=t0
〈Xt, `t〉+ Φt(−L̂t)− Φt(−L̂t−1)

+ 2t0m

(2)= E

 T∑
t=t0

Et
[
〈xt, ˆ̀

t〉+ Φt(−L̂t)− Φt(−L̂t−1)
]+ 2t0m

= E

 T∑
t=t0

Et
[
DΦt(−L̂t,−L̂t−1)

]+ t0m

(3)
≤ E

 T∑
t=t0

Et
[
DΨ∗t (∇Ψt(xt)− ˆ̀

t,∇Ψt(xt))
]+ 2t0m

= E

 T∑
t=t0

Et
[
DΨ∗t (∇Ψt(x̃t),∇Ψt(xt))

]+ 2t0m

(4)= E

 T∑
t=t0

Et
[1

2 ||
ˆ̀
t||2∇2Ψ∗t (zt)

]+ 2t0m

(5)
≤ E

 T∑
t=t0

Et
[
max
x∈At

1
2 ||

ˆ̀
t||2∇2Ψt(x)−1

]+ 2t0m

= E

 T∑
t=t0

Et
[
max
x∈At

ηt
2 ||

ˆ̀
t||2∇2Ψ(x)−1

]+ 2t0m. (4.14)

(1) The difference of potentials for each step is bounded by Φt(−L̂t)−Φt(−L̂t−1) ≤ 〈∇Φt(−L̂t),−ˆ̀〉 ≤
||∇Φt(−L̂t)||1 ≤ m, and the loss 〈Xt, `t〉 is bounded by m = maxx∈X ||x||1. (2) By the tower
rule of conditional expectation, the unbiaseness of ˆ̀ and the sampling assumption, it holds that

E [〈Xt, `t〉] = E [Et [〈Xt, `t〉]] = E [Et [〈xt, `t〉]] = E
[
Et
[
〈xt, ˆ̀

t〉
]]
.

(3) Applyication of Lemma 4.4.
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(4) Eq. (4.9) ensures that some zt ∈ conv({∇Ψt(x),∇Ψt(x̃)}) exists that satisfies the
equality.

(5) By property (4.8) and the coordinate-wise monotonicity of ∇Ψ∗t so that ∇Ψ∗t (zt) ⊂⊗d
i=1[xti, x̃ti] = At.
We choose t0 = 58γ−2 such that ηt ≤ min{

√
2−1
2 , γ log(2)

4 } for any t ≥ t0. By the construction
of ˆ̀

t we clearly have −1 ≤ ˆ̀
ti ≤ 2

xti
. We can then apply Lemma 4.5 to conclude that

x̃ti ∈ [2xti − 1, 2xti]. Therefore, with the form of Hessian Eq. (4.11) we have:

∀x ∈ At : ∇2Ψ(x)−1 ≤ diag
[(

min
{

4
√

(2xti)3, 2γ−1(1− xti)
})

i=1,...,d

]
,

and therefore,

T∑
t=t0

Et
[
max
x∈At

ηt
2 ||

ˆ̀
t||2∇2Ψ(x)−1

]
≤

T∑
t=t0

Et

[
ηt
2

d∑
i=1

(ˆ̀
ti)2 min{4

√
(2xti)3, 2γ−1(1− xti)}

]
(1)
≤

T∑
t=t0

ηt
2

d∑
i=1

4
xti

min{4
√

(2xti)3, 2γ−1(1− xti)}

(2)
≤

T∑
t=t0

16
√

2ηt
d∑
i=1

min{
√
xti, γ

−1(1− xti)}

≤
T∑
t=1

16
√

2√
t

 ∑
i:x∗i=0

√
xti +

∑
i:x∗i=1

γ−1(1− xti)

 . (4.15)

(1) Conditioned on Ft−1, only (ˆ̀
ti)2 is random and its expectation is

Et
[
(ˆ̀
ti)2
]

= xti

(
`ti + 1
xti

− 1
)2

+ 1− xti = 4
xti

(`ti + 1)2 − 2(`ti + 1)xti + xti
4 ≤ 4

xti

(4− 4xti + xti)
4 ≤ 4

xti
.

(2) Note that it always holds

4
xti

min
{

4
√

(2xti)3, 2γ−1(1− xti)
}
≤ 16
xti

√
(2xti)3 = 32

√
2xti.

So it suffices to prove 4
xti

min{4
√

(2xti)3, 2γ−1(1− xti)} ≤ 32
√

2γ−1(1− xti). We consider two
cases: (A) If 4

√
(2xti)3 ≤ 2γ−1(1 − xti), then we need to prove √xti ≤ γ−1(1 − xti). This is

true since either xti ≥ 1/
√

32 and thus √xti ≤ 2
√

(2xti)3 ≤ γ−1(1 − xti), or xti < 1/
√

32 in
which case √xti ≤ 1− xti ≤ γ−1(1− xti). (B) If 4

√
(2xti)3 ≥ 2γ−1(1− xti), then xti must be

larger than 1/4. In this case we bound 1
xti

by 4 and the desired inequality follows.
The proof is concluded by inserting Eq. (4.15) into Eq. (4.14) and using Jensen’s inequality

to move the expectation into the concave functions.

4.7.3 General upper bounds for Csto, Cadd and Cadv

We now finish the proof of Theorem 4.1 on the upper bounds of the three constants.
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Bounding Cadv:

Cadv = max
x∈conv(X )

∑
i:x∗i=0

√
xi +

∑
i:x∗i=1

(γ−1 − γ log(1− xi))(1− xi)

≤ max
x∈conv(X )

∑
i:x∗i=0

√
xi +

∑
i:x∗i=1

γ
√

1− xi +
∑
i:x∗i=1

γ−1(1− xi)

(−y log y ≤ √y for y ∈ [0, 1])

≤ max
x∈conv(X )

√√√√√
 ∑
i:x∗i=0

1

 ∑
i:x∗i=0

xi

+ γ

√√√√√
 ∑
i:x∗i=1

1

 ∑
i:x∗i=1

(1− xi)

+ γ−1m

(Cauchy-Schwarz)
≤
√
dm+ γm+ γ−1m

≤ O
(
γ−1√md

)
.

Bounding Csto: Csto is defined as maxα∈[0,∞)|X| f(α)− r(α). First we bound f(α):

f(α) =
∑
i:x∗i=0

√
αi =

∑
i:x∗i=0

√∑
x∈X

αxxi =
∑
i:x∗i=0

√ ∑
x∈X\{x∗}

αxxi ≤
√
d
∑
i:x∗i=0

∑
x∈X\{x∗}

αxxi ≤
√
dm

∑
x∈X\{x∗}

αx.

On the other hand,

r(α) =
∑

x∈X\{x∗}
αx∆x ≥ ∆min

∑
x∈X\{x∗}

αx.

Combining them we get

Csto ≤ max
α∈[0,∞)

√
dm

∑
x∈X\{x∗}

αx −∆min
∑

x∈X\{x∗}
αx

≤ max
A≥0

√
dmA−∆minA

≤ max
A≥0

∆minA+ dm

4∆min
−∆minA (AM-GM inequality)

= dm

4∆min
.

Bounding Cadd: Recall Cadd is defined as
∑∞
t=1 maxα∈∆(X )

(
100√
t
g(α)− r(α)

)
. We will

give a upper bound for g(α) and lower bound for r(α) below.
We first prove the following property: for any y ∈ RN+ ,

∑N
i=1 yi log 1

yi
≤ ‖y‖1 log N

‖y‖1 . Indeed,
by the concavity of the log function and Jensen’s inequality,

N∑
i=1

yi
‖y‖1

log 1
yi
≤ log

(
N∑
i=1

yi
‖y‖1

1
yi

)
= log N

‖y‖1
.

Therefore, for any α ∈ ∆(X ) we have

g(α) =
∑
i:x∗i=1

(
γ−1 + γ log

( 1
1− ᾱi

))
(1− ᾱi)

≤

 ∑
i:x∗i=1

(1− αi)

(γ−1 + γ log m∑
i:x∗i=1(1− αi)

)
. (using the above property)
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Then consider the following two facts. First, the function of y defined by y(γ−1 + γ log m
y ) is

increasing in y ∈ [0,m]. This can be verified by

∂

∂y

(
y

(
γ−1 + γ log m

y

))
= γ−1 + γ logm− γ log y − γ ≥ 0. (γ ≤ 1)

Second, we have
∑
i:x∗i=1(1−αi) =

∑
i:x∗i=1

∑
α∈X αx(1−xi) =

∑
i:x∗i=1

∑
α∈X\{x∗} αx(1−xi) ≤

‖x∗‖1
(∑

α∈X\{x∗} αx
)
≤ m

(∑
α∈X\{x∗} αx

)
. Combining these two facts with the above bound

for g(α), we get

g(α) ≤ m

 ∑
α∈X\{x∗}

αx

(γ−1 + γ log 1∑
α∈X\{x∗} αx

)
.

On the other hand, we have the lower bound for r(α):

r(α) =
∑

x∈X\{x∗}
αx∆x ≥ ∆min

∑
x∈X\{x∗}

αx.

Therefore,

Cadd =
∞∑
t=1

max
α∈∆(|X |)

(100√
t
g(α)− r(α)

)

≤
∞∑
t=1

max
A∈[0,1]

(100√
t
mA

(
γ−1 + γ log 1

A

)
−∆minA

)
.

We further bound it by the sum of the following two summations:

•
∞∑
t=1

max
A∈[0,1]

(100√
t
mAγ−1 − 1

2∆minA

)

•
∞∑
t=1

max
A∈[0,1]

(100√
t
mAγ log 1

A
− 1

2∆minA

)

Lemma 4.6 Lemma 4.7 below respectively bound these two as O
(
m2γ−2

∆min

)
and O

(
m2γ2

∆min

)
, which

finishes the proof.

Lemma 4.6. For any C > 0 and ∆ > 0, we have
∑∞
t=1 maxA∈[0,1]

(
C√
t
A−∆A

)
≤ O

(
C2

∆

)
.

Proof. Let T0 be the largest t such that C√
t
−∆ > 0, then

∞∑
t=1

max
A∈[0,1]

(
C√
t
A−∆A

)
≤

T0∑
t=1

C√
t
≤ 2C

√
T0 = O

(
C2

∆

)
.

Lemma 4.7. For any C > 0 and ∆ > 0, we have
∑∞
t=1 maxA∈[0,1]

(
C√
t
A log 1

A −∆A
)
≤ C2

∆ .

Proof. We first solve the inner optimization with respect to a specific t. Taking the derivative
with respect to A, and setting it to zero:

C√
t

log 1
A∗
− C√

t
−∆ = 0, (4.16)



88 CHAPTER 4. COMBINATORIAL SEMI-BANDITS

we get the solution

A∗ = exp
(
−1−

√
t∆
C

)
.

And thus,

max
A∈[0,1]

(
C√
t
A log 1

A
−∆A

)
= C√

t
A∗ log 1

A∗
−∆A∗ Eq. (4.16)= A∗

(
C√
t

+ ∆
)
−∆A∗

= C√
t

exp
(
−1−

√
t∆
C

)

Finally we have

∞∑
t=1

max
A∈[0,1]

(
C√
t
A log 1

A
−∆A

)
≤
∞∑
t=1

C√
t

exp
(
−1−

√
t∆
C

)
≤
∫ ∞
t=0

C√
t

exp
(
−1−

√
t∆
C

)
dt

= C2

∆

∫ ∞
τ=0

1√
τ

exp(−1−
√
τ)dτ ≤ C2

∆ .

Omitted Details for Section 4.3.2 Section 4.3.3

In this section we provide omitted details for the two special cases: full combinatorial set and
m-set.

4.7.4 Optimality of the stochastic bound when X = {0, 1}d

As mentioned in the proof of Theorem 4.2, we provide here for completeness a proof showing
that when d = 1 and ∆ > 0, the regret is at least Ω( log T

∆ ).
Assume that there exists an algorithm that is at least as good as ours asymptotically,

which implies limT→∞
log(RT )
log(T ) ≤ limT→∞

log(O(log(T ))
log(T ) = 0 for any problem. For some ∆ > 0 we

consider two problems: E[`] = ∆ and E[`] = −∆. For simplicity we assume that the losses are
drawn from i.i.d. Gaussian with variance σ2 = 1, but the proof can be easily transferred to
Bernoulli noise as well. For the problem with positive loss, we denote the regret as R+

T and the
probability space induced by an algorithm by P+. Equivalently we define R−T and P−. The
relative entropy between P+ and P− is

KL(P+,P−) =
T∑
t=1

P+(Xt = 1)(2∆)2 = 4R+
T ∆.

Also we have by the definition of regret:

P+
(

T∑
t=1

Xt ≥
T

2

)
+ P−

(
T∑
t=1

Xt <
T

2

)
≤ 2(R+

T + R−T )
∆T .

Using the high probability Pinsker inequality (included after the proof for completeness), we
get

2(R+
T + R−T )
∆T ≥ 1

2 exp
(
−4R+

T ∆
)
.
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Rearranging gives

R+
T

log(T ) = 1
4∆ −

1
4∆

log(4(R+
T + R−T ))

log(T ) + log(∆)
4∆ log(T ) .

Taking the limit on both sides shows limT→∞
R+
T

log(T ) = Ω( 1
∆), which finishes the proof.

Lemma 4.8 (High Probability Pinsker, e.g. [29]). Let P and Q be probability measures on the
same measurable space (Ω, F ) and let A ∈ F be an arbitrary event. Then,

P(A) + Q(Ac) ≥ 1
2 exp(−KL(P,Q)),

where Ac is the complement of A and KL(P,Q) the relative entropy.

4.7.5 Sampling rule for m-set

In this section X represents the m-set. We first define the following auxiliary vectors for
0 ≤ i ≤ m, 0 ≤ j ≤ d−m.

βi,j =

1, . . . , 1︸ ︷︷ ︸
i

,
m− i

d− i− j
, . . . ,

m− i
d− i− j

, 0, . . . , 0︸ ︷︷ ︸
j

 ∈ conv(X ).

It is trivial to sample with mean βi,j with the sampling rule:

Pi,j = Uniform ({x ∈ X | x1,...,i = 1 ∧ xd−j+1,...,d = 0}) .

This requires uniform sampling of a (m− i)-sized subset of (d− i− j) elements, which can be
done in O(d) time.

Now for a given xt ∈ conv(X ), one sampling rule P such that EX∼P [X] = xt is the following:
First we sort the entries of xt so that x is the sorted version with x1 ≥ · · · ≥ xd. This takes
O(d log(d)) time. Next we decompose x =

∑d
s=0 px,sβis,js such that px,s ∈ [0, 1],

∑d
s=0 px,s = 1,

(i0, j0) = (0, 0) and (is+1, js+1)− (is, js) ∈ {(1, 0), (0, 1)}. In other words, either i or j increases
by one from s to s + 1. This decomposition is unique and can be computed in a greedy
manner in time O(d). Finally the full sampling scheme is

∑d
s=0 px,sPis,js (in terms of permuted

coordinates). The runtime is dominated by the sorting and hence is O(d log(d)) overall.

4.7.6 Complete proof for Theorem 4.3

Bounding Cadv:

Cadv = max
x∈conv(X )

(f(x) + g(x)) = max
x∈conv(X )

∑
i:x∗i=0

√
xi +

∑
i:x∗i=1

(γ−1 − γ log(1− xi))(1− xi).

The optimization problem is concave in x and symmetric for all i with the same value of x∗i .
This implies that the arg max solution must take the following form:(

arg max
x∈conv(X )

f(x) + g(x)
)
i

=
{
λ if x∗i = 0
1− d−m

m λ if x∗i = 1

for some λ ∈ [0,min{1, m
d−m}].
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Therefore,

Cadv = max
λ∈[0,min(1, m

d−m )]
(d−m)

√
λ+m

(
γ−1 − γ log

(
d−m
m

λ

))
d−m
m

λ

= max
λ∈[0,min(1, m

d−m )]
(d−m)

(√
λ+

(
γ−1 − γ log

(
d−m
m

λ

))
λ

)
. (4.17)

Since d−m
m λ ≤ 1 and γ ≤ 1, the derivative is always positive:

∂

∂λ

(√
λ+

(
γ−1 − γ log

(
d−m
m

λ

))
λ

)
=
( 1

2
√
λ

+ γ−1 − γ log
(
d−m
m

λ

)
− γ

)
≥ 1

2
√
λ
> 0.

Therefore we can simply plug in the upper border of λ in Eq. (4.17):
Case m ≤ d/2 (for which γ = 1 and the optimal λ is m/(d−m)):

Cadv = (d−m)
(√

m

d−m
+ m

d−m

)
≤ 2

√
(d−m)m = O

(√
md
)
.

Case m > d/2 (for which γ = min
{

1, 1/
√

log
(

d
d−m

)}
and the optimal λ is 1):

Note that γ ≤ 1√
log( d

d−m)
and thus γ−1 = max

{
1,
√

log
(

d
d−m

)}
≤

√
log( d

d−m)
√

log(2)
and −γ ≤

−
√

log(2)√
log( d

d−m)
. Therefore

Cadv ≤ (d−m)

1 + 1√
log(2)

√
log

(
d

d−m

)
+

√
log(2)√

log
(

d
d−m

) log
(

m

d−m

)
≤ (d−m)

(
1 +

(
1√

log(2)
+
√

log(2)
)√

log
(

d

d−m

))
= O

(
(d−m)

√
log

(
d

d−m

))
.

Bounding Csto: With our definitions of ∆i, for any x ∈ X , we have

∆x = E
[∑

i

(xi − x∗i )`ti

]
= E

[∑
i

(xi − x∗i )(`ti − `tm)
]

=
∑
i:x∗i=1

(1− xi)|∆i|+
∑
i:x∗i=0

xi∆i ≥
∑
i:x∗i=0

xi∆i,

(4.18)

and thus for any α ∈ [0,∞)|X |

r(α) =
∑

x∈X\{x∗}
αx∆x ≥

∑
x∈X\{x∗}

∑
i:x∗i=0

αxxi∆i =
∑
i:x∗i=0

αi∆i. (4.19)

Therefore,

Csto = max
α∈[0,∞)|X|

∑
i:x∗i=0

√
αi − r(α)

≤ max
α∈[0,∞)d

∑
i:x∗i=0

(√
αi − αi∆i

)
AM-GM
≤ max

α∈[0,∞)d

∑
i:x∗i=0

(
αi∆i + 1

4∆i
− αi∆i

)
=

∑
i:x∗i=0

1
4∆i

.
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Bounding Cadd: Similar to the “Bounding Cadd” part in the proof of Theorem 4.1 (earlier
in Section 4.7), we can bound for any α ∈ ∆(X ):

g(α) =
∑
i:x∗i=1

(
γ−1 + γ log

( 1
1− αi

))
(1− αi)

≤
(
γ−1 + γ log

(
m∑

i:x∗i=1(1− αi)

)) ∑
i:x∗i=1

(1− αi) (by the concavity of g)

=
(
γ−1 + γ log

(
m∑

i:x∗i=0 αi

)) ∑
i:x∗i=0

αi

≤
∑
i:x∗i=0

(
γ−1 + γ log

(
m

αi

))
αi.

where in the second equality we use an property of m-set:
∑
i:x∗i=1(1− αi) =

∑
i:x∗i=0 αi, which

follows from the fact that α is in the convex hull of m-set. In the last inequality, we simply
lower bound

∑
i:x∗i=0 αi by one of its summands.

Using the same lower bound

r(α) ≥
∑
i:x∗i=0

∆iαi, (by Eq. (4.19))

we have an upper bound for Cadd:

Cadd =
∞∑
t=1

max
α∈∆(X )

100√
t
g(α)− r(α)

≤
∑
i:x∗i=0

∞∑
t=1

max
αi∈[0,1]

100√
t

(
γ−1 + γ log m

αi

)
αi −∆iαi

≤
∑
i:x∗i=0

( ∞∑
t=1

max
αi∈[0,1]

(100√
t

(
γ−1 + γ logm

)
αi −

∆i

2 αi

)
+
∞∑
t=1

max
αi∈[0,1]

(100√
t
γαi log 1

αi
− ∆i

2 αi

))
.

Invoking Lemma 4.6 Lemma 4.7 on the above two terms, we get

Cadd ≤ O

 ∑
i:x∗i=0

(γ−1 + γ logm)2

∆i

 .
This can be further upper bounded by O

(∑
i:x∗i=0

(log d)2

∆i

)
by our selection of γ in either regime.
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Chapter 5

Delayed feedback

The work presented in this chapter is based on a paper that has been accepted as [112].

[112] Zimmert, J. and Seldin, Y. (2020a). An optimal algorithm for adversarial bandits with
arbitrary delays. In Proceedings on the International Conference on Artificial Intelligence
and Statistics (AISTATS)
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Table 5.1: Overview of state-of-the-art regret bounds for multi-armed bandits with delayed
feedback. (*) requires oracle knowledge of the time horizon n and the total delay D; the result
appeared independently in two papers. (**) requires advance knowledge of the delays dt “at
action time” t.

Setting Regret upper and lower bounds Reference
Uniform delays d Ω(max{

√
kn,

√
dn log(k)}) Cesa-Bianchi et al. [34]

O(
√
kn log(k) +

√
dn log(k)) Cesa-Bianchi et al. [34]

O(
√
kn+

√
dn log(k)) This paper

Arbitrary delays, O(
√
kn log(k) +

√
D log(k)) (*)

{
Thune et al. [98]
Bistritz et al. [24]

non-adaptive bounds O(
√
k2n log(k) +

√
D log(k)) Bistritz et al. [24]

O(
√
kn+

√
D log(k)) This paper

Arbitrary delays, O(minβ |Sβ|+ β log(k) + β−1(kn+DS̄β
)) (**) Thune et al. [98]

adaptive bounds O(
√
kn+ minS(|S|+

√
DS̄ log(k))) This paper

Abstract

We propose a new algorithm for adversarial multi-armed bandits with unrestricted delays. The
algorithm is based on a novel hybrid regularizer applied in the Follow the Regularized Leader
(FTRL) framework. It achieves O(

√
kn+

√
D log(k)) regret guarantee, where k is the number

of arms, n is the number of rounds, and D is the total delay. The result matches the lower
bound within constants and requires no prior knowledge of n or D. Additionally, we propose
a refined tuning of the algorithm, which achieves O(

√
kn + minS(|S| +

√
DS̄ log(k))) regret

guarantee, where S is a set of rounds excluded from delay counting, S̄ = [n] \S are the counted
rounds, and DS̄ is the total delay in the counted rounds. If the delays are highly unbalanced,
the latter regret guarantee can be significantly tighter than the former. The result requires no
advance knowledge of the delays and resolves an open problem of Thune et al. [98]. The new
FTRL algorithm and its refined tuning are anytime and require no doubling, which resolves
another open problem of Thune et al. [98].

5.1 Introduction

Multi-armed bandits are a fundamental sequential decision making problem with an increasing
number of industrial applications. In the multi-armed bandit setting, a learner repeatedly
chooses an action from a finite set of actions and immediately observes a loss for that specific
action. The action might be, for example, a choice of an advertisement layout out of a finite
set of layouts. The loss could be the response of a user to the layout, for example, a lack of a
click on the advertisement. In practice, it is often required to make decisions for new users
before observing the feedback of all previous users, either due to response latency or parallel
interaction with multiple users. This can be modeled by introducing a delay between the action
and observation.

We focus on the oblivious adversarial (a.k.a. non-stochastic) bandit setting, meaning that
the sequence of losses and the delays are fixed before the start of the game. The setting was first
studied by Cesa-Bianchi et al. [34] under the assumption of uniform delays, which are all equal
to d. They proved a lower bound of Ω(max{

√
kn,

√
dn log(k)}) for d ≤ n/ log(k) (they do not

report the log(k) term) and an almost matching upper bound of O(
√
kn log(k) +

√
dn log(k)).

By translating individual delays into the total delay D = dn the lower bound for uniform delays
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is Ω(max{
√
kn,

√
D log(k)}). Thune et al. [98] and Bistritz et al. [24] independently derived

an algorithm that can handle non-uniform delays and achieves an O(
√
kn log(k) +

√
D log(k))

regret bound under the assumption that n and D are known in advance. Thune et al. further
provide a doubling scheme that achieves the same regret bound under the assumption that the
delays dt are known ”at action time”, i.e., at time t, but n and D are unknown, whereas Bistritz
et al. provide a doubling scheme that achieves an O(

√
k2n log(k) +

√
D log(k)) regret bound

when n and D are unknown and the delays dt are observed together with the observations, i.e.,
at time t+ dt.

Thune et al. further observe that if the delays are highly unbalanced it may be worth
“skipping” rounds with excessively large delays. “Skipping” means that the regret in the
corresponding round is trivially bounded by 1 and the observation is ignored by the algorithm.
The skipping approach of Thune et al. requires knowledge of the delays “at action time”. Under
the assumption that this information is available, Thune et al. provide an algorithm that achieves
O(minβ |Sβ|+ β log(k) + β−1(kn+DS̄β

)) regret guarantee, where β is the skipping threshold
(the rounds with delays dt ≥ β are skipped), Sβ is the set of skipped rounds and |Sβ| is their
number, S̄β = [n] \ Sβ are the remaining rounds (where [n] = {1, . . . , n}), and DS̄β

=
∑
t∈S̄β dt

is their total delay. Thune et al. provide an example, where the first b
√
kn/ log(k)c rounds have

delays of order n and the remaining rounds have zero delays. By skipping the first rounds, the
dependence of the regret bound on n improves from order n3/4 to n1/2. The skipping procedure
of Thune et al. crucially depends on availability of delays “at action time” in order to make
the skipping decision and the skipping threshold β is tuned by doubling. Relaxation of the
assumption on early availability of delays, as well as replacement of doubling with anytime
strategies (i.e., algorithms without resets) were left as open questions.

We resolve both open questions and make the following contributions:

1. We provide an anytime FTRL algorithm based on a novel hybrid regularizer. The
regularizer combines 1

2 -Tsallis entropy and negative entropy, each with its own learning
rate. The algorithm requires no advance knowledge of the delays and achieves a regret
bound of O(

√
kn+

√
D log(k)), which matches the lower bound within constants.

2. We provide a novel “skipping” technique, which allows to “ignore” rounds with excessively
large delays with no advance knowledge of the delays. We put “skipping” and “ignore”
in quotation marks, because the observations are still used by the algorithm and the
“skipped” rounds are only excluded from updates of the learning rate. We prove an
O(
√
kn+ minS(|S|+

√
DS̄ log(k))) regret bound for the refined algorithm. The bound is

slightly tighter than the refined regret bound of Thune et al. [98], but most importantly
it requires no advance knowledge of the delays. 1

In Table 5.1 we provide a comparison of state-of-the art bounds with our new results.
Additional prior work in other online learning settings with delayed feedback includes the
full information setting studied by Joulani et al. [58], who derived a general reduction to a
non-delayed problem. To the best of our knowledge, no similar reduction under bandit feedback
has been found yet. Another related setting are bandits with anonymous composite feedback,
where the learner is not informed about the round from which the delayed observation is coming
from, neither the identity of the action it corresponds to, and delayed observations from several
rounds may be composed together with no possibility to separate them. This harder setting
was studied by Cesa-Bianchi et al., who derived an O(

√
kdmaxn log(k)) regret bound, where

1We note that the new skipping technique could also be combined with the doubling scheme of Thune et al.
to eliminate the need in advanced knowledge of delays there as well. However, the anytime FTRL algorithm
presented here is much more elegant than doubling.
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dmax is a known upper bound on the delays. We refer the reader to Thune et al. [98] for further
review of prior work in related settings.

The paper is structured in the following way: Section 5.2 provides a formal definition of
the problem setting. Section 5.3 explains in detail our algorithm and two versions of learning
rate tuning. Section 5.4 contains our main theorems, as well as an intuition behind the refined
learning rate tuning. Section 5.5 presents a general analysis of FTRL for multi-armed bandits
with delays and formally proves the theorems from the previous section. Finally, Section 5.6
provides a summary and directions for future work.

5.2 Problem setting

Adversarial bandits with delay is a sequential game between a learner and an environment with
k fixed actions. At time steps t = 1, . . . , n the learner picks actions At ∈ [k] and immediately
suffers the loss `t,At , where (`t)t=1,...,n are vectors in [0, 1]k. Unlike in the regular bandit
problem, the learner does not necessarily observe the loss `t,At at the end of round t. Instead,
the environment chooses a sequence of delays (dt)t=1,...,n and the player observes the tuples
(s, `s,As) for each s such that s+ ds = t at the end of round t. Without loss of generality, we
assume that all outstanding tuples are observed at the end of the game, i.e., t+ dt ≤ n for all t.
We focus on the oblivious adversarial setting (sometimes called “non-stochastic”), which means
that both the sequence of losses (`t)t=1,...,n and the sequence of delays (dt)t=1,...,n are chosen by
the environment at the beginning of the game. We use D =

∑n
t=1 dt to denote the total delay.

The learner has no prior knowledge of the quantities n,D, or (dt)t=1,...,n. The performance of
the algorithm is measured by its expected regret

Rn := E
[
n∑
t=1

`t,At

]
−min

i∈[k]

n∑
t=1

`t,i .

Some technical definitions We use ∆([k]) = {x ∈ Rk+|‖x‖1 = 1} to denote the (k − 1)-
simplex. For a set S ⊂ [n] = {1, . . . , n}, we denote its complement by S̄ = [n] \S. For a convex
function F we use F ∗ to denote its convex conjugate (a.k.a. Fenchel conjugate) and F

∗ to
denote the constrained convex conjugate. They are defined, respectively, by

F ∗(y) = max
x∈Rk
〈x, y〉 − F (x),

F
∗(y) = max

x∈∆([k])
〈x, y〉 − F (x) .

5.3 Algorithm

Our Algorithm 7 is a standard Follow the Regularized Leader (FTRL) algorithm that works
with importance weighted loss estimators of all observations available up to the current point
in time. The loss estimators are defined by

ˆ̀
s = `s,As

xs,As
eAs ,

where xs,As is the algorithm’s probability of selecting action As at round s and eAs is a standard
basis vector. We define the cumulative observed loss estimator at time t by

L̂obst =
∑

s:s+ds<t

ˆ̀
s .
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Given a convex regularizer Ft : Rk → R, FTRL samples action At according to the distribution

xt = arg min
x∈∆([k])

〈x, L̂obst 〉+ Ft(x) .

xt can be equivalently expressed as xt = ∇F ∗t (−L̂obst ).
We are using a hybrid regularizer Ft = Ft,1 + Ft,2, where in contrast to most prior work

each of the two parts of the regularizer has its own learning rate.

Ft(x)︸ ︷︷ ︸
=
∑k

i=1 ft(xi)

= −
k∑
i=1

2
√
tx

1/2
i︸ ︷︷ ︸

Ft,1(x)=
∑k

i=1 ft,1(xi)

+ η−1
t

k∑
i=1

xi log(xi)︸ ︷︷ ︸
Ft,2(x)=

∑k

i=1 ft,2(xi)

.

The first part of the regularizer Ft,1(x) =
√
tF1(x) is the 1

2 -Tsallis entropy F1(x) = −2
∑k
i=1
√
xi

with learning rate 1√
t
, which is non-adaptive to the problem. The second part of the regularizer

Ft,2(x) = η−1
t F2(x) is the negative entropy F2(x) =

∑k
i=1 xi log(xi) with adaptive learning rate

ηt. We call a sequence of learning rates (ηt)t=1,...,n proper if it is non-increasing and can be
defined using information available at the beginning of round t.

5.3.1 Intuition behind the regularizer

Hybrid regularizers have been successfully used in adaptive regret bounds for sparse bandits,
online portfolio selection, adversarially robust semi-bandits, and adaptive first order bounds for
multi-armed bandits [27, 75, 82, 109]. They are useful for targeting multiple objectives. In our
case, the regret lower bound for bandits with fixed delay d is Ω(max{

√
kn,

√
dn log(k)}) [34].

The first part of the bound is the standard regret lower bound for multi-armed bandits with no
delays, which is clearly also a lower bound for the problem with delays. The second part of the
bound is achieved by grouping the game rounds into batches of size d and reducing the game
to a full information game over n/d rounds with loss range [0, d]. The second part is then a
lower bound on the regret in the full information game.

Our regularizer uses the same decomposition of the problem. We combine the optimal
regularizer for the standard bandit problem with no delay, the 1

2 -Tsallis Entropy, with the
optimal regularizer for the full information problems, the negative entropy. We further tune
the learning rate for the second part to the actual delay sequence (dt)t=1,...,n.

5.3.2 Tuning of the learning rate

We propose and analyze two versions of learning rate tuning. The simple tuning is given in
Algorithm 7. For advanced tuning, replace the colored blocks Initialize and determine ηt in
Algorithm 7 with the corresponding blocks from Algorithm 8.

Simple tuning We define the key quantity, which is used for tuning the learning rate.

Definition 5.1. The number of outstanding observations at round t is defined by

dt =
t−1∑
s=1

I{s+ ds ≥ t},

where I is the indicator function.
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Algorithm 7: FTRL for bandits with delay
Input: Proper learning rate rule ηt
Initialize L̂obs1 = 0
Initialize D0 = 0 (simple tuning)
for t = 1, . . . , n do

determine ηt
Set Dt = Dt−1 + dt

Set η−1
t =

√
2Dt/ log(k)

}
(simple tuning)

Set xt = arg minx∈∆([k])〈x, L̂obst 〉+ Ft(x)
Sample At ∼ xt
for s : s+ ds = t do

Observe (s, `s,As)
Construct ˆ̀

s and update L̂obst

dt counts how many observations from rounds s < t are still missing at the beginning of
round t. Note that dt is an observable quantity, unlike the delays dt. Therefore, dt can be used
for online tuning of the learning rate. The learning rate under the simple tuning is given by

Dt =
t∑

s=1
dt , η−1

t =
√

2Dt/ log(k) .

The algorithm only uses the inverse of the learning rate. If Dt = 0, then η−1
t = 0 and the

algorithm is well-defined, even though ηt =∞.

Advanced tuning In the advanced tuning, we maintain a running estimate D̃t of the optimal
truncated delay DS̄ . To achieve that, we modify the quantity dt by “skipping” some outstanding
observations. To be precise, we keep indicator variables ats ∈ {0, 1}, where ats indicates whether
an outstanding observation from round s should still be counted at round t:

d̃t =
t−1∑
s=1

atsI{s+ ds ≥ t}.

We define

D̃t =
t∑

s=1
d̃t , η−1

t =
√
D̃t/ log(k) .

The algorithm initially waits for all observations, but as soon as the waiting time exceeds a
threshold the round is “skipped”. If we observe a delay such that ds >

√
D̃t/ log(k), we set

(at′s )t′>t to 0. The indicators are not changed retrospectively, which means that the initial
waiting time still counts toward D̃t. The intuition behind advanced tuning is explained in
Section 5.4.3.

5.4 Main results

In this section, we present regret upper bounds for Algorithm 7 with simple tuning and advanced
tuning. The first result confirms the conjecture of Cesa-Bianchi et al. [34] that an upper bound
of O(

√
kn+

√
D log(k)) is achievable with a simple algorithm. The second result shows that

it is possible to obtain a refined bound of O(
√
kn + minS⊂[n](|S| +

√
DS̄ log(k))) by a more

careful tuning of the learning rate.
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Algorithm 8: Advanced tuning of ηt for Alg. 7
1 Initialize D̃0 = 0 and (ats)s=1,...,n;t=1,...,n = 1
2 determine ηt
3 Set d̃t =

∑t−1
s=1 I{s+ ds ≥ t}ats

4 Update D̃t = D̃t−1 + d̃t

5 Set η−1
t =

√
D̃t/ log(k)

6 for s = 1, . . . , t− 1 do
7 if min{ds, t− s} > η−1

t then
8 (at′s )t′>t = 0 (At most one index s satisfies the if -condition, see

Lemma 5.7)

5.4.1 Adaptation to the total delay D

The following theorem provides a regret bound for Algorithm 7 with simple tuning.

Theorem 5.1. The regret of Algorithm 7 with any non-increasing positive sequence of learning
rates (ηt)t=1,...,n satisfies

Rn ≤ 4
√
kn+ η−1

n log(k) +
n∑
t=1

ηtdt .

In particular, the simple tuning η−1
t =

√
2Dt/ log(k) =

√
2(
∑t
s=1 ds)/ log(k) is proper and leads

to a regret bound of

Rn ≤ 4
√
kn+

√
8D log(k) .

Proof. The first statement is a special case of Theorem 5.3, which is presented in Section 5.5. For
the second statement we use a standard summation lemma, by which for a sequence of positive
d1, . . . , dn we have

∑n
t=1

(
dt/
√∑t

s=1 ds

)
≤ 2

√∑t
s=1 dt [89, Lemma 8] and the convention that

if dt = 0 then ηtdt = 0 (so that zero terms naturally fall out of the summation). By substituting
the definition of the learning rate in the second statement into the first statement and using
the summation lemma we obtain

Rn ≤ 4
√
kn+

√
8Dn log(k) .

Finally, note that an observation from round t with delay dt contributes 1 to each of dt, . . . , dt+dt ,
i.e., it contributes dt to the total sum of the number of outstanding observations

∑n
t=1 dt. Since

we have assumed that t+ dt ≤ n for all t, we have
∑n
t=1 dt =

∑n
t=1 dt = D.

The main advantage of Algorithm 7 and Theorem 5.1 compared to the work of Thune et al.
[98] is that the tuning requires neither the knowledge of D and n, nor doubling.

5.4.2 Refined bounds for unbalanced delays

Thune et al. [98] observed that if the delays are highly unbalanced it may be worth skipping
rounds with overly large delays rather than keeping them in the analysis. Let S denote the
set of skipped rounds and |S| their number. The regret in every skipped round is trivially
bounded by 1 and, assuming we knew which rounds to skip, we could reduce the regret bound
to O

(√
kn+ |S|+

√
DS̄ log(k)

)
. As shown by Thune et al., this could potentially be much
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smaller than the regret bound in Theorem 5.1. For example, if the delay in the first θ(
√
kn)

rounds is of order n and the delay in the remaining rounds is zero, then the regret bound
in Theorem 5.1 is of order n3/4, whereas the refined regret bound is of order n1/2 (ignoring
the dependence on k). The challenge faced by Thune et al. was that they had to know the
delays in advance (more precisely, “at action time”) in order to tune the parameters of their
algorithm and make the skipping decision. Since we have an anytime algorithm, we are able to
obtain the refinement with no need in advance knowledge of the delay information. Strictly
speaking, we even do not need to skip observations and we can obtain the refinement by using
all observations and only adjusting the learning rate appropriately, although technically the
“no-skipping” solution yields the same regret bound as skipping.

The following theorem provides our adaptive bound.

Theorem 5.2. Algorithm 7 with advanced learning rate tuning provided in Algorithm 8 satisfies

Rn ≤ 4
√
kn

+ 10 max

minS⊂[n] |S|+
√
DS̄ log(k),

2 log(k).

The proof is postponed to Section 5.5

5.4.3 Intuition behind the “skipping” procedure

In order to give an intuition behind the refined algorithm we provide a simple back-of-the-
envelope calculation. If we skip |S| rounds and trivially bound their regret by 1 and apply
Theorem 5.1 to the remaining rounds, then the regret bound is O(

√
kn+

√
DS̄ log(k) + |S|).

Thus, the number of skipped rounds can be as large as
√
DS̄ log(k) without significantly

impacting the bound. Obviously, we want to skip rounds with the largest delays, but how
should we determine the skipping threshold X? If we want to achieve a significant reduction in
the regret bound, the skipped delay DS =

∑
t∈S dt ≥ X|S| should be at least as large as the

remaining delay DS̄ , because D = DS +DS̄ and our aim is to reduce the
√
D log k term. Thus,

if we put a threshold at X and skip
√
DS̄ log(k) rounds we want to have X

√
DS̄ log(k) ≥ DS̄ .

Therefore, we aim at X =
√
DS̄/ log(k). However, there are two challenges: (a) we do not

know the delays dt in advance and, therefore, we do not know which rounds to skip, and (b)
the threshold definition is recursive: X depends on DS̄ and DS̄ depends on X.

The strategy that we take in Algorithm 8 is the following: we keep a running estimate
D̃t of DS̄ . For an observation from round s we initially start waiting and count it in the
number of outstanding observations d̃t for the initial rounds. However, we constantly monitor
the waiting time and if the observation has not arrived within

√
D̃t/ log(k) rounds we stop

waiting. The initial rounds we have been waiting for still count for the estimate D̃t. Another
quick back-of-the-envelope calculation shows that if D̃t is indeed a good approximation of DS̄ ,
then the extra delay from the initial waiting rounds is of order

√
DS̄ log(k)

√
DS̄/ log(k) = DS̄ ,

where the first term is a rough estimate of the number of rounds that we skip and the second
term is a rough estimate of the initial waiting time for each of the observations. Thus, the
initial waiting time has no significant impact on the final bound.

Algorithm 8 follows this intuitive approach. We use indicator variables (ats)(s,t)∈[n]2 to keep
track of which observations `s,As we are still waiting for at round t (expressed by ats = 1) and
which not (expressed by ats = 0). We use d̃t to count the truncated number of outstanding
observations, where those observations we are no longer waiting for at round t are excluded
from counting. We provide a detailed analysis in Section 5.5.2, but before we get there we



5.5. ANALYSIS OF FTRL FOR BANDITS WITH DELAYS 101

provide a refined version of Theorem 5.1, which allows us to use all observations and only use
skipping in the tuning of the learning rate. (Though, as already mentioned, complete skipping
of the observations would lead to the same regret bound as in Theorem 5.2.)

5.5 Analysis of FTRL for bandits with delays

In this section we develop a novel analysis of FTRL-style algorithms and present a generalization
of the first part of Theorem 5.1. The analysis is based on a permuted counting of losses, similar
to the techniques used by Joulani et al. [57] and Thune et al. [98]. Afterward, we use the
general regret bound to prove Theorem 5.2.

5.5.1 Dependency preserving permutations

Reordering of losses by a permutation ρ : [n] → [n] is a useful tool in the analysis of online
learning with delays. Joulani et al. [57] have used “ordering by arrival”, where the losses ˆ̀

s

are sorted by the time of arrival s+ ds with ties broken arbitrarily. We generalize this type of
analysis by studying a general class of admissible permutations. This also provides insights
into why it is useful to consider permutations.

Definition 5.2. A permutation ρ : [n]→ [n] is dependency preserving if it satisfies:

∀ s, t ∈ [n] : s+ ds < t ⇒ ρ(s) < ρ(t) .

It means that if at the beginning of round t the loss `s,As has been already observed (and thus
can influence the selection of At), then s must come before t under the permutation.
Furthermore, we define the ρ-number of outstanding observations at time t by

dρt =
∑

s:ρ(s)<ρ(t)
I{s+ ds ≥ t} .

Example 5.1. The identity function id(t) = t is dependency preserving, since `s,As being
observed before t implies id(s) = s < t = id(t).

Example 5.2. “Ordering by arrival” is dependency preserving, since s+ ds < t ⇒ s+ ds <
t+ dt ⇒ ρ(s) < ρ(t).

The ρ-number of outstanding observations extends the previous definition of the number of
outstanding observations in the sense that dt = didt . Furthermore, the property

∑n
t=1 d

ρ
t = D

holds for any dependency preserving permutation ρ (refer to Lemma 5.6 in the supplementary
material, Section 5.6.1).

Next we present a general regret bound which holds for any dependency preserving permu-
tation ρ.

Theorem 5.3. For any dependency preserving permutation ρ, the regret of Algorithm 7 with
non-increasing positive learning rates (ηt)t=1,...,n satisfies

Rn ≤ 4
√
kn+ η−1

n log(k) +
n∑
t=1

min{1, ηtdρt } .

Remark 5.1. The first part of Theorem 5.1 is a direct corollary using ρ = id.

The proof uses Lemmas 5.1, 5.2, and 5.3. In order to motivate them we first present the
proof and then the lemmas.



102 CHAPTER 5. DELAYED FEEDBACK

Proof. We define cumulative losses L̂ρt =
∑
s:ρ(s)<ρ(t)

ˆ̀
s (and by convention L̂ρn+1 =

∑n
s=1

ˆ̀
s)

and i∗ = arg min
∑n
t=1 `t,i. We decompose the regret into three terms:

Rn = E
[
n∑
t=1

`t,At − `t,i∗
]

= E
[
n∑
t=1
〈xt, ˆ̀

t〉 − 〈ei∗ , ˆ̀
t〉
]

= E
[

n∑
t=1

(
F
∗
t (−L̂obst − ˆ̀

t)− F
∗
t (−L̂obst ) + 〈xt, ˆ̀

t〉
)

︸ ︷︷ ︸
(A)

+
n∑
t=1

(
F
∗
t (−L̂obst )− F ∗t (−L̂obst − ˆ̀

t)

−F ∗t (−L̂
ρ
t ) + F

∗
t (−L̂

ρ
t+1)

)
︸ ︷︷ ︸

(B)

+
n∑
t=1

(
F
∗
t (−L̂

ρ
t )− F

∗
t (−L̂

ρ
t+1)− 〈ei∗ , ˆ̀

t〉
)

︸ ︷︷ ︸
(C)

]
.

Term (A) is a typical Bregman divergence term from the classical FTRL/OMD analysis
and depends on the local norm of the regularizer. Lemma 5.1 directly gives

E[(A)] ≤
n∑
t=1

√
k/
√
t ≤ 2

√
kn .

Term (C) can also be bounded by standard techniques. Lemma 5.2 gives us

(C) ≤ 2
√
kn+ η−1

n log(k) .

Term (B) requires a novel analysis, which is presented in Lemma 5.3. This allows to bound
the second term by

E[(B)] ≤
n∑
t=1

min{1, ηtdρt } .

Combining everything finishes the proof.

Support lemmas for the proof of Theorem 5.3 The proofs for all the support lemmas
are given in the supplementary material, Section 5.6.4. The first Lemma is a small modification
of the classical result that bounds the Bregman divergence by the local norm of the regularizer.
We show that we can bound the local norm by the contribution of the Tsallis entropy.

Lemma 5.1. For any t it holds that

E
[
F
∗
t (−L̂obst − ˆ̀

t)− F
∗
t (−L̂obst ) + 〈xt, ˆ̀

t〉
]
≤
√
k√
t
.

The second Lemma bounds the so-called “penalty” term coming from the regularization
penalty. It appears in almost identical form in the literature [70, Exercise 28.12].
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Lemma 5.2. For any non-increasing learning rate ηt, it holds that

n∑
t=1

(
F
∗
t (−L̂

ρ
t )− F

∗
t (−L̂

ρ
t+1)− 〈ei∗ , ˆ̀

t〉
)

≤ 2
√
kn+ η−1

n log(k) .

The third quantity does not show up in the regular analysis without delays. We show that
similarly to the Bregman divergence, it depends on the local norm of the regularizer. However,
it is beneficial to use the norm of the negative entropy instead of the Tsallis entropy.

Lemma 5.3. For any t it holds that

E
[
F
∗
t (−L̂obst )− F ∗t (−L̂obst − ˆ̀

t)

− F ∗t (−L̂
ρ
t ) + F

∗
t (−L̂

ρ
t+1)

]
≤ min{1, ηtd̃ρt } .

5.5.2 Refined regret bound

The reason why it is beneficial to consider permutations in the analysis is the following lemma.

Lemma 5.4. For any S ⊂ [n] there exists a dependency preserving permutation ρ, such that

∀t ∈ S̄ : dρt =
∑
s:s<t

I{s ∈ S̄}I{s+ ds ≥ t} .

Furthermore, this implies
∑
t∈S̄ d

ρ
t ≤

∑
t∈S̄ dt.

An iterative procedure for construction of ρ is given in the supplementary material, Sec-
tion 5.6.1. The lemma allows to split the rounds into sets S and S̄ and construct a permutation,
so that the number of outstanding delays for rounds in S̄ only depends on the delays in other
rounds in S̄, but not on rounds in S. Fig. 5.1 provides an example of construction of such a
permutation. The lemma is particularly useful for splitting the rounds into a set S containing
large delays and the complementary set S̄ containing small delays. Then the lemma allows to
“push” the contributions to the ρ-number of outstanding observations away from the elements
in S̄ to the elements in S. Skipping the rounds in S yields the highest benefit.

Combining Lemma 5.4 with Theorem 5.3 and a suitable learning rate leads directly to the
bound

Rn ≤ 4
√
kn+ |S|+ 2

√∑
t∈S̄

ds log(k) .

In the following proof, we show that the learning rate in Algorithm 8 brings us within a constant
of the minimum of the above bound, 4

√
kn+ minS(|S|+ 2

√
DS̄ log(k)).

From now on, let S be the set

S = {t ∈ [n] | ant = 0} ,

which is the set of rounds “skipped” by Algorithm 8, and let ρ be the associated permutation from
Lemma 5.4. Since (ats)t=1,...,n is non-increasing, we have for any t ∈ S̄: dρt ≤ d̃t. Furthermore,
the following lemma bounds the magnitude of |S|:
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t 1 2 3 4 5 6 7 8 9 10
dt 9 0 6 0 5 0 0 0 0 0
dρ0
t 0 1 1 2 2 3 3 3 3 2

t 2 3 4 5 6 7 8 9 10 1
dt 0 6 0 5 0 0 0 0 0 9
dρ1
t 0 0 1 1 2 2 2 2 1 9

t 2 4 5 6 7 8 9 3 10 1
dt 0 0 5 0 0 0 0 6 0 9
dρ2
t 0 0 0 1 1 1 1 6 1 9

t 2 4 6 7 8 9 3 10 5 1
dt 0 0 0 0 0 0 6 0 5 9
dρ3
t 0 0 0 0 0 0 5 0 6 9

Figure 5.1: An iterative construction of the permutation in Lemma 5.4. Colored columns are
elements in S.

Lemma 5.5. For any sequence of delays dt, Algorithm 8 satisfies

|S| =
n∑
t=1

I{ant = 0} ≤ 2
√
D̃n log(k) .

The proof is provided in the supplementary material, Section 5.6.2.
Finally we have all the prerequisites to prove Theorem 5.2 .

Proof of Theorem 5.2. Using Theorem 5.3 and Lemma 5.5 with ρ constructed for S, we have

Rn ≤ 4
√
kn+ η−1

n log(k) +
n∑
t=1

min{1, ηtdρt }

≤ 4
√
kn+ η−1

n log(k) + |S|+
∑
t∈S̄

ηtd̃t

≤ 4
√
kn+ 5

√
D̃n log(k) .

Now we need to control the term
√
D̃n log(k). Let’s consider the case D̃n ≤ 4

√
D̃n log(k), then√

D̃n log(k) ≤ 4 log(k) and we are done. Otherwise, define d̃t =
∑t+dt
s=t+1 a

s
t , i.e., the contribution

of round t to the sum D̃n. Then we can decompose

D̃n =
n∑
s=1

∑
t<s

I{t+ dt > s}ast

=
n∑
t=1

∑
s>t

I{t+ dt > s}ast

=
n∑
t=1

t+dt∑
s=t+1

ast =
n∑
t=1

d̃t .

Any element t ∈ S̄ satisfies

d̃t ≤
√
D̃t/ log(k) ≤

√
D̃n/ log(k) ,

while any element t ∈ S satisfies

d̃t ≤
⌈√

D̃t/ log(k)
⌉
≤
⌈√

D̃n/ log(k)
⌉

≤
√
D̃n/ log(k) + 1 .



5.6. DISCUSSION 105

Therefore, we can bound for any R ⊂ [n]:

∑
t∈R̄

dt ≥
∑
t∈R̄

d̃t ≥ D̃n − |R|
√
D̃n/ log(k)− |S|

≥ D̃n − |R|
√
D̃n/ log(k)− 2

√
D̃n log(k)

≥ 1
2D̃n − |R|

√
D̃n/ log(k) .

This implies that

min
R⊂[n]

|R|+
√∑
t∈R̄

dt log(k)

≥ min
r∈[0, 12

√
D̃n log(k)]

r +
√

1
2D̃n log(k)− r

√
D̃n log(k) .

The function is concave in r so the minimum is achieved at one of the endpoints of the interval,
which happens to be r = 1

2

√
D̃n log(k) for which the function equals 1

2

√
D̃n log(k). Hence, we

have shown

√
D̃n log(k) ≤ 2 min

R⊂[n]

|R|+√∑
s∈R̄

ds log(k)

 ,

which concludes the proof.

5.6 Discussion

We confirmed an open conjecture from Cesa-Bianchi et al. [34] by presenting a simple FTRL
algorithm for adversarial bandits with arbitrary delays and proving regret upper bound that
matches the lower bound within constants. Furthermore, we proposed a refined tuning of
the learning rate that achieves even tighter regret bound for highly unbalanced delays. We
strictly improve on the state-of-the-art bounds and present the first anytime result requiring no
doubling, skipping, or advance information about the delays.

If the delays are all 0, then our algorithm reduces to the Tsallis-INF algorithm of Zimmert
and Seldin [111], which has been proven to be simultaneously optimal in both the stochastic
and the adversarial setting. We conjecture that the algorithm presented in this paper is capable
of obtaining logarithmic regret in the stochastic setting, but leave the analysis for future work.

Another open question is the tightness of our adaptive bound O(
√
kn + minS⊂[n](|S| +√

DS log(k))). We conjecture that for a fixed set of delays {d1, . . . , dn} which the adversary is
allowed to permute without changing the magnitudes, the upper bound is actually tight.
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Appendix

5.6.1 Properties of dependency preserving permutations

Lemma 5.6. For any dependency preserving ρ, the sum of ρ-number of outstanding observations
is identical to the total sum of delays:

n∑
t=1

dρt =
n∑
t=1

dt = D .

Proof of Lemma 5.6.

n∑
t=1

dρt =
n∑
t=1

∑
s:ρ(s)<ρ(t)

I{s+ ds ≥ t}

=
n∑
t=1

ρ(t)− 1−
∑

s:ρ(s)<ρ(t)
I{s+ ds < t}

=
n∑
t=1

t− 1−
∑
s

I{s+ ds < t}

=
n∑
t=1

∑
s:s<t

I{s+ ds ≥ t}

=
n∑
s=1

∑
t:t>s

I{s+ ds ≥ t}

=
n∑
s=1

ds = D .

Proof of Lemma 5.4. We define the permutation ρ iteratively. Let ρ0 = id be the identity
permutation and let (t1, t2, . . . , t|S|) be an increasing indexing of the set S. We iteratively define

ρm(s) :=


ρm−1(tm + dtm), if s = tm,

ρm−1(s), for ρm−1(s) < ρm−1(tm) ,
ρm−1(s), for ρm−1(s) > ρm−1(tm + dtm) ,
ρm−1(s)− 1, otherwise.

To get from ρm−1 to ρm, we only move the element tm directly behind the the element
tm + dtm . The final permutation is ρ = ρ|S|.

Proof that ρ is dependency preserving Since we start with a dependency preserving
permutation ρ0, we only need to prove the induction step that ρm is dependency preserving
under the condition that ρm−1 is. In the step from ρm−1 to ρm, we move the point tm to the right,
so for any t 6= tm and any s, we have that ρm−1(t) < ρm−1(s) ⇒ ρm(t) < ρm(s). Hence, by the
induction condition, for any t 6= tm we have: t+dt < s ⇒ ρm−1(t) < ρm−1(s) ⇒ ρm(t) < ρm(s).
We only need to verify that tm+dtm < s⇒ ρm(tm) < ρm(s). In the permutation ρm−1, we know
that tm + dtm < s ⇒ ρm−1(tm + dtm) < ρm−1(s), because only elements smaller than tm have
been moved. The construction of ρm defines ρm(tm) = ρm−1(tm + dtm) and ρm(s) = ρm−1(s)
for all ρm−1(s) > ρm−1(tm + dtm). Hence we have tm + dtm < s⇒ ρm(tm) = ρm−1(tm + dtm) <
ρm−1(s) = ρm(s), which concludes the first part of the lemma.
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ρ-number of outstanding delays By definition we have

dρt :=
∑

s:ρ(s)<ρ(t)
{s+ ds ≥ t} =

∑
s∈[n]\S:ρ(s)<ρ(t)

{s+ ds ≥ t}+
∑

s∈S:ρ(s)<ρ(t)
I{s+ ds ≥ t}

(a)
=

∑
s∈[n]\S:s<t

I{s+ ds ≥ t}+
∑

s∈S:ρ(s)<ρ(t)
I{s+ ds ≥ t}

(b)
=

∑
s∈[n]\S:s<t

{s+ ds ≥ t} =
∑
s:s<t

I{s ∈ [n] \ S}I{s+ ds ≥ t} .

(a) holds because the ordering does not change for s, t ∈ [n] \S. (b) follows because any s ∈ S
has been moved behind t′ = s+ ds, so s+ ds ≥ t implies ρ(s) > ρ(t).

Bounded sum Using the above property, we have

∑
t∈[n]\S

dρt =
∑

t∈[n]\S

t−1∑
s=1

I{s ∈ [n] \ S}I{s+ ds ≥ t}

=
∑

s∈[n]\S

n∑
t=s+1

I{s ∈ [n] \ S}I{s+ ds ≥ t}

=
∑

s∈[n]\S

s+ds∑
t=s+1

I{s ∈ [n] \ S} ≤
∑

s∈[n]\S
ds .

5.6.2 Auxiliary lemmas for Algorithm 8

Lemma 5.7. Algorithm 8 will not deactivate more than 1 point at a time.

By deactivating we mean setting ant = 0.

Proof. We prove the lemma by contradiction. Assume that s1, s2 are both deactivated at time t.
W.l.o.g. let s2 ≤ s1−1. Deactivation of s1 at time tmeans t−s1 ≥

√
Dt/ log(k) ≥

√
Dt−1/ log(k).

At the same time we assumed t−1−s2 ≥ t−s1, which means that s2 would have been deactivated
at round t− 1 or earlier.

Proof of Lemma 5.5. Recall that d̃t =
∑t+dt
s=t+1 a

s
t is the contribution of a timestep t to the sum

D̃n.
Let (t1, . . . , t|S|) be an indexing of S. By Lemma 5.7 we deactivate at most one antm per

round. Thus, we have that

d̃tm >
√
D̃tm+dtm/ log(k) ≥

√√√√ m∑
i=1

d̃ti/ log(k) =

√
d̃m +

∑m−1
i=1 d̃ti√

log(k)
.

By solving the quadratic inequality in dtm we obtain

d̃tm >
1 +

√
1 + 4 log(k)

∑m−1
i=1 d̃ti

2 log(k) .
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Now we prove by induction that d̃tm > m
2 log(k) . The induction base holds since d̃t1 = 1. For the

inductive step we have

d̃tm >
1 +

√
1 + 4 log(k)

∑m−1
i=1 d̃ti

2 log(k) >
1 +

√
1 +m(m− 1)
2 log(k) >

m

2 log(k) .

Finally, we have

√
D̃n log(k) ≥

√√√√ |S|∑
m=1

d̃tm log(k) >

√
|S|(|S|+ 1)

4 >
1
2 |S| .

5.6.3 Standard properties of FTRL analysis

First we list some standard properties of FTRL that we use in the proofs of the remaining
lemmas. We recall that ft(x) = −2

√
t
√
x+ η−1

t x log(x).

Fact 5.1. f ′′t (x) : R+ → R+ are monotonically decreasing functions and f∗′t : R → R+ are
convex and monotonically increasing.

Proof. By definition f ′′t (x) = 1
2
√
tx−3/2 + η−1

t x−1, which concludes the first statement. Since
ft are Legendre functions, we have f∗t

′′(y) = f ′′t (f∗t ′(y))−1 > 0. Therefore the function is
monotonically increasing. Since both f ′′t (x)−1, as well as f∗t ′(y) are increasing, the composition
is as well and f∗t

′′′ > 0.

Fact 5.2. For any convex F , for L ∈ Rk and c ∈ R:

F
∗(L+ c1k) = F

∗(L) + c .

Proof. By definition F ∗(L+c1k) = maxx∈∆([k])〈x, L+c1k〉−F (x) = maxx∈∆([k])〈x, L〉−F (x)+
c = F

∗(L) + c.

Fact 5.3. For any xt there exists c ∈ R, such that:

xt = ∇F ∗t (−L̂obst ) = ∇F ∗t (−L̂obst + c1k) = ∇F ∗t (∇Ft(xt)) .

Proof. By the KKT conditions, there exists c ∈ R, such that xt = arg maxx∈∆([k])〈x,−L̂obst 〉+
Ft(x) satisfies∇Ft(xt) = −L̂obst +c1k. The rest follows by the standard property∇F = (∇F ∗)−1

of Legendre F .

Fact 5.4. For any Legendre function F and L ∈ Rk it holds that

F
∗(L) ≤ F ∗(L)

with equality iff there exists x ∈ ∆([k]), such that L = ∇F (x).

Proof. The first statement follows from the definition, since for any A ⊂ B: maxx∈A f(x) ≤
maxx∈B f(x). The second part follows because equality means that arg maxx〈x, L〉 − F (x) =
∇F ∗(L) ∈ ∆([k]), which is equivalent to the statement.

Fact 5.5. For any x ∈ ∆([k]), L ≥ 0 and i ∈ [k]:

∇F ∗t (∇Ft(x)− L)i ≥ ∇F ∗t (∇Ft(x)− L)i .
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Proof. By fact 5.3, there exists c ∈ R : ∇F ∗t (∇Ft(x) − L) = ∇F ∗t (∇Ft(x) − L + c1k). The
statement is equivalent to c being non-negative, since f∗′ are monotonically increasing. If c < 0,
then

1 =
k∑
i=1

(∇F ∗t (∇Ft(x)− L))i =
k∑
i=1

(∇F ∗t (∇Ft(x)− L+ c1k))i =
k∑
i=1

f∗t
′(f ′t(xi)− Li + c) <

k∑
i=1

f∗t
′(f ′t(xi)) = 1 ,

which is a contradiction and completes the proof.

Fact 5.6. Let DF (x, y) = F (x)−F (y)−〈x−y,∇F (y)〉 be the Bregman divergence of a function
F . For any Legendre function f with monotonically decreasing second derivative, x ∈ dom(f),
and ` ≥ 0, such that f ′(x)− ` ∈ dom(f∗):

Df∗(f ′(x)− `, f ′(x)) ≤ `2

2f ′′(x) .

Proof. By Taylor’s theorem, there exists x̃ ∈ [f∗′(f ′(x)−`), x], such that Df∗(f ′(x)−`, f ′(x)) =
`2

2f ′′(x̃) . x̃ is smaller than x, since f∗′ is monotonically increasing. Finally, using the fact that
the second derivative is decreasing allows to bound f ′′(x̃)−1 ≤ f ′′(x)−1.

5.6.4 Proofs of the Main Lemmas

Proof of Lemma 5.1.

F
∗
t (−L̂obst − ˆ̀

t)− F
∗
t (−L̂obst ) + 〈xt, ˆ̀

t〉
(a)
= F

∗
t (∇Ft(xt)− ˆ̀

t)− F
∗
t (∇Ft(xt)) + 〈xt, ˆ̀

t〉
(b)
≤ F ∗t (∇Ft(xt)− ˆ̀

t)− F ∗t (∇Ft(xt)) + 〈xt, ˆ̀
t〉

=
k∑
i=1

Df∗t
(f ′t(xt,i)− ˆ̀

t,i, f
′
t(xt,i))

= Df∗t
(f ′t(xt,At)− `t,Atx−1

t,At
, f ′t(xt,At))

(c)
≤ 1

2`
2
t,Atx

−2
t,At

f ′′t (xt,At)−1

≤ 1
2`

2
t,Atx

−2
t,At

f ′′t1(xt,At)−1

= 1
2`

2
t,Atx

−2
t,At

2x
3
2
t,At√
t

≤
x
− 1

2
t,At√
t
.

(a) Applies facts 5.2 and 5.3. (b) Follows from both parts of fact 5.4. (c) Uses fact 5.6. In
expectation we get

E
[
F
∗
t (−L̂obst − ˆ̀

t)− F
∗
t (−L̂obst ) + 〈xt, ˆ̀

t〉
]
≤

k∑
i=1

√
xt,i√
t
≤
√
k√
t
.

Proof of Lemma 5.2. Let x̃t = arg maxx∈∆([k])〈x,−L̂
ρ
t 〉 − Ft(x), then

F
∗
t (−L̂

ρ
t ) = 〈x̃t, L̂ρt 〉 − Ft(x̃t).
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Furthermore, since F ∗(−L̂ρt ) = maxx∈∆([k])〈x,−L̂
ρ
t 〉 − F (x), we have

−F ∗t−1(−L̂ρt ) ≤ 〈x̃t,−L̂
ρ
t 〉 − Ft−1(x̃t) ,

−F ∗n(−L̂ρn+1) ≤ 〈ei∗ ,−L̂ρn+1〉Fn(ei∗) =
n∑
t=1
〈ei∗ , ˆ̀

t〉 .

Plugging these inequalities into the LHS leads to
n∑
t=1

(
F
∗
t (−L̂

ρ
t )− F

∗
t (−L̂

ρ
t+1)− 〈ei∗ , ˆ̀

t〉
)
≤

n∑
t=1

Ft−1(x̃t)− Ft(x̃t)

≤
n∑
t=1

max
x∈∆([k])

Ft−1(x)− Ft(x)

= −Fn(1k/k) = 2
√
kn+ η−1

n log(k) .

Proof of Lemma 5.3. First we prove that the term is upper bounded by 1. We have

F
∗
t (−L̂obst )− F ∗t (−L̂obst − ˆ̀

t)− F
∗
t (−L̂

ρ
t ) + F

∗
t (−L̂

ρ
t+1)

= −D
F
∗
t
(−L̂obst − ˆ̀

t,−L̂obst )−D
F
∗
t
(−L̂ρt ,−L̂

ρ
t+1) + 〈xt −∇F

∗(−L̂ρt+1), ˆ̀
t〉 ≤ 1 .

For the second part, we define L̂misst = L̂ρt − L̂obst . Then we have

−F ∗t (−L̂
ρ
t ) + F

∗
t (−L̂

ρ
t+1)

(a)
= −

∫ 1

0
〈ˆ̀t,∇F

∗
t (−L̂

ρ
t − xˆ̀

t)〉 dx

= −
∫ 1

0
〈ˆ̀t,∇F

∗
t (−L̂obst − L̂misst − xˆ̀

t)〉 dx

(b)
≤ −

∫ 1

0
〈ˆ̀t,∇F

∗
t (−L̂obst − L̂misst,At eAt − xˆ̀

t)〉 dx .

(a) Uses the fundamental theorem of calculus. (b) Follows from the fact that ∇F ∗t (−L)At
decreases if the loss in coordinates other than At is reduced. Therefore, we have

F
∗
t (−L̂obst )− F ∗t (−L̂obst − ˆ̀

t)− F
∗
t (−L̂

ρ
t ) + F

∗
t (−L̂

ρ
t+1)

(c)
≤
∫ 1

0
〈ˆ̀t,∇F

∗
t (−L̂obst − xˆ̀

t)〉 dx−
∫ 1

0
〈ˆ̀t,∇F

∗
t (−L̂obst − L̂misst,At eAt − xˆ̀

t)〉 dx

(d)
=
∫ 1

0
〈ˆ̀t, z̃(x)−∇F ∗t (∇Ft(z̃(x))− L̂misst,At eAt)〉 dx

(e)
≤
∫ 1

0
〈ˆ̀t, z̃(x)−∇F ∗t (∇Ft(z̃(x))− L̂misst,At eAt)〉 dx

=
∫ 1

0
ˆ̀
t,At(z̃At(x)− f∗′t(f ′t(z̃At(x))− L̂misst,At ) dx

(f)
≤
∫ 1

0
ˆ̀
t,At(f∗

′′
t (f ′t(z̃At(x)))L̂misst,At dx

=
∫ 1

0
`t,Atx

−1
t,At

f ′′t (z̃At(x))−1L̂misst,At dx

(g)
≤
∫ 1

0
`t,Atx

−1
t,At

f ′′t (xt,At)−1L̂misst,At dx

≤ x−1
At
f ′′t2(xAt)−1L̂misst,At

= ηtL̂
miss
t,At .
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(c) uses the Fundamental theorem of calculus together with the inequality above. (d) substitutes
z̃(x) = ∇F ∗t (−L̂obst − xˆ̀

t) and applies fact 5.3. (e) applies fact 5.5. (f) f∗′(t) is convex,
so −f∗′(f ′(z̃At) − `) ≤ −z̃At + f∗′′(f ′(z̃At)). (g) follows because z̃At ≤ xt,At and f ′′t (x)−1 is
monotonically increasing. Finally, due to the unbiasedness of the loss estimators we have in
expectation

E[L̂misst,At ] =
∑

s:ρ(s)<ρ(t)
I{s+ ds ≥ t}`s,At ≤ dρt .
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Chapter 6

Connections to Bayesian Bandits

The work presented in this chapter is based on a paper that has been accepted as [108].

[108] Zimmert, J. and Lattimore, T. (2019). Connections between mirror descent, Thompson
sampling and the information ratio. In Advances in Neural Information Processing
Systems (NeurIPS)

113
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Abstract

The information-theoretic analysis by Russo and Van Roy [86] in combination with minimax
duality has proved a powerful tool for the analysis of online learning algorithms in full and
partial information settings. In most applications there is a tantalising similarity to the classical
analysis based on mirror descent. We make a formal connection, showing that the information-
theoretic bounds in most applications can be derived from existing techniques for online convex
optimisation. Besides this, for k-armed adversarial bandits we provide an efficient algorithm
with regret that matches the best information-theoretic upper bound and improve best known
regret guarantees for online linear optimisation on `p-balls and bandits with graph feedback.

6.1 Introduction

The combination of minimax duality and the information-theoretic machinery by Russo and
Van Roy [86] has proved a powerful tool in the analysis of online learning algorithms. This
has led to short and insightful analysis for k-armed bandits, linear bandits, convex bandits
and partial monitoring, all improving on prior best known results. The downside is that the
approach is non-constructive. The application of minimax duality demonstrates the existence of
an algorithm with a given bound in the adversarial setting, but provides no way of constructing
that algorithm.

The fundamental quantity in the information-theoretic analysis is the ‘information ratio’ in
round t, which informally is

information ratiot = (expected regret in round t)2

expected information gain in round t
,

where the information gain is either measured using the mutual information [86] or a generali-
sation based on a Bregman divergence [72]. Proving the information ratio is small corresponds
to showing that either the learner is suffering small regret in round t or gaining information,
which ultimately leads to a bound on the cumulative regret. The aforementioned generalisation
by Lattimore and Szepesvári [72] (restated in the supplementary) lead to a short analysis
for k-armed adversarial bandits that is minimax optimal except for small constant factors.
The authors speculated that the new idea should lead to improved bounds for a range of
online learning problems and suggested a number of applications, including bandits with graph
feedback [9] and linear bandits on `p-balls [27].

We started to follow this plan, successfully improving existing minimax bounds for bandits
with graph feedback and online linear optimisation for `p-balls with full information (the bandit
setting remains a mystery). Along the way, however, we noticed a striking connection between
the analysis techniques for bounding the information ratio and controlling the stability of
online stochastic mirror descent (OSMD), which is a classical algorithm for online convex
optimisation. A connection was already hypothesised by Lattimore and Szepesvári [72], who
noticed a similarity between the bounds obtained. Notably, why does using the negentropy
potential in the information-theoretic analysis lead to almost identical bounds for k-armed
bandits as Exp3? Why does this continue to hold with the Tsallis entropy and the INF strategy
[14]?

Contribution Our main contribution is a formal connection between the information-
theoretic analysis and OSMD. Specifically, we show how tools for analysing OSMD can be
applied to a modified version of Thompson sampling that uses the same sampling strategy as
OSMD, but replaces the mirror descent update with a Bayesian update. This contribution is
valuable for several reasons: (a) it explains the similarity between the information-theoretic
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and OSMD style analysis, (b) it allows for the transfer of techniques for OSMD to Bayesian
regret analysis and (c) it opens the possibility of a constructive transfer of ideas from Bayesian
regret analysis to the adversarial framework, as we illustrate in the next contribution.

A curiosity in the Bayesian analysis of adversarial k-armed bandits is that the resulting
bound was always a factor of 2 smaller than the corresponding bound for OSMD. This was
true in the original analysis [86] and its generalisation [72]. Our new theorem entirely explains
the difference, and indeed, allows us to improve the bounds for OSMD. This leads to an
efficient algorithm for adversarial k-armed bandits with regret Rn ≤

√
2kn+O(k), matching

the information-theoretic upper bound except for small lower-order terms.
Finally, we improve the regret guarantees for two online learning problems. First, for bandits

with graph feedback we improve the minimax regret in the ‘easy’ setting by a log(n) factor,
matching the lower bound up to a factor of log3/2(k). Second, for online linear optimisation
over the `p-balls we improve existing bounds by arbitrarily large constant factors. At first we
had proved these results using the information-theoretic tools and minimax duality, but here
we present the unified view and consequentially the analysis also applies to OSMD for which
we have efficient algorithms.

Related work The information-theoretic Bayesian regret analysis was introduced by [85,
86, 87]. The focus in these papers is on the analysis of Bayesian algorithms in the stochastic
setting, a line of work continued recently by [46]. [28] noticed that the stochastic assumption is
not required and that the results continued to hold in a Bayesian adversarial setting where
the prior is over arbitrary sequences of losses, rather than over (parametric) distributions as is
usual in Bayesian statistics. The idea to use minimax duality to derive minimax regret bounds
is due to [3] and has been applied and generalised by a number of authors [28, 30, 54, 72].
Mirror descent was developed by [77] and [78] for optimisation. As far as we know its first
application to bandits was by [4], which precipitated a flood of papers as summarised in the
books by [26, 70]. We work in the partial monitoring framework, which goes back to [88]. Most
of the focus since then has been on classifying the growth of the regret on the horizon for finite
partial monitoring games [12, 21, 37, 48, 71]. Bandits with graph feedback are a special kind of
partial monitoring problem and have been studied extensively [9, 10, 41, and others], with a
monograph on the subject by [101]. Online linear optimisation is an enormous subject by itself.
We refer the reader to the books by [35, 56].

Notation The reader will find omitted proofs in the appendix. Let [n] = {1, 2, . . . , n}
and Bd

p = {x ∈ Rd : ‖x‖p ≤ 1} be the standard `p-ball. For positive definite A we write
‖x‖2A = x>Ax. Given a topological space X, let int(X) be its interior and ∆(X) be the space of
probability measures on X with the Borel σ-algebra. We write X◦ = {y ∈ Rd : supx∈X |〈x, y〉| ≤
1} for the functional analysts polar and co(X) for the convex hull of X. The domain of a
convex function F : Rd → R ∪ {∞} is dom(F ) = {x : F (x) < ∞}. For x, y ∈ dom(F ) the
Bregman divergence between x and y with respect to F is DF (x, y) = F (x)− F (y)−∇Fx−y(y)
where ∇vF (x) is the directional derivative of F at x in the direction v. The diameter of
X with respect to F is diamF (X) = supx,y∈X F (x) − F (y). We abuse notation by writing
∇−2F (x) = (∇2F (x))−1. For x, y ∈ Rd we let [x, y] = co({x, y}) be the convex hull of x and y,
which is the set of points on the chord between x and y.

Linear partial monitoring Our results are most easily expressed in a linear version of the
partial monitoring framework, which extends the standard adversarial linear bandit framework
to general feedback structures. Let A be the action space and L the loss space, which are
subsets of Rd with A compact. The convex hull of A is X = co(A). When A is finite we let
k = |A|. The signal function is a known function Φ : A× L → Σ for some observation space Σ.
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An adversary and learner interact over n rounds. First the adversary secretly chooses (`t)nt=1
with `t ∈ L for all t. In each round t the learner samples an action At ∈ A from a distribution
depending on observations A1,Φ1, . . . , At−1,Φt−1 where Φs = Φ(As, `s) is the observation in
round s. The regret of policy π in environment (`t)nt=1 is

Rn(π, (`t)nt=1) = max
a∈A

E
[
n∑
t=1
〈At − a, `t〉

]
,

where the expectation is with respect to the randomness in the actions. The regret depends on
a policy and the losses. The minimax regret is

R∗n = inf
π

sup
(`t)nt=1

Rn(π, (`t)nt=1) ,

where the infimum is over all policies and the supremum over all loss sequences in Ln. From
here on the dependence of Rn on the policy and loss sequence is omitted.

Examples The standard k-armed bandit is recovered when A = {e1, . . . , ek}, L = [0, 1]k and
Φ(a, `) = 〈a, `〉 ∈ Σ = [0, 1]. For linear bandits the set A is an arbitrary compact set and L
is typically A◦. Bandits with graph feedback have a richer signal function as we explain in
Section 6.4.

Bayesian setting In the Bayesian setting the sequence of losses (`t)nt=1 are sampled from a
known prior probability measure ν on Ln and subsequently the learner interacts with the sampled
losses as normal. The optimal action is now a random variable A∗ = arg mina∈A

∑n
t=1〈a, `t〉

and the Bayesian regret is

BRn = E
[
n∑
t=1
〈At −A∗, `t〉

]
.

Finally, define Pt(·) = P(· | Ft) and Et[·] = E[ · | Ft] with Ft = σ(A1,Φ1, . . . , At,Φt), ∆t =
〈At − A∗, `t〉. A crucial piece of notation is Xt = Et−1[At] ∈ X , which is the conditional
expected action played in round t.

6.2 Mirror descent, Thompson sampling and the information
ratio

Algorithm 9: OSMD
Input: A = (P,E, F ) and η
Initialize X1 = arg mina∈X F (a)
for t = 1, . . . , n do

Sample At ∼ PXt and observe Φt

Construct: ˆ̀
t = E(Xt, At,Φt)

Update: Xt+1 = ft(Xt, At)

We now develop the connection between OSMD
and the information-theoretic Bayesian regret
analysis. Specifically we show that instances of
OSMD can be transformed into an algorithm
similar to Thompson sampling (TS) for which
the Bayesian regret can be bounded in the same
way as the regret of the original algorithm. The
similarity to TS is important. Any instance of
OSMD with a uniform bound on the adversarial regret enjoys the same bound on the Bayesian
regret for any prior without modification. Our result has a different flavour because we prove a
bound for a variant of OSMD that replaces the mirror descent update with a Bayesian update.

OSMD is a modular algorithm that depends on defining three components: (1) A sampling
scheme that determines how the algorithm explores, (2) a method for estimating the unobserved
loss vectors, and (3) a convex ‘potential’ and learning rate that determines how the algorithm
updates its iterates. The following definition makes this more precise.
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Definition 6.1. An instance of OSMD is determined by a tuple A = (P, F,E) and learning
rate η > 0 such that

(a) The sampling scheme is a collection P = {Px : x ∈ X} of probability measures in ∆(A)
such that EA∼Px [A] = x for all x ∈ X .

(b) The potential is a Legendre function F : Rd → R ∪ {∞} with dom(F ) ∩ X 6= ∅ and η > 0
is the learning rate.

(c) The estimation function is E : X×A×Σ→ Rd, which we assume satisfies EA∼Px [E(x,A,Φ(A, `))] =
` for all ` ∈ L and x ∈ X .

The assumptions on the mean of Px and that E is unbiased are often relaxed in minor ways,
but for simplicity we maintain the strict definition. For the remainder we fix A = (P, F,E)
and η > 0 and abbreviate

Et(x, a) = E(x, a,Φ(a, `t)) and ˆ̀
t = E(Xt, At,Φt) .

You should think of Et(x, a) as the estimated loss vector when the learner plays action a
while sampling from Px and ˆ̀

t as the realisation of this estimate in round t. OSMD starts by
initialising X1 as the minimiser of F constrained to X . Subsequently it samples At ∼ PXt and
updates

Xt+1 = arg min
y∈X

η〈y, ˆ̀
t〉+ DF (y,Xt) .

A useful notation is to let (ft)nt=1 and (gt)nt=1 be sequences of functions from X ×A to Rd with

ft(x, a) = arg min
y∈X

(η〈y,Et(x, a)〉+ DF (y, x)) and

gt(x, a) = arg min
y∈int(dom(F ))

(η〈y,Et(x, a)〉+ DF (y, x)) ,

which means that Xt+1 = ft(Xt, At), while gt is the same as ft, but without the constraint to
X . The complete algorithm is summarised in Algorithm 9. The next theorem is well known
[70, §28].
Theorem 6.1 (OSMD regret bound). The regret of OSMD satisfies

Rn ≤
diamF (X )

η
+ η

2E
[
n∑
t=1

stabt(Xt; η)
]
,

where stabt(x; η) = 2
η
EA∼Px

[
〈x− ft(x,A), Et(x,A)〉 − DF (ft(x,A), x)

η

]
.

The random variable stabt(Xt; η) measures the stability of the algorithm relative to the
learning rate and is usually almost surely bounded. The diameter term depends on how fast the
algorithm can move from the starting point to optimal, which is large when the learning rate is
small. In this sense the learning rate is tuned to balance the stability of the algorithm and the
requirement that (Xt) can tend towards an optimal point. Note that stabt(x) depends on P , E,
F , η and the loss vector `t, which means that in the Bayesian setting the stability function is
random. The next lemma is also known and is often useful for bounding the stability function.
Lemma 6.1. Suppose that F is twice differentiable on int(dom(F )), then

stabt(x; η) ≤ EA∼Px

[
sup

z∈[x,ft(x,A)]
‖Et(x,A)‖2∇−2F (z)

]
.

Furthermore, provided that gt(x, a) exists for all a in the support of Px, then

stabt(x; η) ≤ EA∼Px

[
sup

z∈[x,gt(x,A)]
‖Et(x,A)‖2∇−2F (z)

]
.
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Algorithm 10: MTS

Input: Prior ν and P
Initialize X1 = E[A∗]
for t = 1, . . . , n do

Sample At ∼ PXt and observe Φt

Update: Xt+1 = Et−1[A∗]

Bayesian analysis Modified Thompson sam-
pling (MTS) is a variant of TS summarised in
Algorithm 10 that depends on a prior distribu-
tion ν and a sampling scheme P . The algorithm
differs from Algorithm 9 in the computation
of Xt. Rather than using the mirror descent
update, it uses the Bayesian expected optimal
action conditioned on the observations. Expectations in this subsection are with respect to
both the prior and the actions, which means that (`t)nt=1 are randomly distributed according
to ν and consequently the functions ft, gt and stabt are random. Our main theorem is the
following bound on the Bayesian regret of MTS.

Theorem 6.2. MTS satisfies BRn ≤
diamF (X )

η
+ η

2E
[
n∑
t=1

stabt(Xt; η)
]

.

Remark 6.1. The stability function depends on A = (P, F,E) and η while Algorithm 10 only
uses P . In this sense Theorem 6.2 shows that MTS satisfies the given bound for all E, F and
η. MTS is the same as TS when sampling from the posterior is the same as sampling from
PXt . A fundamental case where this always holds is when A = {e1, . . . , ed} because each x ∈ X
is uniquely represented as a linear combination of elements in A and hence Px is unique.

Proof of Theorem 6.2. Beginning with the definition of the per-step regret,

Et−1 [∆t] = 〈Xt,Et−1[`t]〉 − Et−1 [〈A∗, `t〉]

= 〈Xt,Et−1[ˆ̀t]〉 − Et−1
[
〈A∗, ˆ̀

t〉
]

(6.1)

= 〈Xt,Et−1[ˆ̀t]〉 − Et−1
[
〈Et−1[A∗ |At,Φt], ˆ̀

t〉
]

(6.2)

= Et−1
[
〈Xt −Xt+1, ˆ̀

t〉
]

(6.3)

≤ Et−1

[
〈Xt − ft(Xt, At), ˆ̀

t〉 −
1
η

DF (ft(Xt, At), Xt) + 1
η

DF (Xt+1, Xt)
]

(6.4)

≤ Et−1

[
η

2 stabt(Xt; η) + 1
η

DF (Xt+1, Xt)
]
. (6.5)

Eq. (6.1) uses that the loss estimators are unbiased. Eq. (6.2) follows using the tower rule for
conditional expectations and the fact that ˆ̀

t is a measurable function of Xt, At and Φt so that

Et−1[〈A∗, ˆ̀
t〉] = Et−1[Et−1[〈A∗, ˆ̀

t〉 |At,Φt]] = Et−1[〈Et−1[A∗ |At,Φt], ˆ̀
t〉] = Et−1[〈Xt+1, ˆ̀

t〉] .

Eq. (6.3) uses the definitions of Xt+1. Eq. (6.4) follows from the definition of ft, which implies
that

〈ft(Xt, At), ˆ̀
t〉+ 1

η
DF (ft(Xt, At), Xt) ≤ 〈Xt+1, ˆ̀

t〉+ 1
η

DF (Xt+1, Xt) .

Finally, Eq. (6.5) follows from the definition of stabt. The proof is completed by summing over
the per-step regret, noting that (Xt)nt=1 is a (Ft)t-adapted martingale and by [72, Theorem 3],

E
[
n∑
t=1

DF (Xt+1, Xt)
]
≤ E[F (Xn+1)]− F (X1) ≤ diamF (X ) .
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The stability coefficient The only difference between Theorems 6.1 and 6.2 is the trajectory
of (Xt)nt=1 and the randomness of the stability function. In most analyses of OSMD the final
bound is obtained via a uniform bound on stabt(x; η) that holds regardless of the losses and
in this case the trajectory Xt is irrelevant. This is formalised in the following definition and
corollary. Define the stability coefficients by

stab(A ; η) = sup
x∈X

max
t∈[n]

stabt(x; η) and stab(A ) = sup
η>0

stab(A ; η) .

Corollary 6.1. The regret of Algorithm 9 for an appropriately tuned learning rate is bounded
by

Rn ≤
√

2 diamF (X ) stab(A )n .

The Bayesian regret of Algorithm 10 is bounded by BRn ≤
√

2 diamF (X ) ess sup(stab(A ))n.

The essential supremum is needed because the stability coefficient depends on the losses
(`t)nt=1, which are random in the Bayesian setting. Generally speaking, however, bounds on the
stability coefficient are proven in a manner that is independent of the losses.

Remark 6.2. Often stab(A ; η) ≤ a+bη for constants a, b ≥ 0 and stab(A ) =∞. Nevertheless,
the same argument shows that the regret of Algorithm 9 is bounded by

Rn ≤
√

2adiamF (X )n+ bdiamF (X )
a

,

and similarly for the Bayesian regret of Algorithm 10.

Stability and the information ratio The generalised information-theoretic analysis by
[72] starts by assuming there exists a constant α > 0 such that the following bound on the
information ratio holds almost surely:

information ratiot = Et−1[∆t]2
/
Et−1[DF (Xt+1, Xt)] ≤ α . (6.6)

Then [72, Theorem 3] shows that

BRn ≤
√
αndiamF (X ) . (6.7)

The proof of Theorem 6.2 directly provides a bound on the information ratio in terms of the
stability coefficient. To see this, notice that Eq. (6.5) holds for all measurable η and let

η =
√

2Et−1[DF (Xt+1, Xt)]/ ess sup(stab(A )) . (6.8)

Then by Eq. (6.5) and the definition of stab(A ) it follows that

Et−1[∆t]2
/
Et−1[DF (Xt+1, Xt)] ≤ 2 ess sup(stab(A )) a.s. .

In other words, the usual methods for bounding the stability coefficient in the analysis of OSMD
can be used to bound the information ratio in the information-theoretic analysis.

Example 6.1. To make the abstraction more concrete, consider the k-armed bandit problem
where L = [0, 1]k and A = {e1, . . . , ek}. In this case there is a unique sampling scheme defined
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by Px(a) = 〈x, a〉. The standard loss estimation function is to use importance-weighting, which
leads to

Et(x, a)i = `ti1(a = ei)
/
xi . (6.9)

A commonly used potential is the unnormalised negentropy F (x) =
∑k
i=1 xi log(xi) − xi that

satisfies ∇−2F (x) = diag(x). The instance of OSMD resulting from these choices is called Exp3
for which an explicit form for Xt is well known:

Xti = exp
(
−η

∑t−1
s=1

ˆ̀
si

)/(∑k
j=1 exp

(
−η

∑t−1
s=1

ˆ̀
sj

))
.

A short calculation shows that gt(x, a)i = xi exp(−η ˆ̀
ti) ≤ xi. The stability function is bounded

using the second part of Lemma 6.1 by

stabt(x; η) ≤ EA∼Px

[
sup

z∈[x,gt(x,A)]
‖Et(x,A)‖2∇−2F (z)

]

= EA∼Px

[
sup

z∈[x,gt(x,A)]

k∑
i=1

zti
1(A = ei)`2ti

x2
ti

]
= EA∼Px

[
1(A = ei)`2ti

xti

]
≤

k∑
i=1

`2ti ≤ k .

Finally, the diameter of the probability simplex X with respect to the unnormalised negentropy
is diamF (X ) = log(k). Applying Theorem 6.1 shows that the regret of OSMD and Bayesian
regret of MTS satisfy

Rn ≤
√

2nk log(k) (OSMD) and BRn ≤
√

2nk log(k) (MTS) .

Remark 6.3. Theorems 6.1 and 6.2 are vacuous when diamF (X ) =∞. The most straightfor-
ward resolution is to restrict Xt to a subset of X on which the diameter is bounded and then
control the additive error. This idea also works in the Bayesian setting as described by [72].
We omit a detailed discussion to avoid technicalities.

6.3 Bandits

The best known bound on the minimax regret for k-armed bandits is Rn ≤
√

2kn by [72]. They
let F (x) = −2

∑k
i=1
√
xi be the 1/2-Tsallis entropy and prove that

Et−1[∆t]2
/
Et−1[DF (Xt+1, Xt)] ≤

√
k .

By Cauchy-Schwarz diamF (X ) ≤ 2
√
k and then Eq. (6.7) shows that BRn ≤

√
2nk for all priors

ν. Minimax duality is used to conclude that R∗n ≤
√

2kn. Meanwhile, using the importance-
weighted estimator in Eq. (6.9) leads to a bound on the stability coefficient of stab(A ) ≤ 2

√
k

and then Theorem 6.1 yields a bound of Rn ≤
√

8nk.

0

200

400

600

800

0 25000 50000 75000 100000

INF
+shift

Figure 6.1: Comparison of INF with
and without shifted loss estimators.
x-axis is number of time-steps and
y-axis the empirical regret estima-
tion. η is tuned to the horizon and
all experiments use Bernoulli losses
with E[`t] = (0.45, 0.55, . . . , 0.55)T
(k = 5). We repeat the experiment
100 times with error bars indicating
three standard deviations. The em-
pirical result matches our theoretical
improvement of a factor 2.

The discrepancy between these methods is entirely ex-
plained by the naive choice of importance-weighted es-
timator. The approach based on bounding the infor-
mation ratio is effectively shifting the losses, which can
be achieved in the OSMD framework by shifting the
importance-weighted estimators (see Fig. 6.1). This
idea reduces the worst-case variance of the importance
weighted estimators by a factor of 4.
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Lemma 6.2. If the loss estimator in Example 6.1 with
F (s) = −2

∑k
i=1
√
xi is replaced by

Et(x, a)i = (`ti − cti)1(a = ei)
xi

+ cti ,

where cti = 1
2(1− 1(Xti < η2)) ,

then the stability coefficient for any η ≤ 1/2 is bounded
by stab(A ; η) ≤ k1/2/2 + 12kη.

Theorem 6.3. The regret of OSMD with the loss estima-
tor of Lemma 6.2 and appropriate learning rate satisfies:
Rn ≤

√
2kn+ 48k.

6.4 Bandits with graph feedback

In bandits with graph feedback the action set is A = {e1, . . . , ek} and L = [0, 1]k. Let
E ⊆ [k] × [k] be a set of directed edges over vertex set [k] so that G = ([k], E) is a directed
graph. The signal function is Φ(ei, `) = {(j, `j) : j ∈ N (i)}. The standard bandit framework is
recovered when E = {(i, i) : i ∈ [k]} while the full information setup corresponds to E = [k]× [k].
Of course there are settings between and beyond these extremes. The difficulty of the graph
feedback problem is determined by the connectivity of the graph. For example, when E = ∅,
the learner has no way to estimate the losses and the regret is linear in the worst case. Like
finite partial monitoring, graph feedback problems can be classified into one of four regimes for
which:

R∗n ∈
{
O(1), Θ̃(n1/2), Θ(n2/3), Ω(n)

}
.

Our focus is on graph feedback problems that fit in the second category, which is the most
challenging to analyse.

Definition 6.2. G is called strongly observable if for every vertex i ∈ [k] at least one of the
following holds: (a) a ∈ N (b) for all b 6= a or (b) a ∈ N (a).

Alon et al. [9] prove the minimax regret for bandits with graph feedback is Θ̃(n1/2) if and
only if k > 1 and G is strongly observable. They also prove the following theorem upper and
lower bounding the dependence of the minimax regret on the horizon, the number of actions
and a graph functional called the independence number.

Theorem 6.4 ([9]). Let Gind be the independence number of G, which is the cardinality of the
largest subset of vertices such that no tow distinct vertices are connected by an edge. Suppose
k > 1 and G is strongly observable. Then R∗n = O(

√
Gindn log(kn)) and R∗n = Ω(

√
Gindn).

The logarithmic dependence on n in the proof of Theorem 6.4 appears quite naturally,
which raises the question of whether or not the upper or lower bound is tight. In fact, as n
tends to infinity the upper bound in Theorem 6.4 could be improved to O(

√
nk) by using a

finite-armed algorithm that ignores the feedback except for the played action. Perhaps the
independence number is not as fundamental as first thought? The following theorem shows the
upper bound can be improved.

Theorem 6.5. Let A = (P,E, F ) be a triple defining OSMD with Px(a) = 〈a, x〉,

F (x) = 1
α(1− α)

k∑
i=1

xαi where α = 1− 1/ log(k) .
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Finally, define the unbiased loss estimation function E by

Et(x, a)i = `ti1(a ∈ N (i))∑
b∈N (i) xb

for i 6∈ It, and Et(x, a)i = (`ti − 1)1(a 6= i)
1− xi

+ 1 otherwise ,

where It = {i ∈ [k] : i 6∈ N (i) and Xti > 1/2}. Then for any k ≥ 8 and an appropriately tuned
learning rate the regret of OSMD with A satisfies Rn = O(

√
Gindn log(k)3).

6.5 Online linear optimisation over `p-balls
p Regret Algorithm

p = 1
√
n log(d) Hedge

p > 1
√
n/(p− 1) [35, §11.5]

p ≥ 1
√
d2/p−1n OGD [56]

Table 6.1: Known results for
`p-balls

We now consider full information online linear optimization on
the `p balls with p ∈ [1, 2], which is modelled in our framework
by choosing A = Bd

p and L = Bd
q with 1/p + 1/q = 1 and

Φ(a, `) = `. Table 6.1 summarises the known results. When
p = 1 the situation is unambiguous, with matching upper and
lower bounds. For p ∈ (1, 2] there exist algorithms for which
the regret is dimension free, but with constants that become
arbitrarily large as p tends to 1. Known results for online gradient descent (OGD) prove the
blowup in terms of p is avoidable, but with a price that is polynomial in the dimension.

Theorem 6.6. For any p ∈ [1, 2], let h be the following convex and twice continuously
differentiable function:

h(x) =


d
2x

2 if |x| ≤ d
1
p−2

p−2
p−1d

p−1
p−2 |x|+ |x|p

p(p−1) + 2−p
2p d

p
p−2 otherwise .

Then for OSMD using potential F (x) =
∑d
i=1 h(xi), loss estimator E(x, a, σ) = σ, an arbitrary

exploration scheme and appropriately tuned learning rate,

Rn = O
(√

min {1/(p− 1), log(d)}n
)
.

Furthermore, the Bayesian regret of TS is bounded by the same quantity.

Remark 6.4. In the full information setting the loss estimation is independent of the action,
which explains the arbitrariness of the exploration scheme. The intuitive justification for the
slightly cryptic potential function is provided in the appendix.

6.6 Discussion

We demonstrated a connection between the information-theoretic analysis and OSMD. For
k-armed bandits, we explained the factor of two difference between the regret analysis using
information-theoretic and convex-analytic machinery and improved the bound for the latter.
For graph bandits we improved the regret by a factor of log(n). Finally, we designed a new
potential for which the regret for online linear optimisation over the `p-balls improves the
previously best known bound by arbitrarily large constant factors.

Open problems The main open problem is whether or not we can ‘close the circle’ and use
the information-theoretic analysis to directly construct OSMD algorithms. Another direction is
to try and relax the assumption that the loss is linear. The leading constant in the new bandit
analysis now matches the best known information-theoretic bound [72]. There is still a constant
lower-order term, which presently seems challenging to eliminate. In bandits with graph
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feedback one can ask whether the log(k) dependency can be improved. Lower bounds are still
needed for `p-balls and extending the idea to the bandit setting is an obvious followup. Finally,
the best known algorithms for finite partial monitoring also use the information-theoretic
machinery. Understanding how to borrow the ideas for OSMD remains a challenge.

Appendix

Theorem 3 of [72]

Theorem. Let (Mt)n+1
t=1 be an Rd-valued martingale adapted to (Ft)n+1

t=1 and Mt ∈ X ⊂ Rd
almost surely for all t. Then let F be a convex function with diamF (X ) <∞. Suppose there
exist constants α, β ≥ 0 such that Et[∆t] ≤ α +

√
βEt[DF (Mt+1,Mt)] almost surely for all t.

Then BRn ≤ αn+
√
nβ diamF (X ).

Proof of Lemma 6.1

The proof is rather standard. In fact, the first part is [70, Theorem 26.13]. For the second part,
fix x ∈ X and a ∈ A and define

Ψ(y) = η〈y,Et(x, a)〉+ DF (y, x) .

By the assumption that gt(x, a) ∈ int(dom(F )) = int(dom(Ψ)) and the definition of gt(x, a) as
the minimizer of Ψ it follows that

0 = ∇Ψ(gt(x, a)) = ηEt(x, a) +∇F (gt(x, a))−∇F (x) .

Hence

stabt(x) = 2
η
EA∼Px

[
〈x− ft(x,A), Et(x,A)〉 − DF (ft(x,A), x)

η

]
= 2
η
EA∼Px

[1
η
〈x− ft(x,A),∇F (x)−∇F (gt(x, a))〉 − DF (ft(x,A), x)

η

]
= 2
η
EA∼Px

[1
η

DF (x, gt(x,A))− 1
η

DF (ft(x, a), gt(x,A))
]

≤ 2
η
EA∼Px

[DF (x, gt(x,A))
η

]
. (6.10)

Let F ∗ be the Legendre dual of F . Since F is Legendre and twice differentiable on int(dom(F ))
it follows from Taylor’s theorem and duality that there exists a z∗ ∈ [∇F (x),∇F (x)−ηEt(x, a)]
such that

DF (x, gt(x, a)) = DF ∗(∇F (gt(x, a)),∇F (x))
= DF ∗(∇F (x)− ηEt(x, a),∇F (x))

= η2

2 ‖Et(x, a)‖2∇2F ∗(z∗)

= η2

2 ‖Et(x, a)‖2∇−2F (∇F ∗(z∗))

≤ sup
z∈[x,gt(x,a)]

η2

2 ‖Et(x, a)‖2∇−2F (z) .

Substituting into Eq. (6.10) completes the result.
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Refined bound for the probability simplex For the proofs in the next sections, we
require a refined version of Lemma 6.1. Let 1k denote the vector with all ones.

Lemma 6.3. Assume that A = {e1, . . . , ek} and for c ∈ R define

ftc(x, a) = arg min
y∈X

(η〈y,Et(x, a) + c1k〉+ DF (y, x)) ,

gtc(x, a) = arg min
y∈int(dom(F ))

(η〈y,Et(x, a) + c1k〉+ DF (y, x)) .

Provided that gtc(x, a) exists for all a in the support of Px,

stabt(x; η) ≤ 2
η2EA∼Px [DF (x, gtc(x,A))] ≤ EA∼Px

[
sup

z∈[x,gtc(x,A)]
‖Et(x,A) + c1k‖2∇−2F (z)

]
.

Proof. Since X is the probability simplex 〈y, c1k〉 = c for all y ∈ X . Therefore ftc(x, a) = ft(x, a)
and 〈x− ft(x, a), c1k〉 = 0. Hence

stabt(x) = 2
η
EA∼Px

[
〈x− ft(x,A), Et(x,A)〉 − DF (ft(x,A), x)

η

]
= 2
η
EA∼Px

[
〈x− ftc(x,A), Et(x,A) + c1k〉 −

DF (ftc(x,A), x)
η

]
.

The remaining proof is analogous to the proof of Lemma 6.1 substituting ft, gt by ftc, gtc and
the loss Et(x, a) by Et(x, a) + c1k.

Proof of Corollary 6.1

Starting with the adversarial regret bound. By Theorem 6.1,

Rn ≤
diamF (X )

η
+ η

2E
[
n∑
t=1

stabt(Xt)
]
≤ diamF (X )

η
+ ηn stab(A )

2 .

The first part follows by choosing

η =
√

2 diamF (X )
n stab(A ) .

The Bayesian case follows from an identical argument and Theorem 6.2 and the fact that

E
[
n∑
t=1

stabt(Xt)
]
≤ E

[
n∑
t=1

stab(A )
]
≤ n ess sup(stab(A )) .

The result claimed in Remark 6.2 follows similarly with the same choice of learning rate.

Proof of Theorem 6.3

Proof of Lemma 6.2. We use Lemma 6.3 with c = −1
2 . As a reminder, we have

Et(x, a)i + c = (`ti − cti)1(a = ei)
xi

+ cti + c , where cti = 1
2(1− 1(Xti < η2).

Let ˜̀
t = Et(Xt, At)+c1k. We start by calculating the Hessian of F . Since F (a) = −

∑k
i=1 2√ai,

∇F (a) = −1/
√
a and ∇2F (a) = diag(a−3/2/2) .
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The next step is to bound gtc(Xt, At)
3
2
i . By definition

gtc(Xt, At) = arg min
y∈int(dom(F ))

η〈y, ˜̀
t〉+ F (y)− F (Xt)− 〈y −Xt,∇F (Xt)〉 ,

which implies that η ˜̀
t + ∇F (gtc(Xt, At)) − ∇F (Xt) = 0. Substituting the gradient of the

potential shows that

η ˜̀
ti −

1√
gtc(Xt, At)i

+ 1√
Xti

= 0 .

Solving for gtc(Xt, At)i yields

gtc(Xt, At)
3
2
i = X

3
2
ti

(1 + ˜̀
tηX

1
2
ti )3

. (6.11)

For ˜̀
ti ≥ 0, Eq. (6.11) directly implies gtc(Xt, At)

3
2
i ≤ X

3
2
ti . Let ˜̀

ti < 0, then we get the following
lower bound by definition of ˜̀

t:

Xti ≥ η2 : ˜̀
ti = −(`ti − 1)1(At = ei)

2Xti
≥ − 1

2Xti
≥ − 1

2ηX1/2
ti

,

Xti < η2 : ˜̀
ti = `ti1(At = ei)

Xti
− 1

2 ≥ −
1

2ηX1/2
ti

≥ − 1
2Xti

.

This directly implies −˜̀
tiηX

1/2
ti ≤ 1

2ηX
−1/2
ti and 1 + η̃X

1/2
ti ≥ 1

2 . Going back to Eq. (6.11), the
following bound on f(x) = x−3 holds due to convexity for all x > −1: f(1+x) ≤ f(1)+xf ′(1+x).
Using all three inequalities provides the bound

X
3
2
ti (1 + ˜̀

tiηX
1
2
ti )
−3 ≤ X

3
2
ti

(
1− 3(1 + ˜̀

tiηX
1
2
ti )
−4 ˜̀

tiηX
1
2
ti

)
≤ X

3
2
ti + 24ηXti .

Hence for any z ∈ [Xt, gtc(Xt, At)] we have

∇−2F (z) � diag(2X
3
2
t + 48ηXt ◦ 1(˜̀

t < 0)) ,

where 1(˜̀
t > 0) is vector of element wise applied indicator function. Finally we are ready to

bound the stability:

EA∼PXt

[
sup

z∈[Xt,gtc(Xt,A)]
‖Et(Xt, A) + c1k‖2∇−2F (z)

]

≤
∑

i:Xti≥η2

Xti
(`ti − 1

2)2

X2
ti

(2X
3
2
ti + 48ηXti) +

∑
i:Xti<η2

1
22 (2X

3
2
ti + 48ηXti) +Xti

`2ti
X2
ti

2X
3
2
ti (6.12)

≤
∑

i:Xti≥η2

X
1
2
ti

2 + 12η +
∑

i:Xti<η2

25η3

2 + 2η ≤
√
k

2 + 12ηk . (6.13)

Eq. (6.12) follows because for Xti ≥ η2 the term Et(Xt, A)i + c is non zero with probability Xti,
while for Xti < η2, Et(Xt, A)i + c is either non positive and bounded by −1

2 , or it is positive
with probability lower or equal to Xti. Eq. (6.13) uses the condition Xti ≤ η in the second sum
and the upper bound η ≤ 1/2.

Proof of Theorem 6.3. Combine Lemma 6.2 with Theorem 6.1, Corollary 6.1, and Remark 6.2.
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Proof of Theorem 6.5

We make use of the following lemma.

Lemma 6.4 (Alon et al. 9). Let p ∈ ∆([k]). Then

k∑
i=1

pi∑
j∈N (i) pj

≤ 4Gind log
( 4k
Gind mini pi

)
.

Proof of Theorem 6.5. Starting from Corollary 6.1 we need to bound the diameter and stability.

diamF (X ) ≤ k1−α

α(1− α) = k
1

log(k) log(k)
1− 1

log(k)
= e log(k)

1− 1
log(k)

≤ 2e log(k) ,

where in the last inequality we used the assumption that k ≥ 8 > e2. Moving to the stability
term. As a reminder we have

Et(Xt, At)i = `ti1(At ∈ N (i))∑
b∈N (i)Xtb

for i ∈ It and Et(Xt, At)i = (`ti − 1)1(At 6= i)
1−Xti

+ 1 otherwise

where It = {i ∈ [k] : i 6∈ N (i) and Xti > 1/2}. The set It is either empty or contains exactly
one element, since the action set it the probability simplex. As a slight abuse of notation, It
denotes either the (possible empty) set or the unique element within. We use Lemma 6.3 with

c = 1(It 6= ∅)
(1− `tIt)1(a ∈ N (It))

1−XtIt

≥ 0 .

The Hessian of F is ∇F 2(x) = diag(xα−2). The non-negativity of Et(Xt, At) + c1k ensures
that gt(Xt, At)i ≤ Xti almost surely and hence by the definition of the potential ∇−2F (z) �
∇−2F (Xt) for all z ∈ [Xt, gt(Xt, At)],

EA∼PXt

[
sup

z∈[Xt,gtc(Xt,A)]
‖Et(Xt, A) + c1k‖2∇−2F (z)

]
= EA∼PXt

[
‖Et(Xt, A) + c1k‖2∇−2F (Xt)

]
=
∑
i 6∈It

EA∼PXt
[
(Et(Xt, A)i + c)2∇−2F (Xt)ii

]
+ 1(It 6= ∅)EA∼PXt [∇

−2F (Xt)ItIt ]

≤ 2
∑
i 6∈It

EA∼PXt
[
Et(Xt, A)2

iX
2−α
ti

]
+ 2EA∼PXt [c

2]
∑
i 6∈It

X2−α
ti + 1 .

We first bound the c term

2EA∼PXt [c
2]
∑
i 6∈It

X2−α
ti = 21(It 6= ∅)

∑
i 6∈It

Xti

(
1− `tIt∑
i 6∈It Xti

)2 ∑
i 6∈It

X2−α
ti ≤ 2.

Then we bound the contribution of arms i with i 6∈ N (i) and i 6∈ It, which implies Xti ≤ 1/2

2EA∼Px

 ∑
i:i 6∈N (i)∪It

Et(Xt, A)2
iX

2−α
ti

 = 2
∑

i:i 6∈N (i)∪It

`2tiX
2−α
ti

1−Xti
≤ 4 .

Finally we bound the remaining term

2EA∼Px

 ∑
i:i∈N (i)

Et(Xt, A)2
iX

2−α
ti

 ≤ 2
∑

i:i∈N (i)

`2tiX
2−α
ti∑

j∈N (i)Xtj
≤ 2 max

a∈∆([k])

k∑
i=1

a2−α
i∑

j∈N (i) aj
.
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We bound the max using Lemma 6.4:

max
a∈∆([k])

k∑
i=1

a2−α
i∑

j∈N (i) aj
= max

a∈∆([k])

∑
i:ai>exp(− log(k)2)

a2−α
ti∑

j∈N (i) aj
+

∑
i:ai≤exp(− log(k)2)

a2−α
i∑

j∈N (i) aj

≤ 4Gind log
(

4k exp(log(k)2)
Gind

)
+ k exp(− log(k)−1 log(k)2)

= 4Gind
(

log
( 4k
Gind

)
+ log(k)2

)
+ 1 ,

where in the final inequality we used Lemma 6.4 on the sub-graph {a : Xta > exp(− log(k)2)
and noted the fact the independence number of a sub-graph of G cannot be larger than the
independence number of G. Combining everything, we have shown that

stab(A ) ≤ 8Gind
(

log
( 4k
Gind

)
+ log(k)2

)
+ 9.

The proof is completed by tuning the learning rate according to Corollary 6.1.

Proof of Theorem 6.6

Remember that the potential is F (x) =
∑d
i=1 h(xi) where

h(x) =


d
2x

2 if |x| ≤ d
1
p−2

p−2
p−1d

p−1
p−2 |x|+ |x|p

p(p−1) + 2−p
2p d

p
p−2 otherwise .

Before the proof we provide some intuition for this choice of the potential. By the problem
setting for q = p

1−p , it holds that ‖`t‖q, ‖Xt‖p ≤ 1. Assuming we have a ‘separable’ potential
F (x) =

∑d
i=1 h̃(xi), we can write the stability term as

‖`t‖2∇−2F (z) = 〈`t ◦ `t, (h̃′′(zi)−1)i=1,...,d〉 ≤ ‖`t ◦ `t‖q′‖(h̃′′(zi)−1)i=1,...,d‖p′ .

Choosing q′ = q
2 , p
′ = q′

q′−1 = p
2−p , the first factor is bounded by 1 and setting h̃′′(zi) = |zi|p−2

ensures the second factor is bounded by 1. Unfortunately, this leads to the potential h̃(x) =
1

p(p−1) |x|
p, whose diameter can be arbitrarily large. To prevent the potential from exploding,

we clip h′′(x) at d, as shown in Fig. 6.2. Any upper bound on the second derivative will serve
the purpose of decreasing the diameter, however the threshold must be chosen such that the
stability doesn’t suffer too much. The value d happens to be the lowest value that keeps the
stability dimension independent.

d

h̃′′(x)

log(d)

h̃(1)− h̃(x)

Figure 6.2: p = 1: h̃′′(x) and h̃(1)− h̃(x) for p = 1. Red lines indicate h′′ and h respectively.

Proof of Theorem 6.6. By the definition of the loss estimator ˆ̀
t = `t. As usual, our plan is to

bound the stability and diameter and then apply Corollary 6.1.
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Bounding the stability By definition h′′(x) = min{|x|p−2, d}. Then by Lemma 6.1 and the
assumption that Et(x, a) = `t for all x and a,

stabt(x; η) ≤ max
z∈X
||`t||2∇F−2(z)

≤ max
z∈X

 ∑
i:|zi|≥d

1
p−2

`2ti|zi|2−p +
∑

i:|zi|<d
1
p−2

1
d


≤ max

z∈X

(
d∑
i=1

`2ti|zi|2−p + 1
)

≤ max
z∈X

( d∑
i=1

(`2ti)
p

2p−2

) 2p−2
p
(

d∑
i=1

(|zi|2−p)
p

2−p

) 2−p
p

+ 1

 (6.14)

=
(

max
z∈X
‖`t‖2q‖z‖2−pp + 1

)
≤ 2 ,

where Eq. (6.14) follows from Cauchy-Schwarz.

Bounding the diameter First notice that F (x) ≥ 0 for all x ∈ X and F (0) = 0. Hence

diamF (X ) = max
x∈X

F (x) .

For arbitrary x ∈ X define J = {i ∈ [d]|xi ≥ d
1
p−2 }, I = [d] \ J and for any S ⊂ [d] define the

vector xS as the |S|-dimensional vector consisting of entries (xi)i∈S . Then it holds

F (x) = d

2‖xI‖
2
2 −

2− p
p− 1d

p−1
p−2 ‖xJ‖1 +

‖xJ‖pp
p(p− 1) + 2− p

2p d
p
p−2 |J |.

Maximizing this expression over xJ under the constraints of keeping both the set J and ‖xJ‖p
constant is setting all but 1 coordinate in xJ to d

1
p−2 and shifting all other weight towards a

single entry. This follows directly from the fact that ‖x‖p is convex, so the minimum of ‖x‖1
under constant ‖x‖p is on the boundary. The optimal y ∈ arg maxx∈X F (x) can therefore only
have a single coordinate i such that |yi| > d

1
p−2 , which we assume without loss of generality is

i = 1.

F (y) = h(y1) + d

2

d∑
i=2

y2
i ≤ h(y1) + d2

2 d
2
p−2 ≤ h(1) + 1

2 .

It follows that

diamF (X ) ≤ h(1) + 1
2 = p− 2

p− 1d
p−1
p−2 + 1

p(p− 1) + 2− p
2p d

p
p−2 + 1

2

= 1− d
p−1
p−2

p− 1 + d
p−1
p−2 − 1

p
+ 2− p

2p d
p
p−2 + 1

2 ≤
1− d

p−1
p−2

p− 1 + 1.

We immediately get the bound diamT (X ) ≤ 2
p−1 . Let p ≤ 3

2 , we substitute z = p−1
2−p and get

diamF (X ) ≤ 1− d−z

(2− p)z + 1 ≤ 21− d−z

z
+ 1 ≤ 2 log(d) + 1,

where we use the fact that for z ≥ 0 the term 1−d−z
z is monotonically decreasing in z with limit

log(d) for z → 0.
We have shown that diamF (X ) ≤ O(min{ 1

p−1 , log(d)}) and stab(A ) ≤ O(1). The proof is
completed by tuning the learning rate according to Corollary 6.1.



Chapter 7

Summary and Discussion

In Chapter 2, we introduced the factored bandits model, a framework that generalises multiple
problems from the bandit literature such as rank-1 bandits and utility-based dueling bandits.
We presented an algorithm that is computationally and stochastically efficient and provided
matching upper and lower bounds for the problem up to constant factors. The problem served
as a motivating example for Chapters 3 and 4 since a crucial difficulty lies in obtain unbiased
estimates of the relative quality of arms under non-stationary means.

In Chapter 3, we solved a problem that remained open for almost a decade. We provided
an algorithm that enjoys optimal regret guarantees in both the stochastic and the adversarial
environment while being oblivious to the environment at hand. We introduced a novel proof
technique based on the self-bounding property of the regret, circumventing the need of control-
ling the variance of loss estimates. We also provided empirical evidence that our algorithm
outperforms Ucb1 in stochastic environments and is significantly more robust than Ucb1 and
Thompson Sampling in non-i.i.d. settings. Finally, we showed that our results extend to two
intermediate settings from prior literature, namely stochastically constrained adversaries and
adversarially corrupted stochastic bandits, and a combination of the two. We also showed that
Tsallis-Inf can be applied to achieve stochastic and adversarial optimality in utility-based
dueling bandits.

In Chapter 4, we extended our best-of-both-worlds results to combinatorial semi-bandits, via
an Ftrl-based algorithm with a novel hybrid regulariser. Our bounds are worst-case optimal
and also optimal in two particular instances of the problem.

In Chapter 5, we confirmed an open conjecture from Cesa-Bianchi et al. [34] by presenting
a simple generalisation of our algorithm from Chapter 3 for adversarial bandits with arbitrary
delays and proved a regret upper bound that matches the lower bound within constants.
Furthermore, we proposed a refined tuning of the learning rate that achieves an even tighter
regret bound when the delays are highly unbalanced. We are strictly improving on the state-of-
the-art of bounds and also presenting the first anytime result requiring no doubling, skipping
or advance information about the delays.

In Chapter 6, we demonstrated a connection between the information-theoretic analysis
and Omd. For k-armed bandits, we explained the factor of two difference between the regret
analysis using information-theoretic and convex-analytic machinery and improved the bound
for the latter. For graph bandits, we improved the regret by a factor of log(n). Finally, we
designed a new potential for which the regret for online linear optimisation over the `p-balls
improves the previously best known bound by arbitrarily large constant factors.

7.1 Open questions

With regard to multi-armed bandits, the major open problems are as follows:
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1. Our analysis requires a unique best arm. Based on our experiments, we conjecture that
this is merely an artifact of the analysis, but extending the proof remains an important
open problem.

2. Can the factor 2 gap between the asymptotical upper and lower bound be closed? It is
unclear if that is a universal trade-off for obtaining best-of-both-worlds guarantees, if the
algorithm can be further improved or if the lower bound is not tight for the stochastically
constrained adversarial setting.

3. Is logarithmic regret achievable by Tsallis-Inf in the intermediate regimes defined by
Seldin and Slivkins [91]? We presented this question in more detail in Section 3.5.2.

4. Can we obtain refined KL bounds, or at least second order approximations with a
modification of Tsallis-Inf?

If we move beyond multi-armed bandits, the main question is whether any kind of best-of-
both-worlds result is achievable in the linear bandit problem. We obtained preliminary results
in Chapter 4, but it is unclear how the algorithm can be adapted for non-trivial action sets.

For bandits with delay, we conjecture that our algorithm obtains logarithmic regret bounds
in the stochastic setting, but verifying this conjecture remains open. Furthermore, due to the
lack of a matching lower bound, it is unclear if our refined upper bound for unbalanced delays
is tight.

Lastly, regarding the connection between Omd, Thompson Sampling and the Information
Ratio, the main open problem is whether or not we can ‘close the circle’ and use the information-
theoretic analysis to directly construct Omd algorithms.
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[21] Bartók, G., Foster, D. P., Pál, D., Rakhlin, A., and Szepesvári, C. (2014). Partial
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