
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

PhD Thesis
Miles Macklin

Simulation for Learning and Robotics
Numerical Methods for Contact, Deformation, and Identification

Advisor: Kenny Erleben

Handed in: September 29, 2020

Abstract
Robots have the potential to improve the quality of our lives by automating and assisting us in
our work. Unfortunately, the design, manufacture, and testing, of real-world robots and their
controllers remains time consuming and expensive. Simulation provides a potential solution to
this problem, as it can allow gathering data in a safe and relatively inexpensive manner. How-
ever, there are many challenges in designing simulation methods for robotics. Modern robots
consist of both rigid and deformable parts that may interact in strongly coupled ways through
contact, for example, in soft robotic manipulation. Thus, to broaden their applicability, simu-
lators must be capable of modeling a wide range of materials. A second challenge in applying
simulation is the large scale data required to drive machine learning techniques, for example,
reinforcement learning-based controller design. To generate this data, simulators must be scal-
able, low-latency, and robust to unseen inputs over a wide range of parameters. Sensitivity to
ill-conditioning, e.g.: high mass ratios, can cause fast numerical methods to fail to converge in
a reasonable time. On the other hand, accurate solvers that can deal with ill-conditioning are
often not fast enough to be used for online/interactive control. Designing numerical methods
that overcome these limitations is important to expand simulation capabilities. Finally, a major
challenge in simulation is crossing the reality gap. This refers to the ability of a simulator to
provide outputs that are predictive of real-world behavior. Since physical models are approx-
imations, and model parameters are often not known, crossing the reality gap is difficult, and
methods that can help transfer simulations to the real world are desirable.

In the first part of this thesis, I present new simulation techniques focusing on contact model-
ing between rigid and deformable objects in a unified mathematical formulation. I then develop
parallel numerical methods to solve the resulting nonlinear problems. The proposed methods
have improved convergence rates to address the issue of sensitivity to ill-conditioning, while
maintaining scalability and robustness. The second part of this thesis addresses the sim-to-real
problem. I include work that performs classical system identification and validation, followed
by stochastic, and differentiable simulation methods to perform automatic parameter estima-
tion. The presented work bridges many aspects of computer graphics and robotics, and provides
a framework for future studies to enable the design and control of the next generation of robots.

ii

Contents

Abstract ii

Acknowledgements vii

1 Introduction 1
1.1 Organization . 4
1.2 Contributions . 6
1.3 Publications . 7

2 Background 9
2.1 Physical Modeling . 9

2.1.1 Particles . 9
2.1.2 Rigid Bodies . 10
2.1.3 Hard Kinematic Constraints . 11
2.1.4 Soft Kinematic Constraints . 11
2.1.5 Continuum Materials . 13

2.2 Contact Modeling . 13
2.2.1 Non-Penetration . 13
2.2.2 Isotropic Friction . 14

3 Advanced Friction Modeling 16
3.1 Related Work . 16
3.2 The Matchstick Model for Anisotropic Friction Cones 17
3.3 Structure Fields . 19
3.4 Results . 20
3.5 Conclusion and Future Work . 21

4 Non-Smooth Newton Methods 23
4.1 Related Work . 23

4.1.1 Contact . 23
4.1.2 Coupled Systems . 25

4.2 Governing Equations . 26
4.3 Nonlinear Complementarity . 26

4.3.1 Minimum-Map Formulation . 27
4.3.2 Fischer-Burmeister Formulation . 27
4.3.3 Frictional Constraints . 30

4.4 Implicit Time-Stepping . 30

iii

4.5 Non-Smooth Newton . 32
4.5.1 System Assembly . 33
4.5.2 Final System . 34
4.5.3 Schur-Complement . 36

4.6 Complementarity Precondtioning . 37
4.7 Robustness . 39

4.7.1 Line Search and Starting Iterate . 39
4.7.2 Preconditioned Conjugate Residual 40
4.7.3 Geometric Stiffness . 42
4.7.4 Hyperelastic Materials . 44

4.8 Analysis . 47
4.8.1 Effect of Complementarity Preconditiong 47
4.8.2 Effect of NCP-Function . 47
4.8.3 Effect of Linear Solver . 48
4.8.4 Error Analysis . 48

4.9 Results . 49
4.10 Limitations . 55
4.11 Conclusion and Future Work . 56

5 Primal/Dual Descent Methods for Dynamics 57
5.1 Related Work . 58

5.1.1 Elasticity . 58
5.1.2 Contact . 59

5.2 Optimization-based Time Integration . 61
5.2.1 Gradient Descent . 64
5.2.2 Quadratic Potentials . 64
5.2.3 Dual Ascent . 65

5.3 Conditioning . 67
5.4 Contact . 69
5.5 Friction . 72
5.6 Results . 74
5.7 Limitations . 81
5.8 Conclusion and Future Work . 82

6 Collision Detection 83
6.1 Related Work . 85
6.2 Face Contact . 86

6.2.1 Projected Gradient Descent . 87
6.2.2 Frank-Wolfe . 88

iv

6.2.3 Culling and Starting Iterate . 89
6.2.4 Termination Conditions . 89

6.3 Edge Contact . 90
6.3.1 Golden-Section Search . 91

6.4 Models . 91
6.4.1 Cloth Collision . 91
6.4.2 Rigid Body Collision . 92
6.4.3 Soft Body Collision . 92

6.5 Discrete Distance Fields . 96
6.6 Analytic Distance Fields . 96
6.7 Results . 99

6.7.1 Convergence . 99
6.7.2 Performance . 99
6.7.3 Comparison To Sampling Approaches 100
6.7.4 Comparison To Surface Approaches 100

6.8 Limitations . 101
6.9 Conclusion and Future Work . 101

7 Robotics & Machine Learning 102
7.1 A Validated Physical Model For Real-Time Simulation of Soft Robotic Snakes 102

7.1.1 Related Work . 103
7.1.2 Modeling . 104
7.1.3 Results . 106
7.1.4 Conclusion and Future Work . 108

7.2 Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real
World Experience . 110
7.2.1 Related Work . 110
7.2.2 Reinforcement Learning . 111
7.2.3 Learning Simulation Randomization 112
7.2.4 Experiments . 113
7.2.5 Results . 115
7.2.6 Conclusion and Future Work . 118

7.3 ∇Sim: A Unified Treatment of Differentiable Physics and Rendering 120
7.3.1 Related Work . 120
7.3.2 Differentiable Rendering Engine . 121
7.3.3 Differentiable Physics Engine . 122
7.3.4 Physical Models . 124
7.3.5 Parameter Estimation . 126
7.3.6 Model Predictive Control . 128

v

7.3.7 Limitations . 130
7.3.8 Conclusion and Future Work . 130

8 Conclusion 131

References 133

A Contact Preconditioners 153

B Compliance Form of Stable Neo-Hookean Materials 153

vi

Acknowledgements

First and foremost I would like to thank my advisor Dr. Kenny Erleben who has been a constant
source of encouragement, insight, and wisdom. I purchased Dr. Erleben’s book on Physics-
Based Animation ten years before starting this degree and never imagined I would have the
opportunity to work together with him. I also give my deepest thanks to my co-supervisor Dr.
Matthias Müller. Without his initial support I would not have pursued a career in research. His
enthusiasm, and desire for simplicity has always been an inspiration. I owe a large debt to my
colleagues at NVIDIA, particularly Nuttapong Chentanez, Stefan Jeschke, Viktor Makoviychuk,
Renato Gasoto, Richard Tonge, Simon Schirm, Mike Skolones, Andrew Reidmeyer, and Ham-
mad Mazhar. NVIDIA is a fantastic place for research due to the diversity of groups. I have
been fortunate to collaborate closely with the members and interns at Seattle Robotics Lab, in
particular Ankur Handa, Yevgen Chebotar, Jacky Liang, and Dieter Fox. The collaborations
between graphics and robotics have opened my eyes to new areas and new problems, that con-
tinue to be some of the most exciting to me. I want to acknowledge Jos Stam for introducing
me to the adjoint method which resulted in the differentiable simulation work in this thesis in
collaboration with Krishna Murthy and Sanja Fidler. I thank Ignacio Llamas and the Omniverse
team for their help preparing the renderings, and I’m particularly grateful for the freedom and
mentorship given to me by Adam Moravanszky, Tae-Yong Kim, and Rev Lebaredian.

My external collaborators have been a great source of interesting discussions, thank you to
Mihai Francu, Sheldon Andrews, and Paul Kry for including me in the world of contact. Many
administrators at UCPH have accommodated me during the course of this degree, I especially
wish to thank Anja Fløytrup, who has patiently guided me through the Ph.D. process.

To my parents, Janet and Trevor, thank you for their belief in me and for providing my first
computer, which sparked a passion for computing. Finally, my biggest thanks go to my wife
Rachael and my two sons, Lucas and Alfie. I would not have been able to complete this thesis
without their tremendous love and support. They are a constant source of happiness, and I am
incredibly grateful to them.

vii

Table 1: Notation

Symbol Meaning

q Generalized system coordinates
q̇ First time derivative of generalized coordinates
q̈ Second time derivative of generalized coordinates
f Generalized force function
u Generalized velocity vector
ũ Predicted or inertial system velocity
M System mass matrix
K Geometric stiffness matrix
E Compliance matrix
D Friction force basis
W Friction compliance matrix
G Kinematic mapping transform
Ψ Strain energy density function
cb Bilateral constraint vector
cn Normal contact constraint vector
cf Frictional contact constraint vector
n Contact normal
d Separation distance for a contact
ψ Friction cone level set
φn Normal contact NCP constraint vector
φf Frictional contact NCP constraint vector
Jb Jacobian of bilateral constraints
Jn Jacobian of contact normal NCP constraints
Jf Jacobian of contact friction NCP constraints
λb Lagrange multiplier vector for bilateral constraints
λn Lagrange multipliers for normal contact constraints
λf Lagrange multipliers for friction contact constraints
nd Number of system degrees of freedom
nb Number of bilateral constraints
nc Number of contacts

viii

1 Introduction

Enabling the next-generation of robots that can, for example, enter a kitchen and prepare din-
ner, requires new control algorithms that are capable of navigating complex environments and
performing dexterous manipulation of real-world objects. Modern machine-learning techniques
hold the promise of unlocking this capability, but they require large amounts of data to work
effectively [8, 116]. Although there have been some attempts at learning through large-scale
data collected directly on real robots [168, 233, 106], this approach remains challenging, as it
is laborious and often prohibitively expensive. In contrast, simulation is relatively inexpensive,
safe, and has been used to learn and transfer behaviors such as walking and jumping to real
robots [204, 179]. However, transfer learning is also challenging. Due to incomplete simulation
models, and imprecise parameters, the policies learned in simulation often cannot be directly
applied on real world systems, a phenomenon also known as the reality gap [100]. In this work,
our objective is to develop simulation methods that enable engineers and scientists to create
new capabilities for robots. To do this we focus on the three core areas: modeling, robust and
efficient simulation, and transfer to the real-world.

Modeling Extending transfer learning to new scenarios requires the simulation of rich envi-
ronments that incorporate multiple physical models. For example, although dexterous manipu-
lation is often treated as a rigid-body problem [80, 139], many real-world use cases require inter-
action with deformable objects, such as picking up a soft tomato, cracking an egg, or squeezing
a ball, as illustrated in Figure 1. In the case of soft robotics, the manipulator itself may be de-
formable, as illustrated by the PneuNet gripper, shown in Figure 2. This design incorporates a
flexible elastic finger, an inextensible paper layer, and a chamber that is pressurized to cause the
finger to curve [97]. These types of multiphysics scenarios are challenging for simulation be-
cause the internal dynamics may be complex, and they must interact strongly through contact to
allow for robust grasping. Contact is particularly challenging to model accurately. Surfaces may
contain a grain pattern, or a fiber microstructure that influences their behavior, yet existing con-
tact models, such as Coulomb friction, make simplifications such as assuming a uniformly rough
surface [198]. In this work, we develop a framework that allows for the coupled simulation of
both rigid and deformable bodies in a unified manner. We address the limitations of existing
contact models by proposing a new friction model that can represent arbitrary combinations of
anisotropic surfaces.

Robustness and Efficiency To broaden the range of scenarios robots can operate, not only
must simulators provide rich modeling capability, they must be efficient. Control optimization

1

techniques such as reinforcement learning require many training examples, and data generation
is often the bottleneck [8]. In addition, some robotics scenarios involve haptic feedback, imita-
tion learning, or human-assisted control that requires real-time, low-latency response [127]. To
meet these performance constraints, existing real-time simulation methods often make sacrifices
in robustness or accuracy. For example, iterative methods such as Gauss-Seidel have low over-
head and scale to large problems, but are less robust to ill-conditioned problems, such as when
large mass-ratios are present [57]. Robustness becomes increasingly important with the rising
popularity of stochastic optimization methods used in machine learning [200]. In many cases
these methods generate essentially random inputs to the simulator. For example, noisy control
signals in the case of reinforcement learning [201], or diverse physical parameters in the case of
domain randomization [210]. To improve robustness, we focus on developing numerical meth-
ods that are less sensitive to ill-conditioning, but retain the ability to scale with low-latency. We
predict that modern parallel architectures like the graphics processing units (GPUs) will become
increasingly important to achieve these goals, and we focus our efforts on methods that are able
to exploit large-scale parallelism.

Skill Transfer Simulators that provide physical plausibility may be useful for visual effects,
however, to be useful for robotics they must have some predictive power in the real world. Clos-
ing the reality gap remains a challenging problem, as evidenced by the large number of recent
publications and conference workshops on the topic [204, 237, 86]. A core issue for simula-
tion transfer is that the physical parameters, e.g.: mass, geometry, and stiffness of an object are
often only known approximately. Parameter estimation, or system identification, is the process
of determining these model parameters, typically through a measurement, fitting, and validation
loop [189]. This process can be time-consuming, and so we propose a data-driven method that
uses stochastic optimization to adapt model parameters based on a distribution of parallel simu-
lations. Furthermore, given the widespread availability of digital cameras we propose a system
that uses differentiable simulation and rendering to perform system identification directly from
images and video.

2

Figure 1: Deformable Manipulation: The Allegro hand squeezing a ball. Our framework
supports full coupling between the articulated fingers and the ball’s internal dynamics. The
color field visualizes volumetric strain. Model provided courtesy of SimLab Co., Ltd.

3

1.1 Organization

Conceptually this thesis is divided into two main parts. The first part addresses the modeling,
and numerical methods required for efficient and robust multiphysics simulation.

• Chapter 2 discusses mathematical background on physical simulation, and introduces the
basics of frictional contact modeling.

• Chapter 3 considers how to model contact between surfaces with anisotropic structure.
We present a novel extension of isotropic Coulomb friction model that takes into account
the relative structure directions of two surfaces in a way that respects the principle of
maximum dissipation (PMD).

• In Chapter 4, we ask how we can leverage the parallel nature of GPUs to solve multi-
physics contact problems. We hypothesize that, since the main computational operation
in Newton methods is the solution of a sparse linear system, these methods may be able
to take advantage of fast linear solvers already developed for the GPU architectures. We
show that, with a novel complementarity preconditioner, this approach leads to better
handling of ill-conditioned problems than iterative relaxation-based methods. In addition,
by treating deformable and rigid bodies in a unified manner, our framework allows for
fully coupled simulation of multiphysics scenarios, which we demonstrate on soft robotic
grasping tasks.

• Chapter 5 considers the relationship between two variational formulations of implicit
time-integration. The question we attempt to answer is the degree to which methods
such as Projective Dynamics and Position-based Dynamics differ in terms of their sensi-
tivity to ill-conditioning. While constraint-based (dual) methods are commonly used for
contact simulation, we hypothesize that primal optimization methods offer complemen-
tary trade-offs. We develop a common mathematical basis for both methods that provides
new insight into their relationship, and find that while dual methods are sensitive to mass-
ratios, primal methods are not. In addition, we introduce a differentiable contact model
that forms the basis for our parameter optimization work in later chapters.

• In Chapter 6, we consider how to improve the robustness of collision detection. We ob-
serve that point-sampled collision detection is often insufficient to capture the sharp fea-
tures of shapes, and present a method based on local optimization over mesh features,
that can more accurately prevent interpenetration between objects. We demonstrate the
effectiveness and efficiency of this approach on real-time clothing and rigid body contact
problems.

4

The second major topic of this work is the transfer of simulation results to the real-world. We
leverage the simulation frameworks developed in the first part of this thesis to address the reality
gap problem in robotics.

• In Chapter 7.1, we consider the simulation and modeling of a soft, pneumatically actuated
robotic snake. We take a classical approach to system identification through measurement
and validation. This work acts as a verification of the simulation work performed in pre-
ceding chapters, and pushes the state-of-the-art in real-time simulation of such complex
constructions.

• In Chapter 7.2, we ask if it is possible to extend the reinforcement learning framework to
not only optimize control policies, but to also perform automatic identification of simula-
tion parameters, using minimal real-world observations. We present SimOpt, a stochastic
optimization method, that learns and updates model parameters over parallel simulation
distributions.

• In Chapter 7.3, we further explore the problem of parameter estimation and ask whether
meaningful gradients can be propagated through an end-to-end differentiable simulation
and rendering pipeline, from images back to model parameters. Combining the work
performed in Chapter 5 with a differentiable rasterizer, we present ∇Sim (GradSim), a
framework for inverse simulation that demonstrates rigid and deformable parameter esti-
mation directly from rendered images and video.

• Chapter 8 concludes the thesis by reflecting on the work and suggesting directions for
future research.

5

1.2 Contributions

To summarize, the primary contributions of the work in this thesis are:

• An extension of the Coulomb friction model that considers the interaction of multiple
anisotropic surfaces through combinations of ellipsoidal friction cones.

• A non-smooth solver framework for contact problems. The presented work includes new
nonlinear complementarity (NCP) preconditioners that allow solving rigid and deformable
contact problems in a fully coupled way, while leveraging parallel architectures such as
the GPU.

• A derivation and analysis of force-based and constraint-based formulations of contact
dynamics. This leads to a unified view of two common simulation methods, Projective
Dynamics and Position-based Dynamics, as primal and dual variational approaches re-
spectively, and gives new insights into the sensitivities of both methods.

• An optimization-based approach to continuous surface contact generation with signed dis-
tance fields (SDFs) that overcomes the limitations of sampling-based contact approaches,
improving robustness and efficiency.

• A real-time simulator and validated physical model for a soft robotic snake that can make
predictive simulations of snake locomotion.

• A reinforcement learning approach that can adapt simulation parameters on the fly using
stochastic optimization. This approach automates the typically time-consuming task of
system identification.

• A simulation framework that combines differentiable physics and differentiable rendering
to achieve state-of-the-art soft and rigid body parameter estimation directly from video.

Together, these technical and scientific innovations enable new applications in robotic modeling,
real-time simulation, and control. The presented works have been integrated into industrial
simulation platforms such as NVIDIA’s Isaac Robotics SDK, and have been used as the basis
for many follow-up research projects and publications.

6

1.3 Publications

Over the course of my PhD I was fortunate to have published works with many collaborators.
For this thesis I have chosen to present seven papers that most closely relate to the topic of
robotics. The first topic of this thesis is covered in Chapters [3-6] and includes material from
the following papers on numerical methods for simulation:

• Erleben, K., Macklin, M., Andrews, S., & Kry, P. G. (2020, February). The Matchstick
Model for Anisotropic Friction Cones. In Computer Graphics Forum (Vol. 39, No. 1, pp.
450-461). Ch. 3

• Macklin, M., Erleben, K., Müller, M., Chentanez, N., Jeschke, S., & Makoviychuk,
V. (2019). Non-smooth Newton Methods for Deformable Multi-body Dynamics. ACM
Transactions on Graphics (TOG), 38(5), 1-20. Ch. 4

• Macklin, M., Erleben, K., Müller, M., Chentanez, N., Jeschke, S, & Kim, T. Y. (2020,
October). Primal/Dual Descent Methods for Dynamics. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. Ch. 5

• Macklin, M., Erleben, K., Müller, M., Chentanez, N., Jeschke, S., & Corse, Z. (2020).
Local Optimization for Robust Signed Distance Field Collision. Proceedings of the ACM
on Computer Graphics and Interactive Techniques, 3(1), 1-17. Ch. 6

In Chapter 7 I focus on papers that apply the developed methods to specific problems in robotics
and machine learning:

• Gasoto, R., Macklin, M., Liu, X., Sun, Y., Erleben, K., Onal, C., & Fu, J. (2019, May).
A Validated Physical Model for Real-Time Simulation of Soft Robotic Snakes. In 2019
International Conference on Robotics and Automation (ICRA) (pp. 6272-6279). IEEE.
Ch. 7.1 1

• Chebotar, Y., Handa, A., Makoviychuk, V., Macklin, M., Issac, J., Ratliff, N., & Fox, D.
(2019, May). Closing the Sim-to-Real Loop: Adapting Simulation Randomization with
Real World Experience. In 2019 International Conference on Robotics and Automation
(ICRA) (pp. 8973-8979). IEEE. Ch 7.2

• Murthy, K. Macklin, M. Golemo, F. Voleti, V. Petrini, L. Weiss, M. Considine, B. Parent-
Lévesque, J. Xie, K. Erleben, K. Paull, L. Shkurti, F. Fidler, S. Nowrouzezahrai, D.∇Sim:
Differentiable Physics and Rendering Engines for Parameter Estimation from Video Neu-
ral Information Processing Systems (NeurIPS), 2020 (submitted) Ch 7.31

1Joint first author

7

Figure 2: Soft Robotic Grasping: A simulation of a soft-robotic grasping mechanism based on
the pneumatic networks (PneuNet) design. The three fingers are modeled using tetrahedral FEM,
while the sphere is a rigid body. When the chambers on the back of the fingers are pressurized
they cause the inextensible lower layer to curve. Our method provides robust contact coupling
between the two dynamics models. The element color visualizes the volumetric strain field.

8

2 Background

In this section we give some mathematical background on physical modeling. At the most
general level, the dynamics of the systems we wish to simulate can be described through the
following second order differential equation:

M(q)q̈− f(q, q̇) = 0, (1)

where for a system with nd degrees of freedom, M ∈ Rnd×nd is the system mass matrix,
f ∈ Rnd is a generalized force vector, and q ∈ Rnd is a vector of generalized coordinates
describing the system configuration with q̇, q̈ the first and second time derivatives respectively.
We refer the reader to Table 1 for a list of symbols used in this paper.

2.1 Physical Modeling

The continuous equations of motion (1) are expressed purely in terms of our generalized coor-
dinates q and their derivatives. Although it is possible to discretize and solve these equations
for q directly, when dealing with rigid bodies it is convenient to introduce an additional re-
parameterization in terms of a generalized velocity vector u:

q̇ = G(q)u (2)

q̈ = Ġ(q)u + G(q)u̇. (3)

Here G is referred to as the kinematic map, and its components depend on the choice of
system coordinates. For simple particles G is an identity transform, however in Section 2.1.2
we discuss the mapping of a rigid body’s angular velocity to the corresponding quaternion time-
derivative.

2.1.1 Particles

We represent soft bodies, such as cloth or deformable solids, as sets of particles where a particle
with index i contributes 3 degrees of freedom,

9

qi =

xy
z

 , ui =

vxvy
vz

 . (4)

The associated mass matrix is Mi = m13x3, where m is the particle mass.

2.1.2 Rigid Bodies

To describe the state of a rigid body with index i we use a maximal coordinate representation
consisting of the position of the body’s center of mass, xi, its orientation expressed as a quater-
nion θi = [θ1, θ2, θ3, θ4], and a generalized velocity vector ui

qi =

[
xi

θi

]
, ui =

[
ẋi

ωi

]
, (5)

where ω is the body’s angular velocity. The kinematic map from generalized velocities to the
system coordinate time-derivatives is then given by q̇i = Gui where

G =

[
13×3 0

0 1
2Q

]
, (6)

and Q is the matrix that performs a truncated quaternion rotation,

Q(θ) =


−θ2 −θ3 −θ4

θ1 θ4 −θ3

−θ4 θ1 θ2

θ3 −θ2 θ1

 . (7)

The corresponding generalized mass matrix is then

M = GTM̃G, (8)

10

where

M̃i =

[
m13×3 0

0 I

]
, (9)

andm is the body mass and I is the inertia tensor. When using quaternions to represent rotations
there is an implicit constraint that ‖θ‖ = 1. Rather than include this constraint explicitly it is
common to periodically renormalize the quaternion to unit-length [15].

2.1.3 Hard Kinematic Constraints

We impose hard bilateral (equality) constraints on the system configuration through constraint
functions of the form Cb(q) = 0. Using D’Alembert’s principle [113] the force due to such a
constraint is of the form fb = ∇Cb(q)Tλb where∇Cb is the constraint’s gradient with respect to
the system coordinates, and λb is a Lagrange multiplier variable used to enforce the constraint.
Combining these algebraic constraints with the differential equation (1) gives the following
Differential Algebraic Equation (DAE):

M(q)q̈− f(q, q̇)−∇cTb λb = 0 (10)

cb(q) = 0. (11)

For a system with nb equality constraints we define the constraint vector
cb(q) = [Cb,1, Cb,2, · · · , Cb,nb]T ∈ Rnb , ∇cb ∈ Rnb×nd its gradient with respect to system
coordinates, and λb ∈ Rnb the vector of Lagrange multipliers. In general bilateral constraints
may depend on velocity and time, however we assume scleronomic constraints for the remainder
of the paper to simplify the exposition.

2.1.4 Soft Kinematic Constraints

In addition to hard constraints, we make extensive use of the compliance form of elasticity
[185, 215]. We derive this by considering a quadratic energy potential defined in terms of a
constraint function Cb(q) and stiffness parameter k > 0

U(q) =
k

2
Cb(q)2. (12)

11

Figure 3: Contact Constraint: We model contact as a constraint on the distance between two
points a and b as measured along a fixed normal direction n being greater than some minimum
d.

The force due to this potential is then given by

fb = −∇UT = −k∇CTb Cb(q) = ∇CTb λb. (13)

Here we have introduced the variable λb, defined as λb = −kCb(q). We can move all terms to
one side to write this as a constraint equation,

Cb(q) + eλb = 0, (14)

where e = k−1 is the compliance, or inverse stiffness coefficient. We can incorporate this into
our equations of motion by defining the diagonal compliance matrix E = diag(e1, e2, · · · , enb) ∈
Rnb×nb , and updating (11) as follows,

cb(q) + Eλb = 0. (15)

This form is mathematically equivalent to including quadratic energy potentials defined in
terms of a stiffness. The benefit of the compliance form is that it remains numerically stable
even as k →∞ [215].

12

2.1.5 Continuum Materials

The above process may be extended to more complex energies by extending the scalar quan-
tities to higher dimensions. This allows modeling deformable solids as finite elements (FEM)
using compliant constraints [185]. We now show how to extend the simple 1D spring potential
presented above to a 3D Hookean constitutive model. Assuming a constant strain element, the
strain energy can be written as:

U(q) = Ve
1

2
sTKes, (16)

where s = [εxx, εyy, εzz, εyz, εxz, εxy] is a vector of strain elements, Ke ∈ R6×6 is the element’s
material stiffness matrix, and Ve the element rest volume. The corresponding compliance matrix
is E = (VeKe)

−1 which is a constant that may be precomputed. In Section 4.7.4 we show how
to generalize this form to hyperelastic materials where the strain energy density is not a simple
quadratic form.

2.2 Contact Modeling

In this section we cover some mathematical background on contact modeling. We focus on
complementarity formulations and give a derivation of isotropic Coulomb friction from a prin-
ciple of maximal dissipation. In Section 3 we generalize this, and present a novel friction model
for contact between two anisotropic materials inspired by sliding two Matchsticks against one
another.

2.2.1 Non-Penetration

We initially treat contacts as inelastic and prevent interpenetration between bodies through hard
inequality constraints of the form

Cn(q) = nT [a(q)− b(q)]− d ≥ 0. (17)

Here n ∈ R3 is the contact plane normal created by normalizing the direction vector between
closest points of e.g.: triangle-mesh features. The points a and b ∈ R3 may be points defined in

13

d1

d2

d3

d4

d5

d6

d7

d8
d1

d2

n

Figure 4: Left: A Coulomb friction cone approximated by linearizing into 8 directions leads
to a larger LCP problem and introduces bias in some directions. Right: We project frictional
forces directly to the smooth friction cone, and require only 2 tangential direction vectors.

terms of a rigid body frame, or particle positions in the case of a deformable body. The constant
d is a thickness parameter that represents the distance along the contact normal we wish to
maintain. Non-zero values of d can be used to model shape thickness, as illustrated in Figure 3.
The normal force for a contact is given by fn = ∇CTn λn, with the additional Signorini-Fichera
complementarity condition

0 ≤ Cn(q) ⊥ λn ≥ 0, (18)

which ensures contact forces only act to separate objects [198]. We treat the contact normal n as
fixed in world-space. For a system with nc contacts, we define the vector of contact constraints
as cn = [Cn,1, · · · , Cn,nc] ∈ Rnc , their gradient ∇cn ∈ Rnc×nd , and the associated Lagrange
multipliers as λn ∈ Rnc . In actual implementation code contact constraints are typically created
when body features come within some fixed distance of each other. This approach works well for
reasonably small time-steps, but can lead to over-constrained configurations. More sophisticated
non-interpenetration constraints can be formulated to avoid this problem [227].

2.2.2 Isotropic Friction

We now give a derivation of Coulomb friction from a principle of maximal dissipation that
requires the frictional forces remove the maximum amount of energy from the system while
having their magnitude bounded by the normal force [198]. For each contact we define a two-

14

dimensional basis D = Γ(q)[d1d2] ∈ Rnd×2. The contact basis vectors d1,d2 ∈ R3×1 are
lifted from spatial to generalized coordinates by the transform Γ ∈ Rnd×3 using the notation of
Kaufman et al. [109]. The generalized frictional force for a single contact is then ff = Dλf ,
where λf ∈ R2 is the solution to the following minimization

argmin
λf

q̇TDλf

subject to |λf |22 ≤ µ2λ2
n.

(19)

Here µ is the coefficient of friction, and λn is the Lagrange multiplier for the normal force
at this contact which for the moment we assume is known. The inequality constraint on the
frictional Lagrange multipliers defines an admissible cone that the total contact force must lie
in, as illustrated in Figure 4. The Lagrangian associated with this minimization is

L(λf , λn) = q̇TDλf + λs(µ
2λ2

n − |λf |22). (20)

where λs is a slack variable used to enforce the Coulomb constraint that the friction force magni-
tude is bounded by the µ times the normal force magnitude. When µλn > 0 the problem satisfies
Slater’s condition [23] and we can use the first-order Karush-Kuhn-Tucker (KKT) conditions for
(19) given by

DT q̇ + 2λsλf = 0 (21)

0 ≤ λs ⊥ λs(µ
2λ2

n − |λf |22) ≥ 0. (22)

Equation (21) requires that the frictional force act in a direction opposite to any relative tan-
gential velocity. Equation (22) is a complementarity condition that describes the sticking and
slipping behavior characteristic of dry friction. The quantity λs is a slack variable that governs
stick/slip transitions. When λs = 0 the friction force lies inside the Coulomb cone, and we must
have zero tangential motion. When λs > 0 there is sliding, and the friction force must lie on the
boundary of the cone.

15

3 Advanced Friction Modeling

We now explore friction modeling beyond the isotropic Coulomb model presented in the pre-
vious chapter. Before introducing a novel anisotropic friction model, we first generalize the
derivation from the previous section to support arbitrary friction cones. To do this, we introduce
a function ψ(λf) : Rn → R that defines an admissible region the frictional forces must lie
inside. The generalized optimization associated with the maximal dissipation principle is then
given by,

argmin
λf

q̇TDλf

subject to ψ(λf) ≥ 0,

(23)

and the Lagrangian associated with this minimization is

L(λf) = q̇TDλf + λsψ(λf), (24)

which has the following optimality conditions:

DT q̇ + λs
∂ψ

∂λf

T

= 0 (25)

0 ≤ λs ⊥ ψ(λf) ≥ 0. (26)

From this we can see that isotropic Coulomb friction corresponds to the specific choice of
ψ(λf) = µ2λ2

n − |λf |22. In the following section we review some previous work on anisotropic
friction modeling, and then introduce a new choice ofψ for modeling combinations of anisotropic
surfaces. In Section 4 we discuss solution strategies for solving the complementarity problems
arising from this generalized friction model.

3.1 Related Work

Friction measurements in mechanical engineering have for a long time demonstrated the short-
comings of the standard isotropic Coulomb model. Liley et al. [126] observed asymmetric
anisotropic friction due to molecular tilt of a mica surface, and Umbanhowar et al. [219] used

16

direction-dependent surface friction properties to help design friction-induced velocity fields on
a vibrating plate. Their experiments clearly show anisotropic behavior due to microscale ortho-
graphic rough geometric features. Yu and Wang [236] show that very rough microscale geome-
try gives rise to anisotropic friction strongly correlated to the microscale structure. Conversely,
fine roughness appears to give near isotropic behavior. Hence, a certain sufficient roughness
scale and directional structure is needed to get strong anisotropic response. This observation
leads us to a model that can smoothly blend between isotropic and anisotropic cones.

The work addressing anisotropic friction modeling is relatively sparse [15]. Among the ex-
ceptions is the use of the friction tensors by Pabst et al. [161], who propose an additive model
that uses nine parameters to describe the material for planar dynamic friction. Our Matchstick
model uses the angle between structure directions (much like the tensor eigenvectors) to interpo-
late cone orientations in a common frame, and only uses a small number of intuitive parameters.
In addition, the friction tensors of Pabst et al. do not provide an immediate cone description, but
give a direct equation for the dynamic friction force that does not rely on maximum dissipation.
Using the generalized derivation in the previous section, we show how to derive anisotropic
friction from a principle of maximum dissipation, that to the best of our knowledge has not been
published outside this thesis.

A pragmatic solution to generating anisotropic friction effects is to align the first axis of
the contact frame with the relative sliding direction, as done in many physics engines and past
work [15]. This approach however, does not consider the surface properties and orientations
of both the contacting objects. In this work we propose a model uses the mean of the intrinsic
material structure directions to estimate the direction of greatest resistance.

3.2 The Matchstick Model for Anisotropic Friction Cones

Often surfaces have a predominant direction in which friction occurs. For example, due to a
grain, or fibers in the case of wood, or some other anisotropic microstructure in the material. To
capture this effect, we can generate an ellipsoidal friction cone by choosing a rotation matrix

R =
[
t b
]

(27)

where t,b ∈ R3 are the tangent and bitangent basis vectors that define the principal axes of
the ellipsoid. We use the convention that t is aligned with the major axis of primary resistance.
Then, we can define the ellipsoidal cone using the quadratic form:

17

Figure 5: The Matchstick Model: Inspired by the anisotropic friction between matchsticks, our
model interpolates between isotropic and anisotropic extremes based on the angle between the
predominant structure directions sa, and sb.

ψ(λf) = λ2
n − λTf RTCRλf ≥ 0, (28)

where C is a diagonal matrix that determines the cone anisotropy. Given two contacting
objects, potentially with different microstructure, there is a question of how to choose R and C.
Since frictional forces arising between two surfaces are dependent on the microscopic geometry
of both surfaces, it does not make sense to use a predetermined values. Rather, the shape of
friction cone should be a function of the combined contacting surface’s material properties, and
their alignment. In this section we propose a novel approach for generating friction cones for
two anisotropic surfaces.

We begin by observing that, in the real world, matchsticks typically have a predominant di-
rection of friction. When these directions are aligned, frictional forces between them are maxi-
mized. When they are orthogonal it is at a minimum. This observation suggests an interpolation
between the two surface frames, and friction coefficients. We define an interpolation quantity d
as follows:

d ≡ 1− 2

π
cos−1‖|sTa sb‖|, (29)

where sa, sb are the world-space structure directions, defining the predominant direction of fric-
tion as illustrated in Figure 5. We construct an interpolated basis R using the following defi-
nition, where the tangent t is obtained through a normalized average, and the bitangent, b, is
chosen to be an orthogonal in the plane:

18

t =
sa + sb
|sa + sb|

(30)

b = n× t. (31)

The material matrix C defining the anisotropy of the friction cone along the tangent and bitan-
gent directions is given by,

C =

[
1
µt

2
0

0 1
µb

2

]
(32)

where the effective coefficients of friction are obtained by interpolating the two coefficients of
friction according to d

µt = dµa + (1− d)µ (33)

µb = dµb + (1− d)µ. (34)

Here µ is the isotropic parameter that may be chosen e.g.: through a simple averaging of two
surface defined coefficients. Our proposed combination strategy smoothly varies the friction
cone from anisotropic to isotropic as the structure directions become less aligned.

3.3 Structure Fields

From an implementation point of view, a method is required to store
and query the structure directions of a surface at a point. Our method is
agnostic to how this is performed, however a convenient representation
is to store them as a texture map. The inline figure on the right shows
an example of one such texture map used in our experiments, along with
structure directions. Here, the red and green channels of the image are
used to store the direction information.

19

Figure 6: Friction Control: Procedurally generated structural directions provide intuitive inter-
active control. These didactic examples demonstrate channeling (top), spreading (middle), and
slaloming (bottom).

3.4 Results

Using the solver developed in the following section, Figure 6 shows
simple cases where the behavior of sliding boxes can be altered easily
by generating a varying structure field for the plane. A surprising result
of anisotropic friction is the generation of curved sliding trajectories.
This is a result of the principle of maximal dissipation which requires
the frictional force to no longer be aligned with the body velocity as
illustrated in the top-down view on the right. This can be used for artist
effect to ’steer’ the trajectory of objects along predefined paths. On a
sloped plane, Figures 7 and 8 show control of a log slide in a ravine.

We demonstrate changing structure directions on a soft object with
the robotic grasping example shown in Figure 9. Interactive changes to the structure fields
immediately change the behavior as the Allegro gripper strokes the soft gel-like material.

20

Figure 7: Log Slide: A structure field on a ravine slope can be used to steer a log slide towards
(top) or around (bottom) a cube-shaped building.

3.5 Conclusion and Future Work

We have presented a new phenomenological anisotropic friction model for structured surfaces.
The novelty of considering cones as state dependent parametric functions that can change dy-
namically opens up a doorway for a multitude of modeling possibilities not yet seen. We believe
it will be straightforward to extend our work to address friction models with other dependencies,
such as sliding velocity (Stribeck effect) or nonlinear scaling with normal forces as employed
in recent work on cloth simulation [34]. We note that anisotropic friction is generally in de-
mand for cloth simulation [117] and believe our model may be useful for self-collision between
anisotropic fabrics.

21

Figure 8: Log Slide Visualization: Visualization of the ravine example structure fields. Logs
collide with the box (top), and spread prior to collision (bottom).

Figure 9: Anisotropic Manipulation: Grasping with a robotic gripper demonstrates how our
model affects the friction behavior during interaction with a deformable object. Left: We align
the minor friction axis in the horizontal direction, which leads to minimal deformation with a
sideways sliding motion. Middle, Right: Forward/backwards motion in the primary structure
direction causes the elastic sheet to pull up dramatically.

22

4 Non-Smooth Newton Methods

In this section we develop a framework based on Newton’s method that solves the underlying
nonlinear complementarity problems (NCPs) arising in multi-body dynamics. We combine a
nonlinear contact model, articulated rigid-body model, and a hyperelastic material model as a
system of semi-smooth equations, and show how it can be solved efficiently. A key advantage
of our Newton-based approach is that it allows the use of off-the-shelf linear solvers as the
fundamental computational building block. This flexibility means we can choose to use accu-
rate direct solvers, or take advantage of highly-optimized iterative solvers available for parallel
architectures such as graphics-processing units (GPUs).

Methods for simulating multi-body systems in the presence of contact and friction most com-
monly formulate a linear complementarity problem (LCP) that is solved in one of two ways:
relaxation methods such as projected Gauss-Seidel (PGS), or direct methods such as Dantzig’s
pivoting algorithm. Relaxation methods are popular due to their simplicity, but suffer from
slow convergence for poorly conditioned problems [57]. In contrast, direct methods can achieve
greater accuracy, but are typically serial algorithms that scale poorly with problem size. Finding
methods that combine the simplicity and robustness of relaxation methods with the accuracy
of direct methods remains a challenge in computer graphics and robotics. While solving LCP
problems efficiently is still the subject of active research, as a model they may not capture all of
the dynamics we wish to simulate. For example, hyperelastic materials have highly nonlinear
forces that significantly affect behavior compared to linear models [193]. In addition, contact
models may be nonlinear, for example the smooth and possibly anisotropic friction cones pre-
sented in the previous section. This motivates the use a nonlinear solver capable of capturing
these effects.

4.1 Related Work

4.1.1 Contact

The foundational work of Jean and Moreau [103] introduced an implicit time-stepping scheme
for contact problems with friction. This work was further popularized by Stewart and Trinkle
[199] who linearize the Coulomb friction cone and solve LCPs using Lemke’s method in a fixed-
point iteration to handle nonlinear forces. We also make use of a fixed-point iteration, but in
contrast to their work we use non-smooth functions to model nonlinear friction cones. Kaufman
et al. [108] proposed a method for implicit time-stepping of contact problems by solving two
separate quadratic programs (QPs) for normal and frictional forces in a staggered manner. In

23

our work we do not stagger our system updates but solve for contact forces and friction forces
in a combined system, and without using a linearized cone. In addition, rather than using QP
solves our method requires only the solution of a symmetric linear system as a building block,
allowing for the use of off-the-shelf linear solvers.

Relaxation methods such as projected Gauss-Seidel are popular in computer graphics thanks
to their simplicity and robustness [16]. While robust, these methods suffer from slow conver-
gence for poorly conditioned problems, e.g.: those with high-mass ratios [57]. In addition,
Gauss-Seidel iteration suffers from order dependence and is challenging to parallelize, while
Jacobi methods require modifications to ensure convergence [214]. Daviet et al. [43] used a
change of variables to restate the Coulomb friction cone into a self-dual complementarity cone
problem followed by a modified Fischer-Burmeister reformulation to obtain a local non-smooth
root search problem. In comparison, we work directly with the friction cone as limit surfaces as
we believe this provides us with more modeling freedom, e.g.: for anisotropic or non-symmetric
friction cones. Another difference is that we solve for all contacts simultaneously rather than
one-by-one.

Otaduy et al. [159] presented an implicit time-stepping scheme for deformable objects that
solves a mixed linear complementarity problem (MLCP) using a nested Gauss-Seidel relax-
ation over primal and dual variables. Prior work on simulating smooth friction models has used
proximal-map projection operators [105, 102, 58] which work by projecting contact forces to
the friction cone one contact at a time until convergence. There has been considerable work to
address the slow convergence of relaxation methods, Mazhar et al. [146] use a convexification
of the frictional contact problem [9] to obtain a cone complementarity problem (CCP) and solve
it using an accelerated version of projected gradient descent. Silcowitz et al. [191, 192] devel-
oped a method for solving LCPs based on non-smooth nonlinear conjugate gradient (NNCG)
applied to a PGS iteration. Francu et al. [66] proposed an improved Jacobi method based on
a projected conjugate residual (CR) method. We also make use of Krylov space linear solvers,
however our Newton-based iteration is decoupled from the underlying linear backend, allowing
the application of matrix-splitting relaxation methods, or even direct solvers.

Early work on Newton methods for contact problems used a formulation based on a gen-
eralized projection operator and an augmented Lagrangian approach to unilateral constraints
[4, 40]. Newton-based approaches found in libraries such as PATH [50] have proved successful
in practice, and have been applied to smooth Coulomb friction models in fiber assemblies in
computer graphics [18, 43, 109]. These approaches formulate the complementarity problem in
terms of non-smooth functions, and solve them with a generalized version of Newton’s method.
This approach can yield quadratic convergence, although with a higher per-iteration cost than
relaxation methods.

24

Todorov [211] observed that if solving a nonlinear time-stepping problem, e.g.: due to an
implicit time-discretization, it makes little sense to perform the friction cone linearization, since
the smooth contact model can be treated simply as an additional set of nonlinear equations in
the system. This observation is at the heart of our method, but in contrast to their work we
formulate friction in terms of arbitrary NCP-functions, and extend our framework to handle de-
formable bodies. Our approach is based on Newton’s method, and combined with our proposed
preconditioner we show that it enables handling considerably more ill-conditioned problems
than relaxation methods, while naturally accommodating nonlinear friction models. For a re-
view of numerical methods for linear complementarity problems we refer to the book by Niebe
and Erleben [154]. For a review of non-smooth methods applied to dynamics problems we refer
to the book by Acary & Brogliato [2].

4.1.2 Coupled Systems

There has been considerable work in computer graphics on coupling between rigid and de-
formable bodies. Shinar et al. [187] proposed a method for the coupled simulation of rigid
and deformable bodies through a multi-stage update that peforms collisions, contacts, and sta-
bilization in separate passes. In contrast, we formulate a system update that includes elastic
and contact dynamics in a single phase. Duriez [52] showed real-time control of soft-robots
using a co-rotational FEM model and Gauss-Seidel based constraint solver. Servin et al. [185]
introduced a compliant version of elasticity that fits naturally inside constrained rigid body sim-
ulators. Their work was extended by Tournier et al. [215] who include a geometric stiffness term
to improve stability. They use temporal coherence of Lagrange multipliers to build the system
Jacobian and compute a Cholesky decomposition, followed by a projected-Gauss Seidel solve
for contact. For smaller problems our approach is compatible with direct solvers, however we
avoid the requirement of dense matrix decompositions by using a diagonal geometric stiffness
approximation inspired by the work of Andrews et al. [7], this improves stability and allows us
to apply iterative methods.

In this work we propose a generalized view of compliance, and give a recipe for constructing
the compliance form of an arbitrary material model given its strain-energy density function in
terms of principle stretches, strains, or other parameterization. As an example we show how to
formulate the stable Neo-Hookean material proposed by Smith et al. [193]. Liu et al. [132]
propose a quasi-Newton method for hyperelastic materials based on Projective Dynamics [22]
and model contact through stiff penalty forces. In contrast we model contact through comple-
mentarity constraints that naturally fit into existing multi-body simulations.

25

4.2 Governing Equations

Assembling the components presented in Chapter 2, our continuous equations of motion are
given by the following nonlinear system of equations:

M(q)q̈− f(q, q̇)−∇cTb (q)λb −∇cTn (q)λn −∇cTf (q)λf = 0 (35)

cb(q) + Eλb = 0 (36)

0 ≤ cn(q) ⊥ λn ≥ 0 (37)

i ∈ A, DT
i q̇ + λs,i

∂ψi(λf,i)

∂λf,i

T

= 0 (38)

i ∈ A, 0 ≤ λs,i ⊥ ψi(λf,i) ≥ 0 (39)

i ∈ I, λf,i = 0 (40)

where A = {i ∈ (1, · · · , nc) | µiλn,i > 0} is the set of all contact indices where the normal
contact force is active, and I = {i ∈ (1, · · · , nc) | µiλn,i ≤ 0} is its complement. This
combination of a differential equation with equality and complementarity conditions is known
as Differential Variational Inequality (DVI) [198]. The coupling between normal and frictional
complementarity problems makes the problem non-convex, and in the case of implicit time-
integration leads to an NP-hard optimization problem [108]. In the next section we develop a
practical method to solve this problem.

4.3 Nonlinear Complementarity

One successful approach [62] to solving nonlinear complementarity problems is to reformu-
late the problem in terms of a NCP-function whose roots satisfy the original complementarity
conditions, i.e.: functions where the following equivalence holds

φ(a, b) = 0 ⇐⇒ 0 ≤ a ⊥ b ≥ 0. (41)

Combined with an appropriate time-discretization, such NCP-functions turn our DVI problem
into a root finding one. In general the functions φ are non-smooth, but allow us to apply a wider
range of numerical methods [152].

26

4.3.1 Minimum-Map Formulation

The first NCP function we consider is the minimum-map defined as

φmin(a, b) = min(a, b) = 0. (42)

The equivalence of this function to the original NCP can be verified by examining the values
associated with each conditional case [37]. We now show how this reformulation applies to
our unilateral contact constraints. Recall that the complementarity condition associated with a
contact constraint Cn(q) and its associated Lagrange multiplier λn is

0 ≤ Cn(q) ⊥ λn ≥ 0. (43)

We can write this in the equivalent minimum-map form as

φn(q, λn) ≡ min(Cn(q), λn) = 0, (44)

which has the following derivatives,

∂φn
∂q

=

∇Cn(q), Cn(q) ≤ λn
0, otherwise

(45)

∂φn
∂λn

=

0, Cn(q) ≤ λn
1, otherwise.

(46)

From these cases we can see that the minimum-map gives rise to an active-set style method
where a contact is considered active if Cn(q) ≤ λn. Active contacts are treated as equality con-
straints, while for inactive contacts the minimum-map enforces that the constraint’s Lagrange
multiplier is zero.

4.3.2 Fischer-Burmeister Formulation

An alternative NCP-function is given by Fischer-Burmeister [63], who observe the roots of the
following equation satisfy complementarity:

27

φFB(a, b) ≡ a+ b−
√
a2 + b2 = 0. (47)

The Fischer-Burmeister function is interesting because, unlike the minimum-map, it is smooth
everywhere apart from the point (a, b) = (0, 0). For (a, b) 6= (0, 0) the partial derivatives of the
Fisher-Burmeister function are given by:

α(a, b) =
∂φFB

∂a
= 1− a√

a2 + b2
(48)

β(a, b) =
∂φFB

∂b
= 1− b√

a2 + b2
. (49)

At the point (a, b) = (0, 0) the derivative is set-valued (see Figure 11). For Newton methods
it suffices to choose any value from this subgradient. Erleben [57] compared how the choice of
derivative at the non-smooth point affects convergence for LCP problems and found no overall
best strategy. Thus, for simplicity we make the arbitrary choice of

α(0, 0) = 0 (50)

β(0, 0) = 1. (51)

For a contact constraint Cn, with Lagrange multiplier λn we may then define our contact
function alternatively as,

φn(q, λn) ≡ φFB(Cn(q), λn) = 0, (52)

with derivatives given by

∂φn
∂q

= α(Cn, λn)∇Cn (53)

∂φn
∂λn

= β(Cn, λn). (54)

28

Figure 10: Flexible Beam Insertion: The Fetch robot performing a flexible beam insertion
task. The beam is modeled as 16 rigid bodies connected by joints with a bending stiffness
of 250 N·m. Relaxation methods such as Jacobi struggle to achieve sufficient stiffness on the
joints, while direct methods struggle with large contacting systems near the end of simulation.
Our iterative method based on PCR achieves high stiffness and robust behavior in contact.

29

4.3.3 Frictional Constraints

As we did for contact above, we can convert our frictional complementarity conditions into
non-smooth equations. For each contact we define the following two constraint functions to
represent the friction conditions,

φf ≡ DT q̇ + λs
∂ψ

∂λf

T

= 0 (55)

φs ≡ φmin(λs, ψ(λf , λn)) = 0, (56)

where we may replace the minimum map with any valid NCP function. Before discretizing our
equations of motion we first group the normal and friction NCP-functions for all contacts into
three vectors,

φn = [φn,1, · · · , φn,nc]T (57)

φf = [φf,1, · · · ,φf,nc]T (58)

φs = [φs,1, · · · , φs,nc]T , (59)

and define the following Jacobians with respect to the generalized velocity as

Jb =
∂cb
∂q

G, Jn =
∂φn
∂q

G, Jf =
∂φf
∂q̇

G. (60)

4.4 Implicit Time-Stepping

Using a first-order backwards time-discretization of q̇ = Gu gives the following update for the
system’s generalized coordinates in terms of generalized velocities over a time-step of length
∆t,

q+ = q− + ∆tG(q+)u+. (61)

The superscripts +,− represent a variable’s value at the end and beginning of the time-step
respectively. Discretizing our continuous equations of motion gives the following implicit time-
stepping equations,

30

M̃

(
u+ − ũ

∆t

)
− JTb (q+)λ+

b − JTn (q+)λ+
n − JTf (q+)λ+

f = 0 (62)

cb(q
+) + Eλ+

b = 0 (63)

φn(q+,λ+
n) = 0 (64)

φf (u+,λ+
s ,λ

+
f) = 0 (65)

φs(λ
+
s ,λ

+
f ,λ

+
n) = 0 (66)

q+ − q− −∆tGu+ = 0. (67)

Here u+,λ+ are the unknown velocities and multipliers at the end of the time-step. The
constant ũ = u−+∆tGTM−1f(q−, q̇−) is the unconstrained velocity that includes the external
and gyroscopic forces integrated explicitly. Observe that through this time-discretization the
original force level model of friction has changed into an impulsive model. This means friction
impulses are able to prevent sliding and interpenetration instantaneously (over a single time-
step in the discrete setting). This avoids the inconsistency raised by Painlevé in the continuous
setting.

We highlight a few differences from common formulations. First, the equality and inequality
constraints have not been linearized through an index reduction step [79]. Index reduction is
a common practice that reduces the order of the DAE by solving only for the constraint time-
derivatives, e.g.: ċb = 0. Index reduction results in a linear problem, but requires additional
stabilization terms to combat drift and move the system back to the constraint manifold. These
stabilization terms are often applied as the equivalent of penalty forces [11] and are known as a
source of instability and tuning issues. Work has been done to add additional post-stabilization
passes [36], however these require solving nonlinear projection problems, which gives up the
primary benefit of performing the index reduction step. Our discrete equations of motion are
also nonlinear, but they require no additional stabilization terms or projection passes.

A second point we highlight is that the friction cone defined through (19) has not been lin-
earized into a faceted cone as is common [199, 108]. The faceted cone approximation leads to
a simpler linear complementarity problem (LCP), but increases the number of Lagrange multi-
pliers required (one per-facet), and introduces an approximation bias where frictional effects are
stronger in some directions than others. In the next section we propose a method that solves the
NCP corresponding to smooth isotropic friction using a fixed number of Lagrange multipliers.

31

Figure 11: Non-Smooth Derivatives: The derivative of a non-smooth function is set valued
at discontinuities. The shaded area represents the generalized Jacobian ∂r(x0), defined as the
convex hull of directional derivatives at x0.

4.5 Non-Smooth Newton

We now develop a method to solve the discretized equations of motion (62)-(67). Our starting
point is Newton’s method which we briefly review here. Given a set of nonlinear equations
r(x) = 0 in terms of a vector valued variable x, Newton’s method gives a fixed point iteration
in the following form:

xn+1 = xn −A−1(xn)r(xn), (68)

where n is the Newton iteration index. Newton’s method chooses A specifically to be the matrix
of partial derivatives evaluated at the current system state, i.e.:

A =
∂r

∂x
=


∂r1

∂x1
· · · ∂r1

∂xm
...

. . .
...

∂rn
∂x1

· · · ∂rn
∂xm

 . (69)

Although Newton’s method is most commonly used for solving systems of smooth func-
tions it may also be applied to non-smooth functions by generalizing the concept of a derivative
[164]. Qi and Sun [172] showed that Newton will converge for non-smooth functions provided
A ∈ ∂r(xk), where ∂r is the generalized Jacobian of r at xk defined by Clarke [35]. Intu-
itively, this is the convex hull of all directional derivatives at the non-smooth point, as illustrated
in Figure 11. The derivatives of our NCP-functions given in the previous section belong to this

32

Algorithm 1: Simulation Loop

while Simulating do
Perform Collision Detection;
for N Newton Iterations do

Assembly M,H,J,C,g,h,b;
for M Linear Iterations do

Update Solution to [JH−1JT + C]∆λ = b;
end
Perform Line Search to find α (optional)
λn+1 = λn + α∆λ

un+1 = un + α∆u

qn+1 = qn + ∆tGun+1

end
end

subgradient, and we can use them in the fixed-point iteration of (68) directly. Algorithms of
this type are sometimes referred to as semismooth methods, we refer the reader to the article
by Hintermüller [89] for a more mathematical introduction and the precise definition of semis-
moothness. In many cases A is not inverted directly, and the linear system for ∆x may only
be solved approximately. When this is the case we refer to the method as an inexact Newton
method. Additionally, when the partial derivatives in A are also approximated we refer to it as
a quasi-Newton method. In our method we make use of both approximations.

4.5.1 System Assembly

Linearizing our discrete equations of motion (62)-(67) each Newton iteration would yield the
following linear system in terms of the change in system variables:



M̃−∆t2K −JTb −JTn −JTf 0

Jb
∂φ
∂λb

p 0 0 0

Jn 0 ∂φn
∂λf

0 0

Jf 0 0
∂φf
∂λf

∂φf
∂λs

0 0 ∂φs
∂λn

∂φs
∂λf

∂φs
∂λs





∆u

∆λb∆t

∆λn∆t

∆λf∆t

∆λs∆t


= −



g

φb

φn

φf

φs


. (70)

This matrix is clearly non-symmetric due to the inclusion of the function φs that couples

33

together the normal and frictional Lagrange multipliers. This asymmetry may be avoided by
lagging, or staggering the Lagrange multiplier updates and treating the slack variables as con-
stant during each solve [199, 108]. To do this in the context of a Newton update we propose a
separate fixed-point iteration to linearize the relationship between λs and λf . We motivate this
by inspecting the first friction condition,

φf ≡ DT q̇ + λs
∂ψ

∂λf

T

= 0, (71)

and observe that λs is a scaling factor that must force the two vector-valued terms to be zero i.e.:
λs = |DT q̇|

| ∂ψ
∂λf
|
. Starting with this relationship, we include the complementarity constraint using

the following fixed-point iteration,

λn+1
s ← |D

T q̇|n − φns
| ∂ψ∂λf |

n + φns
. (72)

By construction, a fixed-point of this iteration satisfies φs = 0. We note that conical equivalents
of the Fischer-Burmeister function exist and have been used to model smooth isotropic friction
[70, 43]. One advantage of our method being based on a fixed-point iteration is that it can be
extended to arbitrary friction surfaces for e.g.: anisotropic or even non-symmetric friction cones.
The derivatives of φf are then given by,

∂φf
∂q̇

= DT ,
∂φf
∂λf

= λs
∂2ψ

∂λ2
f

T

. (73)

4.5.2 Final System

We can now write our symmetric Newton system as:


M̃−∆t2K −JTb −JTn −JTf

Jb
E

∆t2
0 0

Jn 0 S
∆t2

0

Jf 0 0 W
∆t




∆u

∆λb∆t

∆λn∆t

∆λf∆t


= −


g

hb

hn

hf


(74)

34

0 2.5 5 7.5 10
0

0.25

0.5

0.75

1
MinMap
FB

0 2.5 5 7.5 10
-1

-0.5

0

0.5

1
MinMap
FB

Figure 12: Frictional Constraints: Left: We plot the value of our frictional compliance termW

for a 1-dimensional particle sliding on a plane with velocity u0 = 0.5m/s, λn = 10N, µ = 0.5.
The dashed line represents the friction cone limit at λf = 5N, after this point W acts to strongly
penalize the Lagrange multiplier. Right: The frictional error function φf for the same scenario.
We see that both the Fischer-Burmeister and Minimum-Map functions are zero at the cone limit
which indicates sliding.

where K is the geometric stiffness matrix arising from the spatial derivatives of constraint forces
discussed in Section 4.7.3. The lower-diagonal blocks are the derivatives of our contact functions
with respect to their Lagrange multipliers.

S =
∂φn
∂λn

, W =
∂φf
∂λf

. (75)

Here W may be interpreted as a frictional compliance term that acts to project the friction forces
back onto the friction cone as illustrated in Figure 12. Grouping the sub-block components such
that

H =
[
M̃−∆t2K

]
, J =

Jb

Jn

Jf

 , C =


E

∆t2
0 0

0 S
∆t2

0

0 0 W
∆t

 , λ =

λbλn
λf

 (76)

we can write the system compactly as,

[
H −JT

J C

][
∆u

∆λ∆t

]
= −

[
g

h

]
. (77)

35

The right-hand side is given by evaluating our discrete equations of motion (62)-(67) at the
current Newton iterate. Here, g is our momentum balance equation,

g = M̃ (un − ũ)−∆tJTλn, (78)

and h is a vector of constraint errors,

h =

hb

hn

hf

 =


1

∆t1
1

∆t1

1


cb(q

n) + E(qn)λnb
φn(qn,λnn)

φf (un,λnf)

 . (79)

Here the left-hand side matrix should be considered acting block-wise on the constraint error.
Since the frictional constraints are measured at the velocity level they are not scaled by 1

∆t like
the positional constraints.

The mass block matrix M is evaluated at the beginning of the time-step using q−, while the H

matrix is evaluated each Newton iteration as described in Section 4.7.3. The friction compliance
block, W, is evaluated at each Newton iteration using the current Lagrange multipliers. For in-
active contacts with λn ≥ 0 we conceptually disable their frictional constraint equation rows by
removing them from the system. In practice this can be performed by zeroing the corresponding
rows to avoid changing the system matrix structure.

4.5.3 Schur-Complement

The system (77) is a saddle-point problem [17] that is indefinite and possibly singular. To
obtain a reduced positive semi-definite system, we take the Schur-complement with respect to
the mass-block to obtain

[
JH−1JT + C

]
∆λ =

1

∆t

(
JH−1g − h

)
. (80)

After solving this system for ∆λ the velocity change ∆u may be evaluated directly,

∆u = H−1
(
JT∆λ∆t− g

)
(81)

36

and the system updated accordingly,

λn+1 = λn + α∆λ (82)

un+1 = un + α∆u (83)

qn+1 = qn + ∆tGun+1. (84)

Here α is a step-size determined by line-search or other means (see Section 4.7). We refer to
(80) as the Newton compliance formulation. Under certain conditions we could alternatively
have taken the Schur-complement of (77) with respect to the compliance block C, instead of the
mass block H. This transformation is only possible if C is non-singular, but it leads to what we
call the Newton stiffness formulation,

[
H + JTC−1J

]
∆u = −g − JTC−1h. (85)

This form is closely related to that of Projective Dynamics [22], and arises from a lineariza-
tion of the elastic forces due to a quadratic energy potential. Having C be invertible corresponds
to having compliance everywhere, or in other words, no perfectly hard constraints. For stiff ma-
terials, where C is poorly conditioned, this approach leads to numerical problems in calculating
C−1. However, if the system has fewer degrees of freedom than constraints this transformation
can result in a smaller system. In this work we are interested in methods that combine stiff
constraints with deformable bodies, so we use the compliance form which accommodates both.
We further explore the relationship between these two formulations of dynamics in Chapter 5.

4.6 Complementarity Precondtioning

An interesting property of the non-smooth complementarity formulations is that their solutions
are invariant up to a constant positive scale r applied to either of the arguments. Specifically, a
solution to φ(a, b) = 0, is also a solution to the scaled problem, φ(a, rb) = 0. Alart [3] presented
an analysis of the optimal choice of r in the context of linear elasticity in a quasistatic setting.
Erleben [58] also explored this free parameter in the context of proximal-map operators for rigid
bodies. In this section we propose a new complementarity preconditioning strategy to improve
convergence by choosing r based on the system properties and discrete time-stepping equations.
To motivate our method, we make the observation that the two sides of the complementarity
condition typically have different physical units. For example, a contact NCP function

37

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
r=1

r
c()
min(c, r)
fb(c, r)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
r=0.25

r
c()
min(c, r)
fb(c, r)

Figure 13: NCP Preconditioning: Left: The minimum-map of an NCP function has a kink in
it at the cross over point. Right: We propose a preconditioner that removes this discontinuity
by forcing both terms to be parallel. For a single constraint this results in a straight-line error
function that can be solved in one step regardless of starting point (right). In the case of Fischer-
Burmeister (green) the error function’s curvature is reduced. For illustration purposes we have
shown the constraint function c = 1

4λ−
1
8 ≥ 0, which has a unique solution at λ = 1

2 .

φ(Cn, λn) = 0 (86)

has the units of meters (m) for the first parameter, and units of Newtons (N) for the second
parameter. This mismatch can lead to poor convergence in a manner similar to the effect of
row-scaling in traditional iterative linear solvers.

Inspired by the use of diagonal preconditioners for linear solvers, our idea is to use the ef-
fective system mass and time-stepping equations to put both sides of the complementarity con-
dition into the same units. The appropriate r-factor to perform this scaling comes from the
relation between λ and our constraint functions, given through the discrete equations of motion.
Specifically, for a unilateral constraint with index i we choose ri to be,

ri = ∆t2
[
JM̃−1JT

]
ii
. (87)

Intuitively, this is the time-step scaled effective mass of the system, and relates how a change
in Lagrange multiplier affects the corresponding constraint value. This has the effect of making
both sides of the complementarity equation have the same slope, as illustrated in Figure 13. For a
friction constraint φf the correct scaling factor is ri = ∆t

[
JM̃−1JT

]
ii

since this is a velocity-
force relationship. When using a Jacobi preconditioner the diagonal of the system matrix is

38

Figure 14: Grasping Example: A selection of grasping tests using the Allegro hand and objects
from the DexNet adversarial mesh collection [139]. Our method simulates stable grasps around
the irregular objects, and is robust to the over-specified contact sets generated by the high-
resolution and often non-manifold meshes (right).

already computed, so applying ri to the NCP function incurs little overhead. We discuss the
effect of preconditioning strategies in Section 4.8.1. In Appendix A we derive the gradients for
our NCP functions with r-scaling factors included.

4.7 Robustness

4.7.1 Line Search and Starting Iterate

We implemented a back-tracking line-search based on a merit function defined as theL2 norm of
our residual vector. For frictionless contact problems we found this worked well to globalize the

39

solution. However, for frictional problems we found line search would often cause the iteration
to stall and make no progress. We believe this is related to the fact that the frictional problem
is non-convex and our search direction is not necessarily a descent direction. For our results,
we found a simple damped Newton strategy that accepts a constant fraction of the full step with
a factor α ∈ (0, 1) worked well. This strategy may cause a temporary increase in the merit
function, but can result in overall better convergence [141]. Watchdog strategies [157] may be
employed to make stronger convergence guarantees, however we did not find them necessary.
We have used a value of α = 0.75 for all examples unless otherwise specified. This value is
ad-hoc, but we have not found our method to be particularly sensitive to its setting.

Starting iterates have a strong effect on most optimization methods, and ours is no different.
Although it is common to initialize solvers with the unconstrained velocity at the start of the
time-step we found the most robust method was to use the zero-velocity solution as a starting
iterate, i.e.:

u0 = 0 (88)

λ0 = 0. (89)

This choice is robust in the case of reinforcement-learning, where large random external
torques are applied to bodies that can lead to initial points far from the solution. Warm-starting
constraint forces is possible, and our tests indicate this can give a good improvement in ef-
ficiency, however due to the additional book-keeping we have not used warm-starting in our
reported results.

4.7.2 Preconditioned Conjugate Residual

A key advantage of our non-smooth formulation is that it allows black-box linear solvers to
be used for nonlinear complementarity problems. Nevertheless, the choice of solver is still an
important factor that affects performance and robustness. A common issue we encountered is
that even simple contact problems may lead to singular Newton systems. Consider for example
a tessellated cylinder resting flat on the ground. In a typical simulator a ring of contact points
would be created, leading to an under-determined system, i.e.: there are infinitely many possible
contact force magnitudes that are valid solutions. This indeterminacy results in a singular New-
ton system and causes problems for many common linear solvers. The ideal numerical method
should be insensitive to these poorly conditioned problems.

In addition, we seek a method that allows solving each Newton system only inexactly. Since

40

0 5 10 15 20 25 30 35 40

Iteration

0

0.5

1

1.5

2

2.5

|A
x-

b|
/|b

|

Arch

Jacobi
Gauss-Seidel
PCG
PCR

0 5 10 15 20 25 30 35 40

Iteration

0

0.2

0.4

0.6

0.8

1

1.2

|A
x-

b|
/|b

|

Heavy Stack

Jacobi
Gauss-Seidel
PCG
PCR

Figure 15: Linear Solver Convergence: Convergence of different iterative methods on a sin-
gle linear sub-problem for two different examples. Preconditioned Conjugate Gradient (PCG)
shows characteristic non-monotone behavior that causes problems with early termination. Pre-
conditioned Conjugate Residual (PCR) is monotone, which ensures a useful result even at low
iteration counts.

the linearized system is only an approximation it would be wasteful to solve it accurately far
from the solution. Thus, another trait we seek is a method that smoothly and monotonically
decreases the residual so that it can be terminated early e.g.: after a fixed computational time
budget. Finally, since our applications often requires real-time updates we also look for a method
that is amenable to parallelization.

The conjugate gradient (CG) method [88] is a popular method for solving linear systems
in computer graphics. It is a Krylov space method that minimizes the quadratic energy e =
1
2xTAx− bTx. One side effect of this structure is that the residual r = |Ax− b| is not mono-
tonically decreasing. This behavior leads to problems with early termination since, although a
given iterate may be closer to the solution, the true residual may actually be larger. This mani-
fests as constraint error changing unpredictably between iterations. A related method that does
not suffer from this problem is the conjugate residual (CR) algorithm [177]. It is a Krylov space
method similar to conjugate gradient (CG), however, unlike CG each CR iteration k minimizes
the residual

rk = ||Ax− b||Kk (90)

within the Krylov space Kk = span{b,Ab,A2b, · · · ,Ak−1b}. A remarkable side effect of
this minimization property is that CR is monotonically decreasing in the residual norm r =

|Ax − b|, and monotonically increasing in the solution variable norm [65]. These are exactly

41

0 10 20 30 40 50 60 70 80 90 100
10-3

10-2

10-1

100

101
Elastic Sheet - Merit

Geometric Stiffness Off
Geometric Stiffness On

0 10 20 30 40 50 60 70 80 90 100
10-1

100

101

102

103
Elastic Sheet - Convergence

Geometric Stiffness Off
Geometric Stiffness On

Figure 16: Geometric Stiffness: A plot of the merit function and convergence with and without
our geometric stiffness approximation on the stretched elastic sheet example. With geometric
stiffness disabled we observe overshooting and oscillating iterates at large strains.

the properties we would like for an inexact Newton method. From a computational viewpoint it
is nearly identical to CG, requiring one matrix–vector multiply, and two vector inner products
per-iteration. CR requires an additional vector multiply-add per-iteration, but each stage is fully
parallelizable, and in our experience we did not observe any performance difference to standard
CG.

In Figure 15 we compare the convergence of four common linear solvers, Jacobi, Gauss-
Seidel, preconditioned conjugate gradient (PCG), and preconditioned conjugate residual (PCR).
We use a diagonal preconditioner for both PCR and PCG. Our surprising finding is that PCR
often has an order of magnitude lower residual for the same iteration count compared to other
methods. A similar result was reported by Fong et al. [65] in the numerical optimization lit-
erature. For symmetric positive definite (SPD) systems CR will generate the same iterates as
MINRES, however it does not handle semidefinite or indefinite problems in general. In practice
we observed that CR will converge for close to singular contact systems when CG and even di-
rect Cholesky solvers may fail. We evaluate and discuss the effect of linear solver on a number
of test cases in Section 4.8.3.

4.7.3 Geometric Stiffness

The upper-left block of the system matrix, H = M−∆t2K, consists of the mass matrix and a
second term K, referred to as the geometric stiffness of the system. This is defined as:

42

Table 2: Statistics: Parameters and statistics for different examples. All scenarios have used
a time-step of ∆t = 0.0083s. Contact counts are for a representative step of the simulation.
Performance cost is typically dominated by the linear solver step, while the matrix assembly
cost is small. We have reported solver times for a single time-step of our GPU-based PCR
solver. We note that for small problems the performance of iterative methods is limited by fixed
cost kernel launch overhead and that scaling with problem size is typically sub-linear up to
available compute resources. For contacts we also report the maximum number of contacts in a
single simulation island in brackets.

Example Bodies Joints Tetra Contacts Newton Iters Linear Iters Assembly (ms) Solve (ms)
(island) # # Avg Std. Dev. Avg Std. Dev.

Allegro DexNet 21 21 0 104 (104) 8 20 0.4 0.1 10.0 1.5
Allegro Ball 21 21 427 409 (409) 6 50 0.35 0.05 11.4 1.2
PneuNet 1 0 2241 532 (532) 4 80 0.3 0.05 22.25 1.4
Fetch Tomato 29 28 319 371 (371) 4 50 0.45 0.05 12.2 1.25
Fetch Beam 42 42 0 300 (300) 6 50 0.2 0.1 18.6 2.25
Arch 20 0 0 134 (134) 6 20 0.15 0.05 7.75 1.4
Table Pile 54 0 0 936 (736) 4 20 0.1 0.05 3.7 0.95
Humanoid Run 5200 4800 0 10893 (33) 4 10 0.8 0.05 8.9 0.25
Yumi Cabinet 6400 6600 0 4082 (55) 5 25 1.8 0.25 56.0 6.4

K =
∂

∂u

(
JTλi

)
. (91)

K is not a physical quantity in the sense that it does not appear in the continuous or discrete
equations of motion. It appears only as a side-effect of the numerical method, in this case
the linearization performed at each Newton iteration. In practice K is often dropped from the
system matrix, leading to a quasi-Newton method. Tournier et al. [215] observed that ignoring
geometric stiffness can lead to instability, as the Newton search direction is free to move the
iterate away from the constraint manifold in the transverse direction, eventually causing the
iteration to diverge. However, including K directly is also problematic because the mass block
is no longer simple block-diagonal, and in addition, the possibly indefinite constraint Hessian
restricts the numerical methods that can be applied. Inspired by the work of Andrews et al.
[7] we introduce an approximation of geometric stiffness that improves the robustness of our
Newton method without these drawbacks.

We now present a method for approximating H that is related to the method of Broyden [28].
This method builds the Jacobian iteratively through successive finite differences. We apply this
idea to build a diagonal approximation to the geometric stiffness matrix. Using the last two
Newton iterates, we can define the following first-order approximation:

H∆u =

(
∂g

∂u

)
∆u ≈ g(un+1)− g(un) (92)

43

where H is the unknown matrix we wish to find, and ∆u = un+1 −un is the known difference
between the last two iterates. This problem is under-determined since H has nd × nd entries,
while (92) only provides nd equations, however if we assume H has the special form:

H̃ ≈M− K̃ (93)

where K̃ = diag[c1, c2, · · · , cn] is a diagonal approximation to K, then the individual entries of
K̃ are easily determined from (92) by examining each entry:

ck = −
[
g(un+1)k − g(un)k + (M∆u)k

∆uk

]
. (94)

Each Newton iteration we then update the mass block’s diagonal entries to form our approxi-
mate H̃ as

H̃ii = M̃ii −min(0, ck). (95)

For most models M is block-diagonal, e.g.: 3x3 blocks for rigid body inertias, and so H−1 is
may be easily computed to form the Schur complement. To ensure H remains positive-definite
we clamp the shift to be positive. (80). This diagonal approximation is inspired by the method
presented by Andrews et al. [7] however this approach has several advantages. First, we do not
have to derive or explicitly evaluate the constraint Hessians for different constraint types. This
means our method works automatically for contacts and complex deformable models. Second,
we do not need to track the Lagrange multipliers from the previous frame, as our method updates
the geometric stiffness at each Newton iteration. Finally, since our method does not change the
solution to the problem it does not introduce any additional damping provided the solver is run
to sufficient convergence. Our approach bears considerable resemblance to a L-BFGS method
[156], however the use of a diagonal update means the system matrix structure is constant,
allowing us to use the efficient block-diagonal inverse for the Schur complement.

4.7.4 Hyperelastic Materials

Deformable bodies with linear material models may exhibit significant volume loss during large
deformations, which can lead to element inversion. Hyperelastic constitutive models, where

44

Figure 17: Material Extension Test: Our generalized compliance formulation accommodates
hyperelastic material models that strongly resist volume changes (top), while linear models show
characteristic volume loss at large strains (bottom).

45

stiffness increases as a function of strain, are less prone to this artifact, as illustrated in Figure
17. However, unlike the Hookean material presented in Section 2, for hyperelastic materials the
strain energy density is no longer a simple quadratic form. We now show how to incorporate
hyperelastic constitutive models in our constrained dynamics solver. Given a strain energy den-
sity function parameterized in terms of principal stretches s(q) = [s1, s2, s3] assumed constant
over the element, the elastic potential energy is

U(q) = VeΨ(s(q)), (96)

and the resulting force on the system is

f = −∂U
∂q

T

= −
(
∂U

∂s

∂s

∂q

)T
. (97)

To obtain the compliance form of this force we factorize it as f = JTλ, where J = ∂s
∂q and

λ = −∂U
∂s

T
. As before, λ is a variable introduced to the system, with the associated constraint:

φb ≡
∂U

∂s

T

+ λ = 0. (98)

Initially this factorization may not appear to have achieved a great deal. However, when we
consider the linearization of this constraint we have

∂2U

∂s2
J∆q + I∆λ = −φb, (99)

from which we can identify the compliance matrix as

E(q) =

(
∂2U

∂s2

)−1

∈ R3×3. (100)

Pre-multiplying by this matrix we obtain the familiar form below, where the compliance matrix
appears on the diagonal.

46

J∆q + E∆λ = −Eφb. (101)

The effect of this transformation is to factor out the component containing the material pa-
rameters that is potentially ill-conditioned, and to invert it directly. Unlike linear materials the
compliance matrix is no longer a constant, but is a function of the system state q, and so E

must be computed for each Newton iteration. Another practical consideration is that, as E is
the inverse of a Hessian it may be indefinite, in which case it may be necessary to project it
back to the positive definite cone before including it in our system matrices [207]. We have also
found that a simple diagonal approximation to E is often sufficient. In Appendix B we give the
derivation of E = (∂

2U
∂s2

)−1 for the stable Neo-Hookean model presented by Smith et al [193].
To the best of our knowledge this derivation has not been presented previously in the literature.

4.8 Analysis

4.8.1 Effect of Complementarity Preconditiong

In Figure 22 we look at the distribution of convergence behavior over 132 simulation steps dur-
ing the flexible beam insertion scenario in Figure 10. We use our proposed complementarity
preconditioner with 40 PCR iterations per-Newton iteration and observe super-linear conver-
gence in significantly more steps using our preconditioning strategy than with identity scaling.
In addition, the median error with our strategy is often an order of magnitude lower for the same
iteration count. We use the rigid body contact test scenarios to evaluate the effectiveness of our
complementarity preconditioner, and compare the convergence of different strategies in Figure
18. We observe that identity scaling with r = 1 may fail badly when there are large masses, or
large contact sliding velocities. Constant global scaling by r = ∆t2 improves convergence, but
still suffers from problems with large mass-ratios. The combination of time-step and effective
mass leads to the most reliable observed convergence. Based on the poor performance of iden-
tity scaling we believe that a preconditioning strategy such as ours is a necessity to make such
non-smooth formulations practical.

4.8.2 Effect of NCP-Function

We found that although both the minimum-map and Fischer- Burmeister functions can achieve
high accuracy given enough iterations, the minimum-map tends to produce noisy results where
the contact forces are not distributed evenly around a contact area. This is primarily a problem

47

when the contact set is redundant, and a small change in the problem may lead to a large change
in the active-set. We found the Fischer-Burmeister function was less sensitive to this problem,
and would produce smoother contact force distributions even for redundant contact sets. We sus-
pect this is because the minimum-map has many non-smooth points while Fischer-Burmeister
has only one, however further investigation to verify this is needed. Due to the improved stabil-
ity in interactive environments we have used the Fischer-Burmeister function for all examples
unless otherwise stated. For scenarios where force distributions are critical, e.g.: force feedback
based controllers, it may be appropriate to use a combination of warm-starting to provide tem-
poral coherence, and redistribution of contact forces as a post-process after the contact solve, as
proposed by Zheng & James [238]. Yet another option is to change the contact model itself by
introducing compliance. This makes the problem well-posed by allowing some interpenetration,
and may be supported in our formulation by augmenting the compliance block on the contact
constraints. We further investigate the effect of compliance on force distributions in Chapter 5.

4.8.3 Effect of Linear Solver

In Figure 19 we compare convergence for different linear solvers over the course of a Newton
solve during a single time-step. For performance sensitive applications it is typically not prac-
tical or desirable to run each Newton solve to convergence, so for this test we fix the number
of linear solver iterations per-step to 40. This early termination is generally no problem for re-
laxation and PCR methods, but it can cause problems for solvers like PCG which decrease the
error non-monotonically, leading to erratic convergence. In Figure 15 we plot the behavior of
each iterative method on a single linear subproblem.

The convergence of Jacobi and Gauss-Seidel with our contact formulation is consistent with
the behavior observed in other engines such as Bullet [38] and XPBD [138]. While relaxation
methods perform quite well for reasonably well-conditioned problems, they are very slow to
converge for situations involving high mass-ratios as shown in Figure 19. This is highlighted in
the heavy-stack example which shows catastrophic interpenetration.

4.8.4 Error Analysis

To better understand our results we perform an error analysis to establish a baseline accuracy
limit given finite precision floating point. Our analysis is based on that given by Tisseur [209]
who show that Newton’s method applied to the problem of solving r(x) = 0 will have a limiting
step-size, or solution accuracy of

48

‖∆x‖ ≈ ‖A−1
∗ ‖ν + ‖x∗‖δ. (102)

Here x∗ is the true solution, A∗ is the system Jacobian at the solution, ν is an upper bound
on the residual error, and δ is the machine epsilon. In general we do not know the true solution
x∗ so we use the lowest error solution as an approximation. Likewise we use ν = δ‖r‖ as the
residual error bound, where r is the measured residual at end of the Newton solve. As with the
solution variables, the lowest achievable residual is also limited by available precision. Tisseur
show that the predicted minimum residual bound is

‖r‖ ≈ ‖A∗‖‖x∗‖δ. (103)

We use 32-bit floating point for all calculations which has a machine epsilon of δ ≈ 10−7,
and we plot the limiting values for the L∞ norm as dashed lines in Figures 18-19. We find that
our method comes close to achieving the predicted limiting accuracy in most cases, and in some
cases surpasses it, as in the Flexible Beam example.

4.9 Results

We implemented our algorithm in CUDA and run it on an NVIDIA GTX 1070 GPU. The as-
sembly of the system matrix is performed on the GPU in compressed sparse row (CSR) format
for maximum flexibility. We build H,M,J, and C separately and perform the matrix multi-
ply operations necessary for Krylov methods through successive multiplications of individual
matrices. Collision detection is performed between triangle-mesh features once per-time step
using the system’s unconstrained velocity to generate candidate pairs. We define contact nor-
mals as the normalized vector between each feature pair’s closest points using the configuration
at the start of the time-step and note that constraint manifold refinement (CMR) could be used
to further improve robustness [159].

We now discuss the experimental test scenarios we have used to evaluate our method. We
report scene statistics and performance numbers in Table 2. When running in an interactive
setting we use a display rate of 60hz. For robust collision detection we use two simulation time-
steps per visual frame, each with ∆t = 0.0083s. If the simulation computation takes longer than
this the effect for the user is a slightly slower than real-time update rate.

49

0 10 20 30 40 50 60 70 80 90 100
10-8

10-6

10-4

10-2

100

102

104
Arch - Merit

r=1

r=h2

r=h2diag(A)

0 10 20 30 40 50 60 70 80 90 100

10-2

10-1

100

101

102

103

Arch - Convergence

r=1

r=h2

r=h2diag(A)

0 10 20 30 40 50 60 70 80 90 100
10-6

10-4

10-2

100

102

104
Pile - Merit

r=1

r=h2

r=h2diag(A)

0 10 20 30 40 50 60 70 80 90 100

10-2

10-1

100

101

102

Pile - Convergence

r=1

r=h2

r=h2diag(A)

0 10 20 30 40 50 60 70 80 90 100
10-6

10-4

10-2

100

102

104

106
Heavy - Merit

r=1

r=h2

r=h2diag(A)

0 10 20 30 40 50 60 70 80 90 100

100

102

104

Heavy - Convergence

r=1

r=h2

r=h2diag(A)

Figure 18: Effect of NCP Preconditioner: An evaluation of different complementarity precon-
ditioning strategies on three contact problems. We plot the maximum complementarity error for
normal and frictional forces (upper row), and the step size (lower row) for each Newton itera-
tion over a single time-step. Identity scaling (blue) often fails to converge. A time-step scaled
strategy with (red) performs well when mass-ratios are small, such as in the arch and pile scenes
(left, middle). For situations with high-mass ratios (right) we also take into account the system’s
effective mass (yellow).

50

0 10 20 30 40 50 60 70 80 90 100
10-4

10-2

100

102

Fem - Merit

Jacobi
Gauss-Seidel
PCG
PCR

0 10 20 30 40 50 60 70 80 90 100

10-6

10-4

10-2

100

Fem - Convergence

Jacobi
Gauss-Seidel
PCG
PCR

0 10 20 30 40 50 60 70 80 90 100

100

101

102

103
Beam - Merit

Jacobi
Gauss-Seidel
PCG
PCR

0 10 20 30 40 50 60 70 80 90 100

10-4

10-2

100

102

Beam - Convergence

Jacobi
Gauss-Seidel
PCG
PCR

0 10 20 30 40 50 60 70 80 90 100

10-2

10-1

100

101

102

Heavy - Merit

Jacobi
Gauss-Seidel
PCG
PCR

0 10 20 30 40 50 60 70 80 90 100

100

Heavy - Convergence

Jacobi
Gauss-Seidel
PCG
PCR

Figure 19: Effect of Linear Solver: A comparison of different iterative methods on three test
cases. We plot the maximum constraint error (upper row) and the step size (lower row) for each
Newton iteration over a single time-step. Jacobi and Gauss-Seidel methods show characteristic
stagnation for ill-conditioned problems (blue, red). Conjugate Gradient (yellow) is less sensitive
to conditioning but has large residual fluctuations. Conjugate Residual (purple) provides fast
convergence and smooth error reduction. The dashed lines represent the limiting accuracy and
residual bounds predicted by an error analysis assuming 32-bit floating point.

51

Figure 20: Contact Examples: Top: A self-supporting parabolic arch. Direct or Krylov linear
solvers can reduce the error sufficiently to form stable structures without drift (left). Relax-
ation methods like Jacobi and Gauss-Seidel eventually collapse even with hundreds of iterations
(right). Middle: A stack of increasingly heavy boxes with a total mass ratio of 4096:1, such
poorly conditioned problems are difficult for relaxation methods, leading to significant interpen-
etration (right). Bottom: An unstructured piling test, our method captures stick/slip transitions
and forms stable piles of non-convex objects.

52

Fetch Tomato We test our method on a pick-and-place task using the Fetch robot as shown in
the title figure. The robot consists of rigid bodies connected by joints as defined by the Unified
Robot Description Format (URDF) file. The tomato is modeled using tetrahedral FEM with
Young’s modulus of Y = 0.1MPa, Poisson’s ratio of ν = 0.45, density of ρ = 1000kg/m3, and
a coefficient of friction of µ = 0.75 between the grippers and the tomato. The robot is controlled
by a human operator who directs the arm and the grippers to grasp the object and transfer it to
the mechanical scales. The scales are modeled through rigid bodies connected by prismatic and
revolute joints that drive the needle and accurately reads the weight of the tomato. The most
challenging part of this scenario is the grasp and transfer of the tomato, which requires tight
coupling between frictional contact and the internal dynamics of the tomato. Our method forms
stable grasps while undergoing large translational and rotational motion.

Fetch Beam We test our method on a flexible beam insertion task by modeling the beam as
a series of connected rigid bodies with finite bending stiffness as shown in Figure 10. The
lightweight beam is modeled by 16 rigid bodies each with mass ofm = 0.003kg, and connected
through joints with a bending stiffness of 250N.m. This example highlights the limitations of
traditional relaxation-based approaches that cannot achieve the desired stiffness on the beam’s
joints even with hundreds of iterations as shown in the convergence plot of Figure 19.

DexNet We evaluate our method on the problem of dexterous grasping using the DexNet ad-
versarial object database [139]. These models are highly irregular with many concave areas that
make forming stable grasps difficult. The underlying triangle meshes are high resolution and
non-manifold which tends to generate many redundant contacts, a challenge for most comple-
mentarity solvers. We use the Allegro hand with a coefficient of friction µ = 0.8 to perform
grasping using a human control interface, and find stable grasps for the objects in collection as
shown in Figure 14.

PneuNet To test coupling between deformable and rigid bodies we simulate a three-fingered
gripper based on the PneuNet design [97]. We model the deformable finger using tetrahe-
dral FEM with a linear isotropic material model and parameters for silicone rubber of Y =

0.01GPa, ν = 0.47, ρ = 1200kg/m3. To model inflation we use an activation function that
uniformly adds an internal volumetric stress to each tetrahedra in the finger arches. We do
not model the chamber cavity explicitly, however we found this simple activation model was
sufficient to reproduce the characteristic curvature of the gripper. We observe robust coupling
through contact by picking up a ball with mass m = 0.32kg, using a friction coefficient of
µ = 0.7 as shown in Figure 2.

53

Figure 21: Reinforcement Learning: Left: The Yumi robot trained to open a cabinet drawer.
The network learns a policy that reaches the handle, performs a grasp, and opens it through
frictional forces from the fingers alone. Right: RL locomotion example based on the OpenAI
Roboschool Humanoid Flagrun Harder environment. Using our simulator the network learns
a robust policy that takes advantage of stick-slip transitions to change direction quickly, and
recover from external disturbances.

Rigid Body Contact We test our method on a variety of rigid-body contact problems as illus-
trated in Figure 20. Our method achieves stable configurations for difficult problems including
self-supported structures, and stacks with extreme mass ratios. For the self-supported arch we
use µ = 0.6 with masses in the range m = [15, · · · , 110]. For the heavy stack of boxes we
use µ = 0.5, with masses that increase geometrically as m = [8, 64, · · · , 32768]kg. For the
table piling scene each table has a mass of m = 4.7kg with µ = 0.7. Particularly on the scenes
with high-mass ratios we observe that relaxation methods struggle to reduce error, while Krylov
methods form stable structures and successfully prevent interpenetration.

Material Extension We perform a material extension test and compare the behavior between
a linear co-rotational model and the hyperelastic model of Smith et al. [193] with Young’s
modulus set to E = 105Pa and Poisson’s ratio of ν = 0.45. We visualize volumetric strain and
observe high volume loss for the linear model as shown in Figure 17. We also found geometric
stiffness to be essential to obtain a stable simulation when strains are large. This is illustrated in
in Figure 16 which shows the iterate oscillating around the solution.

Reinforcement Learning Reinforcement learning (RL) is a good test of robustness for a simu-
lator since it generates many random inputs in the form of forces, torques, and constraint config-
urations. We apply our simulator to two scenarios using reinforcement learning. The first is the

54

0 10 20 30 40 50 60 70 80 90 100
10-4

10-3

10-2

10-1

100

101

102

103
Beam (r=1)

Max
3rd Quartile
Median
1st Quartile
Min

0 10 20 30 40 50 60 70 80 90 100
10-4

10-3

10-2

10-1

100

101

102

103
Beam (r=h2diagA)

Max
3rd Quartile
Median
1st Quartile
Min

Figure 22: Convergence Analysis: Quartile analysis of the flexible beam-insertion example
with identity scaling (left), and our proposed NCP preconditioning strategy (right). We plot
statistics for 100 Newton iterations taken over 132 simulation-steps. Using our preconditioner
we observe super-linear convergence and lower final residual for significantly more cases than
an identity scaling.

problem of training the ABB Yumi robot to grasp a cabinet handle and open a drawer as shown
in Figure 21 (left). We use the PPO algorithm [182] to train the network and find it quickly
(less than 100 training iterations) learns a policy to extend, grasp and open the drawer through
implicit PD controls applied through the joints. Our second RL example is the Humanoid Fla-
grun Harder scene adapted from the OpenAI Roboschool [158]. In this task a humanoid model
must learn to stand up and run in a randomly assigned direction that changes periodically as
shown in Figure 21 (right). The learned actions are torques, applied as external forces. Using
our simulator we are able to achieve good running results and note the agent taking advantage
of stick-slip transitions on the feet during fast turns.

4.10 Limitations

Krylov methods such as PCG and PCR use a globally optimal line-search step at each iteration.
This has the sometimes unexpected effect that error in one row can affect the rate of residual
reduction in other rows, leading to slower than necessary convergence for independent parts of
the simulation. A natural solution would be to include an island-detection step and solve these
independent systems separately.

We found our geometric stiffness approximation to be effective on particle-based objects, but
less so on rigid-articulated mechanisms, and in the worst case can cause some jitter at joint
limits. To avoid this we apply geometric stiffness only to the particle degrees of freedom. In the
future we plan to explore more advanced quasi-Newton methods e.g.: those based on symmetric

55

rank-1 (SR1) updates.

Our method’s primary computational cost is the solution of a symmetric linear system at
each step. All the iterative solvers considered here may be implemented in a matrix-free way
which would likely improve performance. Because the linear solver is treated as a black box it
would be interesting to apply more advanced methods, such as algebraic multi-grid (AMG), to
accelerate convergence for larger-scale linear subproblems.

We do not have a convergence proof for the fixed-point iteration used to update the frictional
slack variables, and it is possible that better choices exist. Similarly, the design space for choos-
ing the r factor in the complementarity preconditioner is large, and we think heuristics based
on global information may provide significant performance improvements. We think these two
areas are rich for further research.

4.11 Conclusion and Future Work

We have presented a GPU framework for multi-body dynamics that allows off-the-shelf linear
solvers to be used for rigid and deformable contact problems. We evaluated our method on
a variety of scenarios in robotics and reinforcement learning and found that it performs well
on grasping and dexterous manipulation of deformable objects, as well as ill-conditioned rigid
body contact problems. We believe our complementarity preconditioner makes non-smooth
formulations of contact practical for interactive applications for the first time, and hope that this
opens the door for future works to apply new contact models, preconditioners, and linear solver
methods to multi-body problems.

56

5 Primal/Dual Descent Methods for Dynamics

In the previous section we presented a numerical method that performs implicit time-integration
by solving for the roots of a nonlinear system of equations. An alternative to root finding is
to view implicit time-integration as the solution to an energy minimization problem. These
variational methods are popular in elasticity simulation due to their robustness and efficiency.
One such method is Projective Dynamics (PD) [22], in this method forces are considered to
arise from an energy potential, and minimized using a local/global optimization over the primal
variables, namely position and velocity. In contrast, constraint-based methods such as extended
Position-based Dynamics (XPBD) [138] are typically solved in terms of dual variables, i.e.: the
Lagrange multipliers of each constraint.

In this chapter, we show that these primal and dual methods may both be derived from a
common variational basis. This provides us with an insight into their relationship, and allows
us to perform a sensitivity analysis to identify potential sources of ill-conditioning. Based on
this analysis, we perform numerical experiments and show that these methods offer comple-
mentary trade-offs in terms of sensitivity to mass ratios and stiffness ratios. In addition, while
primal descent methods have been used successfully for elasticity simulation [224, 225], they
have not found wide-spread use in contact-rich scenarios, such as rigid body simulation. We
extend these methods to dry frictional contact by deriving a Coulomb friction model from a
variational basis, and provide an efficient preconditioner suitable for parallelization. Our primal
formulation of contact possesses a number of desirable traits. First, it is differentiable, and has
well-defined inverse dynamics, an important property for trajectory optimization [212]. Second,
it is insensitive to mass-ratios, allowing it to stably simulate scenarios involving both small and
large bodies, as shown in Figure 23. Third, it does not require the tracking of auxiliary vari-
ables such as Lagrange multipliers. This means that the system size remains constant over the
course of a simulation, which may be desirable if using the system state as an input to e.g.:
a neural network controller [162]. Finally, we find that the force distributions obtained from
relaxed, or compliant contact models, are smoother than the result from hard-contact models,
something that is desirable when contact forces act as input to control algorithms. In summary,
our technical contributions are as follows:

• A derivation of primal and dual formulations of contact dynamics from a common vari-
ational basis. Our derivation shows the underlying connection between methods such as
Projective Dynamics and XPBD, and extends the Projective Dynamics-based method of
[224] to rigid body simulation.

• A primal frictional contact model derived from a variational basis. Our model is simple

57

Figure 23: Granular Material. In this example the granular medium consists of 256k rigid
bodies with an average radius of 5mm. The resulting mass ratio between the grains and cylinder
is 80000 : 1, which results in an ill-conditioned system for dual, or constraint-based solvers
(left). Primal formulations on the other hand are relatively unaffected by this ratio (right).

to implement, supports differentiability, and is well-suited to GPUs.

• A numerical analysis of the sensitivity of both primal and dual descent methods to ill-
conditioned problems. We test the relative strengths / weaknesses of each method in the
presence of large mass ratios, and identify the lesser known problem of stiffness ratios.

• An experimental comparison of both optimization methods on a number of scenarios in-
cluding unstructured piling, robotic grasping, cloth simulation, and trajectory optimiza-
tion.

5.1 Related Work

We now discuss some previous simulation work in both the primal and dual space with a focus
on elasticity and contact simulation.

5.1.1 Elasticity

There has been a large amount of work on implicit simulation of elastic bodies in computer
graphics. Baraff & Witkin [12] proposed a single-step Newton method for solving the discrete

58

implicit equations of motion in cloth simulation. They use a linearization of forces that results in
significant artificial damping, and has led to the development of a number of nonlinear implicit
solvers. Many of these are derived from variational principles, which formulate the problem
as one of energy minimization [71, 144]. In particular, Projective Dynamics (PD) [22, 131],
proposes a splitting-based method where elastic potentials are handled through a local projec-
tion, and inertial potentials are handled through a global step. Wang et al. [224, 225] showed
that descent methods applied to variational implicit Euler may be considered as a special case
of Projective Dynamics where the local and global solve are performed using one precondi-
tioned Jacobi iteration. In this work we also focus on preconditioned descent methods for their
simplicity and simple GPU parallelization. We extend the work of Wang et al. to include rigid
bodies, and propose a contact model based on a variational energy function that correctly models
Coulomb friction.

Constraint-based, or dual methods are also popular for elastic and multi-body dynamics.
Servin et al. [185] formulated a linear finite element method (FEM) as a set of compliant
constraints. This approach was made robust by the inclusion of geometric stiffness terms that
include second order constraint information [215, 7]. Goldenthal et al. [74] proposed a fast con-
straint projection method using direct solvers, while Position-based Dynamics employs iterative,
local, nonlinear constraint projections on the same constraint-based formulation [151, 197]. This
approach was extended to correctly handle quadratic energy potentials in XPBD [138], and we
show how these methods may be seen as solving a dual variational problem, which we derive in
Section 5.2.3.

5.1.2 Contact

Penalty methods are a common primal model of contact in graphics and robotics [143, 234,
51, 205]. While explicit penalty methods tend to require small time-steps for stability, implicit
penalty methods have been used successfully [232]. A notable example is in MuJuCo [213,
212], which uses a relaxed contact model inside an acceleration-based framework with direct
solver methods. We present a primal contact model inspired by this work and combine it with a
descent-based solver well-suited for GPU implementations and capable of scaling to hundreds
of thousands of simultaneous contacts. While relaxed methods of contact generally permit some
interpenetration or slip, we find this is not a significant limitation, as illustrated in Figure 25.

Pan et al. [162] used a smooth contact model for differentiable trajectory optimization. They
propose a viscous friction model that, does not make a distinction between stick and slip regimes.
In this work we propose a relaxed friction model that also captures the Coulomb constraint that
friction forces should lie inside the friction cone. Hybrid methods for contact have also been

59

Figure 24: Unstructured Piling. A sequence of frames from a large-scale piling example in-
spired by Xu & Barbic [232]. Despite having 393k (40x more) contacts, our parallel precondi-
tioned gradient descent solver runs at real time rates.

60

used successfully. An example of this is the work by Tang et al. [206], who used the augmented
Lagrangian method (ALM) to resolve cloth self-collisions. Kaufman et al. [108] proposed stag-
gered projections for frictional contact where interpenetration is prevented through interleaved
quadratic programming (QP) solves. Their resulting optimization problem may be solved using
primal or dual methods. Mazhar et al. [147] compared primal and dual formulations of contact
modeled as hard constraints and their effect on solution methods.

Simultaneous to our work, Li et al. [119] proposed a lagged primal formulation of contact that
uses barrier methods to guarantee interpenetration free states. While barrier methods prevent
touching contact, we focus on implicit penalty methods, which permit some interpenetration. We
propose a similar smoothed friction model derived from a variational dissipation potential and
compare primal and dual methods for solving the resulting optimization problem. Recent work
has extended Projective Dynamics to handle nodal frictional contact for cloth and thin objects
[136, 42]. Since our method is based on the descent-based form of Projective Dynamics [225]
it is not limited to nodal contact. Brown et al. [27] presented a non-smooth dissipation potential
to model friction in the Projective Dynamics framework, we present a smooth extension of this
model that has continuous derivatives.

As discussed in Section 4., implicit time-stepping schemes for rigid body contact often use
a linear complementarity (LCP) formulation. This model has become popular in graphics, es-
pecially when combined with iterative LCP solvers such as projected Gauss-Seidel (PGS) and
projected Jacobi [159, 43, 57, 15, 154, 214, 221]. Dual formulations of contact naturally han-
dle hard contact and static friction constraints. On the other hand, hard models of contact may
become overdetermined through incompatible contact constraints, for example a body being
squeezed between two immovable objects. In this case numerical methods may return an ar-
bitrary answer, or in the case of direct methods may fail to produce any answer at all. Hard
contact problems may also become underdetermined, for example a tessellated object resting on
the ground with multiple contact points. In this case there exist many possible solutions, and
the result will typically depend on the constraint order given to the solver. In contrast, our re-
laxed primal model of contact generates well-posed problems that result in smooth contact force
distributions as we demonstrate in Figure 33.

5.2 Optimization-based Time Integration

In this section we introduce our implicit time-stepping scheme. We show how this may be
formulated as a discrete variational optimization problem, and solved by either primal or dual
numerical methods. We then analyze the sensitivity and relative strengths of both methods in
Section 5.3.

61

Figure 25: Structured Stacking. A classic stacking test involving a house of cards. We find
that, until knocked down by an external body, implicit primal contact is able to achieve similarly
stable structures to traditional dual methods.

62

To begin, we define the generalized system coordinates and their time derivatives as q and q̇

respectively. We use the same notation presented in Section 4, and re-parameterize the system
by introducing the discrete velocity u+, and the relationship q+ = q− + ∆tGu+, where the
superscripts +/− are shorthand to indicate the state at t and t+ ∆t, i.e.: the beginning and end
of the time-step, respectively. As in the preceding section, the matrix G is the kinematic map
that maps spatial velocities to system coordinate time derivatives, i.e.: q̇ = Gu. This velocity
re-parameterization allows us to treat rigid bodies and particles in a unified manner. The discrete
equations of motion are then

M
(
u+ − ũ

)
−∆tf(q+,u+) = 0. (104)

Where the constant ũ = u−+ ∆tM−1
(
fext + fgyro

)
is the unconstrained velocity that includes

the external and gyroscopic forces integrated explicitly. As shown in previous works, we can
formulate implicit time integration as an optimization problem [14, 22, 71]. First, we define the
objective function:

g(u) =
1

2
(u− ũ)T M (u− ũ) +

∑
i

Ui
(
q+(u)

)
, (105)

where Ui are arbitrary energy potentials that give rise to the forces f on the system. The opti-
mization problem is then,

u+ ≡ argmin
u

g(u). (106)

The benefit of stating implicit time integration in this variational form is that many robust
methods exist to solve such optimization problems, allowing a more unified treatment. We
are primarily interested in first order methods, i.e.: those that use only information about the
gradient of g since they are simple to implement, and well suited for parallelization [225]. In
the following section we will show how to use second order information when available. Note
that the gradient of the objective (105) is simply given by (104), i.e.:

d
∣∣
u+ ≡

∂g

∂u

T
∣∣∣∣∣
u+

= M
(
u+ − ũ

)
−∆tf(q+,u+) (107)

where the generalized force is f = −
∑

i G
T ∂U

T
i

∂q+ .

63

5.2.1 Gradient Descent

Perhaps the simplest approach to solving the minimization (106) is gradient descent. In this
scheme we repeatedly update the solution u+ and q+ as follows:

u+ ← u+ − αd (108)

q+ ← q− + ∆tGu+ (109)

where α is a step-length parameter. In practice gradient descent converges very slowly and a line
search may be necessary to avoid overshooting and divergence. We can improve the convergence
of gradient descent by defining a preconditioning matrix P. Provided an appropriate choice of
P such that dT P d > 0, our descent update for u+ is then

u+ ← u+ − αPd. (110)

A common choice for P is the Hessian inverse, i.e.: P ≈ H−1 ≡ ∂2g
∂u2

−1
, which corre-

sponds to Newton’s method. Due to potential indefiniteness, and the complexity of evaluating
the Hessian, many approaches exist to approximate P leading to a range of quasi-Newton meth-
ods. In the following section we review and compare some common choices and discuss their
relationship.

5.2.2 Quadratic Potentials

The primal descent method presented above is applicable to any nonlinear conservative force.
However, to draw comparisons to other methods we first consider the special case of quadratic
energy potentials. Consider a single potential of the form,

U =
1

2
k C(q)2, (111)

where k is a stiffness parameter, and C(q) a constraint function that can be either a scalar or
vector function. We define the corresponding generalized force arising from U as,

f = −GT ∂U

∂q

T

= − k JT C(q), (112)

64

where the constraint Jacobian is given by J = ∂C
∂q G. For a Newton style preconditioner we

need the Hessian, H, of our objective function g with respect to the solution variable u,

H =
∂2g

∂u2
= M−∆t

∂f

∂u
. (113)

Assuming the mass M is known, the term to be computed is the force Jacobian ∂f
∂u , which,

for a quadratic potential, is given by,

∂f

∂u
= −∆tk

[
JTJ +

∂J

∂u
C

]
. (114)

Here, the second term corresponds to geometric stiffness [215, 7]. Using just first-order terms,
the preconditioner is

PGN ≡
[
M + ∆t2 k JTJ

]−1 ≈
[
∂2g

∂u2

]−1

, (115)

which corresponds to a Gauss-Newton iteration on g. To avoid computing the inverse, or solv-
ing a system of equations, we use a simple diagonal approximation, where each entry is the
reciprocal of the diagonal of PGN , i.e.:

PD
dd ≡

1

Mdd + ∆t2 k J2
d

. (116)

Note that d is the index of the degree of freedom, not the constraint. In Section 5.4 we show
how to extend preconditioners of this form to contact and friction.

5.2.3 Dual Ascent

Given a constrained optimization problem it is possible to construct a dual optimization prob-
lem over Lagrange multipliers [23]. In this section we derive the dual problem for the case of
quadratic potentials, and show how it leads naturally to constrained dynamics methods such as
extended position-based dynamics (XPBD).

65

To construct the dual of our primal optimization problem we introduce the auxiliary variables
λ = −K c where K = diag[k1, . . . , kn] is a matrix of stiffness values and is the inverse of
compliance, i.e.: K−1 = E, and c = [C1, . . . , Cn] is a vector of constraint functions. This
allows us to rewrite the system potential energy as U = −1

2cTλ, and define the following
Lagrangian,

L(u,λ) ≡ 1

2
(u− ũ)TM(u− ũ)− λT c(q+)− 1

2
λTK−1λ. (117)

It can be verified that the stationarity conditions for this Lagrangian correspond to the original
problem (106) with quadratic potentials [23]. While both primal and dual optimization can
be applied to arbitrary energy potentials, the dual formulation requires finding a splitting into
Lagrange multipliers that is not always straightforward, as shown in Section 4.7.4.

The corresponding Lagrange dual function for (117) is h(λ) = infu L(u,λ) = L(u∗,λ). In
general, the constraint functions are nonlinear, and so we cannot obtain a closed form expres-
sion for u∗ in terms of λ. However, assuming constraint linearity we can make the following
approximation u∗ ≈ ũ + ∆tM−1JTλ. Inserting this into the Lagrangian, the dual function is
then

h(λ) ≈ ∆t2

2
λT
(
JM−1JT

)
λ− λT c(q+)− 1

2
λTK−1λ, (118)

with a corresponding dual maximization problem

λ+ = argmax
λ

h(λ). (119)

To derive the optimality conditions for (119) we take the derivative of h, keeping in mind that
q+ is implicitly a function of u∗ and in turn λ, to obtain

∂h

∂λ
= −

[
c(q+) + K−1λ

]
= 0. (120)

This set of nonlinear equations corresponds to the form in the XPBD algorithm [138]. To build
a preconditioner we evaluate the Hessian with respect to λ, again differentiating through the
definition of q+, giving:

66

∂2h

∂λ2 = −
[
∆t2JM−1JT + K−1

]
, (121)

with the diagonal preconditioner for the dual ascent given by

PD
ii =

1

∆t2JiM−1JTi + K−1
ii

. (122)

Note that for maximization the sign of the preconditioner is reversed to ensure an ascent direc-
tion. The update step is then

λ+ ← Π

(
λ+ + αP

∂h

∂λ

)
, (123)

where Π is a projection operator that is used to enforce bound and friction constraints on the
dual variables. This is followed by an update of the primal variables,

u+ ← ũ + ∆tM−1JTλ+ (124)

q+ ← q− + ∆tGu+. (125)

This derivation shows how we may obtain dual-space algorithms such as XPBD from the
starting point of a primal optimization problem. When using a diagonal preconditioner, the
above update for λ+ is identical to that of a Jacobi XPBD iteration. However, in (124)-(125)
the primal variable update differs from XPBD by applying updates from the initial state q−,u−

rather than the current descent iterate. A similar observation was made by Daviet [42]. While
this modification ensures the method converges to the same solution as the primal form, we
found using the Fast Projection update of XPBD where position modifications are applied in-
crementally was more robust [74]. We outline both primal and dual methods in Listings (2-3).

5.3 Conditioning

Regardless of the preconditioner used for our numerical method, we can analyze the condition-
ing of both the primal and dual problems by inspecting their Hessian side-by-side:

67

(a) Primal (b) Dual

Figure 26: Mass Ratio Test. A double pendulum consisting of two spheres with a mass ratio
of 104. High mass ratios cause ill-conditioning for dual methods, which manifests as excessive
stretching when using fixed iteration counts. Primal formulations are insensitive to mass ratios
and show the correct behavior.

(a) Primal (b) Dual

Figure 27: Stiffness Ratio Test. We simulate an elastic double pendulum where the lower spring
is 104 times stiffer than the upper one. Both springs are stiff enough to easily support the attached
weights, however the high stiffness ratio causes ill-conditioning for primal formulations and
leads to significant error (stretching). In contrast, dual formulations are insensitive to stiffness
ratios, and show the correct behavior.

68

0 20 40 60 80 100
10

0

10
1

10
2

10
3

Primal

Dual

0 20 40 60 80 100
10

0

10
1

10
2

10
3

Primal

Dual

Figure 28: Conditioning. A plot of the system condition number for a 1D chain of particles
with a large mass attached, as shown in Figure 26. As the mass of the weight is increased the
condition number of the dual system increases (left). The situation is exactly reversed for the
case of stiffness ratios shown in Figure 27, where increasing stiffness leads to poor conditioning
(right).

∂2g

∂u2
=
[
M + ∆t2JTKJ

]
(126)

∂2h

∂λ2 =
[
∆t2JM−1JT + K−1

]
. (127)

Inspecting the first (primal) case, when K has a large norm and is poorly conditioned (e.g.: there
are high stiffness ratios), then this will dominate the mass term and primal descent methods will
converge slowly, leading to error, as illustrated in Figure 27. The situation is reversed for the
dual form, when M has a large relative norm and is poorly conditioned (e.g.: high mass ratios)
then the system will be hard to solve for iterative dual methods as shown in Figure 26. In Figure
28 we see how, for a simple 1D chain, the condition number of the systems exactly mirror each
other for mass/stiffness ratios in each form. While common wisdom states that high stiffness
values lead to poorly conditioned systems, this analysis shows that it is actually the stiffness
ratio that is problematic rather than the absolute stiffness values. We further analyze the effect
of this on iterative methods in Section 5.6.

5.4 Contact

We now present a novel primal contact model that incorporates slip and stick regions with a ro-
bust preconditioner suitable for implicit integration with descent-based solvers. We first restate
our non-interpenetration constraints using inequalities as follows:

69

Algorithm 2: Primal Descent Simulation Loop.

while Simulating do
Perform collision detection;
u+ ← ũ;
q+ ← q− + ∆tGu+;
for n descent iterations do

Initialize force f , and Jacobian diagonal p;
f ← 0;
p← 0;
Evaluate forces and derivatives;
for i forces do

f ← f + fi;
p← p + diag

(
∆tkiJ

T
i Ji
)

;

end
Build preconditioner;
for d degrees of freedom do

PD
dd = (Mdd + ∆tpd)

−1;
end
Compute gradient;
d←M(u+ − ũ)−∆tf ;
Update state;
u+ ← u+ − αPDd;
q+ ← q− + ∆tGu+;

end
end

Cn(q) ≡ nT [a(q)− b(q)]− d ≥ 0, (128)

where n ∈ R3 is the contact plane normal given by the direction vector between closest points
of triangle-mesh features, and d is a separation distance to maintain that may be used to model
surface thickness. Although we treat the contact normal as fixed over the course of the time step,
it is also possible to use a nonlinear constraint on the object motion [119].

Penalty methods of contact associate a stiff potential with the contact constraint (128). This
may be viewed as relaxation of the complementarity condition so that some interpenetration is
allowed [198]. In the simplest case, the penalty force is a function of the clamped constraint

70

Algorithm 3: Dual Ascent Simulation Loop

while Simulating do
Perform collision detection;
u+ ← ũ;
q+ ← q− + ∆tGu+;
for n ascent iterations do

Initialize Lagrange multipliers λ, and dual gradient h;
λ← 0;
h← 0;
Evaluate constraints and derivatives;
for i constraints do

hi = −Ci(q+)− k−1
i λi;

PD
ii =

(
∆t2JiM

−1Ji
T + K−1

ii

)−1
;

end
Compute dual update;
λ← Π

(
λ+ αPDh

)
;

Update state;
u+ ← u+ + ∆tM−1JT∆λ;
q+ ← q− + ∆tGu+;

end
end

error,

Un(q) ≡ kn
p

min(0, Cn(q))p. (129)

where p is a constant exponent (often chosen to be 2). The associated force due to this potential
is

fn(q) ≡ −knJTnmin(0, Cn(q))p-1, (130)

where kn controls the stiffness of the contact. One advantage of penalty based approaches is
that they can easily support nonlinear contact force models [104]. In addition, by varying p we
can obtain smoother contact forces that provide continuous derivatives. As shown in Figure 29,
when kn → ∞ the force approaches a hard constraint limit, and as p increases, so does the

71

smoothness of contact forces. To construct a preconditioner for the contact normal force we use
the following Hessian approximation:

∂fn
∂u
≈ −

knJTnJn(p-1)min(0, Cn(q))p-2 Cn(q) < 0

0, otherwise,
(131)

where we have dropped higher order terms corresponding to the geometric stiffness [215]. This
ensures the preconditioner remains positive definite and that the step is in a descent direction.
This approximation is justified since, unlike single-step Newton schemes, we repeatedly re-
evaluate the constraint gradients throughout the nonlinear optimization.

5.5 Friction

To introduce friction forces we first define the slip velocity at a contact as us = DTu ∈ R2,
where D ∈ Rnd×2 is a basis that projects the bodys’ relative velocity to the tangent plane,
defined by two orthogonal vectors, perpendicular to the normal n.

We now present our novel primal formulation of frictional contact. We postulate a variational
energy giving rise to frictional dissipation forces similar to Pandolfi & Ortiz [163]. However, to
address the issue of indeterminancy in the static us = 0 case we relax the Coulomb model to
include a stiff quadratic region around the origin,

Uf (u) ≡

1
2kf |us|

2 kf |us| < µ|fn|

µ|fn||us| − γ, otherwise.
(132)

Here the parameter kf controls stiffness in the ’stick’ regime, where the Coulomb condition
kf |us| < µ|fn| requires that the friction force lie inside the normal cone. We treat fn as a
constant parameter to the potential, which in the discrete setting corresponds to staggering, or
lagging the update of normal forces in the friction calculations between iterations [108]. The
constant γ = µ2|fn|2

2kf
is chosen to make the potential have C0 continuity when kf |us| = µ|fn|.

This potential is quadratic around the origin and is linear past a certain point (in the slip regime).
It gives rise to the following forces:

ff (u) ≡ −min
(
kf , µ

|fn|
|us|

)
DTus, (133)

72

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Exact

f = max(k
n
d, 0)

f = max(k
n
d, 0)

2

f = max(k
n
d, 0)

3

-1 -0.5 0 0.5 1
-3

-2

-1

0

1

2

3

Exact

f = max(k
n
d, 0)

f = max(k
n
d, 0)

2

f = max(k
n
d, 0)

3

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Coulomb

Relaxed

Smooth

-1 -0.5 0 0.5 1

-3

-2

-1

0

1

Coulomb

Relaxed

Smooth

Figure 29: Contact Forces. Relaxed contact models approximate hard contact by replacing the
step function with a linear hinge (top left). By exponentiating this function we can obtainC1/C2

continuity, with analytic derivatives (top right). Coulomb friction may also be relaxed to obtain
invertible contact models (bottom left). The relaxed friction model may then be smoothed to
obtain second order differentiability (bottom right).

73

which in 1D looks like the relaxed step function as illustrated in Figure 29. To construct a
preconditioner for this frictional force we require the potential Hessian, which has the form,

∂ff
∂u
≡ −DTΛD, (134)

with Λ given by

Λ ≡

kfI kf |us| < µ|fn|

µ |fn||us|

(
I− usuTs

|us|2

)
otherwise.

(135)

The term I− usuTs
|us|2 comes from the derivative of a normalized vector, and accounts for the turn-

ing of constraint directions. We found this term can cause gradient descent to fail to converge
reliably. Instead we use the simpler, and slightly more conservative scalar Hessian approxima-
tion:

Λ ≈

kf kf |us| < µ|fn|

µ |fn||us| , otherwise.
(136)

Similar to non-penetration constraints, relaxed friction models may also be smoothed to provide
continuous derivatives. This is illustrated in Figure 29, where the quadratic no-slip region in
our friction potential is replaced with a 5th degree interpolating polynomial [54]. Alternatively
functions such as the pseudo-Huber norm offer higher order continuity and may also serve as a
smooth friction approximation [30].

5.6 Results

To investigate the relationship between primal and dual formulations we implement the Projec-
tive Dynamics (primal) method of Wang et al. [225], and the XPBD (dual) method of Macklin et
al. [138]. Both methods are amenable to parallelization, and so we use CUDA and run them on
an NVIDIA Geforce 2080 Ti. For collision detection we use triangle-mesh based contact gener-
ation between point-face and edge-edge feature pairs in proximity at start of each time-step. We
use a per-frame time step of ∆t = 0.0166 seconds, with a varying number of substeps depend-
ing on the example as reported in Table 3. For rigid body simulation we have a block-diagonal

74

(a) Primal (b) Dual

Figure 30: Contact Mass Ratio. A contact stacking scenario with a mass ratio of 4096:1.
Primal solvers are insensitive to this ratio and stack stably in 20 iterations. Conversely, this
scenario leads to ill-conditioning for dual methods which fail to stack with 500 iterations.

mass matrix, which we invert blockwise to obtain the preconditioner. We use a collision thick-
ness d ∈ [10-3, 10-2]m. As our focus is on real-time applications we use a fixed number of
iterations per-time step. Line search may be necessary to make gradient-based methods robust.
However, for the primal descent method we found that using a fixed value of α = 0.5 was suffi-
cient to ensure convergence for all cases we tested. We found dual methods to be more sensitive
to the choice of step length, especially when many contacts influence a single body. To ensure
convergence in the dual case we have used the mass-splitting approach of Tonge et al [214].
This amounts to treating α as a diagonal matrix that provides a varying step size for each dual
variable.

Mass Ratio Tests We measure the sensitivity of both primal and dual methods to mass ratios
using a simple double pendulum with a mass ratio of 10000:1 as shown in Figure 26. In this
case, optimization on the dual problem proceeds slowly, leading to large stretching. In contrast,
primal-space optimization is relatively unaffected. An equivalent result occurs in the contact
scenario shown in Figure 30. Here the stack has a mass ratio of 4096:1 between the lower
cylinder and the top one. For the primal solver we use contact parameters of kn = kf = 108

which is sufficient to stably support the stack. In contrast, dual-space optimization converges
slowly for this case, leading to large interpenetrations.

Stiffness Ratio Tests A simple test to illustrate the effect of stiffness ratios is shown in Figure
27. Here two point masses are connected by springs with stiffness coefficents that vary by a ratio

75

(a) Primal (b) Dual

Figure 31: Contact Stiffness Ratio. An example of a high stiffness ratio contact scenario. In
this case we have chosen contact stiffness coefficients of kn = 108, and kf = 106 creating a
stiffness ratio of 100:1. This leads to an ill-conditioned system that results in artificial slip for
primal descent solvers.

(a) kf = 102 (b) kf = 103 (c) kf = 104 (d) Dual

Figure 32: Grasp Stability. We measure the effect of frictional stiffness on grasp stability.
Here the Yumi robot picks up a cube, attempts to lift it to a height of 8cm, and remain stationary.
Each image shows the final state of a grasp after 15s. We show the effect of varying friction
stiffness with kf increasing from left to right. Low stiffness results in visible slipping, but with
high stiffness and implicit integration grasps can be made nearly as stable as hard contact (dual)
models over long periods of time.

76

of 10000:1. Although both springs are stiff enough to easily support the masses, when combined
with a descent-based solver, the much stiffer lower spring has the effect of slowing convergence
for the top spring, resulting in significant stretching. Dual-space solvers do not suffer from any
ill-conditioning in this case, showing the correct (unstretched) behavior.

An equivalent, but less obvious, stiffness ratio problem occurs in contacting scenarios where
the normal and friction stiffness coefficients kn and kf differ by a large magnitude. In Figure 31
we see the effect of raising the contact stiffness while leaving the friction stiffness fixed. When
combined with an iterative method, this has the effect of reducing friction convergence, leading
to artificial slip.

Rigid Piling To investigate the performance of each method on large scale unstructured piling
we simulate a granular material consisting of 256k rigid bodies as shown in Figure 23. The
grains consist of spherical bodies with an average radius of 5mm and a mass of 5g. We use
contact parameters of kn = kf = 104 and µ = 0.3. A large cylindrical weight is dropped onto
the pile creating a mass ratio of 80000:1. After 1.25s one of the walls is removed, allowing the
grains to flow out. For primal methods we see that the grains support the weight easily, while
dual optimization with the same iteration count shows significant compression.

A second example is illustrated in Figure 24. In this case, 512 bowls each represented by
a triangle mesh with 1160 faces are dropped from a height. We use contact parameters of
kn = kf = 106, and µ = 0.7. This example is inspired by Xu & Barbic [232], who simulated
large plate stacks with a direct method. They used distance field based collision detection that
generated 8.5k maximum contacts. Our triangle-based representation generates 393k contacts
when settled (40x larger), however our parallel gradient-based solver still runs at real time rates
and forms a stable pile. In this example we see similar behavior with both primal and dual based
solvers. This is expected since there are no significant sources of ill-conditioning. Neverthe-
less, this example shows that the use of primal contact models and descent based optimization
is practical as an alternative to iterative dual methods that may traditionally be used for such
simulations.

Force Distributions In real world scenarios, for example a tessellated cylinder resting on the
ground, there are often many redundant contact constraints. This creates an underdetermined
problem, with many possible contact force distributions that are all valid solutions. In this case,
hard-contact solvers may produce an unpredictable distribution that is dependent on the ordering
of constraints. In some applications uniform force distributions are desirable, for example, in
sound synthesis Zheng et al. [238] used a secondary per-pair optimization to generate smooth
contact forces. A benefit of the relaxed primal model presented here is that it generates evenly

77

Figure 33: Force Distributions. We visual contact normal forces in blue. The distribution of
forces generated by a relaxed primal contact model are smooth (left). For hard contact models
the problem is underdetermined, leading to a solution that depends on the ordering of contacts
(right).

distributed forces without additional post-processing. An example of this is shown in Figure
33. Here the ABB Yumi robot grips a cube. The gripper is tessellated somewhat non-uniformly,
but in a relaxed primal model of contact the system remains well-posed and leads to a smooth
distribution of contact forces over the vertices.

Cloth To investigate the behavior of each method on deformable simulation, we suspend a
piece of cloth modeled by 800 triangles and drop a rigid body onto it from a height, as shown
in Figure 34. Surprisingly, the dual solution does not become stiffer after some elastic stiffness
threshold value around k = 108. The same effect was observed by Soler et al. [194] in the
context of Cosserat rods. We found this effect was consistent even in the absence of contact,
and believe this behavior can be explained by the use of an approximate solution to the primal
optimization subproblem in the dual update. In this case a hybrid method like the one used by
Narain et al. [153] for cloth strain-limiting may perform better.

Grasp Stability Without some additional history-based contact tracking, relaxed models of
friction do not generate frictional forces at zero-velocity. This means some non-zero slip is
expected. We measure the error induced by the this approximation on a robotic manipulation

78

(a) Primal (b) Dual

Figure 34: Cloth Simulation. For an object suspended by inextensible cloth (k = 1010) we find
that primal descent (left) is able to achieve higher effective stiffness than dual ascent (right) in
an equivalent number of iterations.

0 2 4 6 8 10 12 14

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

k
f
 = 10

2

k
f
 = 10

3

k
f
 = 10

4

Dual

Figure 35: Grasp Stability. A plot of the box height over time for the Yumi grasp example
shown in Figure 32. We consider the solution given by a hard-contact dual solver as the baseline.
At low values of kf the relaxed friction model visibly slips. For high values of kf the relaxed
model is stable over the experiment’s duration.

79

Figure 36: Differentiability. A trajectory optimization test using differentiable simulation to
minimize the distance to a target through two contact events. Our primal contact model is well-
suited to differentiability since it may be smoothed, and the system size remains fixed regardless
of the number of contacts.

task shown in Figure 32. We found that for low values of kf the robot was unable to hold
the cube stationary. However, for high enough coefficients we found that primal contact was
competitive with the dual baseline.

Differentiability We show an example of trajectory optimization in Figure 36. Given an initial
trajectory that involves impacts with two surfaces, the goal is to find a starting impulse such that a
bouncing ball hits a target at t = 0.5s. We use a discrete adjoint method [114] to perform reverse
mode differentiation through the primal contact solver and optimize the loss function using an
L-BFGS optimizer [128]. Primal formulations of contact are well-suited to differentiability for
two reasons. First, the contact forces may be smoothed to provide C2 continuity required for
some optimization methods. Second, when performing reverse mode differentiation the state
of the system must be saved at each forward step to compute the correct gradients during the
backwards pass. For primal contact the size of the system is fixed regardless of the number
of contacts. In contrast, the dual system must store a varying, and potentially large amount of
contact information at each forward step.

80

Table 3: Simulation statistics and performance numbers for the examples in this paper. The per-
iteration work done by primal and dual descent methods is similar so we expect timings to be
consistent between methods. We report the timings in milliseconds per-frame for both methods.

Example Steps Iters. Contacts Primal Dual
(Avg) ms ms

Cylinder Stack 2 20 189 0.9 0.9
Capsule Lean 2 20 11 0.5 0.4
Yumi Grasp 4 80 60 6.4 6.8
Granular Material 8 30 1510k 1396.8 1136.7
Bowl Pile 8 15 393k 16.6 18.1
House of Cards 4 100 1.2k 9.3 8.6

5.7 Limitations

The lack of hard constraints in the primal form would appear to be a major limitation, however, it
is often possible to design a reduced system where constrained degrees of freedom are removed
completely, e.g.: for articulated rigid bodies [61, 118]. Our derivation in terms of generalized
velocities naturally supports these types of re-parameterizations. In our experience, the biggest
limitation of primal solvers is the effect of stiffness ratios on convergence. Stiffness ratios may
manifest themselves in unexpected ways, for example in the leaning capsule scene in Figure 31.
While it is often sufficient to simply set the contact and friction stiffness to the same value, some
situations may require more careful authoring.

Our method is designed to work with the descent-based optimization form of Projective Dy-
namics presented by Wang et al. [225] that does not require pre-factorized matrices. The exten-
sion to prefactorized methods is not obvious, and we leave this as future work. An advantage
of the primal form is that it does not require the inversion of the mass matrix M. This means
it is possible to use consistent mass matrices, which are able to produce more accurate results
for FEM-based simulations [33]. Primal formulations also make it particularly easy to perform
implicit integration of arbitrary force models. For example, materials with nonlinear constitu-
tive equations, or activation models with complex dynamics such as muscle-tendon units. Our
primal formulation is applicable to any nonlinear energy (with the caveat that it may not find
a global optimum for nonconvex models), however the dual form requires finding a suitable
variable splitting which is most easily performed for quadratic energies.

81

5.8 Conclusion and Future Work

We have presented a unified derivation and analysis of primal and dual formulations of implicit
integration from a variational perspective. In addition, we propose a novel primal contact model
with a robust preconditioner that is easy to incorporate into existing solvers such as Projective
Dynamics. Our contributions extend these frameworks to large scale rigid body and robotics
simulations that may have otherwise been treated with a separate method.

We have focused on iterative descent-based methods, however we expect some of the effects
described here will change when used with other methods, e.g.: direct solvers. For future work
we plan to explore techniques to address the stiffness ratio problem in primal formulations. We
believe accelerated descent and nonlinear conjugate gradient methods are promising methods to
improve convergence, while maintaining scalability.

82

Figure 37: Cloth Contact: Our face-based optimization method accurately captures contacts
between cloth and sharp features in a signed distance function without discrete sampling of
mesh geometry.

6 Collision Detection

The simulation methods developed in the previous sections are only as good as their inputs.
This is especially true when considering the contact constraints between bodies, which must be
accurate enough to prevent object interpenetrations. In this chapter we turn to the problem of
collision detection. We propose a new method for contact generation between bodies represented
by signed distance fields (SDFs) that robustly captures sharp features, and efficiently generates
contacts between rigid bodies and thin-shells such as cloth.

While triangle-meshes are able to compactly and accurately represent the surface detail of an
object, they do not explicitly represent the inside/outside regions of a shape, and require signifi-
cant computation to recover this information [98]. As such, simulators that use triangle meshes
for collision typically use complex continuous collision detection (CCD) methods that aim to
strictly prevent interpenetration [171, 25, 159]. Alternatively, signed distance fields (SDFs) im-
plicitly represent the surface of an object, but explicitly represent the interior and exterior regions

83

(a) (b) (c) (d)

Figure 38: Limitations of Sampling: Point sampling may miss contacts between sharp features
in the SDF cone and the cloth geometry (a). Our method adaptively finds points of maximum
penetration along each face, generating accurate face-vertex contacts (b). Point sampling also
fails to capture edge-edge contacts between geometry and the SDF (c), our method naturally
generates edge-edge contacts by optimizing over each face (d).

and the distance to the surface. Since interpenetrations may occur as a result of compliant con-
tact models, or through numerical inaccuracy, having a robust way to recover from overlapping
states makes SDFs particularly well suited for collision detection.

In general a signed distance field (SDF) may be considered as a function φ(x) : R3 → R
where x is a point in some previously defined coordinate frame. The value φ(x) represents
the signed Euclidean distance of x to a point on the surface, where φ = 0. By convention we
define the interior of an object as the set of points where φ(x) < 0. A consequence of this
definition is that the gradient ∇φ points in the direction of maximum distance increase away
from the surface. Given an SDF, the closest point on the surface to x may be calculated directly
as y = x−∇φ(x)φ(x). Determining collision between a point x against an object represented
by an SDF is then as simple as evaluating φ(x) and checking the sign. Depending on the choice
of contact model, a contact normal may be defined as n = ∇φT , which can be used as input for
a penalty or constraint-based contact solver such as the ones developed in the previous sections.

Although point-based contact is well suited for use cases such as particle systems, it is less
clear how to extend the method to handle continuous surfaces such as triangle meshes. Previous
work has proposed performing an offline sampling of the surface geometry at discrete points.
Then, at runtime, checking each point for overlap as described above. While this approach is
conceptually simple, it suffers from the problem that any discrete sampling may be insufficient
to detect overlap for particularly sharp features, for example the spikes of a dragon, as shown
in Figure 37, or the apex of a cone interpenetrating a piece of cloth, as shown in Figure 38
(a). In addition, point-sampling fails to capture the case of edge-edge contacts between bodies,
for example between two boxes resting on each other, as in Figure 38 (c). While it is possible
to increase point-sampling density, the contact locations remain fixed at discrete points on the

84

surface which can cause jumps as contacts shift from one point to the next. Furthermore, as
the number of samples increases, so does the number of contacts generated. This shifts the
computational burden to the contact solver, which may have high computational complexity.

In this work we propose a method to generate contacts between triangle mesh faces and edges
in an adaptive and continuous manner. Our method is based on a local optimization over mesh
edges or faces using constrained convex optimization. Unlike fixed, discrete sample points, this
approach allows contacts to vary smoothly over the mesh elements, capturing sharp point-face
and edge-edge contacts.

In summary, we make the following contributions:

• A method for generating smoothly varying contacts between mesh features and shapes
represented by signed distance fields (SDFs)

• An analysis and comparison of three numerical methods for solving the local constrained
optimization

• The application of our method to contact generation between thin-shells, rigid bodies, and
deformable solids

6.1 Related Work

Signed distance fields, and implicit surfaces have a long history in computer graphics for shape
modeling and rendering [20, 83, 21, 230]. In this paper we focus on the use of SDFs for collision
detection or contact generation, and discuss some previous work below.

Collision Detection Fuhrmann et al [69] leveraged SDFs for collision detection between cloth
and complex geometry. They recognized the limitations of point-sampling the cloth surface, and
proposed adding samples at the midpoint of each edge to minimize the chance of missed colli-
sions. Our method generalizes this idea to adaptive and smoothly varying face and edge contacts.
Guendelman [77] showed how SDFs may be used for collision detection between non-convex
rigid bodies with an impulse-based contact solver. They combined vertex sampling with edge-
based isosurface intersection. We extend their work by capturing point-face contacts where the
SDF may not have an embedded mesh representation. In addition, our method allows generating
edge-edge contact constraints before intersection occurs through a local minimization. Xu et al.
[232] also used an SDF representation with point-sampling for rigid body contact, but with an
implicit penalty-based contact model. Their work was later extended to the case of continuous

85

collision detection (CCD) between shapes represented by SDFs [231]. Volume contact models
[5, 223] share some similarities with SDFs representations. Volume contact methods work by
identifying the overlapping volume of shapes and introducing constraints to remove/minimize
it. In this work we are concerned with how to generate contacts between an arbitrary mesh and
a solid represented by an SDF. In contrast to volume based approaches, our method also handles
the case of thin-shells, e.g.: cloth, colliding against a rigid body. Weidner et al. [226] propose a
hybrid Eulerian-on-Lagrangian with remeshing [153] to allow cloth to slide over sharp features
and conform closely to the collision shape. For simplicity we do not perform remeshing, but
generate smoothly varying contacts along the simulation mesh faces.

Deformable Bodies There is a large body of work on collision detection between deformable
bodies [208]. Surface-based methods typically aim to detect and prevent interpenetration be-
tween surface elements using a combination of continuous collision detection (CCD) and fail-
safe methods [171, 25, 183, 82, 197]. One advantage of SDFs is that, they provide robust
inside/outside information, thus if penetration occurs it can often be recovered from. SDFs are
usually considered static, although some authors have extended them to handle runtime deforma-
tions. Seyb et al. [186] recently applied deformed sphere tracing for particle collisions. Fisher
and Lin [64] proposed a method to warp SDFs based on a tetrahedral embedding for collision
against deformable objects. McAdams et al. [148] use a similar idea with point sampling of a
surface mesh to perform character self-collision. We apply our optimization-based contact gen-
eration method to these approaches for accurate and robust contact between deformable bodies
and cloth.

Representation SDFs are commonly discretized and stored on a grid, or volume texture. To
avoid the memory overhead for dense volumes, adaptive storage methods have been proposed
[68, 129]. Non-manifold and sparse representations have also been proposed to allow repre-
senting thin features efficiently [149]. Koschier et al. [112] proposed a highly accurate SDF
representation based on hp-adaptive grids. They used the resulting representation for collision
detection by point-sampling the surface. Our method is agnostic with regard to the underlying
SDF representation, and may be used with analytic, dense, or sparse representations.

6.2 Face Contact

We first consider the case of colliding a single triangle against a solid body represented as
an SDF. We use the closest point methodology for generating contact points [59] which re-
quires finding the closest points on the face and the SDF isosurface. For a triangle with vertices

86

Figure 39: Optimization Procedure: We find the closest point between a mesh element (a line
segment), and the surface of a shape represented by a signed distance field (horseshoe). Here
we visualize the iterates (red dots) to show the progress of our optimization-based procedure.

p,q, r ∈ R3, the closest point on the triangle to the rigid body is given by the solution to the
following minimization over the barycentric coordinates u, v, w,

argmin
u,v,w

φ(up + vq + wr) (137)

s.t. u, v, w ≥ 0 (138)

u+ v + w = 1. (139)

The constraints ensure that the solution to this problem lies in the triangle interior or on
its boundary. In the following sections we examine some numerical methods for solving this
optimization problem.

6.2.1 Projected Gradient Descent

SDFs may represent arbitrary shapes, which means the objective (137) in the preceding mini-
mization is in general a nonlinear, and non-convex function of arbitrary complexity. Global op-
timization of such functions is difficult, and may require sophisticated methods such as branch
and bound approaches [91]. An alternative method that often works well to find a local mini-
mum (or at least a stationary point) is projected gradient descent [175, 176]. To apply gradient

87

descent we need the derivative of the distance field with respect to the barycentric coordinates,
which is given by:

d =
[
∂φ
∂u

∂φ
∂v

∂φ
∂w

]T
=

∇φ(x)p

∇φ(x)q

∇φ(x)r

 (140)

where the spatial point x(u, v, w) = up + vq + wr is simply a barycentric interpolation of
the triangle vertices. The SDF gradient ∇φ(x) w.r.t. spatial coordinates may be computed on-
demand using finite differences, analytic gradients, or precomputed and stored on a grid. After
computing the gradient d w.r.t. barycentric coordinates, we iteratively update our candidate
solution c according to a fixed step size α, and project onto the constraint manifold, using the
fixed-point iteration

ci+1 ← P(ci − αd). (141)

where c = [u, v, w]T is the vector of barycentric coordinates, and i the iteration index. We
visualize the progress of this method on a 2D problem in Figure 39. The projection operator
P maps a point to the closest point on the constraint manifold described by (138)-(139). Geo-
metrically, these constraints represent a triangle centered around the origin in 3D with vertices
[1, 0, 0], [0, 1, 0], [0, 0, 1]. The projection therefore, amounts to finding the closest point on this
triangle from our current iterate, for which efficient codes exist [56]. We note that it is also
possible to simplify the problem by expressing w in terms of u and v such that the closest point
projection can now be performed in 2D instead of 3D.

6.2.2 Frank-Wolfe

The Frank-Wolfe, or conditional gradient method is an iterative algorithm for solving con-
strained convex optimization problems [67, 99]. Similar to gradient descent, Frank-Wolfe only
requires access to first order derivatives, however it has the appealing property that it does not
require a projection step onto the constraint manifold. The Frank-Wolfe algorithm proceeds by
iteratively solving the following minimization for the point si ∈ R3,

argmin
si

sTi ∇φ(xi) (142)

s.t. si ∈ D, (143)

88

followed by the update:

xi+1 ← xi + α(si − xi). (144)

here D is the domain to optimize over, in our case the triangle itself. Unlike projected gradient
descent which optimizes over barycentric coordinates c, for Frank-Wolfe it is more natural to
optimize over spatial coordinates (x) directly. Due to convexity of the triangle, the solution
si must be one of the vertices p,q, r, which can be computed by direct enumeration. This is
similar to the problem of finding the support point for a given direction in the Gilbert-Johnson-
Keerthi (GJK) algorithm [72]. Once this extremal point si has been identified, the Frank-Wolfe
method performs a step (144) where the step length has the particular form α = 2

i+2 to ensure
convergence. Although Frank-Wolfe is designed for convex functions we found it to be effective
for non-convex optimization.

6.2.3 Culling and Starting Iterate

To quickly reject triangles from processing we evaluate the distance at the centroid xc of the
triangle and check if it is less than the radius r of the bounding sphere centered at this point,
i.e.: φ(xc) < r. The same optimization applies for mesh edges as discussed in Section 6.3. We
found this to be a highly effective early out for rigid body contact, however as may be expected,
it is less effective for cloth in close contact with a body as illustrated in Figure 49.

The choice of starting iterate is important to the convergence of iterative methods. A simple
heuristic we found effective is to evaluate φ at each triangle vertex and choose the point with
the smallest value. This is also helpful in avoiding local minima, although it is not sufficient to
guarantee a global solution.

6.2.4 Termination Conditions

Since a lower bound on the distance for each element is not known in advance we cannot define
an absolute tolerance on the distance function φ(x). However, for projected gradient descent we
may define a stopping criteria based on the magnitude of the gradient d. For Frank-Wolfe the
subproblem objective sTi ∇φ(xi) may be used, since for convex functions this is an upper bound
on the primal error [99]. After termination, if the minimum distance lies within some threshold
margin φ(x) < δ then we create a contact constraint. Otherwise, the element is deemed not to
collide and no contact is generated.

89

Figure 40: Edge Contact: An example showing collision of 128 ropes consisting of a string
of 1D elements. Point-based sampling misses edge-edge contacts leading to interpenetration
across the sharp SDF edge (left). We use golden-section search to find the closest point along
each segment to the isosurface (right).

6.3 Edge Contact

The face-based optimization presented in the previous section will naturally find contacts that
lie on edges. However in many cases we wish to optimize over edges directly, for example when
simulating one dimensional objects such as hair, or rope, as in Figure 40. Considering an edge
(line segment) defined between two points p,q ∈ R3 we can define the closest point to the
isosurface of an SDF as the solution to the single variable optimization problem:

argmin
u

φ(up + (1− u)q) (145)

s.t. u ≥ 0 (146)

u ≤ 1. (147)

Projected gradient descent and Frank-Wolfe can be applied directly to this problem, however
the lower dimensionality makes search based methods attractive. We describe one such scheme
in the next section.

90

Figure 41: Cloth Net: A suspended piece of cloth supporting sharp non-convex objects shows
visible penetrations for simple point sampling approaches (left), while optimized face contacts
were robust (right). In this example the cloth net consists of 4.8k faces, the rigid branches are
represented as SDFs with embedded triangle meshes consisting of between 2-27k faces each.
Collision detection time is around 350us per-timestep.

6.3.1 Golden-Section Search

A simple and robust method for solving interval-constrained optimization problems is golden-
section search [110]. Golden-section search is a generalization of the root finding bisection
method for minimizing unimodal functions. Although our SDF function may not be unimodal
over the interval [0, 1], golden-section search will terminate on one of the minima, or the bound-
ary of the interval. An advantage of golden-section search is that it does not require gradients of
the objective function, making it particularly efficient.

6.4 Models

We now discuss how to apply our presented methods to the case of collision detection for a
range of common simulation models in computer graphics.

6.4.1 Cloth Collision

To collide deformable cloth represented by a triangle mesh against shapes represented as SDFs,
we perform the local face optimization of Section 6.2 for each triangle in the mesh. This ap-

91

Figure 42: Complex Geometry: Point sampling shows visible penetrations through the sharp
features of a dragon (left), our method prevents interpenetration by creating optimized local
contacts (right). In this example the cloth consists of 20k triangles, collision detection against
the SDF dragon takes around 80us per-timestep.

proach generates one contact per-triangle, which we found was sufficient for our tests, as il-
lustrated in Figures 41 & 42. To avoid creating repeated contacts between connected faces we
use the representative triangle approach, which uniquely assigns mesh features (vertices, edges,
faces) to each element as a greedy preprocess [150, 41]. After optimization a contact may be
discarded if it lies on a feature not assigned to the element.

6.4.2 Rigid Body Collision

For collision between rigid bodies that are well tessellated e.g.: the shells in Figure 43, we
found that optimization over faces was sufficient to generate good contact manifolds. However,
for shapes where this was not true, e.g.: the elongated boxes in Figure 38, we found that descent
based methods would converge slowly, particularly for edge-edge contacts with high curvature.
To avoid this problem we recommend to instead test vertices of both meshes directly as in
Guendelman et al. [77], followed by the search based optimization of Section 6.3 over each
edge.

6.4.3 Soft Body Collision

SDFs may be used for collision against deformable shapes by embedding the distance field
inside a deformable cage [64, 148]. Given a point in world space coordinates xs, we associate
a material space point xm = g(xs) where g : R3 → R3 is an operator that maps from spatial
coordinates back to the material pose, i.e.: an inverse displacement function. Given such a

92

Figure 43: Rigid Body Simulation: A high resolution rigid body simulation where each shell
consists of 129k triangles and contains many sharp features. Collision detection time using
per-face optimization is 0.4ms on average.

(a) (b) (c)

Figure 44: Interpenetration Robustness: Given an initially interpenetrating state (a), triangle-
based collision will not resolve intersections (b). SDFs provide inside/outside information that
allows them to reliably separate objects (c).

93

Figure 45: Deformable Bodies: Our method can be used with deformable SDF embeddings.
Here cloth is collided against a deformable teapot using a tetrahedral FEM model. While the
tetrahedral cage is relatively coarse (background), collision against the teapot is performed
against the embedded high resolution SDF (foreground).

94

mapping we can define a deformed distance field,

φd = φm(g(xs)), (148)

where φm is the (static) distance field defined in material space. We note that the deformed
field may no longer satisfy the distance field property ‖∇φd‖ = 1, however the isosurface is not
changed by this transformation, and it is sufficient to find a local minimum and define contact
constraints. To apply our method to deformable bodies we follow the approach of McAdams et
al. [148]. Given a deformed tetrahedral mesh, we first find the tetrahedron enclosing a world
space point, and then compute the material space point associated with it. The enclosing tetra-
hedron with vertices v0,v1,v2,v3 may be found efficiently using a bounding volume hierarchy
(BVH) or other spatial data structure. Assuming linear shape functions, the projection back to
material space is given by,

xm = g(xs) = MD−1(xs − v0s) + v0m. (149)

We use the subscript s andm to denote world space and material space quantities respectively.
Here D ∈ R3×3 is a basis for the enclosing deformed tetrahedron in world space, and M ∈ R3×3

is a basis for the undeformed tetrahedron in material space:

M =
[
v1m − v0m v2m − v0m v3m − v0m

]
(150)

D =
[
v1s − v0s v2s − v0s v3s − v0s

]
. (151)

Given the mapping function g, and a world space point on a triangle defined by

xs(u, v, w) = up + vq + wr, (152)

the gradient of φd(xs) w.r.t. the barycentric coordinates for optimization is given by,

d =
[
∂φd
∂u

∂φd
∂v

∂φd
∂w

]T
=

∇φm(xm)G(xs)p

∇φm(xm)G(xs)q

∇φm(xm)G(xs)r

 , (153)

95

where G = ∇g = MD−1. The matrix G may also be identified as the inverse of the defor-
mation gradient commonly computed in tetrahedral FEM simulations [190]. As D is a basis
for the deformed tetrahedron, if the element is extremely ill-conditioned calculating the inverse
may not be possible. A robust implementation should detect this case and may choose to ignore
such elements.

We note that G is a function of the world space point xs, and typically involves traversal
of a BVH to determine the enclosing tetrahedron. To avoid performing this work for each
optimization step, we evaluate G at the centroid of a triangle and treat it as constant over the
course of the optimization. Following [148], once we have found a minimum of φd we project
the minimum point back onto the surface (in material space), and apply the deformation mapping
back to world-space to define the contact point. We illustrate this approach in Figure 45, where
cloth is draped over a deformable teapot. A key advantage of this method is that it decouples
the elastic discretization from the collision representation. This allows us to use a regular and
relatively coarse hexahedral grid (decomposed into tetrahedra) for the computation of internal
elastic dynamics, while using a high resolution SDF representation to resolve collision.

6.5 Discrete Distance Fields

SDFs are often stored as discrete samples on a regular or sparse grid [112]. This approach allows
representing complex non-linear functions. However using a discretization with finite extents
requires some special handling during contact generation. Since optimization can only proceed
where there is valid SDF data, a problem occurs when there is not a sufficient margin between
the surface of the shape and the extents of the SDF volume data. A possible solution to this
is to project samples lying outside the volume’s bounding box to the closest point on the box’s
surface. However we found it was sufficient to use a conservative sampling margin around the
shape’s isosurface, and for simple shapes to use the analytic approach suggested below.

6.6 Analytic Distance Fields

Closed form functions for the distance to simple shapes can often be found, and these can be
efficiently combined to model complex geometry. Our method is independent of the SDF repre-
sentation, so we can naturally support analytic field definitions. This allows us to collide meshes
against arbitrarily smooth surfaces, without the need to form a surface triangulation. In addition,
parameterized shapes can be animated to deform collision geometry over time as illustrated in
Figure 46.

96

Figure 46: Analytic Distance Fields: Our method naturally supports collision against ana-
lytic SDF functions without the requirement for an embedded mesh representation. Top Row:
Optimization-based contact generation against an analytic spool SDF. Bottom Row: Point-based
sampling misses edge contacts, and eventually leads to cloth becoming separated and tangled.

97

Figure 47: Sampling Patterns: Triangle point sampling for 4, 16, and 64 samples (left to right)
using a low discrepancy sampling pattern. Despite providing well distributed coverage, discrete
sampling may miss contacts between sharp features, and cannot provide smooth transitions for
edge-edge contacts.

5 10 15 20 25 30

Iteration

0

0.02

0.04

0.06

0.08

0.1

0.12

R
el

at
iv

e
E

rr
or

Convergence - Projected Gradient Descent

5 10 15 20 25 30

Iteration

0

0.02

0.04

0.06

0.08

0.1

0.12

R
el

at
iv

e
E

rr
or

Convergence - Frank-Wolfe

5 10 15 20 25 30

Iteration

0

0.02

0.04

0.06

0.08

0.1

0.12

R
el

at
iv

e
E

rr
or

Convergence - Golden Section Search

Figure 48: Convergence Analysis: We analyze the convergence of projected gradient descent
(left), Frank-Wolfe (middle), and Golden-Section Search (right) over a random distribution of
1000 closest point problems. We randomly position a 2D segment over the domain (possibly
intersecting the SDF) and plot the median, first and third quartile (shaded area) of the relative
forward error at each iteration. To compute the relative error we use a ground truth solution
obtained using high resolution brute-force sampling over the entire element.

20 30 40 50 60 70 80 90 100

Frame

104

105

106

107

108

C
ou

nt

Rigid Shells - Culling Efficiency

Faces Tested
Faces Passed
Contacts Created

30 40 50 60 70 80 90 100

Frame

103

104

105

106

C
ou

nt

Cloth Dragon - Culling Efficiency

Faces Tested
Faces Passed
Contacts Created

Figure 49: Culling Efficiency: Sphere culling faces against the SDF is highly effective for rigid
body scenes (left). It is less effective for scenes where cloth is draped closely over an object
(right). In both cases we see that the final number of contacts created is close to the number
passing bounding sphere checks, indicating good culling efficiency.

98

6.7 Results

Since our method naturally parallelizes over mesh features we have implemented it in CUDA
and run it on an NVIDIA GTX 2080 Ti. For dynamics simulation we use the extended position-
based dynamics (XPBD) method [151, 138] where contacts are handled as hard unilateral con-
straints.

6.7.1 Convergence

To compare the convergence of the three methods we position a line segment randomly over the
domain shown in Figure 39, and record the error at each iteration. Figure 48 shows the error dis-
tribution over 1000 random tests. Comparing the gradient-based methods, we see that projected
gradient descent often reaches a lower error after the same number of iterations as Frank-Wolfe.
However we note that the behavior of gradient descent is quite sensitive to the step-length used.
In contrast, Frank-Wolfe uses a decreasing step length, which slows convergence but removes
the need to set parameters, making it attractive from an authoring perspective. Observing the
error plot for golden-section search in Figure 48 (right), we see it converges quickly on aver-
age, and has the tightest error distribution. Hence, if we have a 1D optimization problem where
search methods are applicable we believe they should be preferred over descent based methods.

Descent-based optimization occurs using fixed step lengths in barycentric coordinates, this
means that convergence is independent of the world-space size of the triangle. Rather, conver-
gence rate primarily depends on the complexity and conditioning of the SDF function over the
mesh feature. As is typical for descent based methods, minima in flat regions of low curvature
will cause slower convergence.

6.7.2 Performance

In Table 4 we report the per-time step average collision times for our examples. Despite per-
forming a local optimization loop per-triangle, collision detection times are still a fraction of a
millisecond (we report timings in microseconds) for complex geometry. A surprising finding
is that in many cases optimization-based collision detection performance was not significantly
more costly than simple point sampling. We attribute this partly to effective early culling as
shown Figure 49, but also to the fact that once SDF data enters the GPU cache it is fast to
sample. This is even more apparent with the analytic test case shown in Figure 46, which has
identical performance for all three methods. This is explained by the fact that, in this exam-
ple, the optimization is purely compute-based (no memory fetches) and so total cost is small

99

Table 4: Performance timings comparing a simple point-based approach (Simple), to our face-
based optimization. Here we have fixed the number of iterations to 32 for all methods, and
report Golden-section search numbers for the rope example only, since it is a 1D problem, while
the other examples have used face-based optimization.

Example SDF Points Elements Simple PGD FW GS
µs µs µs µs

Dragon 2563 20,000 39,402 20 85 77 -
Net 2563 51,161 81,194 336 373 321 -
Teapot 1283 5,281 6,962 112 123 115 -
Shells 5123 635,020 1,269,880 401 445 437 -
Rope 2563 4224 4096 98 102 99 99
Analytic - 10,000 19,502 48 48 48 -

compared to the rest of the kernel and falls below our ability to measure it.

6.7.3 Comparison To Sampling Approaches

One way to improve point sampled collision is to simply increase the number of samples. To
compare our optimization method against this approach we generate face samples using the low-
discrepancy sampling scheme of Basu and Owen [13] as illustrated in Figure 47. Using 64 face
samples we were unable to obtain an interpenetration free result for the cone-cloth example.
This illustrates how, for sharp features, even high sampling frequencies are insufficient to guar-
antee an interpenetration free state. On the cloth dragon example, which has a higher-resolution
base cloth mesh, we found 4 additional face samples were sufficient to prevent interpenetration,
however this approach generated approximately 80k contacts, compared with the 20k generated
by face-based optimization.

6.7.4 Comparison To Surface Approaches

A popular method for collision detection is to perform contact generation between mesh surface
features by examining triangle pairs, either in proximity, or using CCD checks. We compared
against a surface-based contact generation scheme where point-face and edge-edge pairs are
tested for proximity and a contact generated if the closest points lie below a distance thresh-
old. We employ a GPU AABB tree to cull triangle pairs [107]. On the rigid shells example
this mesh-based collision took approximately 15ms per-step, compared to less than 0.5ms us-
ing SDF-based contact. The performance difference may be explained by the fact each shell
contains approximately 129k triangles, which results in deep hierarchy traversals. This is not

100

a perfect comparison, since SDFs implicitly resample the surface geometry (possibly losing
detail), and because our approach generates exactly one contact per-triangle rather than one per-
feature pair. Nevertheless, we found this result to be representative on a range of high resolution
meshes. A more concerning limitation of surface-based approaches is that once interpenetra-
tion has occurred it is difficult to recover from. A primary advantage of SDFs is their ability
to provide inside/outside information, allowing points to be projected to the surface. In Figure
44 we illustrate this by embedding cloth in a complex shape. Triangle-based contact remains
entangled, while SDF-based contact can reliably separate both objects.

6.8 Limitations

While our method improves the robustness of mesh contact against SDFs, some issues remain.
Since our method is local, it does not generate a global minimum translation distance (MTD)
that would guarantee separation of already interpenetrating elements. In practice we found this
was not a significant problem, and that deep penetrations are typically resolved within a few
time-steps. A second limitation occurs when a triangle or edge is resting on multiple features
(repeated local minima). Since we generate one contact per-element this may result in interpen-
etration. A possible solution would be to perform an implicit subdivision of each face. If local
minima are isolated they can be used to bracket the element into smaller pieces and recursively
search on these smaller subspaces.

6.9 Conclusion and Future Work

Due to their efficiency, flexibility, and robustness, we believe SDFs are well suited to shape
representation for simulation. We have presented a local optimization-based technique that im-
proves the quality of contact generation for meshes against SDFs. We have focused on first-order
optimization methods for their simplicity. However, second-order methods such as Newton,
quasi-Newton, or accelerated methods could also be employed to improve convergence rate.
For future work we plan to explore contact generation between two solids both represented
purely as SDFs, without the requirement for any mesh-based surface representation. Producing
the intersection of two SDFs is straightforward, which suggests they may be well suited for
volume-based contact approaches.

101

7 Robotics & Machine Learning

We now move our focus away from the development of simulation methods and on to their appli-
cation in the domains of robotics and machine learning. In Section 7.1 we apply the techniques
developed in previous chapters to the simulation and modeling of a soft robotic snake from a
classical perspective of measurement and validation. In Section 7.2 we discuss an approach to
closing the Sim-to-Real gap that relies on stochastic optimization, and in 7.3 we discuss an ap-
proach to system identification and control using model-based optimization that takes advantage
of a fully differentiable simulator.

7.1 A Validated Physical Model For Real-Time Simulation of Soft
Robotic Snakes

In this section we present a compliant constrained dynamics model for a soft snake robot
[160, 135, 134]. Our model is able to accurately represent the deformations of the snake links
while being efficient enough for real-time simulations. To achieve low-latency simulation, we
use the GPU-based physics simulator based on the work presented in Section 4, that allows us
to simulate coupled soft and rigid links, and leverages large-scale parallel iterative solvers to
efficiently solve large systems. The resulting simulation is validated against a real robotic snake
to verify that the deformation model is accurate and that the dynamics of the simulation match
that of the real system. In summary, our main contributions are:

• A constrained dynamics model for a modular soft robotic snake that accurately represents
a large range of deformations

• Model validation in static deformation and dynamic locomotion tests

• A simulation framework suitable for performing real-time control of soft robots.

This work was jointly lead by myself and Renato Gasoto. I was responsible for the devel-
opment of the simulator and aspects of the physical modeling of the robot, while Renato was
responsible for the physical experiments and validation against the real snake. I have omitted
some details regarding modeling actuator latency that I was not directly involved with.

102

(a) Unpressurized (b) Pressurized

Figure 50: Single Soft Link: Each deformable snake chamber is made from silicone and
wrapped with a fiber reinforcement, preventing it from increasing in radius when pressure is
applied. The center of the link contains an inextensible layer that prevents it from expanding in
length [160]. The spheres attached to the rigid plates are markers used for tracking the curvature
in the experiments. Left: No pressure applied. Right: 8 psi applied on left chamber.

7.1.1 Related Work

The field of soft robots includes a large and varied range of designs that incorporate compliant
materials and actuators. Soft robots may have a few flexible regions in them and may be driven
by tendons [140], while completely soft pneumatic actuators can be driven by exerting a range
of pressures within deformable bodies. The use of pressure leads to many intricate designs
that exploit the material geometry to achieve the desired actuation [97, 222]. To allow a large
range of pressures and material deformations, hybrid materials are often used on the pressure
chambers, such as inextensible layers and fiber reinforcements [169]. Our modular soft snake
robots use hybrid materials [135, 134] to achieve highly efficient 2D terrain locomotion.

The diversity of soft materials and difficulty in accurate modeling of soft robots lead to an
increasing need for building a realistic simulation for deformable robots. Duriez et al. [53]
presented a framework for simulating soft robots using a quasistatic approach based on FEM.
In this work, we also use FEM with tetrahedral elements as a fundamental building-block. In
addition, we combine these elements in a multiphysics system with spring networks, frictional
contact, attachment constraints for soft/hybrid materials and articulated rigid bodies. We per-
form implicit time-integration to simulate dynamic trajectories. Recent work by Pozzi et al.
[170] used a rigid-body model, fitted to an offline FEM simulation augmented with stiff springs
to achieve real-time updates. In this work, we simulate the finite-element models and spring net-
works directly, using the large-scale parallelism of graphics processing units (GPUs) to achieve
online update rates, thus avoiding an expensive offline simulation and data fitting stage.

103

Figure 51: Full Assembly: The robotic snake with four links. The main controller receives
wireless commands from the computer, and passes it over to each slave controller, which acti-
vates the solenoid valves that release the pressure to the soft actuator, on the right we show the
snake in simulation.

7.1.2 Modeling

The snake is made of soft bending actuation modules, as shown in Figure 50a. The soft links
of the snake robot are made of Ecoflex™ 00-30 silicone rubber which has material parameters
Y = 66.243KPa, and ν = 0.4999 [49]. To discretize the soft links we construct a triangular
mesh of the surface and tetrahedralize it using TetGen [188].

In the center of the link, between the two chambers, there is a custom integrated curvature
sensor, and a plastic film that inhibits linear extension. This set of constraints results in bending
the entire soft module when one chamber is pressurized, as seen in Figure 50b. Since the inex-
tensible layer in the center of the link has a deformation threshold that is beyond the range of
forces to be applied on the soft links, it is acceptable to model it as a non-deformable constraint
between particles along the center plane, which we achieve with zero-compliance springs. Sim-
ilarly, the radial constraint on the chambers are defined as a set of inter-particle constraints over
coplanar particles along the link. Although it would be possible to drive each link’s expansion
using surface pressure forces directly, the other constraints in the link allow us to simply control
the chamber volume using constraints between particles along the primary axis of expansion.
Only one chamber on the link is active (i.e.: pressurized) at a time, so this set of actuation con-
straints only applies to the expanding chamber. Figure 52 displays the constraints overlaid on
the link. The link mesh was subdivided in 13 cross-sections along its length, in order to allow
real-time computation, while maintaining good accuracy on the material deformation.

Caps are attached to both ends of the actuator to seal the chambers and allow modular con-
nections with other segments. The caps are made of two ABS plates sandwiching the rim of the
silicone. The links are then connected to each other through the rigid bodies that contain the
electronics necessary to control the snake robot. In addition, the rigid bodies are attached to the
wheels via. hinge joints. The wheels provide contact with the floor and model the anisotropic
friction that a real snake has from its scales. The full assembly of a snake consisting of four
links is shown in Figure 51, and the number of DOFs and constraints are given in Table 5.

104

Table 5: The number of elements of each type in a full snake assembly consisting of 4 soft links.

Type Quantity
Rigid Bodies 15
Rigid Joints 10
Particles 1504
Tetrahedra 4536
Attachments 217
Springs 1460

Figure 52: Soft Link Discretization: Left: Tetrahedral mesh for the soft-link. Right: Our
constraint network. Green constraints represent stiff springs to limit chamber expansion. Blue
constraints ensure the chamber radial perimeter is constant. Red constraints are used to expand
chamber as overpressure is applied.

105

Figure 53: Curvature Validation: Measuring the link expansion after settling from -10 to 10
psi overpressure. Negative values mean the left chamber is inflated, while positive values are for
the right chamber. The simulation displays high accuracy on the curvature up to 8 psi, where
the dashed lines were traced. After that the pressure becomes excessive and the real link stops
following the linear model.

7.1.3 Results

For all tracking experiments, the poses of the rigid links were captured using the motion capture
system (MOCAP) by placing four markers on each rigid extremity so that we can collect their
full poses. The MOCAP system contains 11 cameras surrounding the observable space of 4 ×
3 m2. Figure 50 shows the markers on the top corners of the rigid plates. This redundancy
allows the information of links to be collected with high precision and minimal loss of tracking
during the experiments. In order to eliminate remaining outliers, every experiment is repeated
for 10 times unless otherwise mentioned.

We use a friction coefficient of µ = 1 for all experiments, although this is relatively high, we
observe little slipping between the wheels and the ground in the real world and did not find it
necessary to optimize this value. We implement our simulator in CUDA using an NVIDIA GTX
1080 Ti GPU. We use a fixed time-step of ∆t = 0.0083s, each time-step performs 4 Newton
iterations, with each linear system solved approximately using 20 PCR iterations to ensure a
fixed computational cost.

Quasi-static Verification The first experiment on the simulation is to verify whether the pres-
sure actuator follows the same geometrical behavior as the real link. For this experiment, the
curvatures of the real links were obtained by subtracting the yaw of the rigid connectors at-
tached to each soft link, for the varying over-pressures (the pressure that exceeds the resting
atmospheric pressure) from 0 to 10 psi, moving up with steps of 1 psi for both directions on the
link, and averaged over 300 samples. Negative values show the inflation of left chamber and
positive values are for the right chamber as visualized in Figure 53.

From Figure 54, it can be seen that the curvature increases linearly with the pressure within
a range. Particularly, the spring actuation model is able to closely match the real curvature,

106

Figure 54: Curvature Under Pressure: The top plot shows that the curvature follows a linear
relationship with the pressure applied. The bottom plot is the relative error.

and accurately follows the linear model up to 8psi. Ecoflex 00-30 Young modulus is 66 kPa,
at 9 psi (62 kPa) it nears 2x expansion, which is the limit at which the material is linear. This
behavior is also clearly observed by the relative error plot. When the pressure exceeds 8 psi,
the real link starts to bulge over imperfections in the manufacturing, and on the opposite side,
it folds in itself, resulting in a deviation from the linear model. At this pressure range there is
a potential risk of damaging the links in the long term. For these reasons, it was deemed that
the safe pressure threshold shall be 8 psi, and all the remaining tests were restricted to up to that
range.

Dynamic Verification The simulator trajectory is then tested with an open-loop control and
compared with the real snake robot using the following parameters. Since it’s open-loop, it is
expected that due to model inaccuracies and unmodeled dynamics the simulator will have error
accumulated along the trajectory. As a result, the simulated trajectory may diverge from the
actual trajectory over time. However, from Figure 55, it can be seen that starting from the same
initial condition, the simulated trajectory closely matches the real trajectory for the execution
time. The inclusion of an actuator latency model for the pressure update further improves the
tracking of the center of mass with the real snake.

107

Figure 55: Trajectory Comparison: Motion capture data (blue), simulator without actuator
latency (orange), and with latency modeling (red). We find our model is able to closely predict
the trajectory of the snake over long distances.

Table 6: Timings for our simulator broken down into linear system assembly, and solver time.
We report times in milliseconds (ms) as we increase the number of robot instances. Due to the
complexity of the assembly a single instance of the snake is enough to almost saturate the GPU,
nevertheless we see some weak-scaling which is optimal at 7 parallel copies.

Snakes (#) 1/4 1 2 3 4 5 6 7 8 9 10

Assembly 0.74 1.11 1.41 2.33 3.41 5.59 6.19 6.45 7.37 8.48 10.31
Solve 4.96 10.52 25.06 31.90 43.12 50.41 58.63 66.95 79.73 86.89 95.57
Total 5.70 11.63 26.47 34.23 46.53 56.00 64.82 73.4 87.10 95.37 105.88

Total/Snake - 11.63 13.23 11.41 11.63 11.2 10.80 10.48 10.88 10.59 10.58

Benchmarking In order to test scalability of the system, we benchmark simulation times for
a single soft link, a full snake with 4 links, and up to 10 snakes, each with 4 links. The linear
system for a single Newton iteration corresponding to a single snake is a sparse matrix of roughly
30000 × 30000 with approximately 3.5 × 105 non-zeros. The total per-frame simulation times
are in Table 6. From the results, it can be seen that simulation time increases linearly with
the number of links and snakes. Linear scaling is expected, since a single link saturates the
GPU. On average, it takes less than 12ms to simulate each snake, with optimal performance
obtained when simulating seven snakes together. When compared to the CPU we found one full
snake takes 8.9s per frame on a 3.3GHz Intel Core i7-5820K using the single-threaded Eigen
Preconditioned Conjugate Gradient implementation [78].

7.1.4 Conclusion and Future Work

We have presented a dynamics model and simulation framework for a pneumatically actuated
soft robotic snake robot. We validated the simulation against a real world robot, and found it
produces real-time, high-fidelity results even in complex scenarios involving a mixture of hybrid
soft bodies, rigid bodies, and frictional contacts. In the open loop control analysis our dynamic
simulation remains in close agreement to the real snake trajectory. Our future research is to

108

develop a learning-based closed-loop controller to generate fast and stable snake gaits in a range
of terrains, as well as obstacle-aided navigation, and learning specific motion primitives from
demonstration [95, 96].

109

7.2 Closing the Sim-to-Real Loop: Adapting Simulation Random-
ization with Real World Experience

In the previous section we presented the results of a classical modeling, simulation, and vali-
dation approach on a specific robot using open-loop control. In this work, we focus on closing
the reality gap by learning control policies over distributions of simulated scenarios. We present
a reinforcement learning framework, SimOpt, that allows the joint optimization of control and
physical parameters, improving policy transfer to the real-world.

In this work Yevgen Chebotar has been the primary author, and responsible for the majority of
the paper and physical experiments. My contribution was the parallel GPU physical simulator,
additional modeling, experimental set up, and the framework for performing domain random-
ization. I have omitted some algorithmic details I was not responsible for, and have focused on
the results obtained using the simulator developed in Section 4.

7.2.1 Related Work

The problem of finding accurate models of the robot and the environment to facilitate the de-
sign of robotic controllers in the real world dates back to the original works on system iden-
tification [115, 73]. In the context of reinforcement learning (RL), model-based RL explored
optimizing policies using learned models [46]. In [47, 48], the data from real world policy exe-
cutions is used to fit a probabilistic dynamics model, which is then used for learning an optimal
policy. Although our work follows the general principle of model-based reinforcement learning,
we aim at using a simulation engine as a form of parameterized model that can help us to embed
prior knowledge about the world.

The combination of system identification and dynamics randomization has been used in the
past to learn locomotion for a real quadruped [204], non-prehensile object manipulation [133]
and in-hand object pivoting [10]. In our work, we recognize domain randomization and system
identification as powerful tools for training general policies in simulation. However, we address
the problem of automatically learning simulation parameter distributions that improve policy
transfer, as it remains challenging to do it manually. The closest work to ours are the meth-
ods that propose to iteratively learn simulation parameters and train policies in tandem. Tan et
al. [203] propose an iterative system identification framework that is used to optimize trajec-
tories of a bipedal robot in simulation, and calibrate the simulation parameters by minimizing
the discrepancy between the real world and simulated execution of the trajectories. Zhu et al.
[239] suggests optimizing the simulation parameters such that the value function is well approx-
imated in simulation without replicating the real world dynamics. We also recognize that exact

110

replication of the real world dynamics might not be feasible, however a suitable randomization
of the simulated scenarios can still lead to a successful policy transfer. Some works consider
grounding the simulator using real world data. However, they may require a human in the loop
to select the best simulation parameters [60], or require fitting of additional models for the real
robot forward dynamics and simulator inverse dynamics [81]. Our work is closely related to
the adaptive EPOpt framework of Rajeswaran et al. [174], who optimize a policy over an en-
semble of models and adapt the model distribution using data from the target domain. EPOpt
updates the model distribution by employing Bayesian inference with a particle filter, whereas
we update the model distribution using an iterative KL-divergence constrained procedure. More
importantly, they focus on simulated environments while in our work, we develop an approach
that is shown to work in the real world and apply it to two real robot tasks.

7.2.2 Reinforcement Learning

We now briefly review the background of reinforcement learning for control policy optimization.
Let τ = (s0, a0, . . . , sT , aT) be a trajectory of states and actions, P (st, st+1, at) ∈ R+ a state-
transition probability, and R(τ) =

∑T
t=0 γ

tR(st, at) ∈ R the trajectory reward with discount
parameter γ. The goal of reinforcement learning methods is to find parameters θ of a policy
πθ(a|s) that maximize the expected discounted reward over trajectories induced by the policy:
Eπθ [R(τ)] where s0 ∼ p0, st+1 ∼ P (st+1|st, at) and at ∼ πθ(at|st).

We define a distribution of simulation parameters ξ ∼ pφ(ξ) parameterized by φ. As it was
shown in [210, 178, 8], it is possible to design a distribution of simulation parameters pφ(ξ),
such that a policy trained on Pξ∼pφ would perform well on a real world dynamics distribution.
This approach is also known as domain randomization, and the policy training maximizes the
expected reward under the dynamics induced by the distribution of simulation parameters pφ(ξ):

max
θ

EPξ∼pφ [Eπθ [R(τ)]] . (154)

Domain randomization requires significant expertise and tedious manual fine-tuning to design
the simulation parameter distribution pφ(ξ). Furthermore, as we show in our experiments, it is
often disadvantageous to use overly wide distributions of simulation parameters as they can
include scenarios with infeasible solutions that hinder successful policy learning, or lead to
exceedingly conservative policies. Instead, in the next section, we present a way to automate
the learning of pφ(ξ) that makes it possible to shape a suitable randomization without the need
to train on very wide distributions.

111

7.2.3 Learning Simulation Randomization

The goal of our framework is to find a distribution of simulation parameters that brings sim-
ulated observations induced by the policy closer to the observations of the real world. Let
πθ,pφ be a policy trained under the simulated dynamics distribution Pξ∼pφ as in the objective
(154), and let D(τ obξ , τ

ob
real) be a measure of discrepancy between real world observation trajec-

tories τ obreal = (o0,real . . . , oT,real) and simulated observation trajectories τ obξ = (o0,ξ . . . , oT,ξ)

sampled using policy πθ,pφ and the dynamics distribution Pξ∼pφ . The goal of optimizing the
simulation parameter distribution is to minimize the following objective:

min
φ

EPξ∼pφ
[
Eπθ,pφ

[
D(τ obξ , τ

ob
real)

]]
. (155)

This optimization would entail training and real robot evaluation of the policy πθ,pφ for each
φ. This would require a large amount of RL iterations and more critically real robot trials.
Hence, we develop an iterative approach to approximate the optimization by training a policy
πθ,pφi on the simulation parameter distribution from the previous iteration and using it for both,
sampling the real world observations and optimizing the new simulation parameter distribution
pφi+1

. This gives the following iterative optimization procedure:

min
φi+1

EPξi+1∼pφi+1

[
Eπθ,pφi

[
D(τ obξi+1

, τ obreal)
]]

(156)

s.t. DKL

(
pφi+1

‖pφi
)
≤ ε,

where we introduce a KL-divergence step ε between the old simulation parameter distribution
pφi and the updated distribution pφi+1

to avoid going out of the trust region of the policy πθ,pφi
trained on the old simulation parameter distribution. Figure. 56a shows the general structure of
our algorithm that we call SimOpt.

For this work, we use a non-differentiable simulator and so we employ a sampling-based
gradient-free algorithm based on relative entropy policy search [167]. This method is capable
of optimizing the objective in Eq. 156 and is able to perform updates of pφ with an upper bound
on the KL-divergence step. In addition, the simulator can be treated as a black-box, since pφ can
be optimized directly by only using samples ξ ∼ pφ and the corresponding costs c(ξ) coming
from D(τ obξ , τ

ob
real). Sampling of simulation parameters and the corresponding policy roll-outs

is highly parallelizable, which we use in our experiments to evaluate large amounts of parameter
samples in parallel.

As noted above, single components of our framework can be exchanged. In case of avail-

112

RL SimOpt

RealitySimulation

Training

sim distribution

(a) Optimization Pipeline: After training a pol-
icy on current distribution, we sample the policy
both in the real world and for a range of param-
eters in simulation. The discrepancy between the
simulated and real observations is used to update
the simulation parameter distribution in SimOpt.

(b) Updating Distributions: The cabinet position
distribution in the source environment, located at ex-
treme left, slowly starts to change to the target envi-
ronment distribution as a function of running 5 itera-
tions of SimOpt.

ability of a differentiable simulator, the objective Eq. 156 can be defined as a loss function for
optimizing with gradient descent. Furthermore, for cases where `1 and `2 norms are not appli-
cable, we can employ other forms of discrepancy functions, e.g. to account for potential domain
shifts between observations [217, 218, 184]. Alternatively, real world and simulation data can be
additionally used to train D(τ obξ , τ

ob
real) to discriminate between the observations by minimizing

the prediction loss of classifying observations as simulated or real, similar to the discriminator
training in the generative adversarial framework [75, 90, 84]. Finally, a higher-dimensional gen-
erative model pφ(ξ) can be employed to provide a multi-modal randomization of the simulated
environments.

7.2.4 Experiments

In our experiments we aim to answer the following questions: First, how does our method
compare to standard domain randomization? Second, how does our learned simulation param-
eter distribution compares to training on a very wide parameter distribution? Third, how many
SimOpt iterations and real world trials are required for a successful transfer of robotic manipu-
lation policies? And finally, does our method work for different real world tasks and robots?

To answer these questions we choose two robot manipulation tasks for evaluation: cabinet
drawer opening and swing-peg-in-hole which we describe below.

113

Figure 57: Manipulation Tasks: Running policies trained in simulation at different iterations
for real world swing-peg-in-hole and drawer opening tasks. Left: SimOpt adjusts physical pa-
rameter distribution of the soft rope, peg and the robot, which results in a successful execution
of the task on a real robot after two SimOpt iterations. Right: SimOpt adjusts physical parameter
distribution of the robot and the drawer. Before updating the parameters, the robot pushes too
much on the drawer handle with one of its fingers, which leads to opening the gripper. After one
SimOpt iteration, the robot can better control its gripper orientation, which leads to an accurate
task execution.

Swing-peg-in-hole The goal of this task is to put a peg attached to a robot hand on a rope
into a hole placed at a 45 degrees angle. Manipulating a soft rope leads to a swinging motion
of the peg, which makes the dynamics of the task more challenging. The task set up in the
simulation and real world using a 7-DoF Yumi robot from ABB is depicted in Figure. 57 (left).
Our observation space consists of 7-DoF arm joint configurations and 3D position of the peg.
The reward function for the RL training in simulation includes the distance of the peg from the
hole, angle alignment with the hole, and a binary reward for solving the task.

Drawer opening In the drawer opening task, the robot has to open a drawer of a cabinet by
grasping and pulling it with its fingers. This task involves an ability to handle contact dynamics
when grasping the drawer handle. For this task, we use a 7-DoF Panda arm from Franka Emika
shown in Figure. 57 (right). This task is operated on a 10D observation space: 7D robot joint an-
gles and 3D position of the cabinet drawer handle. The reward function consists of the distance
penalty between the handle and end-effector positions, the angle alignment of the end-effector
and the drawer handle, the opening distance of the drawer and an indicator function ensuring
that both robot fingers are on the handle.

We would like to emphasize that our method does not require the full state information of
the real world, e.g. we do not need to estimate the rope diameter, rope compliance etc., to
update the simulation parameter distribution in the swing-peg-in-hole task. The output of our
policies consists of 7 joint velocity commands and an additional gripper command for the drawer
opening task.

114

Figure 58: Domain Randomization: An example of a wide distribution of simulation parame-
ters in the swing-peg-in-hole task where it is not possible to find a solution for many of the task
instances.

7.2.5 Results

For simulation we use the framework developed in Section 4, since this is designed for paral-
lelization we can simulate multiple instances of the scene on a single GPU. The RL training and
SimOpt simulation parameter sampling is performed using a cluster of 64 GPUs for running the
simulator with 150 simulated agents per GPU. In the real world, we use object tracking with
DART [181] to continuously track the 3D positions of the peg in the swing-peg-in-hole task and
the handle of the cabinet drawer in the drawer opening task, as well as initialize positions of
the peg box and the cabinet in simulation. DART operates on depth images and requires 3D ar-
ticulated models of the objects. We learn multi-variate Gaussian distributions of the simulation
parameters parameterized by a mean and a full covariance matrix, and perform several updates
of the simulation parameter distribution per-SimOpt iteration using the same real world roll-outs
to minimize the number of real world trials.

115

Tables 7 and 8 show the initial mean, diagonal values of the initial covariance matrix and the
final mean of the Gaussian simulation parameter distributions that have been optimized with
SimOpt in drawer opening and swing-peg-in-hole tasks.

Comparison to standard domain randomization We aim at understanding what effect a
wide simulation parameter distribution can have on learning robust policies, and how we can
improve the learning performance and the transferability of the policies using our method to
adjust simulation randomization. Figure 58 shows an example of training a policy on a signif-
icantly wide distribution of simulation parameters for the swing-peg-in-hole task. In this case,
peg size, rope properties and size of the peg box were randomized. As we can observe, a large
part of the randomized instances does not have a feasible solution, i.e.: when the peg is too
large for the hole or the rope is too short. Finding a suitably wide parameter distribution would
require manual fine-tuning of the randomization parameters.

Swing-peg-in-hole Figure. 57 (left) demonstrates the behavior of real robot execution of the
policy trained in simulation over 3 iterations of SimOpt. At each iteration, we perform 100
iterations of RL in approximately 7 minutes and 3 roll-outs on the real robot using the currently
trained policy to collect real world observations. Then, we run 3 update steps of the simulation
parameter distribution with 9600 simulation samples per update. In the beginning, the robot
misses the hole due to the discrepancy of the simulation parameters and the real world. After
a single SimOpt iteration, the robot is able to get much closer to the hole, however not being
able to insert the peg as it requires a slight angle to go into the hole, which is non-trivial to
achieve using a soft rope. Finally, after two SimOpt iterations, the policy trained on a resulting
simulation parameter distribution is able to swing the peg into the hole in 90% of the times when
evaluated on 20 trials.

We observe that the most significant changes of the simulation parameter distribution oc-
cur in the physical parameters of the rope that influence its dynamical behavior and the robot
parameters that influence the policy behavior, such as scaling of the policy actions.

Drawer opening For drawer opening, we learn a Gaussian distribution of the robot and cab-
inet simulation parameters. Figure. 57 (right) shows the drawer opening behavior before and
after performing a SimOpt update. During each SimOpt iteration, we run 200 iterations of RL
for approximately 22 minutes, perform 3 real robot roll-outs and run 20 update steps of the
simulation distribution using 9600 samples per update step. Before updating the parameter dis-
tribution, the robot is able to reach the handle and start opening the drawer. However, it cannot
exactly replicate the learned behavior from simulation and does not keep the gripper orthogo-

116

µinit diag(Σinit) µfinal

Robot properties

Joint compliance (7D) [-8.0 . . . -8.0] 1.0 [-8.2 . . . -7.8]

Joint damping (7D) [-3.0 . . . -3.0] 1.0 [-3.0 . . . -2.6]

Joint action scaling (7D) [0.5 . . . 0.5] 0.02 [0.25 . . . 0.44]

Rope properties

Rope torsion compliance 2.0 0.07 1.89

Rope torsion damping 0.1 0.07 0.48

Rope bending compliance 10.0 0.5 9.97

Rope bending damping 0.01 0.05 0.49

Rope segment width 0.004 2e-4 0.007

Rope segment length 0.016 0.004 0.017

Rope segment friction 0.25 0.03 0.29

Rope density 2500.0 8.0 2500.12

Peg properties

Peg scale 0.33 0.01 0.30

Peg friction 1.0 0.06 1.0

Peg mass coefficient 1.0 0.06 1.06

Peg density 400.0 10.0 400.07

Peg box properties

Peg box scale 0.029 0.01 0.034

Peg box friction 1.0 0.2 1.01

Table 7: Swing-peg-in-hole: simulation parameter distribution.

117

nal to the drawer, which results in pushing too much on the handle from the bottom with one
of the robot fingers. As the finger gripping force is limited, the fingers begin to open due to a
larger pushing force. After adjusting the simulation parameter distribution that includes robot
and drawer properties, the robot is able to better control its gripper orientation and by evaluating
on 20 trials can open the drawer at all times keeping the gripper orthogonal to the handle.

µinit diag(Σinit) µfinal

Robot properties

Joint compliance (7D) [-6.0 . . . -6.0] 0.5 [-6.5 . . . -6.1]

Joint damping (7D) [3.0 . . . 3.0] 0.5 [2.4 . . . 2.7]

Gripper compliance -11.0 0.5 -10.9

Gripper damping 0.0 0.5 0.34

Joint action scaling (7D) [0.26 . . . 0.26] 0.01 [0.19 . . . 0.35]

Cabinet properties

Drawer joint compliance 7.0 1.0 8.3

Drawer joint damping 2.0 0.5 0.81

Drawer handle friction 0.001 0.5 2.13

Table 8: Drawer opening: simulation parameter distribution.

7.2.6 Conclusion and Future Work

Closing the simulation to reality transfer loop is an important component for a robust transfer
of robotic policies. In this work, we demonstrated that adapting simulation randomization us-
ing real world data can help in learning simulation parameter distributions that are particularly
suited for a successful policy transfer without the need for exact replication of the real world
environment. In contrast to trying to learn policies using very wide distributions of simulation
parameters, which can simulate infeasible scenarios, we are able to start with distributions that
can be efficiently learned with reinforcement learning, and modify them for a better transfer to
the real world scenario. Our framework does not require full state of the real environment and
reward functions are only needed in simulation. We evaluated our approach on two real world
robotic tasks and showed that policies can be transferred with only a few iterations of simulation
updates using a small number of real robot trials.

In this work, we applied our method to learning uni-modal simulation parameter distributions.
We plan to extend our framework to multi-modal distributions and more complex generative
simulation models in future work. Furthermore, we plan to incorporate higher-dimensional sen-

118

sor modalities, such as vision and touch, for both policy observations and factors of simulation
randomization.

119

7.3 ∇Sim: A Unified Treatment of Differentiable Physics and Ren-
dering

Traditionally, physics simulation and rendering have been treated as disjoint, mutually exclusive
tasks. In this section, we present ∇Sim, a framework that takes a unified view on simulation
in general, to mean physics simulation and rendering. Mathematically we can represent the
entire simulation pipeline as a function f : RP → RH × RW ; f(p) = I. Where f takes a
vector p ∈ RP of input parameters and produces an image of dimensions H ×W pixels. If
this function f were differentiable, then the gradient of a function f(p, t) with respect to the
simulation parameters p intuitively tells us that perturbing p by an infinitesimal δp will change
the output image of the simulation from I to I +∇f(p, t)δp.

∇Sim comprises two main components: a differentiable physics engine that computes and
advances the physical state of the world at each time instant, and a differentiable renderer that
renders the world to a 2D image. While differentiable versions of each component have been
considered in isolation [216, 44, 196, 195, 45, 229, 85, 92], to the best of our knowledge we are
the first to combine both differentiable simulation and rendering to solve tasks such as system
identification, and control optimization. This is significant because in practice ground-truth
observations from the real-world (e.g.: particle positions) are not available, or are laborious to
gather, and the ability to infer system properties such as mass, inertia and elasticity purely from
video would significantly reduce data requirements.

Since both physical simulation and rendering often contain discontinuous functions, it is not
clear that it should be possible or meaningful to take the gradient of the entire pipeline. However,
as we show, it is possible to obtain good quality gradient information over long time horizons, in
a way that outperforms less accurate and more inefficient methods based on finite-differences.
In addition, we leverage our previous work to simulate multiphysics environments that comprise
rigid bodies, deformable solids, and thin-shell FEM.

This work was jointly lead by myself and Krishna Murthy. I was responsible for the develop-
ment of the differentiable simulator, physical modeling, and experimental setup. I have omitted
some details regarding some experimental details that I was not directly involved with.

7.3.1 Related Work

Differentiable physics simulators have seen significant recent attention and activity, with efforts
centered around embedding physics structure into auto-differentiation frameworks. This has en-
abled differentiation through contact and friction models [216, 44, 196, 195, 45, 229, 85], latent

120

state models [76, 180, 101, 87], volumetric soft bodies [94, 93, 92], as well as particle dynam-
ics [180, 122, 121, 92]. In computer graphics, Takahashi & Lin [202] addressed the problem of
parameter estimation for fluid simulation using sampling-based optimization. They compare to
gradient-based optimization using finite-differencing and report it to be less robust and efficient.
In this work we leverage auto-differentiation to obtain analytic gradients, and find this approach
provides more accurate results than finite difference methods such as REINFORCE [228], while
providing good performance for large dimensional problems.

Bhat et al. [19] used simulated annealing to optimize cloth bending parameters, while Yang
et al. [235] recover cloth material parameters from video using a supervised learning over large
datasets. In contrast, we use differentiable rendering to recover material properties from single
samples. Liang et al. [124] propose an efficient differentiable simulator for cloth dynamics with
contact, while Qiao et al. [173] propose a mesh-based simulation framework for coupled rigid
and cloth models. We also focus on mesh-based representations, and we extend the physical
modeling flexibility by incorporating a tetrahedral FEM-based hyperelasticity models to simu-
late deformable solids and thin-shells.

7.3.2 Differentiable Rendering Engine

A renderer takes a scene description in the form of triangle meshes, materials, lighting and
camera properties, and generates color image outputs. The rendering process is generally not
differentiable, as visibility and occlusion events introduce discontinuities. Most interactive ren-
derers, e.g.: for real-time applications, employ a rasterization process to project 3D geometric
primitives onto 2D pixel coordinates, resolving these visibility events with non-differentiable
operations. Our experiments employ two differentiable alternatives to traditional rasterization,
SoftRas [130] and DIB-R [32], both of which rely on smoothing triangle edges by replacing
their discontinuities with sigmoids. This has the effect of blurring triangle edges into semi-
transparent boundaries, thereby removing the non-differentiable discontinuity of traditional ras-
terization. DIB-R distinguishes between foreground pixels (associated to the principal object
being rendered in the scene) and background pixels (for all other objects, if any). The latter
are rendered using the same technique as SoftRas while the former are rendered by bilinearly
sampling a texture using differentiable UV coordinates. Given its efficiency benefits, we rely
preferentially on DIB-R whenever rendering speed becomes a bottleneck.

While several other modern differentiable renderers have been proposed that model more
complex light transport phenomenon [120, 155], such renderers are often computationally ex-
pensive, and for the purposes of this work we restrict ourselves to rasterization-based differen-
tiable renderers [130, 32].

121

7.3.3 Differentiable Physics Engine

The dynamic evolution of the system is governed by a second order differential equations (ODE)
of the form M(q,θ)q̈ = f(q,θ), where M is a mass matrix that may also depend on state
and design parameters θ, and f is a force vector that may also be parameterized by θ, e.g.:
stiffness coefficients. Differentiable solutions to ODEs of this type may be obtained through
black box numerical integration methods using the continuous adjoint method [31]. However,
we instead consider our physics engine as a discrete differentiable operation that provides an
implicit relationship between a state vector q− ≡ q(t) at the start of a time step, and the updated
state at the end of the time step q+ ≡ q(t+ ∆t). An arbitrary discrete time integration scheme
can then be abstracted as the function

g(q−,q+,θ) = 0, (157)

relating the initial and final system state and the model parameters θ. By the implicit function
theorem, if we can specify a loss function l(q+) at the output of the simulator, we can compute
∂l
∂q− as cT ∂g

∂q− , where c is the solution to the linear system ∂g
∂q+

T
c = − ∂l

∂q+

T
, and likewise for

the model parameters θ. This formulation is general enough to represent explicit, multi-step, or
fully implicit time-integration schemes, however for this work we employ semi-implicit Euler
integration for simplicity.

While the partial derivatives ∂g
∂q− , ∂g

∂q+ , ∂g
∂θ can be computed by hand, or through graph-

based auto-differentation frameworks [165, 1, 24], program transformation approaches such as
DiffTaichi [92], and Google Tangent [220] are particularly well-suited to simulation code. For
our differentiable simulator we define an embedded subset of Python syntax to define kernel
code, and at runtime generate C++/CUDA code for both the forward and backwards kernels. In
Figure 59 we give an example of a simulation kernel definition.

To generate each kernel’s adjoint its abstract syntax tree (AST) is parsed using Python’s built-
in ast module. We then generate C++ kernel code for forward and reverse mode, through a
simple transformation [142], which may be compiled to a CPU or GPU executable using the
PyTorch torch.utils.cpp extension mechanism. This approach allows writing im-
perative code, with fine-grained indexing and implicit operator fusion (since all operations in a
kernel execute as one GPU kernel launch). Each kernel is wrapped as a PyTorch autograd oper-
ation so that it fits natively into the larger computational graph. This enables simple interaction
with existing differentiable renderers that rely on PyTorch input buffers.

122

1 @kernel

2 def integrate_particles(

3 x : tensor(float3),

4 v : tensor(float3),

5 f : tensor(float3),

6 w : tensor(float),

7 gravity : tensor(float3),

8 dt : float,

9 x_new : tensor(float3),

10 v_new : tensor(float3)):

11

12 # Get thread ID

13 thread_id = tid()

14

15 # Load state variables and parameters

16 x0 = load(x, thread_id)

17 v0 = load(v, thread_id)

18 f0 = load(f, thread_id)

19 inv_mass = load(w, thread_id)

20

21 # Load external forces

22 g = load(gravity, 0)

23

24 # Semi-implicit Euler

25 v1 = v0 + (f0 * inv_mass - g*step(inv_mass))*dt

26 x1 = x0 + v1 * dt

27

28 # Store results

29 store(x_new, thread_id, x1)

30 store(v_new, thread_id, v1)

Figure 59: Particle Integration Kernel: Using a subset of Python syntax we allow defining dif-
ferentiable kernels using imperative parallel code that can operate directly on PyTorch tensors.

(a) Triangular FEM element (b) Tetrahedral FEM element

Figure 60: Mesh Discretization: We use triangular (a) and tetrahedral (b) FEM models with
angle-based and volumetric activation parameters, α. These mesh-based discretizations are a
natural fit for our differentiable rasterization pipeline, which is designed to operate on triangles.

123

7.3.4 Physical Models

We adopt a mesh-based discretization for deformable shells and solids. In both cases the surface
is represented by a triangle mesh, enabling straightforward integration with our triangle mesh-
based differentiable rasterizer.

Deformable Solids For solids, we use a tetrahedral FEM model as illustrated in Figure 60b.
We use the hyperelastic NeoHookean constitutive model of Smith et al. [193]. This derives from
a potential energy that is parameterized by the two Lamé coefficients

Ψ(q, θ) =
µ

2
(IC − 3) +

λ

2
(J − α)2, (158)

where IC , J are invariants of strain. We introduce a per-element activation parameter α, that
controls a per-element volumetric activation that can be used to drive locomotion. We store
activation and material parameters for all tetrahedra in differentiable tensors, allowing us to
optimize w.r.t. to these properties directly.

Deformable Shells To model thin-shells such as clothing, we use constant strain triangular
elements embedded in 3D. The same Neo-Hookean constitutive model above is applied to model
in-plane elastic deformation, with the addition of a bending energy fb(s, θ) = kbsin(φ2 + α)d,
where kb is the bending stiffness, φ is the dihedral angle between two triangular faces, α is a per-
edge actuation value that allows the mesh to flex inwards or outwards, and d is the force direction
given in [26]. We also include a lift/drag model that approximates the effect of the surrounding
air on the surface of mesh. For both solids and shells we use the strain-rate dissipation potentials
of Sanchez & Otaduy [137] to model damping.

Contact As discussed in Section 4, implicit contact methods based on complementarity for-
mulations of contact may be used to maintain hard non-penetration constraints [44]. However,
we adopt the relaxed primal model of contact presented in Section 5 since this provides well-
defined derivatives of arbitrary continuity, allowing us to apply black-box optimizers such as
L-BFGS. For contact generation we use an all-pairs collision detection scheme that generates a
conservative set of contacts at the start of each time-step. This process is non-differentiable, but
provided that a conservative margin is used then the gradient over a single time-step is consis-
tent.

124

Figure 61: Rigid Body Database: Meshes used in our rigid body mass identification exper-
iments. All of these meshes have been simplified to contain 250 vertices or fewer, for faster
collision detection and differentiable rendering times.

Figure 62: Qualitative Results: Our framework accurately estimates physical parameters for
diverse, complex environments. For control-fem and control-walker experiments, we train a
neural network to actuate a soft body towards a target image (GT). For control-cloth, we opti-
mize the cloth’s initial velocity to hit a target pose (GT) in the presence of nonlinear lift/drag
forces. For deformable experiments, we optimize the material properties of a beam to match a
video. In the rigid experiments, we estimate contact parameters (elasticity/friction) and object
density to match a video (GT). We visualize entire time sequences with color-coded blends.

125

7.3.5 Parameter Estimation

We now discuss the application of ∇Sim to tasks in system identification, where the goal is to
recover physical model parameters directly from images.

Rigid Bodies We curated a dataset comprising of 14 meshes, comprising primitive shapes such
as boxes, cones, cylinders, as well as non-convex shapes from ShapeNet [29] and DexNet [139]
as shown in Fig. 61. For each of the experiments, we pick an object at random, and sample
its physical attributes from a predefined range: densities are in the range [2, 12] kg/m3, con-
tact parameters ke, kd, kf are in the range [1, 500], and the coefficient of friction µ is in the
range [0.2, 1.0]. The positions, orientations, (anisotropic) scale factors, and initial velocities are
randomly uniformly sampled in a cube of side-length 13m centered at the camera. Across all
rigid-body experiments, we use 800 objects for training and 200 objects for testing.

We apply a known impulse to the object, and record a video of the resultant trajectory. In-
ference with ∇Sim is done by picking an initial guess of the mass (at random), unrolling a
differentiable simulation using this guess, comparing the rendered out video with the true video
using pixelwise mean-squared error (MSE), and updating the initial guess by gradient descent
over the unrolled computation graph. Table 9 shows the results for an initial control experiment,
designed to evaluate the ability to predict the mass of an object from video, and knowing the
impulse applied to it. We compare our image-based supervision to a strong supervision baseline
where the exact 3D pose (translation, and rotation) of the body is provided to the optimizer. This
strong supervision creates an advantage for pure simulation-based optimization. However, we
found our combined video-based supervision is also able to very precisely estimate mass, to a
relative absolute error of 9.01e-5. The “Average” and “Random” baselines predict the dataset
mean and a uniformly sampled random number from the domain respectively.

To investigate whether analytical differentiability is required, we compare performance to
a PyBullet [39] baseline, and apply a black-box gradient estimation technique REINFORCE
[228]. Compared to using analytic gradients we found this approach to be particularly sensitive
to several simulation parameters. In Table 10, we also estimate the parameters of our compliant
contact model from video observations alone, and found that ∇Sim is able to precisely recover
the parameters of the simulation.

Deformable Solids One core strength of ∇Sim is its ability to handle a rich class of objects,
such as deformable solids and thin-shells (cloth). We conduct a series of experiments to inves-
tigate the ability to recover physical parameters of deformable solids from images. We demon-
strate the ability of∇Sim to accurately recover the parameters of 100 instances of randomly cho-

126

Approach Mean abs.
err. (kg)

Abs. Rel.
err.

Average 0.2022 0.1031

Random 0.2653 0.1344

PyBullet (REINFORCE) 0.0928 0.3668

Video supervision 2.36e-5 9.01e-5
Strong supervision 1.35e-9 5.17e-9

Table 9: Mass estimation: ∇Sim’s video-based approach obtains precise mass estimates, com-
paring favorably even with approaches that require strong 3D supervision. We report the mean
absolute error and absolute relative errors for all approaches evaluated.

mass elasticity friction
Approach m kd ke kf µ

Average 1.7713 3.7145 2.3410 4.1157 0.4463

Random 10.0007 4.18 2.5454 5.0241 0.5558

Strong Supervision 1.70e-8 0.036 0.0020 0.0007 0.0107

Video Supervision 2.87e-4 0.4 0.0026 0.0017 0.0073

Table 10: Contact parameter estimation: ∇Sim estimates contact parameters (elasticity, fric-
tion) to a high degree of accuracy, despite estimating them from video. Strong supervision re-
quires accurate 3D ground-truth at 30 FPS. We report absolute relative errors for each approach
evaluated.

Deformable solid FEM Thin-shell (cloth)
Per-particle mass Material properties Per-particle velocity

m µ λ v

Approach Rel. MAE Rel. MAE Rel. MAE Rel. MAE
Strong Supervision 0.032 0.0025 0.0024 0.127

Image supervision 0.048 0.0054 0.0056 0.026

Table 11: Parameter estimation of deformable objects: We estimate per-particle masses and
material properties (for solid deformable objects) and per-particle velocities for cloth throw-
ing. In the case of cloth, strong 3D supervision (based on the cloth center-of-mass reaching a
target) actually performs worse than image-based since in this case the image provides more
information on the target geometric configuration.

127

Figure 63: Open Loop Controller: A simple network architecture used the for generating time-
varying volumetric actuation signals in the 2D and 3D Soft Walker examples.

sen deformable objects (bouncing spheres, beams), and report the mean absolute error (MAE)
in Table 11.

7.3.6 Model Predictive Control

To investigate whether the gradients computed by ∇Sim are meaningful for vision-based tasks,
we conduct a range of visual Model Predictive Control (MPC) experiments, involving the actu-
ation of deformable objects towards an image-based target pose. While traditional state-based
MPC requires a goal specification in 3D state space, visual MPC specifies a goal by means of
an image of the desired end-configuration.

For our model predictive control tests, we design an experiment where a 3-layer neural net-
work is trained to generate periodic activation signals with the goal of maximizing horizontal
velocity. The network architecture is shown in Figure 63. With the simulation time t as input we
generate N phase-shifted sinusoidal signals which are passed to a fully-connected layer (zero-
bias), and a final activation layer. The output is a vector of per-element activation values that
control the volumetric expansion and contraction of each element.

2D Soft Walker The first example involves a 2D walker model, inspired by DiffTaichi [92].
We represent the walker as a FEM triangle mesh (104 elements), and train a neural network (NN)
control policy to actuate the walker to reach a target pose on the right-hand side of an image. Our
NN consists of one fully connected layer and a tanh activation as illustrated in Figure 63. Each
triangle uses elasticity parameters of µ = 104, λ = 104, and contact parameters of ke = 104,
kd = 103, kf = 103, kµ = 0.5, and is allowed to change its area by a maximum of 20%, to

128

encourage physically-plausible solutions. We include an activation penalty of lcost = 0.1‖α‖2,
where α is the vector of scalar activation values for each time-step. ∇Sim is able to learn an
effective policy in only 3 iterations of gradient descent, by minimizing a pixelwise MSE between
the last frame of the rendered video and the goal image as shown in Fig. 62 (column 2, bottom).

3D Soft Wheel In our second test, we formulate a more challenging 3D control problem where
the goal is to actuate a soft-body FEM object (a wheel) consisting of 1152 tetrahedral elements
to move to a target position as shown in Fig. 62 (left). We use the same NN architecture as in
the 2D walker example, and use the Adam [111] optimizer to minimize our pixelwise MSE
metric. We use elasticity paramters of µ = 103, λ = 103, and contact parameters of ke = 104,
kd = 10, kf = 103, kµ = 0.5. To evaluate ∇Sim accuracy we train a baseline model that
uses strong supervision and minimizes the MSE between the target position and the precise 3D
location of the center-of-mass (COM) of the FEM model at each time step (i.e.: a dense reward).
We test both strong and image-based supervision against a naive baseline that generates random
activations and plot convergence in Fig. 64a.

While strong supervision performs well on this task, it is important to note that it uses explicit
3D supervision at each timestep (i.e., 30 fps). In contrast, ∇Sim uses a single image as an
implicit target, and yet manages to achieve the goal state, albeit taking a longer number of
iterations.

Cloth Throw In the case of cloth, we design an experiment to control a piece of cloth by
optimizing the initial velocity such that it reaches a pre-specified target. In each episode, a
randomly sized piece of cloth is spawned, comprising between 64 and 2048 triangles, and a new
start/goal combination is chosen. Across all episodes, we fix elasticity parameters to µ = λ =

104. For the strong supervision baseline we minimize the distance between the center-of-mass
(COM) of the cloth and the target position. In the visual MPC case (∇Sim), the user provides
an image specifying the desired cloth pose at t = 5s. The loss function is the pixelwise MSE
between the last frame of the rendered video and the goal image.

In this challenging setup, we notice that state-based MPC is often unable to accurately reach
the target. We believe this is due to the underdetermined nature of the problem, since, for objects
such as cloth, the COM by itself does not uniquely determine the configuration of the object.
Visual MPC on the otherhand, provides a more well-defined problem. An illustration of the task
is presented in Fig. 62 (column 3), and the convergence of the methods shown in Fig. 64b.

129

(a) 3D Soft Walker: Convergence over 6 ran-
dom seeds varying the walker’s goal configuration.
While strong supervision performs well, it requires
precise 3D observations. In contrast, image-based
supervision is able to solve the task by using just a
single image of the target configuration.

(b) Cloth Control: Convergence over 5 random
seeds varying the dimensions and initial/target
poses of the cloth. Strong supervision converges to
a suboptimal solution due to ambiguity in specify-
ing the pose of a cloth via its center-of-mass. ∇Sim
solves the environment using a single target image.

Figure 64: Convergence Analysis: Convergence of ∇Sim visual MPC compared with strong
3D supervision, and random action policies.

7.3.7 Limitations

While our physics framework supports a rich set of material types there are still some missing
features. For example, cloth self-collision is not currently handled, which greatly increases the
solver complexity [124]. Additionally, the extension to articulated rigid bodies would open the
door to many applications in robotics which we hope to explore. The differentiable renderer
outputs images that have rather simplistic shading, lighting, and materials. However, we expect
any video and images of the real world would be preprocessed using existing segmentation and
classification techniques before performing optimization, this means our differentiable renderer
does not necessarily need to provide photorealistic imagery.

7.3.8 Conclusion and Future Work

We have presented a framework for parameter estimation and model-based control that leverages
differentiable simulation and differentiable rendering. We demonstrated that the combination
of these two systems can achieve higher accuracy and efficiency than finite difference-based
methods. Although we have trained on simulated imagery, our next steps are to connect this
framework to imaging devices to enable low-cost identification and simulation of real-world
objects.

130

8 Conclusion

This thesis presents new modeling tools, and numerical methods that aim to improve the ca-
pabilities of simulation for robotics. The presented methods are amenable to parallelization,
and we have demonstrated them on real-time simulation of robots consisting of soft and rigid
parts, that cross the reality gap. Already, the methods developed in this thesis have been adopted
by industrial simulation frameworks, and used by researchers to perform large-scale robotics
simulations [125, 55, 123, 145].

In Chapter 3 we presented a novel frictional contact model. However, it is still an analytic
model, designed by hand. As data acquisition devices mature, we anticipate the development
of data-driven models, that can adapt to real-world measurements. This is particularly exciting
when combined with differentiable simulation, which can perform model-fitting using direct
optimization.

Simulators can always be more efficient. While the methods presented in Chapters 4-5 achieve
low-latency, we believe there is room to improve this further by adopting tools from the numer-
ical optimization community. In particular, accelerated fixed-point methods such as Ander-
son acceleration [6], may provide high parallelism with even better convergence properties. In
practice, there is often a tension between robustness and efficiency. We found that line-search
strategies were unreliable when objectives are nonconvex. This suggests more sophisticated
strategies are needed, for example watch-dog, or non-monotonic line-search [157]. However,
these approaches typically limit parallelism. Adapting these safe guards to parallel architectures
remains a challenge, but if solved could further improve solver robustness.

With regards to contact generation, a fundamental assumption that we have made in all meth-
ods is that contact geometry is linear over a time-step. Specifically, the normal direction and
local contact point positions do not change during the implicit solve. This is a common simplifi-
cation, however it can introduce locking artifacts [227], and we believe the solution to these is to
consider how the contact geometry evolves over a time-step. This would, in essence, require in-
terleaving of collision detection, and solver stages [159], where the contact constraint becomes
a nonlinear function of system state. Our nonlinear solvers and efficient SDF contact generation
provide a natural framework to include this effect.

In Chapter 7.3 we have shown how differentiable simulation can achieve excellent perfor-
mance on parameter estimation and model predictive control tasks. However, gradient-based
optimization alone suffers from becoming stuck in local-minima. For example, trajectory op-
timization through contact will generally not find solutions that include contacts that were not
present in the starting guess. We believe the combination of model-based optimization via. auto-

131

matic differentiation, and stochastic exploration methods, e.g.: via reinforcement learning may
provide the efficiency of gradient-based methods, while increasing global accuracy. In addition,
the interplay between physical modeling and gradient-based optimization is subtle, and as yet
mostly unexplored. For example, in Chapter 5 we have presented a relaxed contact model that
has well-defined gradients. However, the sensitivity of different optimizers to these modifica-
tions has yet to be thoroughly analyzed.

To conclude, this thesis presents a set of simulation advances that hold the potential to enable
new capabilities robotics. We believe simulation will play an increasingly important role in the
future of robotics. As access to hardware becomes more challenging, having efficient, robust,
and rich simulations is crucial to driving the development of technology that interacts with the
real-world.

132

References

[1] ABADI, M., AGARWAL, A., BARHAM, P., BREVDO, E., CHEN, Z., CITRO, C., COR-
RADO, G. S., DAVIS, A., DEAN, J., DEVIN, M., GHEMAWAT, S., GOODFELLOW, I.,
HARP, A., IRVING, G., ISARD, M., JIA, Y., JOZEFOWICZ, R., KAISER, L., KUDLUR,
M., LEVENBERG, J., MANÉ, D., MONGA, R., MOORE, S., MURRAY, D., OLAH, C.,
SCHUSTER, M., SHLENS, J., STEINER, B., SUTSKEVER, I., TALWAR, K., TUCKER,
P., VANHOUCKE, V., VASUDEVAN, V., VIÉGAS, F., VINYALS, O., WARDEN, P., WAT-
TENBERG, M., WICKE, M., YU, Y., AND ZHENG, X. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] ACARY, V., AND BROGLIATO, B. Numerical methods for nonsmooth dynamical systems:
applications in mechanics and electronics. Springer Science & Business Media, 2008.

[3] ALART, P. Méthode de newton généralisée en mécanique du contact. Journal Africain
de Mathématiques pures et Appliquées 76 (1997), 83–108.

[4] ALART, P., AND CURNIER, A. A mixed formulation for frictional contact problems
prone to newton like solution methods. Computer methods in applied mechanics and
engineering 92, 3 (1991), 353–375.

[5] ALLARD, J., FAURE, F., COURTECUISSE, H., FALIPOU, F., DURIEZ, C., AND KRY,
P. G. Volume contact constraints at arbitrary resolution. ACM Trans. Graph. 29, 4 (2010),
82.

[6] ANDERSON, D. G. Iterative procedures for nonlinear integral equations. Journal of the
ACM (JACM) 12, 4 (1965), 547–560.

[7] ANDREWS, S., TEICHMANN, M., AND KRY, P. G. Geometric stiffness for real-time
constrained multibody dynamics. In Computer Graphics Forum (2017), vol. 36, Wiley
Online Library, pp. 235–246.

[8] ANDRYCHOWICZ, M., BAKER, B., CHOCIEJ, M., ’O ZEFOWICZ, R. J., MCGREW, B.,
PACHOCKI, J. W., PETRON, A., PLAPPERT, M., POWELL, G., RAY, A., SCHNEIDER,
J., SIDOR, S., TOBIN, J., WELINDER, P., WENG, L., AND ZAREMBA, W. Learning
dexterous in-hand manipulation. IJ Robotics Res. 39, 1 (2020).

[9] ANITESCU, M., AND HART, G. D. A constraint-stabilized time-stepping approach for
rigid multibody dynamics with joints, contact and friction. International Journal for
Numerical Methods in Engineering 60, 14 (2004), 2335–2371.

[10] ANTONOVA, R., CRUCIANI, S., SMITH, C., AND KRAGIC, D. Reinforcement learning
for pivoting task. CoRR abs/1703.00472 (2017).

133

[11] ASCHER, U. M., CHIN, H., PETZOLD, L. R., AND REICH, S. Stabilization of con-
strained mechanical systems with daes and invariant manifolds. Journal of Structural
Mechanics 23, 2 (1995), 135–157.

[12] BARAFF, D., AND WITKIN, A. Large steps in cloth simulation. In Proceedings of the
25th annual conference on Computer graphics and interactive techniques (1998), ACM,
pp. 43–54.

[13] BASU, K., AND OWEN, A. B. Low discrepancy constructions in the triangle. SIAM
Journal on Numerical Analysis 53, 2 (2015), 743–761.

[14] BATTY, C., BERTAILS, F., AND BRIDSON, R. A fast variational framework for accurate
solid-fluid coupling. ACM Trans. Graph. 26, 3 (July 2007).

[15] BENDER, J., ERLEBEN, K., AND TRINKLE, J. Interactive simulation of rigid body
dynamics in computer graphics. Comput. Graph. Forum 33, 1 (Feb. 2014), 246–270.

[16] BENDER, J., MÜLLER, M., OTADUY, M. A., TESCHNER, M., AND MACKLIN, M. A
survey on position-based simulation methods in computer graphics. In Computer graph-
ics forum (2014), vol. 33, Wiley Online Library, pp. 228–251.

[17] BENZI, M., GOLUB, G. H., AND LIESEN, J. Numerical solution of saddle point prob-
lems. Acta numerica 14 (2005), 1–137.

[18] BERTAILS-DESCOUBES, F., CADOUX, F., DAVIET, G., AND ACARY, V. A nonsmooth
newton solver for capturing exact coulomb friction in fiber assemblies. ACM Transactions
on Graphics (TOG) 30, 1 (2011), 6.

[19] BHAT, K. S., TWIGG, C. D., HODGINS, J. K., KHOSLA, P. K., POPOVIC, Z., AND

SEITZ, S. M. Estimating cloth simulation parameters from video. In Symposium on
Computer Animation (2003), The Eurographics Association, pp. 37–51.

[20] BLINN, J. F. A generalization of algebraic surface drawing. ACM Trans. Graph. 1, 3
(1982), 235–256.

[21] BLOOMENTHAL, J., AND WYVILL, B. Introduction to Implicit Surfaces. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1997.

[22] BOUAZIZ, S., MARTIN, S., LIU, T., KAVAN, L., AND PAULY, M. Projective dynamics:
fusing constraint projections for fast simulation. ACM Transactions on Graphics (TOG)
33, 4 (2014), 154.

[23] BOYD, S. P., AND VANDENBERGHE, L. Convex optimization. Cambridge university
press, 2004.

134

[24] BRADBURY, J., FROSTIG, R., HAWKINS, P., JOHNSON, M. J., LEARY, C., MACLAU-
RIN, D., AND WANDERMAN-MILNE, S. JAX: composable transformations of
Python+NumPy programs, 2018.

[25] BRIDSON, R., FEDKIW, R., AND ANDERSON, J. Robust treatment of collisions, contact
and friction for cloth animation. ACM Trans. Graph. 21, 3 (July 2002), 594–603.

[26] BRIDSON, R., MARINO, S., AND FEDKIW, R. Simulation of clothing with folds and
wrinkles. In Symposium on Computer Animation (2003), The Eurographics Association,
pp. 28–36.

[27] BROWN, G. E., OVERBY, M., FOROOTANINIA, Z., AND NARAIN, R. Accurate dissi-
pative forces in optimization integrators. ACM Transactions on Graphics (TOG) 37, 6
(2018), 1–14.

[28] BROYDEN, C. G. A class of methods for solving nonlinear simultaneous equations.
Mathematics of computation 19, 92 (1965), 577–593.

[29] CHANG, A. X., FUNKHOUSER, T., GUIBAS, L., HANRAHAN, P., HUANG, Q., LI, Z.,
SAVARESE, S., SAVVA, M., SONG, S., SU, H., ET AL. Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015).

[30] CHARBONNIER, P., BLANC-FÉRAUD, L., AUBERT, G., AND BARLAUD, M. Determin-
istic edge-preserving regularization in computed imaging. IEEE Transactions on image
processing 6, 2 (1997), 298–311.

[31] CHEN, T. Q., RUBANOVA, Y., BETTENCOURT, J., AND DUVENAUD, D. K. Neu-
ral ordinary differential equations. In Neural Information Processing Systems (2018),
pp. 6571–6583.

[32] CHEN, W., GAO, J., LING, H., SMITH, E., LEHTINEN, J., JACOBSON, A., AND FI-
DLER, S. Learning to predict 3d objects with an interpolation-based differentiable ren-
derer. Neural Information Processing Systems (2019).

[33] CHEN, Y. J., LEVIN, D. I., KAUFMANN, D., ASCHER, U., AND PAI, D. K. Eigenfit
for consistent elastodynamic simulation across mesh resolution. In Proceedings of the
18th annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2019),
pp. 1–13.

[34] CHEN, Z., FENG, R., AND WANG, H. Modeling friction and air effects between cloth
and deformable bodies. ACM Trans. Graph. 32, 4 (July 2013), 88:1–88:8.

[35] CLARKE, F. H. Optimization and nonsmooth analysis, vol. 5. SIAM, 1990.

135

[36] CLINE, M. B., AND PAI, D. K. Post-stabilization for rigid body simulation with con-
tact and constraints. In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE
International Conference on (2003), vol. 3, IEEE, pp. 3744–3751.

[37] COTTLE, R. W. Linear complementarity problem. In Encyclopedia of Optimization.
Springer, 2008, pp. 1873–1878.

[38] COUMANS, E. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses (New York,
NY, USA, 2015), SIGGRAPH ’15, ACM.

[39] COUMANS, E., AND BAI, Y. Pybullet, a python module for physics simulation for
games, robotics and machine learning. http://pybullet.org, 2016–2019.

[40] CURNIER, A., AND ALART, P. A generalized newton method for contact problems with
friction. Journal de Mecanique Theorique et Appliquee 7, suppl. 1 (1988), 67–82. Special
issue entitled ”Numerical Methods in Mechanics of Contact involving Friction”.

[41] CURTIS, S., TAMSTORF, R., AND MANOCHA, D. Fast collision detection for de-
formable models using representative-triangles. In Proceedings of the 2008 Symposium
on Interactive 3D Graphics and Games (New York, NY, USA, 2008), I3D ’08, Associa-
tion for Computing Machinery, pp. 61–69.

[42] DAVIET, G. Simple and scalable frictional contacts for thin nodal objects. ACM Trans-
actions on Graphics (TOG) 39, 4 (2020).

[43] DAVIET, G., BERTAILS-DESCOUBES, F., AND BOISSIEUX, L. A hybrid iterative solver
for robustly capturing coulomb friction in hair dynamics. In ACM Transactions on Graph-
ics (TOG) (2011), vol. 30, ACM, p. 139.

[44] DE AVILA BELBUTE-PERES, F., SMITH, K., ALLEN, K., TENENBAUM, J., AND

KOLTER, J. Z. End-to-end differentiable physics for learning and control. In Advances
in Neural Information Processing Systems 31. Curran Associates, Inc., 2018, pp. 7178–
7189.

[45] DEGRAVE, J., HERMANS, M., DAMBRE, J., AND WYFFELS, F. A differentiable physics
engine for deep learning in robotics. Frontiers Neurorobotics 13 (2019), 6.

[46] DEISENROTH, M. P., NEUMANN, G., AND PETERS, J. A survey on policy search for
robotics. now publishers, 2013.

[47] DEISENROTH, M. P., AND RASMUSSEN, C. E. PILCO: A model-based and data-
efficient approach to policy search. In ICML (2011), Omnipress, pp. 465–472.

136

http://pybullet.org

[48] DEISENROTH, M. P., RASMUSSEN, C. E., AND FOX, D. Learning to control a low-
cost manipulator using data-efficient reinforcement learning. In Robotics: Science and
Systems (2011).

[49] DI, J., YAO, S., YE, Y., CUI, Z., YU, J., GHOSH, T. K., ZHU, Y., AND GU, Z. Stretch-
triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS
nano 9, 9 (2015), 9407–9415.

[50] DIRKSE, S. P., AND FERRIS, M. C. The path solver: a nommonotone stabilization
scheme for mixed complementarity problems. Optimization Methods and Software 5, 2
(1995), 123–156.

[51] DRUMWRIGHT, E. A fast and stable penalty method for rigid body simulation. IEEE
transactions on visualization and computer graphics 14, 1 (2007), 231–240.

[52] DURIEZ, C. Control of elastic soft robots based on real-time finite element method. In
Robotics and Automation (ICRA), 2013 IEEE International Conference on (2013), IEEE,
pp. 3982–3987.

[53] DURIEZ, C. Control of elastic soft robots based on real-time finite element method. In
IEEE International Conference on Robotics and Automation (May 2013), pp. 3982–3987.

[54] EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K., AND WORLEY, S. Tex-
turing & modeling: a procedural approach. Morgan Kaufmann, 2003.

[55] EPPNER, C., MOUSAVIAN, A., AND FOX, D. A billion ways to grasps - an evaluation
of grasp sampling schemes on a dense, physics-based grasp data set. In Proceedings of
the International Symposium on Robotics Research (ISRR) (Hanoi, Vietnam, 2019).

[56] ERICSON, C. Real-Time Collision Detection. CRC Press, Inc., USA, 2004.

[57] ERLEBEN, K. Numerical methods for linear complementarity problems in physics-based
animation. In ACM SIGGRAPH 2013 Courses (2013), ACM, p. 8.

[58] ERLEBEN, K. Rigid body contact problems using proximal operators. In Proceedings of
the ACM Symposium on Computer Animation (2017), p. 13.

[59] ERLEBEN, K. Methodology for assessing mesh-based contact point methods. ACM
Transactions on Graphics (TOG) 37, 3 (2018), 39.

[60] FARCHY, A., BARRETT, S., MACALPINE, P., AND STONE, P. Humanoid robots learn-
ing to walk faster: from the real world to simulation and back. In AAMAS (2013), IFAA-
MAS, pp. 39–46.

[61] FEATHERSTONE, R. Rigid body dynamics algorithms. Springer, 2014.

137

[62] FERRIS, M. C., AND MUNSON, T. S. Complementarity problems in gams and the path
solver. Journal of Economic Dynamics and Control 24, 2 (2000), 165–188.

[63] FISCHER, A. A special newton-type optimization method. Optimization 24, 3-4 (1992),
269–284.

[64] FISHER, S., AND LIN, M. C. Deformed distance fields for simulation of non-
penetrating flexible bodies. In Computer Animation and Simulation 2001 (Vienna, 2001),
N. Magnenat-Thalmann and D. Thalmann, Eds., Springer Vienna, pp. 99–111.

[65] FONG, D. C.-L., AND SAUNDERS, M. Cg versus minres: An empirical comparison.
Sultan Qaboos University Journal for Science [SQUJS] 17, 1 (2012), 44–62.

[66] FRÂNCU, M., AND MOLDOVEANU, F. Virtual try on systems for clothes: Issues and
solutions. UPB Scientific Bulletin, Series C 77, 4 (2015), 31–44.

[67] FRANK, M., AND WOLFE, P. An algorithm for quadratic programming. Naval research
logistics quarterly 3, 1-2 (1956), 95–110.

[68] FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES, T. R. Adaptively sam-
pled distance fields: A general representation of shape for computer graphics. In Proceed-
ings of the 27th Annual Conference on Computer Graphics and Interactive Techniques
(USA, 2000), SIGGRAPH ’00, ACM Press/Addison-Wesley Publishing Co., pp. 249–
254.

[69] FUHRMANN, A., SOBOTKA, G., AND GROSS, C. Distance fields for rapid collision de-
tection in physically based modeling. In International Conference on Computer Graphics
and Vision ’03. Proceedings (Moscow, Russia, 01 2003), Eurographics.

[70] FUKUSHIMA, M., LUO, Z.-Q., AND TSENG, P. Smoothing functions for second-order-
cone complementarity problems. SIAM Journal on optimization 12, 2 (2002), 436–460.

[71] GAST, T. F., SCHROEDER, C., STOMAKHIN, A., JIANG, C., AND TERAN, J. M. Opti-
mization integrator for large time steps. IEEE transactions on visualization and computer
graphics 21, 10 (2015), 1103–1115.

[72] GILBERT, E. G., JOHNSON, D. W., AND KEERTHI, S. S. A fast procedure for comput-
ing the distance between complex objects in three-dimensional space. IEEE Journal on
Robotics and Automation 4, 2 (1988), 193–203.

[73] GIRI, F., AND BAI, E.-W. Block-oriented nonlinear system identification, vol. 1.
Springer, 2010.

138

[74] GOLDENTHAL, R., HARMON, D., FATTAL, R., BERCOVIER, M., AND GRINSPUN,
E. Efficient simulation of inextensible cloth. In ACM Transactions on Graphics (TOG)
(2007), vol. 26, ACM, p. 49.

[75] GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-FARLEY, D.,
OZAIR, S., COURVILLE, A., AND BENGIO, Y. Generative adversarial nets. In Advances
in neural information processing systems (2014), pp. 2672–2680.

[76] GUEN, V. L., AND THOME, N. Disentangling physical dynamics from unknown factors
for unsupervised video prediction, 2020.

[77] GUENDELMAN, E., BRIDSON, R., AND FEDKIW, R. Nonconvex rigid bodies with
stacking. ACM Trans. Graph. 22, 3 (July 2003), 871–878.

[78] GUENNEBAUD, G., JACOB, B., ET AL. Eigen v3. http://eigen.tuxfamily.org, 2010.

[79] HAIRER, E., AND WANNER, G. Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, vol. 14. Springer, 2010.

[80] HAN, L., GUAN, Y.-S., LI, Z., SHI, Q., AND TRINKLE, J. C. Dextrous manipula-
tion with rolling contacts. In Proceedings of International Conference on Robotics and
Automation (1997), vol. 2, IEEE, pp. 992–997.

[81] HANNA, J. P., AND STONE, P. Grounded action transformation for robot learning in
simulation. In AAAI (2017), AAAI Press, pp. 4931–4932.

[82] HARMON, D., VOUGA, E., TAMSTORF, R., AND GRINSPUN, E. Robust treatment of
simultaneous collisions. ACM Trans. Graph. 27, 3 (2008), 23.

[83] HART, J. C. Sphere tracing: A geometric method for the antialiased ray tracing of im-
plicit surfaces. The Visual Computer 12, 10 (1996), 527–545.

[84] HAUSMAN, K., CHEBOTAR, Y., SCHAAL, S., SUKHATME, G. S., AND LIM, J. J.
Multi-modal imitation learning from unstructured demonstrations using generative ad-
versarial nets. In NIPS (2017), pp. 1235–1245.

[85] HEIDEN, E. Tiny differentiable simulator, 2020.

[86] HEIDEN, E., MILLARD, D., COUMANS, E., AND SUKHATME, G. S. Augment-
ing differentiable simulators with neural networks to close the sim2real gap. CoRR
abs/2007.06045 (2020).

[87] HEIDEN, E., MILLARD, D., ZHANG, H., AND SUKHATME, G. S. Interactive differen-
tiable simulation, 2019.

139

[88] HESTENES, M. R., AND STIEFEL, E. Methods of conjugate gradients for solving linear
systems, vol. 49. NBS Washington, DC, 1952.

[89] HINTERMÜLLER, M. Semismooth newton methods and applications. Department of
Mathematics (2010).

[90] HO, J., AND ERMON, S. Generative adversarial imitation learning. In NIPS (2016),
pp. 4565–4573.

[91] HORST, R., AND TUY, H. Global optimization: Deterministic approaches. Springer
Science & Business Media, Berlin Heidelberg, 2013.

[92] HU, Y., ANDERSON, L., LI, T.-M., SUN, Q., CARR, N., RAGAN-KELLEY, J., AND

DURAND, F. Difftaichi: Differentiable programming for physical simulation. Interna-
tional Conference on Learning Representations (2020).

[93] HU, Y., FANG, Y., GE, Z., QU, Z., ZHU, Y., PRADHANA, A., AND JIANG, C. A
moving least squares material point method with displacement discontinuity and two-
way rigid body coupling. ACM Trans. Graph. 37, 4 (July 2018).

[94] HU, Y., LIU, J., SPIELBERG, A., TENENBAUM, J. B., FREEMAN, W. T., WU, J., RUS,
D., AND MATUSIK, W. Chainqueen: A real-time differentiable physical simulator for
soft robotics. In ICRA (2019), IEEE, pp. 6265–6271.

[95] IJSPEERT, A. J. Central pattern generators for locomotion control in animals and robots:
a review. Neural networks 21, 4 (2008), 642–653.

[96] IJSPEERT, A. J., NAKANISHI, J., HOFFMANN, H., PASTOR, P., AND SCHAAL, S. Dy-
namical movement primitives: learning attractor models for motor behaviors. Neural
computation 25, 2 (2013), 328–373.

[97] ILIEVSKI, F., MAZZEO, A. D., SHEPHERD, R. F., CHEN, X., AND WHITESIDES,
G. M. Soft robotics for chemists. Angewandte Chemie 123, 8 (2011), 1930–1935.

[98] JACOBSON, A., KAVAN, L., AND SORKINE-HORNUNG, O. Robust inside-outside seg-
mentation using generalized winding numbers. ACM Transactions on Graphics (TOG)
32, 4 (2013), 1–12.

[99] JAGGI, M. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Pro-
ceedings of the 30th International Conference on Machine Learning (Atlanta, Georgia,
USA, 17–19 Jun 2013), S. Dasgupta and D. McAllester, Eds., vol. 28 of Proceedings of
Machine Learning Research, PMLR, pp. 427–435.

140

[100] JAKOBI, N., HUSBANDS, P., AND HARVEY, I. Noise and the reality gap: The use
of simulation in evolutionary robotics. In ECAL (1995), vol. 929 of Lecture Notes in
Computer Science, Springer, pp. 704–720.

[101] JAQUES, M., BURKE, M., AND HOSPEDALES, T. Physics-as-inverse-graphics: Un-
supervised physical parameter estimation from video. In International Conference on
Learning Representations (2019).

[102] JEAN, M. The non-smooth contact dynamics method. Computer methods in applied
mechanics and engineering 177, 3-4 (1999), 235–257.

[103] JEAN, M., AND MOREAU, J. J. Unilaterality and dry friction in the dynamics of rigid
body collections. In 1st Contact Mechanics International Symposium (Lausanne, Switzer-
land, 1992), pp. 31–48.

[104] JOHNSON, K. L. Contact Mechanics. Cambridge University Press, 1985.

[105] JOURDAN, F., ALART, P., AND JEAN, M. A gauss-seidel like algorithm to solve fric-
tional contact problems. Computer methods in applied mechanics and engineering 155,
1-2 (1998), 31–47.

[106] KALASHNIKOV, D., IRPAN, A., PASTOR, P., IBARZ, J., HERZOG, A., JANG, E.,
QUILLEN, D., HOLLY, E., KALAKRISHNAN, M., VANHOUCKE, V., AND LEVINE,
S. Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation.
CoRR abs / 1806.10293 (2018).

[107] KARRAS, T. Maximizing parallelism in the construction of bvhs, octrees, and k-d trees.
In Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on High-
Performance Graphics (Goslar, DEU, 2012), EGGH-HPG’12, Eurographics Association,
pp. 33–37.

[108] KAUFMAN, D. M., SUEDA, S., JAMES, D. L., AND PAI, D. K. Staggered projections
for frictional contact in multibody systems. In ACM Transactions on Graphics (TOG)
(2008), vol. 27, ACM, p. 164.

[109] KAUFMAN, D. M., TAMSTORF, R., SMITH, B., AUBRY, J.-M., AND GRINSPUN, E.
Adaptive nonlinearity for collisions in complex rod assemblies. ACM Transactions on
Graphics (TOG) 33, 4 (2014), 123.

[110] KIEFER, J. Sequential minimax search for a maximum. Proceedings of the American
mathematical society 4, 3 (1953), 502–506.

[111] KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimization. In ICLR
(Poster) (2015).

141

[112] KOSCHIER, D., DEUL, C., AND BENDER, J. Hierarchical hp-adaptive signed distance
fields. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (Goslar, DEU, 2016), SCA ’16, Eurographics Association, pp. 189–198.

[113] LANCZOS, C. The Variational Principles of Mechanics, vol. 4. Courier Corporation,
1970.

[114] LAUSS, T., OBERPEILSTEINER, S., STEINER, W., AND NACHBAGAUER, K. The dis-
crete adjoint method for parameter identification in multibody system dynamics. Multi-
body system dynamics 42, 4 (2018), 397–410.

[115] LENNART, L. System identification: theory for the user. PTR Prentice Hall, Upper
Saddle River, NJ (1999), 1–14.

[116] LEVINE, S., PASTOR, P., KRIZHEVSKY, A., IBARZ, J., AND QUILLEN, D. Learn-
ing hand-eye coordination for robotic grasping with deep learning and large-scale data
collection. The International Journal of Robotics Research 37, 4-5 (2018), 421–436.

[117] LI, J., DAVIET, G., NARAIN, R., BERTAILS-DESCOUBES, F., OVERBY, M., BROWN,
G. E., AND BOISSIEUX, L. An implicit frictional contact solver for adaptive cloth sim-
ulation. ACM Trans. Graph. 37, 4 (July 2018), 52:1–52:15.

[118] LI, J., LIU, T., AND KAVAN, L. Fast simulation of deformable characters with artic-
ulated skeletons in projective dynamics. In Proceedings of the 18th annual ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (2019), pp. 1–10.

[119] LI, M., FERGUSON, Z., SCHNEIDER, T., LANGLOIS, T., ZORIN, D., PANOZZO, D.,
JIANG, C., AND KAUFMAN, D. M. Incremental potential contact: Intersection- and
inversion-free large deformation dynamics. ACM Transactions on Graphics 39, 4 (2020).

[120] LI, T.-M., AITTALA, M., DURAND, F., AND LEHTINEN, J. Differentiable monte carlo
ray tracing through edge sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37, 6
(2018), 222:1–222:11.

[121] LI, Y., LIN, T., YI, K., BEAR, D., YAMINS, D. L. K., WU, J., TENENBAUM, J. B.,
AND TORRALBA, A. Visual grounding of learned physical models, 2020.

[122] LI, Y., WU, J., TEDRAKE, R., TENENBAUM, J. B., AND TORRALBA, A. Learning
particle dynamics for manipulating rigid bodies, deformable objects, and fluids. In ICLR
(2019).

[123] LIANG, J., HANDA, A., VAN WYK, K., MAKOVIYCHUK, V., KROEMER, O., AND

FOX, D. In-hand object pose tracking via contact feedback and gpu-accelerated robotic
simulation. arXiv preprint arXiv:2002.12160 (2020).

142

[124] LIANG, J., LIN, M., AND KOLTUN, V. Differentiable cloth simulation for inverse
problems. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran
Associates, Inc., 2019, pp. 772–781.

[125] LIANG, J., MAKOVIYCHUK, V., HANDA, A., CHENTANEZ, N., MACKLIN, M., AND

FOX, D. Gpu-accelerated robotic simulation for distributed reinforcement learning. In
Conference on Robot Learning (2018), pp. 270–282.

[126] LILEY, M., GOURDON, D., STAMOU, D., MESETH, U., FISCHER, T., LAUTZ, C.,
STAHLBERG, H., VOGEL, H., BURNHAM, N., AND DUSCHL, C. Friction anisotropy
and asymmetry of a compliant monolayer induced by a small molecular tilt. Science 280,
5361 (1998), 273–275.

[127] LIN, M. C., AND OTADUY, M. Haptic rendering: foundations, algorithms, and appli-
cations. CRC Press, 2008.

[128] LIU, D. C., AND NOCEDAL, J. On the limited memory bfgs method for large scale
optimization. Mathematical programming 45, 1-3 (1989), 503–528.

[129] LIU, F., AND KIM, Y. J. Exact and adaptive signed distance fields computation for
rigid and deformable models on gpus. IEEE transactions on visualization and computer
graphics 20, 5 (2013), 714–725.

[130] LIU, S., LI, T., CHEN, W., AND LI, H. Soft rasterizer: A differentiable renderer for
image-based 3d reasoning. Proceedings of International Conference on Computer Vision
(2019).

[131] LIU, T., BARGTEIL, A. W., O’BRIEN, J. F., AND KAVAN, L. Fast simulation of mass-
spring systems. ACM Transactions on Graphics (TOG) 32, 6 (2013), 214.

[132] LIU, T., BOUAZIZ, S., AND KAVAN, L. Quasi-newton methods for real-time simulation
of hyperelastic materials. ACM Transactions on Graphics (TOG) 36, 3 (2017), 23.

[133] LOWREY, K., KOLEV, S., DAO, J., RAJESWARAN, A., AND TODOROV, E. Reinforce-
ment learning for non-prehensile manipulation: Transfer from simulation to physical sys-
tem. In SIMPAR (2018), IEEE, pp. 35–42.

[134] LUO, M., PAN, Y., TAO, W., CHEN, F., SKORINA, E. H., AND ONAL, C. D. Re-
fined theoretical modeling of a new-generation pressure-operated soft snake. In ASME
International Design Engineering Technical Conferences and Computers and Informa-
tion in Engineering Conference (2015), American Society of Mechanical Engineers,
p. V05CT08A023.

143

[135] LUO, M., SKORINA, E. H., TAO, W., CHEN, F., OZEL, S., SUN, Y., AND ONAL, C. D.
Toward modular soft robotics: Proprioceptive curvature sensing and sliding-mode control
of soft bidirectional bending modules. Soft robotics 4, 2 (2017), 117–125.

[136] LY, M., JOUVE, J., BOISSIEUX, L., AND BERTAILS-DESCOUBES, F. Projective Dy-
namics with Dry Frictional Contact. ACM Transactions on Graphics 39, 4 (2020), 1–8.

[137] M. SÁNCHEZ-BANDERAS, R., AND A. OTADUY, M. Strain rate dissipation for elastic
deformations. Computer Graphics Forum 37, 8 (2018), 161–170.

[138] MACKLIN, M., MÜLLER, M., AND CHENTANEZ, N. Xpbd: position-based simulation
of compliant constrained dynamics. In Proceedings of the 9th International Conference
on Motion in Games (2016), ACM, pp. 49–54.

[139] MAHLER, J., LIANG, J., NIYAZ, S., LASKEY, M., DOAN, R., LIU, X., OJEA, J. A.,
AND GOLDBERG, K. Dex-net 2.0: Deep learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics. CoRR abs/1703.09312 (2017).

[140] MANTI, M., HASSAN, T., PASSETTI, G., D’ELIA, N., LASCHI, C., AND

CIANCHETTI, M. A bioinspired soft robotic gripper for adaptable and effective grasping.
Soft Robotics 2, 3 (2015), 107–116.

[141] MARATOS, N. Exact penalty function algorithms for finite dimensional and control opti-
mization problems. PhD thesis, Imperial College London (University of London), 1978.

[142] MARGOSSIAN, C. C. A review of automatic differentiation and its efficient implemen-
tation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 9, 4
(2019), e1305.

[143] MARHEFKA, D. W., AND ORIN, D. E. Simulation of contact using a nonlinear damping
model. In Proceedings of IEEE international conference on robotics and automation
(1996), vol. 2, IEEE, pp. 1662–1668.

[144] MARTIN, S., KAUFMANN, P., BOTSCH, M., GRINSPUN, E., AND GROSS, M. Unified
simulation of elastic rods, shells, and solids. In ACM SIGGRAPH 2010 Papers (New
York, NY, USA, 2010), SIGGRAPH ’10, ACM, pp. 39:1–39:10.

[145] MATL, C., NARANG, Y., BAJCSY, R., RAMOS, F., AND FOX, D. Inferring the material
properties of granular media for robotic tasks, 2020.

[146] MAZHAR, H., HEYN, T., NEGRUT, D., AND TASORA, A. Using nesterov’s method to
accelerate multibody dynamics with friction and contact. ACM Transactions on Graphics
(TOG) 34, 3 (2015), 32.

144

[147] MAZHAR, H., MELANZ, D., FERRIS, M., AND NEGRUT, D. An analysis of several
methods for handling hard-sphere frictional contact in rigid multibody dynamics. Tech.
Rep. TR-2014-11, Simulation-Based Engineering Laboratory, University of Wisconsin-
Madison., 09 2014.

[148] MCADAMS, A., ZHU, Y., SELLE, A., EMPEY, M., TAMSTORF, R., TERAN, J., AND

SIFAKIS, E. Efficient elasticity for character skinning with contact and collisions. ACM
Trans. Graph. 30, 4 (July 2011).

[149] MITCHELL, N., AANJANEYA, M., SETALURI, R., AND SIFAKIS, E. Non-manifold
level sets: A multivalued implicit surface representation with applications to self-collision
processing. ACM Trans. Graph. 34, 6 (2015), 247.

[150] MORAVANSZKY, A., TERDIMAN, P., AND KIRMSE, A. Fast contact reduction for dy-
namics simulation. Game programming gems 4 (2004), 253–263.

[151] MÜLLER, M., HEIDELBERGER, B., HENNIX, M., AND RATCLIFF, J. Position based
dynamics. J. Vis. Comun. Image Represent. 18, 2 (Apr. 2007), 109–118.

[152] MUNSON, T. S., FACCHINEI, F., FERRIS, M. C., FISCHER, A., AND KANZOW, C. The
semismooth algorithm for large scale complementarity problems. INFORMS Journal on
Computing 13 (2001), 294–311.

[153] NARAIN, R., SAMII, A., AND O’BRIEN, J. F. Adaptive anisotropic remeshing for cloth
simulation. ACM Trans. Graph. 31, 6 (2012), 152.

[154] NIEBE, S., AND ERLEBEN, K. Numerical methods for linear complementarity problems
in physics-based animation. Synthesis Lectures on Computer Graphics and Animation 7,
1 (2015), 1–159.

[155] NIMIER-DAVID, M., VICINI, D., ZELTNER, T., AND JAKOB, W. Mitsuba 2: A retar-
getable forward and inverse renderer. Transactions on Graphics (Proceedings of SIG-
GRAPH Asia) 38, 6 (2019).

[156] NOCEDAL, J. Updating quasi-newton matrices with limited storage. Mathematics of
computation 35, 151 (1980), 773–782.

[157] NOCEDAL, J., AND WRIGHT, S. Numerical optimization. Springer Science & Business
Media, 2006.

[158] OPENAI. Roboschool. https://github.com/openai/roboschool, 2017.

[159] OTADUY, M. A., TAMSTORF, R., STEINEMANN, D., AND GROSS, M. Implicit contact
handling for deformable objects. In Computer Graphics Forum (2009), vol. 28, Wiley
Online Library, pp. 559–568.

145

https://github.com/openai/roboschool

[160] OZEL, S., SKORINA, E. H., LUO, M., TAO, W., CHEN, F., PAN, Y., AND ONAL,
C. D. A composite soft bending actuation module with integrated curvature sensing.
In Robotics and Automation (ICRA), IEEE International Conference on (2016), IEEE,
pp. 4963–4968.

[161] PABST, S., THOMASZEWSKI, B., AND STRASSER, W. Anisotropic friction for de-
formable surfaces and solids. In Proceedings of the 2009 ACM SIGGRAPH/Eurograph-
ics Symposium on Computer Animation (New York, NY, USA, 2009), SCA ’09, ACM,
pp. 149–154.

[162] PAN, Z., REN, B., AND MANOCHA, D. Gpu-based contact-aware trajectory opti-
mization using a smooth force model. In Proceedings of the 18th Annual ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (New York, NY, USA, 2019),
SCA ’19, Association for Computing Machinery.

[163] PANDOLFI, A., AND ORTIZ, M. Finite element analysis of nonsmooth frictional contact.
Solid Mechanics and its Applications 3 (01 2007).

[164] PANG, J.-S. Newton’s method for b-differentiable equations. Mathematics of Operations
Research 15, 2 (1990), 311–341.

[165] PASZKE, A., GROSS, S., MASSA, F., LERER, A., BRADBURY, J., CHANAN, G.,
KILLEEN, T., LIN, Z., GIMELSHEIN, N., ANTIGA, L., DESMAISON, A., KOPF, A.,
YANG, E., DEVITO, Z., RAISON, M., TEJANI, A., CHILAMKURTHY, S., STEINER,
B., FANG, L., BAI, J., AND CHINTALA, S. Pytorch: An imperative style, high-
performance deep learning library. In Neural Information Processing Systems, H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran
Associates, Inc., 2019, pp. 8024–8035.

[166] PEREZ, A. G., CIRIO, G., HERNANDEZ, F., GARRE, C., AND OTADUY, M. A. Strain
limiting for soft finger contact simulation. In World Haptics Conference (WHC), 2013
(2013), IEEE, pp. 79–84.

[167] PETERS, J., ”U LLING, K. M., AND ALTUN, Y. Relative entropy policy search. In AAAI
(2010), AAAI Press.

[168] PINTO, L., AND GUPTA, A. Supersizing self-supervision: Learning to grasp from 50k
tries and 700 robot hours. In ICRA (2016), IEEE, pp. 3406–3413.

[169] POLYGERINOS, P., WANG, Z., OVERVELDE, J. T. B., GALLOWAY, K. C., WOOD,
R. J., BERTOLDI, K., AND WALSH, C. J. Modeling of soft fiber-reinforced bending
actuators. IEEE Transactions on Robotics 31, 3 (June 2015), 778–789.

146

[170] POZZI, M., MIGUEL, E., DEIMEL, R., MALVEZZI, M., BICKEL, B., BROCK, O., AND

PRATTICHIZZO, D. Efficient fem-based simulation of soft robots modeled as kinematic
chains. In IEEE International Conference on Robotics and Automation (ICRA) (May
2018), pp. 1–8.

[171] PROVOT, X. Collision and self-collision handling in cloth model dedicated to design
garments. In Computer Animation and Simulation ’97 (Vienna, 1997), D. Thalmann and
M. van de Panne, Eds., Springer Vienna, pp. 177–189.

[172] QI, L., AND SUN, J. A nonsmooth version of newton’s method. Mathematical program-
ming 58, 1-3 (1993), 353–367.

[173] QIAO, Y.-L., LIANG, J., KOLTUN, V., AND LIN, M. C. Scalable differentiable physics
for learning and control. In ICML (2020).

[174] RAJESWARAN, A., GHOTRA, S., RAVINDRAN, B., AND LEVINE, S. Epopt: Learning
robust neural network policies using model ensembles. In ICLR (Poster) (2017), Open-
Review.net.

[175] ROSEN, J. B. The gradient projection method for nonlinear programming. part i. linear
constraints. Journal of the Society for Industrial and Applied Mathematics 8, 1 (1960),
181–217.

[176] ROSEN, J. B. The gradient projection method for nonlinear programming. part ii. non-
linear constraints. Journal of the Society for Industrial and Applied Mathematics 9, 4
(1961), 514–532.

[177] SAAD, Y. Iterative Methods for Sparse Linear Systems, 2nd ed. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2003.

[178] SADEGHI, F., AND LEVINE, S. CAD2RL: real single-image flight without a single real
image. In Robotics: Science and Systems (2017).

[179] SADEGHI, F., TOSHEV, A., JANG, E., AND LEVINE, S. Sim2real view invariant visual
servoing by recurrent control. arXiv:1712.07642 (2017).

[180] SCHENCK, C., AND FOX, D. Spnets: Differentiable fluid dynamics for deep neural
networks, 2018.

[181] SCHMIDT, T., NEWCOMBE, R. A., AND FOX, D. DART: dense articulated real-time
tracking. In Robotics: Science and Systems (2014).

[182] SCHULMAN, J., WOLSKI, F., DHARIWAL, P., RADFORD, A., AND KLIMOV, O. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

147

[183] SELLE, A., SU, J., IRVING, G., AND FEDKIW, R. Robust high-resolution cloth using
parallelism, history-based collisions, and accurate friction. IEEE transactions on visual-
ization and computer graphics 15, 2 (2008), 339–350.

[184] SERMANET, P., LYNCH, C., CHEBOTAR, Y., HSU, J., JANG, E., SCHAAL, S., AND

LEVINE, S. Time-contrastive networks: Self-supervised learning from video. In ICRA
(2018), IEEE, pp. 1134–1141.

[185] SERVIN, M., LACOURSIERE, C., AND MELIN, N. Interactive simulation of elastic
deformable materials. In Proceedings of SIGRAD Conference (2006), pp. 22–32.

[186] SEYB, D., JACOBSON, A., NOWROUZEZAHRAI, D., AND JAROSZ, W. Non-linear
sphere tracing for rendering deformed signed distance fields. ACM Trans. Graph. 38, 6
(Nov. 2019), 229:1–229:12.

[187] SHINAR, T., SCHROEDER, C., AND FEDKIW, R. Two-way coupling of rigid and de-
formable bodies. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (2008), Eurographics Association, pp. 95–103.

[188] SI, H. Tetgen: A quality tetrahedral mesh generator and three-dimensional delaunay
triangulator. Weierstrass Institute for Applied Analysis and Stochastic, Berlin, Germany
(2006).

[189] SICILIANO, B., AND KHATIB, O. Springer handbook of robotics. Springer, 2016.

[190] SIFAKIS, E., AND BARBIC, J. Fem simulation of 3d deformable solids: A practitioner’s
guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Courses
(New York, NY, USA, 2012), SIGGRAPH ’12, Association for Computing Machinery.

[191] SILCOWITZ, M., NIEBE, S. M., AND ERLEBEN, K. Nonsmooth newton method for
fischer function reformulation of contact force problems for interactive rigid body simu-
lation. In 6th Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS
09 (2009), pp. 105–114.

[192] SILCOWITZ-HANSEN, M., NIEBE, S., AND ERLEBEN, K. A nonsmooth nonlinear
conjugate gradient method for interactive contact force problems. The Visual Computer
26, 6-8 (2010), 893–901.

[193] SMITH, B., GOES, F. D., AND KIM, T. Stable neo-hookean flesh simulation. ACM
Transactions on Graphics (TOG) 37, 2 (2018), 12.

[194] SOLER, C., MARTIN, T., AND SORKINE-HORNUNG, O. Cosserat rods with projective
dynamics. In Computer Graphics Forum (2018), vol. 37, Wiley Online Library, pp. 137–
147.

148

[195] SONG, C., AND BOULARIAS, A. Identifying mechanical models through differentiable
simulations. CoRR abs/2005.05410 (2020).

[196] SONG, C., AND BOULARIAS, A. Learning to slide unknown objects with differentiable
physics simulations. CoRR abs/2005.05456 (2020).

[197] STAM, J. Nucleus: Towards a unified dynamics solver for computer graphics. In
Computer-Aided Design and Computer Graphics, 2009. CAD/Graphics’ 09. 11th IEEE
International Conference on (2009), IEEE, pp. 1–11.

[198] STEWART, D. E. Rigid-body dynamics with friction and impact. SIAM review 42, 1
(2000), 3–39.

[199] STEWART, D. E., AND TRINKLE, J. C. An implicit time-stepping scheme for rigid
body dynamics with inelastic collisions and coulomb friction. International Journal for
Numerical Methods in Engineering 39, 15 (1996), 2673–2691.

[200] SUN, S., CAO, Z., ZHU, H., AND ZHAO, J. A survey of optimization methods from a
machine learning perspective. IEEE transactions on cybernetics (2019).

[201] SUTTON, R. S., AND BARTO, A. G. Reinforcement learning: An introduction. MIT
press, 2018.

[202] TAKAHASHI, T., AND LIN, M. C. Video-guided real-to-virtual parameter transfer for
viscous fluids. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1–12.

[203] TAN, J., XIE, Z., BOOTS, B., AND LIU, C. K. Simulation-based design of dynamic
controllers for humanoid balancing. In IROS (2016), IEEE, pp. 2729–2736.

[204] TAN, J., ZHANG, T., COUMANS, E., ISCEN, A., BAI, Y., HAFNER, D., BOHEZ, S.,
AND VANHOUCKE, V. Sim-to-real: Learning agile locomotion for quadruped robots. In
Robotics: Science and Systems (2018).

[205] TANG, M., MANOCHA, D., OTADUY, M. A., AND TONG, R. Continuous penalty
forces. ACM Trans. Graph. 31, 4 (2012), 107:1–107:9.

[206] TANG, M., WANG, T., LIU, Z., TONG, R., AND MANOCHA, D. I-cloth: Incremen-
tal collision handling for gpu-based interactive cloth simulation. ACM Transactions on
Graphics (TOG) 37, 6 (2018), 1–10.

[207] TERAN, J., SIFAKIS, E., IRVING, G., AND FEDKIW, R. Robust quasistatic finite ele-
ments and flesh simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animation (2005), ACM, pp. 181–190.

149

[208] TESCHNER, M., KIMMERLE, S., HEIDELBERGER, B., ZACHMANN, G., RAGHU-
PATHI, L., FUHRMANN, A., CANI, M.-P., FAURE, F., MAGNENAT-THALMANN, N.,
STRASSER, W., ET AL. Collision detection for deformable objects. In Computer graph-
ics forum (USA, 2005), vol. 24, Wiley Online Library, pp. 61–81.

[209] TISSEUR, F. Newton’s method in floating point arithmetic and iterative refinement of
generalized eigenvalue problems. SIAM Journal on Matrix Analysis and Applications 22,
4 (2001), 1038–1057.

[210] TOBIN, J., FONG, R., RAY, A., SCHNEIDER, J., ZAREMBA, W., AND ABBEEL, P.
Domain randomization for transferring deep neural networks from simulation to the real
world. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (2017), IEEE, pp. 23–30.

[211] TODOROV, E. Implicit nonlinear complementarity: A new approach to contact dynamics.
In Robotics and Automation (ICRA), 2010 IEEE International Conference on (2010),
IEEE, pp. 2322–2329.

[212] TODOROV, E. Convex and analytically-invertible dynamics with contacts and constraints:
Theory and implementation in mujoco. In 2014 IEEE International Conference on
Robotics and Automation (ICRA) (2014), IEEE, pp. 6054–6061.

[213] TODOROV, E., EREZ, T., AND TASSA, Y. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
(2012), IEEE, pp. 5026–5033.

[214] TONGE, R., BENEVOLENSKI, F., AND VOROSHILOV, A. Mass splitting for jitter-free
parallel rigid body simulation. ACM Trans. Graph. 31, 4 (July 2012), 105:1–105:8.

[215] TOURNIER, M., NESME, M., GILLES, B., AND FAURE, F. Stable constrained dynamics.
ACM Transactions on Graphics (TOG) 34, 4 (2015), 132.

[216] TOUSSAINT, M., ALLEN, K., SMITH, K., AND TENENBAUM, J. Differentiable physics
and stable modes for tool-use and manipulation planning. In Proceedings of Robotics:
Science and Systems (Pittsburgh, Pennsylvania, June 2018).

[217] TZENG, E., DEVIN, C., HOFFMAN, J., FINN, C., PENG, X., LEVINE, S., SAENKO, K.,
AND DARRELL, T. Towards adapting deep visuomotor representations from simulated
to real environments. CoRR abs / 1511.07111 (2015).

[218] TZENG, E., HOFFMAN, J., DARRELL, T., AND SAENKO, K. Simultaneous deep transfer
across domains and tasks. In ICCV (2015), IEEE Computer Society, pp. 4068–4076.

150

[219] UMBANHOWAR, P., VOSE, T. H., MITANI, A., HIRAI, S., AND LYNCH, K. M. The
effect of anisotropic friction on vibratory velocity fields. In 2012 IEEE International
Conference on Robotics and Automation (May 2012), pp. 2584–2591.

[220] VAN MERRIËNBOER, B., WILTSCHKO, A. B., AND MOLDOVAN, D. Tangent: auto-
matic differentiation using source code transformation in python. In arXiv (2017).

[221] VERSCHOOR, M., AND JALBA, A. C. Efficient and accurate collision response for
elastically deformable models. ACM Trans. Graph. 38, 2 (Mar. 2019).

[222] WALKER, I. D. Continuous backbone “continuum” robot manipulators. ISRN Robotics
(2013).

[223] WANG, B., FAURE, F., AND PAI, D. K. Adaptive image-based intersection volume.
ACM Trans. Graph. 31, 4 (July 2012), 97:1–97:9.

[224] WANG, H. A chebyshev semi-iterative approach for accelerating projective and position-
based dynamics. ACM Transactions on Graphics (TOG) 34, 6 (2015), 246.

[225] WANG, H., AND YANG, Y. Descent methods for elastic body simulation on the gpu.
ACM Transactions on Graphics (TOG) 35, 6 (2016), 212.

[226] WEIDNER, N. J., PIDDINGTON, K., LEVIN, D. I., AND SUEDA, S. Eulerian-on-
lagrangian cloth simulation. ACM Trans. Graph. 37, 4 (2018), 50.

[227] WILLIAMS, J., LU, Y., AND TRINKLE, J. A geometrically exact contact model for poly-
topes in multirigid-body simulation. Journal of Computational and Nonlinear Dynamics
12, 2 (2017), 021001.

[228] WILLIAMS, R. J. Simple statistical gradient-following algorithms for connectionist re-
inforcement learning. Machine Learning 8, 3–4 (May 1992), 229–256.

[229] WU, J., LU, E., KOHLI, P., FREEMAN, W. T., AND TENENBAUM, J. B. Learning to see
physics via visual de-animation. In Advances in Neural Information Processing Systems
(2017).

[230] WYVILL, B., GUY, A., AND GALIN, E. Extending the csg tree. warping, blending and
boolean operations in an implicit surface modeling system. Computer Graphics Forum
18, 2 (1999), 149–158.

[231] XU, H., AND BARBIC, J. Continuous Collision Detection Between Points and Signed
Distance Fields. In Workshop on Virtual Reality Interaction and Physical Simulation
(Bremen, Germany, 2014), J. Bender, C. Duriez, F. Jaillet, and G. Zachmann, Eds., The
Eurographics Association.

151

[232] XU, H., ZHAO, Y., AND BARBIC, J. Implicit multibody penalty-based distributed con-
tact. IEEE transactions on visualization and computer graphics 20, 9 (2014), 1266–1279.

[233] YAHYA, A., LI, A., KALAKRISHNAN, M., CHEBOTAR, Y., AND LEVINE, S. Collective
robot reinforcement learning with distributed asynchronous guided policy search. In IROS
(2017), IEEE, pp. 79–86.

[234] YAMANE, K., AND NAKAMURA, Y. Stable penalty-based model of frictional contacts.
In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006.
ICRA 2006. (2006), IEEE, pp. 1904–1909.

[235] YANG, S., LIANG, J., AND LIN, M. C. Learning-based cloth material recovery from
video. In 2017 IEEE International Conference on Computer Vision (ICCV) (2017),
pp. 4393–4403.

[236] YU, C., AND WANG, Q. J. Friction anisotropy with respect to topographic orientation.
Scientific reports 2 (2012), 988.

[237] YU, W., KUMAR, V. C., TURK, G., AND LIU, C. K. Sim-to-real transfer for biped lo-
comotion. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (2019), IEEE, pp. 3503–3510.

[238] ZHENG, C., AND JAMES, D. L. Toward high-quality modal contact sound. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH 2011) 30, 4 (Aug. 2011).

[239] ZHU, S., KIMMEL, A., BEKRIS, K. E., AND BOULARIAS, A. Fast model identification
via physics engines for data-efficient policy search. In IJCAI (2018), ijcai.org, pp. 3249–
3256.

152

A Contact Preconditioners

In this appendix we give the full form of the contact constraints and derivatives, including the
r-factor scaling parameter, for the minimum-map and Fischer-Burmeister NCP-functions. First,
the contact constraint given in terms of the Fischer-Burmeister function can be written as,

φnFB = Cn(q) + rλn −
√
Cn(q)2 + r2λ2

n, (159)

which has the following derivatives,

∂φnFB

∂q
=

(
1− Cn(q)√

Cn(q)2 + r2λ2
n

)
∇Cn (160)

∂φnFB

∂λn
=

(
1− rλn√

Cn(q)2 + r2λ2
n

)
r. (161)

Likewise, for the minimum-map,

φnmin =

Cn Cn(q) ≤ rλn
rλn otherwise

(162)

with derivatives given by,

∂φnmin

∂q
=

∇Cn Cn(q) ≤ rλn
0 otherwise

(163)

∂φnmin

∂λn
=

0 Cn(q) ≤ rλn
r otherwise

. (164)

B Compliance Form of Stable Neo-Hookean Materials

Here we give the derivatives required for the compliance form of the stable Neo-Hookean ma-
terial model introduced by Smith et al [193]. The elastic strain-energy density is given by

ΨE = C1(IC − 3) +D1(J − α)2. (165)

153

The material constants C1, D1, and α can be related to the Lamé parameters according to the
original paper. Defining s = [s1, s2, s3]T as the vector of principal stretches of the deformation
gradient F we have IC = s2

1 + s2
2 + s2

3 the first invariant of stretch, and J = s1s2s3, the
relative volume change induced by F. To perform the compliance transformation we require the
Jacobian and Hessian of Ψ with respect to s, which we provide below:

∂ΨE

∂s
= 2C1

s1

s2

s3


T

+ 2D1(J − 1)

s2s3

s1s3

s1s2


T

∂2ΨE

∂s2
= 2

D1s
2
2s

2
3 + C1 k1 k2

k1 D1s
2
1s

2
3 + C1 k3

k2 k3 D1s
2
1s

2
2 + C1



k0 = 2J − α,

k1 = D1s3k0,

k2 = D1s2k0,

k3 = D1s1k0.

For a constant strain tetrahedron with rest volume Ve the elastic potential energy is U(q) =

VeΨE(s), and the compliance matrix is E =
(
Ve

∂2ΨE
∂s2

)−1
which can be obtained through a

3× 3 matrix inverse. The derivatives of the singular values with respect to the vertices, J = ∂s
∂q ,

are given in [166].

154

	Abstract
	Acknowledgements
	Introduction
	Organization
	Contributions
	Publications

	Background
	Physical Modeling
	Particles
	Rigid Bodies
	Hard Kinematic Constraints
	Soft Kinematic Constraints
	Continuum Materials

	Contact Modeling
	Non-Penetration
	Isotropic Friction

	Advanced Friction Modeling
	Related Work
	The Matchstick Model for Anisotropic Friction Cones
	Structure Fields
	Results
	Conclusion and Future Work

	Non-Smooth Newton Methods
	Related Work
	Contact
	Coupled Systems

	Governing Equations
	Nonlinear Complementarity
	Minimum-Map Formulation
	Fischer-Burmeister Formulation
	Frictional Constraints

	Implicit Time-Stepping
	Non-Smooth Newton
	System Assembly
	Final System
	Schur-Complement

	Complementarity Precondtioning
	Robustness
	Line Search and Starting Iterate
	Preconditioned Conjugate Residual
	Geometric Stiffness
	Hyperelastic Materials

	Analysis
	Effect of Complementarity Preconditiong
	Effect of NCP-Function
	Effect of Linear Solver
	Error Analysis

	Results
	Limitations
	Conclusion and Future Work

	Primal/Dual Descent Methods for Dynamics
	Related Work
	Elasticity
	Contact

	Optimization-based Time Integration
	Gradient Descent
	Quadratic Potentials
	Dual Ascent

	Conditioning
	Contact
	Friction
	Results
	Limitations
	Conclusion and Future Work

	Collision Detection
	Related Work
	Face Contact
	Projected Gradient Descent
	Frank-Wolfe
	Culling and Starting Iterate
	Termination Conditions

	Edge Contact
	Golden-Section Search

	Models
	Cloth Collision
	Rigid Body Collision
	Soft Body Collision

	Discrete Distance Fields
	Analytic Distance Fields
	Results
	Convergence
	Performance
	Comparison To Sampling Approaches
	Comparison To Surface Approaches

	Limitations
	Conclusion and Future Work

	Robotics & Machine Learning
	A Validated Physical Model For Real-Time Simulation of Soft Robotic Snakes
	Related Work
	Modeling
	Results
	Conclusion and Future Work

	Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience
	Related Work
	Reinforcement Learning
	Learning Simulation Randomization
	Experiments
	Results
	Conclusion and Future Work

	Sim: A Unified Treatment of Differentiable Physics and Rendering
	Related Work
	Differentiable Rendering Engine
	Differentiable Physics Engine
	Physical Models
	Parameter Estimation
	Model Predictive Control
	Limitations
	Conclusion and Future Work

	Conclusion
	References
	Contact Preconditioners
	Compliance Form of Stable Neo-Hookean Materials

