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Abstract

In recent decades the field of online machine learning has enjoyed an increasing interest
both from applications and significant theoretical advances. Especially models based
on the framework of multi-armed bandits and prediction with expert advice have been
successful in uncovering central dynamics of sequential decision problems. In this thesis
we explore two learning settings within this framework and design adaptive learning
algorithms with theoretical performance guarantees.

One learning setting we explore falls within the general goal of exploiting structure or
easiness when present without sacrificing performance if the problem is hard. We first
show that one can circumvent the recently discovered impossibility of exploiting a small
effective loss range in multi-armed bandits by having access to one additional point of
feedback. We further show that our algorithm simultaneously exploit stochastic data
achieving constant regret. Our algorithm requires no prior information of the learning
scenario rendering it robust to the unconstrained adversarial setting.

The second setting we study is the within multi-armed bandits with delayed feedback.
This model covers realistic streaming scenarios where the central timing assumption
of multi-armed bandits is violated, including applications where the incoming data is
batched. We prove a recent conjecture of the regret scaling when the delays are arbitrary
and the losses are adversarially generated. We generalize the analytical approach of al-
gorithmic stability for delayed feedback and uncover a data dependence that generalizes
previous dependencies on the delay. We design a meta algorithm that skips excessively
delayed feedback and alleviates the data dependence, thereby proving the conjectured
regret bound for any delay sequence. Finally for a slightly easier setting we design a
novel, adaptive tuning scheme with which our algorithm can perform much better than
conjectured. We provide examples of settings where this is the case and the dependence
of the problem parameters is polynomially better.
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Resume in Danish

Online machine learning har som forskningfelt nydt stor interesse de seneste årtier
både gennem anvendelser og i kraft af væsentlige teoretiske landvindinger. Især mod-
eller baseret på multi-armed bandits og prediction with expert advice har bidraget til
forståelsen af centrale strukturer indenfor sekventielle problemer. Denne afhandling
udforsker to læringsscenarier dækket af sådanne modeller, og vi konstruerer læringsalgo-
ritmer med tilhørende teoretiske garantier for deres præstationsevne.

Et af de udforskede læringsscenarier falder inden for det generelle mål at udnytte
eventuelle strukturer, der gør læringsproblemer lette uden at opgive garantier for svære
problemer. Vi viser først, at det er muligt at omgå en nyligt påvist umulighed inden for
multi-armed bandits. Her er det umuligt at udnytte en lille effektiv fejlrækkevide, mens
det er muligt med yderligere adgang til et punkts ekstra feedback. Vi viser endvidere,
at vores algoritme kan udnytte stokastiske scenarier og opnå konstant regret. Vores
algoritme kræver ikke kendskab til scenariet på forhånd, hvilket gør den robust overfor
fuldt modarbejdende scenarier.

Det andet scenarie vi undersøger i afhandlingen er multi-armed bandits med forsin-
ket feedback, hvilket er en forskningsretning, der særligt er opblomstret de seneste år.
Modellen dækker realistiske online scenarier, hvor den centrale rækkefølge i multi-armed
bandits ikke holder inklusiv anvendelser, hvor data processeres i partier. Vi påviser en
formodning omkring skaleringen af regret, når forsinkelserne er arbitrære. Vi generalis-
erer algoritmisk stabilitet som en analytisk tilgang til forsinket feedback og opdager en
dataafhængighed, der genereliserer tidliere afhængigheder af forsinkelserne. Vi designer
en metaalgoritme, der forbigår udforholdmæssigt store forsinkelser og dermer løser
dataafhængigheden. Dette påviser den formodede skalering for en vilkårlig sekvens af
forsinkelser. Endeligt designer vi en ny fintuningsmetode når algoritmen har adgang
til ekstra information. Med denne tuning opnår vi en langt bedre regret-skalering end
den formodede. Vi designer eksempler på sådanne scenarier, hvor regret-skaleringen er
polynomisk bedre.
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Chapter 1

Introduction

In online machine learning we are concerned with constructing algorithms that learn how
to solve a task while performing it, in contrast to learning in a separate, offline phase.
This direction of research is motivated by applications such as customer interaction or
auctions where separate training data is expensive or the optimal planning of a training
phase is difficult. The framework of multi-armed bandits has emerged as a central model
in theoretical study of online machine learning. This framework is simple enough that
provable results are possible, while it at the same time displays interesting, non-trivial
dynamics. Combined with ease of extension this framework has opened up an avenue for
theoretical understanding of learning in interaction with an environment. Through the
use of this framework this thesis explores how a learning algorithm can exploit additional
structure of a problem to perform better, and how to work with and overcome delayed
feedback.

This chapter aims at introducing central ideas within machine learning and online
learning and situating multi-armed bandits within the general field, thereby introducing
the setting of the subsequent chapters.

1.1 Machine Learning

Machine learning has as its goal building systems capable of solving complex problems
not by design but through learning how to solve them. Motivation range from automating
tasks of high dimension or with huge data sets where humans traditionally perform
poorly, to solving tasks that are easy for humans to solve but difficult to formalise
algorithmically such as pattern recognition. A learning algorithm can further be seen
as an abstract, general solution to a class of problems eliminating the need of solving
these tasks individually. The potential benefits of this rapidly growing field include both
relieving humans of labour-intensive tasks such as transportation and allowing us to solve
previously impossible problems. For people in pursuit of general artificial intelligence,
machine learning is seen as the candidate scientific approach. The approach – and name
– of machine learning is inspired by the way humans acquire new skills by practising,
seeking out new information and guidance, and reinforcing the understanding of the skill
through feedback from applications.
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In the sense that the focus is on the learning itself rather than what is learned this
approach is closely connected to the field of statistics which also forms the mathematical
foundations for machine learning. While machine learning can be though of as statistics
it can also be seen as a more overarching model for the scientific method. In addition to
empirical testing of a hypothesis, the formation of the hypothesis itself is also carried
out. As similar data is being used for both processes it is necessary to carefully separate
hypothesis formation and testing. This is not different from proper scientific conduct in
general, but the process is compacted and potential issues exacerbated. In this scheme,
where a model is learned directly from data, the subsequent empirical testing of said
model is a test of how well the learner is able to generalise the understanding gained from
seeing the data set onto new data. This is an important distinction from simply being
able to describe the first data set well, which is rather a matter of flexible memorization.
Proper learning requires capturing underlying behaviour and overlooking idiosyncrasies
of the training data. From a statistical approach to learning this is viewed as being robust
to noise and significant effort is being directed at designing techniques to this end.

While testing a learned model against a held out data set provides for an unbiased
evaluation of that model’s performance, this evaluation is specific to the concrete task at
hand. In order to evaluate the learner and not just the learned model we need another
approach. Empirically we could test learned models on a variety of data sets, which
is also an approach used in practise, but ideally we would want to test the model on
every data set (or every data set within some class) which is not practically feasible. The
question of how well a learner would do on any hypothetical data set is a theoretical
question rather than an empirical one, and this is the kind of questions that the field of
learning theory is trying to answer.

Approaching machine learning theoretically affords us not only the ability to evalu-
ate learning algorithms abstractly, it is also an avenue to understanding how these
algorithms learn and understanding what learning means in general. As an example, the
concept of model class complexities or dimensions captures the crucial trade-off between
model capabilities and over-fitting pitfalls. While empirical evaluation is specific to
the task on which the learner is evaluated, theoretical guarantees are learner specific in
the sense that the analysis is carried out for a specified learner (or for a general class
or heuristic of learning). In this way learning theory also guides the development of
learning algorithms. In this thesis we will for instance see how the analytical approach
of stability for delayed feedback guides algorithmic design.

1.2 Online Learning

Online learning is both a type of setting and algorithmic paradigm within machine
learning, where data is accessed sequentially. This is relevant in modelling specific
learning tasks such as trading, forecasting, medical diagnosis among others that are
inherently sequential. As an algorithmic approach it is also used in traditional machine
learning applications where the amount of data makes processing the entire data set at
once infeasible, necessitating a sequential approach.
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The online approach to learning dissolves the way data is traditionally split into training
and testing sets – of course without dispensing of the methodological concerns of proper
evaluation. Instead in online learning the learner’s predictions are both tested and trained
in an ongoing fashion on the same data. This can be achieved by first evaluating the
prediction and then showing that evaluation to the learner for training. Crucially this
means the learner is not only concerned with learning from the data and arriving at a
good model, but doing so such that the intermediate modelling is also performant. One
can think about this as caring about the performance on the training data or the learning
trajectory.

This characterisation applies to a wide array of learning scenarios and scientific sub fields.
Notable examples falling within this paradigm are reinforcement learning in the form
of Markov decision processes [Kaelbling et al., 1996, Szepesvári, 2010], online convex
optimisation [Shalev-Shwartz, 2011], and streaming formulations of supervised learning
including active learning [Beygelzimer et al., 2009]. While reinforcement learning can be
seen as a separate field seeing a large amount of applied research, there are overlaps with
the more theoretical study of online learning focused on the frameworks of prediction
with expert advice and multi-armed bandits.

1.3 Prediction with Expert Advice and Multi-armed Bandits

The model of online learning we are concerned with in this thesis is one of sequential
prediction. In this model the learner must in each round make a prediction by choosing
an action from a finite set. The problem of sequential prediction traces its roots back
to Thompson [1933] and an accelerating growth has been seen in recent decades with
the advent of notable algorithms such as Hedge [Vovk, 1990, Littlestone and Warmuth,
1994], UCB [Auer et al., 2002a] and Exp3 [Auer et al., 2002b]. Differing only in the
feedback model, Prediction with expert advice and multi-armed bandits serve as two
related frameworks for such problems. The simple model underlying both abstracts a
wide array of sequential decision processes and has proven to be easily extendable to
allow studying more specific scenarios. As the difference between the two settings falls
within the myriad of variations hereof we consider them to be variations of the same
underlying setting.

A general version of the learning setting is as follows: The game is played in rounds.
In round t the learner first picks an action At ∈ {1, . . . ,K} and suffers the loss of that
action `Att ∈ [0, 1]. Subsequently the learner observes some feedback. In the bandit
setting this is the loss of the chosen action `Att , while losses `at of other actions a 6= At
remain hidden. In prediction with expert advice, also know as full information, losses
for all actions are revealed.

Various models for how the losses are generated can be considered, but in general
we would like to be able to work with any sequence of losses or any sequence within
some generation scheme. This means that simply measuring the cumulative performance
of the learner is not generally informative. Instead the learner is compared to a bench-
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mark in order to normalize the performance with respect to the specific instance of
losses. The canonical performance measure is the regret of the chosen action sequence
compared to the best static strategy in hindsight:

Definition 1. The expected regret or pseudo regret1 of a learner at time T is

R̄T = E

[
T∑
t=1

`Att

]
− min
a∈{1,...,K}

E

[
T∑
t=1

`at

]
,

where the expectation is with respect to the randomness of the learner and any random-
ness of the loss generation.

The regret definition is a central element to the dynamic of online learning where the
learner is evaluated cumulatively and not just by the final model’s performance. For
bandits we further have a lack of counterfactual information as the learner only gets to
know the loss of the chosen action.

The combination of measuring cumulative performance and not having access to coun-
terfactual information leads to the central optimisation problem in online learning, the
exploitation/exploration-trade off: As the learner desires a small cumulative loss there
is in every round a desire to pick a good action (that is of small loss). In order to do so
however, the learner needs to estimate the performance of every action for comparison.
Due to the lack of counterfactual information, this requires playing every action some
amount – even the bad ones. While displaying this non-trivial dynamic of trading off
exploitation and exploration, theoretical analysis of multi-armed bandits is also tractable
allowing for provable regret guarantees.

The above underlying model has proven to be a highly flexible framework that al-
lows for theoretical understanding of a wide array of variations which the contributions
of this thesis are examples of. From this point of view, multi-armed bandits can be
seen as a framework that allows for isolation of interesting dynamics and providing an
understanding of the impact of such dynamics, which can then guide the understanding
of more complicated systems, where such an analysis might not be tractable.

Variations of multi-armed bandits occur in many different axes of the game. For instance
different loss generation scheme such as stochastic losses [Bubeck and Cesa-Bianchi,
2012], corrupted schemes [Lykouris et al., 2018], bounded variations [Bubeck et al.,
2019] and small effective loss ranges, as well as combined or intermediate regimes.
The central difference between the full information and bandit setting is also an axis of
variation such as prediction with limited advice where the loss of more than one, but
not all, actions can be observed [Seldin et al., 2014]. Graph based feedback is another

1Note that the term expected regret would sometimes have the minimum taken under the expectation
and the above expression would then be termed the pseudo regret. In this terminology the pseudo regret is
typically the quantity of interest, even though the intuitive meaning is less clear. In the subsequent chapters
of this thesis, the main focus will be on losses generated by an oblivious adversary, that is deterministically
and prior to the game. In that case the second expectation can be omitted and the expected regret and pseudo
regret coincides.
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distinct interpolation between the two schemes [Alon et al., 2017]. The feedback can fur-
ther be subject of delays or be composite [Mesterharm, 2005, Cesa-Bianchi et al., 2019,
2018]. Variations akin to active learning include both integrated schemes such as costly
feedback [Seldin et al., 2014] and constrained settings such as label efficient prediction
[Cesa-Bianchi et al., 2005]. A setting of much recent attention and wider applicability is
contextual bandits, where the environment produces some side-information prior to the
action being chosen [Langford and Zhang, 2007, Beygelzimer et al., 2011]. Other notable
variations include combinatorial semi-bandits [Kveton et al., 2015, Zimmert et al., 2019],
recharging bandits [Kleinberg and Immorlica, 2018], bandits with abstention [Cortes
et al., 2017], bandits with switching cost [Dekel et al., 2014] and dueling bandits [Yue
and Joachims, 2009] among others.

1.4 Outline and contributions

The following two chapters contain the enclosed papers Thune and Seldin [2018a] and
Thune et al. [2019].

Chapter 2 corresponding to Thune and Seldin [2018a] consider exploiting additional
structure in the loss generation under the framework of prediction with limited advice
[Seldin et al., 2014]. This framework is an interpolation between bandit feedback and
full feedback, allowing the learner to observe some variable number of arms in addition
to the one played. We consider the loss structure of a small effective loss range, which a
learner surprisingly cannot adapt to under bandit feedback [Gerchinovitz and Lattimore,
2016, Cesa-Bianchi and Shamir, 2018]. We design an algorithm that does so with
one additional point of feedback and we further show that this algorithm also exploit
stochastic loss generation simultaneously. This is done adaptively without requiring
prior knowledge of the learning setting.

Chapter 3 corresponding to Thune, Cesa-Bianchi, and Seldin [2019] considers the
problem of multi-armed bandits with delayed feedback. The approaches of Cesa-Bianchi
et al. [2019] for adversarial losses and fixed delays are extended to the case of arbitrary
delays. We uncover a generalized dependency on the delay sequence and design a meta-
algorithm to circumvent this, by which a previously conjectured regret bound is proven
for any delay sequence. For tuning the algorithm adaptively, we consider a case where
the learner has access to the present delay immediately prior to making a prediction. For
this tuning scheme we prove a regret bound with a much improved regret scaling in the
delay sequence and design problem instances where this is the case.

1.4.1 Contributions

1. In prediction with limited advice we show that one additional point of feedback is
sufficient for getting an expected regret scaling linear in the effective loss range ε.
In contrast this is not generally possible with just bandit feedback.

2. We design an algorithm that is fully adaptive in the effective loss range, achieving
an expected regret bound of O

(
ε
√
TK lnK

)
, without requiring knowledge of

either ε or T .
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3. We provide a lower bound on the expected regret of order O
(
ε
√
TK) for predic-

tion with 2 points feedback. This shows that the expected regret upper bound of
our algorithm is tight up to logarithmic and lower order factors.

4. We show that our algorithm adapts to stochastic loss generation achieving a regret
bound constant in T while maintaining the linear scaling with the effective loss
range. The algorithm does not need to know the setting for tuning.

5. We extend the analysis of Exp3 with delayed feedback to the case of arbitrary
delays. For bounded delays we prove the conjecture of Cesa-Bianchi et al. [2019]
that the expected regret scales as O

(√
(KT +D) lnK

)
, where D =

∑T
t=1 dt is

the sum of the delay sequence.

6. We extend the above result by introducing the Skipper wrapper algorithm, which
maintains the conjectured regret bound for any delay sequence.

7. We design a doubling scheme for a slightly easier setting, where the learner has
access to the delay dt at the start of round t. With this the learner can maintain the
conjectured regret bound without requiring knowledge of D or T .

8. In this new setting we show that it is possible to get a much improved regret upper
bound of order minβ

(
|Sβ|+β lnK + (KT +Dβ)/β

)
, where |Sβ| is the number

of observations with delay exceeding β, and Dβ is the total delay of observations
with delay below β. This relaxes to the previous bound but can be much better. We
construct delay sequences where the improved regret bound is of order O

(
T 1/2

)
while the previous, conjectured bound is of order O

(
T 3/4

)
.
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Chapter 2

Adaptation to easy data in
prediction with limited advice

This chapter is based on the following paper:

Tobias Sommer Thune and Yevgeny Seldin. Adaptation to easy data in prediction
with limited advice. In Advances in Neural Information Processing Systems, pages
2909–2918, 2018a

The text is presented here is an updated version corresponding to Thune and Seldin
[2018b] as found on arXiv. The changes consist of a corrected scaling in the number of
arms K in Theorem 3 and the proof thereof.

2.1 Abstract

We derive an online learning algorithm with improved regret guarantees for “easy”
loss sequences. We consider two types of “easiness”: (a) stochastic loss sequences
and (b) adversarial loss sequences with small effective range of the losses. While a
number of algorithms have been proposed for exploiting small effective range in the full
information setting, Gerchinovitz and Lattimore [2016] have shown the impossibility of
regret scaling with the effective range of the losses in the bandit setting. We show that just
one additional observation per round is sufficient to circumvent the impossibility result.
The proposed Second Order Difference Adjustments (SODA) algorithm requires no prior
knowledge of the effective range of the losses, ε, and achieves an O(ε

√
KT lnK) +

Õ(εK 4
√
T ) expected regret guarantee, where T is the time horizon and K is the number

of actions. The scaling with the effective loss range is achieved under significantly
weaker assumptions than those made by Cesa-Bianchi and Shamir [2018] in an earlier
attempt to circumvent the impossibility result. We also provide a regret lower bound
of Ω(ε

√
TK), which almost matches the upper bound. In addition, we show that in

the stochastic setting SODA achieves an O
(∑

a:∆a>0
K3ε2

∆a

)
pseudo-regret bound that

holds simultaneously with the adversarial regret guarantee. In other words, SODA is
safe against an unrestricted oblivious adversary and provides improved regret guarantees
for at least two different types of “easiness” simultaneously.
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2.2 Introduction

Online learning algorithms with both worst-case regret guarantees and refined guarantees
for “easy” loss sequences have come into research focus in recent years. In our work
we consider prediction with limited advice games [Seldin et al., 2014], which are an
interpolation between full information games [Vovk, 1990, Littlestone and Warmuth,
1994, Cesa-Bianchi and Lugosi, 2006] and games with limited (a.k.a. bandit) feedback
[Auer et al., 2002b, Bubeck and Cesa-Bianchi, 2012].1 In prediction with limited
advice the learner faces K unobserved sequences of losses {`at }t,a, where a indexes the
sequence number and t indexes the elements within the a-th sequence. At each round
t of the game the learner picks a sequence At ∈ {1, . . . ,K} and suffers the loss `Att ,
which is then observed. After that, the learner is allowed to observe the losses of M
additional sequences in the same round t, where 0 ≤M ≤ K − 1. For M = K − 1 the
setting is equivalent to a full information game and for M = 0 it becomes a bandit game.

For a practical motivation behind prediction with limited advice imagine that the
loss sequences correspond to losses of K different algorithms for solving some problem,
or K different parametrizations of one algorithm, or K different experts. If we had the
opportunity we would have executed all the algorithms or queried all the experts before
making a prediction. This would correspond to a full information game. But in reality
we may be constrained by time, computational power, or monetary budget. In such case
we are forced to select algorithms or experts to query. Being able to query just one expert
or algorithm per prediction round corresponds to a bandit game, but we may have time
or money to get a bit more, even though not all of it. This is the setting modeled by
prediction with limited advice.

Our goal is to derive an algorithm for prediction with limited advice that is robust
in the worst case and provides improved regret guarantees in “easy” cases. There are
multiple ways to define “easiness” of loss sequences. Among them, loss sequences
generated by i.i.d. sources, like the classical stochastic bandit model [Robbins, 1952,
Lai and Robbins, 1985, Auer et al., 2002a], and adversarial sequences with bounded
effective range of the losses within each round [Cesa-Bianchi et al., 2007]. For the
former a simple calculation shows that in the full information setting the basic Hedge
algorithm [Vovk, 1990, Littlestone and Warmuth, 1994] achieves an improved “constant”
(independent of time horizon) pseudo-regret guarantee without sacrificing the worst-case
guarantee. Much more work is required to achieve adaptation to this form of easiness
in the bandit setting if we want to keep the adversarial regret guarantee simultaneously
[Bubeck and Slivkins, 2012, Seldin and Slivkins, 2014, Auer and Chiang, 2016, Seldin
and Lugosi, 2017, Wei and Luo, 2018, Zimmert and Seldin, 2018].

An algorithm that adapts to the second form of easiness in the full information
setting was first proposed by Cesa-Bianchi et al. [2007] and a number of variations
have followed [Gaillard et al., 2014, Koolen and van Erven, 2015, Luo and Schapire,
2015, Wintenberger, 2017]. However, a recent result by Gerchinovitz and Lattimore
[2016] have shown that such adaptation is impossible in the bandit setting. Cesa-Bianchi
and Shamir [2018] proposed a way to circumvent the impossibility result by either

1There exists an orthogonal interpolation between full information and bandit games through the use of
feedback graphs Alon et al. [2017], which is different and incomparable with prediction with limited advice,
see Seldin et al. [2014] for a discussion.
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assuming that the ranges of the individual losses are provided to the algorithm in advance
or assuming that the losses are smooth and an “anchor” loss of one additional arm is
provided to the algorithm. The latter assumption has so far only lead to a substantial
improvement when the “anchor” loss is always the smallest loss in the corresponding
round.

We consider adaptation to both types of easiness in prediction with limited advice. We
show that M = 1 (just one additional observation per round) is sufficient to circumvent
the impossibility result of Gerchinovitz and Lattimore [2016]. This assumption is weaker
than the assumptions in Cesa-Bianchi and Shamir [2018]. We propose an algorithm,
which achieves improved regret guarantees both when the effective loss range is small
and when the losses are stochastic (generated i.i.d.). The algorithm is inspired by the
BOA algorithm of Wintenberger [2017], but instead of working with exponential weights
of the cumulative losses and their second moment corrections it uses estimates of the loss
differences. The algorithm achieves an O(ε

√
KT lnK) + Õ(εK 4

√
T ) expected regret

guarantee with no prior knowledge of the effective loss range ε or time horizon T . We
also provide regret lower bound of Ω(ε

√
KT ), which matches the upper bound up to

logarithmic terms and smaller order factors. Furthermore, we show that in the stochastic
setting the algorithm achieves an O

(∑
a:∆a>0

K3ε2

∆a

)
pseudo-regret guarantee. The

improvement in the stochastic setting is achieved without compromising the adversarial
regret guarantee.

The paper is structured in the following way. In Section 2.3 we lay out the problem
setting. In Section 2.4 we present the algorithm and in Section 2.5 the main results about
the algorithm. Proofs of the main results are presented in Section 2.6.

2.3 Problem Setting

We consider sequential games defined by K infinite sequences of losses {`a1, `a2, . . . }a
for a ∈ {1, . . . ,K}, where `at ∈ [0, 1] for all a and t. At each round t ∈ {1, 2, . . . } of
the game the learner selects an action (a.k.a. “arm”) At ∈ [K] := {1, . . . ,K} and then
suffers and observes the corresponding loss `Att . Additionally, the learner is allowed
to choose a second arm, Bt, and observe `Btt . The loss of the second arm, `Btt , is not
suffered by the learner. (This is analogous to the full information setting, where the
losses of all arms a 6= At are observed, but not suffered). It is assumed that `Btt is
observed after At has been selected, but other relative timing of events within a round is
unimportant for our analysis.

The performance of the learner up to round T is measured by expected regret defined
as

RT := E

[
T∑
t=1

`Att

]
− min
a∈[K]

E

[
T∑
t=1

`at

]
, (2.1)

where the expectation is taken with respect to potential randomization of the loss genera-
tion process and potential randomization of the algorithm. We note that in the adversarial
setting the losses are considered deterministic and the second expectation can be omitted,
whereas in the stochastic setting the definition coincides with the definition of pseudo-
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regret [Bubeck and Cesa-Bianchi, 2012, Seldin and Lugosi, 2017]. In some literature
RT is termed excess of cumulative predictive risk [Wintenberger, 2017].

Below we define adversarial and stochastic loss generation models and effective
range of loss sequences.

Adversarial losses

In the adversarial setting the loss sequences are selected arbitrarily by an adversary. We
restrict ourselves to the oblivious model, where the losses are fixed before the start of the
game and do not depend on the actions of the learner.

Stochastic losses

In the stochastic setting the losses are drawn i.i.d., so that E[`at ] = µa independently
of t. Since we have a finite number of arms, there exists a best arm a? (not necessarily
unique) such that µa? ≤ µa for all a. We further define the suboptimality gaps by

∆a := µa − µa? ≥ 0.

In the stochastic setting the expected regret can be rewritten as

RT =
∑

a∈[K]:∆a>0

∆a E

[
T∑
t=1

1(At = a)

]
, (2.2)

where 1 is the indicator function.

Effective loss range

For both the adversarial and stochastic losses, we define the effective loss range as the
smallest number ε, such that for all t ∈ [T ] and a, a′ ∈ [K]:

|`at − `a
′
t | ≤ ε almost surely. (2.3)

Since we have assumed that `at ∈ [0, 1], we have ε ≤ 1, where ε = 1 corresponds to an
unrestricted setting.

2.4 Algorithm

We introduce the Second Order Difference Adjustments (SODA) algorithm, summarized
in Algorithm 1. SODA belongs to the general class of exponential weights algorithms.
The algorithm has two important distinctions from the common members of this class.
First, it uses cumulative loss difference estimators instead of cumulative loss estimators
for the exponential weights updates. Instantaneous loss difference estimators at round t
are defined by

∆̃`
a

t = (K − 1)1(Bt = a)
(
`Btt − `

At
t

)
. (2.4)
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SODA samples the “secondary” action Bt (the additional observation) uniformly from
K − 1 arms, all except At, and the (K − 1) term above corresponds to importance
weighting with respect to the sampling of Bt. The loss difference estimators scale with
the effective range of the losses and they can be positive and negative. Both of these
properties are distinct from the traditional loss estimators. The second difference is
that we are using a second order adjustment in the weighting inspired by Wintenberger
[2017]. We define the cumulative loss difference estimator and its second moment by

Dt(a) :=
t∑

s=1

∆̃`
a

s , St(a) :=
t∑

s=1

(
∆̃`

a

s

)2
. (2.5)

We then have the distribution pt for selecting the primary action At defined by

pat =
exp

(
−ηtDt−1(a)− η2

t St−1(a)
)∑K

a=1 exp
(
−ηtDt−1(a)− η2

t St−1(a)
) , (2.6)

where ηt is a learning rate scheme, defined as

ηt = min

{√
lnK

maxa St−1(a) + (K − 1)2
,

1

2(K − 1)

}
. (2.7)

The learning rate satisfies ηt ≤ 1/(2ε(K − 1)) for all t, which is required for the
subsequent analysis.

The algorithm is summarized below:

Algorithm 1: Second Order Difference Adjustments (SODA)
Initialize p1 ← (1/K, . . . , 1/K).
for t = 1, 2, . . . do

Draw At according to pt;
Draw Bt uniformly at random from the remaining actions [K] \ {At};
Observe `Att , `

Bt
t and suffer `Att ;

Construct ∆̃`
a

t by equation (2.4);
Update Dt(a), St(a) by (2.5);
Define pt+1 by (2.6);

end

2.5 Main Results

We are now ready to present the regret bounds for SODA. We start with regret upper and
lower bounds in the adversarial regime and then show that the algorithm simultaneously
achieves improved regret guarantee in the stochastic regime.
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2.5.1 Regret Upper Bound in the Adversarial Regime

First we provide an upper bound for the expected regret of SODA against oblivious
adversaries that produce loss sequences with effective loss range bounded by ε. Note
that this result does not depend on prior knowledge of the effective loss range ε or time
horizon T .

Theorem 1. The expected regret of SODA against an oblivious adversary satisfies

RT ≤ 4ε
√

(K − 1) lnK

√√√√T + (K − 1)
√
T

(
2 +

√
ln
(√

T (K − 1)
)
/2

)
+ 4(K − 1) lnK.

A proof of this theorem is provided in Section 2.6.1.2 The upper bound scales as
O(ε
√
KT lnK) + Õ(εK 4

√
T ), which nearly matches the lower bound provided below.

2.5.2 Regret Lower Bound in the Adversarial Regime

We show that in the worst case the regret must scale linearly with the effective loss range
ε.

Theorem 2. In prediction with limited advice with M = 1 (one additional observation
per round or, equivalently, two observations per round in total), for loss sequences with
effective loss range ε, we have for T ≥ 3K/32:

inf supRT ≥ 0.02ε
√
KT,

where the infimum is with respect to the choices of the algorithm and the supremum is
over all oblivious loss sequences with effective loss range bounded by ε.

The theorem is proven by adaptation of the Ω(
√
KT ) lower bound by Seldin et al.

[2014] for prediction with limited advice with unrestricted losses in [0, 1] and one extra
observation. We provide it in Appendix 2.8. Note that the upper bound in Theorem 1
matches the lower bound up to logarithmic terms and lower order additive factors. In
particular, changing the selection strategy for the second arm, Bt, from uniform to
anything more sophisticated is not expected to yield significant benefits in the adversarial
regime.

2.5.3 Regret Upper Bound in the Stochastic Regime

Finally, we show that SODA enjoys constant expected regret in the stochastic regime.
This is achieved without sacrificing the adversarial regret guarantee.

2It is straightforward to extended the analysis to time-varying ranges, εt : |`at − `a
′
t | ≤ εt for all a, a′

a.s., which leads to an O

(√∑T
t=1(ε

2
t )K lnK

)
+ Õ

(
K 4

√∑T
t=1 ε

2
t

)
regret bound . For the sake of

clarity we restrict the presentation to a constant ε.
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Theorem 3. The expected regret of SODA applied to stochastic loss sequences with
gaps ∆a satisfies

RT ≤
∑

a:∆a>0

[(
16K3

lnK
+ 16K2

)
ε2

∆a
+ 4K2 +

∆a

K

]
. (2.8)

A brief sketch of a proof of this theorem is given in Section 2.6.2, with the complete
proof provided in Appendix 2.10.

Note that ε is the effective range of realizations of the losses, whereas the gaps ∆a

are based on the expected losses. Naturally, ∆a ≤ ε. For example, if the losses are
Bernoulli then the range is ε = 1, but the gaps are based on the distances between
the biases of the Bernoulli variables. When the losses are not {0, 1}, but confined to a
smaller range ε, Theorem 3 yields a tighter regret bound. The scaling of the regret bound
in K is suboptimal and it is currently unknown whether it could be improved without
compromising the worst-case guarantee. Perhaps changing the selection strategy for Bt
could help here. We leave this improvement for future work.

To summarize, SODA achieves adversarial regret guarantee that scales with the ef-
fective loss range and almost matches the lower bound and simultaneously has improved
regret guarantee in the stochastic regime.

2.6 Proofs

This section contains the proof of Theorem 1 and a proof sketch for Theorem 3. The
proof of Theorem 2 is provided in Appendix 2.8.

2.6.1 Proof of Theorem 1

The proof of the theorem is prefaced by two lemmas, but first we show some properties
of the loss difference estimators. We use EBt to denote expectation with respect to
selection of Bt conditioned on all random outcomes prior to this selection. For oblivious
adversaries, the expected cumulative loss difference estimators are equal to the negative
expect regret against the corresponding arm a:

E

[
T∑
t=1

∆̃`
a

t

]
= E

[
T∑
t=1

E
Bt

[
∆̃`

a

t

]]

= E

[
T∑
t=1

(
`at − `

At
t

)]

=
T∑
t=1

`at − E

[
T∑
t=1

`Att

]
=: −RaT ,
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where we have used the fact that ∆̃`
a

t is an unbiased estimate of `at − `Att due to
importance weighting with respect to the choice of Bt. Similarly, we have

E

[
T∑
t=1

(
∆̃`

a

t

)2
]

= (K − 1) E

[
T∑
t=1

(
`at − `

At
t

)2
]
. (2.9)

Similar to the analysis of the anytime version of EXP3 in Bubeck and Cesa-Bianchi
[2012], which builds on Auer et al. [2002b], we consider upper and lower bounds on the
expectation of the incremental update. This is captured by the following lemma:

Lemma 4. With a learning rate scheme ηt for t = 1, 2, . . . , where ηt ≤ 1/2ε(K − 1),
SODA fulfills:

−
T∑
t=1

∆̃`
a

t ≤
lnK

ηT
+ ηT

T∑
t=1

(
∆̃`

a

t

)2
−

T∑
t=1

E
a∼pt

[
∆̃`

a

t

]
+
∑
t

(Φt(ηt+1)− Φt(ηt))

(2.10)

for all a, where we define the potential

Φt(η) :=
1

η
ln

(
1

K

K∑
a=1

exp
(
−ηDt(a)− η2St(a)

))
. (2.11)

Note that unlike in the analysis of EXP3, here the learning rates ηt do not have to be
non-increasing. A proof of this lemma is based on modification of standard arguments
and is found in Appendix 2.9.1.

The second lemma is a technical one and is proven in Appendix 2.9.2.

Lemma 5. Let σt with t ∈ N be an increasing positive sequence with bounded differ-
ences such that σt − σt−1 ≤ c for a finite constant c. Let further σ0 = 0. Then

T∑
t=1

σt

(
1√

σt−1 + c
− 1√

σt + c

)
≤ 2
√
σT−1 + c.

Proof of Theorem 1 We apply Lemma 4, which leads to the following inequality for
any learning rate scheme ηt for t = 1, 2, . . . , where ηt ≤ 1/2ε(K − 1):

−
T∑
t=1

∆̃`
a

t ≤
lnK

ηT︸ ︷︷ ︸
1st

+ ηT

T∑
t=1

(
∆̃`

a

t

)2

︸ ︷︷ ︸
2nd

−
T∑
t=1

E
a∼pt

[
∆̃`

a

t

]
︸ ︷︷ ︸

3rd

+
T∑
t=1

(Φt(ηt+1)− Φt(ηt))︸ ︷︷ ︸
4th

.

(2.12)

Note that in expectation, the left hand side of (2.12) is the regret against arm a. We
are thus interested in bounding the expectation of the terms on the right hand side, where
we note that the third term vanishes in expectation. We first consider the case where
ηt =

√
lnK/(maxa St(a) + (K − 1)2), postponing the initial value for now.
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The first term becomes:

lnK

ηT
=
√

lnK
√

max
a

ST−1(a) + (K − 1)2. (2.13)

The second term becomes:

ηTST (a) =
√

lnK
ST (a)√

maxa ST−1(a) + (K − 1)2
≤
√

lnK
√

max
a

ST−1(a) + (K − 1)2,

(2.14)

where we use that St(a) ≤ St−1(a) + (K − 1)2 for all t by design.
Finally, for the fourth term in equation (2.12), we need to consider the potential

differences. Unlike in the anytime analysis of EXP3, where this term is negative [Bubeck
and Cesa-Bianchi, 2012], in our case it turns to be related to the second moment of the
loss difference estimators. We let

qηt =
exp

(
−ηDt(a)− η2St(a)

)∑K
a=1 exp (−ηDt(a)− η2St(a))

(2.15)

denote the exponential update using the loss estimators up to t, but with a free learning
rate η. We further suppress some indices for readability, such that Da = Dt(a) and
Sa = St(a) in the following. We have

Φ′t(η) = − 1

η2
ln

(
1

K

∑
a

e−ηDa−η
2Sa

)
+

1

η

∑
a e
−ηDa−η2Sa · (−Da − 2ηSa)∑
a exp (−ηDa − η2Sa)

=

∑
a

(
e−ηDa−η

2Sa ·

(
−ηDa − 2η2Sa − ln

(
1

K

∑
a

e−ηDa−η
2Sa

)))
η2
∑

a exp (−ηDa − η2Sa)
.

By using −ηDa − 2η2Sa = ln
(
exp(−ηDa − η2Sa) exp(−η2Sa)

)
the above becomes

Φ′t(η) =
1

η2
E

a∼qηt

[
ln

(
qηt (a)

1/K
exp(−η2Sa)

)]
=

1

η2
KL (qηt ‖1/K)− E

a∼qηt
[St(a)] ,

(2.16)

where we have used that 1/K is the pmf. of the uniform distribution over K arms. Since
the KL-divergence is always positive, we can rewrite the potential differences as

Φt(ηt+1)− Φt(ηt) = −
∫ ηt

ηt+1

Φ′t(η)dη ≤
∫ ηt

ηt+1

E
a∼qηt

[St(a)] dη ≤
∫ ηt

ηt+1

max
a

St(a)dη

=
√

lnK max
a

St(a)

 1√
max
a

St−1(a) + (K − 1)2
− 1√

max
a

St(a) + (K − 1)2

 .

By Lemma 5 we then have

T∑
t=1

Φt(ηt+1)− Φt(ηt) ≤ 2
√

lnK
√

max
a

ST−1(a) + (K − 1)2. (2.17)
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Collecting the terms (2.13), (2.14) and (2.17) and noting that these bounds hold for all a,
by taking expectations and using Jensen’s inequality we get

RT ≤ E
[
4
√

lnK
√

max
a

ST−1(a) + (K − 1)2

]
≤ 4
√

lnK

√
E
[
max
a

ST−1(a)
]

+ (K − 1)2. (2.18)

The remainder of the proof is to bound this inner expectation:

E
[
max
a

ST−1(a)
]
≤ (K − 1)2ε2 E

[
max
a

T−1∑
t=1

1[Bt = a]

]
.

Let Zat =
∑t

s=1 1[Bs = a] and note that ZaT−1 ≤ T − 1. We now consider a
partioning of the probability for a cutoff α > 0:

E[max
a

ZaT−1] ≤ αP
{

max
a

ZaT−1 ≤ α
}

+ (T − 1)P
{

max
a

ZaT−1 > α
}

≤ α+ (T − 1)K P
{
ZaT−1 > α

}
,

using a union bound for the final inequality. To continue we need to address the fact that
the Bt’s are not independent. We can however note that P{Bt = a} ≤ (K − 1)−1 for
all t and a. By letting xat be Bernoulli with parameter (K − 1)−1 and Xa

T =
∑T

t=1 x
a
t

we then get

P
{
ZaT−1 > α

}
≤ P

{
Xa
T−1 > α

}
. (2.19)

In the upper bound we can thus substitute Xa
T−1 for ZaT−1 and exploit the fact that the

xat ’s are independent by construction. Note further that E[Xa
T−1] = T−1

K−1 , so by choosing
α = T−1

K−1 + δ for δ > 0, we obtain by Hoeffding’s inequality:

E[max
a

ZaT−1] ≤ T − 1

K − 1
+ δ + (T − 1)K P

{
Xa
T−1 −

T − 1

K − 1
> δ

}
≤ T − 1

K − 1
+ δ + (T − 1)K exp

(
− 2δ2

T − 1

)
.

We now choose δ =

√
T
2 ln

(√
T (K − 1)

)
, which gives us

E[max
a

ZaT−1] ≤ T − 1

K − 1
+

√
T

2
ln
(√

T (K − 1)
)

+ 2
√
T .

Inserting this in (2.18) gives us the desired bound.
For the case where the learning rate at T is instead given by 1/2(K − 1) implying

4(K − 1)2 lnK ≥ maxa ST−1(a) + (K − 1)2, the first term is lnK
ηT

= 2(K − 1) lnK,
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and the second term is

ηTST (a) =
1

2(K − 1)
ST (a)

≤ ST−1(a) + (K − 1)2

2(K − 1)

≤ 4(K − 1)2 lnK

2(K − 1)

≤ 2(K − 1) lnK.

Since the learning rate is constant the potential differences vanish, completing the
proof. �

2.6.2 Proof sketch of Theorem 3

Here we present the key ideas used to prove Theorem 3. The complete proof is provided
in Appendix 2.10.

Recall that the expected regret in the stochastic setting is given by (2.2), where
E[1(At = a)] = E[pat ]. Thus, we need to bound E[

∑
t p
a
t ]. The first step is to bound

this as

E [pat ] ≤ σ + P {pat > σ} ≤ σ + P
{
Ke−ηt

∑t−1
i=1 Xi > σ

}
(2.20)

for a positive threshold σ, where we show that pat ≤ Ke−ηt
∑t−1
i=1 Xi for Xi := ∆̃`

a

i −
∆̃`

a?

i . This approach is motivated by the fact that EBi [∆̃`
a

i − ∆̃`
a?

i ] = ∆a, where the
expectation is with respect to selection of Bi and the loss generation, conditioned on all
prior randomness.

The next step is to tune σ ∝ exp(
∑

Ei[Xi]), which allows us to bound the second
term using Azuma’s inequality and balance the two terms. Finally, this bound is summed
over t using a technical lemma for the limit of this sum.

2.7 Discussion

We have presented the SODA algorithm for prediction with limited advice with two
observations per round (the “primary” observation of the loss of the action that was
played and one additional observation). We have shown that the algorithm adapts to
two types of simplicity of loss sequences simultaneously: (a) it provides improved
regret guarantees for adversarial sequences with bounded effective range of the losses
and (b) for stochastic loss sequences. In both cases the regret scales linearly with the
effective range and the knowledge of the range is not required. In the adversarial case we
achieve O(ε

√
KT lnK) + Õ(εK 4

√
T ) regret guarantee and in the stochastic case we

achieveO
(∑

a:∆a>0
K3ε2

∆a

)
regret guarantee. Our result demonstrates that just one extra

observation per round is sufficient to circumvent the impossibility result of Gerchinovitz
and Lattimore [2016] and significantly relaxes the assumptions made by Cesa-Bianchi
and Shamir [2018] to achieve the same goal.
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There are a number of open questions and interesting directions for future research.
One is to improve the regret guarantee in the stochastic regime. Another is to extend the
results to bandits with limited advice in the spirit of Seldin et al. [2013], Kale [2014].
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Supplementary material for
Chapter 2

2.8 Proof of Theorem 2

The lower bound is a straightforward adaptation of Theorem 2 in Seldin et al. [2014],
which states that for prediction with limited advice where M ′ = M + 1 of K experts
are queried, we have for T ≥ 3

16
K
M ′ :

inf supRT ≥ 0.03

√
K

M ′T
,

where the infimum is over learning strategies and the supremum over oblivious adver-
saries.

Our case of M = 1 additional expert corresponds to M ′ = 2. The proof of the above
is based upon the standard technique for lower bounding, where Bernoulli losses with
varying biases are constructed. As this is a stochastic setting, the regret of playing a
suboptimal arm a is analysed as

(νa − νa?)E[NT (a)],

where the ν’s are the biases of the Bernoulli variables and NT (a) is the number of times
an arm is played. The rest of analysis consists of lower bounding the expected number
of plays and tuning the biases.

By changing the constructed losses to Bernoulli variables times ε (i.e. taking values
in {0, ε}), the expected values become ενa, which means we get a factor of ε in the
above expression. Since the bound on E[NT (a)] does not depend on the values taken by
the distributions, but only the ability to discern them, the proof follows directly from that
in Seldin et al. [2014]. �

2.9 Supplement for the proof of Theorem 1 (Section 2.6.1)

2.9.1 Proof of Lemma 4

We first derive two inequalities, which are combined and rearranged into the statement
of the lemma.
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Consider the quantity

T∑
t=1

1

ηt
ln E
a∼pt

[
exp

(
−ηt∆̃`

a

t − η2
t

(
∆̃`

a

t

)2
)]
≤

T∑
t=1

1

ηt
ln E
a∼pt

[
1− ηt∆̃`

a

t

]
=

T∑
t=1

1

ηt
ln

(
1− ηt E

a∼pt

[
∆̃`

a

t

])

≤ −
T∑
t=1

E
a∼pt

[
∆̃`

a

t

]
,

where the first step is based on the inequality ez−z
2 ≤ 1 + z for z = −ηt∆̃`

a

t ≥ −1/2
[Cesa-Bianchi et al., 2007]. The upper bound on ηt ≤ (2ε(K − 1))−1 guarantees that
the condition of the inequality holds. The last step is based on ln(1 + z) ≤ z for z > −1.

Using the potential (2.11) we can rewrite the same quantity as

1

ηt
ln E
a∼pt

[
exp

(
−ηt∆̃`

a

t − η2
t

(
∆̃`

a

t

)2
)]

=
1

ηt
ln

K∑
a=1

exp

(
−ηt∆̃`

a

t − η2
t

(
∆̃`

a

t

)2
)
· pat

=
1

ηt
ln

∑K
a=1 exp

(
−ηtDt(a)− η2

t St(a)
)∑K

a=1 exp
(
−ηtDt−1(a)− η2

t St−1(a)
)

= Φt(ηt)− Φt−1(ηt).

Summing over t and reindexing the sum we get

T∑
t=1

(Φt(ηt)− Φt−1(ηt)) =
T−1∑
t=1

(Φt(ηt)− Φt(ηt+1)) + ΦT (ηT )− Φ0(η1).

Since by definition D0 = 0 and S0 = 0, we have Φ0(η1) = 0. Next, we lower bound
the middle term:

ΦT (ηT ) =
1

ηT
ln

(
1

K

K∑
a=1

exp
(
−ηTDT (a)− η2

TST (a)
))

≥ − lnK

ηT
+

1

ηT
ln
(
exp

(
−ηTDT (a)− η2

TST (a)
))

= − lnK

ηT
−DT (a)− ηTST (a),

where we have used that the logarithm is monotonously increasing and all the terms in
the inner sum are positive.

By using the lower and upper bounds simultaneously and moving everything except
for −DT (a) from the left hand side, the proof is complete. �

20



2.9.2 Proof of Lemma 5

By the boundedness we have:

T∑
t=1

σt

(
1√

σt−1 + c
− 1√

σt + c

)
≤

T∑
t=1

(σt−1 + c)

(
1√

σt−1 + c
− 1√

σt + c

)

=

T−1∑
t=0

σt + c√
σt + c

−
T∑
t=1

σt−1 + c√
σt + c

=

T−1∑
t=1

σt − σt−1√
σt + c

+
σ0 + c√
σ0 + c

− σT−1 + c√
σT + c

.

Here the second term is
√
c and the third is negative and can thus be discarded in the

upper bound. The first term is a lower Riemann sum of x 7→ 1/
√
x+ c, giving us:

T∑
t=1

σt

(
1√

σt−1 + c
− 1√

σt + c

)
≤
√
c+

∫ σT−1

σ1

1√
x+ c

dx

=
√
c+ 2

√
x+ c

∣∣∣∣σT−1

σ1

≤ 2
√
σT−1 + c,

where the final inequality uses 2
√
σ1 + c >

√
c. �

2.10 Proof of Theorem 3

Before proving the theorem we need the following technical lemma:

Lemma 6. For c > 0 we have
∞∑
t=1

e−c
√
t ≤ 2

c2
, and

∞∑
t=1

e−ct ≤ 1

c
.

Proof. For the first part, note that∫
e−c
√
tdt = −2

c

√
te−c

√
t − 2

c2
e−c
√
t,

which is confirmed by differentiation. Then

∞∑
t=1

e−c
√
t ≤

∫ ∞
0

e−c
√
tdt = −2

c

√
te−c

√
t − 2

c2
e−c
√
t

∣∣∣∣∞
0

=
2

c2
,

where we use that the summand is decreasing, making the series a lower Riemann sum
of the intergral. For the second part we use the exact limit and that ex − 1 ≥ x with the
same sign for all x:

∞∑
t=1

e−ct =
1

ec − 1
≤ 1

c
.
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Proof of Theorem 3 Recall that the expected regret in the stochastic setting is given
by

RT =
∑

a:∆a>0

∆a E

[
T∑
t=1

1(At = a)

]
,

where we identify E[1(At = a)] = E[pat ]. Since pa1 = 1/K by definition, we need to
bound

E

[
T∑
t=2

pat

]
= E

[
T∑
t=2

E[pat ]

]
.

Consider first the case where the learning rate is ηt =
√

lnK
maxa St−1(a)+(K−1)2

. We
bound the individual probabilities as :

pat =
exp

(
−ηtDt−1(a)− η2

t St−1(a)
)∑K

a=1 exp
(
−ηtDt−1(a)− η2

t St−1(a)
)

=
exp

(
−ηt(Dt−1(a)−Dt−1(a?))− η2

t (St−1(a)− St−1(a?))
)∑K

a=1 exp
(
−ηt(Dt−1(a)−Dt−1(a?))− η2

t (St−1(a)− St−1(a?))
)

≤ exp
(
−ηt(Dt−1(a)−Dt−1(a?))− η2

t (St−1(a)− St−1(a?))
)

≤ exp (−ηt(Dt−1(a)−Dt−1(a?)) exp
(
η2
t St−1(a?)

)
≤ K exp

(
−ηt

t−1∑
i=1

Xi

)
, (2.21)

where we have defined
∑
Xi = Da

t−1 −Da?
t−1 and used η2

t St−1(a?) ≤ lnK.

Next we split up the expectation in two parts around a threshold σ > 0, using pat ≤ 1
and (2.21):

E[pat ] ≤ σ P {pat ≤ σ}+ 1 · P {pat > σ} ≤ σ + P

{
K exp

(
−ηt

t−1∑
i=1

Xi

)
> σ

}
,

(2.22)

Since ηt is a random variable correlated with the Xi’s, we cannot directly bound this
expression. We can however split the event under the probability into two separate cases,
and upper bound the expression using upper and lower bounds on ηt in the cases where
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∑
Xi is negative or positive:

P

{
K exp

(
−ηt

t−1∑
i=1

Xi

)
> σ

}
= P

{
K exp

(
−ηt

t−1∑
i=1

Xi

)
> σ &

t−1∑
i=1

Xi ≤ 0

}

+ P

{
K exp

(
−ηt

t−1∑
i=1

Xi

)
> σ &

t−1∑
i=1

Xi > 0

}

≤ P

{
K exp

(
−η̄t

t−1∑
i=1

Xi

)
> σ

}

+ P

{
K exp

(
−
∑t−1

i=1 Xi

2(K − 1)

)
> σ

}
,

where we have introduced η̄t :=
√

lnK
(t−1)ε2+1

1
K−1 , which is a lower bound on ηt. Intro-

ducing E =
∑

i EBi [Xi] = (t − 1)∆a and the shorthand V =
∑t−1

i=1 Xi − E, we can
rewrite the probabilities, resulting in

E[pat ] ≤ σ + P
{
V < − ln(σ/K)

η̄t
− E

}
+ P {V < −2(K − 1) ln(σ/K)− E} .

Since V is the sum of martingale difference sequences we want to use Azuma’s inequality,
which requires that the right hand sides are negative. Choosing a positive splitting point
σ as

σ = K exp

(
−(t− 1)∆a

2(K − 1)

√
lnK

(t− 1)ε2 + 1

)
, (2.23)

the two right hand sides become

− ln(σ/K)

η̄t
− E = −E

2
, (2.24)

−2(K − 1) ln(σ/K)− E = E

(√
lnK

(t− 1)ε2 + 1
− 1

)
≤ −E

2
, (2.25)

using
√

lnK
(t−1)ε2+1

= (K − 1)η̄t ≤ 1/2 for the final inequality. As these are negative, we

can use Azuma’s inequality which since the range of the Xi’s is 2(K − 1)ε gives us

E[pat ] ≤ K exp

(
−(t− 1)∆a

2(K − 1)

√
lnK

(t− 1)ε2 + 1

)
+ 2 exp

(
− E2/4

2(t− 1)(K − 1)2ε2

)
,

(2.26)

where the inequality comes from substitution of (2.23), (2.24) and (2.25), and the two
probabilities becomes one expression using the final inequality of (2.25).

We now consider two cases of the first term in (2.26). If (t− 1)ε2 ≥ 1, then

exp

(
−(t− 1)∆a

2(K − 1)

√
lnK

(t− 1)ε2 + 1

)
≤ exp

(
− 1

2(K − 1)

√
lnK

2

∆a

ε

√
t− 1

)
.
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If instead (t− 1)ε2 ≤ 1, then

exp

(
−(t− 1)∆a

2(K − 1)

√
lnK

(t− 1)ε2 + 1

)
≤ exp

(
− ∆a

2(K − 1)

√
lnK

2
t

)
.

For both cases the second term in (2.26) becomes

2 exp

(
−1

8

∆2
a

ε2

t− 1

(K − 1)2

)
.

For ηt = 1
2(K−1) , we first note that ηt ≤

√
lnK

maxa St−1(a)+(K−1)2
, so the bound used

for pat in (2.22) still applies. Since ηt is no longer a random variable, we have

E[pat ] ≤ σ + P
{
K exp

(
−

∑
Xi

2(K − 1)

)
> σ

}
.

Rewriting this as before and choosing σ = K exp
(
− (t−1)∆a

4(K−1)

)
, we get by Azuma’s

inequality

E[pat ] ≤ K exp

(
−(t− 1)∆a

4(K − 1)

)
+ exp

(
−1

8

∆2
a

ε2

t− 1

K − 1

)
.

We now have three cases of bounds on E [pat ]. For each of these the analysis is
completed by summing over t = 2 to∞, using Lemma 6 and then summing over the
arms times the gaps. For all cases, the result is smaller than the right hand side in
Theorem 3. �
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Chapter 3

Nonstochastic multiarmed bandits
with unrestricted delays

This chapter is based on the following paper:

Tobias Sommer Thune, Nicolò Cesa-Bianchi, and Yevgeny Seldin. Nonstochastic
multiarmed bandits with unrestricted delays. In Advances in Neural Information
Processing Systems, pages 6538–6547, 2019

The paper appears as in the proceeding and is followed by the supplementary material.

3.1 Abstract

We investigate multiarmed bandits with delayed feedback, where the delays need
neither be identical nor bounded. We first prove that "delayed" Exp3 achieves the
O
(√

(KT +D) lnK
)

regret bound conjectured by Cesa-Bianchi et al. [2019] in the
case of variable, but bounded delays. Here, K is the number of actions and D is the
total delay over T rounds. We then introduce a new algorithm that lifts the require-
ment of bounded delays by using a wrapper that skips rounds with excessively large
delays. The new algorithm maintains the same regret bound, but similar to its prede-
cessor requires prior knowledge of D and T . For this algorithm we then construct
a novel doubling scheme that forgoes the prior knowledge requirement under the as-
sumption that the delays are available at action time (rather than at loss observation
time). This assumption is satisfied in a broad range of applications, including interac-
tion with servers and service providers. The resulting oracle regret bound is of order
minβ

(
|Sβ|+ β lnK + (KT +Dβ)/β

)
, where |Sβ| is the number of observations with

delay exceeding β, and Dβ is the total delay of observations with delay below β. The
bound relaxes to O

(√
(KT +D) lnK

)
, but we also provide examples where Dβ � D

and the oracle bound has a polynomially better dependence on the problem parameters.
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3.2 Introduction

Multiarmed bandits is an algorithmic paradigm for sequential decision making with a
growing range of industrial applications, including content recommendation, computa-
tional advertising, and many more. In the multiarmed bandit framework an algorithm
repeatedly takes actions (e.g., recommendation of content to a user) and observes out-
comes of these actions (e.g., whether the user engaged with the content), whereas the
outcome of alternative actions (e.g., alternative content that could have been recom-
mended) remains unobserved. In many real-life situations the algorithm experience delay
between execution of an action and observation of its outcome. Within the delay period
the algorithm may be forced to make a series of other actions (e.g., interact with new
users) before observing the outcomes of all the previous actions. This setup falls outside
of the classical multiarmed bandit paradigm, where observations happen instantaneously
after the actions, and motivates the study of bandit algorithms that are provably robust in
the presence of delays.

We focus on the nonstochastic (a.k.a. oblivious adversarial) bandit setting, where the
losses faced by the algorithm are generated by an unspecified deterministic mechanism.
Though it might be of adversarial intent, the mechanism is oblivious to internal random-
ization of the algorithm. In the delayed version, the loss of an action executed at time t
is observed at time t+ dt, where the delay dt is also chosen deterministically and oblivi-
ously. Thus, at time step t the algorithm receives observations from time steps s ≤ t for
which s+ ds = t. This delay is the independent of the action chosen. The algorithm’s
performance is evaluated by regret, which is the difference between the algorithm’s
cumulative loss and the cumulative loss of the best static action in hindsight. The regret
definition is the same as in the ordinary setting without delays. When all the delays are
constant (dt = d for all t), the optimal regret is known to scale asO

(√
(K + d)T lnK

)
,

where T is the time horizon and K is the number of actions [Cesa-Bianchi et al., 2019].
Remarkably, this bound is achieved by “delayed” Exp3, which is a minor modification of
the standard Exp3 algorithm performing updates as soon as the losses become available.

The case of variable delays has previously been studied in the full information setting
by Joulani et al. [2016]. They prove a regret bound of order

√
(D + T ) lnK, where

D =
∑T

t=1 dt is the total delay. Their proof is based on a generic reduction from
delayed full information feedback to full information with no delay. The applicability
of this technique to the bandit setting is unclear (see Appendix 3.8). Cesa-Bianchi et al.
[2019] conjecture an upper bound of order

√
(KT +D) lnK for the bandit setting with

variable delays. Note that this bound cannot be improved in the general case because
of the lower bound Ω

(√
(K + d)T

)
, which holds for any d. In a recent paper, Li et al.

[2019] study a harder variant of bandits, where the delays dt remain unknown. As a
consequence, if an action is played at time s and then more times in between time steps
s and s + ds, the learner cannot tell which specific round the loss observed at time
s+ ds refers to. In this harder setting, for known T , D, and dmax, Li et al. [2019] prove
a regret bound of Õ

(√
dmaxK(T +D)

)
. Cesa-Bianchi et al. [2018] further study an

even harder setting of bandits with anonymous composite feedback. In this setting at
time step t the learner observes feedback, which is a composition of partial losses of the
actions taken in the last dmax rounds. In this setting Cesa-Bianchi et al. [2018] obtain an
O
(√
dmaxKT lnK

)
regret bound (which is tight to within the lnK factor, and in fact
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tighter than the bound of Li et al. [2019] for an easier problem).
Our paper is structured in the following way. We start by investigating the regret

of Exp3 in the variable delay setting. We prove that for known T , D, and dmax, and
assuming that dmax is at most of order

√
(KT +D)/(lnK), "delayed" Exp3 achieves

the conjectured bound of O
(√

(KT +D) lnK
)
. In order to remove the restriction

on dmax and eliminate the need of its knowledge we introduce a wrapper algorithm,
Skipper. Skipper prevents the wrapped bandit algorithm from making updates using
observations with delay exceeding a given threshold β. This threshold acts as a tunable
upper bound on the delays observed by the underlying algorithm, so if T and D are
known we can choose β that attains the desired O

(√
(KT +D) lnK

)
regret bound

with "delayed" Exp3 wrapped within Skipper.
To dispense of the need for knowing T and D, the first approach coming to mind

is the doubling trick. However, applying the standard doubling to D is problematic,
because the event that the actual total delay d1 + · · · + dt exceeds an estimate D is
observed at time t+ dt rather than at time t. In order to address this issue, we consider a
setting in which the algorithm observes the delay dt at time t rather than at time t+dt. To
distinguish between this setting and the previous one we say that "the delay is observed
at action time" if it is observed at time t and "the delay is observed at observation time" if
it is observed at time t+ dt. Observing the delay at action time is motivated by scenarios
in which a learning agent depends on feedback from a third party, for instance a server
or laboratory that processes the action in order to evaluate it. In such cases, the third
party might partially control the delay, and provide the agent with a delay estimate based
on contingent and possibly private information. In the server example the delay could
depend on workload, while the laboratory might have processing times and an order
backlog. Other examples include medical imaging where the availability of annotations
depends on medical professionals work schedule. Common for these examples is that
the third party knows the delay before the action is taken.

Within the "delay at action time" setting we achieve a much stronger regret bound.
We show that Skipper wrapping delayed Exp3 and combined with a carefully designed
doubling trick enjoys an implicit regret bound of order minβ

(
|Sβ|+ β lnK + (KT +

Dβ)/β
)
, where Dβ is the total delay of observations with delay below β. This bound

is attained without any assumptions on the sequence of delays dt and with no need for
prior knowledge of T and D. The implicit bound can be relaxed to an explicit bound
of O

(√
(KT +D) lnK

)
, however if Dβ � D it can be much tighter. We provide an

instance of such a problem in Example 14, where we get a polynomially tighter bound.
Table 3.1 summarizes the spectrum of delayed feedback models in the bandit case

and places our results in the context of prior work.

3.2.1 Additional related work

Online learning with delays was pioneered by Mesterharm [2005] — see also [Mester-
harm, 2007, Chapter 8]. More recent work in the full information setting include
[Zinkevich et al., 2009, Quanrud and Khashabi, 2015, Ghosh and Ramchandran, 2018].
The theme of large or unbounded delays in the full information setting was also investi-
gated by Mann et al. [2018] and Garrabrant et al. [2016]. Other related approaches are
the works by Shamir and Szlak [2017], who use a semi-adversarial model, and Chapelle
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Table 3.1: Spectrum of delayed feedback settings and the corresponding regret bounds,
progressing from easier to harder settings. Results marked by (*) have matching lower
bounds up to the

√
lnK factor. If all the delays are identical, then D = dT and (**) has

a lower bound following from Cesa-Bianchi et al. [2019] and matching up to the
√

lnK
factor. However, for non-identical delays the regret can be much smaller, as we show in
Example 14.

Setting and reference Regret Bound

Fixed delay
[Cesa-Bianchi et al., 2019]

O
(√

(K + d)T lnK
)

(*)

Delay at action time
[This paper]

O
(

minβ

(
|Sβ|+ β lnK +

KT+Dβ
β

))

Delay at observation time with
known T,D
[This paper]

O
(√

(KT +D) lnK
)

(**)

Anonymous, composite with
known dmax

[Cesa-Bianchi et al., 2018]

O
(√
dmaxKT lnK

)
(*)

[2014], who studies the role of delays in the context of onlne advertising. Chapelle and
Li [2011] perform an empirical study of the impact of delay in bandit models. This is
extended in [Mandel et al., 2015]. The analysis of Exp3 in a delayed setting was initiated
by Neu et al. [2014]. In the stochastic case, bandit learning with delayed feedback was
studied in [Dudík et al., 2011, Vernade et al., 2017]. The results were extended to the
anonymous setting by Pike-Burke et al. [2018] and by Garg and Akash [2019], and to
the contextual setting by Arya and Yang [2019].

3.3 Setting and notation

We consider an oblivious adversarial multiarmed bandit setting, where K sequences
of losses are generated in an arbitrary way prior to the start of the game. The losses
are denoted by `at , where t indexes the game rounds and a ∈ {1, . . . ,K} indexes the
sequences. We assume that all losses are in the [0, 1] interval. We use the notation
[K] = {1, . . . ,K} for brevity. At each round of the game the learner picks an action At
and suffers the loss of that action. The loss `Att is observed by the learner after dt rounds,
where the sequence of delays d1, d2, . . . is determined in an arbitrary way before the
game starts. Thus, at round t the learner observes the losses of prior actions As for which
s + ds = t. We assume that the losses are observed "at the end of round t", after the
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action At has been selected. We consider two different settings for receiving information
about the delays dt:
Delay available at observation time The delay dt is observed when the feedback `Att

arrives at the end of round t+ dt. This corresponds to the feedback being times-
tamped.

Delay available at action time The delay dt is observed at the beginning of round t,
prior to selecting the action At.

The following learning protocol provides a formal description of our setting.
Protocol for bandits with delayed feedback
For t = 1, 2, . . .

1. If delay is available at action time, then dt ≥ 0 is revealed to the learner
2. The learner picks an action At ∈ {1, . . . ,K} and suffers the loss `Att ∈

[0, 1]
3. Pairs

(
s, `Ass

)
for all s ≤ t such that s+ ds = t are observed

We measure the performance of the learner by her expected regret R̄T , which is
defined as the difference between the expected cumulative loss of the learner and the
loss of the best static strategy in hindsight:

R̄T = E

[
T∑
t=1

`Att

]
−min

a

T∑
t=1

`at .

This regret definition is the same as the one used in the standard multiarmed bandit
setting without delay.

3.4 Delay available at observation time: Algorithms and re-
sults

This section deals with the first of our two settings, namely when delays are observed
together with the losses. We first introduce a modified version of "delayed" Exp3, which
we name Delayed Exponential Weights (DEW) and which is capable of handling variable
delays. We then introduce a wrapper algorithm, Skipper, which filters out excessively
large delays. The two algorithms also serve as the basis for the next section, where we
provide yet another wrapper for tuning the parameters of Skipper.

3.4.1 Delayed Exponential Weights (DEW)

DEW is an extension of the standard exponential weights approach to handle delayed
feedback. The algorithm, laid out in Algorithm 2, performs an exponential update using
every individual feedback as it arrives, which means that between each prediction either
zero, one, or multiple updates might occur. The algorithm assumes that the delays are
bounded and that an upper bound dmax ≥ maxt dt on the delays is known.

The following theorem provides a regret bound for Algorithm 2. The bound is a
generalization of a similar bound in Cesa-Bianchi et al. [2019].
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Algorithm 2: Delayed exponential weights (DEW)
Input : Learning rate η; upper bound on the delays dmax

Truncate the learning rate: η′ = min{η, (4edmax)−1};
Initialize wa0 = 1 for all a ∈ [K];
for t = 1, 2, . . . do

Let pat =
wat−1∑
b w

b
t−1

for a ∈ [K];

Draw an action At ∈ [K] according to the distribution pt and play it;
Observe feedback (s, `Ass ) for all {s : s+ ds = t} and construct estimators

ˆ̀a
s = `as1(a=As)

pas
;

Update wat = wat−1 exp
(
−η′

∑
s:s+ds=t

ˆ̀a
s

)
;

end

Theorem 7. Under the assumption that an upper bound on the delays dmax is known,
the regret of Algorithm 2 with a learning rate η against an oblivious adversary satisfies

R̄T ≤ max

{
lnK

η
, 4edmax lnK

}
+ η

(
KTe

2
+D

)
,

where D =
∑T

t=1 dt. In particular, if T and D are known and η =
√

lnK
KTe
2

+D
≤ 1

4edmax
,

we have

R̄T ≤ 2

√(
KTe

2
+D

)
lnK. (3.1)

The proof of Theorem 7 is based on proving the stability of the algorithm across
rounds. The proof is sketched out in Section 3.6. As Theorem 7 shows, Algorithm 2
performs well if dmax is small and we also have preliminary knowledge of dmax, T , and
D. However, a single delay of order T increases dmax up to order T , which leads to a
linear regret bound in Theorem 7. This is an undesired property, which we address with
the skipping scheme presented next.

3.4.2 Skipping scheme

We introduce a wrapper for Algorithm 2, called Skipper, which disregards feedback
from rounds with excessively large delays. The regret in the skipped rounds is trivially
bounded by 1 (because the losses are assumed to be in [0, 1]) and the rounds are taken
out of the analysis of the regret of DEW. Skipper operates with an externally provided
threshold β and skips all rounds where dt ≥ β. The advantage of skipping is that it
provides a natural upper bound on the delays for the subset of rounds processed by
DEW, dmax = β. Thus, we eliminate the need of knowledge of the maximal delay in
the original problem. The cost of skipping is the number of skipped rounds, denoted by
|Sβ|, as captured in Lemma 8. Below we provide a regret bound for the combination of
Skipper and DEW.
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Algorithm 3: Skipper
Input : Threshold β; Algorithm A.

for t = 1, 2, . . . do
Get prediction At from A and play it;
Observe feedback (s, `Ass ) for all {s : s+ ds = t}, and feed it to A for each
s with ds < β;

end

Lemma 8. The expected regret of Skipper with base algorithm A and threshold pa-
rameter β satisfies

R̄T ≤ |Sβ|+ R̄T\Sβ , (3.2)

where |Sβ| is the number of skipped rounds (those for which dt ≥ β) and R̄T\Sβ is a
regret bound for running A on the subset of rounds [T ]\Sβ (those, for which dt < β).

A proof of the lemma is found in Appendix 3.10. When combined with the previous
analysis for DEW, Lemma 8 gives us the following regret bound.

Theorem 9. The expected regret of Skipper(β, DEW(η, β)) against an oblivious adver-
sary satisfies

R̄T ≤ |Sβ|+ max

{
lnK

η
, 4eβ lnK

}
+ η

(
KTe

2
+Dβ

)
, (3.3)

where Dβ =
∑

t/∈Sβ dt is the cumulative delay experienced by DEW.

Proof. Theorem 7 holds for parameters (η, β) for DEW run under Skipper. We then
apply Lemma 8.

Corollary 10. Assume that T and D are known and take

η =
1

4eβ
, β =

√
eKT/2+D

4e +D

4e lnK
.

Then the expected regret of Skipper(β, DEW(η, β)) against an oblivious adversary
satisfies

R̄T ≤ 2

√(
KTe

2
+ (1 + 4e)D

)
lnK.

Proof. Note that D ≥ β|Sβ| ⇒ |Sβ| ≤ D
β . By substituting this into (3.3), observing

that Dβ ≤ D, and substituting the values of η and β we obtain the result.

Note that Corollary 10 recovers the regret scaling in Theorem 7, equation (3.1)
within constant factors in front of D without the need of knowledge of dmax. Similar
to Theorem 7, Corollary 10 is tight in the worst case. The tuning of β still requires the
knowledge of T and D. In the next section we get rid of this requirement.
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3.5 Delay available at action time: Oracle tuning and results

This section deals with the second setting, where the delays are observed before taking
an action. The combined algorithm introduced in the previous section relies on prior
knowledge of T and D for tuning the parameters. In this section we eliminate this
requirement by leveraging the added information about the delays at the time of action.
The information is used in an implicit doubling scheme for tuning Skipper’s threshold
parameter β. Additionally, the new bound scales with the experienced delay Dβ rather
than the full delay D and is significantly tighter when Dβ � D. This is achieved
through direct optimization of the regret bound in terms of |Sβ| and Dβ , as opposed to
Corollary 10, which tunes β using the potentially loose inequality |Sβ| ≤ D/β.

3.5.1 Setup

Let m index the epochs of the doubling scheme. In each epoch we restart the algorithm
with new parameters and continually monitor the termination condition in equation
(3.6). The learning rate within epoch m is set to ηm = 1

4eβm
, where βm is the threshold

parameter of the epoch. Theorem 9 provides a regret bound for epoch m denoted by

Boundm(βm) := |Smβm |+ 4eβm lnK +
σ(m)eK/2 +Dm

βm

4eβm
, (3.4)

where σ(m) denotes the length of epoch m and |Smβm | and Dm
βm

are, respectively, the
number of skipped rounds and the experienced delay within epoch m.

Let ωm = 2m. In epoch m we set

βm =

√
ωm

4e lnK
(3.5)

and we stay in epoch m as long as the following condition holds:

max

{
|Smβm |

2,

(
eKσ(m)

2
+Dm

βm

)
lnK

}
≤ ωm. (3.6)

Since dt is observed at the beginning of round t, we are able to evaluate condition (3.6)
and start a new epoch before making the selection ofAt. This provides the desired tuning
of βm for all rounds without the need of a separate treatment of epoch transition points.

While being more elaborate, this doubling scheme maintains the intuition of standard
approaches. First of all, the condition for doubling (3.6) ensures that the regret bound
in each period is optimized by explicitly balancing the contribution of each term in
equation (3.4). Secondly, the geometric progression of the tuning (3.5) —and thus of the
resulting regret bounds— means that the total regret bound summed over the epochs can
be bounded in relation to the bound in the final completed epoch.

In the following we refer to the doubling scheme defined by (3.5) and (3.6) as
Doubling.

3.5.2 Results

The following results show that the proposed doubling scheme works as well as oracle
tuning of β when the learning rate is fixed at η = 1/4eβ. We first compare our
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performance to the optimal tuning in a single epoch, where we let

β∗m = arg min
βm

Boundm(βm) (3.7)

be the minimizer of (3.4).

Lemma 11. The regret bound (3.4) for any non-final epoch m, with the epochs and βm
controlled by Doubling satisfies

Boundm(βm) ≤ 3
√
ωm ≤ 3 Boundm(β∗m) + 2e2K lnK + 1. (3.8)

The lemma is the main machinery of the analysis of Doubling and its proof is
provided in Appendix 3.10. Applying it to Skipper(β, DEW(η,β)) leads to the following
main result.

Theorem 12. The expected regret of Skipper(β, DEW(η, β)) tuned by Doubling satis-
fies for any T

R̄T ≤ 15 min
β

{
|Sβ|+ 4eβ lnK +

KT +Dβ

4eβ

}
+ 10e2K lnK + 5.

The proof of Theorem 12 is based on Lemma 11 and is provided in Appendix 3.10.

Corollary 13. The expected regret of Skipper(β, DEW(η, β)) tuned by Doubling can
be relaxed for any T to

R̄T ≤ 30

√(
KTe

2
+ (1 + 4e)D

)
lnK + 10e2K lnK + 5. (3.9)

Proof. The first term in the bound of Theorem 12 can be directly bounded using Corol-
lary 10.

Note that both Theorem 12 and Corollary 13 require no knowledge of T and D.

3.5.3 Comparison of the oracle and explicit bounds

We finish the section with a comparison of the oracle bound in Theorem 12 and the
explicit bound in Corollary 13. Ignoring the constant and additive terms, the bounds are

explicit : O
(√

(KT +D) lnK
)
,

oracle : O
(

min
β

{
|Sβ|+ β lnK +

KT +Dβ

β

})
.

Note that the oracle bound is always as strong as the explicit bound. There are, however,
cases where it is much tighter. Consider the following example.

Example 14. For t <
√
KT/ lnK let dt = T − t and for t ≥

√
KT/ lnK let dt = 0.

Take β =
√
KT/ lnK. Then D = Θ(T

√
KT/ lnK), but Dβ = 0 (assuming that

T ≥ K lnK) and |Sβ| <
√
KT/ lnK. The corresponding regret bounds are

explicit : O
(√

KT lnK + T
√
KT

)
= O

(
T 3/4

)
,

oracle : O
(√

KT lnK
)

= O
(
T 1/2

)
.
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3.6 Analysis of Algorithm 2

This section contains the main points of the analysis of Algorithm 2 leading to the
proof of Theorem 7 which were postponed from Section 3.4. Full proofs are found in
Appendix 3.9.

The analysis is a generalization of the analysis of delayed Exp3 in Cesa-Bianchi et al.
[2019], and consists of a general regret analysis and two stability lemmas.

3.6.1 Additional notation

We letNt = |{s : s+ds ∈ [t, t+dt)}| denote the stability-span of t, which is the amount
of feedback that arrives between playing action At and observing its feedback. Note
that letting N = maxtNt we have N ≤ 2 maxt dt ≤ 2dmax, since this may include
feedback from up to maxs ds rounds prior to round t and up to dt rounds after round t.

We introduce Z = (z1, ..., zT ) to be a permutation of [T ] = {1, ..., T} sorted in
ascending order according to the value of z + dz with ties broken randomly, and let
Ψi = (z1, ..., zi) be its first i elements. Similarly, we also introduce Z ′t = (z′1, ..., z

′
Nt

)
as an enumeration of {s : s+ ds ∈ [t, t+ dt)}.

For a subset the integers C, corresponding to timesteps, we also introduce

qa(C) =
exp

(
−η′

∑
s∈C

ˆ̀a
s

)
∑

b exp
(
−η′

∑
s∈C

ˆ̀b
s

) . (3.10)

The nominator and denominator in the above expression will also be denoted by wa(C)
and W (C) corresponding to the definition of pat .

By finally letting Ct−1 = {s : s+ ds < t} we have pat = qa(Ct−1).

3.6.2 Analysis of delayed exponential weights

The starting point is the following modification of the basic lemma within the Exp3

analysis that takes care of delayed updates of the weights.

Lemma 15. Algorithm 2 satisfies

T∑
t=1

K∑
a=1

pat+dt
ˆ̀a
t − min

a∈[K]

∑
t

ˆ̀a
t ≤

lnK

η′
+
η

2

T∑
t=1

K∑
a=1

pat+dt

(
ˆ̀a
t

)2
. (3.11)

To make use of Lemma 15, we need to figure out the relationship between pat+dt
and pat . This is achieved by the following two lemmas, which are generalizations and
refinements of Lemmas 1 and 2 in Cesa-Bianchi et al. [2019].

Lemma 16. When using Algorithm 2 the resulting probabilities fulfil for every t and a

pat+dt − p
a
t ≥ −η′

Nt∑
i=1

qa
(
Ct−1 ∪ {z′j : j < i}

)
ˆ̀a
z′i
, (3.12)

where z′j is an enumeration of {s : s+ ds ∈ [t, t+ dt)}.
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The above lemma allows us to bound pat+dt from below in terms of pat . We similarly
need to be able to upper bound the probability, which is captured in the second probability
drift lemma.

Lemma 17. The probabilities defined by (3.10) satisfy for any i

qa(Ψi) ≤
(

1 +
1

2N − 1

)
qa(Ψi−1). (3.13)

3.6.3 Proof sketch of Theorem 7

By using Lemma 16 to bound the left hand side of (3.11) we have

∑
t

∑
a

pat
ˆ̀a
t −min

a

∑
t

ˆ̀a
t ≤

lnK

η′
+
η′

2

T∑
t=1

K∑
a=1

pat+dt

(
ˆ̀a
t

)2

+ η′
∑
t

∑
a

ˆ̀a
t

Nt∑
i=1

qa
(
Ct−1 ∪ {z′j : j < i}

)
ˆ̀a
z′i
.

Repeated use of Lemma 17 bounds the second term on the right hand side by η′TKe/2
in expectation. The third term on the right hand side can be bounded by D. Taking
the maximum over the two possible values of the truncated learning rate finishes the
proof.

3.7 Discussion

We have presented an algorithm for multiarmed bandits with variably delayed feedback,
which achieves the O

(√
(KT +D) lnK

)
regret bound conjectured by Cesa-Bianchi

et al. [2019]. The algorithm is based on a procedure for skipping rounds with excessively
large delays and refined analysis of the exponential weights algorithm with delayed
observations. At the moment the skipping procedure requires prior knowledge of T and
D for tuning the skipping threshold. However, if the delay information is available "at
action time", as in the examples described in the introduction, we provide a sophisticated
doubling scheme for tuning the skipping threshold that requires no prior knowledge of
T and D. Furthermore, the refined tuning also leads to a refined regret bound of order
O
(

minβ
(
|Sβ| + β lnK +

KT+Dβ
β

))
, which is polynomially tighter when Dβ � D.

We provide an example of such a problem in the paper.
Our work leads to a number of interesting research questions. The main one is

whether the two regret bounds are achievable when the delays are available "at observa-
tion time" without prior knowledge of D and T . Alternatively, is it possible to derive
lower bounds demonstrating the impossibility of further relaxation of the assumptions?
More generally, it would be interesting to have refined lower bounds for problems
with variably delayed feedback. Another interesting direction is a design of anytime
algorithms, which do not rely on the doubling trick. Such algorithms can be used, for
example, for achieving simultaneous optimality in stochastic and adversarial setups
[Zimmert and Seldin, 2019a]. While a variety of anytime algorithms is available for
non-delayed bandits, the extension to delayed feedback does not seem trivial. Some of
these questions are addressed in a follow-up work by Zimmert and Seldin [2019b].
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Supplementary Material for
Chapter 3

3.8 Alternative approaches

This appendix is an addition to the discussion of relevant literature in the introduction.

The present paper follows an approach to delayed feedback based on explicitly
analysing exponential weights with delays and considering the stability of this class
of algorithms. An alternative approach in literature is instead to construct a reduction
from the delayed case to the undelayed case and thus circumventing the need for direct
analysis of the underlying algorithm, since this will usually be well established. Such a
reduction is done in the full information case by Joulani et al. [2016] but with no mention
of how it might apply to the bandit case. Below we briefly sketch their reduction in the
case of OCO with linear loss functions, which specializes to bandits.

Let t index time and s index virtual rounds, meaning rounds where an update is
made. In other words in every round t the algorithm makes a prediction, while in every
round s the algorithm receives one point of feedback. Quantities indexed by virtual
rounds are further denoted by a tilde. τ̃s is the number of virtual rounds (equivalently
updates) between when the action giving rise to loss ˜̀

s is played and the loss is received.
Let the function ρ map a virtual round s where ˜̀

s is observed to the round t = ρ(s)
where it is played. As such `ρ(s) = ˜̀

s, but pρ(s) = p̃s−τ̃s .

Deterministic case: In the full information case for deterministic losses, the actions
(probability distributions) played by the algorithm does not depend on any randomness,
since the feedback is not dependent on the action played. The expected regret can thus
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be regarded as deterministic, and the following reduction can be carried out:

RT =
∑
t

[∑
a

`at p
a
t − `?t

]

=
∑
s

[∑
a

`aρ(s)p
a
ρ(s) − `

?
ρ(s)

]

=
∑
s

[∑
a

˜̀a
s p̃
a
s−τ̃s − ˜̀?

s

]

=
∑
s

∑
a

˜̀a
s

(
p̃as−τ̃s − p̃

a
s

)
+
∑
s

[∑
a

˜̀a
s p̃
a
s − ˜̀?

s

]
,

where we let ? denote the optimal action in hindsight. The point of this calculation is
that the final term above is the regret of the undelayed base algorithm, while the first
term is an additive drift term, similar to what we are considering in Lemma 16.

Conditional case: To extend this to bandits, we need to consider the case where the
actions (probability distributions) of the algorithm depends on the internal randomness.
The expected regret then requires taking expectation over this randomness:

R̄T = E
A1,...,AT

[∑
t

[∑
a

`at p
a
t − `?t

]]

= E
A1,...,AT

[∑
s

∑
a

˜̀a
s

(
p̃as−τ̃s − p̃

a
s

)]
+ E
A1,...,AT

[∑
s

[∑
a

˜̀a
s p̃
a
s − ˜̀?

s

]]
.

Now however the final term is no longer the expected regret of the underlying algorithm
without delays, since the conditional expectations taken here are not the same as they
would be for the undelayed algorithm. In particular the order of the conditional expecta-
tions might be different since the delays are not the same, so the reduction is not directly
applicable.

3.9 Full proof of Theorem 7

This appendix contains the full analysis of Algorithm 2, i.e., proofs of the lemmas in
Section 3.6 and the full proof of Theorem 7.
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3.9.1 Proof of Lemma 15

We consider the quantity

Wt

Wt−1
=

∑
aw

a
t−1

∏
s:s+ds=t

exp
(
−η′ ˆ̀as

)
Wt−1

=
∑
a

pat
∏

s:s+ds=t

exp
(
−η′ ˆ̀as

)
≤
∑
a

pat
∑

s:s+ds=t

exp
(
−η′ ˆ̀as

)
≤
∑
a

pat
∑

s:s+ds=t

(
1− η′ ˆ̀as +

η′2

2

(
ˆ̀a
s

)2
)

=
∑

s:s+ds=t

(
1− η′

∑
a

pat
ˆ̀a
s +

η′2

2

∑
a

pat

(
ˆ̀a
s

)2
)

= 1 + |{s : s+ ds = t}| − 1− η′
∑

s:s+ds=t

∑
a

pat
ˆ̀a
s +

η′2

2

∑
s:s+ds=t

∑
a

pat

(
ˆ̀a
s

)2

≤ exp

|{s : s+ ds = t}| − 1− η′
∑

s:s+ds=t

∑
a

pat
ˆ̀a
s +

η′2

2

∑
s:s+ds=t

∑
a

pat

(
ˆ̀a
s

)2

,
where the first inequality uses that each exp

(
−η′ ˆ̀as

)
is in (0, 1], the second inequality

uses ex ≤ 1 + x+ x2/2 for x ≤ 0, and the final inequality uses ex ≥ 1 + x for all x.
By a telescoping sum and the above we get

WT

W0
≤ exp

−η′∑
t

∑
s:s+ds=t

∑
a

pat
ˆ̀a
s +

η′2

2

∑
t

∑
s:s+ds=t

∑
a

pat

(
ˆ̀a
s

)2

 , (3.14)

using that
∑T

t=1 |{s : s+ ds = t}| ≤ T . We also lower bound this fraction as

WT

W0
≥

maxa exp
(
−η′

∑
s:s+ds≤T

ˆ̀a
s

)
K

≥
maxa exp

(
−η′

∑T
s=1

ˆ̀a
s

)
K

≥
exp

(
−η′mina

∑T
s=1

ˆ̀a
s

)
K

. (3.15)

The proof is completed by combining (3.14) and (3.15), taking logarithms and rearrang-
ing, and noting that the sums of the form

∑
t

∑
s:s+ds=t

only include each value of s
once, and thus are equivalent to summing over s and identifying t = s+ ds.
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3.9.2 Proof of Lemma 16

Note for any set of integers C containing a value x, we have

W (C) =
∑
a

e−η
′ ˆ̀a
xe−η

′∑
s∈C\{x}

ˆ̀a
s ≤

∑
a

e−η
′∑

s∈C\{x}
ˆ̀a
s = W (C\{x}),

which means

qa(C) =
wa(C)

W (C)
≥ wa(C)

W (C\{x})
= e−η

′ ˆ̀a
x
wa(C\{x})
W (C\{x})

= e−η
′ ˆ̀a
xqa(C\{x}).

This in turn implies

qa(C)− qa(C\{x}) ≥
(
e−η

′ ˆ̀a
x − 1

)
qa(C\{x}) ≥ −η′ ˆ̀axqa(C\{x}).

Telescoping this over the individual observations z′1, ..., z
′
Nt

we get

pat+dt − p
a
t = qa(Ct+dt−1)− qa(Ct−1)

=

Nt∑
i=1

qa
(
Ct−1 ∪ {z′j : j ≤ i}

)
− qa

(
Ct−1 ∪ {z′j : j < i}

)
≥ −η′

Nt∑
i=1

ˆ̀a
z′i
qa
(
Ct−1 ∪ {z′j : j < i}

)
3.9.3 Proof of Lemma 17

We prove the lemma by induction. For the base case, consider i = 1, where Ψ0 = ∅,
and thus qa(Ψi−1) = qa(Ψ0) = 1/K. The maximal increase of qa by making a single
observation will be if another arm is chosen and receives a loss of 1, making the loss
estimator equal to K. This means

qa(Ψi) ≤
1

K−1 + e−η′K
≤ 1

K − η′K
≤ 1/K

1− 1
e2N

≤ 1/K

1− 1
2N

=
1

K

(
1 +

1

2N−1

)
,

where first use ex ≥ 1 + x for all x and secondly use the upper bound on η′. since
1/K = qa(Ψ0) the base case is shown.

For the general case, assume that the lemma holds for i− 1. We first show that

qa(Ψi−1) ≥ e−η
′ ˆ̀a
zi qa(Ψi−1)

=
wa(Ψi)

W (Ψi−1)

=
qa(Ψi)W (Ψi)

W (Ψi−1)

= qa(Ψi)
∑
b

e−η
′ ˆ̀b
ziwb(Ψi−1)

W (Ψi−1)

= qa(Ψi)
∑
b

e−η
′ ˆ̀b
zi qb(Ψi−1)

≥ qa(Ψi)

(
1− η′

∑
b

ˆ̀b
ziq

b(Ψi−1)

)
. (3.16)
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By expanding the loss estimator we get

∑
b

ˆ̀b
ziq

b(Ψi−1) = ˆ̀Azi
zi qAzi (Ψi−1) ≤ qAzi (Ψi−1)

qAzi (Czi−1)
=
qAzi (Ψi−1)

qAzi (Ψl(i))
, (3.17)

by using `bzi1(Azi = b) ≤ 1 for b = Azi and the loss estimator is identically zero for all
other b. We here define l(i) as the index in Z of the last observation before round zi. We
now consider the difference in these indices, namely (i− 1)− l(i).

Note that the loss from zi is observed at time zi + dzi , but the losses from rounds
zi−1, zi−2, ... could potentially also be observed at this point. This means that all
observations of losses from rounds Ψi−1\Ψl(i) are found in [zi, zi + dzi ]. As maximally
N observations can be made both in [zi, zi+dzi) and in [zi+dzi , zi+dzi ] by assumption,
and these 2N observations must include the observation of the loss from round zi, we
have a bound of

(i− 1)− l(i) ≤ 2N − 1. (3.18)

Telescoping the probability ratio and using the inductive assumption, we thus have

qAzi (Ψi−1)

qAzi (Ψl(i))
=

i−1∏
j=l(i)+1

qAzi (Ψj)

qAzi (Ψj−1)

≤
i−1∏

j=l(i)+1

(
1 +

1

2N − 1

)

=

(
1 +

1

2N − 1

)2N−1

≤ e. (3.19)

Inserting this into (3.16) and using the upper bound on the learning rate gives us

qa(Ψi−1) ≥ qa(Ψi)(1− η′e)

≥ qa(Ψi)

(
1− 1

2N

)
,

which rearranges to the lemma statement. This concludes the inductive step .

3.9.4 Full proof of Theorem 7

We start by combining Lemmas 15, 16 and 17 in the following way. By using Lemma 16
to bound the left hand side of (3.11) we have

∑
t

∑
a

pt+dt
ˆ̀a
t ≥

∑
t

∑
a

pat
ˆ̀a
t − η′

∑
t

∑
a

ˆ̀a
t

Nt∑
i=1

qa
(
Ct−1 ∪ {z′j : j < i}

)
ˆ̀a
z′i
,

(3.20)
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subtracting the final term gives us:

∑
t

∑
a

pat
ˆ̀a
t −min

a

∑
t

ˆ̀a
t ≤

lnK

η′
+
η′

2

T∑
t=1

K∑
a=1

pat+dt

(
ˆ̀a
t

)2

+ η′
∑
t

∑
a

ˆ̀a
t

Nt∑
i=1

qa
(
Ct−1 ∪ {z′j : j < i}

)
ˆ̀a
z′i
.

(3.21)

Where we note that the left hand side becomes the expected regret when taking expecta-
tions over the choice of At.

The second term on the right hand side of (3.21) can be bounded by repeated use of
Lemma 17:∑

t

∑
a

pat+dt

(
ˆ̀a
t

)2
=
∑
t

∑
a

pat
pat+dt
pat

(
ˆ̀a
t

)2

=
∑
t

∑
a

pat

(
ˆ̀a
t

)2
Nt∏
i=1

qa(Ct−1 ∪ {z′j : j ≤ i})
qa(Ct−1 ∪ {z′j : j < i})

≤
∑
t

∑
a

pat

(
ˆ̀a
t

)2
(

1 +
1

2N − 1

)Nt
≤
∑
t

∑
a

pat

(
ˆ̀a
t

)2
(

1 +
1

2N − 1

)2N−1

≤
∑
t

∑
a

pat

(
ˆ̀a
t

)2
e,

which in expectation is bounded by TKe.
The final term in (3.21) requires a bit more work. We first note that:

E

[∑
t

∑
a

ˆ̀a
t

Nt∑
i=1

qa
(
Ct−1 ∪ {z′j : j < i}

)
ˆ̀a
z′i

]
≤
∑
t

Nt,

since t is not part of the enumeration z′j , so the two expectations are taken independently:
E[ˆ̀az′j

] ≤ 1 and E[ˆ̀at ] ≤ 1. Additionally we use that qa is a distribution. We now note
that summing over t or s is equivalent in the above, i.e.,∑

t

Nt ≤
∑
t

|{s : s+ ds ∈ [t, t+ dt)}| =
∑
s

|{t : s+ ds ∈ [t, t+ dt)}|,

since counting in how many intervals every loss is observed in is the same as counting
how many losses are observed in every interval. Note that we implicitly restrict both s
and t to be in [T ].

We now split this∑
s

|{t : s+ ds ∈ [t, t+ dt)}| =
∑
s

|{t > s : s+ ds ∈ [t, t+ dt)}|

+ |{t < s : s+ ds ∈ [t, t+ dt)}|
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and bound the first term as

|{t > s : s+ ds ∈ [t, t+ dt)}| ≤ |{t > s : t ≤ s+ ds}\{t > s : t+ dt < s+ ds}|
≤ ds − |{t > s : t+ dt < s+ ds}|, (3.22)

The second term is similarly bounded as

|{t < s : s+ ds ∈ [t, t+ dt)}| ≤ |{t < s : s+ ds < t+ dt}|. (3.23)

Finally we note that by the prior equivalency of summing over t or s, the negative term
in (3.22) cancel with (3.23) once summed. This bounds the final term of (3.21) by D
and results in

R̄T ≤
lnK

η′
+ η′

(
eKT

2
+D

)
. (3.24)

We now consider the truncation of the learning rate which is mandated by Lemma 17. If
the input learning rate fulfils η ≤ (2eN)−1 then η′ = η, and (3.24) simply becomes

R̄T ≤
lnK

η
+ η

(
eKT

2
+D

)
,

where η is the input learning rate.
If instead the learning rate is truncated, meaning the input learning rate is larger than

(2eN)−1, the algorithm uses η′ = (2eN)−1, meaning (3.24) becomes

R̄T ≤ 2eN lnK +
eKT

2 +D

2eN
≤ 2eN lnK + η

(
eKT

2
+D

)
.

Taking the maximum of these two regret bounds finalizes the proof for any input learning
rate η.

3.10 Additional proofs

3.10.1 Proof of Lemma 8

Consider first skipping just one round s. We then have

R̄T := E
A1,...,AT

[∑
t

∑
a

pat `
a
t

]
−min

a

∑
t

`at

≤ E
A1,...,AT

[∑
a

pas`
a
s

]
−min

a
`as + E

A1,...,AT

∑
t6=s

∑
a

pat `
a
t

−min
a

∑
t6=s

`at

≤ 1 + E
A1,...,As−1,As,...,AT

∑
t6=s

∑
a

pat `
a
t

−min
a

∑
t6=s

`at

= 1 + R̄T\{s},

where the first inequality uses mina[xa + ya] ≥ mina xa + mina ya for any x, y and the
second inequality uses `as ∈ [0, 1] for all a and pas being a distribution. In this line we
also use the fact that no pt depend on As. The proof is then complete by iterating this
argument over all s ∈ C.
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3.10.2 Proof of Lemma 11

The first inequality follows directly from insertion of βm =
√
ωm/4e lnK into (3.4) and

using the doubling condition for staying in the epoch (3.6).
For the second condition, we consider several cases of the optimal value in epoch m:

Case 1 If β∗m ≥ βm we have

Boundm(β∗m) ≥ 4eβ∗m lnK ≥ 4eβm lnK =
√
ωm ≥

Boundm(βm)

3
, (3.25)

In all following cases we consider β∗m < βm.

Case 2 We now consider the case where β∗m < βm and the doubling happened because
the number of skipped rounds grew to large. This implies the following inequality(

|Smβm |+ 1
)2 ≥ ωm,

leading to

Boundm(β∗m) ≥ |Smβ∗m | ≥ |S
m
βm | ≥

√
ωm − 1 ≥ Boundm(βm)

3
− 1, (3.26)

where the second inequality comes from the assumption that β∗m < βm, meaning at least
as many delays are skipped using β∗m, as this is a lower threshold for skipping.

Case 3 If β∗m < βm and the doubling instead happened because the second term grew
too large, we have the following inequality:(

Ke/2 · (σ(m) + 1) +Dm
βm + βm

)
lnK ≥ ωm. (3.27)

In this case we have

Boundm(β∗m) ≥
eKσ(m)/2 +Dm

β∗m

β∗m

=
βm
β∗m

(
eKσ(m)/2 +Dm

βm

βm
+
Dm
β∗m
−Dm

βm

βm

)

=
βm
β∗m

(
eKσ(m)/2 +Dm

βm

βm
−∆|S|

)
(3.28)

=
βm
β∗m

(
4e
√
ωm −

eK

2βm
− 1−∆|S|

)
(3.29)

=
βm
β∗m

(
4e
√
ωm −

2e2K lnK
√
ωm

− 1−∆|S|
)
, (3.30)

where (3.28) uses Dm
βm
≤ Dm

β∗m
+ βm∆|S| for ∆|S| = |Smβ∗m | − |S

m
βm
|. For (3.29) we

use (3.27) with βm =
√
ωm/4e lnK.
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Again we consider cases, this time of (3.30). Assume first

4e
√
ωm −

2e2K lnK
√
ωm

− 1−∆|S| ≥ 2e
√
ωm.

which means

Boundm(β∗m) ≥ βm
β∗m

2e
√
ωm ≥ Boundm(βm).

If we instead assume

4e
√
ωm −

2e2K lnK
√
ωm

− 1−∆|S| ≤ 2e
√
ωm,

which implies

∆|S| ≥ 2e
√
ωm −

2e2K lnK
√
ωm

− 1,

we directly have

Boundm(β∗m) ≥ ∆|S| ≥ Boundm(βm)− 2e2K lnK − 1, (3.31)

where we have used
√
ωm ≥ 1. Note that this final inequality is the worst case of case 3.

Finally we compare the cases: Noting that they are exhaustive and by comparing
(3.25), (3.26) and (3.31) the lemma is proven.

3.10.3 Proof of Theorem 12

The idea of the proof is to use the nature of the doubling schema in the usual way,
combined with Lemma 11 for the second to last epoch.

Let M be the total number of epochs in the doubling schema:

R̄T ≤
M∑
m=

Boundm(βm)

≤
M∑
m=1

3
√
ωm

=

M∑
m=1

3
√

2
m

= 3

√
2
M+1 − 1√
2− 1

≤ 6√
2− 1

√
2M−1

=
6√

2− 1

√
ωM−1

≤ 2√
2− 1

(
3 BoundM−1(β∗M−1) + 2e2K lnK + 1

)
.
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The proof is finalised by

BoundM−1(β∗M−1) ≤ min
β

{
|Sβ|+ 4eβ lnK +

KT +Dβ

4eβ

}
.
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Chapter 4

Conclusion

In this thesis we have explored how the framework of multi-armed bandits can be used
to understand two variations of online learning.

We have shown that one point of extra feedback is enough to circumvent a recently
proven impossibility in multi-armed bandits of having a regret scaling linearly in the
effective loss range. For two point feedback this desired scaling is achieved by an
adaptive algorithm requiring no prior information about the learning setting. We have
shown that this regret scaling is near-optimal and further that our algorithm achieves
constant regret for stochastic losses while maintaining the scaling in the effective loss
range. The algorithm requires no knowledge about the stochasticity in order to enjoy this
regret bound, thereby allowing it to exploit two kinds of easiness at once while being
robust to the worst case scenario.

We have further explored the setting of nonstochastic multi-armed bandits with ar-
bitrary delays. Here we prove a recent conjecture in two steps. First we generalized the
analytical approach of algorithmic stability from the fixed delays setting. This proves
the conjectured regret bound for arbitrary, but bounded delays. Secondly we introduced
a meta-algorithm that skips feedback with excessive delays. This alleviates the necessity
of bounded delays for the combined algorithm, thereby proving the conjecture for any
delay sequence. For the slightly easier learning setting where the learner has access to the
present delay prior to making a prediction we designed a novel tuning scheme. With this
our algorithm is able to achieve a much better regret bound for certain delay sequences,
with a potential polynomial improvement. This is the case while maintaining the con-
jectured bound and without requiring knowledge of the time horizon or cumulative
delay.

4.1 Future directions

Multi-armed bandits is a lively and active field and our knowledge keeps growing. As
such this thesis presents just a few steps towards understanding online learning. For the
specific models explored in this thesis, several open questions emerge:

In the case of the small effective loss range we do not know of a lower bound for the
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stochastic case. Such a lower bound would allow for an approach towards simultaneous
optimality in addition to the current simultaneous adaptivity.

As Cesa-Bianchi and Shamir [2018] have shown that aggregate information about the
loss vector also allows for adaptation to the effective loss range, it could be interesting to
approach what a minimal, sufficient amount of additional information might be.

For the setting of delayed feedback, the question of the best possible regret scaling is
left open. While the regret bound for the fixed delay setting of Cesa-Bianchi et al. [2019]
is tight up to logarithmic factors, there exist no lower bound for the general case. Our
improved regret bound for certain delay sequences suggest that the conjectured bound is
not tight. The follow-up work of Zimmert and Seldin [2019b] discusses this however the
question remains open.

Previously the case of arbitrary delays has been studied in the stochastic case [Joulani
et al., 2016]. Achieving best-of-both-worlds results for arbitrary delays is an interesting
open question.
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