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A B S T R A C T

With recent advancements in deep learning and the infrastruc-
ture to support training models on large amounts of data, there
has been an increasing emphasis on developing data-driven
Natural Language Processing (NLP) systems which contain bil-
lions of parameters and optimize for language understanding
benchmark datasets. While many of these systems now exceed
human performance in such benchmarks, this progress has been
at the expense of other desirable system qualities such as user
satisfaction, fairness and transparency. Due to their black-box na-
ture, the full extent of model capabilities is still not completely
clear, yet, there is increasing evidence showing that systems
learn undesirable and socially unacceptable patterns and can
make correct predictions for the wrong reasons. These chal-
lenges make adoption of systems by users controversial, corrode
user trust in the system and make it unethical to deploy systems
in the wild without understanding their impact on society.

As a response to this progression in the field, the studies
in this dissertation adopt an interdisciplinary human-centered
approach for studying and improving NLP systems. This per-
spective emphasizes that NLP technology must be built with an
understanding of humans, society and the impact it has on both.

Specifically, this dissertation investigates ways of (1) improv-
ing performance of NLP systems by leveraging user interactions
and (2) ensuring fairness and transparency in NLP systems. The
first part of the thesis demonstrates how to incorporate user
interactions and user feedback signals that better align to hu-
man expectations in the real world, to improve the predictive
performance of dialogue systems and improve their ability to
adapt to new domains. As ethical concerns have emerged in
recent years, the second part of this dissertation shifts focus,
acknowledging the need for better evaluation. The incorporat-
ing knowledge from NLP, Human Computer Interaction (HCI),
linguistics, and cognitive science, more meaningful evaluation
protocols can be created to assess the fairness and transparency
of NLP models.

v



A B S T R A C T I N D A N I S H

Nylige fremskridt inden for både deep learning og infrastruktu-
ren til at træne modeller på store datamængder har muliggjort
udviklingen af datadrevne Natural Language Processing (NLP)-
modeller. Sådan modeller indeholder milliarder af parametre og
har forbedret benchmarks på natural language understanding-
datasæt. Selvom flere automatiske modeller nu er bedre end
mennesker på disse benchmarks, er landvindingerne sket på be-
kostning af andre kvaliteter ved de automatiske systemer såsom
brugertilfredshed, fairness og transparens. Fordi modellerne er black
boxes, er det fulde omfang af deres egenskaber ikke afdækket,
men der er stigende evidens for, at systemerne lærer uønskede
og socialt uacceptable mønstre og klassificerer korrekt, men ud
fra forkerte grunde. Disse udfordringer ødelægger tilliden til
systemerne og gør det kontroversielt og uetisk at anvende dem
i praksis uden at forstå deres indvirkning på samfundet.

Som en reaktion på denne udvikling anvender studierne i
denne afhandling i stadig højere grad en tværfaglig brugercen-
tret tilgang for at undersøge og forbedre NLP-systemer. Denne
tilgang understreger at teknologien skal udvikles med en forstå-
else for mennesker og samfund samt teknologiens indvirkning
på disse.

Denne afhandling fokuserer specifikt på måder (1) at forbed-
re NLP-systemer ved at udnytte brugerinteraktioner og (2) at
sikre fairness og transparens i NLP-systemer. Den første del af
afhandlingen demonstrerer hvordan inkorporering af bruger-
interaktioner og diskret feedback kan øge funktionaliteten af
dialogsystemer og deres evne til at tilpasse sig nye tekstdomæ-
ner. De seneste år er etiske overvejelser blevet mere aktuelle
og anden del af afhandlingen skifter fokus idet jeg anerkender
et øget behov for bedre evaluering. Jeg demonstrerer i denne
afhandling at kombineret viden fra NLP, Human Computer In-
teraction, lingvistik og kognitionsvidenskab kan skabe skarpere
evalueringprotokoller for at evaluere fairness og transparens i
NLP-modeller.

vi



P U B L I C AT I O N S

This is an article-based dissertation. Below is a list of the publi-
cations (and manuscripts) that are included in this thesis. The
research conducted during my studies, has been a collaboration
with international as well as Danish researchers in NLP and
Human-centered AI.

Bingel, Joachim, Victor Petrén Bach Hansen, González, Ana Va-
leria, Paweł Budzianowski, Isabelle Augenstein, and Anders
Søgaard (2019). “Domain Transfer in Dialogue Systems with-
out Turn-Level Supervision.” In: 3rd NeurIPS Conversational
AI Workshop: “Today’s Practice and Tomorrow’s Potential. ”

González, Ana Valeria, Isabelle Augenstein, and Anders Sø-
gaard (2019). “Retrieval-Based Goal-Oriented Dialogue Gen-
eration.” In: 3rd NeurIPS Conversational AI Workshop: “Today’s
Practice and Tomorrow’s Potential.”

González, Ana Valeria, Gagan Bansal, Angela Fan, Yashar Mehdad,
Robin Jia, and Srini Iyer (2021). “Do Explanations Help Users
Detect Errors in Open-Domain QA? An Evaluation of Spoken
vs. Visual Explanations.” In: Currently under review.

González, Ana Valeria, Maria Barret, Rasmus Hvingelby, Kelly
Webster, and Anders Søgaard (2020). “Type B Reflexivization
as an Unambiguous Testbed for Multilingual Multi-Task Gen-
der Bias.” In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

González, Ana Valeria, Anna Rogers, and Anders Søgaard
(2021). “On the Interaction of Belief Bias and Explanations.”
In: Currently under review.

González, Ana Valeria and Anders Søgaard (2020). “The Re-
verse Turing Test for Evaluating Interpretability Methods on
Unknown Tasks.” In: NeurIPS Workshop on Human And Ma-
chine in-the-Loop Evaluation and Learning Strategies.

vii



Below are a list of papers which I have authored and co-
authored during my time as a PhD student, which are not part
of this thesis.

Abdou, Mostafa, Ana Valeria González, Mariya Toneva, Daniel
Herschcovich, and Anders Søgaard (2021). “Does injecting
linguistic structure into language models lead to better align-
ment with brain recordings?” In: Currently under review.

Aralikatte, Rahul, Heather Lent, Ana Valeria González, Daniel
Herschcovich, Chen Qiu, Anders Sandholm, Michael Ringaard,
and Anders Søgaard (2019). “Rewarding Coreference Re-
solvers for Being Consistent with World Knowledge.” In: Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 1229–1235.

Beloucif, Meriem, Ana Valeria González, Marcel Bollmann, and
Anders Søgaard (2019). “Naive Regularizers for Low-Resource
Neural Machine Translation.” In: Proceedings of the International
Conference on Recent Advances in Natural Language Processing
(RANLP 2019), pp. 102–111.

González, Ana Valeria (2021). “Towards Human-Centered NLP:
An Interdisciplinary Perspective.” In: Proceedings of the 1st
workshop on Bridging HCI and NLP at EACL. Association for
Computational Linguistics.

González, Ana Valeria, Isabelle Augenstein, and Anders Søgaard
(Oct. 2018). “A strong baseline for question relevancy rank-
ing.” In: Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Brussels, Belgium:
Association for Computational Linguistics, pp. 4810–4815.

González, Ana Valeria, Victor Petrén Bach Hansen, Joachim Bin-
gel, and Anders Søgaard (2019). “Coastal at semeval-2019 task
3: Affect classification in dialogue using attentive bilstms.”
In: Proceedings of the 13th International Workshop on Semantic
Evaluation, pp. 169–174.

viii



A C K N O W L E D G M E N T S

Throughout my studies, I have been extremely lucky to be
surrounded by people (at work and outside) who have always
made me feel supported. To all the members of CoAStaL, former
and current, thank you for making these last three years more
fun! Mostafa, Victor, Heather, Meriem, Joachim, Maria, Marcel,
Mareike, and many I don’t have space to mention, thanks for
being great friends and colleagues.

The great working environment at CoAStaL is in large part
due to my supervisor, Anders. Thanks for all the optimism
and motivation you provided when I most needed it! I am
also incredibly grateful to my colleagues during my time at
Facebook AI. Srini, Robin, Angela, Yashar, and Gagan thanks for
a really enjoyable internship despite the current unprecedented
world events. I look forward to meeting you all in person in a
post-pandemic time.

While writing this dissertation, I had many people read and
provide extremely valuable feedback on different versions; some
versions were considerably more rough than others. Thanks to
Maria Barrett, David Vilares, Mostafa, Joachim, Mareike, Simon,
Anders, Daniel, Mathias, and my dad (yes, my dad read and
gave me very valuable feedback on the structure of my thesis!).
Special shout out to Joachim and Maria for reading different
parts of my thesis multiple times!

To all my friends, near and far, thank you for always cheering
me on and helping me have a much needed balance in my life.
Mathias, thank you for your endless support, the last year and
a half has particularly been filled with amazing company and
delicious food.

Last but not least, my family. My sisters, abuelas, tíos, primos;
always cheering for me no matter how far apart we are. And
of course my parents, I am infinitely grateful for all your hard
work and sacrifices. I am utterly aware that me being where I
am, would never have happened if you had not taken a series of
very tough decisions throughout the years; I do not take that for
granted. I am forever grateful, in a way that cannot be expressed
in a paragraph (or page) of an acknowledgements section!

ix





C O N T E N T S

i background

1 introduction 3

1.1 Towards Human-centered NLP . . . . . . . . . . . 4

1.2 Human-centric Ways of Improving Human-AI
interaction . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Learning from user interactions . . . . . . . 6

1.2.2 Fairness and transparency in the system . 8

1.3 Research Questions . . . . . . . . . . . . . . . . . . 10

1.4 Thesis outline and contributions . . . . . . . . . . 11

1.4.1 Part ii: Learning from user interactions . . 11

1.4.2 Part iii: Investigating fairness and trans-
parency in NLP systems . . . . . . . . . . . 12

2 background 15

2.1 Advances in Transfer Learning for NLP . . . . . . 15

2.1.1 Sequential transfer learning . . . . . . . . . 17

2.2 Transfer learning in dialogue systems . . . . . . . 20

2.2.1 Goal-oriented dialogue . . . . . . . . . . . . 21

2.2.2 Open-ended chit chat . . . . . . . . . . . . . 21

2.2.3 Initial goals . . . . . . . . . . . . . . . . . . 22

2.2.4 Recent advancements in dialogue using
large pretrained models . . . . . . . . . . . 23

2.3 Research Shift: Ethical challenges . . . . . . . . . . 24

2.4 Fairness and Transparency in NLP systems . . . . 26

2.4.1 Detection of social bias in NLP . . . . . . . 26

2.4.2 Explainability methods . . . . . . . . . . . . 28

2.4.3 Evaluation of explainability . . . . . . . . . 29

ii learning from user interactions

3 retrieval-based goal-oriented dialogue gen-
eration 35

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Model Description . . . . . . . . . . . . . . . . . . 37

3.3.1 HRED . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Exemplar-HRED . . . . . . . . . . . . . . . 38

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Dataset and preprocessing . . . . . . . . . . 40

3.4.2 Metrics . . . . . . . . . . . . . . . . . . . . . 40

3.5 Results and Discussion . . . . . . . . . . . . . . . . 42

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . 44

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 45

xi



xii contents

4 domain transfer without turn-level super-
vision 47

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Baseline Architecture . . . . . . . . . . . . . . . . . 48

4.4 Domain Transfer Using Reinforcement Learning . 50

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . 52

4.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.2 Implementation Details . . . . . . . . . . . 53

4.5.3 Experimental Protocol . . . . . . . . . . . . 54

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Analysis . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7.1 Error Analysis . . . . . . . . . . . . . . . . . 57

4.7.2 Comparisons to Weak Supervision . . . . . 57

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . 58

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 60

iii investigating fairness and transparency in

nlp

5 type b reflexivization as a testbed for gen-
der bias 63

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . 63

5.3 The Anti-reflexive Bias Challenge . . . . . . . . . . 66

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Analysis: Biased statistics? . . . . . . . . . . . . . . 73

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . 75

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 77

6 the reverse turing test for evaluating in-
terpretability 79

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Human Bias in Forward Prediction . . . . . . . . . 81

6.4 LIME – and its Limitations . . . . . . . . . . . . . . 82

6.5 Human Forward Prediction Experiments . . . . . 83

6.5.1 Tasks and Data . . . . . . . . . . . . . . . . 84

6.5.2 Classification Model . . . . . . . . . . . . . 85

6.5.3 Stimulus Presentation . . . . . . . . . . . . 86

6.5.4 Pre-Experiment: The Effect of Training on
Forward Prediction . . . . . . . . . . . . . . 87

6.5.5 Main Experiment: The Effect of Local In-
terpretable Model-agnostic Explanations
(LIME) on Forward Prediction . . . . . . . . 88

6.6 Related Works . . . . . . . . . . . . . . . . . . . . . 90

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 93



contents xiii

7 on the interaction of belief bias and expla-
nations 95

7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . 95

7.3 Belief Bias . . . . . . . . . . . . . . . . . . . . . . . 97

7.4 Related Work . . . . . . . . . . . . . . . . . . . . . 98

7.5 Experimental Setup . . . . . . . . . . . . . . . . . . 100

7.5.1 Models . . . . . . . . . . . . . . . . . . . . . 100

7.5.2 Data . . . . . . . . . . . . . . . . . . . . . . . 101

7.5.3 Explainability Methods . . . . . . . . . . . 101

7.6 Experiment 1: Human Forward Prediction . . . . 102

7.7 Experiment 2: Best Model Selection . . . . . . . . 106

7.8 Discussion: Mitigating Belief Bias . . . . . . . . . . 110

7.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 111

8 an evaluation of spoken vs . visual explana-
tions 113

8.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . 113

8.3 Related Work . . . . . . . . . . . . . . . . . . . . . 115

8.4 Visual vs. Spoken Modalities . . . . . . . . . . . . 117

8.5 Experimental Setup . . . . . . . . . . . . . . . . . . 118

8.5.1 Explanation Types and Conditions . . . . . 118

8.5.2 Hypotheses . . . . . . . . . . . . . . . . . . 119

8.5.3 Implementation Details for Conditions . . 119

8.5.4 User study & Interface . . . . . . . . . . . . 121

8.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.6.1 Quantitative Results . . . . . . . . . . . . . 124

8.6.2 Qualitative results . . . . . . . . . . . . . . . 126

8.6.3 What misleads users? . . . . . . . . . . . . 128

8.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . 130

8.7.1 Why Explanations Worked for Open-domain
Question Answering (ODQA)? . . . . . . . . 130

8.7.2 Implications and Recommendations . . . . 131

8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 132

iv discussion and conclusion

9 discussion of the contributions 137

10 future directions 141

v appendix

a appendix 145

a.1 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . 145

a.1.1 Example Data . . . . . . . . . . . . . . . . . 145

a.1.2 Coreference Dataset Statistics . . . . . . . . 147

a.2 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . 147

a.3 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . 148

a.3.1 Experiment 1: Human Forward Prediction 148



xiv contents

a.3.2 Experiment 2: Best Model Selection . . . . 149

a.4 Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . 151

a.4.1 Temperature Scaling . . . . . . . . . . . . . 151

a.4.2 Additional Preprocessing . . . . . . . . . . 152

a.4.3 Task Setup: Additional details . . . . . . . 153

a.4.4 Post-task survey . . . . . . . . . . . . . . . . 154

a.4.5 Results . . . . . . . . . . . . . . . . . . . . . 154

a.4.6 Explanation Examples . . . . . . . . . . . . 158

bibliography 159



L I S T O F F I G U R E S

Figure 3.1 Our model is similar to HRED (Sordoni
et al., 2015a), we include an utterance en-
coder, a context encoder and a decoder,
however, unlike HRED, our model in-
clude a simple, yet effective retrieval step
used to condition the decoder to generate
responses that are more appropriate for a
specific domain and context. . . . . . . . . 39

Figure 4.1 Illustration of our proposed domain trans-
fer dialogue state tracker, using a model
MP trained with turn-level supervision
on dP as a starting point for the finetun-
ing policy πθ(s|a) on domain dF. . . . . . 49

Figure 4.2 The performance of the supervised model
trained on the hotel domain while eval-
uated on the development set of the taxi

domain after each epoch until conver-
gence on hotel versus the improvements
we get from the policy gradient finetun-
ing using the supervised model as start-
ing point. . . . . . . . . . . . . . . . . . . . 56

Figure 4.3 The turn level accuracy of our weakly
supervised finetuning compared to fine-
tuning using PG. Performance plateaus
after about 50 samples for both methods. 56

Figure 5.1 Correlations between collected labor statis-
tics. Numbers > 0.7 are significant (p <
0.01). . . . . . . . . . . . . . . . . . . . . . . 75

Figure 6.1 Our experimental protocol. For each task,
we train our models using standard datasets
and evaluate the model on held out train-
ing data and testing data to be used for
the training and evaluation sessions in-
volving humans. We also extract LIME
explanations. In the human experiments
phase, the humans train and evaluate in
these 2 conditions (LIME explanation or
no explanation). Finally, we compare the
results. . . . . . . . . . . . . . . . . . . . . 83

xv



xvi list of figures

Figure 6.2 Example LIME explanation stripped of model
decisions and class probabilities. We turn
the images into gray scale to only high-
light overall importance and avoid hint-
ing the model’s final decision. . . . . . . . 86

Figure 6.3 Comparing Known and Unknown Tasks.
i) Left bars show mean inference time
(secs) with LIME explanations; ii) middle
bars show mean inference time without;
and iii) right bars show mean inference
time across all tasks, with and without LIME. 91

Figure 7.1 Evaluation protocols considered in this
work . . . . . . . . . . . . . . . . . . . . . . 96

Figure 7.2 Interface for Experiment 1 for low condi-
tion. To select model predictions, partici-
pants clicked on tokens to select the start
and end of the span. Then they would
see the actual model prediction. . . . . . . 103

Figure 7.3 Experiment 1 UI: Low(bottom) vs High(top)
condition. . . . . . . . . . . . . . . . . . . . 107

Figure 7.4 Feedback categories and their distribu-
tion. We observed that the High vs
Medium condition results are consider-
ably different from the High vs Low

condition, with more participants giving
generic answers for vanilla gradients, and
emphasizing the irrelevant terms high-
lighted in the Integrated Gradients (IG)
condition. . . . . . . . . . . . . . . . . . . . 109

Figure 8.1 Using end-to-end user studies, we eval-
uate whether explanation strategies of
open-domain QA assistants help users
decide when to trust (or reject) predicted
answers. . . . . . . . . . . . . . . . . . . . . 114

Figure 8.2 UI for visual (left) and spoken modali-
ties (right) for ext-sent explanation type.
Users either read or hear an explanation
and decide whether to trust or discard
the Question Answering (QA) system’s
prediction. . . . . . . . . . . . . . . . . . . 120



list of figures xvii

Figure 8.3 Accuracy of users at error detectability
(75 workers per condition). In the spo-
ken modality, ext-sent explanations yield
the best results and is significantly bet-
ter than conf. In contrast, in the visual
modality, ext-long explanations perform
best. We observe a statistically significant
(p < 0.01) difference between ext-long

in visual vs spoken, perhaps due to dif-
ferences in user’s cognitive limitations
across modalities. . . . . . . . . . . . . . . 123

Figure 8.4 (Left) Explanations significantly increased
participant ability to detect correct an-
swers compared to simply displaying con-
fidence. (Right) However, only ext-sent

in the spoken modality and both expla-
nations in the visual modality decreased
the rate at which users are misled. . . . . 125

Figure 8.5 Voice clarity: Most participants found
the voice of the assistant to be good or
excellent. . . . . . . . . . . . . . . . . . . . 126

Figure 8.6 Top: Users perceive the same explana-
tion to be longer in the spoken modality.
Bottom: While ext-sent and Abs were
the same length, participants rate the lat-
ter as longer more often perhaps because
of they contain more content. . . . . . . . 127

Figure A.1 (a) Example of item in the training ses-
sion for sentence length prediction. Note
that the participants are able to check
the model answer (b) Example of item in
the evaluation session for sentence length
prediction. Here the participants are no
longer able to check the model answer . . 148

Figure A.2 Confidence before and after calibration. . 151

Figure A.3 Reward: The scores presented here are
out of $ 2.70. Although all explanations
are better than confidence, the expla-
nations leading to the highest rewards
change across modalities. . . . . . . . . . 155



Figure A.4 Helpfulness: Participants indicated how
helpful responses were. These results re-
flect the large differences we see in per-
formance ( baseline vs the rest of the
settings), but are not able to capture the
more subtle differences among explana-
tion strategies and confidence. . . . . . 156

L I S T O F TA B L E S

Table 3.1 Statistics of the MultiWOZ training data . 40

Table 3.2 The results of our dialogue generation
experiments comparing HRED Serban et
al. (2016) and Sordoni et al. (2015a) to
our proposed exemplar-based model. We
present results for standard metrics used
in dialogue generation. For all the metrics
we observe improvements over the strong
baseline, with our best improvement of 6

percent in the vector extrema metric . . . 43

Table 3.3 Examples of responses generated by both
the baseline and our proposed model. By
examining the outputs, it becomes notice-
able that the baseline model tends to gen-
erate responses that are not precise about
the current domain of the conversation
(hotel, taxi booking, trains, restaurant, etc). 44

Table 4.1 Statistics of the MultiWOZ dataset. The
reported numbers are from our processed
dataset. . . . . . . . . . . . . . . . . . . . . 51

xviii



list of tables xix

Table 4.2 Accuracy scores for our pretrained base-
line (bl) and the policy gradient finetun-
ing (pg). The colored results along the
left-to-right downward diagonal are in-
domain results, dark red being the super-
vised results and light green the policy
gradient finetuned results, and each pair
of columns compare the baseline and sys-
tem results for each target domain. The
Averages row presents the average out-
of-domain transfer scores for each do-
main. Note that while the PG method
has access to more data, this does not in-
validate the comparison, seeing that the
additional data is relatively easy to obtain
in an applied setting. . . . . . . . . . . . . 53

Table 4.3 Comparison of example turn predictions
from the MultiWOZ dataset between the
baseline model trained on the hotel do-
mains, and the policy gradient finetuned
model. Green indicates a correct predic-
tion whereas red indicates a wrong pre-
diction. . . . . . . . . . . . . . . . . . . . . 57

Table 5.1 In Type B reflexivization (Heine, 2005),
3rd person pronouns cannot be used re-
flexively. We are interested in Type B
languages with gendered pronouns, and
where the non-gendered special (3rd per-
son) reflexive marker has a possessive form. 64

Table 5.2 Gender Bias Results. Performance on
benchmarks and Anti-reflexive Bias Chal-
lenge (ABC). X: Pearson’s ρ of error ∆ on
sentences with feminine pronouns and
% of women in corresponding occupa-
tions significant (p < 0.01); see S for a
discussion of the statistics. †: Systems
insensitive to variation in pronouns. . . . 71



xx list of tables

Table 6.1 Results from Main Experiment. Columns
1–2: accuracy of human forward predic-
tion results on plain input (x) or aug-
mented with LIME interpretations ( LIME(x)).
∗: Significance of α < .05 computed with
Mann-Whitney U test. Columns 3–4: av-
erage duration of evaluation sessions (hu-
man inference time). Column 5 lists the
model accuracies with respect to human
gold annotation; which we compare with
human accuracies with respect to human
gold annotation. . . . . . . . . . . . . . . 89

Table 7.1 Human forward prediction results ( Hu-
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B A C K G R O U N D





1
I N T R O D U C T I O N

The fields of Human Computer Interaction (HCI) and Artificial
Intelligence (AI) emerged at different points in the history of
computer science and with seemingly different goals. For in-
stance, the core idea of AI—that human cognitive processes can
be mechanized—has a long history dating back to the 12th-17th
centuries (and even earlier) with philosophers who speculated
that human reasoning can be reduced to mechanical calculation
(Carreras and Carreras, 1939; McCorduck, 2004). The modern
history of AI as a field in computer science studying intelligent
agents exploded in the 1950s following many historic events in-
cluding the emergence of the first modern computers (Goldstine
and Goldstine, 1946), the landmark paper devising the famous
Turing Test (Turing, 1950), and the Dartmouth conference where
the term Artificial Intelligence was coined by John McCarthy
and Marvin Minsky.

In contrast to the long history of that term, the field of HCI,
which studies the design and use of computing systems by
human users, is very young. As the early computers were only
available to computer scientists, engineers, or people who had
a particular interest in such technologies, research in computer
usability was not as widespread. The birth of HCI came with
the era of personal computing in the 1980s1(MacKenzie, 2012),
with key events such as the first SIGCHI conference, the pub-
lication of the seminal book The Psychology of Human-Computer
Interaction (Card, 1983) coining the term HCI and the arrival of
the Apple Macintosh, the first successful mass-market personal
computer. In the years to come, HCI began to expand rapidly
as an interdisciplinary research area which included the fields
of computer science, cognitive science, psychology and human
factors engineering, among many others.

Despite their different roots, today, HCI and AI are interacting
and converging more than ever before. While for many years
AI systems that were part of everyday life were mostly limited
to science fiction, today the reach of AI has expanded dramat-
ically with applications in transportation, finance, healthcare
and commerce. As a result, in the last 30 years researchers in
HCI have provided valuable insights for human-centered research
(Amershi et al., 2019a; Bannon, 2011; Höök, 2000; Horvitz, 1999;

1 Although important advances such as the computer mouse go back to the
1960s: see MacKenzie (2012) for additional historical context.

3
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Lee and See, 2004; Norman, 1994; Wickramasinghe et al., 2020)
which can improve human-AI interaction. A cross-pollination of
AI, HCI and other fields, combined with the rapid advancements
and impact of AI, has resulted in human-centered AI; a general
perspective to building AI technology, which emphasizes that
intelligent systems must be designed with awareness of the
larger ecosystem they are a part of and the humans who are
in contact with or are affected by the technology (Fiebrink and
Gillies, 2018; Riedl, 2019). This dissertation, which comprises
work done against the backdrop of the rapid development of
intelligent systems, makes strides towards adopting an inter-
disciplinary human-centered approach for studying NLP systems
and improving human-AI interaction. The next section further
expands on the human-centered perspective and why there is a
need for adopting such framework in NLP.

1.1 towards human-centered nlp

The human-centered perspective prioritizes the creation of tech-
nology which aims to enhance and augment human abilities,
rather than replace them (Auernhammer, 2020; Fiebrink and
Gillies, 2018; Shneiderman, 2020; Xu, 2019) and emphasizes
technology which is built with an understanding of humans,
society and the impact technology has on both2. In this thesis, I
argue that taking a human-centered approach to NLP requires
interdisciplinary efforts, with NLP practitioners taking strides
to understand humans from a cognitive and social perspective,
incorporating insights from psychology, HCI, NLP, ethics and
many other disciplines, and introducing more humans at differ-
ent stages of the development process. The studies presented
in this dissertation increasingly adopt this framework over a
period of three years.

Some possible directions within this framework include: (1)
studying the usability and usefulness (Hornbæk and Oulasvirta,
2017; Rasmussen, Pejtersen, and Goodstein, 1994; Rouse, 1986;
Rouse and Rouse, 1991) of NLP systems by adopting ethno-
graphic methods and user studies typically used in HCI to in-
form us of how to further improve NLP systems in a way that
matches human social and cognitive expectations, (2) adopt-
ing insights from both AI and HCI for improving the predic-
tive power of systems while offering more human control (e.g.,
human-in-the-loop and collaborative systems) and (3) adopting

2 See the goals outlined by the recently created Human-centered AI Re-
search center at Stanford University: https://hai.stanford.edu/blog/
introducing-stanfords-human-centered-ai-initiative

https://hai.stanford.edu/blog/introducing-stanfords-human-centered-ai-initiative
https://hai.stanford.edu/blog/introducing-stanfords-human-centered-ai-initiative
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techniques from the social sciences for the ongoing study of the
impact that AI has on humans and society.

But why is it important to adopt a human-centered approach
to studying NLP systems? Well, with advancements in deep
learning and the infrastructure to support training models on
large amounts of data, there has been an emphasis on larger
models containing billions of parameters which optimize for
benchmarks such as General Language Understanding Evalu-
ation (GLUE)3 (Wang et al., 2018). This focus has made it faster
to evaluate systems and has paved the way to success for data-
driven approaches. Such approaches may exceed human per-
formance on such benchmarks, however, this has been at the
expense of other desirable system qualities, e.g. user satisfaction,
fairness and transparency (Ethayarajh and Jurafsky, 2020).

The complexity of the learned representations of such mod-
els makes it increasingly difficult to understand their inner
workings. Many studies continue to investigate their learning
patterns (Clark et al., 2019; Karthikeyan et al., 2019; Rogers,
Kovaleva, and Rumshisky, 2021) with the full extent of model
capabilities still not completely clear. However, clear evidence
exists showing that these model encode many undesirable and
discriminatory patterns (Caliskan, Bryson, and Narayanan, 2017;
Khosla et al., 2012; Manzini et al., 2019; Tan and Celis, 2019)
and can provide correct answers for the wrong reasons (McCoy,
Pavlick, and Linzen, 2019). These challenges make the adoption
of systems by users controversial, corrode user trust in the sys-
tem, and make it simply unethical to deploy systems in the wild
without understanding their impact on society.

While research in human-centered areas such as fairness and
model transparency (Amershi et al., 2019b; Riedl, 2019) has
increased in NLP in recent years, there is still a disconnect (which
I will highlight through this thesis) between the methods being
developed and the humans who interact with them. I argue that
there is a greater need to consider human needs and capabilities
through interdisciplinary human-centered research.

This dissertation follows the rapid progression in the field
of NLP. My earlier PhD work focuses on improving human-AI
interaction via goal-oriented dialogue systems, primarily con-
cerned with improving predictive performance. Goal-oriented
dialogue systems are naturally user-centric; they are meant to
help users achieve a goal through natural language interaction.
The first two studies presented in this thesis deal with such
systems and incorporate transfer learning methods which are

3 Benchmark dataset comprising different tasks such as semantic similarity
and Natural Language Inference (NLI), meant to assess whether a model
understands language
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now ubiquitous in NLP. However, the rapid advancements in the
field have also come with ethical challenges. Therefore, my later
work starts to adopt a more interdisciplinary human-centered
approach to studying NLP systems with a focus on fairness and
model transparency and increasingly placing more emphasis
on understanding the human aspect of human-AI interaction.
The dimensions explored in this thesis are expanded in the next
section.

1.2 human-centric ways of improving human-ai in-
teraction

The topics presented in this dissertation all focus on improving
human-AI interaction along two important dimensions: (1) im-
proving the performance of interactive NLP systems by learning
from user interactions and (2) improving interaction by ensuring
fairness and transparency in NLP systems. These dimensions
also fall within 18 human-centric guidelines for human-AI in-
teraction compiled by Amershi et al. (2019a), which have been
identified by researchers in the HCI community in the last 30

years. This section describes these dimensions in more detail and
ties back to the guidelines outlined by Amershi et al. (2019a).

1.2.1 Learning from user interactions

Systems which allow a certain level of user control and can
learn from user interactions over time can result in better user
experience, satisfaction, user trust and more effective systems
(Amershi et al., 2014). Amershi et al. (2019a) additionally men-
tion some ways to use user signals, such as (1) remembering
recent user interactions and (2) encouraging and learning from
user feedback, among others. The earlier work in this thesis
is predominantly focused on improving the predictive perfor-
mance of dialogue systems along these dimensions.

remember recent interactions Remembering recent
user interactions to improve user experience and future interac-
tions has many commercial applications such as music, movie or
product recommendations (Amershi et al., 2019a; Webb, Pazzani,
and Billsus, 2001; Yang, 2017). NLP systems can also improve
performance and provide better user interaction and experience
if they leverage previous user exchanges. In dialogue systems,
which are the subject of the early work in this thesis, previous
behaviors can serve as a prior for improving desirable qualities
such as relevancy, coherence, and fluency of natural language
responses, among many others.
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However, systems learning from user behavior without control
pose risks. In recent years, controversial applications such as Tay,
Microsoft’s open-ended chatbot, have exposed how NLP systems
can learn negative behaviors from users if there is no control
on what is being learned. In this case, Tay was vulnerable to
adversarial attacks and quickly learned racist behaviors from
human interactions 4. In their guidelines, Amershi et al. (2019a)
also mention that updating and learning from such behaviors
should be done cautiously; part of the human-centered approach
is to ensure responsible deployment and socially appropriate
behavior. It is therefore important to leverage ways of learning
from successful and safe previous interactions. Unlike open-ended
dialogue systems, goal-oriented dialogue systems tend to rely
on annotated dialogues, therefore, it may be a good and safe
candidate for leveraging past user interactions as they must be
annotated and checked by humans. Chapter 3 explores a method
for improving goal-oriented dialogue generation by retrieving
previous user interactions.

learning from user feedback Research in Machine
Learning (ML) has shown that models benefit from incorpo-
rating user feedback in tasks such as image retrieval and recom-
mender systems (Rashid et al., 2002; Vasconcelos and Lippman,
1999). Such signals have typically portrayed the human as an
oracle who provides ground-truth information at any point as
is needed by the system.

Work in HCI has found that feedback strategies should match
the human expectations. Cakmak, Chao, and Thomaz (2010)
found that during dialogues, a robot that asks for too much
feedback is perceived by users as imbalanced and annoying.
Guillory and Bilmes (2011) replicate this finding for movie rec-
ommender systems. Such results show that human users are
not oracles willing to repeatedly tell the system whether it is
wrong or right (Cakmak, Chao, and Thomaz, 2010). Amershi et
al. (2014) suggest that ML practitioners should make efforts to ac-
count for human factors such as interruptibility and frustration
when employing strategies that rely on user feedback.

In this thesis, (modeled) user feedback is leveraged to improve
dialogue systems. Previous work in ML and NLP has presented
Reinforcement Learning (RL) methods that model user feed-
back throughout the course of a dialogue or that optimize for
dialogue length, which has shown to improve model robust-
ness (Henderson, Lemon, and Georgila, 2008; Liu et al., 2017;
Williams, Asadi, and Zweig, 2017; Williams and Zweig, 2016).
However, many of such methods relied on annotations at ev-

4 https://en.wikipedia.org/wiki/Tay_(bot)

https://en.wikipedia.org/wiki/Tay_(bot)
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ery turn or proxy measures which are not applicable in the
wild: asking for too much feedback may erode user satisfaction
and optimizing for dialogue length is not a realistic measure
of success. Chapter 4 explores a method for modeling end-of-
dialogue user feedback, as opposed to feedback at every turn,
with the goal of leveraging less costly user signals which match
real-world human expectations while remaining robust and
generalizable.

1.2.2 Fairness and transparency in the system

As previously mentioned, with the emergence of large data-
driven pretrained systems and the widespread use of NLP tech-
nologies, it has become increasingly important to study the
risks of such systems, offer more control to humans and in-
volve humans in the development and evaluation processes.
This realization marks a shift in the research presented in this
dissertation towards investigating fairness and transparency of
models with an emphasis on evaluation and user studies.

This focus is in line with the priorities outlined by researchers
advocating for human-centered AI. Riedl (2019), for example,
argues that human-centered AI research, considers two broad
aspects: (1) AI systems that understand humans from a socio-
cultural perspective and (2) AI systems that help humans un-
derstand them. Additionally, Amershi et al. (2019a) mention
that successful human-AI interaction requires (1) mitigation of
social biases and ensuring socially appropriate behaviors, and
(2) providing mechanisms for explaining model decisions to
end-users. These are introduced briefly below.

mitigation of social biases As NLP systems become
more widespread, studying their effects on society and trying to
minimize risky behaviors is crucial. Such risky behaviors can be,
among other things, the propagation of implicit social biases.

Implicit bias (as defined in psychology) refers to attitudes or
stereotypes that affect our understanding and decisions in an
unconscious manner (Greenwald and Krieger, 2006; Kelly and
Roedder, 2008). Such biases can occur based on many charac-
teristics such as age, race, ethnicity, gender, etc. Implicit biases
create barriers that affect marginalized groups. Such barriers are
harder to point out and dismantle than explicit biases. Many
social inequities (e.g., housing, education, health, and criminal
justice) can be tied back to implicit biases manifested structurally
(Kelly and Roedder, 2008).

While this is a phenomenon observed in society, data-driven
methods learning from human-generated sources also have such
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biases. Models exhibiting social biases can also create barriers
and exacerbate inequities for already marginalized groups. Some
examples which have received attention in the media are (1)
the Amazon hiring tool which disproportionately disregarded
applications from women in already male dominated fields
and (2) police profiling, where individuals of a certain race or
ethnic background were targeted by the system more often due
to historical data reflecting expressed social biases5. Detecting
biases in models is of paramount importance for ensuring user
trust in the system and for providing overall fair, inclusive and
ethically compliant technologies (Olhede and Wolfe, 2018).

In NLP, work to ensure that systems’ language and behavior
does not reinforce negative and unfair stereotypes can include
(but isn’t limited to) the detection of biases in trained models
and debiasing at the data and algorithmic levels. The work
presented in this thesis (chapter 5) focuses on the diagnosis of
biases in large data-driven models which are popular and often
deployed in the wild, such as Google Translate.

providing system transparency Lastly, models that are
able to explain their decisions can allow for better detection of
unfair model behaviors, the prevention of adversarial attacks,
and improved human decision making (Amershi et al., 2019a).
Human curiosity and the need to assess the reliability of a
claim when making decisions (among other factors), also leads
users to wonder why a recommendation was given (Miller,
2019). This is especially crucial in critical domains where poorly
made recommendations to a query can have significant negative
consequences on humans and society (e.g. in domains such as
law and health care).

Recently, work has emerged within the field of explainable
AI, in both AI and HCI (Camburu et al., 2018; Goebel et al., 2018;
Holzinger et al., 2017; Narang et al., 2020a). However, the focus
in each field has been different. While the ML community has
typically been concerned with developing explainable models
and post-hoc explainability methods which have mathematical
rigor (Ribeiro, Singh, and Guestrin, 2016a; Sundararajan, Taly,
and Yan, 2017), the HCI community has focused on end-user’s
trust and understanding of the explanations. In HCI, the criteria
for what makes a good explanation has been presented in terms
of human interaction with explanations (Hoffman et al., 2018),
for instance: (1) whether users are satisfied with the explanations,
(2) whether users are able to understand the system’s reasoning,
(3) whether the users’ trust and reliance on the system is appro-

5 https://www.cbsnews.com/news/artificial-intelligence-racial-profiling-2-0-cbsn-originals-documentary/
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/
amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

https://www.cbsnews.com/news/artificial-intelligence-racial-profiling-2-0-cbsn-originals-documentary/
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
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priate and (4) whether the human-AI team performs well. Such
human-centered criteria have not been readily adopted in NLP.

While many studies in ML and NLP have introduced auto-
matic metrics for measuring the quality of explanations of model
predictions (Atanasova et al., 2020a; DeYoung et al., 2020; Goh
et al., 2020), explainability is aimed at making model decisions
understandable to human end-users. The work in this thesis ar-
gues that NLP practitioners should take greater strides towards
understanding humans from a cognitive and social perspective
and incorporating them in the evaluation and development of
explainability methods. The later studies presented in this dis-
sertation (chapters 6-8) adopt insights from HCI, psychology and
cognitive science in order to evaluate the effectiveness of explainabil-
ity by involving humans in meaningful ways.

1.3 research questions

This dissertation presents novel work aimed at improving NLP
and human-AI interaction, by expanding knowledge in the areas
discussed above. The main questions answered in this thesis
are presented below separated into the two main dimensions
discussed earlier:

learning from user interactions

• How can goal-oriented dialogue systems leverage previous
user interactions to improve the relevancy and fluency of
answers? (chapter 3)

• How can more realistic dialogue-level user feedback help dia-
logue systems further improve and adapt to new domains?
(chapter 4)

investigating fairness and transparency in nlp

• How can we diagnose negative social biases in multilingual
systems, which currently make the adoption of systems by
end-users difficult? (chapter 5)

• To what extent do humans’ cognitive biases and previous
world knowledge affect the explainability of NLP systems
and does controlling for such biases change the conclu-
sions we make about the best performing methods? (chap-
ters 6 and 7)

• Which natural language explanations help users in a real
world downstream decision making task such as deciding when
to trust a model prediction and does the effectiveness of
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explanations depend on presentation modality (e.g., voice
assistants vs. visual displays)? (chapter 8)

• What explanation strategies would users prefer to be pre-
sented with? (chapter 8)

1.4 thesis outline and contributions

In summary, the contribution of this dissertation is the study
of NLP and human-AI interaction through a human-centered per-
spective which focuses on: (1) learning from user interactions
and (2) investigating fairness and transparency in NLP systems
through more interdisciplinary research.

Chapter 2 provides more background on the work which has
influenced the studies in this dissertation, part ii presents work
from the first half of my PhD, dealing with learning from user
interactions, part iii comprises my later work on fairness and
explainability and chapters 9 and 10 provide a discussion of
the contributions of this thesis and concluding remarks. Below,
I expand on the main parts (ii and iii) and describe how the
individual studies in each part contribute to the field of NLP.

1.4.1 Part ii: Learning from user interactions

The studies in part ii are the first in my PhD and investigate
how to incorporate previous user interactions and more realistic
user feedback signals for improving the relevancy of system
responses and for adapting to new domains.

• Chapter 3 introduces a method for improving the rele-
vancy of responses of a dialogue system by leveraging pre-
vious user interactions. In practice, goal-oriented dialogue
systems provide template-based responses which are rel-
evant but limited. Neural models allow more flexibility
in responses, but are typically unfocused, yielding fluent-
yet-irrelevant responses. This chapter bridges the gap by
conditioning a neural model on responses to similar pre-
vious user questions and shows that responses perform
better on automatic metrics but more importantly, are
rated as more relevant and informative by human raters.

• Methods which require supervision at every turn or rely
on proxy rewards are not realistic or desirable in practice
since asking users for feedback after every utterance may
corrode user satisfaction and system effectiveness. For this
reason, chapter 4 introduces a method for modeling end-
of-dialogue feedback which is more in line with human
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expectations in real-world scenarios and can be used to
finetune a dialogue system to new domains.

1.4.2 Part iii: Investigating fairness and transparency in NLP sys-
tems

Part iii shifts focus to the investigation of fairness and trans-
parency in NLP. As mentioned earlier, popular models have been
found to exhibit negative social biases and prejudice. Deploying
such models can have extremely negative consequences in soci-
ety; it is crucial to devise mechanisms for model diagnosis. For
this reason, chapter 5 investigates gender bias in multilingual
state-of-the-art NLP systems.

• Chapter 5 presents the first challenge dataset for the di-
agnosis of gender bias not in English (Danish, Swedish,
Russian, and Chinese) and, unlike prior work, comprises
four NLP tasks. This study shows the importance of look-
ing at linguistic phenomena which do not exist in English
to help us devise better evaluations. In addition, an evalu-
ation of commonly used multilingual models is presented,
which shows that these models encode gender stereotypes
in the four languages that are part of the evaluation, point-
ing to the importance of diagnosis and mitigation before
deployment.

Due to controversial findings about models’ discriminatory
behaviors such as the ones previously mentioned, as well as
the black-box nature of the current models, there has been an
increased interest in equipping models with mechanisms to
better detect such weaknesses and to increase transparency. This
has resulted in explainable AI. The last three studies presented
in this dissertation involve human evaluation of explainability.
Proper human evaluation requires taking insights from disci-
plines other than NLP. In this dissertation, the fields of cognitive
science, learning psychology and HCI greatly influence the ap-
proaches taken for the evaluation of explainability. Below, three
chapters expanding in this direction and their contributions are
described:

• Chapter 6 presents pilot experiments investigating the
interaction of cognitive biases such as belief bias, with
human evaluation of explainability. This work poses an
important question which has not been addressed in the
past: do explainability methods work when we reduce partici-
pant’s previous beliefs about the task? Answering this question
would allow us to better understand to what extent expla-
nations offer benefits. This study evaluates explainability
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for several classification tasks and shows that the positive
effects of explanations are reduced when users do not have
prior knowledge of the task.

• In chapter 7, the work from the previous chapter is ex-
tended. An overview of belief bias and its interaction with
human evaluation is presented with the aim of helping
NLP practitioners improve evaluation protocols. The role
of belief bias is highlighted for two paradigms previously
used to evaluate explainability in NLP. The study demon-
strates that when introducing conditions which account
for participants’ previous beliefs, some methods are con-
siderably less effective and the conclusions made about
the best performing methods change.

Finally, despite the surge of explainable NLP, there has been a
lack of end-to-end evaluation involving users. Recent work has
also cast doubt on the overall effectiveness of explanations in
helping users assess the reliability of model decisions, finding
that for some tasks such as sentiment analysis and answering
LSAT6 questions, explanations work just about the same as
showing model confidence (Bansal et al., 2020). Such studies
echo some of the conclusions from previous chapters, namely,
that the effectiveness of explanations should not be taken for granted
and better human evaluation protocols are needed.

• Chapter 8 investigates whether natural language explana-
tion strategies help users assess the reliability of model
predictions in Open-domain Question Answering (ODQA),
against calibrated model confidence. Additionally, as ODQA
systems are mostly used through visual displays and spo-
ken interfaces, this study is the first to investigate differences
across modalities. The results show that some strategies are
more effective than simply showing model confidence,
however, most explanation methods evaluated still sig-
nificantly mislead users into accepting incorrect model
predictions, showing there is plenty of room for improve-
ment. Furthermore, the effectiveness of explanations does
change with mode of presentation, largely due to differing
cognitive limitations imposed on users in each modality.
This chapter presents extensive analysis on user errors,
user needs and provides valuable recommendations for
developing better explanations and evaluations which are
of interest to both the NLP and HCI communities.

6 Law School Admission Test, required in the U.S.





2
B A C K G R O U N D

This chapter presents the background needed to understand
the flow of this dissertation. As mentioned in the last chapter,
the work in this thesis has followed a progression in the field
of NLP. My initial work deals with improving the predictive
performance of dialogue systems, leveraging transfer learning
methods and human interaction signals. My later work is influ-
enced by the ethical challenges emerging in recent years and
places emphasis on the evaluation of state-of-the-art systems
(systems which also leverage transfer learning). As transfer
learning has influenced both early and later work in this the-
sis, a large portion of this background section is dedicated to
outlining the rapid advancements in transfer learning in NLP.

This chapter is divided into four sections covering the follow-
ing topics: (1) advances in transfer learning in NLP, (2) dialogue
systems (the initial research focus) and how transfer learning
techniques are incorporated, (3) ethical challenges that emerge
from the current state-of-the-art models leading to a shift in
research direction, and (4) recent work in fairness and trans-
parency in NLP which play a role in the later work in this thesis.

This outline is meant to provide the motivation behind both
my earlier and later work, and to connect the two parts of my
thesis in the larger context of the field of NLP. More specific
background to further motivate the studies in this dissertation
can be found in the individual chapters.

2.1 advances in transfer learning for nlp

Transfer of learning is an integral part of the learning process
in humans; it involves transferring skills and knowledge from
one situation to another (Judd, 1908; Sousa, 2002; Thorndyke
and Woodworth, 1901). Transfer learning in ML assumes that
models, like humans, can benefit from sharing knowledge across
learning problems.

In the traditional supervised learning scenario in ML, a suf-
ficient amount of labeled data is required to train a model to
solve one problem. When a model is needed for solving a new
problem, new data needs to be annotated and the model is
trained from scratch. Such setups are limited; they work well
under the assumption that annotating large collections of data
is feasible and that the train and test data are drawn from the

15
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same distribution (Pan and Yang, 2010). These assumptions are
often broken in the real world. Transfer learning is useful as
it allows us to train models that better generalize across data
distributions and that reduce the need and effort to collect large
amounts of training data. Two important concepts in transfer
learning (domain and task) are briefly defined next. The terms
and notation introduced follow Ruder (2019).

domain A domain D consists of a feature space X and a
marginal probability distribution P(X), where X = {x1, ..., xn} ∈
X . For the binary classification of documents using bag-of-
words features, X would correspond to the space of all docu-
ment representations, xi is the i-th term vector corresponding to
some document and X is a specific learning sample.

In relation to this thesis, for the problem of QA and dialogue
systems (part of the early and later work of this dissertation),
different domains could correspond to specific areas that the sys-
tem has expertise on. For instance, the system can only answer
questions about local restaurants, or local attractions, etc.

task A task T consists of a label space Y , a prior distribution
P(Y) and a conditional probability distribution P(Y|X) which is
learned from the training data consisting of pairs {xi, yi} where
xi ∈ X and yi ∈ Y . For the binary classification of documents,
Y is the set of all labels e.g. {0, 1} and yi is either 0 or 1.

In the context of this thesis, the tasks which are explored
include Dialogue State Tracking (DST), Open-domain Question
Answering (ODQA), NLI, sentiment analysis, among others.

Given a source domain DS, a corresponding source task TS,
and a target domain DT with its corresponding target task TT,
transfer learning aims to learn the target conditional probability
distribution PT(YT|XT) by transferring information from DS and
TS, where DS 6= DT and TS 6= TT.

Recent work has placed several transfer learning techniques
which are used in NLP under a taxonomy which includes: (1)
transductive transfer learning consisting of domain adaptation
and cross-lingual learning and (2) Inductive transfer learning,
consisting of Multi-Task Learning (MTL) and sequential transfer
learning (Ruder, 2019). In terms of this thesis, one of the most
influential types of transfer learning techniques is sequential
transfer learning. The early studies in this thesis employ such
methods to improve the performance of models and the later
studies focus on the evaluation of models based on sequential
transfer learning.

This section is meant to describe seminal work in sequential
transfer learning but also highlight how the training objectives
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have remained simple and have not changed dramatically. On
the other hand, models have progressively increased in terms
of the amount of training data used, the number of layers, and
parameters. This point becomes increasingly important for the
later work discussed in this dissertation.

2.1.1 Sequential transfer learning

In recent years, sequential transfer learning has become the most
frequently used method for transfer learning in NLP. This method
is typically used when adaptation to many target tasks is neces-
sary, when the source task contains much more data than the
target task, or when data for different tasks is not available at
the same time (to allow training jointly) (Ruder, 2019). Generally,
the method consists of two phases: (1) pretraining and (2) adapta-
tion. During pretraining, the model is trained on the source task
TS, and in the adaptation phase the knowledge from the trained
model is transferred to TT.

The main benefit of pretraining is that it reduces the need
for annotated data in the adaptation phase. Pretraining can
be achieved in many ways, for example through supervised,
unsupervised, or multi-task learning techniques (Ruder, 2019).
Described next are: (1) Unsupervised pretraining in NLP (up
to 2018) (some methods which are incorporated in part ii are
described here), (2) a progression into larger Transformer-based
(Vaswani et al., 2017) pretraining methods (some which are
evaluated in part iii) and (3) a brief section on the adaptation
phase.

2.1.1.1 Unsupervised pretraining: up to 2018

Bengio et al. (2003) introduced Neural Language Modeling
(NLM) for learning distributed representations for words or word em-
beddings which are based on distributional semantics, a research
area which aims to quantify semantic similarities of linguistic
items based on their distributional properties in large corpora.
This NLM trained on about 800,000 words used a cross-entropy
criterion which maximized the probability of the next word
given the previous words.1 Word embeddings are now standard
in NLP for adapting to downstream tasks, with variants of the
Language Modeling (LM) objective becoming one of the most
used for unsupervised pretraining.

1 A language model is a statistical model of language, which aims to learn the
joint probability function of sequences of words in a language. Such models
have been useful in various natural language applications, such as speech
recognition, translation , grammatical error correction and Information Re-
trieval (IR) (Bengio et al., 2003; Qudar and Mago, 2020)
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Computational cost was a problem faced by Bengio et al.
(2003). Collobert et al. (2011) focused on a method for pretraining
word embeddings on a large dataset of more than 800 million
tokens by using a pairwise ranking task which was more efficient
than the LM objective. In pairwise ranking, a higher score is
assigned to a correct or probable word sequence than for an
incorrect one. The intermediate learned representations encoded
important semantic and syntactic relations and were effectively
used as features for several NLP tasks, pushing state-of-the-art.
This work was essentially one of the first to show the usefulness
of pretraining on a general language task on a large corpus and
adapting representations to many downstream tasks.

Soon after, Mikolov et al. (2013) showed how to effectively
obtain distributed representations by training a simple neural
network architecture on a 1.6 billion word corpus, with the
task of predicting a word based on its context before and after
(Continuous Bag-of-Words (CBOW)) as well as predicting sur-
rounding words based on a center word (Skip-gram). Penning-
ton, Socher, and Manning (2014) then introduced Global Vectors
for word representation (GloVe), which are trained on over 55
billion tokens obtained from various sources. This method
relied on word co-occurrences and matrix factorization, and
proved to be another effective unsupervised method for yield-
ing pretrained language representations which captures global
statistics, rather than information about the local context.

More recently, Peters et al. (2018) presented deep contextu-
alized word representations derived from a bidirectional Long
Short Term Memory (LSTM) network trained with a coupled
LM objective on a large corpus. These embeddings also called
Embedding from Language Model (ELMo), were able to better
capture word sense information and pushed state-of-the-art in
many tasks including NLI, coreference resolution, Named Entity
Recognition (NER), among others. Models of varying sizes where
introduced, with the largest model trained on 5.5 billion tokens
and containing 94 million parameters.

In the last few years, very deep pretrained models have been
introduced using Transformer architectures (Vaswani et al., 2017).
Transformers, like a Recurrent Neural Network (RNN), are de-
signed to handle sequential data. However, unlike RNNs, they do
not require that data be processed in order. While most previous
works typically trained networks consisting of a couple of layers,
Transformer models are now consisting of 24 or more Trans-
former blocks in most cases. The improved parallelization of
such models, coupled with an increasing amount of unlabeled
text which is openly available on the web and the hardware
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to support training huge models, has made Transformers the
standard architecture in NLP.

2.1.1.2 Transformer-based pretraining: 2018 until now

Generative Pre-trained Transformer (GPT) is a large language
model consisting of 12 transformer blocks (Radford et al., 2018).
It is trained to predict the next word given all previous words
within some context window. At the time of its release it achieved
state-of-the-art results on 9 out of 12 tasks it was finetuned on.
GPT-2 (Radford et al., 2019), its successor, is trained with the
same LM objective. However, GPT-2 learns from 8 million web
pages, with the final model containing 1.5 billion parameters.

Bidirectional Encoder Representations from Transformers (BERT)
is a model pretrained on two objectives jointly: Masked Lan-
guage Modeling (MLM) and Next Sentence Prediction (NSP) (De-
vlin et al., 2019a). For MLM, a random subset of tokens in the
input sequence are replaced with a [MASK] token. The MLM
objective is a cross-entropy loss on predicting the masked tokens.
NSP is a binary classification loss for predicting whether two
segments appear after each other in the original text. At the
time of its release, BERT yielded state-of-the-art results on 11 NLP
tasks it was finetuned on including GLUE benchmarks (Wang
et al., 2018), Standford Question Answering Dataset (SQuAD) (Ra-
jpurkar et al., 2016), and SQuAD-2.0 (Rajpurkar, Jia, and Liang,
2018). The large model2 is trained on more than 3 billion words
and consists of 24 blocks, 16 attentions heads and 340 million
parameters. Liu et al. (2019b) replicated the study from Devlin
et al. (2019a) but trained the model for a longer time, with 10

times more data, larger batches, and longer sequences. The re-
sulting model (ROBERTA) further pushed state-of-the-art and
increased the parameter size by about 50 million.

ELECTRA is a model pretrained on a discriminative task
called replaced token detection, in which the model learns to dis-
tinguish real input tokens from plausible but synthetically gener-
ated replacements (Clark et al., 2020). The large model is trained
on 33 billion tokens and contains 340 million parameters. At
the time of its release, ELECTRA achieved state-of-the-art results
on several NLP tasks, beating the models previously mentioned.

More recently, Fedus, Zoph, and Shazeer (2021) pretrained an
even larger architecture on more data, using the MLM objective
and a sparse training technique. The resulting model is high
performing and the largest yet, containing a trillion parameters.

All methods introduced in this section focus on pretraining
a model on a generic language task on vast amounts of data

2 Models of various sizes are typically trained.
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to yield universal language representations, which can be easily
adapted to any downstream task. Such universal language rep-
resentations have shown to encode notions of syntax (Goldberg,
2019; Williams, Drozdov*, and Bowman, 2018) and semantic
relations (Liu et al., 2019a).

The trends show that models will continue to be scaled; we
have not reached a plateau yet, and bigger models that learn
from more data and contain more parameters will likely con-
tinue to push state-of-the-art in the next few years. Within the
last 2 years, the list of Transformer-based pretrained models
continues to grow, with about 40 easily available in the Hug-
gingface Transformers package3, and new studies introducing
them often.

2.1.1.3 Adapting to various NLP tasks

The focus on pretraining high-quality representations has re-
duced the need for both large amounts of data in the target task
and the number of parameters in the adaptation phase. Adap-
tation is usually done in two main ways: (1) through feature
extraction and (2) through finetuning (Ruder et al., 2019). Fea-
ture extraction can include, for instance, extracting pretrained
language representations from the learned model and using
them as features in a downstream model (Asghar et al., 2014;
Lopez and Kalita, 2017; Mou et al., 2016).

Finetuning typically involves using the pretrained weights
as initialization for parameters in the downstream model. The
pretrained architecture is then further trained or finetuned on
the downstream task (Chronopoulou, Baziotis, and Potamianos,
2019; Devlin et al., 2019b; Houlsby et al., 2019; Howard and
Ruder, 2018). Such works investigating adaptation to new tasks
focus on optimization schemes involving what weights to up-
date, when to update them, and how.

2.2 transfer learning in dialogue systems

While work on dialogue systems goes way back (Weizenbaum,
1966), recently, this has become a more active area due to
advances in computation and data-driven statistical methods
which have proved beneficial in plenty of NLP tasks.

Nowadays, humans rely on systems such as Siri, Google As-
sistant, and Amazon Alexa, which offer quick access to digital
data via search and natural language interactions. The stud-
ies presented in the first part of this thesis investigate ways of
improving dialogue systems by learning from previous user

3 https://github.com/huggingface/transformers

https://github.com/huggingface/transformers
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interactions and feedback signals that align more with the real
world and user expectations. Transfer learning techniques are
incorporated for this purpose, including adaptation via both
feature extraction and finetuning.

Dialogue research is typically divided into two main cate-
gories: 1) goal-oriented and (2) open-ended. The works pre-
sented in this thesis deal with the former but also integrate
approaches from the latter. Both are briefly introduced below.

2.2.1 Goal-oriented dialogue

Goal-oriented dialogue systems are designed with the purpose
of assisting users in achieving a goal in restricted domains (Chen
et al., 2017b). In practice, such systems are modular, typically
consisting of Natural Language Understanding (NLU), dialogue
management and Natural Language Generation (NLG) modules
which are independently trained (Budzianowski and Vulić, 2019;
Chen et al., 2017b; Hosseini-Asl et al., 2020).

The NLU module maps the textual form of a user utterance
into a semantic representation that is meaningful for the system
(Chen et al., 2017b). The dialogue management module typi-
cally consists of DST and Policy learning. The DST sub module
estimates the user’s belief state, or updated goal throughout the
conversation and typically involves slot filling. Usually, such
slots and their possible values depend on a pre-existing domain
ontology. The policy learning sub module uses the user’s be-
lief state to take an action. Methods for policy learning have
typically involved supervised or Reinforcement Learning (RL)
(Cuayahuitl, Keizer, and Lemon, 2015). The NLG module gener-
ates a natural language response from the dialogue action (Chen
et al., 2017b). In commercial applications, the NLG module has
typically consisted of template-based responses (Hosseini-Asl
et al., 2020; Stent, Prasad, and Walker, 2004).

While traditional and commercial goal-oriented dialogue sys-
tems consist of independently trained modules, more recent
methods have introduced approaches in which all modules are
trained in an end-to-end fashion (Bordes, Boureau, and Weston,
2016; Wen et al., 2017).

2.2.2 Open-ended chit chat

Open-ended dialogue systems are typically concerned with
maintaining a natural sounding and engaging conversation
about any topic. Dialogue generation cast as a sequence-to-
sequence problem has the advantage of being able to leverage
large amounts of unannotated data such as conversations from
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Twitter-style microblogs (Shang, Lu, and Li, 2015a) or movie
scripts (Serban et al., 2015). The ability to incorporate informa-
tion from previous turns in the conversation is important to keep
conversations active. Sordoni et al. (2015b) introduced a method
for encoding context with word embeddings. The response is
then generated using an RNN language model. Serban et al.
(2017) used a hierarchical neural model which encoded previous
utterances and incorporated them into a context encoder.

Such methods, however, offer little control and have been
shown to lead to fluent, yet meaningless and repetitive answers
(Budzianowski and Vulić, 2019).

2.2.3 Initial goals

In this dissertation, the initial goal was to improve the interac-
tion of users and goal-oriented dialogue systems. This section
describes the more specific goals of the first studies in this thesis,
some of the previous works motivating these goals, and some
opportunities for using transfer learning.

response generation Open-ended dialogue models tend
to be data-driven and often yield very fluent responses (Shang,
Lu, and Li, 2015b; Wen et al., 2018; Zhang et al., 2018). However,
these tend to offer flexibility but little control as to what the
system will respond. In goal-oriented dialogue systems, where
responses need to be precise and stay on topic and where there
tends to be little annotated data; response generation is typically
not data-driven.

As mentioned in Stent, Marge, and Singhai (2005), a good
response generator should provide answers which fulfill the
following criteria: adequacy, fluency, readability, and variation.
An early goal of my PhD has been to improve dialogue genera-
tion of goal-oriented dialogue systems by incorporating neural
sequence-to-sequence models for enhanced flexibility and vari-
ability of answers, but ensuring responses which are on topic,
relevant and fluent. In this thesis, pretrained representations are
used as a starting point and finetuned with an additional IR step
(discussed in chapter 3).

adaptation to new domains Research in goal-oriented
dialogue systems typically revolves around the DST and policy
learning sub modules which have traditionally been trained on
labeled data in a supervised fashion (Chen et al., 2017b). DST
systems are usually based on the assumption that a domain
ontology is available, simplifying the task to an intent classifi-
cation problem (Henderson, Thomson, and Williams, 2014). In
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past years, state-of-the-art approaches for state tracking have
relied on deep learning architectures which represent dialogue
state as a distribution over all possible slot values for each slot
in the ontology (Henderson, Thomson, and Young, 2013, 2014;
Mrkšić et al., 2016). Such systems tend to deal with one domain
and a limited number of slots. In practice, multiple domains
may be present throughout a conversation and obtaining an
exhaustive ontology in advance is difficult. Additionally, such
methods would not scale when the ontology and domain space
gets significantly large.

Previous methods introduced for multidomain DST have typ-
ically involved: (1) sharing parameters across slots (Rastogi,
Hakkani-Tür, and Heck, 2017; Williams et al., 2013), (2) sharing
parameters across single domain systems (Williams et al., 2013),
and (3) pretraining using disparate data sources and finetun-
ing to a single domain (Mrkšić et al., 2015). These methods,
however, transfer knowledge to unseen domains using turn-
level annotations which may not be available or may be costly
to obtain. An additional early goal in this dissertation was to
improve domain adaptation of dialogue systems making use of
feedback signals which may be obtained from real users in a
more natural way (e.g., dialogue level signals) and making use
of pretraining/finetuning scenarios (chapter 4).

With advances in Transformer-based pretraining and the
promising results such methods have shown across many tasks,
naturally these have begun to be adapted to dialogue systems.
The next section describes key approaches which have been
presented in recent years and which follow my early work.

2.2.4 Recent advancements in dialogue using large pretrained models

Budzianowski and Vulić (2019) used GPT-2 pretraining and
turned goal-oriented dialogue to a sequence-to-sequence prob-
lem. They evaluated their method on MultiWOZ (Budzianowski
et al., 2018) and found that their simplified architecture per-
formed about the same as the more complex pipelines.

Chao and Lane (2019) showed that using BERT as a dialogue
context encoder coupled with parameter sharing across all slots
led to significant improvements on several goal-oriented dia-
logue benchmarks (Budzianowski et al., 2018; Williams, Raux,
and Henderson, 2016). Furthermore, Gulyaev et al. (2020) framed
DST as a reading comprehension problem where the concate-
nation of slot and domain descriptions as well as the dialogue
context serve as input, and the task is to return values for a
dialogue state as an answer. They finetune BERT with several
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classification and span-prediction heads for intent classification,
categorical slot filling, free-form slot filling, among others.

Ham et al. (2020) present an end-to-end neural model for
goal-oriented dialogue which is based on finetuning GPT-2 to
perform the following steps in a single model: (1) DST, (2) Policy
learning, (3) retrieval of appropriate records from a database
and (4) NLG. This approach performed best in the DSTC-8 (Kim
et al., 2019) and is also competitive with other state-of-the-art
consisting of separate independently trained modules.

Hosseini-Asl et al. (2020) cast goal-oriented dialogue as a
causal unidirectional LM task. This allows them to fully leverage
transfer learning from causal language models such as GPT-2.
They optimize for all submodules (NLU, dialogue management
and NLG) jointly in an end-to-end manner and achieve state-
of-the-art results on many automatic metrics. In recent years,
dialogue-specific pretrained representations have also been de-
veloped (Mehri et al., 2019; Wu et al., 2020; Zhang et al., 2019).

As the data-driven approaches described earlier continue to
push the state-of -the-art in many tasks and are deployed in real-
world applications, several ethical challenges have been pointed
out by researchers in the field of NLP as well as in other disci-
plines such as law and ethics. In dialogue systems for example,
Henderson et al. (2018) analyze several datasets and models and
find that: (1) discriminatory biases exist in most of the datasets
evaluated and (2) the algorithms we use to develop word em-
beddings effectively encode and propagate such discriminatory
patterns. They also point out several concerns in terms of model
weaknesses, safety, and privacy.

The next section describes some of the ethical challenges
emerging which have caused the focus of my research project to
shift towards addressing the way in which humans are affected
by and are interacting with NLP technologies.

2.3 research shift : ethical challenges

Work on creating universal representations by pretraining on
general language tasks, is an important and very active research
area. Many of these methods have allowed us to create systems
for a vast number of NLP tasks that exceed human performance
on many benchmarks. However, there have been an increasing
number of studies highlighting the challenges of such methods
and urging researchers to consider the higher impact of the
models they deploy (Hovy and Spruit, 2016). Below is a brief
compilation of some of the ethical challenges which have been
identified and outlined in recent years.
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implicit biases In an extensive law review, Barocas and
Selbst (2016) mentioned that "discrimination may be an artifact
of the data mining process" and that statistical models learning
from big data have the potential of placing marginalized groups
"at systematic relative disadvantage". This is an ethical concern
that has been mentioned constantly in the last few years in
the context of NLP models (Henderson et al., 2018; Hovy and
Spruit, 2016) and researchers in NLP have started to address
implicit biases in learned models and language representations
(Caliskan, Bryson, and Narayanan, 2017; Manzini et al., 2019;
Rudinger et al., 2018; Tan and Celis, 2019; Webster et al., 2019;
Zhao et al., 2018).

adversarial examples Neural models which learn from
raw historical data have shown vulnerabilities to adversarial
examples (Goodfellow, Shlens, and Szegedy, 2014; Jia and Liang,
2017). A mainstream example in NLP is Tay, the Microsoft chat
bot that learned from previous interactions without any con-
trol, and quickly learned inappropriate behavior. This was later
attributed to adversarial attacks, in which users intentionally in-
teracted with Tay using racial slurs and inappropriate language.
Data-driven systems which have no human control are vulnera-
ble to similar attacks.

underexposure negatively impacts evaluation As
has been an open discussion in the last few years in the NLP
community, NLP tends to focus on Indo-European text sources as
opposed to languages from Asia, Africa or the Americas (Hovy
and Spruit, 2016). While there has been an increasing amount of
work on multilingual and cross-lingual NLP, most commercial
tools are geared towards English; and English-centric research
has certainly shaped the way that NLP and evaluation has devel-
oped (Hovy and Spruit, 2016).

privacy concerns The vast amount of data used to train
models can contain private information which can be recov-
ered by using model inversion attacks (Song, Ristenpart, and
Shmatikov, 2017; Yeom et al., 2018). In NLP, such attacks can
be used to retrieve sensitive user information provided in con-
versational systems (Henderson et al., 2018), can pose risks for
NLU systems for healthcare trained on private patients’ data
(Huang et al., 2020) and demographic information could be
retrieved from text (Li, Baldwin, and Cohn, 2018; Rosenthal and
McKeown, 2011), among others.
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safety concerns NLP systems are increasingly being used
in critical domains such as health care and law (Dale, 2019; Fort
and Couillault, 2016). In such domains, a wrong model decision
which influences human decision making can have extremely
negative consequences.

dual use problems Hovy and Spruit (2016) notes various
instances of problematic dual-use of NLP applications. For exam-
ple, the techniques used for the detection of fake reviews can
also be used to generate them in the first place. While many
technologies may be created with good intentions, unintended
uses can have negative unforseen effects on people’s lives.

The studies introduced in part iii of this thesis shift the focus
from creating accurate and generalizable systems for human-AI
interaction towards some of these issues. Chapter 5 focuses on
the detection of negative social biases, particularly focusing on
non-English models and leveraging linguistic phenomena not
present in English. Additionally, several concerns about safety,
diagnosing weaknesses to adversarial attacks, and detecting
negative biases, can be addressed in part by increasing trans-
parency in NLP systems. Chapters 6–8 investigate how humans
interact with explainability methods to assess whether the cur-
rent techniques introduced in NLP and ML are actually having
the intended effects. The remaining section introduces some of
the recent work within bias diagnosis in large pretrained models
and explainability in NLP.

2.4 fairness and transparency in nlp systems

Below, we give a brief introduction of recent work in bias de-
tection and explainability. The discussion on bias is restricted
to social biases (e.g., race, gender, etc.) rather than other types
of biases such as inductive bias, cognitive bias, and media bias.
We present some of the methods that are most relevant to un-
derstanding the motivation and the experiments in this thesis.

2.4.1 Detection of social bias in NLP

Distributed and deep contextualized representations (Devlin
et al., 2019b; Mikolov et al., 2013; Peters et al., 2018), have led to
huge improvements in a variety of NLP tasks. However, such rep-
resentations are increasingly learned over large amounts of text
data and taught to exploit statistical patterns in such corpora.
These have been shown to encode social biases such as gender
and racial biases (Bolukbasi et al., 2016; Caliskan, Bryson, and
Narayanan, 2017; Manzini et al., 2019; Papakyriakopoulos et al.,
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2020; Tan and Celis, 2019; Zhao et al., 2019). Some prior studies
have measured bias in language representations using associa-
tion tests from psychology (Caliskan, Bryson, and Narayanan,
2017; May et al., 2019b). Other works measure social biases in
terms of representation bias (Pujari et al., 2019; Webster et al.,
2019), meaning that based on disproportionate exposure to some
groups, systems end up performing better or worse depend-
ing on the group. Recent work studied gender biases in word
embeddings for German, which contains gendered pronouns,
similar to the English case of her, his (Papakyriakopoulos et al.,
2020). Similar to findings for English, they observed evidence for
sexism, xenophobia and homophobic prejudice. Additionally,
when using those word embeddings in a downstream task such
as sentiment analysis, such biases were propagated.

Furthermore, Hutchinson et al. (2020) study biases in NLP
models targeting people with disabilities. They devise a detec-
tion method using toxicity prediction and sentiment analysis.
They find that three popular NLP models, which are readily de-
ployed in many applications, all exhibit negative biases towards
various types of disability groups.

The prior studies most related to the work explored in this
thesis are presented next. Webster et al. (2019) created a challenge
dataset for detecting gender bias in coreference models, using
naturally occurring sentences from Wikipedia. Their dataset is
gender balanced in terms of gender pronouns, and is useful
for detecting when models have a preference for a particular
gender. For example, they are correct more often for one gender
rather than the other. Furthermore, Rudinger et al. (2018) and
Zhao et al. (2018) both present challenge datasets for the task
of coreference resolution using occupations as a probe. They
evaluated state-of-the-art systems, correlated with occupation
statistics from the U.S. and found that these systems encoded
occupational stereotypes.

Benchmark datasets for detecting biases are a useful and fast
way to check whether trained models have encoded negative
and detrimental stereotypes. However, previous work is limited
in terms of the tasks and the languages investigated. The previ-
ous diagnostic datasets mentioned have focused on English and
only consider coreference resolution. As mentioned by Hovy
and Spruit (2016), by focusing on English, the community also
neglects a huge part of the world population who also interacts
with NLP systems, and limits the type of evaluations and phe-
nomena we study. In Chapter 5, work is presented tackling all
these limitations. We introduce data for bias diagnosis in four
languages and explore a linguistic phenomenon which does not
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exist in English, to assess whether large multilingual models
encode occupational stereotypes.

2.4.2 Explainability methods

Work in explainability aims to make model decisions predictable
or transparent to human end-users. Explainability is a very active
area of research not only in NLP and other subfields of AI, but
also in HCI. Desirable qualities of explanations are still being un-
covered, however, explanations of model predictions should at
least (1) improve human understanding, (2) improve confidence
and trust in decision-making and (3) promote fair decisions
(Das and Rad, 2020). Explanations can take many forms and can
be presented in many ways. For example, an explanation can
be global, meaning that it explains the overall behavior of the
model, or local, meaning it explains the behavior for a specific
decision. There are many kinds of explainability methods that
can be used in NLP, however, this dissertation highlights two:
attribution-based methods which are used to highlight important
features (words) in the input and natural language explanations
which provide a textual justification of the model behavior. The
work presented here is limited to local explanations.

attribution-based explanations Local model-agnostic
attribution methods work under the assumption that the pre-
dictions of a black box model around a neighborhood of the
input can be approximated by an inherently interpretable model.
Ribeiro, Singh, and Guestrin (2016a) introduced LIME, which
generates new examples based on permutations of the input and
trains an explainable model (such as decision trees or a lineal
model) to see how the model’s predictions behave. In recent
years, LIME has been improved and extended to several new use
cases, for example, Bramhall et al. (2020a) presented Quadratic
LIME (QLIME) which considers nonlinear relationships, and
Sound-LIME (SLIME) (Mishra, Sturm, and Dixon, 2017), an ex-
tension aimed at music content analysis. Another popular model-
agnostic explainability method is SHapley Additive exPlana-
tions (SHAP) (Lundberg and Lee, 2017), a perturbation-based
method which explains predictions on an input by computing
individual feature contributions towards the output. Lundberg
and Lee (2017) also explores several variations such as Ker-
nelSHAP and LinearSHAP.

Another direction involves model-specific methods. Gradient-
based feature attribution is obtained by computing the gradient of
the output class with respect to the input (Simonyan, Vedaldi,
and Zisserman, 2013). These attributions are typically visualized
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as saliency maps. Several variants of vanilla gradient attribu-
tion exists, for example, IG (Sundararajan, Taly, and Yan, 2017),
InputXGradient (Adebayo et al., 2018), Guided Backpropaga-
tion (Shrikumar, Greenside, and Kundaje, 2017) and Layer-wise
Relevance Propagation (LRP) (Bach et al., 2015).

This dissertation evaluates explanations derived from both
model-agnostic and model-specific explainability methods.

natural language explanations Another way of ex-
plaining model decisions is by providing natural language jus-
tifications of model behavior. Camburu et al. (2018) and Ra-
jani et al. (2019) both introduced methods for training models
using free-form natural language explanations collected from
crowdsourced workers for the tasks of NLI and common sense
reasoning. Recently, Lamm et al. (2020) introduce QED explana-
tions for Open-domain Question Answering (ODQA), which are
linguistically informed and consist of the sentence containing
the answer, coreference and entailment information.

Atanasova et al. (2020b) introduce a method for generating
explanations for fact verification using human veracity justifica-
tions. Lei, Barzilay, and Jaakkola (2016) introduced an approach
for extracting rationales by selecting or extracting phrases from
the input text which are sufficient to provide an output. Ra-
tionales are widespread in practice for applications such as
Question Answering (QA), and have recently been introduced
for a variety of other NLP tasks such as NLI, fact verification, and
common sense reasoning (Chen et al., 2018a; DeYoung et al.,
2020; Popat et al., 2017, 2018). This dissertation evaluates the
effectiveness of extractive rationales. The work in this thesis
also evaluates manually generated rationales in the form of
abstractive summaries. With some notable exceptions (Kotonya
and Toni, 2020), such abstractive rationales are not as frequently
studied, however, they have the potential to provide benefits
in scenarios where evidence spans multiple documents (Yang
et al., 2018).

2.4.3 Evaluation of explainability

Natural language explanations such as rationales have been
evaluated using discrete overlap metrics such as token F1, BLEU,
and Intersection Over Union (IOU) to measure agreement with
human rationales (DeYoung et al., 2020; Paranjape et al., 2020;
Swanson, Yu, and Lei, 2020), or Area Under the Precision-Recall
Curve (AUPRC) for continuous or soft token scoring (DeYoung
et al., 2020).
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Robnik-Šikonja and Bohanec (2018) evaluated attribution-
based explanations based on consistency and stability prop-
erties. Consistency captures the difference between explana-
tions of different models producing the same prediction, while
stability measures the difference of explanations of similar in-
stances within a model. Additionally, Atanasova et al. (2020a)
extend on previous work and propose a list of diagnostic proper-
ties for evaluating explainability techniques such as agreement
with human saliency rankings, confidence indication, faithful-
ness, rationale consistency and dataset consistency. Their proto-
col used metrics such as Mean Average Precision (MAP), Area
Under the Threshold-Precision Curve (AUTPC), and spearman
correlation. Other studies have used Area Over the Perturba-
tion Curve (AOPC) to measure the local fidelity of explanations
(Nguyen, 2018b). Automatic metrics may capture general aspects
of explanations, which may be desirable. However, they do not
capture the utility of explanations in the real world or give us no-
tions of how explanations make model behavior transparent to
human end-users. In this thesis, I argue that human evaluation
is therefore, a more valuable way to investigate explanations.

Some work in human evaluation of explanations has been
presented in NLP, but a larger quantity of human evaluations
has been proposed by researchers in the HCI community and
within other subfields of AI. Some recent methods are briefly
mentioned next.

Lertvittayakumjorn and Toni (2019) proposed three human
tasks for evaluating different desirable properties of explain-
ability methods for text classification. The tasks consisted of
humans assessing whether explanations (1) reveal model behav-
ior, (2) justify model predictions, and (3) allow them to investi-
gate uncertain predictions. Such studies, however, exhibited low
inter-annotator agreement.

Other works used a simulatability task proposed by Doshi-
Velez and Kim (2017), which consists of providing humans
with explanations and having them decide what the model
output would be (Hase and Bansal, 2020; Nguyen, 2018b). Other
human evaluation has involved subjective measures (Ribeiro,
Singh, and Guestrin, 2016a; Selvaraju et al., 2017; Weitz et al.,
2019) and model ranking (Ribeiro, Singh, and Guestrin, 2016a).
Fewer evaluations involved more realistic decision making tasks
(Bansal et al., 2019a, 2020; Buçinca et al., 2020). However, recent
work has found that current explanation strategies may not be
any more effective in helping users in real decision making tasks
than simply showing model confidence (Bansal et al., 2020).
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The studies presented in this dissertation evaluate explain-
ability methods through user studies exploring the following
paradigms: simulatability, model ranking, and decision making.





Part II
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R E T R I E VA L - B A S E D G O A L - O R I E N T E D
D I A L O G U E G E N E R AT I O N

3.1 abstract

Most research on dialogue has focused either on Natural Lan-
guage Generation (NLG) for open-ended dialogues consisting of
encoder-decoder neural architectures, or on goal-oriented dia-
logue focusing on Dialogue State Tracking (DST) and dialogue
policy. In practice, generation of responses in goal-oriented dia-
logue systems (e.g. in domains such as customer service), relies
on templates which provide more controlled and relevant but
limited responses. In this work, we investigate a simple way of
taking advantage of the flexibility provided by neural encoder-
decoder models for the task of goal-oriented dialogue generation.
More specifically, we incorporate retrieved past user interactions
into a standard hierarchical dialogue generation model often
used in open-ended dialogue systems. We show that adding this
simple-yet-effective retrieval step leads to significant improve-
ments in various automatic metrics and leads to responses that
are rated more relevant and fluent by human evaluators in the
customer support domain.

3.2 introduction

Dialogue systems have become a very popular research topic
in recent years with the expanding availability of personal as-
sistants and the growing demand for online customer support.
Research within dialogue has typically been split into two sub
areas (Chen et al., 2017b): models presented for the generation
of open-ended conversations (Li et al., 2017a; Ritter, Cherry,
and Dolan, 2011; Serban et al., 2015; Shibata, Nishiguchi, and
Tomiura, 2009; Sugiyama et al., 2013) and work on solving goal-
oriented dialogue through dialogue management pipelines that
include Dialogue State Tracking (DST) and dialogue policy (Bin-
gel et al., 2019; Henderson, Thomson, and Young, 2013; Mrkšić
et al., 2016; Ren et al., 2013; Ren et al., 2018; Sun et al., 2014;
Yoshino et al., 2016; Zhao and Eskenazi, 2016).

DST typically consists of a Natural Language Understanding
(NLU) step for detecting user intent and slot-value pairs and a
step for updating the belief state of the user goals. Learning a

35
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dialogue policy typically consists of determining what actions
the system should take based on the updated belief state.

Work on open-ended conversation, in contrast, has largely
been concerned with dialogue generation, and has relied on trans-
duction architectures originally developed for Machine Trans-
lation (MT) (Shang, Lu, and Li, 2015b; Wen et al., 2018; Zhang
et al., 2018). Such architectures encode an utterance into a fixed-
sized vector representation and decode it into a variable length
sequence that is linguistically very different from the input
utterance. While MT-based approaches offer the flexibility of
generating answers that are more varied, such methods often
lack the ability to encode the context in which the current utter-
ance occurs. As a result, such methods often lead to repetitive
and meaningless responses (Li, Luong, and Jurafsky, 2015; Lowe
et al., 2017a; Wen et al., 2018).

This observation has led researchers to extend simple encoder-
decoder models to include context in order to deal with genera-
tion of larger structured texts such as paragraphs and documents
(Li, Luong, and Jurafsky, 2015; Serban et al., 2016, 2017). Many of
these models work by encoding information at multiple levels,
e.g., encoding context consisting of multiple previous utterances
and the most recent utterance. While popular in open-ended chit
chat, it is not clear how such hierarchical methods can be used in
practice for goal-oriented dialogue pipelines, where responses
need not only be coherent and fluent, but also relevant.

In goal-oriented dialogue, there is often one (context-dependent)
right answer to a question (e.g., How many types of insurance do
you offer?); in chit-chat, there are many good answers to ques-
tions (e.g., What do you want to talk about today?). In addition, in
narrower domain systems such as customer service domains,
there may be more repetition in the types of questions users
are asking. Therefore, we hypothesize that in goal-oriented di-
alogue, it may be beneficial to increase the inductive bias of
the dialogue generation model by taking advantage of previous
conversations to keep responses relevant. We do so by intro-
ducing a simple-yet-effective dialogue generation model that
conditions decoding on retrieved user interactions from labeled
past history.

Although retrieval approaches to dialogue generation have
been introduced before, they have typically involved external
sources to add more variety to the kind of answers the model
can generate in open-ended conversations (Ritter, Cherry, and
Dolan, 2011; Weston, Dinan, and Miller, 2018). Our model, in
contrast, uses past conversations and is designed for improving
NLG in goal-oriented dialogue.
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contributions We present an effective NLG model aimed at
improving the quality and relevancy of answers in goal-oriented
dialogue systems. It is a hierarchical neural encoder-decoder
model with an Information Retrieval (IR) component that ob-
tains the most informative turns from prior user interactions and
conditions on those. Our results show that this simple IR step
leads to improvements over a traditional dialogue generation
model intended for open-ended dialogue when evaluated on
BiLINGUAL Evaluation Understudy (BLEU) and different em-
bedding metrics previously used for evaluating dialogue gen-
eration models (Serban et al., 2016; Sharma et al., 2017). More
importantly, the system responses of our proposed model are
rated by human evaluators as more fluent and relevant than the
responses generated by the strong baseline.

3.3 model description

We extend the Hierarchical Recurrent Encoder-Decoder (HRED)
model presented by Sordoni et al. (2015a) for query suggestion,
and subsequently adopted for dialogue by Serban et al. (2016),
which has shown to be a strong baseline for the task of dia-
logue generation. In line with previous research, we consider a
dialogue D between two speakers composed of M utterances
so that D = [U1, ..., UM] and each utterance Un composed of
Nm tokens so that Um = [tm,1, tm,2, ..., tm,Nm ]. Each token tm,Nm

represents a word from a set vocabulary.

3.3.1 HRED

The HRED model for query suggestion (Sordoni et al., 2015a),
predicts the next web query given previous queries already
submitted by the user. The history of queries is encoded at
two levels: a sequence of words for the last web query and
a sequence of previous queries. The HRED model applied to
dialogue (Serban et al., 2016), assumes that dialogues can be
modeled in a similar way: by encoding previous user utterances
at the word level and at the turn level.

HRED applied to dialogue, consists of an utterance encoder
Recurrent Neural Network (RNN), a context RNN and a decoder
RNN. The utterance encoder maps an utterance to a vector which
is the hidden state obtained after the last token is produced.
The context RNN summarizes the dialogue history (up to and
including the current utterance) by keeping track of the previous
hidden states. The decoder RNN, decodes the hidden state of the
context RNN by producing a probability distribution over the
tokens in the next utterance.
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Just as in previous works (Serban et al., 2015; Serban et al.,
2016, 2017; Shen et al., 2017), we use Gated Recurrent Unit (GRU)
(Cho et al., 2014) for the utterance encoder, context encoder and
decoder RNN. All modules are trained end-to-end.

3.3.2 Exemplar-HRED

In this study, we propose a simple enhancement to HRED by
adding an efficient IR step. As already mentioned, similar ap-
proaches have been presented with the goal of incorporating
factual information into open-ended conversations (Weston, Di-
nan, and Miller, 2018), to add variety and more topics to the
conversation by retrieving facts from Wikipedia, however, our
goal is to investigate how such methods can be used in goal-
oriented dialogue, where relevancy of system responses is more
important. To this end, we hypothesize that incorporating exem-
plar user conversations is beneficial.

architecture Our proposed model uses the same architec-
ture as the HRED baseline, however, we include an additional
RNN, which encodes the top example response (details later in
this section). Just as in the baseline model, the user utterance
encoder outputs a vector representation of the user utterance.
Additionally, we encode the exemplar using the example encoder.
The resulting representations of the example response and user
utterance are concatenated and fed to the context RNN, which
summarizes previous user interactions and examples of success-
ful system responses to similar questions. This global context is
then fed into the decoder. A graphical representation of our
proposed model can be seen in Figure 3.1.

For all experiments, we use the MultiWOZ dataset for goal-
oriented dialogue (Budzianowski et al., 2018), which is described
in section 3.4.1. We initialize our model and the baseline model
using GloVe embeddings. Our model uses the Adam optimizer
(Kingma and Ba, 2014) for all encoders. All our encoders are
one layer RNN’s. We use a dropout rate of 0.3 and a learning
rate of 0.001. We set a maximum of 50 training epochs, however,
we use early stopping with a patience of 10. Most of our models
converge by epoch 30. We use greedy search to generate the
response during testing. More implementation details as well
as our predicted utterances for each system can be found in the
link provided.1

retrieval step The retrieval step happens offline (before
training). For each user utterance, we extract a 300-dimensional

1 https://github.com/anavaleriagonzalez/exemplar_dialog

https://github.com/anavaleriagonzalez/exemplar_dialog
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Figure 3.1: Our model is similar to HRED (Sordoni et al., 2015a), we
include an utterance encoder, a context encoder and a de-
coder, however, unlike HRED, our model include a simple,
yet effective retrieval step used to condition the decoder to
generate responses that are more appropriate for a specific
domain and context.

sentence representation by computing the average GloVe em-
beddings of sentence tokens (Pennington, Socher, and Man-
ning, 2014). We obtain the ten most similar past user utterances
from the training set using Approximate Nearest Neighbor
Search (ANNS) (Indyk and Motwani, 1998). Nearest Neighbor
Search (NNS) is defined as: given a set S of points in space M,
and a query point q ∈ M, find the point p in S which is closest
to q. Retrieval of the exact nearest neighbor requires exhaustive
search which is not efficient in practice. ANNS allows us to in-
crease the speed of retrieval by approximating a point p ∈ S
which is close to q. While there are various methods for ANNS,
we use the annoy2 python package, which uses a random pro-
jection method. It builds a forest that can be indexed, where
each tree is constructed by picking two points at random and
splitting the space by the hyperplane equidistant from the two
points. This is done k times (k is a hyperparameter, in our case
k = 100) in the subspaces until the points associated with a
node are small enough. After the forest is constructed, it can
be stored and easily indexed (in logarithmic time) by traversing

2 https://github.com/spotify/annoy

https://github.com/spotify/annoy
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the trees from the root. We further improve the ranking of the
retrieved utterances using a feed-forward ranking model (Gon-
zalez, Augenstein, and Søgaard, 2018). In the end, we return the
highest ranked user utterance and use its response as the example
to be used in our model.

3.4 experiments

3.4.1 Dataset and preprocessing

We use the MultiWOZ dialogue corpus which consists of 10,438

dialogues spanning several domains and annotated with dia-
logue states and acts (Budzianowski et al., 2018). We train on
8,438 dialogues and use 1000 dialogues for development and
1000 dialogues for testing. Although the data is primarily in-
tended for DST and learning a dialogue policy, it is appropriate
for generation tasks as it contains about 115k turns in total;
making it considerably larger than many other goal-oriented
dialogue corpora available. Dataset statistics can be seen in Ta-
ble 4.1. The MultiWOZ dataset is also more difficult than the
current benchmarks for goal-oriented dialogue, as it spans 7

different customer support domains and conversations are not
limited to a single domain. We delexicalize the utterances to re-
move phone numbers, reference numbers, and train IDs, which
would in practice usually be retrieved from a knowledge base.
For delexicalizing, we use the ontology provided with the data
and replace the value with the slot names e.g., replacing The ref-
erence ID is A23N5 with The reference ID is train-id using regular
expressions.

Statistic MultiWOZ

# dialogues 8438

Total # turns 113,424

Total # tokens 1,520,970

Total unique tokens 24,071

Table 3.1: Statistics of the MultiWOZ training data

3.4.2 Metrics

Evaluation of open-ended dialogue systems is an open problem
(Pietquin and Hastie, 2013; Schatzmann, Georgila, and Young,
2005). Word overlap metrics such as the ones used for machine
translation are often used to evaluate the quality of dialogue gener-
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ation (Lowe et al., 2017b, 2016). We include these, as well as word
embedding metrics previously used for measuring textual simi-
larity (Wieting et al., 2015). While Liu et al. (2016) showed that
these metrics tend to not correlate with human judgements in
open-ended dialogue, Sharma et al. (2017) showed that they have
stronger correlations with human evaluation in goal-oriented
dialogues, where answers are in narrower domains and exhibit
lower diversity. To calculate the results, we use the evaluation
script from Serban et al. (2016) 3.

In addition, we evaluate the fluency and relevancy of re-
sponses through human evaluation, which is more valuable. We
collect human ratings from 7 evaluators, which gives us a better
indication of how successful the model responses are. We briefly
discuss all the metrics below:

bleu BLEU (Papineni et al., 2002) is typically used for machine
translation and has subsequently been used to evaluate the
performance of many dialogue generation systems (Galley et al.,
2015; Serban et al., 2016, 2017). BLEU analyzes cooccurrences
of n-grams in a reference sequence and a hypothesis. It uses
a modified precision to account for the differences in length
between reference and generated output.

average word embedding similarity We follow Wiet-
ing et al. (2015) and obtain sentence embeddings for the refer-
ence response by taking the average of its word embeddings. We
do the same for the predicted output and obtain the final simi-
larity score by computing cosine similarity of the two resulting
vectors.

vector extrema Vector extrema is another way of obtain-
ing sentence embeddings (Forgues et al., 2014). This consists
of taking the most extreme value (minimum or maximum) of
the embeddings of the words composing a sentence for each
dimension. We do this for both reference and system responses
and then compute the cosine similarity between them.

The goal of this metric as described by previous work (Liu
et al., 2016; Sharma et al., 2017) is to consider informative words
rather than common words, since the vectors for common words
will tend to be pulled towards the zero vector.

human evaluation The previous metrics provide only a
vague measure of similarity between the system output and
a gold response. These metrics do not inform us of what is

3 https://github.com/julianser/hed-dlg-truncated/tree/master/
Evaluation

https://github.com/julianser/hed-dlg-truncated/tree/master/Evaluation
https://github.com/julianser/hed-dlg-truncated/tree/master/Evaluation
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actually preferred by humans. Therefore, in addition to the previ-
ously mentioned standard metrics, we evaluate the performance
of the baseline and the exemplar-HRED models using human
evaluations.

We extract 100 baseline and exemplar-HRED system responses
at random. 7 evaluators rated all 100 responses independently.
They were presented with three-turn dialogues consisting of
a system utterance (to provide additional context), user query,
and then both baseline and exemplar-HRED system responses.

The evaluators were asked to do to things: choose the response
that was more fluent and grammatical and choose the response
that provides the most relevant answer given the context of the
conversation. For each of those, they had 4 options to choose
from: 1) the output of the baseline, 2) the output of the exemplar
model, 3) both, or 4) none. The order of the options was shuffled.

3.5 results and discussion

Overall, we found that in most cases, our model leads to signifi-
cant improvements over all metrics; see Table 3.2 for the results.
We observe that differences between our model and the baseline
range widely across metrics. For example, while our proposed
model leads to better average embedding similarity scores, this
metric is high for both models which can mislead one into
thinking both models are performing really well. However, we
see that the differences observed in the human evaluation are
considerably larger, with the baseline model performing very
low and only being preferred 14-19% of the time.

The improvements in BLEU score suggest that our model is
returning similar tokens to a reference response, more often than
the baseline. The vector extrema similarity score suggests that
our model is better than the baseline at matching the informative
words of the reference responses. However, we turn our attention
to our human evaluation results.

Overall, we found that when it came to fluency, evaluators
perceived that 58% of the time, the exemplar-HRED response was
better. The baseline beat our model’s response for 19% of the
evaluated dialogues. For the rest of the dialogues, either both
or none were picked. For relevancy of system response, we see
a similar pattern. Evaluators perceived the response produced
by our model as most relevant given the context (59% of the
evaluated dialogues). The baseline beat the proposed model
only 14% of the time. These results can also be found on Table
3.2.
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Metric HRED Exemplar-
HRED

BLEU 23.6 24.1
Vector Extrema Sim 59.0 65.0
Avg Embedding Sim 93.0 95.0

Human Eval- Fluency 0.19 0.58
Human Eval- Relevancy 0.14 0.59

Table 3.2: The results of our dialogue generation experiments com-
paring HRED Serban et al. (2016) and Sordoni et al. (2015a)
to our proposed exemplar-based model. We present results
for standard metrics used in dialogue generation. For all
the metrics we observe improvements over the strong base-
line, with our best improvement of 6 percent in the vector
extrema metric

analysis of system outputs As it is hard to interpret
what the differences in the performance of each model really
mean, we examined the output to spot the major differences in
response generation of our proposed models versus the baseline.
We provide a few example responses in Table 3.3, while other
examples are mentioned throughout this section. We make the
following observations:

Exemplar-HRED chooses the right domain more often. While
inspecting the outputs, it seemed that our model generated re-
sponses containing slots for the correct domains more often than
the baseline. This can be observed in the first example in Table
3.3. While both models are able to provide responses dealing
with booking, the baseline model returns a response concerned
with the restaurant domain, while the true domain is hotel (which
our model generates correctly).

We quantify this by annotating 200 examples from the baseline
and 200 examples from our proposed model (responses to the
same dialogue contexts), to see if they match the domain of the
reference. We stick to responses where the domain should be
mentioned (as in the first example in Table A.11). We find that
out of 200 responses, the baseline matches the domain only for
33 of them (16.5%). On the other hand, our model matches the
domain 150 times (75% of the time).

This confirms the findings from the human evaluation, show-
ing that the simple retrieval step we incorporate has a significant
positive effect in the relevancy of responses, which can be further
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Gold Response Exemplar-HRED HRED
your booking was
successful and your
reference number is
hotel-reference . is
there anything else i
can help you with ?

your booking was successful
. your reference number is
hotel-reference . is there any-
thing else i can help with ?

the booking was successful .
the table will be reserved for
15 minutes . reference num-
ber is : restaurant-reference .

there is no option for
me to book it . is
there anything else i
can help you with ?

certainly ! the reference
number is restaurant-
reference . can i help you
with anything else ?

the train-trainid leaves at
09:01 and arrives in cam-
bridge by 09:52 . would that
work ?

where will you leave
from ?

sure , when would you like
to leave ?

have a nice stay .

Table 3.3: Examples of responses generated by both the baseline and
our proposed model. By examining the outputs, it becomes
noticeable that the baseline model tends to generate re-
sponses that are not precise about the current domain of the
conversation (hotel, taxi booking, trains, restaurant, etc).

improved by incorporating other information such as the output
of a DST model.

Exemplar-HRED returns semantically compatible entities.
Additionally, we observe that baseline (HRED), despite the im-
provements over previous architectures, still provides responses
which are grammatically correct but meaningless in content.
For example, HRED outputs the price is located at hotel-address. is
there anything else i can help you with today ? while our proposed
model is able to provide entities that are semantically compati-
ble e.g. sure thing ! the postcode is post-code and the phone number is
phone-number.

Additionally, we observed that our model tends to add more
follow up questions e.g. anything else I can help with? and filler
words such as sure, certainly! , which may make the language
sound more natural and in turn make these responses preferred
by users.

3.6 related work

Open domain dialogue systems aim to generate fluent and
meaningful responses, however this has proven to be a challeng-
ing task. Most systems are able to generate coherent responses
that are meaningless and at best entertaining (Lowe et al., 2017a;
Serban et al., 2016; Wen et al., 2018). Much of the research on
dialogue generation has tried to tackle this problem by predict-
ing an utterance based on some dialogue history (Luan, Ji, and
Ostendorf, 2016; Serban et al., 2016; Shang, Lu, and Li, 2015a;
Vinyals and Le, 2015).
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Most research on goal-oriented dialogue has focused almost
exclusively on dialogue state tracking and dialogue policy learn-
ing (Bingel et al., 2019; Henderson, 2015; Henderson, Thomson,
and Young, 2014; Li et al., 2017b; Mrkšić et al., 2016; Rastogi,
Hakkani-Tür, and Heck, 2017; Sun et al., 2014, 2016; Yoshino
et al., 2016). On the contrary, we focus on dialogue generation for
goal-oriented dialogue, which has not been studied as often.

The idea of combining text generation with past experience
has been explored before. White and Caldwell (1998) used a
set of hand crafted examples to generate responses through
templates. More recently, Song et al. (2016) also explored a hy-
brid system with an information retrieval component, but their
system is very different: It uses a complex ranking system at a
high computational cost, and they only evaluate their system
in an open-ended chit-chat set-up, reporting only BLEU scores.
In a similar paper, (Weston, Dinan, and Miller, 2018) tried to
move away from short generic answers in order to make a chit-
chat generation model more entertaining by using retrieval of
relevant facts from Wikipedia. A similar method was recently
shown to improve other generation tasks such as summarization.
In Subramanian et al., 2019, the authors show that a simple ex-
tractive step introduces enough inductive bias for an abstractive
summarization system to provide fluent and precise summaries.
We extend this method to dialogue, with a retrieval step to in-
clude previous user conversations, which improves the relevancy
and fluency of system responses.

3.7 conclusion

We have introduced a simple-yet-effective way of conditioning a
goal-oriented dialogue generation model. Generating fluent and
precise responses is crucial for creating goal-oriented dialogue
systems. We propose adding a simple retrieval step, where
we obtain the past conversations that are most relevant to the
current one and condition our responses on those. We find
that this method not only improves over a strong baseline on
word overlap metrics and other automatic metrics, but it also
is preferred by human annotators. Finally, by inspecting the
output of the baseline versus our proposed model, we identify
different areas where our method leads to improvements.





4
D O M A I N T R A N S F E R I N D I A L O G U E S Y S T E M S
W I T H O U T T U R N - L E V E L S U P E RV I S I O N

4.1 abstract

Goal-oriented dialogue systems rely heavily on specialized Dia-
logue State Tracking (DST) modules for dynamically predicting
user intent throughout the conversation. State-of-the-art DST
models are typically trained in a supervised manner from man-
ual annotations at the turn level. However, these annotations are
costly and unrealistic to obtain, which makes it difficult to create
accurate dialogue systems for new domains. To address these
limitations, we propose a method based on Reinforcement Learn-
ing (RL) for transferring DST models to new domains without
turn-level supervision. Across several domains, our experiments
show that this method quickly adapts off-the-shelf models to
new domains and performs on par with models trained with
turn-level supervision. We also show that our method can im-
prove models trained using turn-level supervision by subsequent
finetuning optimization with dialog-level rewards.

4.2 introduction

Intelligent personal assistants, such as Amazon Alexa, Apple
Siri and Google Assistant, are becoming everyday technologies.
These assistants can already be used for tasks such as booking
a table at your favorite restaurant or routing you across town.
Such dialogue systems potentially allow for smooth interactions
with a myriad of online services, but rolling them out to new
tasks and domains requires expensive data annotation. In devel-
oping goal-oriented dialogue systems, DST refers to the subtask
of incrementally inferring a user’s intent as expressed over a
sequence of turns. The detected user intent is then used by
the dialogue policy in order to decide what action the system
should take (Henderson, 2015). For example, in a chatbot-based
train reservation system, DST amounts to understanding key
information provided by the user as slot-value pairs, such as
the desired departure and arrival stations, the day and time
of travel, among others. With the introduction of the Dialogue
State Tracking Challenge (DSTC) (Williams et al., 2013), this line
of research has received considerable interest.
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State-of-the-art models for DST are typically learned in a fully
supervised setting from datasets where slots and values are
annotated manually at the turn level (Mrkšić et al., 2017a; Nouri
and Hosseini-Asl, 2018; Ren et al., 2018; Zhong, Xiong, and
Socher, 2018). This allows for high-accuracy models in a select
number of domains, where turn-level annotations are available.
However, such annotations are cumbersome and costly to obtain,
and, in practice, a bottleneck for producing dialogue systems
for new domains.

In this paper, we present an approach to DST that pretrains a
model on a source domain for which turn-level annotations exist,
then finetunes to other target domains for which no turn-level
annotation is directly available. In particular, we use standard
maximum likelihood training to induce a supervised model for
the source domain, and resort to Reinforcement Learning (RL))
from dialog-level signals (e.g., user feedback) for transferring to
the target domain, improving target domain performance. In
addition to this, we also report consistent gains using (modeled)
dialogue-level feedback to further improve supervised models
in-domain.

contributions To summarize, our contributions are: Re-
lying on only dialogue-level signals for target domain finetuning,
we show that it is possible to transfer between domains in DST
using RL, gaining a significant increase in performance over
baselines trained using source-domain, turn-level annotations.
Second, we show that policy gradient methods can also be used
to boost the in-domain accuracy of already converged models
trained in the usual supervised manner.

4.3 baseline architecture

Our proposed model is based on StateNet (Ren et al., 2018),
which uses separate encoders for the two basic inputs that define
a turn: the user utterance and the system acts in the previous
turn. These inputs are represented as fixed-size vectors that
are computed from n-gram based word vector averages, then
passed through a number of hidden layers and non-linearities.
We concatenate these representations, and for every candidate
slot, we compare the result to the slot representations, again
derived from word vectors and intermediate layers. We update
the hidden state of a Gated Recurrent Unit (GRU) encoding
the dialogue history and compare this representation to all
candidate values for a given slot. From this, we compute the
probability of slot-value pairs. For efficiency reasons, we modify
the original StateNet model to only update the GRU that tracks
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Figure 4.1: Illustration of our proposed domain transfer dialogue state
tracker, using a model MP trained with turn-level super-
vision on dP as a starting point for the finetuning policy
πθ(s|a) on domain dF.

the inner dialogue state after every turn and once all slots are
processed within that turn, rather than after every computation
of slot values.

Embedding slots and values, and treating them as an input to
the model rather than as predefined classes, are important fea-
tures of StateNet: These features enable zero-shot learning and
make the architecture a natural choice for domain transfer exper-
iments, even if it is not the first to enable zero-shot learning in
dialogue state tracking in such a way (Ramadan, Budzianowski,
and Gasic, 2018; Zhong, Xiong, and Socher, 2018). In addition
to being well suited for domain transfer, StateNet also produces
state-of-the-art results on the DSTC-2 and WOZ 2.0 datasets
(Henderson, Thomson, and Williams, 2014; Mrkšić et al., 2017b).

Training our model is split into two distinct phases. From a
pretraining domain dP for which manual turn-level annotations
are available, we learn a model MP, using the available dialogues
to train our system until convergence on a held-out development
set. Then, for a further domain dF /∈ D − dP, where D is the
set of available domains, we use a policy gradient training to
finetune MP to the new domain, based on simulated user feedback,
corresponding to how many goals we met at the end of the
conversation. Figure 4.1 presents an overview of this process.
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pretraining In the pretraining phase, we use our imple-
mentation of the StateNet model. Just as Ren et al. (2018), we
focus on predicting the user state and use the information about
the system acts contained in the data. During pretraining, we
rely on turn level supervision, training models on a single do-
main and evaluating on a held out set from that same domain.

4.4 domain transfer using reinforcement learning

dialogue state tracking with rl Given a pretrained
model MP trained on a domain dP, we finetune it on a new
domain dF. Since we do not have turn-level annotations for the
target domain, we cannot use maximum likelihood training to
adapt to dF. This also means that standard domain adaptation
methods (Blitzer, McDonald, and Pereira, 2006; Daume III and
Marcu, 2006; Jiang and Zhai, 2007) are not applicable. Instead,
we frame our transfer learning task as a RL problem and use pol-
icy gradient training. This allows us to use dialogue-level signals
as a reward function. Policy gradient training has advantages
over value-based RL algorithms, including better convergence
properties, ability to learn optimal stochastic policies and effec-
tiveness in high-dimensional action spaces (Sutton and Barto,
1998). Within this paradigm, the dialogue state tracker can be
seen as an agent that interacts in the environment of a dialogue.
Throughout the conversation, the DST model tracks the presence
of slots in the conversation and assigns a probability distribution
over the values, if present. At the end of a dialogue, represented
by a state s, our model goes through the slots and performs an
action, a, by sampling a value from the present slot-value proba-
bility distribution. It then receives a reward based on how well
it predicted slot-value pairs. We illustrate this training regime
using dialog-level feedback in the lower half of Figure 4.1.

dialog-level reward signal In a real-world setting, dy-
namically obtaining turn-level rewards, for instance from user
feedback, is not only costly but undesirable for the user ex-
perience. In contrast, acquiring user feedback at the end of a
dialogue, for instance in the form of a 5-star scale, is more
feasible and common practice in commercial dialogue systems.

For practical reasons, we simulate this feedback in our experi-
ments by the success our model achieves in correctly predicting
slot-value pairs, assuming that model performance is correlated
with user satisfaction. Concretely, we use the Jaccard index
between the predicted (SP) and ground-truth (SG) final belief
state:
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Domain Dialogues
Dialogues
with only

one domain

Turns/
Dialogue Slots Values

(processed)
Split sizes

(train-dev-test)

Taxi 2057 435 7.66 4 610 326-57-52

Train 4096 345 10.26 6 81 282-30-33

Hotel 4197 634 10.95 9 187 513-56-67

Restaurant 4692 1310 8.78 6 330 1199-50-61

Attraction 3515 150 7.69 2 186 127-11-12

Table 4.1: Statistics of the MultiWOZ dataset. The reported numbers
are from our processed dataset.

Rgoal =
|SG ∩ SP|
|SG ∪ SP|

(4.1)

policy gradient methods We define the policy network
πθ as the StateNet network, which is initialized with a pre-
trained model MP. The weights of the StateNet network are
then finetuned using stochastic gradient ascent, i.e., in the direc-
tion of the gradient of the objective function ∇J(θ). The update
in the vanilla policy gradient algorithm is:

∇J(θ) = ∇θ log πθ(a|s)Rgoal (4.2)

We update the policy of the network after each iteration, follow-
ing Sutton and Barto (1998).

variance reduction methods Policy gradient methods
suffer form certain shortcomings. For instance, they frequently
converge to local, instead of global, optima. Furthermore, the
evaluation of a policy is inefficient and suffers from high vari-
ance (Sutton and Barto, 1998). A common way to circumvent
the above-mentioned issues is to introduce a baseline model
(Weaver and Tao, 2001). It is typically initialized as a frozen copy
of the pretrained model MP. The baseline models the reward
Bgoal at the end of the dialog. We can then define an advantage of
an updated model over the initial one as Agoal = Rgoal − Bgoal.
In addition to subtracting the baseline, we also add the entropy
H(πθ(a|s)) of the policy to the gradient to encourage more ex-
ploration (Williams and Peng, 1991), in order to counteract the
local optima convergence shortcoming. With these modifications
to the policy update in Eq. (4.2), we can rewrite the final gradient
as:

∇J(θ) = ∇θ log πθ(s|a)Agoal + αH(πθ(s|a)), (4.3)

where α is a term that controls the influence of the entropy.

hill climbing with rollbacks Since the policy gradient
methods are prone to suffer from performance degradation over



52 domain transfer without turn-level supervision

time (Kakade, 2002), we employ a rollback method when the
policy starts to deviate from the objective. The performance of
the model is monitored every few iterations on the develop-
ment set. If the new model achieves greater rewards than the
previously best model, the new model is saved. Contrarily, we
roll back to the previous model that performed best and con-
tinue from there following other exploration routes if the reward
failed to improve for a while. When the policy degrades beyond
recovery, the rollback in combination with the slot-value distri-
bution sampling can give a way to a path that leads to greater
rewards. We note that our hill climbing with rollbacks strategy
is an instance of a generalized version of the win-or-learn-fast
policy hill climbing framework (Bowling and Veloso, 2001).

4.5 experiments

4.5.1 Data

We use the MultiWOZ dataset (Budzianowski et al., 2018) which
consists of 10, 438 dialogues spanning 7 domains: Attraction,
Hospital, Police, Hotel, Restaurant, Taxi and Train. The
dataset contains a few dialogues in the police and hospital

domains, so we do not include these as the single domain dia-
logues in these domains did not contain belief state labels. The
MultiWOZ dataset consists of natural conversations between a
tourist and a clerk from an information center in a touristic city.
There are two main types of dialogues. Single-domain dialogues
include one domain with a possible booking sub-task. Multi-
domain dialogues, on the other hand, include at least two main
domains. MultiWOZ is much larger and more complex than
other structured dialogue datasets such as WOZ2.0 (Mrkšić et al.,
2017b), DSTC-2 (Henderson, Thomson, and Williams, 2014) and
FRAMES (El Asri et al., 2017). In addition, unlike the previous
datasets, users can change their intent throughout the conver-
sation, making state tracking much more difficult. Table 4.1
presents the statistics of domains used in the experiments with
the distinction between the cases when the dialogue consists of
only one or more domains.

preprocessing multiwoz The user utterances and system
utterances used to train our model contain tokens that were
randomly generated during the creation of the data to simu-
late reference numbers, train IDs, phone numbers, arrival and
departure times and post codes. We delexicalize all utterances
by replacing these randomly generated values with a special
generic token. In addition, we replace the turn label values with
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Pretrain
Finetune

taxi train hotel restaurant attraction

bl pg bl pg bl pg bl pg bl pg

taxi 0.35 0.35 0.17 0.27 0.04 0.10 0.12 0.29 0.00 0.11
train 0.13 0.13 0.43 0.43 0.07 0.08 0.08 0.22 0.00 0.00

hotel 0.004 0.26 0.02 0.19 0.30 0.33 0.10 0.19 0.06 0.11
restaurant 0.04 0.25 0.13 0.27 0.11 0.13 0.33 0.34 0.11 0.05

attraction 0.00 0.27 0.00 0.39 0.00 0.08 0.05 0.10 0.11 0.17

Averages 0.04 0.23 0.08 0.28 0.06 0.10 0.09 0.2 0.04 0.07

Table 4.2: Accuracy scores for our pretrained baseline (bl) and the
policy gradient finetuning (pg). The colored results along
the left-to-right downward diagonal are in-domain results,
dark red being the supervised results and light green the
policy gradient finetuned results, and each pair of columns
compare the baseline and system results for each target
domain. The Averages row presents the average out-of-
domain transfer scores for each domain. Note that while the
PG method has access to more data, this does not invalidate
the comparison, seeing that the additional data is relatively
easy to obtain in an applied setting.

this special token and add that to the ontology. Since MultiWOZ
only contains the current belief state at each turn, we create
the labels by registering the changes in the belief state from
one turn to the next. The annotators were given instructions on
specific goals to follow, however, at times they diverged from
instructions. This lead to errors in the belief state such as wrong
labels or missing information. These instances also propagate
further down to our assigned gold turn labels. Furthermore,
while preprocessing the data, we found that there are more
values present than reported in the ontology, therefore the num-
ber of values presented here is higher than what is reported in
Budzianowski et al. (2018). We release our preprocessed data
and preprocessing scripts.1

4.5.2 Implementation Details

Our pretrained StateNet model is implemented without param-
eter sharing and is not initialized with single-slot pretraining
as in Ren et al. (2018). We use the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 10−3. We use an n-gram
utterance representation size of 3 and 3 multi-scale receptors
per n-gram. The supervised models are trained using a batch
size of 16. The size of the GRUs hidden state is 200 and the size
of the word embeddings is 400. In line with recent methods for
dialogue state tracking, we use fixed pretrained embeddings

1 https://github.com/coastalcph/dialog-rl

https://github.com/coastalcph/dialog-rl
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and do not update them during the training (Mrkšić et al., 2017a;
Ren et al., 2018; Zhong, Xiong, and Socher, 2018). We use the
established data splits for train, development and testing and
apply early stopping if the joint goal accuracy has not improved
over 20 epochs.

When finetuning with policy gradient, we evaluate on the
development set every 5 batches, saving the model if the reward
has increased since last. We use an independent hill climbing
patience factor of 15, reverting back to the previous best model
if no improvements were made in that period. We use a batch
size of 16 in our finetuning experiments. When applying policy
gradient methods in practice, larger batch sizes have shown
to lead to more accurate policy updates (Papini, Pirotta, and
Restelli, 2017), but due to the relatively small training sets, we
found a batch size of 16 gave us the best sample efficiency trade-
off. Our implementation uses PyTorch (Paszke et al., 2017) and
is publicly available.

4.5.3 Experimental Protocol

setups In our experiments, we report a number of different
results: 1) Training a DST model MP with the usual turn-level
supervision on the different domains. We only use dialogues
which strictly contain the labels of that single domain. We hy-
pothesize that this serves as an upper bound to the performance
of the policy gradient finetuning. 2) Evaluating the pretrained
models as a cross-domain zero-shot baseline. We take a model
pretrained on dP and measure its performance on dF for all
domains in D− dP. This serves as the lower bound for the per-
formance of the policy gradient finetuned models. We use this
baseline and not a model finetuned on dF with cross entropy
training with dialogue level supervision on the final belief state,
as we simulate not having gold labels for each slot-value pair,
but rather only a scalar rating as the sole signal. 3) finetuning
the pretrained model MP to all other domains with policy gra-
dient as described in Section 4.4. We experiment with domain
transfer from dP to all domains in D− dP using only the user
simulated dialog-level reward using policy gradient. 4) Lastly,
we report the results of finetuning a model using policy gradient
on the same domain it was pretrained on (dP) after convergence
to see if the dialog-level reward signal can further improve its
performance. We here use the same training and development
data as the supervised model was trained on.

metric We measure the performance of our models with
what we refer to as the turn level accuracy metric, which measures
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the ratio of how many of the gold turn labels are predicted by
the DST model at each turn. The reported accuracy is the mean
of all turns in the evaluation set.

4.6 results

In Table 4.2 we present the results from our baseline StateNet
model and from policy gradient training for the in- and out-of
domain scenarios. We also report the average out-of-domain
accuracies for each domain, to illustrate how policy gradient
training in general performs compared to the baseline. The table
show the performance of transferring from each domain to all
other domains. From the results, we observe that in almost all
domain transfer settings, with the exception of restaurant to
attraction, we get a consistent increase in performance when
applying policy gradient finetuning, compared to the zero-shot
transfer baselines. In some instances we also see an increase in
performance from further finetuning a model after turn-level
supervision convergence using only the dialogue-level reward
feedback. In the case of attraction, we are even able to increase
the accuracy by a large margin using in-domain policy gradient
finetuning. On average, we see relative improvements of the
accuracy, ranging from 0.03 to 0.2, when applying our proposed
method of finetuning for DST domain transfer.

4.7 analysis

To illustrate the effectiveness of PG finetuning compared to zero-
shot domain transfer, we plot in Figure 4.2 the results of training
a model on the source domain hotel while evaluating on the
development set, its zero-shot accuracy on the target domain
taxi, until convergence on the source domain. After convergence
we show how the PG finetuning uses the pretrained model as
a starting point to further improve the accuracy on the target
domain using only the dialog-level feedback. Figure 4.2 also
illustrates the importance of the hill climbing technique we em-
ploy. When the performance starts to deteriorate, it manages to
revert back to a reasonable baseline and improve performance
from there instead. From the blue baseline curve, we also ob-
serve that even though the accuracy continuously improves on
the source domain, this is not necessarily an indication of the
performance on the target domain. On the contrary, the per-
formance suddenly starts to deteriorate for the latter when the
model overfits to the source domain.
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Figure 4.2: The performance of the supervised model trained on the
hotel domain while evaluated on the development set
of the taxi domain after each epoch until convergence on
hotel versus the improvements we get from the policy
gradient finetuning using the supervised model as starting
point.

Figure 4.3: The turn level accuracy of our weakly supervised fine-
tuning compared to finetuning using PG. Performance
plateaus after about 50 samples for both methods.
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4.7.1 Error Analysis

In general we observe lower scores for both the baseline mod-
els and in-domain finetuning on the attraction domain. We
believe this can be attributed to the fact that it only contains
150 dialogues, leaving very little data for the development and
test splits. Coupled with the fact that it has 2 slots and 180 val-
ues, the risk of encountering unseen slot-value pairs increases
significantly.

System utter-
ance

User utterance Baseline prediction PG finetune prediction

N/A I’m looking for
a cheap place to
dine, preferably
in the centre of
town.

inform(area=center)
inform(pricerange=expensive)

inform(area=center)
inform(pricerange=cheap)

Yes, I have 4 re-
sults matching
your request,
is there a price
range you’re
looking for?

I would like
moderate price
range please.

inform(pricerange=expensive) inform(pricerange=moderate)

There are a
number of op-
tions for Indian
restaurants in
the centre of
town. What
price range
would you like
?

I would prefer
cheap restau-
rants.

inform(pricerange=expensive) inform(pricerange=cheap)

Table 4.3: Comparison of example turn predictions from the Multi-
WOZ dataset between the baseline model trained on the
hotel domains, and the policy gradient finetuned model.
Green indicates a correct prediction whereas red indicates a
wrong prediction.

In Table 4.3 we present a couple of example turns from the test
set of the restaurant domain, with the system utterance, user
utterance, and the predicted slot-value pairs for both the baseline
model, which has been trained on the hotel domain, and the
PG finetuned model. The slot-value pairs in green show correct
predictions, whereas pairs in red show incorrect predictions.
From the predicted slot-value pairs, we can for example see how
the finetuned model to a better extent is able to utilize the user
and system utterances to correctly predict what price range the
user is looking for, even though the baseline correctly predicts
the slot presence.

4.7.2 Comparisons to Weak Supervision

We also pose the question of how many annotated dialogues in
the target domain are needed before policy gradient finetuning
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with dialogue-level rewards is no longer beneficial, compared
to finetuning a model trained with turn-level cross entropy. In
order to further investigate this, we use our pretrained model
in the taxi domain and further finetune with varying amounts
of dialogues i.e. s ∈ [10, 20, 30, 40, 50] using turn level super-
vision for the restaurant domain. We then finetuned each
of the models on the restaurant domain using the dialogue-
level reward only. The results for these experiments are shown
in Figure 4.3. Overall, we find that when we annotate just 10

complete dialogues and then finetune our model using rein-
forcement learning we still see an increase in performance. We
observe that as we increase the sample size s for our weakly
supervised models, finetuning using policy gradient comes with
diminishing returns. At around 50 samples, the performance of
the weakly supervised baseline reaches the performance of our
system, and improvements from reinforcement learning, if any,
become significantly smaller.

4.8 related work

dst architectures The goal of Dialogue State Tracking
is to predict the user intent or belief state at each turn of the
conversation. The range of user goals or, slots and value pairs,
that can possibly be recognized by the system are contained in
the domain ontology. DST has for long been a part of spoken
dialogue systems, however, before the Dialogue State Tracking
challenge (DSTC) (Henderson, Thomson, and Williams, 2014;
Williams et al., 2013) many of the early architectures relied on
hand crafted rules (Sun et al., 2014, 2016; Wang and Lemon,
2013). Later research has proposed RNN models that exploit
delexicalized features (Henderson, Thomson, and Young, 2014;
Mrkšić et al., 2015; Rastogi, Hakkani-Tür, and Heck, 2017) to
allow the model to perform better and achieve generalization by
reducing the amount of labels. Delexicalization requires that all
possible mentions of a slot and value are contained in a lexicon,
which does not become scalable in larger domains. To address
this, Mrkšić et al. (2017a) proposed a neural belief tracker which
uses pretrained word embeddings to represent user utterances,
system acts, and current candidate slot-value pairs and utilizes
these as inputs into a neural network. Recent approaches have
proposed sharing parameters across estimators for the slot-value
pairs (Nouri and Hosseini-Asl, 2018; Ramadan, Budzianowski,
and Gasic, 2018; Ren et al., 2018; Zhong, Xiong, and Socher,
2018). Although not extensively investigated, this would make
the model more scalable as the number of parameters would not
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increase while the ontology size grows. In our experiments, we
adopt the model by Ren et al. (2018) as our supervised baseline.

domain transfer A key issue that remains unexplored by
many of the existing methods within DST is domain adaptation.
Williams (2013) presented some of the earliest work dealing
with multi-domain dialogue state tracking, investigating domain
transfer in two dimensions: 1) sharing parameters across slots, 2)
sharing parameters across single domain systems. Later research
has further expanded by using disparate data sources in order
to train a general multi-domain belief tracker (Mrkšić et al.,
2015). The tracker is then finetuned to a single domain to create
a specialized system that has background knowledge across
various domains. Furthermore, Rastogi, Hakkani-Tür, and Heck
(2017) proposed a multi-domain dialogue state tracker that uses
a bidirectional GRU to encode utterances from user and system
which are then passed in combination with candidate slots and
values to a feed-forward network. Unlike our proposed method,
they rely on delexicalization of all values. In addition, their GRU
shares parameters across domains. Ramadan, Budzianowski,
and Gasic (2018) introduced an approach which leverages the
semantic similarities between the user utterances and the terms
contained in the ontology. In their proposed model, domain
tracking is learned jointly with the belief state following Mrkšić
and Vulić (2018). We want to emphasize that all previous models
assume the existence of dialogue data annotated at the turn level
in the new domain. In our proposed method, we model a more
realistic scenario in which we only have a score of how accurate
the system was at the end of the dialogue given the final user
goal.

reinforcement learning in dialogue In task-oriented
dialogues, the reinforcement learning framework has mostly
been used to tackle dialogue policy learning (Li, Williams, and
Balakrishnan, 2009; Liu et al., 2018; Singh et al., 2002; Williams
and Young, 2007). Gasic et al. (2013) proposed a method to
expand a domain to include previously unseen slots using Gaus-
sian process POMDP optimization. While they discuss the po-
tential of their model in adapting to new domains, their study
does not present results in multi-domain dialogue management.
Recent work has attempted to build end-to-end systems that
can learn both user states and dialogue policy using reinforce-
ment learning. Zhao and Eskenazi (2016) propose an end-to-end
dialogue model that uses RL to jointly learn state tracking and
dialogue policy. This model augments the output action space
with predefined API calls which modify a query hypothesis
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which can only hold one slot value pair at a time. Dhingra et al.
(2017) instead show that providing the model with the poste-
rior distribution of the user goal over a knowledge base, and
integrating that with RL, leads to higher task success rate and
reward. In contrast to our work, Gašić et al. (2017) tackled the
problem of domain adaptation using RL to learn generic policies
and derive domain specific policies. In a similar study, Chen
et al. (2018b) approach the problem of domain adaptation by
introducing slot-dependent and slot-independent agents. Our
approach differs from the previously presented models in sev-
eral ways: a) we track the user state using RL, however, we do
not learn generic and specific policies ; b) we use RL to adapt
models across many domains and a large number of slot,value
pairs; and c) we assume that a reward is only known for target
domain dialogues at the end of each dialogue.

4.9 conclusion

This paper tackles the challenge of transferring dialogue state
tracking models across domains without having target-domain
supervision at the turn level; that is, without manual annota-
tions, which are costly to obtain. Our setup is motivated by the
fact that in a practical setting, it is much more feasible to obtain
dialogue level signals such as user satisfaction. We introduce a
transfer learning method to address this, using supervised learn-
ing to learn a base model and then using reinforcement learning
for finetuning using our dialogue level reward. Our results show
consistent improvements over domain transfer baselines without
finetuning, at times showing similar performance to in-domain
models. This suggests that with our approach, dialog-level feed-
back is almost as useful as turn-level labels. In addition, we
show that using the dialogue-level reward signal for finetuning
can further improve supervised models in-domain.
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M U LT I - TA S K G E N D E R B I A S

5.1 abstract

The one-sided focus on English in previous studies of gender
bias in NLP misses out on opportunities in other languages: En-
glish challenge datasets such as GAP and WinoGender highlight
model preferences that are “hallucinatory”, e.g., disambiguat-
ing gender-ambiguous occurrences of ‘doctor’ as male doctors.
We show that for languages with Type B reflexivization, e.g.,
Swedish and Russian, we can construct multitask challenge
datasets for detecting gender bias that lead to unambiguously
wrong model predictions: In these languages, ‘the doctor re-
moved his mask’ is not ambiguous, since the coreferential read-
ing requires a special, non-gendered pronoun, and the gendered,
possessive pronouns are anti-reflexive. We present a multilin-
gual, multi-task challenge dataset, which spans four languages
and four NLP task and focuses only on this phenomenon. We
find evidence for gender bias across all task-language combina-
tions by state-of-the-art models and correlate model bias with
national labor market statistics.

5.2 introduction

A reflexive pronoun is an anaphor that requires a c-commanding
antecedent within its binding domain (Chomsky, 1991).1 In
languages with Type B reflexivization (Heine, 2005), the referent
of a reflexive possessive pronoun has to be the subject of the
clause, while non-reflexive possessive pronouns (so-called anti-
reflexives) trigger an interpretation where its referent is not the
subject; see Table 5.1.

We focus on the subset of those languages in which anti-
reflexive possessive pronouns are gendered, but reflexives are not. This
includes Chinese, Russian, Danish, and Swedish, as well as other
Scandinavian and Slavic languages (Battistella, 1989; Bílý, 1981;

1 This means that the antecedent should be in the same sentence, be different
from the pronoun and not command it, but any ancestor of the antecedent is
an ancestor of the pronoun. This is why in Lea1’s sister2 taught herself1∗/2/3∗
the pronoun refers to sister, not to Lea or a discourse referent.

63
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Type A Type B

1st 2nd 3rd 1st 2nd 3rd

Refl X X X X X

Table 5.1: In Type B reflexivization (Heine, 2005), 3rd person pronouns
cannot be used reflexively. We are interested in Type B
languages with gendered pronouns, and where the non-
gendered special (3rd person) reflexive marker has a posses-
sive form.

Kiparsky, 2001).2 Our motivation for highlighting this particular
linguistic phenomenon is that the antecedents of reflexive and
anti-reflexive pronouns are grammatically determined; if gender
bias leads models (or humans) to predict alternative coreference
chains, this violates hard grammatical rules and is thus a clear
case of gender bias leading not only to ’hallucinations’,3 but to
errors. To see this, consider the following examples:

(1) The surgeon1 put a book on Pron.Poss.Refl.3rd1 table.→ The
book is on the surgeon’s1 table.

(2) The surgeon1 put a book on Pron.Poss.3rd2 table. 6→ The book
is on the surgeon’s1 table.

Examples (1) and (2) should not be thought of as examples of
English, but placeholders for sentences in the languages above
since this grammatical distinction is not possible in English:
the possessive reflexive ( Pron.Poss.Refl.3rd) and the posses-
sive anti-reflexive ( Pron.Poss.3rd) in these languages would
be translated to the same pronoun in English. In Example (1),
the reflexive possessive pronoun is co-referential with the gram-
matical subject (as indicated by subscripts), which leads to the
conclusion that the book is now on a table that is associated
with the subject, in other words, the surgeon’s table. In Example
(2), in contrast, when an anti-reflexive possessive pronoun is
used, this reading is no longer possible. Instead, Example (2)
unambiguously means that the book is on someone else’s ta-
ble. This distinction is not possible in English where the same
pronoun (his/her) would be used in both Examples (1) and (2):

2 This rules out languages such as German and French, where the reflexive
(e.g., sich and se) does not have a possessive form (Steinbach, 1998). We focus
on the reflexive and anti-reflexive possessive forms rather than pure reflexives,
since they occur more freely, i.e., not only in the context of reflexive verbs,
and they are thus more likely to interact with implicit gender assumptions.

3 We use the word hallucination to refer to gender bias leading models to infer
gender without evidence; see Tian et al. (2020) for a similar use of the term
in abstractive summarization.
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The surgeon put a book on his table, which is therefore ambiguous
between a disjoint and a coreferent reading.

Here is why the interaction with implicit gender assumptions
happens: Introducing a new referent in a discourse comes at a
small cost if the referent is not already salient (Grosz, Joshi, and
Weinstein, 1995). In other words, while Example (2) is grammat-
ically unambiguous, language users may occasionally be willing
to violate grammatical constraints to avoid the more costly non-
coreferential reading, if the meaning of the grammatically cor-
rect disjoint reading does not align with their expectations about
the world.4 If a masculine possessive pronoun is used in this
example, this aligns with a prevalent stereotype that surgeons
are men; although in the US, in reality, only 62.1% are.5 In other
words, language users may be more likely to prefer the ungram-
matical reflexive reading if the gender of the anti-reflexive possessive
pronoun matches their (possibly gender-stereotypical) expectations
about the referent of the subject, in this case, the surgeon. Such a
reading is, however, clearly not intended, and this is an example
of when gender bias prohibits effective communication. We will
explore to what extent NLP models for languages with Type B re-
flexivization exhibit a similar bias, leading to wrong predictions,
and correlate such predictions to labor market gender statistics
for analysis (in section 5.6).

The challenge dataset that we present here consists of ex-
amples such as the one above and is intended as a diagnostic
of implicit gender assumptions in NLP models. It is applicable
across four languages (Danish, Russian, Swedish, and Chinese)
and four NLP tasks: Natural Language Inference (NLI), Machine
Translation (MT), coreference resolution, and Language Model-
ing (LM). We will, for example, be interested in whether models
are more likely to produce errors when the anti-reflexive pro-
nouns – Pron.Poss.3rd in Example (2) – exhibit the gender that
is implicitly associated with the entity in the subject position,
i.e., surgeon. As should be clear by now, the challenge dataset is
fundamentally different from previously introduced challenge
datasets in that it focuses on a single linguistic phenomenon that
exists across many languages (Cohen, 1973; Honselaar, 1986; Lø-
drup, Butt, and King, 2011; Stoykova, 2012) and includes four
languages and four tasks, and because it focuses on gender
bias leading to prediction errors rather than ’hallucinations’, i.e.,
unwarranted disambiguations. To the best of our knowledge,
the dataset introduced below is in this way the first of its kind.

4 Note that this is not a conflict between syntax and semantics, such as, for
example, those studied in Kos et al. (2010), but a conflict between syntax, on
the one hand, and belief bias and pragmatics.

5 http://www.bls.gov/cps/cpsaat11.htm

http://www.bls.gov/cps/cpsaat11.htm
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contributions We present a multilingual, multi-task chal-
lenge dataset focusing on a specific linguistic phenomenon
found in some Scandinavian, Slavic, and Sino-Tibetan languages,
namely gendered possessive anti-reflexive pronouns in combination
with non-gendered possessive reflexive pronouns. We show, by
designing multilingual example generation templates by hand,
how this phenomenon can interact with gender assumptions
in interesting ways. This results in a unique challenge dataset,
which we use to detect and quantify gender biases in state-of-
the-art and off-the-shelf models across several tasks, including
MT, NLI, coreference resolution, and LM. Unlike all other previ-
ous challenge datasets focusing on gender bias, our examples
quantify to what extent gender bias in models leads to prediction er-
rors, rather than unwarranted disambiguation. Data and code is
available at https://github.com/anavaleriagonzalez/ABC-dataset

5.3 the anti-reflexive bias challenge

The Anti-reflexive Bias Challenge (ABC) dataset consists of chal-
lenging examples in four different languages for four different
NLP tasks. The examples are designed to force humans and mod-
els to align with either widespread gender assumptions or hard
grammatical rules. Note, again, that this is in sharp contrast to
other gender bias challenge datasets, where gender biases lead
to biases in semantic disambiguation, but do not interact with
grammatical constraints. Our approach is similar to previous
work in other respects.

Similarly to Rudinger et al. (2018) and other recent chal-
lenge datasets, ABC relies on hand-written templates, which
are used to generate examples in conjunction with lists of occu-
pations. We use the 60 occupations listed in Caliskan, Bryson,
and Narayanan (2017) containing statistics about gender distri-
bution across professions, taken from the U.S. Bureau of Labor
Statistics. Specifically, we generate a base set of 4,560 sentences
from 38 templates, two tenses (present and past), and 60 occu-
pations. The 38 templates vary the position of the pronouns,
e.g.:

(3) The Occupation lost Pron.Poss.3rd wallet at the house.

(4) The Occupation lost the wallet at Pron.Poss.3rd house.

where Pron.Poss.3rd, in this case, is a place holder for anti-
reflexive and reflexive third-person pronouns. Our templates
only include transitive verbs.

In our LM experiments, we predict the pronoun in ques-
tion. For NLI and coreference, we introduce three variations
of each datapoint (possessive masculine, possessive feminine

https://github.com/anavaleriagonzalez/ABC-dataset
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(anti-reflexive) pronouns and the non-gendered reflexive pro-
noun). This leads to a total of 13,680 examples for each language.
For NLI, we use these as premises and add possible entailments
to our templates. See Examples (1) and (2). For MT, we use the
English versions of Examples (3) and (4) as source sentences,
with feminine and masculine third-person pronouns. This leads
to 9,120 translation problems. Native speakers manually verified
and corrected all templates and sample examples for all tasks.
Appendix A.1.1 shows examples of the four tasks in the four
languages. We discuss each task in detail below.

nli Examples (1) and (2) illustrate the entailment phenomenon
that we are interested in. Reflexive possessive pronouns are coref-
erential with their subjects, which leads to the interpretation
that the book is on the surgeon’s table. Anti-reflexive pronouns,
on the other hand, prevent this reading and leads to an interpre-
tation that a new discourse entity – another person – exists and
that the book is located on that person’s table.

The general form of our inference examples is as follows:

(5) Occupation.DEF1 [ Verb Phrase] Pron.Poss.Refl.3rd1 Ob-
ject Prep Noun.DEF.→ Occupation.DEF.POSS1 Object [
Verb Phrase.PASSIVE] Prep Noun.DEF.

(6) Occupation.DEF1 [ Verb Phrase] Pron.Poss.3rd2 Object

Prep Noun.DEF. 6→ Occupation.DEF.POSS1 Object [ Verb

Phrase.PASSIVE] Prep Noun.DEF.

We will primarily be interested in the rate at which state-of-
the-art NLI models (wrongly) predict examples of the form in
Example (5) to be cases of entailment, and how this depends
on whether the possessive pronoun Pron.Poss is masculine
or feminine. To generate examples of this form, we translate
one prototype example and then identify the variables in the
output example. We also make sure to check that there are
no morpho-syntactic dependencies, e.g., agreement, between
these variables. We then generate all possible examples and have
native speakers manually verify the correctness of samples of
the generated examples.

machine translation For MT, we are interested in the
way that gender assumptions play a role in the resolution of
the gendered possessive pronoun in the source language. As
an example, when translating the phrase The doctor put the book
on her table, an English-Danish translation system would likely
generate one of the following two options, a reflexive reading
and an anti-reflexive one:

(7) Lægen lagde bogen på sit bord
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doctor. def put book. def on Pron.Poss.Refl.3rd table

(8) Lægen lagde bogen på hendes bord

doctor. def put book. def on Pron.Poss.3rd table

While ABC focuses on translating from English, it holds that
similarly, if we translate the Danish sentence mekanikeren har brug
for sine.refl værktøjer til at arbejde, which uses a gender-neutral
reflexive possessive pronoun sine, into English, the model will
have to choose between two possible, correct translations:

(9) The mechanic needs his tools to work

(10) The mechanic needs her tools to work

The MT section of the ABC dataset consists of translations
from English sentences with gendered possessive pronouns into
one of the four target languages (Danish, Russian, Swedish,
and Chinese). For a single occupation on the list, this would
correspond to two English sentences (masculine and feminine
possessive pronoun) per template. We quantify to what extent
models translate English source sentences with possessive mas-
culine or feminine pronouns into target sentences with reflexive
pronouns.6

coreference resolution For coreference resolution, we
generate variants of our templates in the four target languages
with each of the gendered anti-reflexives and the reflexive pro-
noun. That is , for a sentence such as:

(11) The firefighter placed her/his shoes in the closet

we generate the following examples for Danish:

(12) Brandmanden placerede hendes sko i skabet ( Fem)

(13) Brandmanden placerede hans sko i skabet ( Masc)

(14) Brandmanden placerede sine sko i skabet ( Refl)

6 In the context of examples such as Example (9) and (10), using an anti-
reflexive pronoun in the target translation may seem more like a hallucina-
tion than violating grammatical constraints, and we acknowledge that in
MT, as well as in LM, the difference concerning existing gender bias chal-
lenge datasets is less pronounced than with NLI and coreference resolution.
Nevertheless, note that the model not only hallucinates a gender attribution,
but also co-referentiality, making it relatively simple to construct semanti-
cally impossible examples, e.g., The mechanic needs his tools, but not his own
tools. Furthermore, introducing a new referent without evidence also violates
pragmatic economy principles (Gardent and Webber, 2001; Grosz, Joshi, and
Weinstein, 1995). Google Translate incorrectly translates into a sentence with
two reflexive pronouns (violating the semantic principle of bivalence).
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In Examples (12) and (13), the use of anti-reflexive pronouns
hans or the femine anti-reflexive hendes means the shoes placed
in the closet belong to someone other than the firefighter. In our
coreference resolution experiments, we are thus interested in
how often models wrongly link the anti-reflexive pronouns (han-
s/hendes) to the occupation. Such predictions violate grammatical
constraints and are clear examples of gender assumptions over-
writing morpho-syntactic evidence.

language modeling For LM, we are interested in how
likely the models are to predict a gendered anti-reflexive pos-
sessive pronoun when the original sentence contains a reflexive
pronoun. In:

(15) Brandmanden placerede sine sko i skabet ( Refl)

we compute the sentence perplexity replacing the reflexive
pronoun sine with a feminine anti-reflexive (hendes) or masculine
(hans) anti-reflexive pronoun. A difference in perplexity reveals
a gender bias, and if the model prefers an anti-reflexive reading,
this possibly leads to a grammatically incorrect sentence.7

5.4 experiments

We are interested in the gender associations that existing models
make. Because of this, we take off-the-shelf translation models
and language models. As there were not any state-of-the-art
models already pre-trained for coreference in the languages of
interest, we train a state-of-the-art architecture for coreference
resolution on languages where we could obtain data. To be able
to evaluate NLI models on the target languages, we fine-tune a
pretrained model for this task.

As previously found in (Rudinger et al., 2018), gender biases
in models tended to correlate with labor statistics of the percent-
age of females in each occupation according to Bureau of Labor
Statistics 2015

8 released with Caliskan, Bryson, and Narayanan
(2017). We correlate our findings with these statistics as well as
national statistics.

nli NLI is originally a three-way classification task. Given
two sentences; a premise and a hypothesis, the system classifies
the relation between them as entailment, contradiction, or
neutral. Since ABC is only intended for diagnosing gender bias
in off-the-shelf models, and not for training models, we only

7 See also the footnote above on whether our machine translation examples
diagnose model ’hallucinations’ or unambiguous prediction errors.

8 http://www.bls.gov/cps/cpsaat11.htm

http://www.bls.gov/cps/cpsaat11.htm
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consider the entailment relation. If the premise contains a re-
flexive pronoun, the true class is entailment, and if the premise
contains a masculine or feminine pronoun it is not entailment.

Crosslingual NLI (XNLI) (Conneau et al., 2018b) is a manual
translation of the English NLI data into 15 languages. Chinese
and Russian are among them and we benchmark the model on
the XNLI test set. Singh et al. (2019) extend the XNLI train set to a
wider set of languages, including Danish and Swedish but there
is not test set for benchmarking. We use cross-lingual language
model pre-training (XLM) (Conneau and Lample, 2019), i.e., we
fine-tune on English NLI training data. For Chinese and Russian,
we use a publicly available implementation9 of the XLM-15

model (Conneau and Lample, 2019) and fine-tune it using a
batch size of 4 and a learning rate of 0.000005 for 35 epochs,
which led to the best performance on the XNLI development set.
For Danish and Swedish, we use the XLM-100 model, which we
fine-tune for 28 epochs.

machine translation For MT, we evaluate models for
English→ {Danish, Russian, Swedish, Chinese} to assess how
often they predict the non-gendered reflective possessive pro-
nouns when the source possessive pronoun is masculine ver-
sus feminine. For all languages, we report the performance of
Google Translate. Additionally, for the languages where an off-
the-shelf, near-state-of-the-art system was publicly available, we
also report performance. For Chinese, we use the pre-trained
models provided by Sennrich et al. (2017) 10 (E-WMT). For Rus-
sian, we use the winner system of WMT19 (Ng et al., 2019),
which is provided as part of the Fairseq toolkit (F-WMT).11

coreference resolution We train coreference resolution
models for Chinese and Russian using the model and code of
Joshi et al. (2019). For Chinese, we use the Chinese version of
Ontonotes as our training data, which is made up of about 1800

documents for training. For Russian, we use the RuCor corpus
(Ju et al., 2014), which is small, containing only 181 documents
total, but has been used to train coreference models for Russian
before (Ju et al., 2014; Sysoev, Andrianov, and Khadzhiiskaia,
2017). The task consists of predicting the spans that make up
a coreference cluster. We train the model using the hyperpa-
rameters specified in the source code 12. We use a maximum

9 https://github.com/facebookresearch/XLM
10 https://github.com/EdinburghNLP/nematus
11 https://github.com/pytorch/fairseq/tree/master/examples/

wmt19
12 https://github.com/mandarjoshi90/coref/blob/master/

experiments.conf

https://github.com/facebookresearch/XLM
https://github.com/EdinburghNLP/nematus
https://github.com/pytorch/fairseq/tree/master/examples/wmt19
https://github.com/pytorch/fairseq/tree/master/examples/wmt19
https://github.com/mandarjoshi90/coref/blob/master/experiments.conf
https://github.com/mandarjoshi90/coref/blob/master/experiments.conf
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Task Lang System Benchmark ABC Significance

NLI

XLM-100 – 0.380 X
XLM-15 0.736 0.370 X
XLM-100 – 0.362 X
XLM-15 0.742 0.330 X

MT

Google Translate 0.204 0.395 X

Google Translate 0.260 0.406 X
F-WMT 0.268 0.421 X

Google Translate 0.211 0.422 X

Google Translate 0.460 0.594 †
E-WMT 0.360 0.194 X

Coref e2eCoref-BERT 0.602 0.090 †
0.630 0.600 X

LM BERT

2.4 11.4 X
3.9 13.4 X
1.2 11.2 X
6.7 22.1 X

Table 5.2: Gender Bias Results. Performance on benchmarks and ABC.
X: Pearson’s ρ of error ∆ on sentences with feminine pro-
nouns and % of women in corresponding occupations sig-
nificant (p < 0.01); see S for a discussion of the statistics. †:
Systems insensitive to variation in pronouns.

segment length of 128. See Appendix A.1.1 for statistics of the
coreference resolution datasets used for training. While we do
not have coreference resolution systems we can evaluate for
Danish and Swedish, we include challenge examples for these
languages that can be used to detect bias in future systems for
these languages.

language modeling For our LM experiments, we use the
pretrained BERT masked LM architecture (Devlin et al., 2019a).
We turn pronoun prediction into a Cloze task (Taylor, 1953).
Specifically, we use Chinese BERT (for Chinese) and multilingual
BERT for Russian, Danish, and Swedish.13 The overall perplexi-
ties of these models on our challenge examples are low; again,
this is because of the simple vocabulary and constructions used
in the examples. We nevertheless see a strong gender bias in the
language models, especially for Danish and Chinese.

13 https://github.com/google-research/bert/blob/master/
multilingual.md

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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5.5 results

Our evaluation results are found in Table 2, with results on
Danish ( ), Russian ( ), Swedish ( ), and Chinese ( ), and
for MT, NLI, coreference resolution (Coref), and LM.

nli For NLI, the XLM models generally over-predict entail-
ment for anti-reflexive pronouns. The models perform well on
benchmark data, e.g., 0.742 on the Chinese XNLI test set, but
much worse (0.330) on our challenge examples. For Chinese
and Danish, the models perform slightly better on sentences
with masculine anti-reflexive pronouns, whereas they perform
slightly better on sentences with feminine anti-reflexives in Rus-
sian and Swedish. For all four languages, we see significant
negative correlations between relative error increase on sen-
tences with feminine pronouns and the ratio of women in the
corresponding occupations; see section 5.6 for a discussion of
the statistics. This suggests that the very poor performance num-
bers on sentences with anti-reflexive pronouns is, in part, the
result of gender bias.

machine translation For MT, we also observe strong
negative correlations, suggesting gender bias. In the manual
analysis of the output translations, we see a very clear pattern
that English masculine possessive pronouns are more likely to
translate into reflexive pronouns in the target languages than
feminine possessive pronouns. For Danish, 93.7% of masculine
pronouns were translated into reflexives, whereas only 72.9% of
feminine pronouns were. For Russian, the two systems were
consistent in this respect and both translated 69.3% of mascu-
line pronouns and 18.1% of feminine pronouns into reflexive
pronouns. For Swedish, the numbers were 90.0% and 73.1%, re-
spectively. For Chinese, where the reflexive pronoun is used less
frequently,14 the MT models only produced a few translations
with reflexive pronouns (for masculine source pronouns).

These differences are not reflected in BLEU scores, and in
our correlations we correlate the increase in pronoun translation
errors for source sentences with feminine pronouns and the ratio
of women in the corresponding occupations. In general, our
models achieve high BLEU scores on our challenge examples,
which are all syntactically simple and use simple, in-vocabulary
words.

14 The systems are trained on a combination of traditional and simplified
Chinese; the latter variant does not include the reflexive pronoun.
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coreference resolution For coreference resolution, we
observe clear performance differences between our Chinese and
Russian models. This possibly reflects the fact that the Russian
model was trained on a very small dataset and is less likely to
generalize. For both models, we observe a clear bias towards
clustering masculine anti-reflexive pronouns with their gram-
matical subjects, despite how this violates grammar. The Chinese
model, which exhibits a strong gender bias, errs on 17% of sen-
tences with masculine anti-reflexive pronouns, and on 14.6% of
sentences with feminines anti-reflexives. For Russian, the differ-
ences are small, but note the model is trained on limited data,
e.g., 140 documents. Out of around 13,000 examples, the model
only predicts clusters for 475 pronouns, and 400 of those are in
reflexive case. The remaining 75 are masculine (0 feminine). In
other words, we see a similar tendency to Chinese, but since
the overall performance is poor, and the model is in general
rather insensitive to differences in pronouns, we do not include
correlation results.

language modeling Moreover, for LM, we observe a con-
sistent bias when predicting a masculine pronoun in place of a
reflexive for all languages. These differences are higher for Chi-
nese and Russian. We are not interested in the model’s ability to
generate a particular pronoun, the more interesting observation
is whether the perplexities for sentences containing masculine
possessives are lower than for predicting feminine possessives
when forcing the model to predict these in place of a reflex-
ive. Our results show that perplexities are lower for masculine
possessives in all languages with the biggest differences of 3.7
sentence perplexity for Russian.

5.6 analysis : biased statistics?

We used occupations from Caliskan, Bryson, and Narayanan
(2017) in creating our template data; this database also includes
U.S. occupation statistics. In our results in Table 5.2, however,
we rely on national statistics instead, but how much of a bias
would it be to rely on the original American statistics? In this
section, we explain how we collected the national statistics and
show how they strongly correlate with the American statistics,
but also that national statistics are slightly better at detecting
gender bias:

Our Danish labor market statistics come from Larsen, Holt,
and Larsen (2016), as well as Statistics Denmark15 and Bevægelses-

15 www.dr.dk/nyheder/indland/

www.dr.dk/nyheder/indland/
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registeret,16 which is a national database over authorised health
staff. Some numbers (paramedic, scientist and receptionist) are
based on graduation statistics. The Russian labor market statis-
tics were mostly obtained from the Federal State Statistic Ser-
vice.17 For occupations not contained on this website we ob-
tained the numbers from separate sources such as the Center
of Fire Statistics (CFS) of International Association of Fire and
Rescue Services (CTIF)18 and the Organisation for Economic
Cooperation and Development’s statistics website19. We obtain
most of our Swedish labor market statistics from Statistics Swe-
den (SCB).20 We use the most recent statistic from 2017, which
considers people aged 16-64 (Eriksson and Nguyen, 2019). For
clerk and worker, we found labor market statistics in SCB (2018).
For medical jobs, we used member statistics by Swedish Medical
Association (SLF) from 2016.21 Finally, we obtain statistics for
China from National Bureau of Statistics (2004), which is based
on census data from 2000.22

While labor statistics correlate strongly across countries (Table
5.1), U.S. statistics are not universal; e.g., almost all pathologist
in the U.S. are women (97.5%), whereas the percentage for Den-
mark is 60%. In the U.S. and Sweden, the painter profession is
very male-dominated, like mechanic and electrician (5.70% and
8% women, respectively), whereas in Russia, 57.0% of painters
are women.

correlation results To assess the potential bias of us-
ing U.S. labor market statistics in multilingual experiments, we
correlate the gender bias of models for language l with labor
statistics from the U.S. and the country in which l is a national
language, i.e., we correlate performance differences on Swedish
ABC examples with both U.S. and Swedish labor statistics, Dan-
ish ABC examples with U.S. and Danish labor statistics, etc.
We do so for the subset of occupations, where national gender
statistics are available:

NLI. Correlations were stronger with national rather than
U.S. statistics for Danish and Swedish (-0.35 vs. -0.28; -0.36

vs. -0.34).

16 www.esundhed.dk/home/registre/
17 eng.gks.ru/
18 www.ctif.org/
19 stats.oecd.org/
20 www.scb.se/
21 slf.se/app/uploads/2018/04/
22 We did not find reliable gender statistics for all occupations for all countries,

but for 51 (Denmark), 50 (Sweden), 38 (Russia), and 10 (China) occupations.
One reason was a mismatch between how gender statistics are reported in
official reports, including how jobs are grouped. We release the numbers we
were able to collect and will continually work on obtaining more statistics.

www.esundhed.dk/home/registre/
eng.gks.ru/
www.ctif.org/
stats.oecd.org/
www.scb.se/
slf.se/app/uploads/2018/04/
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Figure 5.1: Correlations between collected labor statistics. Numbers
> 0.7 are significant (p < 0.01).

Machine Translation. Correlations were stronger with na-
tional rather than U.S. statistics for Russian and Swedish (-0.31

vs. -0.20; -0.31 vs. -0.14.
Coreference Resolution. For coreference, we were able to cor-

relate only the results for Chinese due to the fact that the coref-
erence model for Russian only predicted clusters for sentences
with male pronouns. The correlations with U.S. and Chinese
labor market statistics were not significantly different because
we only had statistics for 10 occupations.

Language Modeling. Correlations were stronger with na-
tional rather than U.S. statistics on average, but not significantly
so.

5.7 related work

The ABC dataset is not first to focus on pronouns and gender
bias. The UD English-Pronouns23 (Munro, 2020), a manually con-
structed, gender-balanced benchmark of English sentences with
pronouns, was motivated by the observation that the genitive
pronoun hers only occurs three times in the English Universal
Dependencies (Nivre et al., 2017). The gendered, ambiguous
pronoun (GAP) dataset (Webster et al., 2019) is a coreference
resolution dataset of human-annotated ambiguous pronoun-
name examples from English Wikipedia. Prates, Avelar, and

23 universaldependencies.org/

universaldependencies.org/
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Lamb (2018) constructed a translation challenge dataset of sim-
ple sentences in gender-neutral languages such as Hungarian
and Yoruba and English target sentences such as he/she is an
engineer to estimate gender biases in MT. Both these challenge
datasets focus on gender hallucinations, not unambiguous errors
induced by gender bias. Some of our examples share similarities
with the English WinoGender schema (Rudinger et al., 2018).
Consider the following minimal pair of Winograd schema taken
from their paper:

(16) The paramedic1 performed CPR on the passenger2 even though
Pron1 knew it was too late.

(17) The paramedic1 performed CPR on the passenger2 even though
Pron2 was already dead.

In the Winograd schema, the context, i.e., the second clause, is
supposed to disambiguate the pronoun on semantic grounds. In
Example (16), the pronoun refers to the paramedic, because the
patient is unlikely to know whether CPR is too late. In Example
(17), the pronoun refers to the patient, because it is impossible to
perform CPR if you are dead. Our examples, in contrast, do not
disambiguate pronouns on semantic grounds, and this is why
we are interested in reflexive possessive pronouns: they always
refer to the subject, and their anti-reflexive counterparts never
do, so there is no grammatical ambiguity. The disadvantage
with semantic disambiguation, we argue, is that it ultimately
becomes a subjective competition of belief biases. It is generally
impossible to perform CPR if you are dead, but special cases
exist:

(18) Dr Jones1 has turned into a zombie! He1 performed CPR on the
passenger even though he1 was already dead.

The ABC dataset evaluates to what extent gender bias leads
to unambiguous NLP errors not based on semantic grounds.
Finally, Zhao et al. (2018) also include English examples with
reflexive pronouns that can be resolved on syntactic grounds,
such as:

(19) The secretary called the physician and told him about a new
patient.

This construction, however, is less interesting than the re-
flexive possessive pronominal construction, since in this case,
pronouns are always co-referential with the object position, re-
gardless of the pronoun. In sum, the ABC challenge dataset is,
to the best of our knowledge, the first dataset to focus on cases
where gender bias leads to unambiguous errors; it is also the
first multilingual, multitask gender bias challenge dataset, and
the first to focus on anti-reflexive pronouns.
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5.8 conclusion

In this work we have introduced the Anti-reflexive Bias Chal-
lenge (ABC) dataset for multilingual, multi-task gender bias
detection, the first of its kind, including four languages and four
tasks: MT, NLI, coreference resolution and LM. The ABC dataset
focuses on a specific linguistic phenomenon that does not occur
in English but is found in languages with Type B reflexivization:
namely, anti-reflexive gendered pronouns. This phenomenon is
shown to be useful for exposing unambiguous gender bias, be-
cause it quantifies to what extent gender bias leads to prediction
errors, in contrast to just unwarranted disambiguations (’hallu-
cinations’). The problem of anti-reflexive gendered pronouns
has, to the best of our knowledge, not received attention before
in the NLP literature, which tends to focus heavily on English
(Bender and Friedman, 2018). Our evaluations of state-of-the-art
models across the four tasks generally reveal significant gender
biases leading to false predictions. Additionally, we find that
for some tasks, these associations are more in line with national
labor market gender statistics than with U.S. statistics, revealing
another way that anglocentric biases can prohibit the detection
of gender biases in our models.
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6.1 abstract

The Turing Test evaluates a computer program’s ability to mimic
human behaviour. The Reverse Turing Test, reversely, evaluates
a human’s ability to mimic machine behaviour in a forward
prediction task. We propose to use the Reverse Turing Test to
evaluate the quality of interpretability methods. The Reverse
Turing Test improves on previous experimental protocols for
human evaluation of interpretability methods by a) including
a training phase, and b) masking the task, which, combined,
enables us to evaluate models independently of their quality, in
a way that is unbiased by the participants’ previous exposure
to the task. We present a pilot human evaluation of LIME across
five NLP tasks and analyze the effect of masking the task in
forward prediction experiments. Additionally, we demonstrate
a fundamental limitation of LIME and show how this limitation
in detrimental for human forward prediction in some NLP tasks.

6.2 introduction

Machine learning models have tremendous impact on our daily
lives, from information storing and tracking (i.e. Google Search
and Facebook News Feed), as well as on other scientific dis-
ciplines. Modern-day NLP models, for example, are complex
neural networks with millions or billions of parameters trained
with multiple objectives and often in multiple stages (Devlin
et al., 2019b; Raffel et al., 2019); they are often seen for that
reason, as black boxes whose rationales cannot easily be queried.
In other words, we are increasingly relying on models that we
do not understand or cannot explain, in science, as well as in
our daily lives. Model interpretability, however, is desired for
several reasons: Humans often ask for the motivation behind
advice, and in the same way, users are likely to trust model deci-
sions more if they can ask for the rationale behind them. Model
interpretability enables us to inspect whether models are fair
and unbiased, and it enables engineers to detect when models
rely on mere confounds. Combatting this type of overfitting will
lead to more robust (or less error-prone) decision making with
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better generalization to unseen data (and, hence, safer model
employment).

Recent years has seen a surge in work on post-hoc inter-
pretability methods for neural networks. See Murdoch et al.
(2019) for a brief survey. Unfortunately, there is little consensus
on how to compare interpretability methods. Some benchmarks
have been introduced (DeYoung et al., 2020; Poerner, Schütze,
and Roth, 2018; Rei and Søgaard, 2018), but some of these
are flawed, and they are all only applicable to some of the
proposed interpretablitity methods. See section 8.3 for discus-
sion. In our view, a more promising approach to evaluating
interpretability methods is by human forward prediction ex-
periments. Nguyen (2018a) presented the first evaluations of
LIME (Ribeiro, Singh, and Guestrin, 2016a) for sentiment analy-
sis using human subjects through a series of Mechanical Turk
experiments. Their study had two limitations: (a) They did not
allow for a training phase for the human participants to learn
model idiosyncracies, and participants instead had to rely on the
assumption that the model was near-perfect. (b) Since the partic-
ipants thus had to rely on their own sentiment predictions, their
evaluations are biased by their beliefs about the sentiment of the
input documents. (Hase and Bansal, 2020) recently presented
evaluations of LIME with human participants that involved a
training phase, enabling them to predict poor model behavior,
and thereby addressing limitation (a), but they still only in-
cluded known tasks for which forward prediction is biased by
the participants’ own beliefs. This paper aims to fill this gap.

contributions This work presents a simple-yet-insightful
method for evaluating interpretability methods based on short
experiments with human participants. Our experiments differ
from previous work in a very important way: our evaluation
of interpretability methods involves conditions where human
subjects are less likely to rely on their belief biases. More specif-
ically, we evaluate LIME (Ribeiro, Singh, and Guestrin, 2016a)
across five NLP tasks in a Latin Square design (Shah and Sinha,
1989), including three tasks which were kept secret to our par-
ticipants. We argue that keeping the tasks secret to the participants
makes the evaluation of interpretability methods more reliable and
investigate the impact of this difference in experimental design.
Additionally, we also point out a weakness of LIME - namely,
that its input/output dimensions are occasionally orthogonal to
the relevant dimensions for interpretability. We include a task in
which this happens and show how detrimental interpretability
methods can be in such cases.
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6.3 human bias in forward prediction

One thing sets our experiments in this paper apart from previous
evaluations of interpretability methods by A/B testing with hu-
man forward prediction (Hase and Bansal, 2020; Nguyen, 2018a):
We will (in some cases) present participants with decisions by
models trained on tasks that are unknown to the participants.
In other words, humans are simply asked to predict y from x,
with no prior knowledge of the relation that may exist between
them, beyond an initial training phase. Three different cognitive
biases are particularly important for motivating and analyzing
our experimental design:

belief bias An effect where someone’s evaluation of the
logical strength of an argument is biased by the plausibility of
the conclusion (Klauer, Musch, and Naumer, 2000). In human
forward prediction of model behavior, this happens when the
plausibility of the conclusion, e.g., this review is positive, biases
the subject’s evaluation of her own conclusions, e.g., the model
will predict this review is negative, because it includes this or
that term. We argue that it is particularly important to evaluate
interpretability methods with human forward prediction on
unknown tasks to avoid belief bias.

confirmation bias This bias occurs when individuals seek
information which supports their prior belief while dispropor-
tionately disregarding information that challenges this belief
(Mynatt, Doherty, and Tweney, 1977). In our context, such a bias
could, for example, lead subjects that already classified a doc-
ument in one way to disregard LIME mark-up. In the extreme,
confirmation bias could cancel out any effect of interpretability
methods in human forward prediction, but our results show
that in practice, LIME has a strong (positive or negative) effect
on human forward prediction.

curse of knowledge This is the phenomenon when better-
informed people find it extremely difficult to think about prob-
lems from the perspective of lesser-informed people (Ackerman,
Pipek, and Wulf, 2003). In our case, the model plays the role
of a lesser-informed agent. We believe the curse of knowledge
amplifies belief bias and makes it very hard for participants to
unlearn their prior knowledge of the underlying task relation.

Our experimental design is motivated by a desire to remove
belief bias in our forward prediction experiments. Belief bias can
interact with human forward prediction in a number of ways,
e.g., making participants less confident about predictions that do



82 the reverse turing test for evaluating interpretability

align with their beliefs, or leading them to ignore explanations
that are inconsistent with their beliefs.

Additionally in comparison to previous work, we present
experiments that highlight one of the weaknesses of LIME, by
presenting participants with LIME explanations for a task where
LIME is observed to provide poor explanations. In this scenario,
explanations have a detrimental effect. We believe this is essen-
tially an anchoring effect:

anchoring The tendency to rely too heavily, or anchor, on
a few pieces of information when making decisions (usually
the first pieces attended to) (Zhang et al., 2007). This explains
why bad explanations can have detrimental effects on humans’
ability to predict system outputs. Since explanations are the
first information presented to subjects, this inhibits otherwise
available counter-evidence.

6.4 lime – and its limitations

TheLocal Interpretable Model-agnostic Explanations (LIME) method
(Ribeiro, Singh, and Guestrin, 2016a) has become one of the most
widely used post-hoc model interpretability methods in NLP.
LIME aims to interpret model predictions by locally approximat-
ing a model’s decision boundary around an individual predic-
tion. This is done by training a linear classifier on perturbations
of this example.

Several weaknesses of LIME have been identified in the litera-
ture: LIME is linear (Bramhall et al., 2020b), unstable (Elshawi,
Al-Mallah, and Sakr, 2019) and very sensitive to the width of the
kernel used to assign weights to input example perturbations
(Kopper, 2019; Vlassopoulos, 2019), an increasing number of
features also increases weight instability (Gruber, 2019), and
Vlassopoulos (2019) argues that with sparse data, sampling is
insufficient. Laugel et al. (2018) argues the specific sampling
technique is suboptimal.

We point to an additional, albeit perhaps obvious, weakness
of LIME’s: It can only explain the decisions of a classifier in so far as
the decision boundary of the classifier aligns with the feature dimen-
sions of LIME. In most applications of LIME to NLP problems, the
feature dimensions are the input words. That is to say, LIME can
only explain the decisions of a classifier if the decision bound-
ary aligns with the dimensions along which the occurrences
of words are encoded. LIME can, for example, not explain the
decisions of a classifier " 1 if sentence length odd, else 0". In our
experiments, we include a task in which a classifier is trained
to predict the length of the input sentence (from a low-rank
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Figure 6.1: Our experimental protocol. For each task, we train our
models using standard datasets and evaluate the model
on held out training data and testing data to be used for
the training and evaluation sessions involving humans. We
also extract LIME explanations. In the human experiments
phase, the humans train and evaluate in these 2 conditions
(LIME explanation or no explanation). Finally, we compare
the results.

representation), as a way of evaluating the effect of LIME on
human forward prediction, on tasks that LIME is, for this reason,
not able to explain.

Examples of real tasks where this limitation is a problem,
include, for example, all tasks where sentence length is pre-
dictive, including readability assessment (Kincaid et al., 1975),
authorship attribution (Stamatatos, 2009), or sentence alignment
(Brown, Lai, and Mercer, 1991). We note this limitation is not
unique to LIME, but shared among most post-hoc interpretabil-
ity methods, e.g., hot flip (Ebrahimi et al., 2018), attention (Rei
and Søgaard, 2018), and back-propagation (Rei and Søgaard,
2018). Other approaches to interpretability such as using influ-
ence functions (Koh and Liang, 2017) may have more explana-
tory power for such problems.

6.5 human forward prediction experiments

The experiments we describe below are examples of the Reverse
Turing Test. The test resembles the Turing Test (Horn, 1995;
Turing, 1950) in that it focuses on the differences between the
behavior of humans and computer programs. In the Reverse
Turing Test, we quantify humans’ ability to simulate computer
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programs, however; rather than computer programs’ ability to
simulate humans. Specifically, we quantify humans’ ability to
predict the output of machine learning models given previously
unseen examples. The test is defined (for classification models)
as follows: The Reverse Turing test is an experimental protocol
according to which participants are presented with k examples
of 〈I(x), ŷ〉 pairs, with ŷ = f (x) the labeling of x by some
unknown machine learning model f (·), and I is a possibly
empty interpretation function, which, in the case of post-hoc
interpretability methods, highlights parts of the input, e.g., input
words. The training phase is timed. Subsequently, participants
are presented with m unseen examples x1 . . . xm and asked to
predict f (x1) . . . f (xm). The evaluation phase is also timed. The
result of the Reverse Turing test is the accuracy or F1 of the
participants’ predictions compared to ŷ1, . . . , ŷm, as well as the
training and inference times. The test is meant to evaluate the
quality of different interpretations, I(·) and can be used for
evaluation methods, like we do, or for evaluating models or
interpretability methods during development (Lage et al., 2018).
We believe our test is in some ways more critical than previous,
as we are attempting to evaluate interpretability methods more
reliably by reducing human belief bias.

6.5.1 Tasks and Data

Based on the efforts of 30 annotators, we collected a total of
3000 example annotations in human forward prediction experi-
ments, distributed across five different tasks (two known; three
unknown) and two experimental conditions (with and with-
out explanations). The overall experimental protocol is shown
in Figure 7.1. All code for preprocessing data, training the
models, and the experimental set ups are publicly available
at https://github.com/anavaleriagonzalez/reverse_turing_test.

known tasks For our known tasks, we focus on two very
common text classification tasks: sentiment analysis and hate/of-
fensive speech detection. For sentiment analysis we use the
Stanford Sentiment Treebank (SST) (Socher et al., 2013). The
SST dataset consists of 6920 documents for training, 872 doc-
uments for development and 1820 documents for testing. For
hate speech detection, we use the HatEval dataset from SemEval
2019 (Basile et al., 2019). The dataset consists of several binary
tasks, however, we focus on the task of detecting presence of
hate speech (disregarding which group is being targeted as this
is considered a separate task). In total, there are 9000 tweets for
training, 1000 for development and 3000 for testing.

https://github.com/anavaleriagonzalez/reverse_turing_test
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unknown tasks As our unknown tasks, we use 3 of the
10 probing tasks introduced in (Conneau et al., 2018a). The
probing tasks were originally designed to evaluate the linguistic
properties of sentence embedding models. In this study we
are mostly interested in the differences in performance between
humans and machines, and are not looking to evaluate linguistic
properties of representations in depth, therefore chose only a few
of theses tasks. The first task is sentence length prediction in which
the sentences are grouped in 6 bins indicating length in terms of
number of words. This task was chosen in order to examine the
effect on LIME in a task where LIME offers poor explanations. The
second probing task is tense prediction, which involves predicting
whether the verb in the main clause is present or past tense.
The third task is subject number prediction, which focuses on
predicting whether the subject in the main clause is plural or
singular. These last two, are simple tasks where we expect LIME
to offer good enough explanations. The training data for each of
the probing tasks consists of 100k sentences, 10k sentences for
validation and 10k sentences for testing. The sentences are taken
from the Toronto Book Corpus (Zhu et al., 2015). More details
on data extraction can be found on Conneau et al. (2018a).

6.5.2 Classification Model

For training sentiment and hate speech classifiers, we pass as
our input pretrained BERT representations (Devlin et al., 2019b)
through an LSTM layer (Hochreiter and Schmidhuber, 1997)
(d = 100) followed by a multi-layered perceptron with a single
hidden layer (d = 100). We use a learning rate of 0.001 and
Adam optimizer. The hyper-parameters were not tuned for op-
timal performance. We use the same architecture for all tasks,
except for sentence length prediction. For the sentence length
prediction task, we use BERT token representations and pass
them through a mean pooling layer followed by a multi-layered
perceptron with a single hidden layer (d = 100). Both models
are trained for 20 epochs. Note also that we do not fine-tune the
BERT representations. This, together with our hyper-parameters,
gives us suboptimal performance, especially on the known tasks,
but this was done on purpose to make our predictions different
from the gold labels for the known tasks, in order to make it pos-
sible to quantify participants’ belief bias: If results are too close
to human performance, it would not be possible to distinguish
human forward prediction performance with respect to model
predictions from human performance with respect to predicting
the true class. Our performance on the unknown probing tasks
is comparable to the results in (Conneau et al., 2018a).
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Figure 6.2: Example LIME explanation stripped of model decisions
and class probabilities. We turn the images into gray scale
to only highlight overall importance and avoid hinting the
model’s final decision.

6.5.3 Stimulus Presentation

Each human forward prediction experiment consists of a train-
ing session where we present the participant with 25 training
samples with model predictions, with or without explanations,
followed by an evaluation session with 15 testing samples (with-
out model predictions), also with or without LIME explanations.
The participant is asked to predict the model’s labeling of these
items. We use a Latin Square design (Shah and Sinha, 1989) to
control for idiosyncratic differences between our participants.
For each of the tasks tt, we therefore randomly sample 120 ex-
amples, 75 of which we use for training our participants, and
45 of which we use for evaluation. We divide the 75 training
samples into groups of 25: tt1 , tt2 , tt3 . We have three different
presentation conditions: no explanation, LIME explanation, or
random explanation (for control). For the LIME explanations, we
remove information about model decision and present partici-
pants with the original LIME output images, after turning them
into grayscale in order to avoid revealing the class label. We
rely on 500 perturbations of each data sample in order to obtain
the top 3 most informative input tokens. See Figure 6.2 for an
example of the visual stimuli under this condition. The training
sessions are interactive, simulating the test interface, but provid-
ing the true answer whenever the participant has provided an
initial guess. We shuffle the training sessions at random. The
evaluation sets for each task te consist of 45 samples in total,
split into chunks of 15: te1 , te2 , te3 . In the evaluation session, sub-
jects are not provided with the true model responses, to avoid
biases from additional training. We divide our participants in
three groups, and for each task, the groups are assigned task
subsamples in the following Latin Square design:

x LIME(x) Control(x)

Subjects1 tt1 , te1 tt2 , te2 tt3 , te3

Subjects2 tt2 , te2 tt3 , te3 tt1 , te1

Subjects3 tt3 , te3 tt1 , te1 tt2 , te2

We include 3 unknown tasks, meaning that no information
about the tasks was provided to the participants in advance of
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the experiment. Instead, subjects had to try to infer patterns from
the data sample, possibly augmented with LIME explanations.
For the known tasks, we follow Nguyen (2018a) and Hase and
Bansal (2020) and provide subjects with a brief explanation of
the task, but emphasize the fact that the participants should pre-
dict model decisions, not the true labels; and hence, they should
avoid being influenced by their own beliefs of whether a text is
positive or an instance of hate speech. As in Hase and Bansal
(2020), we make sure that true positives, false positives, true
negatives, and false negatives are balanced across the training
and test data. In total we have 30 participants, all with at least
undergraduate education and some knowledge of computer
science and machine learning. We collect 3000 human forward
predictions: 1800 from training sessions and 1200 from the eval-
uation sessions. For each condition and item in the evaluation
set, we have at least two human forward predictions. Some of
the participants gave us optional feedback on strategies they
used. This, as well as some examples of our interface can be
found in the Appendix.

6.5.4 Pre-Experiment: The Effect of Training on Forward Prediction

In addition to our main experiment with 30 participants, we
also performed a human forward prediction pre-experiment
with a single participant. In the pre-experiment we compare
human forward prediction with and without training; we do so to
motivate our experimental design, in which we follow Hase and
Bansal (2020), but depart from Nguyen (2018a), in including a
training phase in which humans can learn the idiosyncracies
of the machine learning model. In the pre-experiment, we are
only interested in seeing the effects of the training phase for
the known tasks. We first ran the experiment without training;
then ran the experiment with training. To clearly be able to
quantify the effect of our interactive training phase, we only use
examples with false model predictions in the pre-experiment.
For each of the two tasks, sentiment analysis and hate speech
detection, we use: (a) 20 distinct examples for evaluation for
each of the two conditions; and (b) 25 distinct examples for
training for the second experimental condition. Note that since
we only use a single human participant in the pre-experiment,
controlling for individual differences, we cannot control for the
difficulty of data points and use different data points across the
two experimental conditions.

The effect of training is positive. On the SST dataset, the accu-
racy with respect to model predictions (p̂) increases from 0.400
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to 0.550;1 on the HatEval2019 dataset, performance increases
from 0.3690 to 0.526. We see this as a very strong motivation
for including a training phase. A training phase also makes it
possible to perform human forward prediction experiments on
tasks that are unknown to the participants, removing any belief
bias that may otherwise affect results. We note that a training
phase does not necessarily lead to faster inference times. On Hat-
Eval, average inference time was reduced from 08:56 to 07:21,
but on STS, it increased from 06:24 to 08:53. This suggests
that untrained annotators (after a few instances) learn super-
ficial heuristics that enable them to draw fast, yet inaccurate,
inferences.

6.5.5 Main Experiment: The Effect of LIME on Forward Prediction

We report the results of our main experiment in Table 6.1.Re-
sults show that LIME helps, both in terms of accuracy and time,
on known and unknown target tasks, except when the deci-
sions boundary does not align with LIME dimensions (Sent Len)
(columns 1–4); and that while humans are biased by their beliefs
and knowledge of the known tasks, they are not biased during
unknown tasks, which can be seen by their decrease in accu-
racy with respect to human annotation. We make the following
observations:

the effect of lime on known tasks This is the standard
set-up considered also in previous work (Hase and Bansal, 2020;
Nguyen, 2018a); see columns 1–2 and rows 1–2 in Table 6.1. We
see that LIME leads to significantly better human forward pre-
diction performance on both tasks. It also leads to (statistically)
significantly faster inference times, approximately halving the
time participants spend on classifying the test examples. This
shows that LIME, in spite of its limitations (§3), is a very useful
tool in some cases.

the effect of lime on unknown tasks The effect of
LIME on human forward prediction accuracy on 2 of the un-
known tasks is not significant. On the two tasks, where LIME
provides meaningful explanations (subject number and tense
prediction), LIME does lead to smaller reductions in inference
time which are not statistically significant. The effect on the
participants’ accuracy is mixed and insignificant. In addition,

1 Note that our human participant, without training had lower-than-random
accuracy in both tasks. This is not surprising, since we have selected data
points on which our model was wrong. Under the influence of belief bias,
humans are likely to also classify these wrongly.
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Human Acc. ( p̂) Human Time( p̂)
Model

Acc.
(p)

Human Acc. (p)

Task x LIME(x) x LIME(x) x x LIME(x)

Known tasks

SST 0.557
∗ 0.694 03:00

∗ 01:50 0.822 0.767 0.794
HatEval
2019

0.562
∗ 0.715 02:18

∗ 01:10 0.573 0.706 0.609

Unknown tasks

Sent
Len

∗ 0.470 0.310 05:32 08:15 0.846
∗0.612 0.360

Subj
Num-
ber

0.500 0.430 09:43 08:50 0.901 0.397 0.491

Tense 0.542 0.581 07:02 04:51 0.942 0.449 0.500

Table 6.1: Results from Main Experiment. Columns 1–2: accuracy
of human forward prediction results on plain input (x) or
augmented with LIME interpretations ( LIME(x)). ∗: Signif-
icance of α < .05 computed with Mann-Whitney U test.
Columns 3–4: average duration of evaluation sessions (hu-
man inference time). Column 5 lists the model accuracies
with respect to human gold annotation; which we compare
with human accuracies with respect to human gold annota-
tion.
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LIME is significantly detrimental on human forward prediction
accuracy for the task of sentence length prediction; it also leads
to longer inference times, although this difference was not sta-
tistically significant. This shows that while LIME is useful in
some cases, this is not always the case. We speculate that since
LIME explanations are partial, they are only effective when sup-
plemented by (approximately correct) belief bias. If true, this
suggests that LIME, even for the tasks that can be explained in
terms of input words, is, nevertheless, only applicable to tasks
that humans have experience with, and when the underlying
models perform reasonably well.

known and unknown tasks In general, our participants
are much slower at classifying examples when the task is un-
known. This shows the efficiency of the belief biases our partici-
pants have in sentiment analysis and hate speech classification.
The effectiveness of these biases is also demonstrated by the per-
formance gaps between humans and models when comparing
their predictions to ground truth labels. To see this, consider
columns 5–7 in Table 6.1. Participants, while instructed to predict
model output (p̂), actually significantly outperform our classifier
in predicting the true labels (0.706 vs. 0.573)! In contrast, partici-
pants perform subject number and tense prediction at chance
levels (0.491 and 0.500), while a simple classifier achieves accu-
racy greater than 0.9 on both tasks. This clearly demonstrates
belief bias in human forward prediction experiments.

human inference time In addition to considering per-
formance, we also recorded the time our participants spent on
completing the forward prediction tasks. We present the average
times of each condition in Table 6.1 with shorter times bolded.
We used the Mann-Whitney U test to determine significance
for these, which is also shown in the same table. We plot the
total averages in Figure 6.3. All the results shown in the plot are
significant with α < 0.001.

6.6 related works

interpretability methods Interpretability methods come
in different flavors: (a) post-hoc analysis methods that estimate
input feature importance for decisions, including LIME, (b) post-
hoc analysis methods that estimate the influence of training
instances on decisions, e.g., influence functions (Koh and Liang,
2017) and (c) strategies for making complex models interpretable
by learning to generate explanations (Narang et al., 2020b) or
uptraining simpler models (Agarwal et al., 2020). In this paper
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Figure 6.3: Comparing Known and Unknown Tasks. i) Left bars
show mean inference time (secs) with LIME explanations;
ii) middle bars show mean inference time without; and iii)
right bars show mean inference time across all tasks, with
and without LIME.

we have focused on post-hoc interpretability methods, but it is
equally important, we argue, to evaluate other types of inter-
pretability methods on unknown tasks, when running human
forward prediction experiments, to avoid participants’ cognitive
biases.

intrinsic evaluation of interpretability methods

One standard approach to evaluating explanations is to remove
the parts of the input detected by the interpretability method
and see whether classifier performance degrades (Samek et
al., 2017). One drawback of this method is that the corrupted
examples are now out-of-distribution, and classifiers will gen-
erally perform worse on such examples. Hooker et al. (2019)
improve on this by evaluating classifiers retrained on the cor-
rupted examples. This approach, however, now suffers from
another drawback: If classifiers perform well on the corrupted
examples, that does not mean the interpretability methods were
wrong.2 Jain and Wallace (2019) evaluate attention functions as

2 To see this, consider a sparsity-promoting classifier relying on a single feature
f in the context of feature swamping (Sutton, Sindelar, and McCallum, 2006),
i.e., frequent features may lead to undertraining of covariate features in
discriminative learning. If f is removed, but the classifier retains its original
performance by now relying on covariate features, that does not mean the
classifier did not solely rely on f when trained on the original data.
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explanations and argue that they do not provide useful explana-
tions, in part because they do not correlate with gradient-based
approaches to determining feature importance; Wiegreffe and
Pinter (2019), in return, show this test is not sufficient to show
attention functions do not provide useful explanations.

extrinsic benchmarks for interpretability methods

Rei and Søgaard (2018) show how token-level annotated cor-
pora can be converted to benchmarks for evaluating post-hoc
interpretability methods. They train sentence classifiers to pre-
dict whether sentences contain labels or not, use interpretability
methods to predict what input words were important, and use
the F1 score of those predictions to evaluate the interpretability
methods. The main drawback of their method is that it only
works as an evaluation of interpretability methods under the
assumption that the classifier is near-perfect (since otherwise the
token-level annotations cannot be assumed to be explanations
of model decisions); furthermore, it is only applicable to tasks
for which we have token-level annotations. Poerner, Schütze,
and Roth (2018) adopt a slightly different approach, augment-
ing real documents with random text passages to see whether
interpretability methods focus on the original text passages. This
method suffers from the same drawback, that it assumes near-
perfect performance. It is also only designed to capture false
positives; it cannot distinguish between true or false negatives.
Finally, DeYoung et al. (2020) recently introduced ERASER,3

a suite of NLP datasets augmented with rationales, including
reading comprehension, natural language inference, and fact
checking. ERASER also assumes near-perfect performance, and
can be seen as extending the set of tasks for which the method
proposed in Rei and Søgaard (2018), is applicable. In our current
work, we present a method of evaluating post-hoc interpretabil-
ity methods which is independent of model quality, which we
argue is a great advantage of our proposed experimental de-
sign as opposed to many others, such as the studies mentioned
above.

human evaluation of explanations The idea of eval-
uating explanations by testing human parcipants’ ability to
predict model decisions with and without explanations is not
novel. Nguyen (2018a), Lage et al. (2018) and Hase and Bansal
(2020), as already discussed, present such experiments. Schmidt
and Biessmann (2019) is another example of human forward
prediction experiments in a crowdsourcing platform. They per-
form experiments on the effect of LIME and COVAR on human

3 http://www.eraserbenchmark.com/

http://www.eraserbenchmark.com/
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forward prediction for a sentiment task that is known to be
participants, in advance. Our criticism of Nguyen (2018a) also
applies to their study.

Narayanan et al. (2018) also present evaluations of inter-
pretability methods with humans. In contrast to our work, they
design simple tasks in which humans verify whether an output
is consistent with an input and an explanation. The human par-
ticipants are provided with explanations of what the tasks they
are working with are, and they only need to consider a handful
of input features.

The Reverse Turing Test that we propose here is different from
previous proposals to use human forward prediction to evaluate
interpretability methods, in that it a) includes a training phase,
and b) includes human forward prediction on unknown tasks,
i.e., tasks about which they have no prior beliefs. We are, to the
best of our knowledge, the first to propose such a protocol. In
the above experiments, designed to motivate the design of the
Reverse Turing Test, we see the limitations of a widely used
interpretability method, LIME: On some tasks, i.e., tasks which
cannot be explained by the occurrence of input words, the effect
of LIME is detrimental; and on unknown tasks, for which LIME
interpretations are not supported by participants’ belief biases,
its effect on human forward prediction is insignificant.

6.7 conclusion

We presented an evaluation protocol for interpretability meth-
ods, which differs from previous work by including a training
phase and by including unknown tasks. This makes our protocol
work independently of model quality, and controls for belief bias.
Using LIME as our test case, we find that on known tasks, LIME
leads to statistically significant improvements in human forward
prediction, both in accuracy and inference time. However, when
tasks are unknown, differences are no longer significant. We see
this as evidence of bias in the standard protocols, and argue that
making tasks unknown, leads to more reliable evaluations. We
also identify tasks, where model decisions cannot be explained
in terms of input word occurrences, and for which the effect of
LIME is detrimental for human forward prediction performance.





7
O N T H E I N T E R A C T I O N O F B E L I E F B I A S A N D
E X P L A N AT I O N S

7.1 abstract

A myriad of explainability methods have been proposed in
recent years, but there is little consensus on how to evaluate
them. While automatic metrics allow for quick benchmarking,
it is not clear how such metrics reflect human interaction with
explanations. Human evaluation is of paramount importance,
but previous protocols fail to account for humans’ belief biases af-
fecting performance, which may lead to misleading conclusions.
We provide an overview of belief bias, its role in human evalu-
ation, and ideas for NLP practitioners on how to account for it.
Using two experimental paradigms, we present a case study of
gradient-based explainability introducing simple ways to con-
trol for humans’ previous beliefs: models of varying quality and
adversarial examples. We show that conclusions about the highest
performing methods change when introducing such controls, pointing
to the importance of accounting for belief bias in evaluation.

7.2 introduction

Machine learning has become an integrated part of our lives;
from everyday use (e.g., search, translation, recommendations)
to high-stake applications in healthcare, law, or transportation.
However, its impact is controversial: neural models have been
shown to make confident predictions relying on artifacts (Mc-
Coy, Pavlick, and Linzen, 2019; Wallace et al., 2019) and have
shown to encode and amplify negative social biases (Caliskan,
Bryson, and Narayanan, 2017; González et al., 2020; Manzini
et al., 2019; May et al., 2019a; Rudinger et al., 2018; Tan and
Celis, 2019).

Explainability is aimed at making model decisions transpar-
ent and predictable to humans; it serves as a tool for model
diagnosis, detecting failure modes and biases, and more gen-
erally, to increase trust by providing transparency (Amershi
et al., 2019b). While automatic metrics have been proposed to
evaluate qualities of explanations such as: faithfulness, consis-
tency and agreement with human explanations (Atanasova et al.,
2020a; DeYoung et al., 2020; Robnik-Šikonja and Bohanec, 2018),

95
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Figure 7.1: Evaluation protocols considered in this work

such metrics fail to inform us about human interaction with
explanations.

Doshi-Velez and Kim (2017) suggested human forward predic-
tion, a simulation task in which humans are given an input and
an explanation, and their task is to provide the expected model
output, regardless of the gold answer; recent studies include
Hase and Bansal (2020), Lage et al. (2019), Nguyen (2018b),
and Poursabzi-Sangdeh et al. (2018). Such protocols are widely
used and can provide valuable insight into human understand-
ing of explanations. However, prior work has not accounted
for how humans’ previous beliefs (belief biases) interact with
evaluation; simulating model decisions becomes an easier task
when the model being evaluated makes predictions which align
with human behavior. We argue that not considering belief bias
may lead to misleading conclusions about which explainability
methods perform best.

Other protocols have evaluated participants’ ability to select
the best model based on explanations offered by different inter-
pretability methods (e.g., decide which model would generalize
‘in the wild’) (Ribeiro, Singh, and Guestrin, 2016a). However,
comparisons have been made between a model which is clearly
in line with human beliefs, and another which exploits spurious
correlations diverging from human expectations. When differ-
ences are less obvious, humans may not be able to leverage their
belief biases, and conclusions may change.

This paper, which includes evaluations for both previously
mentioned tasks, closes an important gap: to the best of our
knowledge, no prior work in NLP addresses the interaction of
belief bias with human evaluation of explainability.

contributions . We provide an overview of belief bias
meant to highlight its role in human evaluation and provide
some preliminary ideas for NLP practitioners on how to handle
such cases. Using human forward prediction and best model selection
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(Figure 7.1), we present a case-study where we compare two
gradient-based explainability methods in the context of Reading
Comprehension (RC), introducing conditions to take into ac-
count belief bias. We find that both explainability methods are
helpful to participants in the standard settings (in line with
most previous work), but the conclusions about the best perform-
ing models change when incorporating additional control conditions,
reinforcing the importance of accounting for such biases.

7.3 belief bias

Belief bias is a type of cognitive bias, defined in psychology as
the systematic (non-logical) tendency to evaluate a statement on the
basis of prior belief rather than its logical strength (Barston, 1986;
Evans, Barston, and Pollard, 1983; Klauer, Musch, and Naumer,
2000). Cognitive biases are not necessarily bad; they help us
filter and process a great deal of information Bierema et al.,
2020, and have been widely studied in real human-decision
making (Furnham and Boo, 2011; Kahneman, 2003; Tversky and
Kahneman, 1974). However, in evaluations involving human
participants, such biases may alter results and affect conclusions
(Anderson and Hartzler, 2014; Wall et al., 2017).

Classic psychology studies of belief bias have assessed how
prior beliefs affect syllogistic reasoning (Evans, Barston, and
Pollard, 1983; “SJ and Harper, C. 2001”; Klauer, Musch, and
Naumer, 2000; Markovits and Nantel, 1989; Newstead et al.,
1992). Consider the following example by Anderson and Hart-
zler (2014):

(a) If all birds are animals, and if no animals can fly, then no birds can fly.
(b) If all cats are animals, and if no animals can fly, then no cats can fly.

In syllogistic reasoning, the task for humans is to assess the
logical validity of such arguments while ignoring believability.
While both arguments are logically valid, most work converges
on the finding that humans will rate argument (a) as invalid
more often than (b), biased by the fact that the premise in (a) is
less believable.

In psychology, belief bias has been tied to the dual-processing
theory, which assumes that reasoning is performed by two com-
peting cognitive systems: (1) system 1 which takes care of fast,
heuristic processes and (2) system 2 which handles slower, more
analytical processes (Croskerry, 2009; Evans, 2003; Evans and
Curtis-Holmes, 2005; Trippas and Handley, 2018). Generally,
humans tend to have a cognitive preference for relying on fast,
intuitive system 1 processes, rather than engaging in slow and
more analytical system 2 processes. Belief bias is attributed to
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system 1 (Evans, 2008; Evans and Curtis-Holmes, 2005; Evans
and Frankish, 2009; Stanovich and West, 2008) due to several
factors, reviewed in detail by Caravona et al. (2019) and Evans
(2003).

For the purposes of NLP studies relying on crowd workers,
one relevant finding is that time pressures exacerbate reliance
on previous beliefs (Evans and Curtis-Holmes, 2005). Since
crowd workers generally are incentivized to work as quickly as
possible to maximize their hourly pay, reliance on belief bias is
to be expected.

Another relevant finding for NLP is that threatening or nega-
tively charged arguments (e.g., content violating political correct-
ness, and social norms) leads to greater engagement of system 2,
whereas neutral content leads to increased reliance on belief
bias (Goel and Vartanian, 2011; Klaczynski, Gordon, and Fauth,
1997). Since NLP studies tend to be performed on neutral con-
tent such as passages from Wikipedia –content which may not
sufficiently engage participants’ system 2 processes– belief bias
is more likely to play a role in human performance.

This study aims to highlight the phenomenon of belief bias to
encourage NLP practitioners to assess the role it plays in their
evaluations, and introduce mechanisms to control for belief bias
effects. We illustrate how belief bias effects can significantly
affect the results of human evaluation of explainability for two
paradigms: human forward prediction and best model selection.

7.4 related work

human forward prediction Human forward prediction
experiments have been recently presented in the context of
synthetic data (Lage et al., 2019; Poursabzi-Sangdeh et al., 2018;
Slack et al., 2019) to evaluate explainability methods for their
ability to make model decisions predictable to humans. In this
paradigm, humans are presented with explanations and tasked
with predicting the model’s decision regardless of the ground
truth (Doshi-Velez and Kim, 2017).1

In NLP, Nguyen (2018b) introduced human forward predic-
tion for LIME explanations (Ribeiro, Singh, and Guestrin, 2016b)
of sentiment analysis of product reviews and correlated the
results with automatic evaluations. Unlike with synthetic data,
participants have prior beliefs on what the true outcome is. Since
participants in Nguyen (2018b) had no training phase to learn
how explanations correlate with predictions and the model be-

1 Using synthetic data from fictitious domains effectively controls for belief bias
(Lage et al., 2019; Slack et al., 2019). Slack et al. (2019), for example, evaluates
explanations in the domain of recommending recipes and medicines to aliens.
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ing evaluated sufficiently matched human behavior, humans
likely relied exclusively on their prior knowledge, and beliefs to
complete the task at hand.

Hase and Bansal (2020) improved on this protocol by adding a
training phase. This is something we also do in our experiments
(Section 7.6), but it is unlikely to solve the belief bias problem
because even after training, humans will naturally opt for fast
heuristic mechanisms (e.g., belief bias) to simplify tasks (Wang et
al., 2019); this is particularly true if the model is high performing
(aligns with human beliefs).

The protocol by Hase and Bansal (2020) had another key fea-
ture: they leave out the explanations for the test data points.
This would seem like an advantage for evaluating explainability
methods in the context of RC where explanations can, in theory,
simply highlight the answer span, making it easy to guess the
model output from the explanations. However, it is easy to con-
trol for the amount of explanation provided by the explanation
methods you compare; in our experiments below, we highlight
the top 10 tokens with the highest attribution scores. This part
of their protocol is problematic for two reasons:

• It makes the human learning problem much harder, and
we argue it is infeasible to expose participants to enough
examples to make human forward prediction learnable
(unless the task is made very easy on purpose; again by
only evaluating high performing models). If it is not learn-
able, participants fall back on belief bias.
• It introduces a systematic bias between the training and

test scenarios.

The protocol in Hase and Bansal (2020) also does not prop-
erly randomize the order in which participants are exposed to
problems with or without explanations.

We improve on the above protocol by introducing a control
condition for belief bias effect: evaluating explainability methods
on low-quality models, the predictions of which substantially
differ from human beliefs. This means that to succeed in the
task, humans cannot simply rely on their previous beliefs. This
condition would help us assess the ability of explanations in
helping humans to realign their expectations with model behav-
ior. The predictions of RC models can also be made different
from human answers by introducing distractor sentences that
fool machine reading models, but not humans (Jia and Liang,
2017). If in human forward prediction, participants predict the
true answer rather than spans in the distractor sentences, this
suggests that participants are relying on their belief biases.
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best model selection Ribeiro, Singh, and Guestrin (2016b)
presented an evaluation of explainability methods for text clas-
sification, where explanations for decisions of two different
models on the same instance are presented side by side, and
humans decide which model is likely to generalize better. With
some exceptions (Lertvittayakumjorn and Toni, 2019), there has
not been much follow up work on this task, but this scenario
is important: it mimicks the decision about what model is safer
for deployment. Ribeiro, Singh, and Guestrin (2016b) and Lertvit-
tayakumjorn and Toni (2019) both make a single comparison
between a model which clearly diverges from human intuition,
and a model that generalizes and aligns with humans’ beliefs. Ac-
counting for the extent to which belief biases are leveraged (e.g.
by introducing additional model comparisons where differences
are not so obvious) is important in such paradigms, and can
allow us to better evaluate where explanation methods may fail.

In the following sections, we show that introducing control
conditions which take into account belief biases can alter con-
clusions for both human forward prediction and best model selection.
We emphasize that many other potential strategies can be in-
troduced and this is largely dependent on the goals of the
evaluation protocol; we merely provide one example case with
the following strategies:

(1) Introducing low quality models which considerably di-
verge from humans’ prior beliefs (human forward prediction)

(2) Introducing evaluation problems with distractor sentences
(human forward prediction)

(3) Introducing model comparisons where relying on belief
bias is not enough to obtain high performance (best model
selection)

7.5 experimental setup

This section introduces the general setup of the experiments,
with details specific to each experimental paradigm described
in Section 7.6 and Section 7.7.

7.5.1 Models

We evaluate gradient-based (Section 7.5.3) explanations pro-
duced by three BERT-based (Devlin et al., 2019c) models:

(a) a high performing model (High): BERT-base, finetuned on
SQuAD 2.0. This model is more aligned with human beliefs.

(b) a medium performing model ( Medium): tinyBERT, a 6-
layer distilled version of BERT (Jiao et al., 2019), finetuned
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on SQuAD 2.0. It performs about 20 F1 points below High.
This model somewhat aligns with human intuition, but performs
significantly lower.

(c) a low performing model (Low): BERT-base, fine-tuned to
always choose the first occurrence of the last word of
the question. This system mimicks a rule-based system2;
however, we evaluate gradient-based methods requiring a
neural model. This model diverges significantly from human
beliefs.

7.5.2 Data

We use SQuAD 2.0 (Rajpurkar, Jia, and Liang, 2018), a RC dataset
consisting of 150k factoid question-answer pairs, with texts com-
ing from Wikipedia articles. We opt for this data as it contains
short passages that can be read by humans in a short time. In
the human forward prediction experiments, we refer to exper-
iments using this data as orig. As described in Section 7.3,
Wikipedia texts could by themselves induce people to rely on
their belief bias, but this particular dataset allows us to also
introduce controls for the bias: the adversarial version of the
data (Jia and Liang, 2017), has been shown to distract models
but not humans. This means that in order to perform the task
with success, humans need disregard their belief biases, and in
some cases align with distractor sentences. We refer to this data
in our simulation experiments as Adv.

7.5.3 Explainability Methods

We focus on gradient-based approaches, as they require no mod-
ifications to the original network, and are considerably faster
than perturbation-based methods. We compare two explainabil-
ity methods:

gradients Computing the gradient of the prediction output
with regard to the features of the input is a common way to
interpret deep neural networks (Simonyan, Vedaldi, and Zis-
serman, 2013) and capture relevant information regarding the
underlying model.

integrated gradients IG (Sundararajan, Taly, and Yan,
2017) attributes an importance score to each input feature by
approximating the integral of gradients of the model’s output
with respect to the inputs along the path, from the references

2 This model achieves about 0.90 F1 for this task, but in the results we show
its performance on the actual RC task
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to the inputs. IG was introduced to address the sensitivity is-
sues which are present in vanilla gradients and implementation
invariance.

7.6 experiment 1 : human forward prediction

Human forward prediction for evaluating explainability was
proposed by Doshi-Velez and Kim (2017). They argue that if
a human is able to simulate the model’s behavior, they under-
stand why the model predicts in that manner. For the reasons
previously outlined, we suspect that belief biases may be consid-
erably affecting performance in this task. We investigate this by
asking the following: Can humans predict model decisions, if model
behavior considerably diverges from their own beliefs?

stimuli presentation We include: (i) High, which is
finetuned to solve SQuAD 2.0 and (ii) Low, which is finetuned
to select the first appearance in the context of the last word in
the question. We evaluate each of the two models twice: with
or without adversarial data. We contrast using vanilla gradients
and IG with a baseline condition, in which no explanations are
shown ( Baseline).

We highlight the top-10 tokens3 with the highest attribution
scores wrt. the start and end positions of the predicted span,
and zero out the rest.4 The two sets of tokens often overlap.

Participants were provided with a question and a passage
(with or without explanations) and were told to pick the shortest
span of text which matched the model prediction. They saw the
actual model answers before the next example (done for both
baseline and explanation conditions), which was an important
part of training to infer model behavior. Before seeing the model
prediction, their answers were locked to prevent any further
changes. An example of our interface can be found in Figure 7.2
and the instructions are shown in Section A.3.1.

We ran these experiments on Amazon, MTurk, recruiting par-
ticipants with approval ratings greater than 95%5 and ensuring
different groups of participants per condition by specifying that
participation is only allowed once, otherwise risking rejection.
6 We paid participants $5.25 for about 20 minutes of work, (to
ensure at least a $15 hourly pay), and obtained at least three

3 Explanations should be selective (Mittelstadt, Russell, and Wachter, 2019)
4 Ribeiro, Singh, and Guestrin (2016a) use the top 6 attributes; we opt for 10

given that our texts are slightly longer.
5 Previous research has shown that proper filtering and selection of participants

on MTurk, can be enough to ensure high quality data (Peer, Vosgerau, and
Acquisti, 2014).

6 We also remove such (few) repetitions at analysis
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Figure 7.2: Interface for Experiment 1 for low condition. To select
model predictions, participants clicked on tokens to select
the start and end of the span. Then they would see the
actual model prediction.

annotations per example. The data included 120 unique ques-
tions divided into small fixed batches (the same questions across
conditions). About 75% of questions are accurate in the High

model, and around 15% are accurate for the Low model. In
total, we obtained 4,300 data points across 123 participants (35

data points per participant).

results As humans often did not select the exact span that
was provided as the ground truth, we manually labeled the
spans as correct or incorrect. We also inspected the impact of
training in human forward prediction, e.g., the learning effect
of multiple exposures on annotator accuracy. Both with vanilla
gradients and integrated gradients, we observe an increase in
the participants’ accuracy at around 15 examples. In contrast,
in our baseline condition, performance either stays constant or
drops slightly. To reduce the noise introduced due to the training
period, we remove the first 15 examples of each participant. The
results without this preprocessing (Section A.3.1) suggest that
the effect of training differed across explainability methods,
as will be discussed later in the section.

Using the average human accuracy per example, we run a
one-way ANOVA to test for significant differences across the
groups. As we obtained statistically significant results, we then
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Model Human

condition F1 ŷ y sec

Baseline

Low-orig 0.17 0.16 0.48 33.9

Low-Adv 0.15 0.12 0.34 63.3

High-orig 0.79 0.45 0.46 34.6

High-Adv 0.66 0.38 0.48 36.1

Integrated (IG)

Low-orig
∗
0.58

∗
0.22

∗
16.8

Low-Adv
∗
0.63

∗
0.18

∗
22.3

High-orig
∗0.84 ∗

0.88 36.1

High-Adv
∗0.52 ∗

0.35
∗
18.9

Gradients

Low-orig
∗0.69 ∗

0.06 32.6

Low-Adv
∗0.72 ∗

0.15
∗
25.6

High-orig
∗
0.79

∗
0.81 47.4

High-Adv 0.49
∗
0.60 48.4

Table 7.1: Human forward prediction results ( Human(ŷ)) for Low

and High models, compared to no explanations ( Base-
line). Each experiment is run on vanilla SQuAD 2.0 data (
Orig) and adversarial SQuAD 2.0 data ( Adv). Human(y)
is the dataset ground truth and an indicator of belief bias.
Statistically significant results are indicated with an asterisk.
Time is the average time per question. The best ŷ results in
each condition are bolded.

ran the Tukey Honest Significant Difference (HSD) test (Tukey,
1949), comparing the means of every condition to the means of
every other condition. The results are presented in Table 7.1.

As expected, in the absence of explanations ( baseline), hu-
mans rely on belief bias and predict the gold standard answer
more often than the model prediction (y in Table 7.1). Even
with training (seeing the true model prediction), humans fail to
catch onto the simple rule used by the Low model, when no
explanations are presented.

Overall, explanations derived from both of the gradient-based
approaches lead to statistically significant improvements over
the baseline. This indicates that the explanations allow humans
to realign their expectations of the model behavior, better than
with no explanations.
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For High-orig, the standard setting explored in previous
evaluations, both IG and vanilla gradients perform well, with
IG performing better. Given these results and the theoretical
advantages of IG over vanilla gradients, one could arrive at the
conclusion that IG are better for simulatability. However, the
differences between the two methods are reversed in the con-
ditions where humans cannot rely on their previous beliefs (
Low). The gap between gradients and IG as large as 0.11, and
being statistically significant. This finding is surprising.

Finally, in the high conditions, model behavior decreases
about 13% F1 score with the presence of adversarial examples,
meaning that the model we used does have weaknesses to adver-
sarial inputs. We observe that human performance is consider-
ably lower in high-adv as opposed to high-orig. With vanilla
gradients, performance is more aligned with the ground truth
labels than with model behavior, showing that humans are
also relying on their previous beliefs. With IG, where perfor-
mance is less aligned with previous beliefs (ground truth),
the end performance increases, but, in general it seems that
this condition is considerably more difficult for humans.

effect of training In baseline, training does not have an
effect on neither of the low or high conditions (see Table A.6 in
Section A.3.1 for the raw results). For the low model, multiple
factors can be taking place (possibly at the same time): (1) the
task is simply too far from humans’ beliefs and there is no
mechanism to help participants realign their expectations, (2)
participants may simply not be incentivized to seriously engage
and look for patterns, (3) participants opt for a mixed strategy,
where for some questions they go with their prior beliefs and
for others choice is random (as seen in their performance in y).

For high conditions in baseline, performance remains
higher than low but this is likely due to belief bias and not
training, given that performance remains constant after remov-
ing the training data points. We hypothesize that for high,
instances where the model does not align to human intuition
might be more detrimental than in explanation conditions. More
specifically, if humans are aware that the model aligns with their
beliefs after some examples but encounter instances where it
doesn’t (model is not 100% accurate), they will likely develop
an expectation that the model is bound to make some errors,
without any indication of when.

In addition, our raw results suggest IG required longer train-
ing. While this does not mean IG is a worse method than vanilla
gradients, explanations derived from IG may have confused the
participants due to containing information which was irrelevant
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to them. It may be that experts (e.g. system engineers knowl-
edgeable about neural networks) can take advantage of such
explanations; however, this is a direction for future work.

7.7 experiment 2 : best model selection

This section presents the setup and results of our model selec-
tion experiments; a task where humans select the model that is
more likely to succeed in the wild. We present the participants
with explanations from two models ( High vs Low and High

vs Medium), and ask them to decide which model is likely
to perform better. As a follow-up, we also experimented with
soliciting explanations about what leads the worse model to fail. Intu-
itively, comparative evaluation difficulty depends on how clear
the difference is between the compared objects. Explanations
should at least show the difference between a high-performing
model and a low-performing one, enabling human participants
to predict which is better (standard setting).

stimuli presentation We presented participants with
saliency information from both models (a high performing
model + one of the lower performing models); their task was to
determine which model performs best in the wild. We shuffled
the order at random so that the best model would not remain
in a fixed position. We obtain 120 samples (question-context
pairs), and show the explanations next to each other as seen
in Figure 7.1. The participants are told that the highlighted at-
tributes are words the model found important in making its
final decision. A screenshot of the UI is shown in Figure 7.3
and the instructions provided to the participants are shown in
paragraph A.3.2. These experiments were also ran on MTurk with
the same general procedures and pay. The same subset of 120

examples is used in all conditions. We obtained at least three
annotations per example and ended with a total of 1440 data
points across 48 participants (30 examples each).

results For each example shown to annotators, we obtained
the average accuracy scores and performed a standard T-test
to compare the performance of the two methods. The results
are shown in Table 7.2. Using explanations from both methods,
when shown the High and Low model, humans are clearly able
to correctly select the better one. With IG, humans achieve 0.95
accuracy on average, while with vanilla gradients they achieve
0.89. The difference is not statistically significant. The fact that
users are consistently able to discriminate between High and



7.7 experiment 2 : best model selection 107

Figure 7.3: Experiment 1 UI: Low(bottom) vs High(top) condition.

Low models is expected, and serves as a sanity check that these
explanations are meaningful for humans.

Condition Gradients IG

High vs low 0.89 0.95

High vs medium* 0.85 0.52

Table 7.2: Both methods do well in ( High vs Low). In high vs
Medium, performance drops dramatically for IG. * = statis-
tical significant difference (ρ < 0.001)

When the same experiment was repeated in the High vs
Medium condition, we found clear and statistically significant
differences between the two explainability methods. Using IG,
participants reach only 0.52 accuracy, while with vanilla gra-
dients their performance is 0.85. This is surprising, given that
the difference in performance between the two models is still
quite large (about 20% F1); the expectation is that both methods
would capture this difference relatively well. It appears that
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when both models more or less align with human beliefs, the
task is much more difficult. To solve the task, humans now need
to engage in more analytical thinking and cannot simply rely
on belief biases to solve the task. We further investigate these
differences through qualitative coding.

qualitative analysis After each instance, we asked par-
ticipants to describe how the worse model will fail. We do not
provide detailed guidelines in order to not further bias the par-
ticipants by introducing specific criteria. The instructions given
to the participants are shown in Section A.3.2.

We collected 1440 responses, which were all inspected manu-
ally to uncover categories (codes). After multiple iterations, we
tagged each response with one code (categories are mutually
exclusive, no response can be placed in two). A description of
the categories and their distribution are shown in Figure 7.4,
and examples of feedback per category are provided in the
Section A.3.2.

In the High vs Low condition, feedback for both methods
was generic (about 70-80% of the time), e.g., model B is likely
incorrect so it is worse. This was expected: this task should be
easy when model differences are large and humans can rely on
their system 1 processes to get through the task without thinking
deeply about the explanations.

In the High vs Medium condition, the distribution of the
feedback categories is very different. For IG, 50% of the time
participants felt the highlighted tokens where irrelevant. This is
not the case for gradients, where only about 15% of responses
fell in that category. Additionally, for vanilla gradients, 50%
of feedback is generic, signaling that in this condition, it may
have been an easy task as well; explanations are making model
behavior clear enough. It remains an open question whether IG
explanations may in fact be more faithful to the model reasoning.
In that case, expert users (e.g. a system engineer debugging a
system) may not find IG attributions irrelevant and would be
able take better advantage of the information provided. For this
reason, we emphasize the importance of not overgeneralizing
conclusions to other populations. Nevertheless, as evaluating
on non-experts (crowdsourced workers for example) is com-
mon, this preliminary result is important: it shows that con-
clusions can shift dramatically when introducing additional
model comparisons.
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7.8 discussion : mitigating belief bias

This study introduced control conditions in which the human par-
ticipants could not rely on their belief biases to facilitate the task
at hand. We presented a case study on evaluating RC models in
model selection and human forward prediction paradigms, and
we showed that this simple addition led to different conclusions
in the evaluation and a better understanding of how humans
interacted with explanations. Other tasks and paradigms might
call for different setups, but generally control conditions with
models of varying quality would be helpful both for the pur-
poses of bias control and for the simulation of real-life use
of explainability techniques to support decisions about which
model is safer to deploy.

To conclude, we will briefly mention other directions for
mitigating belief biases that can also be explored in future work.

reducing ambiguity Ambiguity of task instructions leads
humans to align interpretations with their own prior beliefs
(Heath and Tversky, 1991); this may lead to misinterpretation
and results which do not reflect the intended interaction with ex-
planations. Ambiguity may also be present in other parts of the
evaluation setup. For example, Lamm et al. (2020) evaluate the
effectiveness of explanations in helping humans detect model
errors for open-domain QA, but the data they use contains ques-
tions where multiple answers can be true. Users may deem an
answer to be correct or incorrect based on their understanding
of the question, which makes the effect of explanations blurry.
Removing ambiguous instances from the data can be a way of
reducing such confounds.

removing time constraints Time constraints exacerbate
the reliance of system 1 processes, which leads to humans rely-
ing on belief biases. In crowdsourced evaluations, it is common
practice to provide workers with enough time to perform tasks,
but workers may have intrinsic motivations for performing tasks
quickly. A major challenge for evaluation research with crowd
workers is creating better incentives for engaging in system 2

processes, e.g., pay schemes which encourage workers to be
more analytical and accurate (Bansal et al., 2019b).

include fictitious domains Using data from domains
in which subjects have no prior beliefs, e.g., fictitious domains,
may be an efficient way of controlling for belief bias in some
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tasks7. This strategy has been used outside of NLP (Lage et al.,
2019; Poursabzi-Sangdeh et al., 2018; Slack et al., 2019), where
subjects are asked to imagine alternative worlds such as scenar-
ios involving aliens. In QA for example, one could introduce
context-question pairs that describe facts about fictitious scenar-
ios that sufficiently differ from human reality.

7.9 conclusion

The main contribution of this paper is bringing the discussion
of belief bias from psychology into the context of evaluating
explainability methods in NLP. We provide an overview of belief
bias, making a connection between findings in psychology and
the field of NLP, and present a case study of evaluating expla-
nations for BERT-based RC models. We show that introducing
models of various qualities and adversarial examples can help to
control for belief bias, and that introducing such controls affects
the conclusions about which explainability method works better.

7 Again, we emphasize that some strategies are task dependent; fictitious
domains may not be relevant in some tasks.
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D O E X P L A N AT I O N S H E L P U S E R S D E T E C T
E R R O R S I N O P E N - D O M A I N Q A ? A N
E VA L UAT I O N O F S P O K E N V S . V I S UA L
E X P L A N AT I O N S

8.1 abstract

While research on explaining the predictions of Open-domain
Question Answering (ODQA) to users is gaining momentum,
most works have failed to evaluate the extent to which explana-
tions improve user trust. While few works evaluate explanations
using user studies, they employ settings that may deviate from
the end-user’s usage in-the-wild: ODQA is most ubiquitous in
voice-assistants, yet current research only evaluates explana-
tions using a visual display, and may erroneously extrapolate
conclusions about the most performant explanations to other
modalities. To alleviate these issues, we conduct user studies
that measure whether explanations help users correctly decide
when to accept or reject an ODQA system’s answer. Unlike prior
work, we control for explanation modality, e.g., whether they are
communicated to users through a spoken or visual interface, and
contrast effectiveness across modalities. Our results show that
explanations derived from retrieved evidence passages can out-
perform strong baselines (calibrated confidence) across modali-
ties, but the best explanation strategy in fact changes with the
modality. We show common failure cases of current explana-
tions, emphasize end-to-end evaluation of explanations, and
caution against evaluating them in proxy modalities that are
different from deployment.

8.2 introduction

Despite copious interest in developing explainable AI, there is
increasing skepticism as to whether explanations (of system
predictions) are useful to end-users in downstream applications.
For instance, for assisting users with classifying sentiment or
answering LSAT questions, Bansal et al. (2020) observed no
improvements from giving explanations over simply present-
ing model confidence. Similarly, Chu, Roy, and Andreas (2020)
observed that visual explanations fail to significantly improve
user accuracy or trust. Such negative results present a caution-

113
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Figure 8.1: Using end-to-end user studies, we evaluate whether expla-
nation strategies of open-domain QA assistants help users
decide when to trust (or reject) predicted answers.

ary tale for explainability and emphasize the need to evaluate
explanations using careful user studies.

We explore the effectiveness of explanations for Open-Domain
Question Answering models, which involves answering users’
factoid questions (e. g., “Who plays the Joker in the Lego Batman
movie?”) using a large corpus (e. g., Wikipedia). Such models
are increasingly deployed not only in visual modalities (e. g.,
Web search) but also in spoken ones (voice assistants).1 Spo-
ken interfaces for ODQA are also important because they make
systems more accessible for users with visual impairments. De-
spite improvements in accuracy, deployed ODQA models remain
imperfect. This motivates the need to provide users with mecha-
nisms (e. g., estimates of uncertainty or explanations) that can
help improve appropriate reliance (Lee and See, 2004), e. g., by
allowing users to detect erroneous answers. We henceforth refer
to a user’s ability to distinguish correct and incorrect answers as
error detectability, and ask Does explaining the system’s reasoning,
help improve error detectability? (Figure 8.1)

Alongside recent negative results (Bansal et al., 2020), Lamm
et al. (2020) showed that visually complex “QED” explanations
that communicate coreference and entailment information along
with evidence marginally improve error detectability. However,
the study lacks the recommended baseline (Amershi et al., 2019b;
PAIR, 2019) of communicating model confidence which has been

1 https://www.perficient.com/insights/research-hub/
voice-usage-trends

https://www.perficient.com/insights/research-hub/voice-usage-trends
https://www.perficient.com/insights/research-hub/voice-usage-trends
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shown to be effective on other domains (Bansal et al., 2020). Also,
the transferability of complex visual explanations to the spo-
ken modality remains unclear. Although Feng and Boyd-Graber
(2019a) compare visual explanations with presenting model con-
fidence on a different QA task, i.e., answering timed, multi-clue
trivia questions, it was unclear whether explanations led to ap-
propriate reliance (Bansal et al., 2020); thus the effectiveness
of explanations for end users of QA systems still remains un-
clear. In this paper, we set out to evaluate the ability of Natural
Language (NL) explanations in both visual and spoken modal-
ities, to improve error detectability for the task of ODQA for
non-expert users over strong baselines.

However, explaining ODQA systems in the spoken modality
may pose unique challenges, e. g., because the same information
content can impose higher cognitive demands when communi-
cated by voice than visually (Leahy and Sweller, 2016; Sweller,
2011); potentially reducing effectiveness of longer, more complex
explanations (e. g., QED) in the spoken modality. Thus we also
ask, Can the most useful explanation strategy change with presenta-
tion modality? In summary:

1. We present user studies evaluating how well explanations
for ODQA help users detect erroneous answers (error de-
tectability). Unlike prior work, we evaluate explanations
in both visual and spoken interfaces, and compare against
calibrated confidence.

2. Our experiments with over 500 Mechanical Turk (MTurk)
users confirm significant improvements in error detectabil-
ity for ODQA over showing confidence. To the best of our
knowledge, our work is the first to show statistically sig-
nificant improvements in appropriate reliance through NL
explanations for non-expert users. (Section 8.6.1)

3. We show that the best explanation approach can change
with the modality: while longer explanations (evidence
paragraphs) led to the highest error detectability in the
visual modality, shorter explanations (evidence sentence)
performed best in the spoken modality. We connect our
observations with prior work on cognitive science and
identify failure cases for ODQA explanations (Section 8.6.3).

8.3 related work

natural language explanations Recent work has in-
troduced neural models that are trained to perform a task and
output a NL explanation. Camburu et al. (2018) and Rajani et
al. (2019), both introduce methods for training self-explaining
models using free-form NL explanations collected from crowd-
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sourced workers for natural language inference and common
sense reasoning. Atanasova et al. (2020b) introduced a method
for generating explanations for fact verification using human
veracity justifications. Lei, Barzilay, and Jaakkola (2016) intro-
duced an approach for extracting rationales by selecting phrases
from the input text which are sufficient to provide an output.
Rationales have since been introduced for various NLP tasks
(Chen et al., 2018a; DeYoung et al., 2020; Yang et al., 2018).

Lamm et al. (2020) introduce QED explanations in ODQA con-
sisting of the sentence containing the answer, coreference and
entailment information. However, unlike free-form explanations
or rationales, these explanations are too complex to adapt to
the spoken modality. In question answering, many current mod-
els provide an answer and a rationale (or extractive evidence).
We evaluate extractive evidences from a state-of-the-art ODQA
model, along with human-written summaries.

evaluating explanations The quality of NL explanations
has previously been evaluated using automatic metrics that
measure the agreement of explanations with human annotations
(Camburu et al., 2018; DeYoung et al., 2020; Paranjape et al., 2020;
Rajani et al., 2019; Swanson, Yu, and Lei, 2020). It is not clear how
these metrics reflect the usefulness of explanations in practice.
As the goal of explainability is to make model decisions more
predictable to human end users, a more useful way of evaluating
explanations is through human evaluation.

Some human evaluations have used proxy tasks to evaluate
explanations (Hase and Bansal, 2020; Nguyen, 2018b), however,
Buçinca et al. (2020) showed that both subjective measures and
proxy tasks tend to be misleading and do not reflect results in
actual decision making tasks.

Within question answering, Feng and Boyd-Graber (2019b)
evaluate how expert and novice trivia players engage with ex-
planations. Lamm et al. (2020) evaluate how QED explanations
help raters determine whether a model decision is correct or
incorrect, and find marginal improvements on rater accuracy.
Unlike these works, we simplify the presentation setup so that
we can adapt explanations across different modalities. Bansal
et al. (2020) observed that for sentiment analysis and answering
LSAT questions, state-of-the art explanation methods are not
better than revealing model confidence scores and they increase
the likelihood of users accepting wrong model predictions. We
compare confidence to various explanation strategies for ODQA,
but unlike previous work, we use calibrated model confidence.
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open-domain qa ODQA consists of answering questions
from a corpus of unstructured documents2. Currently, ODQA
models consist of two components: (1) a document retriever
which finds the most relevant documents from a large collec-
tion and (2) a machine comprehension model or reader compo-
nent, which selects the answer within the chosen documents
(Chen et al., 2017a; Das et al., 2018; Karpukhin et al., 2020; Lee,
Chang, and Toutanova, 2019a). Recent work focuses on identify-
ing answers in Wikipedia (Karpukhin et al., 2020) as well as the
web (Joshi et al., 2017), encompassing both short extractive an-
swers (Rajpurkar et al., 2016) and long explanatory answers (Fan
et al., 2019).

8.4 visual vs . spoken modalities

When presenting NL explanations to users, we must keep in
mind that users typically process information differently across
the spoken and visual modalities. In this section, we discuss
work in learning and psychology research, which point to the
differences motivating our evaluation.

1. Real-time processing: Flowerdew, Long, Richards, et al.
(1994) observe that one of the main differences in how peo-
ple process spoken versus written information is linearity.
When listening, as opposed to reading, information pro-
gresses without you. Readers, on the other hand, are able
to go back and dwell on specific points in the text, skip
over and jump back and forth (Buck, 1991; Lund, 1991).
Although in some scenarios it is possible to get spoken in-
formation repeated, it may not be as effective as re-reading
(see below).

2. Recall of information: People tend to recall less after lis-
tening versus reading (Osada, 2004). Lund (1991) found
that for some listeners, listening to information again was
not as effective as re-reading. While advanced listeners ben-
efited from listening multiple times, this was a controlled
learning scenario simulating students learning classroom
material; we would expect users in an ODQA setting to be
slightly more passive.

3. Effect on concentration: The heavier cognitive load im-
posed by listening to information can make people lose
concentration more easily. Thompson and Rubin (1996)
found that optimal length for listening materials was
around 30 seconds to 2 minutes. Beyond that, listeners

2 https://trec.nist.gov/data/qamain.html

https://trec.nist.gov/data/qamain.html
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would lose full concentration. When people interact with
voice assistants they may be on the go, or may be sur-
rounded by additional distractions not present in a learn-
ing environment. This in turn may make the optimal
length of material (explanations, in our case) much shorter.

We argue that these differences in the processing of spoken
and written information can have tremendous consequences in
the effectiveness of NL explanations in ODQA. Our experimental
setup is the first to consider these differences.

8.5 experimental setup

We design our user study to evaluate the explanation effective-
ness for ODQA by varying two factors: type of explanation and
modality of communication. We combine variations of each fac-
tor to obtain explanation conditions (Section 8.5.1) and obtain
them using a state-of-the-art ODQA model (Section 8.5.3). We
then deploy these conditions as HITs on Amazon MTurk to val-
idate five hypothesis, each stating the relative effectiveness of
conditions at improving error detectability (Section 8.5.2). Since
MTurk studies can be prone to noise, to ensure quality control,
we make and justify various design choices (Section 8.5.4).

8.5.1 Explanation Types and Conditions

ODQA models can justify their predictions by pointing to evidence
text containing the predicted answer (Das et al., 2018; Karpukhin
et al., 2020; Lee, Chang, and Toutanova, 2019a). We experiment
with two types of extractive explanations:

• ext-sent: Extracts and communicates a sentence contain-
ing the predicted answer as evidence.

• ext-long: Extracts and communicates a longer, multi-
sentence paragraph containing the answer as evidence.

While extractive explanations are simpler to generate, we also
evaluate a third explanation type that has potential to more
succinctly communicate evidence spread across documents (Liu,
Yin, and Wang, 2019).

• Abs: Generates and communicates new text to justify the
predicted answer.

final explanation conditions For the voice modality,
we test five conditions, two baselines and three explanation
types: (1) base: present only the top answer, (2) conf, a second,
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stronger baseline that presents the top answer along with the
model’s uncertainty in prediction, (3) Abs, (4) ext-long, and
(5) ext-sent.

In the visual modality, we have 2 conditions corresponding to
the ext-long and ext-sent explanation types. Here, we were
primarily interested in contrasting these with the voice modality.
Examples of our explanations can be found in Appendix A.4.6.

8.5.2 Hypotheses

We investigated five (pre-registered) hypotheses about the rela-
tive performance of various explanation conditions at improving
the accuracy of error detectability:

H1 conf will improve accuracy over base.

H2 Spoken ext-sent will improve accuracy over conf— the
explanation would provide additional context to help vali-
date predicted answers.

H3 Spoken ext-sent will lead to higher accuracy than Spo-
ken ext-long. Since the spoken modality may impose
higher cognitive limitations on people (Section 8.3), con-
cise explanations may be more useful despite providing
less context.

H4 abs will improve accuracy over Spoken ext-sent. abs

contains more relevant information than ext-sent (same
length), which may help users make better accept/reject
decisions.

H5 Visual ext-long will lead to higher accuracy than Spoken
ext-long.

8.5.3 Implementation Details for Conditions

dataset For training our model and obtaining test questions
for our user study, we used questions, answers, and documents
from the Natural Questions (NQ) corpus (Kwiatkowski et al.,
2019). NQ is composed of anonymized queries posed by real
users on the Google search engine, and the answers are human-
annotated spans in Wikipedia articles. The naturally occurring
aspect of this data makes it a more realistic task for evaluating
explanations. To simplify the study, we restrict our attention to
the subset of questions with short answers (< 6 tokens) following
Lee, Chang, and Toutanova (2019b). This subset contains 80k
training examples, 8,757 examples for development, and 3,610

examples for testing.
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Figure 8.2: UI for visual (left) and spoken modalities (right) for ext-
sent explanation type. Users either read or hear an ex-
planation and decide whether to trust or discard the QA

system’s prediction.

model We train the current (extractive) state-of-the-art model
on NQ: Dense Passage Retrieval (DPR) (Karpukhin et al., 2020).
Similar to Karpukhin et al. (2020), we split documents (entire
Wikipedia articles), into shorter passages of equal lengths (100

tokens). To answer an input question, DPR uses two separate
dense encoders EQ(·) and EP(·) to encode the question and
all passages in the corpus into vectors. It then retrieves k most
similar passages, where passage similarity to a question is defined
using a dot product: sim(q, p) = EQ(q)ᵀEP(p).

Given the top k passages, a neural reader (Section 8.3) assigns
a passage selection score to each passage, and a span score to
every answer span. The original model uses the best span from
the passage with the highest passage selection score as the final
answer. However, we re-score each answer using the product of
passage and span score and use the highest-scored answer as
the prediction. Our initial analysis showed that this rescoring
improved the exact match scores of the predicted answers.
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generating explanations To create our extractive ex-
planations, we use the passage associated with DPR’s answer—
ext-sent is defined as the single sentence in the passage contain-
ing the answer and ext-long is defined as the entire passage.
Since DPR does not generate abstractive explanations, we simu-
late Abs by manually creating a single sentence that captures
the main information of ext-sent and adds additional relevant
information from ext-long, whilst remaining the same length
as ext-sent.

To improve transparency, in addition to presenting the evi-
dence text in each explanation condition, we also inform users
that the source of the text is Wikipedia and provide them with
the title of the article containing the passage together with the
model’s (calibrated) uncertainty in its prediction. Figure 8.2
shows an example of the final ext-sent explanation condition.

To convert text to speech, we use a state-of-the-art Text-to-
Speech tool. For the questions we used in our study, when
spoken, our final Abs and ext-sent conditions were on average
15 seconds long, ext-long was between 30-40 seconds.

confidence calibration Confidence scores generated
by neural networks (e. g., by normalizing softmax scores) often
suffer from poor calibration (Guo et al., 2017). To alleviate this
issue and to follow the best practices (Amershi et al., 2019b)
for creating strong baselines, we calibrate our ODQA model’s
confidence using temperature scaling (Guo et al., 2017), which is
a post hoc calibration algorithm suitable for multiclass problems.
We calibrate the top 10 outputs of the model. We defer details on
the improvement in calibration obtained through temperature
scaling, and its implementation, to Appendix A.4.1.

8.5.4 User study & Interface

We conduct our experiments using MTurk. Our task presents
each worker with 40 questions one-by-one, while showing them
the model’s answer (along with other condition-dependant in-
formation, such as confidence or explanation) and asks them to
either accept the model’s prediction if they think it is correct or
reject it otherwise. Figure 8.2 shows an example. For each of the
7 conditions, we hire 75 workers.

Additional details about our setting and the instructions can
be found in Appendix A.4.3.

question selection We deliberately sample a set of ques-
tions on which the model’s aggregate (exact-match) accuracy
is 50%; thus any improvements in error detectability, beyond
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random-performance, must be a result of users making opti-
mal assessments about the model’s correctness. To improve the
generalization of the results, we average results over three such
mutually exclusive sets of 40 questions. Before sampling the
questions, we also removed questions that were ambiguous or
questions where the model was indeed correct, but the expla-
nations failed to justify the answer. For brevity, we defer these
details and justifications of these details to the Appendix A.4.2.

incentive scheme To encourage MTurk workers to engage
and pay attention to the task, we used a bonus-based strategy
— When users accept a correct answer, we give them a 15 cent
bonus but when they accept an incorrect answer they lose the
same amount3. This choice aims to simulates real-world cost and
utility from interacting successfully (or unsuccessfully) with AI
assistants (Bansal et al., 2019a). Table 8.1 shows the final pay-off
matrix that we used.

Prediction/Decision Accept Reject

Correct +$0.15 $0

Incorrect -$0.15 $0

Table 8.1: MTurk worker’s bonus as a function of the correctness of
ODQA model’s prediction and the user’s decision to accept
or reject the predicted answer.

post-task survey After the main task, we asked partici-
pants to (1) rate the length of responses, (2) rate their helpfulness
and (3) give us general feedback on what worked and how ex-
planations could be made better. For the spoken modality, we also
asked participants to rate the clarity of the voice to understand if
confusion originated from text-to-speech challenges. The survey
as presented to the participants can be found in Appendix A.4.4.

quantitative measures of error detectability We
quantify user performance at error detectability using the fol-
lowing three metrics:

• Accuracy: Percentage of times a user accepts correct and
rejects incorrect answers. A high accuracy indicates high
error detectability.

3 If participants ended up with a negative bonus, no deductions were made
from their base pay, instead their bonus was simply zero
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Figure 8.3: Accuracy of users at error detectability (75 workers per
condition). In the spoken modality, ext-sent explanations
yield the best results and is significantly better than conf.
In contrast, in the visual modality, ext-long explanations
perform best. We observe a statistically significant (p <

0.01) difference between ext-long in visual vs spoken,
perhaps due to differences in user’s cognitive limitations
across modalities.

• % Accepts | correct: Indicates the true positive rate, i.e.,
percentage of times the user accepts correct answers.

• % Accepts | incorrect: Indicates the false positive rate, i.e.,
percentage of times the user accepts incorrect answers. If a
setting yields a high number, this would indicate that this
setting misleads users more often.

We do not present true and false negative rates because the
conclusions are similar. We additionally measure time spent on
each question and the cumulative reward. These metrics are
explained in Appendix A.4.5. When computing all metrics, we
removed the first 4 questions for each worker to account for
workers getting used to the interface. We pre-registered this
procedure prior to our final studies.

8.6 results

To validate our hypothesis (Section 8.5.2) we compare expla-
nation methods on the quantitative metrics (Section 8.6.1). To
further understand participant behavior we analyze responses to
the post-task survey (Section 8.6.2), and analyze common cases
where explanations misled the users (Section 8.6.3). Results for
reward and time metrics are included in Appendix A.4.5 and
A.4.5.
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8.6.1 Quantitative Results

Figure 8.3 shows average user accuracy at error detectability
with 75 workers per condition. Similarly to Lamm et al. (2020), to
validate hypotheses and compute statistical significance, we fit
a generalized linear mixed effects model using the lme4 library
in R and the formula a~ c +(1|w) + (1|q), where a is the
accuracy, c is the condition, w is the worker id and q is the
question id. We run pairwise comparisons of these effects using
Holm-Bonferroni to correct for multiple hypothesis testing. For
both the spoken and visual modalities, all conditions lead to
significantly higher accuracies than base (p < 0.01).

Model confidence improved accuracy of error detectability.
In Figure 8.3, conf achieves higher accuracy than base– 68.1%
vs. 57.2%. This difference was statistically significant (p < 0.01),
thus validating H1. While previous guidelines recommend dis-
playing confidence to users (Amershi et al., 2019b) and show its
benefit for sentiment classification and LSAT (Bansal et al., 2020),
our observations provide the first empirical evidence that con-
fidence serves as a simple yet stronger baseline against which
explanations for ODQA should be compared.

Explaining via an evidence sentence further improved per-
formance. The more interesting comparisons are between ex-
planation types and conf. In both modalities, ext-sent per-
formed better than conf. For example, in the spoken modality,
ext-sent improved accuracy over conf from 68.1% to 75.6%
(p < 0.01); thus validating H2. Contrary to recent prior works
that observed no benefit from explaining predictions, this result
provides and confirms a concrete application of explanations
where they help users in an end-to-end task .

While longer explanations improved performance over more
concise explanations in the visual modality, they worsened
performance in the spoken modality. Figure 8.3 shows that,
for the visual modality ext-long outperforms ext-sent ex-
planations in the visual modality – 77.6% vs. 74.7% (p < 0.4).
Conversely, for spoken, ext-sent is better than ext-long– 75.6%
vs. 70.4% (p < 0.01); thus validating H3. In fact, the decrease
was severe enough that we no longer observed a statistically
significant difference between long explanations and simply
communicating confidence (p = 0.9).

Although communicating the same content, visual ext-long

led to significantly better accuracy than their spoken version—
77.6% vs. 70.4% (p < 0.01); thus validating H5. These results
indicate large differences, across modalities, in user ability to
process and utilize explanations, and how these differences need
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Figure 8.4: (Left) Explanations significantly increased participant abil-
ity to detect correct answers compared to simply displaying
confidence. (Right) However, only ext-sent in the spo-
ken modality and both explanations in the visual modality
decreased the rate at which users are misled.

to be accounted for while evaluating and developing explana-
tions.

Despite improving conciseness, abstractive explanations did
not help improve performance in the spoken modality. Fig-
ure 8.3 shows that abs performs significantly worse than ext-
sent in the spoken modality– 71.3% vs. 75.6% (p < 0.01) and
thus we could not validate H4. This result indicates that the
length of the explanation (e. g., number of tokens) is not the
only factor that affects user performance, instead, the density
of information also increases cognitive load on users. This find-
ing is in line with the Time Based Resource Sharing (TBRS)
model (Barrouillet et al., 2007), a theory of working memory
establishing that time as well as the complexity of what is being
communicated, both play a role in cognitive demand. We also
observe a similar effect in users’ subjective rating of length of
explanation (Section 8.6.2).

All explanations significantly increased participants’ abil-
ity to detect correct answers, but only some explanations im-
proved their ability to detect incorrect answers. Instead of ag-
gregate accuracy, Figure 8.4 splits and visualizes how often
users accept correct and incorrect answers. For accepting correct
model predictions, all visual and spoken explanation conditions
signficantly helped compared to conf (at least p < 0.05).

In terms of accepting incorrect predictions, in the spoken modal-
ity, only ext-sent is significantly better (i.e.„ lower) than conf—
34% vs. 40% (p < 0.05). Whereas in the visual modality, both
ext-long and ext-sent lead to improvements over conf— 30%
(p < 0.01) and 32% (p < 0.05), respectively. This shows that al-
though explanations decrease the chance of being misled by the
system, the least misleading explanations change with modality.
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8.6.2 Qualitative results

We analyzed user responses to the post-task survey to under-
stand their experience, what helped them and how the system
could serve them better.

voice clarity To verify that the quality of the text-to-speech
tool that we employed did not negatively affect our experiments,
we asked users to rate the clarity of the assistant’s voice as very
poor, poor, fair, good, or excellent. More than 90% of participants
felt that the voice was good or excellent. These results can be
observed in Figure 8.5

Figure 8.5: Voice clarity: Most participants found the voice of the
assistant to be good or excellent.

length preference We asked participants to rate the length
of the explanation as too short, short, right, long, or too-long. Figure
8.6 shows the results. For ext-long, over 85% of the workers
perceived that in the visual modality, responses were the right
length. On the other hand, in the spoken modality, only 30% of
participants agreed the length was right. Thus, user’s subjec-
tive ratings for the same explanation type were dramatically
different across modalities. Indicating, in addition to affecting
error detectability, the modality also changes users’ subjective
preferences.

Additionally, even though Abs and ext-sent were the same
duration, in the post experimental survey, users indicated more
often that they found Abs to be long, as opposed to ext-sent.
As previously mentioned, this relates to the TBRS model of
working memory (Barrouillet et al., 2007). We hypothesize that
our Abs explanations, which integrate more information than
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Figure 8.6: Top: Users perceive the same explanation to be longer in
the spoken modality. Bottom: While ext-sent and Abs

were the same length, participants rate the latter as longer
more often perhaps because of they contain more content.

ext-sent in the same amount of time, might be more taxing in
the working memory, making them less effective and in turn
making users perceive them as being longer. These results are
shown in Figure 8.6.

perceived helpfulness Participants were asked whether
the responses helped them in their decision making. Their re-
sponses showed that conf and all explanation conditions were
perceived as helpful by at least 80% of participants, with no
real differences among them except for ext-long in the visual
modality (which is perceived helpful by close to 90% of users).
Interestingly, 50% of participants indicated base to be helpful.
In contrast, our results in Figure 8.3 show that different explana-
tions actually differ in their eventual helpfulness. These results
suggest that subjective measures can sometimes correlate with
actual performance when the differences are large, but for the
most-part and smaller differences, the result from subjective
rating can be unreliable. These findings align with prior obser-
vations made (Buçinca et al., 2020) that showed that evaluating
explanations on proxy metrics can lead to incorrect conclusions.
These findings are shown in Figure A.4 in Appendix A.4.5.

user feedback In order to get more specific details about
how to improve the presentation of information, we asked par-
ticipants at the end of the survey: Do you have any additional
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feedback on what the system can improve? Two annotators read
through about 400 responses across all conditions, and created
codes to capture possible areas of improvement. The annotators
then used these codes to classify responses. Many users gave
feedback that was not insightful (e. g."can’t think of anything
to improve"). After removing such responses, 175 responses re-
mained for the final analysis. We computed the inter-annotator
agreement using Cohen’s k (k=0.74). Here we briefly describe
the most interesting findings, with more details about the codes
we used and additional results in Appendix A.4.5.

In base, where the answer was provided with no additional
information, about 50% of participants mentioned that they
would have liked it if the voice changed with system certainty.
In conf, around 30% of participants give this feedback as well.
Interestingly, for explanation conditions, this feedback is not
seen as often.

For ext-sent in both modalities, ext-long in the visual
modality and Abs, 10-35 % of participants would like the level
of detail to adapt to the model certainty . More specifically,
users would like to have more details or additional answers only
when the model is not confident in the prediction. This strategy
seems similar to adaptive explanations proposed by (Bansal et al.,
2020).

For the ext-long condition in the spoken modality the feedback
was mostly about the length of the responses. 78% of participants
mentioned that responses should be shorter, which aligns with
the higher perceived length of the explanations in Figure 8.6. For
the visual modality, 40 % of participants mention that highlighting
some key items would have made it even easier and faster. In
fact, introducing highlights would improve the visual interface
and would likely increase the differences in modalities that we
already observe.

Finally, for all explanation conditions, 20-45 % of participants
would like to see more than one source containing an answer.
This means that the system would need to find multiple sources
that converge to the provided answer. To provide users with this
additional information without overloading cognitive capacity,
an interactive strategy can be adopted. For example, evidence
and additional sources can be presented through an explanatory
dialogue (Miller, 2019), where users are initially provided with
limited information, and more can be provided upon request.

8.6.3 What misleads users?

To better understand how explanations mislead users and how
they can be further improved, we analyzed cases leading to user
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error. We compiled a set of unique questions alongside their
frequency of errors across users in all explanation conditions.

A single annotator followed a similar coding procedure as
previously described, where questions were analyzed in order to
detect emergent error categories. Following this initial analysis,
questions were categorized into error types. We found that users
tend to be misled on the same questions, with most of the errors
happening on around 50 questions per condition, and about 40

of these questions overlapping across conditions.
Below we describe the three main cases:

plausible explanations . A concept is plausible if it is
conceptually consistent to what is expected or appropriate in
some context (Connell and Keane, 2006). Work has consistently
identified that people often fail to evaluate the accuracy of
information (Fan et al., 2020; Fazio and Marsh, 2008; Marsh and
Umanath, 2013), particularly when no prior knowledge exists
and information seems plausible (Hinze et al., 2014). We find
many cases where a model response and explanation do not
answer the question, yet the plausibility misleads users into
accepting incorrect responses. For example:

Question: Who is the patron saint of adoptive parents?

Response: I am 37 percent confident that the answer is, Saint
Anthony of Padua. I found the following evidence in a wikipedia
passage titled, Anthony of Padua: Saint Anthony of Padua, born
Fernando Martins de Bulhoes, also known as Anthony of Lisbon,
was a portuguese Catholic priest and friar of the Franciscan order.

In the example above, the model is incorrect (true answer is
Saint William of Perth), but users were often misled to accept
this answer because the evidence makes the prediction sound
plausible. Such errors make up 60 to 65% of the errors for all
explanation conditions.

lexical overlap. In our error analysis, the second most
common mistake (from 30 to 35% of errors) that both the model
and the users make is related to the lexical overlap(McCoy,
Pavlick, and Linzen, 2019) between the question and the ev-
idence. For example:

Question: How many teams are in the MLB national League?

Response: I am 60 percent confident that the answer is, 30. I
found the following evidence in a wikipedia passage titled, Major
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League Baseball: A total of 30 teams play in the National League( NL)
and American League (AL) , with 15 teams in each league .

The evidence contains the correct answer (15 teams) but many
users are misled by the phrase “A total of 30 teams play in the
National League”.

belief bias . Humans tend to rely on prior belief when per-
forming reasoning tasks (Klauer, Musch, and Naumer, 2000). In
model evaluation, this has consequences affecting validity. For
example, if instructions are not specific, participants are left to
use their beliefs to infer what is required of them, leading to
varied interpretations. People often rely more heavily on belief
bias when processing information under pressure (Evans and
Curtis-Holmes, 2005), therefore in time limited evaluations this
phenomenon might be more prominent. We reduced these con-
founds by carefully designing instructions, a straightforward
interface, allowing workers plenty of time and removing am-
biguous questions. However, some interesting cases of belief
bias do occur — take, for instance, the example below:

Question: Where is the longest bone in the body found?

Response: I am 17 percent confident that the answer is, femur. I
found the following evidence in a wikipedia passage titled, Femur:
The Femur or thigh bone, is the proximal bone of the hindlimb in
tetrapod vertebrates .

Such errors in our evaluation make about 3-5% of total errors
in each explanation condition.

8.7 discussion

8.7.1 Why Explanations Worked for ODQA?

Unlike previous studies (Bansal et al., 2020; Chu, Roy, and An-
dreas, 2020; Hase and Bansal, 2020), we observed significant
improvements from explanations over only communicating con-
fidence. One reason for our positive results could be owing to
the nature of ODQA i.e. unlike tasks such as sentiment classi-
fication, where humans may be able to solve the task without
relying on explanations, ODQA requires satisfying a user’s in-
formation need, which may take considerably longer without
explanations; users require additional help to navigate through
vast amounts of information.

Another potential reason is, in ODQA, presenting a single good
explanation can allow users to verify whether the prediction
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is correct. In contrast, in sentiment analysis, even if the expla-
nation points to evidence for a positive sentiment (“the smell
was delicious”), there is always a chance that another phrase
(“but the taste made me puke”) renders the net correct label as
negative. It is worth noting that like previous works, not all of
our explanation methods provide significant value (Figure 8.3);
thus the success from showing explanations still cannot be taken
for granted but should instead be measured using well-designed
user studies.

8.7.2 Implications and Recommendations

Another interesting question is how can our findings inform
future research in explainable NLP.

develop modality-specific explanations Our results
showed that the best explanation varied across modalities, indi-
cating that evaluating explanations on one modality (e. g., visual
UI) and deploying them on another (e. g., voice assistant) can
lead to sub-optimal deployment decisions. As a result, expla-
nations should be optimized for and evaluated in the task and
settings in which they will be deployed in-the-wild.

further study abstractive explanations Longer ex-
planations helped in the visual case, showing that communicat-
ing more evidence has potential to help users. However, they
hurt in the spoken case, perhaps because longer explanations in-
crease the cognitive load on users. This may indicate a trade-off
between information content of explanation and its cognitive load
for ODQA. We had hoped abstractive explanations would achieve
a more optimal balance between fidelity and comprehensibility
for spoken. However, Figure 8.3 shows that they did not improve
the end performance. One reason is that even though abstractive
explanations were concise, they had high information density
and thus did not sufficiently decrease cognitive load.

That said, while abstractive explanations did not significantly
improve accuracy compared to longer explanations, they did
improve user speed at the task by 2.2 sec (Table A.8) and were
satisfactory rated in terms of their perceived length compared
to longer explanations (Figure 8.6). The utility of such generated
explanations, over longer explanations, may further increase
when explaining multiple sources (e. g., in Hotpot QA (Yang et
al., 2018)) or candidate answers, where communicating multiple
entire passages seems infeasible.



132 an evaluation of spoken vs . visual explanations

enable interactive explanations All explanation con-
ditions we tested were static– they assumed a single trade-off
between detail and conciseness. For example, ext-sent always
conveyed a single sentence to the user as an explanation, which
was concise but may not always convey all the context required
to validate answers. A different strategy may be to use inter-
active explanations, in which the system first gives a concise
explanation and then lets users request additional information.
Such explanations may be especially used to accommodate user
suggestions such as, including and explaining multiple can-
didate answers or multiple answer sources. Another possible
strategy is to use adaptive explanations, where the model switches
explanation strategies based on its confidence (Bansal et al.,
2020).

limitations While our user study addresses issues of many
similar previous evaluations of explanations, it still has limita-
tions. First, although the interaction of users with the QA system
was kept as realistic as possible, in reality users may have the
option to double-check the model’s answer using external tools,
such as Web search. Accommodating that case would require
encoding the additional cost of the reject action (e. g., due to
time spent and effort) into the payoff. In addition, unlike an
interaction in-the-wild questions were not posed by participants
themselves, which may lead to different kinds of biases in the
interpretation of the questions, as discussed before. Second, we
conducted studies with MTurk workers who may not have the
same motivation for performing the task as real users. To ad-
dress this, we incentivized them by rewarding high-performance
through bonuses and penalties specified by a payoff matrix. In
practice, the values of the payoff matrix can vary depending on
the stake of the domain and may vary with users. Finally, we
only registered hypotheses that compared the performance on
one metric– accuracy of error detectability. However, there may
be other metrics that may be of interest e. g., improvements in
speed and user satisfaction.

8.8 conclusion

Contrary to recent user-studies for other tasks (such as classi-
fication), ours suggest that for ODQA, explanations of model’s
predictions significantly help end-users decide when to trust
the model’s answers over strong baselines such as displaying
calibrated confidence. We observed this for two scenarios where
users interact with ODQA model using spoken or visual modali-
ties. However, the best explanation may change with the modal-
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ity, e. g., due to differences in users’ cognitive abilities across
modalities. For example, for the spoken modality, concise ex-
planations that highlight the sentence containing the answer
worked well. In contrast, for the visual modality, performance
improved upon showing longer explanations. Thus, developers
and researchers of explainable ODQA systems should evaluate
explanations on the task and modalities where these models
will be eventually deployed, and tune these explanations while
accounting for user needs and limitations.

Despite the success of explanations on our domain, explana-
tions sometimes still mislead users into trusting an incorrect
prediction, and sometimes as often as displaying the baseline.
These results indicate the need to develop better explanations
or other mechanisms to improve appropriate user reliance on
ODQA agents, e. g., by enabling abstractive explanations that
balance conciseness and detail while taking into account the
user’s cognitive limitations, interactive explanations that can
explain multiple answer sources and candidates and adaptive
explanations where the model strategy changes based on its
confidence.
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D I S C U S S I O N O F T H E C O N T R I B U T I O N S

The preceding chapters have introduced work that falls within
the framework of human-centered NLP, a general perspective to
building language technology which must consider humans,
society and the impact that it has on both. My research has grad-
ually acknowledged that within a human-centered framework,
a more interdisciplinary understanding of humans, their needs,
and society, is required.

The work during my studies has specifically been concerned
with improving human-AI interaction by (1) improving the
predictive performance of dialogue systems utilizing user in-
teractions and feedback signals, and (2) introducing methods
for gender bias detection in NLP models and better evaluations
of model transparency. This section revisits the main research
questions along these dimensions, which were introduced in
chapter 1, and reviews how the chapters in this thesis contribute
to answering those questions.

The first two studies presented in this dissertation are con-
cerned with improving Human-AI interaction via goal-oriented
dialogue systems. Systems which can learn from users in an
appropriate and safe manner will not only increase user trust
on the system but will likely improve the quality of human-AI
interaction over time (Amershi et al., 2019b). The studies in chap-
ter 3 and 4 answer the following questions along this dimension:

How can systems leverage previous user interactions to improve rele-
vancy and fluency of answers?

Traditionally, goal-oriented dialogue systems have relied on
templated NLG modules due to the difficulty of obtaining the
large amounts of data needed for sequence-to-sequence models.
In addition, as opposed to chit-chat models, the responses from
goal-oriented dialogue systems must be focused and relevant.
Chapter 3 is one of the early works showing that it is possible
to use more flexible sequence-to-sequence neural models to gen-
erate responses which are deemed more relevant and fluent by
humans in multi-domain goal-oriented dialogue systems. This
was done by incorporating similar previous user interactions
as a simple-yet-powerful prior for the NLG module. With the
advancement of pretrained models in the last couple of years,
and models specifically pretrained for dialogue, the starting
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performance for systems is much higher. However, this simple
technique may still prove to help systems remain on topic in
domain-restriced scenarios.

How can dialogue-level user feedback help dialogue systems further
improve and adapt to new domains?

Chapter 4 investigated how to integrate a user feedback sig-
nal which is more natural to obtain during a human-machine
interaction. Throughout the PhD, the disconnect between the
systems being developed and the humans who interact with
them has become more clear; often the systems do not match the
usability expectations of the user. One of the early realizations
was that RL methods for dialogue rely on reward signals which
deviate strongly from real world use. As mentioned in chap-
ter 1, work in HCI has pointed out the importance of feedback
strategies matching the human expectations (Cakmak, Chao,
and Thomaz, 2010). They find that asking for too much feedback
in the course of a dialogue is perceived by users as imbalanced
and annoying, hurting the effectiveness of systems. Chapter 4

employed a feedback signal which is collected at the end of
the dialogue which is more in line with real-world interactions.
The results showed that it is possible to leverage signals which
match user expectations to be able to better generalize to new
domains and further improve performance in-domain.

As was mentioned in part i, the second part of the thesis focused
on investigating topics such as fairness and transparency, as
these are crucial to ensuring ethical and responsible deploy-
ment of technologies. This part of the dissertation introduced
more interdisciplinary approaches and knowledge from cogni-
tive science, linguistics, psychology, and HCI to investigate how
humans and NLP systems interact. The contributions in this later
work are mostly in terms of evaluation of NLP models. The next
four questions are answered throughout chapters 5–8.

How can we diagnose negative social biases in multilingual systems,
which currently make the adoption of systems by end-users difficult?

Systems which are built within the human-centered framework
must be created with awareness of the impact on society and
humans. This means that NLP systems must not only display
the predictive power that comes from AI methods, but should
also be responsibly deployed and match socially-safe behaviors,
should not exacerbate existing inequities, and should promote
inclusivity. Chapter 5 is the first study to introduce a diagnostic
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testbed for gender bias in languages other than English, exploit-
ing a linguistic phenomenon which exists in some (non-English)
languages. Furthermore, while previous works have focused
on coreference resolution, the study presented in this thesis
introduced three different NLP tasks in addition to coreference
resolution including Language Modeling (LM), Machine Trans-
lation (MT), and Natural Language Inference (NLI). We showed
that popular and frequently deployed models do exhibit behav-
iors which align with gender stereotypes that must be mitigated.
We also demonstrated the importance of looking beyond En-
glish for linguistic clues on how to best diagnose negative social
biases in multilingual NLP systems.

To what extent do human cognitive biases and previous world knowl-
edge affect the explainability of NLP systems, and does this change the
conclusions we make about the best performing methods?

Model transparency and explainability in ML models is typi-
cally evaluated using automatic metrics which may not reflect
how methods are used in the wild or how they interact with
humans in the real world. To inform ourselves on those di-
mensions, human evaluations are vital. However, as mentioned
throughout chapters 6 and 7, previous evaluations do not prop-
erly account for the cognitive biases playing a large role in the
decision making process of users. In chapter 6, we presented
a small pilot experiment showing that for classification tasks,
several cognitive biases can interact with evaluation of explain-
ability. When such cognitive biases are reduced, the positive
effect of a popular explainability method becomes much smaller
for the task of predicting model decisions. This work was ex-
tended in 7; here, we are the first to bring the discussion of
belief bias from the field of psychology to NLP. We observed how
such bias plays a role in human evaluation of explainability
for two previously used evaluation protocols. We found that
compared to standard setups from previous works, introducing
conditions which account for humans’ belief biases altered the
main conclusions about which models work best. This is an es-
sential finding, as not accounting for such biases can potentially
mislead the community to develop more methods which may
not be optimal or robust during real interactions with humans.
We presented several recommendations and insights to help
NLP practitioners develop better evaluation paradigms which
take more knowledge from psychology and properly account
for humans’ cognitive biases.

Which natural language explanations help users in a real world down-
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stream decision making task such as deciding when to trust a model
prediction and does the effectiveness of explanations change with pre-
sentation modality (eg. voice vs. visual)?

In chapter 8, we further investigated explainability and pre-
sented a human evaluation where we assessed the effectiveness
of natural language explanations in helping users decide when
to trust (reject or accept) model decisions for the task of ODQA.
We were interested in simulating a real life scenario, therefore
we were the first to evaluate the effectiveness of explanations
across two presentation modalities; in the wild users will in-
teract with systems via a voice assistant or a visual display.
Unlike previous studies evaluating tasks like sentiment anal-
ysis, our findings showed that some explanation strategies are
more effective than showing model confidence, but similarly
to prior work, the majority still significantly mislead humans
into trusting wrong model predictions. This result showed that
there is vast room for improvement and that NLP researchers
should not take the effectiveness of explanations for granted. In
addition, the effectiveness of explanation strategies varied with
presentation modality due to the differing cognitive limitations
imposed on users in visual versus spoken interfaces. This find-
ing points out that it may be important to build NLP systems
or explanation strategies which take presentation modality into
account; this requires more interdisciplinary collaboration be-
tween NLP researchers and researchers in other fields such as
HCI and cognitive science.

What explanation strategies would users prefer to be presented with?

In chapter 8, we also collected extensive qualitative data to
accompany our quantitative studies, to obtain a better under-
standing of what users would prefer and to drive our future
work. This also allowed us to better understand their experience
with our interface and make better conclusions. Overall, we
found that users tend to prefer adaptive explanation scenarios
where the model changes its strategy based on model confidence.
In addition, users mentioned that they would like the model
to be more interactive and change their explanation strategy
based on whether the user asked for more information or not.
These findings are extremely valuable to both NLP and HCI: they
indicate that there are various directions for explainability work
which are founded on real user feedback and experience.
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F U T U R E D I R E C T I O N S

The work presented throughout this dissertation has gradually
and increasingly emphasized a need to consider the impact that
technology has on users and society. While the earlier studies
emphasized the development of new models which aimed to be
more user-centric, the later work focused on model evaluation
and incorporates knowledge about humans and society which
spans various fields. In this closing chapter, I elaborate on some
reflections and conclusions based on my work throughout the
PhD. More specifically, (1) I briefly revisit dialogue systems
and discuss some opportunities for new work, extending even
further within the human-centered framework, and (2) conclude
with a short discussion of how the insights from my studies will
inspire my future research.

revisiting dialogue systems Despite my earlier research
showing that predictive performance can be improved by in-
corporating human signals, work in dialogue systems can be ex-
tended in a more human-centered direction. For example, recent
work suggests that in order to create AI systems which collabo-
rate with humans, the systems must be trained to optimize for
human-machine team performance (Bansal et al., 2019b, 2020).
Dialogue systems may be useful for improving human-machine
teamwork, therefore, devising dialogue systems which optimize
using team-based metrics might be an interesting avenue for
future work.

Within explainable AI, Miller (2019) mentions that explanatory
dialogues might be better suited for humans’ needs for expla-
nations, arguing that explanations will often be needed in col-
laborative environments. This suggestion is supported by the
findings in this thesis, which show that humans prefer explana-
tion strategies which are collaborative, adaptive, and interactive.
This is another interesting direction for future work.

future research Chapter 5 showed that looking into lin-
guistic phenomena which do not occur in English, and looking
at occupational statistics from different countries, could inform
us of how multilingual systems encode gender stereotypes. This
study left plenty of room for further work which incorporates
knowledge from linguistics, psychology and social sciences to
devise new ways of detection of social biases across many dif-
ferent languages.
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In terms of explainability, user studies across different do-
mains may inform us of what type of explanations are needed
by humans in more specific use cases. In chapter 8, we showed
that, unlike previous works, some explanations actually helped
users detect model errors better against simply showing model
confidence. One interesting area of work is to uncover in which
domains explanations are actually useful. This requires more
controlled user studies which simulate real decision-making
scenarios. This is not only an HCI concern, I argue this is vital
for the field of NLP; the development of explainability methods
should prioritize the domains which are more critical and which
require explanation the most.
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a.1 chapter 5

a.1.1 Example Data

We present example data for each task.

nli For each occupation, template and language in our NLI
benchmark, we have three premise-hypothesis pairs. The hy-
potheses are identical. For the premises, we have three versions,
one for each pronoun (the non-gendered reflexive possessive
pronoun and and the two gendered, anti-reflexive possessive
pronouns). Examples with reflexives are labeled entailment;
examples with anti-reflexives are labeled neutral. An example
datapoint for this task, with the label entailment, is shown in
Table A.1.

Natural language inference

a) Premise and b) Hypothesis

da a) Ingeniøren tager sine briller fra skrivebordet
b) Ingeniørens briller tages fra skrivebordet

sv
a) Ingenjören tar sina glasögon från skrivbordet
b) Ingenjörens glasögon tas bort från skrivbordet.

ru
a) Inzhener snimayet svoi ochki so stola.
b) Ochki inzhener snyaty so stola.

zh
a) Gōngchéngshı̄ cóng zhuōzi shàng zhāi xià zìjı̌ de yǎnjìng
b) Gōngchéngshı̄ de yǎnjìng yı̌ bèi cóng zhuōzi shàng yí kāi.

English translation

en
a) The engineer takes his/her glasses from the desk
b) The engineer’s glasses are taken from the desk

Table A.1: Example data for NLI. For NLI, we only generate entail-
ments and neutral statements. The English translation is
shown for reference only.

machine translation For machine translation, we have
4560 pairs of source sentences with masculine (his) and femi-
nine possessive pronouns (her), respectively. We translate these
into the target languages using off-the-shelf models and assess
the tendency of these models to predict reflexive possessive
pronouns in the target languages, instead of anti-reflexive pos-
sessive pronouns. An example of the data can be found in Table
A.2.
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Machine translation

Source sentence

en
The engineer takes his/her glasses from the desk

Translations

da
Ingeniøren tager sine briller fra skrivebordet

sv
Ingenjören tar sina glasögon från skrivbordet

ru
Inzhener snimayet svoi ochki so stola.

zh
Gōngchéngshı̄ cóng zhuōzi shàng zhāi xià zìjı̌ de yǎnjìng

Table A.2: Example data for machine translation.

coreference resolution For coreference resolution, we
are interested in whether the model is more likely to cluster a
masculine possessive pronoun with the subject of the sentence
than a feminine pronoun, even when this reading violates gram-
matical constraints. In Table A.3, we list examples of how the
task data would look. In brackets, we have mentions of an entity
that can be clustered together by the system as belonging to the
same coreference chain.

Coreference resolution

da
[Ingeniøren] tager [sine/hans/hendes] briller fra skrivebor-
det

sv
[Ingenjören] tar [sina/hans/hennes] glasögon från skrivbor-
det

ru
[Inzhener] snimayet [svoi/yego/yeye] ochki so stola.

zh
[Gōngchéngshı̄] cóng zhuōzi shàng zhāi xià [zìjı̌/tā/tā] de
yǎnjìng

English translation

en
[The engineer] takes [his/her] glasses from the desk

Table A.3: Example data for coreference resolution. In brackets, we
have the mentions that the system could cluster as corefer-
ent. We include an English translation only for reference.

language modeling For language modeling, we take a
sentence containing a reflexive pronoun and swap the reflexive
for the possessive masculine and feminine anti-reflexives; we
then compute the perplexities of the original and perturbed
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sentences. Example of how this is framed can be found in Table
A.4.

Language modeling

da
Truth: Ingeniøren tager sine briller fra skrivebordet
Prediction(Fem): Ingeniøren tager hendes briller fra
skrivebordet
Prediction(Masc): Ingeniøren tager hans briller fra skrive-
bordet

sv
Truth: ingenjören tar sina glasögon från skrivbordet
Prediction(Fem): ingenjören tar hennes glasögon från
skrivbordet
Prediction(Masc): Ingenjören tar hans glasögon från
skrivbordet

ru
Truth: Inzhener snimayet svoi ochki so stola.
Prediction(Fem): Inzhener snimayet yeye ochki so stola.
Prediction(Masc): Inzhener snimayet yego ochki so stola.

zh
Truth: Gōngchéngshı̄ cóng zhuōzi shàng zhāi xià zìjı̌ de
yǎnjìng
Prediction(Fem): Gōngchéngshı̄ cóng zhuōzi shàng zhāi
xià tā de yǎnjìng
Prediction(Masc): Gōngchéngshı̄ cóng zhuōzi shàng zhāi
xià tā de yǎnjìng

Table A.4: Example data for the language modeling task

a.1.2 Coreference Dataset Statistics

In table A.5 we show the number of documents used to train
each system. For Chinese, the data is available with predefined
train, development and test sets. For Russian, however, this is
not specified, therefore we split the data 80-20-20.

Lang Training Dev Test

zh 1810 252 218

ru 144 18 18

Table A.5: Statistics for the coreference data used for training.

a.2 chapter 6

presentation of stimuli We created a web application
using Flask1 in order to collect participant data. Participants
would randomly get assigned a known or unknown task and
LIME explanations or no explanations. For all tasks we provide
the same general instructions. In addition, we had task specific
instructions. For known tasks we provided short descriptions of
the task, while emphasizing the fact that subjects should imitate

1 https://flask.palletsprojects.com/en/1.1.x/

https://flask.palletsprojects.com/en/1.1.x/
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the model rather than follow their own opinions about the true
labels.

The training and evaluation sessions were almost the same,
with the only difference being that during training, subjects
could check the model’s answer after making an initial guess.
See Figure A.1 for an example of what the items looked like.
The example here is for the task of sentence length prediction
using LIME explanations.

(a) (b)

Figure A.1: (a) Example of item in the training session for sentence
length prediction. Note that the participants are able to
check the model answer (b) Example of item in the eval-
uation session for sentence length prediction. Here the
participants are no longer able to check the model answer

a.3 chapter 7

a.3.1 Experiment 1: Human Forward Prediction

Below we show the instructions provided to the participants, as
well as an example of the saliency maps presented to partici-
pants for adversarial examples.

instructions . Question-answering systems are a particular
form of artificial intelligence. The task here is for you to learn
to predict how the system answers questions. In other words,
when in a bit, you are presented with questions, the task is not
to provide the right answer, but to guess the answer the system
provided. For each question, you will also see a context para-
graph. The answer is a span of text in this paragraph. Instead of
writing out the answer, you can simply mark the relevant span.
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If you want to select a new answer, please click reset answer, if
you are ready to see the model answer, please click show answer.
Note that your answer will lock at that time.

raw results . In our evaluation, we use the first 15 points as
training, therefore, we discard them from the main evaluation
but show them in this section. Overall, we see that training, for
the most part has a positive effect, or not so much of an effect.
These scores can be seen in Table A.6.

Model Human

Baseline

Low-orig 0.17 0.14 0.52 52.27

Low-Adv 0.15 0.10 0.36 54.36

High-orig 0.79 0.53 0.58 37.12

High-Adv 0.66 0.35 0.48 47.64

Integrated (IG)

Low-orig
∗
0.34 0.35 41.68

Low-Adv
∗
0.36 0.28 44.38

High-orig
∗
0.71 0.76 46.87

High-Adv 0.46 0.47 42.99

Gradients

Low-orig
∗0.64 ∗

0.09
∗
32.16

Low-Adv
∗0.63 0.23

∗
30.05

High-orig
∗0.82 ∗

0.84 44.65

High-Adv
∗0.57 ∗

0.62
∗
52.30

Table A.6: Raw scores, before removing data points on training session

a.3.2 Experiment 2: Best Model Selection

Below we show the instructions given to the participants, and
more details about the qualitative analysis of the feedback we
obtained.

instructions . Question-answering (QA) systems are a par-
ticular form of artificial intelligence. We have trained two QA
systems and have extracted the most important words the model
uses to make its final decision. Based on these highlighted words,
your task is to select the model that you think is more likely to
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Qualitative

Codes

examples

Irrelevant (q) 1. Model A only extracted some important words but also some punc-
tuations in the question which is insufficient to derive to a good answer.
Model B extracted a number of key important words that would lead
to the correct answer.
2. Option b chose quantitative statements, while option A seems con-
fused about what it’s looking for since it highlights all sorts of things
in the question.

main entity (q)
1. The words "year" and "norman" in the question were not extracted
by Model A. The Model will not be able get the correct answer without
knowing what to look for.
2. The question was asking about the year lavoisier’s work was pub-
lished but neither of the key words in this question were highlighted.
Model A had no idea where to locate the answer without considering
those key words.

main entity (a) 1. The answer requires a year; it hasn’t highlighted any years as part of
the answer.
2. Answer needed to be a name and option A chose nothing that could
be a name.

Irrelevant (a)
1. Model B has highlighted many extra words in the answer
2. Both models selected the correct terms, but model A selected more
irrelevant terms in the answer too, so it’s less likely to choose the correct
one from those numerous options.
3. B highlighted the answer but also too much unneeded info.

Generic 1. Model A does not highlight the right answer
2. Model B is wrong and model A is correct

Table A.7: Examples of some of the feedback categorized into these
classes

perform best. Additionally, please write how the low-performing
model fails and/or how it could be better (try to be detailed)

qualitative analysis of feedback . In Table A.7, we
include a few examples of the sentence that were categorized
using the qualitative codes. Unsurprisingly, once participants
found a strategy for giving feedback , they mostly stuck to it.

After categorizing all the feedback into each category, we
visualize the distribution per condition. This can be found in
Figure 7.4. We find that for the High vs Low conditions, the
distribution is very similar between gradients and integrated
gradients. Many participants gave very generic feedback , for
example by simply saying that "model A is better because it
is correct, and model B is wrong". This was not surprising, as
here the differences were supposed to be clear and it is likely
most participants did not have to think too hard before making
a decision. However, the distribution is very different for the
High vs Medium conditions. Here, for standard gradients, the
feedback followed a similar pattern as in the previous condition,
but about 30% less examples received generic feedback than be-
fore. For integrated gradients, most examples received feedback
regarding the irrelevant terms being highlighted, showing that
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even when the difference in performance between models is
large (20 F1 points), this method makes the distinction difficult
for the best model selection task.

a.4 chapter 8

a.4.1 Temperature Scaling

Temperature scaling (Guo et al., 2017), a multiclass extension
of Platt Scaling (Platt et al., 1999), is a post-processing method
applied on the logits of a neural network, before the softmax
layer. It consists of learning a scalar parameter t, which decreases
or increases confidence. t is used to rescale the logit vector z,
which is input to softmax σ, so that the predicted probabilities
are obtained by σ(z/t), instead of σ(z).

In our experiments, the model is set to pick from the top 100

solutions, however, in many cases the correct answer occurs
within the top 10 items. For our purposes we calibrate the
confidence scores of the top 10 outputs. We use the publicly
available scripts provided by Guo et al. (2017).2

The model confidence before and after calibration can be seen
in Figure A.2.

Figure A.2: Confidence before and after calibration.

2 https://github.com/gpleiss/temperature_scaling

https://github.com/gpleiss/temperature_scaling
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a.4.2 Additional Preprocessing

Additional preprocessing to ascertain the quality of stimuli
in each modality was required; more details can be found in
Appendix . Before sampling questions for the task, to ensure a
high-quality and non-ambiguous experience for MTurk workers,
we manually filter out several “problematic” questions:

• Ambiguity in the question: For various questions in NQ,
multiple answers can exist. For example, the question:
when was King Kong released?, does not specify which of
the many King Kong movies or video games it refers to.
These cases have been known to appear often in NQ (Min
et al., 2020). We remove such questions from our subset.

• The gold answer was incorrect: Many examples in NQ are
incorrectly annotated. As it is too expensive to re annotate
these cases, we remove them.

• Answer marked incorrect is actually correct : We present
both correct and incorrect questions to users. There are
cases where the predicted answer is marked incorrect
(not exact match) but is actually correct (a paraphrase).
We manually verify that correct answers are paired with
contexts which support the answer.

• Correct answer but incorrect evidence: The model some-
times, though not as often, chooses the correct answer but
in the incorrect context. We discarded examples where the
explanation was irrelevant to the question e.g. who plays
Oscar in the office? Oscar Nuñez, is a Cuban-American actor
and comedian.. In order to be able to make more general
conclusions about whether explanations help in , we re-
strict our questions to ones containing correct answers in
the correct context.

• Question and prediction do not match type. We removed
cases where the question asked for a certain type e.g. a
date, and the prediction type did not match e.g. a location.

In the visual modality, to ensure readability, we fixed capital-
izations. For the spoken modality, to ensure fluency and clarity,
we manually (1) inserted punctuation to ensure more natural
sounding pauses, and (2) changed abbreviations and symbols
to a written out form e.g. $ 3.5 billion to 3.5 billion dollars.
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a.4.3 Task Setup: Additional details

platform and participant details We conduct our
experiments using Amazon Mechanical Turk3. We recruited 525

participants in total, with approval ratings greater than 95 %
and had a maximum of 8 days for approval of responses in
order to minimize the amount of spamming.

We use a random sample of 120 questions from our dataset
which remains the same across all conditions. In order to keep
each session per participant at a reasonable time and ensure the
quality of the data wouldn’t be affected by workers becoming
exhausted, we opted for three fixed batches of 40 questions, all
split as 50 % correct and 50 % incorrect. Workers could only
participate once (only one batch in one condition). Participants
took around from 35-45 minutes to complete the HITs, but were
given up to 70 minutes to complete.

We monitored if their screen went out of focus, to ensure
that participants did not cheat. We ensured that we had 25 user
annotations per question. When analyzing the data, we remove
the first 4 questions of each batch, as it may take participants
a few tries before getting used to the interface. In the end, we
collect about 21,000 test instances.

task instructions Imagine asking Norby a question and
Norby responds with an answer. Norby’s answer can be correct
or wrong. If you believe Norby’s answer is correct, you can
accept the answer. If you believe it is wrong, you can reject it. If
the answer is actually correct and you accept it, you will earn
a bonus of $0.15. But, if the answer is wrong, and you accept
it, you will lose $0.15 from your bonus. If you reject the answer,
your bonus is not affected. (Don’t worry, the bonus is extra!
Even if it shows negative during the experiment, in the end
the minimum bonus is 0). In total you will see 40 questions in
this HIT (you will only be allowed to participate once) and the
task will take about 40 to 45 minutes. You can be compensated
a maximum of $13.50 for about 40-45 minutes of work. Some
things to note:

1. You must listen to the audio before the options become
available.

2. If you make it to the end there is a submit button there,
however, in case of an emergency you can hit the quit early
button above and you will get rewarded for the answers
you provided.

3 https://www.mturk.com/

https://www.mturk.com/
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3. You can play the audio as many times as you need but as
soon as you click a choice you will be directed to the next
item.

4. IMPORTANT!! Please do not look up questions in any
search engine. We will monitor when the screen goes out
of focus, so please keep the screen on focus or you might
risk being rejected.

5. Finally, please do not discuss answers in forums; that will
invalidate our results.

a.4.4 Post-task survey

1. I found the CLARITY of Norby’s voice to be:

(a) Excellent (b) Good (c) Fair (d) Poor (e) Very Poor

2. I found Norby’s responses to be HELPFUL when deciding
to Accept or Reject:

(a) Strongly Agree (b) Agree (c) Undecided (d) Disagree
(e) Strongly Disagree

Can you give a few more details about your answer?

3. I found the LENGTH of Norby’s responses to be:

(a) Too Long (b) Long (c) Just right (d) Short (e) Too short

4. No AI is perfect and Norby is no exception. We are inter-
ested in helping Norby provide responses that can help
users to determine whether to trust it or not (to accept
or reject, just as you have done in this experiment). From
your interaction with Norby, do you have any additional
feedback on what it can improve?

a.4.5 Results

reward We compute the differences in overall reward for
each condition. We observe the same trends as we discussed for
accuracy. More specifically, all explanation conditions improve
the final user reward, with extractive-sent performing best
in the spoken modality and extractive-long performing best
overall. These differences are shown in Figure A.3.

time differences We measured the time (in seconds) that
it took participants to complete each question. In Table A.8
we present the median times averaged over all workers per
condition. We also include an adjusted time, subtracting the
length of the audio, in order to measure decision time.
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Figure A.3: Reward: The scores presented here are out of $ 2.70. Al-
though all explanations are better than confidence, the
explanations leading to the highest rewards change across
modalities.

condition sec/question adjusted

Spoken Modality

Baseline 10.2 ± 1.6 8.3 ± 1.6

Confidence 9.4 ± 1.5 6.0 ± 1.5

Abstractive 24.4 ± 1.5 7.0 ± 1.4

Extractive-long 44.9 ±1.6 9.2 ± 1.6

Extractive-sent 24.3 ±1.7 7.6 ± 1.7

Visual Modality

Extractive-long 16.1 ± 1.7 -

Extractive-sent 10.4±1.1 -

Table A.8: Time differences across modalities. Time differences in the
right column have been adjusted by removing the duration
of the audio files. We observe that with additional infor-
mation, users can make faster decisions than the baseline

condition.

helpfulness Differences in perceived helpfulness are shown
in Figure A.4.

user feedback Users provided free-form written feedback
on possible ways to improve the system. The prompt they saw
was: do you have any additional feedback on what the system can
improve? After converging on a final set of codes, two annotators
coded up about 400 responses across all conditions. The codes
and their descriptions can be found in Table A.9. The codes are
not mutually exclusive.
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Figure A.4: Helpfulness: Participants indicated how helpful re-
sponses were. These results reflect the large differences we
see in performance ( baseline vs the rest of the settings),
but are not able to capture the more subtle differences
among explanation strategies and confidence.

Code Description Category

len-conciseness users wish explanation was shorter improvement on length
len-expand users wish explanation was shorter

adapt-detail users wish details adapted with
confidence adaptability feature

adapt-voice users wish voice adapted to confi-
dence

pres-change-confidence users wish confidence would be
communicated differently e.g. the
answer is probably....

improve presentation

pres-highlighting users wish important facts would
be highlighted

need-more-sources users wish more source were pro-
vided

need-confidence users wish confidence was pro-
vided

need-source users wished a source was pro-
vided

need additional infoneed-explanation users wish an explanation would be
provided

need-link users wish a link was provided
need-multiple-answers users wish more than 1 answer was

provided

Table A.9: The codes used to uncover areas of improvement from the
post-experimental user feedback.

We found that many users across most conditions, would
like adaptability features added. Additionally, we found that
participants would like to be provided with multiple sources
which converge on the answer. We also observe that for spoken
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condition code % participants

baseline

adapt-voice 50

need-confidence 36

need-explanation 25

need-source 17

confidence

need-explanation 38

adapt-voice 29

pres-change-confidence 14

adapt-detail 10

need-multiple-answers 10

need-link 5

extractive-sent (spoken)

need-more-sources 44

adapt-detail 28

len-conciseness 22

need-multiple-answers 17

need-link 11

len-expand 11

pres-change-confidence 6

extractive-long (spoken)
len-conciseness 78

need-more-sources 15

pres-change-confidence 4

abstractive

len-conciseness 52

need-more-sources 22

adapt-detail 22

pres-change-confidence 13

need-multiple-answers 4

extractive-sent (visual)

need-more-sources 33

adapt-detail 33

len-expand 27

need-multiple-answers 7

extractive-long (visual) pres-highlighting 40

need-more-sources 33

adapt-detail 10

need-link 10

pres-change-confidence 7

Table A.10: Distribution of codes across all conditions. Codes are not
mutually exclusive.

conditions, improvements on length are mentioned more often.
The full distribution of codes across conditions is shown in Table
A.10.
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Explanation Type Response+Explanation Modality

Baseline The answer is, two. Spoken

Confidence I am 41 percent confident that the answer is,
two.

Spoken

Abstractive I am 41 percent confident that the answer is,
two. I summarized evidence from a wikipedia
passage titled, Marco Polo (TV series). Netflix
cancelled the show after two seasons, as it had
resulted in a 200 million dollar loss.

Spoken

Extractive-sent I am 41 percent confident that the answer is, two.
I found the following evidence in a wikipedia
passage titled, Marco Polo (TV series). On De-
cember 12, 2016, Netflix announced they had
canceled "Marco Polo" after two seasons.

Spoken/visual.

Extractive-long I am 41 percent confident that the answer
is, two. I found the following evidence in a
wikipedia passage titled, Marco Polo (TV series).
On December 12, 2016, Netflix announced they
had canceled "Marco Polo " after two seasons.
Sources told "The Hollywood Reporter" that the
series’ two seasons resulted in a 200 million dol-
lar loss for Netflix , and the decision to cancel
the series was jointly taken by Netflix and the
Weinstein Company. Luthi portrays Ling Ling
in season 1, Chew in season 2. The series was
originally developed at starz, which had picked
up the series in January 2012.

Spoken/visual

Table A.11: Explanation examples: Example of how system responses
looked for each explanation type and baseline, for the
question How many seasons of Marco Polo are there?

a.4.6 Explanation Examples

In Table A.11, we show an example of how the responses and ex-
planations looked for each of the conditions. We also indicate in
which modalities each explanation is shown in our experiments.
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