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Abstract

How data is represented and operationalized is critical for building computational
solutions that are both effective and efficient. A common approach is to repre-
sent data objects as binary vectors, denoted hash codes, which require little storage
and enable efficient similarity search through direct indexing into a hash table or
through similarity computations in an appropriate space. Due to the limited ex-
pressibility of hash codes, compared to real-valued representations, a core open
challenge is how to generate hash codes that well capture semantic content or la-
tent properties using a small number of bits, while ensuring that the hash codes are
distributed in a way that does not reduce their search efficiency. State of the art
methods use representation learning for generating such hash codes, focusing on
neural autoencoder architectures where semantics are encoded into the hash codes
by learning to reconstruct the original inputs of the hash codes. This thesis ad-
dresses the above challenge and makes a number of contributions to representation
learning that (i) improve effectiveness of hash codes through more expressive rep-
resentations and a more effective similarity measure than the current state of the
art, namely the Hamming distance, and (ii) improve efficiency of hash codes by
learning representations that are especially suited to the choice of search method.
The contributions are empirically validated on several tasks related to similarity
search and recommendation.
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Dansk Resumé

Hvordan data repræsenteres og operationaliseres er afgørende for opbygningen af
effektive beregningsmodeller. En almindelig tilgang er at repræsentere dataob-
jekter som binære vektorer, betegnet hash-koder, der kræver lidt lagerplads og
muliggør effektiv similaritetssøgning gennem direkte indeksering i en hash-tabel
eller gennem similaritetsberegninger i et passende rum. På grund af den begrænsede
ekspressibilitet af hash-koder, sammenlignet med flydende tal repræsentationer, så
er en essentiel udfordring hvordan man genererer hash-koder, der repræsenterer se-
mantisk indhold, eller latente egenskaber, godt ved hjælp af et lille antal bits, sam-
tidig med at man sørger for, at hash-koder distribueres på en måde der ikke reduc-
erer deres søgeeffektivitet. State of the art metoder bruger repræsentationslæring
til generering af sådanne hash-koder med fokus på neurale autoencoderarkitek-
turer, hvor semantik er kodet i hash-koder ved at lære at rekonstruere de originale
input af hash-koderne. Denne afhandling adresserer ovennævnte udfordring og
bidrager med en række nye metoder til repræsentationslæring, der (i) forbedrer ef-
fektiviteten af hash-koder gennem mere ekspressive repræsentationer og et mere
effektivt afstandsmål end den nuværende kendte teknik, nemlig Hamming distan-
cen, og (ii) forbedre søgeeffektiviteten af hash-koder ved at lære repræsentationer,
der er særligt velegnede til valget af søgemetode. Bidragene valideres empirisk på
flere problemer relateret til similaritetssøgning og recommendation.

ii



Acknowledgements

My PhD has been a wonderful academic and personal journey that would not have
been possible without the support from family, friends, and colleagues. First, I
would like to thank my academic advisors Christina, Jakob, and Stephen from
whom I have without a doubt learned many valuable lessons. I have especially
enjoyed my weekly meetings with Christina and Jakob, where we have had many
insightful and entertaining discussions. I would also like to thank my office mates
over the years, Dongsheng, Lucas, Niklas, and Stephan, for providing a great work
environment with many joyous moments. I was fortunate enough to be able to do
an internship at Spotify Research with many fantastic people, where I would es-
pecially like to thank Brian, Federico, Lucas, Mounia, and Rishabh. I had a great
summer in London! I would also like to thank Benjamin and Rastin from Dan-
marks Nationalbank, and Esben and Jacob from the Municipality of Copenhagen,
it was great discussing and collaborating with you. Next, I would like to thank all
my friends (including many of the people mentioned above!) and family, especially
David and Mikkel, who have been a steady source of support during the years and
made sure I could always see the bigger picture. Lastly, and most importantly, I
would like to deeply thank my twin brother Christian for always being there for me
and being a great source of inspiration, food, and snacks.

iii



Contents

Abstract i

Dansk Resumé ii
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Chapter 1

Introduction

Similarity search and recommendation are two types of Information Retrieval (IR)
tasks used for supporting users in filtering and exploring data, such as searching
for interesting books or movies. To build solutions for such tasks, learning repre-
sentations of information objects, such as words, documents, and items, is a core
challenge in IR, with the aim of capturing key semantics and properties for retriev-
ing the most relevant information.

Traditional IR text representations have focused on bag-of-words (BoW) rep-
resentations with a fixed vocabulary (i.e., a limited set of words), based on various
term weighting approaches, such as term-frequency [53], tf-idf [53], BM25 [51],
and language models [50] (see [6, 43] for an overview on term weighting). In
BoW vector representations, each dimension corresponds to a specific vocabulary
word, which results in highly sparse vectors as the only non-zero dimensions are
the vocabulary words occurring in a given text. Due to the sparsity, BoW repre-
sentations are very efficient to use in practice through fast indexing structures for
retrieval. However, such BoW representations suffer from the problem of vocab-
ulary mismatch [15]. Vocabulary mismatch refers to the problem when different
words or phrases are used to express the same meaning, which occurs for BoW
representations as each word is only mapped to a single dimension [68].

One way to address the vocabulary mismatch problem is through distributional
semantics, which is based on the distributional hypothesis stating that words oc-
curring in the same context tend to have similar meanings [35]. In distributional
semantics, text representations are typically represented as dense vectors of signif-
icantly fewer dimensions than the vocabulary size, where each word is distributed
across all dimensions. Such vectors are typically denoted as embeddings, as they
are obtained by embedding high dimensional data (or complex data objects gen-
erally) into a relatively low dimensional space in such a way that semantically
similar data is placed close together in the embedding space1. Early work on dis-
tributional semantics for representing documents was based on computing a matrix

1Note that many types of data can be effectively embedded, not just words and documents, such
that data objects close together in the embedding space correspond to objects with similar properties.
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decomposition of the document-term co-occurrence matrix, e.g., using the seminal
Latent Semantic Indexing (LSI) approach [10], such that similar documents are
represented as similar embeddings. However, computing the decomposition of the
co-occurrence matrix is computationally expensive on large-scale data due to the
runtime complexity of the singular value decomposition typically used [54]. In a
less computationally expensive way, embeddings have also been constructed on a
word level, where methods such as word2vec [46] and GloVe [49] learn word em-
beddings based on word-word co-occurrences. Specifically, these methods aim at
learning word embeddings that are able to predict a word given its context, or the
context given a word, where the context is represented by n words before and after
a given word (denoted as n-length context windows). The use of context windows
can be seen in contrast to using all the words in a document as done by LSI. To
create document embeddings, embeddings of the words within a document can be
aggregated, e.g., by taking an average [39], a frequency-weighted average [3], or
through max-pooling [69]. However, while such embeddings provide an effective
encoding of document semantics, the cost associated with similarity computations
(e.g., using the inner product), as well as the amount of storage required, is non-
trivial and may hinder use in very large-scale settings. We will next describe a type
of representation that supports faster similarity computations while simultaneously
requiring significantly less storage.

Hash Code Representations

An efficient approach for representing documents (or more generally data objects)
is through short binary vector representations denoted as hash codes. In contrast to
real-valued embeddings, hash codes may require only a few bytes of storage, and
support fast similarity computations through the Hamming distance, which can be
computed in two CPU instructions counting the number of differing bits between
two hash codes. Additionally, hash codes can be used for direct indexing into a
hash table for finding similar documents with exact hash code matches, or by mak-
ing appropriate bit flips for directly finding documents up to a specific Hamming
distance to the reference (i.e., query) hash code. Locality-Sensitive Hashing (LSH)
[16, 36] is a widely known family of hashing techniques, where highly similar
(i.e., near-identical) documents have a high probability of hashing to the same hash
code. However, LSH uses data-independent hashing functions for mapping similar
documents to similar hash codes, such as random projections. Data-independent
hashing functions have the limitation of not utilizing any training data in their con-
struction, which limits their ability to encode semantics. For this reason, LSH tech-
niques are less suited for computing the semantic similarity between documents.

In contrast, semantic hashing [52] methods are data-dependent and learn a
mapping for transforming documents into semantically-aware hash codes, such
that semantically similar documents have a short Hamming distance between their
associated hash codes. Some of the first work on semantic hashing utilized quan-
tized (i.e., binary) versions of familiar techniques, such as LSI [62] and spectral
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clustering [60], and through two step approaches of first finding the optimal encod-
ing and then learning to predict this as a classification problem [60, 63]. Recent
work has focused on neural network approaches, specifically variational autoen-
coder architectures [7, 8, 13, 20, 22, 24, 56]. These models are trained with the ob-
jective of reconstructing the input representation (typically a tf-idf BoW represen-
tation) from the latent representation of the most internal layer in the autoencoder,
which corresponds to the hash code. In this way, such models learn an encoding
that captures the key semantics within the hash code, as it otherwise would be un-
able to reconstruct it well. Learned hash codes have been found to be effective not
only in document similarity search, but also for representing users and items in rec-
ommender systems [23, 28, 38, 40, 65, 67, 70]. In this setting, user representations
act as query objects for which the most relevant items should be retrieved. This is
analogous to the document similarity search setting where documents act as both
queries and items to be retrieved.

This thesis addresses the challenges of generating efficient hash codes that well
capture semantic content, or latent properties, using a small number of bits. We
make a number of contributions to representation learning that (i) improve effec-
tiveness of hash codes through more expressive representations and a more effec-
tive similarity measure than the current state of the art, namely the Hamming dis-
tance, and (ii) improve efficiency of hash codes by learning representations that are
especially suited to the choice of search method. The contributions are empirically
validated on several tasks related to similarity search and recommendation.

1.1 Research Outline

This thesis is composed of five chapters, where each chapter is a published article
(see Section 1.4 for the list of publications). These five chapters are grouped into
the application areas of document similarity search (Section 1.1.1) and recommen-
dation (Section 1.1.2).

This section provides an outline of each chapter of the thesis, where we state
the main research questions, provide background information, and overview the
main findings and observations.

1.1.1 Document Similarity Search

The task of document similarity search consists of searching a set of document ob-
jects by a given query object, such that those document objects most similar to the
query are retrieved. In the setting of document similarity search using hash codes,
similarity search is usually considered either a radius search or a k-nearest neigh-
bour (kNN) search. In a radius search, all hash codes with a specified maximum
distance to the query hash code are to be found, whereas for kNN the radius is
incrementally increased until the kth hash code has a distance equal to the search
radius. In our work on document similarity search using semantic hashing, we fo-
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cus on kNN search as per related work [7, 8, 13, 56], but note that the work can
trivially be adapted for radius search.

Chapter 2. Unsupervised Neural Generative Semantic Hashing

Existing approaches for semantic hashing are typically unsupervised as document
labels are most often not available for large data collections of a size where fast
similarity search using hash codes is particularly useful. The approaches have
evolved into three main groups. Firstly, being based on two-step procedures of
first learning the optimal hash code encoding (based on low Hamming distances
between semantically similar documents) and then learning to predict this to handle
unseen documents [60, 63]. Secondly, variational autoencoder models with an
input reconstruction loss using a post-processing quantization step for obtaining the
hash codes [7, 8]. The quantization step consists of rounding each dimension based
on its median value, such that the kth bit of the hash code is 1 if the kth dimension of
the learned (real-valued) vector is larger than the median, and vice versa for setting
a bit to 0. Thirdly, variational autoencoders using Bernoulli priors for learning
hash codes in an end-to-end fashion [56], which improves hash code effectiveness
due to reducing the quantization error. However, none of these approaches directly
model the goal of ranking documents by their similarity to the query document,
i.e., for maximizing the precision of a kNN search, but rather implicitly assume
that the learned hash codes will enable this by focusing on encoding the document
semantics well. This leads us to the first research question:

RQ1 To what extent can ranking become an organic part of learning semantic hash
codes?

To answer this question, we first need to obtain relevance labels between a query
document and the remaining documents. As we work in an unsupervised setting,
this cannot be based on provided document tags or labels, but rather we take a
weakly supervised direction by using an existing unsupervised semantic hashing
approach for obtaining approximate top-K rankings of each document. Based on
this, we extract ranking triplets for training, such that each sample consists of query
document, a similar document, and a dissimilar document. With such ranking
triplets, the aim is to learn hash codes that are better able to separate similar and
dissimilar documents in the Hamming space. We propose Ranking-based Semantic
Hashing (RBSH), a variational autoencoder with a traditional input reconstruction
objective trained jointly with a hinge loss on the ranking triplets as the ranking
objective. We find that the ranking objective has a beneficial regularizing effect,
as the hash codes, especially short hash codes down to 8 bits, otherwise have a
tendency to cluster and not sufficiently utilize the space, which reduces the kNN
effectiveness. We experimentally find that RBSH hash codes significantly out-
perform state-of-the-art approaches, and most importantly, yield state-of-the-art
performance while using 2-4x fewer bits than existing approaches.
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Chapter 3. Unsupervised Semantic Hashing with Pairwise Reconstruction

The findings from RQ1 suggest that incorporating neighbourhood information, in
our case in the form of optimizing a joint ranking objective, can improve the gener-
alization of the learned hash codes as observed by higher kNN effectiveness. This
observation is also noted in early work [60, 63], where the cosine similarity be-
tween documents in their original space is used for constructing pairwise weights
for learning to minimize a weighted Hamming distance between hash code pairs.
In this way, hash codes from similar documents are forced to have a small Ham-
ming distance, whereas dissimilar documents with a small or negative weight are
ignored or forced further apart in the Hamming space. In more recent work, a
variational autoencoder model, denoted NbrReg, with two reconstruction objec-
tives (represented as two different decoders in the autoencoder) is proposed [7].
The first reconstruction objective is the typical input reconstruction, whereas the
second aims at reconstructing all unique words occurring in a local neighbourhood
around the input document (i.e., an aggregated neighbourhood document). Based
on this line of work, we ask the following research question:

RQ2 To what extent can local semantic neighbourhoods be incorporated as an
organic part of learning semantic hash codes?

We answer this question by proposing an extension to the input reconstruction ob-
jective shared among the variational autoencoder approaches [7, 8, 22, 56]. Sim-
ilarly to our previously proposed RBSH (RQ1), we use an existing unsupervised
semantic hashing approach to retrieve a set of similar documents to each query
document. Using this set, we construct training pairs and train a variational au-
toencoder, named PairRec, to be able to reconstruct the query document from both
hash codes (i.e., a pairwise reconstruction). In this way, more general hash codes
are learned that not only encode their own semantics, but also those of similar doc-
uments, which we experimentally show to be more effective than existing state-of-
the-art approaches. In contrast to NbrReg [7], we consider pairs of real documents,
as opposed to the aggregated neighbourhood document used by NbrReg, which we
argue may introduce a semantic shift as such documents cannot be encountered
during retrieval. Furthermore, our approach uses only a single decoder, as the two
decoders used by NbrReg increase the overall decoding complexity, which may be
difficult to capture using the simple Hamming distance and hence unnecessarily
reduce the kNN effectiveness.

Chapter 4. Unsupervised Multi-Index Semantic Hashing

RQ1 and RQ2 address ways for learning more expressive hash codes that improve
kNN effectiveness. However, both our and prior work have generally assumed that
the hash codes will be efficient to use in practice, but not considered any concrete
search method to explore whether any efficiency differences exist between the ap-
proaches. While real-time brute-force linear scans are possible using the Hamming
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distance on large-scale data [55], significantly faster alternatives exist enabling sub-
linear search time. One such alternative is multi-index hashing [47, 48], a method
for performing exact radius and kNN search in the Hamming space. While hash
codes can be used as direct addresses into a hash table, the number of such lookups
scales exponentially with the radius (where the number of bits is the base), which
can become infeasible for long hash codes or even moderate radii. To fix this,
multi-index hashing splits each hash code into m disjoint substrings, and utilizes
the pigeonhole principle to determine that if two hash codes are within radius r,
then at least one substring exists where the Hamming distance between the sub-
strings is at most b r

mc. Based on this, multi-index hashing builds a candidate set,
significantly smaller than the entire set of hash codes, from which a linear scan
is performed to determine the exact Hamming distances. This leads to our next
research question:

RQ3 To what extent can key properties for multi-index hashing become an organic
part of learning semantic hash codes?

To answer this question, we first identify two key properties for high multi-index
efficiency. The first one is to reduce the number of documents per hash table lookup
by reducing the number of false-positive candidates, i.e., those with a small sub-
string distance, but high overall hash code distance. The second one is to dis-
tribute the hash codes sufficiently such that the distance to the kth document is
kept low to limit the exponential growth. We operationalize these properties into
model-agnostic training objectives for training hash codes specifically designed for
multi-index hashing in an end-to-end fashion, which we denote as Multi-Index Se-
mantic Hashing (MISH). We experimentally find that state-of-the-art baselines are
upwards of 33% slower than hash codes generated by MISH without being more
effective.

1.1.2 Recommendation

Recommender systems are trained on data from user-item interactions, e.g., clicks
or ratings, with the objective of learning to estimate user preferences to provide
relevant recommendations. When users and items are represented as embeddings,
such as hash codes, the recommendation task is highly similar to that of similarity
search (Section 1.1.1), but with the modification that the user representation acts
as the query in contrast to using an item as a query. In the following chapters, we
focus on two different recommendation settings, depending on the availability of
content information, but they have the commonality of generating user and item
hash codes to be used for recommendation.

Chapter 5. Content-aware Neural Hashing for Cold-start Recommendation

Recommendation approaches based on collaborative filtering, content-based filter-
ing, and their combinations have been well studied and shown to work well in
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practice [1, 57]. Collaborative filtering learns user and item embeddings based
on user-item interactions, such as implicit feedback (e.g., clicks) or explicit feed-
back (e.g., ratings). However, when new items appear (denoted cold-start items)
no previous user-item interactions exist, hence collaborative filtering approaches
are unable to learn such embeddings. Content-based filtering solves the cold-start
problem by using item content information (or other item features) for recommend-
ing items similar to items a user has previously enjoyed. For efficiency reasons,
a number of hashing-based approaches have also been proposed for the recom-
mendation domain. These approaches have primarily focused on the collaborative
filtering setting [38, 44, 64, 67, 70], but less so on content-aware approaches ad-
dressing the cold-start problem. Existing content-aware hashing approaches, DDL
[66] and DCMF [41], learn to generate user and item hash codes for use in both
standard and cold-start settings, however they both share the problem of generating
item hash codes differently depending on whether the item is considered cold-start
or not. Specifically, they both learn user and item hash codes in a typical collab-
orative filtering setting, but simultaneously learn separate item hash codes based
on their content information, such that the distance between the two types of item
hash codes is minimized. We argue that this is unnecessary and may limit general-
izability, which leads to the next research question:

RQ4 How can item content information be used for generating hash codes in the
same way for both standard and cold-start items to improve recommendation
effectiveness?

To answer this question, we propose NeuHash-CF, a joint hashing model for gen-
erating user and item hash codes robust to the cold-start problem. Inspired by
semantic hashing, we use the basic architecture of our previous work [22, 24] to
construct an item component that learns hash codes based on content information
alone. In contrast, the user component is based solely on a user ID as in the typi-
cal collaborative filtering setting, and the model is jointly optimized by learning to
reconstruct the logged user-item ratings. Since the item hash codes are generated
entirely based on content information, they are by default robust to the cold-start
problem as long as new items share some similarity to some of the existing items.
We experimentally evaluate NeuHash-CF hash codes against state-of-the-art base-
lines, including collaborative filtering and content-aware approaches, where we
observe significant improvements in both cold-start and standard recommendation
settings.

Chapter 6. Projected Hamming Dissimilarity for Bit-Level Importance Cod-
ing in Collaborative Filtering

In hashing-based learning, such as for documents (RQ1-3) or users and items
(RQ4), the default way of measuring the similarity between two hash codes is
through the Hamming distance, which is computed as the summation of the XOR
operation between two hash codes. However, by definition, the Hamming distance
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weighs each bit equally, which could be problematic when the importance of each
bit’s underlying properties differ depending on the query. For example, in a collab-
orative filtering setting the user hash code represents the query, and depending on
the user’s historic item interactions, it may be possible to infer that certain under-
lying properties are more important for the item ranking. While approaches have
been proposed for assigning real-valued weights to certain substrings of bits in a
hash code [14, 44], such a weighting has the problem of making the core similarity
computation (e.g., Hamming distance) significantly slower, which limits its usage
in large-scale settings where hashing-based solutions are most needed. This leads
to the next research question:

RQ5 How can a similarity measure support hash code importance weighting with-
out reducing efficiency?

To answer this question, we consider the collaborative filtering setting of user and
item hash codes. We derive a new way of measuring the dissimilarity between a
user (query) and item hash code with binary weighting of each dimension, corre-
sponding to disabling specific bits. To this end, we consider a general definition
of dissimilarity defined as the norm of the difference between the user represen-
tation and the item representation projected onto the user, which in the Euclidean
space corresponds to the well known cosine distance. We show that when working
in the Hamming space, this results in a novel projected Hamming dissimilarity,
which by choice of projection, effectively allows an importance weighting of the
item hash codes through the user hash code. Specifically, if the possible bit values
are {−1, 1}, then all bit dimensions with −1 in the user hash code are ignored in
the dissimilarity computation across all items, corresponding to a binary impor-
tance weighting of each bit dimension. We experimentally show that hash codes
optimized for the projected Hamming dissimilarity lead to large gains in recom-
mendation effectiveness compared to baselines using the Hamming distance, while
requiring no additional storage and no reduction in efficiency compared to comput-
ing the Hamming distance.

1.2 Summary of Contributions

This thesis addresses challenges related to representation learning for enabling
more efficient and effective similarity search and recommendation. The contri-
butions focus on improving the representational power of learned hash codes, as
well as learning to construct them in a way that enables more efficient similarity
search.

• The first contribution is a method for retrieving semantically relevant doc-
uments based on learned hash codes, which are constructed in a way that
encodes both document semantics and ranking information relative to other
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hash codes. The ranking part ensures that the hash codes are directly de-
signed for being ranked, rather than only encoding semantics, which im-
proves retrieval effectiveness.

• The second contribution is an improved method of learning document hash
codes, based on introducing local semantic neighbourhood information into
the learning process. Specifically, hash codes from pairs of semantically
similar documents are trained such that both hash codes can reconstruct the
same original document, which effectively ensures that semantically similar
documents are placed close together in the learned hash code space.

• The third contribution is a method for learning hash codes that enables more
efficient retrieval by directly optimizing the hash code construction towards
the search approach being used. In contrast to prior work that applies post-
processing steps after training for improving efficiency, we find that learning
it in a direct end-to-end trainable way enables even larger efficiency gains
without compromising effectiveness.

• The fourth contribution is a method for learning user and item hash codes for
recommendation, while being robust to the problem of cold-start items. This
is achieved by using content information for generating item hash codes in
a unified way for both standard and cold-start items, rather than distinguish-
ing between them as done by prior work, which improves recommendation
effectiveness.

• The fifth contribution is a new dissimilarity measure for comparing two hash
codes, which enables a binary weighting of the hash codes, corresponding to
disabling the bits deemed unimportant by one of the hash codes. Hash codes
optimized for this dissimilarity, rather than the current state of the art, namely
the Hamming distance, results in higher effectiveness in collaborative filter-
ing experiments, while requiring no additional storage and no computational
overhead compared to the Hamming distance.

1.3 Future Work

Our contributions towards more efficient and effective representations for similar-
ity search and recommendation naturally have their limitations and possible di-
rections of future work. Below we first discuss specific directions of future work
for research presented in this thesis, and follow with a discussion of more general
directions of future work.

New input representations

All text hashing approaches proposed in this thesis, as well as the baselines used
for comparison, use a tf-idf weighted bag-of-words vector as the document rep-
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resentation. As state-of-the-art approaches all use variational autoencoders, the
motivation for using a fixed input vector is for using it in reconstruction when de-
coding the hash code as part of training the autoencoder. As an alternative, Doan
and Reddy [12] recently explored two approaches using recurrent and convolu-
tional neural networks, with the objective of being able to reconstruct the word
embeddings of the input. They empirically found this to be more effective than the
(tf-idf vector) baselines, but they did not compare against more recent state-of-the-
art approaches, so the exact improvement is uncertain. However, their work does
provide a first step towards exploring more expressive representations than a tf-idf
vector, which is a natural next step for our work as well.

Exploring the projected Hamming dissimilarity and other functions in
new settings

We proposed the projected Hamming dissimilarity as a way to compute weighted
dissimilarities in the asymmetrical user-item setting, where the user hash code acts
as a query used for searching among the item hash codes. While our work showed
large effectiveness gains, a next step would be exploring it (as well as other po-
tential functions) in a symmetrical item-item setting, such as document similarity
search. A potential obstacle is that each item also acts as a query for similarity
search, which may be problematic as the weighting in the projected Hamming dis-
similarity is defined through the query, hence its dual purpose could hinder learn-
ing a good representation. However, a first step would be to simply learn two hash
codes per item, one for the purpose of a query, and one for the normal purpose of an
item. Note that this does not necessarily lead to increased storage requirements, as
the similarity search often is performed on new (unseen) documents, which would
require an encoding step for obtaining the hash code in any case.

Hashing-based representations in dynamic settings

This thesis has considered application areas where item (and user) hash codes could
be generated without considering the need for any updates. While the hash code
models should be retrained regularly, and new hash codes should be generated
when new data arrives, this has not been a focus in our work. To this end, it would
be interesting to investigate the effectiveness of hashing-based approaches for more
dynamic settings, such as context-aware or feedback-aware recommender systems
[5, 9, 21, 61], where the user representation should change often (e.g., after every
few interactions) to better represent the (contextual or temporal) needs of the user.
While more expressive real-valued representations might be needed for the final
item ranking, the hash codes could prove useful for efficiently generating highly
relevant candidate pools.
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Representation interpretability

Interpretability is a core challenge for representation learning, as well as for ma-
chine learning as a whole. Investigating the relation between interpretable con-
cepts and how embeddings are constructed, whether being real-valued or binary,
is important for understanding what a model has learned, which may improve the
trust we as humans assign to such models for use in real-world applications. For
real-valued embeddings, one way to improve interpretability is through inducing
sparsity when constructing the embeddings [58], such that the embedding of the
document (or another type of object) can be described by a few non-zero dimen-
sions, corresponding to some latent topics. Each topic, or combination of topics,
would then be described by a set of documents from which a common theme could
be extracted. However, for hash codes, this type of sparsity is not as straight-
forward to induce because hash codes are unable to represent the equivalent of a
real-valued zero, as both possible binary values impact the distance computation.
As little work has been done in hash code interpretability, it would be worth pur-
suing that direction in the future.

Representation pretraining

Learning representations that generalize well is another important challenge, but
doing so may require large and varied amounts of appropriate training data. One
way to solve this problem is through model pretraining, with one of the most suc-
cessful examples being word embedding models (e.g., word2vec [46] and BERT
[11]). These models are trained in a unsupervised fashion on massive collections of
text, from which general language understanding is learned, such that the models
later can be fine-tuned (or even applied directly) to downstream tasks. Utilizing,
and further exploring, this idea of pretraining is highly attractive, as it allows new
models to exploit the language understanding obtained through the pretraining for
improving their generalization. Interestingly, such pretrained models have not yet
been explored for the task of learning semantic hash codes for documents, neither
through using existing word embedding models or (pre)training hash code models
on the same massive collections of text as the original word embedding models.
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ABSTRACT
Fast similarity search is a key component in large-scale information
retrieval, where semantic hashing has become a popular strategy
for representing documents as binary hash codes. Recent advances
in this area have been obtained through neural network based
models: generative models trained by learning to reconstruct the
original documents. We present a novel unsupervised generative se-
mantic hashing approach, Ranking based Semantic Hashing (RBSH)
that consists of both a variational and a ranking based component.
Similarly to variational autoencoders, the variational component is
trained to reconstruct the original document conditioned on its gen-
erated hash code, and as in prior work, it only considers documents
individually. The ranking component solves this limitation by incor-
porating inter-document similarity into the hash code generation,
modelling document ranking through a hinge loss. To circumvent
the need for labelled data to compute the hinge loss, we use a weak
labeller and thus keep the approach fully unsupervised.

Extensive experimental evaluation on four publicly available
datasets against traditional baselines and recent state-of-the-art
methods for semantic hashing shows that RBSH significantly out-
performs all other methods across all evaluated hash code lengths.
In fact, RBSH hash codes are able to perform similarly to state-of-
the-art hash codes while using 2-4x fewer bits.
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1 INTRODUCTION
The task of similarity search consists of querying a potentially
massive collection to find the content most similar to a query. In
Information Retrieval (IR), fast and precise similarity search is a vital
part of large-scale retrieval [28], and has applications in content-
based retrieval [14], collaborative filtering [13], and plagiarism
detection [10, 26]. Processing large-scale data requires solutions
that are both computationally efficient and highly effective, and
that work in an unsupervised fashion (because manually labelling
massive datasets is unfeasible). Semantic hashing [21] is a highly
effective class of methods that encode the semantics of a document
into a binary vector called a hash code, with the property that
similar documents have a short Hamming distance between their
codes, which is simply the number of differing bits in the codes as
efficiently computed by the sum of the XOR operation. For short
hash codes of down to a single byte, this provides a very fast way of
performing similarity searches [34], while also reducing the storage
requirement compared to full text documents.

Originally, work on semantic hashing focused on generating
hash codes for a fixed collection [25], but more modern information
needs require querying unseen documents for retrieving similar
documents in the collection. Modern semantic hashing methods are
based on machine learning techniques that, once trained, are able to
produce the hash code based solely on the document alone. This can
be done using techniques similar to Latent Semantic Indexing [33],
spectral clustering [29], or two-step approaches of first creating
an optimal encoding and then training a classifier to predict this
[34]. Recent work has focused on deep learning based methods
[4, 5, 23] to create a generative document model. However, none of
the methods directly model the end goal of providing an effective
similarity search, i.e., being able to accurately rank documents
based on their hash codes, but rather just focus solely on generating
document representations.

We present a novel unsupervised generative semantic hashing
approach, Ranking based Semantic Hashing (RBSH) that combines
the ideas of a variational autoencoder, via a so-called variational
component, togetherwith a ranking component that aims at directly
modelling document similarity through the generated hash codes.
The objective of the variational component is to maximize the doc-
ument likelihood of its generated hash code, which is intractable
to compute directly, so a variational lower bound is maximized in-
stead. The variational component is modelled via neural networks
and learns to sample the hash code from a Bernoulli distribution,
thus allowing end-to-end trainability by avoiding a post-processing
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step of binarizing the codes. The ranking component aims at learn-
ing to rank documents correctly based on their hash codes, and
uses weak supervision through an unsupervised document similar-
ity function to obtain pseudo rankings of the original documents,
which circumvents the problem of lacking ground truth data in the
unsupervised setting. Both components are optimized jointly in a
combined neural model, which is designed such that the final model
can be used to generate hash codes solely based on a new unseen
document, without computing any similarities to documents in
the collection. Extensive experimental evaluation on four publicly
available datasets against baselines and state-of-the-art methods for
semantic hashing, shows that RBSH outperforms all other methods
significantly. Similarly to related work [4, 5, 23], the evaluation is
performed as a similarity search of the most similar documents
via the Hamming distance and measured using precision across
hash codes of 8-128 bits. In fact, RBSH outperforms other methods
to such a degree, that generally RBSH hash codes perform simi-
larly to state-of-the-art hash codes while using 2-4x less bits, which
corresponds to an effective storage reduction of a factor 2-4x.

In summary, we contribute a novel generative semantic hashing
method, Ranking based Semantic Hashing (RBSH), that through
weak supervision directly aims to correctly rank generated hash
codes, by modelling their relation to weakly labelled similarities
between documents in the original space. Experimentally this is
shown to significantly outperform all state-of-the-art methods, and
most importantly to yield state-of-the-art performance using 2-4x
fewer bits than existing methods.

2 RELATEDWORK
2.1 Semantic Hashing
Semantic hashing functions provide a way to transform documents
to a low dimensional representation consisting of a sequence of bits.
These compact bit vectors are an integral part of fast large-scale sim-
ilarity search in information retrieval [28], as they allow efficient
nearest neighbour look-ups using the Hamming distance. Locality
Sensitive Hashing (LSH) [6] is a widely known data-independent
hashing function with theoretically founded performance guar-
antees. However, it is general purpose and as such not designed
for semantic hashing, hence it empirically performs worse than a
broad range of semantic hashing functions [4, 5]. In comparison to
LSH, semantic hashing methods employ machine learning based
techniques to learn a data-dependent hashing function, which has
also been denoted as learning to hash [28].

Spectral Hashing (SpH) [29] can be viewed as an extension of
spectral clustering [17], and preserves a global similarity structure
between documents by creating balanced bit vectors with uncor-
related bits. Laplacian co-hashing (LCH) [33] can be viewed as a
version of binarized Latent Semantic Indexing (LSI) [7, 21] that
directly optimizes the Hamming space as opposed to the traditional
optimization of Latent Semantic Indexing. Thus, LCH aims at pre-
serving document semantics, just as LSI traditionally does for text
representations. Self-Taught Hashing (STH) [34] has the objective
of preserving the local similarities between samples found via a
k-nearest neighbour search. This is done through computing the
bit vectors by considering document connectivity, however with-
out learning document features. Thus, the objective of preserving

local similarities contrasts the global similarity preservation of SpH.
Interestingly, the aim of our RBSH can be considered as the junc-
tion of the aims of STH and SpH: the variational component of
RBSH enables the learning of local structures, while the ranking
component ensures that the hash codes incorporate both local and
global structure. Variational Deep Semantic Hashing (VDSH) [5]
is a generative model that aims to improve upon STH by incor-
porating document features by preserving the semantics of each
document using a neural autoencoder architecture, but without
considering the neighbourhood around each document. The final
bit vector is created using the median method [29] for binarization,
which means the model is not end-to-end trainable. Chaidaroon
et al. [4] propose a generative model with a similar architecture
to VDSH, but in contrast incorporate an average document of the
neighbouring documents found via BM25 [20] which can be seen
as a type of weak supervision. The model learns to also reconstruct
the average neighbourhood document in addition to the original
document, which has similarities with STH in the sense that they
both aim to preserve local semantic similarities. In contrast, RBSH
directly models document similarities based on a weakly supervised
ranking through a hinge loss, thus enabling the optimization of
both local and global structure. Chaidaroon et al. [4] also propose a
model that combines the average neighbourhood documents with
the original document when generating the hash code. However
this model is very computationally expensive in practice as it re-
quires to find the top-k similar documents online at test time, while
not outperforming their original model [4]. NASH [23] proposed
an end-to-end trainable generative semantic hashing model that
learns the final bit vector directly, without using a second step of
binarizing the vectors once they have been generated. This bina-
rization is discrete and thus not differentiable, so a straight-through
estimator [2] is used when optimizing the model.

The related work described above has focused on unsupervised
text hashing. Direct modelling of the hash code similarities as pro-
posed in this paper has not been explored. For the case of supervised
image hashing, some existing work has aimed at generating hash
codes using ranking strategies from labelled data, e.g., based on lin-
ear hash functions [27] and convolutional neural networks [30, 36].
In contrast, our work develops a generative model and utilises weak
supervision to circumvent the need for labelled data.

2.2 Weak Supervision
Weak supervision has showed strong results in the IR commu-
nity [8, 9, 18, 32], by providing a solution for problems with small
amounts of labelled data, but large amounts of unlabelled data.
While none of these are applied in a problem domain similar to
ours, they all show that increased performance can be achieved by
utilizing weak labels. Zamani et al. [8] train a neural network end-
to-end for ad-hoc retrieval. They empirically show that a neural
model trained on weakly labelled data via BM25 is able to generalize
and outperform BM25 itself. A similar approach is proposed by Nie
et al. [18], who use a multi-level convolutional network architec-
ture, allowing to better differentiate between the abstraction levels
needed for different queries and documents. Zamani et al. [32]
present a solution for the related problem of query performance
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prediction, where multiple weak signals of clarity, commitment,
and utility achieve state-of-the-art results.

3 RANKING BASED SEMANTIC HASHING
We first present an overview of our model, Ranking Based Semantic
Hashing (RBSH), and then describe in detail the individual parts
of the model. RBSH combines the principles of a variational au-
toencoder with a ranking component using weak supervision and
is an unsupervised generative model. For document d , the varia-
tional component of RBSH learns a low dimensional binary vector
representation z ∈ {0, 1}m , called the hash code, wherem is the
number of bits in the code. RBSH learns an encoder and decoder
function, modelled by neural networks, that are able to encode d
to z and z to d̂ , respectively, where d̂ is an approximation of the
original document d . The goal of the encoder-decoder architec-
ture is to reconstruct the original document as well as possible
via the hash code. Additionally, we incorporate a ranking compo-
nent which aims to model the similarity between documents, such
that the resulting hash codes are better suited for finding nearest
neighbours. Specifically, during training RBSH takes document
triplets, (d,d1,d2), as inputs with estimated pairwise similarities,
and through weak supervision attempts to correctly predict either
d1 or d2 as being most similar to d . Training the model on inputs of
various similarities (e.g., from the top 200 most similar documents)
enables the model to learn both the local and global structure to be
used in the hash code generation.

In summary, through the combination of the variational and
ranking components the objective of RBSH is to be able to both
reconstruct the original document as well as correctly rank the
documents based on the produced hash codes. An overview of the
model can be seen in Figure 1. In the sections below we describe
the generative process of the variational component (Section 3.1),
followed by the encoder function (Section 3.2), decoder function
(Section 3.3), the ranking component (Section 3.4), and finally the
combined model (Section 3.5).

3.1 Variational component
We assume each document d to be represented as a bag-of-words
representation of vocabulary size V such that d ∈ RV . We denote
the set of unique words in document d as Wd . For each document
we sample a binary semantic vector z ∼ p(z) where p(zi ) = pzii (1 −
pi )1−zi , which allows the hash codes to be end-to-end trainable,
similarly to Shen et al. [23]. For each bit, pi corresponds to the
probability of sampling a 1 at position i and (1−pi ) is the probability
of sampling a 0. Thus, z is obtained by repeating a Bernoulli trialm
times. Using the sampled semantic vector, we consider each word
aswi ∼ p(wi | f (z)) and define the document likelihood as follows:

p(d |z) =
∏
j ∈Wd

p(w j | f (z)) (1)

that is, a simple product of word probabilities where the product
iterates over all unique words in document d (denotedWd ). In this
setting f (z) is a function that maps the hash code, z, to a latent
vector useful for modelling word probabilities.

3.1.1 Variational loss. The first objective of our model is to maxi-
mize the document log likelihood:

logp(d) = log
∫
{0,1}m

p(d |z)p(z)dz (2)

However, due to the non-linearity of computing p(w j | f (z)) from
Equation 1 this computation is intractable and the variational lower
bound [12] is maximized instead:

logp(d) ≥EQ [logp(d |z)] − KL(Q(z |d)| |p(z)) (3)

where Q(z |d) is a learned approximation of the posterior distribu-
tion p(z |d), the computation of which we describe in Section 3.2,
and KL is the Kullback-Leibler divergence. Writing this out using
the document likelihood we obtain the model’s variational loss:

Lvar = EQ
[ ∑
j ∈Wd

logp(w j | f (z))
] − KL(Q(z |d)| |p(z)) (4)

where j iterates over all unique words in document d . The pur-
pose of this loss is to maximize the document likelihood under
our modelling assumptions, where the EQ term can be considered
the reconstruction loss. The KL divergence acts as a regularizer
by penalizing large differences between the approximate posterior
distribution and the Bernoulli distribution with equal probability of
sampling 0 and 1 (p = 0.5), which can be computed in closed form
as:

KL(Q(z |d)| |p(z)) = Q(d) log Q(d)
p
+ (1 −Q(d)) log 1 −Q(d)

1 − p
(5)

3.2 Encoder function
The approximate posterior distribution Q(z |d) can be considered
as the encoder function that transforms the original document rep-
resentation into its hash code of m bits. We model this using a
neural network that outputs the sampling probabilities used for the
Bernoulli sampling of the hash code. First, we compute the repre-
sentation used as input for computing the sampling probabilities:

v1 = ReLU(Wa (d ⊙ Eimp) + ba ) (6)
v2 = ReLU(Wbv1 + bb ) (7)

where ⊙ corresponds to elementwise multiplication,W and b are
weight matrices and bias vectors respectively, and Eimp is an impor-
tance embedding that learns a scalar for each word that is used to
scale the word level values of the original document representation,
and the same embedding is also used in the decoder function. The
purpose of this embedding is to scale the original input such that
unimportant words have less influence on the hash code generation.
We transform the intermediate v2 representation to a vector of the
same size as the hash code, such that the ith entry corresponds to
the sampling probability for the ith bit:

Q(d) = σ (Wmv2 + bm ) (8)

whereWm and bm have the dimensions corresponding to the code
lengthm, and σ is the sigmoid function used to enforce the values to
be within the interval [0, 1], i.e., the range of probability values. The
final hash code can then be sampled from the Bernoulli distribution.
In practice, this is estimated by a vector µ = [µ1, µ2, ..., µm ] of
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Figure 1: Model overview

values sampled uniformly at random from the interval [0, 1] and
computing each bit value of either 0 or 1 as:

zi = ⌈Q(d)i − µi ⌉ (9)
Sampling µ uniformly at random corresponds to a stochastic strat-
egy, as the same Q(d) could result in different hash codes. The
opposite deterministic strategy consists of fixing µi = 0.5, such
that the network always generates the same code for a given doc-
ument. To encourage exploration during training, the stochastic
strategy is chosen, while the deterministic is used for testing. To
compute the gradient of the sampled z for back-propagation, we
use a straight-through estimator [2].

3.3 Decoder function
The purpose of the decoder function is to reconstruct the origi-
nal document d given the hash code z. This is computed using
the document log likelihood (Equation 1) as the sum of word log
probabilities:

logp(d |z) =
∑

j ∈Wd

logp(w j | f (z))

=
∑

j ∈Wd

log ef (z)T д(Eword(oj ⊙Eimp))+bj

e
∑
i∈Wall f (z)T д(Eword(oi ⊙Eimp))+bi

(10)

where the sums iterate over all unique words in document d ; ⊙
corresponds to elementwise multiplication; oj is a one-hot-vector
with 1 in the jth position and 0 everywhere else; Eimp is the same
importance embedding as in the encoder function; Eword is a word
embedding; b is a bias vector; Wall contains all vocabulary words;
and the д function will be detailed later. Eword is a mapping from a
word to a word embedding space, such that logp(d |z) is maximized
when the hash code is similar to most words in the document.
To this end, the importance embedding assists in reducing the
need to be similar to all words, as it learns to reduce the value
of unimportant words. The word embedding Eword is made by
learning a 300 dimensional embedding matrix, and д(Eword(oj ⊙
Eimp)) corresponds to a transformation through a fully connected
linear layer to fit the code length. The choice of 300 dimensions was
made to be similar in size to standard GloVe and Word2vec word
embeddings [16, 19]. This two-step embedding process was chosen
to allow the model to learn a code length-independent embedding
initially, such that the underlying word representation is not limited
by the code length.

3.3.1 Reduce overfitting through noise injection. We inject noise
into the hash code before decoding, which has been shown to reduce
overfitting and to improve generalizability in generative models
[3, 12, 24]. For semantic hashing applications, this corresponds
to observing significantly more artificial documents with small
perturbations, which is beneficial for reducing overfitting in the
reconstruction step. To this end we choose a Gaussian noise model,
which is traditionally done for variational autoencoders [12], such
that f (z) in Equation 10 is sampled as f (z) ∼ N(z,σ 2I ) where I
is the identity matrix and σ 2 is the variance. Instead of using a
fixed variance, we employ variance annealing, where the variance
is reduced over time towards 0. Variance annealling has previously
been shown to improve performance for generative models in the
image domain [3], as it reduces the uncertainty over time when the
model confidence increases. However, the gradient estimate with
this noise computation exhibits high variance [12], so we use the
reparameterization trick to compute f (z) as:

f (z;σ 2) = z + ϵσ 2, ϵ ∼ N(0, I ) (11)

which is based on a single source of normal distributed noise and
results in a gradient estimate with lower variance [12].

3.4 Ranking component
The variational loss guides the model towards being able to recon-
struct the original document from the hash code, but no hash code
similarity is enforced between similar documents. We introduce a
ranking component into the model, which ensures that similar doc-
uments have a small hash code distance between them. To enable
the network to learn the correct document ranking we consider
document triplets as inputs, (d , d1, d2) with corresponding pairwise
similarities of s {d,d1 } and s {d,d2 } . However, in the unsupervised
setting we do not have a ground truth annotated ranking of the
documents to extract the similarities. To this end, we generate
pseudo pairwise similarities between the documents, such that
weak supervision can be used to train the network in a supervised
fashion.

3.4.1 Estimating pairwise similarities. For estimating pairwise sim-
ilarities in our setting, one of many traditional ranking functions
or document similarity functions could be employed. We assume
such a function is chosen such that a similarity between d and d1
can be computed.
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For concreteness, in this paper we choose to compute document
similarities using the hash codes generated by Self-Taught Hashing
(STH) [34] as this has been shown to perform well for semantic
hashing (see Section 4.5). Using the STH hash codes, document
similarity is computed based on the Euclidean distance between
two hash codes:

s {d,d1 } = −||zSTH − zSTH1 | |2 (12)

where zSTH corresponds to the STH hash code for document d ,
such that s {d,d1 } is highest when two documents are very similar.
We use the k-nearest neighbour algorithm to find the top k most
similar documents for each document.

3.4.2 Ranking loss. To train the ranking component we use a mod-
ified version of the hinge loss, as the hinge loss has previously been
shown to work well for ranking with weak supervision [8]. We first
define the following short-hand expressions:

signd,d1,d2 = sign(s {d,d1 } − s {d,d2 }) (13)

Dd,d1,d2 = | |z − z2 | |22 − ||z − z1 | |22 (14)

such that signd,d1,d2 corresponds to the sign of the estimated pair-
wise document similarities, and Dd,d1,d2 is the difference between
the squared Euclidean distance of the hash codes of the document
pairs. Using this we can define our modified hinge loss as the fol-
lowing piece-wise function:

Lrank =

{
max

(
0, ϵ − signd,d1,d2Dd,d1,d2

)
s {d,d1 } , s {d,d2 }

|Dd,d1,d2 | otherwise.
(15)

where ϵ determines the margin of the hinge loss, which we fix to 1
to allow a small bitwise difference between hash codes of highly
similar documents. Traditionally, the hinge loss consists only of
the first part of the piece-wise function, but since the similarity
estimates are based on distance computations on hash codes, some
document pairs will have the same similarity. In that case the pair-
wise similarities are equal and the loss is simply the absolute value
of Dd,d1,d2 , as it should be close to 0.

3.5 Combining variational and ranking
components

We train the variational and ranking components simultaneously
by minimizing a combined weighted loss from Equation 4 and 15:

L = αLrank − EQ
[ ∑
j ∈Wd

logp(w j | f (z))
]
+ βKL(Q(z |d)| |p(z))

(16)

where j iterates over all unique words in document d , α is used
to scale the ranking loss, β is used to scale the KL divergence
of the variational loss, and we keep the unscaled version of the
reconstruction part of the variational loss. During training we start
with initial weight parameters of 0 and gradually increase the values
in order to focus on just being able to reconstruct the input well.

n multi-class num. classes unique words
20news 18,846 No 20 52,447
TMC 28,596 Yes 22 18,196
Reuters 9,848 Yes 90 16,631
AGnews 127,598 No 4 32,154

Table 1: Dataset statistics

4 EXPERIMENTAL EVALUATION
4.1 Datasets
We use the four publicly available datasets summarized in Table 1.
1) 20 newsgroups1 is a dataset of posts from 20 different newsgroups.
2) TMC2 is a dataset of NASA air trafic reports, where each report is
labelled with multiple classes. 3) Reuters215783 is a dataset of news
documents from Reuters, where each document is labelled with
one or more classes. The Reuters21578 dataset is subsampled such
that documents are removed if none of their associated classes are
among the 20 most frequent classes. This was done by Chaidaroon
and Fang [5] and their subsampled dataset was used by Shen et al.
[23]. 4) AGnews [35] contains news articles from 4 categories.

The datasets are commonly used in related work [4, 5, 23], but
without full details of preprocessing. So, in the following we de-
scribe how we preprocess the data. We filter all documents in a
dataset by removing hapax legomena, as well as words occurring in
more than 90% of the documents. In addition, we apply stopword
removal using the NLTK stopword list4, do not apply any stemming,
and use TF-IDF [22] as the document representation.

For each dataset we make a training, validation, and testing split
of 80%, 10%, and 10% of the data, respectively. In all experiments the
training data is used to train an unsupervised model, the validation
data is used for early stopping by monitoring when the validation
loss starts increasing, and the results are reported on the testing
data.

4.2 Performance metric
The purpose of generating binary hash codes (of equal length) is
to use them to obtain fast similarity searches via the Hamming
distance, i.e., computing the number of bits where they differ. If two
documents are semantically similar, then the generated semantic
hash codes should have small Hamming distance between them.
To evaluate the effectiveness of a semantic hashing method we
treat each testing document as a query and perform a k-nearest-
neighbour (kNN) search using the Hamming distance on the hash
codes. Similarly to previous work [4, 5, 23], we retrieve the 100
most similar documents and measure the performance on a specific
test document as the precision among the 100 retrieved documents
(Prec@100). The total performance for a semantic hashing method
is then simply the average Prec@100 across all test documents. The
used datasets are originally created for text classification, but we
can define two documents to be similar if they share at least one
class in their labelling, meaning that multiclass documents need
not to be of exactly the same classes. This definition of similarity is
also used by related work [4, 5, 23].
1http://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
2https://catalog.data.gov/dataset/siam-2007-text-mining-competition-dataset
3http://www.nltk.org/book/ch02.html
4https://www.nltk.org/nltk_data/
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4.3 Baselines
We compare our method against traditional baselines and state-of-
the-art semantic hashing methods used in related work as described
in Section 2: Spectral Hashing (SpH) [29], Self-Taught Hashing
(STH) [34], Laplacian co-hashing (LCH) [33], Variational Deep Se-
mantic Hashing (VDSH) [5], NASH [23], and the neighbourhood
recognition model (NbrReg) proposed by Chaidaroon et al. [4]. We
tune the hyperparameters of these methods on the validation data
as described in their original papers.

4.4 Tuning
For the encoder function (Section 3.2) we use two fully connected
layers with 1000 nodes in each layer on all datasets. The network is
trained using the ADAM optimizer [11]. We tune the learning rate
from the set {0.001, 0.0005}, where 0.0005 was chosen consistently
for 20news and 0.001 on the other datasets. To improve general-
ization we add Gaussian distributed noise to the hash code before
reconstruction in the decoder function, where the variance of the
sampled noise distribution is annealed over time. Initially we start
with a variance of 1 and reduce it by 10−6 every iteration, which
we choose conservatively to not reduce it too fast. For the ranking
component we use STH [34] to obtain a ranking of the most sim-
ilar documents for each document in the training and validation
set, where we choose every 10th document from the top 200 most
similar documents. This choice was made to limit the number of
triplets generated for each document as it scales quadraticly in the
number of similar documents to consider.

When combining the variational and ranking components of
our model (Section 3.5), we added a weight parameter on the rank-
ing loss and the KL divergence of the variational loss. We em-
ploy a strategy similar to variance annealing in this setting, how-
ever in these cases we start at an initial value and increase the
weight parameters with very iteration. For the KL divergence we
fix the start value at 0 and increase it by 10−5 with every iter-
ation. For the ranking loss we tune the models by considering
starting values from the set {0, 0.5, 1, 1.5} and increase from the
set {30000−1, 300000−1, 1500000−1, 3000000−1}. The code was im-
plemented using the Tensorflow Python library [1] and the experi-
ments were performed on Titan X GPUs.

4.5 Results
The experimental comparison between the methods is summarized
in Table 2, where the methods are used to generate hash codes of
lengthm ∈ {8, 16, 32, 64, 128}. We highlight the best performing
method according to the Prec@100 metric on the testing data. We
perform a paired two tailed t-test at the 0.05 level to test for statis-
tical significance on the Prec@100 scores from each test document.
We apply a Shapiro-Wilk test at the 0.05 level to test for normality,
which is passed for all methods across all code lengths.

4.5.1 Baseline comparison. On all datasets and across all code
lengths (number of bits) our proposed Ranking based Semantic
Hashing (RBSH) method outperforms both traditional approaches
(SpH, STH, and LCH) and more recent neural models (VDSH, Nbr-
Reg, and NASH). Generally, we observe a larger performance varia-
tion for the traditional methods depending on the dataset compared

to the neural approaches, which are more consistent in their relative
performance across the datasets. For example, STH is among the
top performing methods on Agnews, but performs among the worst
on 20news. This highlights a possible strength of neural approaches
for the task of semantic hashing.

Our RBSH consistently outperforms other methods to such a
degree, that it generally allows to use hash codes with a factor
of 2-4x fewer bits compared to state-of-the-art methods, while
keeping the same performance. This provides a notable benefit on
large-scale similarity searches, as computing the Hamming distance
between two hash codes scales linearly with the code length. Thus,
compared to prior work our RBSH enables both a large speed-up
as well as a large storage reduction.

4.5.2 Performance versus hash code length. We next consider how
performance scales with the hash code length. For all methods 128
bit codes perform better than 8 bit codes, but the performance of
scaling from 8 to 128 bits varies. The performance of SpH and STH
on Reuters peaks at 32 bit and reduces thereafter, and a similar
trend is observed for VDSH on Agnews and TMC. This phenome-
non has been observed in prior work [5, 23], and we posit that it
is due to longer hash codes being able to more uniquely encode
each document, thus resulting in a degree of overfitting. However,
generally a longer hash code leads to better performance until the
performance flattens after a certain code length, which for most
methods happens at 32-64 bits.

4.5.3 Result differences compared to previous work. Comparing our
experimental results to results reported in previous work [4, 5, 23],
we observe some smaller differences most likely due to prepro-
cessing. Previous work have not fully described the preprocessing
steps used, thus to do a complete comparison we had to redo the
preprocessing as detailed in Section 4.1.

On 20news and TMC the baseline performance scores we report
in this paper are slightly larger for most hash code lengths. The
vectorized (i.e., bag-of-words format) Reuters dataset released by
the VDSH authors5, and also used in the NASH [23] paper, only
consisted of 20 (unnamed) classes instead of the reported 90 classes,
so these results are not directly comparable.

4.6 Effect of ranking component
To evaluate the influence of the ranking component in RBSH we
perform an experiment where the weighting parameter of the rank-
ing loss was set to 0 (thus removing it from the model), and report
the results in Table 3. Generally, we observe that on all datasets
across all hash code lengths, RBSH outperforms RBSH without the
ranking component. However, it is interesting to consider the rank-
ing component’s effect on performance as the hash code length
increases. On all datasets we observe the largest improvement on 8
bit hash codes, but then on Reuters, Agnews, and TMC a relatively
large performance increase happens that reduces the difference in
performance. On 20news the performance difference is even larger
at 16 bit than at 8 bit, but as the bit size increases the difference
decreases until it is marginal. This highlights that one of the major
strengths of RBSH, its performance using short hash codes, can be

5https://github.com/unsuthee/VariationalDeepSemanticHashing/blob/master/
dataset/reuters.tfidf.mat
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20news Agnews
8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits

SpH [29] 0.0820 0.1319 0.1696 0.2140 0.2435 0.3596 0.5127 0.5447 0.5265 0.5566
STH [34] 0.2695 0.4112 0.5001 0.5193 0.5119 0.6573 0.7909 0.8243 0.8377 0.8378
LCH [33] 0.1286 0.2268 0.4462 0.5752 0.6507 0.7353 0.7584 0.7654 0.7800 0.7879
VDSH [5] 0.3066 0.3746 0.4299 0.4403 0.4388 0.6418 0.6754 0.6845 0.6802 0.6714
NbrReg [4] 0.4267 0.5071 0.5517 0.5827 0.5857 0.4274 0.7213 0.7832 0.7988 0.7976
NASH [23] 0.3537 0.4609 0.5441 0.5913 0.6404 0.7207 0.7839 0.8049 0.8089 0.8142
RBSH 0.5190▲ 0.6087▲ 0.6385▲ 0.6655▲ 0.6668▲ 0.8066▲ 0.8288▲ 0.8363▲ 0.8393▲ 0.8381▲

Reuters TMC
8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits

SpH [29] 0.4647 0.5250 0.6311 0.5985 0.5880 0.5976 0.6405 0.6701 0.6791 0.6842
STH [34] 0.6981 0.7555 0.8050 0.7984 0.7748 0.6787 0.7218 0.7695 0.7818 0.7797
LCH [33] 0.5619 0.6235 0.6587 0.6610 0.6586 0.6546 0.7028 0.7498 0.7817 0.7948
VDSH [5] 0.6371 0.6686 0.7063 0.7095 0.7129 0.6989 0.7300 0.7416 0.7310 0.7289
NbrReg [4] 0.5849 0.6794 0.6290 0.7273 0.7326 0.7000 0.7012 0.6747 0.7088 0.7862
NASH [23] 0.6202 0.7068 0.7644 0.7798 0.8041 0.6846 0.7323 0.7652 0.7935 0.8078
RBSH 0.7409▲ 0.7740▲ 0.8149▲ 0.8120▲ 0.8088▲ 0.7620▲ 0.7959▲ 0.8138▲ 0.8224▲ 0.8193▲

Table 2: Prec@100 with varying bit size. Bold marks the highest score. ▲ shows statistically significant improvements with
respect to the best baseline at the 0.05 level using a paired two tailed t-test. A Shapiro-Wilk test at the 0.05 level is used to test
for normality.

20news Agnews
8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits

RBSH 0.5190 0.6087 0.6385 0.6655 0.6668 0.8066 0.8288 0.8363 0.8393 0.8381
RBSH w/o ranking 0.4482 0.5000 0.6263 0.6641 0.6659 0.7986 0.8244 0.8344 0.8332 0.8306

Reuters TMC
8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits

RBSH 0.7409 0.7740 0.8149 0.8120 0.8088 0.7620 0.7959 0.8138 0.8224 0.8193
RBSH w/o ranking 0.7061 0.7701 0.8075 0.8099 0.8081 0.7310 0.7804 0.8040 0.8119 0.8172

Table 3: Effect of including the ranking component. Prec@100with varying bit size. Boldmarks thehighest score andunderline
marks a score better than the best baseline.

partly attributed to the ranking component. This is beneficial for
the application of similarity search, as the Hamming distance scales
linearly with the number of bits in the hash codes, and can thus
provide a notable speed-up while obtaining a similar performance
using fewer bits. Additionally, when comparing the performance of
RBSH without the ranking component against the baselines in Ta-
ble 2, then it obtains a better performance in 17 out of 20 cases, thus
highlighting the performance of just the variational component.

To further investigate the ranking component effect, as well as
RBSH in general, in Section 4.7 we consider word level differences
in the learned importance embeddings, as well as relations between
inverse document frequency (IDF) and the importance embedding
weights for each word. In Section 4.8 we investigate what makes
a word difficult to reconstruct (i.e., using the decoder function in
Section 3.3), which is done by comparing the word level recon-
struction log probabilities to both IDF and the learned importance
embedding weights. Finally, in Section 4.9 we do a quantitative
comparison of RBSH with and without the ranking component.
The comparison is based on a t-SNE [15] dimensionality reduction
of the hash codes, such that a visual inspection can be performed.
In the following sections we consider 16 and 128 bit hash codes
generated on 20news, as these provide the largest and one of the

smallest performance difference of RBSH with and without the
ranking component, respectively.

4.7 Investigation of the importance embedding
We posit that the ranking component in RBSH enables the model
to better differentiate between the importance of individual words
when reconstructing the original document. If we consider the de-
coder function in Equation 10, then it is maximized when the hash
code is similar to most of the importance weighted words, which
in the case of equally important words would correspond to a word
embedding average. However, if the hash code is short, e.g., 8 bits,
then similar documents have a tendency to hash to exactly the same
code, as the space of possible codes are considerably smaller than
at e.g., 128 bits. This leads to worse generalizability observed on
unseen documents when using short hash codes, but the ranking
component enables the model to better prioritize which words are
the most important. Figure 2 compares the learned importance
embedding weights for 16 and 128 bit codes on 20news with and
without the ranking component. For 16 bit codes we observe that
RBSH without the ranking component tends to estimate a higher
importance for most words, and especially for words with an RBSH
importance over 0.6. This observation could be explained by the
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Figure 2: Visualization of the learned importance embed-
ding for each word with and without using the ranking com-
ponent of RBSH. The plot is made on 20news with 16 and
128 bit hash codes, and the black diagonal line corresponds
to equal importance weights.

Figure 3: Visualization of the learned importance embed-
ding for each word compared to the inverse document fre-
quency (IDF). The plot is made on 20news with 16 and 128
bit hash codes.

ranking component acting as a regularizer, by enabling a direct
modelling of which words are important for correctly ranking doc-
uments as opposed to just reconstruction. However, as the code
length increases this becomes less important as more bits are avail-
able to encode more of the occurring words in a document, which
is observed from the importance embedding comparison for 128
bits, where the over estimation is only marginal.

Figure 3 shows the importance embedding weights compared to
the inverse document frequency (IDF) of each word. For both 16 and
128 bits we observe a similar trend of words with high importance
weight that also have a high IDF; however words with a high IDF do
not necessarily have a high importance weight. When we consider
low importance weights, then the corresponding IDF is more evenly
distributed, especially for 16 bit hash codes. For 128 bit we observe
that lower importance weights are more often associated with a low
IDF. These observations suggest that the model learns to emphasize
rare words, as well as words of various rarity that the model deems
important for both reconstruction and ranking.

4.8 Investigation of the difficulty of word
reconstruction

To better understand what makes a word difficult to reconstruct
we study the word level reconstruction log probabilities, i.e., each
summand in Equation 10, where a 0 value represents a word that is
always possible to reconstruct while a smaller value corresponds
to a word more difficult to reconstruct. Figure 4 compares the word

Figure 4: Comparison of the word level reconstruction log
probability compared to each word’s inverse document fre-
quency (IDF). The plot is made on 20news with 16 and 128
bit hash codes.

Figure 5: Comparison of the word level reconstruction log
probability compared to each word’s learned importance
weighting. The plot is made on 20news with 16 and 128 bit
hash codes.

level reconstruction log probabilities to each word’s IDF for 16
and 128 bit hash codes. There is no notable difference between
the plots, which both show that the model prioritizes being able
to reconstruct rare words, while focusing less on words occurring
often. This follows our intuition of an ideal semantic representation,
as words with a high IDF are usually more informative than those
with a low IDF.

Figure 5 shows a comparison similar to above, where the word
level reconstruction log probabilities are plotted against the learned
importance embedding weights. For both 16 and 128 bit hash codes
we observe that words that are difficult to reconstruct (i.e., have a
low log probability) are associated with a low importance weight.
Words with a low reconstruction log probability are also associated
with a low IDF. This shows that the model chooses to ignore often
occurring words with low importance weight. When considering
words with a reconstruction log probability close to 0, then in the
case of 16 bit hash codes the corresponding important weights
are very evenly distributed in the entire range. In the case of 128
bit hash codes we observe that words the model reconstructs best
have importance weights in the slightly higher end of the spectrum,
however for lower log probabilities the two hash code lengths
behave similarly. This shows that the model is able to reconstruct
many words well irrespectively of their learned importance weight,
but words with a high importance weight are always able to be
reconstructed well.

4.9 Hash code visualization
In Section 4.7 we argued that the ranking component of RBSH
enables the model to better prioritize important words for short
hash codes, by directly modelling which words were relevant for
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Figure 6: t-SNE [15] visualization of the 16 and 128 bit hash codes from our RBSH with and with the ranking component.
20news was used as the dataset and the same color coding for class labels is used across the plots.

ranking the documents. To further study this we perform a quali-
tative visualization using t-SNE [15] of 16 and 128 bit hash codes
on 20news (see Figure 6), where we do the visualization for RBSH
with and without the ranking component. For 16 bit hash codes we
observe that RBSH without the ranking component most often cre-
ates very tight clusters of documents, corresponding to the fact that
many of the produced hash codes are identical. When the ranking
component is included the produced hash codes are more varied.
This creates larger, more general clusters of similar documents.
This leads to better generalizability as the space is better utilized,
such that unseen documents are less likely to hash into unknown
regions, which would result in poor retrieval performance. When
considering the 128 bit hash codes for RBSH with and without
the ranking component, we observe that they are highly similar,
which was also expected as the Prec@100 performance was almost
identical.

5 CONCLUSION
We presented a novel method for unsupervised semantic hashing,
Ranking based Semantic Hashing (RBSH), which consists of a vari-
ational and ranking component. The variational component has
similarities with variational autoencoders and learns to encode a
input document to a binary hash code, while still being able to
reconstruct the original document well. The ranking component
is trained on document triplets and learns to correctly rank the
documents based on their generated hash codes. To circumvent
the need of labelled data, we utilize a weak labeller to estimate the

rankings, and then employ weak supervision to train the model
in a supervised fashion. These two components enable the model
to encode both local and global structure into the hash code. Ex-
perimental results on four publicly available datasets showed that
RBSH is able to significantly outperform state-of-the-art semantic
hashing methods to such a degree, that RBSH hash codes generally
perform similarly to other state-of-the-art hash codes, while using
2-4x fewer bits. This means that RBSH can maintain state-of-the-art
performance while allowing a direct storage reduction of a factor
2-4x. Further analysis showed that the ranking component provided
performance increases on all code lengths, but especially improved
the performance on hash codes of 8-16 bits. Generally, the model
analysis also highlighted RBSH’s ability to estimate the importance
of rare words for better hash encoding, and that it prioritizes the
encoding of rare informative words in its hash code.

Futurework includes incorporatingmultipleweak labellers when
generating the hash code ranking, which under certain indepen-
dence assumptions has been theoretically shown to improve perfor-
mance of weak supervision [31]. Additionally, it could be interesting
to investigate the effect of more expressive encoding functions, such
as recurrent or convolutional neural networks, that have been used
for image hashing [30, 36].
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ABSTRACT
Semantic Hashing is a popular family of methods for efficient sim-
ilarity search in large-scale datasets. In Semantic Hashing, docu-
ments are encoded as short binary vectors (i.e., hash codes), such
that semantic similarity can be efficiently computed using the Ham-
ming distance. Recent state-of-the-art approaches have utilized
weak supervision to train better performing hashing models. In-
spired by this, we present Semantic Hashing with Pairwise Re-
construction (PairRec), which is a discrete variational autoencoder
based hashing model. PairRec first encodes weakly supervised train-
ing pairs (a query document and a semantically similar document)
into two hash codes, and then learns to reconstruct the same query
document from both of these hash codes (i.e., pairwise reconstruc-
tion). This pairwise reconstruction enables our model to encode lo-
cal neighbourhood structures within the hash code directly through
the decoder. We experimentally compare PairRec to traditional and
state-of-the-art approaches, and obtain significant performance
improvements in the task of document similarity search.
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1 INTRODUCTION
Document similarity search is a core information retrieval task,
where semantically similar documents are retrieved based on a
query document. Large-scale retrieval requires methods that are
both effective and efficient, and that can–ideally–be trained in an

∗Both authors share the first authorship

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401220

unsupervised fashion due to the high cost associated with label-
ing massive data collections. To this end, Semantic Hashing [11]
methods learn to transform objects (e.g., text documents) into short
binary vector representations, which are called hash codes. The
semantic similarity between two documents can then be computed
using the Hamming distance, i.e., the sum of differing bits between
two hash codes, which can be implemented highly efficiently on
hardware due to operating on fixed-length bit strings (real-time
retrieval among a billion hash codes [12]). Hash codes are typically
the same length as a machine word (32 or 64 bits), thus the storage
cost for large document collections is relatively low.

The state-of-the-art on unsupervised semantic hashing usesweak
supervision in different ways to learn hash codes that better encode
the structure of local neighbourhoods around each document. Nbr-
Reg [2] used BM25 to associate each document with an aggregation
of the most similar neighbourhood documents, where two different
decoders are trained to reconstruct the document hash code to both
the original and aggregated neighbourhood document. However,
we argue that using multiple different decoders on a single hash
code is ineffective, since each decoder will attempt to enforce (po-
tentially) different semantics, which may harm generalization of the
hash code. Additionally, an aggregated neighbourhood document
is not a real document encountered during retrieval, which means
that learning from it can introduce further semantic shift. Recently,
RBSH [7] proposed to use weak supervision for incorporating a
ranking objective in the model, with the aim of improving the hash
codes performance in document ranking tasks. However, RBSH
uses two weakly (positively and negatively) labeled documents to
generate a ranking triplet, each of which is obtained from a noisy
relevance estimate, which may lead to larger inaccuracies when
combined.

To address the above problems, we propose to use weak supervi-
sion to extract the top-K most similar documents to a given query
document, which are split into K pairs, each consisting of the query
document and a top-K document. Using an end-to-end discrete
variational autoencoder architecture, each document within a pair
is encoded to a hash code, and through a single decoder they are
both trained in an unsupervised fashion to be able to reconstruct
the query document (i.e., they are pairwise reconstructed to obtain
the query document). In contrast to NbrReg [2], our PairRec aims
at learning a more generalizable decoding through a single decoder
used on pairs of (non-aggregated) documents, as opposed to using
different decoders as done in NbrReg. In contrast to RBSH [7], our
PairRec is only based on a single weakly labeled document per
sample, thus aiming at reducing the inaccuracies originating from
comparing noisy relevance estimates for ranking in RBSH.

27



Figure 1: PairRec model overview.

In summary, we contribute a novel weakly supervised semantic
hashing approach named PairRec, based on our concept of pair-
wise reconstruction for encoding local neighbourhood structures
within the hash code. We experimentally evaluate the effectiveness
of PairRec against traditional and state-of-the-art semantic hashing
approaches, and show that PairRec obtains significant improve-
ments in the task of document similarity search. In fact, PairRec
hash codes generally perform similar or better than the state-of-
the-art while using 2-4x fewer bits.

2 RELATEDWORK
Early work on semantic hashing used techniques adopted from
spectral clustering [14], encapsulating global similarity structures,
and later local similarity structures between neighbours found us-
ing k-nearest neighbour [16]. Following the popularity of deep
learning, VDSH [3] was proposed as a neural model enabling com-
plex encoding of documents, that aimed to learn more descriptive
hash codes. Inspired by the benefit of weak supervision in related
domains [4, 6], NbrReg [2] was proposed for incorporating aggre-
gated neighbourhood documents in the hash code decoder, for
the purpose of incorporating local similarity structure. However,
these methods do not learn the hash code in an end-to-end fashion,
since they rely on a post-processing rounding stage. To this end,
NASH [13] was proposed as an end-to-end trainable variational au-
toencoder, where bits were sampled according to a learned sample
probability vector from a Bernoulli distribution. As a step towards
more expressive document encoding, BMSH [5] utilized a Bernoulli
mixture prior generative model, but was only able to outperform
a simple version of the NASH model, and not consistently out-
perform the proposed full version. Lastly, RBSH [7] was the first
semantic hashing approach that utilized a ranking objective in the
model (through sampling semantically similar documents [9]), thus
enabling the hash codes to combine both local and global structures
for improved retrieval performance. RBSH was able to significantly
outperform existing state-of-the-art semantic hashing approaches.
Recently, semantic hashing has also been successfully applied to
the task of cold-start collaborative filtering, where recent advances
enabled a better semantic representation of the items [8].

3 PAIRWISE RECONSTRUCTION BASED
HASHING

Pairwise reconstruction based hashing (PairRec) is a discrete vari-
ational autoencoder with a pairwise reconstruction loss. Given a

document 𝑑 , PairRec generates an𝑚-bit hash code 𝑧 ∈ {0, 1}𝑚 for
𝑑 , such that two semantically similar documents have low Ham-
ming distance. Specifically, 𝑧 is sampled by repeating𝑚 consecutive
Bernoulli trials based on learned sampling probabilities. Given a
similarity function, PairRec is trained on pairs of semantically simi-
lar documents, and learns to encode local document neighbourhood
structures by training to reconstruct one of the documents from
both hash codes (i.e., pairwise reconstruction). We first cover the
model architecture and then the pairwise reconstruction loss func-
tion. Figure 1 shows a model overview.

To compute the hash code 𝑧, we let the document likelihood be
conditioned on 𝑧 and define the conditional document likelihood
as a product over word probabilities:

𝑝 (𝑑 |𝑧) =
∏
𝑗 ∈W𝑑

𝑝 (𝑤 𝑗 |𝑧) (1)

whereW𝑑 denotes the set of all unique words in document 𝑑 . Based
on this, the document log likelihood can be found as:

log 𝑝 (𝑑) = log
∑

𝑧∈{0,1}𝑚
𝑝 (𝑑 |𝑧)𝑝 (𝑧) (2)

where 𝑝 (𝑧) is the hash code prior of a Bernoulli distribution with
equal probability of sampling 0 and 1. However, maximizing log 𝑝 (𝑑)
is intractable in practice [10], so instead we maximise the varia-
tional lower bound:

log 𝑝 (𝑑) ≥ 𝐸𝑄 ( · |𝑑) [log 𝑝 (𝑑 |𝑧)] − KL(𝑄 (𝑧 |𝑑) | |𝑝 (𝑧)) (3)

where 𝑄 (𝑧 |𝑑) is a learned approximation of the posterior distribu-
tion, and KL is the Kullback-Leibler divergence, which has a closed
form solution for Bernoulli distributions [13]. Next, we cover our
model’s encoder (𝑄 (𝑧 |𝑑)) and decoder (𝑝 (𝑑 |𝑧)), and subsequently
specify the pairwise reconstruction loss.

3.1 Encoder
The approximate posterior𝑄 (𝑧 |𝑑) is computed using a feedforward
network with two hidden layers with ReLU activations, and a fi-
nal output layer using a sigmoid activation to get the sampling
probability for each bit:

𝑄 (𝑧 |𝑑) = FF𝜎 (FFReLU (FFReLU (𝑑 ⊙ 𝑒imp)))) (4)

where FF denotes a single feed forward layer, ⊙ is elementwise mul-
tiplication, and 𝑒imp is a learned word level importance [7]. During
training, the bits are Bernoulli sampled according to their sampling
probabilities, while the most probable bits are chosen greedily for
evaluation. This enables exploration during training, and a deter-
ministic evaluation output. As the sampling is non differentiable, the
straight through estimator is used to do back propagation through
the sampling [1].

3.2 Decoder
The decoder should reconstruct the original document 𝑑 . Previ-
ous work has shown a single linear projection works well [7, 13]
because the hash codes are used for (linear) Hamming distance
computations. We compute the word probabilities by a softmax,
where the logit for a single word is given by:

logit(𝑤 |𝑧) = 𝑓 (𝑧)𝑇 (𝐸word (𝐼 (𝑤) ⊙ 𝑒imp)) + 𝑏𝑤 (5)
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Table 1: Dataset statistics
documents multi-class classes unique words

TMC 28,596 Yes 22 18,196
reuters 9,848 Yes 90 16,631
agnews 127,598 No 4 32,154

where 𝑓 (𝑧) is a noise infused hash code, 𝐸word is a word embedding
learned during training, 𝐼 (𝑤) is a one-hot encoding of word𝑤 , 𝑒imp
is the word level importance also used in the encoder, and 𝑏𝑤 is a
word level bias term. The noise infusion is done by adding Gaussian
noise with zero mean and variance 𝜎2 to the hash code, resulting in
lower variance for the gradient estimates [10]. We apply variance
annealing to reduce the variance over time while training the model.
Thus, the conditional document log likelihood is given by:

log 𝑝 (𝑑 |𝑧) =
∑
𝑗 ∈W𝑑

log 𝑒 logit(𝑤𝑗 |𝑧)

𝑒
∑

𝑖∈Wall logit(𝑤𝑖 |𝑧) (6)

whereWall is the set of unique words over all documents.

3.3 Pairwise Reconstruction
PairRec assumes access to some similarity function, which given
a document 𝑑 can be used to obtain a set of the 𝐾 most similar
documents D𝐾

𝑑
. A training pair (𝑑,𝑑+) is constructed from the

document 𝑑 and a single document sampled from the set, i.e., 𝑑+ ∈
D𝑘
𝑑
. Using the variational lower bound from Eq. 3, the pairwise

reconstruction loss for the pair is defined as:

LPairRec = − 𝐸𝑄 ( · |𝑑) [log 𝑝 (𝑑 |𝑧)] + 𝛽KL(𝑄 (𝑧 |𝑑) | |𝑝 (𝑧))
−𝐸𝑄 ( · |𝑑+) [log 𝑝 (𝑑 |𝑧+)] + 𝛽KL(𝑄 (𝑧+ |𝑑+) | |𝑝 (𝑧+)) (7)

Note that this is a negation of the variational lower bound because
the loss needs to be minimized. The loss consists of two parts: (i)
the first part is an ordinary variational lower bound for document
𝑑 ; (ii) in the second variational lower bound, document 𝑑+ is used in
the encoding, while the decoding is of document 𝑑 . This transfers
local neighbourhood structure from the document space into the
Hamming space, since 𝑧+ needs to be able to reconstruct the original
𝑑 . Lastly, the KL divergence is weighed by a tuneable parameter.

4 EXPERIMENTAL EVALUATION
We use 3 publicly available datasets commonly used in related
work [3, 7, 13] consisting of TMC, reuters, and agnews (see Table
1). TMC1 is a multi-class dataset of air trafic reports. reuters2 is a
multi-class dataset of news, and filtered such that a document is
removed if none of its labels are among the 20 most frequent labels
(similarly done by [3, 7, 13]). Lastly, agnews [17] is a single-class
dataset of news.

We use the preprocessed data provided in [7], where TF-IDF is
used as the document representation and words occurring only
once are removed, as well as words occurring in more than 90%
of the documents. The datasets were split into training, validation,
and testing (80%/10%/10%). We use the validation loss to determine
when to stop training a model (using early stopping with a patience
of 5 epochs).

1https://catalog.data.gov/dataset/siam-2007-text-mining-competition-dataset
2http://www.nltk.org/book/ch02.html

4.1 Baselines and Tuning
We compare our PairRec against traditional post-processing round-
ing approaches (SpH [14], STH [16], and LCH [15]), neural post-
processing rounding approaches (VDSH [3] and NbrReg [2]), and
neural end-to-end approaches (NASH [13] and RBSH [7]). Nbr-
Reg and RBSH both make use of weak supervision as discussed
in Section 1. The baselines are tuned as described in their original
papers.

In PairRec3, we tune the number of hidden units in each encoder
layers across {500, 1000}, and the number of top K reconstruction
pairs across {1, 2, 5, 10, 25, 50, 100, 150, 200}. For obtaining the
reconstruction pairs, we generate 64 bit STH [16] hash codes and
retrieve the top K most semantically similar documents (STH was
also used by RBSH [7]). For the KL divergence, we tune 𝛽 from
{0, 0.01, 0.1}. Note that when 𝛽 = 0 is chosen, it corresponds to
removing the regularizing KL divergence from the loss. For the
variance annealing, we use an initial value of 1 and reduce it by 10−6
every iteration (as done in [7]). Lastly, we use the Adam optimizer
with a learning rate of 0.0005.

4.2 Evaluation Setup
Following related work [2, 3, 7, 13], we evaluate the semantic hash-
ing approaches based on their top 100 retrieval performance using
Prec@100 based on the Hamming distance. Given a query docu-
ment, we define a retrieved document to be relevant if it shares
at least one label with the query document (to ensure that we can
accommodate the multi-class datasets, where each document may
have one or more associated labels).

4.3 Results
Wegenerate hash codes of {8, 16, 32, 64, 128} bits and report Prec@100
in Table 2. The best performing method for each dataset and bit size
is highlighted in bold, and statistically significant improvements
(0.05 level) using a two tailed paired t-test are indicated by ▲ .

Our PairRec method consistently outperforms all the traditional
and state-of-the-art approaches across all datasets on all bit sizes.
RBSH, which also utilizes weak supervision for generating ranking
triplets, consistently obtains the second best scores, indicating the
benefit of weak supervision for semantic hashing. While NbrReg
also makes use of weak supervision (for creating aggregated neigh-
bourhood documents), it performs worse than both NASH and
RBSH, but generally better than VDSH, to which its architecture is
most similar to. The absolute Prec@100 increases depend on dataset
and bit size, but overall PairRec improves state-of-the-art by 1-4%,
which correspondingly enables PairRec hash codes to generally
perform better or similar to state-of-the-art hash codes with 2-4x
more bits.

4.4 Impact of Pairwise Reconstruction
The primary novelty of PairRec is the introduction of pairwise
reconstruction. We study the impact of (i) the performance gain
obtained by the pairwise reconstruction, and (ii) the performance
variance across a varying number of document pairs.

3We make our code available at https://github.com/casperhansen/PairRec.
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Table 2: Prec@100with different bit sizes. Bold numbers highlights the highest scores, and ▲ represents statistically significant
improvements over RBSH (the best baseline) at the 0.05 level using a two tailed paired t-test.

Agnews Reuters TMC
8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

SpH [14] .3596 .5127 .5447 .5265 .5566 .4647 .5250 .6311 .5985 .5880 .5976 .6405 .6701 .6791 .6842
STH [16] .6573 .7909 .8243 .8377 .8378 .6981 .7555 .8050 .7984 .7748 .6787 .7218 .7695 .7818 .7797
LCH [15] .7353 .7584 .7654 .7800 .7879 .5619 .6235 .6587 .6610 .6586 .6546 .7028 .7498 .7817 .7948
VDSH [3] .6418 .6754 .6845 .6802 .6714 .6371 .6686 .7063 .7095 .7129 .6989 .7300 .7416 .7310 .7289
NbrReg [2] .4274 .7213 .7832 .7988 .7976 .5849 .6794 .6290 .7273 .7326 .7000 .7012 .6747 .7088 .7862
NASH [13] .7207 .7839 .8049 .8089 .8142 .6202 .7068 .7644 .7798 .8041 .6846 .7323 .7652 .7935 .8078
RBSH [7] .8066 .8288 .8363 .8393 .8381 .7409 .7740 .8149 .8120 .8088 .7620 .7959 .8138 .8224 .8193
PairRec (ours) .8119▲ .8354▲ .8452▲ .8492▲ .8498▲ .7502▲ .8028▲ .8268▲ .8329▲ .8468▲ .7656▲ .7991▲ .8239▲ .8280▲ .8303▲

Figure 2: PairRec with and without pairwise reconstruction.

Figure 3: 64 bit PairRec while varying the top K.
Performance gain by pairwise reconstruction. We compute

the Prec@100 with and without the pairwise reconstruction and
plot the scores in Figure 2. The largest improvements occur for
64-128 bit on the reuters dataset, but across all datasets and bit
sizes, pairwise reconstruction obtains consistent improvements. In
comparison, the original RBSH paper [7] also did an ablation with
and without weak supervision, but found their improvements to be
primarily isolated to 8-16 bits. This further highlights the benefit of
using a single weakly supervised document, rather than combining
multiple sources for generating ranking triplets as done in RBSH.

Performance variance across number of pairs. We now in-
vestigate the impact of the choice of the number of pairs. We fix the
bit size to 64 and plot the Prec@100 for all datasets using {0, 1, 5,
10, 25, 50, 100, 150, 200} pairs, where 0 corresponds to no pairwise
reconstruction. The optimal values for agnews, reuters, and TMC
are 100, 25, and 25, respectively. Interestingly, Prec@100 drops after
25 pairs on reuters, which most likely is due to a combination of
its small dataset size and high number of classes, corresponding
to pairs from top 50 and above no longer being sufficiently seman-
tically similar to the original document. In contrast, for TMC and
agnews, we observe no significant performance drop as the number
of pairs is increased. In all cases, we note that the optimal value of
pairs is also identified by the model parameter configuration with
the minimum loss.

5 CONCLUSION
Inspired by recent advances in semantic hashing using weak su-
pervision, we presented a novel semantic hashing approach with

pairwise reconstruction (PairRec). PairRec is a discrete variational
autoencoder trained on semantically similar document pairs (ob-
tained through weak supervision), where the model is trained such
that the hash codes from both pairwise documents reconstruct the
same document. We denote this type of reconstruction as pairwise
reconstruction; it enables PairRec to encode local neighbourhood
structures within the hash code. In an experimental comparison,
PairRec was shown to consistently outperform existing state-of-the-
art semantic hashing approaches. These improvements generally
enable PairRec hash codes to use 2-4x fewer bits than state-of-
the-art hash codes while achieving the same or better retrieval
performance.
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ABSTRACT
Semantic hashing represents documents as compact binary vec-
tors (hash codes) and allows both efficient and effective similarity
search in large-scale information retrieval. The state of the art has
primarily focused on learning hash codes that improve similarity
search effectiveness, while assuming a brute-force linear scan strat-
egy for searching over all the hash codes, even though much faster
alternatives exist. One such alternative is multi-index hashing, an
approach that constructs a smaller candidate set to search over,
which depending on the distribution of the hash codes can lead
to sub-linear search time. In this work, we propose Multi-Index
Semantic Hashing (MISH), an unsupervised hashing model that
learns hash codes that are both effective and highly efficient by
being optimized for multi-index hashing. We derive novel training
objectives, which enable to learn hash codes that reduce the candi-
date sets produced by multi-index hashing, while being end-to-end
trainable. In fact, our proposed training objectives are model agnos-
tic, i.e., not tied to how the hash codes are generated specifically in
MISH, and are straight-forward to include in existing and future
semantic hashing models. We experimentally compare MISH to
state-of-the-art semantic hashing baselines in the task of document
similarity search. We find that even though multi-index hashing
also improves the efficiency of the baselines compared to a linear
scan, they are still upwards of 33% slower than MISH, while MISH
is still able to obtain state-of-the-art effectiveness.
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1 INTRODUCTION
Similarity search is a fundamental information retrieval task that
aims at finding items similar to a given query. Efficient and effective
similarity search is essential for a multitude of retrieval tasks such
as collaborative filtering, content-based retrieval, and document
search [28, 29]. Semantic Hashing [25] methods enable very effi-
cient search by learning to represent documents (or other types of
data objects) as compact bit vectors called hash codes, where the
Hamming distance is used as the distance metric between hash
codes. In this setting, similarity search is expressed as either radius
search (finding all hash codes with a specified maximum Hamming
distance), or as k-nearest neighbour (kNN) search by incremen-
tally increasing the search radius until the Hamming distance to
the kth document is equal to the search radius. Early work on
semantic hashing [31, 32] was inspired by techniques similar to
spectral clustering [20] and latent semantic indexing [5], whereas
modern approaches use deep learning techniques, typically unsu-
pervised autoencoder architectures where hash codes are optimized
by learning to reconstruct their original document representations
[2, 3, 6, 8, 10, 27]. This line of work has led to extensive improve-
ments of the effectiveness of document similarity search, but has
had a lesser focus on efficiency, as it uses a brute-force linear scan
of all the hash codes. While the highly efficient Hamming distance
does enable large-scale search using linear scans [26], significantly
faster alternatives exist. Multi-index hashing [7, 22, 23] is such an
alternative, which, depending on a query hash code, can enable
sub-linear search time by constructing a smaller set of candidate
hash codes to search over. Hash codes can be used extremely effi-
ciently as direct indices into a hash table for finding exact matches,
however when doing radius search the number of such hash table
lookups grows exponentially. Multi-index hashing is based on the
observation that by splitting the hash codes into𝑚 substrings and
building a hash table per substring, the exponential growth of the
number of lookups can be significantly reduced. In practice, the
efficiency of multi-index hashing is heavily dependent on the dis-
tribution of the hash codes, and most particularly their substrings,
which affects the size of the constructed candidate set for a given
query hash code. However, no existing semantic hashing methods
consider this aspect, which we experimentally verify limits their
efficiency.

To address the above efficiency problem, we contributeMulti-
Index Semantic Hashing (MISH), an unsupervised semantic hash-
ing model that generates hash codes that are both effective and
highly efficient through being optimized for multi-index hashing.
We identify two key hash code properties for improving multi-index
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Figure 1:Method comparison relative to our proposedMISH,
averaged over all used datasets. We plot each method as a
point regarding its mean speedup of multi-index hashing
compared to a linear scan, as well as mean prec@100, rel-
ative to MISH.

hashing efficiency, related to limiting the size of the candidate set
produced by multi-index hashing. We operationalize these into
two novel model agnostic training objectives that effectively re-
duce the number of hash codes per hash table lookup, while also
limiting the necessary search radius for kNN search. These new
objectives are fully differentiable and enable training MISH in an
end-to-end fashion, and thus enable learning hash codes highly
suited for multi-index hashing. We experimentally compare MISH
to state-of-the-art semantic hashing baselines in the task of docu-
ment similarity search. We evaluate their efficiency by comparing
the speedup obtained by multi-index hashing over a linear scan,
and find that on average the baselines are upwards of 33% slower
than MISH. Even though MISH enables large efficiency gains, it
is still able to obtain state-of-the-art effectiveness–summarized in
Figure 1–where we plot the mean multi-index hashing speedup and
mean prec@100 for each method relative to our MISH. Furthermore,
we find that MISH can be tuned to enable even larger efficiency
improvements at the cost of a slight reduction in effectiveness.

2 RELATEDWORK
The problem of nearest neighbour search, also known as similarity
search or proximity search, aims at finding the nearest item to a
given query using a given distance measure. An efficient way of
doing this is by using compact bit vectors (hash codes) that have
low storage requirements and enable fast search through the use of
the Hamming distance. Locality Sensitive Hashing (LSH) [4] is well-
known type of hashing methods with strong theoretical guarantees
[4, 15, 29]. However, these types of methods are data-independent,
and thus unable to capture the semantics of a document (or other
types of data objects such as images). In contrast, semantic hashing
[25] based methods are data-dependent, and aim to learn hash codes
such that nearest neighbour search on the hash codes leads to a
search result similar to nearest neighbour search on the original
document space [29].

2.1 Semantic hashing
Early work on semantic hashing focused on Spectral Hashing (SpH)
[31], an approach inspired by spectral clustering [20] that aims at

learning hash codes that preserve global similarity structures of the
original documents. Laplacian co-hashing (LCH) [32] learns hash
codes representing document semantics through a decomposition
similar to latent semantic indexing [5]. Similarly to SpH, Graph
Hashing [17] uses a graph representation for learning to capture
the underlying global structure. Self-Taught Hashing (STH) [33]
contrasts prior work by learning to preserve the local structures
between samples identified by an initial kNN search in the original
document space. The prior work above has primarily been solved
as relaxed optimization problems, while later work has utilized
deep learning for better capturing document semantics. Variational
Deep Semantic Hashing (VDSH) [3], the first work in this direction,
uses a more complex encoding of documents through a variational
autoencoder architecture (this has since become the primary archi-
tecture in subsequent work). Similarly to STH, the authors of VDSH
later expanded their model (now named NbrReg) [2] by including
a loss function forcing the hash codes to be able to reconstruct
unique words occurring in both the document and its neighbours
in the original document space (found using BM25 [24]). While both
VDSH and NbrReg improved effectiveness, they share the problem
of using a post-hoc rounding of learned real-valued vectors, rather
than learning the hash codes end-to-end. To fix this, NASH [27]
proposed to learn the hash codes end-to-end through learning to
sample the bits according to a Bernoulli distribution, which reduced
the quantization errors compared to a rounding approach. Based
on the same principle, BMSH [6] uses a Bernoulli mixture prior, but
only manages to outperform a simple version of NASH, rather than
consistently outperform the full NASH model. Similarly to Nbr-
Reg and STH, recent state-of-the-art approaches have incorporated
neighbourhood knowledge: RBSH [8] incorporates a ranking-based
objective, while PairRec [10] uses a pairwise reconstruction loss.
The pairwise reconstruction loss is also used in our proposed MISH,
and forces two hash codes of semantically similar documents to be
able to reconstruct the unique words occurring in both documents,
thus directly enabling the encoding of neighbourhood information
into the hash codes.

2.2 Semantic hashing efficiency
The semantic hashing approaches above have led to substantial
improvements in effectiveness, but they all use a brute-force linear
scan for doing similarity search. While this is fast due to the high
efficiency of the Hamming distance, hash codes were originally
developed to be used as direct indices into a hash table [21, 25, 31],
as to avoid a linear scan on a dataset of potential massive size.
Through a hash table, finding exact hash codematches only requires
a single lookup, but when varying the search radius in a similarity
search (e.g., for performing kNN search) it leads to an exponentially
increasing number of lookups. To fix this, multi-index hashing
[7, 22, 23] has been explored, which enables sub-linear search time
by building hash tables on substrings of the original hash codes (see
Section 3.2 for a detailed description), and has been used for fast
kNN search in hashing-based approaches related to collaborative
filtering [9, 11, 12, 16, 34], knowledge graph search [30], and video
hashing [35]. However, none of these approaches optimize the hash
codes towards improving their multi-index hashing efficiency, but
rather simply apply it on already learned hash codes. In contrast, our
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proposed MISH is designed to directly learn hash codes suited for
multi-index hashing in an end-to-end fashion, which significantly
improves efficiency.

3 PRELIMINARIES
3.1 Hamming distance
Given a document 𝑑 ∈ D, let 𝑧𝑑 ∈ {−1, 1}𝑛 be its associated bit
string of 𝑛 bits, called a hash code. The Hamming distance between
two hash codes is defined as the number of differing bits between
the codes:

𝑑𝐻 (𝑧𝑑 , 𝑧𝑑′) =
𝑛∑
𝑖=1

1𝑧𝑑,𝑖≠𝑧𝑑′,𝑖 = SUM(𝑧𝑑 XOR 𝑧𝑑′) (1)

where the summation can be computed efficiently due to the popcnt
instruction that counts the number of bits set to one within a ma-
chine word. Due to the efficiency of the Hamming distance, rep-
resenting documents as hash codes enables both efficient radius
search (retrieving all hash codes with a maximum Hamming dis-
tance of 𝑟 to a given hash code), as well as kNN search. Specifically,
kNN is performed through radius search by incrementally increas-
ing the search radius up until the distance to the kth hash code is
equal to the search radius.

3.2 Multi-index hashing
Norouzi et al. [22, 23] propose a multi-index hashing strategy for
performing exact radius and kNN search in the Hamming space.
The aim of multi-index hashing is to build a candidate set C of
hash codes, significantly smaller than the full document collection,
|C| ≪ |D|. Given a query hash code 𝑧, it then suffices to compute
the Hamming distances between 𝑧 and the hash codes within C,
rather than every hash code in the full collection D. If the size of C
is sufficiently small, and can be constructed efficiently, this leads to
a sub-linear runtime compared to computing all possible Hamming
distances.

Multi-index hashing is an efficient and easy to implement algo-
rithm for building the candidate set C, where each code 𝑧 ∈ D is
split into𝑚 disjoint substrings, 𝑧 = [𝑧1, 𝑧2, ..., 𝑧𝑚]1. It now follows
by the pigeonhole principle that if two codes 𝑧 and 𝑧′ are within
radius 𝑟 , i.e., 𝑑𝐻 (𝑧, 𝑧′) ≤ 𝑟 , there exists at least one substring where
the distance between the two codes is at most 𝑟∗ = ⌊ 𝑟𝑚 ⌋. More
specifically, if we assume some arbitrary fixed ordering of the sub-
strings, and write the search radius as 𝑟 = 𝑟∗𝑚 + 𝑎, 𝑎 < 𝑚, one
substring will have distance at most 𝑟∗ in the first 𝑎 + 1 substrings,
or distance 𝑟∗ − 1 in the remaining𝑚 − 𝑎 − 1 substrings. Thus, the
candidate set can be constructed by finding all hash codes where
the distance within a substring is at most 𝑟∗ for the first 𝑎 + 1 sub-
strings, or at most 𝑟∗ − 1 for the remaining𝑚 − 𝑎 − 1 substrings.
For ease of notation, we will denote the substring search radius for
substring 𝑖 as 𝑟∗𝑖 .

3.2.1 Efficient candidate set construction. Multi-index hashing uses
hash tables to construct the candidate set efficiently. It constructs𝑚
hash tables, one for each substring, where the integer value of the
substring is used as a key into the hash table, which then maps to all

1For ease of notation we will assume the substrings have the same length, but it is not
a requirement.

documents containing the same substring. Given substring 𝑧𝑖 with
𝑛
𝑚 bits, finding exact matches would require only a single lookup,
but the number of lookups for radius search scales exponentially
with the substring radius 𝑟∗𝑖 as

∑𝑟 ∗𝑖
𝑟 ′=0 ( 𝑛𝑚 )𝑟 ′ . However, the exponen-

tial growth is significantly suppressed through fixing𝑚 > 1, which
reduces both the base (through the substring length) and exponent
(through the substring search radius), thus making it feasible to run
in practice.

Performing radius search on the hash codes can then be done
in a straight-forward fashion, by searching within each substring
using their associated hash table, and then taking the union over
the documents found for each substring search. Note that for kNN
search, incrementally increasing the search radius from 𝑟 to 𝑟 + 1
only changes the search radius within a single substring, and this
procedure can therefore be done very efficiently by building the
candidate set incrementally as 𝑟 is increased.

3.2.2 Hash code properties for efficient multi-index hashing. The
efficiency of multi-index hashing depends heavily on the properties
of the hash codes and how they are distributed in the Hamming
space. The computational cost is dominated by the cost of sorting
the candidate set according to the Hamming distance to the query
hash code, such that the largest speedups are obtained when the
candidate set size is small. Focusing on kNN search, the candidate
set size is controlled by two factors:

Documents per hash table lookup Given a query hash code,
the hash codes should be distributed such that the documents
added to the candidate set are likely to appear among the
top k documents with the least Hamming distance to the
query hash code. To achieve this, the hash codes should be
generated such that two hash codes with a low substring
Hamming distance also have a low Hamming distance be-
tween the entire hash codes.

Search radius for kNN Given a query hash code, the search
radius for kNN search is determined by the Hamming dis-
tance to the kth closest hash code, which is unknown at query
time. Since the number of hash table lookups increases ex-
ponentially with the substring search radius, the hash codes
should be distributed such that the Hamming distance to the
kth document is kept low to limit the exponential growth
(corresponding to substring distance less than 2).

Based on these factors it follows that different sets of hash codes
for the same dataset can potentially have highly varying search
efficiency without necessarily affecting the search effectiveness of
the hash codes. To ensure that learned hash codes enable both
efficient and effective search, the learning procedure must reflect
both of these as part of the training objective. In the next section,
we present how such codes can be learned for semantic hashing.

4 MULTI-INDEX SEMANTIC HASHING
We present Multi-Index Semantic Hashing (MISH), a semantic hash-
ing model for unsupervised semantic hashing, which learns to gen-
erate hash codes that enable both effective and efficient search
through being optimized for multi-index hashing. For a document
𝑑 ∈ D, MISH learns to generate an 𝑛-bit hash code 𝑧𝑑 ∈ {−1, 1}𝑛
that represents its semantics, such that two semantically similar
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documents have a low Hamming distance between them. MISH
consists of a component learning to encode document semantics,
and two novel components that ensure the learned hash codes are
well suited for multi-index hashing (see Section 3.2), based on the
hash code properties discussed in Section 3.2.2. These two compo-
nents are in fact model agnostic, i.e., not tied to how the hash codes
are encoded, so they are straight-forward to include in future work
for improving efficiency. Below is an overview of the components:

Semantic encoding MISH is based on a variational autoen-
coder architecture, where the encoder learns to generate the
semantic hash code according to repeating 𝑛 Bernoulli trials,
while a decoder learns to be able to reconstruct the original
document from the generated hash code. We choose to use
the pairwise reconstruction loss proposed in the state-of-the-
art PairRec [10] model to ensure that document semantics
are well captured within the hash codes.

Reducing the number of documents per hash table lookup
Given a query hash code 𝑧𝑞 , during training we sample an-
other hash code 𝑧𝑠 with a low Hamming distance within
one of its substrings, but a high Hamming distance using
the full hash code, which can be considered a false positive
match. We derive an objective that maximises the Hamming
distance between the particular substrings of 𝑧𝑞 and 𝑧𝑠 , thus
effectively pushing the substrings of 𝑧𝑞 and 𝑧𝑠 apart, reduc-
ing the number of such false positive matches in the hash
table lookup.

Control the search radius for kNN Given a query hash code
𝑧𝑞 , during trainingwe sample a hash code 𝑧𝑟 with𝑑𝐻 (𝑧𝑞, 𝑧𝑟 ) =
𝑟 , where 𝑟 is the Hamming distance at the top kth position in
a kNN search from 𝑧𝑞 . In case 𝑟 is too large, which leads to a
large number of hash table lookups, 𝑟 is reduced through an
objective that minimizes the Hamming distance between 𝑧𝑞
and 𝑧𝑟 , thus effectively pushing the top k hash codes closer
together.

In the following sections we present each component individually,
and describe how they are jointly optimized for learning the hash
codes in an end-to-end fashion.

4.1 Semantic encoding
We use a variational autoencoder to learn a document encoder
that generates a hash code capturing the document’s semantics,
as well as encoding the local neighbourhood structure of encoded
document. This is done by training the codes such that a hash code 𝑧
should be able to reconstruct not only the original document 𝑑 , but
also documents in the neighborhood of 𝑑 defined by an appropriate
similarity function.

To learn the hash codes, we compute the log likelihood of docu-
ment 𝑑 ∈ D conditioned on its code 𝑧 as a sum of word likelihoods,
which needs to be maximized:

log𝑝 (𝑑 |𝑧) =
∑
𝑗 ∈W𝑑

log𝑝 (𝑤 𝑗 |𝑧) (2)

where 𝑝 (𝑧) is sampled by repeating 𝑛 Bernoulli trials and𝑊𝑑 is the
set of unique words in document 𝑑 . However, due to the size of the
Hamming space, the above is intractable to compute in practice, so

the variational lower bound [14] is maximized instead:

log 𝑝 (𝑑) ≥ 𝐸𝑄 ( · |𝑑) [log 𝑝 (𝑑 |𝑧)] − KL(𝑄 (𝑧 |𝑑) | |𝑝 (𝑧)) (3)

where 𝑄 (𝑧 |𝑑) is a learned approximation of 𝑝 (𝑧) that functions
as the decoder, and KL is the Kullback-Leibler divergence. In the
text below, we first describe the encoder (𝑄 (𝑧 |𝑑)), then the decoder
(𝑝 (𝑑 |𝑧)), and lastly the loss function.

4.1.1 Encoder. The encoder is a feed forward network, with two
hidden layers using ReLU activation units, followed by a final out-
put layer using a sigmoid activation function, to get the bitwise
sampling probabilities:

𝑄 (𝑧 |𝑑) = FF𝜎 (FFReLU (FFReLU (𝑑 ⊙ 𝑒imp)))) (4)

where FF denotes a feed forward layer, and 𝑒imp is a learned word
level importance embedding. The purpose of the importance em-
bedding is to scale each word of the document representation, such
that unimportant words have less influence on generating the hash
codes. During training, the bits are sampled according to the bit-
wise sampling probabilities, while being chosen deterministically
for evaluation (choosing the most probable bit value without sam-
pling). To make the sampling differentiable, we employ the straight-
through estimator [1].

4.1.2 Decoder. The decoder, log𝑝 (𝑑 |𝑧), is defined as maximizing
the log likelihood of each word in document 𝑑 :

log 𝑝 (𝑑 |𝑧) =
∑
𝑗 ∈W𝑑

log 𝑒 logit(𝑤𝑗 |𝑧)

𝑒
∑

𝑖∈Wall logit(𝑤𝑖 |𝑧) (5)

where logit(𝑤 |𝑧) is the logit for word𝑤 𝑗 andWall are all the words
in the corpus. The logit for each word is computed as:

logit(𝑤 |𝑧) = 𝑓 (𝑧)𝑇 (𝐸word (𝐼 (𝑤) ⊙ 𝑒imp)) + 𝑏𝑤 (6)

where 𝑓 (𝑧) is a noise-infused hash code with added Gaussian noise
(zero mean and a parameterized variance 𝜎2), which is annealed
during training and results in lower variance for the gradient es-
timates [14]. 𝐸word is a word embedding learned during training,
𝐼 (𝑤) denotes a one-hot encoding of word𝑤 , and 𝑏𝑤 is a bias term.

4.1.3 Semantic encoder loss. To make the loss function aware of
the local neighbourhood structure around a given document, we use
pairwise reconstruction as proposed by Hansen et al. [10]. To this
end, we use a similarity function independent of the learned hash
codes to compute a set of the 𝑝 most semantically similar documents
in the neighbourhood around document 𝑑 , denoted asN𝑝

𝑑
. For each

𝑑+ ∈ N𝑝
𝑑
, we construct (𝑑𝑞, 𝑑+) with corresponding hash codes

(𝑧𝑑 , 𝑧+) and define the loss function based on the variational lower
bound from Eq. 3 as:

Lsemantic = −𝐸𝑄 ( · |𝑑𝑞 ) [log𝑝 (𝑑𝑞 |𝑧𝑞)] + 𝛽KL(𝑄 (𝑧𝑞 |𝑑𝑞) | |𝑝 (𝑧𝑞))
−𝐸𝑄 ( · |𝑑+) [log𝑝 (𝑑 |𝑧+)] + 𝛽KL(𝑄 (𝑧+ |𝑑+) | |𝑝 (𝑧+)) (7)

As the hash codes, 𝑧𝑞 and 𝑧+ both have to reconstruct document
𝑑𝑞 (known as pairwise reconstruction) the hash codes are forced
to not only encode their associated document, but also the local
neighbourhood N𝑝

𝑑
as a whole.
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4.2 Reduce the number of documents per hash
table lookup

The candidate set estimated by multi-index hashing can be reduced
by limiting the number of documents added by each hash table
lookup. Specifically, we are interested in limiting the number of
false positive matches, i.e., candidate documents added due to a low
substring Hamming distance, but where the Hamming distance on
the full hash code is above the search radius. Given 𝑧𝑞 , a substring
𝑖 , and the top 𝑘 search radii 𝑟 and 𝑟∗𝑖 , we sample a hash code 𝑧𝑠 as
follows:

𝑧𝑠 = argmax
𝑧 𝑗

𝑑𝐻 (𝑧𝑞, 𝑧 𝑗 ) · 1[𝑑𝐻 (𝑧𝑖𝑞 ,𝑧𝑖𝑗 ) ≤𝑟 ∗𝑖 ] · 1[𝑑𝐻 (𝑧𝑞 ,𝑧 𝑗 )>𝑟 ] (8)

which corresponds to sampling the hash code with the largest Ham-
ming distance that has a substring Hamming distance below 𝑟∗𝑖 and
is outside the 𝑟 -ball centered on 𝑧𝑞 (expressed via 1[𝑑𝐻 (𝑧𝑞 ,𝑧 𝑗 )>𝑟 ] ).
By sampling hash codes with the largest value of 𝑑𝐻 (𝑧𝑞, 𝑧𝑠 ), 𝑧𝑠 is
unlikely to be within top 𝑘 , but would still appear in the candidate
set due to the low substring Hamming distance. Based on the sam-
pling of such hash codes, we can derive an objective that maximizes
the Hamming distance within the substring as long as 𝑧𝑠 appears in
the candidate set, which is expressed in the following loss function:

Lfalse-positive = −𝑑𝐻 (𝑧𝑖𝑞, 𝑧𝑖𝑠 ) (9)

In case one or both indicator functions in Eq. 8 are always 0 for a
given query, this loss is simply set to 0.

4.2.1 Finding the pair (𝑧𝑞, 𝑧𝑠 ). While training the network, the
hash codes potentially change in each iteration, hence we need to
continuously sample the pair (𝑧𝑞, 𝑧𝑠 ) during training. As recomput-
ing every hash code for every batch is computationally expensive,
we employ a memory module that is continuously updated with
the generated hash codes in addition to the associated document
ids. We denote this memory module as 𝑀 . The memory size (i.e.,
the number of hash codes to keep in𝑀) is denoted by 𝑠mem, and the
memory module is updated using a first-in first-out (FIFO) strategy.
Due to the compact representation of the hash codes and document
ids, we fix 𝑠mem to be the size of the training set2.

Using the sampling requirements from Eq. 8, 𝑧𝑠 can now be
obtained from the memory module. However, since the memory
module may contain outdated hash codes due to model updates in
previous training iterations, the validity of the pair (𝑧𝑞, 𝑧𝑠 ) must be
ensured. This is done by recomputing 𝑧𝑠 (based on the document
features obtained through the stored document id) on the current
model parameters, and verifying whether it is still valid according to
the sampling requirements (if not, the loss is set to 0). Note that the
search radii 𝑟∗𝑖 and 𝑟 for top 𝑘 retrieval also needs to be estimated
based on the memory module. However, since 𝑧𝑠 is sampled as
the hash code with the largest Hamming distance to 𝑧𝑞 , smaller
deviations from the true radii are not problematic, as the worst-case
outcome simply is that the already far apart (𝑧𝑞, 𝑧𝑠 ) pair is pushed
slightly further apart then necessary.

2For truly massive-scale datasets, or due to specific hardware constraints, the memory
size could be fixed to a number less than the training set size.

Table 1: Dataset statistics.

documents multi-class classes unique words
TMC 28,596 Yes 22 18,196
reuters 9,848 Yes 90 16,631
agnews 127,598 No 4 32,154

4.3 Control search radius
In Section 4.2 we detailed how to reduce the number of false positive
documents per hash table lookup, while we now focus on how to
reduce the number of such lookups. Given a query hash code 𝑧𝑞 , we
aim to control the search radius 𝑟 to limit the exponential increase
in the number of hash table lookups, which happens when the
substring search radius 𝑟∗𝑖 > 1, 𝑖 ∈ {1, ...,𝑚} (see Section 3.2.1),
corresponding to 𝑟 > 2𝑚 − 1. To this end, we compute 𝑟 for the
query based on thememorymodule, and sample a hash code 𝑧𝑟 with
𝑑𝐻 (𝑧𝑞, 𝑧𝑟 ) = 𝑟 , resulting in the hash code pair (𝑧𝑞, 𝑧𝑟 ). To reduce
the number of lookups, we define a loss function that minimizes
the Hamming distance of the pair:

Lradius = 𝑑𝐻 (𝑧𝑞, 𝑧𝑟 ) · 1[𝑟>2𝑚−1] (10)
where the indicator function ensures that the Hamming distance
is only minimized in cases where the search radius is too large.
Similarly to sampling 𝑧𝑠 for reducing the number of documents
per hash table lookup (Eq. 8), 𝑧𝑟 may be outdated in the memory
module, but is recomputed and it is verified whether its radius is
still equal to 𝑟 (otherwise the loss is set to 0).

4.4 Combined loss function
MISH is trained in an end-to-end fashion by jointly optimizing
the semantic loss (Eq. 7), reducing the number of false positive
documents per hash table lookup (Eq. 9), and controlling the number
of such lookups (Eq. 10) as follows:

Ltotal = Lsemantic + 𝛼1Lfalse-positive + 𝛼2Lradius (11)
where the hyperparameter weights, 𝛼1 and 𝛼2, control the trade-off
between the semantic encoding and tuning the hash codes towards
more efficient multi-index hashing search. However, optimizing
both effectiveness and efficiency are not necessarily mutually ex-
clusive because any permutation of the hash code bits provides
the same effectiveness, but some permutations result in better
multi-index hashing efficiency. Lastly, observe that Lfalse-positive
and Lradius are model agnostic, as neither are tied to how the hash
codes are generated, and can thus easily be incorporated in any
semantic hashing model for improving efficiency.

5 EXPERIMENTAL EVALUATION
5.1 Datasets
We evaluate MISH on well-known and publicly available datasets
used in related work [3, 8, 10, 27] and summarized in Table 1: (1)
TMC consists of multi-class air traffic reports; (2) Agnews consists
of single-class news documents; and (3) reuters consists of multi-
class news documents, where a filtering is applied that removes
documents if none of its labels occur among the top 20most frequent
labels (as done in [3, 8, 10, 27]).
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We use the preprocessed data provided by Hansen et al. [10],
where documents are represented using TF-IDF vectors, where
words occurring only once, or in more than 90% of the documents,
are removed. We use the provided data splits, which split the
datasets into training (80%), validation (10%), and testing (10%),
where the validation loss is used for early stopping.

5.2 Evaluation setup
We evaluate the hash codes in the task of document similarity
search (using kNN search), where we evaluate both effectiveness
and efficiency. Each document is represented as a hash code, such
that document similarity search can be performed using the Ham-
ming distance between two hash codes. For evaluation purposes,
we denote a document to be relevant (i.e., similar) to a query doc-
ument, if the documents share at least one label, meaning that in
multi-class datasets two documents do not need to share all labels.

For effectiveness we follow related work [3, 8, 10, 27] by con-
sidering the retrieval performance as measured by precision@100.
However, existing work computes the scores based on random tie
splitting, which is problematic for hash codes as ties occur often due
to the limited number of 𝑛+1 different Hamming distances for 𝑛-bit
hash codes. Instead, we compute the tie-aware precision@100 met-
ric [19] corresponding to the average-case retrieval performance.
Additionally, due to the large number of possible ties, we also com-
pute the worst-case retrieval performance by fixing ties such that
irrelevant documents appear before relevant ones before computing
precision@100.

For efficiency we measure the runtime for performing top-100 re-
trieval on the training set, where each test document acts as a query
document once. We perform a linear scan, i.e., brute-force computa-
tion of all Hamming distances, as well as multi-index hashing based
search [23]. We use the linear scan and multi-index implementation
made available by Norouzi et al. [23]3, where we follow the practi-
cal recommendation of splitting hash codes into substrings of 16
bits for multi-index hashing4. We repeat all timing experiments 100
times, and report the median speedup of using multi-index hashing
over the linear scan. Note that the runtime of multi-index hashing
naturally varies between the methods used for generating hash
code, whereas the linear scan time is the same independent of the
used method. All timing experiments were performed on an Intel
Core i9-9940X@3.30 GHz.

5.3 Baselines
We compare our proposed MISH to non-neural approaches with
post-processing rounding of document vectors to obtain hash codes
(STH [33] and LCH [32]), neural approaches with post-processing
rounding (NbrReg [2]), and neural end-to-end approaches that
incorporate the rounding as part of the model (NASH [27], RBSH
[8], and PairRec [10]). All baselines are tuned following the original
papers.

In contrast to our MISH, existing semantic hashing baselines
have focused on maximizing effectiveness, while simply assumed
retrieval is done using a brute-force linear scan, rather than faster
alternatives such as multi-index hashing. However, how bits are

3https://github.com/norouzi/mih/
4https://github.com/norouzi/mih/blob/master/RUN.sh

assigned into substrings impacts multi-index hashing efficiency, as
the candidate set size may be larger than necessary. To this end, we
include the greedy substring optimization (GSO) heuristic proposed
by Norouzi et al. [23], which greedily assigns bits to substrings as
to minimize the correlation between the bits within each substring.

5.4 Tuning
To tune MISH5 we fix the number of hidden units in the encoder
to 1000, and vary the number of documents in the pairwise recon-
struction neighbourhood (N𝑝

𝑑
) from {10, 25, 50, 100}, where both

10 and 25 worked well for reuters and TMC, whereas 100 was con-
sistently chosen for agnews. Similarly to Hansen et al. [10], N𝑝

𝑑
is

constructed based on retrieving the top 𝑝 most semantically similar
documents based on 64 bit STH hash codes. For the KL-divergence,
we tune 𝛽 from {0, 0.01}, where 0 was chosen most often, thus
effectively removing the KL term in those cases. For the variance
annealing in the noise-infused hash codes, we fix the initial value
to 1 and reduce by 10−6 every iteration (as per [8, 10]). For the com-
bined loss, we tune 𝛼1 from {1, 3, 5, 7} and 𝛼2 from {0.01, 0.05, 0.1},
where 𝛼1 = 3 and 𝛼2 = 0.01 was chosen for reuters and TMC, and
𝛼1 = 7 and 𝛼2 = 0.05 for agnews. As we focus on learning hash
codes that maintain state-of-the-art effectiveness, while improving
efficiency, we choose to use only the semantic loss (Lsemantic) on
the validation set for model selection and early stopping, rather
than the weighted total loss. Lastly, MISH is optimized using the
Adam optimizer [13] with a learning rate from {0.001, 0.005}, where
0.005 was chosen for reuters and TMC, and 0.001 for agnews.

5.5 Results
The experimental results are summarized for effectiveness in Table
2 and efficiency in Table 3. In Table 2, the highest worst-case and
average-case scores per column are highlighted in bold, and the
second highest are underlined. In Table 3, the largest and second
largest speedups (independent of applying the greedy substring
optimization (GSO)) are highlighted in bold and underlined, respec-
tively. Additionally, we report the linear scan time per document as
a point of reference for the speedups. In both tables, ▲ represents
statistically significant improvements over the second best method
at the 0.05 level using a two -tailed paired t-test.

5.5.1 Retrieval effectiveness. Table 2 shows the effectiveness mea-
sured by worst-case and average-case prec@100 across the datasets
using 32 and 64 bit hash codes (corresponding to the typical ma-
chine word sizes). Across all methods, we observe a larger gain in
worst-case prec@100 when increasing the number of bits in the
hash codes, compared to the average-case prec@100, where only
smaller increases are obtained. Thus, increasing the number of bits
is beneficial when worst-case performance is important no matter
the chosen method. The increase in worst-case prec@100 happens
because the documents are being spread out more in the Hamming
space as the number of bits are increased, which reduce the number
of Hamming distance ties.

OurMISHmethod obtains the best results forworst-case prec@100
in all cases, and additionally it obtains the best average-case prec@100
for reuters and agnews. For TMC, PairRec obtains marginally higher

5We make our code publicly available at https://github.com/Varyn/MISH
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Table 2: Worst case and average case precision@100. The highest precision is highlighted in bold, and the second highest is
underlined. ▲ represents statistically significant improvements over the second best method at the 0.05 level using a two tailed
paired t-test.

Reuters TMC Agnews
32 bits 64 bits 32 bits 64 bits 32 bits 64 bits

Prec@100 Worst Average Worst Average Worst Average Worst Average Worst Average Worst Average
LCH 0.5995 0.6616 0.6283 0.6613 0.6658 0.7510 0.7421 0.7817 0.6822 0.7599 0.7423 0.7775
STH 0.7730 0.8046 0.7803 0.7968 0.6858 0.7693 0.7481 0.7816 0.6823 0.8237 0.7931 0.8374
NbrReg 0.5785 0.6329 0.6327 0.6616 0.3272 0.6648 0.5862 0.6827 0.7274 0.7914 0.7535 0.7928
NASH 0.7330 0.7737 0.7767 0.7967 0.6845 0.7709 0.7535 0.7953 0.7059 0.8018 0.7748 0.8107
RBSH 0.7809 0.8110 0.8011 0.8182 0.7459 0.8107 0.7852 0.8158 0.7797 0.8347 0.8053 0.8317
PairRec 0.7812 0.8218 0.8087 0.8316 0.7320 0.8187 0.7922 0.8288 0.7700 0.8348 0.8114 0.8407
MISH 0.7965 0.8286 0.8248 0.8377 0.7608▲ 0.8156 0.7931 0.8261 0.7818 0.8375 0.8116 0.8419

Table 3: Speedup of multi-index hashing over a brute-force linear scan, as well as linear scan time per document. Greedy
substring optmizing (GSO) [23] corresponds to the correlation-based post-hoc heuristic, and Default corresponds to using the
hash codes as is. The largest speedup is highlighted in bold (independent of post-hoc fix), and the second largest is underlined.
▲ represents statistically significant improvements (100 repeated timing experiments) over the second best method at the 0.05
level using a two tailed paired t-test.

Reuters TMC Agnews
32 bits 64 bits 32 bits 64 bits 32 bits 64 bits

Speedup Default GSO Default GSO Default GSO Default GSO Default GSO Default GSO
LCH 2.5182 0.3508 0.8937 0.5603 7.2427 1.5879 2.1837 3.0767 18.2709 25.6365 3.7311 5.1354
STH 2.9374 0.2783 1.0116 0.5695 7.0382 2.2211 2.1947 2.4791 14.6936 29.2779 4.4515 9.5676
NbrReg 6.3841 0.7190 4.9589 0.8299 7.1497 1.7346 2.8800 5.2506 21.7102 23.7698 6.8518 7.5279
NASH 5.6356 0.6037 4.5869 0.8417 9.4069 1.5725 4.3819 4.3886 20.7673 23.1443 4.8355 5.3849
RBSH 4.4342 0.2965 1.7083 0.8051 7.0831 1.9708 2.7957 2.9146 25.9186 27.1164 4.5036 4.7345
PairRec 5.4296 0.3721 3.0770 0.9433 10.9118 1.7063 5.1129 4.9614 29.7880 33.4096 7.1765 7.8676
MISH 7.0698▲ 1.1216 5.4466▲ 1.0282 14.6296▲ 2.1923 8.8696▲ 6.1645 44.0151▲ 35.9177 13.6756▲ 12.5788
Linear scan time 0.000070 s 0.000069 s 0.000111 s 0.000109 s 0.000432 s 0.000407 s

average-case prec@100 compared to MISH, but PairRec is in most
cases the second best method. In general, the difference in effec-
tiveness between the best and second best performing method is
relatively small, and we only obtain statistically significant improve-
ments for worst-case prec@100 at 32 bits for TMC. As both MISH
and the state-of-the-art PairRec are based on the same semantic
loss (Eq. 7), it was to be expected that MISH would not significantly
improve effectiveness over PairRec. However, it is important to no-
tice that including the two additional losses in MISH, for improving
efficiency, did not negatively impact effectiveness either. In fact,
the additional losses have a regularizing effect that reduces the
number of Hamming distance ties (hence improving the worst-case
performance), as the losses force the hash codes to be better spread
in the Hamming space.

Table 4 shows the average percentage decreases in prec@100
(for both worst-case and average-case) compared to the best worst-
case and average-case scores, respectively. For a given method, a
decrease of 0% corresponds to that method always being the best
performing method across all datasets. We observe that on aver-
age, MISH outperforms the other methods in both cases, with a
noticeable better average worst-case effectiveness. Additionally, it

Table 4: Average decrease in worst-case and average-case
prec@100 compared to the best scores per dataset. An aver-
age decrease of 0% corresponds to obtaining the best perfor-
mance across all datasets.

32 bits 64 bits
Δ Worst Δ Average Δ Worst Δ Average

LCH -16.65% -12.57% -12.93% -11.46%
STH -8.51% -3.53% -4.45% -3.71%
NbrReg -30.44% -15.98% -18.84% -14.83%
NASH -9.24% -5.58% -5.12% -4.21%
RBSH -1.39% -1.15% -1.55% -1.71%
PairRec -2.40% -0.38% -0.70% -0.29%
MISH 0.00% -0.13% 0.00% -0.11%

can be seen that the baselines generally have larger worst-case de-
creases compared to the average-case decreases, which shows that
the baselines broadly cluster the hash codes more, thus resulting in
larger number of Hamming distance ties.

5.5.2 Retrieval efficiency. Table 3 shows the relative speedup com-
pared to a linear scan of the hash codes produced by each method,
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Figure 2: Speedup of multi-index hashing over linear scan
relative to MISH averaged across all datasets and bit config-
urations.

with and without greedy substring optimization (GSO) [23], to-
gether with the linear scan time per document. The linear scan
time per document is slightly lower for 64 bit hash codes compared
to 32 bit, due to our machine using a 64 bit operating system. In
addition, due to the sequential access pattern in a linear scan, the
larger memory requirement of 64 bit hash codes does not increase
the scan time. Overall, we observe that all methods achieve a higher
speedup for 32 bits compared to the speedup at 64 bits, caused by an
increase in the search radius for top 100 retrieval, which leads to a
larger number of hash table lookups, thus increasing the candidate
set of multi-index hashing. Furthermore, as expected the speedup
increases as the dataset size increases, because the relative size
of the candidate set decreases compared to the entire set of hash
codes.

Table 3 shows that MISH is significantly faster than the baselines
on all datasets and number of bits. The speedup obtained by the
baselines are largely varied across the datasets and number of bits.
No baseline can perform consistently well in all settings. GSO leads
to larger speedups for the baselines on agnews and for 64 bit hash
codes on TMC (except for PairRec), but worse on reuters and 32 bit
hash codes on TMC. For MISH, applying GSO always decreases the
speedup, which is caused by GSO changing the substring structure
learned during training through our proposed loss functions (Eq. 9
and Eq. 10), to a less optimal one. This highlights that GSO is not
always beneficial and, more importantly, the limitation of making
a post-hoc change to the structure of the hash codes. In contrast,
MISH directly optimizes the desirable hash code properties for
multi-index hashing (see Section 3.2.2) in an end-to-end fashion,
which significantly improves multi-index hashing efficiency.

Figure 2 shows the average relative speedup, across all datasets
and number of bits, compared to MISH. Generally the baselines can
be clustered in two groups of similar average efficiency (LCH, RBSH,
STH) and (NASH, NbrReg, PairRec). Interestingly, RBSH is the only
neural method among the least efficient methods, even though
PairRec and RBSH share the same underlying neural architecture
with the difference being that RBSH uses a pairwise ranking loss
and PairRec uses a pairwise reconstruction loss. This shows that
it is problematic to assume the produced hash codes by a given
method will be efficient, without directly optimizing them as done
in MISH, as even small changes in the model may greatly influence
the efficiency.

��� ���� ���� ��� ���
α2

���
���
���
���
���

��

����
����

α 1

�����

�

	

��

��

��

��

��� ���� ���� ��� ���
α2

���
���
���
���
���
	��
����
����

α 1

���
���

����

����

����

����

����

����

Figure 3:Hyperparameter impact on speedup and prec@100:
𝛼1 reduces the number of documents per hash table lookup,
and 𝛼2 controls the number of such lookups.

5.6 Efficiency and effectiveness impact of 𝛼1
and 𝛼2

Tomaintain state-of-the-art effectiveness, model selection was done
based only on the semantic loss (Eq. 7) on the validation set, but
model training is naturally still done on the weighted total loss (Eq.
11). We now investigate the impact of the total loss weights (𝛼1 and
𝛼2) on the efficiency and effectiveness of MISH, where 𝛼1 reduces
the number of documents per hash table lookup, and 𝛼2 controls
the number of such lookups. To this end, we report the speedup
and average-case prec@100 for as two grid plots with 𝛼1 and 𝛼2 as
the axes, exemplified for 64 bit hash codes on agnews.

The grid plots can be seen in Figure 3, where the top left corner
(𝛼1 = 0, 𝛼2 = 0) corresponds to the PairRec baseline [10]. For the
speedup plot, we observe a clear trend that higher values of both
𝛼1 and 𝛼2 improve efficiency, but 𝛼1 has the largest impact. This is
expected since 𝛼1 directly reduces the number of documents per
hash table lookup, reducing the candidate set across all queries,
while 𝛼2 affects a smaller subset of queries who exhibit a large
search radius. For the prec@100 plot, we observe that higher values
of 𝛼1 and 𝛼2 reduce effectiveness, which highlights the possible
trade-off when tuning the hyperparameters. However, the area with
the largest prec@100 scores is relatively large, thus enabling a large
efficiency improvement without compromising effectiveness.

5.7 Distribution of candidate set sizes
The computational cost of multi-index hashing is dominated by
the cost of sorting the candidate set according to the Hamming dis-
tances to the query hash code. We now investigate the distribution
of the candidate set size per hash code query for each method, as
visualized in Figure 4 using symmetrical violin plots6. For the cases
where GSO leads to improved speedups, we compute the candidate
set based on the hash codes after applying GSO. Across all datasets
and bit sizes, we observe that MISH is able to better concentrate
the density towards a lower number of candidates compared to the
baselines, thus explaining the large speedup improvements. By ob-
serving the larger candidate sizes for 64 bit hash codes compared to
32 bit hash code, we can directly see the reason for the speedup gap
between the two hash code sizes reported in Table 3. Furthermore,
the baselines exhibiting poor speedups are primarily due to long
density tails or a more uniform distribution of candidate set sizes.

6A violin plot is a combination of a boxplot and a symmetrical density plot that shows
the full distribution of the data.
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Figure 4: Violin plots (combined density and boxplot) of the number of document candidates found usingmulti-index hashing
for top-100 retrieval.

Figure 5: t-SNE [18] visualization of the two substring of MISH, PairRec, and STH 32 bit hash codes on agnews. Each color
represents one of 4 different classes. Greedy substring optimization (GSO) [23] is applied on PairRec and STH as it improved
their effiency for multi-index hashing.

While this naturally leads to worse overall efficiency, it also has the
potential problem of large query time variance, which may limit
their application in extremely time-constrained use cases.

5.8 Substring-level visualization
To further investigate the differences in how the methods distribute
the bits within the hash codes, we choose to visualize the individual
substrings.We consider 32 bit hash codes from the test set of agnews,
as it only contains two substrings, while agnews is a single-class
dataset, which makes it easier to visualize if hash codes of the
same class are clustered. We consider MISH, PairRec, and STH as
representative methods, as it also enables visualizing the impact
of GSO on the two baselines. PairRec is chosen due to being the
second best method on both effectiveness and efficiency for 32 bit
hash codes on agnews, while STH represents a method where GSO

greatly improves (doubles) its speedup (see Table 3). Figure 5 shows
a two-dimensional t-SNE [18] visualization, where it is important
to keep in mind that each plot contains the same number of points,
such that a plot appearing more sparse (more distance between
points) corresponds to more hash codes being highly similar. When
comparing MISH and PairRec, we observe that they do appear
similar, but MISH is slightly less sparse, meaning the hash codes are
better spread throughout the Hamming space. For STH, we observe
that prior to applying GSO, the hash codes are tightly clustered and
highly sparse (especially in the first substring), but GSO is able to
redistribute the bits such that the substrings better utilize the space.
This redistribution reduces the amount of false positive candidates
found in multi-index hashing, thus leading to the large observed
speedup.
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5.9 Conclusion
We presented Multi-Index Semantic Hashing (MISH), an unsuper-
vised semantic hashing model that learns hash codes well suited for
multi-index hashing [23], which enables highly efficient document
similarity search. Compared to a brute-force linear scan over all the
hash codes, multi-index hashing constructs a smaller candidate set
to search over, which can provide sub-linear search time. We iden-
tify key hash code properties that affect the size of the candidate
set, and use them to derive two novel objectives that enable MISH
to learn hash codes that results in smaller candidate sets when
using multi-index hashing. Our objectives are model agnostic, i.e.,
not tied to how the hash codes are generated specifically in MISH,
which means they are straight-forward to incorporate in existing
and future semantic hashing models. We experimentally compared
MISH to state-of-the-art semantic hashing baselines in the task of
document similarity search, where we evaluated both efficiency
and effectiveness. While multi-index hashing also improves the
efficiency of the baseline hash codes compared to a linear scan,
they are still upwards of 33% slower than our proposed MISH. In-
terestingly, these large efficiency gains of MISH can be obtained
without reducing effectiveness, as MISH is still able to obtain state-
of-the-art effectiveness, but we do find that even further efficiency
improvements can be obtained, but at the cost of an effectiveness
reduction. In future work, we plan to explore supervised versions of
MISH, specifically the impact of expanding our proposed efficiency
objectives with label information, which could decrease the number
of irrelevant documents in the candidate sets.
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ABSTRACT
Content-aware recommendation approaches are essential for pro-
viding meaningful recommendations for new (i.e., cold-start) items
in a recommender system. We present a content-aware neural
hashing-based collaborative filtering approach (NeuHash-CF), which
generates binary hash codes for users and items, such that the highly
efficient Hamming distance can be used for estimating user-item
relevance. NeuHash-CF is modelled as an autoencoder architecture,
consisting of two joint hashing components for generating user
and item hash codes. Inspired from semantic hashing, the item
hashing component generates a hash code directly from an item’s
content information (i.e., it generates cold-start and seen item hash
codes in the same manner). This contrasts existing state-of-the-art
models, which treat the two item cases separately. The user hash
codes are generated directly based on user id, through learning a
user embedding matrix. We show experimentally that NeuHash-CF
significantly outperforms state-of-the-art baselines by up to 12%
NDCG and 13% MRR in cold-start recommendation settings, and up
to 4% in both NDCG and MRR in standard settings where all items
are present while training. Our approach uses 2-4x shorter hash
codes, while obtaining the same or better performance compared
to the state of the art, thus consequently also enabling a notable
storage reduction.
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1 INTRODUCTION
Personalizing recommendations is a key factor in successful rec-
ommender systems, and thus is of large industrial and academic
interest. Challenges arise both with regards to efficiency and effec-
tiveness, especially for large-scale systems with tens to hundreds
of millions of items and users.

Recommendation approaches based on collaborative filtering
(CF), content-based filtering, and their combinations have been
investigated extensively (see the surveys in [2, 31]), with CF based
systems being one of the major methods in this area. CF based
systems learn directly from either implicit (e.g., clicks) or explicit
feedback (e.g., ratings), where matrix factorization approaches have
traditionally worked well [5, 20]. CF learnsm-dimensional user and
item representations based on a factorization of the interaction-
matrix between users and items, e.g., based on their click or rating
history, such that the inner product can be used for computing
user-item relevance. However, in the case of new unseen items (i.e.,
cold-start items), standard CF methods are unable to learn mean-
ingful representations, and thus cannot recommend those items
(and similarly for cold-start users). To handle these cases, content-
aware approaches are used when additional content information
is available, such as textual descriptions, and have been shown to
improve upon standard CF based methods [21].

In large-scale recommendation settings, providing top-K rec-
ommendations among all existing items using an inner product
is computationally costly, and thus provides a practical obstacle
in employing these systems at scale. Hashing-based approaches
solve this by generating binary user and item hash codes, such that
user-item relevance can be computed using the Hamming distance
(i.e., the number of bit positions where two bit strings are different).
The Hamming distance has a highly efficient hardware-level im-
plementation, and has been shown to allow for real-time retrieval
among a billion items [29]. Early work on hashing-based collabora-
tive filtering systems [17, 40, 41] learned real-valued user and item
representations, which were then in a later step discretized into
binary hash codes. Further work focuses on end-to-end approaches,
which improve upon the two-stage approaches by reducing the
discretizing error by optimizing the hash codes directly [24, 37]. Re-
cent content-aware hashing-based approaches [22, 39] have been
shown to perform well in both standard and cold-start settings,
however they share the common problem of generating cold-start
item hash codes differently from standard items, which we claim is
unnecessary and limits their generalizability in cold-start settings.
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We present a novel neural approach for content-aware hashing-
based collaborative filtering (NeuHash-CF) robust to cold-start rec-
ommendation problems. NeuHash-CF consists of two joint hashing
components for generating user and item hashing codes, which
are connected in a variational autoencoder architecture. Inspired
by semantic hashing [28], the item hashing component learns to
directly map an item’s content information to a hash code, while
maximizing its ability to reconstruct the original content informa-
tion input. The user hash codes are generated directly based on the
user’s id through learning a user embedding matrix, and are jointly
optimized with the item hash codes to optimize the log likelihood of
observing each user-item rating in the training data. Through this
end-to-end trainable architecture, all item hash codes are generated
in the same way, independently of whether they are seen or not
during training. We experimentally compare our NeuHash-CF to
state-of-the-art baselines, where we obtain significant performance
improvements in cold-start recommendation settings by up to 12%
NDCG and 13% MRR, and up to 4% in standard recommendation
settings. Our NeuHash-CF approach uses 2-4x fewer bits, while
obtaining the same or better performance than the state of the art,
and notable storage reductions.

In summary, we contribute a novel content-aware hashing-
based collaborative filtering approach (NeuHash-CF), which in con-
trast to existing state-of-the-art approaches generates item hash
codes in a unified way (not distinguishing between standard and
cold-start items).

2 RELATEDWORK
The seminal work of Das et al. [9] used a Locality-Sensitive Hashing
[10] scheme, called Min-Hashing, for efficiently searching Google
News, where a Jaccard measure for item-sharing between users was
used to generate item and user hash codes. Following this, Karat-
zoglou et al. [17] used matrix factorization to learn real-valued
latent user and item representations, which were then mapped to
binary codes using random projections. Inspired by this, Zhou and
Zha [41] applied iterative quantization [11] as a way of rotating
and binarizing the real-valued latent representations, which had
originally been proposed for efficient hashing-based image retrieval.
However, since the magnitude of the original real-valued represen-
tations are lost in the quantization, the Hamming distance between
two hash codes might not correspond to the original relevance
(inner product of real-valued vectors) of an item to a user. To solve
this, Zhang et al. [40] imposed a constant norm constraint on the
real-valued representations followed by a separate quantization.

Each of the above approaches led to improved recommendation
performance, however, they can all be considered two-stage ap-
proaches, where the quantization is done as a post-processing step,
rather than being part of the hash code learning procedure. Further-
more, post-processing quantization approaches have been shown
to lead to large quantization errors [37], leading to the investigation
of approaches learning the hash codes directly.

Next, we review (1) hashing-based approaches for recommen-
dation with explicit feedback; (2) content-aware hashing-based
recommendation approaches designed for the cold-start setting
of item recommendation; and (3) the related domain of semantic
hashing, which our approach is partly inspired from.

2.1 Learning to Hash Directly
Discrete Collaborative Filtering (DCF) [37] was the first approach
towards learning item and user hash codes directly, rather than
through a two-step approach. DCF is based on amatrix factorization
formulation with additional constraints enforcing the discreteness
of the generated hash codes. DCF further investigated balanced
and de-correlation constraints to improve generalization by better
utilizing the Hamming space. Inspired by DCF, Zhang et al. [38]
proposed Discrete Personalized Ranking (DPR) as a method de-
signed for collaborative filtering with implicit feedback (in contrast
to explicit feedback in the DCF case). DPR optimized a ranking
objective through AUC and regularized the hash codes using both
balance and de-correlation constraints similar to DCF. While these
and previous two-stage approaches have led to highly efficient and
improved recommendations, they are still inherently constrained
by the limited representational ability of binary codes (in contrast
to real-valued representations). To this end, Compositional Coding
for Collaborative Filtering (CCCF) [24] was proposed as a hybrid
approach between discrete and real-valued representations. CCCF
considers each hash code as consisting of a number of blocks, each
of which is associated with a learned real-valued scalar weight.
The block weights are used for computing a weighted Hamming
distance, following the intuition that not all parts of an item hash
code are equally relevant for all users. While this hybrid approach
led to improved performance, it has a significant storage overhead
(due to each hash code’s block weights) and computational runtime
increase, due to the weighted Hamming distance, compared to the
efficient hardware-supported Hamming distance.

2.2 Content-aware Hashing
A common problem for collaborative filtering approaches, both
binary and real-valued, is the cold-start setting, where a number of
items have not yet been seen by users. In this setting, approaches
based solely on traditional collaborative filtering cannot gener-
ate representations for the new items. Inspired by DCF, Discrete
Content-aware Matrix Factorization (DCMF) [22] was the first
hashing-based approach that also handled the cold-start setting.
DCMF optimizes a multi-objective loss function, which most im-
portantly learns hash codes directly for minimizing the squared
rating error. Secondly, it also learns a latent representation for each
content feature (e.g., each word in the content vocabulary), which is
multiplied by the content features to approximate the learned hash
codes, such that this can be used for generating hash codes in a cold-
start setting. DCMF uses an alternating optimization strategy and,
similarly to DCF, includes constraints enforcing bit balancing and
de-correlation. Another approach, Discrete Deep Learning (DDL)
[39] learns hash codes similarly to DCMF, through an alternating
optimization strategy solving a relaxed optimization problem. How-
ever, instead of learning latent representations for each content
feature to solve the cold-start problem, they train a deep belief
network [16] to approximate the already learned hash codes based
on the content features. This is a problem as described below.

DCMF and DDL both primarily learn hash codes not designed
for cold-start settings, but then as a sub-objective learn how to map
content features to new compatible hash codes for the cold-start
setting. In practice, this is problematic as it corresponds to learning
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cold-start item hash codes based on previously learned hash codes
from standard items, which we claim is unnecessary and limits their
generalizability in cold-start settings. In contrast, our proposed
NeuHash-CF approach does not distinguish between between the
settings for generating item hash codes, but rather always bases
the item hash codes on the content features through a variational
autoencoder architecture. As such, our approach can learn a better
mapping from content features to hash code, since it is learned
directly, as opposed to learning it in two steps by approximating
the existing hash codes that have already been generated.

2.3 Semantic Hashing
The related area of Semantic Hashing [28] aims to map objects
(e.g., images or text) to hash codes, such that similar objects have
a short Hamming distance between them. Early work focused on
two-step approaches based on learning real-valued latent repre-
sentations followed by a rounding stage [34–36]. Recent work has
primarily used autoencoder-based approaches, either with a sec-
ondary rounding step [7], or through direct optimization of binary
codes using Bernoulli sampling and straight-through estimators
for back-propagation during training [13, 14, 30]. We draw inspira-
tion from the latter approaches in the design of the item hashing
component of our approach, as substantial performance gains have
previously been observed in the semantic hashing literature over
rounding-based approaches.

3 HASHING-BASED COLLABORATIVE
FILTERING

Collaborative Filtering learns real-valued latent user and item rep-
resentations, such that the inner product between a user u and item
i corresponds to the item’s relevance to that specific user, where the
ground truth is denoted as a user-item rating Ru ,i . Hashing-based
collaborative filtering learns hash codes, corresponding to binary
latent representations, for users and items. We denotem-bit user
and item hash codes as zu ∈ {−1, 1}m and zi ∈ {−1, 1}m , respec-
tively. For estimating an item’s relevance to a specific user in the
hashing setting, the Hamming distance is computed as opposed to
the inner product, as:

H (zu , zi ) =
m∑
j=1

1[
z(j )u ,z

(j )
i

] = SUM
(
zu XOR zi

)
(1)

Thus, the Hamming distance corresponds to summing the differing
bits between the codes, which can be implemented very efficiently
using hardware-level bit operations through the bitwise XOR and
popcount operations. The relation between the inner product and
Hamming distance of hash codes is simply:

zTu zi =m − 2H (zu , zi ) (2)

meaning it is trivial to replace real-valued user and item repre-
sentations with learned hash codes in an existing recommender
system.

Figure 1: NeuHash-CF model overview.

3.1 Content-aware Neural Hashing-based
Collaborative Filtering (NeuHash-CF)

We first give an overview of our model, Content-aware Neural
Hashing-based Collaborative Filtering (NeuHash-CF), and then de-
tail its components. NeuHash-CF consists of two joint components
for generating user and item hash codes. The item hashing com-
ponent learns to derive item hash codes directly from the content
features associated with each item. The item hashing component
has two optimization objectives: (1) to maximize the likelihood
of the observed user-item ratings, and (2) the unsupervised objec-
tive of reconstructing the original content features. Through this
design, all item hash codes are based on content features, thus di-
rectly generating hash codes usable for both standard and cold-start
recommendation settings. This contrasts existing state-of-the-art
models [22, 39] that separate how standard and cold-start item hash
codes are generated. Through this choice, NeuHash-CF can gen-
erate higher quality cold-start item hash codes, but also improve
the representational power of already observed items by better
incorporating content features.

The user hashing component learns user hash codes, located
within the same Hamming space as the item hash codes, by maxi-
mizing the likelihood of the observed user-item ratings, which is a
shared objective with the item hashing component. Maximizing the
likelihood of the observed user-item ratings influences the model
optimization in relation to both user and item hash codes, while
the unsupervised feature reconstruction loss of the item hashing
component is focused only on the item hash codes. The aim of this
objective combination is to ensure that the hash code distances en-
force user-item relevance, but also that items with similar content
have similar hash codes.

Next, we describe the architecture of our variational autoencoder
(Section 3.2), followed by how users and items are encoded into hash
codes (Section 3.3), decoded for obtaining a target value (Section
3.4), and lastly the formulation of the final loss function (Section
3.5). We provide a visual overview of our model in Figure 1.

3.2 Variational Autoencoder Architecture
We propose a variational autoencoder architecture for generating
user and item hash codes, where we initially define the likelihood
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functions of each user and item as:

p(u) =
∏
i ∈Iu

p(Ru ,i ) (3)

p(i) = p(ci ) +
∏
u ∈Ui

p(Ru ,i ) (4)

where Iu is the set of all items rated by user u, Ui is the set of all
users who have rated item i , andp(ci ) is the probability of observing
the content of item i . We denote as ci ∈ R then-dimensional content
feature vector (a bag-of-words representation) associated with each
item, and denote the non-zero entries asWci . Thus, we can define
the content likelihood similar to Eq. 3 and 4:

p(ci ) =
∏

w ∈Wci

p(w). (5)

In order to maximize the likelihood of the users and items, we need
to maximize the likelihood of the observed ratings, p(Ru ,i ), as well
as the word probabilities p(w). Since they must be maximized based
on the generated hash codes, we assume that p(Ru ,i ) is conditioned
on both zu and zi , and that p(w) is conditioned on zi . For ease of
derivation, we choose to maximize the log likelihood instead of the
raw likelihoods, such that the log likelihood of the observed ratings
and item content can be computed as:

logp(Ru ,i ) = log
∑

zi ,zu ∈{−1,1}m
p(Ru ,i |zi , zu )p(zi )p(zu ) (6)

logp(ci ) = log
∑

zi ∈{−1,1}m
p(ci |zi )p(zi ) (7)

where the hash codes are sampled by repeating m consecutive
Bernoulli trials, which as a prior is assumed to have equal probabil-
ity of sampling either 1 or -1. Thus,p(zi ) andp(zu ) can be computed
simply as:

p(z) =
m∏
j=1

pδj (1 − p)1−δj , δj = 1[
z(j )>0

] (8)

where z(j) is the j’th bit of a hash code (either user or item), and
where we set p = 0.5 for equal sampling probability of 1 and -1.
However, optimizing the log likelihoods directly is intractable, so
instead we maximize their variational lower bounds [19]:

logp(Ru ,i ) ≥ Eqψ ,qθ
[
logp(Ru ,i |zi , zu )

]
− KL(qψ (zi |i)| |p(zi )) − KL(qθ (zu |u)| |p(zu )) (9)

logp(ci ) ≥ Eqψ
[
logp(ci |zi )

] − KL(qψ (zi |ci )| |p(zi )) (10)

whereqψ (zi |i) andqθ (zu |u) are learned approximate posterior prob-
ability distributions (see Section 3.3), and KL is the Kullback-Leibler
divergence. Intuitively, the conditional log likelihood within the
expectation term can be considered a reconstruction term, which
represents how well either the observed ratings or item content
can be decoded from the hash codes (see Section 3.4). The KL di-
vergence can be considered as a regularization term, by punishing
large deviations from the Bernoulli distributionwith equal sampling

probability of 1 and -1, which is computed analytically as:

KL(qψ (zi |ci )| |p(zi )) = qψ (ci ) log
qψ (ci )

p

+ (1 − qψ (ci )) log
1 − qψ (ci )

p
(11)

with p = 0.5 for equal sampling probability. The KL divergence
is computed similarly for the user hash codes using θ . Next we
describe how to compute the learned approximate posterior proba-
bility distributions.

3.3 Encoder Functions
The learned approximate posterior distributions qψ and qθ can be
considered encoder functions for items and users, respectively, and
are both modeled through a neural network formulation. Their
objective is to transform users and items intom bit hash codes.

3.3.1 Item encoding. An item i is encoded based on its content ci
through multiple layers to obtain sampling probabilities for gener-
ating the hash code:

l1 = ReLU
(
W1(ci ⊙wimp) + b1

)
(12)

l2 = ReLU
(
W2l1 + b2

)
(13)

whereW and b are learned weights and biases, ⊙ is elementwise
multiplication, andwimp is a learned importance weight for scaling
the content words, which has been used similarly for semantic hash-
ing [13]. Next, we obtain the sampling probabilities by transforming
the last layer, l2, into anm-dimensional vector:

qψ (ci ) = σ
(
W3l2 + b3

)
(14)

where σ is the sigmoid function to scale the output between 0 and
1, and ψ is the set of parameters used for the item encoding. We
can now sample the item hash code from a Bernoulli distribution,
which can be computed for each bit as:

z
(j)
i = 2⌈qψ (i)(j) − µ(j)⌉ − 1 (15)

where µ ∈ [0, 1]m is anm-dimensional vector with uniformly sam-
pled values. The model is trained using randomly sampled µ vectors,
since it encourages model exploration because the same item may
be represented as multiple different hash codes during training.
However, to produce a deterministic output for testing once the
model is trained, we fix each value within µ to 0.5 instead of a
randomly sampled value.

3.3.2 User encoding. The user hash codes are learned similarly to
the item hash codes, however, since we do not have a user feature
vector, the hash codes are learned using only the user id. Thus, the
sampling probabilities are learned as:

qθ (u) = σ
(
Euser1u

)
(16)

where Euser ∈ R |U |×m is the learned user embedding, and 1u is a
one-hot encoding of user u. Following the same approach as the
item encoding, we can sample the user hash code based on qθ (u)
for each bit as:

z
(j)
u = 2⌈qθ (u)(j) − µ(j)⌉ − 1 (17)

where θ is the set of parameters for user encoding. During training
and testing, we use the same sampling strategy as for the item
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encoding. For both users and items, we use a straight-through esti-
mator [4] for computing the gradients for backpropgation through
the sampled hash codes.

3.4 Decoder Functions
3.4.1 User-item rating decoding. The first decoding step aims to
reconstruct the original user-item rating Ru ,i , which corresponds to
computing the conditional log likelihood of Eq. 9, i.e., logp(Ru ,i) |zi , zu ).
We first transform the user-item rating into the same range as the
inner product between the hash codes:

R̂u ,i = 2m
Ru ,i

max rating −m (18)

Similarly to [23, 27], we assume the ratings are Gaussian distributed
around their true mean for each rating value, such that we can
compute the conditional log likelihood as:

logp(Ru ,i |zi , zu ) = logN (
R̂u ,i − zTi zu ,σ

2) (19)

where the variance σ 2 is constant, thus providing an equal weight-
ing of all ratings. However, the exact value of the variance is irrele-
vant, since maximizing Eq. 19 corresponds to simply minimizing
the squared error (MSE) of the mean term, i.e., R̂u ,i − zTi zu . Thus,
maximizing the log likelihood is equivalent to minimizing the MSE,
as similarly done in related work [22, 37, 39]. Lastly, note that due
to the equivalence between the inner product and the Hamming
distance (see Eq. 2), this directly optimizes the hash codes for the
Hamming distance.

3.4.2 Item content decoding. The secondary decoding step aims
to reconstruct the original content features given the generated
item hash code in Eq. 10, i.e., logp(ci |zi ). We compute this as the
summation of word log likelihoods (based on Eq. 5) using a softmax:

logp(ci |zi ) =
∑

w ∈Wci

log ez
T
i (Eword(1w ⊙wimp))+bw

e
∑
w′∈W zTi (Eword(1w′ ⊙wimp))+bw′

(20)

where 1w is a one-hot encoding for word w , W is the set of all
vocabulary words of the content feature vectors, Eword ∈ R |W |×m
is a learned word embedding, bw is a word-level bias term, and
the learned importance weightwimp is the same as in Eq. 12. This
softmax expression is maximized when the item hash codes are
able to decode the original content words.

3.4.3 Noise infusion for robustness. Previous work on semantic
hashing has shown that infusing random noise into the hash codes
before decoding increases robustness, and leads to more general-
izable hash codes [6, 13, 30]. Thus, we apply a Gaussian noise to
both user and item hash codes before decoding:

noise(z,σ 2) = z + ϵσ 2, ϵ ∼ N(0, I ) (21)
where variance annealing is used for decreasing the initial value of
σ 2 in each training iteration.

3.5 Combined Loss Function
NeuHash-CF can be trained in an end-to-end fashion bymaximising
the combination of the variational lower bounds from Eq. 9 and 10,
corresponding to the following loss:

L = Lrating + αLcontent (22)

Table 1: Dataset statistics after preprocessing such that each
user has at least rated 20 items, and each item has at least
been rated by 20 users.

Dataset #users #items #ratings sparsity
Yelp 27,147 20,266 1,293,247 99.765%
Amazon 35,736 38,121 1,960,674 99.856%

where Lrating corresponds to the lower bound in Eq. 9, Lcontent
corresponds to the lower bound in Eq. 10, and α is a tunable hyper
parameter to control the importance of decoding the item content.

4 EXPERIMENTAL EVALUATION
4.1 Datasets
We evaluate our approach on well-known and publicly available
datasets with explicit feedback, where we follow the same prepro-
cessing as related work [22, 33, 39] as described in the following.
We disallow users to have rated the same item multiple times and
use only the last rating in these cases. Due to the very high sparsity
of these types of datasets, we apply a filtering to densify the dataset.
We remove users who have rated fewer then 20 items, as well items
that have been rated by fewer than 20 users. Since the removal
of either a user or item may violate the density requirements, we
apply the filtering iteratively until all users and items satisfy the
requirement. The datasets are described below and summarized in
Table 1:

Yelp is from the Yelp Challenge1, which consists of user ratings
and textual reviews on locations such as hotels, restaurants,
and shopping centers. User ratings range between 1 (worst)
to 5 (best), and most ratings are associated with a textual
review.

Amazon [15] is from a collection of book reviews from Ama-
zon2. Similarly to Yelp, each user rates a number of books
between 1 to 5, andmost are accompanied by a textual review
as well.

Similarly to related work [22, 33, 39], to obtain content information
related to each item, we use the textual reviews (when available)
by users for an item. We filter stop words and aggregate all textual
reviews for each item into a single large text, and compute the TF-
IDF bag-of-words representations, where the top 8000 unique words
are kept as the content vocabulary. We apply this preprocessing
step separately on each dataset, thus resulting in two different
vocabularies.

4.2 Experimental Design
Following Wang and Blei [33], we use two types of recommenda-
tions settings: 1) in-matrix regression for estimating the relevance of
known items with existing ratings, and 2) out-of-matrix regression
for estimating the relevance of cold-start items. Both of these rec-
ommendation types lead to different evaluation setups as described
next.

1https://www.yelp.com/dataset/challenge
2http://jmcauley.ucsd.edu/data/amazon/
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4.2.1 In-matrix regression. In-matrix regression can be considered
the standard setup of all items (and users) being known at all times,
and thus corresponds to the setting solvable by standard collabora-
tive filtering. We split each user’s items into a training and testing
set using a 50/50 split, and use 15% of the training set as a validation
set for hyper parameter tuning.

4.2.2 Out-of-matrix regression. Out-of-matrix regression is also
known as a cold-start setting, where new items are to be recom-
mended. In comparison to in-matrix regression, this task cannot be
solved by standard collaborative filtering. We sort all items by their
number of ratings, and then proportionally split them 50/50 into a
training and testing set, such that each set has approximately the
same number of items with similar number of ratings. Similarly to
the in-matrix regression setting, we use 15% of the training items
as a validation set for hyper parameter tuning.

4.3 Evaluation Metrics
We evaluate the effectiveness of our approach and the baselines as a
ranking task with the aim of placing the most relevant (i.e., highest
rated) items at the top of a ranked list. As detailed in Section 4.2,
each user has a number of rated items, such that the ranked list is
produced by sorting each user’s testing items by their Hamming
distance between the user and item hash codes. To measure the
quality of the ranked list, we use Normalized Discounted Cumu-
lative Gain (NDCG), which incorporates both ranking precision
and the position of ratings. Secondly, we are interested in the first
position of the item with the highest rating, as this ideally should
be in the top. To this end, we compute the Mean Reciprocal Rank
(MRR) of the highest ranked item with the highest given rating
from the user’s list of testing items.

4.4 Baselines
We compare NeuHash-CF against existing state-of-the-art content-
aware hashing-based recommendation approaches, aswell as hashing-
based approaches that are not content-aware to highlight the benefit
of including content:

DCMF Discrete Content-aware Matrix Factorization [22]3 is
a content-aware matrix factorization technique, which is
discretized and optimized through solving multiple mixed-
integer subproblems. Similarly to our approach, its primary
objective is to minimize the squared error between the rating
and estimated rating based on the Hamming distance. It
also learns a latent representation for each word in the text
associated to each item, which is used for generating hash
codes for cold-start items.

DDL Discrete Deep Learning [39]4 also uses an alternating
optimizing strategy for solving multiple mixed-integer sub-
problems, where the primary objective is a mean squared
error loss. In contrast to DCMF, DDL uses a deep belief net-
work for generating cold-start item hash codes, which is
trained by learning to map the content of known items into
their hash codes generated in the first part of the approach.

3https://github.com/DefuLian/recsys/tree/master/alg/discrete/dcmf
4https://github.com/yixianqianzy/ddl

DCF Discrete Collaborative Filtering [37]5 can be considered
the predecessor to DCMF, but is not content-aware, which
was the primary novelty of DCMF.

NeuHash-CF/no.C We include a version of our NeuHash-CF
that is not content-aware, which is done by simply learn-
ing item hash codes similarly to user hash codes, thus not
including any content features.

For both DCMF and DDL, hash codes for cold-start items are seen
as a secondary objective, as they are generated differently from
non-cold-start item hash codes. In contrast, our NeuHash-CF treats
all items identically as all item hash codes are generated based on
content features alone.

To provide a comparison to non-hashing based approaches,
which are notably more computationally expensive for making
recommendations (see Section 4.7), we also include the following
baselines:

FM Factorization Machines [26] works on a concatenated n-
dimensional vector of the one-hot encoded user id, one-hot
encoder item id, and the content features. It learns latent
vectors, as well as scalar weights and biases for each of the
n dimensions. FM estimates the user-item relevance by com-
puting a weighted sum of all non-zero entries and all inter-
actions between non-zero entries of the concatenated vector.
This results in a large amount of inner product computations
and a large storage cost associated with the latent repre-
sentations and scalars. We use the FastFM implementation
[3]6.

MF Matrix Factorization [20] is a classic non-content-aware
collaborative filtering approach, which learns real-valued
item and user latent vectors, such that the inner product
corresponds to the user-item relevance. MF is similar to a
special case of FM without any feature interactions.

4.5 Tuning
For training our NeuHash-CF approach, we use the Adam [18]
optimizer with learning rates selected from {0.0005, 0.0001} and
batch sizes from {500, 1000, 2000}, where 0.0005 and 2000 were con-
sistently chosen. We also tune the number of encoder layers from
{1, 2, 3} and the number of neurons in each from {500, 1000, 2000};
most runs had the optimal validation performance with 2 layers
and 1000 neurons. To improve robustness of the codes we added
Gaussian noise before decoding the hash codes, where the vari-
ance was initially set to 1 and decreased by 0.01% after every batch.
Lastly, we tune α in Eq. 22 from {0.001, 0.01, 0.1}, where 0.001 was
consistently chosen. The code7 is written in TensorFlow [1]. For
all baselines, we tune the hyper parameters on the validation set as
described in the original papers.

4.6 Results
The experimental comparison is summarized in Table 2 and 3 for
NDCG@{2, 6, 10} and MRR, respectively. The tables are split into
in-matrix and out-of-matrix evaluation settings for both datasets,
and the methods can be categorized into groups: (1) content-aware
5https://github.com/hanwangzhang/Discrete-Collaborative-Filtering
6https://github.com/ibayer/fastFM
7Wemake the code publicly available at https://github.com/casperhansen/NeuHash-CF
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Table 2: NDCG@k scores on in-matrix and out-of-matrix settings for the Amazon and Yelp datasets. Bold numbers represent
the best hashing-based approach and statistically significant results compared to the best hashing-based baseline per column
are marked with a star. Dashed lines correspond to not content-aware approaches in out-of-matrix setting.

Yelp (in-matrix) Yelp (out-of-matrix)
16 dim. 32 dim. 64 dim. 16 dim. 32 dim. 64 dim.

NDCG @2 @6 @10 @2 @6 @10 @2 @6 @10 @2 @6 @10 @2 @6 @10 @2 @6 @10
NeuHash-CF .662∗ .701∗ .752∗ .681∗ .718∗ .766∗ .697∗ .731∗ .776∗ .646∗ .694∗ .747∗ .687∗ .725∗ .772∗ .702∗ .737∗ .780∗
DCMF .642 .678 .733 .655 .691 .743 .670 .701 .752 .611 .647 .703 .617 .655 .709 .626 .664 .717
DDL .636 .674 .729 .651 .686 .739 .664 .698 .749 .575 .615 .673 .579 .622 .681 .612 .646 .700
NeuHash-CF/no.C .634 .672 .727 .655 .689 .741 .666 .699 .749 - - - - - - - - -
DCF .639 .676 .730 .649 .685 .738 .671 .700 .750 - - - - - - - - -
MF (real-valued) .755∗ .763∗ .800∗ .755∗ .763∗ .800∗ .755∗ .763∗ .800∗ - - - - - - - - -
FM (real-valued) .754∗ .763∗ .801∗ .750∗ .760∗ .798∗ .744∗ .755∗ .794∗ .731∗ .750∗ .789∗ .724∗ .744∗ .785∗ .719∗ .740∗ .781∗

Amazon (in-matrix) Amazon (out-of-matrix)
16 dim. 32 dim. 64 dim. 16 dim. 32 dim. 64 dim.

NDCG @2 @6 @10 @2 @6 @10 @2 @6 @10 @2 @6 @10 @2 @6 @10 @2 @6 @10
NeuHash-CF .759∗ .777∗ .810∗ .780∗ .798∗ .827∗ .786∗ .803∗ .831∗ .758∗ .778∗ .809∗ .769∗ .788∗ .818∗ .787∗ .804∗ .831∗
DCMF .749 .767 .800 .761 .777 .810 .773 .788 .818 .727 .748 .782 .729 .749 .784 .733 .752 .786
DDL .734 .755 .791 .748 .768 .802 .762 .779 .811 .704 .728 .766 .705 .729 .767 .705 .727 .766
NeuHash-CF/no.C .748 .768 .802 .760 .776 .808 .771 .785 .816 - - - - - - - - -
DCF .745 .767 .802 .759 .776 .809 .774 .787 .818 - - - - - - - - -
MF (real-valued) .824∗ .826∗ .848∗ .824∗ .826∗ .848∗ .824∗ .826∗ .848∗ - - - - - - - - -
FM (real-valued) .821∗ .822∗ .845∗ .817∗ .819∗ .843∗ .813∗ .816∗ .841∗ .792∗ .800∗ .827∗ .785∗ .793∗ .821∗ .780∗ .790∗ .819∗

Table 3: MRR scores in both in-matrix and out-of-matrix settings. Bold numbers represent the best hashing-based approach
and statistically significant results compared to the best hashing-based baseline per column are marked with a star. Dashed
lines correspond to not content-aware approaches in out-of-matrix setting.

Yelp (in-matrix) Yelp (out-of-matrix) Amazon (in-matrix) Amazon (out-of-matrix)
MRR 16 dim. 32 dim. 64 dim. 16 dim. 32 dim. 64 dim. 16 dim. 32 dim. 64 dim. 16 dim. 32 dim. 64 dim.

NeuHash-CF .646∗ .668∗ .687∗ .628∗ .674∗ .692∗ .749∗ .770∗ .779∗ .750∗ .764∗ .782∗
DCMF .629 .644 .660 .598 .604 .612 .738 .753 .767 .719 .721 .726
DDL .620 .638 .651 .557 .562 .604 .721 .741 .753 .696 .694 .694
NeuHash-CF/no.C .621 .642 .656 - - - .737 .752 .764 - - -
DCF .626 .636 .664 - - - .736 .751 .769 - - -
MF (real-valued) .767∗ .767∗ .767∗ - - - .826∗ .826∗ .826∗ - - -
FM (real-valued) .761∗ .756∗ .750∗ .730∗ .722∗ .717∗ .824∗ .821∗ .815∗ .792∗ .784∗ .780∗

(NeuHash-CF, DCMF, DDL), (2) not content-aware (NeuHash-CF/no.C,
DCF), (3) real-valued not content-aware (MF), and (4) real-valued
content-aware (FM). For all methods, we compute hash codes (or
latent representations for MF and FM) of lengthm ∈ {16, 32, 64}.
We use a two-tailed paired t-test for statistical significance testing
against the best performing hashing-based baseline. Statistically
significant improvements, at the 0.05 level, over the best performing
hashing-based baseline per column are marked with a star (∗), and
the best performing hashing-based approach is shown in bold.

4.6.1 In-matrix regression. In the in-matrix setting, where all items
have been rated in the training data, our NeuHash-CF significantly
outperforms all hashing-based baselines. On Yelp, we observe im-
provements in NDCG by up to 0.03, corresponding to a 4.3% im-
provement. On Amazon, we observe improvements in NDCG by
up to 0.02, corresponding to a 2.7% improvement. Similar improve-
ments are noted on both datasets for MRR (1.6-4.1% improvements).
On all datasets and across the evaluated dimensions, NeuHash-CF
performs similarly or better than state-of-the-art hashing-based

approaches while using 2-4 times fewer bits, thus providing both a
significant performance increase as well as a 2-4 times storage reduc-
tion. Interestingly, the performance gap between existing content-
aware and not content-aware approaches is relatively small. When
considering the relative performance increase of our NeuHash-CF
with and without content features, we see the benefit of basing
the item hash codes directly on the content. DCMF and DDL both
utilize the content features for handling cold-start items, but not to
the same degree for the in-matrix items, which we argue explains
the primary performance increase observed for NeuHash-CF, since
NeuHash-CF/no.C performs similarly to the baselines.

We also include MF and FM as real-valued baselines to bet-
ter gauge the discretization gap. As expected, the real-valued ap-
proaches outperform the hashing-based approaches, however as
the number of bit increases the performance difference decreases.
This is to be expected, since real-valued approaches reach faster a
potential representational limit, where more dimensions would not
positively impact the ranking performance. In fact, for FM we ob-
serve a marginal performance drop when increasing its number of
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latent dimensions, thus indicating that it is overfitting. In contrast,
MF keeps the same performance (differing on far out decimals)
independently of its number of latent dimensions.

4.6.2 Out-of-matrix regression. We now consider the out-of-matrix
setting, corresponding to recommending cold-start items. NeuHash-
CF significantly outperforms the existing state-of-the-art hashing-
based baselines even more than for the in-matrix setting. On Yelp,
we observe the smallest NDCG increase for 16 bit at 0.035, which is
however doubled in most cases for 32 and 64 bits, corresponding
to improvements of up to 12.1% gain over state-of-the-art base-
lines. We observe a similar trend on Amazon, where the lowest
improvement of 0.027 NDCG is observed at 16 bits, but increasing
the number of bits leads to consistently larger improvements of up
to 7.4%. These results are also consistent with MRR, where increas-
ing the number of bits provides increasingly larger performance
increases between +5 and +13.1% on Yelp and between +4.3 and
+7.7% on Amazon. In all cases, the performance of NeuHash-CF on
16 bits is even better than the best baseline at 64 bits, thus verifying
the high quality of the hash codes generated by NeuHash-CF.

For the real-valued FM baseline, we observe that it outperforms
ours and existing baselines at 16 and 32 dimensions, however
at 64 dimensions NeuHash-CF outperforms FM on Amazon for
NDCG@{6, 10} (across all dimensions). When we consider Yelp,
NeuHash-CF obtains a NDCG@10 within 0.01 of FM, but worse on
the other NDCG cut offs and on MRR.

4.6.3 Out-of-matrix regression with limited training data. To evalu-
ate how the content-aware approaches generalize to the cold-start
setting depending on the number of training items, we furthermore
create smaller versions of the 50/50 out-of-matrix split used previ-
ously. In addition to using 50% of the data for the training set, we
consider splits using 10%, 20%, 30%, and 40% as well. In all out-of-
matrix settings the validation and testing sets are identical to be
able to compare the impact of the training size. The results can be
seen in Table 4 for 32 bit hash codes and 32 latent dimensions in FM.
Similarly to before, NeuHash-CF outperforms the hashing-based
baselines in all cases with similar gains as observed previously.
Most approaches, except DDL on Amazon, obtain the lowest per-
formance using 10% of the data, and more training items generally
improve the performance, although at 30-50% the pace of improve-
ment slows down significantly. This indicates that the methods have
observed close to sufficiently many training items and increasing
the amount may not lead to better generalizability of the cold-start
hash codes. Interestingly, NeuHash-CF obtains the largest improve-
ment going from 10% to 50% on both NDCG and MRR, indicating
that it generalizes better than the baselines. In contrast, DDL does
not improve on Amazon by including more training items, which
indicates that its ability to generalize to cold-start items is rather
limited.

4.7 Computational Efficiency
To study the high efficiency of using hash codes in comparison to
real-valued vectors, we consider a setup of 100,000 users and 1,000-
1,000,000 items. We randomly generate hash codes and real-valued
vectors and measure the time taken to compute all Hamming dis-
tances (or inner products) from each user to all items, resulting in

Figure 2: Computation time for all Hamming distances and
inner products for 100,000 users and up to 1,000,000 items.

a total 108-1011 computations. We use a machine with a 64 bit in-
struction set8, and hence generate hash codes and vectors of length
64. We report the average runtime over 10 repetitions in Figure 2,
and observe a speed up of a factor 40-50 for the Hamming distance,
highlighting the efficiency benefit of hashing-based approaches.
For FM, its dominating cost is its large number of inner product
computations, which scales quadratically in the number of non-zero
content features for a given item, thus making it highly intractable
in large-scale settings.

4.8 Impact of Average Item Popularity per User
We now look at how different user characteristics impact the perfor-
mance of themethods.We first compute the average item popularity
of each user’s list of rated items, and then order the users in as-
cending order of that average. An item’s popularity is computed
as the number of users who have rated that specific item, and thus
the average item popularity of a user is representative of their at-
traction to popular content. Figure 3 plots the NDCG@10 for 32
dimensional representations using a mean-smoothing window size
of 1000 (i.e., each shown value is averaged based on the values
within a window of 1000 users). Generally, all methods perform
better for users who have a high average item popularity, where for
Yelp we see a NDCG@10 difference of up to 0.25 from the lowest
to highest average popularity (0.2 for Amazon). This observation
can be explained by highly popular items occurring more times in
the training data, such that they have a better learned represen-
tation. Additionally, the hashing-based approaches have a larger
performance difference, compared to the real-valued MF and FM,
which is especially due to their lower relative performance for users
with a very low average item popularity (left side of plots). In the
out-of-matrix setting the same trend is observed, however with our
NeuHash-CF performing highly similarly to FMwhen excluding the
users with the lowest average item popularity. We hypothesize that
users with a low average item popularity have a more specialized
preference, thus benefitting more from the higher representational
power of real-valued representations.

4.9 Impact of Number of Items per User
We now consider how the number of items each user has rated
impacts performance.We order users by their number of rated items
and plot NDCG@10 for 32 bit hash codes. Figure 4 plots this in the

8We used an Intel Xeon CPU E5-2670
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Table 4: NDCG@10 andMRR scores for 32 dimensional representations in varying cold-start scenarioswith 10-50% of the items
used for training. Bold numbers represent the best hashing-based approach and statistically significant results compared to
the best hashing-based baseline in each column are marked with a star.

Yelp (out-of-matrix) Amazon (out-of-matrix)
10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

NDCG @10 MRR @10 MRR @10 MRR @10 MRR @10 MRR @10 MRR @10 MRR @10 MRR @10 MRR @10 MRR

NeuHash-CF .730∗ .603∗ .750∗ .634∗ .769∗ .666∗ .771∗ .668∗ .772∗ .674∗ .794∗ .727∗ .812∗ .753∗ .817∗ .761∗ .818∗ .763∗ .818∗ .764∗
DCMF .688 .572 .693 .578 .704 .593 .710 .602 .709 .604 .774 .710 .778 .712 .781 .717 .784 .720 .784 .721
DDL .678 .556 .681 .562 .687 .572 .684 .571 .681 .562 .770 .713 .766 .689 .767 .700 .765 .693 .767 .694
FM (real-valued) .766∗ .688∗ .776∗ .707∗ .778∗ .712∗ .786∗ .724∗ .785∗ .722∗ .806∗ .759∗ .813∗ .771∗ .817∗ .775∗ .823∗ .786∗ .821∗ .784∗

Figure 3: Impact of the average item popularity per user on NDCG@10 for 32 bit hash codes.

Figure 4: Impact of the number of items per user on NDCG@10 for 32 bit hash codes.

same way as in Figure 3. Generally across all methods, we observe
that performance initially increases, but then drops once a user
has rated close to 100 items, depending on the dataset. While the
hashing-based approaches keep steadily dropping in performance,
MF and FM do so at a slower pace and even increase for users with
the highest number of rated items in the in-matrix setting. The
plots clearly show that the largest performance difference, between
the real-valued and hashing-based approaches, is for the group of
users with a high number of rated items, corresponding to users
with potentially the highest diversity of interests. In this setting,
the limited representational power of hash codes, as opposed to
real-valued representations, may not be sufficient to encode users
with largely varied interests. We observe very similar trends for the
out-of-matrix setting for cold-start items, although the performance
gap between our NeuHash-CF and the real-valued approaches is
almost entirely located among the users with a high number of
rated items.

5 CONCLUSION
We presented content-aware neural hashing for collaborative fil-
tering (NeuHash-CF), a novel hashing-based recommendation ap-
proach, which is robust to cold-start recommendation problems
(i.e., the setting where the items to be recommended have not been
rated previously). NeuHash-CF is a neural approach that consists
of two joint components for generating user and item hash codes.

The user hash codes are learned from an embedding based pro-
cedure using only the user’s id, whereas the item hash codes are
learned directly from associated content features (e.g., a textual
item description). This contrasts existing state-of-the-art content-
aware hashing-based methods [22, 39], which generate item hash
codes differently depending on whether they are cold-start items
or not. NeuHash-CF is formulated as a variational autoencoder
architecture, where both user and item hash codes are sampled
from learned Bernoulli distributions to enforce end-to-end train-
ability. We presented a comprehensive experimental evaluation
of NeuHash-CF in both standard and cold-start settings, where
NeuHash-CF outperformed state-of-the-art approaches by up to
12% NDCG and 13% MRR in cold-start recommendation (up to 4%
in both NDCG and MRR in standard recommendation settings).
In fact, the ranking performance of NeuHash-CF on 16 bit hash
codes is better than that of 32-64 bit state-of-the-art hash codes,
thus resulting in both a significant effectiveness increase, but also
in a 2-4x storage reduction. Analysis of our results showed that the
largest performance difference between hashing-based and real-
valued approaches occurs for users interested in the least popular
items, and for the group of users with the highest number of rated
items. Future work includes extending the architecture to accept
richer item and user representations, such as [8, 12, 25, 32].
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ABSTRACT
When reasoning about tasks that involve large amounts of data,
a common approach is to represent data items as objects in the
Hamming space where operations can be done efficiently and effec-
tively. Object similarity can then be computed by learning binary
representations (hash codes) of the objects and computing their
Hamming distance.While this is highly efficient, each bit dimension
is equally weighted, which means that potentially discriminative
information of the data is lost. A more expressive alternative is
to use real-valued vector representations and compute their in-
ner product; this allows varying the weight of each dimension but
is many magnitudes slower. To fix this, we derive a new way of
measuring the dissimilarity between two objects in the Hamming
space with binary weighting of each dimension (i.e., disabling bits):
we consider a field-agnostic dissimilarity that projects the vector
of one object onto the vector of the other. When working in the
Hamming space, this results in a novel projected Hamming dissim-
ilarity, which by choice of projection, effectively allows a binary
importance weighting of the hash code of one object through the
hash code of the other. We propose a variational hashing model
for learning hash codes optimized for this projected Hamming dis-
similarity, and experimentally evaluate it in collaborative filtering
experiments. The resultant hash codes lead to effectiveness gains of
up to +7% in NDCG and +14% in MRR compared to state-of-the-art
hashing-based collaborative filtering baselines, while requiring no
additional storage and no computational overhead compared to
using the Hamming distance.
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1 INTRODUCTION
Hashing-based learning aims to find short binary representations
of data objects (called hash codes) that allow effective and efficient
computations. For tasks involving multiple interacting objects, hash
codes must be chosen carefully to ensure that certain properties
of the codes (e.g., their inner products or mutual distance) carry
information relevant to the task. For example, in hashing-based
collaborative filtering, binary user and item representations must
be learned so that the distance between them reflects how much
user 𝑢 likes item 𝑖 . Currently, the most efficient way of doing this is
to compute their Hamming distance, which is the sum of differing
bits between two hash codes. However, by definition, the Hamming
distance weighs each bit equally. This is a problem because the
importance of the underlying properties encoded by each bit may
differ. An alternative is to use real-valued vectors and compute their
inner product, which allows varying the weight of each dimension,
and thus enables a dimension-specific importance weighting not
possible using the Hamming distance for binary codes. However,
binary codes allow large storage reductions compared to floating
point representations, while the Hamming distance enables mas-
sively faster computations compared to the inner product (e.g.,
real-time brute-force search in a billion items [23]). Motivated by
this, we ask: can we introduce bit-level importance weighting on
binary representations without compromising efficiency?

We reason that, by the definition of the inner product, the dis-
tance between two vectors 𝑢 and 𝑖 should be identical to the differ-
ence in length between vector 𝑢 and vector 𝑖’s projection on 𝑢. This
observation can be exploited by using a vector space where projec-
tions and lengths can be computed several magnitudes more effi-
ciently than in Euclidean space. We show that performing the exact
same projection and length computations in the Hamming vector
space over Z2 results in a novel projected Hamming dissimilar-
ity, which corresponds to traditional measures used in real-valued
representations. By choice of projection in the Hamming space,
the projected Hamming dissimilarity effectively allows a bit-level
binary weighting (corresponding to disabling bits) of 𝑖’s hash code
via the hash code of 𝑢, but without decreasing efficiency compared
to the Hamming distance. We propose a variational hashing model
for learning hash codes optimized for our projected Hamming
dissimilarity, which we experimentally evaluate in collaborative
filtering experiments. Compared to state-of-the-art baselines using
the Hamming distance, we observe effectiveness gains of up to +7%
in NDCG and +14% in MRR, while also significantly improving the
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convergence rate during model training compared to optimizing
with the Hamming distance.

In summary, we contribute the first alternative to the Hamming
distance for hashing-based learning that allows bit-level importance
coding, while requiring no additional storage and no computational
overhead. We make our code publicly available.1

2 RELATEDWORK
Matrix factorization is one of the most popular collaborative filter-
ing methods [14], but to reduce storage requirements and speed
up computation, hashing-based collaborative filtering has been
researched. For hashing-based methods, the users and items are
represented as binary hash codes (as opposed to real-valued vec-
tors), which traditionally have used the highly efficient Hamming
distance (as opposed to the inner product) for computing user-item
similarities. In the following, we review the literature on both bi-
nary representation learning and importance coding of such binary
representations.

2.1 Learning binary representations (hash
codes)

Early hashing-based collaborative filtering methods include two
stages: First, real-valued representations of the data (vectors) are
learned, and then the real-valued vectors are transformed into bi-
nary hash codes. Zhang et al. [34] use matrix factorization initially,
followed by a binary quantization of rounding the real-valued vec-
tors, while ensuring that the hash code is preference preserving
with respect to observed properties of the data using their Con-
stant Feature Norm constraint. Zhou and Zha [35] and Liu et al.
[19] both explore binary quantization strategies based on orthog-
onal rotations of the real-valued vectors, which share similarities
with Spectral Clustering [28]. However, the two-stage approaches
often suffer from large quantization errors [17, 30], because the
hash codes are not learned directly, but rather based on different
quantization procedures. More recently, hash codes are learned
directly: this has been done using relaxed integer optimization
while enforcing bit balancing and decorrelation constraints [30];
and (ii) using an autoencoder to learn the codes in an end-to-end
manner [7]. The latter approach is most similar to the variational
hashing model proposed in our work for optimizing hash codes for
our projected Hamming dissimilarity, but their work is designed
for cold-start recommendation based on generalizing hash codes
from item descriptions. In contrast, our hashing model is designed
to work based purely on user-item ratings, without assuming any
additional knowledge of users or items.

2.2 Importance coding of binary
representations

Approaches for coding importance into hash codes have been stud-
ied for the Hamming distance in several applications. Zhang et al.
[32] present an image ranking approach that uses a weighted Ham-
ming distance, where bit-level real-valuedweights are learned based
on both the discriminitative power of each bit across all hash codes,

1The code is available at https://github.com/casperhansen/Projected-Hamming-
Dissimilarity

but also dynamically computed based on the hash code used for
querying. The bit-level weights are multiplied on each differing
bit between two hash codes, such that the distance is computed
as the sum of the weights. Different ways of defining bit-level
weights have been explored based on fixed weights per bit [27],
fixed weights based on byte-level block differences between hash
codes [5], and query-adaptive weights [12, 31]. While fixed weights
enable faster retrieval than dynamic weights, they all share the same
limitation of being significantly less efficient than the Hamming
distance, because they can no longer be expressed using highly
efficient Boolean hardware-level operations. Furthermore, in ad-
dition to the increased storage requirement due to the weights,
transferring the weights to the lowest level of memory (i.e., the
register) adds additional computational overhead compared to the
Hamming distance.

More recent work addresses the problem that hash codes have
reduced representational power compared to real-valued vectors,
but increasing the hash code dimensionality to match the amount
of bits used in the real-valued case hurts model generalization [17].
An alternative, in the task of collaborative filtering, is Composi-
tional Coding for Collaborative Filtering (CCCF) [17], which is a
broadly similar method to learning compositional codes for (word)
embedding compression [3, 25]. CCCF is a hybrid of hash codes
and real-valued weights: each hash code is split into 𝑘 blocks of
𝑟 bits each, and each block is associated with a real-valued scalar
indicating the weight of the block. The distance between two CCCF
hash codes is then computed as a weighted sum of the Hamming
distances of the individual blocks, where each weight is the product
of each block’s weight. The problem with this approach is that each
block requires an individual Hamming distance computation, as
well as floating point multiplications of the block weights. In fact,
the CCCF block construction no longer allows for highly efficient
Boolean operations because the distance computation is weighted
by each block’s weight.

In contrast to the above approaches, our projected Hamming
dissimilarity can exploit the same highly efficient Boolean opera-
tions as the Hamming distance, while enabling a bit-level binary
weighting on hash codes without reducing efficiency.

3 BIT-LEVEL IMPORTANCE CODING IN
HASH CODES

3.1 Preliminaries
Given two data objects 𝑢 and 𝑖 , let 𝑧𝑢 ∈ {−1, 1}𝑚 and 𝑧𝑖 ∈ {−1, 1}𝑚
denote their hash codes, where𝑚 is the number of bits in the hash
code, which is typically chosen to fit into a machine word. The
Hamming distance 𝑑𝐻 between 𝑧𝑢 and 𝑧𝑖 is defined as:

𝑑𝐻 (𝑧𝑢 , 𝑧𝑖 ) =
𝑚∑
𝑗=1

1[
𝑧 ( 𝑗 )𝑢 ≠𝑧 ( 𝑗 )𝑖

] = SUM(𝑧𝑢 XOR 𝑧𝑖 ) (1)

which can be computed very efficiently due to the Boolean opera-
tions on the word level, and the SUM which is computed using the
popcnt bit string instruction. Because Hamming distance is integer-
valued, the Hamming distances between several pairs of objects
can be linear-time sorted using e.g. radix sort (Hamming distances
must be elements of [0,𝑚], hence they are bounded) in ascending
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order to create a ranked list, allowing for very fast object similarity
computation in data-heavy tasks like information retrieval [23].

The above definition clearly shows the efficiency strength of
the Hamming distance, but also its weakness in weighting each
bit-dimension equally, even though the underlying data properties
encoded by some bits may be more discriminative than those of
others. In contrast, representations using real-valued vectors and
the inner product allow varying the weight of each dimension, and
thus enable a dimension-specific importance weighting not possible
using the Hamming distance for binary codes. Next, we show how
we derive a new way of measuring the dissimilarity between 𝑢 and
𝑖 in the Hamming space with binary weighting of each dimension.

3.2 Projected Hamming dissimilarity for
bit-level importance coding

Let𝑉 be a vector space over any field 𝐹 , and let P· (·) be a projection
operator on𝑉 , i.e., for each fixed ®𝑢, ®𝑖 ∈ 𝑉 , P®𝑢 (·) : 𝑉 → 𝑉 is a linear
map such that

P®𝑢 (P®𝑢 (®𝑖))) = P®𝑢 (®𝑖) . (2)
In the following, we consider an asymmetric relationship between
two objects ®𝑢 and ®𝑖 , such that ®𝑢 is considered a query object used for
searching among data items denoted as ®𝑖 . We consider both query
and data items as elements of 𝑉 . Intuitively, each dimension of V
corresponds to a property of potential importance to a query (e.g.,
classical music); the projection of each query on the dimension
corresponds to the strength of importance, and the projection of
each item on the dimension corresponds to how much the item
scores on that dimension.

Let ∥·∥ : 𝑉 → R be a norm on 𝑉 ; we define the dissimilarity
between ®𝑢 and ®𝑖 , denoted 𝛿 (®𝑢, ®𝑖), as the norm of the projection of ®𝑖
on ®𝑢:

𝛿 (®𝑢, ®𝑖) =
®𝑢 − P®𝑢 (®𝑖)

 (3)

Similarly to Eq. 1, the more different 𝑢 and 𝑖 are, the higher their
dissimilarity 𝛿 (®𝑢, ®𝑖) should be. The dissimilarity is a natural concept:
several existing notions of distance or similarity can be seen as
special cases of Eq. 3. For example, in the standard Euclidean space
the often-used cosine distance2, 1 − cos(®𝑖, ®𝑢), is one instance of Eq.
3 if we assume unit length vectors.

In hashing-based search, we are particularly interested in the
binary vector space 𝑉 = {−1, 1}𝑚 , with bitwise addition and scalar
multiplication over the field 𝐹 = Z2, where the projection operator
is given by:

P𝑧𝑢 (𝑧𝑖 ) = 𝑧𝑢 AND 𝑧𝑖 (4)
for 𝑧𝑢 , 𝑧𝑖 ∈ 𝑉 , i.e., masking the item hash code 𝑧𝑖 by the query hash
code 𝑧𝑢 . Due to working in the Hamming space, the norm ∥·∥ is
chosen as the Hamming norm (sometimes also called the zero norm
or 𝐿0). Using this, we obtain the projected Hamming dissimilarity
𝛿𝑃𝐻 , defined as:

𝛿𝑃𝐻 (𝑧𝑢 , 𝑧𝑖 ) =
𝑧𝑢 − P𝑧𝑢 (𝑧𝑖 )

 = SUM(𝑧𝑢 XOR (𝑧𝑢 AND 𝑧𝑖 )︸          ︷︷          ︸
projection

) (5)

2We use the conventional naming of the cosine distance, even though it is not a proper
distance as it does not satisfy the triangle inequality.

While having a similar formulation as the Hamming distance (see
Eq. 1), the projection of the item hash code 𝑧𝑖 unto the query hash
code 𝑧𝑢 in Eq. 5 allows a binary importance weighting of 𝑧𝑖 , which
corresponds to disabling unimportant bits as defined by the query
hash code 𝑧𝑢 (corresponding to the bit-dimensions where the query
hash code is -1). We consider bits to be disabled since a -1 bit in 𝑧𝑢
leads to all item hash codes also having a -1 in that bit after the
projection. Note that due to the choice of projection, the projected
Hamming dissimilarity is asymmetric (i.e., in general 𝛿𝑃𝐻 (𝑧𝑢 , 𝑧𝑖 ) ≠
𝛿𝑃𝐻 (𝑧𝑖 , 𝑧𝑢 )), whereas the Hamming distance is symmetric.

Compared to the Hamming distance, the projected Hamming
dissimilarity fundamentally changes the purpose of the query hash
code: instead of each dimension encoding a positive or negative
preference for a property, it now encodes which properties of the
item are important to the query (-1’s from the query hash code are
copied to the item due to the AND operation). Thus, this formulation
can produce query-specific item representations while still only
using a single code for each query and item respectively.

3.2.1 Speeding up the projected Hamming dissimilarity. The pro-
jectedHamming dissimilarity in Eq. 5 requires one additional Boolean
operation compared to the Hamming distance. However, because
the item codes are static once learned, we can reduce the time
complexity to the same as the Hamming distance by observing
that:

𝛿𝑃𝐻 (𝑧𝑢 , 𝑧𝑖 ) = SUM(𝑧𝑢 XOR (𝑧𝑢 AND 𝑧𝑖 ))
= SUM(𝑧𝑢 AND (NOT 𝑧𝑖 )) (6)

where (NOT 𝑧𝑖 ) can be precomputed and stored instead of the
original item hash codes, thus requiring no additional storage and
the same number of Boolean operations as the Hamming distance.

Next, we present how the projected Hamming dissimilarity can
be used for learning hash codes in collaborative filtering, where,
notationally, a user takes the role of the query, and items are to be
recommended based on their relevance to the user.

4 PROJECTED HAMMING DISSIMILARITY IN
COLLABORATIVE FILTERING

We propose a variational hashing model for collaborative filter-
ing that learns user and item hash codes optimized for our pro-
jected Hamming dissimilarity. To derive a variational framework
for hashing-based collaborative filtering, we define the likelihood
of a user 𝑢 as the product over the likelihoods of the observed user
specified ratings:

𝑝 (𝑢) =
∏
𝑖∈𝐼𝑢

𝑝 (𝑅𝑢,𝑖 ), 𝑝 (𝑖) =
∏
𝑢∈𝑈𝑖

𝑝 (𝑅𝑢,𝑖 ) (7)

where 𝐼𝑢 is the set of items rated by user𝑢, and𝑈𝑖 is the set of users
who have rated item 𝑖 . This formulation enforces a dual symmetric
effect of users being defined by all their rated items, and items being
defined by the ratings provided by all the users. To maximize the
likelihood of all observed items and users, we need to maximize
the likelihood of the observed ratings 𝑝 (𝑅𝑢,𝑖 ). Note that instead
of maximizing the raw likelihood, we consider the log-likelihood
to derive the objective below. We assume that the likelihood of a
rating, 𝑝 (𝑅𝑢,𝑖 ), is conditioned on two latent vectors: a user hash
code 𝑧𝑢 , and an item hash code 𝑧𝑖 . We sample the hash code of
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a user or item by performing𝑚 Bernoulli trials, which as a prior
is assumed to have equal probability of sampling -1 and 1 (𝑝 (𝑧𝑖 )
and 𝑝 (𝑧𝑢 ) below). This yields the following log-likelihood to be
maximized:

log𝑝 (𝑅𝑢,𝑖 ) = log ©«
∑

𝑧𝑖 ,𝑧𝑢 ∈{−1,1}𝑚
𝑝 (𝑅𝑢,𝑖 |𝑧𝑢 , 𝑧𝑖 )𝑝 (𝑧𝑖 )𝑝 (𝑧𝑢 )ª®¬

(8)

However, this is intractable to compute, hence we derive a lower
bound. First, we define the learned approximate posterior distri-
butions for the user and item hash codes as 𝑞𝜙 (𝑧𝑖 |𝑖) and 𝑞𝜓 (𝑧𝑢 |𝑢),
respectively, where𝜓 and 𝜙 are the distribution parameters. Next,
wemultiply and divide with the approximate posterior distributions,
rewrite to an expectation, and finally apply Jensen’s inequality to
obtain a lower bound on the log-likelihood:

log 𝑝 (𝑅𝑢,𝑖 ) ≥E𝑞𝜙 (𝑧𝑖 |𝑖),𝑞𝜓 (𝑧𝑢 |𝑢)
[
log

[
𝑝 (𝑅𝑢,𝑖 |𝑧𝑢 , 𝑧𝑖 )

]
+ log 𝑝 (𝑧𝑖 ) − log𝑞𝜙 (𝑧𝑖 |𝑖) + log 𝑝 (𝑧𝑢 ) − log𝑞𝜓 (𝑧𝑢 |𝑢)

]
(9)

Since 𝑧𝑖 and 𝑧𝑢 will be sampled independently, then 𝑞𝜙 (𝑧𝑖 |𝑖) and
𝑞𝜓 (𝑧𝑢 |𝑢) are independent and we can rewrite to the variational
lower bound:

log𝑝 (𝑅𝑢,𝑖 ) ≥E𝑞𝜙 (𝑧𝑖 |𝑖),𝑞𝜓 (𝑧𝑢 |𝑢)
[
log

[
𝑝 (𝑅𝑢,𝑖 |𝑧𝑢 , 𝑧𝑖 )

] ]
− KL(𝑞𝜙 (𝑧𝑖 |𝑖) | |𝑝 (𝑧𝑖 )) − KL(𝑞𝜓 (𝑧𝑢 |𝑢) | |𝑝 (𝑧𝑢 )) (10)

where KL(·| |·) is the Kullback-Leibler divergence. Thus, to maxi-
mize the expected log-likelihood of the observed rating, we need to
maximize the conditional log-likelihood of the rating, while min-
imising the KL divergence between the approximate posterior and
prior distribution of the two latent vectors. Maximizing the expected
conditional log-likelihood can be considered as a reconstruction
term of the model, while the KL divergence can be considered as a
regularizer.

Next we present the computation of the approximate posterior
distributions𝑞𝜙 (𝑧𝑖 |𝑖) and𝑞𝜓 (𝑧𝑢 |𝑢) (Section 4.1) and the conditional
log-likelihood of the rating 𝑝 (𝑅𝑢,𝑖 |𝑧𝑢 , 𝑧𝑖 ) (Section 4.2).

4.1 Computing the approximate posterior
distributions

The approximate posterior distributions can be seen as two encoder
functions modelled as embedding layers in a neural network. Each
encoder function maps either a user or an item to a hash code. We
present below the derivation of the encoder function for the user
(the item function is computed in the same way). The probability
of the 𝑗 ’th bit is given by:

𝑞
( 𝑗)
𝜓

(𝑧𝑢 |𝑢) = 𝜎 (𝐸 ( 𝑗)𝑢 ) (11)

where 𝐸 ( 𝑗)𝑢 is the 𝑗 ’th entry in a learned real-valued embedding 𝐸
for user 𝑢, and 𝜎 is the sigmoid function. The 𝑗 ’th bit is then given
by:

𝑧
( 𝑗)
𝑢 = 2⌈𝜎 (𝐸 ( 𝑗)𝑢 ) − 𝜇 ( 𝑗) ⌉ − 1 (12)

where 𝜇 ( 𝑗) is either chosen stochastically by sampling 𝜇 ( 𝑗) from
a uniform distribution in the interval [0,1], or chosen determinis-
tically to be 0.5 (deterministic choice allows to obtain fixed hash

codes for later evaluation). As the sampling is non-differentiable, a
straight-through estimator [1] is used for backpropagation.

4.2 Computing the conditional log-likelihood
The conditional log-likelihood can be considered a reconstruction
of the rating, given the user and item hash codes. Similarly to
[16], we model the observed ratings as a ground truth rating with
additive Gaussian distributed noise, which is then discretized to
the observed categorical rating. The conditional log-likelihood can
then be computed as:

𝑝 (𝑅𝑢,𝑖 |𝑧𝑢 , 𝑧𝑖 ) = N(𝑅𝑢,𝑖 − 𝑓 (𝑧𝑢 , 𝑧𝑖 ), 𝜎2) (13)

where 𝑓 (𝑧𝑢 , 𝑧𝑖 ) is a function that reconstructs the rating given the
user and item hash codes.Maximising the log-likelihood log 𝑝 (𝑅𝑢,𝑖 |𝑧𝑢 , 𝑧𝑖 )
corresponds to minimising the mean squared error (MSE) between
𝑅𝑢,𝑖 and 𝑓 (𝑧𝑢 , 𝑧𝑖 ), which is done for training the model. Existing
work on hashing-based collaborative filtering [17, 30] also employs
a MSE objective, and thus makes the same Gaussian distribution
assumption as done here.

We define the reconstruction function to be our proposed pro-
jected Hamming dissimilarity:

𝑓 (𝑧𝑢 , 𝑧𝑖 ) = 𝑔(𝛿𝑃𝐻 (𝑧𝑢 , 𝑧𝑖 )) (14)

where𝑔 is a fixed affine transformation that maps the interval of the
projected Hamming dissimilarity to the interval of the ratings, such
that the minimum and maximum of the dissimilarity correspond to
the minimum and maximum of the ratings. It should be noted that
while variational autoencoders are generative models, we do not
explicitly utilize this in the model, as we are primarily concerned
with the reconstruction of the observed ratings. This is standard in
the related domain of semantic hashing [6, 8, 9, 24].

5 EXPERIMENTAL EVALUATION
We evaluate the effectiveness and efficiency of the projected Ham-
ming dissimilarity for bit-level importance coding in hash codes
in collaborative filtering experiments, where the task is to recom-
mend relevant items to users. Items and users are represented as
learned hash codes, and user-item relevance is approximated by op-
erations (such as the Hamming distance or the projected Hamming
dissimilarity) on those hash codes.

5.1 Datasets
We use 4 publicly available datasets commonly used in prior work
[15, 17, 18, 20, 30, 33] and summarized in the bottom of Table 1. The
datasets comprise two movie rating datasets, Movielens 1M (ML-
1M)3 and Movielens 10M (ML-10M)4; a Yelp dataset with ratings
of e.g., restaurant and shopping malls5; and a book rating dataset
from Amazon6 [10]. Following Rendle et al. [20], we remove users
and items with less than 10 ratings. Following Zhang et al. [30], for
each user 50% of the ratings are used for testing, 42.5% for training,
and the last 7.5% for validation. If a user rates an item multiple
times, only the first rating is kept.

3https://grouplens.org/datasets/movielens/1m/
4https://grouplens.org/datasets/movielens/10m/
5https://www.yelp.com/dataset/challenge
6http://jmcauley.ucsd.edu/data/amazon/
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5.2 Evaluation metrics
Wemeasure the effectivenesswith themeanNormalisedDiscounted
Cumulative Gain (NDCG) [11], which is often used to evaluate rec-
ommender systems with non-binary ratings (or relevance values).
We use the average NDCG at cutoffs {5, 10} over all users and report
the average for each cutoff value. We also compute the Reciprocal
Rank (RR) of the highest rated item per user, averaged over all users,
which represents how well the approaches are at getting a highly
relevant item to the top of the ranked list:

DCG@k =
𝑘∑
𝑖=1

2rel𝑖 − 1
log2 (𝑖 + 1) , NDCG@k =

DCG@k
DCG@k(opt)

, RR =
1

rank
(15)

where rel𝑖 is the relevance of the item in position 𝑖 of the ranked
list of items, DCG@k(opt) is the DCG@k of the optimal ranking,
and rank is the position of the first highest rated item for a user.
These measures are averaged across all users, and following the
standard notation, the mean reciprocal rank is denoted as MRR.

5.3 Baselines
We learn hash codes optimized for the projected Hamming dis-
similarity by incorporating it in the variational hashing model as
described in Section 4 (denoted VHPHD). We compare this to stan-
dard and state-of-the-art baselines (listed below) that use Hamming
distance in different ways. For reference, we also include real-valued
Matrix Factorization (MF)7 [14]. MF is not directly comparable to
the hashing approaches (it learns latent real-valued vectors for
users and items, instead of hash codes, and computes their inner
product), but we include it as a point of reference to a real-valued
collaborative filtering baseline. In fact, MF has been shown to be
both more efficient and highly competitive in effectiveness com-
pared to neural real-valued collaborative filtering approaches [21].
For a fair comparison of MF to the hashing approaches, we set the
latent dimension in MF to be the same as the number of bits used
in the hashing approaches. We experiment with hash code lengths
of 32 and 64 bits, which correspond to the common machine word
sizes. The hashing baselines are:

• DCF8 [30] learns user and item hash codes through binary
matrix factorization solved as a relaxed integer problem,
while enforcing bit balancing and decorrelation constraints.
The codes can be used directly for computing the Hamming
distance.

• CCCF9 [17] learns hash codes of 𝑘 blocks, where each block
has 𝑟 bits. A floating point weight is given to each block
for computing user-item similarities as a weighted sum of
block-level Hamming distances. In [17], the floating point
weights are mistakenly not counted towards the amount
of bits used, thus leading to an unfair advantage. For a fair
comparison, we count each floating point weight only as 16
bits (rather than the typical 32 or 64 bits used for single or
double precision, respectively).

• MFmean andMFmedian are based on matrix factorization
(MF), but use each dimension’s mean or median for doing the

7Included as baseline in the CCCF repository https://github.com/3140102441/CCCF
8https://github.com/hanwangzhang/Discrete-Collaborative-Filtering
9https://github.com/3140102441/CCCF

binary quantization to bits [29]. Similar to DCF, these codes
can be used directly for computing the Hamming distance.
We include these to highlight the large quantization loss
occurring when the hash codes are not learned directly.

• VH is the same variational hashing model that we use for
learning hash codes to be used with the projected Hamming
dissimilarity, but here the codes are learned using the Ham-
ming distance.

5.4 Tuning
All hyper parameters for the baselines are tuned using the same set
of possible values as in the original papers. For CCCF, we use block
sizes of {8, 16, 32, 64} and each floating point weight counts for 16
bits. We try all possible combinations that fit within the bit budget,
and if a single block is chosen, then the weight is not included in
the bit calculation. Using a Titan X GPU, we train our variational
hashing model from Section 4 using the Adam optimizer [13], and
tune the learning rate from the set {0.005, 0.001, 0.0005} and the
batch size from the set {100, 200, 400, 800} (best values in bold). As
noise injection has been found beneficial to reduce over-fitting in
variational neural models [26], we add Gaussian noise to the ratings
during training; we initially set the variance of the Gaussian to 1
and reduce by a factor of 1 − 10−4 in every training iteration.

5.5 Effectiveness results
Table 1 reports the effectiveness results measured with NDCG and
MRR, where the highest NDCG and MRR per column among the
hashing-based baselines is shown in bold. Results statistically sig-
nificantly better than the other Hamming distance baselines per
column, using a paired two tailed t-test at the 0.05 level and Bonfer-
roni correction, are indicated by an asterisk ∗. The Amazon results
for CCCF are not included because the released implementation
requires >128GB of RAM on this dataset due to the larger amount
of items and users.

There are 4 main findings in Table 1: (1) Hash codes optimized for
the projected Hamming distance (VHPHD) outperform all hashing
baselines at all times. (2) The gains of VHPHD are larger for MRR
than for NDCG, which means that the bit-level importance coding
impacts the very top of the ranking list (i.e., the recommendations
that matter the most). (3) The best hashing baselines (CCCF, DCF,
and VH) have overall similar scores, which indicates a potential
ceiling in effectiveness with standard Hamming distance on hash
codes. (4) MF with real-valued vectors (i.e., no hash codes) using
the inner product outperforms all the hashing approaches, which
is to be expected as the representational power of 32/64 floating
point numbers is notably higher than that of 32/64 bits. However,
VHPHD bridges a large part of the effectiveness gap between the
hashing baselines and MF, such that the NDCG differences between
VHPHD and MF in 9 out of 16 cases are below 0.01, while the MRR
differences in 4 out of 8 cases are close to 0.01.

5.5.1 Impact of user difficulty. Given MF as the best performing
method, we consider each user’s MF performance to be an indicator
of difficulty for modeling that particular user. To see how this type
of user difficulty impacts recommendation performance, we sort all
users (per dataset) increasingly according to their 64-dimensional
MF NDCG@10 scores (x axis), and plot the average NDCG@10

58



Table 1: NDCG@k and MRR scores. ∗ marks statistically significant gains over the other Hamming distance baselines per
column using Bonferroni correction. Δ% shows the gain of VHPHD over the best hashing-based baseline per column.

32 bit/dim. Yelp ML-1M ML-10M Amazon
NDCG@5 NDCG@10 MRR NDCG@5 NDCG@10 MRR NDCG@5 NDCG@10 MRR NDCG@5 NDCG@10 MRR

Hamming distance
CCCF .7286 .8000 .6250 .6867 .7110 .6493 .5491 .5987 .5683 - - -
DCF .7412 .8095 .6368 .6791 .7092 .6382 .5645 .6120 .5843 .8256 .8714 .7759
MFmean .6912 .7712 .5815 .5631 .5950 .5053 .4111 .4688 .4271 .7899 .8452 .7342
MFmedian .6935 .7734 .5769 .5631 .5952 .5085 .4082 .4665 .4225 .7899 .8452 .7343
VH .7467 .8132 .6473 .6851 .7123 .6419 .5669 .6157 .5815 .8254 .8712 .7758
Projected Hamming dissimilarity
VHPHD .8036∗ .8547∗ .7406∗ .7135∗ .7360∗ .6940∗ .5939∗ .6358∗ .6235∗ .8479∗ .8877∗ .8062∗
Δ% +7.6% +5.1% +14.4% +3.9% +3.3% +6.9% +4.8% +3.3% +6.7% +2.7% +1.9% +3.9%

Inner product
MF .8071∗ .8573∗ .7513∗ .7352∗ .7502∗ .7370∗ .6029∗ .6427∗ .6385∗ .8586∗ .8954∗ .8262∗

64 bit/dim. NDCG@5 NDCG@10 MRR NDCG@5 NDCG@10 MRR NDCG@5 NDCG@10 MRR NDCG@5 NDCG@10 MRR

Hamming distance
CCCF .7371 .8060 .6329 .7016 .7259 .6716 .5645 .6134 .5837 - - -
DCF .7497 .8155 .6574 .7049 .7285 .6766 .5865 .6316 .6088 .8299 .8747 .7825
MFmean .6912 .7712 .5810 .5666 .5981 .5172 .4104 .4675 .4257 .7902 .8458 .7340
MFmedian .6954 .7752 .5780 .5649 .5966 .5105 .4113 .4679 .4270 .7902 .8457 .7334
VH .7537 .8185 .6561 .7103 .7338 .6759 .5860 .6328 .6013 .8300 .8746 .7828
Projected Hamming dissimilarity
VHPHD .8075∗ .8577∗ .7540∗ .7267∗ .7459∗ .7136∗ .6034∗ .6427∗ .6373∗ .8521∗ .8908∗ .8147∗
Δ% +7.1% +4.8% +14.7% +2.3% +1.7% +5.5% +2.9% +1.6% +4.7% +2.7% +1.8% +4.1%

Inner product
MF .8096∗ .8591∗ .7573∗ .7424∗ .7552∗ .7439∗ .6188∗ .6562∗ .6594∗ .8586∗ .8954∗ .8259∗

Dataset 22,087 users 6,040 users 69,878 users 158,650 users
properties 14,873 items 3,260 items 9,708 items 128,939 items

602,517 ratings 998,539 ratings 9,995,471 ratings 4,701,968 ratings
0.18% density 5.07% density 1.47% density 0.02% density

score per user smoothed by averaging the 500 nearest users (y axis).
We do this for the three best Hamming distance baselines (CCCF,
DCF, and VH), VHPHD, and MF, which can be seen in Figure 1.

We observe that VHPHD outperforms all Hamming distance base-
lines, showing that the projected Hamming dissimilarity is robust
across users. Note that, for the 20,000 users with the lowest MF
NDCG@10 on ML-10M, all hashing-based methods outperform
MF, highlighting that MF is not always consistently better than
hashing-based alternatives (despite allowing for much richer (real-
valued versus binary) data representations). In addition, for Yelp and
Amazon, VHPHD obtains near-identical performance asMF for ama-
jority of the users. Interestingly, on Amazon the hashing-based ap-
proaches generally perform worse than MF on the [80000, 120000]
user interval. We argue that this observation is due to those users
not being expressed well by the limited representational power of
hash codes using the Hamming distance, compared to real-valued
vectors using the inner product, but the projected Hamming dis-
similarity reduces a large part of this gap.

5.5.2 Impact of the number of items per user. We investigate the
impact of a user’s activity as defined by their number of rated items

and plot the NDCG@10 scores per user for 64 bit hash codes and
64-dimensional vectors for MF (See Figure 2).

Generally for all methods, we observe higher performance for
users with few rated items, and the performance drops as the num-
ber of rated items increases. On all datasets except Yelp, the hashing-
based baselines perform similar to the real-valued MF initially, but
the performance gap occurs as the number of rated items increases,
especially for the users with the highest number of rated items
for ML-10M and Amazon. The hash codes may perform worse on
users with a high number of rated items due to their limited rep-
resentational power (compared to a real-valued vector), however,
using the projected Hamming dissimilarity in our VHPHD enables
to reduce this gap significantly. In fact, our VHPHD performs almost
identically to MF on Yelp and most of the users on ML-10M and
Amazon, except those with the highest number of rated items.

5.5.3 Impact of the average item popularity per user. We now con-
sider how a user’s average item popularity impacts performance.
We denote an item’s popularity as the fraction of users who have
rated the item, such that a user’s average item popularity can vary
between 0.0 to 1.0, where 1.0 corresponds to only having rated
items all other users have rated as well. We order users by their
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Figure 1: Users are ordered by NDCG@10 for MF and the user-level performances are plotted.
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Figure 2: Users are ordered by their number of rated items and the user-level NDCG@10 are plotted.
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Figure 3: Users are ordered by their average item popularity and the user-level NDCG@10 are plotted.

average item popularity and plot the NDCG@10 scores per user for
64 bit hash codes and 64-dimensional vectors for MF (See Figure 3).

Generally for all methods, users with a high average item popu-
larity obtain the highest performance scores, whereas users with a
lower average item popularity tend to be harder to model. This can
be explained by popular items appearing often during training, thus
making it easier to learn high quality item representations (both
binary and real-valued) matching the properties of those items. In-
terestingly, on Amazon and partly Yelp, the performance increases
for users with the lowest average item popularity. We argue this is
primarily due to the high sparsity of those datasets, meaning that
some items are rated by very few users, thus making it possible
to fit to a small set of user types. Similarly to the analysis on the
number of rated items in Section 5.5.2, we overall observe a similar
trend that our VHPHD significantly reduces the gap between the
existing hashing-based methods and the real-valued MF.

5.5.4 Stochastic or deterministic hash codes. We investigate the
effect of the sampling strategy for hash codes (see Eq. 12) during
training and evaluation. The sampling can either be deterministic
(𝜇 ( 𝑗) = 0.5) or stochastic (𝜇 ( 𝑗) is sampled uniformly at random

from [0, 1]), and does not have to be the same for training and eval-
uation. Figure 4 shows the performance for the four configurations
of stochastic sampling or deterministic output across all datasets.
We observe that stochastic training with deterministic evaluation
consistently performs the best, while deterministic training and
deterministic evaluation perform second best. As expected, stochas-
tic sampling at evaluation performs significantly worse than the
deterministic option (even more so when trained deterministically),
as every item has a small probability of being sampled such that it
has a small distance to a user, even though it has a low rating (and
vice versa for highly rated items).

5.6 Efficiency results
We measure the efficiency of the projected Hamming dissimilarity
in terms of convergence rate (when integrated into the variational
hashing model) and runtime overhead compared to the Hamming
distance.

5.6.1 Convergence rate. Figure 5 shows the convergence rate for
the variational hashing model using either the Hamming distance
or the projected Hamming dissimilarity for 64 bit hash codes. We
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Figure 4: NDCG@10 of VHPHD when varying whether 64 bit
hash codes are sampled stochastically or deterministically.

see that training with the projected Hamming dissimilarity sig-
nificantly improves the convergence rate compared to the model
with the Hamming distance. The time to run a single batch is the
same for both the Hamming distance and the projected Hamming
dissimilarity (approximately 0.007 seconds for a batch size of 400),
fromwhich we conclude that using and optimizing for the projected
Hamming dissimilarity not only improves NDCG and MRR, but
also drastically reduces training time. We argue that the masking
done in the projected Hamming dissimilarity makes the hash codes
easier to learn: During training, any update in the item hash code
that makes a bit flip will change the distance to all users. However,
for the projected Hamming dissimilarity, an update to an item only
influences the projected Hamming dissimilarity to a user if the
user’s corresponding bit is 1 (as opposed to -1). Thus, the Ham-
ming distance has a global reach for each bit, compared to a more
localised reach for the projected Hamming dissimilarity, which
effectively makes the hash codes easier to learn.

5.6.2 Runtime analysis. The projected Hamming dissimilarity has
the same number of Boolean operations as the Hamming distance
(see Eq. 1 and 6), due to exploiting that the negation of the item hash
codes in the projected Hamming dissimilarity can be precomputed
and stored instead of the original item hash codes (i.e., requiring
no additional storage). We now verify the actual runtime of both
the Hamming distance and the projected Hamming dissimilarity,
when considering a fixed set of hash codes. Note that this is a
comparison of generated hash codes, thus all approaches using the
Hamming distance (or projected Hamming dissimilarity) would
have the same runtime in the following experiment. We implement
both the Hamming distance and projected Hamming dissimilarity
efficiently in C on a machine with a 64 bit instruction set. A test
environment was made with 100M randomized 64 bit hash codes,
where we measure the time taken to compute 100M Hamming
distances and projected Hamming dissimilarities (averaged over
1000 repeated runs). All experiments were run on a single thread10,
with all hash codes loaded in RAM. The source code was compiled
with the highest optimization level utilizing all optimization flags
applicable to the hardware.

As reported in Table 2, the mean experiment time was 0.07401
seconds using both the Hamming distance the projected Hamming
dissimilarity. Thus, the projected Hamming dissimilarity add no

10We used a Intel Core i9-9940X @ 3.30GHz and had 128GB RAM available.

Table 2: Runtime in seconds and runtime overhead com-
pared to the Hamming distance for 100M computations.

Runtime (s) Runtime overhead
Hamming distance 0.07401 -
Projected Hamming dissimilarity 0.07401 +0.0%
Inner product 4.71414 +6269.6%

computational overhead, but still allows learning hash codes en-
abling significant effectiveness improvements as reported in Table
1. Finally, Table 2 also reports the runtime of computing the inner
product of floating point vectors of length 64: the computation
time is 4.71414 seconds, thus being significantly slower than the
Hamming space operations.

6 CONCLUSION
We presented the projected Hamming dissimilarity, which allows
bit-level binary importance weighting (i.e., disabling bits), to pro-
duce hash codes that accurately represent dissimilarity between
data objects and allow for very efficient subsequent processing.
Next, we proposed a variational hashing model for learning hash
codes to be optimized for the projected Hamming dissimilarity, and
experimentally evaluated it in collaborative filtering experiments.
Compared to state-of-the-art hashing-based baselines, we obtained
effectiveness improvements of up to +7% in NDCG and +14% in
MRR, across 4 widely used datasets. These gains come at no ad-
ditional cost in storage or recommendation time, as the projected
Hamming distance has the same extremely fast computation time
as the Hamming distance. Compared to the Hamming distance,
we further find that model optimization using the projected Ham-
ming dissimilarity significantly improves the convergence rate, thus
speeding up model training.

In future work, we plan to investigate the projected Hamming
dissimilarity, and possible adaptions of it, in symmetric retrieval
settings consisting of item-item similarity search, as opposed to
asymmetric user-item search explored in this work. One such ex-
ample is document similarity search, which in the hashing setting
is known as Semantic Hashing [22], where current work has fo-
cused on using the Hamming distance for measuring document
similarities [2, 4, 6, 8, 9, 24].
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Figure 5: Convergence rate optimizing projected Hamming dissimilarity or Hamming distance.
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