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Abstract

Sequential modelling entails making sense of sequential data, which naturally oc-
curs in a wide array of domains. One example is systems that interact with users,
log user actions and behaviour, and make recommendations of items of potential
interest to users on the basis of their previous interactions. In such cases, the se-
quential order of user interactions is often indicative of what the user is interested in
next. Similarly, for systems that automatically infer the semantics of text, capturing
the sequential order of words in a sentence is essential, as even a slight re-ordering
could significantly alter its original meaning. This thesis makes methodological
contributions and new investigations of sequential modelling for the specific appli-
cation areas of systems that recommend music tracks to listeners and systems that
process text semantics in order to automatically fact-check claims, or ”speed read”
text for efficient further classification.

For music recommendation, we make three contributions: Firstly, a study of
how the complexity of sequential music recommender methods relates to the di-
versity and relevance of the recommendations, and how diversification of recom-
mendations can be used to control this trade-off. Secondly, we investigate how
listening context impacts music consumption, which we use to motivate a new
way of representing user profiles that captures sequential and contextual deviations
from the user’s typical music preferences. Thirdly, we improve the prediction of
music skip behaviour in a listening session based on past skips.

For fact-checking, we make three contributions: Firstly, we construct the cur-
rently largest benchmark dataset of naturally occurring claims for training auto-
matic fact-checking models. Secondly, we link and use eye-tracking data of hu-
mans reading news headlines to automatic fact-checking predictions. Thirdly, we
present two models for detecting check-worthy sentences for fact-checking, which
by the use of weak supervision and contrastive ranking, make steps towards better
model generalization in a domain with very limited training data.

Lastly, for speed reading, we contribute a new model that utilizes the inherent
punctuation structure of text for learning how to ignore a large number of words,
while being equally or more effective than processing every word in the text.
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Dansk Resumé

Sekventiel modellering indebærer at skabe mening i sekventielle data, som naturligt
forekommer i en bred vifte af domæner. Et eksempel er systemer, der interagerer
med brugerne, logger brugerhandlinger og adfærd, og giver anbefalinger af poten-
tiel interesse for brugerne på baggrund af deres tidligere interaktioner. I sådanne
tilfælde er den sekventielle rækkefølge af brugerinteraktionerne ofte en indikation
af, hvad brugeren i fremtiden er interesseret i. Tilsvarende er det vigtigt for sys-
temer, der automatisk udleder semantikken i tekst, at repræsentere rækkefølgen
af ord i en sætning, da selv en lille omstilling kan ændre dens oprindelige betyd-
ning væsentligt. Denne afhandling yder metodiske bidrag og nye undersøgelser
af sekventiel modellering til specifikke anvendelsesområder for systemer der an-
befaler musiknumre til lyttere, og systemer der behandler tekstsemantik for au-
tomatisk at foretage faktakontrol af udsagn eller ”speed-read” tekst for effektiv
klassificering.

Til musikanbefaling yder vi tre bidrag: For det første en undersøgelse af, hvor-
dan kompleksiteten af sekventielle musikanbefalingsmetoder er relateret til diver-
sitet og relevansen af anbefalingerne, og hvordan diversificering af anbefalinger
kan bruges til at kontrollere dette trade-off. For det andet undersøger vi, hvordan
lyttekontekst påvirker musikforbruget, som vi bruger til at motivere en ny måde at
repræsentere brugerprofiler, der fanger sekventielle og kontekstuelle afvigelser fra
brugerens typiske musikpræferencer. For det tredje forbedrer vi forudsigelsen af
hvor brugerer skipper musiknumre i en session baseret på tidligere skip.

Til faktakontrol yder vi tre bidrag: For det første konstruerer vi det i øjeb-
likket største benchmarkdatasæt med naturligt forekommende udsagn til træning
af automatiske faktakontrolmodeller. For det andet forbinder vi og bruger eye-
tracking data fra mennesker, der læser nyhedsoverskrifter til automatiske faktakon-
trolforudsigelser. For det tredje præsenterer vi to modeller til detektering af kon-
trolværdige sætninger til faktakontrol, som ved hjælp af weak supervision og kon-
trastiv ranking tager skridt mod bedre model generalisering i et domæne med meget
begrænsede træningsdata.

Endelig bidrager vi til speed reading problemet med en ny model, der udnytter
tekstens tegnsætningsstruktur til at lære at ignorere et stort antal ord, samtidig med
at den er mindst lige så god som hvis hvert ord i teksten bliver processeret.
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Chapter 1

Introduction

Many domains have a natural sequential ordering of their data, where ignoring the
sequential ordering risks throwing away valuable information. One such domain
is that of recommender systems, where a user’s current preferences may be related
to both recent interactions, characterising their current needs, and also long term
behavior, expressing general preference patterns. In both the long and short term,
how users interact with items happens in a sequential order, which typically implies
a sequential dependency between the interactions. Examples of such sequential
dependencies could be in e-commerce systems, where a user might be looking
for clothes matching another recent purchase, or on music streaming platforms,
where a user’s current preference may be learned over a larger number of previous
interactions. A seemingly different, but in fact highly analogous, domain is that
of semantic inference of text, where the sequential word order is paramount for
understanding meaning correctly, e.g., ”The lion ate a chicken” or ”The chicken ate
a lion”. This is broadly known as term dependence and has been long investigated
by both linguists and computer scientists [70].

Utilizing and learning from sequential data is the topic of sequential modelling.
In this thesis, we focus on music recommendation and textual fact-checking as two
specific application areas of sequential modelling. We describe these below.

Music Recommendation

Recommender systems are integral in helping users navigate through the poten-
tially huge number of items available on a content platform. They do so by present-
ing users with relevant items that match their preferences. Training such preference
models is a challenge as the available training data is very sparse. This happens
because a single user normally only interacts with a small fraction of the available
items [25]. In this setup, two distinct ideas are used for learning user preferences:
Firstly, similar users tend to have similar preferences, which can guide recommen-
dation. Secondly, a user’s preferences may be based on certain item properties,
such that users can be recommended items similar to what they have previously
enjoyed. These are the core ideas behind collaborative filtering [53] and content-
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based filtering [66, 81], respectively. To combine the benefits of both, many mod-
ern recommender systems are hybrid approaches utilizing both the item features
and shared preferences [11, 20, 71].

Music recommendation has certain particularities different from the recom-
mendation of other items, such as movies or books [74]. Consumption of music is
highly sequential, as a single session easily consists of listening to tens of tracks,
where the likelihood of a user enjoying a track is not only dependent on the track
itself, but also on how it appears in the sequence [74]. Users also tend to repeat
previously listened tracks [4], and have their current music preference strongly in-
fluenced by situational and contextual aspects [17, 51, 67]. Additionally, music
listening is often a passive activity where the tracks are recommended and played
automatically. This means that users have to actively skip a track to elicit a negative
feedback signal. In contrast, not skipping a track cannot necessarily be interpreted
as a positive feedback signal, as the user may simply not be actively engaged.

In this thesis, we incorporate and exploit the above mentioned particularities
to design new methods for recommender systems. Firstly, we investigate how the
complexity of the ranker used by the recommender system is related to both the
relevance and diversity of the recommendations, where both sequential and non-
sequential models are considered. To increase recommendation diversity, different
diversification methods are investigated to explore their relevance and diversity
trade-offs. Secondly, we perform a large-scale study on how context impacts music
consumption, which we use to motivate a novel approach for generating dynamic
user embeddings capturing sequential and contextual deviations from the user’s
typical music preferences. Thirdly, we investigate to what extent a user’s skip
behaviour can be predicted as a sequential classification task, where the first half
of a session is used to predict the skip behavior of the second half, with the aim of
better understanding the difficulties of modelling skips.

Fact-Checking

Misinformation is spreading at increasing rates, where especially fake news has
a tendency to reach a larger audience and spread faster compared to news that is
factually true [82, 93]. This spread of misinformation has long been considered
a highly pressing societal issue by the World Economic Forum [47], and due to
the scale of the issue, automatic solutions for fact-checking are necessary. An
automated fact-checking pipeline [79] normally consists of three steps: (i) select-
ing check-worthy sentences, which are sentences containing a claim worth fact-
checking, (ii) gathering related evidential information to those sentences which
can help decide factuality, and (iii) using the evidence to infer the factuality of
each check-worthy sentence. We describe each step below.

For step (i), the automatic selection of check-worthy sentences is considered
a ranking task, which for a given text, e.g., transcribed political speeches and de-
bates, aims to provide a ranked list of sentences in the order of how relevant they
are to fact-check. A sentence is said to be check-worthy if it contains a factual
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claim that is of interest to determine the factuality of [46]. This means that even
though a sentence like ”My dog is brown” is factual, it is not check-worthy as its
factuality would be of little interest to most people. Step (ii) and (iii) are typically
considered jointly, as the modelling approach is determined by the structure of the
input. Multiple different sources for obtaining evidential information have been
considered for determining the factuality of a claim. This includes querying search
engines with the claim as a query [52], or limiting the search to specific domains
such as social media posts on Twitter [8]. Knowledge graphs have also been used
for extracting facts related to the central entities of a claim [19]. Lastly, previously
fact-checked claims can also be used as evidence when fact-checking new claims
[76], as semantically similar claims may share the same factuality.

In this thesis, we make a series of contributions toward all three steps of the
fact-checking pipeline. Firstly, we construct the largest dataset of naturally occur-
ring claims. We do this by crawling claims from 26 fact-checking websites, where
associated evidence obtained from a search engine and rich metadata is made avail-
able. We verify the dataset’s usefulness for fact-checking by ablating the effective-
ness improvement of including both the evidence and metadata. Secondly, we
explore other modalities of fact-checking evidence, where we study to what ex-
tent eye-tracked data from users can be used for inferring factuality. Thirdly, we
propose new check-worthiness models utilizing weak supervision and contrastive
ranking to make more accurate predictions. Lastly, unrelated to the fact-checking
pipeline, but related to the sequential modelling used in our proposed models, we
consider the task of speed reading. Speed reading is the task of processing as
few sequential inputs as possible without compromising model effectiveness. We
propose a new model, which utilizes the inherent punctuation structure of text for
learning how to ignore significant parts of the input sequence, while being equally
or more effective than processing the entire sequence.

1.1 Research Outline

This thesis is composed of eight published articles, each of them presented as a
separate chapter. These eight chapters are clustered into three themes, according
to their domain of application. These three themes are: music recommendation,
fact-checking, and speed reading.

This section provides an overview of the primary research questions tackled in
each thesis chapter, and how these were investigated. For each research question,
the relevant background material and main findings are briefly covered.
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1.1.1 Music Recommendation

Chapter 2: Shifting Consumption towards Diverse Content on Music
Streaming Platforms

The meaning of diversity in recommendations is influenced by the domain and task
[54], but a general definition is that diversity is the opposite of similarity among
the recommended items [12]. The aim of this work is to explore how diversity can
be included in sequential music recommendation, where the user is passively lis-
tening or may choose to actively skip a given recommendation. The explicit active
choice of skipping can be seen as interrupting the user experience, and is detrimen-
tal to the overall user satisfaction. Thus, when considering diversity in sequential
recommendation, any recommendation given as a consequence of increasing the
diversity should still be relevant to the user. This contrasts the work on list rec-
ommendation [6, 10, 72, 84], where the user is presented a number of items. In
this case, if a subset of the recommended items are highly relevant, it is possible to
include a selection of less relevant but more diverse items in the rest of the list.

Although there is a potential detrimental cost of increasing the diversity in
sequential recommendation, there are a number of potential benefits which make
diversity worth pursuing. The first one is that diversity can help users discover
new interests [55, 90, 92], which have been linked to long term user retention
[5, 64]. The second one is that diversity can help avoid the rich-get-richer problem
[73], where a small subset of items receive a large amount of the interest as a
consequence of how the recommender systems are trained.

The above leads to the following research questions:

RQ1 To what extent can diversity be included in sequential recommendation, and
how can its effect on the relevance of the recommendations be controlled?

RQ2 What is the relation between the complexity of the ranker used by the rec-
ommender system and the diversity of the recommendations?

To answer RQ1, we first define two notions of diversity relevant to music recom-
mendation. The first notion defines diversity with respect to popularity, and the
second with respect to personalization. We investigate four different methods for
increasing diversity, and we empirically evaluate how they affect the relevance of
the recommended items to the user.

To answer RQ2, we evaluate four rankers of increasing complexity, where
complexity of the ranker refers to the amount of user information and size of the
model it uses for the recommendation. Specifically, we evaluate how each ranker
fares with regards to both the effectiveness and diversity of the recommendations.

Our findings regarding both RQ1 and RQ2 show that i) it is possible to increase
the diversity of the recommended items with little to no decrease in relevance,
while even higher diversity can be achieved if a larger decrease in relevance is
accepted; and ii) as the complexity of the rankers increases, there is a tendency for
the recommendations to get more relevant but less diverse.
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Chapter 3: Contextual and Sequential User Embeddings for Large-
Scale Music Recommendation

In large-scale settings, it can be beneficial from an efficiency perspective to ex-
press user-item relevance using a simple vector operation between a user and item
embedding [9], such as the cosine similarity. This contrasts the methods used for
answering RQ1-2, where the relevance between a user and an item was estimated
by more computationally expensive models. However, embedding-based methods
are not limited to using a static user embedding, which corresponds to using the
same user embedding for each session. Rather, how often the user embedding is
updated is a trade-off between recommendation effectiveness and model efficiency.
In this work, we consider the problem of learning user embeddings that are updated
based on the sequential consumption of past sessions and the current context.

Regarding consumption, prior work has shown that music consumption is highly
driven by recency [4], as users tend to repeat the same tracks often [4, 18]. Regard-
ing context, it has been established that the tracks a user listens to are often context-
dependent, such as based on the time of the day [17], location [51], weather [67],
and current season [63]. However, these studies on contextual dependency have
been done on small datasets, and do not investigate its impact on recommendation
effectiveness.

Motivated by the above, we ask the following research questions:

RQ3 To what degree does music consumption depend on context?

RQ4 To what extent can sequential and context-dependent user embeddings better
anticipate a user’s music consumption?

To answer RQ3, we explore historical data from an online music streaming service,
containing information about the tracks streamed by a sample of 200,000 users over
a two month period. In our analysis, we consider two types of contexts: the time
of the day (temporal context), and the device used for music streaming (device
context), such as mobile, desktop, speaker, etc.

For both sessions associated with an individual user and across all users, we
find that the tracks within a session are more similar to the tracks in sessions of the
same context, compared to sessions from a different context. Furthermore, we also
find that tracks deviating highly from a user’s average preferences, represented by
what tracks they usually listen to, are more likely to be skipped by the user.

The findings from RQ3 support the idea of developing sequential and context-
aware models for representing user preferences. To this end, we address RQ4 by
introducing a new recurrent model that generates user embeddings matching the
user’s preference based on their current context (in the current session) and from
the sequence of past consumed sessions. Our model is trained to maximize the
cosine similarity between the user embedding and tracks played during a given
session. We find that a highly effective way to learn the user embedding is by
fusing a global context-independent embedding (representing the user’s average
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preferences) with a learned sequential and contextual offset embedding (represent-
ing the sequential and contextual deviations to the user’s average preferences). We
experimentally compare our model to state-of-the-art embedding-based models in
a range of ranking tasks, where we observe improvements in ranking effectiveness
upwards of 10%. Interestingly, we find that the largest gains occur in the least fre-
quent contexts, highlighting the model’s ability to accurately learn the contextual
deviations between sessions.

Chapter 4: Modelling Sequential Music Track Skips using a Multi-
RNN Approach

In RQ1-4 we considered the problem of music recommendation within or between
sessions, with the aim to recommend music tracks that the user is unlikely to skip.
To this end, understanding and inferring the skip behaviour of users within a ses-
sion is very important, and was in fact a competition challenge for the WSDM Cup
2019 [13]. In this challenge, a session was split in two halves, such that the task
was to predict the individual track skips occurring in the last half of the session,
based on the skips made by the user in the first half. For all tracks in the session,
track features (e.g., popularity or musical features like strength or flatness) were
available. The only difference between the two halves was the existence of user
feedback in the form of skips. This problem shares similarities with the general
problem of sequence-to-sequence prediction [78], but differs from it in that only
the user feedback is unknown; whereas, in typical sequence-to-sequence problems,
the whole predicted sequence is unknown. Interestingly, it has been observed that
the skip behaviour of users is not entirely dependent on the actual track, but also
largely depends on whether the user skipped the previous track [13].

Motivated by the above, we raise the following research question:

RQ5 To what extent is future sequential skip behaviour predictable by the past?

To answer RQ5, we propose an encoder-decoder model based on two distinct
stacked recurrent neural networks (RNNs) using long short-term memory (LSTM)
units. This encoder-decoder architecture is a type of neural architecture that is of-
ten used for sequence-to-sequence problems, such as machine translation [23, 86].

Our model was the second best performing model in the WSDM Cup 2019
competition (out of 45 teams), with the best performing model [91] also being
based on a similar encoder-decoder architecture. We investigated how the model
accuracy differs between predicting whether the first track was skipped compared
to the average accuracy across all tracks in the second half of the session. We
observed that it was notably easier to predict for the first track (0.807 accuracy)
compared to the whole second half (0.641 mean average accuracy). This highlights
the difficulty of predicting the skip behaviour far out in the future, as if otherwise
the accuracy of the two settings should not be drastically different.
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1.1.2 Fact-Checking

Chapter 5: MultiFC: A Real-World Multi-Domain Dataset for Evidence-
Based Fact Checking of Claims

Automatic fact-checking is the task of predicting the factuality of a claim, typically
based on associated evidence and metadata. The evidence is often automatically
collected from external knowledge sources, such as search snippets from a search
engine [2, 68, 79]. However, existing datasets consist of either a small amount of
naturally occurring claims [60, 94] or artificially constructed claims [80].

Motivated by the above, we pose the following research question:

RQ6 How can a large dataset of real-life claims with accompanying evidence be
created, to aid in the research of automatic fact-checking?

To answer RQ6, we built automatic crawlers for 26 active fact-checking websites.1

From each website, the crawlers automatically extract the claim, its associated fac-
tuality label, and any accompanying metadata that is made available by the indi-
vidual websites (e.g., tags, speaker name, and publication date). The total crawling
resulted in a dataset consisting of 34,918 claims and it was the largest dataset of its
kind at the time of publication. To enrich the dataset with evidence, we used the
claims verbatim as queries to the Google search API, from which we crawled the
top ten retrieved results. To verify the usefulness of the dataset, we trained a state-
of-the-art fact-checking model, and ablated the effectiveness impact of using only
the claim, including search snippets as evidence, as well as metadata. We found
that both evidence and metadata are beneficial for improving the effectiveness of
the model.

Chapter 6: Factuality Checking in News Headlines with Eye Tracking

In RQ6 fact-checking was done using claims, metadata, and associated evidence
extracted from the web. In this work, we investigate other modalities of evidence,
which can be used to determine the factuality of a claim. Specifically, we consider
whether data from eye-tracking can be used to infer the factuality of a claim, as eye-
tracking has previously been used in information retrieval to infer relevance [1, 14,
15, 45, 58, 69]. Additionally, eye-tracking has been used to investigate how users
engage with news content, where it has been observed that users tend to read false
news faster [26], as well as putting more visual attention on credible news posts
[77]. These observations establish a relation between a person’s reading behaviour
and the factuality and credibility of the read material.

Motivated by the above, and focusing on the domain of news, we raise the
following research question:

RQ7 To what extent can the factuality of a news headline be inferred using only
eye-tracked data?

1https://reporterslab.org/fact-checking/
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To answer RQ7, we conducted a user study where the participants were eye-tracked
while reading news headlines that are either true or false. The headlines were
crawled from a reputable local newspaper and a subset of these were manually fal-
sified using a set of consistent semantic transformations. The participants were eye-
tracked while reading the headlines, and five different measures were collected for
each headline: the total gaze duration, total fixation duration, total fixation count,
average fixation duration, and first fixation duration. Fixation corresponds to a sta-
ble eye position within a dispersion threshold, above a duration threshold, and gaze
is the cumulative duration of a sequence of consecutive fixations. For inferring the
factuality of a headline, we proposed an ensemble model that combines the aver-
age factuality prediction of a set of participants to produce the final prediction. The
prediction for each participant was modelled as an average of two simple second
order logistic models. We chose simple models due to the low amount of available
data. We found that the ensemble model over all the participants obtained a mean
AUC of 0.69, whereas using only a single participant led to an AUC of 0.55. Thus,
it is possible to infer the factuality of a news headline using only eye-tracked data,
but the effectiveness is highly dependent on having data from multiple people.

Chapter 7: Neural Check-Worthiness Ranking with Weak Supervision:
Finding Sentences for Fact-Checking

Automatic fact-checking methods are trained on claims typically deemed interest-
ing by (reputable) news sources or fact-checking websites, and are as such often
manually selected for further fact-checking. The task of check-worthiness predic-
tion is to develop automatic methods for filtering texts, e.g., transcribed political
speeches and debates, by assigning a score to each sentence [46]. This score aims
to reflect the degree to which a sentence requires fact-checking.

Most existing research, at the time of publication of this article, had focused on
using hand-crafted features to predict check-worthiness, such as bag-of-words rep-
resentations, sentiment scores, and embedding averages [24, 46, 48, 65], rather than
representation learning approaches using recurrent neural networks or transform-
ers. Based on the learned check-worthiness scores, a ranked list can be generated
for prioritizing which sentences should be fact-checked.

The choice of using models based on hand-crafted features may be due to the
limited training data available [61], as more complex models may be more prone
to overfitting if used with limited training data. Check-Worthiness is a domain
with high availability of data, but small amounts of labelled data, and for such
domains weak labelling has been used successfully [21, 62, 89]. Weak labelling
is the process of using an existing classifier to get low-quality labels, also known
as weak labels, on a typically large amount of currently unlabelled data. The main
idea is that these weak labels can then be used as training data, to improve model
generalizability.

Motivated by the above, we ask the following research question:
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RQ8 Can weak supervision be used for making check-worthiness predictions more
accurate?

To answer RQ8, we extract a large number of sentences originating from politi-
cal speeches and debates from the American Presidency Project.2 These are la-
belled using ClaimBuster [46], an existing check-worthiness method with a pub-
licly available API.3 We use a recurrent neural network model that is pretrained on
the weakly labelled data, which we evaluate with and without the weakly labelled
data. We experimentally show that our model is more effective than state-of-the-art
baselines, and that using the weakly labelled data significantly improves effective-
ness. While our model greatly outperforms the weak labeller, the only baselines
benefiting from the weakly labelled data do not perform better.

Chapter 8: Fact Check-Worthiness Detection with Contrastive Rank-
ing

Existing methods for check-worthiness prediction are trained as a classification
task [24, 29, 46, 48, 65, 85], even though they are typically evaluated as a ranking
task. As an extension to the model proposed for answering RQ8 in the previous
chapter, we consider how a ranking objective could be incorporated during training,
as formulated by the following research question:

RQ9 How can ranking be part of training check-worthiness prediction models?

To answer RQ9, we are motivated by the finding in previous work showing a large
term overlap between claims and non-claims [56]. Because of this, we posit that
check-worthiness models may face difficulties differentiating between highly sim-
ilar sentences with opposing labels. To this end, for each sentence in our dataset,
we find the nearest semantically similar sentences with opposing labels, denoted as
contrastive sentences, and we use these as a set of tuples for training. In addition
to the standard cross entropy classification loss of our model, we extend it with a
hinge ranking loss that better learns to separate the constrastive sentences. We ex-
perimentally validate that including the ranking objective on contrastive sentences
significantly improves ranking effectiveness, compared to our previous model.

1.1.3 Speed Reading

Chapter 9: Neural Speed Reading with Structural-Jump-LSTM

For the recommendation and fact-checking problems considered so far, we have
proposed sequential models for inference and representation learning. Common to
these models is that they all consist of recurrent neural networks for processing a
sequence of inputs in its entirety. We now consider the problem of whether it is

2https://web.archive.org/web/20170606011755/http://www.
presidency.ucsb.edu/

3https://idir.uta.edu/claimbuster/api/
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necessary to process every input, or whether parts can be ignored without compro-
mising effectiveness. This has been explored in what is called ”speed reading”,
which is based on solving text-based tasks using sequential models with the addi-
tional goal of making as few state updates as possible in the recurrent model.

Speed reading tasks have traditionally been solved by two types of models. The
first type is jump-based models [22, 87, 88], which during reading can choose to
jump a certain number of steps ahead in the sequence, or terminate the reading of
the sequence entirely when enough information is obtained to solve the task. The
second type is skip (or skim) based models [16, 75], which in addition to a full
state update, can choose to either ignore the current input, thereby not making any
state updates, or to skim the input and make a reduced state update. Common to all
models is that they make the decision to ignore part of the sequential input based
on the current and previous inputs, but do not utilize any inherent structure in the
sequence.

Our motivation is that, in sequences such as text, punctuation is a type of in-
herent structure that humans use to guide our reading behaviour. Therefore, punc-
tuation could potentially be utilized to determine how the jumps could be done in
speed reading text. Inspired by this, we raise the following research question:

RQ10 To what extent can inherent text structure be used for defining the jumps in
a speed reading model?

To answer RQ10, we propose a new hybrid speed reading model, Structural-Jump-
LSTM, which combines both jumping and skipping of an input. The jumping
is based on exploiting the punctuation structure, such that a jump is made towards
either a comma, the end of a sentence (.!?), or the end of the document. We evaluate
our model empirically in text classification and question-answering, and compare
it against state-of-the-art speed reading models. We find that our model obtains
the overall lowest number of state updates, corresponding to processing the fewest
number of sequential inputs. Additionally, we find that speed reading models can
often produce more accurate predictions than processing the entire sequence (i.e.,
full text), due to better generalization, which has similarly been observed in related
work [75, 87].

1.2 Summary of Contributions

This thesis makes a number of contributions for sequential problems faced in music
recommendation, fact-checking, and speed reading. We summarize the contribu-
tions below:

• The first contribution is a study on diversity in sequential recommendation,
using two notions of diversity related to popularity and user personalization.
To this end, we first propose and evaluate multiple rankers of increasing com-
plexity to study how their complexity impacts the diversity and relevance of

10



the recommendations. Next, to increase the diversity, we investigate dif-
ferent diversification methods to explore their trade-off between increasing
diversity and potentially reducing relevance. We find that rankers of high
complexity result in more accurate but less diverse recommendations, while
diversification methods enable increasing the diversity with little to no re-
duction in relevance.

• The second contribution is a study on the impact of context on music con-
sumption, where we find that tracks within a listening session are most sim-
ilar to the tracks from sessions in the same context. Motivated by this, we
propose a new sequential model for dynamically generating user embed-
dings adapting to the contextual deviations from a user’s general music pref-
erences. Compared to state-of-the-art embedding-based baselines, we find
modelling the contextual deviations to be effective, as seen by ranking im-
provements of upwards of 10% in a range of ranking tasks.

• The third contribution is an investigation of the extent to which a user’s se-
quential skip behaviour in a listening session is predictable by past skips.
To this end, we propose an encoder-decoder model for predicting future un-
known skips in a sequence of known recommended tracks. We show that
as less recent skip information is available, the accuracy drops significantly,
highlighting that the recommended track is not the only factor affecting the
act of skipping.

• The fourth contribution is the construction of the largest-to-date fact-checking
dataset of naturally occurring claims crawled from 26 active fact-checking
websites. The claims are accompanied by evidence pages retrieved from
a search engine, using the claims as queries, as well as rich metadata. We
experimentally highlight the benefits of utilizing both the evidence and meta-
data, as seen by their impact on improving effectiveness.

• The fifth contribution is a study of how well factuality of a headline can be
determined exclusively using eye-tracking data. The eye-tracking data was
obtained from a user study where the participants were eye-tracked while
reading factually true and false news headlines. We find that when eye-
tracking data was pooled from multiple participants using an ensemble ap-
proach, factuality could be reasonably predicted with an AUC of 0.69, high-
lighting that eye-tracking can be used as a new modality for fact-checking
methods.

• The sixth contribution is a new model for detecting check-worthy sentences
for fact-checking. We find that training neural models in this domain is heav-
ily limited by small amounts of training data, to which end we propose a
strategy for using weak supervision, which significantly improves effective-
ness.
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• The seventh contribution is an improved model for detecting check-worthy
sentences. Motivated by the observation of a large term overlap between
claims and non-claims, which are highly similar to check-worthy and non-
check-worthy sentences, we propose a model with a ranking-based objective,
that better separates sentences with high semantic overlap, but opposing la-
bels.

• The eighth contribution is a new speed reading model, which utilizes the
inherent punctuation structure of text for learning how to ignore significant
parts of the input sequence, while being equally or more effective than pro-
cessing the entire sequence.

1.3 Future Work

Based on the contributions presented in this thesis, we outline some potential di-
rections for future work below.

User effort as a measure of quality for sequential recommendation

When evaluating the recommendations of a given recommender system, we nor-
mally aim to optimize the relevance of the recommendations. For music recom-
mendation, this means minimizing the number of skips done by a user. This mea-
sure of recommendation quality is potentially flawed, because not all skips require
the same amount of user effort. We can imagine at least three scenarios:

• The listening device has the screen turned off and is simply used for playing
music, in which case turning on the screen to skip a track takes a moderate
amount of effort;

• The user is actively using the device but does not have the music player open.
In this case skipping a track takes less effort than in the previous example;

• The user has just skipped a track, in which case an immediate subsequent
skip would take very little effort.

Based on these scenarios, we posit that collecting basic information about the state
of the listening device during a session would allow estimating an approximate
effort level of a skip. Rather than training recommender systems to minimize the
number of skips, an alternative task would be the minimization of user effort, which
could potentially better correlate with user satisfaction in passive listening sessions.

Handling bias in sequential recommendation

When training sequential recommender models we currently assume that relevance
feedback is purely dependent on the recommended item, even though this assump-
tion is partly violated by the sequential dependencies between the feedback signals.
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One such example of a sequential dependency is the finding that users are much
more likely to skip if they have just made a previous skip [13]. If these depen-
dencies can be reliably modelled, they could be included for correction during
training, which could lead to more effective recommender systems. This can be
seen as a bias correction for sequential models comparable to the debiasing done
for list-wise recommendation in unbiased learning to rank [50].

Efficient feedback-based re-ranking for sequential recommendation

Deploying a sequential recommender system that incorporates immediate feedback
from a user requires a re-ranking after each interaction. To accommodate this, re-
search into highly efficient sequential recommender systems is required and worth
investigating. For non-sequential recommender systems, very efficient hashing-
based methods have been investigated, where users and items are represented as
hash codes [33, 38], which require very little storage and enable very fast distance
computations. However, hashing-methods have so far not been investigated for the
domain of sequential recommendation. We posit that this is a direction worthy of
further investigation.

Is automatically collected evidence sufficient for determining the factu-
ality of a claim?

In this thesis, in the context of fact checking, we considered the usage of auto-
matically collected evidence as returned by a search engine when using claims
as queries. While utilizing this evidence significantly improves the effectiveness
of the factuality prediction, compared to only using the claim, many claims still
remain difficult to fact check correctly. However, it has not currently been in-
vestigated whether this difficulty is due to insufficient evidence, or lack of better
modelling, or inherent difficulty of the claim itself. To this end, it would be inter-
esting to perform a user study of how well human assessors are able to determine
claim factuality using only the same evidence as used by the fact-checking model.
Additionally, it would provide a gold standard of human performance in the setting
of evidence-based fact-checking.
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ABSTRACT
Algorithmic recommendations shape music consumption at scale,
and understanding the impact of various algorithmic models on
how content is consumed is a central question for music streaming
platforms. The ability to shift consumption towards less popular
content and towards content different from user’s typical historic
tastes not only affords the platform ways of handling issues such
as filter bubbles and popularity bias, but also contributes to main-
taining a healthy and sustainable consumption patterns necessary
for overall platform success.

In this work, we view diversity as an enabler for shifting con-
sumption and consider two notions of music diversity, based on
taste similarity and popularity, and investigate how four different
recommendation approaches optimized for user satisfaction, fare
on diversity metrics. To investigate how the ranker complexity
influences diversity, we use two well-known rankers and propose
two new models of increased complexity: a feedback aware neural
ranker and a reinforcement learning (RL) based ranker. We demon-
strate that our models lead to gains in satisfaction, but at the cost
of diversity. Such trade-off between model complexity and diver-
sity necessitates the need for explicitly encoding diversity in the
modeling process, for which we consider four types of approaches:
interleaving based, submodularity based, interpolation, and RL re-
ward modeling based. We find that our reward modeling based
RL approach achieves the best trade-off between optimizing the
satisfaction metric and surfacing diverse content, thereby enabling
consumption shifting at scale. Our findings have implications for
the design and deployment of practical approaches for music diver-
sification, which we discuss at length.
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1 INTRODUCTION
Algorithmically generated recommendations power and shape the
bulk of music consumption on music streaming platforms. Given
the large role of streaming in the music industry, it has become
important for music streaming platforms to consider the influence
of their recommendations on music consumption in a manner bene-
fiting not only the users, but also artists, and the long term goals of
the platform itself. The ability to influence and shift consumption
at scale enables system designers to maintain healthy consumption
patterns needed for long term platform health and success.

A fundamental characteristic of a music recommendation system
that helps platforms shape consumption is its diversity. What does
diversity means in the context of music recommendation? First, it
can facilitate exploration by helping users discover new content or
inculcate new tastes [11, 31, 34]. Additionally, it can help the plat-
form spread consumption across artists and facilitate consumption
of less popular content. This, in turn, can help counteract rich-get-
richer phenomena common throughout the music industry [24].
Finally, it has recently been shown that consumption of diverse mu-
sic genres is strongly associated with important long-term business
metrics, such as user conversion and retention [1].

We formalize our notion of diversity around two central factors
that influence music consumption via recommender systems: 1)
taste similarity, or how similar a piece of music is to the type of
music the user has historically streamed, and 2) popularity, or
how many users have recently streamed the piece of content [12].
Based on this, two notions of diversity naturally emerge, one
based on the user bias of consumed content, and another based
on the global bias of consumed content. From the former point of
view, one can achieve diversity and shift consumption by avoiding
recommending similar songs to what the user has historically
streamed, while in the latter view of diversification, one can shift
consumption towards the long tail of consumed music. Focusing
on these two notions of diversity enables us to effectively and
efficiently drive diversity and influence music consumption, both
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at the user- and global- level.
Present Work.We focus on the case of sequential recommenda-
tions, and consider four different types of sequential recommenders,
or rankers, of increasing complexity. We leverage two widely used
types of rankers: similarity based and feed-forward neural rankers,
and propose two additional rankers, a feedback aware neural atten-
tion ranker, and a reinforcement learning (RL) based ranker. This
provides us with a wide spectrum of approaches, from simple simi-
larity based rankers to sophisticated reward based RL ranker, and
enables us to understand the interplay between model complexity
and performance. In support of recent findings that highlight the
drop in diversity metrics for models optimized for user satisfac-
tion [15], we investigate how these rankers perform in terms of
diversity. Further, we consider four different ways of incorporating
diversity in recommendation models: (i) linear interpolation, (ii)
submodular diversification, (iii) interleaving based and (iv) reward
modeling based on reinforcement learning (RL) ranker.

Overall, our work considers three key questions around (i)
the role of two classes of diversity for shifting consumption,
and their interplay with user satisfaction, (ii) how four rankers
of increasing complexity fare in terms of satisfaction and
diversity objectives; and (iii) how four different techniques of in-
corporating diversity manage the trade-off against user satisfaction.
Overview of results. Looking at music consumption data, we find
evidence that users can often be satisfied with recommendations
that depart from their historic taste profiles and that are less popular.
This underpins the scope for shifting consumption towards diverse
content without dissatisfying users. Comparing different rankers,
we find strong evidence suggesting that satisfaction centric rankers
are heavily biased towards popular content, and content closely
resembling user’s historic listening activity, which should not be
surprising. Interestingly, this bias increases with model complexity,
with advanced rankers suffering from this bias to a greater extent.

Among the different diversification techniques, we see that the
reward modeling approach for RL model obtains the best trade-off
by obtaining a high satisfaction metric and succeeding in surfacing
less popular content. For diversity with respect to a user’s listening
history, we observe that the RL approach performs comparably to
the interpolation strategy, with the interpolation strategy offering
a wider range of trade-off and subsequently more control over
consumption. More interestingly, comparing these results with
the ranker comparison on only satisfaction, we observe bigger
differences in satisfaction metrics when rankers consider diversity,
than when they are only focused on satisfaction.

Taken together, our work sheds light on a central tension be-
tween optimizing recommendation models for satisfaction centric
objectives versus diversity goals. Developing better rankers results
in increasing short term user satisfaction, albeit slightly. However,
such models tend to serve less diverse recommendations.

2 RELATEDWORK
Retrieving diverse documents has long been recognized as an impor-
tant challenge in information retrieval [5–7] and for recommender
systems [10]. The central problem is that in many applications, it
is not sufficient simply to return relevant items, instead the sys-
tem must account for multiple user intents and needs, in addition

to possible redundancy in the content of the returned items. The
term diversity was first used within information retrieval in [6].
Here a list was considered diverse if it contained items with low
similarity to each other. The ranked list was built greedily, with
the score of each item being an interpolation of the expected rele-
vance to the user, and the dissimilarity of the item to all previously
recommended items in the list. The problem of diversity in list
recommendation has in later years received great interest in devel-
oping more advanced methods to ensure list diversity [2, 3, 22, 29].
A detailed survey of a variety of methods can be found in [10].

Closely related to diversity is the notion of fairness in recom-
mendations, e.g. [4, 25]. Here we consider diversity from the point
of view of the recommended items, e.g. in group fairness, where
if the items can be considered to be part of a group, all groups
must on average be represented in the final recommendation. This
can be extended to marketplace settings, where multiple different
stakeholders have requirements for the fairness of the recommen-
dation [15]. Thus, whereas diversity is often considered to be a user
centric concern, fairness is item centric, as a fair ranking needs to
give equal opportunity for the recommended items.

Whereas existing work on diversity and fairness tends to focus
on the ranked list setting, we consider the problem of sequential
recommendations of single items. This is a substantially different
problem setting, since the user is forced to consume each recom-
mended item, and items introduced to satisfy diversity objectives
cannot be as easily ignored by the user if they turn out irrelevant,
as in the case of a ranked list.

The interplay between recommender systems and diversity has
been popularized in [20], raising public awareness on the so-called
“filter bubble” phenomenon. There has been a number of works
looking at the effects of recommender systems on the diversity of
consumption. A study of a movie recommender system used on a
popular e-commerce web site found that the recommendations led
to a decrease in sales diversity [8]. By contrast, a study on the effect
of recommendations on the YouTube video platform was shown to
lead to more diverse consumption [33]. Finally, in the context of
music, a strong relationship between consumption diversity and
long term platform metrics such as retention and conversion was
shown [1]. These finding support the need for properly addressing
diversity as part of the recommender system design.

Acting on diversity entails a formal definition of diversity. For ex-
ample, in [1, 28] a setting where items are embedded in a Euclidean
space is considered, and diversity is then defined as a function of
pairwise distances in that space. Other definitions have been used
in [7, 15, 23]. In this work, we consider two operationalizations of
diversity, with a focus on simple and practical definitions that are
easy to implement in real-world systems.

3 DIVERSITY FOR CONSUMPTION SHIFTING
Our goal is to understand how algorithmic recommendations can
help shift consumption through diversity in music consumption.
Given the sequential nature of music consumption wherein the user
sequentially decides to stream or skip the recommended music, it
is not straightforward to recommend a track solely for the purpose
of increasing diversity, especially if the track has a low chance of
being listened to. Given this complex interplay between relevance
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of music to the user, its popularity and the resulting success of
diversification, it becomes important to carefully understand the re-
lationship between such concepts. In this work we consider a track
to be irrelevant if the user skipped it and otherwise relevant if the
user listened to the track. We begin by looking at diversity through
the lens of user-track similarity and popularity, and investigate
how often are users satisfied with content that either departs from
their historic listening habits, or is less popular. Understanding
this enables us to underpin the scope of consumption shifting via
diversification.

3.1 Quantifying diversity
While numerous ways of defining and quantifying diversity exist, in
this work, we are interested in two notions of diversity: 1) diversity
on a global level, where the diversity is defined as a property of
a track 𝑡 itself (𝑑 (𝑡)); 2) diversity of a track as depending on the
user 𝑢 to which it is recommended (𝑑 (𝑡,𝑢)), such that the diversity
would differ if the same track is recommended to two different
users. 𝑑 (𝑡) encompass a broad set of different notions of diversity,
e.g., a high diversity score could be associated with new tracks on
the platform, or for tracks of genres rarely listened to by the general
user base. Similarly, 𝑑 (𝑡,𝑢) encompass different notions where the
diversity is depending on the user, e.g., a high diversity score could
be associated with tracks of artists rarely listened to by a user, or
tracks from time periods less familiar to the user.

While the work in this paper can be used for different notions
of diversity of the form 𝑑 (𝑡) or 𝑑 (𝑡,𝑢), we choose to work on two
specific notions of diversity of great importance for music recom-
mendation. For 𝑑 (𝑡), we consider the global popularity of the track,
while for 𝑑 (𝑡,𝑢), we consider how similar the recommended track
is to tracks previously encountered by the user. For ease of notation
we always denote the diversity as 𝑑 (𝑡,𝑢), even though the track
level diversity is independent of the user, i.e., 𝑑 (𝑡,𝑢 ′) = 𝑑 (𝑡,𝑢) for
all users 𝑢,𝑢 ′.

The similarity between a track and tracks previously encountered
by the user (denoted as the user-track similarity) is computed as the
cosine similarity between a user embedding and a track embedding
(see Section 4.1), where the user embedding encodes information
from all tracks the user has streamed in the past. The popularity of
a track is determined by usage statistics on the platform.

3.2 Analysis of diversity and user satisfaction
We investigate how the notions of diversity, as defined in this
work, are related to relevance, and overall engagement measured
by session length (measured as the number of tracks within a
session). We conduct our analysis on both track- and session- level,
and consider a track to be relevant if the user did not skip it. For

the track level analysis we use a dataset of 2 million randomly
sampled recommended tracks, containing the popularity of the
track, the user-track similarity, and the relevance. For the session
level analysis we randomly sampled 1 million user sessions, where
each session has at least 5 tracks to filter out short sessions. For
each session, we log the number of tracks, average popularity, and
average user-track similarity across the session, as well as the
number of tracks relevant to the user.
Track level: The distribution of popularity and user-track
similarity can be seen in Figure 3, and the correlation between the
notions of diversity and relevance can be seen in Figure 1. The
distribution plots show that users engage with tracks of varying
popularity and user-track similarity, but with a large tendency
to engage with tracks of both high popularity and user-track
similarity. For both distribution plots, the density drops rapidly
as popularity/user-track similarity decreases. The correlation
plots between the notions of diversity and relevance show that
user-track similarity is positively correlated with relevance, which
indicates that reducing user-track similarity potentially can harm
the user experience. In contrast, the popularity of the tracks is not
correlated with relevance, and could likely be reduced without
harming the user experience.
Session level: Figure 2 shows the correlation between session pop-
ularity, user-track similarity, average relevance of recommended
tracks, and number of tracks in the session (session length). We
observe that the average popularity is not correlated to either the
session length or the average relevance. As seen in the track level
analysis, user-track similarity is correlated with relevance, but
interestingly it is not correlated with the session length. Figure 4
shows the distribution of both notions of diversity with regards
to the average relevance of the session. The highest density is at
high popularity/user-track similarity and at fully relevant sessions,
but there is considerable density outside this area. Indeed, sessions
exist where users are not satisfied with the most popular tracks
(upper left side), and there are sessions where they are satisfied
with low popularity tracks (lower right side). The same can be
observed for user-track similarity.

This analysis motivates that it is possible to shift consumption
towards more diverse recommendations without harming user sat-
isfaction, and the typical focus on high popularity/user-track simi-
larity is detrimental for some sessions.

4 RANKERS & DIVERSITY METHODS
We consider the problem of sequential recommendation in a ses-
sion, where a user consumes a series of recommended music tracks.
In this setting, users can either skip or listen to a track. We consider
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Table 1: Description of user, track, and user-track combination features
used in the neural rankers.

Feature Type Feature Description

User embedding 40 dimensional learnt word2vec vector of user
country country of registration for user

Track

embedding 40 dimensional learnt word2vec vector of track
popularity normalized popularity of the track
genres genres relevant to the track
acoustic 16 derived acoustic features

track length track duration in seconds
User-Track similarity cosine similarity between user and track embeddings

distance Euclidean distance between user and track embeddings
genre affinity affinity for highest overlapping genre between user & track

Playlist playlist ID a unique playlist identifier used for learning embeddings

a skipped track as irrelevant, and a listened track as relevant. A ses-
sion starts with a user selecting a playlist, which consists of tracks
with some thematic overlap (e.g., Jazz songs), and is recommended
a series of tracks from the playlist, until the user chooses to end the
session. We consider two different recommendation scenarios. In
the first one, we aim to recommend the tracks a user is most likely
to enjoy, and consider four different rankers of increasing complex-
ity for this purpose. In the second one, we aim to recommend tracks
the user is likely to enjoy, but with the secondary objective that the
tracks should also be diverse, where the definition of diversity is
detailed in Section 3. To include diversity in the recommendation,
we explore four different methods to optimize the trade-off between
making both relevant and diverse recommendations.

4.1 Preliminaries
We describe the features available to the rankers. This is important
as part of the difference between the rankers is to what extent they
can make use of the feature space. An overview of the features can
be found in Table 1.

Ȩach track is represented as a concatenation of three distinct
feature vectors: a contextual vector, an acoustic vector, and a
statistic vector. The contextual vector is a 40 dimensional real
valued vector, which is trained such that two tracks that occur in
the same context, will lie close to each other in the vector space
[15]. The acoustic vector consists of 16 derived features that re-
flect different acoustic features of the track, e.g., loudness. Lastly,
the statistics vector contains information on the track length and
popularity of the track on the platform. Each user is represented as
a weighted average of the contextual vectors of the tracks the user
has played in the past as described in [15]. The similarity between
a track and a user are computed by taking the cosine similarity
between the user vector and the track contextual vector, as they
reside in the same space.

For each user and track pair, there are a number of derived fea-
tures capturing their relations. The cosine similarity and Euclidean
distance between the user and track is computed and used as a fea-
ture. Additionally, each user has an affinity for all genres, which is
used as a feature by taking the maximum affinity within the track’s
genres. Lastly, each playlist is represented with a unique identifier,
which is used by some of the ranking models for learning playlist
specific embeddings during model training. In the next sections,
the features are grouped into either: T, which is the combination of
the track and user-track features (track level features); or M, which
is the combination of the playlist embedding and user features
(session level meta features).

4.2 Rankers
We present four different rankers of increasing complexity. The
first is based on the cosine similarity between user and track, while
the remaining three are learned neural models. An overview of the
latter three is provided in Figure 5.

4.2.1 Cosine ranker. This ranker uses the cosine between a track’s
contextual embedding, 𝑒𝑡𝑟𝑎𝑐𝑘 ∈ R40, and a user’s contextual em-
bedding 𝑒𝑢𝑠𝑒𝑟 ∈ R40: 𝑠𝑐𝑜𝑟𝑒cosine = 𝑒𝑡𝑟𝑎𝑐𝑘 ·𝑒𝑢𝑠𝑒𝑟

| |𝑒𝑡𝑟𝑎𝑐𝑘 | |2 | |𝑒𝑢𝑠𝑒𝑟 | |2 . A high cosine
score indicates that the track is similar to tracks the user has previ-
ously consumed on the platform. While being simple, this type of
ranker has been used for music recommendation in previous work
[1, 9, 15].

4.2.2 Feed forward ranker. This is a neural feed forward network,
which takes as input the track level features (T) and session level
meta features (M). All the features are concatenated, and the net-
work gives a score for a single track:

𝑠𝑐𝑜𝑟𝑒FF = 𝜎 (𝑊3 ReLU(𝑊2ReLU(𝑊1 [𝑇 ⊕ 𝑀] + 𝑏1) + 𝑏2) + 𝑏3) (1)

where 𝐹𝐹 stands for feed forward, ⊕ is vector concatenation, ReLU
is the rectified linear unit, and 𝜎 is the sigmoid function. The weight
matrices (W) and bias vectors (b) have input-suitable sizes and are
learned during training. The embedding for the playlist is learned by
the network during training. The feed forward network consists of
2 hidden layers with relu activation functions, and a prediction layer
using a sigmoid activation function. This prediction corresponds
to the probability of a user skipping a track, which is optimized
using the cross entropy loss. This model is relatively simple, and
computationally efficient. We include it to show how well the score
can be computed without considering the user’s history directly.
Note that the network is indirectly aware of the user’s history
through the user embedding and the user-track features.

4.2.3 Feedback aware ranker. This ranker is our proposed
extension of the feed forward ranker, and incorporates the user’s
previous sessions to compute a dynamic user embedding. While
the two previous models gave a score based on a single track,
this model needs to be provided the user’s history as input. We
first cover how the dynamic user embedding is computed, which
consists of two parts: 1) summarising a single session, and 2)
summarising all sessions to a final dynamic user embedding.
Summarising a single session. Each session, 𝑠 , consists of session
level meta features, M, and a sequence of tracks (T,R) ∈ 𝑠 , where
T is the track level features and R is a indicator whether the user
found the track relevant. The session is summarised using a long
short-term memory (LSTM) followed by an attention softmax layer:

𝑜𝑖 , ℎ𝑖 = LSTM(𝑠𝑖 |𝑜𝑖−1, ℎ𝑖−1), 𝑜𝑖 = ReLU(𝑊4 𝑜𝑖 + 𝑏4) (2)

𝑆 =
|𝑠 |∑
𝑖=1

𝑜𝑖
𝑒𝑊5 𝑜𝑖+𝑏5∑ |𝑠 |
𝑗=0 𝑒

𝑊5 𝑜 𝑗+𝑏5
(3)

where LSTM denotes an LSTM cell which update the hidden state ℎ
and output 𝑜 . The LSTM cell is initialised by a linear projection of
the session meta information such that the session representation
can be user and playlist dependent.
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Figure 5: Overview of the neural rankers seen from the perspective of a single track.

Dynamic user embedding. At timepoint 𝑖 , the users have a set
of previous session embeddings, 𝑆 𝑗 ∈ S, 𝑗 ∈ [1, 𝑖 − 1], each having
associated meta information𝑀𝑗 . The dynamic user embedding is
a summary of all previous session embeddings, conditioned on
the current sessions Meta information, 𝑀𝑖 . The summarisation
of previous sessions is done by attention weighting, where the
weighting is based on an interaction vector between the current
session meta information, and the historic sessions meta informa-
tion. The interaction vector [17] is the concatenation, subtraction,
and multiplication of the past session and current session meta
representations, to represent the representational changes between
the sessions. The dynamic user embedding, 𝐷𝑈 , is then given by

interact(𝑀𝑖 , 𝑀𝑗 ) = [𝑀𝑖 −𝑀𝑗 ⊕ 𝑀𝑖 ·𝑀𝑗 ⊕ 𝑀𝑗 ⊕ 𝑀𝑖 ] (4)

𝐷𝑈 =
𝑖−1∑
𝑗=1

𝑆 𝑗
𝑒𝑊6 interact(𝑀𝑖 ,𝑀𝑗 )+𝑏6∑𝑖−1
𝑘=1 𝑒

𝑊6 interact(𝑀𝑖 ,𝑀𝑘 )+𝑏6 (5)

The feedback aware track score is then computed similarly to
the feed forward ranker, with the dynamic user embedding (DU) as
an additional input:

𝑠𝑐𝑜𝑟𝑒FA = 𝜎 (𝑊9 ReLU(𝑊8 ReLU(𝑊7 [𝑇 ⊕ 𝑀𝑖 ⊕ DU] + 𝑏7) + 𝑏8) + 𝑏9)
(6)

where FA stands for feedback aware. Similar to the feed forward
ranker, this model is also optimized using the cross entropy loss.
This model is still relatively computationally efficient, assuming
the dynamic user embedding is pre-computed, which is possible
assuming we know the playlists a user is most likely to listen to.

4.2.4 Reinforcement learning ranker. This ranker (RL) is our
proposed sampling-based ranker that samples a single track from
a set of tracks as the recommendation, which depends on the
previous recommended tracks. This process is repeated on the
remaining set of possible tracks to produce a ranked list. We
formulate the problem of ranking as a standard reinforcement
learning problem. We want to find a policy 𝜋 (𝑡 |𝑠) that gives the
probability of sampling track 𝑡 given state 𝑠 . The policy 𝜋 is learned
so it maximises some notion of reward 𝑅(𝑡, 𝑠), which gives some
reward for recommending track 𝑡 at state 𝑠 . We therefore have to
define the sampling probability 𝜋 (𝑡 |𝑠) and the reward 𝑅(𝑡, 𝑠).
Sampler. Before we cover how 𝜋 (𝑡 |𝑠) is computed, we first define
how 𝑡 and 𝑠 are represented for the RL ranker. 𝑡 is the track level fea-
tures (denoted as T previously), but also concatenated with derived
features from the feedback aware ranker as explained next. The
derived features are the second and last layer of the feedback aware
ranker for each track, and we denote this set of derived features

as FA. These features are included to provide a richer representa-
tion to the RL model, which incorporates the user’s past feedback.
The state 𝑠 is a sequence of tracks the user previously has been
recommended in the session, in addition to the session meta rep-
resentation (M). The state is encoded using a stacked LSTM with
2 layers, and initialised based on a linear projection of the session
meta information:

𝑜𝑖 , ℎ𝑖 = 𝐿𝑆𝑇𝑀𝑠𝑡𝑎𝑐𝑘𝑒𝑑 (𝑠𝑖 |𝑜𝑖−1, ℎ𝑖−1), 𝑠𝑒𝑛𝑐 = 𝑜 |𝑠 | (7)

where LSTM𝑠𝑡𝑎𝑐𝑘𝑒𝑑 is a stacked LSTM with 2 layers, and 𝑠𝑒𝑛𝑐 is
the last output of the stacked LSTM. The logit for each track 𝑡 in
the set of possible tracks, T , is then computed as:

logit𝑡 =𝑊13 ReLU(𝑊12 [(𝑊10 𝑠𝑒𝑛𝑐 + 𝑏10)
⊕ (𝑊11 [𝑇 ⊕ 𝐹𝐴] + 𝑏11)] + 𝑏12) + 𝑏13 (8)

where both session encoding and track representation are passed
through a linear feed forward layer, then concatenated and run
through a feed forward layer using a relu activation function, fol-
lowed by a linear output that gives the unnormalised logit for the
track. The unnormalised logit is computed for all tracks in the set
of possible tracks, and the sample probability is found by applying
a softmax: 𝜋 (𝑡 |𝑠) = 𝑒 logit𝑡∑

𝑡′∈T 𝑒
logit𝑡′ .

Reward. The reward associated with a sampled track, 𝑡 ∼ 𝜋 (·|𝑠) is
defined based on whether the user found the track relevant:

𝑅(𝑡, 𝑠) = 𝑟 (𝑡,𝑢) − 𝑐 (9)

where 𝑟 is a binary relevance function, which is 0 if the user skipped
the track and otherwise 1. 𝑐 is a small constant that ensures that a
negative reward is assigned to non relevant tracks. For all experi-
ments 𝑐 was fixed at 0.1. The model is trained using the REINFORCE
algorithm [30].

4.3 Methods for diversity
We describe four methods used to obtain diversity in the recom-
mended tracks. We assume the diversity score can be computed as a
function between the track and user, 𝑑 (𝑢, 𝑡), as detailed in Section 3.

4.3.1 Linear interpolation. Given the diversity function 𝑑 (𝑢, 𝑡) and
score function 𝑠 (𝑢, 𝑡), the linear interpolation is defined as an 𝛼
weighted combination of score and diversity:

𝑠 (𝑢, 𝑡)diversify = 𝑠 (𝑢, 𝑡) + 𝛼𝑑 (𝑢, 𝑡) (10)

4.3.2 Submodular. Diversity can be introduced by formulating the
diversity problem as a submodular set function. Submodular set
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functions must uphold the following condition:
𝑓 (𝑋 ∪ 𝑥) − 𝑓 (𝑋 ) ≥ 𝑓 (𝑌 ∪ 𝑥) − 𝑓 (𝑌 ), 𝑋 ∈ 𝑌 (11)

where 𝑋 and 𝑌 are set of items, 𝑥 is a single item, and 𝑓 is a real
valued function that takes as argument a set. This condition states
that a submodular function should have some diminishing return
when adding new items to the set. Submodular functions have been
used extensively to provide diversity in recommendations [18, 26,
27], as they fit naturally when the set of recommended items should
be diverse in regards to some similarity metric between the items.
Our notion of diversity (see Section 3) is not naturally submodular,
as diversity is a property of either the track itself or the user-track
interaction, and thus do not have diminishing returns. To make our
notion of diversity submodular, we change the task to recommend
tracks of varying diversity. Given a set of recommended tracks 𝜏
for user 𝑢, we define 𝑓 :

𝑓 (𝜏,𝑢) =
∑
𝑡 ∈𝜏

𝑠 (𝑢, 𝑡) + 𝛼

|𝜏 |
∑
𝑡 ′∈𝜏\𝑡

abs(𝑑 (𝑢, 𝑡) − 𝑑 (𝑢, 𝑡 ′)) (12)

where |𝜏 | is the size of the set 𝜏 , and abs is the absolute value. In
this setting, we want to recommend the tracks with the highest
relevance scores for a given user and that have as different diversity
scores as possible, as this maximises the distance between these.
This is a NP-hard problem, but can be solved greedily obtaining a
near optimal solution [19].

4.3.3 Interleaving. Diversity can be introduced by alternatively
recommending tracks with high diversity and high relevance scores.
To do this we sort the tracks into two lists, 𝑙score and 𝑙diversity, and
sample with probability 1−𝛼 from the score list and otherwise from
the diversity list at each time step, where 𝛼 controls the trade-off
between relevance and diversity. After each recommendation, the
recommended track is removed from both lists.

4.3.4 Reinforcement learning. RL allows us to optimize multiple
objectives directly by modifying the reward function. Thus, for the
RL ranker we introduce diversity by including a diversity term in
the reward function:

𝑅(𝑡, 𝑠) = 𝑟 (𝑡,𝑢) − 𝑐 + 𝛼𝑑 (𝑡,𝑢)𝑟 (𝑡,𝑢) (13)
where 𝛼 is a trade-off parameter between diversity and relevance.
Diversity is multiplied with relevance, such that it is only beneficial
to recommend diverse tracks when they are relevant to the user.

5 EXPERIMENTAL EVALUATION
We observed strong associations between diversity, relevance and
extent of user satisfaction based on the analysis presented in Sec-
tion 3. The natural follow up question is how the different rankers
and diversity methods presented in Section 4 fare, in terms of key
satisfaction and diversity metrics, which we investigate next.

5.1 Dataset, metrics and evaluation
We use a dataset from Spotify, a large online music streaming ser-
vice. The dataset consists of the listening history over a 2 month
period of a sample of 1 million of users across 20 million sessions.
All users in our sample dataset have at least 5 listening sessions,
whereas all sessions have at least 5 tracks. We split users randomly
into a training, validation, and testing set (85%, 7.5%, and 7.5%).

Table 2: Performance of rankers relative to the cosine rankerwhile only op-
timizing relevance. To avoid revealing sensitivemetrics, we introduce amulti-
plicative factor to the base metrics (Hitrate, NDCG and User-track similarity)
reported.

Ranker Hitrate NDCG Popularity
User-track
similarity

Cosine 56.006 0.632 1.741 0.584
Feed forward +2.037% +2.057% +4.365% -10.959%
Feedback aware +2.553% +2.848% +4.078% -9.247%
RL +2.703% +3.165% +4.538% -8.048%

55.5 56.0 56.5 57.0 57.5
hitrate

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

po
pu

la
rit

y

RL
interleaving w. feedback

interpolation w. feedback
mean submodular w. feedback

55.0 55.5 56.0 56.5 57.0 57.5
hitrate

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

us
er

-t
ra

ck
 s

im
ila

rit
y

RL
interleaving w. feedback

interpolation w. feedback
mean submodular w. feedback

Figure 6: Popularity (left) and Average user-track similarity (right) vs hi-
trate using the feedback aware ranker.

We measure user satisfaction with the served recommendations
using Hitrate – the percentage of recommendations relevant to the
user (recommendations that the user fully listens to without skip-
ping), as well as Normalised Discounted Cumulative Gain (NDCG).
For diversity centric experiments, we use as metrics the average
popularity of the recommended content (Popularity) and average
user-track similarity for recommended tracks (User-track similarity).
To avoid revealing sensitive metrics, we introduce a multiplicative
factor to the base metrics (Hitrate, NDCG and User-track similarity)
reported.

To keep users engaged in the session from the start, it is impor-
tant to provide highly relevant initial recommendations. Therefore,
given the sequential nature of our problem, we employ a seed song
based approach, wherein the first track is selected based on rele-
vance, and the diversity metrics are computed on the subsequent
recommended tracks. Higher values of Hitrate and NDCG indicate
greater satisfaction, while lower values of Popularity and User-track
similarity indicate more diversity in the served recommendations.
We evaluate the rankers on their top 10 recommendations. To have
a large and potentially diverse pool of tracks to recommend, we
base the evaluation only on sessions with at least 25 tracks.

5.2 Training details
The neural rankers are tuned by choosing the batch sizes within
{128, 256, 512}, and learning rate from {0.001, 0.0005, 0.0001}. We
kept all hidden layers fixed to 50 neurons, and used LSTM sizes
of 50 as well. For the feed forward and feedback aware rankers,
a batch size of 256 and learning rate of 0.0005 was optimal. For
the RL ranker, a batch size of 512 and learning rate of 0.0001 was
optimal. To train the RL ranker, as we only have access to logged
data, which does not have any propensity scores to allow for off-
policy techniques, we use the logged data as a simulator similar
to [13, 32]. In our simulation setup, the pool of available tracks is
limited to what was originally recommended to the user in a session,
and that the user’s relevance feedback is the same no matter the
order the RL ranker presents the tracks in.
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Table 3: Change (Δ) in hitrate, popularity and user-track similarity in com-
parison to reinforcement learning optimized only for relevance Table 2.

Optimizing popularity Optimizing user-track sim.
Method (𝛼) Δhit Δpopularity Δhit Δuser-track sim.

RL (0.1) -0.212% -8.324% -0.037% -2.235%
RL (0.3) -0.780% -12.637% -0.418% -7.076%
RL (0.5) -1.523% -16.071% -1.119% -10.801%
Interpolation (0.1) -0.675% -9.231% -0.395% -6.145%
Interpolation (0.3) -1.751% -14.835% -1.563% -12.849%
Interpolation (0.5) -2.243% -16.593% -2.909% -16.760%
Submodular (0.1) -0.694% -6.099% -0.217% -1.862%
Submodular (0.3) -1.992% -9.451% -0.421% -2.793%
Submodular (0.5) -2.698% -10.495% -0.652% -3.538%
Interleaving (0.1) -0.916% -5.824% -1.073% -3.911%
Interleaving (0.3) -2.460% -14.835% -2.785% -8.380%
Interleaving (0.5) -4.016% -22.308% -4.461% -12.663%

5.3 Comparison of ranking approaches
We begin by investigating the trade-off between model complexity
and performance, and investigate how the different rankers fare
on diversity metrics when not optimized explicitly for diversity.
Table 2 shows the performance of the four rankers on satisfaction
and diversity metrics. We observe that the hitrate and NDCG for
the rankers follows their computational complexity. The proposed
RL ranker have the highest user satisfaction, although we observe a
relative small difference in hitrate and NDCG for all neural rankers.

As the increasingly complex rankers lead to higher user
satisfaction, they also result in recommendations with a higher
average popularity. Most notably, the largest popularity increase
occurs when going from the cosine ranker to any of the neural
rankers, whereas the popularity difference between the neural
rankers is negligible in comparison. For the user-track similarity
diversity metric, the cosine ranker will by definition have the
largest user-track similarity. However, among the three neural
rankers, we observe that the more complex models lead to
recommendations that are more similar to what the user has
previously encountered. These results suggest that while increased
model complexity gives better user consumption predictability, it
comes at a cost of decreased diversity. As the hitrate and NDCG
both show the same trends, we will focus on only the hitrate for
the remaining results.
Note: While seemingly small, a 2-3% gain in offline metrics
(e.g. NDCG) has resulted in over 10-15% gain in important online
measures of user satisfaction in past A/B tests. This is further sup-
ported by prior research that suggests that small changes in NDCG
might result in significant changes in online user behevaior [21].
5.4 Comparison of diversity methods
To evaluate the four diversity methods, we compare their perfor-
mance for introducing diversity against each other, keeping the
ranker fixed. For the three methods requiring a track relevance
score (interpolation, submodular, and interleaving) we use the feed-
back aware ranker as the base ranker. These three methods are
compared directly against the RL ranker, which is optimized for
both relevance and diversity through its reward definition. As opti-
mizing for both relevance and diversity is a trade-off, the results are
presented using scatter plots. For the non-RL methods, the trade-off
parameter 𝛼 was chosen as 𝛼 ∈ {0.05, ..., 0.5} with increments of
0.05. For the RL ranker, we choose 𝛼 ∈ {0.1, ..., 0.5} with increments
of 0.1, and train each configuration twice to explore the variance.

Figure 6 shows the trade-off between hitrate and the diversity
metric for the diversity methods, while Table 3 shows the relative
values of the hitrate and diversity metrics in comparison to the RL
method not optimized for diversity.
Popularity. We observe that the RL method obtains the best
trade-off between high hitrate while reducing the average
popularity. Linear interpolation obtains the second best trade-off,
and interleaving obtains low average popularity at the cost of large
reductions in hitrate. Submodular is unable to obtain any large
decrease in the average popularity, as larger 𝛼 values only leads to
marginal drops in average popularity. Overall, these results shows
a small benefit of using RL to reduce the average popularity, but
at the cost of higher computational complexity and training time
compared to the simple linear interpolation.
User-track similarity. We observe that the RL method and linear
interpolation obtain very similar trade-offs, but that the linear inter-
polation cover a wider range of trade-offs than the RL method. Di-
versity by the submodular method results in the worst trade-offs, as
the effective user-track similarity reduction is very limited. Similar
to the popularity diversity metric, we observe that the interleaving
method perform significantly worse than linear interpolation.

Overall, these findings suggest that leveraging RL reward mod-
eling for diversification gives slightly better performance, but in-
terpolation based methods offer a wider range of trade-offs, which
provides more flexibility and control to system designers. For sub-
modularity, we observed limited ability to reduce both the popular-
ity and user-track similarity. As described in Section 4.3.2, neither
of the diversities are naturally submodular, hence we formulated a
submodular function for recommending a sequence of items with
varying diversity (as opposed to simply increasing diversity). How-
ever, based on the results in our setting, this submodular formu-
lation is less suited to the problem compared to other traditional
approaches like interleaving and interpolation.

5.5 Interplay between ranker and diversity
methods

We have compared rankers on satisfaction metric, and investigated
the effect of the four diversity methods when the ranker was fixed.
A natural question to answer is whether the observed trends in
diversity methods generalize across all rankers, or does specific
diversity methods work with specific rankers. We next investigate
this interplay of rankers and diversity methods. For all experiments
we use the same choice of 𝛼 values as done previously.
Popularity. Figure 7 shows the trade-off between average
popularity and hitrate for all combinations of rankers and methods
introducing diversity. In all cases, the RL ranker is the same and is
used as a reference between the plots. We observe that the differ-
ence in hitrate from the rankers carries almost directly over for
the interpolation and interleaving, while the difference is smaller
between the hitrate for the submodular method. Independently of
the ranker, the span of average popularity for each of the three
diversity methods is approximately the same, showing that the
ranker almost entirely influences hitrate. As the average popularity
decreases, we observe that the hitrate differences get comparatively
smaller than for larger average popularity values. Independent of
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Figure 7: Popularity vs hitrate
when varying the ranker across di-
versity methods.
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Figure 8: Average user-track sim-
ilarity vs hitrate when varying the
ranker across diversity methods.

the ranker choice, we observe that linear interpolation obtains
the best trade-off among the non-RL diversity methods, while RL
obtains the best overall trade-off.
User-track similarity. Figure 8 shows the trade-off between aver-
age user-track similarity and hitrate for all combinations of rankers
and diversity methods. Due to how linear interpolation and sub-
modular both use the diversity metric to subtract from the rank
score, they do not work when the diversity metric is the same as
the relevance score (as is the case for the cosine), and all values of
𝛼 therefore leads to the same ranking.

The submodular method again provides the worst trade-offs out
of all the diversity methods. When the feed forward ranker is used,
the hitrate decrease is notably larger than for the feedback aware
ranker, but the effective span of average user-track similarity values
is very small for both rankers. For both linear interpolation and
interleaving, we observe the difference in hitrate between the feed
forward ranker and feedback aware ranker is much greater than
the difference observed when only optimizing relevance. While the
difference in hitrate between the feed forward and feedback aware
ranker is only 0.29 when diversity is not considered (see Table 2),
the difference in hitrate can be over 1 depending on the average
user-track similarity. This is even though the feedback aware ranker
has a slightly higher average user-track similarity when diversity
is not considered. Thus, we observe that the choice of ranker can
interact with the choice of diversity method non-trivially.

Overall, we observe that RL and linear interpolation work better
than interleaving and submodular diversity methods, with both RL

Figure 9: Shift in average session diversity for the RL method (𝛼 = 0.3)
compared to optimizing only relevance

and interleaving with feedback aware ranker obtaining approxi-
mately the same trade-offs, while the linear interpolation covering
a larger span of average user-track similarities. More interestingly,
comparing these results with the ranker comparison on only satis-
faction (Section 5.3), we observe bigger differences in hitrate when
rankers consider diversity, than when they are only focused on sat-
isfaction. This suggests that when one cares only about satisfaction,
there exist little difference between the rankers; however when one
cares additionally about diversity, the difference between rankers
becomes more pronounced.

Given the varying complexity of development and deployment
of these rankers, this result has big ramifications on the choice of
rankers for system designers based on the task at hand.

6 DISCUSSION
Looking at music consumption data, and presented results, we
found evidence that not only are users satisfied with relevant rec-
ommendations, but also often with recommendations that depart
from their historic tastes, or are less popular. Such departure from
relevant and popular content allow platforms to broaden the scope
of music listening and shift consumption towards the tail and less
familiar content. Figure 9 visually depicts this shift in consumption,
wherein we observe a significant shift in popularity distribution
from unimodal to bimodal when additionally optimizing for popu-
larity diversity, and a slight shift towards lower user-track similarity
when optimizing for similarity diversity.

Specifically in the context of music streaming, we posit our find-
ings relates to and builds upon insights on how users consume
music. First, recent results suggest that users often have flexible
and broad intents when they interact with the music streaming
apps [14]. Indeed, the broader the intent, the more we expect the
user to be open about music recommendations, which enables the
system to shift consumption while still serving satisfying content.
Another line of recent research has characterized users as "spe-
cialists" vs "generalists" based on their consumption diversity [1],
with generalists preferring diverse sets of music. This highlights
the strong preference of some users to prefer diversity, which in
turn makes shifting of consumption to less similar or less popular
content more amenable. Finally, music streaming applications are
essentially multi-stakeholder platforms which connect users and
artists [16]. Such platforms need to maintain a healthy balance
between user satisfaction and artist exposure goals [15]. A recom-
mender model equipped with consumption shifting ability enables
the platform to surface under-served artists, thereby maintaining a
healthy balance between consumer and supplier objectives.
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On the system design perspective, our findings give system
designers practical considerations on the choice of rankers, ways
of diversification and serving infrastructure. We argue that the
cosine rankers are a good first solution to the recommendation
problem – being greedy algorithms, they are quick to deploy,
and offer comparable performance to neural and RL rankers if
satisfaction is the only goal. However, if diversity is important to
consider, and as systems mature and the need for improved models
arises, switching to neural ranker makes sense. On the choice
between different ways of diversification, the reward modeling
based RL method performs better than interpolation for swaying
consumption away from popular content, though such methods are
non-trivial to productionize at scale. We advocate system design-
ers make this choice based on the underlying infrastructure in place.
Future Work The limitations of this work lead to several next
steps. First, while we used logged data to train our RL model, the
benefits RL has to offer are more prominent when trained via off-
policy training, or a live deployment. Second, there is increasing
evidence that propensity for diverse content is an innate user trait,
with some users preferring diverse content more than others [1, 15].
This motivates the need for developing user-aware diversification
models that personalize the extent to which served recommenda-
tions are diverse. Finally, while we explicitly focused on trivial
reward combinations, there exist ways to account for richer inter-
actions between objectives. Future work will involve considering
richer reward structures to improve performance gains offered by
RL approaches.
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ABSTRACT
Recommender systems play an important role in providing an en-
gaging experience on online music streaming services. However,
the musical domain presents distinctive challenges to recommender
systems: tracks are short, listened to multiple times, typically con-
sumed in sessions with other tracks, and relevance is highly context-
dependent. In this paper, we argue that modeling users’ preferences
at the beginning of a session is a practical and effective way to
address these challenges. Using a dataset from Spotify, a popular
music streaming service, we observe that a) consumption from the
recent past and b) session-level contextual variables (such as the
time of the day or the type of device used) are indeed predictive of
the tracks a user will stream—much more so than static, average
preferences. Driven by these findings, we propose CoSeRNN, a
neural network architecture that models users’ preferences as a
sequence of embeddings, one for each session. CoSeRNN predicts,
at the beginning of a session, a preference vector, based on past
consumption history and current context. This preference vector
can then be used in downstream tasks to generate contextually
relevant just-in-time recommendations efficiently, by using approx-
imate nearest-neighbour search algorithms. We evaluate CoSeRNN
on session and track ranking tasks, and find that it outperforms
the current state of the art by upwards of 10% on different ranking
metrics. Dissecting the performance of our approach, we find that
sequential and contextual information are both crucial.

CCS CONCEPTS
• Information systems → Recommender systems; Music re-
trieval.
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Music Recommendation, User Embeddings, Context, Sequence
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1 INTRODUCTION
Recommender systems are essential for providing an engaging
experience and for helping users navigating the vast amounts of
content available in online services. Successful recommender sys-
tems have to accurately model each user’s individual preferences,
such that the most relevant content can be presented to the user.
In this work, we consider online music streaming services, which
have become increasingly popular in the past decade. By letting
users access millions of tracks at the click of a button, they are
contributing to democratizing access to music. However, in con-
trast to other well-studied domains (such as recommending books,
movies or clothes), music recommender systems face distinctive
challenges [30]. Tracks are short, and therefore often consumed
together with other tracks; we refer to such a set of tracks listened
to in short succession as a session. A given session often contains
tracks from the user’s recent consumption history [1], suggesting
that the sequence of sessions captures essential information about
users’ changing preferences. Additionally, the relevance of tracks
is highly contextual, and preferences depend, among others, on the
time of the day and the current season [24]. We seek to embrace
these distinctive characteristics to produce a better, more accurate
model of user preferences. We focus on the following problem: for
a given user, we are interested in predicting, at the beginning of
a session, which tracks the user will listen to during the session.
We assume that we have access to the user’s past consumption and
to information about the current context. This formulation of the
problem enables generating recommendations that are not only
matching the user’s global tastes, but are also tailored to the spe-
cific context and situation they currently find themselves in. While
generic context-aware recommender systems have been studied in
the past [28], little work has been focused on music recommenda-
tion. We aim to address this gap.

We begin our investigation by exploring a dataset from an online
music streaming service, containing detailed information about the
tracks streamed during a two months period for a sample of 200,000
users. We define context as the time of the day (morning, afternoon,
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etc.) and the device used to access the service (mobile, desktop, etc.)
We find clear evidence that, for a given user, sessions sharing the
same context (e.g., sessions happening in the morning) are more
similar to each other than to sessions from a different context. We
also find that the more the tracks a user listens to during a session
deviate from their average preferences, the more likely they are to
hit the skip button—a negative satisfaction signal. Deviations from
the user’s average preferences may be due to contextual changes
(such as morning vs. evening), but also to preference drifts that
are captured in recent sessions. These observations are consistent
with our hypothesis: accurately modeling sequential and context-
specific intents is important to ensure high user satisfaction across
all sessions.

Taken together, these findings support the idea of learning se-
quence and context-aware models of user preferences. To this end,
we introduce CoSeRNN.1 Our starting point is a vector-space em-
bedding of tracks, where two tracks are close in space if they are
likely to be listened to successively. Given this space, CoSeRNN
models user preferences as a sequence of context-dependent em-
beddings (points in the track space), one for each session. At its
core, it is a variant of a recurrent neural network that takes as input,
for each session, the current session context and a representation
of the user’s past consumption. Given these, the model is trained
to output an embedding that maximizes the cosine similarity to
the tracks played during the session. Interestingly, we find that the
most effective way to produce this embedding is to fuse a long-term,
context-independent vector (intuitively capturing a user’s average
tastes) with a sequence and context-dependent offset (capturing
current and context-specific preferences).

We evaluate our approach experimentally against multiple com-
peting baselines on a) a session ranking task, where the goal is to
discriminate between the current session and previous ones, and
b) a track ranking task, where the goal is to predict which tracks a
user will listen to in the current session. Our approach performs
significantly better than competing approaches: we observe gains
upwards of 10% on all ranking metrics we consider. We study these
results in depth. First, we break them down by context, and observe
that CoSeRNN exhibits the biggest gains on infrequent contexts.
Second, we perform an ablation study and discover that combining
both sequential and contextual information is crucial to achieve
high accuracy. In summary, CoSeRNN sucessfully demonstrates the
benefits of modeling preferences at the session level.

Setting predictive performance aside, we believe that our design
choices also highlight an interesting point in the recommender
systems solution space. Broadly-speaking, our method falls within
the realm of representation learning, which postulates that low-
dimensional embeddings provide an effective way to model users
and items [20, 21]. Whereas most of the work in this area has been
focused on jointly learning user and item embeddings, we choose
a different path, and instead take advantage of an existing track
embedding space. By decoupling track and user embeddings, and
learning the latter based on the former, we ensure interoperability
with othermodels seeking to address problems that are distinct from
contextual or sequential recommendations—our focus in this paper.
In addition, and similarly to [21], our model does not seek to directly

1Contextual and Sequential Recurrent Neural Network

predict the individual tracks inside a session; instead, it generates
a session-level user embedding, and relies on the assumption that
tracks within the session lie inside a small region of the space.
Relevant tracks can then be found efficiently using approximate
nearest-neighbor search [2]. This choice enables our method to
scale to millions of tracks effortlessly.

Outline & Contributions. After briefly discussing related work
(Section 2) and describing our dataset (Section 3), we investigate
the following two research questions.
RQ1 Does music consumption depend on context? By means of

simple analyses, we show clear evidence of contextual pat-
terns in music consumption (Section 4) and thus answer the
question in the affirmative.

RQ2 Can sequential and context-dependent user embeddings better
anticipate a user’s music consumption? We address this ques-
tion by presenting CoSeRNN, a sequence and context-aware
model of user preferences (Section 5), and demonstrate that
it can achieve state-of-the-art results on several prediction
tasks (Section 6). We make our implementation of CoSeRNN
publicly available.2

2 RELATEDWORK
Recommender systems can be broadly categorized as using explicit
or implicit feedback, depending on how users are assumed to indi-
cate their preferences [20]. They can be further categorized based
on which information is available besides user feedback. This in-
cludes content-based [25], sequence-aware [27], context-aware [28],
and collaborative filtering recommender systems [20]. In practice,
the ideas underlying these various approaches can be combined to
match the exact problem setting at hand. Traditionally, matrix and
tensor factorization approaches have been widely successful for
recommendation tasks [10, 20], but recently deep learning based
techniques [37], specifically recurrent neural networks, have re-
ceived increasing interest, due to their ability to model the sequen-
tial nature of user-item interactions effectively [3, 9, 21, 29, 35]. Our
model is based on a recurrent neural network, and as such shares
similarities with this line of work.

Of particular relevance to us is session-aware recommendation [27],
where the focus is on modeling users’ preferences and intents dur-
ing a specific session. Early work on session recommendation uti-
lized Markov chains to predict the next action within a session [40],
and was later extended to Markov decision processes [31]. However,
if higher order models are used, then the state space grows too large
and becomes impractical. To this end, recurrent neural network
models have proven useful, especially for sequential click prediction
tasks [15, 38], where parallel mini-batches and ranking losses lead
to large performance increases over earlier work. Other approaches
focus on directly exploiting user behaviour to improve performance,
e.g., by explicitly modelling repeat consumption [1, 7, 29]. In con-
trast to previous work, we consider a slightly different setting: we
seek to model user preferences at the beginning of a session but
before observing any user interaction. We also assume access to
explicit information about the context.

2Code for CoSeRNN available at https://github.com/spotify-research/cosernn.
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The session-based recommender systems described above are
similar to the generic next-item recommendation setting [9, 19, 36],
but typically session-based methods directly exploit the similari-
ties between items within the same session. Related tasks include
predicting the first item in the next session [29], as well as pre-
dicting all items in the next session (also known as next-basket
recommendation in the e-commerce domain) [34]. However, as the
number of possible items grows, predicting every individual item
in a session becomes intractable due to the combinatorial number
of possibilities. In this paper, we overcome this problem by repre-
senting sessions compactly using embeddings. Thus, our setting is
similar to the next-item recommendation setting, since ultimately
we predict a single embedding representing an entire session.

The idea of predicting the embedding of the next item, rather
than the item itself, has been recently investigated [21]. Given an
embedding, recommendations are then based on inexpensive sim-
ilarity computations, which allows for very large item pools [2].
JODIE [21] learns dynamic user and item embeddings through a
coupled recurrent neural network, where the item embeddings are
based on learning a future user embedding projection. In addition
to dynamic embeddings, JODIE also uses static embeddings that
represent the long-term stationary properties of users and items,
respectively. In contrast to JODIE, our approach does not explicitly
project the user embedding, but rather learns it implicitly in the re-
current neural network component of our model. Also, we represent
long-term user properties as an explicit combination of all previous
sessions, and let the model learn a sequence and context-dependent
offset vector that is fused with the long-term representation.

2.1 Music Recommendation
Music recommender systems present different challenges compared
to recommender systems applied to movies, books, and other prod-
ucts [30]. The major differences are with regards to the duration of
an item (e.g., a song is typically much shorter than a movie) and
consumption type and intent (music streaming is inherently sequen-
tial and highly contextual). Some of these unique characteristics
have previously been explored in the setting of playlist generation
[4, 8]. Others have investigated the effects of context [6, 14, 33],
location [17], and even the weather [26]. However, these studies
usually rely on small-scale datasets and do not explore the impact of
context on recommendation accuracy and performance. In contrast,
our work takes advantage of a large-scale dataset from a leading
music streaming service, and evaluates the predictive performance
of a context and sequence-aware model on concrete recommenda-
tion tasks. Finally, we note that whereas we focus on the sequence
of sessions in this work, prior work on the publicly available Spotify
Music Streaming Sesssions Dataset [5] addressed the problem of
within-session sequencing.

3 DATASET
In this section, we introduce a dataset from Spotify, an online music
streaming service. Through Spotify, users have on-demand access to
millions of music tracks.3 We focus on so-called premium users, who
enjoy an unrestricted, ad-free streaming experience. We consider
the listening history of a sample 200,000 users from April 1st to
3See: https://newsroom.spotify.com/company-info/.

Table 1: Summary of the features extracted from a session 𝑡
contained in the dataset.

Symbol Description Domain
𝐷𝑡 Day of the week {1, . . . , 7}
𝐻𝑡 Time of the day {0, . . . , 23}
𝑌𝑡 Device Y
𝑁𝑡 Number of tracks in session N>0
Δ𝑡 Time since last session R>0
𝑧𝑡 Stream source Z
𝒔𝑡 Session embedding, all tracks R40

𝒔+𝑡 Session embedding, played only R40

𝒔−𝑡 Session embedding, skipped only R40

May 31st 2019. We group listening history into sessions, where we
define a session as the set of music tracks consumed in a given
time interval, such that two sessions are separated by at least 20
minutes of inactivity. On average, users in the dataset have 220
sessions during the two-month period, and each session consists of
10 tracks on average.

3.1 Session-Level Information
Each session is annotatedwith detailed information, including a) the
set of tracks played during the session, b) which tracks were skipped,
c) the stream source (user playlist, top charts, etc., collectively
denotedZ), d) a timestamp representing the start of the session, and
e) the device used to access the service. We process this information
into a set of features, presented in Table 1. The contextual features
available at the beginning of the session, 𝐷𝑡 , 𝐻𝑡 and 𝑌𝑡 , can be
categorized into two types:

• Time context.We use day of the week 𝐷𝑡 and time of the
day 𝐻𝑡 . Note that even though, in Section 4, we partition
sessions by using 𝐷𝑡 only, both features are used for the
model described in Section 5.

• Device context. In addition, we consider the device 𝑌𝑡 used
by the user to access the service at the beginning of a session.
We restrict ourselves to the major devices: Y = {mobile,
desktop, speaker, web, tablet}.

We choose these features as our contextual variables because we
believe that they are both important and widely available. Never-
theless, our framework is independent of the particular choice of
context and other information (either explicit or implicit) such as
mood, activity, or intent can be integrated effortlessly, if available.

The music listened by the user during the session is summarized
using three 40-dimensional session embeddings, 𝒔𝑡 , 𝒔+𝑡 , 𝒔−𝑡 . These
are described in Section 3.3, building upon the description of track
embeddings.

3.2 Track Embedding
We embed tracks in a latent semantic space using the word2vec con-
tinuous bag-of-word model [23] on a set of user-generated playlists.
In short, the model learns 40-dimensional real-valued unit-norm
embedding for each track, such that two tracks that are likely to
co-occur in a playlist are close to each other in the embedding
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space, and vice-versa. The similarity between two tracks can then
be computed simply by using the cosine similarity between their
embeddings. The specific embedding space that we use has previ-
ously been shown to work well for music recommendation [22].

It should be noted that, in principle, track embeddings and user
embeddings could be learned jointly. By decoupling the two, we sim-
plify the development of multiple models with different goals and
improve the scalability of our approach, as discussed in Section 1.

3.3 Session Embedding
The way we represent sessions builds on the track embedding
model. In fact, we represent a session simply as an average of
the embedding of the tracks it contains. The assumption is that,
within a session, tracks cluster around a small region of the em-
bedding space,4 and as such the average track embedding provides
a compact summary of the session’s content. We consider three
embedding variants for a given session 𝑡 , all normalized to unit
length: 𝒔𝑡 represents the average of all tracks, while 𝒔+𝑡 and 𝒔−𝑡
represent the average of played and skipped tracks, respectively.
Considering played and skipped tracks separately provides a more
detailed picture of session-level user preferences.

Our definition of session embedding is computationally-efficient:
if we also model user preferences by using a unit-norm vector in
the same embedding space (as we do in Section 5), we can compute
the cosine similarity to a given session’s embedding using a dot
product. Due to the distributive property of the dot product, the
result can be thought of as the average relevance of each track to
the user—all using a single dot product.

Finally, we note that, for long sessions, it is no longer clear
whether the context stays constant throughout its duration, and
whether the tracks played at the end of the session are related to
the ones at the beginning. For this reason, we deliberately consider
only the first 10 tracks within a session (equal to the average session
length), and discard the rest. We are thus effectively understanding,
modeling and predicting the beginning of a session.

4 EXPLORATORY ANALYSES
In this section, we demontrate the need for contextual models by
studying the influence of context on music consumption. We aim
to answer the following sub-questions to RQ1, related to context in
music consumption:

4.1 How are sessions distributed according to context, and what
is the proportion of users experiencing each type of context?

4.2 Does music consumption vary depending on context?
4.3 How similar are sessions across and within different types

of contexts?
These questions provide empirical evidence for considering context
in music recommendation. Finally, we investigate how user satis-
faction relates to how different a session is from a user’s average
preferences (see Section 4.4)

4.1 Context Distribution Across Sessions
The majority of sessions, as shown in Figure 1, are happening in
the afternoon (12pm-5pm) and evening (5pm-8pm). The remaining
4We validate this assumption empirically using track and session ranking tasks in
Section 6.

(46.4%) of sessions are spread out over the remaining time contexts
of early morning (6am-9am), morning (9am-12am), late evening
(9pm-1am), and night (1am-6am). It is interesting to consider that
most users have sessions spanning all types of time contexts, except
for the night context, which relates to only 76.5% of users. For the
device context, we observe that 88.3% of sessions are happening
on mobile devices, 8.6% on desktop, and the remaining ones are
split across speaker, web, and tablet. However, similar to the time
context, a significant amount of users do have at least one session
in one or more of the non-mobile devices. These findings highlight
that users consume music across multiple contexts, and that even
minority contexts are important to consider, since a large number
of users do experience those at some point.

4.2 Music Consumption and Context
We investigate if diversity in music consumption depends on con-
text. We collect all tracks appearing in each specific context, and
compute the pairwise cosine similarities between tracks within
each context. Note that even minority contexts (such as web and
tablet) contain millions of plays, meaning that the distributions are
well captured for all contexts. Figure 2a illustrates the distributions
of pairwise similarities by using boxplots. For the time context, we
see that minority contexts, such as early morning and night, have
significantly larger variability compared to majority sessions such
as afternoon and evening. We observe a similar trend for the device
context for all non-mobile contexts compared to mobile. This sug-
gests that users have largely different needs in minority contexts,
and as such the user embedding needs to incorporate context in
order to reliably estimate user needs.

4.3 Session Similarity and Context
In the previous section, we performed a global analysis across all
tracks from every user within a specific context. Now, we analyse
if, for a given user, their sessions within the same context are more
similar across different contexts. For each user and each session
(the source), we find the nearest session (the target) among all the
user’s other sessions, and store both the source’s and the target’s
contexts. We then aggregate all the pairs and compute the empirical
distribution of the target’s context type, conditioned on the source’s
context type. To correct for the bias induced by the users’ distinctive
usage patterns (some users might use the service more in some
contexts than in others), we subtract from this distribution the
marginal probability of each pair of contexts (or, equivalently the
empirical distribution obtained when sampling source and target
uniformly at random among the same user’s sessions).

Figure 3 displays the result in the form of heatmaps. The pos-
itive diagonal tells us that sessions sharing the same context are
indeed more similar than sessions sampled at random. Additionally,
for time contexts, those occurring close to each other (e.g., night
and evening) also often have small positive values, indicating that
sessions even from consequent contexts are more similar than ran-
dom sessions. This analysis highlights that sessions with the same
context do share some similarities, which can be exploited to learn
better performing contextual user embeddings.

31



earl
y m

orn
ing
mor

ning

afte
rno

on
even

ing

late
even

ingnigh
t

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

se
ss
io
ns

0.115 0.165

0.313
0.223

0.141
0.043

Time context

mob
ile
desk

top
spea

ker web tabl
et

0.883

0.086
0.018 0.007 0.007

Device context

earl
y m

orn
ing
mor

ning

afte
rno

on
even

ing

late
even

ingnigh
t

0.0
0.2
0.4
0.6
0.8
1.0

Pr
op

or
tio

n
of

us
er
s 0.955 0.997 1.000 1.000 0.990

0.765

Time context

mob
ile
desk

top
spea

ker web tabl
et

1.000

0.476

0.149
0.081 0.063

Device context

Figure 1: Left: histograms of session context. Right: proportion of users with at least one session within a context.

earl
y m

orn
ing
mor

ning

afte
rno

on
even

ing

late
even

ingnigh
t

0.0
0.2
0.4
0.6
0.8

Co
sin

e
sim

ila
rit
y

Time context

mob
ile
desk

top
spea

ker webtabl
et

Device context

(a) Homogeneity within contexts.

0 1 2 3 4 5 6 7 8 9
Minimum # skips

−0.25
−0.20
−0.15
−0.10
−0.05
0.00

Correlation coefficient

0 1 2 3 4 5 6 7 8 9
Minimum # skips

Slope

(b) Cosine similarity and skip rate.

Figure 2: Left: boxplots showing the distribution of pairwise cosine similarity for all tracks occurring within each context.
Right: Pearson correlation and regression slope of the relation between skip rate and user-session cosine similarity.
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4.4 Contextual Preferences and Skip Rate
In the previous analyses we found evidence of context being useful
for providing amore accurate picture of users’ preferences. Now, we
consider the influence of a better match between user and session
embeddings (i.e., higher cosine similarity) on user satisfaction. As a
proxy for satisfaction, we measure the skip rate, i.e., the percentage
of skipped tracks within a session. For the purposes of this analysis,
we define the user embedding as an average of the embeddings of
all their previous sessions. For each session we record the cosine
similarity between the user embedding and the current session’s
embedding, as well as the skip rate of the session.

Figure 2b shows the Pearson correlation coefficient and regres-
sion slope between the skip rate and user-session cosine similarity,
as a function of the minimum skip rate. By considering sessions
with at least 𝑘 skips (𝑥-axis in the figure), we filter out sessions
with low activity, since a very low amount of skips may simply be
due to the user not being actively engaged. We observe that both
the correlation coefficient and regression slope are negative. This
means that, as users skip more often, the user-session similarity de-
creases. Additionally, both the correlation coefficient and regression
slope generally decrease the larger the minimum number of skips
is. We expect that, if we were able to anticipate these “unusual” ses-
sions (i.e., sessions that deviate significantly from a users’ average
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preference), we might be able to improve user satisfaction. As we
will demonstrate in the next sections, sequence and context-aware
models enable us to achieve that goal.

5 CONTEXTUAL AND SEQUENTIAL MODEL
The previous section established the importance of context for
understanding users’ behaviors. Building on these findings, we
now present CoSeRNN, a user-embedding model that captures
contextual and sequential preferences at the session level. The aim
is to predict, at the very beginning of a session (without observing
any explicit action from the user), which trackswill be played during
the session, based on features derived from the past consumption
history and the current context. Section 5.1 presents the architecture
of our model and Section 5.2 discusses the procedure we use to
train it.

5.1 Model Architecture
For conciseness, we consider a single user. For a given a session
index 𝑡 , we denote the predicted session-level user embedding as
𝒖𝑡 ∈ R40, and the observed (ground-truth) session embeddings
as 𝒔−𝑡 , 𝒔+𝑡 ∈ R40, as defined in Section 3.3. The model is trained to
maximize the similarity between 𝒖𝑡 and 𝒔+𝑡 (this will bemade precise
in Section 5.2). A diagram of the architecture of our proposed model,
CoSeRNN, is provided in Figure 4. At a high level, CoSeRNNmodels
𝒖𝑡 as follows. It uses features about the current context (such as
time of the day and device) and features about the last session as
input to two RNNs, representing play and skip behavior. These
RNNs combine the input with a latent state, capturing sequential
dependencies in the user’s consumption habits. Finally, the outputs
of the two RNNs are combined and fused with a long-term user
embedding.

5.1.1 Notation. We denote a dense (fully-connected) neural net-
work layer by FC𝑔 (𝒙) = 𝑔(𝑾𝒙 + 𝒃), where𝑾and 𝒃 are a weight
matrix and a bias vector of suitable dimensions, respectively, and 𝑔
is an activation function. We consider three such functions, a) the
identity function id(𝒙) = 𝒙 , b) the elementwise rectifier ReLU(𝒙) =
[max{0, 𝑥𝑖 }], and c) the softmax function softmax(𝒙) = [exp𝑥𝑖/

∑
𝑗 exp𝑥 𝑗 ].

We denote by 𝑓 ◦ 𝑔(𝑥) the composition of 𝑓 and 𝑔 evaluated at 𝑥 ,
i.e., 𝑓 (𝑔(𝑥)), and by 𝒙 ⊕𝒚 the concatenation of the vectors 𝒙 and 𝒚.

5.1.2 Input Layers. We start with two feature vectors,

𝒇+𝑡 = 𝒄𝑡 ⊕ 𝒔+𝑡−1 ⊕ [
𝑁𝑡−1 𝑧𝑡−1 Δ𝑡

]
𝒇−𝑡 = 𝒄𝑡 ⊕ 𝒔−𝑡−1 ⊕ [

𝑁𝑡−1 𝑧𝑡−1 Δ𝑡
]

where 𝒄𝑡 is a concatenation of one-hot encodings of the contextual
variables𝐷𝑡 ,𝐻𝑡 and𝑌𝑡 , and all other symbols refer to Table 1. These
are input to the play and skip pathways of the network, respec-
tively. Prior to passing the features to the RNN, we apply a learned
nonlinear transformation. This enables the RNN to better focus
on modeling latent sequential dynamics. In particular, we apply
the following transformation: 𝒇+𝑡 = FCReLU ◦ FCReLU (𝒇+𝑡 ), which
corresponds to two fully connected layers with ReLU activations.
We obtain 𝒇−𝑡 by applying the same transformation to 𝒇−𝑡 .

5.1.3 Recurrent Layers. Next, we seek to capture and reuse relevant
information from the user’s history—beyond the last session. We

do so by using an RNN with Long Short Term Memory (LSTM)
cells [16], and let (𝒐+𝑡 ,𝒉+𝑡 ) = LSTM(𝒇+𝑡 | 𝒐+𝑡−1,𝒉𝑡−1), where 𝒐+𝑡 is the
output and 𝒉+𝑡 the hidden state.5 Similarly, we obtain (𝒐−𝑡 ,𝒉−𝑡 ) from
𝒇−𝑡 . We learn to combine the outputs 𝒐+𝑡 and 𝒐−𝑡 , and then obtain
the sequence and context-dependent part of the user embedding,
�̂�𝑡 , as

𝒐𝑡 = FCReLU ◦ FCReLU (𝒐−𝑡 ⊕ 𝒐+𝑡 ), �̂�𝑡 = FCid (𝒐𝑡 ).
5.1.4 Fusion with Long-termUser Embedding. A long-term, context-
independent embedding is able to explain the general preferences
of a user relatively well [22]. We build upon this observation, and
enable our RNNs to focus on learning session-specific deviations
from a long-term user embedding �̄�𝑡 , defined as a weighted average
of all previous session embeddings,

�̄�𝑡 ∝
𝑡−1∑
𝑡 ′=1

𝑡 ′

𝑡 − 1 𝒔𝑡
′, (1)

normalized such that ∥�̄�𝑡 ∥ = 1. To fuse �̄�𝑡 and �̂�𝑡 , we learn atten-
tion weights based on the RNN output, such that uncertain RNN
estimates can default to the long-term embedding. We compute the
attention weights and use those to produce the final user embedding
as 𝒖𝑡 = 𝛽𝑡 �̂�𝑡 + 𝛽𝑡 �̄�𝑡 , where

[
𝛽𝑡 𝛽𝑡

]
= FCsoftmax (𝒐𝑡 ).

5.2 Training and Hyperparameter Tuning
To learn the parameters of the model, tune hyperparameters and
evaluate the performance of our model, we split the dataset of
Section 3 into training, validation and test sets, respectively. The
test set consists of all the sessions of the last two weeks of the
dataset, and the validation set of the 5 days prior to the beginning
of the test set.

5.2.1 Loss function & Optimization. Our model is trained to maxi-
mize the cosine similarity between the predicted embedding 𝒖𝑡 and
the observed one 𝒔𝑡 . Because both embeddings are unit-norm, the
cosine similarity can be computed simply by using a dot product.
Formally, lettingD be a training set consisting of pairs (𝑖, 𝑡), where
𝑖 denotes the user and 𝑡 the session, the loss function is defined as
ℓ =

∑
(𝑖,𝑡 ) ∈D

(
1− 𝒖⊤𝑖𝑡 𝒔

+
𝑖𝑡

)
, where 𝒖𝑖𝑡 and 𝒔+𝑖𝑡 refer to the 𝑡-th session

of user 𝑖 . We minimize ℓ using stochastic gradient descent with
mini-batches, and find that the Adam optimizer [18] works well,
converging in a few tens of epochs.

5.2.2 Hyperparameter Tuning. We use the validation set to tune the
learning rate 𝜆 ∈ {0.001, 0.0005, 0.0001}, LSTM cell sizes 𝑑 ∈ {100,
200, 400}, and batch sizes 𝑚 ∈ {128, 256, 512}, and keep fully
connected layers fixed to size 200. Optimal performance is achieved
by setting 𝜆 = 0.0005, 𝑑 = 400,𝑚 = 256.

6 EXPERIMENTAL EVALUATION
We evaluate the predictive performance of our model on the music
sessions dataset described in Section 3. We first present competing
approaches (Section 6.1), then we describe two ranking tasks that
we use to evaluate our model (Section 6.2) and provide detailed
results (Section 6.3). Finally, we perform an ablation study and shed

5At 𝑡 = 0, the hidden state is initialized using a learned embedding that depends on
the user’s age.
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Figure 4: Overview of the CoSeRNNmodel. Themodel captures users’ sequence-dependent and context-dependent preferences
using information available at the beginning of a session.

light on how the different components of our model contribute to
its predictive performance (Section 6.4).

6.1 Baselines
We evaluate the performance of several baselines and ground-truth
approaches. Our aim is to a) understand the various metrics we
consider in terms of lower-bounds (achieved by trivial models)
and upper bounds (ground-truth), and b) tease apart the impact
of modelling contextual and sequential effects. We consider the
following six baselines.

Last, any cxt This simple baseline predicts the current session em-
bedding using the vector of the last session (irrespective of
that session’s context), that is, 𝒔+𝑡−1. The underlying assump-
tion is that the session vector does not depend on context
but that it may change quickly over time.

Last, same cxt Similar to the previous one, except that it uses the
vector of the last session whose context is identical to the
current one.

Avg, any cxt The current session is modeled as a weighted aver-
age of all past session vectors (irrespective of their contexts),
similarly to the long-term user embedding in Equation (1).

Avg, same cxt Consists of a weighted average of past sessions as
for the previous baseline, except that only sessions with a
context that is identical to the current one are considered.

Popularity The predicted current session vector is equal to that
of the past session containing the most popular tracks.

JODIE The state-of-the-art embedding prediction model of Kumar
et al. [21]. JODIE takes both contextual and sequential ef-
fects into account. To match our setup, we leave the track
embedding fixed (i.e., we use the existing pretrained embed-
dings), and use multiple RNNs to represent combinations of
all, skipped, and listened parts of the session (similarly to our
model). We also use the cosine distance as loss function, as
we found that using the ℓ2-loss (as presented in their paper)
obtained inferior results in our setting.

RRN The model of Wu et al. [35]. RRN learns to predict future
behavioral trajectories using contextual and sequential infor-
mation. We tune the parameters used in the original paper
and adapt it to our setting by changing the objective function
to be the same as that of CoSeRNN (see Section 5.2.1). We
replace the original rating prediction layer to have an output
of 40 (our embedding size) rather than 1 (their rating score).
Similar to JODIE, we leave the embedding of tracks fixed and
use multiple RNNs for representing all, skipped, and listened
parts of the session.

LatentCross Themodel of Beutel et al. [3]. LatentCross introduces
a method for modulating the state of an RNN model with
contextual features. We adapt it to our setting by changing
the objective function to be the same as that of CoSeRNN.
We also replace the final softmax layer originally used in
LatentCross with a feed forward layer of dimension 40 (our
embedding size). With this change, LatentCross can be used
to generate embedding predictions rather than individual
item predictions. Similar to JODIE and RRN, we leave the
embedding of tracks fixed, and allow LatentCross to use
multiple RNNs for representing all, skipped, and listened
parts of the session.

Architectural network choices aside, an important difference be-
tween our CoseRNN and the state-of-the-art baselines is in how
static (or long-term) user embeddings are combined with recurrent
neural network outputs. JODIE uses a static user embedding, RRN
learns a stationary user embedding per time step, and LatentCross
does not have any. In contrast, CoSeRNN computes a weighted
long-term user embedding grounded in a user’s actual past con-
sumption, such that the recurrent neural network can focus on
learning a sequence and context-dependent offset vector, which is
fused with the long-term user embedding using attention weights
(see Section 5 for further details).

In addition to these baselines, we also examine two oracle vari-
ants, to obtain a sense of the difficulty of the various predictive
tasks.
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Oracle Full The predicted session vector is exactly equal to the
(ground-truth) observed one.

Oracle Half The session vector is modeled as the average of half
of the tracks of the current session, selected uniformly at
random among all the tracks in the session. By using only
half of the tracks, it can be seen as a noisy version of Oracle
Full, and highlights the inherent variability inside a session.

6.2 Tasks & Metrics
As discussed in Section 5.2, our model is trained to maximize the co-
sine similarity between the predicted user embedding and observed
session embedding. While this loss is attractive from a computa-
tional standpoint (being differentiable and smooth), it is merely a
useful proxy to the real problem: producing better, more relevant
just-in-time recommendations. To assess whether our optimization
metric is indeed helping us solving that problem, we evaluate all
approaches on two additional tasks.

6.2.1 Session Ranking. The aim here is to measure how well a
given approach can discriminate the current session from previ-
ous ones. For a given session 𝑡 , we consider the 𝐾 session vectors
{𝒔+𝑡−𝐾+1, . . . , 𝒔

+
𝑡 }. We rank these session vectors by decreasing co-

sine similarity with the predicted user embedding 𝒖𝑡 , and measure
the rank of 𝒔𝑡 . For 𝐾 ∈ {20, 50}, we report the mean reciprocal rank
(MRR) and the average rank.

6.2.2 Track Ranking. Here the aim is to measure how well a given
approach can predict the tracks that a user listens to in a given ses-
sion. Similarly to session ranking, this measures if the approaches
are able to adapt to the user’s current preferences, but where the
individual items are considered in contrast to an aggregated session
representation. Given a session 𝑡 , we consider the set of 𝐾 distinct
tracks a user has listened to most recently (across all previous ses-
sions). For 𝐾 ∈ {25, 100}, we rank these tracks by decreasing cosine
similarity with the predicted vector 𝒔𝑡 and report the mean average
precision (mAP) and the average recall@10. If we are able to rank
tracks that are contained in the session highly, it means that we
can anticipate the user behavior well, e.g., by showing the relevant
tracks more prominently (or even start playing them directly).

Experimental Setup. We use the dataset described in Section 3
and the training procedure of Section 5.2. For all methods, when
predicting the user embedding of the 𝑡-th session, we use all the
data up to (but not including) session 𝑡 .

6.3 Results
Table 2 presents the performance on the test set for the cosine-
similarity loss as well as for the various metrics used for the session
and track ranking tasks. CoSeRNN consistently outperforms the
baselines on all metrics across all tasks (all differences are statisti-
cally significant using a pairwise two-tailed t-test at the 0.001 level).
It is interesting to note that although there is a clear positive cor-
relation between cosine similarity and the other metrics, a higher
cosine similarity does not automatically imply better performance
on the ranking tasks.

The four models that are optimized on the cosine similarity
(RRN, LatentCross, JODIE, and CoSeRNN ) are clearly superior to
the simple heuristic baselines on both ranking tasks. Among all

simple baselines, it is worth noting that Last, any cxt generally
performs the best (except on cosine and on session ranking for
𝐾 = 20), an indication that recency plays an important role in
music recommendation; we investigate this further in Section 6.4.
This also explains part of the performance gap from the simple
baselines to JODIE and CoSeRNN, as they are able to better capture
the recency aspect through recurrent neural networks.

The results up to now are averages over all users and test sessions.
We now seek to answer the question: does the performance vary
across contexts?We plot the relative improvement of CoSeRNN over
JODIE (the state-of-the-art approach) in Figure 5. For conciseness,
we only consider a subset of themetrics, and use𝐾 = 50 and𝐾 = 100
for the session and track ranking tasks, respectively. Generally, the
improvements are consistent across all contexts. Interestingly, some
of the contexts that occur infrequently see a comparatively larger
relative improvement, such as for the web or—to a smaller extent—
night contexts.

6.4 Ablation Study
We focus on the empirical performance of CoSeRNN and seek to
understand how different choices affects themodel, which we ablate
in two different ways: 1) by varying the features given as input
to the model, and 2) by processing played and skipped tracks in
different ways.

6.4.1 Input Features. We divide features given as input to our
model into five groups: the embeddings of the last session 𝒔+𝑡 and
𝒔−𝑡 , the current context 𝒄𝑡 , the number of tracks in the last session
𝑁𝑡−1, the time (in seconds) elapsed since the last session Δ𝑡 , and
the stream source of the last session 𝑧𝑡−1. Additionally, we consider
a hypothetical scenario6 where we have access to the stream source
of the current session, 𝑧𝑡 .

The performance of the corresponding models on the cosine
similarity and track ranking tasks is given in Table 3. The current
session context is associated with the biggest increase in cosine
similarity, which is to be expected as context is highly indicative
of the content in a session (as seen in Section 4). In addition, infor-
mation about the previous session significantly helps improving
performance, particularly on the track ranking task. If, in addition
to knowing a user device and the time of the day, we know which
stream source they intend to stream from, our model predictive
performance increases substantially.

6.4.2 Listened vs. Skipped Tracks. The final architecture of our
model partitions tracks in a session into two subsets, played tracks
and skipped tracks. To better understand the impact of this partic-
ular choice, we compare our model to three alternative variants.
The first one does not distinguish between played and skipped
tracks, and instead considers the average embedding of all tracks in
the session. The second one disregards skipped tracks completely
and focuses only on played tracks. The last one considers played
and skipped tracks separately, but also adds in another RNN path-
way that considers the average of all tracks. Table 4 displays the
performance attained by each model.

6This scenario assumes that we are given partial information about the user intent in
the current session. This assumption is realistic in practice, but the trade-off is that we
cannot present recommendations immediately at app launch time.
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Table 2: Empirical performance of various session-prediction approaches on amusic dataset. Best result is highlighted in bold
(all differences are statistically significant at the 0.001 level using a paired two-tailed 𝑡-test).

Session ranking Track ranking
𝐾 = 20 𝐾 = 50 𝐾 = 25 𝐾 = 100

Model Cosine MRR Rank MRR Rank mAP Rec@10 mAP Rec@10
Last, any cxt 0.6527 0.1721 10.0767 0.1133 21.9245 0.3585 0.4394 0.1300 0.1372
Last, same cxt 0.5990 0.2094 9.3128 0.1009 23.5288 0.3398 0.4223 0.1154 0.1156
Avg, any cxt 0.6797 0.1835 10.0882 0.1034 23.7337 0.3485 0.4250 0.1225 0.1291
Avg, same cxt 0.6609 0.2087 9.3365 0.1031 23.4767 0.3476 0.4313 0.1199 0.1239
Popularity 0.4278 0.2012 9.5670 0.0967 24.0233 0.3457 0.4338 0.1165 0.1190

RRN [35] 0.6918 0.1970 9.6689 0.1286 21.2980 0.3794 0.4678 0.1425 0.1594
LatentCross [3] 0.6921 0.1967 9.6669 0.1286 21.2610 0.3794 0.4678 0.1422 0.1592
JODIE [21] 0.6970 0.2079 9.3438 0.1303 21.2258 0.3836 0.4734 0.1450 0.1638
CoSeRNN (ours) 0.7115 0.2319 8.6642 0.1507 19.5288 0.4011 0.4981 0.1574 0.1816

Oracle half 0.7077 0.4723 5.2294 0.3711 11.3131 0.7732 0.8052 0.5824 0.6163
Oracle full 1.0000 0.9985 1.0067 0.9988 1.0068 0.8323 0.8861 0.6220 0.6951
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Figure 5: Improvement of CoSeRNN over JODIE. We compute MRR for 𝐾 = 50 and mAP and recall@10 for 𝐾 = 100.

Table 3: Performance of CoSeRNN model variants with ac-
cess to increasing subsets of input features.

Track ranking (𝐾 = 100)
Features Cosine mAP Recall@10
Last sess. embeddings 0.7062 0.1518 0.1731
+ curr. context 0.7091 0.1527 0.1748
+ # tracks in last 0.7103 0.1569 0.1807
+ time since last 0.7109 0.1569 0.1808
+ last stream source 0.7115 0.1574 0.1816
+ curr. stream source 0.7313 0.1777 0.2100

Separating played tracks from skipped tracks is clearly beneficial
to model performance. Interestingly, considering skipped tracks in
addition to played tracks does bring some performance benefits.
Even though the performance benefit is small, this does highlight
the dissimilarities between a user skipped and listened tracks, and it
helps to improve the model capabilities of understand a user music
preferences. Finally, considering the union of played and skipped

Table 4: Performance of four CoSeRNN model variants that
encode the session in different ways.

Track ranking (𝐾 = 100)
Session encoding Cosine mAP Recall@10
All 0.6966 0.1442 0.1623
Plays 0.7103 0.1567 0.1801
Plays + skips 0.7115 0.1574 0.1816
Plays + skips + all 0.7114 0.1569 0.1809

tracks in addition to the two partitions is unnecessary and does not
improve performance.

7 CONCLUSION
In this work, we consider the task of learning contextual and se-
quential user embeddings suited for music recommendation at the
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beginning of a session. To this end, we first perform multiple ex-
ploratory analyses, gaining a better understanding of how sessions
are distributed according to context, howmusic consumption varies
depending on context, and how context correlates with the tracks
within a session. We find that most users experience a diversity of
contexts (even though some occur more frequently than others),
that sessions belonging to rarely occurring contexts vary the most
(in terms of contents), and that sessions with the same context have
more similar content.

Driven by these findings, we present CoSeRNN, a recurrent neu-
ral network embedding model that learns the sequential listening
behaviour of users, and adapts it to the current context. CoSeRNN
does this through the combination of a) a global long-term em-
bedding that captures a user’s long-term music preferences, and
b) a sequence and context-dependent offset. In contrast to prior
methods that require expensive model evaluations to produce rec-
ommendations, the approach taken by CoSeRNN enables efficiently
generating recommendations by using fast approximate nearest
neighbour searches. When evaluated empirically on a large-scale
dataset of sessions, CoSeRNN outperforms baseline and state-of-
the-art embedding-based approaches by upwards of 10% in session
and track recommendation tasks. In future work, hashing-based
embedding approaches would be interesting to investigate in our
setting, as existingwork on content-aware recommendation [12, 39]
and similarity search [11, 13, 32] have shown hashing-based ap-
proaches to allow large efficiency gains at the cost of a marginal
effectiveness reduction.
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ABSTRACT
Modelling sequential music skips provides streaming companies the
ability to better understand the needs of the user base, resulting in a
better user experience by reducing the need tomanually skip certain
music tracks. This paper describes the solution of the University of
Copenhagen ”DIKU-IR” team in the ”Spotify Sequential Skip Predic-
tion Challenge”, where the task was to predict the skip behaviour of
the second half in a music listening session conditioned on the first
half. We model this task using a Multi-RNN approach consisting
of two distinct stacked recurrent neural networks, where one net-
work focuses on encoding the first half of the session and the other
network focuses on utilizing the encoding to make sequential skip
predictions. The encoder network is initialized by a learned session-
wide music encoding, and both of them utilize a learned track em-
bedding. Our final model consists of a majority voted ensemble of
individually trained models, and ranked 2nd out of 45 participating
teams in the competition with a mean average accuracy of 0.641 and
an accuracy on the first skip prediction of 0.807. Our code is released
at https://github.com/Varyn/WSDM-challenge-2019-spotify.
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1 INTRODUCTION
A challenge for content providers is to model how a given user will
react to some content, such that users are provided with content
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that elicits some positive reaction. Spotify, a music streaming com-
pany, have the problem of incorporating the sequential nature of a
listening session to predict whether a user will skip a given music
track or not1. To this end, a set of approximately 130 million labelled
user sessions has been released, where each session consists of 10
to 20 playback tracks. The task is to predict which music tracks
a user will skip in the second half of session conditioned on the
first half. This problem can be considered a type of session based
recommendation, since no explicit user profile is available, and the
user preferences should therefore be estimated within the first half
of the session. To capture the dynamics of the session, models based
on recurrent neural networks (RNNs) have seen much popularity
for session based recommender systems, as they are able to encode
temporal information well [5, 8, 10].

In this paper we present our solution to the "Spotify Sequen-
tial Skip Prediction Challenge", which ranked second among all 45
submitted solutions. Our solution is based on using two distinct
stacked RNNs, one stacked RNN to encode the first half of a session,
and one stacked RNN responsible for making the skip predictions
conditioned on the state of the first RNN. The stacked RNN used
for encoding the first half of the session is initialized using meta
features related to the session as a whole, and an encoding of all
tracks listened to in the entire session. Both RNNs utilize a track em-
bedding based on provided track features and a learned embedding.
Our model shares similarities with architectures used in sequence-
to-sequence networks [9], which also consist of two distinct RNNs
for encoding and decoding. Sequence-to-sequence networks are
especially popular for machine translation where a strong encoding
of the sentence is needed [4, 11].

2 SEQUENTIAL MUSIC SKIP PREDICTION
In this section we present our method. First we present the Spotify
dataset [3] and its features for both the sessions and the tracks.
We thereafter present an overview of the model, and then go into
greater detail of each component of the model.

2.1 Features
We first describe the dataset and features to establish a common
terminology to use throughout the paper, and then the feature

1https://www.crowdai.org/challenges/spotify-sequential-skip-prediction-challenge

39



engineering used to process the data. The dataset consists of two
primary parts consisting of a user log and a track dataset.

The user log contains the user sessions, which for each user is a
sequence of track playbacks. A track playback contains information
about the user in general (e.g., if they are premium or the day of the
week they are listening), features related to a single track playback
(e.g., what action the user took to end up listening to the current
track, or which action the user took to stop listening to this track),
and lastly the id of the track being listened to. The training data
contains the playback track features for all tracks in the user session.
For the testing data this is available for the first half of the session,
while the last half of the session only contains a track id and position
in the session of the track being played.

The track dataset contains a number of features for each track
which both relate to meta information about the song (e.g., popu-
larity and release information) and specific information related to
the musical content of the song (e.g., beat strength or flatness).

2.1.1 Feature processing. Our method is not reliant on any exten-
sive data pre-processing, so the data preparation is straight forward:
the user session is represented as 3 types of data:

(1) Meta information associated with the whole session
(2) A sequence of playback tracks for the first half of the listen-

ing session
(3) A sequence of track ids and position in the overall session

for the second half of the listening session. This was done to
mimic how the testing data was constructed.

The meta information (1) for the whole session consists of whether
the user is a premium user, the length of the session, and the day of
the week. These are encoded separately using a one hot encoding.
The first half of the listening session (2) contains all the features
for each playback track, except for the features listed in the meta
information (1). All categorical features are encoded using a one hot
encoding. The second half of the listening session (3) only contains
the track id and position in the session for each track.

The track data is standardized such that each feature has 0 mean
and unit variance, and is otherwise used as is for representing a
track.

2.2 Model
This section will explain the neural architecture of our model, and
the network can be seen in Figure 1. Overall, the network consists
of 4 parts: 1) An embedding of the tracks; 2) A network for encoding
all tracks in the full session; 3) A network for encoding the playback
track sequence, which is the first half of a session; and lastly 4) A
prediction network that takes the encoding from (3) and makes a
skip prediction for each track of the second half of the session.

2.2.1 Track embedding. The purpose of the track embedding is to
produce an embedding of the track that both utilizes the provided
features, but also allows the network to learn an embedding specif-
ically optimized for the skip prediction task. These two kinds of
embeddings are concatenated into a single embedding.

The track embedding has 2 tunable parameters: the size of the
learned embedding for the track and the size of the final track
embedding. Each track has an identifier, i , which is used to in-
dex into two embedding matrices Ef ixed and Elearned . Ef ixed

contains all features from the track data, which have been normal-
ized as described in Section 2.1. Elearned is a learned embedding,
which is initialized using a uniform distribution with values from
[−0.05, 0.05]. The final track embedding is then computed as:

tracki = ReLU
(
Wt [Efixedwi ⊕ Elearnedwi ] + bt

)
(1)

where ReLU is the Rectified Linear Unit activation function, ⊕
corresponds to vector concatenation, and wi is the identity vector
whose ith entry is 1 and all other entries 0. The size of tracki is
the final track embedding size.

2.2.2 Session encoding. The purpose of making an initial encoding
of thewhole session (consisting of all tracks), is to allow the network
to be able to learn what kind of music is listened to across the
session. The goal of this is to allow the network to utilize variation,
genre, and general music similarity throughout the session. To
do this, the track embedding presented in the previous section
is used. For a session we have a sequence of embedded tracks
[tracki1 , tracki2 , ..., trackim ], where i1 is the track embedding of
the first track of the session andm is the length of the session. We
first apply a RNN with Long Short-Term Memory (LSTM) units [6],
and get the output produced for each timestep:

[o1, o2, ..., om ] = LSTM([tracki1 , tracki2 , ..., trackim ]) (2)

where oi is the ith output of the LSTM, and LSTM(·) is the ap-
plication of the LSTM on the whole sequence. The final session
embedding is made using an attention-weighted sum over the out-
puts,

session =
m∑
i=1

oi
exp(Waoi + ba )∑m
j=1 exp(Waoj + ba ) (3)

where the second term of the sum corresponds to the attention
weighting of the ith output, exp is the exponential function, and
session is the session embedding. The size of the session embed-
ding is dependent on the size of the LSTM unit.

2.2.3 Playback encoding. The purpose of the playback encoding
network is to make an encoding of the first half of the session, and
then use this encoding when making the skip prediction for each
track in the second half of the session.

The encoding network uses a stacked RNN with a depth of 2
using LSTM units. The initial state of the LSTM is given by 4 linear
fully connected layers taking as input the encoding of all tracks
and the session meta information, and producing the initial hidden
state and output of the LSTM, which we refer to as hidden and
output respectively:

hiddeninitiall =Ws,l [m ⊕ session] + bs,l (4)

outputinitiall =Wo,l [m ⊕ session] + bo,l (5)

where l ∈ {1, 2} indicates the first or second LSTM layer. For later
use we will simply refer to the initial state of the whole stacked
LSTM as stateinitial. m is the meta information associated with the
session as described in Section 2.1. The input to the stacked LSTM
at the jth timestep for the first half of the session, sfj , is constructed
as:

sfj = [tracki j ⊕ playbackj ] (6)
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Figure 1: Network architecture. ⊕ represents vector concatenation of the two embedding look-ups in the Track Embedding
and between an embedded track and playback information in the Playback Encoder.

where playbackj is the playback track features described in Section
2.1, for the jth track in the session. The sequence for the first half
is then [sf1, sf2, ..., sfm2 ]. The playback encoding is the final state of
the LSTM after the whole sequence has been read:

stateenc = STACK-LSTMenc([sf1, sf2, ..., sfm2 ]|state
initial) (7)

where stateenc is the final state of the stacked LSTM, and STACK-
LSTMenc(·) is the application of the stacked LSTM on the input
sequence conditioned on the initial state, stateinitial. The size of the
LSTMs in both layers are chosen to be the same.

2.2.4 Prediction network. The purpose of the prediction network is
to make a prediction for each track in the second half of the session.
This is done by using a stacked LSTM that reads the second half of
the session and produces an output for each track, which is used
to make the final predictions. Note that the stacked LSTMs in the
encoder and the prediction network have the same LSTM size, but
do not share any weights. The input at timestep j for the stacked
LSTM in the prediction network is a track embedding concatenated
with the position of the track in the full session (j + m

2 ). We denote
the input sequence to the stacked LSTM as: [ss1, ss2, ..., ssm2 ] and
compute the stacked LSTM as,

[os1, os2, ..., osm2 ] = STACK-LSTMpred([ss1, ss2, ..., ssm2 ]|stateenc) (8)

The skip prediction for each track is then given as the output of
two fully connected layers, where the first layer has the same size
as the LSTM and a ReLU activation function, whereas the second
layer produces the prediction via a sigmoid activation function.

The whole network is trained using binary cross entropy, with
the ground truth skip behavior of the user as the target for each
prediction.

3 EXPERIMENTAL EVALUATION
We now describe the experimental evaluation of our model. We
first describe the performance metric and simple baselines provided
by the competition organizers, followed by how our model was
tuned as well as implementation details. We then study different
configurations of our model on a validation set, and lastly report
the test performance of our final model.

3.1 Performance metric
The competition employs the Mean Average Accuracy as the official
performance metric. The average accuracy is computed for each
session and then averaged across all sessions. The average accuracy
is defined as:

AA =

∑T
i=1A(i)L(i)

T
(9)

where T is the number of tracks to be predicted in a session, A(i)
is the accuracy at position i of the track sequence, and L(i) = 1
if the prediction at position i was correct, and L(i) = 0 otherwise.
Additionally, for the test performance we also report the accuracy
on the first skip prediction, as that was used for breaking potential
ties among the participants.

3.2 Baselines
For comparison we include the 3 provided baselines by the compe-
tition organizers; the baselines are relatively simple, but show the
performance using intuitive rules for making the skip decisions:

(1) Predict all tracks to be skipped;
(2) Predict track to be skipped if its skip rate in the training set

was greater than 0.5;
(3) Predict the last action from first the half of the session for

all tracks in the second half of the session.
We report the performance metrics on these baselines for the final
comparison on the test set and refer to them as Baseline 1-3.
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3.3 Tuning
We measure the effectiveness of our model using mean average ac-
curacy andmaximize this metric for tuning parameters. For training
we randomly shuffle the provided dataset of 130 million sessions,
and set aside 0.2 million sessions for validation, which will be used
to detect overfitting. Testing is done on a separate dataset consisting
of 31.3 million sessions.

Due to the massive size of the dataset we fix the network pa-
rameters with a track embedding of size 50; a fully connected layer
with size 350 for combining the fixed track embedding with the
learned track embedding; a LSTM size of 100 for the encoding of
tracks in a session; an LSTM size of 500 in both the encoder and
predictor networks; and lastly a fully connected layer with size 500
for making the skip prediction of the predictor network output.
These were initially decided based on rapid tests trained for a short
number of iterations, but due to computational limitations we did
not explore them in full detail. For the network training parameters
we explored batch sizes in the set {50, 100, 200, 300, 400}, and used
a learning rate of 0.0005. For training the network we used the
Adam optimizer [7] with a learning rate of 0.0005. We trained the
models using Titan X GPUs, and used 40-60 hours to fully train
each model.

3.4 Implementation details
Due to the massive size of the dataset we implemented the LSTMs
in our model using cuDNNLSTM in TensorFlow [1], which is up to 7.2
times faster than traditional LSTM implementations [2]. However,
this implementation requires a fixed amount of time steps, which
was set to 10 for both RNNs. To handle sessions of varying lengthwe
applied pre-padding on the input to the playback encoder network
and post-padding to the input to the prediction network, such that
all inputs fitted the fixed size.

3.5 Results
Table 1 displays the validation mean average accuracy of our model
when varying the batch size, which we found to be one of the
most influential parameters to tune for our network architecture.
The table shows that a larger batch size leads to a higher average
accuracy with a batch size of 300 performing the best.

Table 2 shows the test mean average accuracy and accuracy
of the first skip prediction. The table shows the performance of
the three provided baselines, our best performing submission of
a single model (using a batch size of 300), as well as a majority
voting among the 5 models with varying batch size. We observed
that the average correlation between the predictions made by the 5
models was 0.851, and created a final model by taking a majority
voting among the models. The majority voted model performed
better than the best single model with an average accuracy of 0.641
and first skip prediction accuracy of 0.807, which was also notably
better than the three baselines. On the final leaderboard this ranked
as the second best submission in the competition.

4 CONCLUSION
This paper described the participation of the University of Copen-
hagen ”DIKU-IR” team in the ”Spotify Sequential Skip Prediction
Challenge”, where the task was to predict the skip behaviour of the

Batch size Validation AA
400 0.637
300 0.638
200 0.635
100 0.633
50 0.631

Table 1: Model validation performance

Model Test AA First Prediction Accuracy
Baseline 1 0.405 0.541
Baseline 2 0.409 0.559
Baseline 3 0.537 0.742
Our model 0.638 0.805
Our majority voted model 0.641 0.807

Table 2: Model test performance

second half in a music listening session conditioned on the first half.
We proposed a new model for the task of modelling sequential mu-
sic skip behaviour in a given user session of streamedmusic content.
Our model consisted of a Multi-RNN approach with two distinct
stacked recurrent neural networks, which can be considered as an
encoding and predictor network. The encoder network exploited a
learned session-wide encoding of the musical content, while both
of them utilized a learned embedding of each musical track. We
combined individually trained models with different batch sizes in a
majority voted ensemble to obtain a mean average accuracy of 0.641
and an accuracy on the first skip prediction of 0.807, which was the
second best submission of the competition among 45 participating
teams.
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Abstract
We contribute the largest publicly available
dataset of naturally occurring factual claims
for the purpose of automatic claim verification.
It is collected from 26 fact checking websites
in English, paired with textual sources and
rich metadata, and labelled for veracity by hu-
man expert journalists. We present an in-depth
analysis of the dataset, highlighting character-
istics and challenges. Further, we present re-
sults for automatic veracity prediction, both
with established baselines and with a novel
method for joint ranking of evidence pages and
predicting veracity that outperforms all base-
lines. Significant performance increases are
achieved by encoding evidence, and by mod-
elling metadata. Our best-performing model
achieves a Macro F1 of 49.2%, showing that
this is a challenging testbed for claim veracity
prediction.

1 Introduction

Misinformation and disinformation are two of the
most pertinent and difficult challenges of the in-
formation age, exacerbated by the popularity of
social media. In an effort to counter this, a signif-
icant amount of manual labour has been invested
in fact checking claims, often collecting the results
of these manual checks on fact checking portals or
websites such as politifact.com or snopes.com. In
a parallel development, researchers have recently
started to view fact checking as a task that can
be partially automated, using machine learning
and NLP to automatically predict the veracity of
claims. However, existing efforts either use small
datasets consisting of naturally occurring claims
(e.g. Mihalcea and Strapparava (2009); Zubiaga
et al. (2016)), or datasets consisting of artificially
constructed claims such as FEVER (Thorne et al.,
2018). While the latter offer valuable contribu-
tions to further automatic claim verification work,
they cannot replace real-world datasets.

Feature Value

ClaimID farg-00004
Claim Mexico and Canada assemble

cars with foreign parts and send
them to the U.S. with no tax.

Label distorts
Claim URL https://www.factcheck.org/2018/

10/factchecking-trump-on-trade/

Reason None
Category the-factcheck-wire
Speaker Donald Trump
Checker Eugene Kiely
Tags North American Free Trade

Agreement
Claim Entities United States, Canada, Mexico
Article Title FactChecking Trump on Trade
Publish Date October 3, 2018
Claim Date Monday, October 1, 2018

Table 1: An example of a claim instance. Entities are
obtained via entity linking. Article and outlink texts,
evidence search snippets and pages are not shown.

Contributions. We introduce the currently
largest claim verification dataset of naturally
occurring claims.1 It consists of 34,918 claims,
collected from 26 fact checking websites in
English; evidence pages to verify the claims; the
context in which they occurred; and rich metadata
(see Table 1 for an example). We perform a
thorough analysis to identify characteristics of the
dataset such as entities mentioned in claims. We
demonstrate the utility of the dataset by training
state of the art veracity prediction models, and
find that evidence pages as well as metadata
significantly contribute to model performance. Fi-
nally, we propose a novel model that jointly ranks
evidence pages and performs veracity prediction.
The best-performing model achieves a Macro F1
of 49.2%, showing that this is a non-trivial dataset
with remaining challenges for future work.

1The dataset is found here: https://copenlu.
github.io/publication/2019_emnlp_
augenstein/
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2 Related Work

2.1 Datasets

Over the past few years, a variety of mostly small
datasets related to fact checking have been re-
leased. An overview over core datasets is given in
Table 2. The datasets can be grouped into four cat-
egories (I–IV). Category I contains datasets aimed
at testing how well the veracity3 of a claim can be
predicted using the claim alone, without context or
evidence documents. Category II contains datasets
bundled with documents related to each claim – ei-
ther topically related to provide context, or serving
as evidence. Those documents are, however, not
annotated. Category III is for predicting veracity;
they encourage retrieving evidence documents as
part of their task description, but do not distribute
them. Finally, category IV comprises datasets an-
notated for both veracity and stance. Thus, ev-
ery document is annotated with a label indicat-
ing whether the document supports or denies the
claim, or is unrelated to it. Additional labels can
then be added to the datasets to better predict ve-
racity, for instance by jointly training stance and
veracity prediction models.

Methods not shown in the table, but related
to fact checking, are stance detection for claims
(Ferreira and Vlachos, 2016; Pomerleau and Rao,
2017; Augenstein et al., 2016a; Kochkina et al.,
2017; Augenstein et al., 2016b; Zubiaga et al.,
2018; Riedel et al., 2017), satire detection (Ru-
bin et al., 2016), clickbait detection (Karadzhov
et al., 2017), conspiracy news detection (Tacchini
et al., 2017), rumour cascade detection (Vosoughi
et al., 2018) and claim perspectives detection
(Chen et al., 2019).

Claims are obtained from a variety of sources,
including Wikipedia, Twitter, criminal reports and
fact checking websites such as politifact.com and
snopes.com. The same goes for documents – these
are often websites obtained through Web search
queries, or Wikipedia documents, tweets or Face-
book posts. Most datasets contain a fairly small
number of claims, and those that do not, often lack
evidence documents. An exception is Thorne et al.
(2018), who create a Wikipedia-based fact check-
ing dataset. While a good testbed for develop-
ing deep neural architectures, their dataset is arti-
ficially constructed and can thus not take metadata

3We use veracity, claim credibility, and fake news predic-
tion interchangeably here – these terms are often conflated in
the literature and meant to have the same meaning.

about claims into account.
Contributions: We provide a dataset that,

uniquely among extant datasets, contains a large
number of naturally occurring claims and rich ad-
ditional meta-information.

2.2 Methods
Fact checking methods partly depend on the type
of dataset used. Methods only taking into account
claims typically encode those with CNNs or RNNs
(Wang, 2017; Pérez-Rosas et al., 2018), and poten-
tially encode metadata (Wang, 2017) in a similar
way. Methods for small datasets often use hand-
crafted features that are a mix of bag of word and
other lexical features, e.g. LIWC, and then use
those as input to a SVM or MLP (Mihalcea and
Strapparava, 2009; Pérez-Rosas et al., 2018; Baly
et al., 2018). Some use additional Twitter-specific
features (Enayet and El-Beltagy, 2017). More in-
volved methods taking into account evidence doc-
uments, often trained on larger datasets, consist
of evidence identification and ranking following a
neural model that measures the compatibility be-
tween claim and evidence (Thorne et al., 2018;
Mihaylova et al., 2018; Yin and Roth, 2018).

Contributions: The latter category above is
the most related to our paper as we consider ev-
idence documents. However, existing models are
not trained jointly for evidence identification, or
for stance and veracity prediction, but rather em-
ploy a pipeline approach. Here, we show that a
joint approach that learns to weigh evidence pages
by their importance for veracity prediction can
improve downstream veracity prediction perfor-
mance.

3 Dataset Construction

We crawled a total of 43,837 claims with their
metadata (see details in Table 11). We present
the data collection in terms of selecting sources,
crawling claims and associated metadata (Section
3.1); retrieving evidence pages; and linking enti-
ties in the crawled claims (Section 3.3).

3.1 Selection of sources
We crawled all active fact checking websites in
English listed by Duke Reporters’ Lab4 and on the
Fact Checking Wikipedia page.5 This resulted in

4https://reporterslab.org/
fact-checking/

5https://en.wikipedia.org/wiki/Fact_
checking
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Dataset # Claims Labels metadata Claim Sources
I: Veracity prediction w/o evidence
Wang (2017) 12,836 6 Yes Politifact
Pérez-Rosas et al. (2018) 980 2 No News Websites

II: Veracity
Bachenko et al. (2008) 275 2 No Criminal Reports
Mihalcea and Strapparava (2009) 600 2 No Crowd Authors
Mitra and Gilbert (2015)† 1,049 5 No Twitter
Ciampaglia et al. (2015)† 10,000 2 No Google, Wikipedia
Popat et al. (2016) 5,013 2 Yes Wikipedia, Snopes
Shu et al. (2018)† 23,921 2 Yes Politifact, gossipcop.com
Datacommons Fact Check2 10,564 2-6 Yes Fact Checking Websites

III: Veracity (evidence encouraged, but not provided)
Barrn-Cedeo et al. (2018) 150 3 No factcheck.org, Snopes

IV: Veracity + stance
Vlachos and Riedel (2014) 106 5 Yes Politifact, Channel 4 News
Zubiaga et al. (2016) 330 3 Yes Twitter
Derczynski et al. (2017) 325 3 Yes Twitter
Baly et al. (2018) 422 2 No ara.reuters.com, verify-sy.com
Thorne et al. (2018)† 185,445 3 No Wikipedia

V: Veracity + evidence relevancy
MultiFC 36,534 2-40 Yes Fact Checking Websites

Table 2: Comparison of fact checking datasets. † indicates claims are not ‘naturally occuring’: Mitra and Gilbert
(2015) use events as claims; Ciampaglia et al. (2015) use DBPedia tiples as claims; Shu et al. (2018) use tweets as
claims; and Thorne et al. (2018) rewrite sentences in Wikipedia as claims.

38 websites in total (shown in Table 11). Out of
these, ten websites could not be crawled, as fur-
ther detailed in Table 9. In the later experimen-
tal descriptions, we refer to the part of the dataset
crawled from a specific fact checking website as a
domain, and we refer to each website as source.

From each source, we crawled the ID, claim,
label, URL, reason for label, categories, person
making the claim (speaker), person fact checking
the claim (checker), tags, article title, publication
date, claim date, as well as the full text that ap-
pears when the claim is clicked. Lastly, the above
full text contains hyperlinks, so we further crawled
the full text that appears when each of those hyper-
links are clicked (outlinks).

There were a number of crawling issues, e.g. se-
curity protection of websites with SSL/TLS pro-
tocols, time out, URLs that pointed to pdf files
instead of HTML content, or unresolvable encod-
ing. In all of these cases, the content could not be
retrieved. For some websites, no veracity labels
were available, in which case, they were not se-
lected as domains for training a veracity prediction
model. Moreover, not all types of metadata (cat-
egory, speaker, checker, tags, claim date, publish
date) were available for all websites; and availabil-
ity of articles and full texts differs as well.

We performed semi-automatic cleansing of the

dataset as follows. First, we double-checked that
the veracity labels would not appear in claims.
For some domains, the first or last sentence of the
claim would sometimes contain the veracity label,
in which case we would discard either the full sen-
tence or part of the sentence. Next, we checked
the dataset for duplicate claims. We found 202
such instances, 69 of them with different labels.
Upon manual inspection, this was mainly due to
them appearing on different websites, with labels
not differing much in practice (e.g. ‘Not true’, vs.
‘Mostly False’). We made sure that all such du-
plicate claims would be in the training split of the
dataset, so that the models would not have an un-
fair advantage. Finally, we performed some minor
manual merging of label types for the same do-
main where it was clear that they were supposed to
denote the same level of veracity (e.g. ‘distorts’,
‘distorts the facts’).

This resulted in a total of 36,534 claims with
their metadata. For the purposes of fact verifica-
tion, we discarded instances with labels that occur
fewer than 5 times, resulting in 34,918 claims. The
number of instances, as well as labels per domain,
are shown in Table 6 and label names in Table 10
in the appendix. The dataset is split into a train-
ing part (80%) and a development and testing part
(10% each) in a label-stratified manner. Note that
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the domains vary in the number of labels, ranging
from 2 to 27. Labels include both straight-forward
ratings of veracity (‘correct’, ‘incorrect’), but also
labels that would be more difficult to map onto a
veracity scale (e.g. ‘grass roots movement!’, ‘mis-
attributed’, ‘not the whole story’). We therefore
do not postprocess label types across domains to
map them onto the same scale, and rather treat
them as is. In the methodology section (Section
4), we show how a model can be trained on this
dataset regardless by framing this multi-domain
veracity prediction task as a multi-task learning
(MTL) one.

3.2 Retrieving Evidence Pages
The text of each claim is submitted verbatim as a
query to the Google Search API (without quotes).
The 10 most highly ranked search results are re-
trieved, for each of which we save the title; Google
search rank; URL; time stamp of last update;
search snippet; as well as the full Web page. We
acknowledge that search results change over time,
which might have an effect on veracity prediction.
However, studying such temporal effects is outside
the scope of this paper. Similar to Web crawl-
ing claims, as described in Section 3.1, the cor-
responding Web pages can in some cases not be
retrieved, in which case fewer than 10 evidence
pages are available. The resulting evidence pages
are from a wide variety of URL domains, though
with a predictable skew towards popular websites,
such as Wikipedia or The Guardian (see Table 3
for detailed statistics).

3.3 Entity Detection and Linking
To better understand what claims are about, we
conduct entity linking for all claims. Specifically,
mentions of people, places, organisations, and
other named entities within a claim are recognised
and linked to their respective Wikipedia pages, if
available. Where there are different entities with
the same name, they are disambiguated. For this,
we apply the state-of-the-art neural entity linking
model by Kolitsas et al. (2018). This results in
a total of 25,763 entities detected and linked to
Wikipedia, with a total of 15,351 claims involved,
meaning that 42% of all claims contain entities
that can be linked to Wikipedia. Later on, we use
entities as additional metadata (see Section 4.3).
The distribution of claim numbers according to the
number of entities they contain is shown in Figure
1. We observe that the majority of claims have

Domain %
https://en.wikipedia.org/ 4.425
https://www.snopes.com/ 3.992
https://www.washingtonpost.com/ 3.025
https://www.nytimes.com/ 2.478
https://www.theguardian.com/ 1.807
https://www.youtube.com/ 1.712
https://www.dailymail.co.uk/ 1.558
https://www.usatoday.com/ 1.279
https://www.politico.com/ 1.241
http://www.politifact.com/ 1.231
https://www.pinterest.com/ 1.169
https://www.factcheck.org/ 1.09
https://www.gossipcop.com/ 1.073
https://www.cnn.com/ 1.065
https://www.npr.org/ 0.957
https://www.forbes.com/ 0.911
https://www.vox.com/ 0.89
https://www.theatlantic.com/ 0.88
https://twitter.com/ 0.767
https://www.hoax-slayer.net/ 0.655
http://time.com/ 0.554
https://www.bbc.com/ 0.551
https://www.nbcnews.com/ 0.515
https://www.cnbc.com/ 0.514
https://www.cbsnews.com/ 0.503
https://www.facebook.com/ 0.5
https://www.newyorker.com/ 0.495
https://www.foxnews.com/ 0.468
https://people.com/ 0.439
http://www.cnn.com/ 0.419

Table 3: The top 30 most frequently occurring URL
domains.

Figure 1: Distribution of entities in claims.

one to four entities, and the maximum number of
35 entities occurs in one claim only. Out of the
25,763 entities, 2,767 are unique entities. The top
30 most frequent entities are listed in Table 4. This
clearly shows that most of the claims involve enti-
ties related to the United States, which is to be ex-
pected, as most of the fact checking websites are
US-based.

4 Claim Veracity Prediction

We train several models to predict the veracity of
claims. Those fall into two categories: those that
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Entity Frequency
United States 2810
Barack Obama 1598
Republican Party (United States) 783
Texas 665
Democratic Party (United States) 560
Donald Trump 556
Wisconsin 471
United States Congress 354
Hillary Rodham Clinton 306
Bill Clinton 292
California 285
Russia 275
Ohio 239
China 229
George W. Bush 208
Medicare (United States) 206
Australia 186
Iran 183
Brad Pitt 180
Islam 178
Iraq 176
Canada 174
White House 166
New York City 164
Washington, D.C. 164
Jennifer Aniston 163
Mexico 158
Ted Cruz 152
Federal Bureau of Investigation 146
Syria 130

Table 4: Top 30 most frequent entities listed by their
Wikipedia URL with prefix omitted

only consider the claims themselves, and those
that encode evidence pages as well. In addition,
claim metadata (speaker, checker, linked entities)
is optionally encoded for both categories of mod-
els, and ablation studies with and without that
metadata are shown. We first describe the base
model used in Section 4.1, followed by introduc-
ing our novel evidence ranking and veracity pre-
diction model in Section 4.2, and lastly the meta-
data encoding model in Section 4.3.

4.1 Multi-Domain Claim Veracity Prediction
with Disparate Label Spaces

Since not all fact checking websites use the same
claim labels (see Table 6, and Table 10 in the ap-
pendix), training a claim veracity prediction model
is not entirely straight-forward. One option would
be to manually map those labels onto one another.
However, since the sheer number of labels is rather
large (165), and it is not always clear from the
guidelines on fact checking websites how they can
be mapped onto one another, we opt to learn how
these labels relate to one another as part of the
veracity prediction model. To do so, we employ

the multi-task learning (MTL) approach inspired
by collaborative filtering presented in Augenstein
et al. (2018) (MTL with LEL–multitask learning
with label embedding layer) that excels on pair-
wise sequence classification tasks with disparate
label spaces. More concretely, each domain is
modelled as its own task in a MTL architecture,
and labels are projected into a fixed-length label
embedding space. Predictions are then made by
taking the dot product between the claim-evidence
embeddings and the label embeddings. By doing
so, the model implicitly learns how semantically
close the labels are to one another, and can benefit
from this knowledge when making predictions for
individual tasks, which on their own might only
have a small number of instances. When making
predictions for individual domains/tasks, both at
training and at test time, as well as when calculat-
ing the loss, a mask is applied such that the valid
and invalid labels for that task are restricted to the
set of known task labels.

Note that the setting here slightly differs from
Augenstein et al. (2018). There, tasks are less
strongly related to one another; for example, they
consider stance detection, aspect-based sentiment
analysis and natural language inference. Here, we
have different domains, as opposed to conceptu-
ally different tasks, but use their framework, as we
have the same underlying problem of disparate la-
bel spaces. A more formal problem definition fol-
lows next, as our evidence ranking and veracity
prediction model in Section 4.2 then builds on it.

4.1.1 Problem Definition
We frame our problem as a multi-task learning
one, where access to labelled datasets for T tasks
T1, . . . , TT is given at training time with a target
task TT that is of particular interest. The train-
ing dataset for task Ti consists of N examples
XTi = {xTi1 , . . . , xTiN} and their labels YTi =

{yTi1 , . . . ,yTiN }. The base model is a classic deep
neural network MTL model (Caruana, 1993) that
shares its parameters across tasks and has task-
specific softmax output layers that output a proba-
bility distribution pTi for task Ti:

pTi = softmax(WTih+ bTi) (1)

where softmax(x) = ex/
∑‖x‖

i=1 e
xi , WTi ∈

RLi×h, bTi ∈ RLi is the weight matrix and
bias term of the output layer of task Ti respec-
tively, h ∈ Rh is the jointly learned hidden rep-
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resentation, Li is the number of labels for task
Ti, and h is the dimensionality of h. The MTL
model is trained to minimise the sum of individual
task losses L1 + . . . + LT using a negative log-
likelihood objective.

Label Embedding Layer. To learn the relation-
ships between labels, a Label Embedding Layer
(LEL) embeds labels of all tasks in a joint Eu-
clidian space. Instead of training separate softmax
output layers as above, a label compatibility func-
tion c(·, ·) measures how similar a label with em-
bedding l is to the hidden representation h:

c(l,h) = l · h (2)

where · is the dot product. Padding is applied such
that l and h have the same dimensionality. Ma-
trix multiplication and softmax are used for mak-
ing predictions:

p = softmax(Lh) (3)

where L ∈ R(
∑

i Li)×l is the label embedding ma-
trix for all tasks and l is the dimensionality of the
label embeddings. We apply a task-specific mask
to L in order to obtain a task-specific probabil-
ity distribution pTi . The LEL is shared across all
tasks, which allows the model to learn the relation-
ships between labels in the joint embedding space.

4.2 Joint Evidence Ranking and Claim
Veracity Prediction

So far, we have ignored the issue of how to obtain
claim representation, as the base model described
in the previous section is agnostic to how instances
are encoded. A very simple approach, which we
report as a baseline, is to encode claim texts only.
Such a model ignores evidence for and against a
claim, and ends up guessing the veracity based on
surface patterns observed in the claim texts.

We next introduce two variants of evidence-
based veracity prediction models that encode 10
pieces of evidence in addition to the claim. Here,
we opt to encode search snippets as opposed to
whole retrieved pages. While the latter would
also be possible, it comes with a number of ad-
ditional challenges, such as encoding large doc-
uments, parsing tables or PDF files, and encod-
ing images or videos on these pages, which we
leave to future work. Search snippets also have
the benefit that they already contain summaries of
the part of the page content that is most related to
the claim.

Figure 2: The Joint Veracity Prediction and Evidence
Ranking model, shown for one task.

4.2.1 Problem Definition
Our problem is to obtain encodings for N exam-
ples XTi = {xTi1 , . . . , xTiN}. For simplicity, we
will henceforth drop the task superscript and re-
fer to instances as X = {x1, . . . , xN}, as instance
encodings are learned in a task-agnostic fashion.
Each example further consists of a claim ai and
k = 10 evidence pages Ek = {e10 , . . . , eN10}.

Each claim and evidence page is encoded with
a BiLSTM to obtain a sentence embedding, which
is the concatenation of the last state of the forward
and backward reading of the sentence, i.e. h =
BiLSTM(·), where h is the sentence embedding.

Next, we want to combine claims and evidence
sentence embeddings into joint instance represen-
tations. In the simplest case, referred to as model
variant crawled avg, we mean average the BiL-
STM sentence embeddings of all evidence pages
(signified by the overline) and concatenate those
with the claim embeddings, i.e.

sgi = [hai ;hEi ] (4)

where sgi is the resulting encoding for training
example i and [·; ·] denotes vector concatenation.
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However, this has the disadvantage that all evi-
dence pages are considered equal.

Evidence Ranking The here proposed alterna-
tive instance encoding model, crawled ranked,
which achieves the highest overall performance as
discussed in Section 5, learns the compatibility be-
tween an instance’s claim and each evidence page.
It ranks evidence pages by their utility for the ve-
racity prediction task, and then uses the resulting
ranking to obtain a weighted combination of all
claim-evidence pairs. No direct labels are avail-
able to learn the ranking of individual documents,
only for the veracity of the associated claim, so the
model has to learn evidence ranks implicitly.

To combine claim and evidence representations,
we use the matching model proposed for the task
of natural language inference by Mou et al. (2016)
and adapt it to combine an instance’s claim repre-
sentation with each evidence representation, i.e.

srij = [hai ;heij
;hai − heij

;hai · heij
] (5)

where srij is the resulting encoding for training
example i and evidence page j , [·; ·] denotes vec-
tor concatenation, and · denotes the dot product.

All joint claim-evidence representations
sri0 , . . . , sri10 are then projected into the binary
space via a fully connected layer FC, followed
by a non-linear activation function f , to obtain a
soft ranking of claim-evidence pairs, in practice a
10-dimensional vector,

oi = [f(FC(sri0 )); . . . ; f(FC(sri10 ))] (6)

where [·; ·] denotes concatenation.
Scores for all labels are obtained as per (6)

above, with the same input instance embeddings
as for the evidence ranker, i.e. srij . Final predic-
tions for all claim-evidence pairs are then obtained
by taking the dot product between the label scores
and binary evidence ranking scores, i.e.

pi = softmax(c(l, sri) · oi) (7)

Note that the novelty here is that, unlike for the
model described in Mou et al. (2016), we have no
direct labels for learning weights for this matching
model. Rather, our model has to implicitly learn
these weights for each claim-evidence pair in an
end-to-end fashion given the veracity labels.

Model Micro F1 Macro F1
claim-only 0.469 0.253
claim-only embavg 0.384 0.302
crawled-docavg 0.438 0.248
crawled ranked 0.613 0.441

claim-only + meta 0.494 0.324
claim-only embavg + meta 0.418 0.333
crawled-docavg + meta 0.483 0.286
crawled ranked + meta 0.625 0.492

Table 5: Results with different model variants on the
test set, ‘meta’ means all metadata is used.

4.3 Metadata
We experiment with how useful claim metadata
is, and encode the following as one-hot vectors:
speaker, category, tags and linked entities. We do
not encode ‘Reason’ as it gives away the label, and
do not include ‘Checker’ as there are too many
unique checkers for this information to be rele-
vant. The claim publication date is potentially rel-
evant, but it does not make sense to merely model
this as a one-hot feature, so we leave incorporat-
ing temporal information to future work. Since all
metadata consists of individual words and phrases,
a sequence encoder is not necessary, and we opt
for a CNN followed by a max pooling operation as
used in Wang (2017) to encode metadata for fact
checking. The max-pooled metadata representa-
tions, denoted hm, are then concatenated with the
instance representations, e.g. for the most elabo-
rate model, crawled ranked, these would be con-
catenated with scrij .

5 Experiments

5.1 Experimental Setup
The base sentence embedding model is a BiLSTM
over all words in the respective sequences with
randomly initialised word embeddings, following
Augenstein et al. (2018). We opt for this strong
baseline sentence encoding model, as opposed to
engineering sentence embeddings that work par-
ticularly well for this dataset, to showcase the
dataset. We would expect pre-trained contextual
encoding models, e.g. ELMO (Peters et al., 2018),
ULMFit (Howard and Ruder, 2018), BERT (De-
vlin et al., 2018), to offer complementary perfor-
mance gains, as has been shown for a few recent
papers (Wang et al., 2018a; Rajpurkar et al., 2018).

For claim veracity prediction without evidence
documents with the MTL with LEL model, we use
the following sentence encoding variants: claim-
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only, which uses a BiLSTM-based sentence em-
bedding as input, and claim-only embavg, which
uses a sentence embedding based on mean aver-
aged word embeddings as input.

We train one multi-task model per task (i.e., one
model per domain). We perform a grid search over
the following hyperparameters, tuned on the re-
spective dev set, and evaluate on the correspod-
ing test set (final settings are underlined): word
embedding size [64, 128, 256], BiLSTM hidden
layer size [64, 128, 256], number of BiLSTM hid-
den layers [1, 2, 3], BiLSTM dropout on input and
output layers [0.0, 0.1, 0.2, 0.5], word-by-word-
attention for BiLSTM with window size 10 (Bah-
danau et al., 2014) [True, False], skip-connections
for the BiLSTM [True, False], batch size [32, 64,
128], label embedding size [16, 32, 64]. We use
ReLU as an activation function for both the BiL-
STM and the CNN. For the CNN, the follow-
ing hyperparameters are used: number filters [32],
kernel size [32]. We train using cross-entropy loss
and the RMSProp optimiser with initial learning
rate of 0.001 and perform early stopping on the
dev set with a patience of 3.

5.2 Results

For each domain, we compute the Micro as well
as Macro F1, then mean average results over all
domains. Core results with all vs. no metadata
are shown in Table 5. We first experiment with
different base model variants and find that label
embeddings improve results, and that the best pro-
posed models utilising multiple domains outper-
form single-task models (see Table 8). This cor-
roborates the findings of Augenstein et al. (2018).
Per-domain results with the best model are shown
in Table 6. Domain names are from hereon af-
ter abbreviated for brevity, see Table 11 in the ap-
pendix for correspondences to full website names.
Unsurprisingly, it is hard to achieve a high Macro
F1 for domains with many labels, e.g. tron and
snes. Further, some domains, surprisingly mostly
with small numbers of instances, seem to be very
easy – a perfect Micro and Macro F1 score of 1.0
is achieved on ranz, bove, buca, fani and thal. We
find that for those domains, the verdict is often al-
ready revealed as part of the claim using explicit
wording.

Claim-Only vs. Evidence-Based Veracity Pre-
diction. Our evidence-based claim veracity pre-
diction models outperform claim-only veracity

Domain # Insts # Labs Micro F1 Macro F1
ranz 21 2 1.000 1.000
bove 295 2 1.000 1.000
abbc 436 3 0.463 0.453
huca 34 3 1.000 1.000
mpws 47 3 0.667 0.583
peck 65 3 0.667 0.472
faan 111 3 0.682 0.679
clck 38 3 0.833 0.619
fani 20 3 1.000 1.000
chct 355 4 0.550 0.513
obry 59 4 0.417 0.268
vees 504 4 0.721 0.425
faly 111 5 0.278 0.5
goop 2943 6 0.822 0.387
pose 1361 6 0.438 0.328
thet 79 6 0.55 0.37
thal 163 7 1.000 1.000
afck 433 7 0.357 0.259
hoer 1310 7 0.694 0.549
para 222 7 0.375 0.311
wast 201 7 0.344 0.214
vogo 654 8 0.594 0.297
pomt 15390 9 0.321 0.276
snes 6455 12 0.551 0.097
farg 485 11 0.500 0.140
tron 3423 27 0.429 0.046

avg 7.17 0.625 0.492

Table 6: Total number of instances and unique labels
per domain, as well as per-domain results with model
crawled ranked + meta, sorted by label size

Metadata Micro F1 Macro F1
None 0.627 0.441

Speaker 0.602 0.435
+ Tags 0.608 0.460

Tags 0.585 0.461

Entity 0.569 0.427
+ Speaker 0.607 0.477
+ Tags 0.625 0.492

Table 7: Ablation results with base model
crawled ranked for different types of metadata

Model Micro F1 Macro F1
STL 0.527 0.388
MTL 0.556 0.448
MTL + LEL 0.625 0.492

Table 8: Ablation results with crawled ranked + meta
encoding for STL vs. MTL vs. MTL + LEL training

prediction models by a large margin. Unsur-
prisingly, claim-only embavg is outperformed by
claim-only. Further, crawled ranked is our best-
performing model in terms of Micro F1 and Macro
F1, meaning that our model captures that not ev-
ery piece of evidence is equally important, and can
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Figure 3: Confusion matrix of predicted labels with
best-performing model, crawled ranked + meta, on the
‘pomt’ domain

utilise this for veracity prediction.

Metadata. We perform an ablation analysis of
how metadata impacts results, shown in Table 7.
Out of the different types of metadata, topic tags
on their own contribute the most. This is likely be-
cause they offer highly complementary informa-
tion to the claim text of evidence pages. Only us-
ing all metadata together achieves a higher Macro
F1 at similar Micro F1 than using no metadata at
all. To further investigate this, we split the test
set into those instances for which no metadata is
available vs. those for which metadata is available.
We find that encoding metadata within the model
hurts performance for domains where no metadata
is available, but improves performance where it is.
In practice, an ensemble of both types of models
would be sensible, as well as exploring more in-
volved methods of encoding metadata.

6 Analysis and Discussion

An analysis of labels frequently confused with
one another, for the largest domain ‘pomt’ and
best-performing model crawled ranked + meta is
shown in Figure 3. The diagonal represents when
gold and predicted labels match, and the num-
bers signify the number of test instances. One
can observe that the model struggles more to de-
tect claims with labels ‘true’ than those with la-
bel ‘false’. Generally, many confusions occur over
close labels, e.g. ‘half-true’ vs. ‘mostly true’.

We further analyse what properties instances
that are predicted correctly vs. incorrectly have,
using the model crawled ranked meta. We find

that, unsurprisingly, longer claims are harder to
classify correctly, and that claims with a high di-
rect token overlap with evidence pages lead to a
high evidence ranking. When it comes to fre-
quently occurring tags and entities, very general
tags such as ‘government-and-politics’ or ‘tax’
that do not give away much, frequently co-occur
with incorrect predictions, whereas more specific
tags such as ‘brisbane-4000’ or ‘hong-kong’ tend
to co-occur with correct predictions. Similar
trends are observed for bigrams. This means that
the model has an easy time succeeding for in-
stances where the claims are short, where specific
topics tend to co-occur with certain veracities, and
where evidence documents are highly informative.
Instances with longer, more complex claims where
evidence is ambiguous remain challenging.

7 Conclusions

We present a new, real-world fact checking
dataset, currently the largest of its kind. It consists
of 34,918 claims collected from 26 fact checking
websites, rich metadata and 10 retrieved evidence
pages per claim. We find that encoding the meta-
data as well evidence pages helps, and introduce
a new joint model for ranking evidence pages and
predicting veracity.
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Alberto Barrón-Cedeño, Mitra Mohtarami, Georgi
Karadzhov, and James R. Glass. 2018. Fact Check-
ing in Community Forums. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelli-
gence, New Orleans, Louisiana, USA, February 2-7,
2018. AAAI Press.

Tanushree Mitra and Eric Gilbert. 2015. Credbank:
A large-scale social media corpus with associated
credibility annotations. In ICWSM, pages 258–267.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan,
and Zhi Jin. 2016. Natural Language Inference by
Tree-Based Convolution and Heuristic Matching. In
ACL (2). The Association for Computer Linguistics.

53
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Websites (Sources) Reason

Mediabiasfactcheck Website that checks other news websites
CBC No pattern to crawl
apnews.com/APFactCheck No categorical label and no structured claim
weeklystandard.com/tag/fact-check Mostly no label, and they are placed anywhere
ballotpedia.org No categorical label and no structured claim
channel3000.com/news/politics/reality-check No categorical label, lack of structure, and no clear claim
npr.org/sections/politics-fact-check No label and no clear claim (only some titles are claims)
dailycaller.com/buzz/check-your-fact Is a subset of checkyourfact which has already been crawled
sacbee.com6 Contains very few labelled articles, and without clear claims
TheGuardian Only a few websites have a pattern for labels.

Table 9: The list of websites that we did not crawl and reasons for not crawling them.

Domain # Insts # Labels Labels
abbc 436 3 in-between, in-the-red, in-the-green
afck 433 7 correct, incorrect, mostly-correct, unproven, misleading, understated, exagger-

ated
bove 295 2 none, rating: false
chct 355 4 verdict: true, verdict: false, verdict: unsubstantiated, none
clck 38 3 incorrect, unsupported, misleading
faan 111 3 factscan score: false, factscan score: true, factscan score: misleading
faly 71 5 true, none, partly true, unverified, false
fani 20 3 conclusion: accurate, conclusion: false, conclusion: unclear
farg 485 11 false, none, distorts the facts, misleading, spins the facts, no evidence, not the

whole story, unsupported, cherry picks, exaggerates, out of context
goop 2943 6 0, 1, 2, 3, 4, 10
hoer 1310 7 facebook scams, true messages, bogus warning, statirical reports, fake news,

unsubstantiated messages, misleading recommendations
huca 34 3 a lot of baloney, a little baloney, some baloney
mpws 47 3 accurate, false, misleading
obry 59 4 mostly true, verified, unobservable, mostly false
para 222 7 mostly false, mostly true, half-true, false, true, pants on fire!, half flip
peck 65 3 false, true, partially true
pomt 15390 9 half-true, false, mostly true, mostly false, true, pants on fire!, full flop, half flip,

no flip
pose 1361 6 promise kept, promise broken, compromise, in the works, not yet rated, stalled
ranz 21 2 fact, fiction
snes 6455 12 false, true, mixture, unproven, mostly false, mostly true, miscaptioned, legend,

outdated, misattributed, scam, correct attribution
thet 79 6 none, mostly false, mostly true, half true, false, true
thal 74 2 none, we rate this claim false
tron 3423 27 fiction!, truth!, unproven!, truth! & fiction!, mostly fiction!, none, disputed!,

truth! & misleading!, authorship confirmed!, mostly truth!, incorrect attribu-
tion!, scam!, investigation pending!, confirmed authorship!, commentary!, pre-
viously truth! now resolved!, outdated!, truth! & outdated!, virus!, fiction! &
satire!, truth! & unproven!, misleading!, grass roots movement!, opinion!, cor-
rect attribution!, truth! & disputed!, inaccurate attribution!

vees 504 4 none, fake, misleading, false
vogo 653 8 none, determination: false, determination: true, determination: mostly true,

determination: misleading, determination: barely true, determination: huckster
propaganda, determination: false, determination: a stretch

wast 201 7 4 pinnochios, 3 pinnochios, 2 pinnochios, false, not the whole story, needs
context, none

Table 10: Number of instances, and labels per domain sorted by number of occurrences
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Chapter 6

Factuality Checking in News
Headlines with Eye Tracking

Christian Hansen, Casper Hansen, Jakob Grue Simonsen, Birger Larsen, Stephen
Alstrup, Christina Lioma (2020). Factuality Checking in News Headlines with Eye
Tracking. In SIGIR, pages 2013-2016. [43].
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ABSTRACT
We study whether it is possible to infer if a news headline is true
or false using only the movement of the human eyes when reading
news headlines. Our study with 55 participants who are eye-tracked
when reading 108 news headlines (72 true, 36 false) shows that false
headlines receive statistically significantly less visual attention than
true headlines. We further build an ensemble learner that predicts
news headline factuality using only eye-tracking measurements.
Our model yields a mean AUC of 0.688 and is better at detecting
false than true headlines. Through a model analysis, we find that
eye-tracking 25 users when reading 3-6 headlines is sufficient for
our ensemble learner.
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1 INTRODUCTION AND PRIOR WORK
Factuality detection in headlines is important because headlines are
often solely responsible for the user’s first impression (especially in
mobile environments); but it is also challenging because, unlike full
text, news headlines convey information succinctly and without
reasoned argumentation or background.

We measure the overt attention of 55 participants who are eye-
tracked when reading 108 news headlines. We find statistically
significantly longer eye gazing and fixation durations when reading
headlines of true, rather than false news, regardless of participant
gender. We also train an ensemble learner, solely on eye-tracking
data, to infer factuality in headlines. Our model yields a mean AUC
of 0.688 and is better at detecting false headlines than true headlines.
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Further analysis shows that eye-tracking 25 users when reading
3-6 headlines is sufficient for our ensemble learner.

Eye tracking has long been used in IR to infer relevance [1, 3,
4, 7, 8, 11] and to improve user understanding, for instance that
adding information to search engine snippets significantly improves
performance for informational tasks but degrades performance for
navigational tasks [5]; that users with higher change in knowledge
differ significantly in terms of the number and duration of fixations
compared to users with lower knowledge-change [2]; and that
relevant documents tend to be continuously read, while irrelevant
documents tend to be scanned [6]. In most cases, cognitive effort
inferred from eye-tracking data is highest for (at least) partially
relevant documents and lowest for irrelevant documents.

Our findings complement prior findings that news posts from
credible sources receivemore gaze attention [13] and that false news
tend to be read more quickly than accurate news [6]. However, none
of the above studies is done on headlines, and, to our knowledge, we
present the first factuality inference model to be trained exclusively
on eye-tracked data.

2 EXPERIMENT DESIGN
55 participants with normal or corrected-to-normal vision were
recruited (24 females, 31 males; 19-33 years of age, median age 24),
and each participated in a single eye tracking session in a laboratory.
At the start of each session, we logged the age and gender of each
participant and then introduced the task and apparatus. The eye
tracker was calibrated and the task commenced. On completion of
the task, participants were debriefed and comments were solicited.
At no time were participants informed about how well they were
doing. Each participant was shown a screen (white background)
with three headlines (each on a separate line, in black font, size=36),
without any further information. The headlines were centered on
the screen, with 70mm of space between them and 20mm of space
to the left border of the screen. Participants were asked to choose
the most recent headline. This task was chosen on purpose to keep
participants engaged in reading under circumstances where they
were not directly checking for factuality. When participants had
made their choice, the next screen (showing three new headlines)
appeared. Participants did not know that two of the headlines were
true and one was false, at any time. In total, 36 screens, each with
three different headlines, were shown (108 unique headlines). To
address order effects, we fully counterbalanced the position (top,
middle, bottom) of the headlines, so that each position contained
a factually false headline exactly 12 times. Participants could not
move on to the next screen before answering, with no possibility
of giving a “don’t know”-answer, and could not revisit a previous
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Table 1: Dataset statistics.
True False Total

# Headlines 72 36 108
Mean # words per headline 8.56 8.42 8.51
Mean # content words per headline 4.79 4.53 4.70
Mean # function words per headline 3.88 4.08 3.95

Table 2: All transformations that falsified news headlines.
original text transformed text
more, most, best, top, highest, good fewer, least, worst, bottom, lowest, bad
denies, fear, pick up award, react to admits, love, stripped of award, praise
two ... in top 50, remain, helping out no ... in top 50, exit, refuses to help
criticised, leads in, drops down praised, last in, tops
cannot get enough of, calls for end do no like, tolerates
looks to . . . as inspiration uses . . . as example to avoid

screen. All participants saw the same 36 screens with the order of
screens randomized across participants. No time limit was set for
completing the task.

To calibrate the experimental design, we did a pre-study on 11
participants with a subset of 24 screens. The pre-study did not lead
to any changes in the design or protocol, except that the number of
screens was increased to 36 because participants were faster than
initially expected. In our analysis we combine the data from the
pre-study with the remaining data to form the complete dataset.

Each participant performed the task individually, and was given
the same oral instructions by the research assistant1. Participants
could at all times elect to stop the experiment (none did). The study
was approved by the ethics board of our university, and all data
was anonymized prior to storage and analysis.

The headlines shown to participants were crawled from the
website of a reputable local newspaper2 and consisted of the full title
of an article concerning local and national news. From the pool of
crawled headlines, we selected 108 headlines that: (a) covered news
that should be generally known to the public, (b) were formulated in
approximately the same tone (i.e., no clickbait titles, no emphatics,
no puns), and (c) were unlikely to provoke strong feelings. All
headlines were selected manually by one of the authors of this
paper (see Table 1 for their statistics).

All crawled headlines were factually true. We created factually
false headlines by semantically reversing parts of some headlines.
For example, · · · among most expensive cities to relocate
to became · · · among least expensive cities to relocate to.
All the semantic transformations we used to falsify headlines are
shown in Table 2.When falsifying headlines, wemade sure that they
still appeared semantically plausible and sounded natural. To make
sure that there is no bias stemming from the linguistic formulation
of true versus false headlines, we POS-tagged all headlines (using
the Stanford parser) and found that the proportion of content words
(which are known to be fixated on by the human eye much more
than functions words [12]) was approximately the same in both
true and false headlines (see Table 1). We make all 108 headlines
freely available1.

Apparatus. We used an Eyetribe ET1000 desk-mounted stream-
based eye tracker bar, paired with a 24-inch screen (resolution of
1920x1200 and 170 DPI). The eye tracker sampled the position of
1https://github.com/Varyn/Factuality_Checking_News_Headlines_EyeTracking
2https://www.thelocal.dk/

eyes at the rate of 30 Hz and had a spatial resolution of 0.1 degree.
We used iMotions3 to calibrate the eye tracker and collect the data.
Participants were placed 60cm away from the screen, and the room
had soft standard artificial light. No head stabilisation was used
(head movements were unconstrained so the intrusion of the eye
moving measurement was minimal). We calibrated the eye tracker
using a standard 9-point calibration prior to each recording.

Participants indicated which of the three headlines per screen
was the most recent by typing 1, 2, or 3 on the keyboard (for the po-
sition of the top, middle, and respectively bottom headline). Typing
was chosen over using the cursor because the cursor could interfere
considerably with eye tracking.

Eye-tracking measures. A fixation is a stable eye-in-head po-
sition within a dispersion threshold (typically 2 degrees), above
a duration threshold (typically 100-200 milliseconds4), and veloc-
ity below a threshold (typically 15-100 degrees per second). Gaze
duration is the cumulative duration of a sequence of consecutive
fixations within an area of interest (AOI). We defined a separate AOI
around each headline and we analysed these 5 measures: the total
time spent fixating inside an AOI (total fixation duration); the
total number of fixations inside a AOI (total fixation count; the
total time spent gazing inside an AOI (total gaze duration)5; the
average fixation duration inside an AOI (total fixation duration
divided by total fixation count); the duration of the first fixation
inside an AOI (first fixation duration).

3 FINDINGS
We now study the statistical effect the headline factuality has on
the eye-tracking measures. Let 𝛾 denote any of the above 5 eye-
tracking measures. To establish whether factuality affects each of
these 𝛾s in a statistically significant way, we consider both fixed
effects (gender, headline length, position of headline on screen),
and random effects. These fixed and random effects are potentially
non-negligible, meaning that conventional methods for inferential
data analysis, such as ANOVA and general linear regression are not
applicable [8]. We therefore fit a mixed model [15] that uses the
above𝛾s as a response and the fixed effects as explanatory variables.
Because each participant is drawn from some larger population,
the participant is included as a random intercept. The mixed model
for each of the above 𝛾s is:

𝛾 = 𝑐true𝑖true+𝑐middle𝑖middle+𝑐bottom𝑖bottom+𝑐male𝑖male+𝑐length𝑙+𝑝+𝑏
where 𝑐factor is the coefficient for the factor and 𝑖factor is the in-
dicator function for the factor, e.g. 𝑖male = 1 if the participant is
male and 𝑖male = 0 otherwise. For the categorical variables of po-
sition (middle, bottom), gender (male), and factuality (true), there
are 𝑘 − 1 fewer factors than number of categories (𝑘). 𝑙 is the nor-
malised length of the headline with zero mean and unit variance,
𝑝 is the random effect for the participant, and 𝑏 is the intercept.
The model is fitted using the 𝛾s collected; these 𝛾s are normalised
so that the scale of the coefficient is comparable across measures,
which otherwise have different scales.

3https://imotions.com/
4We set fixations at 100 milliseconds.
5Gaze duration consists of the duration of fixations and other captured gaze activity
(such as time between fixations) inside an AOI.
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The coefficient 𝑐true shows the relation between the measure 𝛾
and the factuality of the headline. We formulate the null hypothesis
𝐻
𝛾
0 for 𝛾 as the assumption that factuality does not affect 𝛾 , that

is 𝐻𝛾0 : 𝑐true = 0. To test this hypothesis, we compute 𝑝-values
and confidence intervals for each coefficient by performing Wald
tests. We have 5 different eye-tracking measures, so we perform
5 hypothesis tests with Bonferroni correction, requiring that 𝑝 <
0.05
5 = 0.01 to reject each 𝐻𝛾0 . All statistical analysis is done using

StatsModels6, and the models are fitted using Maximum Likelihood.
Table 3 shows the resulting coefficients. We see that for total gaze

duration, total fixation duration, and total fixation count 𝑝 < .001,
thus we have sufficient evidence to reject the null hypothesis. These
three eye-trackingmeasures change significantly when reading true
versus false headlines. However, for average fixation duration and
first fixation duration, we cannot reject the null hypothesis, and thus
we cannot conclude that the time spent on each individual fixation
changes between factually true and false headlines. We also observe
that a factually true headline causes the total gaze duration, total
fixation duration, and total fixation count to increase, as seen by the
positive value of 𝑐true; this means that false headlines in general
have shorter fixation and gazing duration than true headlines. The
fact that factuality is not significant for average fixation duration
means that the increased total fixation duration for true headlines
is caused by an increase in total fixation count for factually true
headlines.

We now briefly discuss the other coefficients than 𝑐true. Using
𝑝 < 0.01, we see that the position of the headline is not significant
for the total gaze duration, while it is significant if the headline
is placed on the bottom for all measures of fixation. The negative
value of 𝑐bottom shows that all measures of fixation decrease when
the headline is placed on the bottom. The length of the headline is
significant for all eye-tracking measures (p < 0.001), with longer
headlines having higher measures. Lastly, we observe no significant
difference in any measures between the genders.

Learning to infer factuality from eye tracking. Having es-
tablished that total gaze duration, total fixation duration, and to-
tal fixation count are all significantly different depending on the
headline factuality, we next investigate if these measures provide
sufficient signal for training a headline factuality classifier. As these
measures are highly dependent on the length and position of the
headlines, they are also included in the model. We observe that
total fixation duration is highly correlated with total fixation count,
thus to keep the model as simple as possible, we only use total gaze
duration and total fixation duration.

In table 3, we see the coefficient of factuality (𝑐true), for many
measures, to be less influential than the position and length of the
headline. Thus, we expect using eye-tracking measures of only a
single participant to be noisy. Due to this, we use an ensembling ap-
proach, where the predicted factuality of a headline is computed as
an average over a set of participants (𝑃ens): 𝑣ℎ = 1

|𝑃ens |
∑
𝑝∈𝑃ens 𝑣𝑝,ℎ ,

where 𝑣ℎ is the factuality prediction for headline ℎ, and 𝑣𝑝,ℎ is the
factuality prediction for headline ℎ for participant 𝑝 . Due to the
relative small size of our dataset, we propose to use the average of

6https://www.statsmodels.org/stable/index.html, version 0.9

Table 3: The fixed effects for the five eye-tracking measures.
𝑝-values below 0.01 are marked in bold. (See Section 3 for
notation).

Coef. Std.Err. z P>|z| [0.025 0.975]
Total gaze duration
𝑐true 0.154 0.023 6.697 <0.001 0.109 0.199
𝑐middle -0.026 0.027 -0.959 0.338 -0.078 0.027
𝑐bottom -0.054 0.027 -2.020 0.043 -0.106 -0.002
𝑐male -0.149 0.154 -0.969 0.333 -0.451 0.153
𝑐length 0.174 0.011 15.844 <0.001 0.153 0.196
Total fixation duration
𝑐true 0.109 0.021 5.301 <0.001 0.069 0.149
𝑐middle -0.083 0.024 -3.474 <0.001 -0.129 -0.036
𝑐bottom -0.239 0.024 -10.059 <0.001 -0.285 -0.192
𝑐male -0.202 0.182 -1.109 0.267 -0.558 0.155
𝑐length 0.100 0.010 10.154 <0.001 0.081 0.119
Total fixation count
𝑐true 0.115 0.020 5.609 <0.001 0.075 0.155
𝑐middle -0.037 0.024 -1.536 0.124 -0.083 0.010
𝑐bottom -0.199 0.024 -8.420 <0.001 -0.246 -0.153
𝑐male -0.164 0.184 -0.894 0.371 -0.524 0.196
𝑐length 0.118 0.010 12.011 <0.001 0.099 0.137
Average fixation duration
𝑐true 0.025 0.022 1.106 0.269 -0.019 0.068
𝑐middle -0.003 0.026 -0.125 0.900 -0.054 0.047
𝑐bottom -0.130 0.026 -5.061 <0.001 -0.181 -0.080
𝑐male -0.006 0.171 -0.038 0.970 -0.342 0.329
𝑐length 0.059 0.011 5.509 <0.001 0.038 0.079
First fixation duration
𝑐true 0.034 0.024 1.411 0.158 -0.013 0.081
𝑐middle 0.014 0.028 0.484 0.628 -0.041 0.068
𝑐bottom -0.120 0.028 -4.321 <0.001 -0.175 -0.066
𝑐male -0.016 0.148 -0.106 0.915 -0.305 0.274
𝑐length 0.056 0.011 4.906 <0.001 0.034 0.079

two simple second-order logistic models for estimating 𝑣𝑝,ℎ :

𝑣1𝑝,ℎ =
1

1 + 𝑒−(𝑐1𝑖top (ℎ)𝛾
GD
𝑝,ℎ

+𝑐2𝑖middle (ℎ)𝛾GD𝑝,ℎ
+𝑐3𝑖bottom (ℎ)𝛾GD

𝑝,ℎ
) (1)

𝑣2𝑝,ℎ =
1

1 + 𝑒−(𝑐4𝑙ℎ𝛾
FD
𝑝,ℎ

) , 𝑣𝑝,ℎ =
𝑣1
𝑝,ℎ

+ 𝑣2
𝑝,ℎ

2 (2)

where 𝑐𝑘 , 𝑘 ∈ [1, 2, 3, 4] are the learned coefficients of the logistic
models, 𝛾GD

𝑝,ℎ
is the total gaze duration for participant 𝑝 on headline

ℎ, 𝛾FD
𝑝,ℎ

is the total fixation duration for 𝑝 on ℎ, and 𝑙 is the length
of the headline. Both logistic models have one eye-tracking mea-
sure interacting with either the length or position of the headline,
where the interaction is chosen based on the pair with the lowest
correlation. We choose to use two simple logistic models, instead of
a single combined model, to increase the variance of the predicted
factuality, as high variance is beneficial for ensembling. We stan-
dardize (zero mean and unit variance) the eye-tracking measures
from each participant across all headlines. Lastly, the two logistic
models are trained using Maximum Likelihood on a set of training
participants.

Evaluation. We evaluate the model by inferring factuality on
unseen headlines using Monte Carlo cross-validation over 100,000
iterations. In each iteration, the participants are split for training
and ensembling (27 and 28 participants, respectively), and three
headlines are chosen for evaluation (2 true and 1 false), while the
remaining headlines are used for training. We report the mean AUC
and mean accuracy, across all iterations.
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Table 4: Factuality performance scores from our eye-
tracking ensemble model.

Mean AUC Mean Acc. Mean Acc. (True) Mean Acc. (False)
0.688 0.634 0.619 0.662

Figure 1: Performance analysis when varying (left) the num-
ber of screens used for participant standardization in our
model and (right) the number of participants used for en-
sembling.

As reported in Table 4, we find that our ensemble model predicts
the factuality of unseen headlines with a mean AUC of 0.688 and an
accuracy of 0.634 (which is higher on false headlines (0.662) than
one true ones (0.619)). There is no prior work on automatically
detecting factuality in news headlines only, but related work on
inferring factuality in text (but not headlines, which is harder)
using textual features alone (not eye-tracking features), shows that
accuracy ranges from 0.39 [14] to 0.76 [9], and even up to 0.86 [10]
when using BiLSTMs and a multilayer perceptron classifier with
refined linguistic features such as entailment and contradiction.
Comparably, we have a simple learning model, which uses weaker
input features (eye-tracking measures are less discriminative than
textual ones), and which solves a more difficult problem (factuality
checking in headlines instead of longer texts).

Analysis. In the above, we standardize the eye-tracking mea-
sures for each participant on all headlines. We now ask: how im-
portant is this standardization, and would standardization on fewer
headlines suffice? We answer this by sampling fewer headlines to
base the standardization on, while still preserving the ratio of 2 true
headlines for each false one. We refer to three headlines following
this ratio as a “screen”.

Figure 1 (left) shows the mean accuracy and AUC when varying
the number of screens used for standardization. When only stan-
dardizing on the screen we predict on (screen=1), mean AUC is at
minimum; it drastically increases at 6 screens, and then stabilizes
for the remaining number of screens. When increasing the number
of screens, the accuracy for the true headlines decreases slightly,
while the accuracy increases for the false headlines, but after 6-18
screens the difference of including more screens is minimal. This
suggests that the performance of our ensemble model is not largely
dependent on a large set of headlines to use for standardization.
Deployed on a live setup, few headlines for standardization could
suffice to fetch the accuracy and AUC levels reported in this study.

The results reported above correspond to splitting participants
approximately 50/50 for training and ensembling, and this split can
of course be varied; Figure 1 (right) plots mean accuracy and AUC (y
axis) across a varying number of participants used for ensembling
out of the 55 participants in total. We see that the choice of a 50/50

split is close to optimal. The fact that performance drops rapidly
when 15 or fewer participants are used for ensembling indicates
that aggregating over a large set of participants is at least as impor-
tant as training a model on more data, in this setup. This happens
because our dataset is small (we have few participants), so the op-
timal performance is a trade-off between training a better model
(requiring more participants for training) and aggregating over
more participants (requiring more participants in the ensemble).

4 CONCLUSIONS
We studied whether the human eye moves differently when reading
factually true versus factually false news headlines, and if we can in-
fer factuality in news headlines using only eye-tracking signals. In
an experiment with 55 users reading 108 news headlines, we found
that false headlines receive statistically significantly less visual at-
tention than true ones. We used this to build an ensemble learner
that predicts news headline factuality using only eye-tracking mea-
surements, which obtained a mean AUC score of 0.688 and a mean
accuracy of 0.634.

Future work includes investigation of eye tracking as a boosting
mechanism to potentially improve factuality detection based on text
processing, and refining the relationship between eye movements
in more typical IR tasks such as search. A different direction of
promising future work is to repeat our study “in the wild” outside
usual laboratory settings, including eye-tracking methods with
lower fidelity, such as for instance typical cameras mounted on
laptops and smartphone cameras.
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ABSTRACT
Automatic fact-checking systems detect misinformation, such as
fake news, by (i) selecting check-worthy sentences for fact-checking,
(ii) gathering related information to the sentences, and (iii) infer-
ring the factuality of the sentences. Most prior research on (i) uses
hand-crafted features to select check-worthy sentences, and does
not explicitly account for the recent finding that the top weighted
terms in both check-worthy and non-check-worthy sentences are
actually overlapping [15]. Motivated by this, we present a neural
check-worthiness sentence ranking model that represents each
word in a sentence by both its embedding (aiming to capture its
semantics) and its syntactic dependencies (aiming to capture its
role in modifying the semantics of other terms in the sentence).
Our model is an end-to-end trainable neural network for check-
worthiness ranking, which is trained on large amounts of unlabelled
data through weak supervision. Thorough experimental evaluation
against state of the art baselines, with and without weak supervi-
sion, shows our model to be superior at all times (+13% in MAP
and +28% at various Precision cut-offs from the best baseline with
statistical significance). Empirical analysis of the use of weak su-
pervision, word embedding pretraining on domain-specific data,
and the use of syntactic dependencies of our model reveals that
check-worthy sentences contain notably more identical syntactic
dependencies than non-check-worthy sentences.
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Fact checking; Check worthiness; Deep learning; Weak supervision.
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1 INTRODUCTION
The fast and wide spread of misinformation (as opposed to true
information) on social media [22, 25], and the increasing use of
social media as a source of news1 has turned “fake news” into an
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Figure 1: Syntactic dependencies example (from [20]).

important societal problem on a scale that requires automated solu-
tions. An automated fact-checking [21] pipeline typically consists
of three steps: (i) selecting check-worthy sentences (i.e. sentences
that contain check-worthy claims and should be fact-checked), (ii)
gathering related information to those sentences, and (iii) using
this related information to infer the factuality of each check-worthy
sentence. Prior research has so far focused mainly on steps (ii) and
(iii), for instance by generating claim-specific queries and querying
search engines for relevant supporting information [12], focusing
on specific sources such as Twitter [1], or exploiting knowledge
graphs from e.g. Wikipedia [5]. These approaches assume an input
of check-worthy claims. Considerably less research has focused
on detecting such check-worthy claims, that is, determining not
whether a sentence is true or not, but whether a sentence contains
a check-worthy claim (and should be fact-checked) or not.

Most research on check-worthiness detection uses hand-crafted
features, such as bag-of-word representations, sentiment, and em-
bedding averages [7, 8, 10, 19]. In addition, most work in this
area does not explicitly account for the recent finding that the
top weighted terms in both check-worthy and non-check-worthy
sentences are actually overlapping [15], hence compromising the
effectiveness of bag-of-word based methods.

Motivated by the above, we present a neural check-worthiness
sentence ranking model that uses a dual sentence representation:
each word in a sentence is represented by both its embedding (aim-
ing to capture the semantics of that word from its context) and its
syntactic dependencies (aiming to capture the role of that word in
modifying the semantics of other words in the sentence, see Figure
1). We train the network with these dual representations end-to-
end. This allows to learn such descriptive features directly from
the input data, rather than relying on predetermined hand-crafted
features that may not be useful for the task, and hence to adapt the
representations to the domain. To tackle the problem of having very
little available training data, we use an existing check-worthiness
system to weakly label sentences, and we use this weakly labelled
dataset to pretrain our neural network. This is inspired by recent
strong results [18, 23] in various information retrieval tasks with
few labelled data, but large amounts of unlabelled data.
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Thorough experimental evaluation against all state of the art
baselines on political speeches from the 2016 U.S. election, shows
our model to be superior in all comparisons (+13% in MAP and
up to +28% at various Precision cut-offs from the best baseline,
with statistical significance). We empirically trace this superior
performance to the use of syntactic dependencies in the sentence
representation, where we find check-worthy sentences to contain
notably more identical syntactic dependencies than non-check-
worthy sentences. Further analysis shows that the performance
benefits of weak supervision increase with the amount of data used,
and that embeddings trained on smaller domain-specific data, as op-
posed to general purpose embeddings trained on the larger Google
News corpus, increase effectiveness. In addition, despite using deep
learning (a family of models that is generally considered of low
interpretability [24]), the attention weighting used by our model
on a word level provides humanly interpretable output, where the
parts of the sentence that are important for the check-worthiness
prediction can be determined.

We contribute a competitive and interpretable end-to-end train-
able neural network model for check-worthiness ranking, which
uses a dual input representation of both word embeddings and
syntactic dependencies. Weak supervision is used to pretrain the
network on large amounts of unlabelled data.

2 RELATEDWORK
Given a sentence (also referred to as statement) as input, Claim-
Buster [8, 9] outputs its check-worthiness score by extracting a
set of features (sentiment, statement length, Part-of-Speech (POS)
tags, named entities, and tf-idf weighted bag-of-words), and train-
ing a SVM classifier on these features to predict check-worthiness.
Patwari et al. [19] present a system called TATHYA that is based
on similar features, but that also includes as contextual features
sentences immediately preceding and succeeding the one being as-
sessed, as well as certain hand-crafted POS patterns. Gencheva et al.
[7] also extend the feature set used by ClaimBuster to include more
contextual features, such as the sentence’s position in the debate
text, and whether the debate opponent is mentioned. The work by
Gencheva et al. has been extended to both English and Arabic [10].
In the recent CLEF 2018 competition on check-worthiness detection
[17], Zou et al. [26] came first by using a large set of features (sim-
ilarly to the above mentioned work), and doing feature selection
with both a χ2-test and a linear SVM using a L1 regularizer.

Prior work on neural networks for check-worthiness has been
done by Konstantinovskiy et al. [14], who use InferSent [6] to derive
a universal neural sentence representation and then train a logistic
regression classifier on top of that. Similarly to our model, this
approach also uses neural sentence embeddings. However, unlike
our model, this approach uses universal sentence representations,
whereas we train our model end-to-end to learn the representations
directly from the input data, making the learning domain-specific.

In the related domain of sentence factuality detection Jimenez
and Li [11] present a neural approach with multiple word embed-
dings. They artificially generate additional non-factual sentences
to be used for training to increase robustness. Similarly to ours,
this work also presents neural approaches that combine multiple
word representations in order to improve performance. However,

whereas the infusion of artificially generated non-factual sentences
by Jimenez and Li [11] allows weak supervision of a single class,
we obtain weak labels independently of the type of sentence (i.e.
not on a single class).

3 NEURAL CHECK-WORTHINESS SENTENCE
RANKING

Given a set of sentences as input, the aim is to rank them in de-
scending order of check-worthiness. In order to better differentiate
between sentences of varying degree of check-worthiness, We cast
this as a ranking problem, as opposed to assigning a binary output
to each sentence, following prior work [7, 8, 10] . Note that any
ranked output can be made binary using an appropriate threshold,
in case a subsequent fact-checking pipeline requires binary labelled
sentences.

Given a set of sentences to be ranked, our model learns an end-
to-end trained representation of each sentence. We describe first the
representation of each word in the sentence (Section 3.1), followed
by the neural network architecture (Section 3.2).

3.1 Neural sentence representation
Our model uses a dual sentence representation: each word in a
sentence is represented by both its embedding and by its syntactic
dependencies. The word embedding aims to capture the semantics
of that word from its context. Embeddings of this type are generally
well understood and have been found effective for check-worthiness
detection [14]. The syntactic dependencies of a word aim to capture
the role of that word in modifying the semantics of other words in
the sentence, for instance by being the subject or predicate of the
sentence. We use a syntactic dependency parser [4] to map each
word to its dependency (as a tag) in relation to the sentence struc-
ture, which we then represent as a one-hot-encoding. Dependency
parsing is fast using state of the art tools (approximately 14,000
words per second) [4].

Our motivation is that syntactic dependencies may be impor-
tant for discriminating between common overlapping top-weighted
words in both check-worthy and non-check-worthy sentences. The
existence of common overlapping top weighted words in check-
worthy and non-check-worthy sentences is reported by Le et al.
[15] (see Figure 2 of [15] for examples), and to our knowledge, is
not explicitly addressed by any prior check-worthiness approach.
We posit that while these common top weighted words may not be
distinguishable by their word representation, they may be distin-
guishable by their syntactic role in the sentence.

3.2 Network architecture
Based on the above, each word in a sentence has two distinct en-
codings, that together represent the word. We use this double rep-
resentation of each word as input to a recurrent neural network
(RNN) with GRU [3] memory units. The output from each word in
the RNN is aggregated using an attention mechanism computed as
αt =

exp(score(ht ))∑
i exp(score(hi )) , where ht is the output of the GRU memory

cell at time t , and score(·) is a learned function that maps the output
to a scalar. The attention-weighted sum is fed to a fully connected
layer, from which the output is predicted using a sigmoid activation
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Dataset #docs #sents. sents. length unique words mean label
Embed. tr. 15,059 609,322 16.66 86,244 -
Evaluation 7 2,602 14.04 3,694 0.05
Weakly lab. 161 37,732 16.53 13,314 0.24

Table 1: Statistics of the embedding training, evaluation, and
weakly labelled datasets.The evaluation dataset uses binary
labels, and the weakly labelled dataset continuous labels in
the interval [0, 1].

Figure 2: Histogram of the ClaimBuster scores used as the
weak labels for each presidential candidate.

function. We train the network using the RMSprop optimizer with
binary cross entropy as the loss function (details in Section 4.3).

4 EXPERIMENTAL SETUP
We conduct two experiments: (I) we compare our model against
state of the art baselines without weak supervision; (II) we use the
ClaimBuster API (one of the baselines in experiment I) to weakly
label a dataset of unlabelled political speeches (as described in
Section 4.2) and we use this weakly labelled data to pretrain the
baselines and our model. ClaimBuster API is trained on a non-
publicly available dataset and should therefore be considered as a
black box baseline.

4.1 Baselines
We compare our model against these baselines (introduced in Sec-
tion 2), which have yielded state of the art performance at their
date of publication: (1) ClaimBuster and its pretrained ClaimBuster
API [8], (2) TATHYA [19], and the approaches by (3) Zou et al. [26],
(4) Gencheva et al. [7], and (5) Konstantinovskiy et al. [14].

4.2 Data
We use three datasets for three different purposes: (1) the embedding
training dataset, used to train domain-specific embeddings for our
model2; (2) the evaluation dataset, used to compare our model to
the baselines without weak supervision; and (3) the weakly labelled
dataset, used to compare our model to the baselines with weak
supervision. We describe these next (see Table 1 for statistics).

The Embedding Training Dataset contains documents related
to all U.S. elections available through the American Presidency
Project3, e.g. press releases, statements, speeches, and public fundrais-
ers, resulting in 15,059 documents. We use this dataset to pretrain
a domain specific word embedding for our model (see Section 5.2).
2None of the other approaches support training embeddings.
3https://web.archive.org/web/20170606011755/http://www.presidency.ucsb.edu/

The Evaluation Dataset consists of a total of 2,602 sentences
from 7 check-worthiness annotated political speeches from the 2016
U.S election. Out of these 7 speeches, 4 are by Donald Trump and are
made available by the CLEF 2018 lab on automatic identification
and verification of political claims [17]. The remaining are the
inauguration and acceptance speech of Donald Trump and the
acceptance speech of Hilary Clinton, and are made available by
the authors of ClaimRank [10]. We choose the available PolitiFact
annotated labels for this dataset.

TheWeakly Labelled Dataset consists of all publicly available
speeches by Hillary Clinton and Donald Trump from the 2016 U.S.
election, which are available through the American Presidency
Project. This amounts to 37,732 sentences from 161 speeches not
occurring in the evaluation dataset. We use the public API4 of
ClaimBuster [8] to weakly label each sentence in all speeches. The
ClaimBuster scores range from 0 to 1 (the higher the score, the more
check-worthy the sentence), and are thus continuous as opposed
to the binary labels from the evaluation dataset. The distribution
of ClaimBuster scores can be seen in Figure 2, where we see that
sentences by Hillary Clinton are overall labelled as slightly more
check-worthy than those by Donald Trump.

4.3 Tuning
Wemeasure the effectiveness of the ranking outputted by our model
and the baselines using mean average precision (MAP), and average
precision at multiple cut-offs: P@5, P@10, P@20, and P@R, where
R is the number of check-worthy sentences in a given test set. We
optimize the MAP when tuning parameters.

We tune and evaluate the approaches using 7-fold cross valida-
tion, where the sentences from one speech (see Section 4.2) act as
testing data once, while sentences from the remaining speeches
are used for training and validation. We use the sentences of each
speech as input to the models. In all folds, we set aside 10% of the
training data for validation. Each fold-wise evaluation is repeated 5
times with randomly chosen validation data. We report the average
score of each metric across the folds and repetitions.

For ClaimBuster [9] and the model by Gencheva et al. [7], we
use the best performing setup described in [7]: a double layered
fully connected neural network with layer sizes of 200 and 50 re-
spectively. We validate these sizes by keeping the same ratio (4:1)
between the layers and test the largest sizes of {50, 100, 200, 400},
test batch sizes of {64, 128, 256, 512}, and use a learning rate of
0.0001. For the approach by Zou et al. [26] we use their multi-layer
perceptron model with two hidden layers with sizes of 100 and 8 as
per [26]. We validate these sizes by keeping the same ratio (12.5:1)
between layers and test the largest sizes of {50, 100, 200, 400} as
done earlier. For TATHYA [19] we use the same multi-classifier ap-
proach and the same parameters as described in the original paper.
For Konstantinovskiy et al. [14] we use the same logistic regression
approach as described in the original paper.

For our model, we evaluate the same layer sizes as above with a
ratio of 4:1 between the number of neurons in the GRU cell and the
single fully connected layer. We train the word embeddings using
the word2vec skip-gram model [16] on the embedding training
dataset of 15,059 domain specific documents described in Section

4https://idir-server2.uta.edu/claimbuster/
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4.2. We use standard parameters with a window size of 5 and sample
25 negative samples per word. For the syntactic dependencies of
each word, we use the spaCy syntactic dependency parser [4]5.

For the experiment with weak supervision, the ClaimBuster
API returns a score from 0 to 1, indicating the degree of check-
worthiness estimated by the system. In each fold in the 7-fold cross
validation we find the threshold τ that splits the data and makes
the fraction of check-worthy samples equal across the training
without and with weakly labelled training data. Using these splits
we evaluate two thresholding approaches: (1) Binarizing the labels
based on τ , and (2) truncating all values larger than τ to the value of
τ , and scaling the range [0,τ ] into [0, 1]. In the cross validation, our
approach performs best with step (2) and the baselines perform best
with step (1) (these are the settings we report in Section 5). Note that
step (2) can be considered as soft thresholding, as the labels are not
binary. The weakly labelled data is used for pretraining the neural
models or added to the training data for traditional supervised
models.

5 RESULTS
Table 2 shows the results of the experimental comparison of our
model to the baselines without and with weak supervision. We see
that our model outperforms all baselines across all metrics (with
improvements ranging from +9-28%), except P@5 (only without
weak supervision) where our model is the second best perform-
ing approach. Note that P@k is known to be unstable, especially
at small values of k [2, 13]. The best performing baseline is the
approach of Konstantinovskiy et al. [14], the only other approach
using neural embeddings. This points out the effectiveness of neural
word embeddings for this task.

The difference in performance between ClaimBuster and the
ClaimBuster API is due solely to the quality of the training data
(it is otherwise the same approach) and illustrates the effect of
training data quality upon model performance. The fact that our
model still notably outperforms the ClaimBuster API baseline shows
the benefit of an end-to-end learned representation as opposed to a
feature engineered one, for this task.

Only ClaimBuster, the approach of Zou et al. [26], and our model
obtain notable improvements from the weakly labelled data (Claim-
Buster yields a performance similar to that of the ClaimBuster API).
TATHYA [19], and the approaches by Gencheva et al. [7] and Kon-
stantinovskiy et al. [14] do not benefit from weak supervision, most
likely because feature-engineering is used as opposed to learning
the representation.

5.1 Syntactic dependency similarity between
check-worthy sentences

Our syntactic dependencies representations aim to discriminate
between top weighted words that are common in check-worthy
and non-check-worthy sentences based on the syntactic roles of
these words (see Section 3.1). To verify this we compute the average
overlap of unique syntactic dependency tags between the follow-
ing three types of randomly sampled sentence pairs: 1) Pairs of n
sampled check-worthy sentences, 2) pairs of n sampled non-check-
worthy sentences, and 3) mixed pairs of n sampled check-worthy
5The syntactic dependency parser is available at https://spacy.io/

and n sampled non-check-worthy-sentences. We set n = 10 and
repeat the computations 1000 times. Table 3 displays the resulting
average overlaps and their standard deviation. We observe that
check-worthy sentence pairs have the highest average overlap of
syntactic dependencies, and non-check-worthy the lowest, but both
have a similar standard deviation. This indicates that syntactic de-
pendencies are more similar in check-worthy sentences than in
non-check-worthy sentences, and as such constitute a good discrim-
inator between check-worthy and non-check-worthy sentences that
otherwise contain an overlap of common top-weighted terms. Note
that the average overlap of 7 common syntactic dependencies in
check-worthy sentences practically applies to approximately half of
the words in those sentences (the average sentence length is 14.04
in that dataset – see Table 1). Mixed sentences (both check-worthy
and non-check worthy) have an average overlap in between that of
check-worthy and non-check-worthy sentences, but with a larger
standard deviation, indicating that syntactic dependencies from this
mixed group act as a mixed and less stable discriminating signal.

As an example of the overlap problem of common top-weighted
terms, consider the check-worthy sentence "Since president Obama
came into office another two million hispanic americans have fallen
into poverty" and non-check-worthy sentence "I’m running to be
a president for all americans". In these cases the words president
and americans are both important to describe the content, but have
different syntactic dependencies (compound/attr and nsubj/pobj,
respectively).

5.2 Impact of pretrained word embeddings
Our model is the only approach in Table 2 to have word embeddings
trained on a domain specific dataset. All other approaches either
use no word embeddings (ClaimBuster [8] and TATHYA [19]), use
global word embedding averages (Zou et al. [26] and Gencheva et
al. [7]), or use a universally trained sentence representation based
on global embeddings (Konstantinovskiy et al. [14]). To isolate the
effect of these domain-specific trained embeddings upon the perfor-
mance of our model, we run our method as described in Section 4.3
but vary the pretraining of the embeddings as follows: 1) using no
embeddings at all; 2) using randomly initialized embeddings which
are not pretrained; 3) using general purpose embeddings pretrained
with word2vec on Google News7; 4) using our pretrained domain
specific embeddings as described in Section 4.2. Table 4 shows the
results when varying the embedding strategy. We see that domain
specific embeddings (Politics) obtains large improvements – com-
pared to the general purpose embedding – with improvements up
to +12-34%. The last row of Table 4 shows the performance without
the syntactic dependency parsing (i.e., only the word embedding),
which highlights the large performance increase from the syntactic
dependency parsing. As expected, no pretraining of the embeddings
leads to much lower performance, though MAP is still comparable
to most baselines, except for Konstantinovskiy et al. [14]. Not using
embeddings at all severely drops overall effectiveness. Collectively
these findings show that performance benefits more from training
embeddings on smaller, yet domain-specific, data than on much
larger but general domain data.

7https://code.google.com/archive/p/word2vec/
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Without Weak Supervision With Weak Supervision
MAP P@5 P@10 P@20 P@R MAP P@5 P@10 P@20 P@R

ClaimBuster API6 0.230 0.219 0.176 0.159 0.138 - - - - -
TATHYA [19] 0.136 0.072 0.062 0.074 0.039 0.147 0.061 0.047 0.060 0.043
ClaimBuster [9] 0.176 0.170 0.112 0.105 0.078 0.224 0.198 0.147 0.138 0.121
Zou et al. [26] 0.187 0.143 0.105 0.099 0.086 0.212 0.171 0.111 0.121 0.097
Gencheva et al. [7] 0.238 0.276 0.170 0.153 0.123 0.236 0.222 0.143 0.138 0.113
Konstantinovskiy et al. [14] 0.267 0.314 0.186 0.178 0.149 0.233 0.220 0.146 0.142 0.113

Our model 0.278 0.291 0.194 0.193 0.159 0.302▲△ 0.344▲ 0.238▲△ 0.218▲△ 0.189▲△

Table 2: Effectiveness of sentence check-worthiness ranking without and with weak supervision. ▲marks statistically signifi-
cant improvementswith respect to the overall best baseline at the 0.05 level using a paired two tailed t-test.△marks statistically
significant improvements with respect to the best overall approach without weak supervision at the 0.05 level using a paired
two tailed t-test. Significance comparisons are done on the average metric-wise performance in each of the 5 repeated runs.

Sentence pairs Average Overlap Standard deviation
Check-worthy 7.00 1.03
Non-check-worthy 4.74 1.08
Mixed 5.64 2.87

Table 3: Average overlap of syntactic dependency tags and its
standard deviation between three types of sentence pairs.

Emb. pretrain MAP P@5 P@10 P@20 P@R
No embed. 0.184 0.153 0.116 0.103 0.087
No pretraining 0.237 0.230 0.156 0.148 0.130
Google News 0.268 0.262 0.178 0.184 0.143
Politics 0.302 0.344 0.238 0.218 0.189
Politics w/o syn. dep. 0.285 0.290 0.209 0.202 0.167

Table 4: Performance per type of embedding pretraining.
The last row shows the performance without the syntactic
dependency parsing.

5.3 Effect of varying the amount of weakly
labelled data

We analyse how our model, when used with weak supervision,
scales with the amount of weakly labelled data, by reporting per-
formance across the range of 0% to 100% weakly labelled data with
10% increments. At each step we repeat the experiment 5 times
with randomly sampled weakly labelled data, and report the av-
erage score. Figure 3 displays performance as a function of the
percentage of weakly labelled data. As expected, the scores of all
metrics generally increase as the amount of data increases. How-
ever, the largest increases happen in the first 50% of the data, and
then small increases or stagnation for the remaining range up to
around 90%. The performance drop at 40% may be explained by
the limited number of repetitions of the sampling process, which
was done due to runtime considerations. We expect that a larger
number of repetitions would smooth out this slight drop.

5.4 Model interpretability
Check-worthiness detection can be part of semi-automatic or even
fully manual fact checking processes, to filter claims that human
fact checkers should investigate. In such cases, the output of check-
worthiness detection should be easily interpretable by humans. Our
model, despite being a deep learning model (generally considered to
have low interpretability [24]) – provides easily interpretable output
to humans through the attention mechanism that is computed on
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Figure 3: Impact of the amount of weakly labelled data upon
our model (0 corresponds to no weakly labelled data).
a word level (see Section 3.2). This score can be used to highlight
which parts of a sentence are important for the prediction of check-
worthiness. Table 5 illustrates this with a sample of true and false
predictions made by our model. We see that sentences with high
predicted scores (both correctly and incorrectly predicted as check-
worthy) contain a quantifiable fact consisting of a relative large
number, e.g. a large amount of money (trillion dollars, $800 billion), a
high percentage (60 percent), or a large collection of entities (nearly
all other presidents combined). Sentences with low predicted check-
worthiness are more varied, but generally either lack a quantifiable
element or are generally vague (buy American and hire American,
fix the system, no patience for injustice). We can also use the model to
find seemingly incorrectly labeled sentences, as e.g. the non-check-
worthy labelled sentences with high predictions could indeed be
labelled as check-worthy instead, e.g. "our trade deficit in goods with
world last year was nearly $800 billion dollars".

6 CONCLUSION
We have presented an end-to-end trainable neural network model
for ranking check-worthy sentences. The model is pretrained via
weak supervision from a large collection of unlabelled data and
employs a recurrent neural network with a double representation
of each word using domain specific word embeddings and the syn-
tactic dependency parsing of a sentence. We evaluate our model
on check-worthy annotated political speeches from the U.S. 2016
presidential election (following the same setting as in the official
CLEF 2018 competition on check-worthiness detection [17] but
using even more data). Our model does not make use of specialized
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Y Ỹ Sentence
1 0.96 america has spent approximately six trillion dollars

in the middle east , all this while our infrastructure
at home is crumbling .

1 0.95 today , our total business tax rate is 60 percent
higher than our average foreign competitor in the
developed world .

1 0.26 its the same reason why she wo nt take
responsibility for her central role in unleashing
isis all over the world .

1 0.22 we will follow two simple rules ; buy american and
hire american .

0 0.04 millions of democrats will join our movement
, because we are going to fix the system so it
works fairly and justly for all americans .

0 0.05 i have no patience for injustice .

0 0.94 in the last eight years , the past administration
has put on more new debt than nearly all of the
other presidents combined .

0 0.95 our trade deficit in goods with the world last year
was nearly $ 800 billion dollars .

Table 5: Check-worthy and non-check-worthy samples with
high and low predictions (Ỹ ) and ground truth labels (Y ).
Words are colored according to attention weight: the deeper
the shade of red, the larger the attention score assigned.

hand-crafted features as most related work [7, 8, 10, 19], but instead
adapts the model and its representation to the domain by being
trained in an end-to-end fashion. Thus, our model should by design
be able to adapt to other check-worthiness tasks with results de-
pending on the type of discourse and rhetoric. Our model effectively
incorporates weak supervision: using an existing check-worthiness
ranking system to weakly label political speeches significantly im-
proved performance. Overall, our model outperforms all state of the
art baselines in mean average precision and precision at different
cut offs, with statistically significant +9-28% gains from the best
performing baseline. Further analysis revealed the significance of
domain specific word embeddings, compared to traditional general
purpose embeddings, and how check-worthy sentences share a
syntactic similar structure than non-check-worthy sentences.

Future work consists of investigating further multiple weak sig-
nals and incorporating text discourse context into the model.
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Abstract. Check-worthiness detection aims at predicting which sen-
tences should be prioritized for fact-checking. A typical use is to rank
sentences in political debates and speeches according to their degree of
check-worthiness. We present the first direct optimization of sentence
ranking for check-worthiness; in contrast, all previous work has solely
used standard classification based loss functions. We present a recurrent
neural network model that learns a sentence encoding, from which a
check-worthiness score is predicted. The model is trained by jointly op-
timizing a binary cross entropy loss, as well as a ranking based pairwise
hinge loss. We obtain sentence pairs for training through contrastive sam-
pling, where for each sentence we find the top most semantically similar
sentences with opposite label. Through a comparison to existing state-of-
the-art check-worthiness methods, we find that our approach improves
the MAP score by 11%.

Keywords: check-worthiness · neural networks · contrastive ranking

1 Introduction

Automatic fact-checking systems [10] typically consist of three parts: 1) detect
sentences that are interesting to fact-check, 2) gather evidence and background
knowledge for each sentence, and 3) manually or automatically estimate veracity.
This paper is focused on the first step, where the aim is to detect check-worthy
sentences for further processing in either a manual or automatic pipeline. The
detection can be considered a filtering step in order to limit the computational
processing needed in total for the later steps. In practice, sentences are ranked
according to their check-worthiness such that they can be processed in order of
importance. Thus, the ability to correctly rank check-worthy sentences above
non-check-worthy is essential for automatic check-worthiness methods to be use-
ful in practice. However, existing check-worthiness methods [7,3,5] do not di-
rectly model this aspect, as they are all based on traditional classification based
training objectives.

Motivated by the above, we present a recurrent neural model that learns a
sentence encoder for predicting the check-worthiness score of a sentence. Our
model is optimizing jointly using a cross entropy classification objective, and–
more importantly–also a ranking based objective in the form of a hinge loss.
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We construct ranking pairs through contrastive sampling: For each sentence, we
find the top k most semantically similar sentences with the opposite label such
that the model more accurately learns to identify the (often) subtle differences
between normal and check-worthy sentences. Additionally, we use an existing
check-worthiness approach to weakly label a large collection of unlabeled po-
litical speeches and debates, which is used for pretraining our model [3]. We
experimentally evaluate our model on the CLEF-2019 CheckThat! collection of
political speeches and debates [1]1, where our approach outperformed the state
of the art by 11% on the MAP metric. In a model ablation, we show that both
weak supervision and the ranking component improve the results individually
(MAP increases of 25% and 9% respectively), while when used together improve
the results even more (39% increase).

2 Related Work

Most existing check-worthiness methods are based on feature engineering to
extract meaningful features. Given a sentence, ClaimBuster [7] predicts check-
worthiness by extracting a set of features (sentiment, statement length, Part-of-
Speech (POS) tags, named entities, and tf-idf weighted bag-of-words), and uses a
SVM classifier for the prediction. Patwari et al. [9] presented an approach based
on similar features, as well as contextual features based on sentences immediately
preceding and succeeding the one being assessed, as well as certain hand-crafted
POS patterns. The prediction is made by a multi-classifier system based on a dy-
namic clustering of the data. In the CLEF 2018 competition on check-worthiness
detection, Hansen et al. [5] showed that a recurrent neural network with multiple
word representations (word embeddings, part-of-speech tagging, and syntactic
dependencies) could obtain state-of-the-art results for check-worthiness predic-
tion. Hansen et al. [3] later extended this work with weak supervision based
on a large collection of unlabeled political speeches and showed significant im-
provements compared to existing state-of-the-art methods. This paper directly
improves upon [3] by integrating a ranking component into the model trained
via contrastive sampling of semantically similar sentences with opposite labels.

3 Neural Check-Worthiness Model

We now present our Neural Check-Worthiness Model (NCWM ), which employs
a dual sentence representation, where each word is represented by both a word
embedding and its syntactic dependencies within the sentence. The word em-
bedding is a word2vec model [8] that aims at capturing the semantics of the
sentence. The syntactic dependencies of a word aim to capture the role of that
word in modifying the semantics of other words in the sentence. We use a syn-
tactic dependency parser to map each word to its dependency (as a tag) within
the sentence, which is then converted to a one-hot encoding. This combination

1 Our approach ranked 1st in the CLEF-2019 CheckThat! competition [6].
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of capturing both semantics and syntactic structure has been shown to work
well for predicting check-worthiness [3,5]. For each word in a sentence, the word
embedding and one-hot encoding are concatenated and fed to a recurrent neural
network with Long Short-Term Memory Units (LSTM) as memory cells:

hi = LSTM(ei ⊕ oi) (1)

where hi is the LSTM output for the ith input, ei is the word embedding of the
ith word, oi is the one-hot syntactic encoding of the ith word, and ⊕ is vector
concatenation. The output of the LSTM cells are aggregated using an attention
weighted sum, where each weight is computed as:

αi =
exp

(
FFlin (hi)

)
∑
j exp

(
FFlin (hj)

) (2)

where ht is the output of the LSTM cell at time t, and FFlin is a feed forward
layer with linear activation returning a learned scalar. The final check-worthiness
score is produced by transforming the weighted LSTM outputs:

s = FFσ
(∑

i

hiαi
)

(3)

where FFσ is a feed forward layer with a sigmoid activation, such that the score
lies between 0 and 1.

Loss functions. The model is jointly optimized using both a classification and
ranking loss function. For the classification loss, we use the standard binary cross
entropy loss:

CE(y, s) = −y log(s)− (1− y) log(1− s) (4)

where y is the ground truth binary label of a sentence and s is the check-
worthiness score computed above. For the ranking loss, we use a hinge loss based
on the computed check-worthiness scores of sentence pairs with opposite labels.
To obtain these pairs we use contrastive sampling, such that for each sentence
we sample the top k most semantically similar sentences with the opposite label,
i.e., for check-worthy sentences we sample k non-check-worthy sentences. To es-
timate the semantic similarity we compute an average word2vec [8] embedding
vector of all words in a sentence, and then use the cosine similarity to find the
top k most semantically similar sentences with the opposite label. The purpose
of the contrastive sampling is to enable the model to better learn the subtle
differences between check-worthy and non-check-worthy sentences. Specifically,
for the ith sentence with score si, we denote the check-worthiness score of a
contrastive sample as sc, such that the ranking loss is:

hinge(y, s, sc) = max
(
0, 1− sign(y)(s− sc)

)
(5)

where sign(y) returns 1 for check-worthy sentences and -1 otherwise. The com-
bination of both the classification and ranking loss enables the model to learn
accurate classifications while the predicted scores are sensible for ranking.
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4 Experimental Evaluation

We evaluate our approach on the CLEF-2019 CheckThat! dataset [1], which
consists of 19 training speeches and debates with a total of 16,421 sentences,
where 433 are labeled as being check-worthy (i.e., 2.64% positive samples). The
testing set consists of 7 speeches and debates with a total of 7079 sentences, where
110 are labeled as check-worthy (i.e., 1.55% positive samples). We evaluate the
performance on the dataset using traditional ranking metrics of MAP and P@k
for k = {1, 5, 20, 50}.

4.1 Tuning

We choose the hyper parameters based on a 19-fold cross validation (1 fold for
each training speech and debate). In the following, we list the tuned parameters
and underline the optimal values: the LSTM has {50, 100, 150, 200} hidden
units, a dropout of {0, 0.1, 0.3, 0.5} was applied to the attention weighted sum,
and we used a batch size of {40, 80, 120, 160, 200}. For the contrastive sampling
we searched {1, 5, 10, 20} as the number of semantically similar sentences with
the opposite label to find for each sentence. For the syntactic dependency parsing
we use spaCy2, and TensorFlow for the neural network implementation.

To train a more generalizable model we employ weak supervision [2,4] by
using an online check-worthiness approach3, to weakly label a large collection of
unlabeled political speeches and debates for model pretraining. We obtain 271
political speeches and debates by Hillary Clinton and Donald Trump from the
American Presidency Project4. Following Hansen et al. [3], we create a domain
specific word2vec embedding by crawling documents related to all U.S. elec-
tions available through the American Presidency Project, e.g., press releases,
statements, speeches, and public fundraisers, resulting in 15,059 documents.

4.2 Results

Our Neural Check-Worthiness Model (NCWM) outperformed competitive and
state-of-the-art baselines [5,3] with a MAP of 0.1660. To investigate the effect of
the ranking component and the weak supervision (see Table 1), we also report
the results when these are not part of NCWM. The model without the ranking
component is similar to the state-of-the-art work by Hansen et al. [3], and the
model without either the ranking component or weak supervision is similar to
earlier work by Hansen et al. [5]. The results show that the ranking component
and weak supervision lead to notable improvements, both individually and when
combined. The inclusion of weak supervision leads to the largest individual MAP
improvement (25% increase), while the individual improvement of the ranking

2 https://spacy.io/
3 https://idir.uta.edu/claimbuster/
4 https://web.archive.org/web/20170606011755/http://www.presidency.ucsb.

edu/
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component is smaller (9% increase). We observe that the ranking component’s
improvement is marginally larger when weak supervision is included (11% in-
crease with weak supervision compared to 9% without), thus showing that even a
weakly labeled signal is also beneficial for learning the correct ranking. Combin-
ing both the ranking component and weak supervision leads to a MAP increase
of 39% compared to a model without either of them, which highlights the benefit
of using both for the task of check-worthiness as the combination provides an
improvement larger than the individual parts.

Table 1. Test results for the full Neural Check-Worthiness Model (NCWM) and for
the model excluding ranking and weak supervision (WS) components.

Test (Speeches and Debates) MAP P@1 P@5 P@20 P@50

NCWM 0.1660 0.2857 0.2571 0.1571 0.1229
NCWM (w/o. ranking) [3] 0.1496 0.1429 0.2000 0.1429 0.1143
NCWM (w/o. WS) 0.1305 0.1429 0.1714 0.1429 0.1200
NCWM (w/o. ranking and w/o. WS) [5] 0.1195 0.1429 0.1429 0.1143 0.1057

Test (Speeches) MAP P@1 P@5 P@20 P@50

NCWM 0.2502 0.5000 0.3500 0.2375 0.1800
NCWM (w/o. ranking) [3] 0.2256 0.2500 0.3000 0.2250 0.1800
NCWM (w/o. WS) 0.1937 0.2500 0.3000 0.2000 0.1600
NCWM (w/o. ranking and w/o. WS) [5] 0.1845 0.2500 0.2500 0.1875 0.1450

Test (Debates) MAP P@1 P@5 P@20 P@50

NCWM 0.0538 0.0000 0.1333 0.0500 0.0467
NCWM (w/o. ranking) [3] 0.0482 0.0000 0.0667 0.0333 0.0267
NCWM (w/o. WS) 0.0462 0.0000 0.0000 0.0667 0.0667
NCWM (w/o. ranking and w/o. WS) [5] 0.0329 0.0000 0.0000 0.0167 0.0533

To investigate the performance on speeches and debates individually, we split
the test data and report the performance metrics on each of the sets. In both of
them we observe a similar trend as for the full dataset, i.e., that both the ranking
component and weak supervision lead to improvements individually and when
combined. However, the MAP on the debates is significantly lower than for the
speeches (0.0538 and 0.2502 respectively). We believe the reason for this dif-
ference is related to two issues: i) All speeches are by Donald Trump and 15
out of 19 training speeches and debates have Donald Trump as a participant,
thus the model is better trained to predict sentences by Donald Trump. ii) De-
bates are often more varied in content compared to a single speech, and contain
participants who are not well represented in the training data. Issue (i) can be
alleviated by obtaining larger quantities and more varied training data, while is-
sue (ii) may simply be due to debates being inherently more difficult to predict.
Models better equipped to handle the dynamics of debates could be a possible
direction to solve this.
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5 Conclusion

We presented a recurrent neural model that directly models the ranking of check-
worthy sentences, which no previous work has done. This was done through a
hinge loss based on contrastive sampling, where the most semantically similar
sentences with opposite labels were sampled for each sentence. Additionally, we
utilize weak supervision through an existing check-worthiness method to label
a large unlabeled dataset of political speeches and debates. We experimentally
verified that both the sentence ranking and weak supervision lead to notable per-
formance MAP improvements (increases of 9% and 25% respectively) compared
to a model without either of them, while using both lead to an improvement
greater than the individual parts (39% increase). In comparison to state-of-the-
art check-worthiness models, we found our approach to perform 11% better on
the MAP metric.

References

1. P. Atanasova, P. Nakov, G. Karadzhov, M. Mohtarami, and G. Da San Martino.
Overview of the CLEF-2019 CheckThat! Lab on Automatic Identification and Ver-
ification of Claims. Task 1: Check-Worthiness. In CLEF-2019 CheckThat! Lab,
2019.

2. M. Dehghani, H. Zamani, A. Severyn, J. Kamps, and W. B. Croft. Neural rank-
ing models with weak supervision. In ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 65–74, 2017.

3. C. Hansen, C. Hansen, S. Alstrup, J. Grue Simonsen, and C. Lioma. Neural check-
worthiness ranking with weak supervision: Finding sentences for fact-checking. In
Companion Proceedings of the World Wide Web Conference, 2019.

4. C. Hansen, C. Hansen, J. G. Simonsen, S. Alstrup, and C. Lioma. Unsupervised
neural generative semantic hashing. In ACM SIGIR Conference on Research and
Development in Information Retrieval, 2019.

5. C. Hansen, C. Hansen, J. G. Simonsen, and C. Lioma. The copenhagen team
participation in the check-worthiness task of the competition of automatic identi-
fication and verification of claims in political debates of the clef-2018 fact checking
lab. In CLEF-2018 CheckThat! Lab, 2018.

6. C. Hansen, C. Hansen, J. G. Simonsen, and C. Lioma. Neural weakly supervised
fact check-worthiness detection with contrastive sampling-based ranking loss. In
CLEF-2019 CheckThat! Lab, 2019.

7. N. Hassan, F. Arslan, C. Li, and M. Tremayne. Toward automated fact-checking:
Detecting check-worthy factual claims by claimbuster. In KDD, pages 1803–1812,
2017.

8. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed rep-
resentations of words and phrases and their compositionality. In NeurIPS, pages
3111–3119, 2013.

9. A. Patwari, D. Goldwasser, and S. Bagchi. Tathya: A multi-classifier system for
detecting check-worthy statements in political debates. In CIKM, pages 2259–2262,
2017.

10. J. Thorne and A. Vlachos. Automated fact checking: Task formulations, methods
and future directions. In ACL, pages 3346–3359, 2018.

75



Chapter 9

Neural Speed Reading with
Structural-Jump-LSTM

Christian Hansen, Casper Hansen, Stephen Alstrup, Jakob Grue Simonsen, Christina
Lioma (2019). Neural Speed Reading with Structural-Jump-LSTM. In ICLR. [40].

76



Published as a conference paper at ICLR 2019

NEURAL SPEED READING WITH STRUCTURAL-JUMP-
LSTM

Christian Hansen, Casper Hansen, Stephen Alstrup, Jakob Grue Simonsen & Christina Lioma
Department of Computer Science
University of Copenhagen
Denmark, Copenhagen 2100
{chrh,c.hansen,s.alstrup,simonsen,c.lioma}@di.ku.dk

ABSTRACT

Recurrent neural networks (RNNs) can model natural language by sequentially
”reading” input tokens and outputting a distributed representation of each token.
Due to the sequential nature of RNNs, inference time is linearly dependent on
the input length, and all inputs are read regardless of their importance. Efforts to
speed up this inference, known as ”neural speed reading”, either ignore or skim
over part of the input. We present Structural-Jump-LSTM: the first neural speed
reading model to both skip and jump text during inference. The model consists of a
standard LSTM and two agents: one capable of skipping single words when read-
ing, and one capable of exploiting punctuation structure (sub-sentence separators
(,:), sentence end symbols (.!?), or end of text markers) to jump ahead after read-
ing a word. A comprehensive experimental evaluation of our model against all five
state-of-the-art neural reading models shows that Structural-Jump-LSTM achieves
the best overall floating point operations (FLOP) reduction (hence is faster), while
keeping the same accuracy or even improving it compared to a vanilla LSTM that
reads the whole text.

1 INTRODUCTION

Recurrent neural networks (RNNs) are a popular model for processing sequential data. The Gated
Recurrent Unit (GRU) (Chung et al., 2014) and Long Short Term Memory (LSTM) (Hochreiter
& Schmidhuber, 1997) are RNN units developed for learning long term dependencies by reducing
the problem of vanishing gradients during training. However, both GRU and LSTM incur fairly
expensive computational costs, with e.g. LSTM requiring the computation of 4 fully connected
layers for each input it reads, independently of the input’s importance for the overall task.

Based on the idea that not all inputs are equally important, and that relevant information can be
spread throughout the input sequence, attention mechanisms were developed (Bahdanau et al., 2015)
to help the network focus on important parts of the input. With soft attention, all inputs are read, but
the attention mechanism is fully differentiable. In comparison, hard attention completely ignores
part of the input sequence. Hard attention mechanisms have been considered in many areas, ranging
from computer vision (Mnih et al., 2014; Campos et al., 2018) where the model learns what parts of
the image it should focus on, to natural language processing (NLP), such as text classification and
question answering (Yu et al., 2017; Campos et al., 2018; Yu et al., 2018), where the model learns
which part of a document it can ignore. With hard attention, the RNN has fewer state updates, and
therefore fewer floating point operations (FLOPs) are needed for inference. This is often denoted
as speed reading: obtaining the same accuracy while using (far) fewer FLOPs (Yu et al., 2017;
2018; Seo et al., 2018; Huang et al., 2017; Fu & Ma, 2018). Prior work on speed reading processes
text as chunks of either individual words or blocks of contiguous words. If the chunk being read
is important enough, a full state update is performed; if not, the chunk is either ignored or a very
limited amount of computations are done. This is followed by an action aiming to speed up the
reading, e.g. skipping or jumping forward in text.

Inspired by human speed reading, we contribute an RNN speed reading model that ignores unim-
portant words in important sections, while also being able to jump past unimportant sections of the
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text. Our model, called Structural-Jump-LSTM1, both skips and jumps over dynamically defined
chunks of text as follows: (a) it can skip individual words, after reading them, but before updating
the RNN state; (b) it uses the punctuation structure of the text to define dynamically spaced jumps
to the next sub-sentence separator (,;), end of sentence symbol (.!?), or the end of the text.

An extensive experimental evaluation against all state-of-the-art speed reading models (Seo et al.,
2018; Yu et al., 2017; 2018; Fu & Ma, 2018; Huang et al., 2017), shows that our Structural-Jump-
LSTM of dynamically spaced jumps and word level skipping leads to large FLOP reductions while
maintaining the same or better reading accuracy than a vanilla LSTM that reads the full text.

2 RELATED WORK

Prior work on speed reading can be broadly clustered into two groups: 1) jumping based models,
and 2) word level skip and skim models, which we outline below.

Jump based models. The method of Yu et al. (2017) reads a fixed number of words, and then may
decide to jump a varying number of words ahead (bounded by a maximum allowed amount) in the
text, or to jump directly to the end. The model uses a fixed number of total allowed jumps, and the
task for the network is therefore to learn how best to spend this jump budget. The decision is trained
using reinforcement learning, with the REINFORCE algorithm (Williams, 1992), where the reward
is defined based only on if the model predicts correctly or not. Thus, the reward does not reflect how
much the model has read. The model of Fu & Ma (2018) also has a fixed number of total jumps and
is very similar to the work by Yu et al. (2017), however it allows the model to jump both back and
forth a varying number of words in order to allow for re-reading important parts. Yu et al. (2018) use
a CNN-RNN network where a block of words is first read by a CNN and then read as a single input
by the RNN. After each block is read, the network decides to either re-read the block, jump a varying
number of blocks ahead, or jump to the end. The decision is trained using reinforcement learning,
where both REINFORCE and actor-critic methods were tested, with the actor-critic method leading
to more stable training. The reward is based on the loss for the prediction and the FLOPs used by
the network to make the prediction. FLOP reduction is thereby directly tied into the reward signal.
Huang et al. (2017) propose a simple early-stopping method that uses a RNN and reads on a word
level, and where the network learns when to stop. This can be considered a single large jump to the
end of the text.

Skip and skim based models. Seo et al. (2018) present a model with two RNNs, a “small” RNN
and a “big” RNN. At each time step the model chooses either the big or the small RNN to update
the state, based on the input and previous state, which can be considered as text skimming when the
small RNN is chosen. This network uses a Gumbel softmax to handle the non-differentiable choice,
instead of the more common REINFORCE algorithm. Campos et al. (2018) train a LSTM that may
choose to ignore a state update, based on the input. This can be considered as completely skipping
a word, and is in contrast to skimming a word as done by Seo et al. (2018). This network uses a
straight-through estimator to handle the non-differentiable action choice. This approach is applied
on image classification, but we include it in this overview for completeness.

Other speed reading models. Johansen & Socher (2017) introduce a speed reading model for
sentiment classification where a simple model with low computational cost first determines if an
LSTM model should be used, or a bag-of-words approach is sufficient. The method of Choi et al.
(2017) performs question answering by first using a CNN-based sentence classifier to find candidate
sentences, thereby making a summary of the whole document relevant for the given query, and then
using the summary in an RNN.

More widely, gated units, such as GRU and LSTM, face problems with long input sequences (Neil
et al., 2016). Speed reading is one way of handling this problem by reducing the input sequence. In
contrast, Neil et al. (2016) handle the problem by only allowing updates to part of the LSTM at a
current time point, where an oscillating function controls what part of the LSTM state can currently
be updated. Cheng et al. (2016) handle this by using memory networks to store an array of states,
and the state at a given point in time comes from applying an attention mechanism over the stored
states, handling the issues of older states being written over.

1https://github.com/Varyn/Neural-Speed-Reading-with-Structural-Jump-LSTM
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Figure 1: Overview of our proposed model. The input at a given time is the action of the previous
skip agent (St−1), the previous jump agent action (Jt−1), and the word embedded token (tokeni).
tokennext corresponds to the next word considered after skipping or jumping. Depending on the skip
decision, the no/yes in the diamond shaped skip-box corresponds to which LSTM output and state
should be used for the next input (updated or previous respectively).

Overall, the above state-of-the-art models are either jump or skip/skim based. We present the first
speed reading model that both jumps and skips. Furthermore, current jumping-based models use a
variable jump size for each input, without considering the inherent structure of the text. In contrast,
our model defines jumps based on the punctuation structure of the text. This combined approach
of both skipping and jumping according to text structure yields notable gains in efficiency (reduced
FLOPs) without loss of effectiveness (accuracy). We next present our model.

3 STRUCTURAL-JUMP-LSTM MODEL

Our Structural-Jump-LSTM model consists of an ordinary RNN with LSTM units and two agents:
the skip agent and the jump agent. Each of these agents compute a corresponding action distribution,
where the skip and jump actions are sampled from. The skip agent chooses to either skip a single
word, thereby not updating the LSTM, or let the LSTM read the word leading to an update of the
LSTM. The jump agent is responsible for jumping forward in the text based on punctuation structure
(henceforth referred to as structural jumps). A structural jump is a jump to the next word, or the
next sub-sentence separator symbol (,;), or the next end of sentence symbol (.!?), or to the end of
the text (which is also an instance of end of sentence). The purpose of using two agents is that the
skip agent can ignore unimportant words with very little computational overhead, while the jump
agent can jump past an unimportant part of the text. As both the skip and jump agent contribute
to a reduction in FLOPs (by avoiding LSTM state updates), the Structural-Jump-LSTM is faster at
inference than a vanilla LSTM.

Figure 1 shows an overview of our model: The input in each time step is the previous actions of the
skip agent (S), of the jump agent (J), and of the current input. The output from the previous LSTM
is used in combination with the input to make a skip decision – if the word is skipped, the last LSTM
state will not be changed. From this we use a standard LSTM cell where the output is fed to the jump
agent, and a jump decision is made. Both agents make their choice using a fully connected layer,
with a size that is significantly smaller than the LSTM cell size, to reduce the number of FLOPs by
making the overhead of the agents as small as possible.

Section 3.1 details how inference is done in this model, and Section 3.2 presents how the network is
trained.
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3.1 INFERENCE

At a given time step t, Structural-Jump-LSTM reads input xi ∈ Rd , and the LSTM has a previous
output ot−1 ∈ Rm and state st−1 ∈ Rm. At time step t − 1 the skip agent first takes action askip

t−1
sampled from the skip-action distribution pskip

t−1 and the jump agent takes action ajump
t−1 sampled from

the jump-action distribution pjump
t−1 . If askip

t−1 is to skip the word, then the jump agent takes no action,
i.e. no jump is made. At time step t the network first needs to sample askip

t from pskip
t , which is

computed in each time step as:

pskip
t = softmax(dLIN(stateskip

t )) (1)

stateskip
t = dReLU(xt � ot−1 � onehot(askip

t−1)� onehot(ajump
t−1 )) (2)

where dactivation is a fully connected layer with the given activation, ReLU is the Rectified Linear
Unit, LIN is the linear activation, and � denotes concatenation of vectors. At inference time the
action can either be sampled from the distribution, or chosen greedily, by always choosing the most
probable action.

If the action askip
t = 0, we skip the word and set ot = ot−1 and st = st−1, and the network will move

to the next word at position i + 1. If askip
t = 1, the word is read via the LSTM. The output and new

state of the RNN is calculated and produces ot and st for the next step. The probability distribution
pjump
t from which action ajump

t is sampled from is computed as:

pjump
t = softmax(dLIN(statejump

t )) (3)

statejump
t = dReLU(ot) (4)

If the sampled action ajump
t corresponds to e.g. a jump to the next sentence, then the current LSTM

output and state will be kept, and all following inputs will be ignored until a new sentence begins.
When there are no more inputs the output of the RNN is used to make a final prediction. If the action
is to jump to the end of the text, then the final prediction will be made immediately based on the
current output.

3.2 TRAINING

During training, Structural-Jump-LSTM is optimized with regards to two different objectives: 1)
Producing an output that can be used for classification, and 2) learning when to skip and jump based
on the inputs and their context, such that the minimum number of read inputs gives the maximum
accuracy.

For objective 1, the output of the RNN can be used for classification, and the loss is computed as the
cross entropy Lclass against the target.

For objective 2, the agents are non-differentiable due to the discrete sampling of the actions. Thus we
choose to reformulate the problem as a reinforcement learning problem, where we define a reward
function to maximize. In essence, the reward is given based on the amount read and whether or not
the prediction is correct. We denote R as the total reward associated with a sampled sequence of
actions, e.g. askip

1 , askip
2 ajump

2 , ..., askip
T , ajump

T , and Rt as the sum of reward from time t. Note that if
the network chooses to skip a word, the sequence will not have a jump at that time step. We use an
advantage actor-critic approach (Konda & Tsitsiklis, 2000) to train the agents in order to reduce the
variance. The loss for the skip agent is given as:

Lactor = −
T∑

t=0

log(pskip
t (askip

t |stateskip
t )) · (Rt − V skip

t ) (5)

V skip
t = dLIN(stateskip

t ) (6)

where V skip
t is a value estimate of the given state, which is produced by a fully connected layer with

output size 1. For the jump agent we do exactly the same as the skip agent, and the sum of the
two actor losses is denoted Lactors. The value estimate of a state corresponds to how much reward is
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dataset task type label type #train #val #test avg. length vocab. size
IMDB (Maas et al., 2011) Sentiment Pos/Neg 21,250 3,750 25,000 230 204,758
Yelp (Zhang et al., 2015) Sentiment Pos/Neg 475,999 84,000 37,999 136 644,653
SST (Socher et al., 2013) Sentiment Pos/Neg 6,920 872 1,821 19 17,851
Rotten Tomatoes (Pang & Lee, 2005) Sentiment Pos/Neg 9,594 1,068 1,068 21 20,388
DBPedia (Lehmann et al., 2015) Topic 14 topics 475,999 84,000 69,999 47 840,843
AG news (Zhang et al., 2015) Topic 4 topics 101,999 18,000 7,599 8 41,903
CBT-CN (Hill et al., 2016) Q/A 10 answers 120,769 2,000 2,500 429 51,774
CBT-NE (Hill et al., 2016) Q/A 10 answers 108,719 2,000 2,500 394 51,672

Table 1: Dataset statistics.

collected when acting from this state, such that the estimated value is a smoothed function of how
much reward the network expects to collect later. Using advantage instead of reward is beneficial as
the sign of the loss then depends on whether the achieved reward is higher or lower than the expected
reward in a given state. This loss for the agent corresponds to the loss in the popular A3C algorithm
(Mnih et al., 2016) in the case of tmax being large enough to always reach a terminal condition.
This is not a problem in our setting as documents are of finite length. The value estimate is trained
together with both agents using the squared difference with the targets being the observed values
for each state, (we denote this Lcritics). Lastly, to provoke exploration in the network we add an
entropy loss, where both agents’ distributions are targeting a uniform distribution over the actions,
(we denote this loss Lentropies). The total loss for the network is then:

Ltotal = αLclass + βLactors + γLcritics + δLentropies (7)

where α, β, γ, and δ control the trade-offs between the components.

For each action a reward is given; the reward for a skip action at time t is:

rskip
t =

{
− 1
|doc| if askip

t is a read action
− cskip

|doc| if askip
t is a skip action

(8)

where |doc| is the number of words in the document such that the reward for skipping a word scales
with the document length. The reward is negative for both cases as there is a cost associated with
reading a word. The jump action gives no reward, as the reward is implicit by the network collecting
less negative reward. At the end an additional reward is given based on whether the network makes
a correct prediction, such that the summed reward from time t is given by:

Rt =

{
1 + wrolling

∑T
t′=t r

skip
t′ if ypred = ytarget

p(ytarget) + wrolling
∑T

t′=t r
skip
t′ if ypred 6= ytrue

(9)

ypred is the prediction by the network, ytrue is the target, and p(ytarget) is the probability the network
gives for the target class. wrolling controls the trade-off between the rolling reward and the reward
based on model performance. The final reward is designed such that a large reward is given in the
case of a correct prediction, while the agents are still rewarded for increasing the probability for the
correct class, even if they did not predict correctly.

4 EXPERIMENTAL EVALUATION

We present the experimental evaluation of our method.

4.1 EXPERIMENTAL SETUP AND TRAINING

We use the same tasks and datasets used by the state-of-the-art in speed reading (displayed in Table
1), and evaluate against all 5 state-of-the-art models (Seo et al., 2018; Yu et al., 2017; 2018; Fu &
Ma, 2018; Huang et al., 2017) in addition to a vanilla LSTM full reading baseline.

For the sentiment and topic classification datasets we apply a fully connected layer on the LSTM
output followed by a traditional softmax prediction, where the fully connected layer has the same
size as the cell size. On the Question Answering datasets we follow Yu et al. (2017) by choosing
the candidate answer with the index that maximizes softmax(CWo) ∈ R10, where C ∈ R10×d is
the word embedding matrix of the candidate answers, d is the embedding size, W ∈ Rd×cell size is a
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trained weight matrix, and o is the output state of the LSTM. This transforms the answering task into
a classification problem with 10 classes. In addition, we read the query followed by the document,
to condition reading of the document by the query as done by Yu et al. (2017). On all datasets we
initialize the word embedding with GloVe embeddings (Pennington et al., 2014), and use those as
the input to the skip agent and LSTM.

We use the predefined train, validation, and testing splits for IMDB, SST, CBT-CN, and CBT-NE,
and use 15% of the training data in the rest as validation. For Rotten Tomatoes there is no predefined
split, so we set aside 10% for testing as done by Yu et al. (2017). For training the model we use RM-
Sprop with a learning rate chosen from the set {0.001, 0.0005}, with optimal of 0.001 on question
answering datasets (CBT-CN and CBT-NE) and 0.0005 on the topic and sentiment datasets. We use
a batch size of 32 on AG news, Rotten Tomatoes, and SST and a batch size of 100 for the remaining.
Similarly to Yu et al. (2017), we employ dropout to reduce overfitting, with 0.1 on the embedding
and 0.1 on the output of the LSTM. For RNN we use an LSTM cell with a size of 128, and apply
gradient clipping with a tresholded value of 0.1. For both agents, their small fully connected layer
is fixed to 25 neurons.

On all datasets we train by first maximizing the full read accuracy on the validation set, and the
agents are then activated afterwards. While training we include the entropy loss in the total loss to
predispose the speed reading to start with a full read behaviour, where the action distributions are
initialized to only reading and never skipping or jumping. While maximizing full read accuracy the
word embedding is fixed for the Question Answering datasets and trainable on the rest, while being
fixed for all datasets during speed read training. As described in Equation 9, wrolling controls the
trade-off between correct prediction and speed reading, and was chosen via cross validation from
the set {0.05, 0.1, 0.15}, where most datasets performed best with 0.1. For simplicity we fix the cost
of skipping cskip in Equation 8 to 0.5, such that skipping a word costs half of reading a word, which
was done to promote jumping behaviour.

For the speed reading phase the total loss, as seen in Equation 7, is a combination of the prediction
loss, actor loss, critic loss, and entropy loss, where the actor loss is scaled by a factor of 10 to make
it comparable in size to the other losses. The entropy loss controls the amount of exploration and
is chosen via cross validation from the set {0.01, 0.05, 0.1, 0.15}, where most datasets performed
best with 0.1. We also cross validate choosing the actions greedily or via sampling from the action
distributions, where for QA sampling was optimal and greedy was optimal for the others. Lastly, all
non-QA datasets use uniform action target distributions for increased exploration, however CBT-CB
and CBT-CN are trained with distribution with 95% probability mass on the ”read” choice of both
agents to lower skipping and jumping exploration, which was necessary to stabilize the training.

4.2 EVALUATION METRICS

The objective of speed reading consists of two opposing forces, as the accuracy of the model should
be maximized while reading as few words as possible. We consider two different ways the model can
skip a word: i) One or more words can be jumped over, e.g. as done in our model, LSTM-Jump (Yu
et al., 2017), Yu-LSTM (Yu et al., 2018) and Adaptive-LSTM (Huang et al., 2017), where the latter
implements a jump as early stopping. ii) A word can be skipped or skimmed, where the model is
aware of the word (in contrast to jumping), but chooses to do a very limited amount of computations
based on it, e.g. as done as skipping in our model or as skimming in Skim-LSTM (Seo et al., 2018).
In order to capture both of these speed reading aspects, we report the percentage of words jumped
over, and the total reading percentage (when excluding skipped and jumped words).

We calculate the total FLOPs used by the models as done by Seo et al. (2018) and Yu et al. (2018),
reported as a FLOP reduction (FLOP-r) between the full read and speed read model. This is done to
avoid runtime dependencies on optimized implementations, hardware setups, and whether the model
is evaluated on CPU or GPU.

4.3 RESULTS

We now present the results of our evaluation.
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(Class: Mean Of transportation) The Alexander Dennis Enviro200 Dart is a midibus manu-
factured by Alexander Dennis since 2006 for the British market as the successor of the Dart
SLF chassis and Pointer body. The Enviro200 Dart is manufactured and marketed in North
America by New Flyer as the MiDi.

Figure 2: Example of jumping and skipping behaviour of our Structural-Jump-LSTM from DB-
Pedia. Skipped words have a single strike-through while jumps consist of a sequence of strike-
throughed words. The words that are jumped over or skipped are considered by the model not
important for classifying the means of transportation (even though they include several nouns and
name entinites that are generally considered to be important (Lioma & van Rijsbergen, 2008).

4.3.1 STRUCTURAL-JUMP-LSTM VERSUS FULL READING

Table 2 displays the accuracy, the percentage of text being jumped over, and the total reading per-
centage (when excluding jumped and skipped words), of our approach versus a full reading baseline.
Our approach obtains similar accuracies compared to vanilla LSTM, while in some cases reducing
the reading percentage to below 20% (IMDB and DBPedia), and with the worst speed reading result-
ing in a reading percentage of 68.6% (Yelp). The speed reading behaviour varies across the datasets
with no skipping on CBT-CN, CBT-NE, and Yelp, no jumping on Rotten Tomatoes, and a mix of
skipping and jumping on the remaining datasets.

In 7 out of 8 datasets Structural-Jump-LSTM improves accuracy and in 1 the accuracy is the same
(IMDB). At all times, our model reads significantly less text than the full reading baseline, namely
17.5% - 68.8% of the text. Overall this indicates that the jumps/skips of our model are meaningful
(if important text was skipped or jumped over, accuracy would drop significantly). An example of
this speed reading behaviour (from DBPedia) can be seen in Figure 2. Generally, the model learns
to skip some uninformative words, read those it deems important for predicting the target (Mean of
transportation), and once it is certain of the prediction it starts jumping to the end of the sentences.
Interestingly, in this setting it does not learn to just jump to the end, but rather to inspect the first two
words of the last sentence.

4.3.2 STRUCTURAL-JUMP-LSTM VERSUS STATE-OF-THE-ART SPEED READING

Table 3 displays the scores of our approach against all five state-of-the-art speed reading models. We
report the values from the original papers, which all report the speed reading result with the highest
accuracy. We list the reported FLOP reductions when available. If FLOP reductions are not reported
in the original paper, we report the speed increase, which should be considered a lower bound on
the FLOP reduction. Note that the state-of-the-art models use different network configurations of
the RNN network and training schemes, resulting in different full read and speed read accuracies
for the same dataset. To allow a consistent comparison of the effect of each speed reading model,
we report the accuracy difference between each paper’s reported full read (vanilla LSTM) and speed
read accuracies.

On all datasets our approach provides either the best or shared best FLOP reduction, except on CBT-
CN where LSTM-Jump provides a speed increase of 6.1x (compared to 3.9x for our approach). The
second best method with regards to FLOP reduction is Skim-LSTM, and the worst is the Adaptive-
LSTM model that implements early stopping when the model is certain of its prediction. Skim-
LSTM has an evaluation advantage in this FLOP reduction setting, since the FLOP reduction is
directly tied to the difference between the small and large LSTM used by the model, such that an
unnecessarily large LSTM will lead to very attractive reductions. Skim-LSTM uses a LSTM size of
200 for Question Answering tasks and a default size of 100 for the rest, whereas the small is tested
between 5 to 20. In the case of large skimming percentage, it could be argued that the size of the
large LSTM could be reduced without affecting the performance. In contrast, jumping based models
are less prone to this evaluation flaw because they cannot carry over information from skipped or
jumped words.

Most models perform at least as well as a vanilla LSTM. LSTM-Shuttle provides consistent accuracy
improvements, but does so at a noticeable FLOP reduction cost compared to Skim-LSTM and our
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Model IMDB DBPedia Yelp AG news
Acc Jump Read Acc Jump Read Acc Jump Read Acc Jump Read

vanilla LSTM 0.882 0% 100% 0.972 0% 100% 0.955 0% 100% 0.880 0% 100%
Structural-Jump-LSTM (ours) 0.882 70.7% 19.7% 0.985 68.1% 17.5% 0.958 31.2% 68.8% 0.883 32.2% 52.0%

Model SST Rotten Tomatoes CBT-CN CBT-NE
Acc Jump Read Acc Jump Read Acc Jump Read Acc Jump Read

vanilla LSTM 0.837 0% 100% 0.787 0% 100% 0.515 0% 100% 0.453 0% 100%
Structural-Jump-LSTM (ours) 0.841 19.1% 53.9% 0.790 0.4% 57.8% 0.522 67.4% 32.6% 0.463 68.7% 31.3%

Table 2: vanilla LSTM refers to a standard LSTM full reading. The columns show the accuracy
(Acc), the percentage of text being jumped over, and the total reading percentage.

Model IMDB DBPedia Yelp AG news
∆Acc FLOP-r ∆Acc FLOP-r ∆Acc FLOP-r ∆Acc FLOP-r

Structural-Jump-LSTM (ours) 0.000 6.3x 0.013 7.0x 0.003 1.9x 0.003 2.4x
Skim-LSTM (Seo et al., 2018) 0.001 5.8x - - - - 0.001 1.4x
LSTM-Jump (Yu et al., 2017) 0.003 1.6x* - - - - 0.012 1.1x*

Yu-LSTM (Yu et al., 2018) 0.005 3.4x 0.002 2.3x 0.002 1.4x 0.001 1.7x
LSTM-Shuttle (Fu & Ma, 2018) 0.008 2.1x* - - - - 0.020 1.3x*

Adaptive-LSTM (Huang et al., 2017) - - -0.016 1.1x* - - -0.012 1.1x*
Model SST Rotten Tomatoes CBT-CN CBT-NE

∆Acc FLOP-r ∆Acc FLOP-r ∆Acc FLOP-r ∆Acc FLOP-r
Structural-Jump-LSTM (ours) 0.004 2.4x 0.003 2.1x 0.007 3.9x 0.010 4.1x
Skim-LSTM (Seo et al., 2018) 0.000 2.4x 0.017 2.1x 0.014 1.8x 0.024 3.6x
LSTM-Jump (Yu et al., 2017) - - 0.002 1.5x* 0.044 6.1x* 0.030 3.0x*

Yu-LSTM (Yu et al., 2018) - - - - - - - -
LSTM-Shuttle (Fu & Ma, 2018) - - 0.007 1.7x* - - 0.019 3.0x*

Adaptive-LSTM (Huang et al., 2017) - - - - - - - -

Table 3: Comparison of state-of-the-art speed reading models. ∆Acc is the difference between the
accuracy of the full read LSTM and the model (the higher the better), and FLOP-r is the FLOP
reduction compared to a full read model. A star (*) indicates that the original paper provided only a
speed increase, which should be considered a lower bound for FLOP-r.

approach. This can be explained by its ability to make backwards jumps in the text in order to re-
read important parts, which is similar to the idea of Yu-LSTM. The largest accuracy improvements
appear on CBT-CN and CBT-NE with LSTM-Jump. The performance obtained by reading just the
query has been reported to be very similar to using both the query and the 20 sentences (Hill et al.,
2016), which could indicate a certain noise level in the data that speed reading models are able
to identify and reduce the number of read words between the high information section of the text
and the final prediction. LSTM-Jump and LSTM-Shuttle are optimized via maximizing a jumping
budget, where only a certain specified number of jumps are allowed to be made, which provides
an edge in comparison to the other methods in this setting because prior knowledge about the high
information level of the query can be encoded in the budget (cf. Yu et al. (2017) where the best
accuracy is obtained using 1 jump for CBT-CN and 5 for CBT-NE). In the setting of speed reading
the query is read first to condition the jumping based on the query – this makes the model very
likely to prefer jumping shortly after the query is read, to not degrade the LSTM state obtained after
reading the query. Overall, budgets can be beneficial if prior information about the document is
available, but this is most often not the case for a large set of real world datasets. However, methods
based on budgets are in general significantly more rigid, as every document in a collection has the
same budget, but the required budget for each document is not necessarily the same.

5 CONCLUSION

We presented Structural-Jump-LSTM, a recurrent neural network for speed reading. Structural-
Jump-LSTM is inspired by human speed reading, and can skip irrelevant words in important sec-
tions, while also jumping past unimportant parts of a text. It uses the dynamically spaced punctuation
structure of text to determine whether to jump to the next word, the next sub-sentence separator (,;),
next end of sentence (.!?), or to the end of the text. In addition, it allows skipping a word after
observing it without updating the state of the RNN. Through an extensive experimental evaluation
against all five state-of-the-art baselines, Structural-Jump-LSTM obtains the overall largest reduc-
tion in floating point operations, while maintaining the same accuracy or even improving it over a
vanilla LSTM model that reads the full text. We contribute the first ever neural speed reading model
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that both skips and jumps over dynamically defined chunks of text without loss of effectiveness and
with notable gains in efficiency. Future work includes investigating other reward functions, where
most of the reward is not awarded in the end, and whether this would improve agent training by
having a stronger signal spread throughout the text.
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