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Abstract

Processes modeling languages are often characterized as falling within an im-
perative or declarative paradigm: the former describing a sequential flow of
events, while the latter focuses on rules, constraints, goals or properties. Re-
search suggests that highly structured processes are more aptly characterized by
imperative models, while more flexible processes are more succinctly modeled
using declarative models. Formalisms have also been proposed that combine
aspects of both paradigms, aiming to harness the strengths of each.

This thesis explores the task of automatically learning various classes of
process models from data. We begin with an information theoretic approach
to discovering structure in event logs: investigating empirically whether various
entropy estimators are able to distinguish process structures associated with
respectively imperative and declarative models. The empirical focus continues
with a systematic comparison, based on model-agnostic metrics, of existing pro-
cess discovery algorithms representative of the two paradigms. An in-depth case
study is then presented: after an on-the-ground investigation of workflows at a
surgical ward, we apply process mining techniques to the associated dataset to
build a model of patient flows, competing for resources and subject to regula-
tions. The resulting stochastic model is then parametrized using real-world data,
and we demonstrate how simulation can be used to predict resource utilization
as well as determine the risk of policy violation. Finally, novel algorithms for
learning and parametrizing declarative and hybrid process models are presented.
We present a view of process mining in terms of computational learning the-
ory, present theoretical results for a restricted class of binary miners, and end
by outlining a probabilistic approach to learning hybrid models that capture
resource dependencies between process flows.



Abstract

(Danish)

Proces modelerings formalismer bliver ofte karakteriseret som værende indenfor
paradigmerne imperative eller deklarative: den første beskriver en sekventiel
række af hændelser, mens den sidste fokuserer p̊a regler, betingelser, m̊al, eller
egenskaber. Forskningen tyder p̊a, at meget regulære/strukturerede processer
beskrives bedst ved imperative modeler, mens mere fleksible processer kan bek-
srives mere kortfattet og passende ved hjælp af deklarative modeler. Formal-
ismer har ogs̊a været bekskrevet som kombinerer de to paradigmer - s̊akaldte
hybride formalismer/modeler - med henblik p̊a at udnytte fordelene ved begge.

Denne adhandling undersøger udfordringen i, automatisk at lære s̊adanne
modeler fra data. Vi begynder med en tilgang baseret p̊a informations teori,
hvor m̊alet er at finde struktur i event log data. Vi undersøger empirisk om
forskellige estimatorer for entropy kan skelne mellem process strukturer som
stammer fra henholdsvis imperative og deklarative modeler. Den empiriske
fokus fortsætter med en systematisk sammenligning - baseret p̊a model-blinde
metrikker - af existerende “process discovery” algoritmer som er representative
fot de to paradigmer. Derefter beskriver vi en dybdeg̊aende case-study: efter en
undersøgelse af arbejdsgangene p̊a en operationsafdeling p̊a the Royal Infirmary
of Edinburgh, analysere vi et stort tilhørende dataset ved hjælp af process min-
ing algoritme for at bygge en model af patient forløb under betingelse af begræn-
sninger p̊a delte resourcer og gældende regulativer. Resulatet er en stokastisk
model som parametriseres p̊a baggrund af virkelige data, og kan bruges til at
forudsige forventet belastning af resourcer og sandsynligheden for brud p̊a ser-
vice krav. Til sidst fremlægges der nye algoritmer til at lære strukturen af,
og parametrisere, deklarative og hybride modeler. Vi gennemg̊ar en analyse
af process mining set fra computational learning theory, præsenterer teoretiske
resultater for en begrænset klasse af binære process mining algoritmer, og af-
slutter ved at fremlægge en probabilistisk tilgang til at lære hybride modeler
som beskriver resource afhængigheder mellem flere processer.
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0.1 Objectives

The objective of this thesis is to investigate the notion of hybrid process mining,
i.e. learning mixed-paradigm process models from event logs, consisting of both
imperative and declarative modeling constructs. A corollary objective - one
which proved to warrant significant attention - is addressing methods for one-
to-one evaluation across paradigms. Finally, the development of a set of software
tools for accomplishing aforementioned objectives and facilitating further work
on these topics.

0.2 State of the Art

Process mining is a relatively young field of research which came to prominence
in the early 2000’s borne of the growing need to develop automated approaches
to deriving actionable insights from the enormous amount of data surrounding
(business) process execution generated by modern IT systems, such as event-
resource planning (ERP) systems like SAP, other process-aware information
systems, as well as unstructured data stemming from workflow executions. Such
processes may span heterogeneous systems from customer relation management
(CRM), accounting and HR software, to logistics, inventory and manufacturing
software [8].

In contrast to classical data mining and machine learning tasks, which are
sometimes described as a “flat” approach of learning black-box mappings from
input data to target classes/objective functions, process mining takes a “struc-
tured” approach of learning complex models with executable semantics. As a
simple example, consider a linear regression task in which the underlying struc-
ture of the model is given a priori and the learning task consists of optimizing
parameters to fit training data.

While this distinction is arguably overly simplistic and ignores recent de-
velopment in structured machine learning approaches [47] - and approaches
such as Bayesian belief networks which involve learning model structure as
well as parametrization [35] - it highlights the focus on learning end-to-end,
interpretable process models, specifically from event log data. As a sequen-
tial/temporal learning task, process mining is not unrelated to other tasks in-
volving similar data, such as speech recognition, natural language processing,
time series analysis, and activity recognition - and indeed, there is some overlap.
One distinction lies in the general focus on learning certain classes of high-level
process models with sophisticated semantics capable of capturing complex con-
trol constructs like loops and concurrency.

This focus stems from the roots of process mining in disciplines like formal
language theory, model checking and the theory of computation - specifically
models of computation such as Petri nets. This class of models has dominated
the field, but “declarative” (often logic-based) approaches have also played an
important role and are increasingly relevant due to the ubiquity of flexible work-
flow processes such as knowledge work [50]. Hybrid process models which com-
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bine these paradigms have drawn attention in recent years but remain under-
addressed in the research. This thesis is intended to contribute to addressing
that gap.

A secondary issue this thesis addresses is the presumed gap between estab-
lished machine learning approaches and process mining - specifically in terms
of evaluation. After all, proposing an algorithm for generating a process model
given an event log is arguably trivial absent an evaluation measure. The crucial
question concerns the quality of the generated model w.r.t. to data, e.g. is a
hybrid model better than alternative models? This is the fundamental question
in learning from data: what is the relationship between the data, the algorithm,
and the loss function [1]. The latter - the need for robust evaluation procedures
and metrics - is an aspect of the process mining task which has seen growing
interest in recent years, with comprehensive benchmarking studies [4], as well
as critical inquiries into existing metrics from within the community [51], and
the establishment of the Process Discovery Contest which is framed as a binary
classification tasks and evaluated using a blind training/testing procedure 1.

In scenarios that are not amenable to being framed as a classification task
(e.g. missing labels for data) - the process mining essentially becomes an unsu-
pervised learning task. This has often been the argument for framing process
mining as a descriptive data mining task, usually performed on in-sample data
alone. When evaluating on out of sample data, an additional alignment proce-
dure is required to be able to calculate log-model replay based metrics, since the
model may not in fact permit the unseen behavior and some notion is needed
of how far the model is from capturing the observed data [52, 2]. One of the
conclusions of this project is that a more convincing alternative can be found
by adopting a probabilistic approach and corresponding likelihood-based eval-
uation metrics. In this sense, the project comes full circle from the initial work
regarding information theoretic approaches, to the applied stochastic models
and the final paper proposing a probabilistic hybrid model.

0.3 Conclusions & Future Work

Some of the open questions that arose during work on the individual papers are
listed in the roadmap in Table 1, which also indicates the “red thread” in the
flow of research via references to those papers which address specific questions.
Roughly speaking, the course of the research project can be said to have come
full circle via the following sequence of research focus:

Inference (simple)→ Evaluation→ Application→ Inference (complex)

1https://www.tf-pm.org/competitions-awards/discovery-contest
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In reality, most of the works focus on more than one of these aspects, as
reflected in the roadmap. Nonetheless, this captures the general progression and
take-away message of the project. Attempts at developing inference techniques
in the papers in Chapter 1 highlighted the need for rigorous evaluation methods,
addressed in Chapter 2.1, these were extended and applied in real-world settings
in Chapter 3.1, and finally lessons from all the preceding chapters inspired more
principled approaches to developing mining/inference algorithms in Chapter 4.1.

Conclusions and future work are addressed in the individual chapters and
papers, but overall a key take-away from the project is that there exists a rich
potential in further developing process mining techniques which integrate formal
modeling techniques - imperative, declarative or hybrid - with the insights from
the statistical/machine learning community. Resulting models will be more
expressive, interpretable, and statistically well-founded. Natural approaches for
bridging the apparent gap do indeed exist - I hope to illustrate this in the work
that follows.

What follows in the remainder of this section are two brief notes summarizing
some remaining thoughts regarding the imperative/declarative distinction and
the role of probability.

0.3.1 On the Imperative/Declarative Distinction

Are the concepts imperative vs. declarative a distinction without a difference?
In the course of this project, I have found the task of explaining the distinction
to non-experts challenging, and at times had some doubt of the usefulness of
the distinction. At a high level, the distinction is intuitive: on the one hand a
focus on control-flow vs. contraints or rules such that imperative models outline
exactly the sequence of actions/decision whereas declarative models allow any
behavior that does not violate the proscribed constraints. This is captured by
the classic graphic, recreated from [44] in Figure 1.

In the end, a concrete sequence of events must be settled upon, even in a
process which is specified declaratively - just as a logic program may be speci-
fied by the programmer, but relies on an underlying reasoning engine to find a
solution. Similarly, database query languages like SQL can be specified declar-
atively, but obviously require an underlying search strategy to find the relevant
results, and often a familiarity with the workings of the underlying engine is
necessary to formulate efficient queries.

The structure vs. flexibility distinction, while intuitively straightforward,
becomes muddied when we try to pin it down formally. We know, for example
that standard Petri nets are more expressive than Linear Temporal Logic (LTL)
or Dynamic Condition Response (DCR) Graphs. While extended versions DCR
Graphs and Petri nets are both Turing complete, e.g. DCR* with subprocesses
[27] and Petri nets with inhibitor arcs [57], infinite color nets [45] and timed
differentiable nets [31] - standard Petri nets can capture all regular languages
as well as some context-free languages [19]. In contrast, the language of LTL is
a subset of ω-regular languages [54] while DCR Graphs can capture regular and
ω-regular languages [38]. Furthermore, we know that the LTL templates of the
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Log Variability [9] paradigm Ground truth evaluation [11]

Entropy as a
X X

Extended analysis of Efficient implementation Sec. 2.2
Measure of entropy estimators with Evaluation of miner choice [10]
Log Variability [11] evaluation against real Log splitting on local structure -

logs and artificial ground Estimator stability analysis -
truth models Sample size analysis -

Towards an Empirical
X

Outline of metrics Efficient implementation Sec. 2.2
Evaluation of Imperative applicable across paradigms Statistical evaluation [12]
and Declarative and statistical evaluation
Process Mining [10]

Imperative or Declarative?
X

Analysis of different Overcoming perfect fitness Sec. 0.3.2
An Empirical Evaluation event logs’ suitability to requirement [6], [7]
of Event Logs [12] imperative or declarative More comprehensive comparison -

miners Statistical validity of metrics -

Mining Patient
X X X

Analysis of patient flow Modeling process constraints [41]
Flows in a flow data through surgical from Domain Knowledge
Surgical Ward [40] ward w.r.t. control-flow Harnessing conditional [41]

and cycle time timing distributions -

Stochastic Workflow
X X X

Modeling of patient flow Mining resource dependencies [7]
Modelling in a based on domain knowledge Mining declarative constraints -
Surgical Ward [41] regarding constraints and from metadata/text

dependencies. Probabilistic Conditional Bayesian models -
parametrization of model of transition probabilities

Discovering
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Novel algorithm for Detailed formalization [13]
Responsibilities mining DCR Graphs with Efficient implementation [13]
with DCR Graphs [39] evaluation Case-study [13]

DisCoveR: Accurate &
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Improved implementation, Parameter search via optimization -
Efficient Discovery throrough formalization w.r.t. evaluation metrics
of Declarative and evaluation More complex DCR structures -
Process Models [13]

Weighing the Pros
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& Cons: Process for unary and binary process PAC analysis & generalization -
Discovery with mining, novel binary mining bounds
Negative Examples [49] algorithm

Inferring Process
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Outlines a bottom-up, Translation procedures to
Models via Hidden approach to learning process Petri nets, declarative, and
Markov Models [6] models via translation from hybrid models

transition systems

Towards Inference of
X

Outlines and implements End-to-end inference procedures -
Resource Dependency a hybrid process grammar for growing parse tree via
Grammars from integrated with factorial expectation maximization
Event Streams [7] hidden Markov models. Implementation of sampling procedures -

Proposes inference procedures Evaluation -

Table 1: Roadmap of the work in this thesis, indicating the focus of the papers
and open questions raised underway. The flow of research can be followed via
the Addressed By column, with questions for future work indicated by -

6



C
on

st
ra

in
t C

onstraint

C
onstraint C

on
st
ra

in
t

Imperative FlowImperative Flow

Figure 1: An abstract representation of the imperative/declarative distinction
recreated from [44]. The light green region represents behavior that is permitted
by a process, but not explicitly permitted by the imperative model.

Declare language can be translated into Petri net constructs (albeit requiring
reset/inhibitor arcs) [26].

So can we say that declarative languages are better suited to capture flexible
processes when they, in several cases, are less expressive than Petri nets? Likely,
the more accurate claim is that for processes with a large degree of variability,
declarative models more succinctly capture the most relevant requirements of
the process, facilitating interpretability and understandability by avoiding so-
called spaghetti models that enumerate an excessive number of pathways.

This points to what I believe are the true advantages of the declarative
paradigm. In general, they:

• More closely resemble natural language

• Succinctly capture the high-level aspects of a system/process

• Capture properties of a system, rather than execution details

In some work, this distinction is very clear: consider an example from [28],
ensuring straightforward Metric Interval Temporal Logic (MTL) constraints
(declarative) on the movement of a robot arm whose motion is dictated by a
system of differential equations (flow-based). Whether the arm veers slightly in
one direction or another is unimportant, so long as it enters the correct positions
within the time constraints.
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In this example the distinction between the imperative and declarative com-
ponents is stark and unambiguous. Arguably this is not always the case in BPM
where Petri nets are the de facto modeling paradigm. The term flow-based seems
quite aptly to describe a trajectory space determined by a system of differen-
tial equations - is it as appropriate to describing Petri nets? Even moderately
complex Petri net structures capture behavior that can be quite tricky to fol-
low in terms of anything resembling a “flow”: with loops, parallelism, complex
conditions, and even counting.

Finally, it is a bit curious that so much research in declarative languages -
at least within the business process modeling community - has so closely mir-
rored the imperative approach in strictly modeling temporal relations between
actions. Perhaps a more fruitful focus is to capture high-level properties of the
system state declaratively - in a manner akin to that encountered in the model
checking literature. This thought is in part what inspired the final paper in this
compendium, which admittedly only scratches the surface of this line of work.

One important nuance afforded by the declarative approach is the ability to
perform runtime verification by distinguishing between constraints being per-
manently satisfied/violated and possibly violated [56]. A non-accepting terminal
state in the the resulting automaton translates as a permanent violation of the
model, for example. Alternatively, rewrite rules can be employed such that re-
playing an event results in a new set of formulas representing the constraints
to be satisfied in the remaining execution of the process [14]. This perspective
lends itself naturally - not only to prediction, but also prescription - of best
courses of action.

One approach worth mentioning is based on linear logic (not to be con-
fused with LTL) is a resource-oriented logic, which allows for correct-by-design,
optimally concurrent, process formulation [43].

Recently, extensions to such propositional temporal logics incorporating tim-
ing and data have seen growing interest. Going beyond simple ordering con-
straints, these logics allow specification of constraints w.r.t. absolute and rel-
ative time and quantified statements about the world. These allow the formu-
lation of constraint such as, “the vehicle must enter region A within the first 5
minutes, and subsequently enter region B within 3 minutes of entering region
A”.

Metric (interval) temporal logic (MTL/MITL) is one such logic, variants of
which differ in terms of semantics: point-based vs. interval-based; and time rep-
resentation: dense vs. countable [42]. Some of these fragments can be checked
via mapping to LTL [33] or via timed automata [56], allowing for time-based
runtime verification and operational support [15].

Metric first-order temporal logic (MFOTL) extends MTL with first order
formulae quantified over infinite domains [34], allowing constraints stating that
first-order statements be true at a given time or interval. Conformance checking
for MFOTL is in general undecidable, but for a subset of constraints based on
Declare, algorithms are presented in [17].

DCR graphs differs from the temporal logics discussed above, in particular
in its non-monotonic properties. That is, adding a rule does not necessarily
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further restrict the behavior permitted by a model - it may indeed increase it.
Nonetheless, DCR constraints can also be converted to (Büchi) automata for
conformance checking [37].

0.3.2 On the Inevitability of Probability

Most discussions of process modeling or model checking begin with a non-
probabilistic approach. The model simply captures the possible behavior of
a system, remaining agnostic to the likelihood of alternate traces: they are ei-
ther permitted or not permitted. Sometimes this binary framing leads to the
view of process models as classifiers between legal/illegal behaviors (combining
model and decision procedure). As I note in [6], at the very least, this can
be seen as equivalent to a bound on the probabilities over traces, essentially
capturing an entire class of probabilistic models.

To see this, consider the underlying transition system of a Petri net and
denote by mi the state corresponding to marking 1. If an edge exists between
states m1 and m2, then clearly the probability of seeing marking 2 after marking
1 is not zero, i.e. it is possible. Conversely, if no edge exists between, say m1 and
m3, then the probability of seeing m3 and after m1 is exactly zero according to
the model, i.e. it is impossible. ) Formally,

P(m2 | m1) > 0 P(m3 | m1) = 0

Obviously all probabilities will be bounded above by 1 and the sum of all out-
going transitions will need to sum to 1, unless it is a sink state (alternatively a
sink state could have a single self-transition:

∀j.
∑

i

P(mi | mj) = 1

Depending on the number of outgoing transitions, we can use this to derive
further bounds. The simplest of which is that when only one outgoing transition
exists, it will have a probability of 1, i.e. it is inevitable.

Clearly, these bounds permit an enormous variety of distributions with dras-
tically different behaviors. Nonetheless, the point remains: any non-probabilistic
process model implicitly defines an entire class of probabilistic models. Thus,
they cannot be said to be fully agnostic to the probabilistic view.

The probabilistic aspect enters the picture again once the task becomes to
learn models from data. In it’s most loose formulation, this task (“process
mining”) amounts to a mapping:

γ;L → H
from the space of event logs L to the space of process models H (or hypotheses)
[13]. Devising such a mapping is nearly trivial without the notion of a loss
functions capturing how well the model fits the data. This is where probability
and notions of sampling become unavoidable.
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All metrics for evaluating model quality are functions of the model and data
(event log), and all rely on some frequency-based measure. That is, the metric
counts some phenomenon, i.e. number of traces that violate the model; the
number of remaining tokens in a Petri net; the number of escaping edges relative
to state visits during log replay. Probability necessarily enters the picture by
virtue of the metrics being functions of the dataset at hand.

Let us consider the situation where we are given a guarantee that all possible
traces permitted by a model are represented in our dataset. Even then, we do
not avoid the probabilistic aspect: how many times have we seen every trace
variant, and how large is the event log? Perhaps the provider of the dataset tells
us, “the model is not probabilistic”, but then what determines the execution
trace at a given time? If the execution is deterministic, well then we know every
state transition has a probability of 1.0.

Even in the contrived example above, the dataset is unavoidably a sample
from a distribution. Realistically, we can rarely assume that our event log
contains examples of all possible behavior. Hence, the challenge becomes: given
a finite sample from the generating process, how likely is γ to generate a model
that achieves our objective, whether correctly predicting future events, detecting
anomalies, or even just generating models that users deem “informative”.

To my knowledge, the formulation given above - which amounts to the stan-
dard probably approximately correct (PAC) paradigm (well established in com-
putational learning theory [1]) - is not accounted for in most process mining
research. I believe this to be an important aspect that needs to be addressed.
I make the first attempts at doing so by appropriately formalizing process dis-
covery in these terms in [13], and by developing a fully probabilistic approach
in [7].

0.4 Code

All publicly available code developed in conjunction with the research presented
in this thesis can be found at:

https://github.com/backco/phd

0.5 Overview of Papers
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Chapter 1

An Information Theoretic
Approach

1.1 Discussion

The work in this chapter stems directly from the driving hypothesis of this
project: that declarative modeling languages are better suited to capturing
flexible processes, and imperative languages to capturing highly structured pro-
cesses. It represents a first step in building an inference procedure for building
hybrid models by developing methods for identifying more or less structured
portions of processes as candidates for either mining paradigm.

A natural measure of structure is entropy, a concept stemming from In-
formation Theory, and which underlies many pattern recognition algorithms,
for example as information gain in decision trees or in the minimization of
Kullback-Leibler divergence within the derivation of the expectation maximiza-
tion (EM) algorithm [16, 36]. This led to an in-depth investigation of various
formulations and estimators of entropy in symbolic sequences, and whether they
indeed correlate with processes being more declarative or imperative in [11].

1.2 Summaries

Towards an Entropy-based Analysis of Log Entropy [9] outlines the
basic approach and defines some estimators along with a preliminary evaluation.

Entropy as a Measure of Log Variability [11] significantly extends the
first paper with several additional estimators (many of which were discussed as
future work in the short paper). Furthermore, we addressed some of the theo-
retical aspects more thoroughly, such as the assumptions regarding stationarity
and ergodicity underlying many estimators and include a thorough exposition
of the distinctions between entropy and entropy rate of a process.
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The empirical investigation is also a crucial component of this publication.
As before, we present results from the standard event logs in the process min-
ing community, based on indications in the literature that these logs are more
or less suited to imperative/declarative modeling. Perhaps more convincingly,
we present results from artificially generated logs1 that try to capture various
control constructs, noise, parallelism/concurrency, all using Petri net models.
Then we also generated logs from Declare models, using modeling constructs
built systematically on a spectrum from more to less flexibility. The results of
all estimators across these event logs give good indications as to various estima-
tors strengths and shortcomings. Finally, estimator complexity and runtime is
addressed.

The practicalities of computing some estimators was not trivial. As many
aspects of the implementation turned out to be useful for the model evaluation
discussed in Chapter 2.1, we will address it in that chapter.

1Some from existing literature, some we built ourselves.

13



Chapter 2

Evaluation and Comparison

2.1 Discussion

In this body of work, we present a systematic comparison of imperative and
declarative model in terms of evaluation metrics that are commonly accepted
in the process mining community, but have nearly exclusively been applied to
Petri net models.

The simplest, and least granular, formulation of evaluation metric is that of
trace- or case-level fitness, i.e. whether entire traces are permitted by a model
or not [3]. Note that an event log is generally assumed to contain only positive
examples and no negative labels, precluding the formulation of traditional clas-
sification metrics. This metric is used as the basis for the Parsing Measure of
model quality in [55], and as the authors note, it glosses over important details
in the degree and nature of model-log inconsistency. Instead, measures of viola-
tions at the level of the individual event are needed, not only for accuracy, but
to assist in locating potential areas for improvement [29, 30].

A prevalent approach to quantifying the degree of model-log incongruity is
that of alignment, which defines a distance function between a trace and a
model based on the minimum number of extra “moves” that must be inserted
into either trace or model to replay the trace and reach an accepting state in
the model [2, 52]. Any trace replayable on a model without modification will
have an alignment distance of zero. Alignment can also capture the severity of
incongruities by assigning costs to individual edits [21]. Alignment based ap-
proaches are not formalism-specific and have been applied to declarative models
in [21, 24, 23].

As we note, in our approach we have tried to avoid relying on alignment,
since this essentially introduces an additional confounding variable between the
mining algorithm itself and evaluation against the data, since it introduces the
additional layer of the alignment algorithm and weightings on the edits/moves
in searching for optimal alignments.

It has been more common to report formalism-specific metrics, such as token-
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based measures for Petri nets (specifically workflow nets) based on the number of
tokens that were missing in the model when replaying a trace/log, and the num-
ber remaining in the model after replay, relative to the total number of tokens
consumed and produced overall [48]. In [46], a conformance checking technique
based on data-aware Petri nets is presented which handles both contol-flow
and timing constraints by modeling time as a data attribute. Some declara-
tive models can be translated into workflows nets, and are thereby amenable
to token-based metrics. See [25] for an overview of translations from Declare
constraints to Petri nets with reset and inhibitor arcs.

Evaluation metrics for declarative models vary depending on the specific
formalism, though translation to finite state automata is common. Temporal
logics, such as linear temporal logic (LTL), computational tree logic (CTL),
CTL*, event calculus [18] form the foundation of much of declarative process
modeling, with Declare being a canonical example originally formulated as set
of templates based on LTL and since extended (see below). Stochastic pro-
cess algebras such as PEPA are similar to other declarative languages in their
compositional nature and amenability to qualitative analysis while facilitating
quantitative analysis via translation to stochastic Markov models [32].

Conformance checking of temporal logic based languages can be done via
translation into a set of finite-state automata (FSA), (non-)deterministic FSA
(NFA/DFA) in the case of constraints on finite traces, and Büchi automata in
the infinite case [20, 22]. The conjunctive nature of these logics means that
the product of corresponding automata is sufficient to capture any potential
interplay.

This approach forms the basis of the evaluation metrics investigated here
[10, 12]: precision and generalization metrics are formulated based on the un-
derlying state transition system such that models based on any formalism can be
compared on equal footing, avoiding any reliance on on model-specific attributes
such as leftover tokens.

Despite being a clever approach to defining formalism-agnostic evaluation
metrics, one of the notable shortcomings of transition system metrics is the
inability to replay non-fitting traces: if an event is encountered which is not
permitted, we simply do not know which state the model should transition
to and how to continue1. For this reason, and because we wanted to avoid
introducing confounding alignment procedures, we restricted our investigation
to algorithms which could be guaranteed to produce perfectly fitting models.

Clearly this only works when evaluating on in-sample, i.e. training data, since
a previously unseen trace variant might be encountered in out-of-sample data.
Evaluation on in-sample data is the de-facto standard in the process mining
community, which we follow here, though we recognize the shortcomings of
doing so. The “generalization” metric is intended to compensate for the lack
of evaluation on out-of-sample data, but as we show, it appears doubtful that

1A probabilistic approach would avoid this, since a probability distribution over states and
transitions - rather than fully deterministic semantics - would still permit replay and simply
assign a low probability to the trace [6].
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it is capturing what it is intended to: namely the trade-off between over- and
underfitting.

2.2 Implementation

While not reflected in detail in the publications due to space limitations, a large
proportion of the work behind this line of investigation laid in the implementa-
tion of a reasonably efficient data structure for replaying event logs on models.
While this may sound trivial - and indeed a naive implementation is trivial
for small event logs and models - for very large models and event logs, naive
implementations become untenable.

The data structure is based on a simple prefix tree built from event logs,
where each trace can be seen as a “word” and events and symbols. Each node
represents a unique prefix and with it is associated the relevant attributes for
computing the evaluation metrics: model state, enabled activities in model and
log, and occurrence counts. Furthermore, a map of model state to nodes is
maintained for quick lookup of which events visit which states [12]. Figure 2.2
shows an example of the prefix tree based on a Petri net model and simple event
log. The time complexity gains stem primarily from avoiding repeated replay
of the same trace prefixes.

Undoubtedly, even more efficient implementations exist, but this was suffi-
cient for our purposes. As noted in Chapter 1, the same data structure was
also employed to compute entropy estimators, again exploiting the structure of
the trie, once constructed, to drastically improve time complexity of computing
several of the proposed entropy estimators.

One interesting detail arose in implementing the replay mechanism specif-
ically for Petri net with silent transitions (denoted τ) which are commonly
generated by some mining algorithms such as the Inductive Miner. The issue
arises when multiple silent transitions can be executed in some state.

To see this, consider the Petri net in Figure 2.1. Assume the next activities
to be executed in the event log are a and then c. We begin with a token in place
1, then after executing τ1, we have a token in places 2 and 3. At this point, if
we executed τ3, we can still execute τ2 subsequently, thus enabling a. Now we
need to execute c, but the net is currently in a marking with a token in place 5
and no way of getting a token in place 6, which is a precondition for executing
transition c.

We have, so to speak, moved to far ahead in our search for a path to enabling
transition a. This could result from a depth first search or a depth first search
which happens to choose to the wrong path in the reachability graph leading
to transition a being enabled. This is illustrated in Figure 2.2 which shows the
full reachability graph for the Petri in Figure 2.1. The bold path denotes the
shortest path to enabling a, but several other paths exist which lead to a being
enabled, but unnecessarily executing other silent transitions and inadvertently
blocking the execution of subsequent transitions.

In our implementation, we found that the intuitive strategy of greedily choos-
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Figure 2.1: A Petri net with multiple silent transitions. When searching for a
firing sequence of silent transitions, unnecessarily firing τ3 or τ4 could block the
subsequent execution of b or c

τ3 τ4 a b a c a b τ2 a c τ2

[3,−] [4,−] [4,−] [4,−] [2,−] [4,−] [2,−]

a τ3 τ4 τ2 c τ2 b

[3, 4] [2, 5] [2, 6]

τ2 τ3 τ4

[2, 3]

τ1

[1]

[5,−] [6,−] [5,−] [4,−] [6,−] [4,−] [5,−] [4,−] [4,−] [6,−] [4,−] [4,−]

b c b a c a b a a c a a

Figure 2.2: The reachability graph of the Petri net in Figure 2.1. The square
nodes correspond to the transitions in the Petri net, numbers in brackets denote
which place nodes contain a token. Multiple paths exists to enable transition
a, but only the shortest path (dashed) avoids blocking subsequent enabling of
transitions b and c.
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Figure 2.3: A Petri net with two shortest paths via silent transitions to execute
a. Executing the wrong silent transition could unintentionally block b or c
subsequently.

τ1 τ2

a

b

τ3

Figure 2.4: A Petri net in which the shortest path to enable a via silent transition
τ3 , leads to a failure to replay for any trace of the form a∗b.

ing the shortest path via silent transitions to the next non-silent activity, was
sufficient in all cases to replay event logs on Petri nets generated by the Inductive
Miner.

We can show, however that this is not true in general by means of two simple
counter examples:

Competing shortest paths The Petri net in Figure 2.3 illustrates a case in
which two shortest paths to enabling event a exist, and choosing one or the
other will consequently also enable b or c respectively. Here a choice must be
made between the shortest paths, potentially resulting in a subsequently blocked
activity.

Shortest path is blocking The Petri net in Figure 2.4 illustrates a case in
which a longer path along silent transitions is necessary to execute a, followed
by either b or a any number of times prior to b. Choosing the shortest path is
valid only for the trace consisting solely of one occurrence of a.

We leave a more rigorous investigation into search strategies on the reach-
ability graphs of specific classes of Petri nets containing silent transiions for
future work.
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2.3 Summaries

Towards an Empirical Evaluation of Imperative and Declarative Pro-
cess Mining [10] briefly outlines the approach which was later implemented
and expanded upon in the full paper [12]. Due to the page limit on this paper,
the discussion is a bit a high-level and the formal details are fleshed out more
thoroughly in the full version.

Imperative or Declarative? An Empirical Comparison of Event Logs
[12] represents the extended version of the preceding outline of our evaluation
approach, though with some alterations. After a good deal of discussion and
experimentation, we decided to abandon the generalization metric referred to
in the section titled Metric Selection. This metric essentially attempts to cap-
ture the degree of overfitting, but without reference to any out-of-sample data.
Instead it uses an estimate of the expectation - over model states - of seeing
unanticipated events. Both an event-based and state-based estimator is defined
(originally in [52]). For completeness, we briefly describe these.

For event-based generalization, let E denote set of events and

sim(e) = {e′ ∈ E|stateM (e′) = stateM (e)}
the set of events which share the same model state immediately prior to being
executed,

diff(e) = {act(e′)|e′ ∈ sim(e)}
the set of unique activities observed leaving model state immediately prior to
executing event e. Then the estimated probability of seeing a new activity in
the state associated with model M is given by

pnew(|sim(e)|, |diff(e)|) =
diff(e)(diff(e) + 1)

sim(e)(sim(e) + 1)

. This estimator assumes an unlimited number of possible activities and a
multinomial distribution. The generalization metric is then given by

1− 1

|E|
∑

e∈E
pnew(|diff(e)|, |sim(e)|)

In the state-based variant is as follows ( with stateM (e) replaced by s):

1− 1

|S|
∑

s∈S
pnew(|diff(s)|, |sim(s)|)

.
Though undoubtedly a clever formulation, we decided to employ a more

standard, cross-validation based estimate of out-of-sample error [1]. This was
to a large part for the sake of interpretability and because it has not been
established - and we were not convinced, based on our experiments - that it
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actually measures what it intends, and investigating the statistical validity of
the metric itself was outside the scope of this paper.

We also introduce a variation on the original precision metric, namely one
which is normalized w.r.t. the log using the flower model. That is, it consid-
ers the range of possible precision values, from a completely permissive model
(precision is not 0 in this case), and a perfectly fitting model (precision is 1.0).
This metric was formulated in connection with work on [39].

Finally, we formalize our hypotheses and relax the Pareto improvement cri-
teria in [10] by introducing a formal notion of projection onto a an ideal vector
which is orthogonal to an exact trade-off. This can be biased as needed by
weighting one metric over another.

Unfortunately, the paper was not accepted on the first submission attempt.
We are currently in the process of reworking and resubmitting based on reviewer
feedback.
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Chapter 3

Applications

3.1 Discussion

This chapter focuses on two projects undertaken during the PhD concerning
process mining applied in practice. The first was a project in collaboration
with private industry, specifically Gekkobrain A/S and their client Vestas Wind
Systems [8]. The second project was undertaken during my stay abroad at the
University of Edinburgh, School of Informatics/Usher Institute [40, 41].

The project with Gekkobrain and Vestas was formally undertaken during a
hiatus from the PhD, from February to June 2019. Despite not officially being a
part of the PhD project, I have chosen to include a brief discussion of it here since
the subject matter and insights are highly relevant. The project concerned the
analysis of enormous datasets from Vestas’ global SAP system using process
mining techniques. As it turns out, our focus remained mostly confined to
the low-level data extraction and preprocessing steps, that would usually be
performed prior to the high level analysis of control-flow that is typically the
focus of process mining algorithms. Indeed, the very notion of a trace or an event
log seem to be taken for granted by many researchers - and entirely absent from
real-world systems, often requiring a large amount of domain expert involvement
to extract. Unfortunately, the insights from this project have not yet resulted in
a formal publication since it was difficult to identify clear research contributions -
most of our time being spent on developing efficient code to handle the enormous
datasets. Nonetheless, I present here a draft summary of the challenges and
insights along with an attempt at identifying areas that may be worthy of further
research.

The second project, undertaken during my stay in Edinburgh, was started
in June 2019 and facilitated by my contact there, Areti Manataki, a Lead Re-
searcher affiliated with both the School of Informatics and the Usher Institute
which focuses on Molecular, Genetic and Population Health Sciences. Specifi-
cally, Areti facilitated a collaboration with Professor of Surgery and Data Sci-
ence (and practicing surgeon) Ewen Harrison. With Prof. Harrison’s assistance
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and insight, I was able to access and analyze a dataset of patient flows from the
Royal Infirmary of Edinburgh spanning the years 2010-2018. This resulted in
two publications: a full conference paper which I presented at the HealthInf con-
ference in Malta and subsequent journal extension which is awaiting publication.
Finally, during my stay, Areti introduced me to researchers in the Automated
Reasoning group in the School of Informatics (namely Prof. Jacques Fleuriot
and Dr. Petros Papapanagiotou). I had the opportunity to give a presentation
regarding my work and process mining to the Automated Reasoning Reading
Group and received valuable feedback. It was particularly interesting to learn
about Jacque and Petros previous work in workflow modeling using a Linear
Logic based formalism and tool called WorkflowFM. A recurring theme in their,
and later my own work, was the challenge of bridging the gap between theory
and tools on one hand and real-world adoption on the other.

3.2 Summaries

Gekkobrain A/S & Vestas Wind Systems [8] is a brief description of the
4-month project with Gekkobrain and Vestas in mining massive SAP transac-
tions logs.

Modelling Operating Theatre Workflows: A Brief Literature Review
[5] was written in connection with the subsequent work on analyzing data from
a surgical ward at the Royal Infirmary of Edinburgh. It was never intended for
publication, but rather to gain an overview of gaps in the research - from the
process mining community, as well as related field - and help orient our research
efforts.

Mining Patient Flow Patterns in Surgical Ward [40] summarizes the
results of several months of work with a dataset recording patient flows through
the surgical ward at the Royal Infirmary of Edinburgh. The dataset required a
great deal of cleaning, and due to the legal restrictions associated with accessing
this somewhat sensitive dataset, all analysis was performed on a remote server
running an RStudio session, requiring some effort in applying standard pro-
cess mining techniques. Furthermore, familiarization with the semantics of the
dataset - e.g. procedure codes, patient condition codes, anesthetic codes, loca-
tion codes, etc - via data dictionaries, and in terms of regulations and guidelines,
was an important part of the process.

We were fortunate to be able to visit the infirmary and talk to staff, even
observing a liver transplant, during which a nurse explained demonstrated the
data entry process to us. As noted in the paper, I was somewhat taken aback at
the unreliability of the data in terms of missing, duplicate or anomalous entries.
My response may well have been unwarranted however: my colleagues at the
Usher Institute bawked at the fact that only 10% of the dataset was invalid. In
any case, one take-home lesson here was the importance of the pre-processing
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steps of the data science workflow and indeed the utility of process mining tools
as a means of anomaly detection in that regard.

After cleaning the data, the resulting control-flow was indeed revealed to be
linear, in line with our input from the nurses and surgeons. This led us to inves-
tigate other aspects of the process that could be informative. We learned from
Prof. Harrison that a main concern in the Infirmary is the under-utilization of
resources, and avoiding unnecessary cancellations by better coordinating activ-
ities. This is supported by a number of reports on service improvement goals
I was able to find. One consistently recurring theme in this regard is tim-
ing: procedures which run over time risk leading to cancellations and cascading
reschedulings while underruns lead to underutilisation of operating rooms and
personnel. This lead us to investigate timing in depth in the paper that follows.
It should be noted that we did investigate other aspects such as network analysis
handover of work and collaboration between anesthetists and surgeons, but in
the end timing was the aspect most clearly amenable to an informative analysis.

Stochastic Workflow Modeling in a Surgical Was: Towards Simulating
and Predicting Patient Flow [41] was an invited submission extending
the work in Mining Patient Flow Patterns in a Surgical Ward. It presents a
much more comprehensive attempt at modeling the patient flow process, and
presents some insights that were left out of the first submission due to page
length limitations.

This publication demonstrates an interesting view of process mining and
modeling, in that the data-oriented aspect is almost entirely contained in the
parametrization of the model. Furthermore, this work really delves into a type
of hybrid modeling - combining both imperative, flow oriented aspects, and
rule- or constraint-oriented aspects. In some ways this may not resemble what
is classically presented as process mining, which so often narrowly focuses on
the control-flow viewed from one aspect of the process (a trace ID). Here, we try
to capture multiple interacting patient flows, competing for resources subject
to guidelines and regulations regarding prioritization, and all of this subject
to probability distributions learned from real data. Our models came nowhere
near capturing all of the complexities of the real world processes involved -
indeed, some rules and regulations of which we were aware had to be left out
- nonetheless it can serve as a proof-of-concept of an end-to-end process of
modeling and model parametrization from data.

Some interesting points to note, particularly in light of the overall focus the
thesis are: the way in which “declarative” aspects are captured in the Petri
modeling software. Specifically, I would note that most of the guards can be
equivalently - albeit much less legibly - captured using classic Petri net con-
structs, speaking to my note on the matter in Section 0.3.1. The insights re-
garding shared resources constraints were in large part what motivated my work
on hybrid process mining based on declarative resource constraints in [7].
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Chapter 4

Mining Algorithms &
Learning

4.1 Discussion

This section contains work on novel mining algorithms and associated theoretical
and empirical results. The final two papers outline what I believe to be a
convincing approach to addressing challenges in process mining evaluation: by
coupling models with executable semantics with probabilistic models, proper
out-of-sample evaluation becomes straightforward despite the absence of labels,
and the event log replay challenge [12] - requiring perfect fitness or alignment
procedures - becomes irrelevant.

4.2 Summaries

Discovering Responsibilities with Dynamic Condition Response Graphs
[39] presents an algorithm for mining DCR Graphs from event logs with bijec-
tive event to activity functions. The paper utilizes the evaluation approaches
presented in [10, 12] and the implementation described in Section 2.2.

DisCoveR: Accurate & Efficient Discovery of Declarative Process
Models [13] extends the preceding paper and was invited for submission in
connection with the impressive performance of the algorithm in the 2019 Pro-
cess Discovery Contest, which frames process discovery as a binary classification
task. The earlier insights we gained in framing process discovery in these terms
and model selection based on proper out-of-sample error estimation were clearly
reflected in that our submitted models attained an accuracy of 96.1% on the
unseen test data: the next-best performance in the contest. This extension
presents a very fast bit-vector implementation and corresponding complexity
and run-time analysis, but also a thorough mathematical formalization of the
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algorithm, a formal treatment of process discovery as in terms of computational
learning theory, as well as case studies.

This paper represents the current state-of-the art in mining algorithms for
the declarative DCR Graphs formalism, next steps in this line of work involves
incorporating more sophisticated aspects of that formalism such as time and
resource perspectives, as well as sub processes and non-bijective labeling func-
tions.

Weighing the Pros and Cons: Process Discovery with Negative Exam-
ples [49] was motivated by our ongoing discussions regarding process mining
on labeled event logs. It formalizes the notion of unary and binary mining al-
gorithms, derives several theoretical results, and presents a simple but effective
mining algorithm arising naturally from the theoretical underpinnings.

This paper helps lay the groundwork for future work in a PAC analysis, and
establishment of generalization bounds, for learning various classes of process
models, and specifically establishing their Vapnik-Chernovenkis dimension.

Bottom-up Process Mining via Hidden Markov Models: A feasibility
Study [6] is a draft paper originally submitted as an assignment for a course
on probabilistic graphical models. It builds on the observation that regardless
of high-level formalism (imperative, declarative, other) that the formalism es-
sentially summarizes the transition system semantics underlying it, and frames
the process mining task as learning a transition system within Hidden Markov
Model, only subsequently interpreting this into a high-level model. Employ-
ing the probabilistic hidden Markov model framework solves the problem we
encountered in [10] and [12] of being unable to replay - and hence compute
evaluation metrics - for non-fitting traces, since all traces can be assigned a
probability.

This is solved by two components in the HMM model: the emission ma-
trices determining the probability of observed data given model state, and the
probabilistic transitions between model states. The former allows us to assign
a nonzero probability to seeing any event in any state, essentially capturing the
notion of “noise”. The latter allows nonzero probabilities of transitions between
states that may not be present in the deterministic model, capturing a degree
of uncertainty regarding what state the model is in, such that if one state has
an extremely low probability of emitting an observed event, we may assign a
higher likelihood to being in another state.

The main thrust behind this paper is that a notation-blind model might be
built up at the transition system level that best fits the data. Then the transition
system would be translated to an imperative, declarative or hybrid model for
interpretability. This is would be a natural extension of so called region-based
process mining algorithms that work by translating transition systems to Petri
nets [53].
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Towards Inference of Resource Dependency Grammar from Event
Streams [7] is a draft paper that represents an attempt to draw together many
of the insights gained through the course of the project to build a probabilistic,
resource/attribute-oriented, hybrid mining algorithm that bridges the formal
approach from process mining with a statistical machine learning paradigm.
The framing of the problem in terms of inducing sequential orderings on events
subject to constraints on other event attributes was originally inspired by my
work with the dataset from the Royal Infirmary of Edinburgh, in which it was
clear that events could be meaningfully viewed from many perspectives: e.g. a
patient, a surgeon, and operating room. Taking such views w.r.t. each attribute
respectively results in more or less structured orderings of events, and of course
many views overlap. The applicability of this view was bolstered by input from
domain experts during the collaboration with industry described in [8], from
which it became clear that resource dependencies is an area of strong interest,
for example to ensure safe migration of interdependent software components to
new systems.

Initially, I addressed the problem of measuring the usefulness of an ordering
on events using the entropy measures in [11], and spent quite a bit of time de-
veloping a mutual-information based approach to finding “words” in sequences,
which seemed quite convincing. I also explored the entropy of random walks
on the directly follows graphs induced by an attribute constraint as a method
for building up formulas in the attribute grammar. The idea here is essentially
akin to that used in building decision trees: if we “split” (induce an ordering)
based of this attribute, how much information do we gain?

However, fully integrating these approaches in an end-to-end model inference
process became convoluted enough that I opted for a more straightforward, clus-
tering based technique for the present paper. This was also to avoid obscuring
the presentation of the overall problem formulation, specific solutions to which
can be explored in later work. Any candidate strategy for building a grammar
and encoding the subsequent event ordering in a control-flow model is valid.

The integration with factorial hidden Markov models means that the evalu-
ation problem is solved in a natural manner based on posterior likelihoods [6],
rather than esoteric precision metrics and sequence alignment techniques [52].
We simply consider the probability of seeing the data given the model, and if
we want to turn the model into a classifier or use it for anomaly detection, we
simply set a threshold on this value. The probabilistic approach also means we
can impute missing data and provide recommendations in a natural manner.
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toring real-time properties. Acta Informatica, 55(4):309–338, Jun 2018.

[16] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[17] Andrea Burattin, Fabrizio Maggi, and Alessandro Sperduti. Conformance
checking based on multi-perspective declarative process models. Expert
Systems with Applications, 65, 03 2015.

[18] Nihan Kesim Cicekli and Ilyas Cicekli. Formalizing the specification and
execution of workflows using the event calculus. Information Sciences,
176(15):2227–2267, 2006.

[19] J Dassow, G Mavlankulov, M Othman, S Turaev, MH Selamat, and
R Stiebe. Grammars controlled by petri nets. book: Petri nets: Manu-
facturing and Computer Science, pages 337–358, 2012.

[20] Giuseppe De Giacomo, Riccardo De Masellis, and Marco Montali. Reason-
ing on ltl on finite traces: Insensitivity to infiniteness. In Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI’14,
pages 1027–1033. AAAI Press, 2014.

[21] Giuseppe De Giacomo, Fabrizio Maria Maggi, Andrea Marrella, and Se-
bastian Sardina. Computing trace alignment against declarative process
models through planning. In Twenty-Sixth International Conference on
Automated Planning and Scheduling, 2016.

[22] Giuseppe De Giacomo, Riccardo Masellis, Marco Grasso, Fabrizio Maggi,
and Marco Montali. Monitoring business metaconstraints based on ltl &
ldl for finite traces. 09 2014.

[23] Massimiliano de Leoni, Fabrizio M Maggi, and Wil MP van der Aalst. An
alignment-based framework to check the conformance of declarative process
models and to preprocess event-log data. Information Systems, 47:258–277,
2015.

30



[24] Massimiliano De Leoni, Fabrizio Maria Maggi, and Wil MP van der Aalst.
Aligning event logs and declarative process models for conformance check-
ing. In International Conference on Business Process Management, pages
82–97. Springer, 2012.

[25] Johannes De Smedt, Seppe Broucke, Jochen Weerdt, and Jan Vanthienen.
A full r/i-net construct lexicon for declare constraints, 02 2015.

[26] Johannes De Smedt, Seppe Vanden Broucke, Jochen De Weerdt, and Jan
Vanthienen. A full r/i-net construct lexicon for declare constraints. Avail-
able at SSRN 2572869, 2015.

[27] Søren Debois, Thomas Hildebrandt, and Tijs Slaats. Towards a foundation
for modular run-time adaptable process-aware information systems. Flexi-
ble Process Notations for Cross-organizational Case Management Systems,
page 217, 2015.

[28] Jie Fu and Ufuk Topcu. Computational methods for stochastic control with
metric interval temporal logic specifications. In 2015 54th IEEE Conference
on Decision and Control (CDC), pages 7440–7447. IEEE, 2015.

[29] Stijn Goedertier, David Martens, Bart Baesens, Raf Haesen, and Jan Van-
thienen. Process mining as first-order classification learning on logs with
negative events. In International Conference on Business Process Manage-
ment, pages 42–53. Springer, 2007.

[30] Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens. Ro-
bust process discovery with artificial negative events. Journal of Machine
Learning Research, 10(Jun):1305–1340, 2009.

[31] Serge Haddad, Laura Recalde, and Manuel Silva. On the computational
power of timed differentiable petri nets. In International Conference on
Formal Modeling and Analysis of Timed Systems, pages 230–244. Springer,
2006.

[32] Jane Hillston. Process algebras for quantitative analysis. In 20th Annual
IEEE Symposium on Logic in Computer Science (LICS’05), pages 239–248.
IEEE, 2005.

[33] Ullrich Hustadt, Ana Ozaki, and Clare Dixon. Theorem proving for metric
temporal logic over the naturals. In International Conference on Automated
Deduction, pages 326–343. Springer, 2017.
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Abstract. Process mining algorithms can be partitioned by the type of model that
they output: imperative miners output flow-diagrams showing all possible paths
through a process, whereas declarative miners output constraints showing the
rules governing a process. For processes with great variability, the latter approach
tends to provide better results, because using an imperative miner would lead to
so-called ”spaghetti models” which attempt to show all possible paths and are
impossible to read. However, studies have shown that one size does not fit all:
many processes contain both structured and unstructured parts and therefore do
not fit strictly in one category or the other. This has led to the recent introduction
of hybrid miners, which aim to combine flow- and constraint-based models to
provide the best possible representation of a log. In this paper we focus on a
core question underlying the development of hybrid miners: given a log, can we
determine a priori whether the log is best suited for imperative or declarative
mining? We propose using the concept of entropy, commonly used in information
theory. We consider different measures for entropy that could be applied and show
through experimentation on both synthetic and real-life logs that these entropy
measures do indeed give insights into the complexity of the log and can act as an
indicator of which mining paradigm should be used.

Keywords: Process Mining · Hybrid Models · Process Variability · Process Flexibility
· Information Theory · Entropy · Knowledge Work

1 Introduction

Two opposing lines of thought can be identified in the literature on process modelling
notations. The imperative paradigm, including notations such as Petri nets [1] and
BPMN [2] focuses on describing the flow of a process and is considered to be well-
suited to structured processes with little variation. The declarative paradigm, including
notations such as Declare [3], DCR Graphs [4], and GSM [5] focuses on describing the
rules of a process and is considered to be well-suited to unstructured processes with
? This work is supported by the Hybrid Business Process Management Technologies project

(DFF-6111-00337) funded by the Danish Council for Independent Research.
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large degrees of variation. However, recent studies [6, 7] have shown that one size does
not fit all: many processes do not fit strictly in one category or the other and instead con-
tain both structured and unstructured parts. This has led to the recent introduction of a
hybrid paradigm [6, 8], which aims to combine the strengths of these two approaches.

Following the introduction of the hybrid modelling paradigm, a number of hybrid
mining algorithms have been developed: in [9] the authors use a heuristic approach
based on the directly-follows-graph to divide activities between structured and unstruc-
tured parts of the model; in [10] the authors take a mixed approach and mine both a
declarative and imperative model which are then overlain; and in [11] the authors take
a model-based approach, where an imperative model is mined and analysed for pockets
of unstructured behaviour, and for these pockets, a declarative alternative is mined.

All these approaches avoid an important research question, first identified in [12]:
can we, based on an a priori analysis of the input log, measure if it is best suited to
imperative or declarative mining? Such a measure:

(i) Would give us greater insights into what type of miner we should use for a log;
(ii) could be combined with existing partitioning techniques [13–16] to determine for

each partition if it is more suited for imperative or declarative mining, thereby pro-
viding an efficient method to construct a hybrid model; and

(iii) could be used for the development of novel partitioning techniques that specifically
aim to separate structured and unstructured behaviour in a log.

In this paper we propose basing such a measure on the notion of entropy from
the field of information theory. Introduced by Shannon in his seminal 1948 paper [17],
entropy measures the information content of a random variable. Intuitively, we can think
of entropy as the “degree of surprise” we will experience when obtaining additional
information about a system [18].

We propose that the entropy of an event log can serve as a predictor of whether
the generating process is best modelled using declarative or imperative models. Highly
structured processes should generate more homogeneous (low entropy) traces and more
flexible processes should generate more varied (high entropy) traces. While information
theoretic tools have been previously applied to predictive modelling [19], our applica-
tion to discriminating mining techniques is novel.

To find such a measure, we first introduce a number of example logs that we use
to illustrate our ideas and concepts in Section 2. In Section 3 we introduce three en-
tropy measures on event logs: (i) trace entropy measures only the entropy on the level
of distinct traces, (ii) prefix entropy measures entropy by taking into account all unique
prefixes of the log, and (iii) block entropy measures entropy by considering all unique
sub-strings present in the log. In Section 4 we report on an implementation of these
measures and the results of applying them to both synthetic and real-life logs. We show
that block entropy is the most successful measure, but suffers from a high computa-
tional complexity which becomes apparent on large logs with long traces. In addition
it becomes clear that the current proposed measures are not yet absolute and that both
further research and a more detailed evaluation are needed to arrive at such a measure.
We discuss how we intend to do so in Section 5 and conclude in Section 6.
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Towards an Entropy-Based Analysis of Log Variability 3

2 Running Example

We will use a running example of three logs to illustrate how we can use entropy to
measure the variability of process logs. Recall the definitions of events, traces and logs.

Definition 2.1 (Events, Traces and Logs). Let Σ be an alphabet of activities. An
event e ∈ Σ is a specific occurrence of an activity. A trace σ ∈ Σ∗ = 〈e1, . . . , en〉
is a sequence of events e1, . . . , en, with each ei ∈ Σ. Finally, a log is a multiset
[σw1

1 , . . . , σwn
n ] where each σi ∈ Σ∗ and each wi ∈ N

Notice that we have defined a trace as the sequence of activities observed in a particular
process instance. A log is a multiset of such traces, representing explicitly the number
of process instances exhibiting the particular trace.

Example 2.2. As a running example, consider the three logs L1, L2, and L3 in Figure 1.
L1 is a very structured log, for which we can easily find a compact imperative model,
for example the Petri net shown in Figure 2. L2 is the same log, except some traces are
now more frequent than others. The last log L3 is a much less structured, which is more
complex to describe with an imperative model, e.g. the Petri net in Figure 3.

This log can be be more effectively explained by a declarative model, as shown in
Figure 4. The declarative model uses the Declare notation [3] and shows that: (i) a and b
can not occur in the same trace, (ii) after an a we always eventually see an h, (iii) we
must have seen at least one a before we can see a c, (iv) we must have seen at least
one d before we can see a c, (v) we must have seen at least one d before we can see
an e, (vi) after an e we always eventually see an f , (vii) we must have seen at least one
f before we can see a g, (viii) after an f we will immediately see a g. One should note
that in addition to giving a more straightforward view of the process, this model is also
much more precise than the Petri net in Figure 3 (i.e. it allows less behaviour for which
there is no evidence in the log).

L1

〈a, b, c, d, f, g, h〉5
〈a, b, c, e, f, g, h〉5
〈a, b, c, d, f, g〉5
〈a, b, c, e, f, g〉5
〈a, b, b, c, d, f, g, h〉5
〈a, b, b, c, e, f, g, h〉5
〈a, b, b, c, d, f, g〉5
〈a, b, b, c, e, f, g〉5

L2

〈a, b, c, d, f, g, h〉15
〈a, b, c, e, f, g, h〉8
〈a, b, c, d, f, g〉5
〈a, b, c, e, f, g〉2
〈a, b, b, c, d, f, g, h〉3
〈a, b, b, c, e, f, g, h〉4
〈a, b, b, c, d, f, g〉1
〈a, b, b, c, e, f, g〉2

L3

〈h, a, h, d, c〉5
〈a, d, a, c, a, c, e, h, h, f, g〉5
〈d, e, h, f, g, e, f, g〉5
〈h, b, b, h, h〉5
〈b, h, d, b, e, h, e, d, f, g〉5
〈a, d, a, d, h〉5
〈b, f, g, d〉5
〈f, g, h, f, g, h, h, h〉5

Fig. 1. Example logs. L1, L2 are structured logs, differing only in number of occurrences of
complete traces. L3 is an unstructured log.

37



4 Authors Suppressed Due to Excessive Length

Fig. 2. Petri net for log L1

Fig. 3. Petri net for log L3

Fig. 4. Declare model for log L3
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Towards an Entropy-Based Analysis of Log Variability 5

3 Log Entropy

Entropy is a measure of the information required to represent an outcome of a stochas-
tic variable, intuitively indicating the “degree of surprise” upon learning a particular
outcome [18]. For this paper we focus on Shannon entropy [17], which forms the foun-
dation of the field of information theory.

Given a discrete random variable, X , taking on m possible values with associated
probabilities p1, p2, . . . , pm, (Shannon) entropy, denoted H , is given by the expected
value of the information content of X:

H = −
m∑

i=1

pi logb pi (1)

Here b corresponds to the choice of coding scheme (i.e. for binary b = 2 and for decimal
b = 10). We shall use the binary logarithm in the sequel.

Shannon justified this choice of measure with the fact that it is (1) continuous
w.r.t. pi (2) monotonically increasing w.r.t. n under uniform distributions and (3) ad-
ditive under decomposition of choices, i.e., H(p1, p2, p3) = H(p1, (p2 + p3)) + (p2 +
p3)H(p2, p3).

The key question in using entropy as a measure of log complexity is what would be
the random variable implicit in a given log?

3.1 Trace Entropy

One very simple answer to this question is to take the underlying random variable as
ranging over exactly the traces observed in the log, with probabilities exactly the fre-
quencies observed in the log. This idea gives rise to the notion trace entropy.

Definition 3.1 (Trace entropy). Let L = [σw1
1 , . . . , σwn

n ] be a log. The trace entropy
t(L) of L is the entropy of the random variable that takes the value σi with the following
probability.

pi =
wi∑m
i=1 wi

(2)

Example 3.2. Even though the traces of L1 and L3 internally have radically different
structure, they have the same number of occurrences of distinct traces, and so the same
trace entropy:

t(L1) = t(L3) = −8×
5

40
log2

5

40
= 3 (3)

Computing the trace entropy of L2, we find

t(L2) = −
(
15

40
log2

15

40
+ . . .+

2

40
log2

2

40

)
= 2.55 (4)

This example demonstrates that trace-entropy is likely not a good measure for de-
termining if a model should be modelled imperatively or declaratively: L1 and L2 in-
tuitively should mine to the same model, but have distinct trace-entropy. On the other
hand, L3 has much more variable behaviour than L1, yet has the same trace entropy.
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In general, if we are only interested in mining models with perfect fitness [20], then
logs that differ only in the number of particular trace occurrences should not mine to
different models. We are interested in the number of choices available at a particular
point in a given trace, not the number of times a particular choice was made across all
traces. We formalise this observation, using that in this simplistic setting, a “model” is
really just a predicate on traces: a language.

Definition 3.3 (Language equivalence). Define logs L,L′ to be language equivalent
iff they are identical as sets, that is, for each σw ∈ L, there exists σw

′ ∈ L′ for some
w′, and vice versa.

Lemma 3.4. Let P be a predicate on traces; lift it to logs pointwise, ignoring multi-
plicity. Then if logs L,L′ are language equivalent, we have P (L) iff P (L′).

Proof. Consider language equivalent logsL = [σw1
1 , . . . , σwn

n ] andL′ = [σ
w′

1
1 , . . . , σ

w′
n

n ].
By definition P (L) iff ∀i.P (σi) iff P (L′).

That is, taking the simultaneously abstract and simplistic view that mining a log L
is tantamount to coming up with a predicate P such that P (L), the above Lemma says
that a mined model can never be used to distinguish language equivalent logs. Because
the output model cannot tell the difference between language equivalent logs, it would
be unfortunate for our entropy measure to do so.

Definition 3.5. An entropy measure is a function from logs to the reals. An entropy
measure e respects language equivalence iff for any two language equivalent logs L,L′,
we have e(L) = e(L′).

Trace entropy is unhelpful, then, because it does not respect language equivalence.

Example 3.6. The logs L1, L2 of Example 3.2 are language equivalent. However, they
have different trace entropy measures. It follows that trace entropy does not respect
language equivalence.

There is on an intuitive level also a second reason that trace entropy is unhelpful: it
does not consider the behaviour exhibited within the traces. We saw this in Example 3.2,
where t(L1) = t(L3); that is, trace entropy cannot distinguish internal structure of
traces. To consider the full behaviour of a log, we need to determine the entropy on the
level of individual events.

3.2 Prefix Entropy

We must find a suitable notion of random variable that “generates” the traces we observe
in the log, while at the same time characterises the internal structure of the individual
traces.

Recall that a trace is the execution of a single process instance, taking the form of a
sequence of events, or activity executions. At each point in a process execution, we will
have a prefix of a completed trace. The distribution of these prefixes reflect the structure
of the process.
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Towards an Entropy-Based Analysis of Log Variability 7

Notation. We write 〈e1, . . . , en〉 for a finite string. If s, s′ are finite strings, we write
s v s′ to indicate that s is a prefix of s′.

Definition 3.7 (Prefix entropy). Let L be a log. The prefix entropy of L, written ε(L)
is defined as the entropy of the random variable which ranges over all prefixes of traces
in L, and for each prefix 〈e1, . . . , ek〉 v σ of a trace σ observed in a log L assigns as
its probability the frequency of that prefix among all occurrences of prefixes in L.

Example 3.8. In the log L2, the prefix 〈a, b, c, d〉 occurs in 20 traces; the log contains a
total of 15×7+8×7+ . . .+2×7 = 280 prefix occurrences, for a probability of 1/14.

However, this notion of prefix entropy does not respect language equivalence, since
logs differing only in the number of occurrences of a particular trace also differ in the
set of occurrences of prefixes. Intuitively, we are interested in prefixes only as a measure
of how much internal structure a log has, not how often various bits of that structure
occurs. Hence, we disregard multiplicities of traces, in effect flattening the log.

Definition 3.9. Let f be the function on logs which given a log L produces the corre-
sponding set, i.e.,

f([σw1
1 , . . . , σwn

n ]) = [σ1
1 , . . . , σ

1
n] = {σ1, . . . , σn} (5)

The flattened prefix entropy of L is ε ◦ f(L), that is the prefix entropy applied to the
flattened log.

Example 3.10. In the log f(L2), the prefix 〈a, b, c, d〉 occurs just twice, among a total
of only 56 prefix occurrences, for a probability of 1/26.

We conjecture that transitioning from a log L to a flattened log f(L) does not ma-
terially affect prefix entropy; we leave an investigation of exactly which properties are
and are not preserved as future work.

Proposition 3.11. The flattened prefix entropy ε ◦ f respects language equivalence.

Proof. Immediate by definition of ε.

Example 3.12. Computing the flattened event entropy of the example logs of Exam-
ple 3.2, we find:

ε ◦ f(L1) = 4.09 = ε ◦ f(L2)

ε ◦ f(L3) = 5.63

While the notion of flattened event entropy seems promising, there is one caveat.
Because it is based on prefixes, it fails to appreciate common structure appearing dis-
tinct prefixes.

Example 3.13. Consider the log L4 in Figure 5. This log is highly structured: it always
contains exactly 4 activities; the first is a choice between {a, b, c, d, e}, the second an
x, the third and fourth either x, y or y, x. See Figure 6 for a Petri net admitting this
behaviour. However, this log has a trace entropy of t(L4) = 4.82, higher than the
apparently less structured logs L1 and L2.
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〈a, x, y, z〉5
〈a, x, z, y〉5
〈b, x, y, z〉5
〈b, x, z, y〉5
〈c, x, y, z〉5
〈c, x, z, y〉5
〈d, x, y, z〉5
〈d, x, z, y〉5
〈e, x, y, z〉5
〈e, x, z, y〉5

Fig. 5. Log L4 (highly structured).

Fig. 6. Petri net for log L4

3.3 Block Entropy

To address the weaknesses of prefix entropy, we apply ideas from natural language
processing [21], where entropy is studied in terms of n-length substrings known as
“n-grams”.

We consider an individual trace a “word”, in which case our log is a multiset of such
words, and look at the observed frequencies of arbitrary substrings within the entire
log. That is, rather than looking at the frequencies of prefixes, we look at frequencies of
substrings.

We shall see that while computationally more expensive, this idea alleviates the
problems of prefix entropy and that observed structure is weighted equally, regardless
of where it occurs in the log.

Definition 3.14 (k-block entropy). Let L be a log. The k-block entropy of L, written
bk(L) is defined as the entropy of the random variable which ranges over all k-length
substrings of traces ofL, assigning to each such substring s as probability the frequency
of the number of occurrences of that substring among all occurrences of k-length sub-
strings.
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Example 3.15. In the log L4 in Figure 5, the 2-block 〈x, y〉 occurs 5 times; the log
contains a total of 10× 3 = 30 occurrences of 2-blocks, for a probability of 1/6.

Following [21], we compute the k-block entropy bk(−) directly:

Lemma 3.16. Let L be a log. The k-block entropy of L is given by

bk(L) = −
∑

〈s1,...,sk〉∈Σ?

p(〈s1, . . . , sk〉) log p(〈s1, . . . , sk〉) (6)

Often in the literature on estimating the entropy of natural languages, text corpora
are used in which all punctuation has been removed, meaning that sentences are ignored
and blocks can cover the end of one sentence and beginning of another. For event logs
we want to avoid finding spurious correlations among events at the end of one trace
and beginning of another trace, so in our approach we keep a clear separation between
traces.

We now define block entropy for all substrings up to the length of the longest trace.
That is, instead of restricting the measure to blocks of length k, we include all blocks,
from length 1 up to the length of the longest trace, in one entropy measure.

Definition 3.17 (All-block entropy). Let L be a log. The all-block entropy of L, writ-
ten b(L), is the entropy of the random variable which ranges over all substrings of
traces of L, assigning to each such substring s as probability the ratio of occurrences
of that substring over all occurrences of substrings.

Example 3.18. In the log L3 in Figure 1, the substring (2-block) 〈a, d〉 occurs 3 times,
once in the second entry, twice in the sixth. The log contains a total of 248 occurrences
of substrings: Σ5

1k = 15 in the first trace, Σ11
1 k = 66 in the second, and so on. Alto-

gether, the probability of 〈a, d〉 is 3/248.

As for the prefix entropy, the all-block entropy does not respect language equiva-
lence, but its flattening does.

Proposition 3.19. The flattened all-block entropy b ◦ f respects language equivalence.

Example 3.20. We give the flattened all-block entropy for the examples L1 through L4.

L1 L2 L3 L4

b ◦ f(−) 5.75 5.75 7.04 4.75

Notice how L3 is still the highest-entropy log, but now L4 is properly recognised as
containing information than does L1 and L2.

We conclude this section by noting that while the all-block entropy looks promising,
it may be computationally infeasible to apply to large logs. Naively computing the all-
block entropy of a log requires, in the worst case, tabulating the frequencies of all
substrings seen in that log, an operation that takes polynomial space.

Assume a log has n traces, all of length k. A string of length k contains exactly
k − (i − 1) substrings of length i: one starting at each index except for the last i − 1
indices, where there is no longer room for a substring of length i.

43



10 Authors Suppressed Due to Excessive Length

Thus, by summing over all traces and all substring lengths, we can establish an
upper bound on the size of the frequency tables for the substrings of a log:

n×
k−1∑

i=0

k − i = O(n× k2) (7)

So in a concrete case where a log has 20.000 traces of length 100; we would in the worst
case need a table of 2×1010 substrings. In the next section, we shall in one instance see
our naive prototype implementation run out of memory on a somewhat smaller dataset.

4 Implementation and Early Experiments

To test the various measures we implemented a rudimentary ProM [22] plugin with
support for computing the trace, prefix and block entropy of a given log. To get an in-
dication of the utility of the entropy measures we applied them to the examples L1, L2,
L3, and L4 of the preceding sections, as well as to a selection of real-life logs. In par-
ticular we used the BPI Challenge 20123, BPI Challenge 2013 (incidents)4, hospital5,
sepsis cases6, and road traffic fines7 logs.

There is not yet a clear agreement in the literature on which of these logs should be
mined imperatively, and which should be mined declaratively. However, it can be ob-
served that the BPI Challenge 2012 log is commonly used as a base-case for declarative
mining algorithms and that both the sepsis cases and hospital log result from highly flex-
ible and knowledge-intensive processes within a Dutch hospital. A recent investigation
involving the BPI Challenge 2013 (incidents) log seemed to indicate that an imperative
approach may be the most successful, but no concrete conclusions were drawn [11].

We ran two sets of experiments: one to contrast the notions of trace, prefix and all-
block entropy; and one to investigate more thoroughly the notion of k-block entropy.

4.1 Comparative Measurements

We report measurements of trace, prefix and all-block entropy of the above-mentioned
logs in Table 1. The results are promising for the real-life logs we experimented on.
In particular, we see that the BPI Challenge 2012 and sepsis cases logs score highly in
terms of all-block entropy, whereas the BPI Challenge 2013 log scores somewhat lower,

3 https://data.4tu.nl/repository/uuid:3926db30-f712-4394-aebc-
75976070e91f

4 https://data.4tu.nl/repository/uuid:a7ce5c55-03a7-4583-b855-
98b86e1a2b07

5 https://data.4tu.nl/repository/uuid:d9769f3d-0ab0-4fb8-803b-
0d1120ffcf54

6 https://data.4tu.nl/repository/uuid:915d2bfb-7e84-49ad-a286-
dc35f063a460

7 https://data.4tu.nl/repository/uuid:270fd440-1057-4fb9-89a9-
b699b47990f5
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Log
Event Unique Shortest Longest Entropy
classes traces trace trace Trace Prefix All-block

L1 8 8 6 8 3.00 4.09 5.75
L2 8 8 6 8 2.55 4.09 5.75
L3 8 8 4 11 3.00 5.63 7.04
L4 8 10 4 4 3.32 4.82 4.75
BPI Challenge 2012 36 4366 3 175 7.75 12.53 16.01
BPI Challenge 2013 13 1511 1 123 6.66 11.32 12.21
Sepsis Cases 16 846 3 185 9.34 10.59 14.67
Road Traffic Fines 11 231 2 20 2.48 6.50 8.73
Hospital Log 624 981 1 1814 9.63 DNF DNF

Table 1. Trace, flattened prefix and flattened all-block entropy measures for select logs.

which fits the intuition that the first two are more suited for declarative mining, whereas
the latter is more suited for imperative mining.

We were unable to compute the all-block entropy for the hospital log. This log
has traces up to length 1800, and thus requires a large amount of memory to store the
intermediary table of substring frequencies.

We conclude that (a) the flattened all-block entropy is the most promising measure
for indicating whether a log is best mined imperatively or declaratively; and (b) that a
computationally more efficient approximation to the all-block entropy is needed.

Furthermore, for using the metric to inform the choice of imperative or declarative
miner, we must determine a cut-off entropy value. But as seen in Table 1, prefix and
block entropy grow in proportion to the number of unique traces and event classes. This
reflects the second rationale for Shannon’s entropy measure, that it be monotonically
increasing. This can potentially be addressed by measuring the entropy rate, discussed
in Section 5.2.

4.2 Block Entropy Measures

To understand the flattened block entropy measure in more detail, in particular in the
hope of finding an efficient approximation of it, we analyse its constituent parts (1-
blocks, 2-blocks etc.) in our selection of logs. The results are visualised in Figure 7.

We note that when blocks become longer than the longest trace, k-block entropy
falls to zero since we are effectively counting the occurrences of impossible events and
limn→0n log(n) = 0. This contrasts with a system with one certain outcome in which
case we also have H = 0 since 1 log(1) = 0. We emphasize that this plays no role
in our all-block entropy measure since it includes only blocks up to the length of the
longest trace.

Note that the entropy of L3, a declarative process, is never less than those of the
more structured logs, L1, L2, and L4. What is otherwise apparent from this figure is that
there is no immediately obvious shortcut to the flattened all-block entropy obtainable as
any particular k-block size: no single k seems representative of the full measure. This
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lack of representation is further evident from the number of crossings in the diagram: it
would appear that from no single k onwards does the entropy of individual logs maintain
their relative positioning. E.g., at k = 10, the BPI 2013 log measures more complex
than 2012; however, they meet and switch places at k = 18.

Fig. 7. k-block entropy of flattened logs using different block lengths.

5 Discussion and Future Work

Our experiments show that entropy is a promising indicator of log complexity. However,
several questions are left open:

(i) How can we perform a more thorough evaluation of the suitability of our entropy
measures?

(ii) Next to flattening the log, should we perform any additional normalisations to arrive
at a fair measure of entropy?

(iii) Can we find entropy measures with a reasonable computational complexity so that
we can deal with large logs?

(iv) How can we incorporate our approach with clustering techniques? (Both in an effort
to find more efficient entropy estimations and use entropy measures to find suitable
clusters for hybrid mining.)

In this section we shortly discuss these open challenges and provide possible av-
enues of future research to alleviate them.

5.1 More Thorough Experiments

In the previous section we reflected on the types of models we expected to be most
suitable for the real-life logs that we experimented on. These were primarily educated
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Towards an Entropy-Based Analysis of Log Variability 13

guesses and to do a more thorough evaluation we should perform an analysis of these
logs to determine whether they are more suited for imperative or declarative mining.

One way to approach this could be to mine each log with imperative and declara-
tive miners and compare the resulting models according to their precision and simplic-
ity [20]. In addition it would be useful to experiment on a larger set of logs, including
both a more comprehensive set of synthetic logs and additional real-life logs.

5.2 Additional Normalisation

Our experiments show that larger logs and more event classes result in a higher entropy
measure. It is questionable however whether a larger log by definition always is better
suited to declarative modelling, and a measure should not simply proxy for other log
attributes. One approach to normalising the entropy measure of different sequences is
to use the entropy rate, the change in entropy between a block of length k and k − 1
with increasing k. That is,

h = lim
k→∞

Hk −Hk−1 (8)

Computing this directly, however, requires extremely long sequences, as it breaks
down when dk ≈ K, where d is the size of the alphabet(events), k is the block length
andK the length of the sequence [23]. Fortunately, estimators of h exist, some of which
are discussed in 5.3 and 5.4.

Possible additional normalisations could be based on the number of unique activities
in a log, the number of traces, the average length of traces, or the number of events.

5.3 Complexity of Entropy Measures

In certain cases, such as the hospital log, our proposed measure of flattened block en-
tropy is computationally infeasible, at least for our naive implementation. Fortunately,
the problem of efficient entropy estimation is well-studied, most notably in physics and
natural language processing.

One very efficient approach is based on building prefix trees of non-overlapping
blocks. One example of this is the Ziv-Lempel algorithm, which sequentially parses
sequences into unique phrases, composed of their previously seen prefix plus a new
symbol. In this way a tree structure is built with each phrase defined by a tuple repre-
senting a pointer to its prefix and the new symbol. Borrowing an example from [24],
the string ABBABBABBBAABABAA would be parsed as:

A B BA BB AB BBA ABA BAA
(0,A) (0,B) (2,A) (2,B) (1,B) (4,A) (5,A) (3,A)

With the integers referring to the dictionary reference of earlier encountered prefixes
(0 for root prefixes). It can be shown that the compression ratio of the Ziv-Lempel
coding scheme converges to the entropy rate, h, of sequences generated by an ergodic
process [24].
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In [23], the authors found that on very short sequences, block entropy tended to
lead to overestimates on low entropy sequences, while they outperformed Ziv-Lempel
on high entropy sequences and suggest a two step process which uses a preliminary
quick estimate of entropy to inform the choice of proper estimator.

5.4 Clustering of Logs

In determining whether the declarative or imperative modelling paradigm is most ap-
propriate for a given event log, we may want to look more specifically at the similarity
between traces rather than within traces. In other words, an event log consisting of
nearly identical, but complex, traces may nonetheless be best modelled using an imper-
ative approach, while a log of simple, but highly varied traces, may be best described by
a declarative model. By clustering traces according to some distance metric, we can get
an idea of the diversity of an event log by using the distribution of traces across clusters
as the probability distribution for calculating Shannon entropy.

Typically, clustering is performed using Euclidean distance metrics, meaning that
data must be represented as a d-dimensional vector. Even techniques such as expec-
tation maximisation clustering, that do not rely directly on computing Euclidean dis-
tances, do assume that the data is independent and identically distributed. That is, that
observed variables are not directly dependent on each other, so p(a, b|c) = p(a|c)p(b|c).
This is an issue for sequential data, a well-known problem in natural language process-
ing, where the “bag-of-words” approach nonetheless leads to impressive results, for
example in topic modelling and sentiment analysis [25]. In this approach, word order
is simply ignored and documents are represented as multisets (a.k.a. bags) of words,
which can then be represented as vectors, with word counts comprising the vector ele-
ments.

Similar approaches have been used for trace clustering, by representing traces as
vectors of event occurrence counts, ignoring event ordering [14, 26]. For our purposes,
this approach is not adequate: For event logs, event ordering cannot be ignored. The
reason for this can clearly be seen from the interpretation of entropy as the amount of
information gained upon learning the next symbol in a sequence given the preceding
sequence. For example, in English the letter q is always followed by u, and so p(u|q) =
1 and therefore h = Hn −Hn−1 = −p(q, u) log(u|q) = 0.

To avoid the loss of ordering information which results from collapsing traces to
vectors of event counts, we would need to find ways of estimating entropy which allow
us to use non-Euclidean distance metrics, for example string edit distances [16, 27, 28].
This allows us to distinguish between traces consisting of the same (or similar) events,
but in different orderings.

Another issue with techniques like k-means clustering, is that it is often not clear
how to choose the optimal number of clusters, k. Previous research in trace clustering
has dealt with this in part by using agglomerative hierarchical clustering techniques,
which allow one to ”zoom in” and ”zoom out” on a hierarchy of clusters to find the
optimal partitioning [29].

Correlation clustering is a method for grouping a set of objects into optimal clusters
without specifying the number of clusters [30,31]. Just as important, correlation cluster-
ing is a graph-based approach, meaning that data is defined solely by edge weights be-
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tween nodes, where edge weight can represent the degree of similarity between nodes.
For our current purposes, nodes would represent individual traces and edges the dis-
tance measure between them, for example string edit distance.

Another clustering-based estimator that looks promising is Kozachenko and Leo-
nenko’s nearest neighbour entropy estimator [32], which requires as input only distance
measures and some choice of d, the number of dimensions on which the distance metric
is defined. This allows us to bypass the actual clustering process, but while it doesn’t re-
quire the collapsing of traces into vector representations, it does require that we choose
a value for d. Using string edit distance, for example, it is not immediately clear what
this value should be.

5.5 Noise

Noise is a source of variability, and noisy logs will tend to have a large degree of en-
tropy. The primary challenge is to distinguish between unintentional variability (noise)
and intentional variability.

One approach could be to first filter the log for noise using existing techniques,
and then measure its entropy afterwards, accepting the risk of accidentally removing
interesting behaviour from the log. Alternatively one could assume that the log contains
no noise, measure its entropy, mine the log imperatively, declaratively, or hybridly based
on the measure, and then analyse the resulting model for unintended flexibility.

6 Conclusion

In this paper we reported on an initial investigation of how entropy can be used as a mea-
sure for the complexity of a process log and thereby be used as a basis for determining
if a log should be mined and modelled imperatively or declaratively. We investigated
three possible entropy measures, each building on the insights gained from the former.
We arrived at the notion of block-entropy for process logs and showed through experi-
ments on synthetic and real-life logs that this measure best matches our expectations of
log complexity and accordingly which paradigm should be used for mining it. Finally,
we proposed 4 distinct paths along which the current work can be extended and we
intend to follow-up on these suggestions in future work.
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Abstract
Process mining algorithms fall in two classes: imperative miners output flow diagrams, showing all possible paths, whereas
declarative miners output constraints, showing the rules governing a process. But given a log, how do we know which of the
two to apply? Assuming that logs exhibiting a large degree of variability aremore suited for declarativeminers, we can attempt
to answer this question by defining a suitable measure of the variability of the log. This paper reports on an exploratory study
into the use of entropymeasures asmetrics of variability.We survey notions of entropy used, e.g. in physics; we propose variant
notions likely more suitable for the field of process mining; we provide an implementation of every entropy notion discussed;
and we report entropy measures for a collection of both synthetic and real-life logs. Finally, based on anecdotal indications
of which logs are better suited for declarative/imperative mining, we identify the most promising measures for future studies.
For estimating overall entropy, global block and k-nearest neighbour estimators of entropy appear most promising and excel
at identifying noise in logs. For estimating entropy rate we identify Lempel–Ziv and certain variants of k-block estimators
performing well, and note that the former is more stable, but sensitive to noise, while the latter is less stable, being sensitive
to cut-off constraints determining block size.

Keywords Process mining · Hybrid models · Process variability · Process flexibility · Information theory · Entropy ·
Knowledge work
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1 Introduction

Two opposing lines of thought can be identified in the
literature on process modelling notations. The imperative
paradigm, including notations such as Petri nets [2] and
BPMN [3], focuses on describing the flow of a process and is
considered to be well suited to structured processes with lit-
tle variation. The declarative paradigm, including notations
such as Declare [4], DCR Graphs [5], and GSM [6], focuses
on describing the rules of a process and is considered to be
well suited to unstructured processes with large degrees of
variation.

For processes with great variability, declarativeminers are
often at an advantage: the many possible paths through such
a process may be succinctly represented by a small number
of constraints, whereas an imperative miner must produce an
impossible to read “spaghetti model” explicitly showing all
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these many paths. Conversely, for processes with great reg-
ularity, imperative miners are often at an advantage: a small
number of explicit paths describes the process concisely,
whereas a large and obtuse set of declarative constraints is
necessary to capture that exact set of paths.

In this paper, we are motivated by the following question,
first identified in [7]: Can we, based on an a priori analy-
sis of the input log, determine whether it is better suited to
imperative or declarative mining?

Such a measure is potentially important for hybrid mining
[8,9], i.e. process mining where the output model is a combi-
nation of declarative and imperative models [10–12]. Here,
our proposed measure could be combined with the existing
partitioning techniques [13–16] to determine for each parti-
tion if it is more suited for imperative or declarative mining.
Moreover, it is potentially useful for the development of novel
partitioning techniques that specifically aim to separate struc-
tured and unstructured behaviours in a log.

Wepropose basing such ameasure on the notion of entropy
from the field of information theory. Introduced by Claude
Shannon in his seminal 1948 paper [17], entropy measures
the information content of a random variable. Intuitively, we
can think of entropy as the “degree of surprise” we will expe-
rience when obtaining additional information about the state
of a system [18].

We propose that the entropy of an event log can serve as
a predictor of whether the generating process is structured
or unstructured and accordingly, whether it is best modelled
using declarative or imperative models. Highly structured
processes should generate low-entropy logs, whereas more
flexible processes should generate high-entropy logs. While
information theoretical tools have been previously applied to
predictive modelling [19], our application to discriminating
mining techniques is novel.

The key contribution of the present paper is to study
exactly how to measure the entropy of a given log. We study
various potentialmeasures based onboth entropy and entropy
rate, ranging from the near-trivial (trace), over language-
inspired ones (prefix, k-block, global block), tomethods from
the study of dynamic systems and molecular structural anal-
ysis (nearest neighbour, Lempel–Ziv, block-based entropy
rate).We followour theoretical studywith an empirical study,
taking the various measures on both synthetic and real-life
logs.

In the absence of an existing classification of available
real-life logs into those suitable for declarative, respectively
imperative, mining, we are unfortunately unable to objec-
tively determine whether our entropy measures correctly
distinguish declarative and imperative logs. However, we can
approximate such a classification from the known properties
of synthetic logs on the one hand and the common commu-
nity understanding of select real-life logs on the other, and

as such, qualitatively identify the most promising measures
for further study.

Altogether, the present paper contributes (1) a survey of
several entropy measures; (2) an implementation of these
measures; (3) an experimental evaluation on both synthetic
and real-life logs; and (4) based on this evaluation, a selection
of promising measures, with a discussion of their strengths
and shortcomings.
OverviewWefirst recall basic terminology and introduce four
running example logs in Sect. 2. We recall Shannon entropy
and studyways to apply it in Sect. 3. In particular, we propose
naive measures (trace and prefix entropy) and measures from
the literature (block entropy and edit distance measures). We
proceed to consider entropy ratemeasures inSect. 4, studying
both block-based estimators and Lempel–Ziv estimators. We
report on implementation and experimental results in Sect. 5
and discuss extensively in Sect. 6. Finally, in Sect. 7, we
conclude.

2 Process Logs

We recall the standard definitions of events, traces and pro-
cess logs [20]: an event is an occurrence of an activity in a
particular process instance, a trace is a sequence of events of
the same such instance, and a log is a multiset of such traces.

Definition 1 (Events, Traces and Logs) Let� be an alphabet
of activities, s ∈ �.

A trace σ = 〈e1, . . . , en〉 is a finite, non-empty sequence
of activities, i.e. a mapping σ : {1, . . . , n} �→ �. An event,
denoted ei , is a specific occurrence of an activity in a trace,
i.e. ei = σ(i).

We write σ ′ � σ to indicate that σ ′ is a prefix of σ .
Finally, a log is a multiset [σw1

1 , . . . , σ
wn
n ] with wi ∈ N

denoting the multiplicity of trace σi .

In the sequel, we will refer extensively to the following
running example.

Example 1 In Fig. 1 we present the following three logs:

– L1 is a very structured log, for which we can easily find
a compact imperative model: for example the Petri net
shown in Fig. 2.

– L2 is the same log as L1, except some traces are now
more frequent than others.

– L3 is a much less structured log, with many variations in
the ways activities can be ordered.

Figure 3 shows a mined Petri net for the log L3, whereas
Fig. 4 shows a Declare [4] model. The constraints of the
Declare model mean that:
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Entropy as a Measure of Log Variability 131

Fig. 1 Example logs. L1 and L2
are structured logs, differing
only in number of occurrences
of complete traces. L3 is an
unstructured log

L1

〈a, b, c, d, f, g, h〉5
〈a, b, c, e, f, g, h〉5
〈a, b, c, d, f, g〉5
〈a, b, c, e, f, g〉5
〈a, b, b, c, d, f, g, h〉5
〈a, b, b, c, e, f, g, h〉5
〈a, b, b, c, d, f, g〉5
〈a, b, b, c, e, f, g〉5

L2

〈a, b, c, d, f, g, h〉15
〈a, b, c, e, f, g, h〉8
〈a, b, c, d, f, g〉5
〈a, b, c, e, f, g〉2
〈a, b, b, c, d, f, g, h〉3
〈a, b, b, c, e, f, g, h〉4
〈a, b, b, c, d, f, g〉1
〈a, b, b, c, e, f, g〉2

L3

〈h, a, h, d, c〉5
〈a, d, a, c, a, c, e, h, h, f, g〉5
〈d, e, h, f, g, e, f, g〉5
〈h, b, b, h, h〉5
〈b, h, d, b, e, h, e, d, f, g〉5
〈a, d, a, d, h〉5
〈b, f, g, d〉5
〈f, g, h, f, g, h, h, h〉5

Fig. 2 Petri net for log L1

Fig. 3 Petri net for log L3

1. a and b cannot occur in the same trace,
2. after an a we always eventually see an h,
3. we must have seen at least one a before we can see a c,
4. we must have seen at least one d before we can see a c,
5. we must have seen at least one d before we can see an e,
6. after an e we always eventually see an f ,
7. we must have seen at least one f before we can see a g,
8. after an f we will immediately see a g.

Having a closer look at the Petri netwill show that theDeclare
model gives a much more precise representation, meaning
that it allows less behaviour for which there is no evidence in
the log. In particular, in the Petri net the activity d can occur
at any point in the process; the precedence relations to c and
e are lost. Similarly, the lower branch of the Petri net allows
almost any interleaving of activities, with the exception that
g should always be preceded by f , and c should always be
preceded by a or h. While there exists no conclusive research
on measures of relative understandability of these different
notations, and this remains a hot topic of debate, it is worth
noting that the Petri net employs a significantly larger number
of graphical elements than the Declare model.

We will need to disregard the multiplicities of traces, in
effect flattening the log. This is a common operation in the
literature, see, for example, [21].

Fig. 4 Declare model for log L3

Definition 2 Let flatten be the function on logs which given
a log L produces the corresponding set, i.e.

flatten([σw1
1 , . . . , σwn

n ]) = [σ 1
1 , . . . , σ 1

n ] = {σ1, . . . , σn}

Example 2 The logs L1 and L2 differ only in nonzero multi-
plicities of traces, so flatten(L1) = flatten(L2).

Flattening logs is particularly useful when one is inter-
ested in finding deterministic models that approximate as
accurately as possible the language exhibited by a log. Most
state-of-the-art process mining algorithms generate models
in deterministic notations (e.g. Declare, Petri nets or BPMN).
If the intention is for the model to support all possible
behaviour, and not just the most common behaviour, then
it makes sense to treat each variation as equal when mea-
suring entropy. In this way we avoid treating logs differently
based solely on the statistical distribution of the traces (which
will not be represented in the mined models), instead of the
inherent entropy of the language that the models should rep-
resent.

3 Entropy and Process Logs

Entropy is a measure of the information required, e.g. the
average number of bits, to represent an outcome of a stochas-
tic variable, intuitively indicating the “degree of surprise”
upon learning a particular outcome [18]. In this paper we
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focus on Shannon’s formulation of entropy [17], fundamen-
tal to the field of information theory.

Definition 3 (Shannon entropy) Given a discrete random
variable, X , taking on n possible valueswith associated prob-
abilities p1, p2, . . . , pn , (Shannon) entropy, denoted as H ,
is given by the expected value of the information content of
X :

H = H(X) = −
n∑

i=1

pi logb pi (3.1)

The base of the logarithm corresponds to the choice of coding
scheme (i.e. for binary b = 2 and for decimal b = 10). We
shall use the binary logarithm in the sequel.

Shannon justified this choice of measure with the fact that
it is (1) continuous w.r.t. pi , (2) monotonically increasing
w.r.t. n under uniform distributions and (3) additive under
decomposition of choices, i.e.

H(p1, p2, p3) = H(p1, (p2 + p3)) + (p2 + p3)H(p2, p3)

Entropy can be seen as a measure of the structure or
predictability of messages coming from some information
source. This has important implications for encoding and
compression schemes, since homogeneous (i.e. highly redun-
dant) messages can be significantly compressed by assigning
shorter codes to likely outcomes at the expense of using
longer codes for very rare outcomes. In fact, Shannon’s noise-
less coding theorem [22] proves that H is a lower bound on
the average number of measurement units (bits) needed for
lossless compression.

Estimating the entropy of sequences of symbols, includ-
ing natural languages, is an active field of research and has
implications in areas such as bioinformatics, molecular anal-
ysis and chaotic dynamical systems which can be analysed
using symbolic dynamics [23]. This problem is highly non-
trivial, especially when only smaller samples are available
and long-term correlations are present.

We are interested in applying entropy as a measure with
which to predict the suitability of a log for imperative or
declarative mining; specifically, we expect higher entropy
(less structure, less predictive, more bits required for opti-
mal coding) to indicate suitability of declarative models,
and lower entropy that of imperative models. In this setting,
noise is a source of variability, and noisy logs will tend to
have a large degree of entropy. The primary challenge is
to distinguish between unintentional variability (noise) and
intentional variability. One approach could be to first filter
the log for noise using existing techniques and then mea-
sure its entropy afterwards, accepting the risk of accidentally
removing interesting behaviour from the log. Alternatively,
one could assume that the log contains no noise, measure its

entropy, mine the log imperatively, declaratively, or hybridly
based on the measure, and then analyse the resulting model
for unintended flexibility.

In either case, we will insist that our measure of entropy
respects language equivalence.

Definition 4 An entropy measure for logs is a function from
logs to the reals. An entropy measure e respects language
equivalence iff for any two language equivalent logs L, L ′,
we have e(L) = e(L ′).

We note that any entropy measure can be forced to respect
language equivalence simply by flattening the log before
feeding it to the measure:

Lemma 1 Let e be an entropy measure. Then the function
e f (L) = e(flatten(L)) = e ◦ flatten(L) is an entropy mea-
sure that respects language equivalence.

Proof Clearly, e f is a function from logs to reals. Now sup-
pose logs L, L ′ are language equivalent. Then flatten(L) =
flatten(L ′) and it follows that e f (flatten(L)) = e f

(flatten(L ′)). 
�
The key question in using entropy as a measure of log

complexity is:What is the random variable under consider-
ation in the context of an event log?

3.1 Trace Entropy

One very simple answer to this question is to take the under-
lying random variable as ranging over entire traces, with
probabilities exactly the frequencies observed in the log. This
idea gives rise to the notion trace entropy.

Definition 5 (Trace entropy) Let L = [σw1
1 , . . . , σ

wn
n ] be a

log. The trace entropy of L , written entropytr (L), is the
entropy of the random variable that ranges over the traces in
L:

entropytr (L) = −
∑

σi∈L
pL(σi ) log pL(σi )

We distinguish, here and later, between an entropy mea-
sure defined on the “true” probability distribution p (as in
Definition 5 above) on the one hand, and an estimate p̂ of
that distribution (Definition 6 below) on the other.We restrict
ourselves to simple likelihood (frequency-based) estimators,
but more sophisticated estimators exist [23]. For example,
Bayesian estimators could incorporate prior probabilities
based on domain knowledge.

Definition 6 (Trace likelihood estimator) Let L be a log, L =
[σw1

1 , . . . , σ
wn
n ] be a log. The likelihood estimator for trace

σi , used to compute entropytr (L), is given by

p̂L(σi ) = wi∑m
i=1 wi
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Entropy as a Measure of Log Variability 133

Example 3 Even though the traces of L1 and L3 internally
have radically different structures, they have the same num-
ber of occurrences of distinct traces, and so the same trace
entropy:

entropytr (L1) = entropytr (L3) = −8 × 5
40 log2

5
40 = 3

Computing the trace entropy of L2, we find

entropytr (L2) = −
(
15
40 log2

15
40 + · · · + 2

40 log2
2
40

)
= 2.55

This example demonstrates that trace entropy is likely
not a good measure for determining if a model should be
modelled imperatively or declaratively: L1 and L2 intuitively
shouldmap to the samemodel, but have distinct trace entropy.
On the other hand, L3 hasmuchmore variable behaviour than
L1, yet has the same trace entropy.

Example 4 The logs L1, L2 ofExample 3 are language equiv-
alent. However, they have different trace entropy measures.
It follows that trace entropy does not respect language equiv-
alence.

There is on an intuitive level also a second reason that
trace entropy is unhelpful: it does not consider the behaviour
exhibited within the traces. We saw this in Example 3, where
entropytr (L1) = entropytr (L3); that is, trace entropy can-
not distinguish internal structure of traces. To consider the
full behaviour of a log, we need to determine the entropy on
the level of individual events.

3.2 Prefix Entropy

We look for a suitable notion of random variable that gener-
ates the traces we observe in the log, while at the same time
characterising the internal structure of the individual traces.

Recall that a trace is the execution of a single process
instance, taking the form of a sequence of activity execu-
tions. At each point in a process execution, we have a prefix
of a completed trace. Presumably, the distribution of these
prefixes reflects the structure of the process.

Definition 7 (Prefix entropy) Let L be a log. We write
entropypr (L) for the prefix entropy of L , defined as the
entropy of the random variable which ranges over all pre-
fixes of traces in L .

Formally, we write p(〈e1, . . . , en〉) to denote the proba-
bility that the outcome of the random variable will be the
prefix 〈e1, . . . , en〉. Following directly from Eq. (3.1), prefix
entropy is given by

entropypr (L)

= −
∑

〈e1,...,en〉���

pL(〈e1, . . . , en〉) log pL(〈e1, . . . , en〉)

For n ∈ N.
To estimate the probability distribution on prefixes, we

again use a simple likelihood estimator. That is, for each
prefix 〈e1, . . . , en〉 � σ of a trace σ observed in a log L , we
assign as its probability the frequency of that prefix among
all occurrences of prefixes in L .

Definition 8 (Prefix likelihood estimator) Let L be a log. The
likelihood estimator for prefix 〈e1, . . . , en〉, used to compute
entropypr (L), is given by

p̂L(〈e1, . . . , en〉) =

∑

〈e1,...,en〉�σ∈L
1

∑

σ∈L
|σ |

(3.2)

where the sum in the denominator gives the total number of
prefixes across the log.

Example 5 In the log L2, the prefix 〈a, b, c, d〉 occurs in 20
traces; the log contains a total of 15×7+8×7+· · ·+2×7 =
280 prefix occurrences, for a probability of 1/14.

However, this notion of prefix entropy does not respect
language equivalence: logs differing only in the number of
occurrences of a particular trace may also differ in the set of
occurrences of prefixes; we therefore define flattened prefix
entropy as the function composition of first flattening a log
and then determining its prefix entropy.

Definition 9 (Flattened prefix entropy)

entropy f pr = entropypr ◦ flatten

Example 6 In the log flatten(L2), the prefix 〈a, b, c, d〉
occurs just twice, among a total of only 56 prefix occur-
rences, for a probability of 1/26. Computing the flattened
prefix entropy of the example logs of Example 3, we find:

entropy f pr (L1) ≈ entropy f pr (L2) ≈ 4.09

entropy f pr (L3) ≈ 5.63

While the notion of flattened prefix entropy may seem
promising, there is one caveat: because it is based on pre-
fixes, it fails to account for common structure appearing after
distinct prefixes.

Example 7 Consider the log L4 in Fig. 5. This log is highly
structured: it always contains exactly 4 activities; the first is a
choice between {a, b, c, d, e}, the second an x , the third and
fourth either x, y or y, x . Figure 6 shows a Petri net admitting
exactly this behaviour. However, this log has a trace entropy
of entropy f pr (L4) = 4.82, higher than the apparently less
structured logs L1 and L2.
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134 C. O. Back et al.

Fig. 5 Log L4 (highly
structured)

L4

〈a, x, y, z〉5
〈a, x, z, y〉5
〈b, x, y, z〉5
〈b, x, z, y〉5
〈c, x, y, z〉5
〈c, x, z, y〉5
〈d, x, y, z〉5
〈d, x, z, y〉5
〈e, x, y, z〉5
〈e, x, z, y〉5

Fig. 6 Petri net for log L4

3.3 Block Entropy

To address this weakness of prefix entropy, we apply ideas
fromnatural language processing [23],where entropy is stud-
ied in terms of n-length substrings known as “n-grams”. (We
will use k instead of n.) We consider an individual trace a
“word”, in which case our log is a multiset of such words,
and look at the observed frequencies of arbitrary substrings
within the entire log. That is, rather than looking at the fre-
quencies of prefixes, we look at frequencies of substrings.We
shall see thatwhile computationallymore expensive, this idea
alleviates the problems of prefix entropy: observed structure
is weighted equally, regardless of where it occurs in a trace.

Definition 10 (k-block entropy)Let L be a log.We define the
k-block entropy of L , written entropyblk (L), as the entropy
of the random variable which ranges over all k-length strings
in �∗.

Formally, we write p(〈s1, . . . , sk〉) to denote the proba-
bility that the outcome of the random variable will be the
substring 〈s1, . . . , sk〉 (in Sect. 3.4 it will become clear why
we do not write 〈e1, . . . , ek〉).

Again, following directly from Eq. (3.1), block entropy is
given by

entropyblk (L) = −
∑

〈s1,...,sk 〉∈��

pL(〈s1, . . . , sk〉)

log pL(〈s1, . . . , sk〉)

For fixed k.
The k-block entropy measures the amount of information

contained in a block of length k. So, if some activities always

occur in the same order, little new information is added when
they are encountered in that order.

Definition 11 (k-block likelihood estimator) Let L be a log.
The likelihood estimator for blocks of length k, used to com-
pute entropyblk , is given by

p̂L(〈s1, . . . , sk〉) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if f (L, k) = 0

∑

σ∈L
ns1,...,sk

f (L, k)
otherwise

(3.3)

where

f (L, k) =
∑

σ∈L
max

(
0, |σ | − k + 1

)

where ns1,...,sk is the number of times block s1, . . . , sk
occurred in a trace, and f (L, k) gives the total number of
k-blocks across the log. The zero condition accounts for all
k-blocks longer than the longest trace.

Definition 12 (Flattened k-block entropy)

entropy f bl
k = entropyblk ◦ flatten

Example 8 In the flattened version of log L4 in Fig. 5,
flatten(L4), the 2-blocks 〈a, x〉, 〈b, x〉, 〈c, x〉, 〈d, x〉 and
〈e, x〉 all occur 2 times, while 〈x, y〉, 〈y, x〉, 〈y, z〉 and 〈z, y〉
all occur 5 times. The log contains a total of 10 × 3 = 30
occurrences of 2-blocks, giving the 2-block entropy for
flatten(L4):

entropy f bl
k (L4) = −

(
5 × 2

30 log
2
30 + 4 × 5

30 log
4
30

)
≈ 3.03

We now define block entropy for all substrings up to the
length of the longest trace. That is, instead of restricting the
measure to blocks of length k, we include all blocks, from
length 1 up to the length of the longest trace, in one entropy
measure.

Definition 13 (Global block entropy) Let L be a log. The
global block entropy of L , written entropybl(L), is the
entropy of the random variable which ranges over all strings
in �∗.

Again, following directly from Eq. (3.1), global block
entropy is given by

entropybl(L) = −
∑

〈s1,...,sk 〉∈��

pL (〈s1, . . . , sk〉) log pL (〈s1, . . . , sk〉)

For k ∈ N.
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Entropy as a Measure of Log Variability 135

Definition 14 (Global block likelihood estimator) Let L be a
log. The likelihood estimator for blocks of length k, used to
compute entropybl(L), is given by

p̂L(〈s1, . . . , sk〉) =

∑

σ∈L
ns1,...,sk

∑

σ∈L

|σ |(|σ | + 1
)

2

(3.4)

where ns1,...,sk is the number times block 〈s1, . . . , sk〉
occurred in a trace, and the sum in the denominator gives
the total number of k-blocks across the log for k ranging
from 1 to the length of the longest trace.

Example 9 A trace of length n contributes 1+2+· · ·+ (n−
1) + n = �n

1k = n(n+1)
2 distinct occurrences of substrings:

one of length n; two of length n− 1 starting at indexes 0 and
1, respectively; three of length n−2; and so forth. Summing
up the number of occurrences in each trace in the flattened
log, we thus get �5

1k = 5·6
2 = 15 in the first trace, �11

1 k =
11·12
2 = 66 in the second, and so on, for a total of 248 distinct

occurrences.
Counting the number of occurrences of the specific sub-

string (2-block) 〈a, d〉, we find that it occurs 3 times: once
in the second entry, twice in the sixth. Altogether, the prob-
ability of 〈a, d〉 is 3/248 ∼ 0.012.

As for the prefix and k-block entropy, the global block
entropy does not respect language equivalence, but its flat-
tening does.

Definition 15 The flattened global block entropy entropy f bl

is given by entropy f bl = entropybl ◦ flatten.

Example 10 We give the flattened global block entropy for
the examples L1 through L4.

L1 L2 L3 L4

entropy f bl(−) 5.75 5.75 7.04 4.75

Notice how L3 is still the highest-entropy log, but now L4 is
properly recognised as containing less information than L1

and L2.
We conclude this section by noting that while the global

block entropy looks promising, it is computationally chal-
lenging to apply to large logs. Naively computing the global
block entropy of a log requires, in the worst case, tabulating
the frequencies of all substrings seen in that log. For a log
with n traces, all of length k, the running time is bounded
by O(n × k2). This is ameliorated to some degree by using
efficient data structures such as a suffix trie for counting k-
blocks.

3.4 Stationarity and Ergodicity

In our original definition of entropybl , we made a nota-
tional distinction between the original sequences of events
(traces) 〈e1, . . . , en〉 and subsequences of activities within
those traces 〈s1, . . . , sn〉, where e denotes a specific event at
a specific position in the trace. This distinction stems from an
assumption which underlies most of the entropy estimators
we consider: that the underlying process generating traces is
stationary and ergodic.

This notion is clearly illustrated in the case of entropyblk
where, without making these assumptions, we would denote
the probability of seeing a specific sequence of activities
〈s1, . . . , sk〉 from index t to index t + k in a trace:

pL(〈et+1 = s1, . . . , et+k = sk〉)

That is, the probability that the specific event et+1 was an
instance of activity s1, and so on. In order to drop the index
t and use a “sliding window” approach, counting any occur-
rences of 〈s1, . . . , sk〉 as equivalent regardless of position, we
must assume that the position of a k-block in the trace does
not influence which k-block is observed and the dynamics of
the underlying process do not change over time, i.e. they are
stationary. Otherwise, we would have to consider an occur-
rence of the same sequence of activities in the beginning and
end of a trace as instances of two different outcomes.

More generally stated, stationarity assumes that the prob-
ability distribution underlying observed outcomes is not a
function of time. In the current context, outcomes are the
observed k-blocks, or individual events in traces for other
metrics we will introduce. This is most likely an incorrect
assumption for business processes since some events are
often associated with the beginning or end of a process, or
that some activity always occurs as, for example, the third
activity if it occurs. We nonetheless make this assumption
under the presumption that much of the structure in activ-
ity sequences will still be captured by k-blocks in a sliding
window.

Ergodicity implies that this probability distribution can
be reconstructed from the observation of a typical sequence
(trace), i.e. that the average properties of the process over time
(within a trace) is equivalent to the average properties across
space (across the traces in a log) which would seem to run
contrary to the fact that process outcomes will be determined
by the needs of a specific case (e.g. a customer or patient),
unless this variation is to be interpreted as statistical noise.
It is not clear to what degree violation of these assumptions
would actually skew the resulting entropy estimation.1 Itmay

1 SeeSect. 4 for the theoretical basis of these assumptions, and an exam-
ple in which it is impossible to define the entropy of a non-stationary
process.

123

Author's personal copy

58



136 C. O. Back et al.

be the case that the proposed estimators nonetheless give
reasonable indications of the degree of structure in event logs.

3.5 Block Entropy for Event Logs Versus Natural
Language

Beginning with Shannon’s original paper [17], research on
estimating the entropy of natural languages has demonstrated
that studies with human subjects2 consistently result in a
lower-entropy estimate than mathematical estimators, sug-
gesting that structural information and long-termcorrelations
are not fully captured [24].

NLP researchers often use text corpora modified by
removing punctuation and capitalisation, meaning that sen-
tences are ignored and a single block can span the end of
one sentence and the beginning of another. For event logs we
want to avoid spurious correlations among events at the end
of one trace and the beginning of another, so we keep traces
separate.

3.6 Nearest Neighbour Estimators

The measures discussed so far fail to capture aspects of
the structuredness of the log: prefix and block entropy will
become slightly skewed in the casewhere traces differ by just
one “missing” activity since they consider any blocks over-
lapping these activities to be unique, and trace entropy cannot
guarantee language equivalence for flattened logs since it
relies on the distribution of unique traces in the log. Using
edit distance we can obtain a measure which allows us to
compare entire traces while also capturing the internal struc-
ture of traces, being tolerant to minor differences.

The distribution of traces in the metric space defined by
the edit distance determines the entropy of the log: evenly dis-
tributed traces yield a high entropy, whereas similar traces
grouped together in a few clusters yield a low entropy. In con-
trast to the trace entropy ofDefinition 5, we canmeaningfully
apply this approach to a flattened log.

In previous applications of trace clustering in a BPM con-
text, authors used a bag-of-activities approach, redefining
traces as vectors of activity counts: each element represent-
ing the occurrences of each activity [14,25,26], and using
different vector-based distance metrics such as Minkowski
distance and Jaccard distance. Researchers in natural lan-
guage processing commonly use this approach as well
[27]. Others propose clustering traces using more structured
approaches based on outranking relations theory [28] and
distance-graph-based representation [29].

2 Participants are given prefixes of text and asked to predict the next
letter. The entropy rate (Sect. 4) is calculated from the proportion of
correct responses.

Edit-distance-based clustering was investigated in [16]
where the authors propose an algorithm for automatically
learning operation costs and use agglomerative hierarchical
clustering.

Our approach differs from previous work in two ways.
First, we use nearest neighbour distances to investigate
entropy, rather than clustering similar traces in order to mine
these clusters separately; second, the aim of our approach is
to use entropy to choose between mining paradigms: imper-
ative versus declarative.

3.6.1 Edit Distance Between Traces

Levenshtein edit distance is the most well-known string edit
distance metric and is defined by the number of insertions,
deletions and substitutions required to convert one string
into another. Levenshtein distance levx,y(|x |, |y|) between
strings x and y, with non-negative operation costs, fulfils the
axioms of a metric:

non-negativity] levx,y(|x |, |y|) ≥ 0
identity of indiscernibles a string can be transformed
into itself with 0 operations. levx,y(|x |, |y|) = 0 �⇒
x = y
symmetry the same number of operations is required to
convert string x to y as to convert y to x . levx,y(|x |, |y|) =
levy,x (|y|, |x |) :
triangle inequality levx,z(|x |, |z|) ≤ levx,y(|x |, |y|) +
levy,z(|y|, |z|)

Edit distance allows us to define a metric space on our log
in which the internal structure of the trace, i.e. the ordering
of events, is captured. We normalise edit distance by the
greatest possible distance between the traces to reflect that a
distance of one operation on two very long strings should be
considered less significant than on very short strings.

Definition 16 (Normalised Levenshtein distance) Let σ and
ς be traces from the sameevent log. TheLevenshtein distance
between these two prefixes is given by

levσ,ς (i, j)

=
{
max(i, j) if min(i, j) = 0

f (σ, ς) otherwise

where

f (σ, ς) =

⎧
⎪⎨

⎪⎩

min levσ,ς (i − 1, j) + 1

levσ,ς (i, j − 1) + 1

levσ,ς (i − 1, j − 1) + 1σi �=ς j

where 1σi �=ς j is the indicator function and returns 0 when
σ(i) = ς( j) and 1 otherwise. That is, in the “otherwise”
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clause, three types of edits are allowed: insertion, deletion
and substitution, which in this case have the same cost, 1.
The normalised Levenshtein distance is given by

levN (σ, ς) = levσ,ς (|σ |, |ς |)
max(|σ |, |ς |)

where max(|σ |, |ς |) is an upper bound on levσ,ς (|σ |, |ς |),
guaranteeing a range of [0, 1] for levN . It is straightforward
to verify that the normalised Levenshtein distance is in fact
a metric.

Example 11 Consider two traces from log L1 in Fig. 5:

〈a, b, c, e, f , g, h〉
〈a, b, c, d, f , g〉

Converting the first to the second requires two edits: substi-
tuting d for e and deleting h. The worst-case scenario is the
length of the longest trace, 7, giving a normalised distance
of

levN
(〈a, b, c, e, f , g, h〉, 〈a, b, c, d, f , g〉) = 2

7 ≈ 0.29

One approach to computing entropy based on edit distances
would be to first cluster traces using a clustering algorithm,
and interpreting these clusters as the outcomes of the random
variable X , then computing Shannon entropy using the num-
ber of traces per cluster as the probability distribution over
X . Aside from adding an extra clustering step, this approach
adds the challenge of choosing an appropriate clustering
algorithm and how many clusters into which to partition the
log.

Fortunately, previous researchprovides nearest neighbour-
based entropy estimators which estimate entropy directly
from distances, removing the clustering step.

3.6.2 Distance-Based Estimators

Nearest neighbour-based entropy estimators are a class of
nonparametric estimators widely used in machine learning
for goodness-of-fit testing, parameter estimation and even
for analysing molecular structure [30,31], which allow for
estimating entropy directly from distances between data
points. The nearest neighbour entropy estimator proposed
by Kozachenko and Leonenko in 1987 [32] considers only
the first nearest neighbour. This measure of entropy is orig-
inally formulated on a vector space and uses the dimension
d of that space as a parameter. As we are working merely
in a metric space, that d becomes simply a parameter of the
measure.

Note that in the following definition ρ (“rho”, not p) sig-
nifies distance and not probability.

Definition 17 (Kozachenko–Leonenko entropy) Let L be a
log, let ρσ denote the distance of trace σ to its near-
est neighbour in L , and let d be positive integer. The
Kozachenko–Leonenko entropy measure is given by

entropyK L(L) = d

|L|
∑

σ∈L
log ρσ + log

πd/2

�
( d
2 + 1

)

+ γ + log(|L| − 1) (3.5)

where �(n) is the generalisation of (n − 1)! to real (and
complex) numbers, γ ≈ 0.5772 . . . is Euler’s constant, and
d denotes the dimensionality of the underlying metric space.

Definition 18 The flattened Kozachenko–Leonenko entropy
is given by entropy f K L = entropyK L ◦ flatten(L).

Example 12 Consider the traces from logs L1 and L2 in
Fig. 1. The nearest neighbour calculation for each trace in
the flattened logs is shown in Table 1. Using these values and
letting d = 1, we have

entropy f K L (L1) = 6

8

(
log

1

8
+ log

π1/2

�( 32 )
+ γ + log(7)

)

+ 2

8

(
log

1

7
+ log

π1/2

�( 32 )
+ γ + log(6)

)

≈ 1.17

The nearest neighbour estimator was expanded upon by
Singh et al. in [31] to the kth nearest neighbour.

Definition 19 (kth nearest neighbour entropy) Let L be a
log. Let ρσ,k denote the distance of trace σ to its kth nearest
neighbour in L . The kth nearest neighbour entropy measure
is given by

entropykN N (L) = d

|L|
∑

σ∈L
log ρσ,k + log

πd/2

�( d2 + 1)

+ γ − f (k − 1) + log(|L|)

where

f (x) =
⎧
⎨

⎩

0 if x = 0
x∑

y=1

1
y if x ≥ 1

Definition 20 (Flattened kth nearest neighbour entropy)

entropy f kN N = entropykN N ◦ flatten(L)

Note that we used the normalised Levenshtein distance to
define ρσ in entropyK L and entropykN N , but any distance
metric fulfilling the axioms in 3.6.1 can be used.
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Table 1 Nearest neighbour
calculations for flatten(L1) and
flatten(L2). It happens to be the
case for these logs that every
trace in these logs has a nearest
neighbour with an unnormalised
edit distance of 1

Trace (σ ) Nearest neighbour (ς ) lev(|σ |, |ς |) max(|σ |, |ς |) levN (σ, ς)

〈a,b, c,d, f, g,h〉 〈a, b, b, c, d, f , g, h〉 1 8 1/8 = 0.125

〈a,b, c, e, f, g,h〉 〈a, b, b, c, e, f , g, h〉 1 8 1/8 = 0.125

〈a,b, c,d, f, g〉 〈a, b, c, d, f , g, h〉 1 7 1/7 ≈ 0.143

〈a,b, c, e, f, g〉 〈a, b, c, e, f , g, h〉 1 7 1/7 ≈ 0.143

〈a,b,b, c,d, f, g,h〉 〈a, b, c, d, f , g, h〉 1 8 1/8 = 0.125

〈a,b,b, c, e, f, g,h〉 〈a, b, c, e, f , g, h〉 1 8 1/8 = 0.125

〈a,b,b, c,d, f, g〉 〈a, b, b, c, d, f , g, h〉 1 8 1/8 = 0.125

〈a,b,b, c, e, f, g〉 〈a, b, b, c, e, f , g, h〉 1 8 1/8 = 0.125

While edit distance allows us to capture local structural
differences in traces, allowing us to bin traces together which
differ by only a few events, it may fail to capture important
similarities among traces. For example, the traces 〈a, b〉 and
〈a, b, a, b, a, b〉 will be heavily penalised for being of dif-
ferent lengths, even though the latter is clearly a repetition
of the former. In the next section we discuss measures like
Lempel–Ziv which are able to capture this type of structure.

4 Entropy Rate of Stochastic Processes

Up to this point we have explored ways to interpret process
logs as the outcome of some stochastic variable X and finding
the entropy of this variable. We shall see in Sect. 5 that logs
with longer traces andmore activities tend to result in higher-
entropy measures. It is questionable, however, whether a
larger log by definition is always better suited to declarative
modelling.

A more nuanced interpretation of entropy is to consider
each individual event, rather than the trace as a whole, as
the outcome of a separate variable, generated by a stochastic
process. This approach is invariant to the number of activities
and trace lengths and should better capture what we are inter-
ested in: the degree of structure in the underlying process. In
the literature, this is referred to as the entropy rate of a pro-
cess: the increase in entropy upon considering an additional
outcome of the process [33].

We present three estimators of entropy rate in Sects. 4.1
and 4.2, but first we will formally define the entropy rate for
a process for which the probability distribution is known.We
cover two alternative definitions of entropy rate, which turn
out to be equivalent in the limit for stationary processes. First,
we will need the definitions of joint entropy and conditional
entropy. See [34] or [33] for details.

Lemma 2 (Joint entropy) Let e1, . . . , en be discrete random
variables. The joint entropy is the Shannon entropy extended
to more than one variable. In the present context, the out-
comes under consideration are activities s ∈ �:

H(e1, . . . , en) = −
∑

s1∈�

· · ·
∑

sn∈�

pn log pn

where

pn = p(e1 = s1, . . . , en = sn)

It is the expected value of the information content of the
variables:

H(e1, . . . , en) = E
[
log p(s1, . . . , sn)

]

Note that this definition is equivalent to our initial defi-
nition of Shannon entropy (3.1), if the outcome of variables
e1, . . . , en is instead interpreted as a single vector-valued
variable.

Example 13 Consider L4 from Fig. 5 where

� = {a, b, c, d, e, x, y, z}.

If we assume that the log is exactly representative of the
outcomes of e1, e2, e3 and e4, then we have the following
marginal probabilities for the individual events,

p(e1 = a) = 1 p(e2 = x) = 1

p(e1 = b) = 1 p(e3 = y) = 1
2

p(e1 = c) = 1 p(e3 = z) = 1
2

p(e1 = d) = 1 p(e4 = y) = 1
2

p(e1 = e) = 1
5 p(e4 = z) = 1

2 (4.1)

The probability for all other outcomes (e.g. e1 = x , e2 =
a, etc.) is 0. The joint entropy is given by

H(e1, e2, e3, e4) = −
∑

s1∈�

∑

s2∈�

∑

s3∈�

∑

s4∈�

p(s1, s2, s3, s4)

log p(s1, s2, s3, s4)

= −10 × ( 1
5 × 1 × 1

2 × 1
2

)
log

( 1
5 × 1 × 1

2 × 1
2

) ≈ 2.16
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Lemma 3 (Conditional entropy) Let e1, . . . , en+1 be discrete
random variables. The conditional entropy of en+1 given
en, . . . , e1 is the amount of uncertainty regarding the out-
come of en+1 once en, . . . , e1 have been observed:

H(en+1|en, . . . , e1) = −
∑

s1∈�

· · ·
∑

sn+1∈�

pn log pn

where

pn = p(e1 = s1, . . . , en+1 = sn+1)

It is the expected value of the conditional probability of en+1

given en, . . . , e1:

H(en+1|en, . . . , e1) = E
[
log p(sn+1|sn, . . . , s1)

]

By simple rules of probability and logarithms, we can
show that conditional entropy is equivalent to the difference
between the joint entropy of en+1, . . . , e1 and en, . . . , e1:

H(en+1|en, . . . , e1)
= −

∑

s1

· · ·
∑

sn+1

p(s1, . . . , sn+1) log
p(sn, . . . , s1|sn+1)p(sn+1)

p(sn, . . . , s1)

= −
∑

s1

· · ·
∑

sn+1

p(s1, . . . , sn+1)

(
log p(sn+1, . . . , s1
− log p(sn, . . . , s1)

)

= H(e1, . . . , en+1)

+
∑

s1

· · ·
∑

sn

p(sn, . . . , s1) log p(sn, . . . , s1)

= H(e1, . . . , en+1) − H(e1, . . . , en)

Example 14 For brevity, consider a new log:

{〈a, b, c〉, 〈a, b, d〉, 〈a, c, c〉}

We will compute the conditional entropy of e3, given e2 and
e1:

H(e3|e2, e1) = −
∑

s1∈�

∑

s2∈�

∑

s3∈�

p(s1, s2, s3) log p(s3|s2, s1)

= − p(a, b, c) log(c|b, a)

− p(a, b, d) log p(d|b, a)

− p(a, c, c) log p(c|c, a)

= − 1
3 log

1
2 − 1

3 log
1
2 − 1

3 log 1 = 2
3

Lemma 4 (Per-symbol entropy rate) Let e1, . . . , en be a
sequence of n variables, representing the outcomes of a
stochastic process, then the per-symbol entropy rate of the
process, denoted H(E) or h, represents how the joint entropy
H(e1, . . . , en) grows with the length n of the sequence:

h = H(E) = lim
n→∞

1

n
H(e1, . . . , en) (4.2)

In the special case in which e1, . . . , en are independent
and identically distributed (i.i.d.), we have

H(E) = lim
n→∞

H(e1, . . . , en))

n
= lim

n→∞
nH(e1)

n
= H(e1)

where H(e1, . . . , en) = nH(e1) for i.i.d. variables follows
from Shannon’s source coding theorem and the asymptotic
equipartition principle [34]. Since event logs were generated
by some structured process, we cannot assume independence
between variables e1, . . . , en . However, wemust assume sta-
tionarity, i.e. that the statistical properties of the process do
not change over time, in order to be able to use block-based
entropy rate estimators.

The reason for this is illustrated by the case in which
we have independent, but not identically distributed random
variables: if p(ei = s) is allowed to be a function of time
(i.e. the index i). From the definition of joint entropy and
independence we have

H(e1, . . . , en) =
n∑

i=1

H(ei )

In this case, there exists a sequence of probability distri-
butions across e1, . . . , en such that

H(E) = lim
n→∞

1

n

∑
H(ei )

does not exist.3 In such a process, H(E) is undefined [33].
We now define an alternative interpretation of entropy

rate, which is equivalent to per-symbol entropy rate under
the assumption of stationarity.

Lemma 5 (Conditional entropy rate) Let e1, . . . , en be a
sequence of n variables, representing the outcomes of a
stochastic process, then the conditional entropy rate of the
process, denoted H ′(E) or h′, represents the conditional
entropy of themost recently observed variable given the past,
in the limit:

h′ = H ′(E) = lim
n→∞ H(en+1|en, . . . , e1) (4.3)

Theorem 1 For stationary stochastic processes, limits in
H(E) and H ′(E) exist and

H(E) = H ′(E)

For a proof, see [33].

3 For example, if the probability of the outcome of p(ei = x) is a
function of the index i , then a probability distribution exists such that
the running average of H(ei ) oscillates between 0 and 1.
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Table 2 Flattened block-based
entropy rate

Logs k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

entropy f bl L1,2 2.9 3.09 3.32 3.38 3.25 3.0

L3 2.85 4.5 5.1 5.0 4.86 4.09

rate f d
k L1,2 2.9 0.19 0.24 0.05 − 0.12 − 0.25

L3 2.85 1.65 0.6 − 0.1 − 0.42 − 0.5

rate f r
k L1,2 2.9 1.54 1.11 0.84 0.65 0.5

L3 2.85 2.25 1.7 1.25 0.92 0.68

The entropy rate h represents a lower bound on the com-
pressibility of the sequence of outcomes resulting from the
underlying process, in contrast to the compressibility of the
outcomes of just one random variable represented by entropy
H (i.e. the compressibility of this variable’s probability dis-
tribution). This makes entropy rate a more promising guide
for selecting a process mining approach.

4.1 Block-Based Estimators

We now have a formal definition of the entropy rate of a
process, but they are defined as limits where the number
of observed events approaches infinity. In reality, we work
with event logs of finite length and must rely on estimates
given the available data. From the definitions of per-symbol
and conditional entropy rates, two estimators based on block
entropy follow. Namely, from

h = lim
k→∞ hk = lim

k→∞
entropyblk

k

= lim
k→∞ entropyblk+1 − entropyblk

we obtain the following two entropy rate estimators. Each
relies on making a particular choice of k, since we cannot in
practice let k tend towards infinity; wewill see how to choose
a value for k in the next subsection (see also [35]).

Definition 21 (Ratio-based k-block entropy rate) Let L be a
log. The ratio-based k-block entropy rate estimator is given
by the ratio of the k-block entropy to the block’s length k.
The flattened k-block estimator uses the flattened k-block
estimator:

raterk(L) = entropyblk (L)

k
rate f r

k (L) = entropy f bl
k (L)

k
(4.4)

Example 15 Consider log L4 in Fig. 5. The flattened 2-block
entropy of the log is approximately 3.03, giving

rate f r
2 (L4) = 3.03

2 ≈ 1.51

Definition 22 (Difference-based k-block entropy rate) Let L
be a log. The difference-based k-block entropy rate estimator
is based on definition (4.3) of entropy rate and is given by the
difference between the k + 1-block entropy and the k-block
entropy:

ratedk (L) = entropyblk+1(L) − entropyblk (L)

rate f d
k (L) = entropy f bl

k+1(L) − entropy f bl
k (L) (4.5)

Example 16 Consider logs L1 and L3 in Fig. 1. The k-block
entropy and corresponding block-based entropy rates for 1 ≤
k ≤ 6 are shown in Table 2.

As we see blocks of increasing length, the estimators
approach the true entropy rate of the underlying process from
above. While they are equal in the limit, at any k < ∞,
raterk ≥ ratedk ≥ h [35].

However, block-based estimators break down at longer
block lengths due to the lack of sufficient samples for the
frequencies to serve as a valid empirical estimate of the true
probability p(〈s1, . . . , sk〉) [23,35]. This is seen clearly in
Fig. 7 by the fact that as k grows the entropy rate falls to
zero and even goes negative. We now discuss methods for
determining a limit to block length that guarantees a sufficient
number of samples.

4.1.1 Sufficient Statistics

Entropy rate is formally defined for a sequence as its length
approaches infinity, but in practice we must choose a finite
value of k for the estimators, (4.4), (4.5). We cannot sim-
ply choose the k corresponding to the longest trace due to
under-sampling: there are not enough examples of k-blocks
of this length and all but the longest traces will be omitted.
We must therefore find a strategy for choosing a k which
is small enough that a sufficient number of k-blocks are
observed in the log, yet large enough that the k-blocks reach a
length such that the entropy estimate begins to converge to the
“true” entropy rate as defined in (4.2) and (4.3). We present
five methods for choosing k based on previous research on
estimating entropy of very short sequences, drawing heav-
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Fig. 7 Block-based estimators
of entropy rate (h), as a function
of block size (k) for selected
logs. The cut-off constraints,
Kh ≥ k|�|k log |�| and
k <

log K
h , are labelled by (a)

and (b), respectively. See (4.9)
and (4.6)
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ily upon [35], where detailed derivations of the following
constraints can be found.

Interestingly, these constraints in some cases rely on
knowing upfront the “true” entropy, which one obviously
does not; in practice, one implements these constraints in an
iterative fashion, using in each round the previous estimate
of entropy as the “true” entropy.

In a scenario of adequate sampling, the length of k-blocks
is bounded above by the following function of K , the total
length of a sequence, h the entropy rate, and alphabet size
|�|:

k <
log K

h
if h → O(1) (4.6)

k <
Kh

log |�| if h → 0 (4.7)

where O(1) denotes some nonzero constant, meaning that
the bound depends onwhether the underlying process is fully
predictable in the limit.

For “short” sequences (length of less than about 1200,
according to [35], aswill be common in aBPMcontextwhere
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sequences are event traces)4 we are in a scenario of under-
sampling meaning that the bound in (4.6), (4.7) will be too
lenient. To determine stricter bounds on k, the authors of (see
[35]) draw upon research showing that block-based entropy
estimates tend to break down when |�|k ≈ K [23] and the
fact that a sequence of length K contains K

k non-overlapping
k-blocks to derive the constraint

K ≥ k|�|k (4.8)

This formulation assumes sequences of i.i.d. variables, i.e.
that correlations between k-blocks result exclusively from
their overlap. Dropping this assumption leads to amore strin-
gent constraint based on an adjusted sequence length scaled
by the entropy rate, which serves as a measure of correlation
not due to block overlap. The upper bound on entropy rate is
given by log |�|, which represents a scenario in which every
outcome in� is equally probable, regardless of the preceding
observations, i.e. p(sn|sn−1, . . . , s1) = p(sn). This leads to
a normalised entropy rate h

log |�| , which can be used to define
an “effective” sequence length

Keff ≈ K
h

log |�|
Substituting K with Keff in (4.8), we have the new constraint

Kh ≥ k|�|k log |�| (4.9)

However, taking advantage of the asymptotic equipar-
tition property we can relax this constraint, diminishing
the influence of the size of the alphabet. Specifically, for
discrete time, finite-valued, stationary, ergodic sources the
Shannon–McMillan–Breiman theorem, “states that the num-
ber of k-blocks of non-negligible probability that actually
contribute to entropy is not |�|k , but 2kh” (see [35] and [33]),
giving

Kh > k2kh log |�| (4.10)

Using these constraints, we can find the highest value of k
such that the estimators raterk and rate

d
k remain valid, i.e. that

enough examples of blocks of length k have been observed
to consider their frequencies (3.3) as a reasonable estimate
of the true underlying probability distribution.

We stress that these constraints are formally defined for
single sequences of length K , whereas we are considering
sets of sequences, which affects the number of k-blocks we
will observe, depending on the distribution of trace lengths
in the log: some logs may consist almost entirely of very

4 In the literature on entropy estimation, sequences of this length are
considered relatively short since the data under consideration are often
large text corpora or outputs from simulations of dynamic systems.

short traces with only a few long traces, in which case longer
k-blocks will still be under-sampled. In our implementation
we have used the length of the longest trace as K . Our cur-
rent results use the constraints defined for single sequences,
leaving the generalisation to future work.

In summary, to apply either of the entropy estimators of
Definition (4.4) or (4.5), first choose one of the constraints
(4.6)–(4.10); then, apply the estimator at the maximum k
which satisfies that constraint.

Example 17 Consider log L3 from Fig. 1. We will compute
ratedk up to the highest k which satisfies constraint (4.9). The
longest trace is 〈a, d, a, c, a, c, e, h, h, f , g〉 with a length
of 11. The alphabet has size

∣∣�
∣∣ = ∣∣{a, b, c, d, e, f , g, h}∣∣ = 8.

The highest value for k which satisfies constraint (4.9) is just
1; this gives rate f d

1 = entropy f bl
2 − entropy f bl

1 = 4.5 −
2.85 = 1.65.

k rate f d
k K ĥ ≥ k|�|k log |�|

1 2.85 11 × 2.85 ≥ 1 × 81 log 8 ⇐⇒ 31.35 ≥ 24
2 1.65 11 × 1.65 � 2 × 82 log 8 ⇐⇒ 18.15 � 384

4.2 Lempel–Ziv Estimators

Lempel–Ziv entropy estimators are based on the properties
of the sequence compression algorithms introduced byAbra-
hamLempel and JacobZiv in two papers from1977 and 1978
[36,37]. These algorithms can be proven to be asymptotically
optimal: in the limit they will converge to the entropy rate
h when compressing a sequence resulting from a stationary,
ergodic source [33].

Both versions work by parsing a sequence into unique
words (blocks) and are universal coding schemes [33], mean-
ing that they do not rely on the probability distribution of the
underlying source. The cost of universality is a higher com-
plexity of the encoder and decoder.

We will use the 1978 version of the compression scheme
which moves through a sequence 〈e1, . . . , en〉, parsing it into
the shortest unique word not yet encountered.

Example 18 Consider the last trace fromour running example
log L3 in Fig. 1 (a start symbol is included for indexing
purposes):

〈$, f , g, h, f , g, h, h, h〉
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The first shortest word encountered is f , the second g and
the third h. The fourth element f has already been encoun-
tered, so we append the fifth element to the word to arrive
at a new word f g. The sixth element h has been seen, so
the seventh is appended giving hh. The final element h has
already been seen, so no new words are added to the dictio-
nary. This results in the following dictionary in which each
word is represented by a tuple containing the index of a previ-
ously encountered word, and a character to append, creating
a new word:

〈$, f , g, h, f g, hh〉 = 〈〈0, f 〉, 〈0, g〉, 〈0, h〉, 〈1, g〉, 〈3, h〉〉

Definition 23 (Lempel–Ziv entropy rate) Let L be a log. Let
DL be the dictionary of subsequences resulting from the pars-
ing of all traces in L using the Lempel–Ziv compression
scheme. Then the Lempel–Ziv estimate of the entropy rate
of the process generating L is given by

rateLZ (L) = |DL | log∑
σ∈L |σ |∑

σ∈L |σ |

Definition 24 Flattened Lempel–Ziv entropy rate

rate f L Z = rateLZ ◦ flatten(L)

5 Implementation and Experiments

Wepresent in this section the results of empiricallymeasuring
entropy as defined by the various measures in the preceding
sections on both synthetic and real-life logs.

5.1 Implementation

To test the various measures we implemented a command-
line utility for computing the measures introduced in the
preceding sections. Using this implementation, we report
here the values of the discussed measures.

The implementation is not entirely trivial: in particular,
use of both prefix and suffix tree data structures was neces-
sary to compute the global block entropy in reasonable time
on available memory. We note that the Hospital Log and BPI
Challenge 2017 were both particularly challenging in this
respect. We also used an iterative version of the Levenshtein
distance algorithm with a number of heuristics (checking
lower bounds and common prefixes and suffixes) to avoid
unnecessary calculations. While this drastically improves
performance, this estimator clearly stands out as the most
computationally expensive estimator.

The implementation, along with our results in machine-
readable format, is available at [38].

5.2 Real-Life Logs

We have evaluated a selection of real-life logs available at
[39]. We summarise the logs in Table 3.

For those logswhich include distinguishing life cycle tran-
sitions for activities such as “start”, “pending” or “complete”,
we include both the log in which these are included (denoted
with an asterisk) and those in which they are ignored. When
life cycle transitions are included, activities like “a + start”
and “a + pending” are considered unique events. This is
arguably the only defensible approach since life cycle tran-
sitions are included to make a distinction between activities
and there is no reason to throw this information away when
estimating entropy. However, in the interest of completeness,
we report on both versions.

There is not yet a clear agreement in the literature on
which of these logs are better suited for imperative or declar-
ative mining. However, the BPI Challenge 2012 log has been
used as a use case for hybrid mining algorithms [41], show-
ing a strong advantage over purely imperative miners. We
also note that both the Sepsis Cases and Hospital Log origi-
nate from highly flexible and knowledge-intensive processes
within a Dutch hospital. A recent investigation involving the
BPIChallenge 2013 (incidents) log seemed to indicate that an
imperative approach may be the more successful, but draws
no concrete conclusions [12]. For every log of Table 3, we
reportmeasurements of entropy (Sect. 3) in Table 4, andmea-
sures of entropy rate (Sect. 4.1) in Table 5. We also present
graphs of the block-based entropy rate as a function of block
length (k) for two logs, to illustrate how the estimators con-
verge differently.

5.3 Artificial Logs

In order to further illuminate the potential capability of
entropy measures to distinguish declarative from imperative
logs, we apply in this section the measures to a selection
of artificially generated logs. We evaluate the measures on
three sets of logs: one generated from Petri nets with varying
degrees of noise, one generated from Declare models with
varying degrees of restrictiveness, and a log with varying
degrees of concurrency.

5.3.1 Petri Net-Based Logs with Noise

To evaluate the effect of noise and infrequent behaviour in
imperative processes on entropy estimates, we use the set of
120 event logs from [42]. These logs, each containing 1000
traces, are generated from four typical imperative process
patterns which can cause difficulty for process mining algo-
rithms. Then, five different forms of noise are introduced
in the form of an activity which is added (1) infrequently
or very infrequently and (2) locally (in one position), semi-
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Table 3 Overview of real-life logs measured as well as running examples. All logs but L1 through L4 from [39]

Log Act. Traces Events Comment

Declarative indications

Hospital Event Log 624 1143 150291 Knowledge-intensive process

Road Traffic Fine 11 150370 561470 Declarative indications in [12]

Sepsis Cases 16 1050 15214 Highly flexible, knowledge-intensive process, declarative indications in [12,40]

L3 8 40 280 Declarative by construction

Hybrid indications

BPI Challenge 2012 24 13087 262200 Loan application process, successfully

BPI Challenge 2012* 36 13087 262200 Used for hybrid mining [41]

Imperative indications

BPI Challenge 2013 4 7554 65533 Imperative indications in [12]

BPI Challenge 2013* 13 7554 65533 ”

NASA CEV split* 94 2566 73638 Imperative miners return succinct models

L1 8 40 280 Imperative by construction

L2 8 40 280 Language equivalent with L1

L4 8 50 280 Imperative by construction

No indications

BPI Challenge 2017 26 31509 1202267

BPI Challenge 2017* 66 31509 1202267

WABO-Receipt 27 1434 8577

Hospital Billing 18 100000 451359

Logs marked with an asterisk (*) include the life cycle transition of events

Table 4 Estimates of log entropy (H )

Log entropytr entropy f pr entropy f bl entropy f K L entropy f kN N

k = 1 k = 2 k = 3 k = 4

Declarative indications

Hospital Event Log 9.63 16.79 24.71 7.13 7.13 6.22 5.77 5.47

Road Traffic Fine 2.48 6.51 8.73 4.64 4.64 3.76 3.4 3.18

Sepsis Cases 9.33 10.6 14.66 6.16 6.16 5.35 4.96 4.7

L3 3.0 5.63 7.04 2.78 1.3 1.99 1.56 1.27

Hybrid indications

BPI Challenge 2012 7.75 12.53 15.99 7.28 7.28 6.47 6.07 5.81

BPI Challenge 2012* 7.75 12.54 16.28 7.34 7.34 6.51 6.11 5.85

Imperative indications

BPI Challenge 2013 6.67 11.32 12.23 6.17 6.17 5.28 4.86 4.58

BPI Challenge 2013* 7.48 11.81 14.01 6.95 6.95 6.07 5.64 5.36

NASA CEV split* 11.27 10.12 14.81 6.84 6.84 5.97 5.51 5.27

L1 3.0 4.09 5.75 1.17 1.3 0.37 − 0.09 0.13

L2 2.55 4.09 5.75 1.17 1.3 0.37 − 0.09 0.13

L4 3.32 4.82 4.75 2.08 2.19 1.19 0.69 0.35

No indications

BPI Challenge 2017 11.99 14.42 17.45 8.16 8.16 7.38 7.01 6.76

BPI Challenge 2017* 12.23 14.63 18.24 8.53 8.53 7.71 7.31 7.05

CoSeLog-Receipt 3.21 7.72 10.05 4.43 4.44 3.63 3.26 3.02

Hospital Billing 3.17 9.43 10.49 6.04 6.04 5.22 4.87 4.64

Logs marked with an asterisk (*) distinguish events by life cycle transition
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locally (in one of two positions) or globally (anywhere in the
process). Alongwith the noise-free log, this results in six sets
of five logs each for each of the four process patterns. (The
semi-local/very infrequent noise combination is omitted in
the original logs.)

The four process patterns employed are as follows:

Parallel Five activities which can occur once, in any
order.
Skip Three activities, one of which may be skipped.
Duplicates A sequence of activities with one activity
occurring twice.
Non-free Choice A choice at the end of the process
depends on an earlier choice.

ObservationsWe report the results of experiments in Figs. 8
and 9.

First, we note that entropy measures tend to agree on the
relative ordering of the four logs, with the exception of Skip
and Duplicates. Entropy rate measures, on the other hand,
tend to rank Non-free Choice as having the highest entropy
rather than Parallel.

Most entropy measures are affected by noise, with the
exception of nearest neighbour approaches on the Paral-
lel log. Entropy rate measures perform much more poorly
when faced with noise. We note in particular that entropy
measures generally preserve the relative ordering of the
four logs, whereas entropy rate measures exhibit much more
“crossover”: the addition of noise switches the relative rank-
ing of two or more of the logs.

5.3.2 Declare-Based Logs

We evaluate the output of entropy estimators on declara-
tively generated logs in terms of model restrictiveness versus
expressiveness. Specifically, we measure not only the effect
of the number of constraints, but also types of constraints, as
well as number of activities. Each log consists of 1000 traces
with lengths between 5 and 10 events, in order to ensure a
comparability with the imperatively generated logs, which
are of similar length.

Logs were generated from Declare models using the arti-
ficial log generator described in [43]. Insofar as possible,
models were built by varying along one dimension at a time,
holding others constant. That is, to measure the effect of
number of constraints, the type of constraint and number
of activities were held constant, and number of constraints
incrementally increased. Similarly, to measure the effect of
type of constraint, the number of constraints and activities
was held constant, while the restrictiveness of the constraint
type was increased within its subsumption hierarchy.
Constraint ordering Declare constraints fall into a partial
ordering in terms of their restrictiveness [44]. First, they fall

into a subsumption hierarchywithin the same constraint type,
e.g. AlternateSuccession is more restrictive than Succession.
Second, some constraint types are more restrictive than oth-
ers, e.g. Succession is more restrictive than Response.

When considering the size of the model space resulting
from varying these three dimensions (number of constraints,
type of constraints and number of activities), we have
favoured systematically adjusting individual parameters over
exploring larger, more diverse models. The configuration of
constraints adds a potential fourth dimension, which we have
chosen to hold constant unless doing so resulted invalidmod-
els, which only was the case for some Chain constraints
(Fig. 10).
Monotonicity Finally, we note that the effect of alphabet
size in Declare models on entropy measures will always be
monotonically increasing when other factors are held con-
stant, since this increases the number of possible outcomes
in the sample space, broadening and flattening the probabil-
ity distribution. Recall also the conjunctive nature ofDeclare:
adding constraints always results in a more restrictive model.
ObservationsWe report the results of experiments alongwith
examples of the Declare models in Figs. 11, 12, 13 and 14.

The resulting entropy measures largely fall in line with
expectations, with rate f d

k and rate f r
k displaying a pro-

nounced sensitivity to the choice of k-block cut-off con-
straint.

The most marked trend is the clear effect of constraint
type. A clear drop in all entropy measures occurs in models
with Alternate and Chain constraint types, with the effect of
increased number of constraints being more pronounced for
these constraint types as well.

Notably, the number of constraints has a very diminished
effect formodels consisting of less restrictive constraint types
so that, for example, models with five CoExistence con-
straints have a higher entropy across estimators than a model
with just one AlternateSuccession constraint.

Furthermore, we note that the results mirror the restric-
tiveness between Parallel branches of constraint subsump-
tion hierarchies: Response is somewhat more permissive
than Succession, and this trend is also clear though less
pronounced than the effect with subsumption hierarchies.
Finally, the effect of adding activities is as expected: models
with more activities result in higher-entropy estimates.

The effect is clear: once models approach a degree of
expressiveness akin to imperative models of moderate com-
plexity, the entropy measure suddenly begins dropping. This
matches the intuition that a process resulting from a flexi-
ble declarative process will have markedly higher entropy,
even if that model consists of many semantically meaningful
constraints.
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Fig. 8 Estimates of entropy (H ) and entropy rate (h) for the “Testing Representational Bias” set of artificial logs. Logs have different degrees and
types of noise: infrequent, very infrequent (“Inf.”); and global, semi-local and local
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Fig. 9 Estimates of entropy (H ) and entropy rate (h) for the “Testing Representational Bias” set of artificial logs. Logs have different degrees and
types of noise: infrequent, very infrequent (“Inf.”); and global, semi-local and local
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Fig. 10 Portion of the Declare constraint subsumption hierarchy from
[43]

5.3.3 Concurrent Log

In order to study in detail the effect of concurrency on entropy
estimates, we generated a set of logs based on models simi-
lar to the Parallel model above, which vary in the number of

activities in the concurrent block and are flanked by tails of
sequential activities (see Fig. 15). Specifically, we consider
traces with a total length ranging from 9 to 26 (with num-
ber of unique activities equal to the total trace length). For
each total trace length, we generate event logs with blocks
of concurrency ranging from 1 to 9 activities. Denoting the
number of activities in the concurrent block by j , each event
log contains j ! unique traces.
ObservationsWe report the results of experiments in Fig. 16.

As the block of concurrency grows, we see that estimates
of entropy (H ) consistently increase. Estimates of entropy
rate are less consistent: several block-based estimators level
off at a high value (3–5 depending on total trace length) very
quickly because the constraint on block length is violated
almost immediately. Other block-based estimators grow log-
arithmically, appearing to converge to values between 2-3.

Most striking is the Lempel–Ziv estimator which falls
with concurrent block size, levelling off at values between
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figuration, excepting Chain constraints. Constraints are listed in order
of restrictiveness, i.e. their subsumption ordering
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Fig. 12 Examples of the
Declare models used to generate
artificial logs. All models follow
same the configuration as the
Response models displayed,
except for ChainResponse since
this would lead to an invalid
model. In this case, the Init
constraint has been introduced
to create a corresponding
number of models with a
similarly increasing degree of
restrictiveness

Artificial Logs - Declarative
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figuration, excepting Chain constraints. Constraints are listed in order
of restrictiveness, i.e. their subsumption ordering
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Fig. 14 Examples of the Declare models used to generate artificial
logs. All models follow same the configuration as the Response mod-
els displayed, except for ChainResponse since this would lead to an

invalid model. In this case, the Init and Last/End constraints have been
introduced to create a corresponding number of models with a similarly
increasing degree of restrictiveness

1 and 2.5 depending on total trace length. The high esti-
mates for blocks of length 1, 2 and 3 are most likely due
primarily to smaller log sizes. Concurrent logs with many
traces will nonetheless contain many shared subsequences
between traces, allowing for greater compression. In this
sense, Lempel–Ziv in particular and entropy rate estimates
in general are not “tricked” by concurrency in the same way
that simple entropy estimates are prone to.

The motivation for considering logs with blocks of con-
currency logs is the intuition that, although this behaviour can
be succinctly captured by a simple Petri net, the large degree
of variation between traceswould perhaps lead to inappropri-
ately high-entropy values. However, a concurrent block can
be equally, if not more, succinctly modelled using a declar-
ative model with an ExactlyOne constraint on each activity
in the block. This is an edge case, and in the circumstance
in which a large degree of concurrency exists, but with some
constraints, declarative models are capable of capturing this
behaviour much more succinctly.

Those logs in which long sequential tails flank a con-
current block may indeed be more succinctly modelled
imperatively, but the lower values given by several entropy
rate estimators, in particular Lempel–Ziv, do in fact reflect
the greater degree of structure in such logs. This is in linewith
the claim that low-entropy logs are better suited to be mod-
elled imperatively. To see this, consider that for logs with
a concurrent block of size 9 and no tails, the Lempel–Ziv
entropy is high: about 2.5, whereas in the case of the same
block flanked by sequential tails of length 9, the entropy falls
to about 1.0 (see Fig. 16).

t1 . . . ti ...
...

ti+1

ti+j

... ti+j+1 . . . t2i+j

Fig. 15 APetri net representing a block of concurrency of size j flanked
by sequential tails of length i on either end. Activities in the concurrent
block can be ordered in j ! different permutations

6 Discussion

In the previous section we reported entropy measurements
generated by a variety of estimators. Most measures were
broadly in line with expectations, especially on artificially
generated logs, with some proving more robust than others.

To guide our investigation, we designed the synthetic logs
L1, L2, L4 to be suitable for imperative mining, and L3 for
declarative mining. Moreover, as indicated in Table 3, the
sentiment in the community is that the BPI Challenge 2012,
Hospital and Sepsis Cases logs are well suited for declarative
mining. Finally,we employed several sets of artificial logs for
which the generatingmodel is known. If we take as canonical
these indicators, the most promising measures for predicting
suitability for imperative and declarative mining appear to
be:

entropy f bl

entropy f K L and entropy f kN N

rate f L Z

rate f d
k and rate f r

k using constraint (4.9)
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Fig. 16 Estimates of entropy
(H ) and entropy rate (h) of
artificial concurrent logs. Data
points are clustered by size of
concurrent block ( j) with each
cluster containing 18 points,
representing traces with total
length from ranging from 9 to
26, from left to right within each
cluster
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We summarise these particular measures in Table 6. No one
measure is able to classify all logs exactly as desired, which is
unsurprising. In practice, several of the strongest estimators
might be used in combination, or even as input to a classifi-
cation algorithm along with other log attributes (Table 7).

We note that these five estimators perform quite differ-
ently when confronted with noise. In particular, rate f L Z is
unstable in the presence of noise. The remaining estimators
are either able to clearly identify noise, or are insensitive to
it, in both cases maintaining a consistent relative ranking of

logs. Whether sensitivity to noise is desirable will depend on
the task at hand (Table 8).

Aside from the case of artificial logs, the present evalua-
tion suffers from a significant degree of uncertainty regarding
the labelling of logs as “declarative” or “imperative”. Amore
thorough evaluation would involve a quantitative analysis of
the logs to determinewhether they are better suited for imper-
ative or declarative mining according to objective criteria.
One way to approach such an analysis could be to mine each
log with state-of-the-art imperative and declarative miners
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Table 6 Most promising measures across real-life logs and running examples

Log Entropy Entropy rate

entropy f bl entropy f K L rateLZ rate f d
k (4.9) rate f r

k (4.9)

Declarative indications Hospital Event Log 24.71 7.25 2.89 2.2 5.92

Road Traffic Fine 8.73 3.59 1.52 1.55 3.26

Sepsis Cases 14.65 5.04 1.89 1.88 3.22

L3 7.04 2.42 2.9 1.65 2.85

Hybrid indications BPI Challenge 2012 15.99 7.19 0.96 1.33 3.56

BPI Challenge 2012* 16.28 7.19 0.98 1.02 4.56

Imperative indications BPI Challenge 2013 12.22 5.34 1.16 0.88 1.11

BPI Challenge 2013* 14.01 5.51 1.71 1.56 2.42

NASA CEV split* 14.81 4.9 0.84 6.1 6.1

L1 5.75 1.15 2.18 2.9 2.9

L2 5.75 1.15 2.07 2.9 2.9

L4 4.75 1.17 2.13 2.58 2.58

No indications BPI Challenge 2017 17.45 7.4 0.89 1.33 3.66

BPI Challenge 2017* 18.24 7.57 0.97 0.9 5.27

WABO-Receipt 10.05 3.74 2.34 3.77 3.77

Hospital Billing 10.49 5.16 1.58 1.42 3.44

Logs with declarative, hybrid and imperative indications should have the highest, middle and lowest values, respectively. No estimators are able to
separate logs exactly as desired. Logs marked with an asterisk (*) distinguish events by life cycle transition

Table 7 Influence of noise on
estimators of entropy and
entropy rate

Insensitive to noise Correctly distinguishes noise Partly correct Skewed by noise

rate f r
k (4.8) entropytr entropy f K L rate f d

k (4.6)

rate f r
k (4.9) entropy f pr entropy f kN N (k = 1) rate f d

k (4.7)

rate f r
k (4.10) entropy f bl rate f d

k (4.9) rate f r
k (4.6)

entropy f kN N (k = 2, 3, 4) rate f r
k (4.7) rateLZ

rate f d
k (4.8)

rate f d
k (4.10)

and compare the resultingmodels according to acceptedqual-
ity criteriawhich can be applied tomodels of both paradigms,
e.g. [45]. The concrete outlines for such a study have been
proposed in [46].

6.1 EntropyMeasures (H)

We determine that entropytr and entropy f pr have a number
of shortcomings, which are partly addressed by entropy f K L ,
entropy f kN N and entropy f bl . However, all of these esti-
mators are sensitive to the absolute size of logs, i.e. the
length of traces and number of activities. All four seem to
clearly misclassify one log in particular: the Road Traffic
Fines Management log which receives a low entropy, but is
characterised as a declarative process in the literature.

These measures are also strongly affected by concur-
rency, growing steadily with the size of the concurrent block,

regardless of the presence of strictly sequential prefixes and
suffixes. One aspect on which these measures perform sur-
prisinglywell is in detecting noise, clearly reflecting formost
logs in “Testing Representational Bias” event log the degree
and type of noise added.

6.1.1 Block Entropy Measures

Global block entropy improves on prefix entropy because it is
able to capture differences between traces, even if they share
the same prefix. It gives measures which partially reflect our
assumptions as to which logs are more or less structured: BPI
Challenge 2012, Hospital Event Log and Sepsis Cases have
markedly higher global block entropy than more structured
logs such as BPI Challenge 2013. However, it clearly gives
lower values to smaller logs with L1 through L4 all having
drastically lower values than the larger logs. This is unsur-
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Table 8 Traces of total length 9, with blocks of concurrency of size j
in the middle

j = 1 j = 2

〈a, b, c, d, e, f , g, h, i〉 〈a, b, c,d, e, f , g, h, i〉
〈a, b, c, e,d, f , g, h, i〉 〈a, b, c,d, f, e, g, h, i〉
j = 3 j = 4

〈a, b, c,d, e, f, g, h, i〉 〈a, b, c,d, e, f, g, h, i〉
〈a, b, c, e,d, f, g, h, i〉 〈a, b, c, e,d, f, g, h, i〉
〈a, b, c, e, f,d, g, h, i〉 〈a, b, c, e, f,d, g, h, i〉
〈a, b, c, f,d, e, g, h, i〉 〈a, b, c, f,d, e, g, h, i〉
〈a, b, c, f, e,d, g, h, i〉 〈a, b, c, f, e,d, g, h, i〉

〈a, b,d, c, e, f, g, h, i〉
.
.
.

prising, since logs with longer traces will simply have many
more possible k-blocks, flattening the probability distribution
over outcomes and increasing the entropy.

6.1.2 Nearest Neighbour Measures

Nearest neighbour-based measures give similar results, rel-
atively speaking, to global block entropy on many real logs,
assigning higher values to BPI Challenge 2012 and 2017,
and Hospital Event Log. However, they characterise Sepsis
Cases as having a moderately low entropy.

Despite the nearest neighbour measures being applied to
flattened logs, they are in general close to the original trace
entropy. For those logs whose nearest neighbour entropy val-
ues deviate from trace entropy, the values are significantly
lower, suggesting that edit distance really does account for
the trace similarity ignored by the original trace entropymea-
sure: the nearest neighbour measures group together very
similar traces which are considered distinct by the original
trace entropy.

We observe that entropykN N tends to decrease with k
for real logs, and note that our results confirm Singh et al.’s
empirical results showing that entropykN N closely matches
entropyK L when k = 1.

The nearest neighbour approach is largely unaffected by
noise in the Parallel artificial log. This is not surprising since
the added events will only increase the normalised edit dis-
tance to nearest neighbour slightly and may have no effect
on traces with similar noise.

We emphasise that this measure depends crucially on the
formulation of distance between traces, leaving ample room
for improvement by, for example, developing more sophisti-
cated edit operation costweightings usingdomainknowledge
or choosing to lessen the penalty to traces of very different
lengths.

This approach suffers from one very clear shortcoming:
complexity. In the worst case, the distance between every
pair of traces must be computed, though unnecessary com-
putations can be avoided by using a dynamic programming
approach, checking lower bounds on edit distance, as well
as common prefixes and suffixes. Despite employing these
improvements along with a fast iterative implementation for
computing lev, we found this measure to be prohibitively
time-consuming for some of the large artificial logs (concur-
rent).

6.2 Entropy Rate Measures (h)

Entropy rate measures are more resilient to variations in the
size of logs and number of activities, as demonstrated by the
fact that L1 through L4 are assigned entropy rate estimates
within the range of the (much larger) real-life logs. However,
they are in general much more affected by noise: in some
cases (see Fig. 9), ranking logs by entropy is not always stable
under the addition of noise. It is encouraging thatLempel–Ziv
and block-based entropy rate estimators using certain cut-
off constraints return relatively consistent estimates despite
being based on very different approaches. This suggests that
they are in fact converging towards something near to the
“true” entropy rate.

6.2.1 k-Block Estimators

We observed that the constraints for “good statistics” for
block-based entropy rate estimators were in line with the
properties discussed in 4.1.1. Namely, constraints (4.6) and
(4.7), which are asymptotic upper bounds, allow k to grow
much too large. The stricter constraints give much more rea-
sonable entropy rate estimates, but also restrict k to extremely
low values.

One important question we leave for future work concerns
the appropriateness of the statistical assumptions underlying
k-block estimators when applied to sets of sequences rather
than single sequences. This means we get more samples of k-
blocks than would be the case for a single sequence, and the
exact number of samples depends on the distribution of trace
lengths in the log: a logmay consist of many very short traces
and one very long trace, in which case longer blocks would
still be under-sampled. In our implementation we chose to
define the sequence length K as the longest trace, but a more
principled approach should be considered.

Furthermore, some constraints are a function of the true
entropy rate h itself, for which our implementation takes the
current running estimate. Another approach may be to use
another estimator for this, such as Lempel–Ziv.

In general, k-block entropy rate estimators appear to be
rather unstable and very sensitive to the particular combina-
tion of constraint on k and log characteristics which is clearly
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illustrated by the erratic fluctuations in Fig. 9. The ratio-based
formulation raterk converges more slowly (see Fig. 7), which
is in line with previous research [23,35]. In this sense, it
is more robust than ratedk . We note that the unusually high
value assigned to some logs, such as NASA CEV, is due to
the cut-off constraints restricting the estimator to the 1-block
entropy.

Finally, we note that these estimators are surprisingly poor
at detecting noise in artificial logs. Only ratedk using con-
straint (4.8) is able to consistently distinguish the degree and
type of noise across the “Testing Representational Bias” set
of logs. On the concurrent logs these estimators also give
somewhat inconsistent results: certain constraints are so strict
that the estimate plateaus immediately, with the relationship
of concurrent block size to tail size apparently inverted, while
other constraints lead to more reasonable estimates, which
grow logarithmically with the size of concurrent block.

6.2.2 Lempel–Ziv

The Lempel–Ziv estimator has the advantage over block-
based estimators that it is nonparametric in contrast to ratedk
and raterk which require choosing a cut-off constraint. It also
appears to be much more robust, i.e. less erratic.

We observe that for some logs, however, it returns
values contradicting our assumptions regarding modelling
paradigms. In particular, BPI Challenge 2012 has a very low
rateLZ value, lower than BPI Challenge 2013: the opposite
of what we would expect if declarative processes have higher
entropy.

An important detail concerns the order in which the logs
are parsed. Since theLempel–Ziv algorithmparses sequences
based on the order inwhich symbols are observed, parsing the
traces in a different order can result in a different parsing and
a slightly different value for rateLZ . In our implementation
we parsed logs in their original ordering. A sampling-based
approach for assessing the variability of the estimates could
be an avenue for future work.

The Lempel–Ziv estimator clearly outshines on the con-
current artificial log. It is surprisingly effective at capturing
the fact that even large blocks of concurrency should have a
low entropy rate when flanked by long sequential tails, while
concurrent blocks with short, or no, sequential tails show a
slowly growing entropy rate.

Lempel–Ziv performs less impressively when presented
with noise and appears unable to distinguish types and degree
of noise, with a number of the estimates “crossing over”
for different logs in the presence of noise. For example, it
assigns the Duplicates log a higher or lower entropy than
the Parallel log depending on the particular type of noise
present: a distinction other estimators are able to make.

On the logs generated from Declare models, Lempel–Ziv
performs well, showing the expected drop on very restrictive

declarative model and again proving more stable than other
entropy rate estimators. Finally, this estimator proved to be
one of the fastest to compute.

7 Conclusion

We studied entropy as a measure of the variability of a pro-
cess log, with the intended application of classifying logs as
more suitable for declarative or imperative miners. Specifi-
cally, we contributed (1) a survey of potential measures of
entropy; (2) an implementation of these measures; (3) an
experimental investigation of the proposed measures on both
synthetic and real-life logs; and (4) based on this investi-
gation and the community understanding of which logs are
likely declarative, a qualitative evaluation of the suitability
of the measures.

A more rigorous, quantitative evaluation of the proposed
measures requires a clear partitioning of logs into “impera-
tive” or “declarative” classes. More precisely, we need clear
ways of evaluating whether mining a log imperatively or
declaratively produces “better” models: an open research
question in itself. With a clearly defined error measure in
hand, one or more entropy estimators could, for example,
serve as input features to a classification algorithm to deter-
mine which mining approach to apply to a log, or in the case
of hybrid mining, applied to partitions of the log in order to
determine the mix of mining approaches.
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Abstract. Process modelling notations fall in two broad categories: declarative
notations, which specify the rules governing a process; and imperative notations,
which specify the flows admitted by a process. We outline an empirical approach
to addressing the question of whether certain process logs are better suited for
mining to imperative than declarative notations. We plan to attack this question
by applying a flagship imperative and declarative miner to a standard collection
of process logs, then evaluate the quality of the output models wrt. the standard
model metrics of precision and generalisation. This approach requires perfect fit-
ness of the output model, which substantially narrows the field of available min-
ers; possible candidates include Inductive Miner and Minerful. With the metrics
in hand, we propose to statistically evaluate the hypotheses that (1) one miner
consistently outperforms the other on one of the metrics, and (2) there exist sub-
sets of logs more suitable for imperative respectively declarative mining.

Keywords: Process Mining, Modelling Paradigms, Statistical Evaluation, Declarative
Models, Imperative Models, Hybrid Models, Evaluation Metrics

1 Introduction

Workflow notations are commonly categorised as falling within either the imperative
or declarative paradigm [16]. Imperative notations use flow-based constructs to explic-
itly model the paths through a process [1]. Declarative notations use constraint-based
constructs to model the rules of a process. A declarative model allows all paths not
forbidden by the constraints, and therefore the behaviour of the model is implicit in the
rules and needs to be deduced by the system or users [7, 9, 20]. While the imperative
paradigm is more mature, both paradigms have seen industrial adoption [13–15].

Regardless of notation, models have to come from somewhere. A recent trend in
both academia and industry is to extract models from real-life data via process dis-
covery [19], where an output model is automatically constructed from an event log of
? This work is supported by the Hybrid Business Process Management Technologies project

(DFF-6111-00337) funded by the Danish Council for Independent Research, and the EcoKnow
project (7050-00034A) funded by the Innovation Foundation.
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observed process executions. Research into this approach has focused primarily on the
discovery of imperative models, but substantial energy has been directed towards algo-
rithms that discover declarative models as well [6, 8, 11].

Thus, when we construct process models by process discovery, we have a choice:
Which paradigm should we use? Would we get better models from one than the other?
Would such a difference be universal or would it depend on the particular input log?
This paper outlines an approach to empirically evaluating the ramifications of the choice
of paradigm on output model quality [4, 5]. We specifically propose using notation-
agnostic metrics for precision and generalisation from [21], which apply equally to
imperative and declarative models.

We propose using Inductive Miner [10] and MINERful [6] as representatives of the
imperative and declarative paradigms, respectively. We explain this choice in detail in
Section 2. In short, fitness and simplicity are held constant: we require discovered mod-
els to have perfect fitness and comparable simplicity. This limits our choice of miners,
as at the time of writing the Inductive Miner is the only imperative miner guarantee-
ing perfect fitness [10], and MINERful is the only declarative miner that can be easily
tuned to produce models of a given simplicity. Fortunately, the Inductive Miner and
MINERful are widely considered to be at the cutting edge of their respective fields.
Consequently, they make for reasonable representatives of their respective paradigms.

By evaluating these miners on the largest set of real-life logs available to us, we aim
to test the following hypotheses:

Hypothesis 1: One miner consistently outperforms the other on one of the metrics:

(1a) one miner outperforms the other on precision.
(1b) one miner outperforms the other on generalisation.

Hypothesis 2: There exist subsets of logs:

(2a) more suitable for imperative mining
(2b) more suitable for declarative mining

That is, there exists a subset of logs which when mined either declaratively or im-
peratively represent a Pareto improvement over the other; and this deviation from the
zero mean lies outside of the bounds of what can be accounted for by random chance.

A Pareto improvement simply denotes an improvement on at least one metric with-
out sacrificing performance on any remaining metrics. The zero mean is the mean of
the probability distribution associated with the null hypothesis, and represents no per-
formance difference between models produced by different miners from the same log.

2 Methods

2.1 Log Selection

We begin by selecting a representative sample of test data, including publicly available
real-life event logs in addition to one log from an industrial contact. Furthermore, we
evaluate synthetic logs generated from either imperative or declarative models. The
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synthetic models should comprise examples of typical control constructs in the given
language. For imperative models we plan to use an existing testbed developed to test
representational bias in mining algorithms, and containing a number of typical pitfalls3.

2.2 Process Discovery

We will mine the selected logs both imperatively and declaratively, selecting miners
according to the following criteria:

1. Miners must be configurable to always produce perfectly fitting models.
2. Miners must be configurable to produce models of a given simplicity, save one

which can serve as a benchmark.

The first criterion follows from both precision and generalisation requiring perfect
fitness of the output model. It would have been an option to allow non-fitting output,
and then use a model-log alignment [2, 21], but without domain knowledge or access
to an expert, we cannot know which exact alignment is more appropriate for the real-
world log. This means that we would be evaluating not just the mining algorithm, but
the combination of mining algorithm and alignment function. In particular, we would
not know whether to attribute a result in favour of one miner over the other to the miner
itself, or to a fortunate choice of alignment for that particular miner.

The second criterion follows partly from a tendency of declarative miners to produce
output models containing excessive numbers of constraints: for large logs, on the order
of hundreds of thousands. More importantly, we require model simplicity to be held
constant, so that the choice of mining algorithm remains the only independent variable.

The two criteria left us only two miners: The Inductive Miner and MINERful.

The Inductive Miner is an imperative miner developed by Leemans et al. [10]. Arguably
the premiere imperative miner in the field, it uses a divide-and-conquer approach to
generate block-structured process models output as process trees or Petri nets. With
only one parameter, noise threshold, which for our purposes will be held at 1.0, ensuring
perfect fitness, the model generated by Inductive Miner provides a baseline model from
which to set a threshold on model simplicity for MINERful.

MINERful is a declarative miner developed by Di Ciccio et al. [6]. It uses a two-phase
approach: in the first phase, a knowledge base of statistical information on the log is
built; in the second, this knowledge is queried in order to infer the constraints of the
process. The output is a Declare model, possibly including negative constraints.

MINERful has a configurable support threshold, an interest factor threshold, and
a confidence threshold. By iteratively adjusting these settings until a model is found
which has the highest possible number of constraints without exceeding complexity
of the imperative model, we ensure that the imperative and declarative models are of
comparable simplicity. We note that while many measures of simplicity have been pro-
posed for imperative models, there exists no widely accepted method for comparing the

3 Retrieved from: https://doi.org/10.4121/uuid:25d6eef5-c427-42b5-
ab38-5e512cca08a9
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simplicity of imperative and declarative models. We suggest that an initial investigation
begin by simply comparing the number of edge elements: transitions vs. constraints.

2.3 Computing Metrics

Defining standard measures for precision and generalisation remains an open research
challenge for two main reasons. First, in process mining, data is generally not assumed
to be labelled, i.e. event logs contain examples of what did happen, not what should
not happen. This means that the standard definition of precision used in data mining
and statistics, cannot be applied to process discovery, since it relies on defining true
and false positives (type I error), and true and false negatives (type II error). Second,
the prevalence of unbounded loops in process models means that they often describe an
infinite set of allowed behaviour. Therefore, definitions of precision and generalisation
which take into account all of the of behaviour allowed by the model are not applicable
in practice. Instead most metrics aim to reduce the measured behaviour of the model to
a finite set of traces.

Metric Selection To compare imperative and declarative models, we require metrics
that can be applied to both equally. This means that they need to be defined on either
the level of languages or transition systems. Accordingly, we have chosen to employ
the metrics introduced in [21], in particular:

Precision [21, p.10] measures the degree to which a model is “underfitting” or “allow-
ing too much behaviour” relative to the input log. This particular metric is based on the
notion of escaping edges, which represent a point at which the model allows behaviour
not seen in the log. The measured amount of additional behaviour is kept finite by only
considering the first divergent activity. I.e. an escaping edge may lead to a loop repre-
senting an infinite set of traces that did not occur in the log, but only the trace ending
with the first divergent activity will be counted.

Generalisation [21, p.11] , on the other hand, measures the degree to which a model
is “overfitting”: is there behaviour not allowed by the model and not exhibited in the
log, but that can be reasonably expected to occur in the future? This particular metric
approximates generalisation by estimating for each state in the model the likelihood that
a new, hitherto unseen, activity will occur. This estimation is based on the number of
activities that have been observed, and how often the state was visited. Two alternatives
are offered: event-based generalisation takes into account the number of visits to a state,
state-based generalisation does not.

Implementation Although ProM contains a plugin for computing the metrics of [21]
on Petri nets, it does not offer support for declarative models. We also find it more
convenient to run our tests as a batch-process where we can easily pipeline several
operations (mining, metrics computation, analysis) on a set of multiple logs. Therefore
we developed our own evaluation framework4. The framework also makes our methods

4 Available at: https://bitbucket.org/coback/qmpm
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and results straightforward to reproduce. One can inspect the code and run it on our,
or their own input data. We have extensively verified our framework, in particular by
testing it on the examples and results reported in [21].

Several challenges arise when computing precision and generalisation, mainly re-
garding time and space efficiency, but also proper handling of nondeterminism arising
from silent transitions present in models produced by Inductive Miner. When assessing
which activities are enabled in a given marking, a greedy algorithm will naively follow
silent transitions until it encounters the first non-silent transition, potentially firing silent
transitions underway. This risks associating incorrect markings with an event when the
subsequent enabled activity is replayed, potentially excluding activities which should
be enabled, leading to a failure to replay the log. Ensuring that the shortest path to a
non-silent path is taken prevents this problem from arising.

To minimize redundancy, our framework builds a prefix tree from the event log,
replaying each trace on the given model as it is added to the prefix trie. In each node
(corresponding to an event in the log), the state of the model is saved, unless the node
has been visited previously, in which case a counter associated with the node is incre-
mented, recording the number of occurrences of that prefix. Finally, a map containing
model states, i.e. markings, as keys and sets of nodes (events) as values, is maintained
in order to facilitate the calculation of state-based generalisation. Given an event, the
“enabled” activities in the log simply correspond to that node’s children, while the en-
abled activities in the model are obtained by querying the model using the state as-
sociated with that node. This approach minimizes redundancies and handles potential
state-space explosion by computing and storing only relevant information.

3 Conclusion

We outline an approach to systematically compare the performance of imperative versus
declarative process mining algorithms based on the commonly accepted quality metrics
for precision and generalisation defined by [21]. We will investigate two hypotheses:
first, that one miner performs better on a) precision and/or b) generalisation; second, that
there exist some logs on which either miner provides a statistically significant Pareto
improvement on both precision and generalisation.

To the best of our knowledge, this will be the most exhaustive study comparing
imperative and declarative process discovery techniques to date. Future evaluations in-
corporating other aspects of the process mining life-cycle, e.g. alignment, will have this
approach as a point of reference. Not least, we contribute a comprehensive software
framework and tackle a number of methodological and implementation challenges, pro-
viding a foundation upon which further work can build.

Finally, we believe that the proposed study will be extremely valuable to the field
of hybrid process mining [12, 17, 18], which aims to combine the strengths of the two
paradigms. Ongoing research into what characteristics make a log, or sub-log, more
suitable to one paradigm over the other are hampered by the fact that there exists no
clear evidence from which to compare how the traditional experimental logs perform
under each paradigm [3]. Providing such evidence will enable finding new characteris-
tics of the logs, and fully evaluating previously proposed approaches.
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Abstract. Process modelling notations fall in two broad categories: declarative
notations, which specify the rules governing a process; and imperative notations,
which specify the flows admitted by a process. Process discovery algorithms
can similarly be categorised on the notation of their output model. This situa-
tion begets the question: Given a log for process mining, which paradigm would
produce the better output model? In this paper we study this question whether
some process logs are better suited for imperative or declarative notations. We
make the following contributions: (1) we provide a methodology for comparing
imperative and declarative models on an equal footing based on notation-agnostic
formulations of precision and generalisation; (2) we compare the results of flag-
ship imperative and declarative miner on a standard collection of process logs; (3)
we evaluate statistically the hypothesis that one miner consistently outperforms
the other on one of the metrics, finding no significant difference—neither miner
in general performs better than the other on neither generalisation nor precision;
and (4) we identify several logs that are Pareto-optimal for either the declarative
or imperative paradigm—logs that are truly “better” for one paradigm than the
other.

Keywords: Process Mining, Modelling Paradigms, Statistical Evaluation, Declarative
Models, Imperative Models, Hybrid Models, Evaluation Metrics

1 Introduction

Workflow notations are commonly categorised as either imperative or declarative [25].
Imperative notations use flow-based constructs to explicitly model the paths through a
process [1]. Declarative notations use constraint-based constructs to model the rules of
a process. A declarative model allows all paths not forbidden by the constraints, so the
behaviour of the model is implicit in the rules and needs to be deduced by the system or
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users [13, 16, 31]. While the imperative paradigm is more mature, both paradigms have
seen industrial adoption [20, 23, 24].

Regardless of notation, models have to come from somewhere. A recent trend in
both academia and industry is to extract models from real-life data via process dis-
covery [30], where an output model is automatically constructed from an event log of
observed process executions. Research into this approach has focused primarily on the
discovery of imperative models, but substantial energy has also been directed towards
algorithms that discover declarative models [10, 14, 18].

In work on declarative discovery, algorithms are usually tested on a limited subset
of publicly available logs, usually motivated by the expectation that logs from certain
domains—health-care, public governance—would be more suitable for declarative no-
tations. Until now, this intuition has not been rigorously tested: imperative and declara-
tive notations follow inherently different paradigms and are therefore difficult to com-
pare on equal footing.

Contributions. In this paper we address this challenge of empirically comparing declar-
ative and imperative miner outputs, answering the following three research questions:

RQ1 How do we compare relative model quality of imperative and declarative output
models?

RQ2 Does one paradigm consistently outperform the other on this comparison?
RQ3 Which are the logs that lend themselves favourably to mining with one paradigm

or the other?

Methodology: For RQ1, we propose quantifying cross-paradigm quality differences by
measuring the trade-offs in the output model metrics: precision and generalisation. That
is, how the output model balances on the one hand closely modelling the log (precision)
and on the other allowing a reasonable amount of additional behaviour (generalisation).
This duality makes them well-suited for studying trade-offs in model quality: if switch-
ing mining paradigm improves on one without sacrificing on the other, the model has
clearly improved.

The challenge then is to find realisations of the precision and generalisation met-
rics that apply to both imperative and declarative notations. For precision, the definition
in [33] based on “escaping edges” in the transition system generated by a model is
both widely acccepted (however, do note [29]), notation agnostic and efficiently com-
putable. For generalisation we take a straightforward data mining approach originally
proposed for process mining in [33] and pursued recently in [6]: k-fold cross valida-
tion. To measure the ability of a miner to generalise a given log, we reserve 1/k of the
log for post-mining validation; the ability of the miner to generalise that log is then the
proportion of traces in that validation set that the mined model recognises.

With a method for comparing output models in place, we proceed to consider RQ2
and 3. For these, we apply flagship imperative and declarative miners to all relevant pub-
licly available process mining logs, then (RQ2) testing statistically (Wilcoxon) whether
one miner significantly outperforms the other in general; and analysing the results to
determine which logs are better for each miner (weak and strong Pareto optimality).

We note two major challenges in conducting this experiment. First, the chosen mea-
sure of precision requires perfect fitness. Since we cannot use alignment [3] without
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muddying our results, we must require output models to have perfect fitness outright.
It follows that we are either assuming noise-free logs or accepting that output models
represent also noise. Second, we noticed early on that Declarative miners achieve their
maximum precision by producing models with that are order of magnitude larger than
the input logs. Such models seems practically unhelpful, so to achieve a more sensible
comparison we tune parameters to generate output models of size roughly comparable
to their imperative counterparts. Together, these restrictions limit our choice of miners:
at the time of writing the Inductive Miner is the only imperative miner guaranteeing
perfect fitness [17] and MINERful [10] the only declarative miner that can be tuned
to produce models of a given size bound. Fortunately, both are considered to be at the
cutting edge of their respective fields and can reasonably be taken to represent their
respective paradigms.

Results For RQ1, we propose studying the tradeoff between precision (escaping-edges)
and generalisation (k-fold cross validation) as the yardstick on which to measure rel-
ative output model quality of imperative and declarative miners. For RQ2, we show
statistically that no miner categorically outperforms the other on neither precision or
generalisation. For RQ3, we confirm the common intuition in the field that the logs
Nasa Crew Exploration Vehicle is better suited for imperative discovery, and the logs
BPI Challenge 2012 and 2013 for declarative discovery; where “better suited” does not
strictly indicate a Pareto improvement, but an improvement in one metric that signifi-
cantly overshadows any decrease in the other.

We note that the logs identified as better suited for declarative mining in RQ3 en-
compasses logs considered “declarative” in the literature. Remarkably no log is better
in one paradigm on both parameters 3. Altogether, we take this as indicative that the
two paradigms are complementary more than they are competing.

2 Related Work

The classic output model quality measures of fitness, precision, generalisation and sim-
plicity [8, 9] are well-studied, e.g., [26, 30, 33]. The variants of precision and gener-
alisation used in the present paper originate with [2, 8, 9], as a basis for evaluating
alignments for conformance checking. We employ the prefix automatons of [21] to
avoid state-space enumeration; prefix automatons themselves arise as a certain choice
of parameters for the framework of [34]. Incidentally, precision and generalisation were
originally formalised for Process Trees or Petri Nets, and thus did not originally apply
to other models. It is precisely the later re-formulations in terms of prefix automata [21]
and labelled transition systems in [33] that makes it possible to make the present com-
parison of imperative and declarative output model quality.

Precision and generalisation both require perfect fitness. There are two ways to
achieve that: through cost-based alignment between log and model [4, 33] or replay
techniques, e.g., [26]; or by requiring outright that the miner produces only perfectly

3 We encourage the impatient reader to skip directly ahead to Figures 2 and 1—note the empty
second and fourth quadrants in the former!
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fitting models; a feature supported (to the best of our knowledge) only by the Inductive
Miner, MINERful, the Declare Maps miner [18], the DCR miner [14], and DISCO.

Several large studies tabulating miner performance exist, e.g., [5,11]. Smaller stud-
ies comparing individual miners also abound, e.g., [10] compares the declarative MIN-
ERful and Declare Maps miner, concluding that MINERful is much faster but sensitive
to parameter setting; and [12] in which imperative process discovery is applied to a
process log originating from a declarative real-life process.

3 A Method for Cross-paradigm Comparison

We proceed as follows: (1) select test data (logs), (2) run imperative and declarative
miners on these logs, (3) compute precision and generalisation metrics on the output
models, (4) evaluate statistically the hypotheses below, as well as (5) analyse Pareto
trade-offs on (3).

Hypothesis: One miner consistently outperforms the other on one of the metrics:

(1a) one miner outperforms the other on precision.
(1b) one miner outperforms the other on generalisation.

3.1 Log Selection

We base log selection on the criteria of public availability, drawing upon (i) the IEEE
Task Force on Process Mining Real-life Event Log Collection4, (ii) two additional logs
also published by the 4TU Center for Research Data56, and (iii) one real-life log orig-
inating from our own industrial contacts [12]. We abstain from using synthetic logs,
for which we would not be able to tell whether an observed difference in output model
quality reflects a genuine difference in miner performance or bias in the generator.

The logs range over a broad range of industries and applications, including knowledge-
oriented administrative processes, human behaviour tracking, manufacturing processes,
and machine-generated software logs. See Table 1 for included logs, Table 2 for logs
omitted for not fulfilling the following:

1. The logs must come in a supported file format. (E.g., we omitted CSV files that did
not come with clear instructions on which columns represented event classes.)

2. Process discovery for the log must terminate and output a model for both the im-
perative and declarative mining algorithms.

3. The log must be an event log [32]. (E.g., we omitted “logs” that did not represent a
sequence of events.)

We did not perform pre-processing except for associating lifecycle transition at-
tributes with events using Niek Tax’ ProM plugin “Bring Lifecycle to Event Name”.

4 http://data.4tu.nl/repository/collection:event_logs_real
5 https://doi.org/10.4121/uuid:5a9039b8-794a-4ccd-a5ef-
4671f0a258a4

6 https://doi.org/10.4121/uuid:5a9039b8-794a-4ccd-a5ef-
4671f0a258a4
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Log Activities
Total

Traces
Unique

Traces (%)
Shortest

Trace
Longest
Trace

Domain

Activities of Daily Living 64 148 100.0 20 134 Sensor data
BPI Challenge 2012 36 13087 33.36 3 175 Loan application
BPI Challenge 2013 13 7554 30.16 1 123 VolvoIT incidents
BPI Challenge 2017 66 31509 52.98 10 180 Loan application
BPI Challenge 2018 41 43809 64.97 24 2973 EU agr. grant app.
Document Processing 18 18352 0.002 20 6 Doc. processing
Dreyer Foundation 31 255 15.15 1 25 Grant application
Electronic Invoicing 16 20135 0.002 8 20 Billing/invoicing
Hospital Billing 18 100000 1.02 1 217 Billing/invoicing
NASA Crew Explor. Veh. 94 2566 97.93 12 50 Software log
Production Analysis 110 225 98.22 2 350 Manufacturing
Road Traffic Fine Mgmt 11 150370 0.15 2 20 Fine processing
Sepsis Cases 16 1050 80.57 3 185 Healthcare
WABO/CoSeLoG - receipt 27 1434 8.09 1 25 Environ. permit

Table 1: Attributes of evaluated logs.

Log Reason for Omission

Apache Commons Crypto Tests Out of memory
BPI Challenge 2014 Not well-formed event log
BPI Challenge 2016 Not well-formed event log
Hospital Log MINERful out of memory
Interactions w/ Lighting Interfaces Not well-formed event log
JUnit 4.12 Software Event Log Both miners out of memory
WABO/CoSeLoG 1-5 Error reading logs

Table 2: Overview of omitted logs and reasons for omission.

3.2 Process Discovery

We mine the selected logs both imperatively and declaratively. We assume that miners
produce useful models in their default configuration and use them in that configuration,
except as noted below.

Unfortunately, declarative miners sometimes output models with excessive numbers
of constraints: for large logs, hundreds of thousands. It is difficult to imagine a use-case
for process discovery where such models are helpful, much less desirable. Therefore,
we modify miner configuration to force models to have a maximum size.

As we are unaware of published results that would help us define a reasonable max-
imum model output size, we instead take an established miner as defining an appropri-
ate model output size, with the argument that the community has tacitly accepted the
models produced by this miner as “of at most useful sizes”. We define model size by
the number of edges in the model: edges between places and transitions in Petri nets
produced by Imperative Miner and constraints between activities in the Declare model
produced by MINERful. As Inductive Miner is currently accepted as the successful im-
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perative miner, it is a natural candidate to define maximum output sizes, and we limit
the declarative output for a given log to be no larger than the Inductive Miner output
model size. We leave a more principled definition of appropriate maximum declarative
model sizes, preferably grounded in usability studies, as future work.

Besides output model size, we must further restrict our attention to miners that can
be instructed to always produce perfectly fitting models. This criterion follows from
both precision and generalisation requiring perfect fitness of the output model. It would
have been an option to allow non-fitting output, and then use a model-log alignment [2,
33], but without domain knowledge or access to an expert, we cannot know which
exact alignment is more appropriate for the real-world log. This means that we would
be evaluating not just the mining algorithm, but the combination of mining algorithm
and alignment function: we would not know whether a result in favour of one miner
over the other to was a real advantage or just a fortunate choice of alignment.

Altogether, we have chosen miners according to the following criteria: 1. Miners
must produce perfectly fitting models. 2. Miners must produce models of a given max-
imum size, save one which can serve as a benchmark. These criteria leave us only two
miners: The Inductive Miner and MINERful.

The Inductive Miner [17]. Arguably the premiere imperative miner, Inductive Miner
uses a divide-and-conquer approach to generate block-structured process models out-
put as process trees or Petri nets. We use version 6.8.4157 with stock settings, except
noise threshold. We run Inductive Miner outside the ProM environment, accessing it
programmatically via its Java interface. To ensure stock settings, we initialise the miner
with an unmodified MiningParametersIM() object; we have confirmed that these
settings generates models identical to those output by the Inductive Miner plugin in
ProM 6.7.

MINERful [10] is a declarative miner developed by Di Ciccio et al. It uses a two-phase
approach: in the first phase, a knowledge base of statistical information on the log is
built; in the second, this knowledge is queried in order to infer the constraints of the
process. The output is a Declare model, possibly including negative constraints.

Unfortunately, MINERful does not allow directly setting a maximum model size,
rather, it allows setting support threshold, an interest factor threshold, and a confidence
threshold. By iteratively adjusting these until a model not exceeding the size bound
obtained from the imperative model is found, we ensure that the imperative and declar-
ative models are of comparable size. Specifically, confidence is lowered by 0.05, and
interest factor is adjusted at each confidence threshold using binary search, also using
a resolution of 0.05. Before the size of the mined model is evaluated, inconsistency
checking is applied8. Redundancy checking does not finish for all logs and therefore is
not applied.

7 Retrieved from: http://promtools.org/prom6/packages/InductiveMiner/
8 HIERARCHYCONFLICT, default constraint sorting policy: ACTIVATIONTARGET-

BONDS, FAMILYHIERARCHY, SUPPORTCONFIDENCEINTERESTFACTOR.
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3.3 Quality Metrics

In process mining, four quality metrics of models are generally considered: fitness, sim-
plicity, precision and generalisation [32]. Presently, we focus on the trade-off between
precision and generalisation: how precisely models generated by a miner describe the
observed data and how well they are able to account for previously unseen data.

Precision Most precision metrics are defined on Petri nets, precluding a direct com-
parison to declarative models. Metrics based either on the level of languages or tran-
sition systems allow for a cross-paradigm comparison. One such metric was proposed
in [33, p.10], and implemented in [6]. It is based on escaping edges, which represent a
point at which the model allows behaviour not seen in the log. The measured amount
of additional behaviour is kept finite by only considering the first divergent activity.

Let E denote the set of unique events in an event log with e ∈ E . Let enL(e) de-
note the set of activities sharing the same context (i.e., prefix) as event e in log L. Let
enM (e) denote the set of activities enabled in the state of model M immediately prior
to executing e. The precision of M w.r.t. log L is given by

PL(M) =
1

|E|
∑

e∈E

|enL(e)|
|enM (e)| (1)

Normalised Precision The above formulation of precision is a function of the log as
well as the model. We would like to establish a normalised formulation by establishing
a lower and upper bound for the log, giving an indication of the relative difference
between miners based on worst and best case scenarios for a particular log [22].

Let PuL and P l
L denote the lower and upper bound, respectively, for the precision of

any model w.r.t. log L. The normalised precision w.r.t. log L of model M is given by

Pn
L (M) =

PL(M)− P l
L

1− P l
L

(2)

We take as P l
L the precision of the flower model, in which any activity encountered

in the log is enabled in every context. The only models resulting in a lower estimate of
P l
L are those which allow more activities than encountered in the log to be enabled. The

1 in the denominator represents an upper limit on the precision of a fitting model w.r.t.
log L, in this case a model which allows exactly the traces in the log and no others.

Generalisation (Cross-validation) Process mining is generally framed as a descriptive
data mining task: the aim is to accurately describe training data [15], and quality metrics
such as precision and fitness computed on the in-sample data set are most often reported.
Unless we assume that an event log represents all of the behaviour we can expect to
encounter, we should also investigate the expected performance on out-of-sample data.
Cross-validation is one approach to making this estimation in which a portion of the
data set is held out as a validation set, while the remaining data is used for training
(mining). Traditional supervised learning tasks define an error metric, e.g. the number
of correctly classified instances in classification tasks, or a distance-based metric, such
as the residual sum of squares, for regression tasks.
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We take as our error metric simple trace fitness: the percentage of out-of-sample
traces able to be replayed on the model. If we interpret process mining as a binary clas-
sification problem (in which traces either fall into acceptable or unacceptable classes),
with event logs containing only positive examples, then fitness can be interpreted as
recall, i.e. the ratio of traces accepted by the model to the total number of traces in the
validation log:

FL(M) =
|true positives|

|true positives|+ |false negatives| (3)

We employ a form of k-fold cross-validation which avoids “twinning” (including
identical data points in both training and validation sets). This is done by partitioning
the set the of unique traces in a log into k equal partitions. Then, the trace multiplicities
are reinserted, resulting in unevenly sized partitions. This is ameliorated by using a
weighted mean of the performance across folds, weighting the performance on a given
validation set by the size of the that set relative to the entire log.

Formally, letting L denote a log, Li the ith partition of the log, k the number of
partitions, FLi(MLj ) fitness w.r.t. to logLi of modelM mined on logLj , the weighted-
mean, fitness-based, k-fold cross-validation for mining algorithm A is given by

GL(A) =
k∑

i=1

|Li|
|L| FLi

(ML\Li
) (4)

3.4 Implementation

To our knowledge, no implementation exists for computing the metrics defined in (2)
and (4) based on XES log files and both imperative and declarative process models. We
have therefore integrated this functionality to our CLI based evaluation framework 9.

All mining and evaluation processes were performed on a Lenovo Thinkpad P50
with a 64-bit Intel Xeon E3-1535M v3 2.90GHz CPU and 32GB of RAM running
Windows 10 Enterprise 64-bit edition.

9 Available at: https://github.com/backco/qmpm
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INDUCTIVE MINER MINERFUL

Log Pn
L (I) GL(I)

Places

Transitions

E
dges Pn

L (M) GL(M)

A
ctivities

C
onstraints

P
nL
(I
)−

P
nL
(M

)

G
L
(I
)−

G
L
(M

)

Activities 0.0136 0.858 5 67 134 0.057 0.8448 64 133 -0.043 0.013
BPIC2012 0.194 0.737 28 61 128 0.144 1.0 36 126 0.05 0.263
BPIC2013 0.0 ≈ 1 13 29 58 0.234 0.998 13 31 -0.234 0.01
BPIC2017 0.07 1.0 11 71 146 0.094 1.0 66 143 -0.024 0.0
BPIC2018 0.017 1.0 10 53 106 0.006 0.999 41 105 0.011 ≈0
Document 0.992 - 19 20 40 0.263 - 10 66 0.739 -
Dreyer 0.169 0.977 36 75 150 0.171 0.976 31 145 -0.002 ≈0
Electronic 0.73 - 20 27 54 0.499 - 16 131 0.231 -
H. Billing 0.362 ≈ 1 29 50 104 0.46 ≈ 1 18 38 -0.098 0.0
NASA 0.686 0.976 70 114 228 0.251 ≈ 1 94 217 0.435 -0.024
Product. 0.005 0.875 134 268 27 0.001 0.8088 110 25 0.004 0.067
Road Fine 0.72 ≈ 1 17 23 52 0.788 1.0 11 44 -0.068 ≈0
Sepsis 0.014 0.992 15 31 64 0.075 0.973 16 54 -0.061 0.02
WABO 0.288 0.994 17 48 96 0.387 0.994 27 90 -0.099 ≈0

Table 3: Precision, generalisation and attributes of output models. Two logs were not
suited for computing GL since they had too few unique trace variants to perform cross-
validation (Document Processing and Electronic Invoicing).
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Fig. 1: Precision and generalisation of models generated by Inductive Miner and MIN-
ERful. Bubble size reflects the size of the models (edges and constraints, respectively).
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3.5 Statistical analysis

To evaluate hypothesis 1a, we consider the mean difference µP in normalised precision
for models generated by Inductive Miner and MINERful when mining the same logs.
The null hypothesis H0 states that there is no difference in miner performance across
logs, and the research hypothesis HP states that a difference exists. Formally, let L
denote the set of event logs, PnL (I) the normalised precision of Inductive Miner on log
L, and PnL (M) the normalised precision of MINERful on log L,

µP =
1

|L |
∑

L∈L

PnL (I)− PnL (M) H0 : µP = 0 HP : µP 6= 0

To evaluate hypothesis 1b, we consider the weighted-mean, fitness-based 5-fold
cross validation as a measure of generalisation and the difference of this metric between
the two miners, on the same log. The null hypothesis states that no mean difference µG
exists between the two miners across logs, while the research hypothesis states that a
difference exists. Let GL(I) denote the generalisation (fitness-based cross-validation)
of Inductive Miner on log L, and GL(M) the generalisation of MINERful on log L,

µG =
1

|L |
∑

L∈L

GL(I)−GL(M) H0 : µG = 0 HG : µG 6= 0

We take the included logs as a sample of all possible event logs, and assume the logs
to be independent of one another, since they stem from significantly different sources
and contexts. When evaluating hypothesis 1b, we have removed two logs: Document
Processing and Electronic Invoicing, since they contain only 3 and 4 unique traces,
respectively, making the data sets unsuitable for cross-validation.

For both hypotheses, the small sample size precludes assumpting normality, requir-
ing a nonparametric statistical test. The appropriate nonparametric test for comparing
two related (paired) samples is the Wilcoxon signed rank test. Our hypothesis claims
only that a difference exists between the miners, not that the difference exists to one
miner’s favor, so a two-tailed significance test is required. The level of significance α is
set to 0.05.

Null Hypothesis N T Crit. Value Rejected?

µP = 0 14 49 21 NO
µG = 0 12 25 13 NO

Table 4: Wilcoxon signed rank test. Neither miner outperforms on precision or general-
isation to a statistically significant degree.
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3.6 Trade-off Analysis

Beyond analysing whether one miner outperforms categorically across all logs, we are
interested in the trade-off between precision and generalisation and whether there exist
logs that are best suited for mining imperatively or declaratively. The notion of a Pareto
improvements is one approach to this analysis. If a miner outperforms on one metric
without sacrificing performance on the other, it has made a Pareto improvement. The
ideally, of course, it makes an improvement on both metrics.

Ideal Improvement and Trade-off Vectors Considering only strict Pareto improvements
may be too limiting. We would like to capture the degree of improvement. Furthermore,
a large improvement in one metric may be achievable at the expense of a negligible
sacrifice of the other, but this will not qualify as a Pareto improvement. To this end,
we anchor our analysis using the notion of an equivalent, ideal improvement, and its
converse, an equivalent, ideal trade-off.

Let δP = PnL (I) − PnL (M) and δG = GL(I) − GL(M) and let vectors ( δP0 ) and
( 0
δG ) form the basis of a vector space V ⊂ R2. Let

p = ( α argmax δP
β argmax δG

) t2 = ( α argmin δP
β argmax δG

) t4 = ( α argmax δP
β argmin δG

)

Where α and β are weights whose relative value represents the importance of one
metric to another. In the current context we simply set both to 1, giving p = ( 11 ),
representing the scenario in which Inductive Miner achieves 1.0 on both metrics, and
MINERful achieves 0.0. Orthogonal to this vector are the trade-off vectors t2 = ( 1

−1 )
and t4 = (−11 ).

Any vector ( xy ) s.t. αx = βy falls parallel to t and similarly, any vector s.t. αx =
−βy falls parallel to the trade-off vectors t2 and t4 representing a decrease in one
metric equal to the increase in the other, when adjusted for weighting preferences.

Projection onto Improvement Vector By projecting the data onto the ideal improve-
ment vector p, we can essentially reduce the dimensionality of the the data in a manner
which captures the degree of improvement, without requiring strict Pareto improve-
ments and accounting for any preference weighting of the performance metrics. With
this approach, a moderate improvement on both metrics may be collapsed to the same
value as a large improvement on one metric requiring a small sacrifice of the other. In
other words, both the direction and magnitude (norm) of the data vectors is taken into
account.

Formally, let P be a one-dimensional subspace of R2 of which p is the unit vector.
Let projP (v) denote the projection of v onto P .

projP (v) =
v · p
||p||2 p =

v · p
||p||

p

||p|| (5)

We are mainly interested in the magnitude of the projection (i.e. scalar projection):

||projP (v)|| = ||v|| cos θ =
v · p
||p|| (6)
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In the special case that p = ( 11 ), the above reduces to:

||projP ((
x
y ))|| =

( xy ) · ( 11 )
||( 11 )||

=
1x+ 1y√
12 + 12

=
x+ y√

2
(7)

Log v·p
||p|| Log v·p

||p||

Activities of Daily Living - 0.021 Hospital Billing - 0.069
BPI Challenge 2012 - 0.15 Nasa Crew Explor. Veh. 0.291
BPI Challenge 2013 - 0.164 Production Analysis 0.05
BPI Challenge 2017 - 0.017 Sepsis Cases - 0.029
BPI Challenge 2018 0.008 Road Traffic Fine Mgmt - 0.048
Dreyer Foundation - 0.001 WABO/CoSeLog - Receipt - 0.07

Table 5: Scalar projection of 2-dimensional data vectors v onto ideal vector p =
(1, 1)T .

Fig. 2: Left: Difference between output models for each metric with boxes representing
interquartile range. Right: Bivariate representation of the logarithm of ratio of preci-
sion and state-based generalisation. Positive values represent an advantage to Inductive
Miner, negative values an advantage to MINERful. Quadrants II and IV represent a
trade-off.

4 Results

We report in Table 3 the results of running the Inductive Miner and MINERful on the
included logs. The absolute performance of the two miners on the two metrics is plotted
in Figure 1, and their relative performance is plotted in Figure 2.
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Using the Wilcoxon signed rank test, we are unable to reject the null hypotheses
that µP = 0 and µG = 0 (see Table 4). That is, we answer RQ2 in the negative: neither
paradigm outperforms consistently based on the present comparison.

Regarding RQ3, we observe that three logs stand out when using our approach:
BPI Challenge 2012, BPI Challenge 2013, and NASA Crew Exploration Vehicle. After
projection onto the ideal improvement vector (see Figure 2 (right)), it is clear that most
logs cluster around the origin, indicating the overall improvement is small for these
logs. The NASA log deviates greatly from this cluster to the advantage of Inductive
Miner, while BPIC 2012/2013 also both clearly deviate to the advantage of MINERful.
The magnitude (norm) of the projected vectors are listed in Table 5.

We also observe in Figure 2 that quadrants I and IV are more or less empty, indi-
cating no logs for which an improvement is seen on both metrics. Many logs lie on the
precision-axis (PnL (I) − PnL (M)), representing an improvement in precision with no
change in generalisation. From Table 3, we see that this is a consequence of both miner
achieving generalisation (GnL) scores of 1.0 or ≈ 1.

A final observation can be made regarding model size from Table 3 and Figure 1.
We have used the model size of Inductive Miner’s output as a strict upper bound on
MINERful’s output (except in cases where no such model could be found), so it is no
surprise that the latter are seldom larger than the latter. Nonetheless, we note those cases
in which a much smaller model in fact provides better performance: for BPIC 2013 and
Hopital Billing, MINERful generates models half the size of Inductive Miner while
improving performance; while for Document Processing and Electronic Invoicing, In-
ductive Miner similarly produces much smaller models while improving precision.

5 Discussion

There are three interesting conclusions we can draw from our findings:

1. Neither mining paradigm can be said to perform categorically better across logs on
the metrics under consideration.

2. Logs appear to fall into three categories: those for which mining paradigm makes
only an insignificant difference (clustered around the origin), and those clearly best
suited to one paradigm or the other.

3. Perhaps most strikingly: the formulations of precision and generalisation under
consideration do not appear to be inversely correlated. Consider how few logs fall
very clearly into the “trade-off” category, as might be expected - instead they usu-
ally fall close the axes.

The visualisations in Figures 1 and 2 illustrate all three points.
If one insists that generalisation and precision should be inversely correlated, then

our study underlines the need to carefully consider the interplay between the different
quality dimensions when developing specific metrics.

Regarding RQ3 we are able to identify at least four logs which are significantly
more suited for either declarative or imperative mining, showing that there are particular
circumstances in which each paradigm clearly outshines the other. Other logs either
required a trade-off between precision and generalisation, or the difference between
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the two miners could not be considered statistically significant. It should also be noted
that for one log, “Hospital Event Log”, MINERful was unable to return a model, so by
default this log falls to Inductive Miner’s favour.

A corollary of these hypotheses is that rejecting any of the null hypotheses pro-
vides evidence for the validity of the metrics themselves, i.e. that the metrics do in fact
measure something about the mined model. If it were the case that precision and gener-
alisation remained more or less constant for event logs, regardless of mining algorithm,
this would indicate that the metrics measured an attribute of the log itself, rather than
the correspondence of mined model to log.

We recognise some potential threats to the validity of the presented study: the rep-
resentativeness of our sample set, the particular metrics used and the number of miners
considered. Our choices and reasons are discussed in detail in Section 3. Each threat
can be broken down to the current maturity of the field: there exist only a small num-
ber of publicly available real-life logs, there are only few metrics that can be equally
applied to imperative and declarative models, and these metrics in turn limit our choice
of miners. We therefore posit that the limitations placed on the study are reasonable
given the state of the art. In addition, to the best of our knowledge, this will be the most
exhaustive study comparing imperative and declarative process discovery techniques to
date. Future evaluations incorporating other aspects of the process mining life-cycle,
e.g. alignment, will have this approach as a point of reference. Not least, we contribute
a comprehensive software framework and tackle a number of methodological and im-
plementation challenges, providing a foundation upon which further work can build.

6 Conclusion

We gave an approach to systematically comparing the performance of imperative versus
declarative process mining algorithms: studying Pareto-improvements of comparable
quality metrics (RQ1). We proposed the commonly accepted quality metrics for preci-
sion and generalisation defined by [33] as forming a trade-off to study semantic model
quality (RQ2); and we studied this trade-off statistically on commonly available logs
(RQ3).

For the latter, we investigated two hypotheses: first, that one miner generally per-
forms better on precision and/or generalisation; second, that there exist particular logs
on which either miner provides a statistically significant Pareto improvement on both.
The latter is confirmed, the former is not. While we did not consider simplicity as a de-
pendent variable under evaluation, we did observe that in cases of comparable precision
and generalisation declarative models often have significantly fewer elements.

Future Work We believe that the current study will be valuable to the field of hybrid
process mining [19,27,28], which aims to combine the strengths of the two paradigms.
Ongoing research into what characteristics make a log, or sub-log, more suitable to
one paradigm over the other are hampered by the fact that there exists no established
common framework for comparing miners across paradigms [7]. Moreover, the identifi-
cation of logs that are significantly more suitable to one paradigm over the other shows
that there are real-life scenarios for which one paradigm outperforms the other. We ex-
pect that this study will open the door to a more thorough investigation of the properties
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that make a log more suitable to a paradigm, which in turn will drive the development
of hybrid process discovery approaches that combine both paradigms.

We see two major avenues of research continuing the present work: (1) applying the
classification of logs to hybrid mining, and (2) improving classification by including
additional metrics and miners.

For (1), the present study may serve as a prerequisite step toward identifying at-
tributes of logs or sub-logs indicating an advantage to a given mining paradigm. An
obvious next step is to identify such attributes, and learn how they correlate with im-
proved precision and generalisation.

For (2), the present study considers only the core metrics of generalisation and preci-
sion. We have argued that these together capture a meaningful core trade-off in semantic
capabilities of output models. However, many other metrics exist. In particular study-
ing the fitness/simplicity trade-off would be very interesting; however, one would need
a notion of simplicity that is meaningful for and comparable between both declarative
and imperative models; we are unaware of such notions in the literature. Moreover, to
truly evaluate a fitness/simplicity trade-off, one would need a way to allow non-perfect
fitness without biasing results through the use of a biased cost function in alignment,
while still allowing the precision and generalisation metrics to be computed.
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Mining Massive SAP Transaction Logs
Christoffer Olling Back

In Spring of 2019, a 4-month collaboration between Gekkobrain A/S and
the University of Copenhagen was initiated in which to explore applications of
process mining research in industry through a proof-of-concept project based on
data and domain expert input from Vestas Wind System. Formally, my role in
the project was a Research Assistant and a leave of absence was granted from
my position as PhD Fellow. In other words, the project was not formally a
part of the PhD, and no academic research publications have yet resulted from
the work. nonetheless I include a short description of the project and insights
gained since they are highly relevant to the topic of this thesis and motivated
some of my later work.

Gekkobrain A/S specializes in analysis of SAP systems, the dominant en-
terprise resource planning (ERP) platform globally. In their collaboration with
Vestas Wind Systems, they tasked with developing a tool for mining transac-
tions recorded from Vestas’ SAP systems worldwide. The ultimate goal was to
gain insight into the root causes of - usually undesirable - variations in processes
that sometimes span several areas of operation in multiple continents. The data
available are highly granular: essentially every modification of a document in
the SAP is recorded as database transaction - from the creation of a work order
or invoice, to the receipt of goods in a warehouse, to the adjustment of the stock
count of an item.

Many document modifications establish a connection between multiple doc-
uments, e.g. a receipt of goods fulfills a purchase order, and later that purchase
order is paid in accounts payable - or sent to revision if the received goods differ
from those requested. The notion of a trace - a fundamental component which
is assumed as given by all process mining algorithms - is not well defined in
the raw data. Instead an enormous graph of associations between documents
exists in the raw data, indeed many highly granular transactions are of little
practical interest, despite constituting a sizable portion of the full dataset. In
practice, a great deal of manual work by domain experts is usually required to
build heuristic-based approaches to extracting traces from this data such that
classical process mining algorithms can be applied. It should be noted that a
body of research does exist that addresses the mining of process related data at
this low-level of granularity, and is likely to be a direction of research that will
see increasing attention [1].

One recurring challenge stemmed from the fact that there exist automated
processes which perform mass updates enormous numbers of documents in oth-
erwise unrelated processes. This results in otherwise independent components in
the transaction graph which suddenly become connected and appear as thought
they are related to the same process. Aside from being misleading, these leads to
some of the necessary graph operations, such as transitive reduction, to become
excessively expensive.

The lionshare of our work during this short project went into building a plat-
form for extracting and processing this low-level and extracting patterns akin
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Figure 5.1: Examples of connected components in transaction graphs from a
real SAP system. Edges between transactions indicate that they are related in
terms of criteria set out by domain experts. Many components in the dataset
were much larger than the examples here.
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to traces. However Gekkobrain’s approach diverges somewhat from traditional
process mining in this respect: rather than forcing the data into a simple se-
quential format like a trace, a more complex graph structure is maintained that
is arguably more true to reality. From this, a graphical representation built for
the user which does not have the formal semantics of a traditional Petri net,
such that the underlying data is not filtered away to the same degree as is the
case in other tools.

An interface for querying and exploring the dataset w.r.t. criteria such as
timespan, starting activities, as attributes of processes, along with the ability to
zoom in on data and discover similar processes, was developed. Again, the basic
implementation challenges of built this search engine consumed the majority of
our efforts. In the end, the challenges encountered in not only working this
real-world dataset, but also the inputs from domain experts at Gekkobrain as
well as from executives at Vestas Wind Systems, were incredibly informative
and highlighted the real-world needs and challenges for practitioners within the
process mining/intelligence space.
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Modelling Operating Theatre Workflows:

A Brief Literature Review

Christoffer O. Back

Healthcare processes are complex and often unpredictable, requiring a high
degree of flexibility. While they involve a great deal of domain knowledge on
the part of practitioners, it is also an area in which safety is paramount while
resources and expertise are a constraining factor. This has motivated a large
body of research in modelling and optimisation of healthcare processes.

Comprehensive literature reviews of modelling processes in healthcare ex-
ist, often focusing on specific dsiciplines like Operations Research and Process
Mining [39, 27, 29, 18]. This brief review will focus specifically on workflows
in and surrounding surgery and the operating theatre. More extensive reviews
focusing on operating theatres and surgical processes include [30, 42, 43, 41].

We identify two dimensions on which research can be characterised. First,
the perspective taken of the process, i.e. whether the focus lies on patient path-
ways, workflow of personnel or resource utilisation, as well as the granularity,
or scope, of the process being modelled. Second, research can usually be distin-
guished by discipline, i.e. the techniques used for modelling and optimisation.

1 Process Perspectives

1.1 Scope/Granularity

The level of detail in which processes are modelled is often a distinguishing
feature, ranging from highly detailed analysis of surgical video, motion and
activity recognition, to individual steps of the procedure, to the flow of patients
within section of an operating theatre, and finally end-to-end patient flows from
admission to release and even follow-up. Cross organisational and inter-ward
logistics are also a common focus.

Detailed models of tool usage patterns, based on low-level sensor data col-
lected during during Cholecystectomies (a highly standardised procedure), were
developed in [7, 8, 9, 35].

In [45], the workflow within an operating theatre is analysed, including
anaesthesia, operation, and early recovery, without specifying details of the
surgery. The authors proposed an “operating theatre of the future” in which
up to three patients can procede through the operating theatre, each in one of
these three stages.

1
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Other studies take a more encompassing view of the process surrounding
surgery, from admission to recovery [16]. For example, entering the ICU after
surgery can be a bottleneck in the overall process due to resource constraints
[5]. Some even incorporate diagnosis and follow-up after surgery [31, 22].

1.2 Patient Pathways, Resource Allocation, Scheduling

When analysing a surgical process, an obvious view to take is that of the flow
of the patient through the process, as in [49, 36].

It is also common to take the resource-oriented perspective with the aim
of optimising utilisation, capacity and efficiency. Balancing between quality
of care, safety and avoiding wasteful overcapacity or inefficient utilisation of
expensive resources is a complex problem of constrained optimisation. Staff
skill mix, facility capacity, and even organ availability need to be coordinated
in as safe and efficient a manner as possible.

To this end, models for balancing bed capacity between wards, scheduling
of surgeries w.r.t. staffing constraints, predicting arrival rates, and enforcement
of safety/service requirements have been developed (see remainder).

2 Approaches

We identify several overarching disciplines from which researchers approach the
quantitative modelling of surgical workflows. Despite a good deal of overlap,
there are distinctions in modelling tools employed.

2.1 Machine Learning

A number of approaches falling under the machine learning moniker have been
explored in the literature on surgical workflows. Reinforcement learning tech-
niques were sued for resource allocation in [24, 23]. Prediction for clinical path-
ways using latent variable models was addressed in [20, 21], and using a suite
of clustering and classification techniques in [16]. Patient flows were modelled
using a sophisticated Markov model in [17]. Random forests were used to detect
surgical workflow phases in [46]. Bayesian belief networks were used to model
several aspects of patients’ stay in an emergency department in [2].

2.2 Operations Research

Usually concerned with resource allocation and network flow analysis, the disci-
pline of operations research uses techniques like queuing theory, linear program-
ming for solving constrained optimisation problems, as well as simulation.

The scheduling of surgeries has received a good deal of attention. It was
explored in regards to optimising resource utilisation based on patient mix was
investigated in [3], on operating theatre specialisation in [12], surgery duration
variance in [14], on case urgency in [51], and to reduce overtime costs while

2
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adhering to labor laws in [10]. In [4] a decomposition approach is taken to
scheduling which incorporates several of the aforementioned factors.

Stochastic balancing of bed capacity based on fluctating demand patterns
was exlored in [13] length of stay patterns in [5]. Resource allocation and patient
admission was addressed in [25].

Simulations are another common tool for testing the effect of proposed work-
flow alterations [1, 38, 37, 15, 26, 32, 44]. Sophisticated simulations are even
used to train personnel using virtual reality [48, 47] and augmented reality tech-
nology [33].

2.3 Process Mining and Formal Methods

Process mining approaches are usually characterised by employing proper pro-
cess modelling formalisms with well defined semantics, commonly Petri nets or
their equvialents, temporal logics, or process algebras.

Conformance checking was implemented in an intelligent hospital IT system
in [40] for a surgical process. Modelled using the Declare language, it incorpo-
rated automated model repair and conformance checking using a cross-validation
based approach.

The anaesthetic process for Endoscopic Retrograde Cholangiopancreatogra-
phy procedure was investigated using the Heuristics miner in [28].

Formal process models have the advantage of being amenable to formal veri-
fication to ensure safety. In [6] Petri nets are used to model an operating theatre
workflow, verified for soundness, and subsequently reengineered to optimise re-
source utilisation while ensuring the soundness property is retained.

Another common theme in the literature is that of formally modelling, and
reasoning about, the surgical domain or medical organisations in which surgery
takes place. In [34, 11] systems were developed which integrate a knowledge base
(ontology) with surgical workflow models and a reasoning engine for querying.
A hierarchical ontology incorporating temporal rules for clinical pathways is
described in [50], while in [19] electronic medical records are integrated into
clinical pathway ontologies.
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Abstract: Surgery is a highly critical and costly procedure, and there is an imperative need to improve the efficiency in
surgical wards. Analyzing surgical patient flow and predicting cycle times of different peri-operative phases
can help improve the scheduling and management of surgeries. In this paper, we propose a novel approach
to mining temporal patterns of surgical patient flow with the use of Bayesian belief networks. We present
and compare three classes of probabilistic models and we evaluate them with respect to predicting cycle times
of individual phases of patient flow. The results of this study support previous work that surgical times are
log-normally distributed. We also show that the inclusion of a clustering pre-processing step improves the
performance of our models considerably.

1 INTRODUCTION

Surgery is a cornerstone of the healthcare system, and
critical in terms of time and resources. Ensuring effi-
ciency, timeliness and safety are crucial for providing
high quality service while controlling costs (Lalys and
Jannin, 2014), (Denton, 2007). While many processes
surrounding surgery are well structured, the dynamic
nature of patient arrivals combined with the complex-
ity of coordinating large numbers of specialized staff
and facilities, means that delays and misalignments
can have cascading effects leading to last-minute can-
cellations. This leads not only to an under-utilization
of expensive resources, but causes stress and upheaval
for patients.

The well-defined, yet dynamic; and high-cost,
high-impact nature of surgical patient flows, suggests
it is an area amenable to improvements via data ori-
ented process modeling. Advances in forecasting
long and short term dynamics of the surgical ward
can help inform intelligent surgery sequencing, staff
scheduling and workflow management systems.

This paper presents a preliminary investigation
into methods for modeling patient flows in surgi-
cal wards, with outset in a data set following pa-
tients from admission to discharge at the Royal In-

a https://orcid.org/0000-0001-7998-7167
b https://orcid.org/0000-0003-3698-8535
c https://orcid.org/0000-0002-5018-3066

firmary of Edinburgh. We focus our present in-
vestigation on temporal aspects of individual patient
flows, which are key to improving efficiency. Results
from this study can then inform the investigation of
other aspects of patient flows such as positioning, as
well as high-level dynamics between multiple patient
flows competing for shared resources at the level of
ward/hospital.

After an exploratory investigation of the data, we
present and compare three probabilistic models de-
scribing cycle times of individual phases in patient
flows prior to, during and following surgery. We eval-
uate these w.r.t. to predicting cycle times of individ-
ual phases of patient flows, from the time patients
are sent for, through anesthesia and surgery, and until
they leave recovery.

Specifically, we employ a type of probabilistic
model called a Bayesian network. Aside from their
capacity to easily incorporate domain knowledge,
Bayesian networks have the advantage that they can
be queried in complex ways even with incomplete ev-
idence, which is invaluable in the uncertain hospital
environment. Crucially, we show that by incorporat-
ing a pre-processing step based on simple clustering
of flows w.r.t. cycle times, we can improve the perfor-
mance of our models noticeably.

The structure of the sequel is as follows. In Sec-
tion 2 we review existing literature. Our subsequent
analysis of the data follows the classic data analyt-
ics workflow of Describe→ Diagnose→ Predict. In
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Section 3 we introduce the domain, the data set, and
the data cleaning process. In Section 4, we present a
descriptive analysis of the data set using process min-
ing tools and standard statistical tools to identify in-
formative features of the data. This informs the pro-
cess of building predictive models which we describe
and evaluate in Section 5. In Section 6 we discuss our
results and in Section 7 we conclude.

2 RELATED WORK

Improving efficiency in surgical wards, specifically
improving utilization of operating rooms, has re-
ceived growing interested nationally and internation-
ally for a number of years now (Lalys and Jannin,
2014). The National Theatres Project in Scotland
states as its objective, “appropriately increasing pa-
tient throughput, thereby using resources more pro-
ductively and efficiently”(Scotland, 2006). The met-
rics for improvement include: reducing unutilized
(operating room) hours; reducing over/under-runs,
late-starts, cancellations and delayed discharges; and
avoiding unnecessary out-of-hours and nighttime pro-
cedures. Many of these objectives are strongly related
to appropriate scheduling, and would thereby benefit
from more accurate, data-informed, models of patient
flows.

A significant amount of research exists in model-
ing processes in the surgical domain. The modeling
scope of much existing work tends to fall on two ends
of a spectrum in terms of granularity: the level of sur-
gical procedures at one end and broader care flows
beyond the surgical ward at the other.

In (Lalys and Jannin, 2014), 46 publications on
surgical process modeling are categorized into a tax-
onomy ranging from the level of the surgical pro-
cedure at the lowest level of granularity, to low-
level physical movements at the highest. At the lat-
ter level, which is typically concerned with robot-
assisted surgery or training and assessment of sur-
geons, we see research on phase detection (Stauder,
2014) and detailed models of individual tool usage
patterns based on sensor data (Ahmadi, 2009). In-
dividual hand motions from video data are automat-
ically identified in (Lin, 2006) and (Haro, 2012). A
number of models based on sensor data collected dur-
ing Cholecystectomies (a highly standardized proce-
dure), were developed in (Blum, 2008), (Bouarfa and
Dankelman, 2012), (Bouarfa, 2011), and (Neumuth,
2011). All of these studies have the surgical proce-
dure at the highest level of abstraction. Our present
investigation lies above this level of granularity, with
only the procedure name and some other basic details

being present in the data.
Above the level of individual procedures, we see

work such as (Stahl, 2006) which describes the work-
flow within an operating room, including anesthesia,
surgery, and early recovery. Other studies also ad-
dress the process surrounding surgery, from admis-
sion to recovery (Funkner, 2017), which matches the
scope of our data set. Taking a view beyond the oper-
ating room is important, since activities downstream
from the actual surgical procedure can interrupt pa-
tient flows as shown in the case of ICU bottlenecks in
(Akkerman and Knip, 2004). Some studies have also
incorporated diagnosis and follow-up after surgery
such as (Mans, 2012) and (Huang, 2013).

Bayesian networks were used to model several as-
pects of stays in an emergency department in (Acid,
2004). While overall stay duration was one attribute
included in the model, the scope was at higher level
of abstraction, and not focused specifically on surgi-
cal patient flows. Furthermore, the main focus was
the comparison of structure learning algorithms.

Some work has looked specifically at model-
ing variance in surgery durations (Strum, 2000) and
incorporating this into sequencing and scheduling
strategies (Denton, 2007). In (Kayis, 2012), regres-
sion modeling is employed to predict surgery dura-
tion based on clinical, operational and temporal data.
Stochastic balancing of bed capacity based on fluctu-
ating demand patterns was explored in (Cochran and
Bharti, 2006) and length of stay patterns in (Akker-
man and Knip, 2004). Resource allocation and patient
admission was addressed in (Hulshof, 2013).

In summary, the scope of patient flows ranging
from admission, through surgery to recovery, is one
which has been less thoroughly addressed: most work
is positioned at a lower or higher level of abstrac-
tion. In regards to the distribution of surgery times,
our work has the corollary contribution of confirm-
ing previous findings. In terms of the more nuanced
conditional models we present of cycle times, specif-
ically the integration of patient clusters to Bayesian
networks, we believe our approach to be novel.

3 DOMAIN & DATA
PREPARATION

The Royal Infirmary of Edinburgh is the largest in
Scotland, housing 900 beds and with its 24-hour ac-
cident and emergency department, providing a full
range of acute medical and surgical services. The hos-
pital IT system is integrated with the Operating Room
Scheduling Office System (ORSOS), a surgery man-
agement and scheduling system.
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The data set analyzed stems from the ORSOS sys-
tem and involves records ranging from 2010 until
2018 inclusive. Over 1700 types of procedures are
recorded in the data set with about half of cases classi-
fied as emergency cases. It is oriented around individ-
ual surgical procedures, such that any time a patient
receives surgical treatment, a new entry is created and
each such entry has a unique case ID. This means that
the same patient may have multiple unique case IDs,
potentially for the same hospital stay. Unique patient
IDs, as well as electronic health record identifiers,
make it possible to follow patients’ overall treatment
flows, though this was out of scope of this investiga-
tion.

Data regarding patient flows are entered manually
by surgical support personnel, with the system requir-
ing the entry of timestamps for each event in the pa-
tient flow. Figure 1 illustrates the proscribed sequence
of events, and also shows the authors’ aggregation
of activities into logical phases (pre-op, anesthesia,
surgery, recovery). The system enforces a simple lin-
ear ordering of events, though it can be overridden. If
users attempt to enter timestamps out of sequence, a
warning is given, but can be entered upon confirma-
tion. Summaries of cases with anomalous entries are
later sent in batches to staff for review.

Aside from the 11 timestamp attributes, the data
schema contains 34 other attributes, though some
are empty for many cases, such as “reason for de-
lay”. Information regarding the procedure performed
is included in two different coding schemes, one
providing more detail such as location on body.
Other case attributes such as the case type (emer-
gency/scheduled), its urgency classification1, the
ASA patient status rating2, and whether the patient
is registered as a day-case or inpatient. Staffing de-
tails include names of the main and supervising sur-
geon and anesthetist as well as the consultant as-
signed to the case. The source of admission (emer-
gency room, etc.), the operating room number, as well
as intended and actual destination following surgery
(ICU, etc.) are also included. Further details include
the diabetic status of the patient, types of anesthetics
administered, whether antibiotics were administered,
and whether pre-session briefings and surgical pauses
were held.

Cleaning and Preparation. The data set contains
a number of anomalous entries, comprising roughly
10% of the 38,728 entries. These entries were re-

1NCEPOD Classification of Intervention (NCEPOD,
2019).

2American Society of Anesthesiologists physical status
classification system. (Dripps, 1963)

Table 1: Anomalous cases removed prior to analysis.

ANOMALY COUNT % OF TOTAL

Duplicate entries 58 0.15
Missing values 31 0.08
Dates out-of-range 475 1.23
Zero timestamps 3089 7.98
Bad ordering 443 1.44

Total 4096 10.58

moved prior to further analysis. Table 1 provides an
overview.

Duplicate entries may have been due to an at-
tempt to correct a data entry error. The column
anaesthetic start time was the only timestamp
column to contain <NA> values. A larger number of
cases have clearly anomalous values in the case date
column, e.g. dates much too far in the past (1800) or
future (3206).

Process mining techniques helped quickly reveal
that despite the de-jure linear ordering of activities,
many anomalous, and decidedly implausible, event
orderings exist in the data. Figure 4 shows the re-
sult of running the SIMPLE version of the Alpha
miner(Van der Aalst, 2004) from the pm4py package
(Berti, 2019) on the top 20 sequence variants. The
Alpha miner takes as input an event log and outputs a
Petri net (specifically a workflow net): a type of pro-
cess model. Running the Alpha miner on the entire
log results in a flower model3. A further a analy-
sis of the directly-follows graph indicated that nearly
all possible pairwise event orderings occurred at least
once in the data.

One of the aspects of the Petri net in Figure 4 that
stands out is that it permits incision start time to
occur before anaesthetic start time. While this
was to an extent the result of anomalous timestamps
in the data, upon further inquiry with surgical staff,
we learned that it is indeed legal for these activities to
be recorded with the same timestamp in cases where
the surgeon administers a local anesthetic.

Timestamps in the data set are rounded to
the minute, and that for many cases, two or
more events are recorded with the same times-
tamp. For example, enter theatre time and
incision start time are sometimes identi-
cal, and in fact leave theatre time and are
enter recovery time identical for all cases. This
needed to be addressed prior to applying process
mining techniques, since they assume sequential
orderings in event traces. For this, the de-jure model
was used as a tiebreaker in cases of simultaneity.

3A flower model is a process model which permits any
event to be executed at any stage of the process.
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Figure 1: The patient flow proscribed by the ORSOS system. Activities are linearly ordered, but can occur “simultaneously”.
That is, some activities (such as Leave Operating Room) can have the same timestamp as the “succeeding” activity (Enter
Recovery), but should not occur after it.

Many of the implausible cases had zero times-
tamps associated with the out-of-order events (times-
tamps of the the form YY-MM-DDT00:00:00). We sus-
pect that these entries may be the result of users spec-
ifying only a date without a timestamp. A further 443
cases had anomalous event orderings, likely due to an
incorrect entry such as failing to increment the date
when a patient flow stretched from one day to the
next. All cases with invalid orderings were removed
prior to subsequent analysis of cycle time patterns.

Plotting event occurrences on a “dotted chart” (see
Figure 2) also reveals several outlying events (occur-
ring months or years from the rest of the flow). The
dotted chart simply plots the events from an event by
the case id along the y-axis and by time along the x-
axis, such that events associated with the same case
fall along a horizontal line.

In the remainder of the analysis, we have removed
data points with cycle times in the 99th percentile of
values, having observed the presence of events oc-
curring months, even years apart, which for a single
surgical case are almost certainly due to data entry
mistakes. The chart also makes immediately obvious
that a gap exists in the data, and gives an indication
of the development in the throughput of cases over
time, which remains nearly constant, perhaps increas-
ing slightly.

The number of anomalous cases discovered de-
spite the ORSOS system’s compliance measures,
demonstrate the importance of data quality measures,
especially if such data are to form the basis of pre-
scriptive models and policies. While many of these
anomalies would in principle be discoverable by man-
ually querying the data, the use of process mining
techniques helped reveal these anomalies quickly and
intuitively, serving as a springboard for more detailed
analysis.

4 ANALYSIS

In this section, we describe the empirical distributions
of individual and aggregate cycle times, and compare
how well various parametric distributions fit the data.
Then, we identify the most informative features of
the data set, which will be used as astarting point for
model building in 5.

Marginal Cycle Time Distributions. Fitting an ap-
propriate distribution to data can be a powerful ap-
proach to building a predictive model, despite its sim-
plicity. These models consider only the marginal dis-
tribution, i.e. they consider outcome across all cases,
without conditioning the distribution on case-specific
attributes. Table 2 displays the results of fitting seven
different distributions to the cycle times of both the
original “low-level” events, as well as the aggregated
process phases.

As indicated by goodness-of-fit statistics, aggre-
gating individual event cycle times results in more
well-formed distributions, with the one slight excep-
tion of the recovery stage. While information is
clearly lost by reducing 9 cycle times to 4, this is jus-
tified by the fact that any implications of cycle times
on resource utilization is captured by the aggrega-
tions. For example, an operating theatre, will have
the status of being occupied and unavailable for other
patients during each of the events Into theatre, Inci-
sion start, Incision stop, and until Leave theatre com-
mences. This effect on resource availability is equiva-
lently captured in the aggregations of these events into
one Surgery event and its corresponding cycle time.

Previous research has indicated that surgical cycle
times are log-normally distributed (Strum, 2000). Our
observations are consistent with this, but it should be
noted that the Kolmogorov-Smirnov goodness-of-fit
does not achieve statistical significance.

Mutual Information. To get an overview of corre-
lation between attributes, the mutual information be-
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Figure 2: A “dotted chart” helps give a quick overview of the event log. Each data point represents the occurrence of an
event, plotted by time on the x-axis and by a numerical case identifier on the y-axis which are incremented by time. At this
level of granularity we cannot see the dynamics of individual process instances, but aspects such as arrival rate, outliers and
missing values become clear. In our data set, there is a prominent gap from October 2013 to July 2014, something one would
otherwise need to actively investigate, but is immediately noticeable here . Furthermore, several events lie weeks or years
from the rest of the events in a case, suggesting anomalous values.

tween attributes was computed, a selection of which
are visualized as heatmap in Figure 5. As a nonpara-
metric correlation metric, mutual information is more
suitable for our data than parametric estimators such
as χ2 since we cannot confidently assume normality
for all attributes. Intuitively, mutual information mea-
sures the expected decrease in uncertainty regarding
the outcome of y upon learning the outcome of x.
Specifically, it measures the reduction in entropy of
the resulting conditional probability distribution.

For continuous values, namely cycle times, it was
necessary to discretize the data. This was done such
that each of 7 bins contained was of equal widths such
that the distribution of cases amongst bins roughly ap-
proximates their original distribution. Using this ap-
proach, correlations between attributes other than cy-
cle times were the strongest, while attributes influenc-
ing cycle times were more weakly correlated, though
still observable. Especially intended destination and
source of admission standout as informative w.r.t. cy-
cle times. Mutual information can tend to hide im-
portant nuances since it reflects the expected value of
the pointwise mutual information for individual val-
ues of a variable. Lead us to do a more detailed ex-
ploration of how different attributes influence cycle
times specifically.

Conditional Cycle Time Distributions. By explor-
ing the conditional distributions of cycle times for the
individual values attributes, we were able to get a bet-
ter idea of what influences cycle times. By visualizing
conditional distributions on the same plot, one gets a
quick impression of the whether an attribute is infor-
mative in this respect, or not. Albeit somewhat of a

time-consuming, brute-force approach, exploring the
data in this way is quite informative. This was an im-
portant factor for us in choosing which variables to
include in the models we present in Section 5. See
Figure 6 for examples of some of the most informa-
tive attributes.

Principle Components Analysis. Based on the in-
tuition that cases likely fall into some sort of group-
ing w.r.t cycle times, we investigated the presence of
clusters in the data. For example, cases with a long
anesthetic cycle time may also tend to have a long
surgery or recovery time - this likely being related to
the procedure performed or the patient’s condition.

A visual exploration of the raw, as well as log-
transformed, data gives the impression that no clear
groupings exist. One method for revealing sepa-
rable clusters in data that are not clearly separable
in the original data is via transformation techniques
such as Principle Components Analysis (PCA). PCA
projects the original data onto a linear subspace which
maximizes the resulting variability of the data along
the resulting bases, or principle components (Bishop,
2006). It is perhaps most commonly used as a method
for dimensionality reduction, by redefining the data
on a subset of the principal components which cap-
ture most of the variance in the data.

Applying PCA to the log-transformed data reveals
that the data does in fact fall into distinct clusters.
This can be seen in Figure 3 which shows the data
w.r.t to top 3 (of 4) principle components.
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Table 2: Best fits for marginal distributions of cycle times. Goodness-of-fit statistic used is the Kolmogorov-Smirnov criterion.
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EVENT GOODNESS-OF-FIT (KS) PLOT (Best fit for aggregate)

Send for patient 0.147 0.113 0.139 0.169 0.126 0.104 0.267
Enter department 0.161 0.147 0.197 0.205 0.171 0.157 0.184
Pre-op 0.094 0.087 0.123 0.127 0.09 0.062 0.24

Into anesthetic 0.226 0.166 0.168 0.153 0.133 0.15 0.19
Anesthetic start 0.146 0.098 0.134 0.171 0.112 0.096 0.189
Anesthetic 0.124 0.077 0.106 0.188 0.132 0.106 0.244

Into theatre 0.16 0.094 0.143 0.111 0.093 0.114 0.298
Incision start 0.164 0.122 0.144 0.061 0.06 0.07 0.132
Incision stop 0.187 0.145 0.168 0.111 0.144 0.128 0.25
Surgery 0.16 0.11 0.134 0.036 0.071 0.087 0.193

Enter recovery 0.083 0.079 0.126 0.243 0.174 0.139 0.198
Ready to leave 0.285 0.277 0.266 0.184 0.144 0.144 0.22
Recovery 0.099 0.083 0.127 0.244 0.17 0.136 0.19

Figure 3: Top 3 principle components for (log-transformed)
aggregate cycle times.

5 PREDICTION

In order to facilitate improved resource utilization
through more accurate scheduling and dynamic re-
source allocation, we suggest using Bayesian belief
networks (Koller and Friedman, 2009). The reason
for this choice of model lies in its flexibility. Not

limited to one target feature, Bayesian networks can
be queried on any attribute, using whatever evidence
is currently available. A scheduler can pose queries
concerning, for example, the probability of a surgery
taking more than x minutes given the case type and
condition of patient, or the likely destination of the
patient given other evidence.

A Bayesian belief network is a directed acyclic
graph with an associated parametrization and repre-
sents a joint probability distribution and its condi-
tional independence relations between variables, rep-
resented as nodes. Both of these aspects, the graph
structure and its parametrization need to be either
hand modeled, learned automatically, or a combina-
tion of the two. We restricted this investigation to
automatically learned models. This can sometimes
lead to what may seem counterintuitive models, but
it should be kept in mind that an edge between two
nodes does not necessarily indicate a causal relation-
ship between source and target.

We present a comparison of 3 classes of models,
the latter 2 hybrid discrete/(log)-Gaussian models:

Marginal Model: an unconnected graph, equivalent
to the distributions in Table 2.

10 Variable Model: 4 aggregate cycle times, ASA,
CaseType, Intended Destination, Management In-
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Figure 4: A Petri net generated by the Alpha miner on the
top 20 trace variants observed in the event log. This model
clearly allows implausible behavior, such as Incision start
preceding Anesthetic start.

tent, NCEPOD Category, Source of Admission.

22 Variable Model: 4 aggregate cycle times, ASA,
CaseType, Intended Destination, Management In-
tent, NCEPOD Category, Source of Admission,
Diabetic, Operating Room, 10 Anaesthetic Type
variables.

Figure 5: Heatmap of the mutual information between at-
tributes. The “bright” spots indicate that learning the out-
come of the corresponding variable on the x-axis decreases
the uncertainty about the outcome of the corresponding
variable on the y-axis. Destination denotes the intended
destination following the procedure, NCEPOD denotes the
urgency classification, and Intent denotes whether the case
is a day-case or inpatient case.

Feature Selection. The choice of variables was
based on analysis in Section 4, as well as the cardinal-
ity of variables. Variables with very large cardinality
often fail to improve results due to sparse represen-
tation in the data. One solution to allow the incor-
poration of these is to perform dimensionality reduc-
tion on these variables prior to training the network.
This is left for future work. For the largest model,
we started by including all features, removing those
which had no effect on performance.

Clustering. In order to explicitly incorporate the
clusters observed in Section 4, we performed simple
k-means clustering on the PCA transformed data and
added a Cluster attribute to each case. This new at-
tribute was then included as a node in some variants
of the Bayesian networks. Specifically, we added 4
variants of both the 10- and 22-variable model us-
ing different numbers of clusters: 5, 10, 15, 20. For
comparison a model without clusters added is evalu-
ated as well. These values were chosen to illustrate
the improvement in model performance upon adding
more clusters and the eventual appearance of an el-
bow of diminishing improvement usually around 15
to 20 clusters. We experimented with values ranging
between 2 and 40.

122



Figure 6: Examples of conditional cycle time distributions.
Top: conditioned on ASA status. Middle: Source of Ad-
mission. Bottom: Intended Destination.

We found that performing clustering on the PCA
transformed data gave slightly better results than clus-
tering on the original data. Note that we used all 4
principal components, hence the data was only trans-
formed and not reduced in dimensionality. It turns
out that PCA and k-means are in fact closely linked:
in (Ding and He, 2004) it is shown that PCA effec-
tively performs clustering w.r.t. the k-means objective
function. While performing PCA prior to k-means is a
widespread practice, it should be noted that it does not
always lead to improved results (Yeung and Ruzzo,
2001). We did observe a small improvement over per-
forming k-means on the untransformed data.

Learning Algorithms. Structure learning was per-
formed using score-based methods, specifically Hill
Climbing and TABU search, using Akaike Informa-
tion Criterion (AIC), Bayesian Information Criteron
(BIC) scores. We were unable to obtain models us-
ing log-likelihood scoring within a reasonable time.
An example of the graph structure of the learned
Bayesian network is shown in Figure 8. Parameter

learning was performed using the standard maximum
likelihood estimation, partly due to the unavailability
of Bayesian estimation techniques for hybrid models
in the chosen inference library.

Smoothing & Priors. Simple smoothing was ap-
plied to avoid zero probabilities for outcomes not ob-
served in the training data. This was done by simply
adding 0.01% to all probabilities and subsequently re-
normalizing. For continuous nodes with discrete par-
ents, the marginal distribution was assigned in case
a combination of the parents’ values was observed in
the training data.

Evaluation. Evaluation of Bayesian networks is of-
ten based on quantifying how closely the probabil-
ity distribution represented by the network matches
the empirical distribution (data). Typical metrics in-
clude log likelihood, Akaike information criterion,
Bayesian information criterion, and Kullback-Liebler
divergence.

One can also consider a specific target variable for
prediction and measure the error rate. Since we are
specifically interested in predicting cycle times, we
report results of the mean absolute error of predic-
tions for these 4 target variables. We chose to report
this metric rather than the more standard (root) mean
squared error (RMSE), since it gives a more imme-
diate sense of how far predictions were from actual
cycle times in terms of the original time units (min-
utes). Results for RMSE follow very nearly the same
pattern between models. Results are reported for 5
runs of 10-fold cross-validation, see Figure 7.

A crucial point regarding our approach to cross
validation concerns which attributes were considered
observed at each phase of the process. When predict-
ing a given cycle time, clearly any future cycle times
will not have been observed and should not be in-
cluded as inputs to the model. So when predicting the
Preop cycle time, Anesthesia, Surgery, and Recovery
should not be including as inputs. However, once the
patient has reached the Recovery phase, the preceding
cycle times are at least theoretically known and can
be used as inputs. This was our approach, motivated
by the assumption that even if patient flow monitor-
ing systems do not presently integrate such real-time
information they will likely do so in the near future.

6 DISCUSSION

Our preliminary analysis of the ORSOS data set has
demonstrated three points. First, the importance of
data quality assurance, cleaning and the usefulness
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Figure 7: 5 runs of 10-fold cross-validation based on mean absolute error on the 4 cycle time target variables: preop, anesthetic,
surgery, and recovery. Red: Marginal baseline model. Gold: 10-variable model. Violet: 22-variable model. Within each
boxplot grouping are results for models learned with the Hill Climbing and TABU structure learning algorithms using Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) respectively.
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Figure 8: The overall best performing model. The 22 variable model using TABU with BIC scoring and 20 clusters. Node
labels prefixed by Ane. denote anaesthetic types. NCEPOD indicates urgency classification, ASA patient condition and Intent
indicates day-case/inpatient.

of process mining techniques in this respect. Sec-
ond, that a reasonably accurate predictive model of
event cycle times in the form of a simple Bayesian
belief network can be built which significantly out-
performs simple marginal distribution fitting. Third,
that by clustering the target variables and including
these cluster labels as attribute in the model and train-
ing data improves accuracy yet further. Furthermore,
we describe how mutual information, tools for explor-
ing conditional probability distributions and principle
components analysis can not only give insight into the
data, but also guide model building

The choice of Bayesian networks was motivated
by their flexibility and interpretability. The fact that
they can be queried in such a versatile manner, based
on whatever data is available at the time, suggests they
would be a strong component of a predictive model in
a decision support and scheduling systems in surgery.
This allows for queries of the form, “what is the prob-
ability that case c will be in surgery for more than
m minutes given it has the following attributes, and
took n minutes to complete anesthesia?”. Specifically,
these could form the basis for probabilistic scheduling
systems.

7 CONCLUSION & FUTURE
WORK

We have demonstrated the utility of combining sev-
eral data analysis tools, including from process min-
ing and machine learning, to begin building a useful
model of a very complex set of processes in a sur-
gical ward. This approach would be also applica-
ble in other areas of the healthcare system in which
under-utilization of expensive resources calls for pre-
cise scheduling to avoid down-time.

In terms of the full data analytics workflow, often
summarized by Describe→ Diagnose→ Predict →
Prescribe, we have only just begun the Predict phase.
The incorporation of more aspects of the data set is
a clear next step - the huge cardinality of some at-
tributes, such as procedures and staff, should be ad-
dressed by incorporating domain knowledge and/or
dimensionality reduction. Considering the notable
improvements in precision we achieved with a rela-
tively limited data set, it is likely that incorporating
patient flow attributes across domains would lead to
yet more precise models.

A thorough comparison with learning algorithms
other than simple distribution fitting to confirm the
suitability of Bayesian networks to this application
is also important. Finally, while we have focused
on individual patient flows here, more comprehensive

125



models which take into account ward level dynam-
ics such as patient arrival rates, resource constraints,
and resulting inter-patient dynamics are a natural ex-
tension. In such a system-wide model, the work pre-
sented here would serve as a component to more ac-
curately model local event timings and subsequent
downstream arrival rates.
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Abstract. Intelligent systems play an increasingly central role in healthcare sys-
tems worldwide. Nonetheless, operational friction represents an obstacle to full
utilization of scarce resources and improvement of service standards. In this paper
we address the challenge of developing data-driven models of complex workflow
systems - a prerequisite for harnessing intelligent technologies for workflow im-
provement. We present a proof-of-concept model parametrized using real-world
data and constructed based on domain knowledge from the Royal Infirmary of
Edinburgh, demonstrating how off-the-shelf process mining, machine learning
and stochastic process modeling tools can be combined to build predictive mod-
els that capture complex control flow, constraints, policies and guidelines.
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1 Introduction

Surgical care is a key component of healthcare systems worldwide, saving and improv-
ing thousands of lives every day. Over 10 million operations are performed each year in
England [34], including high-risk cases and patients that require immediate life, limb
or organ-saving interventions. Surgical care is also very costly, with more than $400
billion spent each year in the United States on operative procedures [1]. The number of
people requiring surgery is rising every year, often leading to long waiting times that
may put patients at risk.

Ensuring efficiency, timeliness and safety are crucial for providing high-quality ser-
vice while controlling costs [26], [16]. While many processes surrounding surgery are
well structured, the dynamic nature of patient arrivals combined with the complex-
ity of coordinating large numbers of specialized staff and facilities, means that delays
and misalignments can have cascading effects leading to last-minute cancellations and
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under-utilization of expensive resources. There is, hence, an imperative need to improve
surgical workflow. Some key questions here are: How can we improve overall surgical
care performance in the most cost-effective way? How can we plan surgical care in a
way that it is tailored to the individual patient?

There is a wealth of data being collected through hospital IT systems, which can
be used towards answering these questions. This includes operating room management
and usage data, electronic health records and surgery cancellation data. By adopting a
process-based approach, one can make sense of such complex and big data and inform
improvements in surgical care processes, including intelligent surgery planning, staff
scheduling and workflow management.

This paper extends previous work [6] by presenting a preliminary investigation into
stochastic workflow modeling and verification methods in surgical wards, with outset
in a data set following patients from admission to discharge at the Royal Infirmary
of Edinburgh in Scotland. With the aim of gaining a comprehensive understanding of
surgical workflow, we use the data to investigate both system-wide surgical performance
and individual patient flow. Results from these two types of modeling can be combined
to enable personalised and efficient surgical scheduling.

In particular, we discuss how process mining methods can be used to gain insights
regarding control-flow and temporal patterns in the surgical ward. Focusing on system-
wide performance and recognizing the high level of uncertainty in the surgical depart-
ment, we demonstrate how Stochastic Time Petri Nets can be used to effectively capture
complex hospital policies and constraints. The choice of Stochastic Time Petri Nets al-
lows for simulation of different scenarios, thus enabling what-if analysis. This is key
for investigating different, and often competing, workflow improvement mechanisms.
Focusing on individual patient flow, we propose the use of Bayesian Networks to pre-
dict patient-specific cycle times of individual surgical phases, from the time patients are
sent for, through anesthesia and surgery, and until they leave recovery. Aside from their
capacity to easily incorporate domain knowledge, Bayesian networks have the advan-
tage that they can be queried in complex ways even with incomplete evidence, which is
invaluable in the uncertain hospital environment. We present and compare three prob-
abilistic models and we evaluate them w.r.t. to prediction accuracy. Crucially, we show
that by incorporating a pre-processing step based on simple clustering of flows w.r.t.
cycle times, we can improve the performance of our models noticeably.

The rest of the paper is structured as follows. In Section 2 we review existing liter-
ature. Our subsequent analysis of the data follows the classic data analytics workflow
of Describe → Diagnose → Predict. In Section 3 we introduce the domain, the data
set, and the data cleaning process. In Section 4, we present a descriptive analysis of the
data set using process mining and standard statistical tools to identify control-flow and
temporal patterns in the data. This informs the process of building system-wide simula-
tion models and individual-patient predictive models, which we describe and evaluate
in Section 5. In Section 6 we discuss our results and in Section 7 we conclude and
discuss directions for future work.
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2 Related Work

The modeling of surgical workflows has received a significant amount of attention by
researchers, motivated by the prerogative to improve efficiency and resource utilisation
while ensuring adherence to service standards.

Of particular interest for the present case study is the National Theatres Project
in Scotland which outlines several areas for improvement that might be addressed
by workflow optimization. This includes “appropriately increasing patient throughput,
thereby using resources more productively and efficiently” by reducing unutilized (op-
erating room) hours; reducing over/under-runs, late-starts, cancellations and delayed
discharges; and avoiding unnecessary out-of-hours and nighttime procedures [32].

Previous research on modeling surgical ward processes varies greatly in terms of
scope: from very fine-grained models of individual procedures to high-level models of
treatment pathways well beyond the context of the surgical ward itself (e.g. from visit
to a GP to follow-up evaluation and treatment). In their literature review on the topic
[26] Laylis and Jannin identify a range of granularity. At the finest level are low-level
physical movements such as tool usage patterns based on sensor data [4], phase detec-
tion [37], automatic identification of hand motions from video in [27] and [20]. Several
investigations have been made into the modelling of Cholecystectomies, a highly stan-
dardized procedure [10,11,12,31].

In [36] the authors go beyond the modeling of the surgical procedure to include
anesthesia and early recovery within the operating theatre, while [19] considers the
patient flow from admission to recovery. Activities downstream from surgery, namely
recovery in ICU wards can present a key bottleneck, as addressed in [5]. Extending the
patient pathway further, follow-up post-surgery is incorporated in [28,21]. In general,
however, most research appears to have focused primarily on either very low-level pro-
cedure or high-level treatment pathways. The patient flows we consider fall in between
these levels of granularity.

The use of Bayesian networks to model stays in an emergency department is evalu-
ated in [3]. In contrast to our approach, the view of patient flows is at a higher level of
abstraction, and the main focus is the comparison of structure learning algorithms.

Modeling the duration of surgical procedures was investigated in [38,24] and we are
able to report findings in line with these regarding the log-normal distribution of surgical
times. Surgical duration was incorporated into sequencing and scheduling strategies in
[16]. Stochastic balancing of bed capacity based on fluctuating demand patterns was
explored in [15] and length of stay patterns in [5] while resource allocation and patient
admission was addressed in [22].

More broadly, the problem of ensuring that systems fulfill a given set of specifi-
cations has been widely addressed in model checking and process mining research.
The systems under consideration can range from electronic circuits and communication
protocols [33,29], to business processes [23,14] and even biological systems [17].

We can verify whether a system satisfies a property or specification by means of
state-space exploration [40] or rewrite rules [8], but often realistic models reach a level
of complexity that precludes closed-form verification. This leaves simulation, essen-
tially a random sampling of the model’s state space, as a next best tool for verification
and what-if analysis.
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Incorporating desired constraints into a system model is straightforward [7], and
allows for correct-by-construction plan generation, but also leads to state-space explo-
sion. Advancements in seemingly unrelated areas such as robot motion [18] provide
evidence that this approach to intelligent planning is feasible, even in complex domains.

3 Domain and Data Preparation

We were granted access to workflow data recorded at The Royal Infirmary of Edinburgh
in connection with cases taking place from 2010 until 2018. The infirmary is Scotland’s
largest, with 900 beds and a 24-hour accident and emergency department. The data at
our disposal was recorded by the Operating Room Scheduling Office System (ORSOS),
which is one component in the institution’s overall IT-infrastructure.

Over 1700 types of procedures are recorded in the data set, about half of which
are classified as emergency cases. Each treatment procedure is given a unique case ID,
meaning that the same patient may be associated with multiple case IDs, even during
the same stay for inpatients. Following patients’ broader treatment patterns would be
possible using this dataset, but lies beyond the scope and focus of this paper.

Data is entered manually by surgical support personnel, with the system requiring
the entry of timestamps for each event in the patient flow. Figure 1 illustrates the pro-
scribed sequence of events, along with an aggregation of activities into logical phases
(pre-op, anesthesia, surgery, recovery).

The system attempts to enforce a strict linear ordering of events, thought this can be
overridden by personnel. If a timestamp is entered out of sequence, a warning is given,
but can be entered upon confirmation. Staff are then sent a summary of anomalous cases
for review at the end of the week.

Data Schema In addition to timestamps for the 11 proscribed activities in a patient flow,
34 other attributes are recorded. Attributes of note include two different procedure cod-
ing schemes, case type (emergency/scheduled, day-case/inpatient), NCEPOD urgency
classification 4, and the ASA patient condition rating.

Some staffing details are also included, such as main and supervising surgeon and
anesthetist, as well as the consultant assigned to the case. The source of admission
(emergency room, etc.), as well as intended and actual destination following surgery
(ICU, etc.) and crucially, the operating room number, are also included. Further details
include the diabetic status of the patient, types of anesthetics administered, whether
antibiotics were administered, and whether pre-session briefings and surgical pauses
were held.

Cleaning and Preparation A number of clearly anomalous entries are present in the
dataset, comprising roughly 10% of the 38,728 entries. Due to the relatively small per-
centage of anomalies and the reasonably large dataset, we followed a precautionary
principle and simply removed entire cases containing anomalous entries prior to further
analysis and modeling. Table 1 provides an overview.

4 NCEPOD Classification of Intervention [30].
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ANOMALY COUNT % OF TOTAL

Duplicate entries 58 0.15
Missing values 31 0.08
Dates out-of-range 475 1.23
Zero timestamps 3089 7.98
Bad ordering 443 1.44
Total 4096 10.58

Table 1: Anomalous cases removed prior to analysis. Originally published in [6].

Duplicate entries may have been due to an attempt to correct a data entry error, but
we are unable to determine which entry is reliable. The column anaesthetic start time
was the only timestamp column to contain NA values. A larger number of cases have
clearly anomalous values in the case date column, e.g. dates much too far in the past
(year 1800) or future (year 3206).

4 Analysis

4.1 Control Flow Patterns

Based on input from domain experts, we were aware of the de jure workflow, which fol-
lows a simple linear flow of events as illustrated in Figure 1. In addition to the anomalies
discussed in Section 3, process mining techniques helped reveal further control-flow
deviations, guiding the data cleaning process. In particular, we found dotted charts,
directly-follows graphs and mined Petri Nets to be particularly informative.

PREOP ANESTHESIA SURGERY RECOVERY

Send
for

patient

Enter
depart-
ment

Into
anesthetic

room

Anesth
-etic

start

Into
operating

room

Incision
start

Incision
stop

Leave
operating

room

Enter
recovery

Ready
to leave

recovery

Leave
recovery

Fig. 1: The de jure sequence of events recorded by the ORSOS system, representing the
intended patient flow. Activities are linearly ordered, but can occur “simultaneously”.
That is, some activities (such as Leave Operating Room) can have the same timestamp
as the “succeeding” activity (Enter Recovery), but should not occur after it. Originally
published in [6].

Dotted Chart One simple yet powerful tool for getting a quick, preliminary overview of
process-related data is the dotted chart, which simply charts events w.r.t. case-id across
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time such that dots falling along a horizontal line represent events belonging to the same
process instance (i.e. case).

Using the dotted chart in Figure 2 we immediately identified a substantial gap in the
dataset. Furthermore, we can see that some cases have events occurring many months,
even years apart - almost certainly evidence of anomalous entries.

Fig. 2: A dotted chart showing all events in our dataset, arranged according to case id
and timestamp. Originally published in [6].

Directly-Follows Graph Another simple visualization tool, directly-follows graphs con-
sist of nodes and directed edges, where nodes represent the events in the log, and an
edge exists between two nodes if there is at least one log trace where the source event is
followed by the target event. Figure 3 shows the directly-follows graph obtained for our
dataset, which includes node and edge frequencies. On one hand, the event frequencies
on the graph confirmed that all events were included in each trace, in accordance with
the de jure workflow. On the other hand, the graph indicated that nearly all possible
pairwise event orderings occurred at least once in the data. This is inconsistent with
the de jure workflow, and it includes several implausible event orderings. For example,
there were a remarkable 154 traces where the last event in the de jure workflow, namely
leave recovery time, occurs before the proscribed first event, namely sent for time.

Alpha Miner For a more nuanced view of the control-flow evidenced by the event log,
proper process mining algorithms can be used. The Alpha (α) miner was one of the
first process mining algorithms developed, and though it has limitations regarding the
variety of control constructs it is able to identify, for our purposes it provided interesting
insights into course of events as evidenced by the data.
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Fig. 3: Directly-follows graph indicating that nearly all possible pairwise event order-
ings occurred at least once in the data.
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Send for patient

Anesthetic start Into anesthetic room Enter department

Incision stop

Into operating room

Incision start

Enter recovery

Leave operating room

Ready to leave recovery

Leave recovery

Fig. 4: Petri net generated by the Alpha
miner on the top 20 trace variants. Origi-
nally published in [6].

Figure 4 shows the result of run-
ning the SIMPLE version of the Alpha
miner[2] from the pm4py package [9]
on the top 20 sequence variants in the
log. Mining on the entire log produces
a flower model - a model which permits
any behavior, in line with observation
from the directly-follows graph in Figure
3.

According to this model, several re-
markable control patterns seem to be ev-
idenced by the most frequently occurring
sequence variants. For example, accord-
ing to Figure 4, anesthetic start is not a
precondition for incision start. This ob-
servation led us to inquire with experts at
the infirmary and to more closely inves-
tigate these cases in the dataset. Appar-
ently, it was not uncommon for these two
events to have exactly the same times-
tamp: a reflection, for example, of cases
in which a surgeon administers a local
anesthetic immediately prior to a minor
surgery.

This observation gives rise to a fur-
ther insight: nearly all process mining
algorithms have a strong assumption of
temporal monotonicity, i.e. events are
strictly linearly ordered such that no two
events share exactly the same timestamp.
With the coarse level of temporal accu-
racy (1-5 minutes) in our dataset, ex-
actly co-occurring events were common.
In this sense, most process mining algo-
rithms are unable to account for true con-
currency in data.

4.2 Temporal Patterns

Beyond identifying anomalies in the
data, there were few interesting control-
flow patterns to identify at the level of
patient flows, since they do in fact follow
a (non-monotonic) linear process.

This left temporal patterns as the next
obvious aspect to investigate, especially
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since both resource usage and service
guidelines are largely temporally focused
(e.g. target time to theatre, anesthetist availability).

Event Aggregation In part due to large numbers of zero-duration cycle-times due to the
phenomenon of co-occurring events, but also based on conversations with experts, we
decided to group individual events into the four phases illustrated in Figure 1. Aside
from clearly representing logically meaningful phases, it was also clear that this aggre-
gation smoothed out cycle-time distributions.

On one hand, this process of aggregation arguably removes valuable information
that could inform our model, on the other, it constitutes a form of dimensionality reduc-
tion which helps control the complexity of our model and ultimately improves perfor-
mance in the end.

Marginal Distributions The simplest temporal pattern at the level of patient flows is
the marginal distribution of cycle times across all patients regardless of procedure, con-
dition, urgency, etc. Fitting a probability distribution to the empirical distributions of
cycle time also constitutes the simplest possible predictive model, i.e. the maximum
likelihood prediction based on the best-fit distribution.

In Table 2 we show the goodness-of-fit statistics (Kolmogorov-Smirnov criterion)
for 7 types of distributions for both the individual events and events aggregated into
phases. Those distributions best fit to the phase data are visually depicted.

In building the stochastic Petri net described in Section 5, we used these marginal
distributions to parametrized transitions representing these phases. However, our mod-
eling tool restricted the families of probability distributions to Exponential, Erlang and
polynomials of exponentials. We illustrate our approximations to the best-fit distribu-
tions in Table 2 and give the exact parametrizations in Table 5.

Mutual Information To get an impression of which attributes might be informative in-
dependent variables in conditional distributions of cycle times, we calculated estimates
of pairwise mutual information. Having an eye to identifying variables for inclusion in
the Bayesian networks described in Section 5.2, we were interested in mutual informa-
tion between all attributes.

As a measure of the expected decrease in uncertainty regarding the outcome of
variable X upon learning the outcome of Y , mutual information is akin to standard
correlation metrics, but well suited to hybrid (discrete/continuous) attributes and makes
no assumption regarding normality or linearity.

Recalling the definition of the Shannon entropy of a random variable X as the its
expected information content, denoted H[X ], we can write mutual information directly
as the decrease in entropy of X upon learning the outcome of Y . Formally, I(X ;Y ) =
H[X ]−H[X |Y ]. Two completely independent variables will have mutual information of
H[X ]−H[X ] = 0, while for two perfectly correlated variables it collapses to the entropy
of the dependent variable H[X ]−0 = H[X ].

However, as an expected value (averaged over the sample space), it can hide that
specific outcomes for a variable can have a high pointwise mutual information - which
could be harnessed by a predictive model - yet disappear amongst many uninformative
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EVENT GOODNESS-OF-FIT (KS) PLOT (Best fit for aggregate)

Send for patient 0.147 0.113 0.139 0.169 0.126 0.104 0.267
Enter department 0.161 0.147 0.197 0.205 0.171 0.157 0.184
Pre-op 0.094 0.087 0.123 0.127 0.09 0.062 0.24

Into anesthetic 0.226 0.166 0.168 0.153 0.133 0.15 0.19
Anesthetic start 0.146 0.098 0.134 0.171 0.112 0.096 0.189
Anesthetic 0.124 0.077 0.106 0.188 0.132 0.106 0.244

Into theatre 0.16 0.094 0.143 0.111 0.093 0.114 0.298
Incision start 0.164 0.122 0.144 0.061 0.06 0.07 0.132
Incision stop 0.187 0.145 0.168 0.111 0.144 0.128 0.25
Surgery 0.16 0.11 0.134 0.036 0.071 0.087 0.193

Enter recovery 0.083 0.079 0.126 0.243 0.174 0.139 0.198
Ready to leave 0.285 0.277 0.266 0.184 0.144 0.144 0.22
Recovery 0.099 0.083 0.127 0.244 0.17 0.136 0.19

Table 2: Red: Best fits for marginal distributions of cycle times, goodness-of-fit statistic
used is the Kolmogorov-Smirnov criterion. Blue: distributions used for modelling, in
which our tool restricted the choice of distributions to Erlang (pre-op) and polynomials
of exponentials (remaining). Originally published in [6].

outcomes. For this reason we also manually explored conditional distributions for cycle
times.

Conditional Cycle Time Distributions Our investigation around the most informative
features in the data set continued by exploring the conditional distributions of cycle
times for the individual values attributes. By visualizing conditional distributions on
the same plot, one gets a quick impression of whether an attribute is informative in this
respect, or not. Even though this is a somewhat time-consuming, brute-force approach,
exploring the data in this way turned out to be quite informative. This analysis played an
important role for us in choosing which variables to include in the models we present in
Section 5.2. Examples of some of the most informative attributes are presented in Figure
5. For instance, one can see that the conditional cycle time distributions for surgery
differ considerably based on ASA status, i.e. for normal healthy patients (ASA status 1),
for patients with severe systemic disease that is a constant threat to life (ASA status 4)
and for patients with non-assessed ASA status. The anesthetic cycle time distributions
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conditioned on source of admission also differ considerably, with patient cases coming
from the High Dependency Unit spending longer on average in Anesthesia, compared
to those coming from the Admissions Unit or some other source.

Fig. 5: Examples of conditional cycle time distributions. Top: conditioned on ASA sta-
tus. Second from top: Source of Admission. Third from top: Intended Destination. Bot-
tom: Case Type.
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Principal Component Analysis & Patient Clusters We explored the presence of group-
ings of patients in regards to duration by a combination of visual analysis, data trans-
formation and clustering.

Judging by the original durations of the 4 phases of a patient’s flow, there do not
appear to be clear groupings of patients (Figure 6a). However, after applying principal
components analysis (PCA) and plotting the data w.r.t. the four principal components,
clear groupings become apparent (Figure 6b). Since PCA assumes normally distributed
data, and since most durations more closely follow a log-normal distribution, the data
was log-transformed prior to PCA transformation.

Afterwards, k-means clustering was used to discover grouping of patients. This de-
rived attribute was added to the dataset and our predictive models, noticeably improving
peformance. It should be noted that we retained all 4 principal components, and thus
employed PCA solely as a transformation rather than dimensionality reduction tech-
nique, as is common. This was due to the observation that removing those principal
with lowest eigenvalues did not improve performance. This is not unexpected, consid-
ering the small number of dimensions.

4.3 Arrival Rates

Many of the aspects of patient flows we have considered so far concern patterns at
the level of the individual patient. In order to model system-level dynamics it is cru-
cial to consider how the system is affected by multiple processes competing for shared
resources.

One key component in this analysis concerns the arrival of patients, in particular
unplanned arrivals requiring immediate treatment, since this will affect and potentially
interfere other patient flows. A clearly defined policy exists for the prioritisation of
cases based on severity which can lead to cancellation of procedures.

A common assumption in performance modelling and queuing theory is that the
number cases arriving for service within some interval follows a Poisson distribution.
We found those cases arriving via the emergency room (unscheduled) did in fact follow
a Poisson distribution remarkably well (Figure 7) whereas scheduled cases did not.
The latter is not so surprising since the arrival of scheduled cases is necessarily a non-
random process and is adjusted to balance the arrival of emergency cases.

The close fit of daily emergency arrivals to a Poisson distribution allows us to ac-
curately model the remaining stochastic transition in our model (the other representing
marginal cycle times) using the closely related exponential distribution, which captures
the corresponding distribution of inter-arrival times.

5 Modeling

5.1 Stochastic Time Petri Nets for System-Wide Simulation

To model the surgical workflow, we used Stochastic Time Petri Nets (STPN) which are
essentially Petri nets in which the notion of time and uncertainty is incorporated by
adding either a deterministic or a probabilistic delay for the firing of transitions. Specif-
ically, transitions can be either immediate, deterministic or stochastic (Table 3). The
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(a) Raw durations of 4 phases plotted against each other

(b) Durations w.r.t. principal components. Data was log-transformed prior to PCA transformation.

139



14 Christoffer Olling Back et al.

Fig. 7: Daily arrivals (black) along with best-fit Poisson distribution (red). Left: emer-
gency cases. Right: scheduled cases.

model was implemented in ORIS API; a software tool for the modelling and evalua-
tion of stochastic processes [13]. By using the functions provided by the ORIS tool we
were able to evaluate the performance of the system by observing how different metrics
change when we alternate some of its aspects.

TRANSITION REPRESENTATION DESCRIPTION

Immediate

? condition
Fires immmediately if enabled, conflicts be-
tween competing enabled immediate transitions
are resolved using priority ranking

Deterministic

5
Fires after a fixed amount of time upon becom-
ing enabled

Stochastic

λe−λx

Fires after a delay sampled from a probability
distribution upon becoming enabled

Table 3: Overview of transition types in Stochastic Time Petri nets.

Surgical Ward Workflow Description The scenario that is considered for this study is
the following: Emergency patients arrive in the hospital at a certain rate to receive treat-
ment throughout the entire 24 hour period (transition arrival in Figure 8b) while elec-
tive ones are only allowed to arrive at the hospital during the working hours (uniform
transition arrival in Figure 8a with enabling function ?working hours=1). Emergency
arrivals go through a checking procedure for the determination of the severity of their
condition. For the current model we assume that about half of the cases do not require
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immediate intervention (uniform transitions emergency status and scheduled status). If
it is decided that the operation must be performed immediately, the patient moves to the
Preop room in order to get prepared for the operation (place preop room).

According to the NCEPOD urgency classification [30], target time to theater varies
depending on the case. For the purposes of this study, only one type of emergency is
considered, and the expected time to theater was set to 30 minutes. On the other hand,
scheduled cases can be cancelled up to the time they are about to be placed under
anaesthesia if there are no available resources (e.g. beds, surgeons, theaters) to continue
the process (transitions cancel 1,cancel 2). This is not the case for emergency patients,
however, who can move from phase to phase (pre-op, anesthesia, surgery, recovery) if
the resources for the next part of the process are available. In this paper, we assume that
a surgeon and an anesthetist is required for the surgery. Furthermore, the anesthetist is
also required during anesthesia and recovery. Note that priority is given to emergency
patients over scheduled ones when a decision has to be made regarding the entry to an
operating theater or an anesthetic room. The duration of each phase (pre-op, anesthe-
sia, surgery, recovery) is modelled using stochastic transitions with random firing rates
following distributions that match our findings in Section 4 (Table 2). The properties of
these transitions is shown in Table 5.

To account for cancellations and delays, two places were added in the STPN, namely
cancelled cases 24h and emergencies wait cases. In the former a token is added every
time a scheduled case gets cancelled while in the latter a token is added whenever an
emergency case is waiting for more than 30 minutes. Both places are reset to zero at
the start of a working day. Prioritization and availability checking were incorporated
in the model by setting the proper enabling functions and marking updates to transi-
tions. For instance, the enabling function of the transition enter recovery was set to
bed available>0. This property of the model prevents emergency patients to enter the
recovery phase if there are no available beds. Table 4 illustrates some examples of how
our STPN captures some other policies and guidelines.

Additional simplifying assumptions made for this first iteration of modeling in-
clude: that anesthetic rooms and operating theatres are completely independent, a con-
stant number of resources are available within and outside working hours and only one
type of recovery room is present whereas in reality different sections are present, such
as ICU and high-dependency unit.

Figure 8c shows the basic outline of our model. Patient flows were modeled as
individual workflow nets in order to capture constraint violations for individual patients.
These workflow nets were then programmatically duplicated during simulations. Due
to space limitations we are unable to elaborate all details of the model, particularly
enabling/update functions and firing priorities, but the full model can be found online 5.

Simulation Using our model, we investigated different resource capacity scenarios,
with a focus on the ability of the system to fulfill two quality-of-service indicators:

– Number of scheduled cases cancelled in 24 timeframe
– Target time to theatre < 30 minutes for emergency cases

5 http://www.github.com/apapan08
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POLICY/GUIDELINE PETRI NET FRAGMENT

Normal working hours are from 8-18

working
hours

outside
working
hours

10

14

Non-emergency procedures should be handled
within normal working hours

? working hours == 1

preop

Scheduled cases can be cancelled all the way up
to entering anesthetic room if all theatres are oc-
cupied by higher priority cases

? anesthetic room > 0
AND operating theatre > 0

enter
anesthetic

cancel
cancelled

cases

PRIORITY: enter anesthetic > cancel

Table 4: Simplified examples of some of the policies, guidelines and constraints for
patient flows captured by our model, along with the fragment of the Petri net which
captures this.

TRANSITION DISTRIBUTION PARAMETERS

Emergency arrivals Exponential λ = 0.00487

Preop Erlang k = 3, λ = 0.16

Anesthetic Polynomial of Exponentials 1.5x2e−0.11x−10xe−0.11x +30e−0.11x

Surgery Polynomial of Exponentials x2e−0.0385x + xe−0.0085x

Recovery Polynomial of Exponentials x2e−0.05x−10xe−0.1x +150e−0.1x

Table 5: Fitted parameters for stochastic transitions. See Table 2 for a visualization.
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(a) Template for scheduled patient flow.

(b) Template for emergency patient flow.

(c) Shared resources.

Fig. 8: Stochastic Time Petri Net used to model core aspects of patients flows.

These are properties that are straightforward to formalize and evaluate. In fact,
any properties that can be formalized in an appropriate temporal logic such as LTL
or MITL6, which read similarly to natural language guidelines, can be evaluated. In ad-
dition to reporting the expected values for these QoS criteria, we included the expected
resource availability over time. This helps us to identify when, and for which resources,
potential bottlenecks arise. In a more sophisticated model, we would likely see more
complex patterns resulting from interacting processes/resources.

We report results in terms of expected value7 across 100 simulation runs of each
scenario. That is, the number of cancelled cases or available operating theatres at a given

6 Linear Temporal Logic, Metric Interval Temporal Logic.
7 E[X ] = ∑ x p(X = x)
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EXCESS CAPACITY SUFFICIENT CAPACITY INSUFFICIENT CAPACITY

scheduled cases/day 10 10 10
anesthetists 10 8 4
surgeons 8 5 3
anesthetic rooms 8 4 2
operating theatres 10 8 4
recovery beds 12 6 4

Table 6: Resource capacity scenarios explored in simulations.

time, averaged over simulation runs. With this simple model, the state of the system
follows a consistent periodic fluctuation according to the working hours. Realistically,
however, greater fluctuations would be likely due to uneven patient inflows and staffing
availability patterns over time.

5.2 Bayesian Nets for Individualised Prediction

In modelling cycle times in patient flows, our model in Figure considers only marginal
distributions, i.e. cycle time estimates are identical for all patients. However, as we illus-
trated in Section 4.2, there clearly exist categories of patients with significant variations
in cycle times.

Bayesian Nets are probabilistic graphical models that capture the structure of com-
plex probability distributions. By exploiting conditional independence relations be-
tween variables, inference algorithms allow us to query the belief network in a flexible
manner, even with only partial information [25]. In the present context, Bayesian nets
allow us to to take into account multiple attributes of a patient along with the partial
completion of their treatment in order to make significantly more accurate and nuanced
predictions regarding cycle time and other aspects, such as destination.

We present the results of two Bayesian networks in predicting cycle time, leaving as
an important avenue of future research the integration of these predictive models into a
more sophisticated process model which accounts individual patient attributes. Figure
9 illustrates that Bayesian networks can be integrated with Stochastic Petri net models
to more accurately model transition distributions specifically.

The models were built and trained using algorithms implemented in the bnlearn
package for the programming language R [35]. We used our own implementation of
cross-validation, in part to avoid data snooping, and added simple smoothing procedures
to account for undersampling.

Feature Selection We evaluated two networks: a 10-variable model and a 22-variable
extension of the first. The decision of which attributes to include was based in part on
our exploration of conditional distributions in Section 4.2 and pairwise mutual infor-
mation described in 4.2.

One feature of note is the Cluster node in both 10 and 22 variable models. This
represents the patients groups identified in 4.2. Using simple k-means clustering, we
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Simulation Results - Insufficient Capacity

Cancelled-Cases
Emergency-Delay

Surgeons-Available
Anesthetists-Available

Available-Anesthetic-Rooms
Available-Operating-Theaters

Table 7: Simulation results for scenarios with (top) excess capacity, (middle) sufficient
capacity, and (bottom) insufficient capacity averaged over 100 runs. Cancelled-Cases
and Emergency-Delay represent failures to meet quality of service guidelines when
the expected value exceeds 0. In other words: these are the system properties we are
interested in verifying. 145
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Fig. 9: Petri nets capture control-flow of a process, while Bayesian networks allow nu-
anced modelling of transition distributions based on case attributes. Integrating these
two modelling perspectives is an important next step in developing data-driven, patient
centric workflow models.

experimented with identifying 5, 10, 15, and 20 patient clusters which proved moder-
ately helpful in improving performance - in particular for predicting anesthetic cycle
times using the 22-variable model.

Structure Learning There are two methods for constructing the graph structure of a
Bayesian net: manually, based on expert knowledge; and automatically using structure
learning algorithms. After several attempts at building nets manually, we found that
automatically generated nets outperformed, despite sometimes finding odd connections
between variables.

We employed the score-based structure learning algorithms hill-climbing and TABU
structure-learning algorithms, using scoring functions Akaike and Bayesian Informa-
tion Criterion (AIC/BIC). This choice was due to their computational tractability and
suitability to the our hybrid dataset (continuous and discrete attributes). The 22 variable
graph can be seen in Figure 10.

Evaluation Models were evaluated based on prediction of cycle times for the 4 phases
of the surgical patient flow using 10-fold cross validation. We present mean absolute
error in Figure 11 for comprehensibility, but note that mean squared error result closely
follow the same pattern. As a baseline for comparison, results are shown for the best-fit
marginal distributions reported in Table 2.
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Fig. 10: A Bayesian belief network taking into account 22 attributes of a patient’s treat-
ment. Attributes prefixed by Ane. denote different types of anaesthetic. Note the central
role of the latent Cluster attribute discovered in Section 4.2. Originally published in [6].

Avoiding Data Snooping One pitfall that was important to avoid, in particular when
modelling partial executions of patient flows, was that of inadvertent data snooping
by including the Cluster attribute. When evaluating a model’s predictive power on test
data, the cluster should be consider an unobserved variable.

While intuitively obvious, this is a crucial methodological point, as including it
would constitute a form of data snooping since the cluster itself is in fact derived from
the target variables (cycle times). Nonetheless, the variable is able to play a role in the
Bayesian network, despite being unobserved, via conditional dependencies between it,
observed variables and unobserved target variables.

6 Discussion

The case study presented in this paper has highlighted a number of challenges and
lessons learnt that can be applied to other surgical workflow modeling projects, as well
wider data-driven healthcare improvement initiatives. First, data quality assurance is
key. One of the most immediate observations of our analysis was presence of a good
deal of anomalous data. Process mining techniques proved to be useful for detecting
outliers and identifying anomalies related to the control-flow.

Second, even though it seemed initially that there were no groupings of patients
with regards to duration, PCA revealed latent patient categories in our data. Identifying
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Fig. 11: Comparison of 40 different Bayesian net models using 10 (blue) and 22 (green)
variables, but different structure learning algorithms. Results are based on 5 runs of 10-
fold cross-validation for predicting cycle time of partially completed patient flows. As
a baseline comparison, the simple best-fit marginal distribution (reported in Table 2) is
shown in red. Originally published in [6].
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these patient clusters improved Bayesian net prediction, even though interpreting what
these categories mean is not straightforward.

Third, we showed that a reasonably accurate predictive model of event cycle times
in the form of a simple Bayesian belief network can be built, which significantly out-
performs simple marginal distribution fitting. The choice of Bayesian networks was
motivated by their flexibility and interpretability, which is of great importance in safety-
critical domains like healthcare. The ability to query these models suggests they would
be a strong component of an intelligent probabilistic scheduling system in surgery.

Finally, Stochastic Time Petri Nets were found to be an appropriate formalism for
capturing hospital policies and guidelines surrounding surgery, in particular regarding
timing and resource requirements. Distinguishing between the workflows for emer-
gency and scheduled cases was possible in a clear and transparent way, and incorporat-
ing case prioritization was straightforward. Even though the model presented in Section
5.1 is a simplified version of reality, it serves as proof-of-concept of how real-world data
can be incorporated into a model that combines official procedures and guidelines with
domain expert knowledge. Simulating different scenarios allowed us to test the limits
of the system and to analyse the effect of varying resource allocation.

7 Conclusion and Future Work

In this paper, we presented a preliminary investigation into probabilistic workflow mod-
eling, simulation and prediction methods in surgical wards. This is an important first
step towards much-needed surgical care improvement. Our analysis is focused on key
surgical phases, which is a level of granularity that has received less attention in existing
literature.

Data-informed surgical care scheduling that takes into account individual patient
characteristics, resource availability and hospital policies presents a promising approach
to improving resource utilization, quality of care and, ultimately, patient and staff satis-
faction. We have demonstrated the value of combining several data analysis paradigms,
from mathematical modeling to process mining and machine learning, towards devel-
oping a model that effectively captures the complexity of surgical processes, while al-
lowing for experimentation and insightful interrogation. This approach is applicable in
other areas of the healthcare system, where under-utilization of expensive resources
calls for precise scheduling to minimize costs and waiting times.

Our analysis considered both system-wide surgical performance (through Stochas-
tic Time Petri Net modeling and simulation) and individual patient flow (through Bayesian
Net cycle time prediction). In order to integrate the two in the future and incorporate
Bayesian nets into Petri Net modeling, we propose the use of Bayesian Stochastic Petri
Nets [39].

In the big data and precision medicine era, developing intelligent methods for dy-
namic and personalized scheduling in the surgical ward is a key research direction. Ex-
tending the work presented in this paper to incorporate more detailed information about
the surgical ward is desirable, and would possibly require further domain knowledge
and dimensionality reduction, so as to deal with the huge cardinality of some attributes.
We also regard evaluation with domain experts as an important next step, ensuring that
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the recommendations of a future surgical scheduling system are understood and deemed
useful by hospital staff.
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Abstract. Declarative process discovery is the art of using historical
data to better understand the responsibilities of an organisation: its
governing business rules and goals. These rules and goals can be de-
scribed using declarative process notations, such as Dynamic Condition
Response (DCR) Graphs, which has seen widespread industrial adoption
within Denmark, in particular through its integration in a case manage-
ment solution used by 70% of central government institutions. In this
paper, we introduce ParNek: a novel, effective, and extensible miner
for the discovery of DCR Graphs. We empirically evaluate ParNek and
show that it significantly outperforms the state-of-the-art in DCR discov-
ery and performs at least comparably to the state-of-the-art in Declare
discovery. Notably, the miner can be configured to sacrifice relatively lit-
tle precision in favour of significant gains in simplicity, making it the first
miner able to produce understandable DCR Graphs for real-life logs.

Keywords: Declarative Process Discovery, Declarative Models, Dynamic
Condition Response Graphs, DCR Graphs, DCR Discovery

1 Introduction

Automating knowledge intensive processes offers unique challenges: the problems
faced by knowledge workers are highly heterogeneous and tend to require unique
solutions. In municipal government, for example, no two citizens are exactly
the same: when dealing with long-term unemployment or illness, solutions will
be tailored to each citizen’s individual needs. These unique solutions are to a
large degree determined by the case workers themselves, in sharp contrast to
traditional production processes where the worker is usually expected to strictly
follow the instructions of the system. At the same time, organisations and their
workers do have many responsibilities: goals need to be met, laws need to be
adhered to and business practices followed. Information systems should ensure

? This work is supported by the Hybrid Business Process Management Technologies
project (DFF-6111-00337) funded by the Danish Council for Independent Research,
and the EcoKnow project (7050-00034A) funded by the Innovation Foundation. First
and second author listed alphabetically.
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that these responsibilities are met, and therefore some form of control over the
activities of the workers is still required.

Because of this high degree of flexibility, it can be problematic to focus on the
how of knowledge work: defining all possible paths through a process becomes
cumbersome as the number of variations increases, and often it is impossible
to exactly predict what variations may occur in the future. Instead, it can be
helpful to focus on the what of knowledge work: the goals we aim to achieve, and
the rules to which must adhere. It can then be left to the information system to
derive possible paths from these goals and rules.

Imperative process notations such as BPMN and Petri nets are used to cap-
ture the how of a process by using a flow-based paradigm: when executing the
model, one follows the flow of the model, usually indicated by arrows, executing
the activities of the model along the way. Such notations are poorly suited to
capturing the what of the process: rules are not defined explicitly, but instead
encoded as allowed paths. One rule may affect many different paths, and each
path could result from many different rules interacting with each other. Declara-
tive process notations such as Declare and Dynamic Condition Response (DCR)
Graphs are better suited to capturing rules. They describe a process as a set of
constraints which can be mapped directly to specific business rules or goals. An
execution semantics is usually achieved by either mapping the declarative model
to a flow-based model (e.g. transition systems), or by introducing an operational
semantics that reasons over the state of the different constraints and/or activities
of the model.

Instead of requiring process consultants to design all rules upfront based on
requirement specifications and interviews with users, it can be helpful to use
data describing the historical execution of processes, represented as event logs,
to automatically derive possible rules in the form of formal constraints. Finding
and proposing constraints automatically reduces the workload of the consultants
and ensures the resulting models are grounded in practice, instead of an ideal –
but not fully realistic – world envisioned by the users.

Such declarative process discovery algorithms can produce models in various
notations. Although Declare [15], the first declarative notation introduced ex-
clusively for describing business processes, is most prevalent in academia, there
is no documented usage of the notation in industry, leaving it as a mostly aca-
demic pursuit. DCR Graphs [9] is a more recent declarative notation that has
been more successful commercially. It was picked up by a Danish developer of
case management systems, leading to the creation of a commercial modelling
tool [18]. More recently, 70% of Danish central government institutions adopted
a case management solution that uses a DCR process engine, including the po-
lice, military, tax authorities and largest public universities 1.

DCR Graphs’ success notwithstanding, process discovery based on this no-
tation is still in its infancy: there currently exists a single algorithm, which first
generates a model with all possible constraints and then removes constraints
until the model allows all behaviour seen in the event log. We posit that this

1 http://www.kmd.dk/indsigter/fleksibilitet-og-dynamisk-sagsbehandling-i-staten
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approach is inconsistent with the declarative paradigm: if the goal of declara-
tive models is to support flexibility, then it is counter-productive to start from
an assumption that the process should be fully constrained. This intuition is
supported by a closer look at the generated models: they are precise, but lack
simplicity and often appear to mimic flow-based diagrams in structure.

In this paper, we introduce the ParNek miner, a novel discovery algorithm
for DCR Graphs, with a more methodologically sound basis than existing DCR
Graphs miners: we start from a fully unconstrained model and, based on the
event log, propose constraints that should be introduced to reasonably restrict
behaviour. We show that ParNek significantly outperforms the state-of-the-art
in DCR Graphs discovery and that our results are at minimum comparable to
that of MINERful, a state-of-the-art miner in declarative process discovery. We
also discuss advantages of ParNek in terms of configurability and extensibility.

The paper continues as follows: we first discuss related work in section 2 and
introduce DCR Graphs in section 3. In section 4, we explain the core algortihms
underlying the ParNek miner. We empirically evaluate ParNek against the
state-of-the-art in DCR Graphs and Declare mining in section 5 and conclude
in section 6.

2 Related work

Declarative notations were first introduced to the BPM community through the
work on Declare [15], which proposed mapping an extensive number of control
flow patterns to linear temporal logic constraints. The first process discovery
algorithm for Declare was the Declare Miner [13], which suffered from being a
brute-force approach, leading to poor run-time performance. A significant im-
provement was proposed in [12]. Another Declare-based miner, MINERful [2],
has been developed as an alternative, focusing on run-time efficiency and a high
degree of customisation. A multi-perspective approach to Declare discovery, in-
cluding data, time and resource constraints, was introduced in [17].

Several alternative declarative notations have been proposed [11, 21]. Two
stand out in particular for having led to the development of corresponding pro-
cess discovery algorithms. The guard-stage-milestone model [10] provides a more
artifact-centric, rather than constraint-centric, view on processes, but integrates
declarative aspects and has become the basis of the recent CMMN standard [14].
A process mining approach for GSM was proposed in [16] as a multi-step process
that first discovers artifact life-cycles in an event log and then maps these to a
GSM schema.

DCR Graphs offers several advantages over Declare, namely stronger formal
expressiveness [5], an operational semantics defined directly on the model with a
corresponding visual representation and active adoption by industry [18]. Several
extensions have been proposed, such as data [19], time [8] and subprocesses [3].
The work on process discovery for DCR Graphs has not advanced to the stage
of considering these extensions yet, as finding a suitable base algorithm is the
first priority.
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3 Modelling responsibilities with DCR Graphs

In this section we describe the structure and semantics of DCR Graphs in more
detail and illustrate their use for modelling casework by using a simplified run-
ning example of a municipal unemployment process.

Example 31 (Unemployment Process) A citizen starts the unemployment
process by filing a request for unemployment benefits. Until it is approved, they
can update this request at any time to correct it or provide additional information.
Once a request has been submitted, a municipal caseworker can approve or reject
the request. It is possible to approve a request that was previously rejected, for
example because additional information was provided, or a mistake was made.
However, it is not possible to reject a request that has already been approved
(cancellation of benefits is handled by its own separate process). Once the request
is approved, the citizen should submit monthly documentation of the progress of
their job-search. Once documentation is provided, the municipality is required by
law to pay their benefits.

Fig. 1. DCR graph of a basic unemployment process.

Figure 1 shows the unemployment process modelled as a DCR Graph.
The activities of the process are represented as boxes. In formal DCR ter-

minology these are referred to as events, which can represent anything that can
happen, such as an activity executing, but also data changing or deadlines being
reached. Note that these are different from the log events used in process discov-
ery, as they can represent more than one occurrence of something happening. In
process discovery terminology they are closer to event classes.

An unconstrained activity can happen at any time, any number of times.
This means that in a graph with no constraints, anything can happen at any
time, making it equivalent to the flower model often encountered in flow-based
notations.

To constrain the behaviour of the process, we introduce relations. The condi-
tion relation, denoted as Request unemployment benefit→• Reject, indicates
that we cannot reject a request before it has been submitted. Conditions do not
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alternate: after the first request, one can reject it any number of times, even if no
new requests are submitted. This befits the declarative paradigm which stresses
only adding constraints when absolutely required. In this case it may, for ex-
ample, be convenient to update a rejection with additional reasons. Similarly,
Request unemployment benefit is a condition for Approve, which is a condi-
tion for Document monthly job-search, which is a condition for Pay benefits.

The exclusion relation, denoted as Approve→% Reject, indicates that after
doing Approve, it is no longer possible to Reject the request because it has
been removed from the process. Approve similarly removes Document monthly

job-search. Events can also exclude themselves, meaning that after they have
been executed, they are no longer a part of the process. This is the case for
Approve and Pay benefits.

Exclusion of events is dynamic: it can be undone by re-including the event
through the inclusion relation, denoted as Document monthly job-search→+
Pay benefits. Including an event adds it back into the process, allowing it to be
executed again. In the example, each time monthly documentation is submitted,
pay benefits will be included and can be executed again.

The final response relation is used to indicate future requirements or goals.
It is denoted as Document monthly job-search •→ Pay benefits and ensures
that when monthly documentation is submitted, benefits will eventually be paid.

While timed constraints [8] could be used to further specify the model, for
example by stating that Document monthly job-search can only happen once
per month, we only consider control-flow constraints in this paper and leave the
discovery of other perspectives to future work.

4 Discovery of dynamic condition response graphs

Given that we aim to mine flexible declarative models, we start from the least
restrictive DCR Graph, containing all activities seen in the event log and no
relations, allowing for any trace over these activities. ParNek implements a
number of algorithms for adding relations to this unrestricted model. These
algorithms are largely orthogonal, each finding relations independently that can
be combined to form the final model. According to the declarative paradigm
exceptional behaviour should be embraced and therefore all algorithms have
been designed to guarantee perfect fitness. The miner can be configured by the
user to select which algorithms should be used. Through experimentation, we
identified a number of promising configurations.

4.1 The base ParNek algorithm

The base algorithm is inspired by a subset of the constraint templates used by
the MINERful [2] algorithm, however we do not always map these precisely.
Instead we aim for a balance between simplicity and precision where we allow
for small amounts of additional behaviour in cases where this means introducing
significantly fewer relations. We consider the following constraints:
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– AtMostOne(A): All such activities can be represented as a self-excluding
activity in a DCR graph, i.e., A→% A

– Response(A, B): We utilise this constraint template to add response relations
to the model i.e., A •→ B

– Precedence(A, B): We utilise this constraint template to add condition
relations to the model i.e., A→• B

– ChainPrecedence(A, B): We map this constraint to A includes B and B is
a self-excluding activity, i.e., A→+ B and B→% B

The base algorithm will often find redundant condition and response rela-
tions. For example, for a DCR Graph containing only the conditions A →• B,
B →• C and A →• C, the relation A →• C is redundant because the other two
conditions already ensure that C can not happen before A has happened. We
use this transitive property to remove unnecessary conditions. The same form
of transitivity can be applied to response relations. It should be noted that this
transitivity does not always hold: when an event is dynamically excluded, its
outgoing relations are also considered excluded. For example, if we remove the
condition A →• C and add the exclusion D →% B to the previous example, one
would be allowed to execute D, excluding not only the event B, but also the condi-
tion B→• C, allowing C to be executed afterwards. However, removing conditions
and responses will never lower the fitness of the model: it will at worst lower
precision by allowing additional traces not seen in the log. Experiments showed
that this loss of precision was heavily offset by a gain in simplicity, for example
for the BPIC-2012 event log we can reduce the number of condition relations
from 160 to 30 in return for a decrease in precision of 0.0003.

In the next step of the base algorithm we first build Predecessor and Suc-
cessor sets for each activity. The Predecessor set contains all the activities
which can happen before the last occurrence of a specific activity in a trace.
Similarly, the Successor set contains the activities that can happen after the
first occurrence of a target activity in a trace. We leverage these sets to dis-
cover two types of exclusions. The first type is based on the observation that
an activity can exclude its predecessors which are absent in the Successor set,
i.e., B ∈ Predecessor(A, log)\Successor(A, log). Moreover, it is possible to
skip activities in the model with a self exclusion, i.e., B 6∈ SelfExclusions.
This is because self exclusion relations are either the result of AtMostOne or
ChainPrecedence, meaning this extra exclude relation would be redundant.
The second type of exclusions addresses mutually exclusive activities: an activity
can exclude activities not present in Predecessor(A, log)∪Successor(A, log).

To ensure that we keep the model simple, we also apply an optimisation step
to exclusions. Each time we wish to add an exclusion A →% B, we first check
if there is already a predecessor of A that excludes B, in which case we do not
add the additional exclusion. Similarly to the previous optimisation step, this
approach may lead to a slight decrease in precision, but is guaranteed to keep the
model fully fitting and leads to a large reduction in the number of constraints.
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4.2 Mining additional conditions

The optional cond algorithm is aimed at mining more complex condition pat-
terns. In the base algorithm we only discover a condition A→• B when A always
precedes B in the log. However, because of the possibility of dynamically exclud-
ing conditions, there may exist relevant conditions where this is not the case.

To discover such conditions, we follow these steps:

1. Mine a graph by using one variation of ParNek
2. Take a union of activities that come before the last occurrence of a specific

activity (remove those which already have a condition)
3. Examine the resulting activities in every trace using three sets:

– PossibleConds: Activities that may have a condition relation to a tar-
get activity. In the beginning, the set consists of all the activities that
occur before the last occurrence of the target activity except those which
already have a condition relation to it

– Ignore: All the activities in PossibleConds before the first occurrence
of the target activity in a current trace

– Check = PossibleConds \ Ignore, i.e., activities for which we need
to execute the trace, keeping track of whether the activity is included
or excluded from the current trace every time we want to execute the
target activity. We stop the verification process if:
• the activity gets executed
• we reach the last target activity in the current trace
• the activity is included when we want to execute the target activity

If the process gets terminated because of the third condition, then we
remove the activity from PossibleConds since it is not possible to have
a condition from it.

By the end of step 3 we are left with the additional conditions. Our experi-
ments showed that the cond algorithm tends to add a few conditions at most.
The precision increase from these conditions varied largely per log, with some
logs seeing no increase and one log seeing an increase from 0.59 to 0.87.

4.3 Improvements for long, similar sequences, repeated activities

The presence of activities in the event log that repeat themselves non-trivially
or long sequences of activities that are highly similar significantly decreases the
precision of the models that the base ParNek algorithm is capable of min-
ing. To increase precision, we developed an optional checkfollow algorithm
which discovers dynamic include and exclude relations that help guide the local
execution of the model.

We define NotDirectlyFollows(A) as the set of activities that occur after,
but not directly after A and not including A. Next we add exclusion relations from
A to each activity in NotDirectlyFollows. We repeat this for all activities
in the log. To make sure that these activities are included in the graph again, we
need to define the set DirectlyPrecedes(B, A). This is the set of all activities
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that directly precede B in the event after the execution of A and not including
B. Here we can equate B to one of the activities the A dynamically excluded
above. This means that adding inclusion relations to B from all the activities in
its corresponding DirectlyPrecedes(B, A) set will ensure the perfect fitness
of the mined model.

In order to balance between model simplicity and precision, checkfollow
takes a threshold parameter that is compared against the cardinality of Direct-
lyPrecedes before introducing any new constraints. By keeping the threshold
low, one lowers the number of constraints found, prioritising simplicity over pre-
cision. Through experimentation, we noticed that the effect of the threshold is
most noticeable when set to either 1 or ∞. In general, we observed that the
checkfollow algorithm greatly improved the precision of the model, but at
the cost of adding a large amount of additional constraints. We discuss this
difference in more detail in section 5.

4.4 Running Example

Let us consider our running example and abbreviate the five activities as fol-
lows: Request unemployment benefit (U), Approve (A), Reject (R), Document
monthly job-search (D), Pay benefits (P).

U U, R U, R, R, A U, R, A, D, P

U, U U, R, U U, A, D, P U, A, D, P, D, P

Table 1. A log which consists of 8 traces.

If we provide ParNek, in particular the base algorithm, with the event log
in Table 1 then we observe that A happens at most once in every trace, i.e., it
excludes itself. Moreover, every time D happens, it is followed by P, i.e., we have
a response relation. Also, D and P follow the ChainPrecedence pattern, where
P is always directly preceded by D. Therefore we discover an inclusion from D to
P and a self-exclusion for P. Furthermore, U is the first activity in every trace.
As a result, it has conditions to A and R. Additionally, we have A →• D since D

can only happen after A was executed. In other words, in order to proceed with
an unemployment process, first an application needs to be approved. On top of
that, there is another condition D→• P because P never occurs before the first D
in any trace. Finally, if we look at activity A, its Predecessor set contains {U,
R} while Successor set consists of D and P. If we take the difference of these two
sets, we are left with {U, R}. Since neither U nor R has a self-exclusion, we can
add exclusion relations from A to them. This results in the DCR Graph shown
in Figure 1.
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5 Evaluation

We evaluate the ParNek miner by comparing its performance against two
declarative miners: the DCR miner from [4], referred to as baseline, and MINERful,
which returns models based on the Declare modelling language. Aside from run-
ning time, we evaluate the degree of under- and overfitting using a notation-
agnostic precision metric, and fitness-based cross-validation, respectively.

5.1 Methodology

Metrics Process mining is generally framed as a descriptive data mining task:
the aim is to accurately describe training data [7]. To this end, quality metrics
such as precision and fitness computed on the in-sample data set are most often
reported. In regards to precision we follow this paradigm, since the formulation of
precision we employ cannot be computed on traces which cannot be replayed on
the model (as are likely to be present in out-of-sample data). We also present an
estimate of out-of-sample performance in terms of fitness using cross-validation.

Precision The most widely adopted precision metrics in the process mining
literature are defined on Petri nets and cannot be applied to declarative models.
A formulation of precision defined on the underlying state-transition system has
been proposed in [20] and was implemented for the evaluation proposed in [1].
This formulation allows for comparison across all modelling notations.

Let E denote the set of unique events in an event log with e ∈ E . Let enL(e)
denote the set of activities sharing the same context (i.e., prefix) as event e in
log L. Let enM (e) denote the set of activities enabled in the state of model M
immediately prior to executing e. The precision of M w.r.t. log L is given by

PL(M) =
1

|E|
∑

e∈E

|enL(e)|
|enM (e)| (5.1)

This metric captures the degree to which more behaviour is allowed by the
model than has been observed in the log.

Normalised Precision The above formulation of precision is a function of the log
as well as the model, and we would like to establish a normalised formulation
by establishing a lower and upper bound for the log. This will allow us to better
understand the relative difference between miners based on what the worst and
best case results are for a particular log.

Let P l
L and Pu

L denote the lower and upper bound for precision, respectively.
The normalised precision is given by

Pn
L (M) =

PL(M)− P l
L(M)

Pu
L − P l

L

(5.2)

We take as P l
L the precision of the flower model, in which any activity en-

countered in the log is enabled in every context. The only models resulting in
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a lower estimate of P l
L are those which allow more activities than encountered

in the log to be enabled. We base Pupper on the maximum formal expressive-
ness of the modelling notations used. We know that DCR Graphs capture all
regular languages and therefore for each event log there exists a DCR Graph
representing it with a precision of 1. Thus Pu

L = 1.

Cross-validation Precision gives an indication of the degree to which a model
may be underfitting the data. Unless we assume that an event log represents
all of the behaviour we can expect to encounter, we should also investigate
the generalisability of our model: the degree to which it may be overfitting the
training data.

Traditional supervised learning tasks define an error metric, e.g. the number
of correctly classified instances in classification tasks, or a distance-based metric,
such as the residual sum of squares, for regression tasks. Cross-validation is one
approach to estimating the error of a given model on out-of-sample data.

We take as our error metric simple trace fitness: the percentage of out-of-
sample traces able to be replayed on the model. If we interpret process mining
as a binary classification problem (in which traces either fall into acceptable or
unacceptable classes), with event logs containing only positive examples, then
fitness can be interpreted as recall, i.e. the ratio of traces accepted by the model
to the total number of traces in the validation log:

fitness =
|true positives|

|true positives|+ |false negatives| (5.3)

We employ k-fold cross-validation, splitting the original logs into k partitions
of equal size. The nth partition is then held out as a validation set, the miner
run on the remaining k− 1 partitions, and the resulting model evaluated on the
validation set. This is repeated for n ∈ {1, . . . , k}. We report the mean fitness
across all k validation sets. Traces are ordered chronologically by the timestamp
of the first event prior to partitioning.

We report results for lower k than the standard k = 10, having observed
that lower k are more informative in that most miners produce almost perfectly
fitting models when trained on 90% of the log. Note that computing (normalised)
precision of a model mined from the training data and evaluated on the validation
data is possible, but problematic since these metrics become skewed by the fact
that precision can only be computed for fitting traces. For this reason, we report
normalised precision for the whole log.

Logs We base log selection on the criterion of public availability, drawing upon
(i) the IEEE Task Force on Process Mining Real-life Event Log Collection2, (ii)
two additional logs also published by the 4TU Center for Research Data34, and
(iii) one real-life log originating from our own industrial contacts [6].

2 http://data.4tu.nl/repository/collection:event logs real
3 https://doi.org/10.4121/uuid:6df27e59-6221-4ca2-9cc4-65c66588c6eb
4 https://doi.org/10.4121/uuid:5a9039b8-794a-4ccd-a5ef-4671f0a258a4
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For logs containing activities with more than one lifecycle transition such
as A.start and A.complete, we present results both for the log in which this
distinction is ignored, and a modified log in which these are considered distinct
activities. No other preprocessing has been performed.

Miner Configuration We evaluate two variants of the ParNek miner: the base
algorithm described in section 4.1 with the improvement for mining additional
conditions described in 4.2; and a variant which includes all of the improve-
ments described in section 4.3. Internal experiments showed that the first variant
produced simpler models with a reasonable number of constraints. The second
variant produced more precise, but more complex models.

MINERful has three parameters: a minimum threshold for support, confi-
dence, and interest factor. We set support to 1.0 to ensure perfect fitness on train-
ing data. The remaining two parameters are set such that the resulting model is
as close in size to the corresponding ParNek variant. Parameters are determined
automatically by a divide and conquer parameter tuning algorithm, with a step
resolution of 0.1. MINERful is allowed to consider all constraints in the Declare
language, including negative constraints. Finally, before the size of the mined
model is evaluated, inconsistency checking is applied using the setting hierar-
chyconflict with constraint sorting policy: activationtargetbonds, fam-
ilyhierarchy, supportconfidenceinterestfactor. Redundancy checking
does not finish for all logs and therefore not applied.

5.2 Implementation

The aforementioned evaluation metrics have been implemented in a stand-alone
CLI application5. All mining and evaluation processes were performed on a
Lenovo Thinkpad P50 with a 64-bit Intel Xeon E3-1535M v3 2.90GHz CPU
and 32GB of RAM running Windows 10 Enterprise 64-bit edition. The ParNek
miner and its source code are available publicly for research purposes6.

5.3 Results and Discussion

The bottom half of table 3 shows aggregated results across logs, we make the
following observations:

1. ParNek is able to find significantly simpler models than the baseline (ratio
of 0.14), while sacrificing relatively little precision (ratio of 0.58).

2. An extended version of ParNek is able to find equally precise models (ratio
of 1.00), using noticeably fewer constraints (ratio of 0.68).

3. When aiming for comparable model sizes, ParNek finds more constraints
than MINERful (ratio of 1.58 and 1.47 on respectively small and large mod-
els), but leads to a relatively larger increase in precision (ratio of 2.12 and
1.53 on respectively small and large models).
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ParNek MINER Conf.

Int. Fac.

ParNek MINER Conf.

Int. Fac.

Base
(cond) -ful (full) -ful line

BPI Challenge 2012 1281 5108 0.5/0.2 2433 4614 0.2/0.1 1975
BPI Challenge 2012 LT 2089 6713 0.5/0.3 4951 6238 0.2/0.0 2864
BPI Challenge 2013 65 1410 0.0/0.9 151 1107 0.0/0.0 173
BPI Challenge 2013 LT 124 1992 0.1/0.0 340 1296 0.0/0.0 350
BPI Challenge 2017 5164 25409 1.0/0.5 9964 25657 0.1/0.0 7807
Activities Daily Living 72 1185 0.3/0.2 224 872 0.0/0.0 432
Activities Daily Liv. LT 115 2515 0.7/0.1 1127 2094 0.1/0.0 1497
Document Processing 189 2999 1.0/0.2 253 2478 0.7/0.6 220
Document Proc. LT 272 3558 1.0/0.2 274 3558 1.0/0.2 166
Dreyer Foundation 34 917 0.4/0.2 114 655 0.1/0.0 145
Electronic Invoicing 163 3345 1.0/0.8 294 2983 1.0/0.5 202
Electronic Invoicing LT 177 4048 1.0/0.8 301 3461 1.0/0.5 218
Hospital Billing 307 7662 0.4/0.0 507 6652 0.0/0.0 425
NASA CEV 497 3919 0.5/0.2 3370 3276 0.0/0.0 1832
NASA CEV LT 1310 7444 0.5/0.4 11381 6978 0.1/0.0 7948
Production 34 1809 0.1/0.0 359 1741 0.0/0.0 1205
Production LT 76 4931 0.1/0.0 1656 5349 0.0/0.0 10075
Sepsis Cases 112 887 0.6/0.0 225 562 0.1/0.0 229
Traffic Fines Mgmt. 623 7289 0.3/0.3 742 6270 0.2/0.0 647
WABO Receipt Phase 32 483 0.8/0.0 90 963 0.8/0.0 95
Table 2. Median mining time in milliseconds across 20 runs. The MINERful values
to the right of either ParNek variant are the result of confidence and interest factor
thresholds (adjacent) which produce models of a size comparable to the ParNek vari-
ant. Log names suffixed by LT have the lifecycle transition included in the event name,
so that they will be interpreted as instances of distinct activities.

Looking at individual logs gives further insights. Some of the most notable
logs include (multiples are w.r.t. to corresponding MINERful or ParNek vari-
ant, respectively, unless otherwise stated):

BPIC 2012 ParNek(cond) almost doubles precision by adding only 3 relations.
BPIC 2013 MINERful achieves the same precision with only 2 constraints.
BPIC 2017 ParNek(cond) more than doubles precision with fewer relations.
Document Proc. ParNek(cond) almost triples precision with just 2 extra relations.
D. Proc. (LT) ParNek(full) gets 0.99 prec. with 150 relations vs. Baseline’s 558.
Elec. Inv. (LT) For both versions of this log, ParNek makes significant improve-

ments, often with fewer relations.
Traffic ParNek outperforms, the cond variant doing so with one extra relation.
WABO ParNek(cond) increases precision by 56.4% with just 3 extra relations.

ParNek is often able to improve precision at the expense of only a small number
of additional relations, and in some cases even fewer relations than MINERful. The
converse is also true for MINERful for a handful of logs, implying that the combi-
nation of modelling language and mining algorithm are best suited for certain types
of processes, being able to capture behaviour which is more meaningful in the given

5 https://github.com/backco/qmpm
6 https://github.com/viktorija-nek/ParNek
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context. The aggregated results across logs, however, indicate that ParNek has an
overall advantage.

From table 2 we can see that ParNek outperforms both the Baseline algorithm and
MINERful on several, though not all, of the logs we evaluated. Notably, its running
time is often markedly faster, the only exceptions being for the most computationally
intensive, i.e. full, variant of ParNek which is somewhat slower on a few logs.

Finally, ParNek(cond) returns models with higher or near equal generalisability,
as measured by 5-fold cross-validation, compared to all other miners.

6 Conclusion

In this paper we introduced the ParNek miner, a novel discovery algorithm for DCR
Graphs. We compare the miner to the state-of-the-art in DCR (baseline) and Declare
(MINERful) discovery and show that ParNek significantly outperforms the state-of-
the-art in DCR discovery. In addition, it performs at least comparably to the state-
of-the-art in Declare discovery. While a precise comparison between DCR Graphs and
Declare is difficult to make, it can be argued that Declare relations carry more semantic
meaning, making them more complex to reason about, leading to an argument in
favour of ParNek outperforming the state-of-the-art in declarative mining in general.
However, this would require a more thorough study on the relative complexity of the
different notations.

In addition to these empirical observations, we note that because of the compo-
sitional architecture of ParNek it allows for better configurability and leaves room
for future extensions, features that are not clearly present in the baseline algorithm.
We believe that this makes ParNek much more suitable for practical applications, a
notion that is supported by expressed stakeholder interest in the integration of the
algorithm into commercial DCR tools.

Future work In the future, we hope to take advantage of the fact that ParNek
is both easily configurable and extensible by developing an interactive user-guided
discovery approach. This will require research into the use of negative sample data,
ranking of constraints based on relevance and the use of partial domain models to
guide the discovery. In addition, we are considering further extensions to the algorithm
for finding models of even higher quality, for example by supporting more complex uses
of the response relation.
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ParNek(cond) MINERful ParNek(full) MINERful Baseline

Logs Size PN Gen Size PN Gen Size PN Gen Size PN Gen Size PN Gen

BPIC 2012 68 0.28 ≈1 65 0.15 1.0 343 0.36 ≈1 235 0.22 ≈ 1 762 0.42 ≈1
BPIC 2012 LT 99 0.26 ≈1 83 0.14 ≈1 1066 0.5 ≈1 838 0.27 ≈ 1 1668 0.51 ≈1
BPIC 2013 7 0.49 1.0 0 0.51 1.0 11 0.51 1.0 9 0.51 1.0 17 0.51 1.0
BPIC 2013 LT 32 0.22 ≈1 31 0.23 ≈1 138 0.29 ≈1 101 0.28 ≈1 170 0.29 ≈1
BPIC 2017 75 0.18 ≈1 87 0.08 1.0 594 0.32 ≈1 566 0.22 ≈1 865 0.34 ≈1
Activities 90 0.02 0.75 78 ≈0 0.62 994 0.08 0.44 803 0.07 0.48 1084 0.07 0.48
Activities LT 228 0.04 0.75 226 0.16 0.77 3288 0.45 0.44 3247 0.42 0.51 4594 0.46 0.46
Doc. Proc. 34 0.44 1.0 32 0.16 1.0 101 0.51 1.0 70 0.23 1.0 156 0.51 1.0
Doc. Proc. LT 83 0.88 1.0 72 0.26 1.0 132 0.99 1.0 72 0.26 1.0 540 0.99 1.0
Dreyer Found. 123 0.12 0.98 120 0.17 0.98 887 0.54 0.94 431 0.3 0.96 1148 0.56 0.95
Elec. Inv. 24 0.36 1.0 49 0.2 1.0 83 0.49 1.0 65 0.2 1.0 130 0.49 1.0
Elec. Inv. LT 57 0.61 1.0 131 0.5 1.0 134 0.82 1.0 187 0.51 1.0 440 0.98 1.0
Hosp. Billing 56 0.45 ≈1 38 0.46 ≈1 297 0.72 ≈1 209 0.71 ≈1 337 0.72 ≈1
NASA CEV 137 0.14 ≈ 1 125 0.04 ≈1 3144 0.54 0.86 2157 0.39 0.71 2415 0.43 0.86
NASA CEV LT 298 0.31 0.98 281 0.25 ≈1 7018 0.82 0.86 6451 0.71 0.84 9996 0.88 0.86
Production 720 0.02 0.87 123 ≈ 0 0.78 2916 0.09 0.63 2765 0.11 0.57 3120 0.08 0.65
Production LT 1123 0.03 0.90 763 0.01 0.66 9287 0.12 0.54 11967 0.14 0.47* 13363 0.12 0.54
Sepsis Cases 83 0.21 0.99 77 0.19 0.98 194 0.25 0.96 106 0.2 0.97 284 0.21 0.97
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1
N

∑
(·) ParNek(cond)

MINERful(cond)
ParNek (full)
MINERful(full)

ParNek(full)
ParNek (cond)

MINERful (full)
MINERful(cond)

ParNek (cond)
Baseline

ParNek (full)
Baseline

Size 1.579 1.474 7.324 7.751 0.144 0.679
Precision 2.117 1.526 2.610 5.142 0.576 1.003

Table 3. Top: Comparison of miners based on normalised precision (PN), generalisation (GEN), and model size. Generalisation to
out-of-sample data is estimated as mean trace fitness on hold-out data in 5-fold cross-validation. Normalised precision and model size
are based on the complete log. Two variants of the ParNek miner are reported: the base algorithm with the additional conditions
improvement from section 4.2 (cond), and the algorithm with all improvements (full). To the right of the results for each ParNek
variant are results for models produced by MINERful when restricted to a model size comparable to that produced by ParNek. Baseline
refers to the DCR miner from [4]. Size refers to the number of constraints/relations. Log names suffixed by LT have the lifecycle transition
included in the event name, so that they will be interpreted as instances of distinct activities. (*) Due to computational limitations, this
value was computed using 2-fold cross-validation.
Bottom: Relative improvement of miners against other miners or their own variant. Each number represents the mean increase in size
and precision, respectively.
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tional learning theory to gain insight into its performance as
a classifier. Due to its linear time complexity, DisCoveR also
achieves much faster runtimes than other declarative miners.

Finally, we show how the miner has been integrated in a
state-of-the-art declarative process modeling framework as
a model recommendation tool, discuss how discovery can
play an integral part of the modeling task and report on
how the integration has improved the modeling experience
of end-users.

Keywords Process Discovery · Declarative Process
Models · Process Mining · DCR Graphs

1 Introduction

Technologies for business processmanagement havematured
significantly since the early proposals of office automation
systems and business process definition languages in the late
1970s [4, 34, 89]. Today, BPMN [33, 66, 88] has become
a stable, de-facto standard notation for describing business
processes. Users can choose from a number of commercial
design tools and business process management systems, sup-
porting the design and enactment of business processes. In
recent years, we have even seen commercial process mining
tools [48] that support the automated discovery of BPMN
models from event logs [2, 86].

With the increased need to accommodate flexible, knowledge-
intensive processes, notations focusing on essential rules,
rather than detailed procedures have seen increased attention
from researchers [32, 59, 69, 74, 79]. This approach is often
characterized as declarative and juxtaposed with imperative
notations like BPMN [43,56, 70].

Highly regulated workflows, for example governmen-
tal case work processes, are particularly challenging ex-
amples, since constantly changing legislation gives rise
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to changes in rules, and often an increase in complex-
ity [28,40]. Declarative notations are, by design, well suited
to translation from natural language rules while avoiding
over-specification, making them suited to capturing reg-
ulatory constraints in workflows requiring some degree of
flexibility.

As part of a broader national digitalization initiative,
the challenge of modeling knowledge-intensive workflows
has been tackled in several collaborative projects involving
Danish universities, government institutions and firms in the
private sector. One such project is the EcoKnow2 project
which builds upon the DCR Graphs formalism [44,59, 79].

To support the local development and maintenance of the
declarative DCR models, several modeling tools have been
developed [20, 24, 56], supported by formal understandabil-
ity studies [5–7]. Along with the tools, a methodology for
modeling with DCR has been developed, advocating an iter-
ative and incremental, scenario-driven approach with three
main tasks. First, to identify key activities and roles. Second,
to perform simulations of wanted and unwanted scenarios.
Finally, the modeler may either go back to add missing ac-
tivities and roles or forward to the task of identifying rules
that supports the wanted scenarios and forbid the unwanted
scenarios.

The iterative approach lends itself extremely well to be-
ing supported by process discovery: after the users define
wanted and unwanted scenarios, discovery algorithms can
be used to automatically make suggestions for which rules
should be added. Such a discovery algorithm needs to be
both efficient and accurate. On the one hand users expect
their modeling experience to be continuous without long
interruptions waiting for a discovery algorithm to compute
possible rules. On the other hand, they are only helped by
rule suggestions that are relevant and correct in terms of the
suggested scenarios: poor suggestions will only confuse the
users and reduce the quality of their modeling experience.

Recently, an efficient and accurate discovery algorithm
was developed for DCR Graphs and implemented in a com-
mercial design tool [63]. One advantage of the algorithm
is that it can provide accurate suggestions even with small
training sets, facilitating rule discovery from large histori-
cal event logs as well as fast recommendations based on few
simulated scenarios carried out as part of the scenario-driven
modeling approach.

This paper is part of a special issue of the journal in
connection with the Process Discovery Contest 2019, which
frames process discovery as a binary classification task. The
DisCoveR algorithm secured a second place in that year’s
contest in terms of classification accuracy. The algorithm
itself was first introduced by Nekrasaite et al. in [63], the
current paper expands on this initial introductionwith: a com-

2 (Effective, co-created and compliant adaptive case management for
Knowledge workers

plete and thorough formalization of the algorithm that pro-
vides all details required for its implementation (Section 4); a
novel, open source and more efficient implementation based
on bit vector operations (Section 5); a novel evaluation of
the algorithm based on the classification task provided by
the Process Discovery Contest 2019, and a runtime compar-
ison with flagship academic miners suggesting the miner is
competitive with its peers along with a framing of process
discovery in terms of computational learning theory which
helps explain the key to its effectiveness in terms of regular-
ization (Section 6); a case study showing how the algorithm
has been swiftly transferred to industry through its integra-
tion in the dcrgraphs.net processmodeling portal, leading
to an enhanced modeling experience by its users (Section 7).

After surveying relatedwork in Section 2 and introducing
preliminaries in Section 3, we proceed as sketched above,
concluding and proposing future directions of research in
Section 8.

2 Related Work

Many declarative process notations have been developed,
several with corresponding discovery algorithms [80]. One
of the first of these was Declare [1,3,70], which was inspired
by property specification patterns for linear temporal logic
(LTL) [35].Declare identified a particular set of patterns rele-
vant for business processes and gave them semantics through
a mapping to LTL formulae relevant for describing the rules
governing a business process. A Declare model is therefore
a collection of such patterns, and the semantics of a model
is defined as the traces that satisfy the conjunction of the
formulae underlying the patterns. More recently the same
patterns have been formalized using colored automata [52],
SCIFF [57, 58], and regular expressions [92]. Extensions to
Declare include timed [90] and data [22] constraints, which
were combined in MP-Declare [14] (Multi Perspective De-
clare), and hierarchy [95]. The first miner for Declare was the
Declare Maps Miner [53], while initially using a brute-force
approach, it was extended with several improvements [50]
inspired by the Apriori algorithm for association rule min-
ing [10]. More recently the miner was extended to allow for
parallelization [51]. The second Declare miner to be devel-
oped was Minerful [18] which provided significant gains in
efficiency. Since its introduction it has been extended with
support for target-branched constraints [31], removal of re-
dundancies and inconsistencies [16] and removal of vacu-
ously satisfied constraints [17].

Another prominent declarative approach is the Guard-
Stage-Milestone (GSM) notation [45], inspired by earlier
work on artifact-centric business processes [13]. GSM aims
to effectively model case management and has been a pri-
mary contributor to the development of the Case Manage-
ment Model And Notation (CMMN) [65]. CMMN has seen
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a relatively fast industrial and academic adoption through
the development of tools and case studies [39, 47,93]. Work
on process discovery for GSM or CMMN on the other hand
is still rather sparse, only one discovery algorithm has been
proposed to date [71] with no working implementation.

Process discovery has also been considered for theDeclar-
ative Process Intermediate Language (DPIL) [76,94], which
is a textual, multi-perspective, declarative modeling lan-
guage. Process discovery for DPIL is supported through the
DPIL Miner3. In comparison to other Declarative miners,
which tend to focus on the control-flow perspective of pro-
cesses, the DPIL Miner instead focuses more on mining the
organizational perspective [75]. Interestingly the miner has
never been made publicly available and its effectiveness or
accuracy can not be independently ascertained.

In more recent work it has been proposed to combine
declarative and imperative discovery to produce so-called
hybrid [11, 25, 73, 83] or mixed [21, 23, 91] models that
combine both paradigms. Hybrid miners include the Fu-
sion miner [84], which produces an inter-mixed Petri net
and Declare model, the Hybrid Miner [54] which produces
a hierarchical Petri net and Declare model, and the Precision
Optimization Hybrid Miner [77] which produces a process
tree in which some nodes may be Declare models.

Approaches to workflow formalization based on Classi-
cal Linear Logic, a resource-aware logic, were implemented
inWorkFlowFM[67,68] which guarantees concurrent, correct-
by-construction processes. The framework was applied to
intra-hospital patient transfers in [55].

Temporal logics have also been used to model phenom-
ena which would not be considered workflows, such as robot
motion [36], naval traffic and train network monitoring [46].

Process mining is often framed as an inherently descrip-
tive rather than predictive data mining problem, which pre-
cludes the use of standard evaluation metrics familiar in
classification and regression tasks. This is largely due to the
assumption that an event log represents only positive exam-
ples [37]. Some authors have addressed this by developing
techniques to generate artificial negative examples [38].

Finally,DCRGraphswere inspired by event structures [64]
and developed after Declare was shown to not be sufficiently
expressive in modeling industrial cases [61]. In contrast to
Declare, the semantics of DCR Graphs are defined as trans-
formations on the markings of the events. This allows mod-
ellers to straightforwardly reason about the execution seman-
tics of a model by simulating it and observing the changes
to the markings as events are executed. [56] Since their in-
ception, DCR Graphs have been extended with nesting [41],
time [42], data [20, 60, 82], and hierarchy [26].

3 http://www.kppq.de/miner.html

3 Preliminaries

Wepresent here the formal definitions of processes and event
logs, necessary to give a formal presentation of the task of
process discovery in terms of computational learning theory,
as well as the DCR Graphs formalism.

Definition 1 (Processes and Event Logs)

– An alphabet Σ is a finite set of symbols denoting activi-
ties. We denote by ΣL activities present in log L.

– Σ∗ and Σω denote countably infinite sets of finite, re-
spectively infinite, sequences over Σ.

– A process is a pair (P,PP ) where P is a set of allowable
sequences of activities along with an associated proba-
bility distribution PP over P . The probabilistic framing
is required for consistency with the statistical metrics
(e.g. accuracy) used for evaluation in Section 6.

– An event, denoted ς , is a particular occurrence of an
activity.

– A trace σ ∈ Σ∗ ∪ Σω = 〈ς1, . . . , ςi, . . .〉 represents a
sequence of activities, with i ∈ N. A trace can be seen
as a partial mapping:

σ(i) : N ↪→ Σ

– A process model h defines a semantics such that the
language ` of h denotes the set of traces accepted by h.
That is,

`(h) ⊆ Σ∗ ∪Σω

and for some process (P,PP ) we have P = `(h) if h is a
perfect model of the process. Note that hmay be agnostic
regarding PP .

– Finally, a log L is a multiset representing the number of
occurrences of different traces:

L =
{
σ
m(σ1)
1 , . . . , σm(σn)

n

}

where m(σk) ∈ N denotes the multiplicity of σk. As
L is essentially a sample from (P,PP ), it is necessary
to consider trace multiplicities rather than collapsing the
log to a set.

Note the assumption of strict monotonicity implied by
this definition of traces. That is, for all i, j ∈ N we have that

i < j =⇒ σ(i) ≺ σ(j)
where ≺ denotes “precedes”, and also that

i = j =⇒ σ(i) = σ(j).

The definition of a trace as a function mapping from a
timestamp domain to the codomain of individual activities
implies that no two events can share the exact same times-
tamp (otherwise σ would not be a function). We note this,
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in part, due to the observation that shared timestamps are
not uncommon in real data sets. Nonetheless, the present
formalization of traces is widely accepted and sufficient for
the study at hand.

Definition 2 (Process Discovery) Process discovery refers
to a procedure that derives a process model from an event
log. Let L denote the set of all valid event logs and HF the
set of process models encodable by some process modeling
formalism F . A process discovery algorithm γ is a mapping
from logs to models:

γ : L → HF

Examples ofF include Petri nets, sound Petri nets,Work-
Flownets, R/I-nets,Declaremaps, and of courseDCRGraphs.
In other words, HF is our hypothesis space to which our
learning algorithm is restricted.

By extension, we can view the overall task as a mapping
from a log to a language, i.e. a subset of all possible traces:

`(γ) : L → 2Σ
∗∪Σω

Where 2X denotes the powerset of set X . To see this,
consider that for some L ∈ L, we have γ(L) = h and
`(h) ⊆ 2Σ

∗∪Σω . That is, `(γ(L)) ⊂ Σ∗ ∪ Σω . This view
of process discovery will lead naturally to the classification
task, and reduce the choice of modeling formalism F to an
intermediate step w.r.t. classification.

Definition 3 (DCR Graphs) DCR Graphs consist of a set
of events with three associated unary predicates: executed,
pending, and included which together constitute the marking
(i.e. state) of a DCR Graph. Moreover, four binary relations
are defined between events. In order to be executed, an event
must be included and satisfy any relevant relations.

Formally, a dynamic condition response graph is a tuple

g = (E ,m,A, •→,→•,→+,→%, l)

where

– E is a set of “events” (analogous to transitions in a Petri
net, and not to be confused with events in a trace, see l).

– m ∈ 2E × 2E × 2E is the marking
– A is the set of activities.
– →• ∈ E × E is the set of condition relations.
– •→ ∈ E × E is the set of response relations.
– →+ ∈ E × E is the set of includes relations.
– →% ∈ E × E is the set of excludes relations.
– →+

⋂→% = ∅.
– l : E → A is a labeling function mapping every “event”
to an activity.

A DCR Graph marking m = (Ex,Pe, In) represents
events which have previously been executed, pending events
to be executed or excluded, and events currently included.
For finite traces, a DCR Graph is defined to be accepting
when Pe ∩ In = ∅, i.e. no pending events are currently in-
cluded. For infinite traces, accepting states are defined in the
limit as with Büchi automata, to which DCR graphs can be
translated [62].

The execution semantics of DCR Graphs requires that
for an event e to be executed, it must fulfill the following
criteria:

– e must be included, i.e. e ∈ In
– If any condition relations exist s.t. e′ →•e, then all such
e′ must have been executed, or excluded, i.e. e′ ∈ Ex
or e′ /∈ In. In this way, conditions can be nullified by
excluding the source event. The latter is the “dynamic”
aspect of DCR Graphs.

Furthermore, if e is executed, the markingmwill change
as follows:

– If any response relations exist s.t. e•→ e′. , then all such
e′ will become pending, i.e. e′ ∈ Pe

– If any excludes relations exist s.t. e →% e′ then any
included e′ will become excluded, i.e. e′ /∈ In.

– If any includes relations exist s.t. e →+ e′ then any
excluded e′ will become included, i.e. e′ ∈ In.

An important point to note regards the labeling function
l, which may map more than one event to the same activity
(analogous to Petri nets with duplicate transitions). This can
potentially result in a non-deterministic model. In the algo-
rithm presented here, only bĳective labeling functions are
considered, so each event is mapped to exactly one activity
and vice versa.

Example Consider a DCR Graph consisting of 4 events with
a one-to-one mapping to activities: a,b,c,d:

– Initial marking:
– Executed: ∅
– Pending: a
– Included: a,c,d

– Relations
– a→• b
– a •→ b
– b→• a
– b •→ a

– c →+ b
– d→% b
– d→% d

Accepting run 1: 〈a〉. Themodel begins in a non-accepting
state since a is both pending and included. Since b is not in-
cluded, b→• a does not come into effect.Aftera is executed,
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b becomes pending, but since it is not included, the model is
in an accepting state.

Accepting run 2: 〈a, c, b, d, a〉. After a is executed, b
becomes pending. Executing c causes b to be included as
well. Now the model is in a non-accepting state. Executing
b causes a to become pending. Executing d excludes b and
d itself. Finally, a, which is still pending and included is
executed, which causes b to become pending, but since it is
not included, the model is in an accepting state.

Non-accepting run: 〈c, d, c〉. When c is executed, b be-
comes included, but cannot be executed due to the condition
relation a →• b. Likewise, a is unable to execute due to
b →• a. Executing d excludes b and d itself, releasing a
from b →• a. At this point, executing a will lead to an ac-
cepting state. However, if instead c is executed again, b is
included again and b →• a comes into effect and now d
cannot be executed to exclude b. The graph is now locked
in a permanently non-accepting state as neither a, nor b can
ever be executed because of their mutual conditions, yet a
remains forever included and pending.

4 Algorithm

In this section we formally describe the ParNek algorithm
underlying DisCoveR. Note the distinction we draw between
the fundamental algorithm, ParNek, and the specific imple-
mentation, DisCoveR, presented in Section 5. This distinc-
tion is also reflected in the formal, functional description in
this section which remains agnostic to concrete implemen-
tation details, e.g. for extracting the sets of relations defined
in Table 2.

The algorithm always produces perfectly fitting models,
i.e. all traces in the log will be replayable on the generated
model. The algorithm proceeds in the following steps:

1. A set of candidates for four relation patterns is con-
structed.

2. Additional excludes relations are added based on prede-
cessor and successor relations.

3. Additional includes/excludes patterns are added analo-
gous to NotChainSuccession relations.

4. Redundant excludes relations are removed.
5. Redundant condition and response relations are removed

via transitive reduction.
6. Additional condition relations are discovered using a lim-

ited replay strategy.
7. A final transitive reduction is performed for condition

relations.

We will refer to seven relation templates from the LTL-
based modeling language Declare. The relations are de-
scribed in words in Table 1 with analogous DCR relations.
These particularDeclare constraints have been selected based

on their ability to be mapped to DCR Graph relations that
can be composed orthogonally (thereby ensuring the perfect
fitness requirement of the miner), the possibility to detect
them in linear time and extensive experimentation to de-
termine which combination of constraints yielded the best
balance between precision and simplicity on real-life logs.
Formal specifications of functions for identifying relations
satisfied by the log are given in Table 2 (again, these are
only specifications, not implementations). In the description
that follows, we refer to lines in the high-level control flow
pseudocode in Algorithm 1.

The first step of the ParNek algorithm is the initialization
of a DCRGraph, after which we begin adding relations using
a number of strategies.

Initialization (lines: 2-5) We begin by defining a set of
events

E ≡ {1, . . . , |ΣL|}

containing the same number of events as distinct activities
present in the log, the latter defining our set of activities

A ≡ ΣL.

The labeling function

l : E → ΣL; i 7→ si

is a bĳective mapping between events and activities. So for
all intents, events and activities are equivalent. Finally we
assign an initial marking

m ≡ (∅, ∅, E)

in which all events are included, none are pending, and none
are executed. This marking does not change, and is returned
in the final graph.

Self-Exclusions - AtMostOne (line: 11): We begin with ac-
tivities for which the log satisfies the AtMostOne relation.
Any activity s satisfying this unary relation are mapped onto
the binary self-exclusion relation s→% s.

Responses - Response (line: 13): All pairs of distinct activi-
ties s and t for which the log satisfies the Response relation,
are mapped directly onto the response relation s •→ t.

Conditions - Precedence (line: 12): All pairs of distinct
activities s and t for which the log satisfies the Prece-
dence relation, are mapped directly onto the condition re-
lation s →• t. While this forms the basis of the condition
relation, more will be added in lines 32-34.
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Declare DCR Graphs Description

AtMostOne(a) a→% a Activity a can occur 0 or 1 time
Response(a, b) a •→ b After a occurs, b must eventually occur
Precedence(a, b) a →• b Before b can occur, a must have occurred
AlternatePrecedence(a, b) a→+ b and For b to occur, a must occur exactly once prior

b→% b
ChainPrecedence(a, b) See caption For b to occur, a must occur immediately prior
NotChainSuccession(a, b) a→% b Activity b may not occur immediately after a
NotCoExistence(a, b) a→% b ∧ b→% a Activities a and b may not co-occur in the same trace

Table 1 Relevant constraint templates from Declare. The ChainPrecedence relation is not straightforward to encode in DCR Graphs relations
and in fact, ParNek looks for evidence of ChainPrecedence relations, but encodes them as a→+ b, b→% b, which is not exactly equivalent.

Includes/Excludes - ChainPrecedence (line: 14-15): The
first step in populating→+ and adding further self-exclusions
to →%, is based on identifying ChainPrecedence re-
lations. However, encoding ChainPrecedence in DCR
Graphs is less straightforward thanAlternatePrecedence,
which is (nearly4) captured by an include and self-excludes.
SinceAlternatePrecedence subsumesChainPrecedence,
it is safe to check for evidence of the more restricted Chain-
Precedence, yet addAlternatePrecedence to themodel.

Excludes - Predecessor/Successor (lines: 17-21): Further
excludes relations are found by defining two relations:

Predecessor(L) and Successor(L)

which return the sets of all possible predecessors and suc-
cessors of an activity, respectively.

Based on the observation that a log in which activities
s and t never co-occur in the same trace satisfies the Not-
CoExistence(s, t) relation, we add s →% t and t →% s

(lines: 17-18). However, due to the subsequent removal of re-
dundant exclusions (lines: 26-27), theNotCoExistence re-
lation cannot be guaranteed to hold since one or both of the
exclusions may be removed.

Furthermore, if s is observed to precede, but never suc-
ceed t, and if no self-exclusion s →% s has been found, we
add t→% s (lines: 19-21).

In order to restrain model complexity, only one exclusion
relation is included for each target activity by means of the
ChooseOneRelation function. At present, this function is
implemented in a naive (but fast and determinstic), first-
come manner with a more sophisticated approach being left
for future work.

Includes & Excludes - NotChainSuccession (lines: 23-24):
To identify further includes and excludes relations, we rely on

4 In order to completely capture AlternatePrecedence, the target
activity needs to be excluded in the initial marking. This can lead to
complications w.r.t. other relations in which the target is source, and is
therefore omitted.

NotChainSuccession(L) as well as Between(L), which
simply identifies activities occurring between two other ac-
tivities in a log.

Put simply, if we never observe s followed immediately
by t, we add an exclusion s→% t (NotChainSuccession).
If however, t occurs after s, with some sequence of interme-
diate activities s.t. we have 〈. . . , s, u1, . . . , un, t, . . .〉, then
we allow all intermediate events to re-include t. That is, for
all 1 ≤ i ≤ n, we add ui →+ t.

Remove Redundant Excludes (lines: 26-27): Here we re-
move redundant excludes relations based on the observation
that if activity r always precedes s, and if r →% t, then
adding s →% t is redundant. It should be noted that this
redundancy does not hold if some u occurs between r and
s and u →+ t. Presently, this caveat is ignored, potentially
leading to a decrease in model precision, but allowing for an
enormous reduction in model complexity.

Limited Transitive Reduction (lines: 29-30 and 36): The
condition and response relations satisfy the transitive prop-
erty when seen in isolation. That is, if we have s →•t and
t→•u, then s→•u. In this case, s→•u is superfluous. The
caveat, seen in isolation, is crucial however, since if the same
model has v →% t for some v, then tmay become excluded,
annulling the implicit s→•u. Formally,

s→•t ∧ t→•u ∧ @v. v →% t |= s→•u
In fact, we can safely remove redundant s→•u despite

the presence of an interfering excludes relation (that is, we
ignore @v. v →% t). The removal is safe in the sense that this
can only result in a more permissive model, i.e. we do not
risk arriving at a model on which the log cannot be replayed.
The downside is a less precise model, which may permit
behavior which ought to be forbidden.

A limited-horizon transitive reduction is performedwhich
considers only relations between and activity and its neigh-
bors’ neighbors, but not further, in order to constrain com-
putational complexity. This is applied to all condition and
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response relations prior to the final step of discovering addi-
tional condition relations, and once again on condition rela-
tions afterwards. In many models the reduction in relations
is very substantial. See Figure 1 for a graphical illustration.

(a)

(b)

Fig. 1 Transitive reduction with a limited horizon: graph (a) has the
same reachability/transitive closure as the reduced graph (b), but re-
dundant edges within a 2-edge horizon have been removed.

Additional Conditions (lines: 32-34): The first set of con-
ditions we added based on the Precedence relations were
conservative in that this relation was observed to hold un-
conditionally across traces. We can now add less obvious
conditon relations, taking advantage of semantics added to
our model by inclusion and exclusion relations.

We start by adding s→• t if s occurs before the first
occurrence of t in some trace. For those traces in which s
does not precede the first t, it may be the case that at the
time of executing t, that s is currently excluded, e.g. if the
relation u→% s is present and u is observed prior to t, and s
has not been re-included. Recall that DCR Graphs semantics
dictate that a relation does not apply when the source activity
is excluded.

Since only includes and excludes relations are determina-
tive for the validity of these candidate relations, we can utilize
a limited replay strategy based on these relations alone. This
approach is less computationally demanding than using the
full model.

5 The DisCoveR Miner

In the previous sectionwe provided a formal, functional char-
acterization of the ParNek algorithm. In the current section
we show how the algorithm was operationally implemented
as the DisCoveR miner. The whole JAVA source code is pro-
vided as open source (licensed under LGPL-3.0) at [85]. As
the full source code is too large to include in this paper we
will at various times provide a skeleton of the code and re-
fer to the repository for the full details, note that this means
that the listings below may at times obfuscate some details
from the actual source code, or include additional comments,
when class names and line numbers arementioned, they refer
specifically to the release version 1.0.1.

The primary contribution of the implementation is its
run-time complexity, expressed in terms of the size of the
event log (L) and in terms of the number of unique activities
in the log (A). This is achieved through two primary means.
First of all, instead of computing the various functions of
Table 2 naively by continuously re-parsing the log, we first
build an abstraction of the log, which allows us to afterwards
compute these functions in O(A2), which in turn makes the
main Algortihm 1 independent to the size of the log, except
for the computation of additional conditions. Secondly, by
using bit vector operations for 1) the building of the abstrac-
tion, 2) the computation of additional conditions and 3) the
DCR Graph semantics, we reduce their complexity to be re-
spectively O(L ∗ A), O(L), and O(1). This means that the
combined complexity of the miner isO((L∗A)+A2), with
the log size usually dominating. The bitvector implementa-
tion of DCR Graphs was inspired by earlier work by Debois
et al [24, 49].

Why bit vectors? A bit vector (also bit array or bit set) is an
array of bits (i.e. Booleans) that exposes bitwise operations.
This allows the compiler to map the data structure directly to
bitwise machine instructions, making computations on them
extremely fast.

5.1 DCR Graph semantics

We first show how we used bit vectors to improve the ef-
ficiency of replaying DCR Graphs. Note that BitSets are
JAVA’s implementation of bit vectors, the marking of a DCR
Graph can then be represented as such:
public BitSet executed = new BitSet();
public BitSet included = new BitSet();
public BitSet pending = new BitSet();

Listing 1 [85]: BitDCRMarking, ln. 7-9

For example, let us assume that we have three activities
with respective indices A (1), B (2), and C (3). If A and C
have been previously executed, then their executed states can
be represented as the bit vector:
executed = [true, false, true];

We can similarly represent relations asmatrices, encoded
in practice as hashmaps of bit vectors to allow fast lookup of
the relations of a particular activity:
public HashMap<Integer, BitSet>

conditionsFor = new HashMap <>();
public HashMap<Integer, BitSet>

responsesTo = new HashMap <>();
public HashMap<Integer, BitSet>

excludesTo = new HashMap <>();
public HashMap<Integer, BitSet>

includesTo = new HashMap <>();

Listing 2 [85]: BitDCRGraph, ln. 28-33
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input : A log L
output: A DCR Graph G

1 // INITIALIZATION
2 E ≡ {1, . . . , |ΣL|} // set of events
3 A ≡ ΣL // activities in log
4 l ≡ i ∈ E 7→ si ∈ ΣL // bijective labeling (events and activities)
5 m ≡ (∅, ∅, E) // initial marking
6 →+ ≡ ∅ // set of includes relations
7 →% ≡ ∅ // set of excludes relations
8 →• ≡ ∅ // set of condition relations
9 •→ ≡ ∅ // set of response relations

10 // ADD ’DECLARE’ TEMPLATES
11 →% := →%

⋃ { (s, s) | s ∈ AtMostOne(L) } // self exclusions
12 →• := →• ⋃ Precedence(L) // condition relations
13 •→ := •→ ⋃

Response(L) // response relations
14 →+ := →+

⋃ { (s, t) | s 6= t
∧

(s, t) ∈ ChainPrecedence(L) } // alternate precedence
15 →% :=→%

⋃ { (t, t) | ∃s, s 6= t. (s, t) ∈ ChainPrecedence(L) } // alternate precedence

16 // ADD ADDITIONAL EXCLUDES
17 →% := →%

⋃
ChooseOneRelation

(
{ (s, t) | (s, t) /∈ Predecessors(L) ∧ // not coexistence

18 (s, t) /∈ Successors(L) ∧ s 6= t }
)

19 →% := →%
⋃
ChooseOneRelation

(
{ (t, s) | (s, t) ∈ Predecessors(L) ∧ // not succession

20 (t, s) /∈ Successors(L) ∧

21 (s, s) /∈→%
∧
s 6= t }

)

22 // ADDITIONAL INCLUDES/EXCLUDES
23 →% := →%

⋃
NotChainSuccession(L) // not chain succession

24 →+ := →+
⋃ { (u, t) | ∃s. (s, t) ∈ NotChainSuccession(L)∧(s, u, t) ∈ Between(L) }

25 // REMOVE ’REDUNDANT’ EXCLUSIONS
26 →% := →% \ { (s, t) | ∃u. (u, t) ∈→%

∧

27 (u, s) ∈ AlternatePrecedence(L) }

28 // REMOVE ’REDUNDANT’ CONDITIONS/RESPONSES
29 •→ := •→ \ { (s, t) | (s, u)∈ •→ ∧

(u, t)∈ •→ }
30 →• := →• \ { (s, t) | (s, u)∈→• ∧ (u, t)∈→• }

31 // ADD ADDITIONAL CONDITIONS
32 →• := →• ⋃ { (s, t) | (∃σ ∈ L.∀k. s = σ(i)

∧
t = σ(j) = σ(k)

∧
i < j ≤ k )

∧

33 (∀σ ∈ L.∀i > j. s = σ(i)
∧
t = σ(j)

∧ ∃h < j. (σ(h), s) ∈ →%
∧

34 6 ∃g < j. g > h ∧ (σ(g), s) ∈ →+ )}

35 // REMOVE ’REDUNDANT’ CONDITIONS
36 •→ := •→ \ { (s, t) | (s, u)∈ •→ ∧

(u, t)∈ •→ }

37 return (E,M,A, •→,→•,→+,→%, l) // RETURN DCR GRAPH

Algorithm 1: High-level control flow of the mining algorithm.
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AtMostOne :

L 7→
{
s

∣∣∣ s ∈ ΣL
∧
i, j ∈ N

∧ ∀σ ∈ L ∀i, j. s = σ(i) = σ(j) =⇒ i = j
}

Response :

L 7→
{
(s, t)

∣∣∣ s, t ∈ ΣL
∧
i, j ∈ N

∧ ∀σ ∈ L ∀i. s = σ(i) =⇒ ∃j
(
t = σ(j)

∧
i < j

) }

Precedence :

L 7→
{
(s, t)

∣∣∣ s, t ∈ ΣL
∧
i, j ∈ N

∧ ∀σ ∈ L ∀i. t = σ(i) =⇒ ∃j
(
s = σ(j)

∧
j < i

) }

AlternatePrecedence :

L 7→
{
(s, t)

∣∣∣ s, t ∈ ΣL
∧
i, j, k ∈ N

∧ ∀σ ∈ L ∀i. t = σ(i) =⇒ ∃j
(
s = σ(j)

∧
j < i

∧

ChainPrecedence : @k
(
t = σ(k)

∧
j < k < i

) ) }

L 7→
{
(s, t)

∣∣∣ s, t ∈ ΣL
∧
i ∈ N

∧ ∀σ ∈ L ∀i. t = σ(i) =⇒ s = σ(i− 1)
}

NotChainSuccession :

L 7→
{
(s, t)

∣∣∣ s, t ∈ ΣL
∧
i ∈ N

∧
@σ ∈ L ∀i.

(
s = σ(i)

∧
t = σ(i+ 1)

) }

Predecessors :

L 7→
{
(s, t)

∣∣∣ s, t ∈ ΣL
∧
i, j ∈ N

∧ ∃σ ∈ L ∃i, j.
(
s = σ(i)

∧
t = σ(j)

∧
i < j

) }

Successors :

L 7→
{
(s, t)

∣∣∣ s, t ∈ ΣL
∧
i, j ∈ N

∧ ∃σ ∈ L ∃i, j.
(
s = σ(i)

∧
t = σ(j)

∧
i > j

) }

Between :

L 7→
{
(s, u, t)

∣∣∣ s, u, t ∈ ΣL
∧
i, j, k ∈ N

∧ ∃σ ∈ L ∃i, k, j.
(
s = σ(i)

∧
u = σ(k)

∧
t = σ(j)

ChooseOneRelation :
∧
i < k < j

) }

R ∈ 2Σ×Σ 7→ (s, t) ∈ R

Table 2 Formal definitions of helper functions which return sets of relevant relations. All functions have event logs as their domain (L), except
ChooseOneRelation.

Continuing on the previous example, if we have a con-
dition from A to B and from B to C, the data structure
conditionsFor would be constructed as follows:
conditionsFor.put(1, [false, false, false]);
conditionsFor.put(2, [true, false, false]);
conditionsFor.put(3, [false, true, false]);

Given these definitions, the semantics of DCR Graphs
can be expressed as a short list of bitvector operations. Note
that the get() method retrieves the bit at a given index and that
the intersects method first applies an AND operation on two
vectors and afterwards checks if the result is 0. Enabledness
of events can be computed as follows:

public Boolean enabled(final BitDCRMarking
marking, final int event) {
// The event is not included.
if (!marking.included.get(event))
return false;

// Any of the conditions for the event are
included and have not been executed.

if (conditionsFor.get(event).intersects(
marking.blockCond()))

return false;
return true;

}
// Method on the class BitDCRMarking
public BitSet blockCond() {
return included.clone().andNot(executed);

}
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Listing 3 [85]: BitDCRGraph, ln. 96-116 & BitDCRMarking, ln. 11-
21

First we check the index of the included bit vector corre-
sponding to the event, after we check if any of the conditions
for the event are current included and not executed. The latter
requires two bitwise operations: first we subtract the executed
from the included events, giving us a bit vector represent-
ing those events that are currently included, but have not
yet been executed, after we check if this bit vector intersects
(i.e. checking if the bitwise AND is greater than 0) with the
bitvector representing the conditions for the event. Note that
a more straightforward, but less efficient implementation of
DCR Graphs would loop over a data structure containing all
conditions to achieve a similar result.

Likewise, the execution of an event can be computed as
follows:
public BitDCRMarking execute(final

BitDCRMarking marking, final int event) {
// Copy the previous marking
BitDCRMarking result = marking.clone();
// Set the event as executed
result.executed.set(event);
// Clear the event as no longer pending
result.pending.clear(event);
// Add all new pending responses
result.pending.or(responsesTo.get(event));
// Exclude excluded events
result.included.andNot(excludesTo.get(

event));
// Include included events
result.included.or(includesTo.get(event));
return result;

}

Listing 4 [85]: BitDCRGraph, ln. 153-174

Here, we first set the bit that corresponds to the executed
event in the executed bit vector to true.We then set the bit that
corresponds to the event in the pending bit vector to false.
Afterwards we add any new pending responses through the
bitwise OR operation on the pending bitvector and the re-
sponseTo bitvector for the executed event (which represents
those events that are a response to the event). Thenwe remove
excluded events from the included bitvector by substracting
the excludesTo bitvector for the executed event. Finally we
add included events to the included bitvector through a bit-
wise OR with the includesTo bitvector.

As before, because hashmap lookup and bitvector opera-
tions are constant, a function that would usually loop over the
sets of relations becomes a short list of constant operations.

This implementation ofDCRGraphs allows for extremely
fast replay of logs, which significantly reduces the duration
of the Additional Conditions part of the algorithm, which
requires a replay of the log on the graph that has been found
up-to that point. We’ll further address how we reduced the
computation of Additional Conditions to linear time later in
this section.

MARKING AT TIMESTEP t
10000000 executed
01001000 pending
01001001 included

EXECUTE EVENT 4
10000000 executed

OR 00001000 event 4
10001000 executed’

01001000 pending
AND 11110111 not event 4

01000000
OR 00100000 responsesTo event 4

01100000 pending’

01001001 included
AND 11111110 not excludesTo event 4

00001000
OR 00100000 includesTo event 4

01101000 included’

MARKING AT TIMESTEP t+ 1
10001000 executed
01100000 pending
01101001 included

Table 3 Example of bit operations involved in execute method (see
Listing 4).

5.2 Abstracting the log

To avoid repeating computations, we separate the mining
process into two steps: first we build a number of relevant
abstractions of the log, which we then use afterwards during
the actual model building steps as described in Section 4.
This separation of concerns ensures that there is a central
part of the code where we parse the log, with all other parts
of the algorithm working only on these abstractions, which
are bounded by the number of activities (O(A2)) and not
the log size. To increase the efficiency of the log abstraction
mechanism, we also store and compute these abstractions
through bit vector operations. The listing below shows their
definition:

public HashMap<Integer, BitSet>
chainPrecedenceFor = new HashMap <>();

public HashMap<Integer, BitSet> precedenceFor
= new HashMap <>();

public HashMap<Integer, BitSet> responseTo =
new HashMap <>();

public HashMap<Integer, BitSet> predecessor =
new HashMap <>();

public HashMap<Integer, BitSet> successor =
new HashMap <>();

public BitSet atMostOnce = new BitSet();

Listing 5 [85]: BitParNekLogAbstractions, ln. 37-50
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Below we show how the abstractions are computed. The
parseTrace method is called once for each trace in the log.
Note that the method does not require a nested iteration over
the log or current trace, only a single nested iteration over the
activities to compute responses. Therefore the complexity of
computing the abstractions is O(L ∗ A). For convenience,
logs are transformed into lists of integers, this allows for
straightforward mapping of activities to the indices of the bit
vectors and efficient storage of the log for later reuse.
public void parseTrace(List<Integer> t) {

// We keep track of which activities were
seen at least once before

BitSet localAtLeastOnce = new BitSet();
// We keep track of which activities were

seen only before another activity
HashMap<Integer, BitSet> seenOnlyBefore =

new HashMap <>();
// We keep track of previously seen

activity
int last_i = -1;

// For each event in the trace:
for (int i : t) {

// Predecessors: any activities seen at
least once before i

this.predecessor.get(i).or(
localAtLeastOnce);

// i occurs more than once
if (localAtLeastOnce.get(i))
this.atMostOnce.clear(i);

localAtLeastOnce.set(i);
// Precedence for (i): any activity that

occured before the first instance
this.precedenceFor.get(i).and(

localAtLeastOnce);
// ChainPrecedence for (i): any activity

that occured before i in every
instance.

if (last_i != -1) {
BitSet bs = new BitSet();
bs.set(last_i);
this.chainPrecedenceFor.get(i).and(bs

);
} else {
this.chainPrecedenceFor.get(i).and(

new BitSet());
}
// To later compute responses we track

which events were seen before i and
not after.

if (this.responseTo.get(i).cardinality()
> 0) {

seenOnlyBefore.put(i, (BitSet)
localAtLeastOnce.clone());

}
for (int j : seenOnlyBefore.keySet()) {
seenOnlyBefore.get(j).clear(i);

}
last_i = i;

}

// Responses: those events that always
occur after j

for (int j : seenOnlyBefore.keySet()) {

this.responseTo.get(j).and(
localAtLeastOnce);

this.responseTo.get(j).andNot(
seenOnlyBefore.get(j));

}
}

Listing 6 [85]: BitParNekLogAbstractions, ln. 156-217

To avoid unnecessary computations embedded in the
main parsing of the log, we exploit the fact that the pre-
decessor and successor functions are each other’s dual and
compute the successor function after the log has been parsed:

public void finish() {
for (int i : this.predecessor.keySet()) {
for (int j : this.predecessor.keySet())

{
if (this.predecessor.get(i).get(j)) {
this.successor.get(j).set(i);

}
}

}
}

Listing 7 [85]: BitParNekLogAbstractions, ln. 219-230

5.3 Mining from log abstractions

After creating the log abstractions we start the discovery
task. For the sake of brevity we will not show source code
here, but refer to [85]: BitParNeks, ln. 75-228. In short,
the implementation follows largely the steps described in
Algorithm 1. The key difference is in the additional condition
step, where we avoid having nested loops over the traces by
implementing this function as follows (we only show the
most relevant parts, for the full method we refer to [85]):

public void findAdditionalConditions(
BitParNekLogAbstractions h, BitDCRGraph
g) {

// Possible additional conditions:
predecessors - current conditions

HashMap<Integer, BitSet>
possibleConditions = new HashMap <>()
;

for (final Entry<Integer, BitSet> kvp :
h.predecessor.entrySet()) {
BitSet pc = (BitSet) kvp.getValue().

clone();
pc.andNot(g.conditionsFor.get(kvp.

getKey()));
possibleConditions.put(kvp.getKey(),

pc);
}
// Go through the log once.

for (final Entry<List<Integer>, Integer>
kvp : h.traces.entrySet()) {

List<Integer> trace = kvp.getKey();
BitDCRMarking m = g.

defaultInitialMarking();
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// for each trace we track which
activities have been seen at
least once before.

BitSet seen = new BitSet();
for (int event : trace) {

// possible activities that may
be a condition for the
current activity are those
that are not included , or
have been see before.

BitSet ok = new BitSet();
ok.set(0, h.ActivityToID.size());
ok.andNot(m.included);
ok.or(seen);
// valid additional conditions

are those for which this
applies in each instance.

possibleConditions.get(event).and(
ok);

// execute the current activity in
the current DCR graph to get
a new marking.

m = g.execute(m, event);
// add the current activity to

those we have seen.
seen.set(event);

}
}

}

Listing 8 [85]: BitParNek, ln. 255-296

Altogether, these optimizations provide us with an ex-
tremely efficient implementation of the ParNek algorithm.
In the following section we will show through experimen-
tation that it is in fact nearly one order of magnitude faster
than any other miner and two orders of magnitude faster than
most of the state-of-the-art Declare miners.

6 Evaluation

To evaluate the performance of our algorithm, we frame
the process discovery task as a binary classification task of
identifying legal/illegal traces. For this, we take advantage
of a labeled data set from the Process Discovery Contest
2019 5, in which DisCoveR was among the top performing
submissions , classifying 96.1% of traces correctly. This
result was achieved despite the fact that DisCoveR considers
only control-flow, ignoring auxiliary data associated with
events. Nevertheless, the present evaluation should not be
interpreted as a comprehensive benchmarking, but rather a
preliminary, proof-of-concept evaluation.

For comparison, we report results for: 1) a miner based
on the same formalism (DCR Graphs) developed by Debois,
et.al. [29]; 2) two leadingminers also based on the declarative
paradigm: MINERful [19] and Declare Miner [51]; 3) the

5 https://icpmconference.org/2019/
process-discovery-contest

well-established Petri net miner, InductiveMiner; and finally
4) the winning miner for the PDC 2019, the Log Skeleton
miner [87]. Note that the reason DisCoveR achieves a higher
accuracy than the Log Skeleton miner in our evaluation is
due to the fact that we report the results of the algorithm’s
classification alone, whereas the winning submission to the
process discovery contest was a manually augmented model
based on the output of the Log Skeleton miner.

Framing process discovery as a binary classification task
is arguably an oversimplification of the aimof process discov-
ery, since it does not capture the degree to which amodel fails
to capture an event log. Error measures that aim to capture
this are usually based onmodel-log alignment techniques [9],
or model specific measures such as token replay metrics for
Petri nets [72]. The advantage of classification-based evalu-
ation lies in the ease of interpretability and comparability. In
a model-agnostic manner, we gain a view of the algorithm’s
bias towards committing different classes of statistical errors
(e.g. Type I/II) by analyzing true/false positives/negatives,
and the corresponding precision, recall, F1-score and MCC
measures.

Before presenting the results, we briefly formalize the
task of process discovery as binary classification in terms
of computational learning theory. This clarifies our formu-
lation of processes in probabilistic terms, a property which
is implied by the statistical evaluation metrics we present,
a subset of which were the basis for evaluation in the PDC
2019.

Through the appeal to learning theorywe aim to illustrate
that a key reason our algorithm performs well is due to the
- albeit heuristic - regularization (i.e. restriction on model
complexity) performed at several steps in the algorithm.

6.1 The Learning Task

The goal of a supervised learning task is to learn an approxi-
mation h of a target function f which is assumed to generate
the observed data [8]. The training data L is an i.i.d.6 sample
from the true probability distribution (PP ) associated with
f . The aim is to maximize performance (e.g. minimize an er-
ror function) on out-of-sample data by means of optimizing
performance on in-sample training data in such a way that
the learned model avoids overfitting.

Formally, a learning algorithm γ is a mapping from a
sampling L from the process (P,PP ) to a hypothesis space
H s.t. the out-of-sample error Eout is minimized:

γ : L → H; L 7→ argmin
h∈H

Eout(h)

To define our error function E, we can frame process
discovery-based binary classification as the task of predicting
the outcome of a random Bernoulli variable defined by

6 Independent and identically distributed
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1(σ ∈ P )

which returns 1 when a trace σ is a member of P (the set of
traces associated with the true process) and 0 otherwise

The most straightforward way of defining the in-sample
error measure, is simply the proportion of “successes” in this
Bernoulli trial. IfL contains only positive examples (i.e.L ⊆
P ), the in-sample error can be formulated as the proportion
of traces accepted by the learned model h (i.e. recall):

Erin(h) =
∑

σ∈L

1(σ ∈ `(h))
|L|

IfL contains both positive and negative examples, the in-
sample error can be written as the proportion of examples on
which the learned model and example agree (i.e. accuracy):

Eain(h) =
∑

σ∈L

1(σ ∈ `(h) ⇐⇒ σ ∈ P )
|L|

We include this formulation (Eain) for clarity, but note
that it is at odds with our formalization of a log L as a
sample from P . For it to be consistent, we would need to
consider L a sample of traces in P as well as not in P . In the
evaluation based on PDC 2019 data, all training logs contain
only positive examples.

In most learning tasks, minimizing Ein(h) is trivial if
the hypothesis set H is large enough. Indeed, Erin can be
trivially minimized by a flower process model which per-
mits all behavior. The true challenge of the learning task
lies in ensuring not only that in-sample error is small, but
simultaneously that in-sample error is close to out-of-sample
error.

Formally,

|E(h)in − E(h)out| < ε

for some tolerance threshold ε.
While a large enough hypothesis space H may indeed

contain the target function f , the likelihood of our learning
algorithm choosing f in such a large hypothesis space is
vanishingly small. It is much more likely to settle on some
other, very complex, function g ∈ H, leading to a highEout.
We therefore seek an approach to ensuring that

P[ |E(h)in − E(h)out| < ε ] > 1− δ

where δ is a desired confidence threshold. This is known as
a "probably (δ), approximately (ε), correct" (PAC) bound.

While somewhat counter-intuitive, this formulation helps
us understand why restrictingH to a smaller set which does
not include the target function f will often lead to a lower
Eout.

Regularization Thus, a key component in the learning pro-
cess is that of regularization: a process for controlling the
complexity of a learned model, i.e. restricting the size of
the hypothesis space, to improve generalization. This gives
rise to the formulation of the learning process as a trade-off
between inductive bias7 of a hypothesis set and a penalty for
the complexity of a hypothesis [78]. The sum of these terms
gives an estimate of the out-of-sample error:

Êout = Ein +Ω(N,H, δ).

Where N denotes sample size, H the hypothesis space and
δ the desired confidence that Eout ≤ Êout.

So although we can achieve a very low in-sample error
using a rich hypothesis set, we penalize complex models
using a regularization function Ω. Explicitly incorporating
this function into learning algorithms s.t. it minimizes Êout
rather than Ein, can greatly improve results.

ParNek does not currently attempt to explicitly minimize
Êout, and Ω is likewise not explicitly formulated. However,
some form of regularization is achieved by effectively re-
stricting the size ofH. This is done via a set of heuristics at-
tempting to control model complexity, removing those which
are redundant w.r.t. training data or add little to the precision
of its semantics. Indeed, ParNek cannot discover the entire
set of DCR Graphs, thus

HParNek ⊂ HDCR = ω-regular languages

Restricting the available hypothesis set is analogous to limit-
ing a linear regression algorithm to third-order polynomials,
for example, which corresponds to anΩ which assigns a zero
weight to all higher-order coefficients.

While heuristic in nature, the approach is effective, as
is seen in comparison to miners which do little to control
model complexity, such as Debois, et al’s miner. We intend
to pursue more well-defined regularization procedures for
DCR Graph mining algorithms in future work.

Metrics Aggregate evaluation metrics, such as precision, re-
call and F1-score are commonly reported for classification
tasks. Given a confusion matrix, we define precision(prec.)
and recall as follows:

Pred- Data
iction + −
+ True Pos.(TP ) False Pos.(FP ) prec. ≡ TP

TP+FP

− False Neg.(FN ) True Neg.(TN )

recall ≡ TP
TP+FN

acc.≡ TP+TN
TP+TN+FP+FN

7 The minimal in-sample error achievable for hypothesis h ∈ H.

179



14 C. O. Back, T. Slaats, T. T. Hildebrandt, M. Marquard

TheFβ-score is then the harmonic mean of precision and
recall, where β determines a weighting of precision relative
to recall:

Fβ =
(1 + β2) · precision · recall
β · precision+ recall

Originally stemming from information retrieval, these
metrics have been criticized for giving weight to true posi-
tives and ignoring true negatives [15], and other metrics such
as Matthews Correlation Coefficient (MCC) avoid assump-
tions regarding the target class.

Arguably, process mining can be seen as an information
retrieval task, if the tool is used to “query” an event log for
compliant/noncompliant traces. For completeness, we report
precision, recall and F1-score for both the situation in which
the target class is compliant behavior (true positive) and non-
compliance (true negative), as well as Matthews Correlation
Coefficient (MCC).

6.2 Results

In addition to case studies, we present a controlled evaluation
of the algorithm based on a labeled data set from the Process
Discovery Contest 2019. The evaluation is bolstered by the
truly blind nature of the process. After being presented with
a training set with positive examples only, and submitting
results for a partially blind validation round, the predictions
on a separate test set were sent in to the contest administrators
who independently evaluated their accuracy. This removes
any potential for accidental data snooping.

See Table 5 for the complete results.

Dataset The data set essentially consists of 10 independent
data sets stemming from 10 different processes. Participants
were presented with an unlabeled training set from each
process. Then, two validation sets were provided for which
participants could submit their algorithm’s classification re-
sults. The organizers then returned a confusion matrix - but
no details regarding which traces specifically were misclas-
sified and how. Two rounds of submission for validation were
permitted, though we only took advantage of the first.

Event logs for processes 1, 5, 7, 8, 9, and 10 contained
auxiliary data associated with each event, sometimes more
than one attribute. The version of our algorithm presented
here considers only control-flow and is unable to take advan-
tage of additional attributes, and neither do the miners we
present in the following comparison.

Comparison For comparison, we present the performance of
five relevantmining algorithms: the first, anotherDCRGraph
mining algorithm designed by Debois, et al [29]; second, two
miners based on Declare constraints, MINERful [19] and

Declare Miner [51]; third, Inductive Miner, a flagship imper-
ative miner which returns Petri net models; and finally Log
Skeleton Miner, the winning submission to PDC 2019 [87].

Debois, et al’s DCRGraph miner takes a very greedy ap-
proach to identifying DCR relations which hold for an event
log. Essentially, the algorithm begins with a fully constrained
model over the set of activities in the log (mapped one-to-one
to DCR events), then goes through the log and removes any
constraints which are violated by observed behavior.

Due to the greedy strategy, the algorithm often finds
thousands of constraints and clearly overfits the training data,
leading to poor performance on test data.

MINERful is a miner for the Declare language which uses
a number of user-defined parameters to determine which
constraints to include in a model after mining the event log.
The three core parameters are:

Support The fraction of traces in which the con-
straints must hold.

Confidence Support scaled by the fraction of traces
in which a constraint is activated.

Interest Factor Confidence scaled by the fraction of traces
in which target of a constraint is also
present.

A constraint is considered to be activated when it be-
comes relevant in a trace. So, a succession constraint be-
tween s and t will only become activated in traces in which
s is present. In addition, to count towards interest factor,
the target t must also be present. Defined as scalings, these
parameters are dependent on one another and result in the
bounds: support > confidence > interest factor.

MINERful also performs subsumption checks to elim-
inate redundant or meaningless constraints. For example,
wherever a ChainSuccession constraint is found to hold,
Succession will necessarily hold and adds no information.
This procedure is akin to DisCoveR’s strategy of removing
transitively redundant constraints in order to avoid unneces-
sarily complex models.

We employed an automated parametrization procedure
originally developed for the evaluation in [12]. The proce-
dure employs a binary search strategy to find values for con-
fidence and threshold which result in a model with a number
of constraints as close to, but not exceeding, some limit. We
present results for models with between 89 and 200 con-
straints. Allowing larger models did not improve accuracy
further.

Declare Miner was the first miner developed for the De-
clare language and uses a frequent itemset mining approach
using the Apriori algorithm combined with subsequent prun-
ing techniques. The user can set two threshold parameters:
support, which measures the fraction of traces in which the
constraints hold and alpha which measures the how often
a constraint is activated (same as confidence for Minerful).
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Further more the user can specify which constraint templates
should be considered.

We consider models generated by Declare Miner with
thresholds support = 100 and alpha = 100 and with either all
constraint templates or only positive constraint templates (no
Not- constraints). The parameter settings were settled upon
after testing numerous settings from the range of thresholds,
with 100/100 performing best.

Inductive Miner uses a divide-and-conquer approach to
recursively partition the directly-follows graph (eventually-
follows in the IMi variant of the miner) of a log such that
the partitions correspond to one of four process tree op-
erators: exclusive choice, sequential composition, parallel
composition and redo loop. The resulting process tree can be
transformed into a corresponding Petri net.

We tested Inductive Miner (IMf) using a range of noise
thresholds from 0.0 to 1.0, where a setting of 0.0 ensures
perfectly fitting models w.r.t. to the mined event log (training
set). A noise threshold of 0.0 is equivalent to the original In-
ductive Miner (IM). We also investigated the variants known
as IM-EKS, IMc, IMcpt, IMlc and IMflc,whose performance
was nearly identical to standard IM (noise threshold 0.0). The
largest difference was IMflc with 2 fewer correct classifica-
tions. We only report detailed results for settings 0.0, 0.5,
1.0 for readability, but note that intermediate noise thresh-
old between these values followed the same, roughly linear,
relationship with the accuracy of the resulting model.

Log Skeleton miner was the basis for the winning sub-
mission to the PDC 2019 and builds on some basic Declare
constraint templates: Precedence, Response, NotCoexis-
tence, and adds NotPrecedence, and NotResponse. Fur-
thermore, it employs the notion of equivalence classes for
co-occurring activities. We report the results for the fully
automated miner, but as noted, the final submission was
manually extended, which is why the results we report are
lower than the 99.78% accuracy achieved by the creator of
Log Skeleton.

Results We report results for the classification task in a con-
fusion matrix for each of the 10 processes, as well as aggre-
gate across processes in Table 5. Keep in mind, that a user-
defined error measure may choose to weigh false positives
and false negatives differently (α and β in our formalization).

Additionally, we reportMatthewsCorrelationCoefficient
(MCC) in addition to precision, recall, and F1-score, both in
the case of the target class being permissible traces, as well
as forbidden traces. The appropriate framing would depend
on the application.

6.2.1 Run-time

We compared runtime performance to the same miners as
in our classification evaluation, finding that DisCoveR per-
forms comparably with the fastest miners, and much faster

Fig. 2 Mean run-times in milliseconds across 100 runs on Process
Discovery Contest 2019 training logs. MINERful was run with the
thresholds: support = 1.0, confidence = 1.0, interest factor = 1.0, with
and without a post-processing step to simplify models. Declare Miner
was with and without multithreading, and with alpha = 1.0, support =
1.0, with all constraint templates and with all but the negative constraint
templates. For runtimes, the IMd variant of Inductive Miner from the
py4pm platform for Python, as this variant is significantly faster than
other IM variants. Log Skeleton Miner was the winning submission in
terms of classification accuracy, DisCoveR was the runner-up.

than Declare-based miners, MINERful and Declare miner,
even when multithreading is enabled. Note that for runtime
comparison, the linear-time IMd variant of Inductive Miner
from the pm4py8 Python module was used.

Experimental setup Experiments were conducted on the set
of 10 test logs from the Process Discovery Contest 2019,
and were run on a Lenovo Thinkpad P50 with an Intel Xeon
E3-1535M v5 2.90 GHz quad-core processor and 32G of
RAM. We present mean run-times over 100 runs of mining
each log.

8 http://pm4py.org
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MINERful was parametrized with support threshold of
1.0, a confidence threshold of 1.0 and interest factor thresh-
old of 1.0. Declare miner was parametrized with support =
1.0 and alpha = 1.0. The parameters for MINERful were
chosen due to being the most “generous” in terms of run-
time. The parameters for Declare miner stem from the best
performance in classification. We also report notable vari-
ants: for MINERful with and without an additional model
simplification step, for Declare miner with/without negative
constraints and with/without multithreading. We note that
changes in parametrizations do not significantly alter per-
formance - certainly not relative to other miners. Note that
we did not employ the parameter tuning procedure used to
achieve the results for MINERful in Table 5 which requires
re-running the miner many times.

The 10 logs all consist of 700 traces. Run-time results can
be seen in Figure 2 as well as Table 4, where details regarding
number of activities and mean trace length are also included.

Note that these results should be taken as a rough indi-
cation of performance subject to some variance. A number
of factors that are out of our control may affect runtimes,
especially for very low runtimes. These include Java Virtual
Machine’s garbage collection strategies, just-in-time compi-
lation and optimization strategies, as well as background op-
erating system processes. To determine a reasonable number
of runs, we observed the convergence of runtime estimates
w.r.t. increases in runs, finding that estimates stabilized by
100 runs and clearly so by 1000 and 10000 runs. We present
results for 100 runs in part because higher numbers of runs
for some miners was not feasible.

6.2.2 Mined Model

Finally, we show an example of what a mined DCR Graph
actually looks like. In the listing below we show the mined
model for log 10 of the PDC 2019 data set. DCR Graphs
can be represented either graphically (as nodes represent-
ing activities and edges representing relations) or as a lan-
guage [30]. Herewe opted for the language format as it allows
for a more concise representation of large models. The rela-
tions arewritten as -->*, *-->, -->% and -->+, respectively,
the condition, response, exclusion and inclusion. By d -->*
ae we denote that d is a condition for ae. Activities can be
grouped together as a shorthand for denoting multiple rela-
tions, e.g. i -->* (p, ai) denotes a condition from i to
p and an additional condition from i to ai.
d -->* ae
i -->* (p, ai)
t -->* q
q -->* w
w -->* (p, ab, ak, e)
p -->* ai
b -->* (ab, ak, e)
k -->* ar
x -->* ap

j -->* (g, m, v, o, l, r, ab, ak, e)
ap -->* j
ad -->* (j, u, aa, ao)
ao -->* (v, l, r)
ae -->* (l, r, ab, ak, e)
ab -->* aq
ak -->* ai
aq -->* ai
e -->* ai
k *--> ar
u *--> j
aa *--> i
ab *--> (ae, aq, ai)
ak *--> (ae, ai)
aq *--> (l, r, ao)
e *--> (ae, aq, ai)
ai *--> (l, r, ao)
d -->% d
t -->% t
q -->% q
w -->% w
p -->% p
b -->% (b, h)
a -->% (d, a)
k -->% (d, k, ap, ad, o, l, r, ao, ae, ab, ak,

aq, e, ai)
x -->% x
ar -->% ar
j -->% j
g -->% g
h -->% (i, b, h)
ap -->% ap
u -->% (g, ad, u, l, r, aa, ao, ab, ak, aq, e,

ai)
m -->% m
v -->% (v, ae)
o -->% (d, g, o, ao, ae)
l -->% l
r -->% r
aa -->% (ad, u, v, l, r, aa, ao, ab, ak, aq, e

, ai)
c -->% (i, t, q, w, p, b, h, c)
ao -->% ao
ab -->% ab
ak -->% ak
e -->% e
ai -->% ai

Listing 9 Mined DCR Graph for log 10 of PDC2019

7 Case Study: Interactive Model Recommendation

In this section we discuss how DisCoveR has been inte-
grated in the dcrgraphs.net process portal as a means to
provide modeling recommendations for the interactive mod-
eling of declarative knowledge-intensive processes. We start
by briefly describing the portal and its main functionalities.
We then show how process discovery has been integrated
in the portal and end with a discussion on how the model
recommendation functionality is used in practice.
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Run-time (ms) Log Attributes

8-thr. 8-thr. Log Inductive Number Mean
Minerful Minerful Declare Declare Declare Declare Skeleton Miner of Trace

Log Simplified NotSimpl. Negatives NoNeg. Negatives NoNeg. Debois Miner (IMd) DisCoveR Activities Length

1 1243.3 1071.8 5197.2 4395.8 4652.0 4116.6 312.4 872.9 250.3 30.1 45 17.21
2 1236.1 1048.6 5494.5 4564.2 4854.3 4250.3 329.0 686.3 104.0 20.0 46 18.99
3 1183.7 1033.9 5253.9 4310.4 4638.3 4094.2 329.2 944.6 112.6 15.2 48 12.0
4 791.2 633.1 3556.0 3146.9 3098.3 2875.7 74.9 482.4 117.7 9.2 34 10.09
5 969.5 797.7 4449.5 3676.4 3891.0 3520.7 167.9 680.5 30.3 4.2 44 5.33
6 979.9 810.6 4632.3 3829.3 4006.6 3649.2 191.4 773.8 43.8 5.6 43 8.62
7 869.6 723.5 3574.3 3118.1 3285.7 3010.8 129.2 706.0 112.2 8.6 35 12.58
8 1030.2 920.2 4338.5 3672.3 4040.3 3657.5 205.6 692.5 110.9 7.1 44 9.04
9 880.5 747.9 3594.0 3188.3 3123.0 2862.4 170.5 623.7 256.1 25.3 29 26.41
10 742.4 625.1 3033.5 2721.1 2864.7 2633.1 74.8 432.3 82.8 6.3 32 9.33

Table 4 Mean run-times in milliseconds across 100 runs on Process Discovery Contest 2019 training logs, along with log statistics. See Figure
2 for descriptions of miner parametrizations. Log Skeleton Miner was the winning submission to the contest in terms of classification accuracy,
DisCoveR was the runner-up.

7.1 The DCR Process Portal

The dcrgraphs.net process portal is a cloud-based com-
mercial modeling solution for declarative process models,
offering an extensive range of functions including process
modeling, simulation, analysis, maintenance, and a wide va-
riety of collaboration features. The portal has been created
and is maintained by DCR Solutions, in close collaboration
with researchers from the University of Copenhagen, IT Uni-
versity of Copenhagen and Danish Technical University. The
DCR notation, portal and DCR process engine have been ap-
plied in a range of application domains. Most notably the
engine was integrated into Workzone, a case management
product used by over 70% of Danish central government in-
stitutions9 and the portal has become a cornerstone of the
Ecoknow research project10, which proposes a novel dig-
italization strategy for Danish municipalities grounded in
the declarative modeling of knowledge-intensive citizen pro-
cesses.

The key component of the portal is the DCR modeling
tool, shown in Figure 3, which allows users to model and
simulate DCR graphs. At the center of the screen is the
modeling pane with the graphical representation of the DCR
Graph, where activities are drawn as boxes and relations as
colored arrows in a style similar to the formal syntax. Users
can add andmanipulate activities and relations between them
directly in the modeling pane and change their details in an
option panel on the right. The simulation screen is shown
in Figure 4. The upper right of the screen shows the current
task list, here the user can select which task to execute next.
The middle of the screen shows recommendations for next
steps and a simulation log. On the left we have a number of

9 http://www.kmd.dk/indsigter/
fleksibilitet-og-dynamisk-sagsbehandling-i-staten

10 https://ecoknow.org/

Fig. 3 DCR Graphs Modeling

advanced features, such as making time steps and a list of all
users involved in the simulation (collaborative simulations
are supported). In the bottom of the screen the user can
see a step-by-step flowchart representation of the current
simulation, divided into swimlanes.

Fig. 4 DCR Graphs Simulation
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TARGET
Observed TRACES

Posi- Nega-
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Aggregate tive tive

DisCoveR + − + − + − + − + − + − + − + − + − + − + − MCC 0.92

Pred- + 45 0 45 0 45 0 47 6 45 3 45 0 44 8 43 2 45 3 44 8 448 30 Prec. 0.94 0.99
icted − 0 45 0 45 0 45 1 36 0 42 0 45 1 37 2 43 0 42 1 37 5 417 Recall 0.99 0.93
Model size 142 189 271 182 447 412 143 284 171 136 Acc.: 96.1% F1 0.96 0.96

Log Skeleton + − + − + − + − + − + − + − + − + − + − + − MCC 0.85
Pred- + 36 1 42 0 38 2 47 1 45 3 45 0 39 8 38 5 44 1 39 6 413 27 Prec. 0.94 0.91
icted − 9 44 3 45 7 43 1 41 0 42 0 45 6 37 7 40 1 44 6 39 40 420 Recall 0.91 0.94
Model size 235 240 250 180 230 225 185 230 155 170 Acc.: 92.6% F1 0.92 0.93

MINERful2 + − + − + − + − + − + − + − + − + − + − + − MCC 0.85

Pred- + 43 2 45 1 44 4 48 1 45 19 45 4 45 8 45 7 45 14 42 7 447 67 Prec. 0.87 0.98
icted − 2 43 0 44 1 41 0 41 0 26 0 41 0 37 0 38 0 31 3 38 6 380 Recall 0.99 0.85
Model size 182 188 186 194 198 199 199 189 174 183 Acc.: 91.9% F1 0.92 0.91

MINERful1 + − + − + − + − + − + − + − + − + − + − + − MCC 0.79

Pred- + 45 7 45 2 45 6 48 5 45 21 45 3 45 13 45 15 45 17 44 7 452 96 Prec. 0.82 0.98
icted − 0 38 0 43 0 39 0 37 0 24 0 42 0 32 0 30 0 28 1 38 1 351 Recall 0.98 0.79
Model size 99 99 92 96 89 99 99 94 94 97 Acc.: 89.9% F1 0.90 0.87

DeclarePos + − + − + − + − + − + − + − + − + − + − + − MCC 0.50

Pred- + 45 25 45 11 45 19 48 24 45 35 45 37 44 33 45 38 45 8 44 37 451 267 Prec. 0.63 0.99
icted − 0 20 0 34 0 26 0 18 0 10 0 8 1 12 0 7 0 37 1 8 2 180 Recall 0.996 0.40
Model size 464 759 269 623 338 778 259 242 885 379 Acc.: 70.1% F1 0.77 0.57

Inductive0.0 + − + − + − + − + − + − + − + − + − + − + − MCC 0.49

Pred- + 45 35 45 0 45 36 48 34 45 7 45 2 45 44 45 43 44 29 45 45 452 275 Prec. 0.62 0.99
icted − 0 10 0 45 0 9 0 8 0 38 0 43 0 1 0 2 1 16 0 0 1 172 Recall 0.997 0.38
Model size 110 174 122 170 156 154 92 112 102 86 Acc.: 69.3% F1 0.77 0.55

DeclareAll + − + − + − + − + − + − + − + − + − + − + − MCC 0.45

Pred- + 45 25 42 8 43 21 48 25 45 35 45 39 44 33 45 38 44 7 43 36 439 267 Prec. 0.62 0.93
icted − 0 20 3 37 2 24 0 17 0 10 0 6 1 12 0 7 1 38 2 9 14 180 Recall 0.97 0.40
Model size 1870 3542 3244 2395 4469 4248 1369 2687 1507 1720 Acc.: 68.8% F1 0.76 0.56

Inductive0.5 + − + − + − + − + − + − + − + − + − + − + − MCC 0.26

Pred- + 45 35 0 0 17 8 0 0 31 2 43 0 35 31 38 33 0 0 0 1 209 110 Prec. 0.66 0.58
icted − 0 10 45 45 28 37 48 42 14 43 2 45 10 14 7 12 45 45 45 44 244 337 Recall 0.46 0.75
Model size 110 172 154 152 120 116 92 132 80 148 Acc.: 60.6% F1 0.54 0.66

Inductive1.0 + − + − + − + − + − + − + − + − + − + − + − MCC 0.26

Pred- + 0 0 0 0 0 0 0 0 31 2 30 0 0 0 0 0 0 0 0 0 61 2 Prec. 0.97 0.53
icted − 45 45 45 45 45 45 48 42 14 43 15 45 45 45 45 45 45 45 45 45 392 445 Recall 0.13 0.996
Model size 110 150 110 100 120 108 84 118 100 88 Acc.: 56.2% F1 0.24 0.69

Debois, et al + − + − + − + − + − + − + − + − + − + − + − MCC 0.03

Pred- + 0 0 0 0 1 0 0 0 12 7 0 0 6 4 1 1 1 0 6 8 27 20 Prec. 0.57 0.50
icted − 45 45 45 45 45 44 42 48 38 33 45 45 41 39 44 44 45 44 37 39 427 426 Recall 0.06 0.96
Model size 1821 2293 2376 641 1557 1515 1268 1716 984 775 Acc.: 50.4% F1 0.11 0.66

Table 5 Confusion matrices for individual data sets, each generated by separate ground truth model, in our formulation referred to as (Pi,PPi).
Precision(Prec.), Recall andF1-scores are reported forwhich the target class is legal and illegal traces, respectively.MatthewsCorrelationCoefficient
(MCC) is also reported. MINERfuln refers to a parametrization which results in a model with fewer than n · 100 constraints. DeclarePos refers to
the Declare Miner excluding negative constraints, Declare includes all constraint templates, both with parameterisations: alpha=100, support=100.
Inductiven refers to Inductive Miner with a noise threshold of n. Model size refers to “edges” in all models, i.e. binary relations in declarative
models (including Log Skeleton) and edges between places and transitions in Petri nets from the Inductive Miner.
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7.2 Interactive process modelling through model
recommendation

Define activities

Define desired traces

D
efine additional traces 

&
 m

ine again

Discover constraints

Improve model

Fig. 5 Overview of the model recommendation approach

In the declarative modeling approach advocated by DCR
Solutions modelers are encouraged to 1) identify the activ-
ities and roles of the process, 2) think about what common
and uncommon scenarios (i.e. traces) should be supported
by the process, 3) based on the scenarios determine what rea-
sonable constraints for the process would be, and 4) ensure
that the constraints do not conflict with any desired paths
through the use of simulation and test-cases [81]. The iden-
tification of constraints in step 3 has been identified as the

most challenging for users because it requires a firm grasp
of the semantics of DCR Graphs. While test cases and sim-
ulation can be used to retroactively check that no conflicting
constraints have been introduced, they are not helpful for
identifying suitable constraints directly. As a result, novice
users often use a fairly inefficient trial-and-error approach
where they try a constraint, check how it behaves under sim-
ulation and then update their model accordingly.

We introduced process discovery as an alternative to this
trial-and-error approach. In this new setting, the portal sup-
ports the user by having an algorithm automatically propose
suitable relations based either on an existing event log, and/or
the traces that were identified during step 2 of the previously
sketched modeling method.

Figure 5 provides an overview of the adapted approach:
we start by by identifying the activities of the process and
modeling these directly in the portal. In the next step we
run simulations on these activities (recall that following the
declarative paradigm, these simulations are entirely uncon-
strained and any trace can be generated). We store the traces
generated during the simulation and use these as input for
the following step, where we use DisCoveR to identify con-
straints based on the generated traces. Finally the user can
improve on their model and potentially run more simulations
which can be used for additional process discovery, possi-
bly finding additional constraints that were not found for the
initial traces.

Fig. 6 Model Recommendation

The model recommendation screen is shown in Figure 6
and fairly straightforward: the user is shown which relations
were found betweenwhich activities and can select those they
wish to add through the box on the left. The user can also
enter an explanation for the relation (i.e. why was it added
or left out), this enables rationale management of the model
and allows other users to follow the modeler’s reasoning.
In addition, we plan to use this information in the future
to improve upon the discovery algorithm. By clicking Add
Relations, all selected relations are added to the model.
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7.3 Discussion

Since the integration of DisCoveR into the DCRGraphs por-
tal, DCR Solutions has been actively conducting workshops
with users where the new methodology is demonstrated and
used. The inclusion of process mining in the modeling task
was embraced enthusiastically by users and has been (in-
formally) observed to lower the complexity of the modeling
task.

In the traditional modeling exercise, users that are more
familiar with BPMN and/or flow charts are often hampered
by the novelty of the notation, e.g. they will be unclear on
what the different relations mean and how to use them. In
particular, the fact that arrows do not indicate flow, but log-
ical relations between the activities can lead to confusion.
Using model recommendations, on the other hand, has al-
lowed DCR Solutions to ask the users questions based on
the recommended relations such as, “Is it true that approval
is a condition for providing documentation?” or, “Is it true
approval removes the ability to reject?”.

In essence,model recommendation hasmanaged to bridge
an important gap between the consultant and user: in the past,
the users were new to the notation, the consultants to the pro-
cess. This made building a common understanding about the
process a time intensive task. Model recommendation closes
this divide by, on the one hand, helping the consultant better
understand the process and, on the other, providing the user
with examples of the notation that are uniquely fitting to their
own domain.

The high accuracy of the algorithm has also been noted
in practice: even for processes that include other perspectives
than just control-flow (e.g. decisions depending on contex-
tual data), the algorithm has been noted to be highly suc-
cessful in recommending relevant relations that improved
the users’ understanding of the process.

The integration of the algorithm in the commercial tools
was relatively effortless: the front-end of the model recom-
mendation was developed rapidly at DCR Solutions through
existing plugin support for the portal. The algorithm itself
was simply deployed as a cloud service by the researchers.
Because of a long history of close collaboration between the
two parties, the details of the interface between these two
components and a general understanding of how the system
should work was fleshed out quickly over two meetings and
a few emails.

It should be noted that two variations of DisCoveR exist:
the regular version used in the Process Discovery Contest
prioritizes accuracy, whereas there also exists a light version
that skips the step of finding additional inclusions and exclu-
sions, thereby returning a less accurate but simpler model.
It is this light version that is used within the DCR Graphs
portal.

8 Conclusion

In this paper we presented DisCoveR, a declarative miner
for DCR Graphs based on the ParNek algorithm. We for-
mally defined the underlying algorithm and how it has been
implemented using an acute mapping to bit vector opera-
tions, yielding a highly efficient process discovery tool. We
then preface the evaluation by framing process-discovery-as-
classification in terms of computational learning theory in
order to gain insight into the convincing performance of the
algorithm on out-of-sample data. We evaluated the miner us-
ing a traditional classification task and computed the standard
machine learning measures of accuracy (96.1%), precision
(0.94 on positive traces, 0.99 on negative traces), recall (0.99
on positive traces, 0.93 on negative traces), F1 (0.96 on each)
and MCC (0.92).

The present evaluation suggests that DisCoveR is com-
petitive with its peers, but should not be seen as a compre-
hensive benchmarking: this would require a more extensive
evaluation on a larger variety of data sets, and against a more
representative collection of miners. Where DisCoveR does
appear to excel - in particular in comparison to other declar-
ative miners - is in terms of run-time, performing one order
of magnitude faster than the state-of-the-art in DCR Graphs
discovery and nearly two orders of magnitude faster than
the state-of-the-art in Declare discovery . Finally, we showed
how the tool has been integrated in a commercial model-
ing tool and discuss how its integration has significantly
improved the modeling experiences of its users.

8.1 Future Work

Several avenues exist for future work in mining DCR Graphs
from event logs. So far, we have considered only the control
flow of processes. Incorporating timing, data, and resource
perspectives is very relevant for many real-world scenarios
and one of the primary requests made by DCR Solutions.
Furthermore, accounting for noisy data is an important point
to address since this is common in real world applications.

We restricted our hypothesis space to graphs with the
same simple initial marking in which all events are enabled.
This is due to the complicated interactions arising with other
relations when excluding a source event. Considering dif-
ferent initial markings would enable the discovery of more
complex models, but also enlarge the hypothesis space and
increase the danger of overfitting.

In order to control more explicitly for overfitting and
quantify the tradeoff between inductive bias and complex-
ity, a formulation of regularization functions for classes of
DCR Graphs is an important next step. This is not entirely
straightforward due to the non-monotonic nature of DCR
Graphs [27], rendering simple relation counting more or less
meaningless for regularization purposes.
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As described in the case study, users of the dcrgraphs.
net portal are not only able to define positive scenarios, but
also undesired scenarios. The use of negative input data in
process discovery has so far beenmostly ignored based on the
assumption that such data is not available. Having negative
scenarios provided by the portal offers a unique opportunity
to develop new algorithms that take negative examples as
input and thereby producemore relevant models.We observe
that DisCoveR has a noticeably lower recall on negative than
positive traces and hypothesize that the ability to analyze
negative examples of traces will help us improve on this
aspect of the accuracy of the tool.

Finally, there remain certain points in the ParNek algo-
rithm in which choices are currently taken in a naive manner
(e.g. ChooseOneRelation). This decision point should be
framed as a proper optimization problem. In fact, framing
DCR Graph mining properly as an optimization task would
open a powerful set of tools from the general optimization
literature.
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Abstract. Contemporary process discovery methods take as inputs only
positive examples of process executions, and so they are one-class clas-
sification algorithms. However, we have found negative examples to also
be available in industry, hence we propose to treat process discovery as
a binary classification problem. This approach opens the door to many
well-established methods and metrics from machine learning, in partic-
ular to improve the distinction between what should and should not be
allowed by the output model. Concretely, we (1) present a formalisation
of process discovery as a binary classification problem; (2) provide cases
with negative examples from industry, including real-life logs; (3) pro-
pose the Rejection Miner binary classification procedure, applicable to
any process notation that has a suitable syntactic composition operator;
and (4) apply this miner to the real world logs obtained from our indus-
try partner, showing increased output model quality in terms of accuracy
and model size.

Keywords: Process mining, binary classification, negative examples, labelled
event logs

1 Introduction

From the perspective of machine learning, process discovery [28] sits uneasily
in the gap between unary and binary classification problems [16,25]. Popular
contemporary miners, e.g. [4,18], approach process discovery as unary classifi-
cation: given only positive examples (the input log) they generate a classifier
(the output model) which recognizes traces (adhering to the output model) that
resemble the training data. However, a process model is really a binary classifier:
it classifies traces into those it accepts (desired executions of the process) and
those it does not (undesired executions of the process).

Binary classification in machine learning relies on having access to examples
of both classes. For process discovery, this means having not only positive exam-
ples of desired behaviour to be accepted by the output model, but also negative
examples of undesired behaviour that should be rejected.
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Negative examples also underpin a substantial part of the mechanics and
theory of machine learning, in particular on model evaluation. Output models are
evaluated on measures comparing ratios of true and false positives and negatives;
however, absent negative examples, it is impossible to apply such measures.
Accordingly, in process discovery, we use measures based only on true positive
answers, such as recall ; we are deprived of more fine-grained measures involving
true negative or false positive answers such as accuracy.

In practical process discovery, negative examples would help distinguish be-
tween incidental correlation and actual rules. For instance, suppose that in some
log, whenever we see an activity B, that B is preceded by an activity A. Does
that mean that we can infer the declarative rule A →• B, that A is required
before B may happen? In general, no. E.g., if A is “call taxi” and B is “file
minutes from weekly status meeting”; by coincidence, we always call a taxi in
the morning the day we file minutes, but clearly there is no rule that we must
call a taxi before filing minutes. Conversely, if A is “approve payment” and B is
“execute payment”, very likely it is a rule that B must be preceded by A. Neg-
ative examples potentially help here: If BA is in the set of negative examples,
adding the rule A →• B is justified, as it rejects both those traces. Conversely,
if a rule rejects no trace from the negative examples, it is not necessary but
discretionary for the miner to leave out or keep in.

As shown by [22] negative examples do exist in practice, some mining al-
gorithms that include negative examples have been proposed, e.g. [22,17], and
interestingly recent editions of the process discovery contest4 have moved to-
wards using labelled test logs (but not training logs!) to rank submissions. In
this paper we add to these developments with the following contributions:

1. We formalize process discovery as a binary classification problem, and show
that not all process notations can express complete solutions to this problem
(sec. 3).

2. We propose the Rejection Miner, a notation-agnostic binary mining proce-
dure applicable to any process notation with a syntactic composition oper-
ator sec. 4.

3. We describe two cases where negative examples were encountered in industry
and provide data sets [27] (sec. 5).

4. We implement a concrete Rejection Miner and apply it to these data sets,
comparing exploratively to contemporary unary miners (sec. 6). The miner
has been integrated in the commercial dcrgraphs.net modelling tool.

For the latter experiments, do note that the contemporary unary miners with
which we compare do not take into account the negative examples. They must
guess from the positive examples which traces to reject, whereas the Rejection
Miner has the negative examples to guide it. We find that the Rejection Miner
achieves noticeably better accuracy, in particular on out-of-sample tests, and
produces models that are orders-of-magnitude smaller than the unary miners.
We also note that we chose not to compare to other binary miners, as we did not

4 PDC 2019, PDC 2020
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aim to show the merits of the rejection miner in particular, but of binary mining
in general. We chose the rejection miner as representative for binary mining as it
allows us to build DCR Graphs, which were requested by the industry partner.
The implementation of the Rejection Miner is available on-line [26].

Related work There have been several earlier works framing process mining
as a binary classification task. [17] formulates constraints as Horn clauses and
uses the ICL learning algorithm to successively find constraints which remove
negative examples, stopping when there are no negative examples left. They
translate these generated clauses to DECLARE. The rejection miner generalises
this approach in that (a) it replaces the horn clauses with a generic notion of
”model” for notations with composition (or synchronous product of models),
and thus applies directly to a plethora of languages such as Delcare and DCR
Graphs, (b) the rejection miner leaves the choice of which clauses to prune until
after a set of constraints ruling out all negative constraints is found, opening the
door to non-greedy minimisation, and most importantly (c) we proof correctness
for the rejection miner. [22] proposes an approach where traces are represented
as points in an n-dimensional space (n being the number of unique event classes
of the log), each point representing the multiplicity of the event classes in that
trace. Finding a model is then reduced to the problem of finding a convex hull for
the points such that positive points are included and negative points excluded.
Whereas the work only considers the multiplicity of event classes in negative
traces, the rejection miner is able to also consider the temporal ordering of
individual events, while the former works well for the generation of Petri net
models, it is less suitable for declarative notations. In [13], the authors artificially
generate negative labels, but at the level of individual events rather than traces.
The authors also defined process mining oriented metrics based on the resulting
true positive/negative labels at the level of events. In [23] the development of
binary process discovery algorithms was identified as a key open challenge for
the field of declarative process discovery.

2 Process Notations and Unary Discovery

We recall the traditional definitions of event logs etc. [28].

Definition 1 (Events, traces, logs). Assume a countably infinite universe A
of all possible activities. As usual, an alphabet Σ ⊆ A is a set of activities, and
the Kleene-star Σ? denotes the countably infinite set of finite strings or sequences
over Σ; we call such a string a trace. A log L is a multiset of occurrences of
traces L = {tm1

1 , . . . , tmn
n } where mk > 0 is the multiplicity of the trace tk ∈ Σ.

We write LΣ for the set of all event logs over alphabet Σ.

When convenient, we treat an event log L also as simply a set of traces by
ignoring multiplicities.

When we discuss unary and binary process discovery in the abstract in later
sections, we will be interested in applying discovery to a variety of process no-
tations; and we shall propose a miner which can be instantiated to any notation
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with a suitable composition operator. To make such statements formally, we
need a formal notion of process notation.

Definition 2 (Process notation). A process notation for an alphabet Σ com-
prises a set of models M and an interpretation function J−K : M→ P(Σ?) as-
signing to each individual model m the set of traces JmK accepted by that model.
For a set S ⊆ Σ?, we write m |= S iff S ⊆ JmK.

While a process notation comprises the three components Σ, M, and J−K,
when no confusion is possible we shall allow ourselves to say “consider a process
notation M”, understanding the remaining two components to be implicit.

Example 3. Here is a toy declarative formalism which allow exactly the condition
constraint of DECLARE [1,21] or DCR [14,10] over a countably infinite alphabet
Σ = {A,B,C, . . .}. A “model” is any finite set of pairs (x, y) ∈ Σ × Σ, and we
interpret each such pair as a condition from x to y. Formally:

Mcond = {C ⊆ Σ ×Σ | C finite}
JCK = {t ∈ Σ? | ∀(x, y) ∈ C. each y in t is preceded by x}

For instance, {(A,B)} ∈Mcond is a model consisting of a single condition from
A to B. In DECLARE or DCR, we would write this model “A →• B”. Just as
in DECLARE or DCR, this model admits all traces in which any occurrence of
B is preceded by an occurence of A. That is, this model admits the trace AB,
but not B or BABA. Formally, we write

AB ∈ J{(A,B)}K or {(A,B)} |= {AB}
{B,BABA} 6⊆ J{(A,B)}K or {(A,B)} 6|= {B,BABA}

Any process modelling formalism with trace semantics is a process notation
in the above sense; such formalims include DECLARE, DCR, and Workflow
Nets [2] (see also [28]).

We conclude this Section by pinning down process discovery: a procedure
which given an event log produces a process model which admits that log. As-
sume a fixed alphabet Σ, and write LΣ for the set of all valid event logs over Σ.

Definition 4 (Unary process discovery). A unary process discovery algo-
rithm γ for a process notation (M, J−K) over Σ is a function γ : LΣ →M. We
say that γ has perfect fitness iff for all L ∈ LΣ we have γ(L) |= L.

Anticipating our binary miners, we shall refer to “perfect fitness” also as positive
soundness of the miner.

3 Process Discovery as Binary Classification

We proceed to consider process discovery a binary classification problem. This
approach presumes that we have not only positive examples (the set L in Def. def:unary-
mining), which the output model must accept, but also a set of negative exam-
ples, which the output model must reject.
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Example 5. Consider again the condition models Mcond of Ex. 3. Take as positive
set of examples the singleton set {AB}, and take as negative examples the set
{BA,B}. One model which accepts the positive example and rejects the negative
ones is the singleton condition {(A,B)}. This model admits the positive example
AB, because B is preceded by A; and it rejects the negative examples, because
in both of the traces B and BA, the initial B is not preceded by A.

The negative examples here help solve the relevancy problem that plagues
unary miners for declarative formalisms: The positive example AB clearly sup-
ports the constraint “A is a condition for B”, however, as we saw in the intro-
duction, with only positive examples and without domain knowledge, we cannot
know whether this is a coincidence or a hard requirement. In the present ex-
ample, the negative examples tell us that our model must somehow reject the
trace BA, encouraging us to include the condition A→• B. Negative examples
still leave a degree of freedom for the discovery procedure, though: a condition
C →• B would also accept the positive example and reject the negative ones.

Unfortunately, a model accepting a given set P of positive examples and
rejecting a given set N of negative ones does not necessarily exists: At the very
least, we must have P and N disjoint. To cater to such ambiguous inputs, we
allow a binary miner to refuse to produce a model.

Definition 6 (Binary process discovery). Let M be a process notation
for an alphabet Σ. A binary-clasification process discovery algorithm (“binary
miner”) is a partial function η : LΣ × LΣ ⇀ M, taking sets of positive and
negative examples P,N to a model γ(P,N). We require that η(P,N) is defined
whenever P,N are disjoint.

In the rest of this paper, unless otherwise stated, we shall implicitly assume
that examples P,N are disjoint. We proceed to generalise the notion of fitness
from unary mining.

Definition 7 (Soundness, perfection). Let P,N ⊆ LΣ be positive and neg-
ative examples. We say that a binary miner η is positively sound at N,P
iff η(P,N) |= P . Similarly, we say that η has negatively sound at N,P iff
N ∩ Jη(P,N)K = ∅. We say that η is perfect iff it any disjoint N,P it is defined
and both positively and negatively sound.

In other words: A perfect binary miner produces an output whenever its
positive and negative examples are not in direct conflict, and that output admits
neither false positives nor false negatives.

Over- and underfitting of out-of-sample data. A perfect binary miner has no
choice in how it treats the elements of P and N : it must admit its positive
examples P and reject its negative examples N . It is the remaining undecided
traces where it has a choice. In the limits, we have the overfitting “maximally
rejecting miner”, whose output always accepts exactly P and nothing else; and
the underfitting “maximally accepting miner”, whose output rejects exactly N
and nothing else.
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However, unlike the unary case, where perfect fitness miners are generally
quite easy to come by, perfect binary miners do not necessarily exsist,
and helpful ones may in practice be quite hard to come by.

First, let us try to use a unary miner as a binary one. We do so by simply
ignoring the negative examples and applying our unary miner to the positive
ones. In this case, it is easy to show that for any unary miner (for any notation!)
which never returns exactly its input log, we can construct a negative example
which will be accepted by the output model of that miner for those positive
examples:

Proposition 8. Let γ be a unary miner for a notation M over alphabet Σ, and
assume that γ for all L we have Jγ(L)K 6= L. Then for all P ∈ LΣ there exists a
N ∈ LΣ s.t. N and P are disjoint, yet N is accepted by the output model γ(L).

So in this sense, non-trivial unary miners never generalise to binary
ones. This is perhaps not entirely surprising. Much less obvious, and a core dif-
ference between binary and unary mining, we find that some notations cannot
express distinctions fine enough to distinguish between positive and negative ex-
amples. This is in stark contrast to the unary case, where essentially all notations
have a model accepting all traces (the “flower model”); moreover, all commonly
accepted notations are able to express any finite language, and so for any input
log (finite language), a perfectly fitting model must exist.

However, in the binary case, even though our example notation admits the
“flower model”, it is still to coarse to admit a perfect binary miner.

Lemma 9. In Mcond, take positive examples P = {ABC}, and negative exam-
ples N = {AB}. Then no model m ∈Mcond exists such that m |= P yet m 6|= N .

Proof. Suppose m is a model with m 6|= {AB}. Then m requires something
preceding either A or B, something which is apparently not there. But then that
something is missing also from ABC.

In fact, we prove below that no perfect binary miner can exist in any
notation that has only finitely many possible models. To understand
the ramifications of this Theorem, consider again DCR and DECLARE. For
DCR or DECLARE models over a fixed finite alphabet (e.g., the set of tasks
present in a given log), DCR has infinitely many such models (with distinct
semantics), whereas DECLARE has only finitely many. To see this, note that
in DCR, because labels and events are not one-one, we can keep adding events
that do affect behaviour, while remaining within a finite set of observable tasks.
In DECLARE, if there are n activities to choose from, you can populate only
finitely many DECLARE templates with those finitely many tasks. Since the
arity of DECLARE templates is bounded, you are left with only finitely many
models.

Note the following consequence for DECLARE: any binary miner for DE-
CLARE has inputs P,N for which the output a model has either false
positives or false negatives.
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Theorem 10. No perfect binary miner exists for any finite process notation M
over any non-empty finite alphabet Σ.

Proof. We construct finite positive and negative examples P and N such that
no model accepts P and rejects N .

First, we construct N . Let I+ as the subset of models that accepts infinitely
many traces, i.e., I+ = {m ∈ M | JmK infinite}. Since there are only finitely
many models, I+ is finite, and wlog write it I+ = {m1, . . . ,mn}. For each mi,
choose a ti ∈ JmiK, and define define N = {t1, . . . , tn}.

Next, we construct P . Let I− the subset of models which reject infinitely
many traces, i.e., I− = {m ∈ M | {(JmK) infinite}. Again I− is finite and we
write it wlog I− = {p1, . . . , pk}. For each of pj , pick a trace sj such that sj /∈ JpjK
and sj /∈ N -this is always possible because {JmjK is infinite and N finite. Then
define P = {s1, . . . , sk}. Note that by construction P and N are disjoint.

Finally, let m ∈ M be a model. At least one of JmK and {JmK must be
infinite; we show that in neither case can m be the output of a perfect binary
miner applied to P,N . If JmK is infinite, then m ∈ I+, say m = mi, and it
follows that m |= ti ∈ N ; hence m fails to reject all negative examples. If on
the other hand {(JmK) is infinite, then m ∈ I−, say m = pj and it follows that
sj /∈ JpjK = JmK; hence m fails to accept the positive example sj ∈ P .

Alternatively, the above proof can possibly be used to show that there are
infinitely many problemsN,P with pairwise distinct solutions; the Theorem then
follows from the Vapnik-Chervonenkis dimension [3] of the set of interpretations
of the finite set of models being necessarily finite, and so unable to shatter this
infinite set of distinct solutions.

In unary mining, we may construct a perfect fitness miner like this: As no-
tation, pick simply finite sets of traces, and let the semantics of the notation
be that a model (set of traces) T accepts a trace t iff t ∈ T . Then the function
η(P ) = P is a perfect fitness miner. This generalises to any notation strong
enough to characterise exactly a given set of T of traces. Obviously, this unary
miner has litle practical relevance.

It is interesting to note that a similar perfect binary miner exist. Pick as
notation pairs of sets of traces T,U , with semantics that T,U accepts t iff t ∈ T
and t 6∈ U . Clearly the function η(P,N) = (P,N) is a perfect binary miner,
although again, not a particularly helpful one. However, the construction shows
that a perfect binary miner exists for any notation strong enough to exactly
characterise membership resp. non-membership of finite sets of traces. Notable
examples here are Petri-nets and BPMN (through an exclusive choice over the
set of positive traces); so it follows that a (trivial) binary miner exists for these
notations.

4 Rejection Miners

We proceed to construct a family of binary miners we call “Rejection miners”,
defined for any process notation which has a behaviour-preserving syntactic
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model composition. Rejection miners are parametric in a “pattern oracle” which
selects a set of patterns for consideration; if the patterns selected allow it, the
output of the rejection miner is perfect. When they do not, the miner does a
greedy approximation to optimise for accuracy (i.e., maximising the ratio of true
positives and negatives to all inputs).

Definition 11 (Additive process notation). We say that a process formal-
ism M over Σ is additive if it comes equipped with a commutative monoid (⊕,1)
on M such that

J1K = Σ? (1)

Jm⊕ nK = JmK ∩ JnK (2)

We lift the monoid operator to sequences and write
⊕

i<nmi = m1⊕· · ·⊕mn−1,

That is, an additive formalism has a flower model 1 and a model combination
operator ⊕. This operator combines two models into a compound one, such that
this compound model accepts exactly the traces accepted by both of the two
original models. DECLARE is an additive formalism: A DECLARE model is a
finite set of constraints; the empty such set accepts all traces (1), and the union
of two such sets is again such a set, with exactly the desired semantics (⊕). DCR
also has a model composition, where the composite model is the union of events,
markings, and constraints [15,9]. However, this composition does not preserve
semantics in the general case.

In practice, any process notation can be considered additive by forming the
synchronous product of models: To check whether a given trace t conforms to a
composite model m⊕n, we simply check whether m |= t and n |= t. Incidentally,
this is a popular implementation mechanism for DECLARE constraints (see,
e.g., [12,8]): Each individual instantiated template is implemented as a finite
automaton; a set of constraints is then checked by the synchronous product of
that automaton.

The key property of additive process notations used for rejection miners is
that in such a notation, we can think about models as being the sum of their
parts, and the problem of mining can then be reduced to finding suitable such
parts. For this approach to be able to generate all models, we would also need to
know a subset S ⊆M which generates M under the model composition operator
−⊕−. DECLARE and DCR clearly has such subsets. In keeping with declarative
notations and nomenclature, we will refer to such part models as “constraints”
in the sequel, however, we emphasise that there is nothing special about them:
A constraint m is just another model m ∈M.

A rejection miner is parametric in two sub-components: A pattern oracle,
which given positive and negative examples produces a finite set of (hopefully)
relevant constraints; and a constraint minimiser, which given a sequence of con-
straints known to fully reject a set of negative examples selects a subset still
fully rejecting those examples.
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Definition 12 (Rejection miner components). Let M be a process notation
over an alphabet Σ. A pattern oracle is a function patterns : LΣ × LΣ → M?.
A minimiser is a function minimise : M? × LΣ →M? satisfying:

1. if σ ∈M? fully rejects L, then also minimise(σ, L) fully rejects L; and
2. minimise(σ, L) contains only elements from the input sequence σ.

An example pattern oracle for DECLARE would be the function that pro-
duces all possible instantiations of all templates with activities observed in either
of its input logs. An example minimiser is the greedy minimiser which, starting
from the left of the list of constraints, removes those constraints which reject
only traces in N that are already rejected by preceding constraints.

Algorithm 13 (Rejection miner). Let M be an additive notation over Σ,
let patterns be a pattern oracle and let minimise be a minimiser.

1: procedure RejectionMiner(P,N)
2: [m1, . . . ,mn]← patterns(P,N)
3: σ ← [mi | mi |= P ] . remove mj where mj 6|= P
4: σ ←⊕

minimise(σ,N)
5: if J⊕σK ∩N 6= ∅ then . are any negative examples not rejected?
6: δ ← 1
7: while δ > 0 and |σ| < n do
8: N ′ ← {n ∈ N |⊕σ |= n} . negative examples not yet rejected
9: P ′ ← {p ∈ P |⊕σ |= n} . positive examples currently accepted

10: m, δ ← maxmj 6∈σ(|{n ∈ N ′ | mj 6|= n}| − |{p ∈ P ′ | mj 6|= p}|)
11: if δ > 0 then
12: σ ← σ,m
13: end if
14: end while
15: end if
16: end procedure

A brief explanation: On line 2, the pattern oracle is invoked to produce a
finite list [m1, . . . ,mn] of relevant constraints. On Line 3, those constraints not
modelling the positive examples P are filtered out; only the constraints mi which
do model P are retained; we assign the resulting list to σ. We then apply the
minimiser in Line 4, which by Def. 12 at most removes constraints. On Line 5, we
check whether all negative examples are rejected; if so, we have found a perfect
model and return it.

Otherwise, we turn to approximation. In the loop in Line 7 to 13, we repeat-
edly compute the set N ′ of negative examples not yet rejected and P ′ of positive
examples currently accepted. In Line 10, we iterate over the constraint mj of the
original pattern oracle and compute for each the difference δj between how many
additional negative examples mj rejects (wins) and how many already accepted
positive examples mj rejects (losses); we then pick the mj with the maximum
δj . If δ > 0, adding the constraint mj will improve accuracy, and we add it to
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the set of output constraints. If δ ≤ 0, we cannot improve accuracy by including
any more constraints, and the loop terminates.

Recall from the previous section the notions of maximally accepting or maxi-
mally rejecting perfect binary miners. The minimiser provides a handle for push-
ing the Rejection Miner towards either of these extremes. Using the identity func-
tion as the minimiser will retain all constraints, and so reject the most undecided
traces. Conversely, using a minimiser which finds a least subset of constraints
rejecting N will remove more constraints, accepting more undecided traces.

The rejection miner is not in general a perfect binary miner: The patterns σ
provided to it by the patterns might not, even if all of them were retained, be
strong enough to fully reject the set N of negative examples while retaining the
positive ones. Moreover, while the rejection miner in practice produces decent
results, its approximation phase does not find a subset of patterns with optimal
accuracy because of its greedy nature.

However, the rejection miner will always accept all the positive examples;
and if the selected patterns σ has any subset σ′ which accepts P and rejects N ,
the rejection miner will find such a subset.

Proposition 14. Let patterns be a pattern oracle, let minimise be a minimiser,
and let N,P be disjoint sets of negative and positive examples. Then the rejection
miner for this oracle and minimiser has positive soundness at N,P . Moreover if
there exists σ ⊆ patterns(N,P ) such that σ accepts P and fully rejects N , then
the rejection miner also has negative soundness at N,P .

Proof (sketch). The former is immediate from line 4; the latter is immediate by
the requirements 1 and 2 of Definition 12.

That is: On all inputs where the pattern oracle produces patterns strong
enough to make the distinction, the rejection miner will exhibit neither false
negatives nor positives.

5 Cases with Negative Examples

The development of the rejection miner was not just motivated by academic,
but also industrial interest. When pursuing process mining activities in practice
we regularly see opportunities to label data and in some cases we have even
been asked directly by commercial partners to include counter examples in the
construction of models. In the this section we discuss the two most developed
cases we’ve encountered, where we both had the opportunity to extract labelled
data and publish it in an anonimyzed format. The negative examples in these
cases arise from test-driven development and as failures in process engineering.

5.1 DCR Solutions: Test-driven Modelling

Danish vendor of adaptive case-management systems, DCR Solutions, offers the
on-line process modelling portal dcrgraphs.net. In this tool, modellers define re-
quired (positive) resp. forbidden (negative) test cases (traces), expected to be
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accepted resp. rejected by the model under development. The test cases are also
used as input to a process discovery algorithm, which dynamically recommends
new constraints to modellers [5]. However, the algorithm used only the positive
test-cases, ignoring the negative ones. The extension to consider also those neg-
ative ones has been repeatedly requested by the developers of the portal and
was implemented as part of this paper. DCR Solutions has kindly allowed us
to make the entire data set of test-cases produced in the portal available in an
anonymized form [27].

5.2 Dreyer Foundation: Process Engineering

The Danish Dreyer Foundation supports budding lawyers and architects, and
has previously released an anonymised log of casework [11]. This log documents
also testing and early stages of deployment of the system. In a number of cases,
process instances that had gone astray were reset to their starting state and
partially replayed. The log contains reset markers, and so provides clear negative
examples: those prefixes that ended in a reset. We make available here also this
partitioning into positive and negative examples [27].

6 Experimental Results

We report on exploratory experiments applying an instantiation of the Rejection
Miner to the data sets of Sec. 5, comparing results to current major unary miners.

Data sets The DCR Solutions case (Sec. 5.1) comprises 215 logs, each containing
at least one negative example, and each produced by users of the portal to codify
what a single model should or should not do. The logs contain 7030 events, 1681
unique activities, 589 negative and 705 positive traces. Logs vary enormously
in size: the largest log contains 1162 events, 19 activities, 98 negative and 14
positive traces; the smallest log contain but one negative trace of 3 events. Log
size distribution is visualised in fig. 1. The Dreyer case (Sec. 5.2) comprises a
single log of 10177 events, 33 unique activities, 492 positive and 208 negative
traces. The mean trace length is 15 (1–46), and the mean number of activities
per trace is 12 (1–24). Both data sets are available on-line [27].

0

5

10

15

20
Positive traces Negative traces

Fig. 1. DCR Solutions data set log size distribution. The largest log of 98 negative and
14 positive traces has been omitted from the diagram.
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Metrics Binary classification mining allows us to rely on traditional machine
learning metrics [29] of relative misclassification (true and false positives, TP
and FP, and true and false negatives, TN and FN). We use in particular the
true positive rate (TPR), true negative rate (TNR), accuracy (ACC), balanced
accuracy (BAC), positive predictive value (PPV), and F1-score (F1). We recall
their definitions in table 1. These particular measures demonstrate the difference
between what can be measured in the unary and binary settings. In the setting
of unary-classification miners, where we do not have negative examples, we can
count only TP and FN. In that setting, we can only measure the true positive
rate (TPR)-known as “fitness” in the process mining community-but none of
the other measures5. But in the setting of binary-classification miners, we can
measure also how well the output model recognizes negatives (TNR), how reliable
a positive classification is (PPV), and generally how accurately both positive and
negative traces are classified (ACC, which counts each trace equally and BAC,
which balances between positive and negative traces).

Finally, one goal particular to process discovery is to produce output models
that are understandable by humans: Output models are not mere devices for
classification; they are vehicles for humans to understand the reasons and struc-
ture behind that classification. To this end, smaller models are more helpful, so
we calculate also the size of the models, dependent on their notation. For the
pattern-based notations such as DECLARE, we use the number of such patterns;
for DCR models the number of relations; and for workflow nets the number of
edges and places.

Log classification

Model
class.

Pos. Neg. ACC = TP+TN
TP+FP+TN+FN

Pos. TP FP PPV = TP
TP+FP

Neg. FN TN BAC = TPR+TNR
2

TPR = TP
TP+FN

TNR = TN
FP+TN

F1 = 2 · PPV·TPR
PPV+TPR

Table 1. Confusion matrix for binary mining

Rejection Miner We provide a JavaScript implementation of the Rejection Miner,
available at [26]. We use a pattern oracle which simply instantiates the follow-
ing list of DECLARE-like patterns at all activities seen in the log: Existence(x),
Absence(x), Absence2(x), Absence3(x), Condition(x, y), Response(x, y), NotSuccession(x, y),
AlternatePrecedence(x, y), DisjunctiveResponse(x, (y, z)), and ConjunctiveResponse((x, y), z).
The oracle outputs patterns sorted by how many negative examples they ex-
clude. Ties are broken by sorting the disjunctive and conjunctive responses last,
to de-emphasise these relatively more complex patterns. We then use a greedy

5 The name “F1” is used for a metric of unary miners defined like F1 here, except
using the escaping-edges notion of precision [6] en lieu of the PPV.
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minimizer picking patterns from this sorted list of patterns as long as they ex-
clude at least one negative example not already excluded by a previous pattern;
in effect, the miner prefers fewer constraints without having to solve the NP-
complete problem of finding a minimal subset.

We emphasise the flexibility of the oracle and minimizer selection: if one
wants to include more patterns, one simply extends the oracle; if one wants to
have a more restrictive model, or a different prioritization of constraints, one
simply replaces the minimizer. One can also produce models that sacrifice TPR
for accuracy by creating a minimizer that accepts constraints excluding some
positive examples, but also excluding many negative examples.

Other miners We compare the Rejection Miner (RM) to flagship miners for
three major process notations. For DCR graphs [10,14], we use DisCoveR [20].
DisCoveR is used commercially for model recommendation by DCR solutions.
We consider DisCoveR with two settings, the default one (intended to empha-
sise precision, denoted D), and a “light” version intended to emphasise sim-
plicity (DL). For DECLARE [1,21], we use MINERful [7] and consider three
settings, (M1) the most restrictive setting where support=1.0, confidence=0.0,
and interest factor=0.0; (M2) a less restrictive setting (likely outputting smaller
models) with support=1.0, confidence=0.5, and interest factor=0.25; and (M3)
with support=1.0, confidence=0.75, and interest factor=0.5. Finally, for Work-
flow Nets [2], we use the Inductive Miner [18,28], with a noise threshold of 0.0
(IM) and 0.2 (IMf) respectively.

6.1 Results

We performed both in-sample and out-of-sample testing. For the latter we per-
formed 10-fold validation [24] and calculated our measures as the mean values
across 10 randomized attempts. The results are shown in table 2. For the DCR
Solutions data set each value is calculated as the mean over all 215 logs. Because
of the limited size of most of the logs, we only tested on in-sample data for this
case, however, since the primary goal for the company is to find models that
accurately fit the training data, in-sample accuracy is highly relevant.

DCR Solutions First, on in-sample test data, the Rejection Miner mines perfectly
accurate models on every log. This is a a small, but meaningful, improvement
over the 0.967 accuracy achieved by DisCoveR light, which is currently used for
this task. In practice this means that, given a mapping from the Declarative pat-
terns to DCR Graphs, the Rejection Miner will allow the portal to recommend
perfectly accurate models for all test cases that have been defined to-date. Sec-
ondly, there is an order-of-magnitude gain in simplicity for the Rejection Miner
compared to all other miners: the Rejection Miner requires only 1.5 constraints
on average per model. We conjecture that this gain is achieved because know-
ing what behaviour should be forbidden allows the miner to find precisely the
constraints we need, instead of having to propose many constraints to forbid
all behaviour that was not explicitly seen in the positive samples. This gain in
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Miner TPR TNR ACC BAC PPV F1 Size

DCR Solutions Data set (sec. 5.1) In-sample

Rejection (RM) 1.000 1.000 1.000 1.000 1.000 1.000 1.5
DisCoveR (D) 1.000 0.927 0.976 0.964 0.971 0.983 24.8
- light (DL) 1.000 0.921 0.974 0.948 0.967 0.981 19.6
MINERful (M1) 1.000 0.881 0.958 0.941 0.949 0.970 120.5
- 0.5/0.25 (M2) 0.997 0.841 0.942 0.919 0.930 0.957 77.6
- 0.75/0.5 (M3) 0.961 0.657 0.848 0.809 0.850 0.877 37.8
Inductive (IM) 1.000 0.860 0.946 0.930 0.932 0.960 22.1
- 0.2 noise (IMf) 1.000 0.860 0.946 0.930 0.932 0.960 22.1

Dreyer Foundation Data set (sec. 5.2) In-sample

Rejection 1.000 0.928 0.979 0.964 0.970 0.985 6.0
DisCoveR 1.000 0.048 0.717 0.524 0.713 0.832 125.0
- light 1.000 0.048 0.717 0.524 0.713 0.832 71.0
MINERful 1.000 0.067 0.723 0.534 0.717 0.835 1124.0
- 0.5/0.25 1.000 0.0288 0.711 0.514 0.709 0.830 174.0
- 0.75/0.5 1.000 0.005 0.704 0.502 0.704 0.826 102.0
Inductive 1.000 0.019 0.709 0.510 0.707 0.828 160.0
- 0.2 noise 1.000 0.019 0.709 0.510 0.707 0.828 160.0

Dreyer Foundation Data set (sec. 5.2) Out-of-sample

Rejection 0.985 0.914 0.964 0.950 0.965 0.975 6.2
DisCoveR 0.962 0.362 0.692 0.662 0.706 0.814 127.6
- light 0.968 0.447 0.697 0.707 0.708 0.817 72.9
MINERful 0.906 0.231 0.659 0.569 0.698 0.787 1128.4
- 0.5/0.25 0.962 0.270 0.685 0.616 0.701 0.810 176.4
- 0.75/0.5 0.970 0.081 0.684 0.525 0.698 0.810 104.9
Inductive 0.981 0.339 0.696 0.660 0.703 0.818 158.9
- 0.2 noise 0.983 0.359 0.698 0.671 0.704 0.819 157.8

Table 2. Experiment results

simplicity also directly benefits the business case, as the industry partners have
repeatedly voiced a strong preference for fewer, but more relevant, recommended
relations. As a result, the Rejection Miner has already been integrated into the
portal by the company.

Dreyers Foundation The results show that the Rejection Miner once again pro-
vides high levels of accuracy while requiring only a small model. Of most interest
are the out-of-sample results, shown in more detail in the boxplots of Figure 2,
which indicate that the models found by the Rejection Miner are not only ac-
curate for the training data, but also for unseen test data. In other words, pro-
viding the miner with some negative examples allows it to accurately predict
what other negative examples may be seen in the future. In addition there is
very little variance in the results of the Rejection Miner, with model size and
accuracy scores remaining close to the mean for each randomized run of the
10-fold validation. We also included measures of the run-time performance in
Figure 2, showing that the Rejection Miner is several orders of magnitude slower
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Fig. 2. Boxplots illustrating the distribution of mean performance of various miners
across 10 runs of 10-fold cross validation on the Dreyers log.

than the other miners (requiring on average 39.3 seconds to mine the Dreyers
log). We stress however that good run-time performance was never a goal for
the current prototype, that there are known methods for improving the run-time
performance through a more intelligent initial selection of relevant patterns by
the oracle [5,19], and that the results do show that the miner is computationally
viable for the experimental data.

7 Conclusion

We propose approaching process discovery as a binary classification problem. We
provided a formal account of when binary miners exist; proposed the Rejection
Miner; introduced real-world cases of negative examples; and compared Rejec-
tion Miner to contemporary miners for various notations, finding an increase in
accuracy and, in particular, output model simplicity.
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Process Mining via Hidden Markov Models:

A Feasibility Study

Christoffer Olling Back

1 Introduction

Modern organizations increasingly generate and store enormous amounts of data
related to their business processes via IT systems, in particular Enterprise Re-
source Planning (ERP) systems which not only document, but also automate
many processes. This has given rise to so-called process mining techniques and
affiliated research communities in both academia and industry. The field is
closely related to data mining and machine learning, but differs somewhat, not
only in its specific focus on process related data, but also its approach and
historical roots in theoretical computer science and formal methods.

My aim here is to present a very preliminary investigation into the feasibility
of building a bridge between probabilistic graphical models and process min-
ing approaches. The motivation is, on the one hand, to bring a more principled
probabilistic perspective to process mining, while incorporating the interpretabil-
ity/explainability of high-level process modeling languages.

2 Approach

Process mining is usually characterized as having three main facets: process
discovery, conformance checking, and process enhancement. The distinguishing
aspect being the degree to which the process is understood/modeled a priori,
and the goal of the process owner. The focus here will be primarily on process
discovery, which is essentially an unsupervised learning task aimed at finding a
process model which accurately describes the data.

Nearly all process mining algorithms assume a given process formalism, and
usually deterministically map an event log to a model in that formalism. By far
the most widespread modeling formalism are imperative languages which model
specific flows a process can follow. These include Petri nets, BPMN, event-
driven process chains, and process trees. Declarative modeling languages, such
as Dynamic Condition Response Graphs, Linear Temporal Logic (LTL), Declare
(a subset of LTL), π-calculus and other process algebras refrain from describing
specific flows, instead describing a process by the rules (relations) that must
be satisfied in a process - allowing any flow which satisfies these rules. Certain
processes (or aspects of a process) are arguably best modeled with a certain
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formalism, according to its degree of complexity/variability, and formalisms can
also be combined into hybrid languages.

There are two key aspects of the approach presented here. First the observa-
tion that, regardless of modeling paradigm, any process model has an underlying
state space with associated transitions between states. Second, the claim that
maintaining a set of candidate hypotheses regarding process generating observed
data, with associated confidence rankings, is a more powerful approach than de-
terministically generating one model as the presumed “true model”. If a process
manager wants to visualize the process in a given formalism, it can then be
generated from the underlying probabilistic graphical model over process model
states. This aspect will be discussed further in the Future Work section.

3 Evaluation

As a first step in assessing the viability of this approach, we ask a very simple
question: can a dynamic Bayesian network, specifically a hidden Markov model
(HMM), learn the process model generated from a simple process model which
allows loops and concurrency? To evaluate this, data was generated from a
known model, and an HMM was trained and subsequently evaluated on an out-
of-sample validation set.

Process models essentially describe which activities are able to be executed
at any point in the execution of a process. That is, after some (potentially
empty) prefix of activity occurrences, the process model will be in some state
s ∈ S where S denotes the model’s (finite, nonempty) state space. The resulting
state after executing an activity a ∈ Σ is determined by the transition function
δ : S × Σ 7→ S.

Most process modeling formalisms are not inherently probabilistic: they sim-
ply describe which sequences of events are legal. Arguably, this does nonetheless
establish probabilistic bounds on legal sequences since illegal activities implic-
itly have a zero probability, and the probability of the legal outgoing transitions
must sum to 1 unless the model is in an accepting state.

3.1 Data Generation

Consider the one-bounded Petri net in Figure 1. It only permits sequences
beginning with a and ending with e. In between, b and c must be executed, but
this can happen concurrently. Executing d is optional, but must subsequently
be followed by c before the process can proceed to e.

We can also model the labeled transition system for this Petri net as in
Figure 2. The initial state s1 represents the marking shown in Figure 1 with one
token in the first place node. State s3, for example represents the marking in
which one token is in the place immediately following the b transition as well as
one token in the place immediately prior to the c transition.

If we insist on viewing Figure 2 as a stochastic automaton, and denote by
element Aij the probability of moving from state i to state j, then its transition
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Figure 1: The Petri net used to generate artificial event logs
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s4
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d

c

d

b

e

Figure 2: Labeled transition system (DFA) of Petri net in Figure 1

matrix is given by

A =




0 A12 0 0 0 0
0 0 A23 A24 0 0
0 0 0 0 A35 0
0 A42 0 0 A45 0
0 0 A53 0 0 A56

0 0 0 0 0 0




where A12, A23, A24, A35, A42, A45, A53, A56 are all nonzero and less than or
equal to 1. Of course, we also have the constraints that

∑
j Aij = 1 which

implies that A12 = 1 and imposes bounds for values sharing the same row, so
that A23 +A24 = 1, for example.

Artificial event logs were generated using the model illustrated above by
sampling transition probabilities for a given row of A from a Beta distribution
with α = β = 2. Transitions were then followed by randomly selecting an
outgoing transition according to the parametrization of A. The initial state
probability distribution, πT =

(
1 0 0 0 0 0

)
, meant that the initial state

was always s1. The generated models and sample of the event logs are included
in the results tables.

3.2 Model Training and Selection

Several first-order hidden Markov model (HMM) were used for the present eval-
uation. A more sophisticated approach will be discussed in the Future Work
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section, but due to technical and time limitations, an out-of-the-box solution
from the hmmlearn Python package (formerly part of pgmpy) was used, which
did not allow for easily building more structured HMMs. Models were fit using
the Viterbi algorithm.

During the training phase, the model was fit to 100 sequences from the
artificial event log, and evaluated on a separate set of 100 sequences from the
same log. This was performed 10 times, with the model performing best on
out-of-sample data being kept for final evaluation. This repeated restart is to
account for the fact that the Expectation Maximization algorithm tends to get
stuck in local optima. Other relevant model selection criteria include Bayesian
Information Criterion (BIC) and Akaike Information Criterion (AIC), since they
explicitly punish overly complex models.

This process was repeated for models with 3, 6, and 9 hidden states to
evaluate the effect of the number of states on model performance. Ideally the
model with same number of states as the true generating model would perform
best, which it comes close to doing. In real-world data, this parameter would
obviously need to be set automatically, since the true model is not known.

3.3 Negative examples

For the final evaluation, 100 negative examples were generated as well. This was
done by a similar process as that used for generating positive examples, except
that whenever an event was generated, the label was changed to an invalid label
with a 10% probability. Any resulting legal sequences resulting from this process
were thrown out. Note that simply generating random sequences is less useful,
since by far most random sequences have a near zero likelihood (the space of
random noise is vastly larger than the space of true “signals” or patterns). This
approach ensured that the sequences generated were largely feasible according to
model and not particularly dissimilar to the training data, despite being illegal.

In order to build a confusion matrix and evaluate the HMM as a binary clas-
sifier, a threshold was set on the likelihood of a sequence given the model, below
which a sequence would be considered illegal. Results for several threshold val-
ues are reported. Any sequence with a likelihood below these values is classified
as illegal.

4 Conclusion

Preliminary results seem to support the usefulness of the proposed approach.
Even the shallow, first-order HMMs are able to fit the underlying distribution
quite well, which can be seen in the comparison of the likelihood of sequences
based on the true model with that based on the fitted model, as well as good
results in several confusion matrices.

The fact that 3-state HMMs clearly perform more poorly is encouraging if
the end goal is to uncover the actual state transition system of the generating
process. The 9-state models perform slightly better in some cases, but the
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improved performance would be diminished by a punishing factor for model
complexity as in BIC or AIC.

5 Future Work

There are several aspects in which this approach can be extended, one of which
is in using more sophisticated HMMs. Various data is often associated with
events in event logs, such as who or what executed the activity. These should
clearly be incorporated into a more sophisticated model. Also the ability to
handle previously unseen activities would be an important addition. Fortunately,
techniques from previous research on language modeling exist for this purpose.

One very important simplification that was made was to allow only one
transition/label pair between states in the generating model. So if the process
transitions from si to sj , we can be sure of exactly which activity caused the
transition. This is why the emission matrix for the true model is not reported
in the results. In many process models this is not the case, and several activities
can cause the same state transition. A probability distribution must therefore
also be inferred, not just over state-transitions, but state-transition/label pairs.
This might be done by adding a variable Y ′

t between the hidden state Xt and
the observed state Yt, and adding an edge from Y ′

t to Xt+1. This also allows the
model to capture “noise”, or incorrectly recorded events, via the Y ′ to Y edge.

To achieve the original aim of eventually translating the state-transition sys-
tem learned by an HMM into one or more candidate process models in a tra-
ditional formalism, requires “disentangling” the most likely paths through the
transition system and translating this into a model. For example, if we con-
sider a simple two state system, with just two activities, there are eight possible
state-transition/activity combinations, as shown in Figure 3. This model can
be interpreted as representing 16 different deterministic systems if we consider
all of the different ways state-transition/label combinations can be made when
determinism is enforced (see Figure 4). In order to give preference to (nearly)
deterministic models, one can for example use MAP estimation with a minimum
entropy prior.
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Figure 3: A fully connected state-transition system with two activities. In this
form, it either represents a nondeterministic system, since executing one activity
leads to two different states, or a probabilistic system if we enforce a probability
measure on outgoing transitions with the same label.
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Figure 4: All of the different outgoing transition/label combinations for each
state if determinism is enforced. The different combinations of the two states
result in 16 different possible systems.

212



TRUE MODEL (Run 1)

A =




0 1 0 0 0 0
0 0 .75 .25 0 0
0 0 0 0 1 0
0 .16 0 0 .84 0
0 0 .2 0 0 .8
0 0 0 0 0 0




Sample of Event Log
acbdce

abce

acdcdcbdcdcdce

abcdce

acbe

abcdcdcdce

3-state HMM 6-state HMM 9-state HMM

Start Priors
πT =

(
0 0 1

) (
0 0 0 .04 0 .96

) (
0 0 0 0 0 1 0 0 0

)

Transition Matrices

A =




0 .36 .64
.93 .07 0
.26 .74 0







0 0 1 0 0 0
.56 0 0 0 .44 0
0 .13 0 0 .87 0
0 .55 0 0 .45 0
0 0 1 0 0 0
0 .97 0 0 .03 0







0 0 0 0 0 0 0 0 1
.79 0 0 0 .21 0 0 0 0
0 0 0 0 0 0 .3 0 .7
0 0 1 0 0 0 0 0 0
0 0 .2 .8 0 0 0 0 0
0 .24 0 .74 0 0 0 .02 0
0 0 0 0 0 0 0 0 1
.99 0 0 0 .01 0 0 0 0
0 0 .97 0 0 0 0 .03 0




Emission Matrices

θ =




0 0 .91 0 .09
0 .74 0 .26 0
.53 0 0 .01 .45







0 .39 .61 0 0
0 .78 .22 0 0
0 0 0 .28 .72
1 0 0 0 0
0 0 1 0 0
1 0 0 0 0







0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 .33 .67




LIKELIHOOD COMPARISON

CONFUSION MATRICES (Legal/Illegal)

p < 0.001
L I

L 100 54
I 0 46

L I
L 100 13
I 0 87

L I
L 100 2
I 0 98

p < 0.01
L I

L 91 29
I 9 71

L I
L 96 13
I 4 87

L I
L 100 2
I 0 98

p < 0.1
L I

L 70 10
I 30 90

L I
L 77 8
I 23 92

L I
L 94 0
I 6 100
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TRUE MODEL (Run 2)

A =




0 1 0 0 0 0
0 0 .51 .49 0 0
0 0 0 0 1 0
0 .34 0 0 .66 0
0 0 .74 0 0 .26
0 0 0 0 0 0




Sample of Event Log
abce

acdcdcbdcdce

abcdcdcdcdcdce

acdcdcdcdcdcbdcdcdce

abcdcdcdcdcdcdcdcdcdcdcdcdcdce

acbdce

abcdce

3-state HMM 6-state HMM 9-state HMM

Start Priors
πT =

(
0 0 1

) (
0 1 0 0 0 0

) (
0 0 0 0 1 0 0 0 0

)

Transition Matrices

A =




0 1 0
.87 .13 0
.49 .51 0







0 0 .62 0 .38 0
0 0 .51 0 .49 0
0 0 0 .67 0 .33
0 0 0 0 0 1
.44 0 .56 0 0 0
0 0 0 1 0 0







0 .52 .48 0 0 0 0 0 0
0 0 0 .23 0 0 .77 0 0
0 0 0 .17 0 0 .83 0 0
0 .49 .51 0 0 0 0 0 0
0 0 0 0 0 .5 0 0 .49
0 0 0 .06 0 0 .94 0 0
0 .52 .48 0 0 0 0 0 0
0 0 0 0 0 .62 0 0 .38
.56 0 0 0 0 0 0 .44 0




Emission Matrices

θ =




0 0 1 0 0
0 .21 0 .58 .21
1 0 0 0 0







0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 .72 .28







0 1 0 0 0
0 0 0 .85 .15
0 0 0 .58 .42
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0




LIKELIHOOD COMPARISON

CONFUSION MATRICES (Legal/Illegal)

p < 0.001
L I

L 87 15
I 13 85

L I
L 99 5
I 1 95

L I
L 99 5
I 1 95

p < 0.01
L I

L 52 6
I 48 94

L I
L 92 4
I 8 96

L I
L 97 4
I 3 96

p < 0.1
L I

L 0 1
I 100 99

L I
L 31 0
I 69 100

L I
L 56 0
I 44 100
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TRUE MODEL (Run 3)

A =




0 1 0 0 0 0
0 0 .94 .06 0 0
0 0 0 0 1 0
0 .46 0 0 .54 0
0 0 .87 0 0 .13
0 0 0 0 0 0




Sample of Event Log
abcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdce

acdbce

abcdcdcdcdcdcdcdcdcdcdcdcdcdce

abcdcdcdcdcdcdcdcdcdcdcdcdce

abcdcdcdce

abcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdce

abcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdce

3-state HMM 6-state HMM 9-state HMM

Start Priors
πT =

(
0 1 0

) (
0 0 1 0 0 0

) (
0 0 0 0 1 0 0 0 0

)

Transition Matrices

A =



.01 0 .99
1 0 0
0 0 1







0 0 0 0 1 0
.72 0 0 0 .01 .27
0 .97 0 .03 0 0
0 .18 0 0 .82 0
.69 0 0 0 0 .3
0 0 0 0 1 0







0 .3 0 0 0 .3 0 0 .4
.26 0 0 .13 0 0 .61 0 0
.26 0 0 .13 0 .01 .6 0 0
0 .31 0 0 0 .3 0 0 .39
0 0 .97 0 0 0 0 .03 0
.21 0 0 .1 0 0 .69 0 0
0 .26 0 0 0 .26 0 0 .48
0 0 .6 0 0 0 0 .4 0
.16 0 0 .07 0 0 .77 0 0




Emission Matrices

θ =




0 .97 .03 0 0
1 0 0 0 0
0 0 .5 .44 .07







0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 .87 .13
0 0 1 0 0







0 0 1 0 0
0 0 0 .77 .23
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 .96 .04
0 0 1 0 0
0 0 .6 .4 0
0 0 0 .87 .13




LIKELIHOOD COMPARISON

CONFUSION MATRICES (Legal/Illegal)

p < 0.001
L I

L 46 6
I 54 94

L I
L 91 11
I 9 89

L I
L 94 2
I 6 98

p < 0.01
L I

L 31 1
I 69 99

L I
L 90 5
I 10 95

L I
L 90 2
I 10 98

p < 0.1
L I

L 0 0
I 100 100

L I
L 70 0
I 30 100

L I
L 70 0
I 30 100
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Towards Inference of Resource Dependency
Grammars from Event Streams?

Christoffer Olling Back1[0000−0001−7998−7167]

Dept. of Computer Science, University of Copenhagen, Denmark
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Abstract. Many approaches to mining process-related data focus on
discovering temporal control-flow patterns between actions, usually as-
suming a given trace identifier. In some cases, trace identifiers may be
unavailable and in any case, event logs often generated by the multiple
interconnected processes. This paper presents a framework for discover-
ing such interactions based on the notion of a conditional control-flow.
We present a simple, context-free resource dependency grammar coupled
with corresponding temporal control-flow models. We outline methods
to ground these formula as transition systems and how these can be in-
tegrated into factorial hidden Markov models to facilitate probabilistic
reasoning. We present some preliminary approaches to grammar and pa-
rameter inference for a restricted fragment of the presented grammar and
outline approaches to building more sophisticated models.

Keywords: Hybrid Process Mining · Resource Dependency · Factorial
Hidden Markov Model

1 Introduction

Recent years have seen growing interest in mining process-related data, for ex-
ample from enterprise resource planning (ERP) and workflow/case management
systems. This has led to the development of so-called process mining tech-
niques for the discovery from event logs of generative models that are specifically
process-oriented and have proper execution semantics. One nearly universal as-
sumption of such approaches is the existence of a trace identifier that partitions
events into sequences representing instances of a process. Furthermore, nearly all
process mining algorithms focus narrowly on an end-to-end control flow based
on temporal orderings of events. Real-world data sometimes lacks such a trace
identifier, and in any case, may contain other attributes that provide another
informative partitioning of events: the relations between these attributes is often
just as interesting as temporal ordering. In many cases event logs will contain
overlapping processes, for example patients which follow a certain flow and are

? This work is supported by the Hybrid Business Process Management Technologies
project (DFF-6111-00337) funded by the Danish Council for Independent Research
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2 C.O.Back

treated by hospital staff who follow their own workflow. Exploring how differ-
ent views of a process overlap can reveal interactions and dependencies among
different resources/attributes related to a process.

We present a framework for discovering and parametrizing models of subpro-
cess interaction from event streams without trace identifiers. The main thrust
of the approach is the notion of a conditional control-flow : a temporal structure
which is induced events by constraints on the relations between event attributes.
We show how these models can then be integrated with a probabilistic model,
to which standard parameter inference techniques can be applied.

The general idea of conditional control flows is broad and amenable to more
solutions. In Section 3, we present a straightforward, proof-of-concept solutions
based on a simple context-free grammar for capturing constraints on attributes,
along with control-flow models based on simple directly follows graphs. In Section
4.1 we describe the structure learning and parameter inference problem and
present a simple, clustering-based method for the former, and outline standard
techniques for the latter. In Section 6 we conclude and present a several avenues
for extended the framework with more sophisticated modeling constructs and
inference techniques. We begin by first summarizing related work in Section 2.

2 Related Work

Process mining centers around events and traditionally assumes a well-formed
event log partitioning the set of events, first into separate processes and second
into separate process instances (i.e. a trace, associated with a case identifier).
The assumption is that a process instance represents an enactment of a re-
peatable process template with a clear beginning and completion, with the case
identifier defining the most meaningful perspective, e.g. a patient’s treatment or
a customers purchase [11].

Aside from events not always being organized into well-formed event logs,
events may not eve be given a central role in traditional data schemas, and
sometimes produced only as a by-product. Extracting and correlating events is
not always straightforward, and often system specific. A recent literature review
summarizes various approaches to this challenge [5]. In [10], for example, the
authors use database redo logs to do so in a system-independent manner. Events
may even need to be extracted from disparate and incongruous auxiliary sources
lacking a common case identifier [8, 3] or even buried in digital communications
[4]. Adding to this challenge is the fact that data increasingly needs to be handled
as a constant stream rather than a static, complete dataset [12].

Combining formal grammars, such as stochastic context-free grammar, with
Markov models for analysis of sequential data has received a good deal of atten-
tion, largely in the context of text and language processing. The more structured
models resulting from integrating a formal grammar with simple Markov models
(e.g. bigram model) significantly lowers the entropy (complexity) of the model
while adding only a marginal number of additional parameters [6, 9].

217



Towards Inference of Resource Dependency Grammars from Event Streams 3

3 Modeling

The fundamental principle underlying our approach is that event attributes can
be used to induce temporal orderings on an event stream. In other words, by
selecting events according to a criteria, for example those events which share the
same value for an attribute, we can view the temporal orderings of the selected
events independently of all other events.

An important notion in our approach is that of a control-flow model coupled
with attribute constraints defining when the control-flow restrictions are appli-
cable. The control-flow could be modeled by any modeling formalism, such as
Petri nets or even LTL1 formula.

For simplicity, we will restrict our scope to simple partial orderings, denoted
by a � b (i.e. a precedes and is succeeded by b).

Example For illustration, we introduce the following running example. Con-
sider a simple scenario in which two agents, Alice and Bob, share one resource,
Machine. In this case, Alice and Bob have the same restrictions on the control-
flow of actions: a � b and c � d. For Machine and a given agent, the restriction
b � c must hold. See Table 2 for an example event log fulfilling these conditions
and Figure 1 for a graphical representation.

We can present the model described above as shown in Table 1. We will refer
to these control-flow models subjected to attribute constraints as conditional
control-flow formulas.

Table 1. Example model

Control-flow Subject to

a � b a.agent = b.agent ∧
and b.agent = c.agent ∧
c � d c.agent = d.agent ∧ agent ∈ {Alice,Bob}
b � c b.agent = c.agent ∧

b.machine = c.machine ∧machine ∈ {Machine}

Interleaving and Handshaking Clearly the two processes described in our
example are not fully independent since they both impose constraints on actions
b and c. To capture this, we introduce two composition operators for conditional
control-flow formulas: the interleaving operator ||| and the handshake operator
||H .

The interleaving operator simply indicates that two formulas capture com-
pletely independent processes that can be executed asynchronously. The hand-
shake operator indicates that two processes must be synchronized over a set of
shared actions, H. This is the case in our example where H = {b, c}. In this

1 Linear Temporal Logic
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4 C.O.Back

Alice:

Machine:

Bob:

Timestep 1 2 3 4 5 6 7 8

a

b

a

b c c

d

d

Fig. 1. Informal representation of event log in Table 2 which is an instance of the
process described in Table 1. Workers Alice and Bob must perform activity a before b,
and activity c before d. The Machine resource must perform activity b before c when
b and c are associated with the same Agent. Via the handshaking operator for shared
events, the full set of constraints on events w.r.t. to resources/attributes is derived.

Table 2. Event log.

Timestamp Action Agent Resource

1 a Alice -
2 b Alice Machine
3 a Bob -
4 b Bob Machine
5 c Bob Machine
6 c Alice Machine
7 d Alice -
8 d Bob -
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Towards Inference of Resource Dependency Grammars from Event Streams 5

case, the two processes must execute actions in H simultaneously, meaning one
process may need to wait for the other to be ready before executing an action.

3.1 Formal Grammar

Our modeling approach can be captured as a context-free grammar. Recall that a
context free grammar is a 4-tuple G = (V,Σ,R, V0) consisting of a set of nonter-
minal symbols V , the set of terminal symbols Σ, the set of rewrite/production
rules R (below) and the start symbol (in V ).

The production rules R for the proposed grammar are as follows:

1. P → P ||| P
2. P → P ||HP
3. P → F ∧ C
4. F → F ∨ F | A � A
5. C → C ∧ C | C ∧ E | E ∧ E
6. E → A.T = A.T ∧ T ∈ DT

7. A → action1 | action2 | ... | actionn

8. T → attribute1 | attribute2 | ... | attributem
9. DT → DT

1 | DT
2 | ... | DT

k

Where DT
i ∈ 2Dom(T ), i.e. the powerset of values for attribute T .

Fig. 2. Production rules R for the resource dependency grammar.

As rules 1-3 indicate, at the root of the grammar’s parse tree is either an
interleaving (1) of parallel processes, a handshake synchronization (2) of inter-
acting processes, or a process (3) consisting of the conjunction of a control-flow
(F ) component conditioned on attribute criteria (C).

Rule 4 represents the control-flow aspect of our model. In this case, it is
restricted to conjunctions of simple follows relations. For more elaborate control-
flow models, this is the production rule which should be modified.

Rules 5-9 define the constraints on attributes. As rule 5 indicates, these are
conjunctions of the equality relations defined by rule 6. Rule 6 states that two
actions must share the same value for some attribute, and that that value should
be a member of DT (some subset of the domain of attribute T ). Rules 7-9 map
the nonterminal action, attribute, and domain symbols to terminal symbols in
the set of actions, attributes, and attribute domains subsets, respectively.

In summary, our grammar is given by

G = ({P, F,C,E,A, T, 2Dom(T )}, Σ ∪A ∪D,R, P )

with R as defined in Figure 2.
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6 C.O.Back

Example We will now formalize our running example using the grammar as laid
out above. Add to the example a second resource, truck, and two new actions
E and F . Note that now Dom(agent) = {Alice,Bob} and Dom(resource) =
{Machine, Truck}. We will build the full formula from the bottom up.

For simplicity we start with Truck which is associated with control-flow:
E � F . The powerset of the resource domain is

2Dom(resource) = {∅, {Machine}, {Truck}, {Machine, Truck}}

. In this case, Dresource will yield {Truck} via rule 9. Using rules 3-9 we can
capture control-flow subject to the corresponding attribute constraint as:

P1 : (e � f) ∧ (e.resource = f.resource ∧ resource ∈ {Truck})

Similarly we can capture the control-flow associated with Machine as

P2 : (b � c) ∧ (b.resource = c.resource ∧ resource ∈ {Machine})

Alice and Bob are associated with the control flow: A � B ∨ C � D. The
powerset of the agent domain is 2Dom(agent) = {∅, {Alice}, {Bob}, {Alice,Bob}}.
In this case, Dagent = {Alice,Bob} (rule 9). Using rules 3-9 we can capture the
constraint on

P3 :
(
a � b ∨ c � d

)
∧
(
a.agent = b.agent ∧
b.agent = c.agent ∧
c.agent = d.agent ∧ agent ∈ {Alice,Bob}

)

Using rules 1 and 2, we can combine the subprocesses defined above into a
single model:

P1 |||
(
P2 ||H P3

)

Where H = {b, c}. Since P1 does not share any actions with other subpro-
cesses, it relates to them in parallel via the interleaving operator, whereas P2

and P3 must interact via the handshake operator for shared actions b and c.

3.2 Operational Semantics

In the previous section, we outlined the semantics of the proposed approach.
Now we will illustrate how the grammar described above can be grounded and
translated to a concrete transition system. We restrict our focus to the simple
control-flow model presented earlier, but more complex models can be translated
in a similar manner.
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|||

∧ ||H

� ∧

resource

∧ ∧

e f

= ∈

e f Truck

� ∧

resource

∧ ∧

b c �

a b

�

c d

= ∈

b c Machine

agent

=

a b

∈

Alice Bob

agent

=

b c

∈

Alice Bob

agent

=

c d

∈

Alice Bob

Fig. 3. Parse tree of P1 |||
(
P2 ||H P3

)
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Recall the definition of a transition system TS as a tuple (S,A,→, I, AP,L)
for a set of states S, actions A, transitions →∈ S × A× S, atomic propositions
AP and labeling function L : S → 2AP . The process of grounding interpretations
of models and subsequently applying handshake and interleaving operators will
result in several independent transition systems.

Start with the conjunction of control-flow F and attribute constraint C (rule
3). For every interpretation I(DT

i ) s.t. the attribute constraint C is satisfied, i.e.
C |= I(DT

i ), construct a simple transition system as follows:

– Create a state Sa for every action a in A
– For every follows relation a ≺ b in F , add a transition (Sa, b, Sb)
– For attribute constraints a.p = b.p and c.q = d.q (rule 6) in C where p and
q are assigned according to interpretation I(DT

i ), add atomic proposition
P = p to states Sa, Sb and Q = q to states Sc, Sd.

– To those states with no incoming edges, add a start state and corresponding
edge. If all states have incoming edges, add one start state with an outgoing
edge to all other states.

– If the resulting transition system consists of more than one connected com-
ponent, perform a parallel operation (|||) between all components.

Example To illustrate, consider a modified version of P2 where the constraint
B.agent = C.agent has been removed. This allows interpretations involving both
agent values. The possible interpretations are:

A.agent = Alice, B.agent = Alice, C.agent = Alice, D.agent = Alice
A.agent = Alice, B.agent = Alice, C.agent = Bob, D.agent = Bob
A.agent = Bob, B.agent = Bob, C.agent = Alice, D.agent = Alice
A.agent = Bob, B.agent = Bob, C.agent = Bob, D.agent = Bob

The transition system for the second interpretation is shown in Figure 3.2.

Handshaking The handshaking operator P1 ||H P2 requires that both pro-
cesses execute the actions in H synchronously. This can be captured as a single
transition system according to the following transition rule in (2). Let s1

α−−→ s′1
denote the transition from state si to s′i via action α in Pi, and (s1, s2) denote
the state resulting from the conjunction of s1 and s2.

For α ∈ H

s1
α−−→ s′1 ∧ s2

α−−→ s′2

(s1, s2)
α−−→ (s′1, s′2)

(1)

This operation can be extended to multiple processes P1 ||...|| Pn as follows,
where Hi,j denotes the shared actions between any two processes:

For α ∈ Hi,j and 0 < i < j ≤ n:

si
α−−→i s

′
i ∧ sj

α−−→j s
′
j

(s1, ..., si, ..., sj , ..., sn)
α−−→ (s′1, ..., s′i, ..., s′j , ..., s′n)

(2)
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Alice Alice Bob Bob
a b c d

Alice Alice Alice,Bob

Alice,Bob

Bob Bob Alice,Bob

Alice,Bob

a

c

b

d

c

a

c

db

d

a

b

Fig. 4. Grounded transition system for the second interpretation of P3 in Table 3.2.
The formula consists of two non-overlapping parallel control flows (a � b and c �
d), resulting in two transition systems that can be executed in parallel (above). The
equivalent system (below) resulting from applying the interleaving operator |||. The
latter illustrates the issue arising with the standard definition of the labeling function
after interleaving: atomic propositions Alice and Bob remain associated with states in
a counter-intuitive fashion. We address this in Section 3.4

Machine Machine
b c

Fig. 5. Grounded transition system for the only possible interpretation of P2

Alice Alice,Machine Alice,Bob,Machine

Alice,Bob,Machine

Bob Bob,Machine Alice,Bob,Machine

a

c

b

d

c

d

a

b

Fig. 6. Grounded transition system for P2 ||H P3 under the interpretation shown above.
Some states have become unreachable due to the synchronization criteria embodied
in handshake transition dynamics (see (2)). As in Figure 3.2 we see the unintended
propagation of atomic propositions.
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Interleaving For the interleaving operator P1 |||...||| Pn, as well as actions
outside of H for the handshake operator, the resulting transitions obviously
occur independently.

That is, for α /∈ H for ||H , or α ∈ ⋃Act(Pi) for |||

si
α−−→i s

′
i

(s1, ..., s′i, ..., sn)
α−−→ (s′1, ..., s′i, ..., s′j , ..., s′n)

(3)

3.3 Labeling of Atomic Propositions

When applying the ||H and ||| operators, the standard approach is simply to
associate the atomic propositions of the new state with the union of the atomic
propositions of the constituent states. That is,

L(s(1), ..., s(M)) =
⋃

m

L(s(m))

where L is the labeling function from states to the powerset of atomic proposi-
tions.

For our purposes, using this approach directly leads to a slightly undesired
result as illustrated in Figure 3.2 and 6. To see this, consider the following exe-
cution trace in our example where we indicate the state of the process associated
with the agent and resource as sa and sr, respectively:

action agent resource state

a Alice - (sa1 , s
r
0)

b Alice Machine (sa2 , s
r
1)

c Alice, Bob Machine (sa3 , s
r
2)

d Alice,Bob Machine (sa4 , s
r
2)

The problem here is in the third and fourth steps. First, Alice continues to
be affiliate with the process, even though she is only involved in actions a and
b according to our grammar. Then in the fourth step, Machine ends up being
included in the execution of d as a result of the interleaving of states sa4 and sr2.
This seems misleading since the two processes (P2 and P3) have “parted ways”
at this point. We can address this by applying a kind of “filter” that takes into
account how a state was reached. This corresponds to expanding each state into
multiple states, one for each incoming action:

As we will see in the following section, we can capture this in a straightforward
manner by expanding the state transition matrix as well as the emission matrix
in a corresponding manner.

3.4 Translation to Factorial Hidden Markov Model

Using the methods above for grounding formulas in the proposed grammar, we
obtain a set of independent transition systems. The independence stems either
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Alice,Bob =⇒

Bob

Alice

c

b

d

c

b

d

d

Fig. 7. Adjusted atomic proposition labeling by means state expansion w.r.t incoming
actions and the corresponding grammar.

from separate interpretations as described in 3.2, or from the parallel operator
|||.

These transition systems can now be easily integrated into a probabilistic
model as the hidden state chains of a factorial hidden Markov model : a natural
model for sequential data like event streams. Hidden Markov models (HMM)
assume that a sequence of observed variables o1, ...,ot, ...,oT are conditionally
independent given a corresponding set of s1, ..., st, ..., sT as depicted in Figure 8.
Formally, the joint probability of the observed sequence is given by:

P(o1, ...,ot, ...,oT ) = P(o1|s1)P(s1)
T∏

t=2

P(ot|st)P(st|st−1) (4)

The temporal dynamics are thus captured entirely by P(st|st−1), i.e. the
probability of transitioning to state st from state st−1. Thus, the chain of states
fulfills the Markov property and observed variable ot is solely a function of the
state of the model at time t.

Factorial hidden Markov models (FHMM) extend the HMM model with mul-
tiple chains of hidden states, rather than just one. A FHMM with M state chains
can be modeled by a HMM by setting the domain of the state variable to the
Cartesian product of the domains of all M state variable in the FHMM such
that s = (s(1), ..., s(m), ...s(M)). However, this results in a unnecessarily com-
plex model that fails to take advantage of the independencies between the state
variables.

To see this, let K(m) denote the number of states of state variable s(m). If
we we let K(m) = K for all s(m), the number of possible state combinations is
KM or

∏
mK

(m) for variable K(m) and the size of the transition matrix will be
KM ×KM . By separating state chains, we can capture state transitions with M
separate K ×K matrices. This reduces the complexity of the inference process
and avoids finding spurious correlations between states.

In a FHMM, the outcome of the observed variables is determined according
to a function which aggregates the influence of each hidden state variable to
the outcome of the observed variable. In a continuous valued model, this might
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s0 s1 · · · sK

o0 o1 · · · oK

(a)

s
(1)
0 s

(1)
1

· · · s
(1)
K

s
(2)
0 s

(2)
1

· · · s
(2)
K

s
(3)
0 s

(3)
1

· · · s
(3)
K

o0 o1 · · · oK

(b)

Fig. 8. (a) Hidden Markov model (HMM) and (b) a factorial hidden Markov model
(FHMM)

simply be a weighted linear combination of the chosen distributions (usually
Gaussian). In our model, we can simply marginalize over all states that may
have generated ot.

It also makes sense here to include a weighting, P(m) - i.e. a prior - on the
state variables to express a belief regarding which subprocess - i.e. which state
chain - is a priori likely to be in play. In the case of many candidate processes, the
prior distribution can also serve as ranking mechanism to aid in the presentation
and understandability of the inferred model. Assuming P(m) is stationary, we
have:

P(ot|st) =
∑

m

P(ot|s(m)
t )P(s

(m)
t |s(m)

t−1)P(m) (5)

Emission Probabilities We noted in the previous section that we have an is-
sue with states being associated with unexpected atomic propositions and that
this can be addressed by expanding states w.r.t incoming edges (see Figure 7).
Practically, we can capture this using an extended-width transition matrix and
a corresponding extended-height emission matrix - extended by the number of
possible actions. This will give a K×K|Σ| transition matrix, a K|Σ|×|Σ| emis-
sion matrix for observed actions and K|Σ|× |Dom(T )| emission matrices for the
various attributes T . For example, a simple system with 3 states, 2 actions, and
one attribute with 4 values would be given by:
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P(s
(m)′

t |s(m)
t−1) =




sa1 sb1 sa2 sb2 sa3 sb3
s1 p11 p12 p13 p14 p15 p16
s2 p21 p22 p23 p24 p25 p26
s3 p31 p32 p33 p34 p35 p36




P(oactt |s(m)′

t ) =




a b

sa1 1 0
sb1 0 1
sa2 1 0
sb2 0 1
sa3 1 0
sb3 0 1




P(oattt |s(m)′

t ) =




α β γ δ

sa1 p11 p12 p13 p14
sb1 p21 p22 p23 p24
sa2 p31 p32 p33 p34
sb2 p41 p42 p43 p44
sa3 p51 p52 p53 p54
sb3 p61 p62 p63 p64




The emission matrix associated with the action leading to state, P(oactt |s(m)′

t ),
can reasonably be set to be deterministic as shown.

4 Inference

In Section 3 we outlined the proposed model, and how to translate the proposed
grammar into a set of independent transition systems which can then be incor-
porated into a factorial hidden Markov model. Now we must address how to
discover such a model from data. Assuming no input from a domain expert or
modeler, the following aspects of the model are unknown:

– The grammatical formulas describing control flows conditioned on resource
constraints

– The parameters of the probabilistic model:

• θ(m)
T : the transition matrix defining state transition probabilities for state

chain (m), that is P(st|st−1).

• θ(m,x)E : the emission matrix for defining the probability of observing val-
ues of attribute x for each state in state chain m.

• P(s
(m)
1 ): the probability over initial states in state-chain m.

• π(m): the prior probability of state-chain m being the source of an ob-
servation.
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A standard HMM shares the first three of these parameters in the probabilis-
tic model. These are learned using a version of the Expectation-Maximization
(EM) algorithm called the Baum-Welch or forward-backward algorithm. This ex-
act inference approach quickly becomes intractable, however for FHMMs, since
the several state chains become conditionally dependent via the observed vari-
able, making the computation of posterior probabilities in the E step infeasible.

To overcome this, techniques for approximating posterior probabilities can be
applied, such as sampling schemes (e.g. Gibb’s sampling) or variational inference,
in which a simpler distribution is solved for, which sufficiently approximates
the true distribution and lacks the conditional dependencies that make exact
inferences intractable.

Inference of the probabilistic parameters assumes a given model structure, or
at least the number of hidden states in each chain. However our approach also
requires the learning of that structure - this is the first point in the list above.
This step could be integrated into an end-to-end expectation-maximization ap-
proach, for example by defining a probability distribution over possible parse
trees for the grammar. Another approach akin to branch splitting based on in-
formation gain in decision trees could use the sequential entropy of an induced
sequence as described in [1] - or alternatively, the entropy of a random walk on
the directly-follows graph - to build a parse tree branch by branch. We leave
a more rigorous investigation of these approaches for future work and instead
present a heuristic approach based on clustering of directly follows graphs.

4.1 Structure Learning: Constructing Formulas from Clusters

Our aim is to find a set of formulas that are entailed by the event log such
that the formulas are as informative as possible, specifically regarding resource
dependencies and subprocess interplay. While one could imagine enumerating
all possible formulas and allowing the inference algorithm to dismiss useless
candidates with extremely low probabilities, this will likely slow and mislead the
inference procedure unnecessarily.

The approach we propose essentially works by clustering similar subprocess
as defined by their attribute-value groundings. So, returning to our example, we
would likely to discover that agent = Alice, agent = Bob, resource = Machine,
and resource = Truck are associated with similar sequences of actions, therefore
likely involved in the same processes.

To accomplish this we propose using clustering techniques based on some
distance measure defined between the sequences of actions associated with the
difference attribute values. One candidate for defining a distance between se-
quence that comes to mind is sequence alignment or an edit-distance measure
such as Levenshtein distance. These can be very expensive to compute and we
leave an investigation of these for future work.

Clustering One straightforward method to define a distance based on the
sequential patterns in two strings is based on the well-known directly follows
graph (DFG). The adjacency matrix for the DFG counts the number of times an
action represented by row i is followed by the action represented by column j.
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By “unfolding” the rows of this matrix into a single vector (analogous to simple
image processing), we can compute standard distance metrics defined in a vector
space, such as the Euclidian distance. To capture that we are interested in the
sequential structure rather than raw frequencies, we can normalize the DFG to
form a proper probability distribution by marginalizing over rows.

Denote by D the directly-follows matrix as described above and let J denote
the unit matrix (each element is 1) with the same dimensions as D. Then the
normalized directly follows graph can be written formally as

Dnorm = D�DJ (6)

Where � denotes Hadamard (element-wise) division. Again, this simply nor-
malizes the matrix across rows. we can then define distance measure between
directly follows matrices and cluster attribute values, such as agent = Alice and
agent = Bob, based on these. One distance metric which is straightforward to
define is the cosine distance2:

dcos(A,B) = 1.0− cos θ = 1.0− A ·B
||A|| ||B|| = 1.0−

∑
i

∑
jAi,jBi,j√∑

i

∑
jA

2
i,j

√∑
i

∑
j B

2
i,j

(7)
Since our aim is to find overlapping and interacting subprocesses, we want

to be able to find a connection between, for example, process P1 which overlaps
with process P2 which in turn overlaps with process P3 even if P1 and P3 do not
overlap at all. This makes linkage-based clustering algorithms natural candidates.

Crucially, in order to capture that attributes co-occur in the same events, we
define the distance between two attributes α and β as the sum of the distance
from the DFG for alpha alone to the DFG for α and β combined, and the
distance from the DFG for alpha alone to the DFG for α and β combined:

d(α, β) = dcos(Dα
norm,D

αβ
norm) + dcos(Dαβ

norm,D
β
norm)

One natural choice of clustering algorithm is DBSCAN, which is non-parametric
and well suited to finding non linearly separable clusters. In contrast to most
clustering approaches, it does not require us to choose a fixed number of clusters,
but finds them automatically according to a threshold ε and a minimum number
of elements per cluster. Roughly speaking, it looks for groups of points within an
ε neighborhood and assigns remaining points to “noise”, i.e. singleton clusters.

Translation After clusters of directly-follows graph have been identified,
translating these to condition control-flow formulas is relatively straightforward.
For simplicity, in our implementation we have chosen to group all values (e.g.Alice,
Bob) of the same attribute together. So for each attribute, consider the com-
bined, normalized directly follows graph for these values. For every follows re-
lation above some noise threshold η, add a follows relations associated with the
relevant attribute constraint. The attribute constraint is simply set as

2 The cosine distance is technically not a true distance metric since it does not fulfill
the triangle equality.
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∧

1<i<j<K

actioni.attribute = actionj .attribute

.
Next, combine the generated conditional control-flow formulas by means of

handshake operators (||H). These will be used to generate the final factorial
Markov model by grounding each interpretation and assigning to each a state-
chain.

5 Application

We present some examples of conditional control-flow models discovered using
the clustering approach described in Section 4.1. We mined an event log from
a machining shop3, which has a rich amount of information associated with
events, such as WorkerID, Resource, Part Description, Order Type and more.
We have displayed the control-flow model graphically: again, a simple directly
follows graph in this case, but potentially a richer model for a more sophisticated
approach. Below this are examples of the raw textual output of the algorithm:
In Figure 9 the full description is included, whereas in Figure 10 most of the
textual description is omitted for readability.

The fully expanded model - including each state groundings for each state-
chain in the FHMM model, along with the parameters (probability distributions)
associated with it - would be overwhelming and unhelpful to present to the user.
Therefore we envision display these handshaking subprocesses according to an
importance ranking based on the state-chain prior, i.e. the final component P(m)
in (7). Alternatively, a user could explore the model by querying certain at-
tributes, searching by model complexity, or even relevance at a certain position
in an execution trace. If a model were used for anomaly detection, when the sys-
tem could present those models that are most explanatory for the low probability
of an anomalous observation.

6 Future Work & Conclusion

We have a presented a framework for 1) framing processes in terms of con-
ditional control-flow models subject to constraints on event attributes and 2)
an integration of models formulated in this manner with standard probabilistic
models. Several details of this paper should be seen as simple proof-of-concept
approaches to be elaborated on in future work. Specifically, more sophisticated
control-flow models and attribute grammars, and different approaches to infer-
ence of models.

In terms of inference, a number of avenues exist. One obvious approach would
be a maximum likelihood estimation (MLE) approach: building models from
end-to-end that maximizes the probability of the observed data - one challenges

3 10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
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Milling - Machine 14 start --> Milling - Machine 14 start AND
Milling - Machine 14 start --> Milling - Machine 14 complete AND

Milling - Machine 14 complete --> Milling - Machine 14 start AND
Milling - Machine 14 complete --> Milling - Machine 14 complete
WHEN
Milling - Machine 14 start.Resource = Milling - Machine 14 complete.Resource
WHERE Resource
IN [Machine 14 - Milling]

HANDSHAKE

Turning & Milling - Machine 9 complete --> Milling - Machine 14 start AND
Milling - Machine 14 start --> Milling - Machine 14 complete AND

Turning & Milling - Machine 9 start --> Turning & Milling - Machine 9 complete AND
Milling - Machine 14 complete --> Milling - Machine 14 start AND
Milling - Machine 14 complete --> Turning & Milling - Machine 9 start

WHEN
Milling - Machine 14 complete.WorkerID = Turning & Milling - Machine 9 start.WorkerID

AND
Turning & Milling - Machine 9 start.WorkerID = Turning & Milling- Machine 9 complete.WorkerID
AND
Turning & Milling - Machine 9 complete.WorkerID = Milling - Machine 14 start.WorkerID
WHERE
WorkerID IN [ID4873, ID4162]

Fig. 9. Caption
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Fig. 10. Conditional follows graph for three resource conditions:
Black: Part Desc. IN [Cylinder, Drill]

Red: Resource IN [Machine 10 - Grinding]

Blue: WorkerID IN [ID4132]
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here becomes building the grammar. A naive approach would require learning a
probability distribution over all possible parse trees.

This highlights the distinction between learning 1) the structure and 2) the
parameters of the model: a distinction we recognize from the probabilistic graph-
ical model (PGM) literature. In the course of the present study we did explore
similar approaches - the distinction here being that rather than determining
whether to add an edge between two nodes representing variables, we are deter-
mining which rewrites rules two apply at a given point in a parse tree, and our
statistical metrics for doing so are not simply defined between variables but on
the resulting ordering induced on the event stream.

One potential approach akin to the notion of information gain in building
decision trees, is to choose, at any point in the parse tree, the operation resulting
in the greatest decrease in entropy (with some penalty for model complexity
to avoid overfitting). One straightforward way to quantify this formulation of
information gain could be based on the entropy of a random walk on the directly
follows graph resulting from the grammar of a parse tree.

Other measure of information gain could be based on entropy estimator
specifically intended for symbolic sequences, such as those explored in [1]. Some
of these estimators requires very long sequences to converge to valid estimates.
This might not be problem for in event streams in larger systems and would
clearly more accurately capture long-range dependencies than DFGs. Entropy
estimates can also take into account the regularity of temporal intervals, rather
just symbolic sequences, if this is relevant for the application at hand.

Alternatively, continuing with the clustering approach presented here, a va-
riety of alternative approaches to 1) sequence embedding and/or 2) alternative
distance metrics could be explored. For example, various string/sequence embed-
ding approaches exist, such as Parikh, spectrum, subsequence kernels [7] and the
patterns described in [2], or sequence sampling based approaches which could be
relevant for sufficiently long streams. Alternative distance metrics include, for
example, edit distances which don’t require embedding in a vector space.

The grammar presented here was intentionally kept as simple as possible,
using only an equivalence relation. Even without adding new relations/operators,
more expressive rewrite rules can be formulated. For example, it is not possible
to express For example, a.Agent = b.Resource in the current set of rewrite rules.
Adding logical operators (¬, →) and other relations - perhaps domain specific
and based on available data schema - would be able to capture more complex
relations between attributes.

Finally, a proper evaluation of the proposed framework is a crucial next step.
This could be approached in different ways: by using the model as a classifier
and comparing with other approach on standard datasets, by evaluation on a
dataset for which attribute dependencies are known and determine whether these
are discovered, and finally usability studies to determine whether the format
proposed is informative and easy to interpret.
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