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Abstract

The analysis of the geometry of objects is a fundamental property with important in-
terpretations in most fields of natural science. As the fields of bioimaging, biology and
pathology evolve, so should the computational and statistical methods which we use for
the correction of imaging artifacts and for measuring the stochastic variations in the shape
of geometric objects of interest.

When imaging biological structures at nanometer scales, we are at the frontier of
what is currently possible. This is clearly shown by a variety of physical limitations on
scale, resolution, field of view, signal-to-noise ratio which, among other things, limits
the sensitivity to the presence of specific objects. Similarly, the likelihood of imaging
artifacts increases. At these scales, the images are often noisy and prone to misalignment
or deformations, and hence, they often require some form of correction before accurately
characterising and measuring the geometry of the objects of interest. In Chapter 2, we
present a realignment method using biological structures which has a stochastically known
shape showing superior correction on specific types of data.

When we analyze the geometry of objects, we often want to determine if there is a
geometric interdependence between objects. This problem need careful definition because
a shape is commonly viewed as an intrinsic property independent of other objects. In
order to address questions which arise practically, a relational shape measure should be
affected both by the spatial distance as well as by an object to object shape dependence.
In Chapter 3, we handle all of these problems by presenting a method which uses a
distance map from one or a set of reference objects to a number of objects of interest.
We measure multiple interpretable geometric measures on these and present summary
statistics, edge corrections terms and assess the equivalence class under the measures in
a simplified example.

In cell migration studies, you want to measure the distribution of cells within some
distance from a point of origin such as an injections site. Commonly, you only have point
annotations limited to planar sections of your volume giving rise to a geometric problem
since the measurement is represented as spherical shells but the annotation are planar.
In Chapter 4, we present a theoretical foundation for estimating this spherical statistic
from planar point annotations. We also present ideas on how to address the problem of
estimating a full volume density by interpolating the density between sections using both
a machine learning and an image registration approach.

Further, we present contributions to three advances across point statistics and pathol-
ogy. Firstly, we present a K-function summary statistic on curves using a combination of
a spatial distance and a directional distance measure which originates from mapping the
curves into a Reproducing Kernel Hilbert Space in which a meaningful measure can be
defined easily. We then present analysis and imaging pipeline descriptions of two contri-
butions in pathology which have similar methodology and both provide use cases for the
method presented in Chapter 3.
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Resumé

Analysen af geometrien af objekter er en fundamental egenskab med vigtige fortolkninger
i de fleste naturvidenskablige felter. N̊ar felter som bioafbildning, biologi og patologi
udvikles, liges̊a må vi udvikle de beregningsmæssige og statistiske metode, som vi bruger
i korrigering af billedartifakter samt til at måle den stokastiske variation i formen af
geometriske objekter som har vores interesse.

N̊ar man optager billeder af biologiske strukture p̊a nano-skala, befinder vi os p̊a den
forreste grænse af hvad p̊a nuværende tidspunkt er muligt. Dette kan tydeligt ses i de fy-
siske begrænsinger vi møder i forhold til skala, opløsning, synsfelt, samt signal/støj-forhold
samt i sensitiviteten til at detektere specifikke objekter. Ligeledes stiger sandsynligheden
for at der opst̊ar afbildningsartifakter. P̊a disse skalaer viser billederne sig ofte som
støjfyldte og er s̊arbare overfor fejljusteringer og derformering hvilket kræver korrektion
før man nøjagtigt kan karakterisere og m̊ale geometries af de objekter som har vores inter-
esse. I kapitel 2 præsenterer vi en justeringsmetode som bruger biologiske strukturer, som
hvis middelform er stochastisk kendt, til at foretage god korrektion p̊a specifikke typer
data.

N̊ar vi analyserer geometrien af objekter har vi ofte brug for at slutte om der er en
geometrisk afhængighed imellem objekterne. Dette problem har brug for præcis definition
fordi form ofte refererer til en selvstændig egenskab for hvert objekt. For at addressere
dette spørgsmål, som opst̊ar i praksis, må et relationelt form-mål nødvendigvis afhænge
b̊ade af den rumlige afstand samt en relation imellem deres individuelle former. I kapitel
3 h̊andtere vi alle disse problemer ved at præsentere en metode som bruger en afstand-
funktion fra et sæt af referenceojekter til et sæt af objekter vi er interesserede i at måle.
Vi måler et udvalg af geometriske mål som direkte kan fortolkes. Vi præsentere opsum-
merende statistikker, kant-korrektion og kigger ligeledes p̊a ækvivalensklassen givet under
målet for et simpelt undersæt af former.

I et celle-migrationsstudie måle man fordelingen af celler som funktion af afstanden
til et fælles oprindelsespunkt, f.eks. et injektionssted. I mange tilfælde har man kun
punktmarkeringer i et begrænset sæt af planare vævssnit i det totale volume hvilket gør
at der opst̊ar nogle geometriske problemer fordi vi p̊a den ene side måler i kugleskaller
imens punktmarkeringerne er planare. I kapitel 4 præsenterer vi det teoretiske fundament
for at estimere denne sfæriske statistik ud fra planare punktmarkeringer. We præsentere
ogs̊a idéer p̊a hvordan man kan addressere problemet med at estimere punktdensiteten
for det fulde volumen b̊ade ved at bruge machine learning samt billedregistrering.

Til slut præsenterer vi bidrag til tre fremskridt henover punktstatistik og patologi.
Først præsenterer vi en K-funktions opsummerende statistik p̊a kurver som bruger en
kombination af den rumlige afstand samt et retningsafhængigt afstandsm̊al som opst̊ar
n̊ar vi afbilder kurverne ind i et Reproducing Kernel Hilbertrum hvorom et meningsfuldt
mål let kan defineres. Derefter præsenterer vi analyse samt afbildnings-pipeline af to
bidrag indenfor patologi hvorom metodikken overlap og begge drog brug af metoden
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Chapter 1

Introduction

Data science describes the shift to a more data-driven approach in industry and science
alike. A change perpetuated by the availability of data, steady increases in computing
power, advances in parallelism, and the advent of algorithms for large-scale processing
and analysis. Biology, similarly to other fields, has also leveraged this approach with
the advent of single sequence analysis, mass-scale chemical analysis and directly relevant
to my work, in the acquisition, processing, and analysis of biological samples as three-
dimensional images.

The advances in biology and data science are deeply coupled since on one hand, ad-
vances in biology often present us with new questions to be answered of which many
require new image acquisition methods, larger amounts of data, new challenges to post-
process the data, and require novel methods of analysis. Conversely, new methods in
data science perpetuate advances in biology by allowing us to ask questions which were
previously out of reach. For an example of this interdependence, we need to look no fur-
ther back than to December 2020 where Google DeepMind’s Machine Learning program
AlphaFold [45] reached historic results in the CASP protein folding competition.

From the view of a Computer Scientist, answering biological questions requires that
we formulate the question in a mathematical setting which parallels or models the real
world. In the field of image analysis, we often construct an image processing pipeline that
takes as input some unprocessed digital data and, through a series of steps, presents us
with an output that can either be further interpreted or directly contains an answer to a
hypothesis with some level of certainty.

1.1 Summary of the Founding Theory

Biological Imaging, or Bioimaging for short, covers the process of reproducing a biological
sample visually as an image. Historically done by hand, drawing what was seen through
a microscope, today large parts of the process are automated with the resulting image
stored digitally. Image capturing methods include light microscopes detecting photons,
electron microscopes detecting electrons, usually from within a vacuum chamber, and
magnetic-resonance-imaging (MRI) where the magnetic response is used to reconstruct a
volume image of the scanned object, to name a few.

Digital imaging presents an eternal struggle to find the best trade-off between field-
of-view, resolution, and the resources to process and store the image. Ideally, you want
to both see enough details of the biological objects of interest and have a sufficiently
large field-of-view to observe the context of the objects for significant statistical analysis.
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CHAPTER 1. INTRODUCTION

However, both requirements mean that the number of pixels in the volume will typically
exceed the memory capacity of most current-day computers. Currently, the increase in the
resolution of volume images is outpacing the increase in memory capacity by a significant
margin. Additionally, for electron microscopes, a trade-off between noise level and sample
integrity has to be found. Increasing the acquisition time increases the number of electrons
fired at the sample, result often in sample degradation due to an increase in the sample’s
temperature.

Specifically, when producing volume images in electron microscopy, images are formed
by combining a sequence of two-dimensional images. The process includes alternating
between imaging one section of the material and then removing a layer, either by cutting
as done in Serial Block-face Scanning Electron Microscopy (SBEM) or by milling using
ions as done in Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), or a similar
alternative. Both processes result in a series of images that together form the volume.
The proper recombination of an image series presents new challenges because the sections
are often misaligned for a variety of reasons such as a buildup of charge in the sample
which can deflect the electron beam, manual adjustment of the sample position during
imaging, or changes to instrument parameters as well as physical deformations resulting
from the cutting of the material.

The above circumstances present unique challenges and constraints when working with
these types of images often handled in post-processing as a part of an imaging processing
pipeline. An imaging processing pipeline refers to a series of actions performed on an
image or set of images. A simple manual linear pipeline could be carried out in a standard
image manipulation software, for example by cropping each image, then adjusting their
brightness level, and finally threshold the result to yield a binary mask. In a biological
context, we use image processing pipelines to achieve specific results, such as counting
or measuring cells in an image. A pipeline need not be a linear sequence of steps but
can be a sizeable graph of actions with multiple recombinations of temporary results and
with multiple outputs such as both a filtered image and a mask of detected objects in the
image.

Finally, when assessing objects in images, we are often interested in characterizing
the shape of an object, either to get clues about the function of the object or to assess
statistical differences between groups of objects. The shape of an object usually refers
to the remaining characteristics of an object when you ignore the position and rotation
of the object. How large is the object? Is the object bent, flat or rounded, elongated,
jagged? We are as humans deceptively good at assessing such features at a glance, but
we struggle to accurately assess the differences when the objects become complicated,
when the variation is subtle, or when the number of objects is large. In science, we,
therefore, lean towards turning the shape characteristics of the object into quantitative
measurable parameters we can assess numerically and compare statistically. Examples of
simple measures are the volume, the diameter of circumscribing sphere, and the surface
area of the object. These fundamental measures, such as surface area and volume, can be
combined to yield derived measures, such as the sphericity measure which describes how
close the object is in shape to a perfect sphere. Fitting ellipsoids to the object yields three
radii characterizing the object as a spheroid covering the shape space of spheres, oblate
or prolate shapes. Another notable shape analysis methods are Principal Component
Analysis (PCA) which is used to reduce the dimensionality of the variation of a group
of objects into one where only the meaningful shape variation of the group is preserved.
Similarly, spectral shape analysis represents the object by spectral components which are
found by solving the Helmholtz Equations on a triangulated mesh. These are merely a
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CHAPTER 1. INTRODUCTION

few popular examples of a plethora of methods developed in the last century.
In parallel to the above methods, spatial statistics, which is usually focused on an-

alyzing the spatial characteristics of point-processes, has over a long period grown into
a fully-fledged framework for analysis on families of objects under the term Stochastic
Geometry. Here a family of objects is often viewed as the combination of a set of points
and a corresponding set of marks, where each mark is a set detailing the interior of each
object. The shape is here often measured in a summarized manner to assess features such
as the fractional volume of objects in a volume and the spatial interdependence of the
objects. A classic approach originated from spatial statistics in form of the K-function[11]
which can effectively determine the interdependence of a realization of a point process,
for instance comparing to the standard candle, the Poisson Point process, representing
complete spatial randomness. The Poisson Process is therefore used to model many phe-
nomena such as bus arrival times, uniform random placement of points which in turn is
used to model natural phenomena such as raindrop locations on a piece of paper. If the
K-function differs from a Poisson Process, it can determine if the point process exhibits
attractive or repulsive behavior and show clearly if the points cannot be within a certain
distance of each other, that the point process is hard-core.

1.2 Overview of Contributions

In this work, we present three main contributions which are based squarely on the expe-
rience and knowledge of both fields. In the first main contribution, I was inspired deeply
by my good colleague Stine Hasselholt on how she manually aligned her biological volume
images. We assessed the strict requirements to the accuracy of such realignment and
found the classical approaches often gave unsatisfactory realignments in this specific task.
From this, we present a new image correction method in Chapter 2 which uses biological
shape characteristics to perform corrections at sub-pixel accuracy outperforming existing
approaches. This paper is published in Communications Biology [50]. The second main
contribution is a new measuring technique described in Chapter 3. The method is in-
spired by specific limitations of current approaches when wanting to examine variations
in shape between groups of biological structures and builds upon the established theory in
stochastic geometry. In Chapter 4, we present a method for assessing sparse point patterns
radially from a source. We present a statistic on the points accounting for the missing
data and whether the source point is known or inaccurate. Further, we present ideas on
estimating a full volume density using a machine learning and registration approach.

Further, we will present contributions to several articles. In Chapter 5, we present
a summary statistic for curves using a reproducing kernel Hilbert space. In Chapter 6,
we present two analyses in pathology on ultrastructural changes in ALS model mice and
Huntington’s model mice respectively. In both, we use the methods previously described
in Chapter 3.

The articles described in Chapters 2, 3, and 5 are presented here as published or
submitted except for references and formatting.
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Chapter 2

Restoring drifted electron
microscope volumes using synaptic
vesicles at sub-pixel accuracy

2.1 Abstract

Imaging ultrastructures in cells using Focused Ion Beam Scanning Electron Microscope
(FIB-SEM) yields section-by-section images at nano-resolution. Unfortunately, we ob-
serve that FIB-SEM often introduces sub-pixel drifts between sections, in the order of 2.5
nm. The accumulation of these drifts significantly skews distance measures and geometric
structures, which standard image registration techniques fail to correct. We demonstrate
that registration techniques based on mutual information and sum-of-squared-distances
significantly underestimate the drift since they are agnostic to image content. For neuronal
data at nano-resolution, we discovered that vesicles serve as a statistically simple geomet-
ric structure, making them well-suited for estimating the drift with sub-pixel accuracy.
Here, we develop a statistical model of vesicle shapes for drift correction, demonstrate its
superiority, and provide a self-contained freely available application for estimating and
correcting drifted datasets with vesicles.

2.2 Introduction

In three-dimensional (3D) scanning methods, such as focused ion beam scanning electron
microscope (FIB-SEM), serial block-face imaging (SBF-SEM) and serial section trans-
mission electron microscopy (SS-TEM), the scanning method alternates between form-
ing a two-dimensional (2D) image and removing a layer of material. For 3D geomet-
rical analysis, the sequence of 2D images must be recombined into a single, 3D image,
which, unfortunately, is non-trivial. Sectioning of the tissue, as well as the subsequent
imaging by electrons, often introduces a sideways sub-pixel translation between sections
known as drift. In FIB-SEM, the drift may arise from a variety of practically uncon-
trollable factors, such as bending of the electron beam due to a charge gradient in the
material and physical movement of the entire sample. Uncorrected drifts skew 3D dis-
tances, thus introducing errors in subsequent statistical and geometric 3D analyses, and
in turn, on possible biological conclusions. Figure 2.1 shows an example of an ultra-
structure brain region from a healthy adult rodent with easily noticeable drift when the
dataset is viewed across multiple image planes. Datasets such as this have been and
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CHAPTER 2. RESTORING DRIFTED ELECTRON MICROSCOPE VOLUMES

Drift introduces angles to structure in the sectioning direction, z, and is in-
visible in a single section.

Figure 2.1: a Small block from the publicly available FIB-SEM dataset of the CA1 Hip-
pocampus region of a healthy adult rodent (https://cvlab.epfl.ch/data/data-em/) showing
a pre-synaptic region with vesicles displaying significant drift. b The xz-plane in a high-
lighting the apparent effect of drift. c Artists depiction of a drifted vesicle as they appear
in b. d The x-y plane in a highlighting the lack of drift effects in this plane. e Artists
depiction of a drifted vesicle as they appear in d.

are still used actively [61, 4, 5] with no apparent mention of the correction for poten-
tial drift. In these works, it is unclear what effect such misalignment may have had on
the presented results. In other works [35, 32, 14, 28, 22], the correction has been per-
formed using the ImageJ plug-in TurboReg (www.epf.ch/thevenaz/turboreg/), StackReg
(http://bigwww.epfl.ch/thevenaz/stackreg/), Matlab, or a similar. These tools support
both manual registration, where the user specifies corresponding landmark points, and
automatic registration methods, e.g., pyramidal least-squares minimization of the image
intensities [55], maximizing mutual information [9], and normalized mutual information
[53, 10].

In FIB-SEM, large, pseudo-linear structures at an angle to the sectioning direction
will appear to move spatially perpendicular to the sectioning direction when viewing the
sections in sequence. This will misdirect typical automatic registration methods since they
are unable to distinguish translations caused by drift and apparent translation caused by
structures at an angle. Manual landmark annotations risk similar defects. An example of
the problem can be seen in Figure. 2.2a, b, where a simple synthetic 3D FIB-SEM image
has been generated with two spherical vesicles and a single membrane-like structure at
an angle to the sectioning direction. Even though no drift is imposed here, a standard
registration approach translates each image to force the membrane to be perpendicular to
the image section direction, stretching the vesicles in the process. (Figure. 2.2c, d), shows
a similar effect on real data. The reason is that the membrane-like structure dominates
the dissimilarity measure since its volume is much larger than that of the vesicles.

A problem with many registration methods is that they are agnostic to the image
content. For example, real neuronal tissue contains small and large structures, and stan-
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CHAPTER 2. RESTORING DRIFTED ELECTRON MICROSCOPE VOLUMES

Standard registration methods confuse drift and naturally occurring trends in
images.

Figure 2.2: a A synthetic image with two model perfectly spherical vesicles and a model
membrane at an angle to the sectioning direction. b The result of using standard section-
by-section registration with Mutual Information for dissimilarity measure and the im-
plementation found in Matlab. c A FIB-SEM sub-volume with features which influence
standard image measures adversely. d The result of using standard section-by-section
registration displays signs of deformation by the vesicles being less spherical. This sub-
volume was registered using ImageJ with StackReg and TurboReg plugins.

dard registration methods perform well when the angles of these structures are evenly
distributed with respect to the sectioning direction. However, we have observed that this
is not the case for the FIB-SEM images, we have analyzed. Firstly, for small regions of in-
terests dominating pseudo-linear structures often appear, and at larger regions of interest,
neuron processes have a tendency to be similarly oriented, resulting in inaccurate drift
estimates. Thus, registration methods relying on global measures or landmark points will
be less than optimal for such sections.

For improved registration, we must include models of the imaged data, such that the
registration method can distinguish between drift and apparent drift caused by dominating
structures at an angle to the sectioning direction. In images of neuronal tissue at nano-
resolution as, e.g., the publicly available FIB-SEM dataset of the CA1 Hippocampus
region of a healthy adult rodent (https://cvlab.epfl.ch/data/data-em/, 5 nm3 voxel size,
1065× 1536× 2048 voxels) we observe that vesicles are abundant, small, and on average
spherical. A vesicle has a lipid bilayer shell, which physically can be modeled as an elastic
material with a bending energy density functional [6, 20] minimizing the curvature of the
vesicle’s surface. Hence, in equilibrium and without external forces, a vesicle’s shape is
spherical. Vesicles can take a variety of exotic shapes under special conditions [44, 33],
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Our drift estimation uses the following four steps.

Figure 2.3: a The boundary of vesicles is manually annotated. b An ellipsoid (blue)
is fitted to the annotated points (orange). The intersection of the fitted ellipsoid with
the z-x plane is shown in c. c The skews in the zx- and yz-planes is calculated, here
illustrated in the z-x plane only. d For each image section, the drift is estimated by the
average of the drift components in x, y, and z. Diamond marker denotes a z-location of
a vesicle and the bars illustrates their influence in the local average. d left/right shows
the effect of varying the user-specified length w on the drift estimate.

though their most probable and most common shapes are spheroids, prolates, and oblates.
In this work, we propose to model the variability of the vesicle shape as ellipsoids. Since
vesicles are numerous near synapses, since synapses are numerous in our images, and since
vesicles on average are expected to be spherical, we can estimate the drift as the average,
per section deviation from the spherical shape. We claim that this method is independent
of large-scale structures such as the orientation of neuronal processes.

Our method is summarized as follows: firstly, we annotate the boundary of the vesicles
by manually placing points in the images (Figure. 2.3a). Secondly, we fit an ellipsoid to the
annotated points of each vesicle using a least-squares approach (Figure. 2.3b). Thirdly,
we assume first that the skew of each estimated ellipsoid alone is due to drift and calculate
a drift component for each of the ellipsoids (Figure. 2.3c). Fourthly, we computing the
average of the drift-components by regarding each drift-component estimate as a point
observation at the center of the ellipsoid, and then for each section i, average all point
observations within sections i±w where w defines a width of the estimate (Figure. 2.3d).
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2.3 Results

To assess the quality of drift estimates, we generated three synthetic datasets. The
first two have constant drift across all sections: (δx, δy) = (0.3 pixels, 0.0 pixels) and
(0.1 pixels, 1.0 pixels), and the third dataset has a drift that varies across sections (Supple-
mentary Information and Supplementary Fig. 1). Our synthetic datasets were generated
by placing random ellipsoids with uniformly random axis lengths between 3 and 6 vox-
els, uniformly random orientations, and uniformly random positions in a non-overlapping
manner, after which the drift was added. We annotated a variety of different numbers of
vesicles across image sections to assess the influence on the drift estimate. A total of 71,
97, and 283 vesicles were manually annotated in the synthetic datasets described above.
Annotating the synthetic datasets took on the order of 7 h in total, which is approximately
1 vesicle per minute.

Our experiments on the synthetic datasets demonstrate that using ellipsoids to esti-
mate the drift is significantly more accurate than standard approaches on the synthetic
datasets with constant drift. Our method estimates the drift with an absolute average
error of 0.22·10−1±0.08·10−1 apparently independent on the drift magnitude. In contrast,
the standard registration methods estimate the drift with the error 1.12 ·10−1±1.48 ·10−1

apparently proportional to the drift magnitude. (Histograms of drift estimates are shown
in Supplementary Figs. 2 and 3). The standard approaches are biased even though no
larger structures like cell membrane or mitochondria are present, and we suspect that the
bias is caused by subtle imbalances in the statistical distribution of image content angles
in the sectioning direction.

Our synthetic image with varying drift is non-smooth. In the presence of large drift
changes in the sectioning direction, the estimated drift from ellipsoids estimates are
smoothed out across the change (Figure. 2.4). This smoothing is due to two factors:
firstly, the vesicles are fitted across multiple sections, which adds some error. Secondly,
the estimate is based on vesicles with the set distance, w from the section. Reducing w
will reduce the smoothing effect but also increase the effects of noise. Aside from the re-
gions with large drift changes, we see a significant improvement over standard approaches
(Supplementary Figure. 4). We note that the standard approaches have some varia-
tion from section to section, whereas our estimates based on ellipsoids are very stable
(Supplementary Figure. 5).

Our drift estimate depends on the number of vesicles annotated, and to assess this
dependence, we employ a bootstrapping approach: We use the total set of fitted ellipsoid
drifts and 50000 times sample a subset of 1-200 drift-point estimates. The resulting
average absolute error shows a perfect reciprocal dependence (Supplementary Fig. 6).
Fitting to this bootstrapped data gives a predicted error function of y = 0.1375x−0.4915,
thus for one vesicle, an estimated error of 0.1375 is obtained, and to halve the error,
your roughly need to annotate four times the vesicles. For the real FIB-SEM dataset, we
manually annotated 961 vesicles. This dataset has 1065 pixels in the sectioning direction
distanced 5 nm apart. Assuming that the average height of a vesicle is 45 nm this implies
that there a vesicle on average is seen in nine sections. Thus, on average we have annotated
961 · 9/1065 ∼= 8.12 vesicles per section, and the estimated error is 0.1375 · 8.12−0.4915 ∼=
0.049 pixels ∼= 0.25 nm for each section.

The drift estimation accuracy also depends on the variation in radii of the vesicles.
Specifically, in the extreme case that the vesicles are exactly spherical in the without drift,
we only need a single vesicle to estimate a constant drift exactly since the drift-component
will be equal to the drift. We therefore also assessed the correspondence between both
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On synthetic images, our local drift estimates are precise for when the drift
is constant and show smooth transition when drift varies.

Figure 2.4: a A small subsection of a drifted synthetic image shown in a side view (zx-
plane). b, c The estimated ellipsoid drift in x and y, respectively, as a function of z.
Stippled curve is the ground truth, black curve is the estimate, and orange shows the
variation in the per-vesicle estimates. d The same synthetic image corrected in z-x plane.

radii variation and drift magnitude on the estimation error. We generate a fourth synthetic
image with 50000 vesicles for a variety of drift magnitudes and vesicle radii and measure
the mean absolute error using ten vesicles for each estimate (Supplementary Fig. 7).
Firstly, the figure shows a clear dependence on the variation of the radius. If radius does
not vary, and if each vesicle is a sphere, then there is no error, but the error increases as the
variation in radius increases. Secondly, the figure shows that the estimate is unaffected
by the drift magnitude. Thus, estimating a sub-pixel drift and large drift will give an
error of equal size.

For this work, we compare our method with the registration methods using the sum of
squared difference (SSD) and mutual information (MI), normalized mutual information
(NMI), and normalized cross-correlation (NCC) as dissimilarity measures. For complete-
ness, we also experimented with correction using phase correlation17 and compared with
built-in registration implementations in Matlab. Not reported here, we also experimented
with optical flow estimation as implemented in OpenCV across the pairwise image section
using only subregions of the images with vesicles. Our method is clearly superior to the
state-of-the-art global registration methods on the synthetic images when compared to
the ground-truth drift.

For real FIB-SEM images, the ground-truth drift values usually do not exist. Hence,
the following conclusions are based on our experience with synthetic data described above.
In the publicly available FIB-SEM dataset of the CA1 Hippocampus region of a healthy
adult rodent (https://cvlab.epfl.ch/data/data-em/), we observe a significant non-zero
drift signal (Fig. 5). After drift-correction using our drift-estimates, the vesicles look
visually less ellipsoidal. Qualitatively comparing the drift estimate on the real with the
synthetic images, we find that the estimate on the real dataset is similarly distinctly
different from standard approaches (Fig. 6 and Supplementary Fig. 8). The estimates
by the individual standard approaches can be seen to be in close agreement with each
other with regards to both the magnitude and direction of the translation. However, for
subregion in the real dataset, we also see that standard methods are biased with respect
to image content (Fig. 6). Asserting the section-wise drift, we observe rapid changes in
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Our drift estimates show similar behavior on real data as on the synthetic
data.

Figure 2.5: a A small subsection of a drifted FIB-SEM image shown in a side view (z-x
plane). b The estimated ellipsoid drift in x as a function of z. b, c The estimated ellipsoid
drift in x and y, respectively, as a function of z. Black curve is the estimate, and orange
shows the variation in the per-vesicle estimates. d The same FIB-SEM image corrected
in z-x plane. e Comparison of drift estimated by our proposed method (green) and using
normalized mutual information image measure (blue). f The resulting registration using
our proposed method. g The resulting registration using normalized mutual information.
h Pseudo-color overlay of registration results obtained by our proposed method compared
to registration using normalized mutual information.

drift estimates similarly to the synthetic image with varying drift (Supplementary Fig.
9). Hence, we expect some estimation error and smoothing effects to be present for the
real data as well.

2.4 Discussion

To conclude, FIB-SEM images often suffer from sub-pixel drift often in the order of
0.5 pixels, and this drift accumulates across several slices resulting in distortion of distance
and shape measures in 3D. Standard registration methods fail to correct this drift, as these
methods cannot distinguish between drift and naturally occurring slopes in the sectioning
direction. We have discovered that due to the abundance of vesicles in neuronal tissue and
their biomechanical properties, they function well as statistical markers for drift, and we
have presented a simple method for identifying and correcting the drift. We have compared
our method with state-of-the-art registration methods based on global measures, and our
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Drift estimates for standard registration method are consistent and most often
outside the 95% confidence interval of our method.

Figure 2.6: (left) and (right) show the estimates in the x- and y-direction. The stippled
curve shows the result of applying the standard registration method on a subsection of
the image, which is dominated by a large process.
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method has proven to be more accurate. We encourage correction of drift in neuronal
tissue whenever the analysis is of or relies on the geometry of the structures. Further
work should be carried out to assess the effect of the drift on biological images and to
develop less labor-intensive methods for estimating and correcting this drift.

2.5 Methods

Our method consists of the following sequence of steps: (1) Annotating vesicle boundary
using points. (2) obtaining ellipsoids by least squares estimation on the boundary points.
(3) calculate drift parameters for each ellipsoid. (4) Estimate the average drift locally to
each section using the ellipsoids drift parameters in conjunction with their position. Our
method is implemented and available online[49].

Choice of ellipsoid representation

Let x, y, z be the axes of an image with x, y the plane of each image section and z the
image sectioning axis. An ellipsoid centered at the origin can be described implicitly by
the quadratic surface equation uTHu = 1, where u = [x, y, z]T , and H is a 3×3 symmetric
positive definite matrix,

H =

A D E
D B F
E F C

 . (2.1)

We will refer to the elements of H as the parameters of the ellipsoid.

Obtaining ellipsoids from boundary points

We fit an ellipsoid to the vesicle membrane points of each vesicle in 3D. At least 9 non-
degenerate points are required for a unique fit of an ellipsoid with an arbitrary center, radii,
and rotation. We choose to fit the ellipsoids given as uTHu = 1 using a least-squares
approach [57] which we implemented in Python. We briefly compared this method to
a numeric gradient decent approach minimizing the squared distance in the Euclidean
norm as it has a slight difference in result compared to the algebraic norm defined by
the ellipsoid equation. Our results showed that the algebraic norm minimization method
produced slightly more accurate drift estimates while being many orders of magnitude
faster than the numeric decent method.

Estimating drift from ellipsoid parameters

We define the drift in the image as a sideways translation of each image section with
respect to the previous section. Let δx, δy be the amount of translation by which some
section is translated with respect to the previous section and let ∆z denote the distance
between subsequent sections. We represent the translation as a shear map with shear
coefficients sx = δx/∆z, sy = δy/∆z. If we assume the drift is constant as a function of
z, we can represent the drift as one single mapping S given by

Sx =

1 0 sx
0 1 sy
0 0 1

xy
z

 =

x+ sxz
y + syz

z

 = u . (2.2)

25



CHAPTER 2. RESTORING DRIFTED ELECTRON MICROSCOPE VOLUMES

The shear mapping is a non-singular linear transformation, and since S−1S is the
identity transformation, the quadratic equation is still solved when

1 = xTHx = xT (S−1S)THS−1Sx = uTS−THS−1u . (2.3)

Thus, transforming each point on the ellipsoid by S corresponds to a new quadratic surface
defined by the matrix representation Ĥ = S−THS−1, or equivalently H = ST ĤS. Since
an ellipsoid is a quadratic surface with a closed surface, and since non-singular linear
transformations on closed surfaces cannot produce open surfaces, we conclude that the
result is still a closed surface defined by a quadratic surface, i.e., an ellipsoid, spheroid or
sphere.

Let Ĥ be the shear-transformed ellipsoid estimated from data with elements Â, B̂,
Ĉ, D̂, Ê, and F̂ . The values of Ê and F̂ gives the shape of the ellipsoid in the z-x and
the y-z plane, i.e., the tilt of the ellipsoid as a function of z. An untilted ellipsoid is
symmetric across the plane z and has E = F = 0. Defining the untilted ellipsoid in terms
of a shear-transformed tilted ellipsoid H = ST ĤS, we set E = F = 0 and solve for sx
and sy. We get

sx =
D̂F̂ − B̂Ê
ÂB̂ − D̂2

, sy =
D̂Ê − ÂF̂
ÂB̂ − D̂2

(2.4)

Let s = [sx, sy]
T represent the shear of some ellipsoid. By assumption, each ellipsoid is

rotated uniformly at random. Thus, it follows that given no drift in the data, we should
have E[s] = 0, since by an argument of symmetry, a tilt in any direction should be equally
likely. Assume now we add some drift k, giving rise to new shear parameters s′. Since
the composition of shear transformations simply amounts to adding the shear parameters,
and by the linearity of expectation, we get

E[s′] = E[s + k] = E[s] + E[k] = k . (2.5)

Thus, given N fitted ellipsoids with si the vector of shear constants for ellipsoid Ei,
1 ≤ i ≤ N , we estimate the drift in the images k by the average drift,

k =
1

N

N∑
i=1

s′(i) . (2.6)

Enumerating the image sections by Ij, 1 ≤ j ≤ M such that I1, . . . , IN are ordered
with increasing z choosing I1 as the reference image, drift correction can be obtained by
transforming Ij by S−(j−1). Drift correction assuming varying drift

Since drift in images may vary, e.g., due to manual correction during the scanning
operation, movement of the sample, or charge equalization, it is likely that the amount
of drift varies in the sectioning direction. Given a large enough population of ellipsoids,
it is possible to estimate the drift per image section. To accomplish this, we view the
individual estimated ellipsoid-drifts as a point-estimate at the center of the ellipsoid.
Specifying a width w of the point estimate, we compose a drift estimate for each section
by the average of the ellipsoids with center closer than w to the section. Denoting d(Ei, j)
the perpendicular distance in the section direction from ellipsoid Ei to section j, we can
write the drift estimate kj of section j as

kj =
N∑
i=1

1d(Ei,j)<w∑N
n=1 1d(En,j)<w

s′(i) (2.7)
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Figure 2.7: Example views of the synthetic dataset with varying drift. Synthetic vesicles
can be seen drifted in different directions in the xz and yz-planes, an effect not noticeable
in the classic xy-plane.

where 1P takes the value 1 when P is true and 0 otherwise. In the absence of visible
vesicles in one or multiple sections, we suggest either interpolating the drift parameters
from nearby known values or assume the drift is zero, depending on the dataset. Reporting
summary

Further information on research design is available in the Nature Research Reporting
Summary linked to this article.

2.6 Data availability

Our synthetic, derived data, and data for producing our figures can be provided upon re-
quest. In this paper, we have discussed the publicly available fib-sem data from https://cvlab.epfl.ch/data/data-
em/.

2.7 Code availability

The code for producing our figures can be provided upon request. The drift correc-
tion application is available at (https://doi.org/10.17894/ucph.b61d5ca9-53df-4909-92ee-
f8ee026e39bb). The accompanying source code is available upon request.

2.8 Supplementary Figures

2.9 Supplementary Methods

To validate our method, we generated multiple synthetic FIB-SEM datasets where the
added drift could be systematically controlled. While imitating all aspects of FIB-SEM
images is vastly outside the scope of this work, we decided on a subset of require-
ments the images would have to fulfill. Thus, the dataset was designed with a real
FIB-SEM dataset as reference focusing primarily on generating vesicles as they appear
there (https://cvlab.epfl.ch/data/data-em/). We modeled vesicles as ellipsoids with vary-
ing radii and rotated uniformly at random. Vesicle membrane thickness was chosen to
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0.1 0.0 0.1 0.2 0.3 0.4 0.5
drift in x

NCC

MI

NMI

SSD

Ellipsoid

0.4 0.2 0.0 0.2 0.4
drift in y

true drift
mean

Figure 2.8: Comparison of the distribution of section drift estimates by the ellipsoid
method and standard approaches on the synthetic dataset with a constant drift of
(x, y) = (0.3, 0.0). Left: drift-estimate in the x-direction. The mean estimated drift
for our ellipsoid method has both high accuracy and better precision than the comparison
methods.

0.4 0.2 0.0 0.2 0.4
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Figure 2.9: Comparison of the distribution of section drift estimates by the ellipsoid
method and standard approaches on the synthetic dataset with a constant drift of
(x, y) = (0.1, 1.0). Left: drift-estimate in the x-direction. For our method, the mean
estimated drift is in close agreement with the true drift and display better precision than
the comparison methods. The error of the standard, global methods appear to increase
with increasing drift.
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Figure 2.10: The complete drift estimate comparison in all 256 sections of the synthetic
dataset with varying drift. All sequences except the one denoted ellipsoid were convolved
with a box kernel of size 11 to counter the noise in those approaches to make visual
inspection possible. The standard registration methods produce biased drift along both
the x and y-axis.

visually match the thickness of the membranes as they appear in the reference dataset.
The grayscale values and the contrast were estimated by measuring mean grayscale val-
ues in regions in our comparison FIB-SEM image with visually near uniformity for both
cytosol and membrane. The radii of the vesicles were generated uniformly at random
in the interval from 3 to 6 voxels. Following experiments shows the distribution in real
FIB-SEM images are most likely log-normally distributed (Supplementary Figure 2.16).
Experiments showed this difference did not have a significant effect on the estimation
error.

FIB-SEM images appear blurry because of limitations when imaging at the nano-scale.
Modeling this as Gaussian smoothing, we fitted a Gaussian smoothed, box function to
membranes of the image. We resampled the image linearly along a line crossing the
membrane approximately perpendicular to the membrane. Since the membrane is a 3D
structure while we only resampled along a 2D plane, the standard deviation of the Gaus-
sian will be larger when the membrane is not perpendicular to the section direction. Thus,
given the resulting distribution (Supplementary Figure 2.17), we conservatively chose to
set σ = 1. FIB-SEM images are also inherently noisy and by our experience appears to
be sufficiently well modeled as Gaussian noise. The standard deviation of the noise was
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Figure 2.11: A small subsection of the drift estimate in the synthetic dataset with varying
drift. Here the results of the standard approaches are presented without any present
smoothing meaning the rapidly varying estimate of the standard registration methods is
visible.

estimated by measuring the standard deviation of grayscale values in selected regions in
our comparison FIB-SEM image with a near uniform appearance, usually cytosol regions
without organelles or visible cytoskeleton.

Synthetic datasets were generated by initializing a volume array of a desired size with
the estimated cytosol grayscale value. Vesicle centers were then chosen randomly in the
volume. Placement of the vesicle was then attempted several times disregarding those
which did overlap with previously placed vesicles. For this purpose, we represent vesicles
by the ellipsoid matrix H (2.1). Drift was added by multiplying the drift matrix S (2.2)
to each point x. For every point x in the volume, vesicle membrane grayscale value was
set in the volume if |xTSTHSx − 1| < 0.25. After placing a desired number of vesicles,
the volume was convolved with a Gaussian kernel to apply the smoothing, whereafter
Gaussian noise was added to the images. Values outside the intensity range were clipped.
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Figure 2.12: Error plot showing in black how the mean absolute error of the drift estimate
is connected to the number of vesicles used in the estimate for a section. This plot was
simulated using a bootstrapping approach sam-pling from the estimated drift components
50000 times for each point on the graph. For each sample, the drift was estimated, and
the absolute error measured. This indicates an reciprocal convergence in the error as a
function of the number of vesicles. In red is shown the fit (y = 0.1375x−0.4915) of the
bootstrapping data with
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Figure 2.13: Error plot assessing the interdependence of drift magnitude and radii vari-
ation to the mean absolute estimation error. Drift was varied only along the x-axis for
simplicity since the method is fundamentally independent of the direction of the drift.
The radii were varied from 3 to 6 voxels, which is similar to estimates from the FIB-SEM
dataset used in this work. The error seems to be independent on the magnitude of the
drift.
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Figure 2.14: The complete drift estimate comparison in all 1065 sections of the FIB-SEM
dataset. All sequences except the one denoted ellipsoid were convolved with a box kernel
of size 11 to counter the noise in those approaches to make visual inspection possible.
(Left) The drift estimate along the x-axis. (right) The drift estimate along the y-axis.
For both graphs, NCC, MI and SSD coincide. Further, the bias for the standard, global
measures appear to be most pronounced along the y-axis.
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Figure 2.15: A small subsection of the drift estimate in the real dataset without any
smoothing present. Here the rapidly varying drift estimate of the standard registration
methods is visible.
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Figure 2.16: Distribution of ellipsoid radii after drift correction in the FIB-SEM dataset
(https://cvlab.epfl.ch/data/data-em/). All radii of all the fitted ellipsoids are used to
prevent sorting effects which occurs if largest to smallest radii are assessed separately.

Figure 2.17: Example of boundary fittings used to estimate the amount of Gaussian
blurring in the images. (a) Box function width parameters of the membrane fit. (b)
Gaussian function standard deviation (σ) parameters of the membrane fit. (c) A single
example of a measurement line for which to fit the blurred box function. (d) The (c)
corresponding resampling across the line in black along with the fitted Gaussian blurred
box function in red.
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(a) Dataset front view (b) Dataset side view

Figure 2.18: The Drift Corrector user-interface shown as a 2.18a front-view and 2.18b
side-view.

2.10 Post Publication Notes

Drift Corrector Software

The Drift Corrector Software [49] was written to easily annotate vesicles with instant
feedback on the quality of the current estimated drift for each section. The software is
implemented in Python using Tkinter for UI elements and pillow to read and write the
image, and NumPy, SciPy, and Scikit-Image to handle the underlying calculations.

An example view of the Drift Corrector software can be seen in Figure 2.18. The
dataset can be viewed from all axis planes x-y, x-z, and y-z respectively. Adding and
removing points is done by clicking, changing viewing depth by scrolling, and changing
axis view by clicking the A-key.

When viewing the dataset in the image plane (see Figure 2.18a), the right panel
displays relevant information about that particular section. When viewing the dataset
from one of the side-views (see Figure 2.18b), the right panel becomes a graphical dis-
play of the current certainty in the estimate across all the shown sections. The colors
red/yellow/green indicate if the estimate is not possible, uncertain, or certain respec-
tively. The green indication is only given if a) that a minimum of 10 vesicles is annotated
and b) that the confidence of estimation is below a preset threshold.

Requests by the user, such as adding points to a vesicle and progressing the annotation
to the next vesicle affect a Dataset manager object which, upon completion of each vesicle,
requests a recalculation of the drift estimate. Since the Ellipsoid fitting algorithm is very
fast, recalculation only takes a split second even after having annotated thousands of
vesicles.

The annotation data is automatically saved after each vesicle annotation. When done
annotating, producing an output image is handled by combining drift estimates, input
data, and output paths into a transformed dataset. The coordinate mapping for im-
age interpolation after transformation was performed using the warp functionality in the
Scikit-Image python package.
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Chapter 3

Measuring shape relations using
r-parallel sets

3.1 Abstract

Geometrical measurements of biological objects form the basis of many quantitative anal-
yses. Hausdorff measures such as the volume and the area of objects are simple and
popular descriptors of individual objects, however, for most biological processes, the in-
teraction between objects cannot be ignored, and the shape and function of neighboring
objects are mutually influential.

In this paper, we present a theory on the geometrical interaction between objects
inspired by K-functions for spatial point-processes. Our theory describes the relation
between two objects: a reference and an observed object. We generate the r-parallel
sets of the reference object, calculate the intersection between the r-parallel sets and the
observed object, and define measures on these intersections. The measures are simple,
like the volume or surface area, but describe further details about the shape of individual
objects and their pairwise geometrical relation. Finally, we propose a summary-statistics.

To evaluate these measures, we present a new segmentation of cell membrane, mito-
chondria, synapses, vesicles, and endoplasmic reticulum in a publicly available FIB-SEM
3D brain tissue data set and use our proposed method to analyze key biological structures
herein.

Keywords: Multidimensional Shape Analysis ◦ Hausdorff measure ◦ r-parallel sets
◦ Cross-K function ◦ Germ-Grain Process

3.2 Introduction

Measuring the geometry and statistics of objects is a fundamental tool used in all areas
of the natural sciences. Geometric object-descriptors vary in complexity from simple
measures such as point count, area, and volume to parameterized domain-specific shape
models. See [62] for a review of shape representations.

In many cases, we are further interested in the relation between objects to answer
questions like: How do synaptic vesicles distribute in the neighborhood of a synapse
during stress [23]? How are astrocytes distributed w.r.t. the position and shapes of their
nearby neuronal cells in amyotrophic lateral sclerosis [31]? What is the relation between
the position and shape of the cartilage of the tibia and femur and osteoarthritis [30]? A
simple approach is to summarize each object as a point and consider the set of points as
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(a) An image slice. (b) The slice’s segments. (c) A 3D neighbourhood of seg-
ments.

Figure 3.1: An example of the FIB-SEM data set and our segmentation. Red objects are
synaptic regions, blue are vesicles, and green are mitochondria.

(a) L01 for mitochondria. (b) L01 for vesicles.

Figure 3.2: Normalized area comparison of vesicles and mitochondria as a distance to the
synapse for a total of 365 synapses and their neighborhood vesicles and mitochondria.

a point-process, which has a well-developed theory and readily available software, e.g. [2].
However, this approach is limited since it does not take the geometry of individual objects
into account, thereby ignoring important physical correspondence.

In this article, we propose a set of measures that consider the relation between different
types of sets. For example, Figure 3.1 shows the segmentation of an electron microscopy
image where different object types have been identified.

Our method measures the relation between reference and observed objects by first
calculating one-parameter curves for each pair, and then summarizes these as summary-
statistics curves, as illustrated in Figure 3.2. This figure shows the two summary-statistics
curves for the relation between the synaptic regions and the mitochondria and vesicles,
respectively. From these, we conclude that the mitochondria are rarely observed very
close to the synaptic regions, and that there is a high density of vesicles near the synaptic
regions. We discuss these figures in more detail in Section 3.8.

We base our method on the cross K-function from the statistics of point-processes,
which describes the relation between paired point-processes [11]. A classic example often
used to present the cross K-function is to model the occurrence of crimes and the loca-
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Figure 3.3: An example of how the measures emerge for some simple 2D shapes. The disks
are the observed objects and the squares are the reference objects. The green line shows
the boundary of the r-parallel, giving rise to one counting measure (orange triangles), two
length measures (red and blue contours), and one area measure (hatched grey region).

tions of police stations by point-processes X and Y , respectively. The cross K-function
measures the expected number of crime occurrences x ∈ X within distance r of a police
station y ∈ Y as

K(r) = Ey∈Y
∣∣{x ∈ X |d(x, y) ≤ r}

∣∣. (3.1)

Here, X ,Y ⊂ R2 are discrete point sets, d is a distance measure, often the Euclidean
distance, | · | is the set-size operator, and Ey∈Y is the conditional expectation given y ∈ Y .

We extend the cross K-function to general geometric objects. We will consider objects
X, Y ⊆ Rd, which we will call the observed and the reference object, respectively. These
objects may be points but could also be surfaces or solids. We extend the notion of
distance to be the shortest distance between two objects. As an example, in Fig. 3.3 we
show equidistant curves from the reference objects in red and how these distance curves
interact with the observed objects in blue. To quantify the observed objects w.r.t. the
reference objects, we calculate a family of sets Y r consisting of all points within a distance
r from Y , which we call the r-parallel sets. For each r-parallel set, we intersect it with the
observed object and measure the number of points in the intersection of boundaries, the
length of the inner and outer contours, and the area. These are also known as Hausdorff
measures related to the intersection between Y r and X.

Aspects of this method have seen use in literature. In [48], we propose 3 statistical
summary measures for population of curves, one of which is the overlap between a curve
with the mathematical dilation of another. In [31], they measure the density of astrocyte
glial cells by a weighted distance from the postsynaptic density. In [17], they measure
the distance at which the astrocyte volume-fraction peaks in relation to dendritic spines
and axonal boutons. However, the theoretical foundation has been absent so far. Our
contribution is to remedy this shortcoming and broaden the scope to include the full family
of n-dimensional Hausdorff measures. To demonstrate the usefulness of our method, we
present a segmentation of a publicly available FIB-SEM 3D data set of an adult rodent [27]
in greater detail than previously available and use it as a subject for analysis using our
proposed measures.
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Table 3.1: Interpretation of µε,ε′ in 2D and 3D as a measure on the intersection X ∩ Y r.
Shapes and colors in the left column refers to Figure 3.3.

d = 2 (ε, ε′) Hd−ε−ε′ ∂εX ∩ ∂ε′Y r Interpretation of µε,ε′(X,Y
r)

(0, 0) Area X ∩ Y r Area of intersection
(0, 1) Curve length X ∩ ∂Y r Boundary length of intersec-

tion inside interior of X
(1, 0) Curve length ∂X ∩ Y r Boundary length of intersec-

tion inside boundary of X
(1, 1) Point counts ∂X ∩ ∂Y r Number of points in intersec-

tion of boundaries

d = 3 (ε, ε′) Hd−ε−ε′ ∂εX ∩ ∂ε′Y r Interpretation of µε,ε′(X,Y
r)

(0, 0) Volume X ∩ Y r Volume of intersection
(0, 1) Surface area X ∩ ∂Y r Surface area of intersection

inside interior of X
(1, 0) Surface area ∂X ∩ Y r Surface area of intersection

inside boundary of X
(1, 1) Curve length ∂X ∩ ∂Y r Length of intersection of

boundaries

3.3 Method Description

We would like to measure the shape and position of an observed object X ⊆ Rd with
respect to some reference object Y ⊆ Rd. For r > 0, we consider the part of X that lies
within distance r from Y . This is the set X ∩ Y r, where Y r is the set of all points within
distance r from Y . This is called the r-parallel set of Y and is given by

Y r = {α ∈ Rd | inf
y∈Y

d(α, y) ≤ r}. (3.2)

Here d(α, y) denotes the distance between α and y, typically the Euclidean distance.
We measure X ∩ Y r by a measure µ(X, Y r). In all our applications, µ has the form

µε,ε′(X, Y
r) = Hd−ε−ε′(∂εX ∩ ∂ε′Y r), (3.3)

where Hk denotes the k-dimensional Hausdorff measure, ε, ε′ ∈ {0, 1}, and for a closed
set C ⊆ Rd, ∂0C = C is just C itself, while ∂1C = ∂C is the boundary of C. The
interpretation of Hk and µε,ε′(X, Y

r) in 2D and 3D is shown in Table 3.1. Since the
boundary of a boundary is the empty set, i.e., ∂∂ • = ∅, this is the complete list of
measures in 2 and 3 dimensions, and these lists generalize naturally to any dimension.

The measure µε,ε′(X, Y
r) is a function of r. Under mild conditions on the shapes X

and Y , µ00, µ01, and µ10 are continuous and

d

dr
µ00(X, Y r) = µ01(X, Y r), (3.4)

for almost all values of r. For instance, this holds for the example shapes considered in
Section 3.3.2.

In applications, we typically observe a collection of objects spread out in space. To
model a collection of objects, we equip each object with a reference point. The reference
point can for instance be chosen geometrically as the center of mass or the center of the
smallest ball containing the object. At other times, the application provides a natural
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center point such as the nucleus of a cell. Thus, we obtain a marked point-process X =
{xi, Xi}i≥0 on Rd×C, where the mark space C is the space of all compact sets in Rd with
a smooth boundary. The point xi is the reference point, and the associated mark Xi can
be thought of as the shape. Such a marked point-process is also known as a germ-grain
process [42]. The collection of objects, sometimes called a germ-grain model, is then

⋃
i≥0

(xi +Xi), (3.5)

where v +X = {v + x | x ∈ X}.
Let X ,Y be germ-grain processes modelling the observed and reference objects, re-

spectively. Writing v + X = v + {xi, Xi}i≥0 = {v + xi, Xi}i≥0, we say that the processes
are jointly stationary if (v+X , v+Y) has the same distribution as (X ,Y) for any trans-
lation vector v ∈ Rd. In the following, we let X̄ and Ȳ denote the point-processes of
reference points underlying X and Y , respectively, and let ρX and ρY denote their spatial
intensities.

A global functional summary statistic is given by

Kε,ε′(r) =
1

ρX
E0∈Ȳ

( ∑
(x,X)∈X

µε,ε′(x+X, Y r)

)
. (3.6)

The interpretation of Kε,ε′(r) is that, conditioned on Y having a reference point at the
origin, it is the expected value of µε,ε′(x+X, Y r) summed over all particles x+X within
distance r from the object Y averaged by the expected number of particles from X pr.
unit volume. An estimator is:

K̂ε,ε′(r) =
1

Hd(W )ρXρY

∑
(y,Y )∈Y

1{y∈W}

×
∑

(x,X)∈X

µε,ε′(x+X, y + Y r). (3.7)

Here Hd(W ) is the volume of the sampling window. Note that we only sample reference
objects with reference point y ∈ W , but in order to compute K̂ε,ε′(r), we must be able to
observe all of the associated Y r even if it intersects the boundary of W , which may not be
possible in practice. In Section 3.3.1, we present edge-correction strategies for handling
cases where the r-parallel exceeds the observation window W .

Theorem 1. If (X ,Y) are jointly stationary, then K̂ε,ε′ is an unbiased estimator for Kε,ε′.
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Proof. The expected value of K̂ε,ε′ is

1

Hd(W )ρXρY
E
∑

(y,Y )∈Y

1{y∈W}

×
∑

(x,X)∈X

µε,ε′(x+X, y + Y r) (3.8)

=
1

Hd(W )ρXρY

∫
W

ρYEy∈Ȳ
(

∑
(x,X)∈X

µε,ε′(x+X, y + Y r)

)
dy (3.9)

=
1

Hd(W )ρXρY

∫
W

ρYEy∈Ȳ
(

∑
(x,X)∈X

µε,ε′(x− y +X, Y r)

)
dy (3.10)

=
1

Hd(W )ρXρY

∫
W

ρYE0∈Ȳ

(
∑

(x−y,X)∈X

µε,ε′(x− y +X, Y r)

)
dy (3.11)

=
1

ρX
E0∈Ȳ

( ∑
(x,X)∈X

µε,ε′(x+X, Y r)

)
, (3.12)

which is Kε,ε′(r). In (3.10), we used the translation invariance of µε,ε′ , and in (3.11), we
used the joint stationarity of the point processes.

The normalization only by the intensity ρX may seem unnatural since the resulting
K-function will depend on the Hausdorff measure of the objects in (X ,Y). As in [39], we,
therefore, also consider the normalized measures,

Nε′(Y
r) = Hd−ε′(∂ε

′
Y r), (3.13)

νε,ε′(X, Y
r) =

µε,ε′(X, Y
r)

Nε′(Y r)
, (3.14)

Lε,ε′(r) =
1

ρX
E0∈Ȳ

( ∑
(x,X)∈X

νε,ε′(x+X, Y r)

)
, (3.15)

L̂ε,ε′(r) =
1

Hd(W )ρXρY

∑
(y,Y )∈Y

1{y∈W}

×
∑

(x,X)∈X

νε,ε′(x+X, y + Y r). (3.16)

3.3.1 Edge corrections

In practice, we observe objects inside a finite window W , so instead of the measures
µε,ε′(X, Y

r), we are only able to measure

µWε,ε′(X, Y
r) = Hd−ε−ε′(∂εX ∩ ∂ε′Y r ∩W ).
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If these µWε,ε′ are used instead of µε,ε′ in (3.7), then K̂ε,ε′ is no longer an unbiased estimator
for (3.12).

We solve this problem by introducing edge corrections in (3.7). That is, in the defini-
tion of K̂ε,ε′ , we replace the measures µε,ε′(X, Y

r) by edge corrected measures eε,ε′(y,X, Y
r)

and obtain

K̂e
ε,ε′(r) =

1

Hd(W )ρXρY

∑
(y,Y )∈Y

1{y∈W}

×
∑

(x,X)∈X

eε,ε′(y, x+X, y + Y r). (3.17)

We suggest the following three edge corrections, based on the most common edge correc-
tions for point-process K-functions [40].

1. Sampling in a smaller window: Here, we sample only particles from Y with a refer-
ence point inside a smaller window where we have full information about the objects
and correct for the reduced window size.

As a sampling window, we may take

W 	BM(0) = {z ∈ Rd | z +BM(0) ⊆ W}. (3.18)

Here Bs(c) denotes the Euclidean ball of radius s centered at c, and M = my + r,
where my is an upper bound on the diameter of objects from Y .

The resulting estimator corresponds to (3.17) with edge corrections

eε,ε′(y,X, Y
r) =

1{y∈W	BM (0)}
Hd(W )

Hd(W 	BM(0))
µε,ε′(X, Y

r). (3.19)

This approach yields an unbiased estimator for K̂ε,ε′ whenever X and Y are jointly
stationary. However, this will be an inefficient estimator since we throw away infor-
mation, especially for small sampling windows or large objects.

2. A translative correction: Here, we replace the measure µε,ε′(X, Y
r) by an integral

over the domain

eε,ε′(y,X, Y
r) =

∫
∂εX∩∂ε′Y r∩W

Hd(W )

Hd(W ∩ (W − w + y))
Hd−ε−ε′(dw). (3.20)

Theorem 2. For jointly stationary point-processes (X ,Y), the edge corrections in
(3.20) yield an unbiased estimator for Kε,ε′(r).

In the proofs below, we use the notation

Ω = ∂ε(x+X) ∩ ∂ε′(y + Y r) ∩W (3.21)

for brevity.
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Proof. The expectation of K̂e
ε,ε′(r) is

E
(

1

ρXρYHd(W )

∑
(y,Y )∈Y

1{y∈W}

∑
(x,X)∈X

∫
Ω

Hd(W )

Hd(W ∩ (W − w + y))
Hd−ε−ε′(dw)

)
.

By the stationarity assumption, this equals

1

ρX

∫
W

E0∈Ȳ

( ∑
(x,X)∈X

∫
∂ε(x+X)∩∂ε′Y r∩(W−y)

1

Hd(W ∩ (W − w))
Hd−ε−ε′(dw)

)
dy

=
1

ρX
E0∈Ȳ

( ∑
(x,X)∈X

∫
∂ε(x+X)∩∂ε′Y r∫

W

1W−y(w)

Hd(W ∩ (W − w))
dyHd−ε−ε′(dw)

)
, (3.22)

=
1

ρX
E0∈Ȳ

( ∑
(x,X)∈X

µε,ε′(x+X, Y r)

)
, (3.23)

which we recognize as Kε,ε′(r).

The disadvantage of this edge correction is that the simple Hausdorff measures are
replaced by integrals, which will slow down computations.

3. An isotropic correction: Here we replace the measure µε,ε′(X, Y
r) by the integral

eε,ε′(y,X, Y
r) =

∫
∂εX∩∂ε′Y r∩W

Hd−1(∂B|w−y|(y))

Hd−1(∂B|w−y|(y) ∩W )
Hd−ε−ε′(dw). (3.24)

We say that two germ-grain processes (X ,Y) are jointly isotropic if ({Rxi, RXi}i≥0, {Ryi, RYi}i≥0)
has the same distribution as ({xi, Xi}i≥0, {yi, Yi}i≥0) for any rotation R ∈ SO(d).

Theorem 3. When (X ,Y) are both jointly stationary and isotropic, the edge cor-
rections in (3.24) yield an unbiased estimator of (3.12).
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Proof. As before, we compute the mean of K̂ε,ε′(r):

E
(

1

ρXρYHd(W )

∑
(y,Y )∈Y

1{y∈W}
∑

(x,X)∈X∫
Ω

Hd−1(∂B|w−y|(y))

Hd−1(∂B|w−y|(y) ∩W )
Hd−ε−ε′(dw)

)
=

1

ρXHd(W )

∫
W

E0∈Ȳ

( ∑
(x,X)∈X∫

∂ε(x+X)∩∂ε′Y r∩(W−y)

Hd−1(∂B|w|(y))

Hd−1(∂B|w|(y) ∩W )
Hd−ε−ε′(dw)

)
dy. (3.25)

Letting ν denote the normalized Haar measure on SO(d), the isotropy assumption
yields

1

ρXHd(W )

∫
SO(d)

∫
W

E0∈Ȳ

( ∑
(x,X)∈X∫

R−1(∂ε(x+X)∩∂ε′Y r)
1W (Rw + y)

Hd−1(∂B|Rw|(y))

Hd−1(∂B|Rw|(y) ∩W )
Hd−ε−ε′(dw)

)
dy ν(dR)

=
1

ρXHd(W )

∫
W

E0∈Ȳ

( ∑
(x,X)∈X

∫
∂ε(x+X)∩∂ε′Y r∫

SO(d)

1W (Rw + y)ν(dR)

Hd−1(∂B|w|(y))

Hd−1(∂B|w|(y) ∩W )
Hd−ε−ε′(dw)

)
dy (3.26)

=
1

ρX
E0∈Ȳ

( ∑
(x,X)∈X

Hd−ε−ε′(∂ε(x+X) ∩ ∂ε′Y r)

)
(3.27)

=
1

ρX
E0∈Ȳ

( ∑
(x,X)∈X

µε,ε′(x+X, Y r)

)
(3.28)

which is Kε,ε′(r).

This estimator again has the disadvantage that the Hausdorff measures are replaced
by integrals. However,

Hd−1(∂B|w−y|(y))/Hd−1(∂B|w−y|(y) ∩W ) = 1 (3.29)

whenever y is further away from the boundary than |y − w|, so (3.24) reduces to
µε,ε′(X, Y

r) whenever y ∈ W 	 Bmy+r(0). We therefore only need to calculate the
edge corrections of the y that are close to the boundary.
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Table 3.2: Exact results for simple shapes

Λ = R2, θ = 2 arccos(1− r/R) Λ = R3

µ00 =
{
R2

2 (θ − sin θ), if r < 2R

πR2, otherwise
(3.30)

{
πr2(3R−r)

3 , if r < 2R
4πR3

3 , otherwise
(3.31)

µ01 =
{

2R sin θ
2 , if r < 2R

0, otherwise
(3.32)

{
πr(2R− r), if r < 2R

0, otherwise
(3.33)

µ10 =
{
θR, if r < 2R

2πR, otherwise
(3.34)

{
2πRr, if r < 2R

4πR2, otherwise
(3.35)

µ11 =


1, if r = 0 or r = 2R

2, if 0 < r < 2R

0, otherwise

(3.36)


0, if r = 0 or r = 2R

2π
√

2Rr − r2, if 0 < r < 2R

0, otherwise

(3.37)

3.3.2 Examples of simple object relations

For simple objects, we can evaluate µε,ε′ analytically. As an example, consider an infinite
line/plane in 2D/3D as a reference object and a circle/sphere inside W of radius R as
an observed object. Assume that the center of the circle/sphere is at distance R from
the line/plane. Then for r ≥ 0, we get the closed-form expressions given in Table 3.2 by
using the formulas for a circular segment and spherical cap, respectively. In this example,
Nε′ =∞, hence the normalized functions νε,ε′ are all 0. We use the expressions in Table 3.2
for verification in Section 3.6.

3.4 Shape Equivalence under the Measures

Representing objects by the measure µε,ε′(X, Y
r) encodes selected characteristics of the

shape of X. In this section, we investigate to which extend the measures µε,ε′(X, Y
r) with

a fixed reference object Y determines the observed object X uniquely. Let S ⊆ C denote
the class of possible shapes. For a fixed Y , this leads to an equivalence class [Xi] for each
Xi ∈ S where

[Xi] =

{Xj ∈ S | ∀(r, ε, ε′) : µε,ε′(Xi, Y
r) = µε,ε′(Xj, Y

r)} . (3.38)

We examine the special case d = 2 where the reference object Y is the line x = 0 meaning
that the r-parallels are the sets given by −r ≤ x ≤ r. We consider the class of equivalent
shapes S emerging from an object X that can be described solely by two functions f(x)
and g(x) on the interval [a, b]. Here we let f, g represent the upper and lower contour of
X, respectively, with f(x) > g(x) for all x in [a, b]. Further, we require f(a) = g(a) and
f(b) = g(b) such that the object is closed. Thus, the measures µε,ε′(x) are

µ00(x) =

∫ x

a

(f(x′)− g(x′))dx′ (3.39)

µ01(x) = f(x)− g(x) (3.40)

µ10(x) =

∫ x

a

(
√

1 + f ′(x)2 +
√

1 + g′(x)2)dx (3.41)

µ11(x) = 2 (3.42)
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Figure 3.4: Example of an object from two piecewise linear contour functions.

We see that µ00 and µ01 are related through (3.4), i.e., µ01 describes the instantaneous
change of µ00. Hence, they constrain the equivalence class of X through f and g equally,
with both measures requiring f(x) − g(x) to be fixed for each x. The derivatives f ′(x)
and g′(x) are constrained by the arc-length of f(x) and g(x) through µ10. Since µ10 is
the sum of two arc-lengths, ignoring everything else, we could shorten the length of f
by lengthening g or vice versa. Similarly, since the sign of the derivative of f and g
does not change the arc-length, this measure allows for all combinations of the sign of
the derivative. However, in combination with the other measures, we can narrow the set
of equivalent shapes down to two possible continuations of the object in every point x.
We illustrate this first by assuming f and g are piecewise linear functions (see Fig. 3.4).
Consider a linear segment of the object on a subinterval from x0 to x1 with ∆x = x1−x0.
Let L = µ10(x1) − µ10(x0) denote the total length of the two linear functions on this
subinterval and introduce a length splitting parameter t, such that the length of f and g
on the subinterval is t and L− t respectively, (see Fig. 3.5). For any µ01(x0), letting t and
µ01(x1) vary we get a shape space parameterized by t and µ01(x1) in which the equivalent
shapes are given as the solutions to the equation

µ01(x1) = µ01(x0)±
√
t2 −∆x2 ±

√
(L− t)2 −∆x2. (3.43)

The solutions in the shape space can be seen in Fig. 3.6. There’s no solution for
L < 2∆x. For L = 2∆x there is one solution corresponding to two horizontal lines.
For L > 2∆x, a figure-eight shape appears, flattening at the top for increasing ratio of
L to ∆x. We see that two possible solutions for each µ01(x1) exist converging at unique

47



CHAPTER 3. MEASURING SHAPE RELATIONS USING R-PARALLEL SETS

t

L t

0, 1(x0) 0, 1(x1)

x

Figure 3.5: Example of a segment of an object X made from piecewise linear contour
functions f and g.

solutions at the top and the bottom. Scaling of ∆x and L equally corresponds to a scaling
of the curve. Changing µ01(x0) corresponds to a vertical translation of the curve in the
shape space. In conclusion, not all µε,ε′(X, Y

r) have a corresponding shape since the curve
is bounded, and most of the cases that do, do not have a unique shape except in the case
where the object segment is horizontally symmetric in which case the two solutions give
the same shape.

We have now handled the possible equivalent shapes of a single linear segment of an
object. Consider again a single linear segment on the interval [x0;x1]. We can equally
define this linear segment as two linear segments on [x0;x′] and [x′;x1] where x0 < x′ < x1.
Since these two linear segments represent f and g exactly as before the measures µε,ε′
are unchanged under this substitution. With one linear segment, we had up to two
possible equivalent solutions given the measures. With two linear segments, we have all
combinations given a total of up to 4 possible solutions. But since we can now recursively
split linear segments into two segments, we enter the domain of infinitely jagged fractal
functions such as the Weierstrass function without changing the measures of the object.
However, in most real-world scenarios, objects often consist of approximately smooth
parts that do not present this jaggedness.
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0 L
t

0

0, 1(x0)

Object closing line
degenerate solutions

Figure 3.6: Shape space and solution curve of (3.43) for fixed measures with L > 2∆x.
The red dotted line denotes the solution closing the object. Below this line, only degen-
erate objects exist.

Assume now that f, g are C1 smooth functions (see Fig. 3.7). In this case, f and g
can no longer recursively be broken into smaller segments and reflected since that would
break the smoothness constraint in most cases. The exceptions are at points x where
f ′(x) = −g′(x). Consider a shape with a finite set of such points, and consider the
intervals between neighboring points.

Lemma 1. The measures (3.39)–(3.42) are invariant under vertical translation of both f
and g.

Proof. Let d denote the vertical translation distance of f and g such that the translated
functions are f̂(x) = f(x)+d and ĝ(x) = g(x)+d. Since f̂(x)−ĝ(x) = f(x)+d−g(x)−d =
f(x)−g(x), the claim follows for both (3.39) and (3.40). Since the derivative is unaffected
by constant terms, f̂ ′(x) = f ′(x), so it also holds for (3.41). For (3.42) it is trivially
true.

Note that objects mirrored about x = 0 are equivalent. That is, if f(x), g(x) denote
functions on [a; b] defining an object, then the functions f̂(x) = f(−x) and ĝ(x) = g(−x)
on [−b;−a] define an object with equivalent measures. Further, if there exists a point x′

such that f ′(x′) = −g′(x′), then the curves may be inflected at this point, i.e., we may
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Figure 3.7: Example of an object from two smooth contour functions.

generate new functions

f̂(x) =

{
f(x), if x < x′

f(x′) + g(x′)− g(x), else
(3.44)

ĝ(x) =

{
g(x), if x < x′

g(x′) + f(x′)− f(x), else
(3.45)

These function will still be in C1. This gives rise to the notion of inflection intervals:

Definition 1. We define an inflection interval to be an interval [x0;x1] such that for
x ∈ [x0;x1], f ′(x) = −g′(x) or f(x) = g(x) if and only if x = x0 or x = x1.

Definition 2. We define a symmetric interval to be an interval [x0;x1] such that for all
x ∈ [x0;x1], f ′(x) = −g′(x).

Note that every object in our constrained example can be separated into intervals
overlapping only at the boundary, which are either inflection intervals or symmetric in-
tervals.
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Definition 3. Given a inflection interval [x0, x1], an inflected shape is:

f̂(x) =


f(x), if x < x0

f(x0) + g(x0)− g(x), if x0 ≤ x < x1

f(x0) + g(x0)− (g(x1) + f(x1)) + f(x), else

(3.46)

ĝ(x) =


g(x), if x < x′

g(x0) + f(x0)− f(x), if x0 ≤ x < x1

g(x0) + f(x0)− (f(x1) + g(x1)) + g(x), else

(3.47)

These function are in C1.

Now, we can state the following theorem.

Theorem 4. The measures (3.39)–(3.42) are invariant under inflections of inflection
intervals [x0, x1].

Proof. For x < x0 the functions are unchanged. For the inflection interval, consider the
horizontal line y = (f(x0)+g(x0))/2, and let f̂(x) = 2y−g(x) and ĝ(x) = 2y−f(x) denote
the functions after reflection across y. Since f̂(x)−ĝ(x) = 2y−g(x)−(2y−f(x)) = f(x)−
g(x), the theorem holds for (3.39) and (3.40). We also have f̂ ′(x)2 = (−g′(x))2 = g′(x)2

and likewise ĝ′(x)2 = (−f ′(x))2 = f ′(x)2 and thus the theorem holds for (3.41). For (3.42)
the theorem is trivially true. For x ≥ x1 the functions are unchanged expect for an added
constant and by Lemma 1 we conclude that the measures under inflections.

Theorem 5. Let n denote the number of inflection intervals of an object. Ignoring vertical
translations and reflections across Y , the equivalence class of the object has size 2n and
all equivalent objects can be generated by reflecting a subset of the inflection intervals.

Proof. We know we can generate new objects by reflecting each inflection interval. This
gives at least 2n objects by all combinations of reflections of the n inflection intervals.
Assume now there is another object in the equivalence class which is not among the 2n

objects. Let f̂ , ĝ denote the upper and lower function of this object respectively. Since all
measures must be the same for this object, by (3.40) this means f̂(x)− ĝ(x) = f(x)−g(x).
As all functions are assumed to be C1, we get

f̂ ′(x)− ĝ′(x) = f ′(x)− g′(x). (3.48)

We then look at the derivative of (3.41). Using the fundamental theorem of calculus, we
have √

1 + f̂ ′(x)2 +
√

1 + ĝ′(x)2 =
√

1 + f ′(x)2 +
√

1 + g′(x)2 (3.49)

Together, (3.48) and (3.49) implies either

f̂ ′(x) = f ′(x) (3.50)

ĝ′(x) = g′(x) (3.51)

or

f̂ ′(x) = −g′(x) (3.52)

ĝ′(x) = −f ′(x) (3.53)

Thus we have that f̂ , ĝ is either f, g directly or its horizontal reflection which are both
among the 2n objects already in the equivalence class, contradicting the assumption that
this is a new object.

51



CHAPTER 3. MEASURING SHAPE RELATIONS USING R-PARALLEL SETS

Figure 3.8: Example of an equivalence class of an object. Here the equivalence class has
n = 3 inflection intervals and one symmetric interval shown in red.

The complete equivalence class for object consisting of C1 functions f and g are
therefore all vertical translations of 2n objects symmetrically on both sides of Y . If we
ignore translations and reflections in the horizontal and vertical axis, we have 2n−1 unique
objects equivalent under the measures because half of them are the reflections of another
shape across the horizontal. We show an example of the 2n equivalent shapes in Fig. 3.8.

3.5 Implementation

For implementation, we have experimented with the following 3 approaches.

1. Grid-based: The simplest approach is to work exclusively on a regular grid. We
represent Y r only through a distance map D on the window W with D(w) =
miny∈Y {|w − y|} for w ∈ W . Our sample points are given on a regular grid. The
distance map D can be approximated by methods such as the Fast Marching Method.
We then represent X as a {0, 1} mask on the regular grid. Counting the overlapping
voxels of the mask consisting of the voxels w for which D(w) < r and the mask of
X gives an estimate of µ00. Using morphological operations, subtracting X from
the dilation of X approximates the boundary of X. This can similarly be done for
Y r. Note here that we are limited in accuracy by the pixel representation, and that
the error increases significantly when working with the boundary measures µ01, µ10

and µ11, as voxel masks do not, in general, represent boundaries accurately.

2. Parameterized surfaces: When Y r can be parameterized easily, we can represent X
and Y as contours and meshes for d = 2 and d = 3, respectively. Libraries such
as the python library Shapely can calculate set intersections, set unions, and set
differences on contours as well as area and curve length. Similarly, libraries such as
PyMesh support the same operations but for meshes.

3. Mesh-based: Our favorite algorithm is based on triangulated surface-meshes of the
objects X and Y r which we have implemented for d = 3:

(a) Given surface meshes of X and Y , we produce a tessellation of the interior of
X, Y , and Y r, whose vertices we will denote VX etc. Moreover, V∂X ⊂ VX
denotes the surface vertices.
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(b) For each r-parallel set Y r, we identify interior, intersecting, and exterior sim-
plices in VX . For the intersecting simplices, we estimate the intersecting surface
by linear interpolation.

(c) For µ10 and µ01, we sum the surface of intersections, for µ00, we sum the volume
of the interior simplices and the relevant part of the intersecting simplices. For
µ11 we calculate the length of the intersecting line.

For shortest vertex to mesh distance, we used PyMesh, and we used the Fast March-
ing method implementation in the scikit-fmm python package with linear interpo-
lation implemented in Scipy. The integration of the measures over the meshes was
implemented in C++ compiled with SWIG for use in Python.

For a run-time analysis of triangulation and tetrahedralization of label images, we refer
the reader to the corresponding articles on TetGen [47] or TetWild [21]. Calculating the
distance function as basis for the r-parallels can be accomplished by solving the Eikonal
equation using a method such as the Fast Marching method. The Fast Marching method
has time complexity O(n log n) [46], where n is the number of grid points in the rectilinear
grid used to discretize the domain. For a faster result on a rectilinear grid, the level-set
re-initialization method is often faster trading accuracy for speed. Alternatively, the
distances can be calculated directly on the meshes by mesh to point algorithms, which
have time complexity O(V log(F )) where V is the number of vertices in the observed
object mesh and F is the number of faces in the reference object mesh.

The integration of the meshes is done by iterating over r. For each value of r, we
consider the intersection between the boundary of Y r and the X-simplex mesh. Each
simplex of X can either be completely inside, partially inside or completely outside of
Y r. Simplicies that are partially inside Y r are subdivided into smaller simplices that are
completely inside or outside Y r. Determining the overlap and performing subdivision can
be done in constant time. Thus, for N different values of r and M simplicies, the total
time complexity is O(NM).

We then experiment on randomly generated vertices and faces, running on Lenovo
ThinkPad T470, Intel Core i7-7500U 2.70GHz CPU. Shown in Table 3.3, we see an ac-
ceptable run-time for most applications. In this implementation there is still room for
optimizations since most of the current brute force loops are both trivially parallelizable
and have a significant overlap in calculations.

3.6 Experiments on synthetic objects

In the following, we will give examples of experiments conducted on synthetic data.
As a first experiment and in the spirit of the analytical examples in Section 3.3.2,

consider R3 with an infinite plane as the reference object, 2 spheres and a cube as observed
objects near the plane and with a cubic observation window aligned with the reference
object. Top and bottom row in Fig. 3.9 show the experimental evaluation of µε,ε′ . The
experiments show that µ00 is a monotonically increasing function of the integral of the
volume of the observed object from 0 to r with µ01 as its derivative. The surface measure
µ10 for the spheres is a linearly increasing function, while the cube has two discontinuous
steps caused by the alignment of the cube with the observation plane. The curve measure
µ11 is quadratic for the spheres and constant for the cube.

As a second synthetic experiment, we consider sets of spheres X and Y randomly dis-
tributed in a window, as shown in Fig. 3.10. Looking at Fig. 3.10a, we see two µ00(X, Y r)
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(a) µ00 (b) µ01

(c) µ10 (d) µ11

Figure 3.9: Example of measures.The observed objects X is either of 2 spheres of different
sizes and a cube, as shown in (c) with colors corresponding to the curves. The reference
object Y is an infinite plane at a minimum distance of 100 units from the relevant object.
The observation window is a cube of side-length 500 with a side coinciding with Y and
otherwise centered around the observed object.

(a) µ00(X,Y r) volume measure. (b) ν00(X,Y r) normed volume.

Figure 3.10: Example of the volume measures on uniformly distributed and clustered
spheres. A slight difference can be seen directly in the µ00(X, Y r) graph, but the clustering
is clearly visible in ν00(X, Y r).

54



CHAPTER 3. MEASURING SHAPE RELATIONS USING R-PARALLEL SETS

Table 3.3: Run-time results for the mesh integrator at d = 3.

µ00, µ01

mesh tetrahedra discretization steps mean (n = 200) variance (n = 200)
1k 1k 54.27ms 1.86µs

10k 1k 426.05ms 571.68µs
100k 1k 3.12s 2.47ms

1M 1k 28.76s 163.89ms
1k 10k 386.73ms 111.04µs

10k 10k 4.31s 1.06ms
100k 10k 18.10s 60.41ms

1M 10k 358.50s 175.11s

µ10, µ11

mesh faces discretization steps mean (n = 200) variance (n = 200)
1k 1k 6.85ms 0.34µs

10k 1k 73.56ms 4.02µs
100k 1k 711.67ms 1.08ms

1M 1k 7.97s 17.03ms
1k 10k 9.85ms 0.69µs

10k 10k 338.33ms 12.39µs
100k 10k 5.07s 21.17ms

1M 10k 57.80s 1.30s

volume graphs showing a slight difference between the two groups. For the normalized
measure ν00(X, Y r), shown in Fig. 3.10b, the effect of the normalization factor is striking.
Now we clearly see a distinction between the two groups: For both curves, ν00(X, Y r) is
close to zero for small values of r. For the blue spheres, ν00(X, Y r) (in blue) converges
quickly to a horizontal line, while the for the red spheres, ν00(X, Y r) (in red) peaks at
r ∼ 175 and converges to the blue horizontal line for r & 500. From these curves we
thus conclude that for both experiment the spheres do not overlap with the Y shapes,
that the blue sphere are randomly distributed, while the red spheres cluster near the Y
shapes with a characteristic distance of about r ∼ 175, but appear randomly distributed
for distances r & 500.

3.7 Experiments with edge correction

To assess the effectiveness of the edge corrections (3.19), (3.20) and (3.24), we generate
synthetic germ-grain realizations by placing a number of non-overlapping observed objects
of 3 variants and a reference object in form of a triangle. We consider two windows W
and Wlarge. We calculate the edge corrected Ke

ε,ε′-estimator on W and compare with the
ground truth on non-edge corrected Ke

ε,ε′-estimator on Wlarge. An example region can be
seen in Figure 3.11.

For the edge correction of (3.19), we disregard all measurements where y did not fall
into the smaller window W 	BM(0). For the translative edge correction, each pixel area
element is weighted by the area ratio (3.20) before summation to a final measure. Similarly
for the isotropic edge correction, we weight each pixel area by the circle length ratio in
(3.24). We discretized the circle boundary by 512 points for simple interior arc-length
calculation.

We average the measures over 1000 simulated realisations of X ,Y . Shown in Fig-
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Figure 3.11: Example of the synthetic germ-grain realizations used for testing edge cor-
rection. We show the observed objects X as gray and teal sets with Poisson placed germs
x and three different grain types X selected uniformly at random for each realization. We
show Y and Y r in green and W and Wlarge as black contours.

ure 3.12, we see the uncorrected reading underestimates the measure as expected while
the corrected version gives estimates better consistent with the expected measure.

3.8 Experiments on cellular ultrastructures

Communication by neurons in humans is mainly achieved by a combination of electric
potential changes and chemical signaling. The vesicles serve as transient containers of
the chemicals released towards another neuron at a connection point, the synapse, upon
voltage potential changes in the neuron. Synaptic vesicles are therefore almost exclusively
observed directly next to synapses. The mechanisms of replenishment of the vesicles are
thought in part to be done by two main routes. The first is by only partly release of
the neurotransmitters, the vesicle membrane is thus preserved [25, 15]. The second is
by a slow endosomatic route, where an endosome is formed from the membrane, pinched
off into vesicles and filled with neurotransmitters. An open question is if the cells keep a
reservoir of vesicles at some distance to the synapse with some evidence [37]. To assess the
above, we examine a publicly available FIB-SEM dataset of the CA1 hippocampus region
of a healthy adult rodent. Original dimensions before registration were 2048×1536×1065
with a voxel size of 5× 5× 5 nm. We have segmented the complete volumetric image into

56



CHAPTER 3. MEASURING SHAPE RELATIONS USING R-PARALLEL SETS

Figure 3.12: The two-dimensional area measure using different edge correction strategies.
We show µ00 without correction alongside translative correction, isotropic correction, and
correction by shrinking the set of y used in the measured. For comparison, we also
display the measure using a sufficiently large window to remove edge effects. The result
is an average of 1000 simulations.

cell wall, synapses, mitochondria, vesicles, endoplasmatic reticulum, and the segmentation
is available at [51].

The FIB-SEM were segmented by a neural network U-Net model [41], and cleaned
up using an Avizo Amira pipeline [43]. The volume was registered to correct for drift
using a model based approach described in [50]. From the masks, we generate mesh
reconstructions using a Marching Cubes Lewiner implementation in the SciPy Python
package [60]. The meshing is further refined with the PyMesh Python package, and the
TetWild C++ library to do mesh simplification and tetrahedralization [21]. Examples of
the resulting segmentation is shown in Fig. 3.1

In Fig. 3.2, we show L01 for mitochondria and vesicles when using the synapse as
the reference object. No correction for cell walls have been performed. From Fig. 3.2a
we see that the mitochondria is absent close to the synapse, with a gradually increasing
presence until around 800 nm, where the expected presence of mitochondria goes towards
the global area fraction of mitochondria in the whole sample. From Fig. 3.2b we see a
presence of vesicle at the very close range ≈ 25 nm followed by a proportionally greater
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measure of peaking around 25 − 100 nm. Before the measure tends to the global area
fraction, we see a slight increase in vesicles near the 500 nm range which could indicate a
presence of a vesicle reservoir at that range for these neuronal processes.

3.9 Conclusion

We have presented a novel method that extends the theoretical foundations of K-function
summary-statistics in the field of spatial point statistics to geometric objects, adds ele-
gant reasoning about the shape of one object with respect to a reference object, and
includes some existing shape-relation measures. We show that the method can be used
to display spatial relations such as spreading or clustering compared to uniformly ran-
dom distribution, and that the method is sensitive to properties such as cross-sectional
area and thickness. A core strength is that the method is built on the n-dimensional
Hausdorff measure enabling us to intuitively understand the shape relations. Statistical
tests have been developed for the comparison of K-functions in the context of spatial
point-processes [18] and are readily available for the comparison between groups.
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3.10 Post Publication Notes

Implementing Mesh Integration in a Distance Map

This section seeks to cover the important details which were not included in Section
3.5 of the article. We first show why we avoided the simple morphological approach to
estimating the measures. We then go into the implementation details on the integration
of meshes in a distance map.

Morphological edge-measures may over- and under-estimate sur-
face area

Although widely used, measuring contour length by pixel counting carries with it a sig-
nificant degree of error. For an overview, see [54]. We here show an example of how it
gives a bias in the sphericity measure

ψ =
π1/3(6 · Volume)2/3

Area
. (3.54)

Note that for a ball, this measure is maximized with the value

π1/3(64
3
πr3)2/3

4πr2
= 1 . (3.55)

For all other physically possible combinations of volume and surface area, ψ will be
between 0 and 1. We here generate pixelated spherical balls Br with radii r equal to
1, 3, 5, . . . , 501 respectively. We estimate their volume as the total number of pixels be-
longing to the ball, and the surface area in two ways, 1) by the total number of pixels
belonging to Br/(Br 	B1) (erosion edge detection), and 2) by the total number of pixels
belonging to (Br ⊕ B1)/Br (dilation edge detection). A section of a ball and its surface
pixels can be seen in Figure 3.13a. Using the estimated measures of volume and surface
area, we get two graphs of sphericity measures as shown in Figure 3.13b which shows
a systematic overestimation both by the erosive and dilative methods. Therefore, the
measure also exceeds the upper limit of 1 of the measure. From Figure 3.14, we can see
the volume is estimated correctly using voxels but the surface area is significantly un-
derestimated. The meshing of a ball is a higher-order representation of the object which
thus naturally will give a better estimate. The sphericity measure will be lower than 1
approaching 1 for increasing mesh refinement.

Implementation details for mesh-based measures

The code is written in Python with the central components implemented in C++ bound
to Python using SWIG. The measures µ00 and µ01 require a full tetrahedral mesh while µ10

and µ11 require only a surface triangulated mesh. This called for two implementations
differing only in that one works on triangles while the other works on tetrahedra. We
will focus mainly on the implementation for tetrahedral meshes. The implementation for
triangular meshes is similar but significantly simpler. For both methods, the calculations
are broken into two main phases.

1. An initial one-time phase, which remaps each tetrahedron into a fitting coordinate
system making calculations easier.
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(a) Voxel ball and its morphological edges
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2.0

2.5

3.0
Sphericity

pixel sphericity (erosion)
pixel sphericity (dilation)
reference

(b) Sphericity measure

Figure 3.13: Sample voxel ball and estimated edge using morphological operations and
corresponding graphs of the sphericity measure.

2. The integration phase, where, for each r-value, the tetrahedra are evaluated to be
either inside, outside, or on the edge and integrated with a suitable method.

The initial phase

The initial phase assumes a given mesh as vertex coordinates and corresponding tetrahedra
as well as an array of distances from the reference object to each vertex. We first estimate
the distance function locally inside the tetrahedron as an affine function. For the case of
tetrahedrons, let r = {ri} denote the distance from the reference object to each vertex,
vi. For simplicity, we sort the vertices in increasing order of ri. The parameters a, b, c, d
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(a) Voxel Volume
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(b) Voxel Surface Area

Figure 3.14: The two constituent fundamental measures for voxel measure estimates in
comparison to analytical true values. The reference volume is calculated by 4/3πr3, and
the surface area is calculated by 4πr2.

of the linear function ax+ by + cz + d = 0 is solved for through the linear system


vT1 1
vT2 1
vT3 1
vT4 1



a
b
c
d

 =


r1

r2

r3

r4

 . (3.56)

From this, the gradient of the linear function is g = [a, b, c]T and the gradient magnitude is
|g| =

√
a2 + b2 + c2. Using this, we first translate each vertex such that v1 is at the origin.

We then rotate the tetrahedron around the origin such that the gradient vector aligns with
the x-axis and scale the tetrahedron in x by the inverse of the gradient magnitude 1/|g|.
Finally, we translate the tetrahedron in x by r1. I.e. the tetrahedron is transformed such
that the distance value, r, corresponds exactly to the x-coordinate (see Figure 3.15). This
is very helpful in the integration phase as, aside for a few edge cases, we can integrate
the tetrahedron as a function of x. The scaling parameters and vertex coordinates are
stored such that we can recover the measures in the integration phase. Similarly, the total
volume of each tetrahedron is pre-computed in this phase because it covers one of the two
common cases in the integration phase.

The integration phase

Let Ti denote a set representing the i’th tetrahedron in the object mesh of X with Y r

denoting the reference object. The integration phase numerically calculates the following
integrals

µ̃ij =
N∑
i

µ̃ij(Ti, Y
r) , (3.57)

where the ·̃ indicates the measure is a numerical approximation of the measures µij. In
other words, we can estimate the measure by a summation of local estimates on each
tetrahedron. When the r-parallel set does not intersect a tetrahedron the measures are
easily calculated as they are either not counted or counted fully, eg. by 0 volume or the
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Figure 3.15: Each tetrahedron is aligned such that an increase in x corresponds exactly
to an increase in the r-parallel distance function.

full tetrahedron volume of which a known formula exists, as an example. Let rmin, rmax

denote the minimum and maximum distance value of the vertices in the tetrahedron. For
r ≤ rmin, the measures are

µ̃00(Ti) = 0 (3.58)

µ̃01(Ti) = 0 (3.59)

µ̃10(Ti) = 0 (3.60)

µ̃11(Ti) = 0 (3.61)

and for r ≥ rmax, the measures are

µ̃00(Ti) = volume(Ti) (3.62)

µ̃01(Ti) = 0 (3.63)

µ̃10(Ti) = area(Ti) (3.64)

µ̃11(Ti) = 0 (3.65)

If the r-parallel intersects the tetrahedron Ti, we subdivide the tetrahedron into smaller
tetrahedra. To achieve this, we first define intermediate vertex coordinates between the
4 original vertices. Since we have translated, scaled, and rotated the tetrahedra, we can
easily define the vertices as vector functions of r = x. That is, fij is a linear function
between vertices vi and vj with fij(ri) = vi and fij(rj) = vj (see Figure 3.16b). In the
following, we denote tetrahedra here by T (p1, p2, p3, p4) meaning Ti = T (v1, v2, v3, v4) and
triangles similarly by T (p1, p2, p3). How the tetrahedron is divided depends on how the
value, r, of the r-parallel relates to the vertex distances r1, r2, r3, r4. If r1 < r ≤ r2, we
have

µ̃00(Ti) = volume(T (v0, f01(r), f02(r), f03(r)) , (3.66)

µ̃01(Ti) = area(T (f12(r), f13(r), f14(r))) , (3.67)
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and similarly, if r3 ≤ r < r4, we have

µ̃00(Ti) = volume(Ti)− volume(T (v4, f14(r), f24(r), f34(r)) , (3.68)

µ̃01(Ti) = area(T (f12(r), f13(r), f14(r))) . (3.69)

These two sub-intervals are the simplest. In the interval r2 < r < r3 the intersec-
tion is not a triangle but a quadrilateral (see Figure 3.16a). The intersection area for
the measure, µ01, is thus the total area of the two triangles T (f13(r), f14(r), f23(r)) and
T (f14(r), f23(r), f24(r)). Upon careful inspection, one can also realize that volume inside
the tetrahedron up to the r-parallel can be covered by three distinct, non-overlapping
tetrahedra in several ways. One is by the tetrahedra

T (v1, f13(r), f14(r), f23(r)) ,

T (v1, f14(r), f23(r), f24(r)) , and

T (v1, v2, f23(r), f24(r)) .

The measures are thus calculated by

µ̃00(Ti) = volume(T (v1, f13(r), f14(r), f23(r)))+ (3.70)

= volume(T (v1, f14(r), f23(r), f24(r)))+ (3.71)

= volume(T (v1, v2, f23(r), f24(r))) (3.72)

µ̃01(Ti) = area(T (f13(r), f14(r), f23(r)))+ (3.73)

= area(T (f14(r), f23(r), f24(r))) (3.74)

A note on parallelism

Both the initial phase as well as the integration phase is highly parallelizable since each
tetrahedron in the initial phase is independent of each other, and can thus be calculated
simultaneously. Similarly, each queried r-value in the integration phase does not depend
on previous calculations, meaning these can be calculated in parallel as well. We do this
using open-mp.

Bounded Shape Measure

In many applications, directly using the euclidean distance does not does not fully model
the distribution of objects the due to the presence of bounding objects, obstructions, or
propagation speed constraints in the domain. Examples are the movement of objects
inside a tube, such as blood cells in capillaries, mitochondria inside the axon terminal, or
the propagation of molecules through tissue with semi-permeable membranes.

This idea has been partially explored previously in [52], but it can also both be un-
derstood in spatial statistics and stochastic geometry as either a point-process or marked
point-process together with a special distance metric.

The metric arises from the solution to the Eikonal Equation with a variable velocity.
With the velocity in the Eikonal equation equal to a constant 1, the solution is exactly the
shortest distance from the initial zero contours to any point in the domain. If the velocity
is variable, the solution is better understood as the time it takes a wave to propagate
from the initial zero contours to any point in the domain.

In the simple case where the velocity is the same everywhere, it is easy to see that
the shortest distance is a metric. We have d(x, x) = 0 because the shortest distance to
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(a) Vertices in cuts (b) Vertex functions

Figure 3.16: Illustrations of where r-parallel intersecting vertices are placed for a tetra-
hedron given an arbitrary distance function angle.

(a) Bounded wave propagation (b) Wave limited partially by semi-permeable mem-
brane

Figure 3.17: Examples of a distance defined by a propagation wave.

itself is 0. The shortest distance between two points is the same regardless of direction,
meaning d(x, y) = d(y, x). Finally, the triangular inequality holds because if we assume
d(x, y) > d(x, z) + d(z, y) that would contradict that d(x, y) is the shortest distance
between x and y since we found a shorter through z.

The distance metric d(x, y) can be calculated by methods such as the Fast Marching
Method or similar.

A case where a bounded distance map is significantly different is in a case such as a
labyrinth shown in Figure 3.17. The distance from the bottom left to the top right is not
just significantly higher in this case, but the gradient directions of the distance map are
highly determined by the location of the boundaries.

At synapses in brain tissue, we have two distinct compartments, the pre-and post-
synaptic compartments which each contain different objects but are causally linked by
their functional interdependence. Measuring the objects inside both compartments sepa-
rately, and defining one of the measurement distance directions to be negative we can put
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(a) A highly limiting connected domain (b) A distance map from a bottom left source point

Figure 3.18: An example where the shortest path metric is well suited and makes a
substantial difference.

both measurements together in a combined function. This gives a natural directionality
to the measurement from the pre-synaptic compartment to the post-synaptic with the
active zone as the origin. This makes for a logical way to compare groups of curves as
the pairing is natural, they belong to the same synapse, and if it exists, could show a
grouping in the combined measurement functions.
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Chapter 4

A Spherical Statistic for Sparse
Point Patterns

4.1 Introduction

In this chapter, we will study the estimation of summary statistics of points from sparsely
sampled sections of a 3-dimensional volume. We will develop the theory to address the
sparseness of the point pattern, firstly, by a minimum of assumptions to bridge the gap
between the sections directly in the derivation of the summary statistics, and secondly,
by viewing the points as a density to then estimate the density between the sections by
use of a machine learning approach as well as a registration approach. We are motivated
by the following case.

We are interested in understanding how human glial cells raised in vitro migrate and
expand following their injection into the living tissue of animals. Given their potential as
therapeutic vectors for glial replacement in a multitude of neurological disorders, under-
standing their migration and expansion patterns becomes especially important. In that
context, understanding how these cells migrate and expand following injection will help
optimize the delivery strategy and maximize the effect.

In a cell injection migration study, cells are injected into the living tissue of a group
of young animals. The animals are sacrificed at specific time intervals from the time
of injection. The tissue is then sectioned, prepared, and imaged followed by cell point
annotation in specified regions in each section. If the cells were to move randomly from
the injection site, the process could be modeled as Brownian motion from the injection
site. This means the cells would spread like a normal distribution from the injection site
with a standard deviation directly correlated to the cell speed and migration time [58],
and the average distance traveled is proportional to the square root of the speed and time
traveled [13]. However, the cells often do not migrate randomly. Some cells have been
found to follow specific tracts in the tissue [56] and we can hypothesize that cells may be
drawn towards areas of need by way of some signaling process.

The K-function from spatial statistics is a simple and powerful summary statistic
[39]. It describes the expected number of points as a function of the distance from any
point. The K-function is estimated by cumulatively count how many points fall within
an increasing distance r from each of the points and then add and normalize the resulting
functions. However, this requires that every section is annotated lest the count will be
incorrect. Cell counting is time-consuming thence often performed only on a limited num-
ber of sections at regular intervals. This gives rise to the following theoretical description
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Figure 4.1: Example of the sparse sections and regions of a cell injection migration study.
Si denotes sections where point annotations are known, Ai is the region in each section
where the cells are counted. Yi is the points and the injection site is denoted by a green
dot.

of our knowledge not yet explored.

4.2 Method

Let each observed point yj be restricted to a domain Ai such that yj ∈ Yi ⊆ Ai ⊆ Si,
where Yi is a finite observed realization of a sub-domain Ai restricted to a section Si, where
Si is a plane in R3 (see Figure 4.1). Each section has in the practical case a thickness
but only the planar position of the points is known. Importantly, the thickness of the
sections is smaller than the distance between the sections. Without loss of generality, we
assume the injection site is at the origin, meaning, that for each point yj, the distance to
the injection site is |yj|.

We assume first that we have full knowledge of the point pattern in R3. Let f(x) denote
the probability density function describing the probability of finding a cell at x ∈ R3. We
can calculate the probability of finding a cell within distance r of the injection site by

P (r) =

∫
Br

f(x) dV , (4.1)

where Br is a ball of radius r centered at the injection site. Further, letting M denote the
total number of injected cells, we define Λ(r) to be a cumulative point prediction function
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as

Λ(r) = MP (r) . (4.2)

We can interpret the function, Λ(r), as the expected number of points within distance r
of the injection site. This is therefore directly related to the intensity function λ for the
spatial point process by

Λ(r) =

∫
Br

λ(x) dx . (4.3)

To account for the missing data between the sections, we add one key assumption. We
assume that λ is uniform for any subset H ⊆ ∂Br. I.e. we can define the function

µ(r) = E
[

1

|H|

∫
H

λ(x) dα

]
, (4.4)

where dα is a small area element. Assuming that Λ(r) is differentiable, we can get an
alternative definition of µ(r) by dividing the expected number of points within distance
r by the area of the shell of Br. We get

µ(r) =
d
dr

Λ(r)
d
dr
V (r)

=
1

4πr2

d

dr
Λ(r) . (4.5)

where V (r) = |Br|. Due to the missing information between the sections, we don’t know
Λ(r). However, if we were to estimate µ(r), then we can also get an estimate of Λ(r). To
estimate µ(r), we calculate approximate subset versions of Λ(r) and V (r) based on the
data we have within the annotated section. Let A =

⋃
iAi denote the sparse domain for

which we know the location of the points. We estimate domain-limited versions of Λ(r)
and V (r) by

Λ̂A(r) =
M̂∑
i=1

1|yi|<r , (4.6)

V̂A(r) =
∑
i

w|Br ∩ A| , (4.7)

where M̂ is the number of observed points, and 1P equal to 1 if the predicate P is true
and 0 otherwise, and w is the thickness of the sections Si. w is here assumed to constant
in the sectioning direction. For small w this is approximately true. From (4.5), we get

Λ(r) =

∫ r

0

µ(x)
d

dx
V (x)dx . (4.8)

Calculating µ in a dense space as in (4.5) is not possible due to the limited information,
but due to the assumption of uniform point density on ∂Br, we can get a sparse estimate
restricted to A. We have

µ̂A(r) =
d
dr

Λ̂A(r)
d
dr
V̂A(r)

. (4.9)
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Since µ̂A is an estimator of µ, we replace and get

Λ̂(r) =

∫ r

0

µ̂(x)
d

dx
V (x)dx = 4π

∫ r

0

x2µ̂(x)dx . (4.10)

In turn we can estimate the total number of injected cells by

M̂ = Λ̂(∞) . (4.11)

In (4.6), Λ̂ is estimated from discrete points and thus it and µ̂A can not be differentiated.
V̂ has similar issues because the boundary might be formed by discrete points, and with
regions ending, it is at most piecewise differentiable. The simplest approach is to calculate
discretely on half-open intervals Ii = [ri; ri+1). For general function f , we replace d

dr
f(r)

in (4.9) and (4.10) by the finite difference

∆f(ri) =
f(ri)− f(ri−1)

ri − ri−1

, (4.12)

to get an interval approximation of Λ̂ given by

Λ̂(ri) ≈
n∑
i=1

(
∆Λ̂A(ri)

∆V̂A(ri)
∆V (ri) [ri − ri−1]

)
(4.13)

=
n∑
i=1

(
Λ̂A(ri)− Λ̂A(ri−1)

V̂A(ri)− V̂A(ri−1)
(V (ri)− V (ri−1))

)
(4.14)

=
4

3
π

n∑
i=1

(
Λ̂A(ri)− Λ̂A(ri−1)

V̂A(ri)− V̂A(ri−1)

(
r3
i − r3

i−1

))
. (4.15)

An alternative approach is to approximate Λ̂ and V̂ by differentiable functions.

4.2.1 A higher order approach

Since we know the thickness of the sections, we can get a better estimate of both Λ̂A(r)
and V̂A(r), we will here show how.

To get a better estimate of Λ̂A, we model the likelihood of the unknown z-coordinate
within the section by assuming the point is equally likely to be at any depth in the section.
Then, instead of counting the point discretely, we integrate the uniform point likelihood
over the thickness corresponding the distance from the injection point r. This gives us
two cases. Either the point is in the section which has the injection site, or it is in one of
the other sections (See Figure 4.2).

The the original estimate of Λ̂ in (4.6) is a discrete step function. The steps corresponds
to the step of each P (r) for the points, each with a single step at |yi|, the distance between
the point and the injection side. Using the thickness of the sections, we instead estimate
P (r) as a gradual scaling across the assumed uniform distribution across the section it
belongs.

In the case where the point is inside the section, the integration of the point is spread
along a line of length 2s, the side lengths s of two equal right angle triangles. We divide this
length by the width of the section to get the uniform density as a function of s ∈ [0;w/2],
where w is the width of the section. Let α ∈ [0; 1] denote the gradual integration of some
point as a function of r. We get α as

α =
2s

w
. (4.16)
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(a) Site inside section (b) Site outside section

Figure 4.2: Measuring points as a scaling of a linear point density function across a
section. The injection site is here shown as a black dot and the point we are integrating
is purple. We show the integrated amount as the green line.

We get the side length s by the triangle side length

s =
√
r2 − d2

xy , (4.17)

where dxy is x, y planar distance. In the case where the point is outside the section, we
first find zmin, the distance to the closest section edge and calculate the scaling factor

α =
s

w
. (4.18)

This time we have to account for the distance to the section, and we only get one triangle
side length. We thus calculate s by

s =
√
r2 − d2

xy − zmin . (4.19)

To get a measure of the volume V̂A(r), we have 4 cases which give a non-zero volume
(see Figure 4.3). If the injection site is inside the section we have two cases. If r ≤ w/2,
the volume is simply a ball volume

Vball =
4

3
πr3 . (4.20)

If r > w/2, we have some excess volume in the form of two spherical cap volumes. The
volume of a spherical cap is known [36]. Given a spherical cap with height h of a ball
with radius r, the volume is

Vcap =
πh2

3
(3r − h) . (4.21)

We calculate h as

h = r − w

2
. (4.22)
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The volume is then

Vsection(r) = Vball − 2Vcap (4.23)

=
4

3
πr3 − 2πh2

3
(3r − h) (4.24)

=
4

3
πr3 − 2

3
π
(
r − w

2

)2 (
2r +

w

2

)
. (4.25)

In case the injection site is outside the section we have 3 cases. 1) if r ≤ zmin, the volume
is zero. 2) if zmin < r ≤ zmax, where zmax is the distance to the furthest section edge, the
volume is a spherical cap with height h, given by

h = r − zmin . (4.26)

In the final case 3), when r > zmax, the volume inside the section is the subtraction of the
volume of one spherical caps which extends beyond the section with height

hfull = r − zmin , (4.27)

with the volume of a smaller excess spherical cap which has height

hexcess = r − zmax . (4.28)

The volume when the injection site is outside and r > zmax therefore becomes

Voutside =
πz2

max

3
(3r − zmax)− πz2

min

3
(3r − zmin) . (4.29)

Experiments

To show the above method works, we experiment on a uniform and a Gaussian distribution
of generated point. We generate a point set of 50000 points either following a uniform or
a Gaussian distribution. We then define a number of sections and a section width w such
that w is smaller than the distance between the sections. We keep the original set of points
for ground truth comparison and make a filtered point set of all the points within distance
w/2 of the section z-coordinate (see Figure 4.4b). We estimate Λ̂A(r) and V̂A(r) by the
higher order approach, integrating over the section thickness. We then estimate Λ̂(r)
using the discrete estimate (4.15). Both for the uniform and and Gaussian point pattern,
we see the observed values are expectely low compared to the reference measurement
while the estimated statistic is much closer. We also see the discrete integration of ∆Λ̂
to get Λ̂ result in an measurable error shown in Figure 4.4d. This is most likely because
each value in ∆Λ̂ incurs a small error which accumulated over the integration.

4.3 Case 1: known injection site, normally distributed

points

To understand the cell point pattern we could ask if the cells spread uniformly since
injections which could be interpreted as fast random movement within the domain? do
the cells repel each other such as is seen for astrocytes? Are the cells normal distributed
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Figure 4.3: The four cases for a volume integration over thick sections. The sections are
shown from a side view in a 2D projection. The green parts here shows the volume of
which we are interested. The red parts shows the excess volume which we subtract.

around the injection site indicating random slow movement or do the cells cluster around
certain biological features?

With the estimation of the Λ(r) function, we can compare to the distributions for
different point patterns. Let’s consider the case where points are normally distributed
around the injection site. For each point coordinate (X, Y, Z) having distribution func-
tions PX = N (0, σ), PY = N (0, σ), PZ = N (0, σ). Λ can be thought of as a stochastic
variable N given by

N =
√

(X2 + Y 2 + Z2) (4.30)

with distribution

fN =

∫
Br

PXPY PZ dV =

∫
Br

1
√

2πσ
3 e
−(x2+y2+z2)/(2σ) dV (4.31)

=
1

√
2πσ

3

∫ π

0

∫ 2π

0

∫ r

0

n2e−n
2/(2σ) sin(ϕ) dn dθ dϕ (4.32)

=
4π
√

2πσ
3

∫ r

0

u2e−u
2/(2σ) du (4.33)

In two dimensions, the distribution function has a nice closed form solution, namely the
Rayleigh distribution. However, in 3D we are left with a non-elementary error function.
The distribution function fN is given by

fU(σ) =
4π
√

2πσ
3

(√
π/2σ3/2erf

(
r√

2
√
σ

)
− rσe−r2/(2σ)

)
(4.34)
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(a) Uniform point pattern (b) Observed Part
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(d) Λ̂(r)

Figure 4.4: An example of estimating the point function on synthetically generated Pois-
son point process.

To assess if and how the point pattern varies from this, we can do numerical fitting of
this distribution to Λ(r) and compare the two curves. Assessing this difference can tell us
how closely the point pattern matches a normal distribution which would indicate random
movement from the injection site.

4.4 Case 2: Unknown injection site, normally dis-

tributed points

The location of the injection site might not be known or annotated imprecisely. In the
latter case, assuming a normal distribution of points, the result is that Λ(r) no longer
follows a Rayleigh distribution, but instead displays as a Rician distribution. In both
cases, estimating the injection point is useful.

To estimate the injection site we assess planar cuts of the intensity λ of the underlying
point function. Firstly, we look at the intensity function marginally in the plane. That
is, given λ(x, y, zi), where x, y denote the planar coordinates within each section and zi
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(a) Uniform point pattern (b) Observed Part
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Figure 4.5: An example of estimating the point function on synthetically generated Gaus-
sian point process.

its discrete z-coordinates, we calculate the marginal planar intensity

Gplanar(x, y) =
N∑
i

λ(x, y, zi) (4.35)

=
N∑
i

ce
−(x−x)2−(y−y)2−(zi−z)

2

2σ2 (4.36)

= c

(
N∑
i

e
−(zi−z)

2

2σ2

)
e
−(x−x)2−(y−y)2

2σ2 (4.37)

= αe
−(x−x)2−(y−y)2

2σ2 . (4.38)

From the above we see the planar intensity is a scaled normal distribution in 2D with
mean value preserved. This means that a good estimate for the injection site in the planar
coordinates is to use the mean point position as this is the maximum likelihood estimator
of the center of a normal distribution.
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In order to get an estimate that traverses the planes in which we have missing data,
we use the property that if we integrate the full domain of the first two coordinates of
a three-dimensional normal distribution f(x, y, z), we expect to get discrete values of a
scaled 1-dimensional normal distribution. We have

Gtraverse(zi) =

∫ ∞
−∞

∫ ∞
−∞

λ(x, y, zi) dx dy = βe
−(z−z)2

2σ2 (4.39)

We then use curve fitting to estimate the scaling and importantly, the final injection
site coordinate by the mean of the underlying normal distribution. The standard deviation
can also be estimated here but a more accurate estimate is most likely found using the
entire set of points in the first two dimensions. As an example, we generate a three-
dimensional normal distribution and evaluate it in discretized images for each plane and
normalize such that the density

∑
i,j,k f(pijk) = 1, where pijk is a pixel coordinate with

planer index i, j and section index k. We estimate the injection site by the mean

pinjection =
∑
i,j,k

pijkf(pijk) . (4.40)

Here, the x- and y-coordinates will be estimated to machine precision while the z-
coordinate will be erroneous due to the missing data. For discrete images, we replace the
integrals by summations in (4.39) to get

Ĝtraverse(k) =
∑
i,j

f(pijk) , (4.41)

and using the scipy.optimize.curve fit curve-fitting tool in Python, we fit the parameters
of the scaled normal distribution described in (4.39). Since the error of the standard
approach is affected by how close the injection site is to one of the sections, we calculate
the error in the estimate for different displacements of the sections with respect to the
injection site. The result can be seen in Figure 4.6. Using curve fitting results in no
error in this idealized example while estimating directly from the mean gives an error
that varies depending on the distance between the closest section and the injection site.

4.5 General case: density estimation

An alternative to correcting for the missing data by normalization is to use the available
points to estimate 2D densities for the points in each section and then estimate the density
in between using these 2D densities. In other words, if Dz1 , Dz2 denotes two 2D density
functions for the sections at coordinate z1 and z2, respectively, we will estimate the density
of a section Dz between z1 and z2 by some function T such that Dz = T (Dz1 , Dz2). A
simple approach is to let T correspond to a linear approximation between Dz1 and Dz2 .
Letting α = z−z1

z2−z1 , we have

Dz = αDz2 + (1− α)Dz1 , (4.42)

with z1 ≤ z ≤ z2. We will use this approach as a reference to evaluate the quality of
our other approaches. The next sections describe two approaches, namely, combining
the linear approximation with a registration approach and a U-net dual input approach.
Finally we discuss a potential way to combine both of these approaches.
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Figure 4.6: The injection site error as a function of the distance to the nearest section to
the injection site using a simple density mean and scaled Gaussian curve fitting.

Registration approach

In this approach we adopt the linear approximation, but calculate a diffeomorphic trans-
form between the two consecutive sections. Let T (D2, V ) = D1 and T (D1,−V ) = D2

denote a coordinate mapping T of density images D2 to D1 and D1 to D2. Here V denotes
a vector field corresponding to the diffeomorphic coordinate map, and T (Di, 0) = Di. We
then construct the estimated density image by

Dz = αT (Dz2 , αV ) + (1− α)T (Dz1 ,−(1− α)V ) . (4.43)

Implementation was done in python using the dipy package which implements cross-
correlation diffeomorphic image registration [1].

U-net approach

In this section we will use a modified U-Net neural network structure to estimate the
point densities in between the know sections. We view each section as a 2D density, and
estimate multiple densitites in between. Given enough estimates, we effectively get a
dense estimate of the density in 3D. To do this, we propose the following process:

1. Define a dual input prediction model which can estimate in-between section densities
using adjacent section densities.

2. Pre-train the model on generated synthetic data with sections being varying distance
apart.

3. Retrain the model on a the real data with different know spacing and/or a subset
of extra sections annotated specifically for training.
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Figure 4.7: The dual-input U-net model for density prediction. Here each cubical block
represents a set of feature maps progressively encoding the image space information into
an increasing stack of features at the bottom of the network before reversing the process
on the upsampling or decoding part of the network. Arrows from left to right indicate
the possibility to transfer spatially matching features from the encoding pipeline to the
decoding pipeline.

4. Estimate the density in between sections by bisecting from know or estimated sec-
tions. I.e. if D0 and D1 can be used to estimate D0.5, then you can use D0 and D0.5

to get D0.25 and so forth.

The initial model chosen was a modified U-Net. The U-Net is a tried and tested
model commonly used for dense pixel classification. Here, we use it as an initial guess
on a model that might work as a baseline. The U-Net was modified to take two input
images. The images are stacked before being passed to standard U-Net model. In the final
output layer the activation function was removed to not limit the range of values which
could be outputted. A schematic of the U-Net model is seen in Figure 4.7. The network
was defined in Python in a combination of Pure Tensorflow and Keras and optimized
minimizing the Mean Squared Error using a Stochastic Gradient Decent optimizer.

Synthetic data

To generate synthetic data for training the network, we designed a stochastic data gener-
ation method simulating the process which happens in the target tissue. Recall that we
inject cells into live tissue, let some time pass such that the cells migrate and integrate
into the tissue before viewing the points and densities in sections of the 3D tissue volume.
The cells migrate with varying speed depending on if they are inside or outside specific
neural tracts which hasten migration.

We model the cell wandering as a diffusive process, as a Brownian motion with di-
rection at each step chosen uniformly at random and with a step size depending on an
underlying scalar field V (x, y, z). To generate V we initialize a 3D array of zeros and
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define tracts for the cells to move along. One main tract is created by the concatenation
of two Brownian motions from the center of the volume. Each Brownian motion path
is continued until they reach the edge of the image. The Brownian motion tracts are
then regularized using a dampened Laplacian smoothing operation by, for curve points
p1, . . . , pN , iteratively setting

pi ← (1− α)pi + α(pi−1 + pi+1)/2 , (4.44)

with 0 < α < 1 chosen to prevent oscillating behavior. Additionally, 1-5 random collateral
tracts from the center point were also created similarly to the main tract. The pixels
closest to each point in the tract curves were then set to 1 before filtering the image with
a large Gaussian kernel. Some smoothed random noise was added to imitate random
permeability of the tissue. Finally V was rescaled such that the largest distance at each
step was 5. The result is a distribution of points clustered around the injection site with
branches of points moving along the tracts.

For each realization of the point process a volume of 2563 units was created with
unique V . A random number between 3500 and 6500 of cells was placed in the center
of the volume, at the intersection of all the defined tracts in V . Each point was stepped
1000 times in the V weighted Brownian motion. The points were then subdivided into
layers with a thickness of 8. The section densities were estimated using a kernel density
estimate. By default the sum of each section is 1 representing the spatial probability given
one point in each section (see Figure 4.8).

We can scale the densities by the number of points to get an estimate of the intensity
function λ(x) (see Figure 4.9). Notice that the top and bottom sections shown in the top
left and bottom right, respectively, are therefore significantly more transparent.

Experiments

The modified U-Net model was trained on 3583 point process realizations. From each
realization, pairs of images were picked with a section spacing of 3 and 5 such that the
middle image could be picked uniquely as the target image. With a train to validation
ratio of approximately 1 to 40, the training set thus had 93604 examples saving 2348 for
validation.

To assess the quality of prediction we predicted the entire set of validation examples
and measured a number of different error measures. For Dpred the predicted density and
Dtrue the true reference in the image domain Ω, the error measures are

• SAE: Sum of absolute error∑
Ω

|Dpred −Dtrue| (4.45)

• SSE: Sum of Squared Error∑
Ω

(Dpred −Dtrue)
2 (4.46)

• SGNE: Sum of Gradient Norm Differences∑
Ω

|∇Dpred −∇Dtrue| (4.47)
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Figure 4.8: Unscaled synthetic density data. Top left is the first section bottom right is
the last in row-wise order.

• BC: Bhattacharyya Distance

− ln

(∑
Ω

√
DpredDtrue

)
(4.48)

• SDKL: Symmetrised Kullback–Leibler Divergence.

DKL(Dpred, Dtrue) +DKL(Dtrue, Dpred) (4.49)

where

DKL(D1, D2) =
∑

Ω

D1 log

(
D1

D2

)
(4.50)
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Figure 4.9: Synthetic density data sacled by the number of points in each section. Top
left is the first section bottom right is the last in row-wise order.

Result are can be seen in Table 4.1 and are clearly very mixed, with the U-Net being
beaten by a simple average in about half the cases. Interestingly, the gradient norm error
also showed the mean was better the U-Net even though the average is a zeroth order
measure with no gradient information present. The simple mean estimator performs
surprisingly well. The mean could possibly be the optimal estimator if we assume that
the underlying cell distribution is solely dictated by large scale noise which is partly
present in this synthetic data.

4.6 Discussion

While performing adequately, naively using a standard neural network did not give
groundbreaking results. One of the likely reasons is that the tracts in the data can
be seen as a warping of the distribution within each section. However, diffeomorphic im-
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Figure 4.10: Predicted image density samples.

Table 4.1: Measures of differences between the estimated densities and the true refer-
ence. SAE: Sum of absolute error, SSE: Sum of Squared Error, SGNE: Sum of Gradient
Norm Differences, BC: Bhattacharyya Distance, SDKL: Symmetrised Kullback–Leibler
Divergence.

SAE SSE (10−6) SGNE BC SDKL
Mean 0.1933 2.1720 0.0401 0.0121 0.0706
Reg 0.1978 2.3222 0.0410 0.0083 0.0741
U-net 0.1920 2.1452 0.0415 0.0118 0.0904
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Figure 4.11: A dual-input stacked registration and density prediction model.

age registration alone does not seems to be able to present superior results. One reason
could be that in the current implementation, the densities are not warped in a way that
does guarantees they stay as densities. In this approach specifically, we do not model
that the density of a point pattern should change when the divergence of the vector-field
is non-zero. Spreading of the points should lower the density while contraction should
increase the density. This constraint can be applied to deformation fields, but we did not
explore this at this time. A combined approach is possible because there has been some
developments in deep learning to estimate image registration parameters which could then
be stacked with an image combination model. A proposed overall network structure is
shown in Figure 4.11. Here I suggest using both images to estimate a warping for each
image separately and then combine them in a second network. If training each network
separately before stacking or training them simultaneously gives better results will have
to be seen.
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Chapter 5

Shape Measure from Currents in
RKHS

This chapter contains the article found in pre-print [19], and is, at the time of writing,
submitted for peer-review. This article is written by Pernille Emma Hartung Hansen.
My contribution here is as a supportive role in the development of the method through
discussion and ideas. I was also the main responsible for the development and implemen-
tation of the code for calculating the measures, generate synthetic data, and producing
figures.

5.1 Abstract

Analysis of images of sets of fibers such as myelin sheaths or skeletal muscles must account
for both the spatial distribution of fibers and differences in fiber shape. This necessitates a
combination of point process and shape analysis methodology. In this paper, we develop
a K-function for shape-valued point processes by embedding shapes as currents, thus
equipping the point process domain with metric structure inherited from a reproducing
kernel Hilbert space. We extend Ripley’s K-function which measures deviations from
spatial homogeneity of point processes to fiber data. The paper provides a theoretical
account of the statistical foundation of the K-function and its extension to fiber data, and
we test the developed K-function on simulated as well as real data sets. This includes a
fiber data set consisting of myelin sheaths, visualizing the spatial and fiber shape behavior
of myelin configurations at different debts.

5.2 Introduction

We present a generalization of Ripley’s K-function for shape-valued point processes, in
particular, for point processes where each observation is a curve in R3, a fiber. Fiber
structures appear naturally in the human body, for example in tracts in the central nervous
system and in skeletal muscles. The introduced K-function captures both spatial and
shape clustering or repulsion, thus providing a powerful descriptive statistic for analysis
of medical image of sets of fiber or more general shape data. As an example, Fig. 1
displays myelin sheaths in four configurations from different debts in a mouse brain. We
develop the methodology to quantify the visually apparent differences in both spatial and
shape distribution of the fibers.
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Figure 5.1: K-functions for samples of myelin sheaths. Each column corresponds to
measured on a data set. (Top row): the centerlines of the myelin sheathed axons. (Middle
row): The K-function for fixed values of t. (Bottom row): The K-function for fixed values
of s.

5.2.1 Background

Ripley’s K-function [38] is a well-known tool for analyzing second order moment structure
of point processes [2] providing a measure of deviance from complete spatial randomness
in point sets. For a stationary point process, K(t) gives the expected number of points
within distance t from a typical point. An estimator of Ripley’s K-function for a point
set {pi}ni=1 inside an observation window W is,

K̂(t) =
1

nλ̂

∑
i 6=j

1[dist(pi, pj) < t] (5.1)

where λ̂ = n
|W | is the sample intensity, |W | is the volume of the observation window, and

1 is the indicator function. By comparing K̂(t) with the K-function corresponding to
complete spatial randomness, we can measure the deviation from spatial homogeneity.
Smaller values of K̂(t) indicate clustering whereas the points tend to repel each other for
greater values.

Generalizations of Ripley’sK-function have previously been considered for curve pieces
in [8] and several approaches were presented in [48] for space curves. In this paper,
we present a K-function inspired by the currents approach from [48] and provide the
theoretical account for the statistical foundation.
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The challenges when generalizing the K-function to shape-valued point processes arise
in defining a distance measure on the shape space and determining a meaningful descrip-
tive quantity that is well-defined and that we are able to estimate. In this paper, we
provide a well-defined K-function for point processes in general metric spaces and use the
embedding of shapes as currents to obtain a distance measure of shapes.

5.2.2 Contributions and outline

We construct the following two-parameter K-function for a curve-valued point process X

K̂(t, s) =
1

|W |λ
∑

γ∈X:c(γ)∈W

∑
γ′∈X\{γ}

1[‖c(γ)− c(γ′)‖ ≤ t, dm(γ, γ′) ≤ s] (5.2)

for t, s > 0, where c(γ) is the center point of the curve γ, dm the minimal currents
distance with respect to translation, and λ is the spatial intensity of the center points.
By introducing a second distance parameter, we are able to separate the spatial distance
of the curves from the difference in shape, allowing us to measure both spatial and shape
homogeneity.

The paper thereby presents the following contributions:

1. A K-function for shape-valued point processes along with a theoretical account for
the statistical foundation.

2. We suggest a certain fiber process which we argue corresponds to complete random-
ness of points, an analogue of the Poisson process.

3. An application of the K-function to several generated data set and a real data set
of myelin sheaths.

5.3 Shapes as currents

5.3.1 Shape-valued point processes

We model a random collection of shapes as a point process on the space of shapes. Shape
spaces are usually defined as the space of embeddings Be(M,Rd) of a manifold M into
Rd [3]. For example, the space of closed curves in R3 is Be(S

1,R3), where S1 denotes the
1-sphere, and the space of fibers is Be(I,R3) for some real interval I.

Formally, a point process X on a metric space S is a measurable map from some
probability space (Ω,F , P ) into the space of locally finite subsets of S. Thus, for each
ω ∈ Ω, X(ω) ⊆ S, and for every compact Borel set B ⊆ S, X(ω) ∩ B is a finite set.
Measurability of X means that all sets of the form {ω ∈ Ω|#(X(ω) ∩ B) = m}, where
m ∈ N0 and B ⊆ S is a Borel set, must be measurable.

There are different ways to endow Be(M,Rd) with a metric [34]. In this paper,
we consider the representation of shapes as currents embedded in the dual space of a
reproducing kernel Hilbert space (RKHS). Thus, the RKHS metric induces a metric for
our shape space. This can be combined with the Euclidean metric on Rd to obtain a
suitable metric on Be(M,Rd). This approach is very useful due to its generality and
computability, as it requires very little information about the shape.
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5.3.2 Shapes as currents

Shapes are usually more difficult to work with than points, as they usually cannot be
captured in any finite dimensional vector space. An approach already considered for
anatomical structures [12] [59] is embedding shapes as currents. We will give a brief
introduction to this setup and refer to [12] for a detailed description. We can characterize
a piece-wise smooth curve γ ∈ Be(I,Rd) by computing its path-integral of all vector fields
w

Vγ(w) =

∫
γ

w(x)tτ(x)dλ(x), (5.3)

where τ(x) is the unit tangent of γ at x and λ is the length measure on the curve. Likewise,
an oriented hypersurface S embedded in Rd can be characterized by its flux integral of
vector fields w

VS(w) =

∫
S

w(x)tn(x)dλ(x), (5.4)

where n(x) is the unit normal at x and λ is the surface area measure on S. These are
both examples of representing shapes as currents, i.e. as elements in the dual space of the
space of vector fields on Rd. Formally, the space of m-currents Cm is the dual space of
the space C0(Rd, (ΛmRd)∗) of differential m-forms.

It is not only curves and hypersurfaces that can be represented as currents. LetM be
an oriented rectifiable sub-manifold of dimension m in Rd with positively oriented basis of
the tangent space u1(x), ..., um(x) for all x ∈M. The sub-manifoldM can be embedded
into the space of m-currents as the current

TM(w) =

∫
M
I(x)w(x)

( u1(x) ∧ ... ∧ um
|u1(x) ∧ ... ∧ um|

)
dλ(x) (5.5)

where w ∈ C0(Rd, (ΛmRd)∗) is an m-differential form and I : T → R is a scalar function
satisfying

∫
T
|I(x)|dλ(x) <∞ [12]. Since shapes are embedded sub-manifolds, this means

that shapes can be embedded into Cm.

5.3.3 Reproducing kernel Hilbert space metric on shapes

The space of m-currents Cm is continuously embedded into the dual space of a reproducing
kernel Hilbert space (RKHS) H with arbitrary kernel KH : Rd×Rd → Rd×d [12]. It follows
from Riesz representation theorem that v ∈ H can be embedded in the dual space H∗ as
the functional LH(v) ∈ H∗ defined by LH(v)(w) = 〈v, w〉H for w ∈ H.

Elements v(y) = KH(x, y)α form a basis for H where x, α ∈ Rd, and basis elements
in H are lifted to basis elements in H∗ as δαx := LH(v) which are called the Dirac delta
currents.

The element Vγ from (5.3) can be written in terms of the basis elements δ
τγ(xi)
xi where

τγ(xi) are the unit tangent vectors of γ at xi. This means that the curve γ is embedded
into H∗ as the 1-current

Vγ(w) =

∫
γ

w(x)tτγ(x)dλ(x) =

∫
γ

δτγ(x)
x (w)dλ(x) (5.6)

where λ is the length measure on the curve. Furthermore, it is approximated by the
Riemann sum of Dirac delta currents Vγ(w) ≈ Ṽγ(w) =

∑
i δ
τ(xi)∆xi
xi (w) where xi are
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sampled points along the curve according to λ. The dual space H∗ inherits the inner
product from the inner product on the RKHS via the inverse mapping L−1

H , so that the
inner product for two curves γ1 and γ2 in H∗ is

〈Vγ1 , Vγ2〉H∗ =

∫
γ1

∫
γ2

τ tγ1(x)KH(x, y)τγ2(y)dλγ2(x)dλγ1(y). (5.7)

Writing ||Vγ||2H∗ = 〈Vγ, Vγ〉H∗ , we finally arrive at the currents distance of two curves
γ1 and γ2

dc(Vγ1 , Vγ2) = ||Vγ1 − Vγ2||H∗ =
(
||Vγ1||2H∗ + ||Vγ2 ||2H∗ − 2〈Vγ1 , Vγ2〉H∗

)1/2

. (5.8)

In practice, we usually don’t know the orientation of the curves, thus we choose to
consider the minimal distance between them,

d(Vγ1 , Vγ2) = min{dc(Vγ1 , Vγ2), dc(Vγ1 , V−γ2)} (5.9)

where −γ2 denotes the curve with opposite orientation of γ2. If the orientation of the data
is important, this step may be omitted. From (5.6) we see that KH serves as a weight of
the inner product between τ1(xi) and τ2(yj) depending on the positions xi and yj.

5.3.4 A note on short lines and generalized Gaussian kernels

To illustrate the distance metric, consider the generalized Gaussian kernel

Kp
σ(x, y) = exp

(−|x− y|p
2σp

)
Id, (5.10)

where σ, p ∈ (0,∞], and consider two lines of equal length parametrized by lu(t) =
xu + ut, lv(t) = xv + vt where xu, xv, u, v ∈ <d and 0 < t ≤ T ∈ <. For very short lines
far from each other, i.e., T/|xu − xv| → 0, we have,

d(Ṽlu , Ṽlv)
2

T 2
→ d0 − 2 exp

(−|xu − xv|p
2σp

)
d1, (5.11)

where d0 = utu + vtv and d1 = max (utv,−utv). Since the d0 and d1 are constants, and
since the exponential and the square root functions are both monotonic, then in the limit,
d(Ṽlu , Ṽlv)/T is one-to-one with |xu − xv|p which is one-to-one with |xu − xv|. Thus, for
very short lines, d/T is one-to-one with the euclidean distance between the points xu, and
xv. Further, in the limit p→∞ we have,

d(Ṽlu , Ṽlv)
2

T 2
→


d0 − 2 d1, when |xu − xv| < σ,

d0 − 2 exp
(
−1

2

)
d1, when |xu − xv| = σ,

d0, otherwise.

(5.12)

Thus, for very short lines and very large exponents, (d0 − d2/T 2)/(2d1) converges to a
unit step function in |xu − xv| where the step is at σ.
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5.4 The K-function

5.4.1 Statistical Setup

Let S be the image of the embedding of Be(I,Rd) into C1. For brevity, γ is identified
with its representation in C1. We model a random collection of curves as a point process
X in S.

Let c : S → Rd be a center function on the space of fibers in Rd that associates a
center point to each fiber. A center function should be translation covariant in the sense
that c(γ + x) = c(γ) + x for all x ∈ Rd. It could be the center of mass or the midpoint of
the curve with respect to curve length. Let Sc denote the space of centered fibers wrt. c,
i.e., those γ ∈ S for which c(γ) = 0. We define γc := γ − c(γ) ∈ Sc to be the centering of
γ.

For Borel sets B1, A1 ⊂ Rd and B2, A2 ⊂ Sc, define the first moment measure

µ(B1 ×B2) = E
∑
γ∈X

1[c(γ) ∈ B1, γc ∈ B2]

and the second moment measure

α((A1 × A2)× (B1 ×B2)) = E
6=∑

γ,γ′∈X

1[c(γ) ∈ A1, γc ∈ A2]1[c(γ′) ∈ B1, γ
′
c ∈ B2].

We assume that µ is translation invariant in its first argument, i.e.

µ(B1 ×B2) = µ((B1 + h)×B2)

for any h ∈ Rd. This is for instance the case if the distribution of X is invariant under
translations. This implies that µ(· × B2) is proportional to the Lebesgue measure for all
B2. Thus we can write

µ(B1 ×B2) = |B1|ν(B2)

for some measure ν(·) on Sc. Note that the total measure ν(Sc) is the spatial intensity
of the center points, i.e. the expected number of center points in a unit volume window.
In applications, this will typically be finite. In this case, we may normalize ν to obtain
a probability measure which could be interpreted as the distribution of a single centered
fiber.

We define the reduced Campbell measure

C !(A1 × A2 × F ) = E
∑
γ∈X

1[c(γ) ∈ A1, γc ∈ A2, X \ {γ} ∈ F ]

where the ”!” represents the removal of the point γ from X. By disintegration,

C !(A1 × A2 × F ) =

∫
A1×A2

P !
c,γc(F )µ(d(c, γc)).

By the standard proof, we get for any measurable function h : Rd × Sc ×N → [0,∞)

E
∑
γ∈X

h(c(γ), γc, X \ {γ}) =

∫
Rd×Sc

E!
c,γch(c, γc, X)µ(d(c, γc)). (5.13)
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In particular,

α((A1×A2)× (B1×B2)) =

∫
A1×A2

E!
c,γc

∑
γ′∈X

1[c(γ′) ∈ B1, γ
′
c ∈ B2]µ(d(c, γc)). (5.14)

Assume also that α is invariant under joint translation of the arguments A1, B1. Then

Kc,γc(B1 ×B2) := E!
c,γc

∑
γ′∈X

1[c(γ′) ∈ B1, γ
′
c ∈ B2] (5.15)

= E!
0,γ0

∑
γ′∈X

1[c(γ′) ∈ B1 − c, γ′c ∈ B2] (5.16)

= K0,γ0((B1 − c)×B2). (5.17)

Assume that also E!
c,γch(c, γc, X) does not depend on c, which is true if the distribution

of X is invariant over translations. Then, using (5.13) and the factorization of µ,

E
∑
γ∈X

1[c(γ) ∈ W ]h(c(γ), γc, X \ {γ}) =

∫
W×Sc

E!
c,γch(c, γc, X)µ(d(c, γc))

=

∫
W×Sc

E!
0,γ0

h(0, γ0, X)µ(d(c, γ0)) = |W |
∫
Sc

E!
0,γ0

h(0, γ0, X)ν(dγ0) (5.18)

From this it follows that

Eh =
1

|W |
∑
γ∈X

1[c(γ) ∈ W ]h(c(γ), γc, X \ {γ})

is an unbiased estimator of
∫
Sc
E!

0,γ0
h(0, γ0, X)ν(dγ0). Furthermore, if ν(Sc) is finite,∫

Sc

E!
0,γ0

h(0, γ0, X)ν(dγ0) = ν(Sc)Eν̃E!
0,Γ0

h(0,Γ0, X)

where Γ0 is a random centered fiber with distribution ν̃(·) = ν(·)/ν(Sc) and Eν̃ is expec-
tation with respect to this distribution of Γ0.

5.4.2 K-function for fibers

In order to define a K-function, we must make an appropriate choice of h. A seemingly
natural choice for h that coincides with [48], is

h(c, γc, X) =
∑
γ′∈X

1[d(γc + c, γ′) ≤ t] =
∑
γ′∈X

1[d(γ, γ′) ≤ t].

However this choice allows the K-function to be a.s. infinite, due to the fact that d(γ, γ′) ≤√
2(||γ||2H∗ + ||γ′||2H∗). If every curve in X has ||γ||H∗ ≤ M , e.g. if the length of fibers is

bounded, then choosing t ≥ 2M results in any fiber in X having infinitely many neighbors
within distance t.

A solution is to separate the spatial distance of the curves from the difference in
shape by introducing another radius parameter for the distance between center points.
Accounting for spatial distance with this parameter, we choose to minimize the influence
of spatial distance by measuring the currents distance between the centered curves.
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Thus, we choose h as

h(c, γc, X) =
∑

γ′∈X\{γ}

1[‖c(γ)− c(γ′)‖ ≤ t, d(γc, γ
′
c) ≤ s] (5.19)

for s, t > 0, where ||c(γ)− c(γ′)|| is the usual distance in Rd between center points.

Thus we define the empirical K-function for t, s > 0 as

K̂(t, s) =
1

|W |ν(Sc)

∑
γ∈X:c(γ)∈W,
γ′∈X\{γ}

1[‖c(γ)− c(γ′)‖ ≤ t, d(γ, γ′) ≤ s]. (5.20)

Since ν(Sc) is the intensity of fiber centers, it is estimated by N/|W | where N is the
observed number of centers c(γ) inside W . The K-function is the expectation of the
empirical K-function

K(t, s) = EK̂(t, s) = Eν̃E!
0,Γ0

h(0,Γ0, X) = Eν̃K0,Γ0(B(0, t)×Bc(Γ0, s))

where B(x, r) = {y : ||x− y|| ≤ r} and Bc(γ, s) = {γ′ : d(γ, γ′) ≤ s}.

5.4.3 K-function for general shapes

The currents metric and the K-function easily extends to shape-valued point processes
with values in Be(M,Ω) for more general manifolds M and Ω ⊂ Rd. Shapes A,B ∈
Be(M,Rd) are embedded as m-currents VA and VB as in (5.5). Since Cm is continuously
embedded into the dual RKHS H∗, we get the distance measure dc between shapes.

If c : Be(M,Ω) → Rd is a center function, then we can generalize the K-function to
a point process X with values in Be(M,Ω). Identifying elements of Be(M,Ω) with their
embedding in H∗, we can write the same K-function

K̂(t, s) =
1

|W |λ
∑

U∈X:c(U)∈W,
U ′∈X\{U}

1[‖c(U)− c(U ′)‖ ≤ t, dm(U ,U ′) ≤ s] (5.21)

for t, s > 0, where dm is constructed as in Section 3.2 and λ is the spatial intensity of the
center points.

5.5 Experiments

To obtain a measure of spatial homogeneity, Ripley’s K-function for points is usually
compared with the K-function for a Poisson process, KP (t) = vol(Bd(t)), corresponding
to complete spatial randomness. We are now in a more complicated situation where the
K-function has two parameters and we do not have a notion of complete randomness of
fibers. The aim of the experiments on generated data sets is to analyze the behavior of the
K-function on different types of distributions and suggest a fiber process that corresponds
to complete randomness. This will serve as a way to compare the results in 4.2.
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Figure 5.2: K-function on the generated data, where each column corresponds to one
data set. (Top row): The data sets X1, X2, X3 and X4 described in 4.1. (Middle row):
The K-function of the data set above for fixed values of t. (Bottom row): The K-function
of the data set above for fixed values of s.

5.5.1 Generated data sets

The four generated data sets X1, X2, X3 and X4 each contain 500 fibers with curve length
l = 40 and center points in [0, 100]3 and is visualized in the first row of Fig. 5.2. Each
data set is created by sampling center points from a distribution on R3 and fibers from a
distribution on S0, that is then translated by the center points. For the first three data
sets, the center points are generated by a Poisson process and the fibers are uniformly
rotated lines in X1, uniformly rotated spirals in X2 and Brownian motions in X3. The
data set X4 has clustered center points and within each cluster the fibers are slightly
perturbed lines.

To avoid most edge effects, we choose the window W ≈ [13, 87]3 ⊂ R3 for the calcula-
tion of the K-function. Furthermore, we choose a Gaussian kernel Kσ as in (5.10) with
p = 2 and σ = 100

3
. Finally, c is defined to be the mass center of the curve.

The first row of Fig. 5.2 shows the generated data sets and the respective K-functions
are visualized the second and third row. In the second row, s 7→ K(t, s) is plotted for
fixed values of t. For example, the graphs with t = 50 show the expected numbers of
fibers within currents distance s, where the distance of center points are 50 at most.
Lastly in the third row, t 7→ K(t, s) is plotted for fixed values of s. Similarly, the graphs
with s = 70 show the expected numbers of fibers with center point distance t when the
currents distances are 70 at most. Thus, the graphs in the second row capture the fiber
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shape difference of each data set whereas the graphs in the third row capture spatial
difference.

It is distribution X3 that we consider to a natural suggestion for a uniform randomness
distribution of fibers. This is because Brownian motions are well-known for modelling
randomness, thus representing shape randomness. And by translating these Brownian
motion with a Poisson process, we argue that this distribution is a good choice.

Considering only the data sets with uniformly distributed center points, i.e., the first
three columns of Fig. 2, we see a big difference in the second row of plots. This indicates
that the K-function is sensitive to the change in shape. The K-function for the Brownian
motions captures much more mass for smaller radii compared to the lines, with the spirals
being somewhere in-between. The plots in the third row are very much as expected, since
we generated the center points from a Poisson process. Finally, the second row plot for
X4 indicate a slight shape clustering when compared to the uniformly rotated lines. This
makes sense, since each cluster is directed differently.

5.5.2 Application to myelin sheaths

Myelin surrounds the nerve cell axons and is an example of a fiber structure in the brain.
Based on 3D reconstructions from the region motor cortex of the mouse brain, centre
lines were generated in the myelin sheaths. The data sets ST01, ST06, ST17 and ST20
displayed in the first row of Fig. 1 represent the myelin sheaths from four samples at
different debts.

For real shape-valued data sets, it very common that only parts of the shapes are
observed. This is the case for many fiber data sets as well. This fact is important to have
in mind when choosing c, since we should have a clear idea of when c(γ) is observed, in
order to get an unbiased estimate.

Since myelin sheaths tend to be quite long, we chose to divide the fibers of length
greater than 40 into several fibers segments of length 40. This has the benefits, that the
mass center is an appropriate choice for c and that the results are comparable with the
results of Fig. 2, since the curves are of similar length.

The results of the estimated K-function on the four data sets ST01, ST06, ST17 and
ST20 are visualized in Fig. 1, where s 7→ K(t, s) is plotted in the second row for fixed
values of t and t 7→ K(t, s) is plotted in the third row for fixed values of s. The plots in the
second row showing the fiber shape are very similar, resembling the fiber distribution of
X2. We notice a slight difference in ST20, where the graphs have a more pronounced cut
off. When noticing the scale of the y-axis, we see that the expected number of neighbor
fibers vary significantly between the data sets.

The third row plots indicate that the center point distributions of each data set is
similar to the center point distribution of X1, X2 and X3, which we generated from a
Poisson process. For ST17, we notice a slight clustering of center points for t ∈ [10, 15].
The biggest difference is for the graphs for t = 30, indicating that the neighbors for fibers
i ST20 are of more similar shape than the others.
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Chapter 6

Applications in the Analysis of
Biological Structures

In parallel to the main contributions, I have contributed to several projects, two of which
required similar approaches and which both saw use in my shape measure method and
served both as inspiration for the method and as a clear use of it. A few developments
were made in connection to these two applications; these are presented here. In both
applications, we measure the shape characteristics of one type of object in relation to
another. In both cases, we have a control group and a disease model group and we want
to test their statistical difference. This Chapter, therefore, outlines the data pipelines
created to perform the analyses, the methods we used to perform image segmentation,
and how we did a significance test on the difference between the two groups based on the
shape measurement functions.

6.1 Case: Measuring Mitochondrial changes around

Nodes of Ranvier in ALS model mice

ALS and the Nodes of Ranvier

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease where motor neurons
in the brain and spinal cord die, resulting in patients with muscle weakness and atrophy
leading to paralysis [24]. As a consequence, patients suffer significantly reduced quality
of life and most patients die withing 2-4 years after appearence of the first symptoms
[29]. Neurons signalling is enhanced by the myelination of the axons of the neurons (See
Figure 6.1). Myelination is a key component in both the efficiency and speed of signaling
between neurons and to coordinate signal timings [16, 26]. Mutations in genes related to
demyelination, the sporadic lack of myelination of neurons, has been observed in patients
with ALS [63] and white matter pathology is a consistent finding [7] is a consistent finding,
making it a key goal to understand if there is a causal connection between the two. In
the brain, oligodendrocytes myelinate neuronal axons. These neuronal support cells (glia)
each envelop parts of the neuron forming a myelin sheath covering parts of the axon in
a repeating pattern. Between these myelin sheaths are myelin junctions often showing
as small gaps which are called the Nodes of Ranvier. Since demyelination is observed
in ALS patients, changes near the nodes, including node morphology, could be key to
understanding the pathology of ALS.

In this work we assessed a large variety of questions in collaboration with Stine Has-
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Figure 6.1: An ilustration of a neuron showing the axon, myelin sheaths and how the
Node of Ranvier appear.

selholt. Stine formulated the biological questions, did sample preparation, and Serial
Block-face Scanning Electron Microscopy (SBEM) imaging of 5 normal and 4 ALS model
animals for which we could perform our study. From each animal we had an imaged
block of approximately 32 µm3 in size with a resolution of 700× 6000× 6000 anisotropic
(45, 5.6, 5.6) nanometer pixels in 16-bit integer encoding. With each dataset at a size
of roughly 70 Gb in uncompressed form, specialized methods for handling on common
hardware was required.

For this work I helped design data pipelines and methods for handling multiple pro-
cessing and analysis steps in the project. Specifically, I have annotated significant amounts
of mitochondria for training and validating a neural network. I have likewise annotated
almost 300 Nodes of Ranvier across thousands of sections for use as reference objects to
measure the mitochondria using the method described in Chapter 3. I have described and
quantified the morphology and features of each node slated for later analysis and publi-
cation. Through the work I have assisted supervision of two students tackling questions
of Node of Ranvier counting and myelin thickness estimation. An overview of the work
of which I was involved can be seen in Figure 6.2.

Annotation of SBEM Images

For prediction of mitochondria, we annotated a set of training data for each of the 9
datasets. In each dataset we annotated 2 full sections of size 6000× 6000 pixels. A fully
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Figure 6.2: Overview of some of the key objectives I have been involved in in this project
and how my work tied into the work of my colleagues and collaborators. Namely Stine
Hasselholt, Jon Sporring, and Daan Janssen.

annotated section can be seen in Figure 6.3.
To give a representative training and validation split, each annotated section was tiled

by a 3 by 3 grid and the 3 diagonal tiles was used for validation keeping the rest for
training.

To calculate the measures around the nodes we needed an annotation of each of these
nodes. A key obstacle here is that the node of Ranvier consist of cell membrane like most
other structures in the tissue and is absent from any other directly distinguishing features.
The nodes can therefore only be determined as a gap in the myelin of an axon. Addition-
ally, the cell membranes were not so well-preserved in the images. Automatic approaches
are therefore currently not able to detect these with the accuracy we needed. Through
this work, Daan Janssen spent his externship exploring ways to accomplish this, ending
up with an approach that, given myelin strands in the form of curves, worked on matching
the strand end-points by finding end-points which were spatially and directionally close.
This ended up not being accurate enough, probably because

• the node itself often is a point of directional change of the axon, possibly because
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the myelin is comparatively stiffer. This means the direction of the myelin strands
not necessarily corresponds for matching strands

• node of ranvier can be spatially close to each other, giving rise to wrong matching
between strands

• many nodes have multiple myelinated and unmyelinated branches

• some myelin were not detected properly in a previous step, and errornous strands
were present which did not correspond to a myelin sheath.

• while the literature usually puts a limited expected length of the NoRs, we have
found the length to vary greatly meaning spatial closeness of two strand end points
isn’t always a good determining factor.

In the end, I decided to manually annotate the contour of each node in each section across
all the datasets. A total of around 300 nodes were annotated using on the order of 10000
curves. An example of the annotation across a single node can be seen in Figure 6.4.

The morphology of the Node of Ranvier

Having annotated all nodes across the 9 datasets, I decided to assess a number of morpho-
logical features. For each node I classified them by their brancing pattern as m-c, where
m denotes the number of myelinated brances and, c, denotes the number of unmyelinated
and collateral brances. Thus a node marked with 2-1 has two myelinated brances and 1
unmyelinated branch. The pattern 1-c only has 1 myelin brance representing the ending
of an axon. These are not accounted for.

I also assessed the length of the nodes. Given that many nodes had multiple branches,
I decided to calculate the length in two ways. Firstly as the longest distance between two
annotated edge points, and as the median of the 25 longest distances between annotated
edge points. The latter method makes sense because it is more stable to the small vari-
ations that happens when manually annotating structures and better handle the cases
where the myelin unevenly cover the node near the node end points.

Further, I noted the presence of other features such as mitochondrial activity at the
node as well as the presence of synapses. I also found a curious feature which appeared to
be either a recycling of myelin, recycling of cell-membrane or encapsulation of unwanted
contents at numerous node. This structure was observed both either in the process of
being expelled from the node or already separate from the node. The presence of this
messy contents was also noted.

It is important to document features, not only to map out disease pathology, but also
to contribute to built to the existing knowledge of morphological and quantitative features
of important neuronal structures. This work is slated for later publication.

The distribution of branching patterns can be seen in Figure 6.5. Interestingly, the
there is both a significant number of nodes displaying unmyelinated branches as well as
a low but highly myelinated branch patterns. Similarly, we found there to be a small
number of nodes with a high 4 myelinated branches. The distribution of node lengths can
be seen in Figure 6.6. The curve mostly resemble something like a Poisson distribution
except that the tail seems a bit heavy with a number of very long nodes. If this is not a
statistical fluke, this could indicate either a spontaneous and simultaneous myelination of
a process, or some dynamic not yet understood.
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6.2 Case: Measuring Astrocytic changes in Hunting-

ton’s disease model mice

In this chapter, I present contributions to work of which I am not the main author. This
work is neither submitted nor published at the time of writing. The work was done dur-
ing my stay at the Center for Translational Neuromedicin (CTN) at the University of
Copenhagen. In this work, we are assessing whether there are geometrical or morpholog-
ical changes to astrocytes around synapses in Huntingtons disease model mice. Due to
the work not yet being publish, I will not be able to discuss the final results. I will here
describe the parts where I contributed.

Assessing geometric and morphological changes in one object, the astrocyte, in relation
to another, the synapse, falls squarely within the capabilities of my developed statisti-
cal shape measuring method described in Chapter 3, and as such, we have used this
method for the analysis. Further, we assessed how to determine statistical significance of
differences observed between the groups.

Biologically, the astrocytes have a supportive role for the glutamatergic synapses with
a key role in the replenishment of neurotransmitters and maintaining the proper ion
balance in the environment after an action potential has taken place. Astrocytes can
often be seen seemingly reaching in towards the synaptic cleft. As such, the location and
shape of the astrocyte is deeply connected to the synapse itself. Using the measurement
functions described in Chapter 3, setting the synapse as the reference object, we are able
to assess if there is reason to suggest that the volume or surface area of the astrocytes and
neuronal processes are morphologically coupled to the disease condition at any particular
distance from the synapse. In other words, does the disease condition shrink, enlarge,
bend or change the curvature or other geometrical feature, of the astrocyte and neuronal
process near the synapse?

The Data Pipeline

To accomplish the analysis, I designed the following pipeline in collaboration with the
main author.

1. Biologists (Main author et al.) decide on regions of interest (ROI) across their
datasets of disease and control population for where to perform the analysis.

2. Biologists (Main author et al.) annotates a training set of the astrocyte ROIs
choosing visually varied set of samples among the population of ROIs. The synapses
were manually annotated for all ROI because accuracy was particularly important
for these, and because they are smaller making it feasible to do so.

3. The astrocyte data was pre-processed and the amount increased using data aug-
mentation strategies for training and prediction by a U-Net neural network model.

4. The astrocyte predictions were cleaned up manually by the main author.

5. Each astrocyte was turned into a mesh representation using the marching cubes
algorithm.

6. Each mesh was smoothed slightly in section-plane (x-y) to prevent jaggedness due
to noisy pixel classification near the astrocyte edge. The mesh was smoothed signifi-
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cantly in the section-plane (z) because imaging artifacts gave edges in the z-direction
which were biologically inconsistent.

7. The distance from the synapse to each astrocyte mesh vertex was interpolated using
distance transform on the underlying pixel grid.

8. The Astrocytes in each synaptic area was measured using the method described in
Chapter 3.

9. The Biologists (Main author et al.) decides on a distance interval of interest to
which we will do a statistical analysis.

10. The significance of the difference between the measurements from the disease and
the control groups respectively where assess by p-value test calculated using the
Monte Carlo Permutation test.

6.3 Neural Network Segmentation

Model Selection

As model selection we chose to use a U-Net neural network structure. This structure
was chosen because it is tried and tested, efficient, and being a fully convolutional model,
is fast on large datasets. Likewise, it was easy to modify with the addition of a weight
input for controlling which parts of the images needed extra focus by the network. Since
the original U-Net paper [41], improvements have been made for slightly better results.
As such, a network variant including batch-normalization and strided convolution rather
than max-pooling was chosen.

Data augmentation

Training data is always in short supply, a remedy is data augmentation which is the
process of modifying or recombining the data you have to make more data is almost
always beneficial. The standard approaches to data augmentation which we used are

• Rotation: Each image is rotated randomly between 0 and 360 degrees. This is a
faithful simulation of the data since our images do not have a preferred direction in
contrast to typical images of dogs and vases.

• Flipping axis direction: Changing the axis direction, i.e., flipping the image
across an axis, yields a new valid image. Again, our images do not have a preferred
direction so this is a faithful simulation.

• Gaussian Noise Addition: Adding noise to an image can seem counter-intuitive.
However, the added noise seems to make fitted models more robust and generalize
better. While adding noise raises the existing noise level slightly, it also represents
a different realization of the noise pattern increasing the amount of information due
to noise.

• Elastic deformation: The input image and labels are stretched and deformed
equally to make a new image. Cellular and sub-cellular structures are already
elastic, and a deformation simply leads to another plausible configuration of the
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material and thus prepares the network for new realization that are slight deforma-
tions of those in the unaugmented dataset. To deform the images, the images are
reinterpolated using a deformation field corresponding to the elastic deformation.
The deformation field is created by first initializing source pixel coordinates to the
original coordinates of the image. Each pixel is then assigned an independent and
identically distributed random translation. The field of random translations are
then smoothed such that the changes does not differ significantly on the smaller
scale which seems unlikely.

Finally, I added a, to my knowledge, new form of data augmentation. For each label,
I choose a random constant α and modified each pixel by the addition of α. This is a
faithful simulation of the data because the exact color intensity in the images vary due a
number of factors such as: protein contents, staining absorption, imaging parameters and
material density. This is unlike the addition of noise because α is constant across a label.

Pixel-wise Weights

When predicting biological structures in neuronal tissue imaged using an electron micro-
scope, the following observations were made.

• For typical structures, the surface area to volume ratio is small.

• Often, the structure of interest accounts for a comparatively low number of pixels
in the full image giving rise to highly unbalanced classes for prediction.

• Some pixels are not labeled.

The first two points is likely to lead to lower quality of predictions using a standard
loss function. This is because the loss function value the difference between all predicted
and true label pixels equally, and since there is fewer pixels representing the object, the
cost of the network to predict the object incorrectly, is low. This problem is even larger
for the boundary.

A neural network loss can be modified by adding a weight to each pixel. These weights
are passed in alongside the images, but only used in the calculation of the loss which in
turn affects the back-propagation weight updates. We therefore modified the categorical
loss function found in Keras, by adding a weight input which was multiplied to each pixel
difference before the summation to a single loss value. Since we only need the weights in
the loss calculation we only need them in the training phase.

For the weights I want the following to be true.

• The weights are 0 if and only if there is no labels present.

• The weight is higher the closer you are to a label edge.

• The weights converge quickly to a constant far from an edge.

• the sum of weights for each label is equal.

For the two projects, I developed two weight generation strategies. In the first strategy,
I first defined a thick boundary strip B around each object. Let L denote a set representing
the labeled object. The boundary strip was calculated by

B = (L⊕Dr)/(L	Dr) , (6.1)
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where ⊕,	 represents Minkowski addition and subtraction, / represents set difference and
Dr is a disc or radius r. The result is a set around the boundary with width 2r. In effect
we now have 3 regions in the image, namely L	Dr, (L⊕Dr)

c and B where c denotes the
set complement. Each of these regions was given a constant weight normalized such that
the weight sum of each of the regions were the same.

These labels can easily be calculated using morphological dilation and erosion to re-
place the Minkowski operations. The result can be seen in Figure 6.7.

A more fine-grained weight generation strategy is: calculate a distance function from
the edge between the two label regions, the inner and outer compartments of the object
labels. Denote this distance function by d(x, y). The weights are combined by an edge
term in the form of

wi = (d(x, y) + β)−αi , (6.2)

where i is 0 or 1, correspoding to whether the pixel is inside or outside the label region.
β > 0 controls how steep the decrease in weights from the edge is. For αi > 0, I use a
simple bijection search to determine the values of αi such that∫

inside

w0 =

∫
outside

w1 . (6.3)

This step ensures the weight contribution to the neural network learning is equally con-
tributed from each group on average. Finally, I zero the weights which are in regions
without labeling. Without any weight, the contribution to the network weight update
becomes zero, meaning the network is indifferent to the distance between these pixel
intensities. An example of weights generated using this method is shown in Figure 6.8.

Recombination weighting

When using a fully convolutional neural network to predict images, the prediction are done
in large patches at a time. However, the prediction will usually be better in the center
of the patch compared to the patch edges. A common strategy is to predict overlapping
patches and then recombine them in the end forming a voting scheme.

Given a patch stride less than the width of the patch, each predicted output patch
then overlaps with multiple other patches. To recombine the output patches, each patch
output was added to a combined output prediction before using the argmax operation to
determine a unique label. This approach is a voting scheme where the output level of
certainty of each pixel is one of the determining factors. As an example, for one pixel
sharing prediction by two patches, if one output patch gives the pixel 40% certainty for
being class 1 and 60% for being class 2 while the other patch disagrees with a 20% to
80% certainty for class 1 and 2 respectively, the pixel is then classified as class 2. This
is a common technique when predicting large images using overlapping patches in a fully
convolutional network setting. However, the certainty of an output prediction always
sum to 100% even though the prediction at the edges still has much less information to
determine the correct label. To model this uncertainty, we weight each patch such that
there’s a higher weight near the center of each patch where the classification is expected
to be the best.

The weights were generated by placing box of size 128 × 128 centered at each patch
with weight 1. The box was smoothed with a Gaussian kernel with standard deviation
256/8.5 ≈ 30. The result can be seen in Figure 6.9a. The parameters were here chosen
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visually such that any pixel had multiple votes from patches with the pixel near their
center but with a greatly penalized weight for patches which only barely covered the
pixel. These parameters can be estimated by hyper-parameter search, but we did not
explore this further for this work. Since the combined output is a combination of several
output patches, we can examine the ratio of which one single patch has weight within
itself. In other words, if a patch was to be predicted, how much information originate
from itself as opposed to other overlapping patches. In Figure 6.9b, we can see how much
of a vote a patch has on the region it occupies in the final image. That is, the ratio r of
which a patch i contributes to itself by its pixel weight wi(x, y) is given by the ratio

r(x, y) =
wi(x, y)∑
j 6=iwj(x, y)

. (6.4)

Notice that in this example the result is more narrow than the original patch weight.
Generally, a larger stride will make the ratio wider while a smaller stride will make the
ratio of contribution more narrow. A 1D view of the weight overlap can be seen in
Figure 6.10a showing that plenty of patches contribute to the same final prediction. The
combined weights from multiple patches can be seen in Figure 6.10 showing good coverage
in the resulting prediction.

6.4 Statistical Tests on Measure Functions

To assess the significance of the difference between the groups, we want to perform a null
hypothesis significance test. However, we are faced with the difficulty in understanding the
underlying test statistic. Therefore, we choose to directly measure the significance using
a Monte Carlo Permutation Test. To accomplish this we need to define an appropriate
distance measure between the groups of shape measure functions. Then, to perform the
significance test, we calculate the difference τ between the groups once, and perform the
following repeated action. Let N,M denote the number of measure functions in each
group. We then do the following a total of L times

1. Combine all N +M functions into one pool.

2. Randomly split the pool of function into groups of size N and M .

3. Calculate the distance τi for the two randomly sampled groups.

The p-value can now directly be estimated by the proportion of τi > τ . I.e

p ≈ 1

L

L∑
i=1

1τi>τ . (6.5)

We calculate distance τ between the groups by first calculating the mean function

fmean(x) =
1

n

n∑
i=1

fi(x) , (6.6)

in each group where n is the number of functions in the group. We then measure the
distance between the mean functions as the integral of the absolute difference between
them. I.e.

d(f, g) =

∫ rmax

rmin

|f(r)− g(r)|dr . (6.7)
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Here rmin and rmax determine the interval of interest of which there is expected to
be a significant difference. This step needs special thought since first looking and then
choosing an interval can be used as an intentionally or unintentionally way of p-hacking.

Example statistical test

Since both articles are still being written, we cannot here show the results, but as an
example I here show the result of a p-value calculation for the synthetically generated
object clusters used in the article presented in Chapter 3 seen here in Figure 6.11 for
convenience.

Calculating the p-value for the unnormalized groups is shown in Figure 6.11a, unsur-
prisingly, yields a rather high approximate p-value of 0.57. Conversely, the normalized
groups, shown in Figure 6.11b, gives an approximate p-value of 4 · 10−5. It can difficult
to spot the characteristic difference in how these two groups was formed visually, but
both the normalized graph, and the calculated p-value clearly indicate that these are very
distinct groups.

6.5 Using biological Structures in Image Normaliza-

tion

In both projects we had multiple datasets which each were imaged under similar condi-
tions, but due to a number of circumstances, most importantly, that the imaging device
is recalibrated before imaging each of the datasets, the datasets vary in quality, signal
to noise ratio, dynamic range and contrast. It is normal to standardize the input data
before feeding into a neural network. This is a problematic approach for these biological
samples because we are often faced with large structures, much larger than the one in
which we are interested, which has a significantly different visual characteristic which is
detrimental to the stability of the standardization process (See Figure 6.3 for examples
of these large structures).

To get a stable normalization of the images, we use the annotation of a few significant
biological structures as reference intensities in order to perform brightness and contrast
adjustment on each dataset. The goal is to map each image into a common reference
frame irrespective of the varying image content, and to allow for transfer learning in the
training and prediction of the datasets. We note that a linear mapping of pixel intensities
correspond to a brightness and contrast adjustment.

To accomplish this, we annotate two areas with distinct and uniform intensity values
and calculate the mean intensity of these. Let smin and smax denote the means of these two
regions with smin denoting the smallest and smax denoting the largest. We then calculate
a linear map such that these areas on average will have intensity equal to two target
intensities tmin, tmax. The intensity map from an intensity value s to an intensity value t
is thus calculated by

t =
tmax − tmin

smax − smin

(s− smax) + tmax . (6.8)

For training the neural network, we chose a few areas consisting primarily of cytosol and a
few strips of myelin. These structures approximately represent the brightest and darkest
objects in the images. We mapped these to 1 and −1 respectively for each dataset.
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This method can also be extended to a non-linear intensity mapping, by annotating
more than two distinct biological structures and fitting a mapping to the mean intensity
of these. This was not explored further here.
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Figure 6.3: Example of one of the sections where mitochondria were annotated. Mito-
chondria annotations are shown in yellow.
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Figure 6.4: The set of curves annotated for a single Node of Ranvier.
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Figure 6.5: Distribution of Node of Ranvier branching types. The types are labeled as
m-c where m denotes the number of myelinated branches and c denotes the number of
unmyelinated branches.
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Figure 6.6: Distribution of Node of Ranvier lengths.

(a) SS-TEM image (b) Pixel weights

Figure 6.7: text
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Figure 6.8: text
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Figure 6.9: (left) Visualization of how weights contribute in the images in a 2D represen-
tation. (right) ratio of weight contribution compared to the weight from other patches.
The ratio of weight contributions is more narrow here due to the prediction patch stride.
Higher stride will make the ratio wider and more focused for smaller stride values.
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Figure 6.10: a) 1D representation of the weight overlap. The size of a single patch is shown
as a green line. (b) The combined patch weights for part of the resulting prediction shown
in the size of an image patch.

(a) µ00(X,Y r) volume measure. (b) ν00(X,Y r) normed volume.

Figure 6.11: Example of the volume measures on uniformly distributed and clustered
spheres. (a) A slight difference can be seen directly in the µ00(X, Y r) graph, (b) but the
clustering is clearly visible in ν00(X, Y r).
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Chapter 7

Conclusion

This dissertation has worked to advance the interdisciplinary field of computer science
and biology focusing on geometric problems that arise in this intersection. Throughout
the work, we have specifically addressed how to handle a number of limitations that often
arise in biological data.

In Chapter 2, we have shown how a model-based approach using known biological
properties can be used for image registration. This work shows how to handle the prob-
lem theoretically and shows its superior accuracy. Follow-up work should be focused on
reducing the time needed for annotation of the structures and on a formulation that can
can calculate the drift more locally, as a section-by-section estimate not affected by the
drift in nearby sections.

In Chapter 3 we present a shape-measuring method that takes into account the dis-
tance to a reference object and takes into account its morphology with clear uses presented
in Chapter 6 on ALS and Huntington model mice respectively. This method in particular
presents a perspective on object relations that has not been explored fully and could be
the foundation of a new field of study. Future work could extend the theoretical formu-
lation to boundary limited measures and to better understand the equivalence under the
measure in a more general setting.

In Chapter 4 we show how to do point statistics when the points move from a common
source point and we only have sparse knowledge about the point process realization. This
method, as well as the relational shape-measure from Chapter 3, are similar in that they
ask the question of what happens when you measure objects or points in a distance
parameterized manor. This is a general topic with a plethora of open questions which will
be exciting to see further developed. We hope that this work can be a stepping stone to
such an excursion.

Finally, in Chapter 5, we present a summary statistic combining the currents distance
measure on curves and the K-function from spatial statistics. We show how the measure
performs on synthetic data and myelin sheath data.

As the fields of bioimaging, biology, and pathology evolve, so has the computational
and statistical methods evolved through the work presented in this dissertation, if just
by a couple of steps. It is with the utmost anticipation for the future progress in science,
and in particular, the above topics, that I close off this final chapter.

113



CHAPTER 7. CONCLUSION

114



Bibliography

[1] Brian B Avants, Charles L Epstein, Murray Grossman, and James C Gee. Symmetric
diffeomorphic image registration with cross-correlation: evaluating automated label-
ing of elderly and neurodegenerative brain. Medical image analysis, 12(1):26–41,
2008.

[2] Adrian Baddeley, Ege Rubak, and Rolf Turner. Spatial Point Patterns: Methodology
and Applications with R. CRC Press, November 2015. Google-Books-ID: rGbmC-
gAAQBAJ.

[3] Martin Bauer, Martins Bruveris, and Peter W. Michor. Overview of the Geometries
of Shape Spaces and Diffeomorphism Groups. Journal of Mathematical Imaging and
Vision, 50(1-2):60–97, September 2014.

[4] Carles Bosch, Albert Mart́ınez, Nuria Masachs, Cátia M Teixeira, Isabel Fernaud,
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