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Abstract

This thesis presents a collection of research articles that make contributions in the

area of semantic classification and evaluation. Semantic classification describes the

automatic processing of data, such as text, by machines, with the goal of simulating

“understanding” the intended semantics, and as a result of this making a decision,

for instance about the topic being discussed, or how some text should be translated

into another language, or whether some piece of information constitutes fake news.

This area has seen tremendous development in recent years, especially with the

wide spread use of artificial neural network architectures, practically leading to

almost human-like performance. This thesis presents a series of contributions in

the design of artificial neural network architectures that: 1) can capture with high

accuracy the most salient parts of text, in terms of syntax, semantics and grammar;

2) can capture semantic compositionality accurately; and 3) that can accurately

detect fake news using different types of supporting evidence. This thesis also

presents a series of contributions in how text processing is evaluated. Specifically,

this thesis presents: 1) a family of novel evaluation measures that can evaluate

rankings with respect to several aspects, such as relevance, and credibility and

usefulness; 2) the biggest to this day evaluation dataset for fake news classification;

and 3) a method for improving the evaluation capacity of incomplete evaluation

datasets. Collectively, the above contributions advance the state of the art in how

machines process and understand text.
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Resumé

Denne afhandling består af en samling forskningsartikler, der bidrager til forskn-

ing i semantisk klassificering og evaluering. Semantisk klassificering er automatisk

behandling af data, såsom tekst, af maskiner, med det mål at simulere ”forståelse”

af den tilsigtede semantik, og som et resultat heraf, tager en beslutning, for ek-

sempel om emnet, der diskuteres, om hvordan en tekst skal oversættes til et an-

det sprog, eller om hvorvidt information udgør falske nyheder. Dette område har

oplevet en enorm udvikling i de senere år, især med den udbredte brug af kunstige

neurale netværksarkitekturer, der næsten kan præstere samme ydelse som men-

nesker. Denne afhandling består af en række bidrag til designet af kunstige neurale

netværksarkitekturer, som: 1) med stor nøjagtighed kan indfange de mest fremtræ-

dende dele af tekst hvad angår syntaks, semantik og grammatik; 2) kan indfange

semantisk sammensætning nøjagtigt; og 3) kan registrere falske nyheder ved hjælp

af forskellige typer bevismateriale med stor nøjagtighed. Tillige indeholder afhan-

dlingen også en række bidrag til, hvordan tekstbehandling evalueres. Specifikt

indeholder afhandlingen: 1) en familie af nye evalueringsforanstaltninger, der kan

evaluere rangeringer af søgeresultater under hensyntagen til flere aspekter såsom

relevans, troværdighed og anvendelighed; 2) det til dato største evalueringsdatasæt

til klassificering af falske nyheder; og 3) en metode til forbedring af evalueringska-

paciteten for ufuldstændige evalueringsdatasæt. Samlet bidrager afhandlingen til

at udvikle, hvordan maskiner behandler og forstår tekst.
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Sommario

Questa tesi presenta una raccolta di articoli di ricerca che forniscono un contrib-

uto nell’area della classificazione semantica e della valutazione. La classificazione

semantica descrive l’elaborazione automatica di dati, ad esempio in formato tes-

tuale, da parte di sistemi, con l’obiettivo di simulare “l’apprendimento” della sud-

detta semantica e con il risultato di prendere una decisione, ad esempio riguardo

all’argomento di una discussione, o la traduzione di un testo in un’altra lingua, o se

dell’informazione rappresenta disinformazione. Quest’area si è sviluppata enorme-

mente negli ultimi anni, soprattutto grazie ad un uso diffuso di architetture con reti

neurali artificiali, che hanno portato a prestazioni simili a quelle di una persona.

Questa tesi presenta una serie di contributi riguardanti la progettazione di architet-

ture neurali che: 1) possono individuare con accuratezza elevata le parti più salienti

del testo, relativamente alla sintassi, semantica e grammatica; 2) possono inter-

pretare in modo accurato la composizionalità semantica; e 3) possono riconoscere

con accuratezza le notizie false usando tipologie diverse di prove a sostegno dei

fatti. Inoltre questa tesi presenta una serie di contributi relativi all’elaborazione e

valutazione del testo. Nello specifico, questa tesi presenta: 1) una nuova famiglia

di misure di valutazione in grado di valutare una lista ordinata considerando vari

aspetti come rilevanza, credibilità e utilità; 2) il più grande dataset, attualmente

disponibile, per la classificazione di notizie false; e 3) un metodo per migliorare la

valutazione con dataset incompleti. In generale, i contributi sopra menzionati fanno

avanzare lo stato dell’arte in relazione a come i sistemi elaborano e interpretano il

testo.
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Περίληψη

Αυτή η διατριβή παρουσιάζει μια συλλογή ερευνητικών άρθρων που συμβάλ-

λουν στον τομέα της σημασιολογικής ταξινόμησης και αξιολόγησης. Η σημα-

σιολογική ταξινόμηση περιγράφει την αυτόματη επεξεργασία δεδομένων, όπως

το κείμενο, από ηλεκτρονικούς υπολογιστές, με στόχο την προσομοίωση της

”κατανόησης” της επιδιωκόμενης σημασιολογίας, και ως αποτέλεσμα, την αυτό-

ματη λήψη απόφασης, για παράδειγμα σχετικά με το θέμα που συζητείται, ή

πώς κάποιο κείμενο θα πρέπει να μεταφραστεί σε άλλη γλώσσα, ή εάν κάποια

πληροφορία αποτελεί ψεύτικη είδηση. Αυτή η περιοχή έχει σημειώσει τεράστια

ανάπτυξη τα τελευταία χρόνια, ειδικά με την ευρεία χρήση τεχνητών νευρονικών

δικτύων, που ουσιαστικά οδηγούν σε σχεδόν ανθρώπινη απόδοση. Αυτή η δια-

τριβή παρουσιάζει μια σειρά από συνεισφορές στο σχεδιασμό των τεχνητών νευρ-

ωνικών δικτύων που: 1) μπορούν να συλλάβουν με υψηλή ακρίβεια τα πιο εμφανή

τμήματα του κειμένου, από την άποψη συντακτικού, σημασιολογίας και γραμ-

ματικής, 2) μπορούν να συλλάβουν με ακρίβεια τη σημασιολογική σύνθεση, και

3) που μπορούν να εντοπίσουν με ακρίβεια πλαστά νέα χρησιμοποιώντας διαφορε-

τικούς τύπους αποδεικτικών στοιχείων. Αυτή η διατριβή παρουσιάζει επίσης

μια σειρά από συνεισφορές στον τρόπο αξιολόγησης της επεξεργασίας κειμένου.

Συγκεκριμένα, η παρούσα διατριβή παρουσιάζει: 1) μια οικογένεια νέων μέτρων

αξιολόγησης που μπορούν να αξιολογήσουν την κατάταξη δεδομένων σε σχέση

με διάφορες πτυχές, όπως η συνάφεια , η αξιοπιστία και η χρησιμότητα, 2) την

μεγαλύτερη μέχρι σήμερα βάση δεδομένων αξιολόγησης για ψεύτικη ταξινόμηση

ειδήσεων, και 3) μια μέθοδο για τη βελτίωση της ικανότητας αξιολόγησης των

ατελών βάσεων δεδομένων αξιολόγησης. Συλλογικά, οι παραπάνω συνεισφορές

προωθούν την τεχνολογία με την οποία οι ηλεκτρονικοί υπολογιστές επεξεργά-

ζονται και κατανοούν το κείμενο.
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Resumo

A classificação semântica, que descreve o processamento automático de dados,

como em textos, tem o objetivo de simular a compreensão da semântica pretendida,

o que resulta na tomada de decisão, por exemplo, em como algum texto deve ser

traduzido para outro idioma ou se alguma informação constitui notı́cia falsa. Esta

área teve um grande desenvolvimento nos últimos anos, especialmente com o uso

generalizado de arquiteturas de redes neurais artificiais, praticamente, levando a

um desempenho quase semelhante ao de um humano. Esta tese apresenta uma

coleção de artigos resultantes de pesquisas que trouxeram contribuições na área de

classificação semântica e avaliação. Artigos estes que, na área da semântica, con-

tribuı́ram em projetos de arquiteturas de redes neurais artificiais que: (1) podem

capturar, com alta precisão, as partes mais salientes do texto, em termos de sin-

taxe, semântica e gramática; (2) podem capturar, com precisão, a composicionali-

dade semântica; (3) podem detectar, com precisão, notı́cias falsas apoiando-se em

diferentes tipos de evidências. No tocante a avaliação sobre o processamento de

textos, os artigos apresentaram contribuições em diversos aspectos como: (1) a

apresentação de uma famı́lia de novas métricas de avaliação, capaz de avaliar rank-

ings com relação a vários aspectos, como relevância, credibilidade e utilidade; (2)

o maior conjunto de dados de avaliação existente até o momento para classificação

de notı́cias falsas; (3) um método para melhorar a capacidade de avaliação em con-

juntos de dados incompletos. Coletivamente, as contribuições reveladas por estes

artigos avançam o estado da arte em como as máquinas processam e entendem o

texto.

v



Acknowledgements

First of all, I have to say that my whole Ph.D. journey was incredible! The aca-

demic knowledge acquired and my personal development is immeasurable. Of

course, none of this would have been possible without the support of my family,

friends, and colleagues.

I am incredibly grateful to Christina for her valuable guidance and encourage-

ment, always providing her insightful observations, organization, and comments

that led to this thesis. I am also profoundly grateful to Jakob for his priceless crit-

icism and support, always presenting his sharp points and objections. I also thank

Maria for her unquestionable technical quality and willingness to help. Sometimes

she helped me, even formulating questions that are not clear in my mind – with

extraordinary patience. It is impossible to measure how much I have learned from

you all.

I would like to extend my gratitude to my office friends for good laughs daily.

Especially, for my dear friends Casper, Christian, and Dongsheng, for their sup-

port. You were essential and have made this journey much more manageable! I

would also like to thank my family and friends that were not directly involved but

were always present in my life. I also would like to acknowledge the QUARTZ 1

project for not only making everything possible but also allowing me to meet such

incredible professors and colleagues that were part of this project. Especially for

Benyou and Guilherme, with whom I spent the most time talking about research

and beyond.

The following is only in Portuguese because it just does not make any sense

otherwise. Gostaria de expressar minha mais profunda admiração, apreço, respeito
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1. INTRODUCTION

1.1 Preamble

This thesis presents a collection of research articles that make contributions in the

area of semantic classification and evaluation. Semantic classification describes the

automatic processing of data, such as text, by machines, with the goal of simulating

“understanding” the intended semantics, and as a result of this making a decision,

for instance about the topic being discussed, or how some text should be translated

into another language, or whether some piece of information constitutes fake news.

This area has seen tremendous development in recent years, especially with the

wide spread use of artificial neural network architectures, practically leading to

almost human-like performance.

This thesis presents a series of contributions in the design of artificial neural

network architectures that:

1. Can capture with high accuracy the most salient parts of text, in terms of

syntax, semantics and grammar;

2. Can capture semantic compositionality accurately;

3. Can accurately detect fake news using different types of supporting evidence.

This thesis also presents a series of contributions in how text processing is

evaluated. Specifically, this thesis presents:

1. A family of novel evaluation measures that can evaluate rankings with re-

spect to several aspects, such as relevance and credibility and usefulness;

2. The biggest to this day evaluation dataset for fake news classification;

3. A method for improving the evaluation capacity of incomplete evaluation

datasets.
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Collectively, the above contributions advance the state of the art in how ma-

chines process and understand text.

1.2 Thesis Outline

This thesis is composed of a selection of six research articles that the author of the

thesis authored during the period of his Ph.D. studies, 2018-2021. The thesis is

divided into two parts. The first part is a comprehensive summary, which is struc-

tured as follows. Chapter 2 presents the necessary background work on semantic

classification and evaluation that is required in order for the reader to follow the

remainder of the thesis. Chapter 3 presents a discussion of the contributions of

each of the included papers and ongoing work that is not yet published. Chapter 4

concludes the thesis and proposes future research directions. The second part of

the thesis contains the compilation of the original research papers.

1.3 Overview of Contributions of the Thesis

This thesis contributes advances to the area of semantic classification and evalua-

tion.

1.3.1 Advances in Semantic Classification

The contributions to semantic classification that are included in this thesis can be

grouped into three high level clusters, described below. The first type of contri-

butions in semantic classification can be seen as addressing the research challenge

of:

How to guide the learning process of automated end-to-end neural

networks towards semantically, syntactically and grammatically salient

information?

State of the art in semantic classification is a type of artificial neural network ar-

chitecture called Transformer structured around units called “attention heads”. Al-

though some recent studies have shown that some attention heads of the Trans-

former can intrinsically learn linguistically-interpretable roles [34, 158], others

have shown that heads can be pruned without significantly impacting effectiveness

(indicating redundancy), or even improving it (indicating potential errors contained

in pruned heads) [158, 113]. Thus, guiding the heads to spread their attention on
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salient information of the input is a promising direction to diminish errors and re-

dundancy among the heads. To address this research challenge, we introduced a

modified architecture called the Transformer-Guided-Attn, which explicitly guides

the multi-head attention of the Transformer by using role-specific masks, such that

different heads are designed to play different roles. First, we choose important

roles based on findings from recent studies on interpretable Transformers. Then, in

order to guide the learning in an end-to-end manner, we extend the self-attention

mechanism by incorporating masks that will force the head to attend to specific

parts of the input with respect to its role.

The second type of contributions can be seen as addressing the research chal-

lenge of:

How to detect compositional phrases when processing text?

Compositional phrases are multi-word phrases that contain at least 2 words, but

whose meaning does not represent the “sum” of each of its individual words (e.g.

red herring). Compositional phrases are difficult to handle due to their idiomatic-

ity. Work has addressed the problem of compositional phrases, but none of the

existing work addresses the fact that the compositionality of a phrase is not di-

chotomous or deterministic but instead varies across context. For instance, the

phrase “heavy metal” can be compositional when it refers to metal as the material,

but it can also be non-compositional, when it refers to the music genre. To address

this research challenge, we extract evidence from the global context of where a

multi-word phrase occurs and its local context (narrative where the phrase is used).

Moreover, we enrich the global and local phrase contexts extracted from a large

corpus with phrase information extracted from external knowledge bases. Then,

we combine both the global and local context to enrich the representation of the

phrase. We reason that, even though the global and local contexts cover several

usage scenarios, knowledge bases can offer a piece of more comprehensive and

declarative information about the phrase. In addition to a method to detect com-

positional phrases, we extend an existing benchmark dataset that consists of 1042

phrases that are noun-noun 2-term phrases [53] where we add to each phrase one

or two usage scenarios (same phrase in different contexts) using crowd-sourcing

assessors.

The third type of contributions can be seen as addressing the research challenge

of:

How to improve the automatic detection of fake news?

4



Fake news detection models are primarily trained on annotated data, that is typ-

ically mined from human fact-checked websites [14, 63, 68, 70]. Since not all

fact-checking websites use the same labels, the number of labels is large, and it is

not always clear from the guidelines on fact-checking websites how they can be

mapped onto one another. Thus, training a veracity prediction model is not en-

tirely straightforward. We contribute a fact-checking model that, differently from

existing models that employ a pipeline approach, learns to weigh evidence pages

by their importance for veracity prediction. Moreover, it makes claim veracity pre-

diction with disparate label spaces by implicitly learning how semantically close

the labels are to one another in an end-to-end manner, handling the multiple la-

bels from different sources. We also address this research challenge by investigat-

ing whether fact-checking models genuinely determine the veracity of a claim by

learning to reason over evidence. Automated fact-checking models inference of

the veracity of claim/websites is usually based on reasoning: given a claim with

associated evidence, the models aim to estimate the claim veracity based on the

supporting or refuting content within the evidence. Commonly, it is assumed that

whenever a model increases the performance, the model is learning to reason about

the relation between the evidence and the claim. However, one of the main issues

of learning models is that they can often memorize artifacts and biases instead of

genuinely learning. Thus, in addition to proposing new fact-checking models, a

more fundamental problem is how to measure whether fact-checking models are

truly learning to reason. To answer this research question, we contribute an in-

vestigation of whether the model learns to reason over the evidence by exploring

the relationship and importance of both claim and evidence. We state that a model

using both the claim and evidence should perform better on fact-checking than a

model using only the claim or evidence. The underlying assumption is that, given

only the claim as input to the fact-checking model, the model does not have enough

information to determine the claim’s veracity. Similarly, if the model is only given

the evidence, it corresponds to being able to provide an answer to an unknown

question. We find that utilizing only the evidence achieved the best performance

for most cases, and encoding the claim together with the evidence was either negli-

gible or harmful to the effectiveness. This highlights a significant problem related

to what constitutes evidence in current approaches, and also questions how current

models are being evaluated.

5



1.3.2 Advances in Evaluation

The contributions to evaluation that are included in this thesis can be grouped into

three high level clusters, described below. The first type of contributions in evalu-

ation can be seen as addressing the research challenge of:

How to evaluate rankings of documents with respect to several aspects

in theoretically principled ways that are invariant to the number and

type of aspects?

To address this research challenge, we contribute a multi-aspect evaluation ap-

proach, called Total Order Multi-Aspect (TOMA). The rationale of this method is

that given a ranked list, TOMA first defines a preferential order (formally weak

order relation) between aspects and category labels (e.g., relevant and not relevant

for relevance) and then aggregates across multiple aspects to obtain a list of sin-

gle category labels that can be evaluated by any single-aspect evaluation measure.

Precisely, we embed category label tuples in Euclidean space and we derive the

weak order using bespoke distance functions (see Chapter 9). For example, when

the items that are ranked are documents retrieved by a search engine, then weak

order relation allows deeming documents “equally good” when it is impossible or

undesirable to impose a strict total order, allowing to rank even those documents

that are not comparable with respect to the partial order relation. This ensures,

by definition, that the preference order among multi-aspect tuples of labels is not

violated for any number and type of aspects. We map each multi-aspect label tuple

to a single integer weight (this allows us to aggregate multi-aspect tuples of labels

so that better tuples can be given greater weight). Lastly, having such a weak order

and weight, we use any existing single-aspect ranking evaluation measure to assess

the quality of the ranking and guarantee that the final measure score is theoretically

well-defined.

The second type of contributions can be view as addressing the research chal-

lenge of:

How to create a benchmark for developing and evaluating multi-aspect

methods of sorting data, specifically in the domain of fake news clas-

sification?

As most data does not come with the aspect of interest (e.g., websites will not come

with an assessment of if they are fake or not), automatic inference is necessary in

many cases. One such case is the domain of fake news, which is the one we make
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a contribution to. To learn to infer the veracity of claims/websites, we contribute

the currently largest1 fact-checking real-world dataset (see Chapter 7). Our dataset,

uniquely among existing datasets, contains a large number of naturally occurring

claims and rich additional meta-information. Precisely, our Multi-Domain Dataset

for Evidence-Based Fact Checking of Claims (MultiFC) consists of 34,918 claims

which were extracted from 26 fact-checking websites, along with evidence pages,

the context in which they occurred, and rich metadata.

The third type of contributions can be seen as addressing the research challenge

of:

How to develop methods to improve evaluation by handling test col-

lection incompleteness while accounting for class imbalance?

Although test collections are very important for training, evaluating and compar-

ing retrieval systems or other applications, they are often incomplete: they tend to

contain considerably fewer assessed than non-assessed documents. Within this mi-

nority class of assessed documents, considerably fewer documents are assessed as

relevant than non-relevant to a query. To address the challenge of test collection in-

completeness, we contribute a method to automatically infer relevance assessments

from document similarities to complete the test collection while still accounting for

the imbalance between relevant and non-relevant documents (see Chapter 10). Our

method estimates the relevance label using the inter-document similarities between

the unjudged document and a set of assessed documents. Furthermore, we ad-

dress the problem that the discriminative signal of relevant documents (minority) is

weakened by the much stronger (majority) noise signal of non-relevant documents.

To overcome the imbalance between relevant and non-relevant documents, we use

a tunable threshold parameter to only let judged documents influence the inference

if their similarity to the unjudged document exceeds the threshold parameter.

1.4 List of Publications
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2. BACKGROUND

This chapter presents the necessary background work on semantic classification

and evaluation that is required in order for the reader to follow the remainder of the

thesis.

2.1 Semantic classification

The semantic processing of text by machines has been a core object of study within

computer science for more than 50 years now [26]. Numerous overviews of the

area exist, see for instance chapter 2 of [98]. The core problem is how to approxi-

mate human semantic understanding by machines, so that we can have human-like

inferences that are informed from this semantic understanding, such as classifica-

tion of text by topic, text translation, or fake news detection in text. This is a very

broad area, and in this thesis, the focus has been on two high-level directions. The

first one is how to improve semantic understanding1 per se, by guiding the learning

process to salient parts of the text. The second one is how to improve the classi-

fication of text by topic and fake news detection in text. Next, we present a brief

overview on these two directions.

2.1.1 Semantic understanding in text

There exist several methods for semantic understanding of the text: A most basic

approach to represent text and extract features is using a bag of words (BOW) [62].

BOW encodes words using a one-hot encoding, where each word count is consid-

ered a feature. The primary assumption is that the words can be interpreted indi-

vidually, not considering any connection between grammar, order, or how words

relate to each other. The main advantage of representing text using bag of words
1Here, we discuss the semantic understanding of text by computers. Recently, there is also work

on the semantic understanding of the output of computers by humans, see for instance [13, 14].
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is that its concept is simple and intuitive. It is commonly used as the first step

to identify and extract characteristics such as using the Term Frequency (TF) of a

word in a piece of text, and it is usually weighted using the Term Frequency - In-

verse Document Frequency (TF-IDF) to represent the informativeness of the word

in the text [112]. BOW has some limitations such as its sparsity and absence of

semantics. As the vocabulary of words increases, keeping track of all the words’

identities leads to a high dimensional vector as large as the whole set of words in

the whole collection (vocabulary).

Another way to represent text is using word embeddings [115, 124], which

overcomes the problems of both sparsity and lack of context/semantics present in

BOW representations [60, 115, 125]. In word embeddings, words are encoded us-

ing low dimensional vectors in such a way that this vector will represent the mean-

ing of the word, which is captured according to its relation to other words [60].

To learn word vectors/representations, word embeddings use machine learning al-

gorithms to learn real-valued or dense vector representation for each vocabulary

term in a corpus. A well-known technique for learning such word embeddings

is word2vec that uses neural network models to learn the word embedding using

a collection of text [115]. Word2vec relies on two different algorithms, one that

tries to predict the word given its surrounding words, namely continuous bag-of-

words (CBOW), and another that tries to predict the surrounding context of a given

word. A different word embedding is Global vectors (GloVe)[124]. The GloVe un-

derlying assumption is that word-word co-occurrence probabilities can potentially

encode some form of meaning.

Although word embeddings offer practical applications by representing words

according to the context they occur, they have limitations. For instance, composi-

tionality plays a vital role in word embeddings, and not handling non-compositional

phrases, where the meaning of a multi-word phrase is not decomposed on the

meaning of each word (e.g., heavy metal), can mislead and impact the quality

of the word embedding [145]. Several existing approaches aim to identify non-

compositional terms automatically. Some approaches assume that higher similar-

ity between the constituents of a phrase and each of its components is indicative

that the phrase is non-compositional [17, 86, 156]. Others estimate the similarity

between a phrase and versions of the exact phrase, where the component words

are perturbed using their synonym [87, 105]. Lioma et al. [99] represent the orig-

inal phrase and its perturbations as ranked lists and measure their correlation or

distance. Recently, increasing efforts attempt to use word embeddings and deep
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artificial neural networks for compositionality detection [72, 139, 176]. Salehi et

al. [139] also compute the similarity between each word represented in vector and

the component word vectors using different representations [115, 121, 138]. Yaz-

dani et al. [176] used neural networks to learn the semantic composition and recog-

nize non-compositional phrases like those that stand out as outliers, assuming that

the majority are compositional. Salehi et al. [137] use Wiktionary and utilize the

definition, synonyms, and translations of Wiktionary to detect non-compositional

components. Although the work mentioned above can be seen as a step forward

for compositionality detection, they do not handle polysemy. For instance, if we

consider the phrase “red herring”, it can refer to a dried smoked fish which is

compositional, or it could refer to some information intended to be misleading or

distracting, which is non-compositional. We state that the compositionality of a

phrase is not deterministic and can vary according to different contexts. Thus we

contribute a method to consider contextual compositionality detection (see Chap-

ter 6).

A more recent representation was proposed to overcome the lack of context

of word embeddings. In contextual embedding, intuition is that a word may have

a different meaning depending on its context. Thus, each word depends on its

surrounding context and will not have a static vector representation. Instead its

representation is generated dynamically according to its context [128, 49]. This

contextual embedding is a step further towards models that can understand high-

level concepts across many sentences. Several different models have been proposed

to obtain such contextual embeddings. Peters et al. [128] developed Embeddings

from Language Models) ElMo, which obtains its contextual embedding by training

a model using a very large dataset to predict the next word (forward) or previous

word (backward) using LSTM [75], which is later concatenated to encode the left

and right contexts. The state-of-the-art in learning contextual embeddings is the

Transformer model and its attention mechanisms [155]. Generative Pre-trained

Transformer (GPT) and GPT2 use the Transformer model [155] trained on a large

corpus and later fine-tuned in a supervised manner. Its learning process follows

the assumption of how we read in English (left-to-right) in such a way that it only

attends to its left context. A more powerful contextual embedding is the Bidi-

rectional Encoder Representations from Transformers (BERT) ([49]). BERT also

uses a Transformer encoder, but differently from GPT and GPT2, it attends to bi-

directional contexts during pre-training. Several others extensions of BERT have

been proposed: RoBERTa [106], ALBERT [89], SpanBERT [84], all of which have
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architectures using transformers.

The Transformer was initially proposed as an encoder-decoder model. Its

central part is the multi-head self-attention mechanism, which looks at the rela-

tionship between words within its context. Recent studies show that while some

attention heads often learn essential (and even linguistically-interpretable) roles

[34, 113, 158], other heads are less important and can be pruned without signifi-

cantly impacting effectiveness [113, 158]. While the above-mentioned work inves-

tigated the roles of the attention heads, just a few have tried to guide the heads to

attend some specific roles. For instance, Strubell et al. [147] trained the multi-head

model with the first head attending to a single syntactic parent token, while the rest

being regular attention heads. Sennrich and Haddow [144] used additional linguis-

tic features such as sub-word tags, Part-of-speech (POS) tags as extra features into

an attention encoder and decoder model in order to improve the model. Motivated

by the above, instead of guiding a single head and only adding extra features to the

input data, we present a method that guides the multi-attention heads to specific

roles towards semantically, syntactically, and grammatically salient information

(see Chapter 5). Next, we discuss some applications that use the above-presented

methods of semantic understanding in practical applications.

2.1.2 Text classification and fake news detection

The purpose of fact checking is to make predictions of the veracity of claims. The

veracity of a claim indicates the degree of being factual in terms of right or wrong.

Recently, the task of fact-checking has been automated using machine learning and

Natural Language Processing (NLP) to predict the veracity of claims. Automatic

fact-checking is commonly framed as a textual classification problem, where given

a claim, the models aim to estimate the claim veracity (e.g., classify whether a

claim is true or false). Text classification consists of the process of predicting to

which of a set of classes a new unseen textual input observation belongs, based on

a training set of data containing observations whose classes are known. The clas-

sification is usually categorized according to the number of pre-defined classes,

which are binary (e.g., False or True) or multi-class (False, Half-True, True). Each

instance of the dataset is represented by a feature vector which is commonly ob-

tained from the input text using the methods described in Section 2.1.1. Lastly,

given a training dataset with labelled instances, the classifier approximates a func-

tion such that for a new unseen instance and its features, the classifier can predict

a label from the set of pre-defined labels.
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The type of dataset utilized affects how automatic fact-checking methods work.

Methods only taking claims as input typically encode those with CNNs or RNNs

[126, 171], and potentially encode metadata [171] in a similar way. Methods

for small datasets often use hand-crafted features that are a mix of BOW and

other lexical features, e.g., Linguistic Inquiry and Word Count (LIWC), and then

use those as input to a Support Vector Machine (SVM) or Multilayer Perceptron

(MLP) [18, 114, 126, 131]. More complex methods involve using deep learning

approaches often trained on larger datasets, and account for evidence documents.

These methods are contextual and non-contextual embeddings, which encode the

claim and evidence using RNNs or Transformers aiming to identify the compat-

ibility between claim and evidence [6, 51, 73, 129, 146]. In this thesis, we also

contribute a new joint evidence ranking and claim veracity prediction model that

learns to weigh evidence pages by their importance for veracity prediction in a

end-to-end manner (see Chapter 7).

One of the main issues in machine learning, and also in fact-checking, is to

guarantee that models will generalize well to new unseen data [1]. Recent research

has shown that several NLP machine learning models can be fragile and spuri-

ous. For instance, simple and small changes in the training examples can lead

the models to fail drastically [3, 20, 52, 83, 91, 92, 120, 175] while others have

shown that the models often memorize artifacts and biases instead of truly learn-

ing [2, 61, 120]. One reason is the lack of careful consideration of how the models

are evaluated, using evaluation measures and completely disregarding their known

limitations. For instance, several measures rely on n-grams overlapping which has

limitations such as not considering the meaning of the words, the order that words

appear in the sentence. This can lead to a completely non-sense output with a “per-

fect” matching with the reference would result in a perfect score or even assign

higher scores to system outputs than to human-authored texts [28, 50, 96, 123, 130].

Another reason for the lack of generalizability is due to biases that can exist in the

dataset itself [57, 180]. This means that, even when the models achieve SOTA

performance on their reported models, there is no guarantee that such results are

truly learning and generalize well to new datasets (even for datasets from the same

task). Hence, a deeper analysis of improvements in effectiveness and investigating

what is truly being learned is necessary. Motivated by the above, we contribute an

analysis of several fact-checking models and investigate whether such models are

truly learning or memorising (see Chapter 8).
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2.2 Evaluation

Evaluation is the process of utilizing empirical data to make judgments about the

quality of the process being evaluated. Evaluation should be systematic and impar-

tial, and it involves several steps and methodologies to make judgments of quality

on particular criteria. Evaluation is crucial for assessing and improving different

technologies, programs, models, etc [88]. In the context of IR, search engines are

traditionally evaluated in terms of efficiency and effectiveness. Evaluating effi-

ciency refers to the computational cost, such as the response time of the search

system in every step of the whole retrieval process, including building the index

[65, 66, 67, 69, 103], computational resources [179], retrieval [109]. Methods for

evaluating the effectiveness of the retrieval results are crucial for further develop-

ments of search systems as they allow the measurement of how successfully the

search system meets its objective of fulfilling the users’ information needs [44].

Traditionally, the effectiveness of IR systems refers to the ability of the model in

retrieving search results that satisfy the user need underlying the query. Search

engine queries are commonly short [79] or are part of a more elaborate search

task [178], and although they represent the users’ need, queries are often ambigu-

ous and can mislead the search engine to retrieve results that do not satisfy the

users’ information need. This raises the question of how do we evaluate IR sys-

tems?

There are two modes on how we analyze the effectiveness of IR systems: user-

centric and system-centric. User-centric evaluation can include lab user studies

with surveys, interviews, eye-tracking, etc., and log analysis with A/B testing ex-

periments and interleaving. Even though those experiments often offer rich results,

they are expensive, time-consuming, and hard to replicate [164]. A common ap-

proach for evaluating IR systems is system-centric. This involves using test col-

lections to mimic a retrieval task, at the cost of the realism, since it only mimics

the task and a possible user using the system [42, 164]. Test collections have three

components: a corpus, a set of topics, and relevance assessments. A corpus con-

sists of a collection of documents where the IR system will search for relevant

information. The topics are a surrogate of the users’ information needs, Usually

they have a field which is ”query” or ”title” that represents the reformulation of

the user’s need as a query. The relevance assessments are judgments over topic-

document pairs where a pair is assessed as either relevant or non-relevant (later

extended to multi-graded) conditioned to whether it satisfies the information need
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of the user or not [112]. The assessments of relevance are human-made therefore

it is time-consuming and expensive, which can lead the test collections to have

some limitations (see Section 2.4.3). On the other hand, once the test collection

is built, it supports automated evaluation permitting development, contrasting, and

optimization of several different search systems [44, 173]. In addition, it allows

reproducibility favoring re-usable and comparative evaluations.

After constructing the test collection, the quality of the search systems can

then be assessed via evaluation measures. Intuitively, the evaluation measures esti-

mate a score of a ranked list of documents with their relevance assessments, i.e., a

ranked list of documents should place documents labeled “relevant” before docu-

ments labeled “moderately/partially relevant” and “non-relevant” to receive a high

score. Most evaluation measures estimate the effectiveness of the system by trying

to mimic a user behavior using the IR system, e.g., starting inspecting documents

from the top all the way down in the search results. More precisely, the evalu-

ation measure is a function that receives as input an ordered vector of relevance

assessments, and returns a single numeric score, summarizing the effectiveness

of the vector [173]. Several evaluation measures have been proposed to evalu-

ate search results such as Precision (P ) and Recall (R) [43], Average Precision

(AP) [24],discounted cumulative gain (DCG) [81], Normalized discounted cumu-

lative gain (nDCG) [80], Expected Reciprocal Rank (ERR) [30], Rank-biased pre-

cision (RBP) [119]. Although the above evaluation measures are well known and

studied in the literature, they measure the effectiveness of a ranking simply consid-

ering relevance, not covering different aspects of complex information needs. More

precisely, relevance is known to be multidimensional [21, 47, 101, 142], including

for instance, Novelty, Reliability, Scope, Topicality, Understandability, Habit, and

Interest. In this thesis, we denote such different dimensions as aspects and we

contribute a family of multiple aspect evaluation measures.

When there is only a single aspect the evaluation is straight-forward, since one

can use the order of a given aspect to decide the quality of the ranked list. For in-

stance, when only relevance is considered, we can assess the results of a search

engine according to relevance labels, i.e., documents labeled “highly relevant”

should be ranked before documents labeled “fairly/marginally relevant” and “non-

relevant”. The quality of the ranking is then assessed using evaluation measures,

widely used evaluation measures are AP [24] or nDCG [80] (see Section 2.3). The

problem arises when we wish to evaluate rankings by more than one aspect si-
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multaneously2. The information need of the user is subjective, thus, assessing a

document in terms of relevance is also subjective [100, 102]. As previously men-

tioned, many aspects have been identified to influence the relevance assessment,

and it is estimated that there can easily be more than 20 attributes [19, 174]. While

several measures for a single aspect evaluation (relevance) exist in the literature,

just a few simultaneously combine these multiple aspects into the evaluation. This

multiple-aspect scenario introduces the challenge of how to define evaluation mea-

sures that accommodate both an increasing number of aspects and a varied number

of labels per aspect. Next, we discuss one of the components necessary to facilitate

multi-aspect evaluation, namely evaluation measures.

2.3 Evaluation Measures

Evaluation measure is a staple of IR, with a plethora of literature and methods

stretching back over decades. (P ) and (R) represent the starting point for IR eval-

uation measures [43]. Recall is the proportion of relevant documents retrieved by

the total number of existing relevant documents while Precision is the number of

documents retrieved as relevant that were truly relevant to a query. Another eval-

uation measure combines P and R by taking the harmonic mean of both, namely

F-measure, to provide a single value that evaluates the effectiveness of the system

[16]. AP is defined upon P , which takes the average of the precision at the rank

position where there is a relevant document, not each document. If you do this

up to rank k, then it is AP@k. RBP [119], was proposed under the assumption

that a user might not want to inspect documents at lower rankings and included a

persistent parameter to define the probability that a user will continue inspecting

documents lower in the ranking.

The above-presented measures use the notion that relevance is binary, mean-

ing that a document is either relevant or not relevant. Later, binary relevance was

extended to consider the relevance of documents in a graded scale of relevance

(e.g., fairly relevant, partially relevant). In order to accommodate such graded rel-

evance, researchers developed several evaluation measures. The first developed

evaluation measure to consider graded relevance was DCG [81], which was later

extended to its normalized form nDCG [82]. Intuitively, it computes the accumu-

lated gain a user obtains by examining the top-ranking results up to a cutoff k,

than it is nDCG@k, where this gain is top-weighted. Although AP, nDCG and
2This also holds across modalities, see for instance [59].
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RBP consider the rank position, none of them consider the documents previously

inspected, thus, Chapelle et al. [30] created the Expected Reciprocal Rank (ERR),

which intuitively discounts the rank position of document accounting for the rank

of previously seen relevant documents.

In addition to considering multi-graded relevance, relevance is also multidi-

mensional [47, 142, 21], spanning across several dimensions. The concept of

multiple dimensions were introduced as an attempt to cover the several criteria

that could have influenced notion of relevance. Borlund [21] defined into five

dimensions (Novelty, Reliability, Scope, Topicality, and Understandability), and

later extended to seven, including Habit and Interest. Some evaluation measures

explore the multiple dimensions of relevance, with some defined for specific con-

texts: relevance and novelty such as α-nDCG [35], Mean Average Precision Intent

Aware (MAP-IA) [4] and Intent Aware Expected Reciprocal Ranking (IA-ERR) [4,

31, 35]; relevance, novelty and user effort as Normalized Cube Test (nCT) [151];

relevance, redundancy, and user effort as Rank-Biased Utility (RBU) [9]; rele-

vance and understandability, such as Understandability-biased Rank-Biased Pre-

cision(uRBP) [183] and Multidimensional Measure (MM) [122]. Although the

above evaluation measures are well known and studied in the literature, most of

them measure the effectiveness of a ranking regarding relevance, disregarding the

fact that there are many other aspects that can influence effectiveness. For instance,

one could assess the information presented regarding the credibility of the content

[97], others could evaluate the effectiveness of the information presented by mea-

suring its usefullness concerning how this content helps a user to complete a task

[178]. While several measures for a single aspect evaluation (relevance) exist in

the literature, just a few simultaneously combine these multiple aspects into the

evaluation.

Efforts to deal with multiple aspect evaluation can be split into two groups:

(1) evaluate the aspects individually using any appropriate single-aspect evalua-

tion measure (e.g., AP, nDCG), and then aggregate the scores into a single score

over all aspects; or (2) evaluate all aspects at the same time using any appropriate

multi-aspect evaluation measure [9, 104, 151]. Existing evaluation measures that

consider aspects beyond relevance are either prone to serious theoretical anomalies,

or are limited to specific types/numbers of aspects, such as Normalised Local Rank

Error (NLRE), Normalised Global Rank Error (NGRE), Normalised Weighted Cu-

mulative Score (nWCS), Convex Aggregation Measure (CAM), and the Weighted

Harmonic Mean Aggregating Measure (WHAM) [104]. For instance, NLRE is
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limited for two aspects, and its extension to a greater number of aspects returns the

distribution of scores compressed towards 0, which prevents fair evaluations [97].

MM [122] is ill-defined for rankings that do not retrieve any relevant document.

CAM [104] and MM can range in different intervals depending on the distribu-

tion of the aspects. uRBP needs to retrieve an infinite number of relevant and

understandable documents to achieve a perfect score, even if the documents are

not available.

Motivated by the above, we define a family of principled multiple aspect eval-

uation measures, TOMA (see Chapter 9). The rationale of TOMA is that given a

ranked list, TOMA first defines a preferential order (formally weak order relation)

between aspects and category labels and then aggregates across multiple aspects

to obtain a list of single category labels that can be evaluated by any single-aspect

evaluation measure. Next, we discuss how to evaluate new evaluation measures

and compare them to existing ones.

2.3.1 Evaluating evaluation metrics

As different evaluation measures make decisions in different ways, assessing that

the evaluation measure is capturing the effectiveness of the search system is nec-

essary to not jump to wrong conclusions [25]. Evaluation measures can be eval-

uated in two complementary ways: theoretically, by comparing their properties to

those of other known valid measures, and empirically, by comparing them to other

known valid measures when assessing ranked lists of documents. In both cases,

the comparison allows to reason about the limitations and improvements of the

new evaluation measure.

Theoretical analysis: Evaluating the measures in a theoretical way usually con-

sists of checking whether an evaluation measure satisfies a set of desiderata [132].

In this direction, Mofat et al. [117] showed that some evaluation measures are

flawed in different ways (e.g., dismissal of the user experience as the user interacts

with the ranking, suggesting that a user knows the number of relevant documents

in the dataset, and so on), and advocated a few design goals that good metrics

should follow. Ferrante et al. [56] state that any single-aspect evaluation measure

should satisfy two properties: replacement and swap. Replacement states that if

we replace an item in a ranking with a better one, then the measure score should

not decrease. Swap states that if we swap a better item at the bottom of the ranking

with a worse item at the top of the ranking the measure score should not decrease.
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Moffat [116] defined seven proprieties and summarized a few well-known metrics

analyzing whether they do or do not satisfy these proprieties. In particular, they

defined the following properties: Boundedness, Monotonicity, Convergence, Top-

weightedness, Localization, Completeness, and Realizability. Lioma et al. [104]

derived a list of 8 evaluation desiderata that evaluation measures should follow and

checked whether their evaluation measures satisfied these desiderata.

Empirical analysis: The empirical assessments of evaluation measures are com-

monly done in terms of correlation [54, 108, 149, 163], discriminative power [134],

informativeness [10], stability [25], intuitiveness [136], and unanimity [5]. One of

the most common approaches to evaluate evaluation measures is by using correla-

tion coefficients such as Kendall’s-τ and Spearman’s ρ [140]. The interpretation

of the results of the correlation analysis depends on how the correlation is used.

For instance, while a new evaluation measure that strongly correlates to an existing

one is likely to represent redundant information [172], a strong correlation between

users preference and the new evaluation measure is desired. Tague et al. [150] use

correlation measures to show that different precision-based evaluation metrics were

highly correlated over different TREC collections. Chen et al. [33] have calculated

the correlation between evaluation metrics and users satisfaction [148], mimicking

practical users search experience. Others calculated the correlation between the

results given by an evaluation measure over some set of search systems and the

results of the users’ preference on the same set of search systems [74, 141]. Turpin

et al. [153] investigated the correlation between evaluation metrics and users’ per-

formance.

Another way to evaluate evaluation measures is based on the informativeness

of an evaluation measure [10, 177]. The intuition is that, given a ranked list of

documents and the evaluation measure score for that list, the maximum entropy

method infers the distribution of relevant and not relevant documents in the rank-

ing . Then, one can compare the inferred precision-recall curve against the actual

precision recall-curve to determine the informativeness of the measure, i.e., their

statistical ability to predict outcomes on held-out data. The stability test [25] as-

sumes that there are multiple query reformulations associated with the same topic,

and each system is run against all the queries; the stability of the evaluation mea-

sure is then approximated by empirically examining how the behavior of the eval-

uation measure changes across different query sets. The intuitiveness test [136] is
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based on the idea that whenever two complex evaluation measures3 disagree in se-

lecting the best system out of two systems, simple measures (e.g. precision, recall)

are used as a term of comparison. This method relies on the underlying assump-

tion that the simple measures accurately represent the measurement of each aspect,

thus, better alignment with simple measures results in more intuitive complex mea-

sures. The unanimity test by Albahem [5] uses the assumption that if a system A

evaluated with simple measures is better over all aspects than another system B,

meaning that all the simple measures agree over all aspects, this unanimity should

be reflected by the complex measure. The discriminative power of an evaluation

measure quantifies how good an evaluation measure is in guaranteeing which of

two retrieval systems is the best. The discriminative power can be computed using

the bootstrap sensitivity method [134], meaning that the higher the score, the more

discriminative (i.e., the better) the approach.

Out of the empirical approaches, only correlation and discriminative power

apply for multiple aspect evaluation measures, while the remaining is not applica-

ble: the informativeness test [10] requires a precision recall-curve, which cannot

be defined for multi-aspect evaluation; the intuitiveness test [136] requires simple

single-aspect measures (e.g., precision, recall), which do not apply to multi-aspect

evaluation; the unanimity test [5], which is defined for multi-aspect evaluation, re-

quires that all the simple measures agree over all aspects which is extremely rare as

the number of aspects increase. A detailed discussion of the results of our TOMA

framework is presented in Chapter 9. Next, we discuss another component neces-

sary for evaluation, i.e., evaluation datasets.

2.4 Evaluation datasets

2.4.1 Datasets

Different datasets can vary in size, structure, types of attributes, etc., and they usu-

ally relate to a particular subject. In the context of IR, effort from many initiatives

such as TREC [71], NTCIR [85], CLEF [127], have developed large document

collections, topics, and relevance assessments to serve as test-bed to improve dif-

ferent retrieval and classification models related to several tasks. The TREC 8-9

and TREC 2001-2004, have focused on tasks such as topic distillation and tradi-

tional ad-hoc retrieval, providing test collections with topics and relevance assess-
3By complex evaluation measures we mean either rank-based measures as in [136] or multiple

aspect measures as in [5]
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ments [159, 160, 161, 162, 165, 166]. Later, other initiatives tried to combine the

different dimensions of the relevance of the previous years and proposed a task

where the aim was to combine the multiple dimensions. In particular, TREC Web

Track 2009-2014 [37, 38, 39, 40, 45, 46] promoted a task where the goal was to

evaluate not only topical relevance of the ranking but also relating to the coverage

and redundancy of the ranking regarding a query [41]. This allowed the develop-

ment and evaluation of retrieval models that considered the diversity of the ranking

into account, developing further the search systems. Moreover, datasets on as-

pects that go beyond relevance were proposed, where relevance was considered

just one among several aspects that can impact the effectiveness of the search sys-

tems. Thus, in TREC Task Track 2015-2016 [157, 178], the organizers provided a

test collection that embodies assessments of relevance and usefulness. Specifically,

documents were assessed not only in terms of the relevance of a document to the

query but also regarding its usefulness in completing the users’ task underlying the

query. This test collection allowed the development and evaluation of systems that

helped the user to complete search tasks.

2.4.2 Veracity Datasets

Despite current technological advances in search engine technology, during the

COVID-19 pandemic, the spread of misinformation led people to make wrong

decisions having severe consequences on peoples’ lives [78]. IR systems play

an important role in serving information to users, but controlling the spread of

misinformation via IR systems is difficult [32, 167]. In particular, the spread of

non-credible/misinformation is constantly increasing [167], and it should not be

underestimated [77]. This problem escalates in scenarios where the content is un-

controlled such as the web. Since users commonly use search engines to guide

them through decisions, this represents a serious threat.

To combat this problem, many different datasets have been proposed to serve

as a test-bed to estimate the veracity of potentially fake news/non-credible infor-

mation. A first dataset was released by Schwarz et al. [143], which consists of a

dataset with credibility assessments for webpages retrieved for queries of different

topics. Initiatives such as the Decision Track 2019 [97], provided a test collec-

tion for health-related topics. Specifically, along with relevance assessments for

documents, it also provided assessments of credibility and correctness in one of

the largest document corpora of web content, the ClueWeb12. The Health Mis-

information Track 2020 [36], released a test collection including assessments of
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relevance, credibility, and correctness over documents for COVID-19 related top-

ics, allowing the development and evaluation of IR systems able to rank credible

and correct documents before not credible and incorrect documents.

As most data does not come with the aspect of interest, automatic inference is

necessary in many cases. One such case is the domain of fake news as websites

themselves will not say if they are fake or not. Many datasets related to fact-

checking have been proposed testing the veracity of claims or aiming the predic-

tion of fake news. These datasets mainly consist of claims obtained from different

sources, including Wikipedia, and fact-checking websites such as politifact.com

and snopes.com along with labels of veracity [126, 152, 171]. Although the pre-

vious datasets on fact-checking provide a good step towards the improvement of

models to filter misinformation, most of them are either too small or are artificially

generated. This motivated one of the contributions of this thesis which is to develop

an evaluation dataset. Moreover, we build the currently largest naturally occurring

claims dataset for fact-checking which contains evidence supporting the labels and

rich additional meta-information (see Chapter 7).

2.4.3 Handling test collection incompleteness

Evaluating and comparing different retrieval systems is a core task in information

retrieval; central to this task is the availability of test collections large enough to

reflect the real-world data the retrieval systems will use. Building test collections

with proper size is costly and time-consuming, prohibiting human annotation of all

documents. A common approach to reduce costs consists of using a small sampled

set of the whole collection judged for each topic, typically based on top documents

from existing retrieval systems, called pooling. Several approaches to create the

pool have been proposed [11, 48, 58, 107, 118]. As IR datasets scale up in size,

the difficulty in ensuring a balanced distribution of assessed versus non-assessed

documents increases, resulting in datasets with many more documents being non-

assessed than assessed [182]. The presence of unjudged documents can lead to

unfair or outright wrong evaluation scores and system comparisons [23]: for ex-

ample, given a query and a ranked list of documents for that query–returned by

some system–if an unjudged document occurs nearer to the top of the ranking than

a second unjudged document, there is no canonically correct way of determin-

ing whether the system got the ranking right. Moreover, computing the measure

requires choosing how to deal with documents whose relevance to the query is un-

known, and different choices may lead to substantially different scores, even for
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standard measures such as P and R, regardless of whether cutoffs (e.g., precision

@K) are used or not.

A commonly used approach to deal with unjudged documents consists of map-

ping any unjudged labeled document to a not relevant label. Assuming that all of

the unjudged documents are not relevant for a topic is a straightforward but strong

assumption and may bias the evaluation by favoring systems that contribute more

to the pooling [23]. A simple alternative approach is to ignore unjudged docu-

ments and perform the evaluation solely with judged documents, but this can bias

the evaluation towards the recall of the systems since it ignores the documents’

position. For example, a system placing unjudged documents near the top of a

ranking might be judged equally good as one placing only relevant documents at

the top [135].

A possibility is to assign as not relevant or completing ignore unjudged doc-

uments. An alternative is to infer document judgments automatically to ensure

that all documents have judgments. The idea behind this approach is that–even if

inferred judgments can be incorrect–having better-than-random-chance judgments

will amend the imbalance problem between non-judged and judged documents. In

general, this approach can yield fairer comparison between systems and enable su-

pervised or semi-supervised learning algorithms to be trained on larger datasets of

annotated documents. Roitero et al. [133] approximate the relevance of a docu-

ment by using the search results of IR systems. Precisely, if a document is ranked

close to the top of the ranking by several different systems, then that document

is considered relevant. The intuition behind this method is the same as pooling

which is commonly used to build the test collection. Using this method can be

problematic since it might favor IR systems that participated in the pooling, lead-

ing to unfair evaluation. A second approach is to infer the precision/recall curve

first and then use it to estimate the labels of non-assessed documents [12]. The

main issue with this approach is that different distributions of relevant and non-

relevant documents can generate the same precision/recall curve, meaning that the

assessments estimated with this approach do not necessarily match the actual rele-

vance of non-assessed documents. A third approach estimates the relevance label

using the inter-document similarities between the unjudged document and a set of

assessed documents [29]. A problem with this approach is that it does not handle

the class imbalance between relevant and non-relevant documents. Specifically, for

most queries, the number of non-relevant documents is vastly greater than relevant

documents, whence the discriminative signal of relevant documents is weakened
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by the stronger noise signal of the non-relevant documents.

Motivated by the above, we contribute our method that infers relevance assess-

ments from document similarities to complete the test collection, i.e., balance the

distribution of judged and unjudged documents, while still accounting for the class

imbalance between relevant and non-relevant documents (see Chapter 10).
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3. CONTRIBUTIONS

This section summarizes the research questions (RQs) related to each of the contri-

butions of this thesis. We divide the contributions into two categories (i) Semantic

Classification incorporating the research questions RQ1, RQ2 and RQ3; (ii) Ad-

vances in Evaluation incorporating RQ4, RQ5 and RQ6. Each formulated research

question is accompanied by the findings of some of the articles of the author of this

thesis.

3.1 Advances in Semantic Classification

3.1.1 Research Question 1: How to guide the learning process of au-
tomated end-to-end neural networks towards semantically, syn-
tactically and grammatically salient information?

The state of the art in learning representations of words is the Transformer model

and its attention mechanisms. Recent studies have shown that some attention heads

of the Transformer can intrinsically learn linguistically interpretable roles [34,

158], others have shown that it can also lead to heads that can be pruned with-

out significantly impacting (indicating redundancy) or even improving (indicating

potential errors contained in pruned heads) effectiveness [158, 113]. Sennrich and

Haddow [144] have showed the usefulness of incorporating linguistic features as

input features into an attention encoder. Instead, we want to guide the learning

process to attend to such linguistic features without disturbing the language model

itself. Based on this, we propose the following research question:

(RQ1) How to guide the learning process of automated end-to-end neural net-

works towards semantically, syntactically and grammatically salient infor-

mation?

Guiding the heads to spread their attention on salient information of the in-
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put is a promising direction to diminish errors and redundancy among the heads.

To address this research challenge, we introduced the Transformer-Guided-Attn,

which explicitly guides the multi-head attention of the Transformer by using role-

specific masks, such that different heads are designed to play different roles. First,

we choose important roles based on findings from recent studies on interpretable

Transformers. Specifically, we selected the following roles: specialized (rare words

and separators), syntactic (dependency syntax and major relations), window (rel-

ative position) roles. Having decided the roles, we generate role masks used to

constrain the attention head to some input parts. To do so, for each input sen-

tence, we introduce a n-by-n matrix with all values being constrained (not used by

the head). Then, for each token, we change its value to be considered depending

on the masked role, e.g., a mask with the role of separators will only “activate”

tokens that are separators, keeping the remaining restricted. Lastly, in order to

guide the learning in an end-to-end manner, we extend the self-attention mecha-

nism by incorporating masks that will force the head to attend to specific parts of

the input concerning its role, i.e., for each attention head, we combine the original

attention head with the n-by-nmatrix with values that must be considered/ignored.

Lastly, we concatenate all the attention heads resulting in the multi-guided atten-

tion head (see Chapter 5). We empirically show that on both text classification and

machine translation on seven different datasets, our approach outperforms compet-

itive attention-based, CNN, and RNN baselines.

3.1.2 Research Question 2: How to detect compositional phrases when
processing text?

Automatic compositionality detection refers to identifying multi-word phrases such

where the “sum” of the meaning of their words does not represent the whole mean-

ing of the multi-word phrase. Although several works have addressed the problem

of compositional phrases, none of the current work addresses the fact that the com-

positionality of a phrase is not dichotomous or deterministic, but instead varies

across contexts. For instance, considering the phrase heavy metal, depending on

the context, the phrase can be compositional (when referring to a metal), but it

can also be non-compositional (referring to a music genre). Previous work has

shown this property of compositionality theoretically [99], but no existing work

has attempted to account for such property in automatic compositionality detec-

tion methods. Thus, motivated by the above, we propose the following research

question:
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(RQ2) How to detect compositional phrases when processing text?

To address this research challenge, we extract evidence from the global con-

text of where a multi-word phrase occurs and its local context (narrative where the

phrase is used). Specifically, to define the global context of a multi-word phrase,

we extract the occurrence of all of its surroundings (window of size n immediately

before and after) in a corpus and use all these windows to calculate the multi-

word phrase distributional semantics across the whole corpus. To compute the

local context, we first define a ranking of all the global contexts concerning the

usage scenario (e.g., query, snippets) by computing the similarity between them

(i.e., higher similarity closer to the top of the ranking). Next, we select the top K

most similar context windows to the usage scenario. Then, we build the phrase’s

local usage scenario context representation by linearly combining both the global

and the local usage scenario representations. Moreover, we enrich the global and

local phrase contexts extracted from the corpus with phrase information extracted

from external knowledge bases. We reason that even though the global and local

contexts cover several usage scenarios, knowledge bases can offer a piece of more

comprehensive and declarative information about the phrase. We experimentally

show the usefulness of adopting the knowledge base combined with our contex-

tual representation model (CRM) method. Specifically, we show that combining

local, global, and knowledge bases increase the overall performance. In addition,

we show that combining our approach CRM with RNN leads to an improvements

over RNN. Moreover, in addition to a method to detect compositional phrases, we

extend an existing benchmark dataset that consists of 1042 phrases that are noun-

noun 2-term phrases [53] where we add to each phrase one or two scenarios (if

possible), using crowd-sourcing assessors.

3.1.3 Research Question 3: How to improve the automatic detection
of fake news?

Fake news detection models are primarily trained on annotated data, that is typi-

cally obtained from human fact-checked websites [14, 63, 68, 70]. Such fake news

detection models usually infer the veracity of claim/websites based on reasoning,

i.e., given a claim with associated evidence, the models aim to estimate the claim

veracity based on the supporting or refuting content within the evidence. How-

ever, since not all fact-checking websites use the same claim labels, the number

of labels is large, and it is not always clear from the guidelines on fact-checking
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websites how they can be mapped onto one another, which makes the process of

building fact-checking models not straight-forward. In addition, even when the

fact-checking models achieve SOTA performance on their reported results, there is

no guarantee that such models genuinely learn and generalize well to new datasets

(even for datasets from the same task). Thus, developing new fact-checking mod-

els and measuring what is being learned by existing ones is challenging. Based on

this, we propose the following research question:

(RQ3) How to improve the automatic detection of fake news?

As previously mentioned, using data collected from many different sources in-

troduces a challenge when training a veracity prediction model. We contribute a

joint evidence ranking and claim veracity prediction model that, differently from

existing models that employ a pipeline approach, learns to weigh evidence pages

by their importance for veracity prediction. Our inference model embeds the to-

kens from the claim and evidence into a joint space using an attention-weighted

bidirectional LSTM [75]. To handle the disparate labels, inspired by multi-task

learning, we use a label embedding layer that learns the relationship and how se-

mantically close the labels are one to another. The label embedding layer allows

the model to implicitly learn how semantically close the labels are to one another

in an end-to-end manner, handling the multiple labels from different sources. We

trained the proposed model in our dataset (see Section 3.2.2), and we show that en-

coding metadata and evidence pages is promising, improving the final performance

of the inference model (see Chapter 7).

We also address this research challenge by evaluating whether fact-checking

models genuinely determine the veracity of a claim by learning to reason over ev-

idence. Specifically, we questioned the predictive power of the evidence itself and

whether it assists the model in enabling better reasoning. We investigate whether

the model learns to reason over the evidence by exploring the relationship and

importance of both claim and evidence. To do so, we start from the statement:

“A model using both the claim and evidence should perform better on the task

of fact-checking compared to a model using only the claim or evidence”. A sce-

nario where giving only the claim as input to the fact-checking model produces

the highest performance, suggests that the fact-checking model memorizes some

particular signals and uses them when making the prediction. Specifically, as the

prediction is based purely on claims seen during training, the fact-checking model

might not have enough information to decide whether the claim is false or true. In-
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stead, the model is exploiting some potential biases encountered in training. Simi-

larly, whenever the fact-checking model only uses the evidence as input, the model

predicts veracity based on an unknown question (claim). Thus, a fact-checking

model that performs the best, when only the evidence is provided, indicates that

the model is not reasoning over the evidence concerning the question, but simply

picking strong signals from the evidence itself or the differences in the evidence

obtained from claims with varying veracity. To investigate this, we empirically

evaluate several representative fact-checking models of ranging complexity (from

simple term-frequency-based representations to contextual embeddings), and we

evaluate each model on various datasets and using different inputs (Claim only,

Evidence only, and Claim+Evidence). Specifically, we select three different fact-

checking models: a term-frequency-based Random Forest, a GloVe-based LSTM

model, and a BERT-based model. As a benchmark dataset, we used a subset of

the MultiFC dataset. This subset was generated by selecting the 2 largest political

domains (PolitiFact and Snopes). Since the domains use different labels to rep-

resent the veracity of a claim, we manually mapped all of its labels to the same

scale. This allows better comparison since we have comparable labels across the

datasets. Comparing the results across the different fact-checking models and in-

put types, we find that utilizing only the evidence achieved the best performance

for most cases, and encoding the claim together with the evidence was either neg-

ligible or harmful to the effectiveness. This shows the existence of strong signals

in the evidence itself. Therefore improvements associated with the evidence are

not an indication of the model learning to reason over the evidence regarding the

claim, but by simply learning to use a signal inherent in the evidence itself.

3.2 Advances in Evaluation

3.2.1 Research Question 4: How to evaluate rankings of documents
with respect to several aspects in theoretically principled ways
that are invariant to the number and type of aspects?

As discussed in Section 2.3, IR evaluation measures have traditionally focused on

defining principled ways for assessing the relevance of a ranked list of documents

concerning a query. There may be situations where relevance is simply enough.

However, in most (common) retrieval situations, multiple aspects may satisfy the

user’s information needs better (whence effectiveness should be measured using
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more than one aspect). We reason that the ranking must be assessed according

to more than one aspect, e.g., relevance and correctness, where each aspect may

have its own set of categories, e.g., {not relevant, partially relevant, highly rele-

vant} for relevance, but {incorrect, correct} for correctness. Only a few evaluation

measures were developed to consider aspects other than relevance (e.g., relevance,

usefulness) using a single measure able to account for multiple aspects. However,

none of the existing evaluation measures accommodate both an increasing number

of aspects and various categories per aspect. Existing measures are either defined

specifically for certain aspects and do not extend to other types/numbers of aspects,

or lack a solid theoretical basis and can therefore end up in situations where they,

e.g., assign scores greater than their maximum or assign the maximum score to

a ranking where all documents are labeled with the lowest grade for all aspects

(e.g., not relevant, not credible, etc.). Consequently, this leads us to the following

research question:

(RQ4) How to evaluate rankings of documents with respect to several aspects in

theoretically principled ways that are invariant to the number and type of

aspects?

When evaluating using a single aspect (e.g. relevance), we can induce a weak

order using the relevance labels, i.e., documents labelled “highly relevant” should

be ranked before “fairly/marginally relevant” and “non-relevant” documents. How-

ever, when working in the multiple aspect scenario, this weak order is not straight-

forward because there are documents that are not comparable. The presence of not

comparable documents implies that it is not possible to rank the documents univo-

cally. For instance, consider two aspects with two category labels: relevance {not

relevant, relevant} and correctness {incorrect, correct}. There is not unequivocally

way to decide whether a document that is {relevant, incorrect} is better than a doc-

ument {not relevant, correct}. Existing multiple aspect evaluation measures does

not explicitly account for non comparable documents, which can make then range

in different intervals. For instance, MM and CAM sort each aspect and compute

the evaluation measure score independently, then later aggregate the evaluation

measure scores. In the presence of non-comparable documents, in any way the

documents are sorted, it will end up penalizing one aspect or the other. This means

that there is no ranking that can achieve the perfect score and the upper bound of

the evaluation measure is not known. Thus, to answer this research question, we

reason that we first need to define how to sort tuples of labels (define a weak order
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relation), weights them accordingly and compute the measure score. To this end,

we present a multi-aspect evaluation approach, called Total Order Multi-Aspect

(TOMA). To obtain the weak order relation, we embed the labels of each aspect in

Euclidean space and derive the weak order using bespoke distance functions (e.g.,

Euclidean, Manhattan, and Chebyshev), that is the “distance order”. The idea is to

consider the maximum element of the set of category label tuples (best label) and

let the ordering of the documents be induced by the “distance” of each category

label tuple to the best label. The weak order relation allows deeming documents

“equally good” when it is impossible or undesirable to impose a strict total order,

allowing to rank even those documents that are not comparable. This ensures, by

definition, that the preference order among category labels tuples is not violated for

any number and type of aspects. The distance order determines a preference among

multiple aspect documents and consequently how to sort those items (the smaller

the distance from the best label, the better the category label tuple). However, the

distance order does not specify how to aggregate category label tuple into a single

number single number to compute an IR evaluation measure. To do so, we define

a weight function and map each equivalence class (set of the tuple of labels) to a

non-negative integer based on the distance order. Lastly, having such a weak order

and weight, we use any existing single-aspect ranking evaluation measure to assess

the quality of the ranking and guarantee that the final measure score is theoretically

well-defined.

In short, we conclude that TOMA overcomes the most common anomalies of

existing measures, and, empirically evaluations (on 342 rankings using up to 4

aspects and up to 5 categories per aspect) shows that TOMA is more discrimina-

tive, has correlations that are noticeable different between the Ranking of Systems

(RoS) generated by TOMA and by current state-of-art multiple aspect evaluation

measures which shows that they are not redundant. We experimentally find that

TOMA instantiated with Manhattan distance selects as best the IR system that re-

turns the lowest amount of low quality documents in the top ranks. Moreover, it

is also the one associated with the highest quality of documents further down the

ranking. The resulting reflections and lessons learned are discussed in Chapter 9.
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3.2.2 Research Question 5: How to create a benchmark for develop-
ing and evaluating multi-aspect methods of sorting data, specif-
ically in the domain of fake news classification?

Despite relevance, several aspects can affect the effectiveness of IR systems [36,

76, 97, 178]. In particular, a significant amount of effort has been focused on

controlling the spread of misinformation. Researchers have recently started to view

the filtering of fake news/fact-checking as a task that can be partially automated

through the means of inference models. The development of inference models

strongly depends on the availability of a benchmark dataset that will serve as a

testbed to compare and evaluate the different models. Existing inference models

either rely on small datasets consisting of naturally occurring claims or datasets

consisting of artificially constructed ones. These claims are obtained from different

sources, including Wikipedia and fact-checking websites such as politifact.com

and snopes.com, along with labels of veracity [126, 152, 171]. While these datasets

offer a valuable contribution to automated fact-checking, the lack of large datasets

of real claims is what led us to our next research question:

(RQ5) How to create a benchmark for developing and evaluating multi-aspect

methods of sorting data, specifically in the domain of fake news classifica-

tion?

We contribute the currently largest fact-checking real-world dataset. Our dataset,

uniquely among extant datasets, contains many real-life claims and rich addi-

tional meta-information. Our proposed dataset, called Multi-Domain Dataset for

Evidence-Based Fact Checking of Claims (MultiFC), consists of 34,918 claims ex-

tracted from 26 fact-checking websites. We submitted each collected claim claim

to a google search API and collected the top 10 most highly ranked search results as

evidence pages. In addition to the evidence pages, to better understand the context

in which the claim occurred, we conduct entity linking. We identify and collect

from the claim entities such as people, places, organizations, and named entities.

The detailed statistics of the dataset are discussed in Chapter 7.
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3.2.3 Research Question 6: Can we invent methods that are better at
handling test collection incompleteness that takes into account
the class imbalance?

The availability of benchmark datasets large enough to reflect real-world data is

necessary for developing IR systems. Relevance assessments are essential for train-

ing (i.e., developing) and comparing (i.e., evaluating) IR systems. There are two

class imbalance problem in test collections. First, as test collections depend on

the human annotation of documents, they commonly do not have a proper size,

and thus, many documents in typical test collections are unjudged. Second, a fur-

ther class imbalance problem occurs within this small set of assessed documents:

many more documents are non-relevant than relevant to a query. Although this re-

flects the situation in the real world where typically many more documents are non-

relevant to a query than relevant, this represents a clear case of an ML problem with

an imbalanced dataset where the discriminative signal of relevant documents (mi-

nority) is weakened by the much stronger noise signal of non-relevant documents

(majority). Existing approaches to handle unjudged documents can be grouped into

three categories: ignore the unjudged documents, assign the unjudged documents

as not relevant, and infer the relevance of the unjudged document. While the first

two bypasses the problem, the latter does not handle the class imbalance between

relevant and non-relevant documents. This motivates our next research question:

(RQ6) Can we invent methods that are better at handling test collection incom-

pleteness that takes into account the class imbalance?

To answer this question, we first provide a thorough analysis of the effective-

ness of applying several class imbalance handling approaches when applied to in-

ferring relevance assessments from document similarities. On top of these class im-

balance handling approaches, we contribute to reducing the noisy impact of highly

dissimilar documents. Precisely, we use the state-of-art method by Carterette et

al. [29] to infer relevance labels. Then we address its limitation wrt. class im-

balance with our Document Similarity Thresholding (DST) method by defining a

tunable threshold parameter to only let judged documents influence the inference if

their similarity to the unjudged document exceeds the threshold parameter. We em-

pirically evaluate our method against the standard approach of inferring relevance

assessments from document similarities, using eight different sampling approaches

(with and without DST), using three different representations of document seman-

tics (TF.IDF, GLOVE word embeddings, and BERT word embeddings), and using
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data from five different TREC tracks (248 queries and 256 submitted runs). We

find that our approach is consistently the best in the tasks of (i) inferring relevance

assessments of unjudged, (ii) predicting the ranking of competing IR systems us-

ing inferred relevance assessments, and (iii) predicting NDCG scores of rankings

using inferred relevance assessments. The remaining results and lessons learned

are discussed in Chapter 10.

3.3 Ongoing Work

The findings from RQ4 show that the TOMA framework effectively handles the

multiple aspect evaluation by defining a distance order to obtain a weak order rela-

tion across all aspects. As the TOMA framework provides several different choices

of instantiations in the embedding function, the distance function and the weight

function, it also introduces some practical challenges in terms of necessary choices

to instantiate the framework. The embedding function maps a nominal label to

integers on a certain scale. TOMA in Maistro et al. [111] is instantiated with an

embedding function that maps the different aspects to different ranges, but all la-

bels were equispaced to the same step of size 1. It is important to consider the

relationship between different aspects. The relation of aspects to each other can

directly affect the final result of the distance function. Thus, exploring different

embedding functions and distances to compute the distance order requires further

investigation. Based on this, the following question arises:

Can we obtain a weak order relation in such a way that it is invari-

ant to the arbitrary choices of the embedding function and distance

function?

This is an ongoing work that we are currently investigating. We are conducting

an in-depth analysis of different embedding functions and how they impact TOMA

when instantiated with distance functions. Specifically, we analyzed three different

embedding functions:

1. Mapping all aspects in the same interval, where all labels are equispaced in

the given range

2. Mapping aspects to different ranges, but all labels equispaced with the same

step of the size of one
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3. Mapping aspects to a range twice the size as the relevance range, and we do

not use equispaced

In short, preliminary results show that changing the embedding mapping strongly

impacts the final result of distance function instantiated with Chebyshev distance

and mildly impacts the Euclidean and Manhattan distance as the correlation stays

in the mid-high range across different embeddings functions. This shows that, in-

deed, choosing different embeddings affects the results of TOMA.

In light of these results, we propose a new way to obtain the weak order re-

lation by applying the skyline operator [22], which was originally proposed to

extend database management systems with queries able to account for multiple as-

pects. We call this skyline order. The skyline operator is “invariant” to the different

embedding functions. Specifically, if any other document across aspects does not

dominate (has greater or equal labels in all aspects, and greater label in at least

one aspect) a document, it will be included in the skyline set. This means that the

number of equivalence classes returned by the skyline order does not depend on

the embedding function, but solely on the number of labels for each aspect. Even

though the skyline operator is originally defined to identify just the skyline set, i.e.

the set of label vectors that are not worse than any other label vectors in all the di-

mensions, we extend this definition to define an order relation among documents.

To do so, we use the skyline set iteratively on the space of documents, thus defining

the skyline levels. Each skyline level consists of documents globally better overall

on all aspects than any other document in the levels below. After computing all

skyline levels, we can use the weight function and map each skyline set (set of the

tuple of labels) to a non-negative integer. In this way, TOMA using skyline order

avoids the arbitrary choice of embedding functions and distance functions. Prelim-

inary results show that utilizing the skyline order to obtain the weak order relation

is effective.

36



4. CONCLUSIONS AND FUTURE WORK

4.1 Summary of Conclusions

This thesis addresses challenges related to semantic classification and evaluation.

In terms of semantic classification, we tackle the challenges by proposing new

models to: accurately learn representations by exploiting most salient parts of the

text, capture semantic compositionality, and detect fake news. With regard to eval-

uation, we proposed a new multiple aspect evaluation measure, developed a eval-

uation dataset for fake news classification and proposed methods for improving

evaluation datasets.

Improving semantic representations We presented two methods to improve

the semantic representation and understanding of the text. First, we presented

Transformer-Guided-Attn, which guides the attention head of the self-attention

mechanisms using a role-specific mask. The underlying assumption is that guid-

ing the heads to spread their attention on specific input parts reduces redundancy

among the heads. We evaluated our method on two different NLP tasks, text classi-

fication and machine translation, on seven different datasets. We concluded that our

approach obtain accuracy gains of up to 2.96% in text classification and 13% BLEU

gains in machine translation tasks. We also developed a novel method for composi-

tionality detection where the compositionality of a phrase is contextual rather than

static. We show that enriching the word embeddings with local and global contexts

outperforms state-of-the-art methods and that using knowledge bases can lead to

notable performance improvements.

Bridge Between Evaluation and Application of Fact Checking We presented

the largest real-world fact-checking dataset, consisting of 34,918 claims collected

from 26 fact-checking websites, rich metadata, and ten retrieved evidence pages

per claim. We analyzed several variants of fact-checking models, varying the use
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of evidence, entities, and metadata to show the utility of our dataset. Through

experimental analysis, we show that encoding the metadata and evidence pages

improve the overall performance. This paves the way for future work in refining

fact-checking models using our benchmark dataset. In addition, we contributed a

new joint model for ranking evidence pages and predicting veracity that, among all

other different model variants, performed the best in terms of Micro and Macro F1.

In the domain-specific analysis, we concluded that even though for a few domains

with small numbers of instances, the veracity prediction seems to be very easy

(model achieving perfect Micro F1 and Macro F1) for the domains with the more

considerable amount of claims, the veracity prediction is hard. Specifically, the

overall best performance achieved by our model was Macro F1 equals 0.625 and

Micro F1 0.492, which is far from perfect.

Insights on the Improvement of Automatic Detection of Fake News The most

common approaches of automated fact-checking are based on models that use evi-

dence to support the veracity decision of a claim. Whenever the fact-checking mod-

els improve its effectiveness, it is assumed that the model is learning to reason over

some evidence to predict the veracity of a claim. This thesis investigated whether

effectiveness improvements of fact-checking models are due to the models learn-

ing to reason over the evidence or using some existing bias in the evidence. After

investigating models of varying complexity and evaluated on multiple datasets, we

showed that for models, both training and testing within the same dataset or training

in one dataset and testing on a different dataset achieves the highest performance

for most of the cases when only the evidence is used, completely disregarding the

claim for which the evidence was retrieved. These findings highlight a potential

problem in the way that the evidence is currently collected/used. Finally, we con-

clude that this work paves the way for future work in refining alternatives to select

and utilize evidence in automated fact-checking properly.

Multiple Aspect Evaluation Measures: Related to multiple aspects evaluation

measures, we thoroughly described and validated our proposed framework TOMA.

The TOMA framework uses distance functions to obtain a weak order relation that

allows ranking even those documents that are not comparable and weight each

tuple of labels to a weight. In this way, TOMA allows evaluation of the weak

order using any single-aspect evaluation measure. We show that TOMA overcomes

the limitations of state-of-the-art multiple aspect evaluation approaches: (i) it is
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defined for any type and number of aspects and categories; (ii) it is well-defined,

allowing rankings to reach the maximum score without exceeding it; (iii) and it

is easier to interpret. We concluded that besides overcoming the limitations of

existing state-of-art multiple evaluation measures, TOMA has better discriminative

power, and is better at rewarding high-quality documents across the ranking than

prior approaches to multi-aspect evaluation.

Improving Evaluation Datasets In addition to MultiFC, a new dataset for fact-

checking, we presented a method to improve evaluation datasets. Specifically, we

handled the problem of test collection incompleteness using Logistic Regression

to infer labels of unjudged documents, as per [29], and we use 3 different docu-

ment representations (TF-IDF, Glove and BERT); we define our method, called,

DST. We tested different oversampling approaches to address the class imbalance

problem between rel/not relevant documents. To the best of our knowledge, these

have never been applied to the problem of inferring labels in IR. We experimen-

tally showed that DST is effective (both without and with oversampling). Albeit

being simple, our method yields a mean gain of +17.28% without oversampling

and +10.72% with oversampling.

4.2 Directions for Future Research

In this section, we discuss some directions for future research, directly inspired

from the results of this thesis.

Directions and further analysis of proposed Multiple Aspect Evaluation Mea-
sures Our framework TOMA can benefit from further investigations and evalu-

ations of its effectiveness. Specifically, we have analyzed our TOMA framework

using system validation. As previously discussed in Section 2.3.1, there exist dif-

ferent ways to evaluate an evaluation measure. A way of doing it is through user

studies where we can evaluate the alignment of our current approach with real

users’ preference. In addition to user studies, one can use an in-depth investiga-

tion of the theoretical properties of TOMA using the existing axiomatic treatments

of effectiveness for IR retrieval measures [7, 8, 27, 55, 110], where whenever the

evaluation measure satisfies one of the axioms, we can guarantee some assumptions

regarding the measured behavior and properties. In the light of further directions,

one promising direction is to consider that some documents can harm the evalua-

39



tion score. For instance, when a document contains relevant, credible but incorrect

information, the document should be seen as a threat and should be penalized.

Exploring dynamic feedback to weight aspects according to users’ preference
In this thesis, we have proposed multiple aspect evaluation measures that estimate

the effectiveness of the ranking towards the users’ needs. The users’ interest should

reflect the weight given for each aspect during evaluation, and the importance of

each aspect might vary accordingly to the users’ context or need. One promising

direction here is to consider that users emphasize the same aspects in each search

session [154], in which case the importance of each aspect can be predicted based

on the users’ dynamic feedback within a session. Specifically, in a session, which

encompasses multiple queries, we believe that the importance of each aspect mea-

sure can be estimated by using the users’ feedback (weight of aspects of the clicked

documents) on the first query of a search session. Thus, to evaluate the subsequent

queries of the same session, we use the aspect importance obtained by the users’

feedback to update the weights of each aspect during evaluation.

Broader Impact of Multiple Aspect Evaluation Measures In this thesis, we

presented a multiple aspect evaluation framework that can be used regardless of

the concrete applications in where such rankings are used. In the broad context

of machine learning, our TOMA framework directly impacts the evaluation, and

hence the design, of loss functions used in the training of algorithms that learn

to rank items, in a setting where multiple quality aspects of the items must be

considered simultaneously. While ranking evaluation measures can be chosen for

ethically spurious purposes (e.g., measuring rankings of job applicants where eth-

nicity is an aspect), neither the scientific problems we treat, nor the solutions we

provide, are more likely to be usable for questionable purposes than for purposes

benefiting society. Similarly, as with any ranking evaluation measure, the use of

the methods described in this thesis could be used outside their intended setting to

justify ranking decisions (say, in college admission) as being more “fair” than the

traditional non-automated methods they supplant. We stress that TOMA is primar-

ily intended for providing improved learning performance of algorithms learning

to rank items, in scenarios where full automation is already the preferred method,

e.g. in information retrieval settings.
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On the Filtering of Evidence of Automated Fact-checking We showed how

some bias in the evidence can impact the learning outcome of the fact-checking

models, which can mislead the interpretation of the results. In light of fixing such

biases, a direct approach is to filter out evidence that give away the labels (e.g.,

label appear in the evidence itself). A straightforward solution is to remove evi-

dence that comes from domains of other fact-checkers websites. The reason is that

there can exist claims that were checked by different fact-checkers, which would

give away the veracity. Another possible direction is to consider a temporal cut

based on the claim date. Specifically, removing evidence that happens after the

claim date not only would remove potential evidence that gives away the veracity

label but also would simulate a more realistic scenario where the models do not

have access to future data. Lastly, as the evidence is currently assumed to be useful

for fact-checking models, a user study investigating whether or not humans could

determine the veracity of a claim based on the evidence provided could provide

informative insights on the usefulness of such evidence.

On the Construction of Fair Datasets for Automated Fact-checking Even

though the amount of automated fact-checking is widely increasing, its results

should be carefully analyzed to identify whether what is being modeled is the ac-

tual task of fact-checking or some potential disruption on the data. While this

data extracted from portals such as politifact.com or snopes.com offers valuable

contributions to further automatic claim verification work, they can inadvertently

risk the fairness of fact-checking model output due to skewed distributions in the

data. This skewed distribution has been observed in different scenarios, where the

predictions of the models encode social biases found in web corpora [181]. Specif-

ically, some implicit correlations are not appropriate for real-world applications

and can lead the output of the learning model to stereotype bias. These stereotypes

are often thought to be the result of class imbalance in the training data. How-

ever, it is known that bias can occur without existing imbalances in the training set

so the source of bias is traced to particular features in the model [90]. As some

of those particular features reflect some property (e.g., personal attributes such as

name, country), such bias in the features can lead to stereotypes. For instance, if

we consider the distribution of labels concerning one feature (speaker) on a fact-

checking dataset, the distribution of labels can be completely skewed towards one

label, leading to stereotypes (e.g., Trump always lies). Thus, investigating and bet-

ter understanding these potential imbalances, as well as constructing datasets that
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aim to reduce such bias, e.g., having an equal number of false claims about Trump

vs. True claims in the data, may improve the resulting effectiveness and the fairness

of the output.
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ABSTRACT
When the meaning of a phrase cannot be inferred from the individ-
ual meanings of its words (e.g., hot dog), that phrase is said to be
non-compositional. Automatic compositionality detection in multi-
word phrases is critical in any application of semantic processing,
such as search engines [9]; failing to detect non-compositional
phrases can hurt system effectiveness notably. Existing research
treats phrases as either compositional or non-compositional in a
deterministic manner. In this paper, we operationalize the view-
point that compositionality is contextual rather than deterministic,
i.e., that whether a phrase is compositional or non-compositional
depends on its context. For example, the phrase “green card” is
compositional when referring to a green colored card, whereas it is
non-compositional when meaning permanent residence authoriza-
tion. We address the challenge of detecting this type of contextual
compositionality as follows: given a multi-word phrase, we en-
rich the word embedding representing its semantics with evidence
about its global context (terms it often collocates with) as well as
its local context (narratives where that phrase is used, which we
call usage scenarios). We further extend this representation with in-
formation extracted from external knowledge bases. The resulting
representation incorporates both localized context and more gen-
eral usage of the phrase and allows to detect its compositionality in
a non-deterministic and contextual way. Empirical evaluation of our
model on a dataset of phrase compositionality1, manually collected
by crowdsourcing contextual compositionality assessments, shows
that our model outperforms state-of-the-art baselines notably on
detecting phrase compositionality.

1https://github.com/dswang2011/ImprovedRankedList/tree/master/input
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1 INTRODUCTION
Automatic compositionality detection refers to the automatic assess-
ment of the extent to which the meaning of a multi-word phrase is
decomposable into the meanings of its constituents words and their
combination. For example, while brown dog is a fully compositional
phrasemeaning a dog of brown color, hot dog is a non-compositional
phrase denoting a type of food. Compositionality plays a vital role
in word embeddings because a non-decomposable phrase should,
in principle, be treated as a single word instead of a bag of word
(BOW) in word embedding approaches.

A typical line of research in automatic compositionality detection
is to "perturb" the input phrase by replacing one of its constituent
words at a time with its synonym, and then to measure the semantic
distance between the original phrase and the perturbed phrase
set [8]. The larger this distance, the less compositional the original
phrase. For instance, hot dog would be perturbed to warm dog and
hot canine. The semantic distance between the original phrase and
its two perturbations is high, indicating that they denote different
concepts; hence hot dog is non-compositional. However, the phrase
brown dog would be perturbed to hazel dog and brown canine, which
have a shorter semantic distance to brown dog, indicating that it is
compositional.

In this paper, we posit that the compositionality of a phrase is not
dichotomous or deterministic, but instead varies across scenarios.
For instance, heavy metal could refer to a dense metal that is toxic,
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which is compositional, but it could also be non-compositional
when it refers to a genre of music. Previous work acknowledges this
property of compositionality theoretically [8], but no operational
models implementing this have been presented to this day.

Given a multi-word phrase as input, we reason that the phrase
is used in some narrative, e.g., a query, sentence, snippet, docu-
ment, etc. We refer to this narrative as usage scenario of the phrase.
We combine evidence extracted from this usage scenario of the
phrase with the global context (frequently co-occurring terms) of
the phrase and use this to enrich the word embedding representa-
tion of the phrase. We linearly combine the weights of the tokens
that are obtained from the usage scenario and the global context.
We further extend this representation with information extracted
from external knowledge bases.

We evaluate our model on a large dataset of phrases which
are labeled as per five degrees of compositionality under various
usage scenarios. We find that our model outperforms state-of-the-
art baselines notably on identifying phrase compositionality. Our
contributions are as follows:
• A novel model that detects phrase compositionality under
different contexts and that outperforms the state of the art
performance in the area.
• A benchmarking dataset of contextualized compositionality
detection, that we make publicly available to the community.

2 RELATEDWORK ON AUTOMATIC
COMPOSITIONALITY DETECTION

Compositionality detectionmainly focuses on the semantic distance
or similarity calculation between a given phrase and its component
words or its perturbations under a corpus or dictionary. Earlier
approaches mostly estimate the similarity between the original
phrase and its component words. For example, Baldwin et al. [1],
and Katz and Giesbrecht [6] employ Latent Semantic Analysis (LSA)
to calculate the semantic similarity (and hence to measure compo-
sitionality). Venkatapathy and Joshi [16] extended this by adding
collocation features, e.g., phrase frequency, point-wise mutual in-
formation, extracted from the British National Corpus.

More recent work estimates the similarity between a phrase and
perturbed versions of that phrase where the words are replaced,
one at a time, by their synonyms. For instance, Kiela and Clark [7]
compute the semantic distance between a phrase and its pertur-
bation, using cosine similarity, which measures a phrase weight
by pointwise-multiplication vectors of its terms. Lioma et al. [10]
calculate the semantic distance with Kullback-Leibler divergence
based on a language model; and, in subsequent work, Lioma et al.
[8] represent the original phrase and its perturbations as ranked
lists, and measure their correlation or distance.

A promising line of work uses word embeddings and deep artifi-
cial neural networks for compositionality detection. Salehi [15] em-
ploys theword-based skip-grammodel for learning non-compositional
phrases, treating phrases as individual tokens with vectorial com-
position functions. Hashimoto and Tsuruoka [5] adopt syntactic
features including word index, frequency and PMI of a phrase
and its components words to learn the embeddings. Yazdani et
al. [17] utilize a polynomial projection function and deep artifi-
cial neural networks to learn the semantic composition and detect

non-compositional phrases like those that stand out as outliers,
assuming that the majority are compositional.

Closer to our work, Salehi el. [14] use Wiktionary and utilize the
definition, synonyms, and translations of Wiktionary to detect non-
compositional components. Specifically, they analyze the lexical
overlap between the definition of a phrase and its component words
to measure compositionality. They assume that multi-word phrases
are included in Wiktionary, while there is no guarantee for perfect
coverage of the dictionary. Unlike this approach, we useWiktionary
together with DBPedia as a structured knowledge base to represent
the contextual semantics of phrases.

To our knowledge, no prior work has operationalized the com-
positionality of a phrase as contextual.

3 OUR CONTEXTUAL REPRESENTATION
MODEL FOR COMPOSITIONALITY
DETECTION

3.1 Problem Formulation
Given an input phrase p and its accompanying usage scenario s , the
aim is to compute the compositionality score Score (p) of phrase p
with respect to usage scenario s . We follow the substitution-based
line of work [7], which (a) generates perturbations of the input
phrase p by substituting one word at a time with its synonym, (b)
builds a semantic representation (a vector of its co-occurring terms)
separately for the input phrase p and each perturbed phrase, and
(c) uses the distance between the vectors of the input phrase and
its perturbations to approximate the compositionality of the input
phrase: the higher the distance, the less compositional the input
phrase. This substitution-based line of work does not accommodate
the usage scenario of the input phrase or its perturbations. The
vectors of co-occurring terms are computed on one corpus, and
hence these vectors represent the global distributional semantics
of the input phrase and its perturbations. We extend this line of
work by incorporating the local usage scenario of the phrase and its
perturbations. We furthermore enrich these representations using
external knowledge bases KBs . We describe this next.

Figure 1 shows how the phrase and scenario are fed into the
external corpus and knowledge base in a sequential manner in the
architecture, which we refer to as contextual representation model
(CRM).

3.2 Building Global and Local Phrase Context
Global Phrase Context. In Natural Language Processing (NLP),

the distributional semantics of an input word are computed by
fixing a natural number n and, for each occurrence of a word in
some corpus, finding the n words occurring immediately before,
and n words occurring immediately after each occurrence of the
input word (called context window). If there is a total of N context
windows for a word, its distributional semantics in vector form
can be calculated by using all these N windows. Because this is a
global representation of the word’s distributional semantics across
the whole corpus, the vector is called a globalized vector. A general
word embedding (e.g., word2vec) is comparable to such global con-
text. Concretized representations of this globalized vector can be
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Figure 1: The diagram for the CRM sequential framework.

calculated with, e.g. ranked lists or word embeddings, as described
in section 4.1.

Local Phrase Context. We aim to incorporate a representation of
the local usage scenario of the input phrase (local phrase context)
into the above described global phrase context. This representation
will not be in the vector directly, because usage scenarios are typi-
cally extremely short (in terms of words), which may strongly bias
the contextual representation of the phrase. Therefore, we rank
all the global context windows of the phrase according to their
similarity to the usage scenario of the phrase, and we select the top
K most similar context windows to the usage scenario. These top K
context windows are used to build the local usage scenario context
representation of the phrase. Then, we linearly combine the global
representation of the phrase (i.e., by taking all N context windows)
and the local usage scenario representation of the phrase (i.e., the
top K context windows) to acquire the localized phrase context. The
ranking score is the similarity between the usage scenario s and
a windowWi , i.e. simi = similarity(Wi , s ) ∈ [0, 1]. The details of
how the similarity score is computed are introduced in Section 4.

In the above, the value of K is determined by the length of the
usage scenario as follows:

K = max
(

N

2length(s )
,M

)
(1)

whereN is the total number of context windows that contain phrase
p in the corpus; length(s ) is the number of words in usage scenario
s excluding the original phrase; andM is a threshold. We explain
these next.

We posit that 2length(s ) indicates the degree of shrinking: the
longer the usage scenario is, the smaller number of windows will be
shrunk. The reason behind this is that the longer the usage scenario
is, the more semantics it contains and subsequently fewer specific
windows we are supposed to be capable of locating on. For instance,
if the usage scenario is empty with length(s ) = 0, then it returns the
entire N windows of p with no shrinking performed; if the usage
scenario has three words with 2lenдth (s ) = 8, it only collects the top
1
8 of all the windows (K = N

8 ). Note that K depends on the usage
scenario length, and is not fixed as a threshold of the similarity
values. Since the similarity values may vary drastically in between
[0, 1] for different usage scenarios, we argue that our method is
more robust to such variations. Furthermore, an empirical threshold
ofM is introduced to guarantee at leastM windows will be selected
anyhow. To this end, the localized usage scenario context of a phrase

is given by:

C (p, s ) = α

∑N
i=1 R (Wi )

N
+ (1 − α )

∑K
j=1 R (Wj )

K
(2)

where a is a weight parameter between 0-1 indicating the weight
of global vector, and the remaining of 1 − a corresponds to the
contribution of the localized vector; R denotes the semantic repre-
sentation forW . In this paper, we represent a phrase as a ranked list
of words and word embedding, so the same symbol R is adopted to
denote both. The approach to calculate R is described in section
4.1.

3.3 Enriching Global and Local Phrase Context
with Knowledge Bases

We enrich the global and local context representations of the input
phrase with information extracted from external knowledge bases.
We describe this next.

We reason that the corpus used to extract the global and local
contexts has good coverage of various but not all possible usage
scenarios of the phrase. A knowledge base is expected to contain
more comprehensive, declarative information about the phrase,
e.g., entities and phrase senses with categorized information. We,
therefore, enrich the global and local phrase contexts extracted
from the corpus with phrase information extracted from external
knowledge bases.

Given an input phrase, we collect all candidate senses and enti-
ties (uniformly referred to as candidates in this paper) by searching
the following properties (and associated values) from the knowl-
edge bases: the properties dbpedia:redirects, dbpedia:disambiguation
and their propagation relation with dbpedia:name and rdfs:label.
The associated resources in these retrieved triples result in a set of
candidates. Then, for each candidate, the values of rdfs:label, dbpe-
dia:abstract and rdf:type are concatenated as the context for that
candidate, excluding the title (which is mostly the phrase name).
We also use the interface2 to retrieve senses from Wiktionary and
merge them into the same candidate set for that given input.

Most phrases only contain a limited number of candidates, and
different candidates of the same phrase can have entirely different
meanings or be distinct entities. We hence investigate a sequential
way to incorporate the knowledge base into the phrase contextual
representation, as follows. First, the phrase is fed into the knowledge
base to find all candidate articles. Then, the candidates are ranked

2https://dkpro.github.io/dkpro-jwktl/
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according to how similar they are to the localized phrase context.
Those with similarity values above a certain threshold are identified
as the matched candidates, denoted as {Di , simi }ni=1, where Di and
simi refer to the ith matched candidate with similarity value simi ∈
[0, 1]. A linear combination of the localized phrase context and the
candidate articles is then conducted to compute the adjusted phrase
context as follows:

C (p,D) = λC (p, s ) + (1 − λ)
n∑

i=1
wiR (Di ), (3)

wherewi =
simi∑n
i=1 simi

is the normalized similarity score for the ith

candidate article Di while R (Di ) denotes the semantic representa-
tion forDi . Since KB contains well-defined knowledge of words, we
use a weighted sum of the matched candidates, instead of a simple
average of matched contexts in the text corpus.

The knowledge base we employ consists of DBpedia, Wiktionary,
and Wordnet. DBpedia is constructed by extracting structured in-
formation from Wikipedia. The English version of the DBpedia
contains 4.58 million entries, of which 4.22 million are classified
and managed under one consistent ontology. Wiktionary is a multi-
lingual, web-based, freely available dictionary, thesaurus and phrase
book, designed as the lexical companion to Wikipedia. Volunteers
collaboratively construct Wiktionary, so there are no specialized
qualifications necessary.

3.4 Non-linear combination
This section represents an approach of non-linear combination as
a companion to the linear combination approach introduced in
section 3.2 and 3.3. In addition to the weight parameter oriented
design of the linear combination, we also employ a non-linear
sigmoid function in RNNs (recurrent neural networks), which re-
solves the arrangement of the combining order for context inputs.
In other words, RNNs take into consideration the feedback from
the previous context vector back and forth, leading to numerous
applications [3, 4]. Specifically, we train a neural network model
using the Keras library to identify the compositionality label of
each phrase. We encode the semantics adopting pre-trained word
embeddings - word2vec [11] as word representations, a recurrent
neural network with LSTM cells as the model, and cross-entropy
as the loss function. As an optimizer, we utilize Adam optimizer for
training the model.

In a realistic scenario (also represented in our dataset) there are
fewer non-compositional than compositional phrases. This situ-
ation resembles the class imbalance issue which happens when
one class (or label) is represented by most of the examples while
the other one is represented just by a few. Therefore, we adopt
re-sampling strategies to tackle this problem.

3.5 Compositionality Detection
Here we introduce our proposed method for compositionality de-
tection with Algorithm 1. Given a phrase p of length l and its usage
scenario s in a large corpus Corp, we compute its compositionality
score through the following steps:

(1) Obtain localized phrase context through Eq. 1 and 2. The
usage scenario of a phrase is the critical information, and

Input: Phrase p with length l
Input: Usage scenario s for p
Input: Corpus Corp
Input: Knowledge Base - DBPedia
Input: Similarity threshold - thred
Output: Compositionality score comp (p)
1: Set of perturbed phrase S(p̂)← ∅
2: Find synonym t̂ of each term t ∈ p
3: for each t̂ do
4: Perturbed phrase p̂ ← { t̂ , l-1 original terms to }
5: Update perturbed phrase set S (p̂) ← S (p̂) ∪ p̂
6: end for
7: for phrase p′ ∈ {p ∪ S (p̂)} do
8: C (p′) ← get context terms from localized phrase context

from Corp, smooth with Eq. 1 if it has scenario
9: end for
10: Find n candidate articles Di from KB where

simi = similarity (s,Di ) > thred
11: R (Di ) ← semantic representation of Di
12: C (p,D) ← linear combined context

λC (p) + (1 − λ)∑n
i=1

simi∑n
i=1 simi

R (Di )

13: Q (Lp̂ ) ← ∅
14: for each perturbed phrase p̂ ∈ S (p̂) do
15: Q (Lp̂ ) ← Q (Lp̂ ) ∪C (p̂)
16: end for
17: return 1

|Q (Lp̂ ) |
∑
C (p̂ )∈Q (Lp̂ ) Similarity (C (p̂),C (p,D))

Algorithm 1:Algorithm of contextual compositionality detection

the idea behind this step is to smooth the scenario context
representation with the original phrase representation, as
shown in line 8 in Algorithm 1.

(2) Adjust phrase context with a knowledge base. The knowl-
edge base is fed to adjust the localized phrase context where
we adopt Eq. 3 to encode the information (from line 10 to
line 12).

(3) Obtain a perturbed phrase set. For each term in the phrase,
we find its synonyms in WordNet. We then generate the set
of perturbed phrases S (p) as: S(p) = {p̂ where p̂ = l-1 terms
of p plus a synonym of the remaining term of p}, from line 3
to line 6.

(4) Construct a perturbation representation set. For each per-
turbed phrase p̂ in S(p), the corresponding representation
C (p̂) is composed of all windows of p̂ from the corpus, and
is added to the perturbation list Q (Lp̂ ) from line 14 to line
16. Note that we do not combine context from KB for pertur-
bations.

(5) Compute the compositionality score for the input phrase,
shown in line 17, using the following equation:

score (p) =

∑
p̂∈S (p ) sim(C (p,D),C (p̂))

|S (p) | (4)
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4 IMPLEMENTATION
4.1 Semantic Representation
The semantic representation of a context (a phrase, a context win-
dow or a candidate content), i.e., R (·) is concretized as either a
ranked list or a word embedding. For the ranked list model, we
calculate the TF-IDF as weight for all the tokens, rank them ac-
cording to the weight, resulting in a ranked list of those tokens as
the localized contextual representation. For the word embedding
model, we use existing pre-trained word vectors - Glove [12], and
represent the vector with the average of all tokens. The corpus we
employ in our experiment is ClueWeb12-B13, a subset of some 50
million pages of ClueWeb12-Full dataset3.

These two contextual representations lead to two different com-
positionality scores for the same model. We apply suffixes "-word
embedding" or "-ranked list" in order to distinguish the way the
contextual representation is computed, resulting in two distinct
models, namely CRM word embedding and CRM ranked list.

4.2 Similarity Measure
In this study, we are faced with the problem of computing the
similarity value between two context vectors. Here, we consider
two types of similarity measures to achieve this purpose: cosine
similarity and Pearson correlation coefficient.

One of the most commonly used similarity measures, cosine
similarity, computes the cosine value of the angle between the two
vectors of the same length. For two vectors a⃗ = [a1,a2, ..,an] and
b⃗ = [b1,b2, ..,bn], their cosine similarity cossim(a,b) is given below:

cossim(a,b) =

∑n
i=1 aibi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

(5)

The Pearson correlation coefficient computes the degree of corre-
lation between two variables, each having a set of observed values.
Suppose two variables X and Y are associated with two set of val-
ues {X1,X2, ...,Xn } and {Y1,Y2, ...,Yn } respectively. The Pearson
correlation coefficient r can, therefore, be computed as follows:

r =

∑n
i=1 (Xi − X ) (Yi − Y )√∑n

i=1 (Xi − X )2
√∑n

i=1 (Yi − Y )2
(6)

where X and Y denote the average of X and Y respectively.

4.3 Perturbation
Here, we introduce the process to obtain the perturbations of a
phrase p with length l . First, we get the synonyms for each word in
the phrase. Then, we construct the whole perturbation set, which
contains all phrases composed of l − 1 words in p and a synonym
of the remaining word. Suppose the ith word has ni synonyms,
then the perturbation set contains ∑l

i=1 ni perturbed phrases. We
then prune the perturbation set by filtering out the rare perturbed
phrases in the text corpus. Basically, we compute the occurrence
frequency of all perturbed phrases and pick the perturbed phrases
with top K frequency values. In our study, we set K to be 7, which

3https://lemurproject.org/clueweb12/

is derived from empirical observation of the data. Then, the final
perturbation set contains 7 perturbed phrases in our study.

4.4 Parameter Settings
Contextual Windows setting: We setwindow = 20, which means

it scans the previous 20 and subsequent 20 words of that phrase,
with a sum of 40 words for each window. In Equation 1, we set
M = 10, and the base 2 can also be parameter-free which can be
changed into 2,3,4,etc., to increase the localization level.

Knowledge base threshold: As for the threshold of KB candidates,
we set the threshold of similarity value between localized context
and KB candidates as 0.5 to filter out those candidateswith similarity
less than 0.5.

Ranked list length: In line with the work [8], we set a maximum
length of the ranked list as 1000, which means that we rank the
tokens according to their TFIDF weight, and the tokens after the
position of 1000 would be pruned.

Table 1: Results of different compositionality detection
methods; na denotes not applicable.

Unsupervised Methods ρ α , λ
Baseline: Ranked list [8] 0.131 na
Baseline: Word Embedding 0.147 na
CRM ranked list 0.209 0.1,0.5
CRM Word Embedding 0.375 0.9, 0.1
Supervised Methods (20% Testing) ρ

RNN (LSTM cells) 0.176 na
RNN (LSTM cells) CRM 0.324 na

Training and testing: As we are working with imbalanced data,
we use a random oversampling strategy. We split our data in a
stratified fashion into 65% for training, 15% for validation, and
20% for testing. The re-sampling is be done after splitting the data
into training and test, and only on the training data, i.e., none of
the information in the test data is being used to create synthetic
observations.

5 EXPERIMENT AND VALIDATION
In this section, we evaluate the effectiveness of the model presented
in Section 3. Section 5.1 introduces the dataset and Section 5.2
presents the results achieved by our model.

5.1 Crowdsourcing data
We employ a dataset that consists of 1042 phrases that are noun-
noun 2-term phrases [2]. In this dataset, each phrase was assessed
four times using a binary scale (compositional or non-compositional).
However, these phrases are assessed with a deterministic label,
meaning that no scenario or context was given, and the degree of
compositionality may not always be binary [13]. Therefore, we ex-
tend the dataset into a new version where each phrase is enriched
with one or two scenarios if possible, by taking advantage of a
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Table 2: Summary of dataset statistics.

No. Non-Compositional 43 (3.6%)
No. Mostly Non-Compositional 145 (12.1%)
No. Ambiguos Phrases 126 (10.5%)
No. Mostly Compositional 141 (12.0%)
No. Compositional 739 (61.8%)
Unique number of Phrases 1042
No. of context 1194
Average number of context by Phrase 1.146

crowdsourcing website - Figure Eight 4, and we use a graded level
of compositionality. In Table 2 we summarize the dataset statistics.

We divided the assessment into two stages: for the first stage,
the trustful assessors, with level 3 (highest in Figure Eight), are
required to understand the various meanings of a phrase, and, if
possible, create two scenarios for the same phrase. From these
two scenarios, one should be compositional or as compositional as
possible, and the other non-compositional or as non-compositional
as possible. If the phrase can only be compositional or only be non-
compositional, then they create one scenario for it. For the second
stage, the assessors are required to assess the compositionality of
phrases within different scenarios with one of the five graded labels:
compositional, mostly-compositional, ambiguous to judge, mostly
non-compositional, and non-compositional. Note that, for the first
stage, the two scenarios of a phrase are not necessarily of two
extreme polarities.

4https://www.figure-eight.com/

Figure 2: The grid search forWord embedding basedContex-
tual representation. x-coordinate is α for controlling local-
ized context and λ stands for y-coordinate, controlling the
KB combiningweight. Deeper blue represents higher perfor-
mance whereas red indicates the opposite.

5.2 Performance and Validation
Two linear combination parameters influence the performance of
our model: the combination weight α (in Eq. 2) between the vectors
of a phrase and its scenario, resulting in a localized phrase context,
and λ (in Eq. 3) between the localized context and knowledge base.
The impacts of these two parameters on the final performance are
visualized in Figure 2 and 3, corresponding to the word embedding-
based and ranked list-based contextual representation respectively.
α and λ denote the x and y coordinates. The colors indicate the
performance, which is the correlation between the ground truth
labels and the predicted labels of our models ranging from -1 to
1. The performance values are colored ranging from red to blue,
representing the lowest performance to the highest.

As shown in Figure 2, the performance is negatively correlated
with α while positively correlated with λ. This indicates that re-
ducing the relative importance of localized context (right direction
on x-coordinate) while enhancing the influence of knowledge base
(bottom direction on y-coordinate) can improve the performance
for word embedding based contextual representation. In contrast,
as shown in Figure 3, if we ignore the 0 column, α is negatively
correlated with the performance while λ does not have an apparent
influence on the performance. This indicates that attaching higher
importance to the localized context (left direction on x-coordinate)
can improve the performance for the ranked list based contextual
representation, while the adoption of knowledge base does not
have an apparent influence to the overall performance. The first
0 column, which is shown more like an outlier, indicates that the
existence of a vector of the original phrase is necessary. In other
words, localized context would have relatively poor performance.

As summarized in Table 1, the performance improved from 0.147
to 0.375 for CRMs based on word embeddings (the best); from 0.131
to 0.209 for CRMs based on ranked list; and 0.176 to 0.324 for CRM
based on RNN. For the word embedding based contextual represen-
tation model, relying more on the knowledge base while keeping
the scenario to limited importance will lead to a high-performed
model; for the ranked list based contextual representation model,
on the other hand, adequately high adoption of localized context
can lead to improved performance. The reason behind this can
be that the knowledge base contains relatively trimmed but well-
categorized information, therefore, the word embedding model can
take full use of this text as informative vectors. In contrast, ranked
lists, depending on tokens, work better on a large-scale corpus
where they induce a large number of context windows. However,
the knowledge base contains a limited number of tokens that may
have little contribution to the final representation. Even though we
can tune the weight of tokens from a knowledge base, it still can
have limited influence in comparison to the long ranked list, which
can be as long as 1000 tokens in our experiment.

For the non-linear combination where we employed the sigmoid
function in RNNs, the CRM based on RNN still beats the original
RNN. However, the performance is still lower than the unsupervised
approaches.

6 CONCLUSION
We developed a novel method for compositionality detection where
the compositionality of a phrase is contextual rather than static.
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Figure 3: The grid search for ranked list based Contextual
representation. x-coordinate is α for controlling localized
context and y-coordinate stands for λ, controlling the KB
combining weight. Deeper blue represents higher perfor-
mance whereas red indicates the opposite.

Instead of considering an isolated phrase as input, we assume a
phrase and its usage scenario (e.g., a query, snippet, sentence, etc.)
as input, and we model a joint semantic representation of these by
combining distributional semantics extracted from a corpus and ad-
ditional evidence extracted from an external structured knowledge
base.

Our resulting model uses word embeddings to detect compo-
sitionality, more accurately than the related state of the art. Our
experiments show that for word embeddings, the usage of knowl-
edge bases can lead to notable performance improvements.

In the future, we plan to evaluate our model on further datasets
and compositionality detection scenario, e.g., Verbal Phraseological
Units (VPUs).
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Abstract
We contribute the largest publicly available
dataset of naturally occurring factual claims
for the purpose of automatic claim verification.
It is collected from 26 fact checking websites
in English, paired with textual sources and
rich metadata, and labelled for veracity by hu-
man expert journalists. We present an in-depth
analysis of the dataset, highlighting character-
istics and challenges. Further, we present re-
sults for automatic veracity prediction, both
with established baselines and with a novel
method for joint ranking of evidence pages and
predicting veracity that outperforms all base-
lines. Significant performance increases are
achieved by encoding evidence, and by mod-
elling metadata. Our best-performing model
achieves a Macro F1 of 49.2%, showing that
this is a challenging testbed for claim veracity
prediction.

1 Introduction

Misinformation and disinformation are two of the
most pertinent and difficult challenges of the in-
formation age, exacerbated by the popularity of
social media. In an effort to counter this, a signif-
icant amount of manual labour has been invested
in fact checking claims, often collecting the results
of these manual checks on fact checking portals or
websites such as politifact.com or snopes.com. In
a parallel development, researchers have recently
started to view fact checking as a task that can
be partially automated, using machine learning
and NLP to automatically predict the veracity of
claims. However, existing efforts either use small
datasets consisting of naturally occurring claims
(e.g. Mihalcea and Strapparava (2009); Zubiaga
et al. (2016)), or datasets consisting of artificially
constructed claims such as FEVER (Thorne et al.,
2018). While the latter offer valuable contribu-
tions to further automatic claim verification work,
they cannot replace real-world datasets.

Feature Value

ClaimID farg-00004
Claim Mexico and Canada assemble

cars with foreign parts and send
them to the U.S. with no tax.

Label distorts
Claim URL https://www.factcheck.org/2018/

10/factchecking-trump-on-trade/

Reason None
Category the-factcheck-wire
Speaker Donald Trump
Checker Eugene Kiely
Tags North American Free Trade

Agreement
Claim Entities United States, Canada, Mexico
Article Title FactChecking Trump on Trade
Publish Date October 3, 2018
Claim Date Monday, October 1, 2018

Table 1: An example of a claim instance. Entities are
obtained via entity linking. Article and outlink texts,
evidence search snippets and pages are not shown.

Contributions. We introduce the currently
largest claim verification dataset of naturally
occurring claims.1 It consists of 34,918 claims,
collected from 26 fact checking websites in
English; evidence pages to verify the claims; the
context in which they occurred; and rich metadata
(see Table 1 for an example). We perform a
thorough analysis to identify characteristics of the
dataset such as entities mentioned in claims. We
demonstrate the utility of the dataset by training
state of the art veracity prediction models, and
find that evidence pages as well as metadata
significantly contribute to model performance. Fi-
nally, we propose a novel model that jointly ranks
evidence pages and performs veracity prediction.
The best-performing model achieves a Macro F1
of 49.2%, showing that this is a non-trivial dataset
with remaining challenges for future work.

1The dataset is found here: https://copenlu.
github.io/publication/2019_emnlp_
augenstein/
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2 Related Work

2.1 Datasets

Over the past few years, a variety of mostly small
datasets related to fact checking have been re-
leased. An overview over core datasets is given in
Table 2. The datasets can be grouped into four cat-
egories (I–IV). Category I contains datasets aimed
at testing how well the veracity3 of a claim can be
predicted using the claim alone, without context or
evidence documents. Category II contains datasets
bundled with documents related to each claim – ei-
ther topically related to provide context, or serving
as evidence. Those documents are, however, not
annotated. Category III is for predicting veracity;
they encourage retrieving evidence documents as
part of their task description, but do not distribute
them. Finally, category IV comprises datasets an-
notated for both veracity and stance. Thus, ev-
ery document is annotated with a label indicat-
ing whether the document supports or denies the
claim, or is unrelated to it. Additional labels can
then be added to the datasets to better predict ve-
racity, for instance by jointly training stance and
veracity prediction models.

Methods not shown in the table, but related
to fact checking, are stance detection for claims
(Ferreira and Vlachos, 2016; Pomerleau and Rao,
2017; Augenstein et al., 2016a; Kochkina et al.,
2017; Augenstein et al., 2016b; Zubiaga et al.,
2018; Riedel et al., 2017), satire detection (Ru-
bin et al., 2016), clickbait detection (Karadzhov
et al., 2017), conspiracy news detection (Tacchini
et al., 2017), rumour cascade detection (Vosoughi
et al., 2018) and claim perspectives detection
(Chen et al., 2019).

Claims are obtained from a variety of sources,
including Wikipedia, Twitter, criminal reports and
fact checking websites such as politifact.com and
snopes.com. The same goes for documents – these
are often websites obtained through Web search
queries, or Wikipedia documents, tweets or Face-
book posts. Most datasets contain a fairly small
number of claims, and those that do not, often lack
evidence documents. An exception is Thorne et al.
(2018), who create a Wikipedia-based fact check-
ing dataset. While a good testbed for develop-
ing deep neural architectures, their dataset is arti-
ficially constructed and can thus not take metadata

3We use veracity, claim credibility, and fake news predic-
tion interchangeably here – these terms are often conflated in
the literature and meant to have the same meaning.

about claims into account.
Contributions: We provide a dataset that,

uniquely among extant datasets, contains a large
number of naturally occurring claims and rich ad-
ditional meta-information.

2.2 Methods
Fact checking methods partly depend on the type
of dataset used. Methods only taking into account
claims typically encode those with CNNs or RNNs
(Wang, 2017; Pérez-Rosas et al., 2018), and poten-
tially encode metadata (Wang, 2017) in a similar
way. Methods for small datasets often use hand-
crafted features that are a mix of bag of word and
other lexical features, e.g. LIWC, and then use
those as input to a SVM or MLP (Mihalcea and
Strapparava, 2009; Pérez-Rosas et al., 2018; Baly
et al., 2018). Some use additional Twitter-specific
features (Enayet and El-Beltagy, 2017). More in-
volved methods taking into account evidence doc-
uments, often trained on larger datasets, consist
of evidence identification and ranking following a
neural model that measures the compatibility be-
tween claim and evidence (Thorne et al., 2018;
Mihaylova et al., 2018; Yin and Roth, 2018).

Contributions: The latter category above is
the most related to our paper as we consider ev-
idence documents. However, existing models are
not trained jointly for evidence identification, or
for stance and veracity prediction, but rather em-
ploy a pipeline approach. Here, we show that a
joint approach that learns to weigh evidence pages
by their importance for veracity prediction can
improve downstream veracity prediction perfor-
mance.

3 Dataset Construction

We crawled a total of 43,837 claims with their
metadata (see details in Table 11). We present
the data collection in terms of selecting sources,
crawling claims and associated metadata (Section
3.1); retrieving evidence pages; and linking enti-
ties in the crawled claims (Section 3.3).

3.1 Selection of sources
We crawled all active fact checking websites in
English listed by Duke Reporters’ Lab4 and on the
Fact Checking Wikipedia page.5 This resulted in

4https://reporterslab.org/
fact-checking/

5https://en.wikipedia.org/wiki/Fact_
checking
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Dataset # Claims Labels metadata Claim Sources
I: Veracity prediction w/o evidence
Wang (2017) 12,836 6 Yes Politifact
Pérez-Rosas et al. (2018) 980 2 No News Websites

II: Veracity
Bachenko et al. (2008) 275 2 No Criminal Reports
Mihalcea and Strapparava (2009) 600 2 No Crowd Authors
Mitra and Gilbert (2015)† 1,049 5 No Twitter
Ciampaglia et al. (2015)† 10,000 2 No Google, Wikipedia
Popat et al. (2016) 5,013 2 Yes Wikipedia, Snopes
Shu et al. (2018)† 23,921 2 Yes Politifact, gossipcop.com
Datacommons Fact Check2 10,564 2-6 Yes Fact Checking Websites

III: Veracity (evidence encouraged, but not provided)
Barrn-Cedeo et al. (2018) 150 3 No factcheck.org, Snopes

IV: Veracity + stance
Vlachos and Riedel (2014) 106 5 Yes Politifact, Channel 4 News
Zubiaga et al. (2016) 330 3 Yes Twitter
Derczynski et al. (2017) 325 3 Yes Twitter
Baly et al. (2018) 422 2 No ara.reuters.com, verify-sy.com
Thorne et al. (2018)† 185,445 3 No Wikipedia

V: Veracity + evidence relevancy
MultiFC 36,534 2-40 Yes Fact Checking Websites

Table 2: Comparison of fact checking datasets. † indicates claims are not ‘naturally occuring’: Mitra and Gilbert
(2015) use events as claims; Ciampaglia et al. (2015) use DBPedia tiples as claims; Shu et al. (2018) use tweets as
claims; and Thorne et al. (2018) rewrite sentences in Wikipedia as claims.

38 websites in total (shown in Table 11). Out of
these, ten websites could not be crawled, as fur-
ther detailed in Table 9. In the later experimen-
tal descriptions, we refer to the part of the dataset
crawled from a specific fact checking website as a
domain, and we refer to each website as source.

From each source, we crawled the ID, claim,
label, URL, reason for label, categories, person
making the claim (speaker), person fact checking
the claim (checker), tags, article title, publication
date, claim date, as well as the full text that ap-
pears when the claim is clicked. Lastly, the above
full text contains hyperlinks, so we further crawled
the full text that appears when each of those hyper-
links are clicked (outlinks).

There were a number of crawling issues, e.g. se-
curity protection of websites with SSL/TLS pro-
tocols, time out, URLs that pointed to pdf files
instead of HTML content, or unresolvable encod-
ing. In all of these cases, the content could not be
retrieved. For some websites, no veracity labels
were available, in which case, they were not se-
lected as domains for training a veracity prediction
model. Moreover, not all types of metadata (cat-
egory, speaker, checker, tags, claim date, publish
date) were available for all websites; and availabil-
ity of articles and full texts differs as well.

We performed semi-automatic cleansing of the

dataset as follows. First, we double-checked that
the veracity labels would not appear in claims.
For some domains, the first or last sentence of the
claim would sometimes contain the veracity label,
in which case we would discard either the full sen-
tence or part of the sentence. Next, we checked
the dataset for duplicate claims. We found 202
such instances, 69 of them with different labels.
Upon manual inspection, this was mainly due to
them appearing on different websites, with labels
not differing much in practice (e.g. ‘Not true’, vs.
‘Mostly False’). We made sure that all such du-
plicate claims would be in the training split of the
dataset, so that the models would not have an un-
fair advantage. Finally, we performed some minor
manual merging of label types for the same do-
main where it was clear that they were supposed to
denote the same level of veracity (e.g. ‘distorts’,
‘distorts the facts’).

This resulted in a total of 36,534 claims with
their metadata. For the purposes of fact verifica-
tion, we discarded instances with labels that occur
fewer than 5 times, resulting in 34,918 claims. The
number of instances, as well as labels per domain,
are shown in Table 6 and label names in Table 10
in the appendix. The dataset is split into a train-
ing part (80%) and a development and testing part
(10% each) in a label-stratified manner. Note that



4688

the domains vary in the number of labels, ranging
from 2 to 27. Labels include both straight-forward
ratings of veracity (‘correct’, ‘incorrect’), but also
labels that would be more difficult to map onto a
veracity scale (e.g. ‘grass roots movement!’, ‘mis-
attributed’, ‘not the whole story’). We therefore
do not postprocess label types across domains to
map them onto the same scale, and rather treat
them as is. In the methodology section (Section
4), we show how a model can be trained on this
dataset regardless by framing this multi-domain
veracity prediction task as a multi-task learning
(MTL) one.

3.2 Retrieving Evidence Pages
The text of each claim is submitted verbatim as a
query to the Google Search API (without quotes).
The 10 most highly ranked search results are re-
trieved, for each of which we save the title; Google
search rank; URL; time stamp of last update;
search snippet; as well as the full Web page. We
acknowledge that search results change over time,
which might have an effect on veracity prediction.
However, studying such temporal effects is outside
the scope of this paper. Similar to Web crawl-
ing claims, as described in Section 3.1, the cor-
responding Web pages can in some cases not be
retrieved, in which case fewer than 10 evidence
pages are available. The resulting evidence pages
are from a wide variety of URL domains, though
with a predictable skew towards popular websites,
such as Wikipedia or The Guardian (see Table 3
for detailed statistics).

3.3 Entity Detection and Linking
To better understand what claims are about, we
conduct entity linking for all claims. Specifically,
mentions of people, places, organisations, and
other named entities within a claim are recognised
and linked to their respective Wikipedia pages, if
available. Where there are different entities with
the same name, they are disambiguated. For this,
we apply the state-of-the-art neural entity linking
model by Kolitsas et al. (2018). This results in
a total of 25,763 entities detected and linked to
Wikipedia, with a total of 15,351 claims involved,
meaning that 42% of all claims contain entities
that can be linked to Wikipedia. Later on, we use
entities as additional metadata (see Section 4.3).
The distribution of claim numbers according to the
number of entities they contain is shown in Figure
1. We observe that the majority of claims have

Domain %
https://en.wikipedia.org/ 4.425
https://www.snopes.com/ 3.992
https://www.washingtonpost.com/ 3.025
https://www.nytimes.com/ 2.478
https://www.theguardian.com/ 1.807
https://www.youtube.com/ 1.712
https://www.dailymail.co.uk/ 1.558
https://www.usatoday.com/ 1.279
https://www.politico.com/ 1.241
http://www.politifact.com/ 1.231
https://www.pinterest.com/ 1.169
https://www.factcheck.org/ 1.09
https://www.gossipcop.com/ 1.073
https://www.cnn.com/ 1.065
https://www.npr.org/ 0.957
https://www.forbes.com/ 0.911
https://www.vox.com/ 0.89
https://www.theatlantic.com/ 0.88
https://twitter.com/ 0.767
https://www.hoax-slayer.net/ 0.655
http://time.com/ 0.554
https://www.bbc.com/ 0.551
https://www.nbcnews.com/ 0.515
https://www.cnbc.com/ 0.514
https://www.cbsnews.com/ 0.503
https://www.facebook.com/ 0.5
https://www.newyorker.com/ 0.495
https://www.foxnews.com/ 0.468
https://people.com/ 0.439
http://www.cnn.com/ 0.419

Table 3: The top 30 most frequently occurring URL
domains.

Figure 1: Distribution of entities in claims.

one to four entities, and the maximum number of
35 entities occurs in one claim only. Out of the
25,763 entities, 2,767 are unique entities. The top
30 most frequent entities are listed in Table 4. This
clearly shows that most of the claims involve enti-
ties related to the United States, which is to be ex-
pected, as most of the fact checking websites are
US-based.

4 Claim Veracity Prediction

We train several models to predict the veracity of
claims. Those fall into two categories: those that
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Entity Frequency
United States 2810
Barack Obama 1598
Republican Party (United States) 783
Texas 665
Democratic Party (United States) 560
Donald Trump 556
Wisconsin 471
United States Congress 354
Hillary Rodham Clinton 306
Bill Clinton 292
California 285
Russia 275
Ohio 239
China 229
George W. Bush 208
Medicare (United States) 206
Australia 186
Iran 183
Brad Pitt 180
Islam 178
Iraq 176
Canada 174
White House 166
New York City 164
Washington, D.C. 164
Jennifer Aniston 163
Mexico 158
Ted Cruz 152
Federal Bureau of Investigation 146
Syria 130

Table 4: Top 30 most frequent entities listed by their
Wikipedia URL with prefix omitted

only consider the claims themselves, and those
that encode evidence pages as well. In addition,
claim metadata (speaker, checker, linked entities)
is optionally encoded for both categories of mod-
els, and ablation studies with and without that
metadata are shown. We first describe the base
model used in Section 4.1, followed by introduc-
ing our novel evidence ranking and veracity pre-
diction model in Section 4.2, and lastly the meta-
data encoding model in Section 4.3.

4.1 Multi-Domain Claim Veracity Prediction
with Disparate Label Spaces

Since not all fact checking websites use the same
claim labels (see Table 6, and Table 10 in the ap-
pendix), training a claim veracity prediction model
is not entirely straight-forward. One option would
be to manually map those labels onto one another.
However, since the sheer number of labels is rather
large (165), and it is not always clear from the
guidelines on fact checking websites how they can
be mapped onto one another, we opt to learn how
these labels relate to one another as part of the
veracity prediction model. To do so, we employ

the multi-task learning (MTL) approach inspired
by collaborative filtering presented in Augenstein
et al. (2018) (MTL with LEL–multitask learning
with label embedding layer) that excels on pair-
wise sequence classification tasks with disparate
label spaces. More concretely, each domain is
modelled as its own task in a MTL architecture,
and labels are projected into a fixed-length label
embedding space. Predictions are then made by
taking the dot product between the claim-evidence
embeddings and the label embeddings. By doing
so, the model implicitly learns how semantically
close the labels are to one another, and can benefit
from this knowledge when making predictions for
individual tasks, which on their own might only
have a small number of instances. When making
predictions for individual domains/tasks, both at
training and at test time, as well as when calculat-
ing the loss, a mask is applied such that the valid
and invalid labels for that task are restricted to the
set of known task labels.

Note that the setting here slightly differs from
Augenstein et al. (2018). There, tasks are less
strongly related to one another; for example, they
consider stance detection, aspect-based sentiment
analysis and natural language inference. Here, we
have different domains, as opposed to conceptu-
ally different tasks, but use their framework, as we
have the same underlying problem of disparate la-
bel spaces. A more formal problem definition fol-
lows next, as our evidence ranking and veracity
prediction model in Section 4.2 then builds on it.

4.1.1 Problem Definition
We frame our problem as a multi-task learning
one, where access to labelled datasets for T tasks
T1, . . . , TT is given at training time with a target
task TT that is of particular interest. The train-
ing dataset for task Ti consists of N examples
XTi = {xTi1 , . . . , xTiN} and their labels YTi =

{yTi1 , . . . ,yTiN }. The base model is a classic deep
neural network MTL model (Caruana, 1993) that
shares its parameters across tasks and has task-
specific softmax output layers that output a proba-
bility distribution pTi for task Ti:

pTi = softmax(WTih+ bTi) (1)

where softmax(x) = ex/
∑‖x‖

i=1 e
xi , WTi ∈

RLi×h, bTi ∈ RLi is the weight matrix and
bias term of the output layer of task Ti respec-
tively, h ∈ Rh is the jointly learned hidden rep-
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resentation, Li is the number of labels for task
Ti, and h is the dimensionality of h. The MTL
model is trained to minimise the sum of individual
task losses L1 + . . . + LT using a negative log-
likelihood objective.

Label Embedding Layer. To learn the relation-
ships between labels, a Label Embedding Layer
(LEL) embeds labels of all tasks in a joint Eu-
clidian space. Instead of training separate softmax
output layers as above, a label compatibility func-
tion c(·, ·) measures how similar a label with em-
bedding l is to the hidden representation h:

c(l,h) = l · h (2)

where · is the dot product. Padding is applied such
that l and h have the same dimensionality. Ma-
trix multiplication and softmax are used for mak-
ing predictions:

p = softmax(Lh) (3)

where L ∈ R(
∑

i Li)×l is the label embedding ma-
trix for all tasks and l is the dimensionality of the
label embeddings. We apply a task-specific mask
to L in order to obtain a task-specific probabil-
ity distribution pTi . The LEL is shared across all
tasks, which allows the model to learn the relation-
ships between labels in the joint embedding space.

4.2 Joint Evidence Ranking and Claim
Veracity Prediction

So far, we have ignored the issue of how to obtain
claim representation, as the base model described
in the previous section is agnostic to how instances
are encoded. A very simple approach, which we
report as a baseline, is to encode claim texts only.
Such a model ignores evidence for and against a
claim, and ends up guessing the veracity based on
surface patterns observed in the claim texts.

We next introduce two variants of evidence-
based veracity prediction models that encode 10
pieces of evidence in addition to the claim. Here,
we opt to encode search snippets as opposed to
whole retrieved pages. While the latter would
also be possible, it comes with a number of ad-
ditional challenges, such as encoding large doc-
uments, parsing tables or PDF files, and encod-
ing images or videos on these pages, which we
leave to future work. Search snippets also have
the benefit that they already contain summaries of
the part of the page content that is most related to
the claim.

Figure 2: The Joint Veracity Prediction and Evidence
Ranking model, shown for one task.

4.2.1 Problem Definition
Our problem is to obtain encodings for N exam-
ples XTi = {xTi1 , . . . , xTiN}. For simplicity, we
will henceforth drop the task superscript and re-
fer to instances as X = {x1, . . . , xN}, as instance
encodings are learned in a task-agnostic fashion.
Each example further consists of a claim ai and
k = 10 evidence pages Ek = {e10 , . . . , eN10}.

Each claim and evidence page is encoded with
a BiLSTM to obtain a sentence embedding, which
is the concatenation of the last state of the forward
and backward reading of the sentence, i.e. h =
BiLSTM(·), where h is the sentence embedding.

Next, we want to combine claims and evidence
sentence embeddings into joint instance represen-
tations. In the simplest case, referred to as model
variant crawled avg, we mean average the BiL-
STM sentence embeddings of all evidence pages
(signified by the overline) and concatenate those
with the claim embeddings, i.e.

sgi = [hai ;hEi ] (4)

where sgi is the resulting encoding for training
example i and [·; ·] denotes vector concatenation.
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However, this has the disadvantage that all evi-
dence pages are considered equal.

Evidence Ranking The here proposed alterna-
tive instance encoding model, crawled ranked,
which achieves the highest overall performance as
discussed in Section 5, learns the compatibility be-
tween an instance’s claim and each evidence page.
It ranks evidence pages by their utility for the ve-
racity prediction task, and then uses the resulting
ranking to obtain a weighted combination of all
claim-evidence pairs. No direct labels are avail-
able to learn the ranking of individual documents,
only for the veracity of the associated claim, so the
model has to learn evidence ranks implicitly.

To combine claim and evidence representations,
we use the matching model proposed for the task
of natural language inference by Mou et al. (2016)
and adapt it to combine an instance’s claim repre-
sentation with each evidence representation, i.e.

srij = [hai ;heij
;hai − heij

;hai · heij
] (5)

where srij is the resulting encoding for training
example i and evidence page j , [·; ·] denotes vec-
tor concatenation, and · denotes the dot product.

All joint claim-evidence representations
sri0 , . . . , sri10 are then projected into the binary
space via a fully connected layer FC, followed
by a non-linear activation function f , to obtain a
soft ranking of claim-evidence pairs, in practice a
10-dimensional vector,

oi = [f(FC(sri0 )); . . . ; f(FC(sri10 ))] (6)

where [·; ·] denotes concatenation.
Scores for all labels are obtained as per (6)

above, with the same input instance embeddings
as for the evidence ranker, i.e. srij . Final predic-
tions for all claim-evidence pairs are then obtained
by taking the dot product between the label scores
and binary evidence ranking scores, i.e.

pi = softmax(c(l, sri) · oi) (7)

Note that the novelty here is that, unlike for the
model described in Mou et al. (2016), we have no
direct labels for learning weights for this matching
model. Rather, our model has to implicitly learn
these weights for each claim-evidence pair in an
end-to-end fashion given the veracity labels.

Model Micro F1 Macro F1
claim-only 0.469 0.253
claim-only embavg 0.384 0.302
crawled-docavg 0.438 0.248
crawled ranked 0.613 0.441

claim-only + meta 0.494 0.324
claim-only embavg + meta 0.418 0.333
crawled-docavg + meta 0.483 0.286
crawled ranked + meta 0.625 0.492

Table 5: Results with different model variants on the
test set, ‘meta’ means all metadata is used.

4.3 Metadata
We experiment with how useful claim metadata
is, and encode the following as one-hot vectors:
speaker, category, tags and linked entities. We do
not encode ‘Reason’ as it gives away the label, and
do not include ‘Checker’ as there are too many
unique checkers for this information to be rele-
vant. The claim publication date is potentially rel-
evant, but it does not make sense to merely model
this as a one-hot feature, so we leave incorporat-
ing temporal information to future work. Since all
metadata consists of individual words and phrases,
a sequence encoder is not necessary, and we opt
for a CNN followed by a max pooling operation as
used in Wang (2017) to encode metadata for fact
checking. The max-pooled metadata representa-
tions, denoted hm, are then concatenated with the
instance representations, e.g. for the most elabo-
rate model, crawled ranked, these would be con-
catenated with scrij .

5 Experiments

5.1 Experimental Setup
The base sentence embedding model is a BiLSTM
over all words in the respective sequences with
randomly initialised word embeddings, following
Augenstein et al. (2018). We opt for this strong
baseline sentence encoding model, as opposed to
engineering sentence embeddings that work par-
ticularly well for this dataset, to showcase the
dataset. We would expect pre-trained contextual
encoding models, e.g. ELMO (Peters et al., 2018),
ULMFit (Howard and Ruder, 2018), BERT (De-
vlin et al., 2018), to offer complementary perfor-
mance gains, as has been shown for a few recent
papers (Wang et al., 2018; Rajpurkar et al., 2018).

For claim veracity prediction without evidence
documents with the MTL with LEL model, we use
the following sentence encoding variants: claim-
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only, which uses a BiLSTM-based sentence em-
bedding as input, and claim-only embavg, which
uses a sentence embedding based on mean aver-
aged word embeddings as input.

We train one multi-task model per task (i.e., one
model per domain). We perform a grid search over
the following hyperparameters, tuned on the re-
spective dev set, and evaluate on the correspod-
ing test set (final settings are underlined): word
embedding size [64, 128, 256], BiLSTM hidden
layer size [64, 128, 256], number of BiLSTM hid-
den layers [1, 2, 3], BiLSTM dropout on input and
output layers [0.0, 0.1, 0.2, 0.5], word-by-word-
attention for BiLSTM with window size 10 (Bah-
danau et al., 2014) [True, False], skip-connections
for the BiLSTM [True, False], batch size [32, 64,
128], label embedding size [16, 32, 64]. We use
ReLU as an activation function for both the BiL-
STM and the CNN. For the CNN, the follow-
ing hyperparameters are used: number filters [32],
kernel size [32]. We train using cross-entropy loss
and the RMSProp optimiser with initial learning
rate of 0.001 and perform early stopping on the
dev set with a patience of 3.

5.2 Results

For each domain, we compute the Micro as well
as Macro F1, then mean average results over all
domains. Core results with all vs. no metadata
are shown in Table 5. We first experiment with
different base model variants and find that label
embeddings improve results, and that the best pro-
posed models utilising multiple domains outper-
form single-task models (see Table 8). This cor-
roborates the findings of Augenstein et al. (2018).
Per-domain results with the best model are shown
in Table 6. Domain names are from hereon af-
ter abbreviated for brevity, see Table 11 in the ap-
pendix for correspondences to full website names.
Unsurprisingly, it is hard to achieve a high Macro
F1 for domains with many labels, e.g. tron and
snes. Further, some domains, surprisingly mostly
with small numbers of instances, seem to be very
easy – a perfect Micro and Macro F1 score of 1.0
is achieved on ranz, bove, buca, fani and thal. We
find that for those domains, the verdict is often al-
ready revealed as part of the claim using explicit
wording.

Claim-Only vs. Evidence-Based Veracity Pre-
diction. Our evidence-based claim veracity pre-
diction models outperform claim-only veracity

Domain # Insts # Labs Micro F1 Macro F1
ranz 21 2 1.000 1.000
bove 295 2 1.000 1.000
abbc 436 3 0.463 0.453
huca 34 3 1.000 1.000
mpws 47 3 0.667 0.583
peck 65 3 0.667 0.472
faan 111 3 0.682 0.679
clck 38 3 0.833 0.619
fani 20 3 1.000 1.000
chct 355 4 0.550 0.513
obry 59 4 0.417 0.268
vees 504 4 0.721 0.425
faly 111 5 0.278 0.5
goop 2943 6 0.822 0.387
pose 1361 6 0.438 0.328
thet 79 6 0.55 0.37
thal 163 7 1.000 1.000
afck 433 7 0.357 0.259
hoer 1310 7 0.694 0.549
para 222 7 0.375 0.311
wast 201 7 0.344 0.214
vogo 654 8 0.594 0.297
pomt 15390 9 0.321 0.276
snes 6455 12 0.551 0.097
farg 485 11 0.500 0.140
tron 3423 27 0.429 0.046

avg 7.17 0.625 0.492

Table 6: Total number of instances and unique labels
per domain, as well as per-domain results with model
crawled ranked + meta, sorted by label size

Metadata Micro F1 Macro F1
None 0.627 0.441

Speaker 0.602 0.435
+ Tags 0.608 0.460

Tags 0.585 0.461

Entity 0.569 0.427
+ Speaker 0.607 0.477
+ Tags 0.625 0.492

Table 7: Ablation results with base model
crawled ranked for different types of metadata

Model Micro F1 Macro F1
STL 0.527 0.388
MTL 0.556 0.448
MTL + LEL 0.625 0.492

Table 8: Ablation results with crawled ranked + meta
encoding for STL vs. MTL vs. MTL + LEL training

prediction models by a large margin. Unsur-
prisingly, claim-only embavg is outperformed by
claim-only. Further, crawled ranked is our best-
performing model in terms of Micro F1 and Macro
F1, meaning that our model captures that not ev-
ery piece of evidence is equally important, and can
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Figure 3: Confusion matrix of predicted labels with
best-performing model, crawled ranked + meta, on the
‘pomt’ domain

utilise this for veracity prediction.

Metadata. We perform an ablation analysis of
how metadata impacts results, shown in Table 7.
Out of the different types of metadata, topic tags
on their own contribute the most. This is likely be-
cause they offer highly complementary informa-
tion to the claim text of evidence pages. Only us-
ing all metadata together achieves a higher Macro
F1 at similar Micro F1 than using no metadata at
all. To further investigate this, we split the test
set into those instances for which no metadata is
available vs. those for which metadata is available.
We find that encoding metadata within the model
hurts performance for domains where no metadata
is available, but improves performance where it is.
In practice, an ensemble of both types of models
would be sensible, as well as exploring more in-
volved methods of encoding metadata.

6 Analysis and Discussion

An analysis of labels frequently confused with
one another, for the largest domain ‘pomt’ and
best-performing model crawled ranked + meta is
shown in Figure 3. The diagonal represents when
gold and predicted labels match, and the num-
bers signify the number of test instances. One
can observe that the model struggles more to de-
tect claims with labels ‘true’ than those with la-
bel ‘false’. Generally, many confusions occur over
close labels, e.g. ‘half-true’ vs. ‘mostly true’.

We further analyse what properties instances
that are predicted correctly vs. incorrectly have,
using the model crawled ranked meta. We find

that, unsurprisingly, longer claims are harder to
classify correctly, and that claims with a high di-
rect token overlap with evidence pages lead to a
high evidence ranking. When it comes to fre-
quently occurring tags and entities, very general
tags such as ‘government-and-politics’ or ‘tax’
that do not give away much, frequently co-occur
with incorrect predictions, whereas more specific
tags such as ‘brisbane-4000’ or ‘hong-kong’ tend
to co-occur with correct predictions. Similar
trends are observed for bigrams. This means that
the model has an easy time succeeding for in-
stances where the claims are short, where specific
topics tend to co-occur with certain veracities, and
where evidence documents are highly informative.
Instances with longer, more complex claims where
evidence is ambiguous remain challenging.

7 Conclusions

We present a new, real-world fact checking
dataset, currently the largest of its kind. It consists
of 34,918 claims collected from 26 fact checking
websites, rich metadata and 10 retrieved evidence
pages per claim. We find that encoding the meta-
data as well evidence pages helps, and introduce
a new joint model for ranking evidence pages and
predicting veracity.
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Websites (Sources) Reason

Mediabiasfactcheck Website that checks other news websites
CBC No pattern to crawl
apnews.com/APFactCheck No categorical label and no structured claim
weeklystandard.com/tag/fact-check Mostly no label, and they are placed anywhere
ballotpedia.org No categorical label and no structured claim
channel3000.com/news/politics/reality-check No categorical label, lack of structure, and no clear claim
npr.org/sections/politics-fact-check No label and no clear claim (only some titles are claims)
dailycaller.com/buzz/check-your-fact Is a subset of checkyourfact which has already been crawled
sacbee.com6 Contains very few labelled articles, and without clear claims
TheGuardian Only a few websites have a pattern for labels.

Table 9: The list of websites that we did not crawl and reasons for not crawling them.

Domain # Insts # Labels Labels
abbc 436 3 in-between, in-the-red, in-the-green
afck 433 7 correct, incorrect, mostly-correct, unproven, misleading, understated, exagger-

ated
bove 295 2 none, rating: false
chct 355 4 verdict: true, verdict: false, verdict: unsubstantiated, none
clck 38 3 incorrect, unsupported, misleading
faan 111 3 factscan score: false, factscan score: true, factscan score: misleading
faly 71 5 true, none, partly true, unverified, false
fani 20 3 conclusion: accurate, conclusion: false, conclusion: unclear
farg 485 11 false, none, distorts the facts, misleading, spins the facts, no evidence, not the

whole story, unsupported, cherry picks, exaggerates, out of context
goop 2943 6 0, 1, 2, 3, 4, 10
hoer 1310 7 facebook scams, true messages, bogus warning, statirical reports, fake news,

unsubstantiated messages, misleading recommendations
huca 34 3 a lot of baloney, a little baloney, some baloney
mpws 47 3 accurate, false, misleading
obry 59 4 mostly true, verified, unobservable, mostly false
para 222 7 mostly false, mostly true, half-true, false, true, pants on fire!, half flip
peck 65 3 false, true, partially true
pomt 15390 9 half-true, false, mostly true, mostly false, true, pants on fire!, full flop, half flip,

no flip
pose 1361 6 promise kept, promise broken, compromise, in the works, not yet rated, stalled
ranz 21 2 fact, fiction
snes 6455 12 false, true, mixture, unproven, mostly false, mostly true, miscaptioned, legend,

outdated, misattributed, scam, correct attribution
thet 79 6 none, mostly false, mostly true, half true, false, true
thal 74 2 none, we rate this claim false
tron 3423 27 fiction!, truth!, unproven!, truth! & fiction!, mostly fiction!, none, disputed!,

truth! & misleading!, authorship confirmed!, mostly truth!, incorrect attribu-
tion!, scam!, investigation pending!, confirmed authorship!, commentary!, pre-
viously truth! now resolved!, outdated!, truth! & outdated!, virus!, fiction! &
satire!, truth! & unproven!, misleading!, grass roots movement!, opinion!, cor-
rect attribution!, truth! & disputed!, inaccurate attribution!

vees 504 4 none, fake, misleading, false
vogo 653 8 none, determination: false, determination: true, determination: mostly true,

determination: misleading, determination: barely true, determination: huckster
propaganda, determination: false, determination: a stretch

wast 201 7 4 pinnochios, 3 pinnochios, 2 pinnochios, false, not the whole story, needs
context, none

Table 10: Number of instances, and labels per domain sorted by number of occurrences
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Abstract
Most fact checking models for automatic fake
news detection are based on reasoning: given
a claim with associated evidence, the models
aim to estimate the claim veracity based on the
supporting or refuting content within the evi-
dence. When these models perform well, it is
generally assumed to be due to the models hav-
ing learned to reason over the evidence with re-
gards to the claim. In this paper, we investigate
this assumption of reasoning, by exploring the
relationship and importance of both claim and
evidence. Surprisingly, we find on political
fact checking datasets that most often the high-
est effectiveness is obtained by utilizing only
the evidence, as the impact of including the
claim is either negligible or harmful to the ef-
fectiveness. This highlights an important prob-
lem in what constitutes evidence in existing ap-
proaches for automatic fake news detection.

1 Introduction

Misinformation is spreading at increasing rates
(Vosoughi et al., 2018), particularly online, and
is considered a highly pressing issue by the World
Economic Forum (Howell et al, 2013). To com-
bat this problem, automatic fact checking, espe-
cially for estimating the veracity of potential fake
news, have been extensively researched (Hassan
et al., 2017; Hansen et al., 2019; Thorne and Vla-
chos, 2018; Elsayed et al., 2019; Allein et al., 2020;
Popat et al., 2018; Augenstein et al., 2019). Given
a claim, most fact checking systems are evidence-
based, meaning they utilize external knowledge to
determine the claim veracity. Such external knowl-
edge may consist of previously fact checked claims
(Shaar et al., 2020), but it typically consists of us-
ing the claim to query the web through a search
API to retrieve relevant hits. While including the
evidence in the model increases the effectiveness
over using only the claim, existing work has not fo-
cused on the predictive power of isolated evidence,

and hence whether it assists the model in enabling
better reasoning.

In this work we investigate if fact checking mod-
els learn reasoning, i.e., provided a claim and asso-
ciated evidence, whether the model determines the
claim veracity by reasoning over the evidence. If
the model learns reasoning, we would expect the
following proposition to hold: A model using both
the claim and evidence should perform better on
the task of fact checking compared to a model using
only the claim or evidence. If a model is only given
the claim as input, it does not necessarily have
the information needed to determine the veracity.
Similarly, if the model is only given the evidence,
the predictive signal must come from dataset bias
or the differences in the evidence obtained from
claims with varying veracity, as it otherwise cor-
responds to being able to provide an answer to an
unknown question. In our experimental evaluation
on two political fact checking datasets, across mul-
tiple types of claim and evidence representations,
we find the evidence provides a very strong pre-
dictive signal independent of the claim, and that
the best performance is most often obtained while
entirely ignoring the claim. This highlights that
fact checking models may not be learning to rea-
son, but instead exploit an inherent signal in the
evidence itself, which can be used to determine fac-
tuality independent of using the claim as part of the
model input. This highlights an important problem
in what constitutes evidence in existing approaches
for automatic fake news detection. We make our
code publicly available at https://github.com/
casperhansen/fake-news-reasoning.

2 Related Work

Automatic fact checking models include deep learn-
ing approaches, based on contextual and non-
contextual embeddings, which encode the claim
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and evidence using RNNs or Transformers (Shaar
et al., 2020; Elsayed et al., 2019; Allein et al., 2020;
Popat et al., 2018; Augenstein et al., 2019; Hassan
et al., 2017), and non-deep learning approaches
(Wang, 2017; Pérez-Rosas et al., 2018), which uses
hand-crafted features or bag-of-word representa-
tions as input to traditional machine learning classi-
fiers such as random forests, SVM, and MLP (Mi-
halcea and Strapparava, 2009; Pérez-Rosas et al.,
2018; Baly et al., 2018; Reddy et al., 2018).

Generally, models may learn to memorize arti-
fact and biases rather than truly learning (Guru-
rangan et al., 2018; Moosavi and Strube, 2017;
Agrawal et al., 2016), e.g., from political individ-
uals often leaning towards one side of the truth
spectrum. Additionally, language models have
been shown to implicitly store world knowledge
(Roberts et al., 2020), which in principle could en-
hance the aforementioned biases. To this end, we
design our experimental setup to include represen-
tative fact checking models of varying complex-
ity (from simple term-frequency based represen-
tations to contextual embeddings), while always
evaluating each trained model on multiple different
datasets to determine generalizability.

3 Methods

Problem definition. In automatic fact checking
of fake news we are provided with a dataset of
D = {(c1, e1, y1), ..., (cn, en, yn)}, where ci cor-
responds to a textual claim, ei is evidence used to
support or refute the claim, and yi is the associated
truth label to be predicted based on the claim and
evidence. Following current work on fact checking
of fake news (Hassan et al., 2017; Thorne and Vla-
chos, 2018; Elsayed et al., 2019; Allein et al., 2020;
Popat et al., 2018; Augenstein et al., 2019), we
consider the evidence to be a list of top-10 search
snippets as returned by Google search API when
using the claim as the query. Note that while addi-
tional metadata may be available–such as speaker,
checker, and tags–this work focuses specifically
on whether models learn to reason based on the
combination of claim and evidence, hence we keep
the input representation to consist only of the latter.

Overview. In the following we describe the dif-
ferent models used for the experimental compari-
son (Section 4), which consists of models based on
term frequency (term-frequency weighted bag-of-
words (Salton and Buckley, 1988)), word embed-
dings (GloVe word embeddings (Pennington et al.,

2014)), and contextual word embeddings (BERT
(Devlin et al., 2019)). These representations are
chosen as to include the typical representations
most broadly used among past and current NLP
models.

Term-frequency based Random Forest. We
construct a term-frequency weighted bag-of-words
representation per sample based on concatenat-
ing the text content of the claim and associ-
ated evidence snippets. We train a Random For-
est (Breiman, 2001) as the classifier using the Gini
impurity measure. In the setting of only using ei-
ther the claim or evidence snippets as the input,
only the relevant part is used for constructing the
bag-of-words representation.

GloVe-based LSTM model. We adapt the
model by Augenstein et al. (2019), which originally
was proposed for multi-domain veracity prediction.
Using a pretrained GloVe embedding (Pennington
et al., 2014)1, claim and snippet tokens are embed-
ded into a joint space. We encode the claim and
snippets using an attention-weighted bidirectional
LSTM (Hochreiter and Schmidhuber, 1997):

hci = attn (BiLSTM(ci)) (1)

hei,j = attn (BiLSTM(ei,j)) (2)

where attn(·) is a function that learns an attention
score per element, which is normalized using a
softmax, and returns a weighted sum. We combine
the claim and snippet encodings using using the
matching model by Mou et al. (2016) as:

si,j =
[
hci ; hei,j ; hci − hei,j ; hci · hei,j

]
(3)

where ”;” denotes concatenation. The joint claim-
evidence encodings are attention weighted and
summed, projected through a fully connected layer
into RL, where L is the number of possible labels:

oi = attn([si,1 ; ... ; si,10]) (4)

pi = softmax (FC(oi)) (5)

Lastly, the model is trained using cross entropy
as the loss function. In the setting of using only
the claim as the input (i.e., without the evidence),
then hci is used in Eq. 5 instead of oi. If only the
evidence is used, then an attention weighted sum
of the evidence snippet encodings is used in Eq. 5
instead of oi.

1http://nlp.stanford.edu/data/glove.
840B.300d.zip



Train: Snopes Train: PolitiFact
Within dataset Out-of dataset Within dataset Out-of dataset
Eval: Snopes Eval: PolitiFact Eval: PolitiFact Eval: Snopes

RF (∼13 seconds) F1micro F1macro F1micro F1macro F1micro F1macro F1micro F1macro

Claim 0.473 0.231 0.273 0.223 0.254 0.255 0.546 0.243
Evidence 0.504 0.280 0.244 0.195 0.301 0.299 0.597 0.232
Claim+Evidence 0.550 0.271 0.245 0.190 0.310 0.304 0.579 0.207

LSTM (∼12 minutes, 888K parameters)

Claim 0.408 0.243 0.260 0.228 0.237 0.237 0.565 0.221
Evidence 0.495 0.253 0.262 0.208 0.290 0.295 0.550 0.273
Claim+Evidence 0.529 0.253 0.258 0.189 0.288 0.294 0.509 0.256

BERT (∼264 minutes, 109M parameters)

Claim 0.533 0.312 0.249 0.209 0.275 0.282 0.550 0.273
Evidence 0.531 0.321 0.249 0.224 0.351 0.359 0.577 0.286
Claim+Evidence 0.556 0.313 0.231 0.191 0.285 0.292 0.564 0.259

Table 1: Evaluation using micro and macro F1. Per column, the best score per method is underlined and the best
score across all methods is highlighted in bold. We report the training time and number of model parameters, for
Claim+Evidence on PolitiFact, in the parentheses. RF is trained on 5 cores and neural models on a Titan RTX.

BERT-based model. In a similar fashion to
the LSTM model, we construct a model based on
BERT (Devlin et al., 2019)2, where the [CLS]
token encoding is used for claim and evidence rep-
resentations. Specifically, the claim and evidence
snippets are encoded as:

hci = BERT(ci), hei,j = BERT(ci, ei,j) (6)

hei = attn([hei,1 ; ... ; hei,10 ]) (7)

where the claim acts as the question when encod-
ing the evidence snippets. Similarly to Eq. 5, the
prediction is obtained by concatenating the claim
and evidence representations and project it through
a fully connected layer into RL:

pi = softmax(FC([hci ; hei ])) (8)

where cross entropy is used as the loss function
for training the model. In the setting that only the
claim is used as input, then only hci is used in Eq. 8.
If only the evidence is used, then hei,j is computed
without including ci, and only hei is used in Eq. 8.

4 Experimental Evaluation

4.1 Datasets

We focus on the domain of political fact checking,
where we use claims and associated evidence from

2We use bert-base-uncased from https://
huggingface.co/bert-base-uncased.

#Claims Labels

PolitiFact 13,581 pants on fire! (10.6%), false (19.2%), mostly false
(17.0%), half-true (19.8%), mostly true (18.8%),
true (14.8%)

Snopes 5,069 false (64.3%), mostly false (7.5%), mixture
(12.3%), mostly true (2.8%), true (13.0%)

Table 2: Dataset statistics.

PolitiFact and Snopes, which we extract from the
MultiFC dataset (Augenstein et al., 2019). Using
the claim as a query, the evidence is crawled from
Google search API as the search snippets of the
top-10 results, and is filtered such that the web-
site origin of a given claim does not appear as evi-
dence. To facilitate better comparison between the
datasets, we filter claims with non-veracity related
labels3. The dataset statistics are shown in Table 2.

4.2 Experimental setup
Both datasets are split into train/val/test sets using
label-stratified sampling (70/10/20% splits). We
tune all models on the validation split, and use
early stopping with a patience of 10 for neural
models. Following Augenstein et al. (2019), we use
micro and macro F1 for evaluation. The models are
evaluated on both the within dataset test sets, but
also out-of dataset test sets (e.g., a model trained on
Snopes is evaluated on both Snopes and PolitiFact).

3For PolitiFact we exclude [full flop, half flip, no flip]
and for Snopes we exclude [unproven, miscaptioned, legend,
outdated, misattributed, scam, correct attribution].
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Figure 1: Macro F1 scores when removing evidence from either the top or bottom of the evidence snippet ranking.

In the out-of dataset evaluation we need the labels
to be comparable, hence in that setting we merge
”pants on fire!” and ”false” for PolitiFact.

5 Tuning details

In the following, the best overall parameter con-
figurations are underlined. The best configuration
is chosen based on the average of the micro and
macro F14. For RF, we tune the number of trees
from [100,500,1000], the minimum number of sam-
ples in a leaf from [1,3,5,10], and the minimum
number of samples per split from [2,5,10]. For the
LSTM model, we tune the learning rate from [1e-
4,5e-4,1e-5], batch size [16,32], number of LSTM
layers from [1,2], dropout from [0, 0.1], and fix
the number of hidden dimensions to 128. For the
BERT model, we tune the learning rate from [3e-5,
3e-6, 3e-7] and fix the batch size to 8.

5.1 Results
The results can be seen in Table 1. Overall, we
see that the BERT model trained only on Evidence
obtains the best results in 4/8 columns, and, no-
tably, in 3/4 cases the BERT model with Evidence
obtains the best macro F1 score on within and out-
of dataset prediction. Random forest using term-
frequency as input obtains the best out-of dataset
micro F1 for both datasets (using either only Claim
or only Evidence). Across all methods, the combi-
nation of Claim+Evidence only marginally obtains
the best results a single time (for Snopes micro

4https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.f1_
score.html

F1). For further details, in Table 3 we compute the
accuracy scores for all the false labels, mixture or
half-true label, and true labels.

Surprisingly, a BERT model using only the Ev-
idence is capable of predicting the veracity of the
claim used for obtaining the evidence. This shows
that a strong signal must exist in the evidence it-
self, and the evidence found by the search engine
appears to be implicitly affected by the veracity of
the claim used as the query in some way5. The im-
provements reported in the literature by combining
claim and evidence, are therefore not evident of the
model learning to reason over the evidence with
regards to the claim, but instead exploiting a sig-
nal inherent in the evidence itself. This highlights
that the current approach for evidence gathering
is problematic, as the strong signal makes it pos-
sible (and most often beneficial) for the model to
entirely ignore the claim. This makes the model
entirely reliant on the process behind how the evi-
dence is generated, which is outside the scope of
the model, and thereby undesirable, as any change
in the search system may change the model per-
formance significantly. It may also be problematic
on a more fundamental level, e.g., to predict the
veracity of the following two claims: ”the earth is
round” and ”the earth is flat”, the evidence could
be the same, but a model entirely dependent on the
evidence, and not the claim, would be incapable of
predicting both claims correctly.

5Note that the claim origin website is always removed
from the evidence.



Train: Snopes Train: PolitiFact
Within dataset Out-of dataset Within dataset Out-of dataset
Eval: Snopes Eval: PolitiFact Eval: PolitiFact Eval: Snopes

RF accfalse accmix acctrue accfalse accmix acctrue accfalse accmix acctrue accfalse accmix acctrue

Claim 0.710 0.144 0.255 0.853 0.016 0.209 0.623 0.216 0.513 0.790 0.092 0.255
Evidence 0.705 0.152 0.441 0.829 0.006 0.117 0.654 0.248 0.510 0.891 0.039 0.192
Claim+Evidence 0.760 0.136 0.453 0.829 0.000 0.117 0.634 0.292 0.512 0.871 0.039 0.199

LSTM

Claim 0.674 0.232 0.280 0.875 0.047 0.137 0.566 0.212 0.504 0.833 0.026 0.234
Evidence 0.721 0.272 0.267 0.890 0.020 0.115 0.643 0.253 0.485 0.768 0.184 0.322
Claim+Evidence 0.757 0.248 0.168 0.879 0.008 0.107 0.671 0.210 0.460 0.704 0.171 0.378

BERT

Claim 0.746 0.256 0.379 0.854 0.094 0.045 0.604 0.292 0.475 0.765 0.171 0.287
Evidence 0.648 0.376 0.559 0.702 0.049 0.337 0.649 0.326 0.496 0.804 0.197 0.339
Claim+Evidence 0.747 0.264 0.379 0.882 0.067 0.042 0.667 0.175 0.558 0.790 0.092 0.367

Table 3: Accuracy scores computed on the false labels, mixture or half-true label, and true labels. All labels within
a group (e.g., any false label such as false or mostly false) are considered to be the same and as such this reduces
the problem to a three class classification problem.

5.2 Removal of evidence

We observed a strong predictive signal in the ev-
idence alone and now consider the performance
impact when gradually removing evidence snip-
pets. The evidence is removed consecutively either
from the top down or bottom up (i.e., removing the
most relevant snippets first and vice versa), until
no evidence is used. Figure 1 shows the macro F1
as a function of removed evidence when using the
Evidence or Claim+Evidence models. We observe
a distinct difference between the random forest
and LSTM model compared to BERT: for random
forest and LSTM, the Claim+Evidence models on
both datasets drop rapidly in performance when
the evidence is removed, while the BERT model
only experiences a very small drop. This shows
that when the Claim+Evidence is used in the BERT
model, the influence of the evidence is minimal,
while the evidence is vital for the Claim+Evidence
RF and LSTM models. For all models, we observe
that when evidence is removed from the top down,
the performance drop is larger than when evidence
is removed from the bottom up. Thus, the ranking
of the evidence as provided by the search engine is
related to its usefulness as evidence for fact check-
ing.

6 Conclusion

We investigate if fact checking models for fake
news detection are learning to process claim and
evidence jointly in a way resembling reasoning.
Across models of varying complexity and evalu-

ated on multiple datasets, we find that the best
performance can most often be obtained using only
the evidence. This highlights that models using
both claim and evidence are inherently not learn-
ing to reason, and points to a potential problem
in how evidence is currently obtained in existing
approaches for automatic fake news detection.

References
Aishwarya Agrawal, Dhruv Batra, and Devi Parikh.

2016. Analyzing the behavior of visual question an-
swering models. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1955–1960, Austin, Texas. Asso-
ciation for Computational Linguistics.

Lee Howell et al. 2013. Digital wildfires in a hypercon-
nected world. WEF report, 45(3):15–94.

Liesbeth Allein, Isabelle Augenstein, and Marie-
Francine Moens. 2020. Time-aware evidence
ranking for fact-checking. arXiv preprint
arXiv:2009.06402.

Isabelle Augenstein, Christina Lioma, Dongsheng
Wang, Lucas Chaves Lima, Casper Hansen, Chris-
tian Hansen, and Jakob Grue Simonsen. 2019. Mul-
tifc: A real-world multi-domain dataset for evidence-
based fact checking of claims. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4677–4691.

Ramy Baly, Mitra Mohtarami, James R. Glass, Lluı́s
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Principled Multi-Aspect Evaluation Measures of Rankings
Anonymous Author(s)

ABSTRACT
Information Retrieval evaluation has traditionally focused on defin-
ing principled ways of assessing the relevance of a ranked list of
documents with respect to a query. Several methods extend this
type of evaluation beyond relevance, making it possible to evaluate
different aspects of a document ranking (e.g., relevance, useful-
ness, or credibility) using a single measure (multi-aspect evaluation).
However, these methods either are (i) tailor-made for specific as-
pects and do not extend to other types or numbers of aspects, or (ii)
have theoretical anomalies, e.g. assign maximum score to a ranking
where all documents are labelled with the lowest grade with respect
to all aspects (e.g., not relevant, not credible, etc.).

We present a theoretically principled multi-aspect evaluation
method that can be used for any number, and any type, of aspects.
A thorough empirical evaluation using up to 5 aspects and a to-
tal of 425 runs officially submitted to 10 TREC tracks shows that
our method is more discriminative than the state-of-the-art and
overcomes theoretical limitations of the state-of-the-art.
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Evaluation, ranking, multiple aspects, partial orders
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1122445.1122456

1 INTRODUCTION
Multi-aspect evaluation is a task in Information Retrieval (IR) evalu-
ation where the ranked list of documents returned by an IR system
in response to a query is assessed in terms of not only relevance, but
also other aspects (or dimensions) of the ranked documents, such as
credibility or usefulness. Generally, there are two ways to conduct
multi-aspect evaluation: (1) evaluate each aspect separately using
any appropriate single-aspect evaluation measure (e.g., AP, NDCG,
F1), and then aggregate the scores across all aspects into a single
score; or (2) evaluate all aspects at the same time using any appro-
priate multi-aspect evaluation measure [5, 35, 42]. An advantage
of the aggregating option (1) is that it is easy to implement using
evaluation measures that are readily available and well-understood
in the community. Its disadvantage is that it is not guaranteed that
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all aspects will have similar distributions of labels, and aggregating
across wildly different distributions can give odd results [34].

The second way of doing multi-aspect evaluation is to use a
single multi-aspect evaluation measure. The problem here is that
few such evaluation measures exist, and most of them are defined
for specific aspects and do not generalise to other types/numbers
of aspects (see an exhaustive review of these measures in §2).

Motivated by the above, we contribute a novel multi-aspect
evaluation method that works with any type and number of aspects,
and avoids the above problems. Given a ranked list of documents,
where documents are labelled with respect to multiple aspects, our
method, Total Order Multi-Aspect (TOMA) evaluation, first defines
a preferential order (formally weak total order relation) between the
documents with respect to their multiple aspect labels, and then
aggregates the document labels across multiple aspects to obtain a
ranking of aggregated aspect labels, which can be evaluated by any
single-aspect evaluation measure, such as Normalized Discounted
Cumulated Gain (NDCG) or Average Precision (AP). Simply put, in-
stead of evaluating each aspect separately and then aggregating
their scores, we first aggregate the aspect labels and then evaluate
the ranked list of documents. We do this in a way that provides sev-
eral degrees of freedom: our method can be used with any number
and type of aspects, can be instantiated with any binary or graded,
set-based or rank-based evaluation measure, and can accommodate
any granularity in the importance of each aspect or label, but still
ensures, by definition, that the preference order amongmulti-aspect
documents is not violated, and that the final measure score will
meet some common requirements, i.e., the minimum (worst) score
being 0 and the maximum (perfect) score being 1. We validate this
empirically (§4) and theoretically (§4.2).

2 RELATEDWORK
Multi-aspect evaluation measures for IR have been studied for dif-
ferent tasks and aspects, starting from the INEX initiative with a
discussion on relevance and coverage [30]. Since then, measures
have been proposed to evaluate relevance and novelty or diversity,
such as 𝛼-Normalized Discounted Cumulated Gain (𝛼-NDCG) [16],
Intent Aware Mean Average Precision (MAP-IA) [1] and Intent Aware
Expected Reciprocal Rank (IA-ERR) [10]; relevance, novelty and the
amount of user effort, such as Normalized Cube Test (nCT) [42]; rele-
vance, redundancy and user effort, such as Rank-Biased Utility (RBU)
[5]; relevance and understandability, such as Understandability-
biased Rank-Biased Precision (uRBP) [49] and the Multidimensional
Measure (MM) framework [37]; and relevance and credibility, such
as Normalised Local Rank Error (NLRE), Normalised Global Rank Er-
ror (NGRE), Normalised Weighted Cumulative Score (nWCS), Convex
Aggregating Measure (CAM) and the Weighted Harmonic Mean Ag-
gregating Measure (WHAM) [35]. All these measures have limita-
tions; we describe these next.

Firstly, except for RBU, none of the above measures are based
on a formal framework. They are defined as stand-alone tools to
assess the effectiveness of a ranked list of documents. This means

1
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that, even if the measure can assess the effectiveness of an input
ranking, the order induced by the measure over the space of input
rankings is not well-defined. Hence, there is no canonical ideal
ranking 1 that is well-defined or easy to compute, e.g., for 𝛼-NDCG,
the computation of the ideal ranking is equivalent to a minimal
vertex covering problem [16], an NP-complete problem, while for
CT and nCT, computing the ideal ranking is equivalent to the
minimum edge dominating set problem [42], an NP-hard problem.
Computationally better ways of comparing to an ideal ranking can
be devised using graded similarity—so-called effectiveness levels
to an ideal ranking using rank-biased overlap [17–19], but this
approach requires defining a (set of) ideal ranking(s), which has
not appeared for multi-aspect ranking prior to the present paper.

Evaluation measures that do not compare against an ideal rank-
ing may be harder to interpret or problematic. Discounted Cumu-
lated Gain (DCG) is not upper bounded by 1, thus different topics
are not weighted equally and scores are not comparable. Failing to
compare against the ideal ranking is problematic in multi-aspect
evaluation: 𝛼-NDCG allows systems to reach scores greater than
1, which is supposed to be the score of the perfect system. With
NLRE and NGRE, a system that retrieves no relevant or credible
documents has error =0, i.e., achieves the best score, because the
relative order of pairs of documents is always correct [34]. Similarly,
nWCS can reach the perfect score of 1, even if no relevant or credi-
ble documents are retrieved, since the normalization is computed
with a re-ranking of the input ranking, instead of the ideal ranking.

Both uRBP and RBU have a different problem: to reach the per-
fect score of 1, a systemmust retrieve an infinite number of relevant
and understandable documents, even if those documents are not
available in the collection. CAM andWHAMuse the weighted arith-
metic and weighted harmonic mean of any IR measure computed
with respect to relevance and credibility independently. Therefore,
depending on the distribution of labels across the aspects, it can be
impossible for any system to reach the perfect score (see § 4.2).

Secondly, most of the above multi-aspect evaluation measures
are defined for specific contexts and with a limited set of aspects,
e.g., novelty, diversity, credibility and understandability, thus they
cannot deal with a more general scenario and a variable number of
aspects. For RBU, even though a formal framework is defined, its
formulation specifies only diversity and redundancy constraints,
which cannot be applied to a general set of aspects. This inability
to generalise to more/other types of aspects means that, if a system
must be evaluated with respect to a new aspect, the measure needs
to be properly adapted. This can be easily done for some measures,
e.g., CAM, WHAM, and nWCS, but the lack of a formal framework
behind them may lead to odd results, e.g., extending NLRE to 3 as-
pects returns a score distribution compressed towards 0, preventing
the rankings to be evaluated in a fair way [34].

3 TOMA FRAMEWORK
We formalize the problem and our proposed methodology: we ex-
plain why reasoning in terms of multiple aspects leads to a partial
order relation among documents (§ 3.1); how we complete the par-
tial order relation with the distance order (§ 3.2); and how to use the
distance order with state-of-the-art IR evaluation measures (§ 3.3).

1An ideal ranking is the best ranking of all assessed documents for a given topic [29].

3.1 Formalization of the Problem
Let 𝐴 = {𝑎1, . . . , 𝑎𝑛} be a set of aspects; each aspect 𝑎 ∈ 𝐴 has a
non-empty set of labels 𝐿𝑎 = {𝑙𝑎0 , . . . , 𝑙𝑎𝐾𝑎

} and an order relation
≺𝑎 such that: 𝑙𝑎0 ≺𝑎 𝑙𝑎1 ≺𝑎 · · · ≺𝑎 𝑙𝑎𝐾𝑎

, e.g., we may have 2 aspects
𝐴 = {relevance, correctness}, with the set 𝐿𝑟 = {nr, mr, fr, hr}
(non-relevant, marginally relevant, fairly relevant, highly relevant)
ordered as: nr ≺𝑟 mr ≺𝑟 fr ≺𝑟 hr; and the set 𝐿𝑐 = {nc, pc, c}
(non-correct, partially correct, correct) ordered as: nc ≺𝑐 pc ≺𝑐 c.
Let𝐷 be the set of documents and𝑇 the set of topics. Each document
𝑑 ∈ 𝐷 is mapped to a ground truth vector GT(𝑑, 𝑡) = (𝑙1, . . . , 𝑙𝑛) ∈
𝐿𝑎1 ×· · ·×𝐿𝑎𝑛 that contains the “true” label of 𝑑 for each aspect, e.g.,
a document may have GT(𝑑, 𝑡) = (highly relevant, non-correct).

In IR, given a topic 𝑡 , the objective is to rank documents in 𝐷
such that for the documents 𝑑 ′, 𝑑 ∈ 𝐷 , if 𝑑 ′ is ranked before 𝑑 ,
then GT(𝑑, 𝑡) ⪯∗ GT(𝑑 ′, 𝑡) for a given order relation ⪯∗. When
there is only one aspect 𝐴 = {𝑎}, one can use ≺𝑎 , the order on
the set of labels 𝐿𝑎 , to induce a weak order on 𝐷 and decide if 𝑑 ′
should be ranked before 𝑑 . If only relevance is assessed, we consider
the relation induced by relevance labels, i.e., documents labelled
“highly relevant” should be ranked before “fairly/marginally rele-
vant” and “non-relevant” documents. Applying this approach to
multiple aspects requires reasoning about orderings of tuples of
labels with different aspects, e.g., for documents 𝑑 ′, 𝑑 ∈ 𝐷 , such that
GT(𝑑 ′, 𝑡) = (highly relevant, correct) and GT(𝑑, 𝑡) = (marginally
relevant, correct), it is reasonable to rank 𝑑 ′ before 𝑑 .

Indeed, there is one unequivocal way of deeming one document
better than another, and this is if document 𝑑 ′ has better labels
than document 𝑑 for every aspect: if for GT(𝑑, 𝑡) = (𝑙1, . . . , 𝑙𝑛) and
GT(𝑑 ′, 𝑡) = (𝑙 ′1, . . . , 𝑙 ′𝑛) we have 𝑙𝑖 ⪯𝑎𝑖 𝑙 ′𝑖 for all 𝑖 ∈ {1, . . . , 𝑛},
then any document labeled (𝑙 ′1, . . . , 𝑙 ′𝑛) is better or equal than any
document labelled (𝑙1, . . . , 𝑙𝑛) and should occur before it in a “good”
ranking. We denote this order relation by GT(𝑑, 𝑡) ⊑ GT(𝑑 ′, 𝑡).

The order relation ⊑ leads to a partial instead of a total order,
i.e., there are documents that are not comparable2, e.g., if 𝑑 ′ is now
highly relevant and partially correct, the final ranking is not clear:
should one promote 𝑑 ′ (more relevant) or 𝑑 (more correct)? This
is an example of documents that are not comparable, so we have
GT(𝑑, 𝑡) ̸⊑ GT(𝑑 ′, 𝑡) and GT(𝑑 ′, 𝑡) ̸⊑ GT(𝑑, 𝑡), and the choice of
whether 𝑑 ′ is preferred to 𝑑 may lie on the intended application.

A partial order relation and the presence of not comparable
documents implies that it is not possible to univocally rank the
documents in 𝐷 . If we could “complete” the partial order with a
total order, or at least a weak order, we could rank documents and
define an ideal ranking, where for any 𝑑 ′, 𝑑 ∈ 𝐷 , the order relation
determines the rank position of 𝑑 ′ and 𝑑 . So, before tackling the
problem of evaluating a ranked list of documents in a multi-aspect
way, we build such an order relation. This is detailed next.

3.2 The distance order
We now explain how to obtain a weak order relation from the
partial order relation ⊑. Consider the Cartesian product of all sets
of labels 𝐿 = 𝐿𝑎1 × · · · × 𝐿𝑎𝑛 . An element l ∈ 𝐿 is a tuple of labels
l = (𝑙1, . . . , 𝑙𝑛). The total order relation will be denoted by ⪯∗ and it

2A partial order is reflexive, antisymmetric and transitive; a total order is a partial
order where all pairs of items are comparable; a weak order is a total order without
antisymmetry [28].
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(a) Distance order.

~l?
<latexit sha1_base64="4YDI3uOlpJY/Q5j0JVUrDtMxQFs=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4jmAdk1zA7mU2GzD6c6Q2EJd/hxYMiXv0Yb/6Nk2QPmljQUFR1093lJ1JotO1vq7C2vrG5Vdwu7ezu7R+UD49aOk4V400Wy1h1fKq5FBFvokDJO4niNPQlb/uj25nfHnOlRRw94CThXkgHkQgEo2gkzx1zlsnpo6uRql65YlftOcgqcXJSgRyNXvnL7ccsDXmETFKtu46doJdRhYJJPi25qeYJZSM64F1DIxpy7WXzo6fkzCh9EsTKVIRkrv6eyGio9ST0TWdIcaiXvZn4n9dNMbj2MhElKfKILRYFqSQYk1kCpC8UZygnhlCmhLmVsCFVlKHJqWRCcJZfXiWtWtW5qNbuLyv1mzyOIpzAKZyDA1dQhztoQBMYPMEzvMKbNbZerHfrY9FasPKZY/gD6/MHTqqScg==</latexit>
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(b) Euclidean distance.
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(c) Manhattan distance.
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(d) Chebyshev distance.

Figure 1: Example with two aspects 𝑎1 and 𝑎2. Each point is a tuple of labels. The best label l★ is in the top right. The distance
between tuples of labels and l★ defines a total order relation. Blue lines connect tuples of labels at the same distance from l★.

will be a weak order relation on 𝐿, i.e., a total binary relation that is
reflexive and transitive, but not necessarily anti-symmetric [25–27].
This weak order allows all tuples of labels to be compared, i.e., for
any two l, l′ ∈ 𝐿 we will have l′ ⪯∗ l and/or l ⪯∗ l′. Consequently,
all documents will be comparable through their tuple of labels.

We require that the weak order relation ⪯∗ respects the partial
order relation ⊑:

∀ l, l′ ∈ 𝐿 we have l ⊑ l′ ⇒ l ⪯∗ l′ (1)

This means that, for comparable documents, the partial order re-
lation and the weak order relation rank documents in the same
way. Moreover the weak order relation allows to rank even those
documents that are not comparable with the partial order relation.

To define ⪯∗, we embed the tuples of labels in the Euclidean space
and derive the weak order ⪯∗ using known distance functions. Let
𝑔 be an embedding function that maps tuples of labels in Euclidean
space L = R𝑛 : 𝑔(l) = 𝑔(𝑙1, . . . , 𝑙𝑛) = (𝑔𝑎1 (𝑙1), . . . , 𝑔𝑎𝑛 (𝑙𝑛)). We
assume that for each 𝑎 ∈ 𝐴, 𝑔𝑎 is a non-decreasing map, i.e., for
any 𝑙, 𝑙 ′ ∈ 𝐿𝑎 if 𝑙 ⪯𝑎 𝑙 ′ then 𝑔𝑎 (𝑙) ≤ 𝑔𝑎 (𝑙 ′). Intuitively, 𝑔𝑎 assigns
a number to each label, which allows to represent tuples of labels
in the Euclidean space. We illustrate in §3.4 how the embedding
function 𝑔 affects the final ranking of documents.

Through the embedding function 𝑔, each tuple of labels l is repre-
sented by a point in the Euclidean space L denoted by ®𝑙 = 𝑔(l). We
define the best label tuple as the tuple of labels l★ whose coordinates
are the best label for each aspect, l★ = (𝑙𝐾𝑎1

, . . . , 𝑙𝐾𝑎𝑛
). The idea is

to treat l★ as the maximum element and use the distance from this
maximum element to define the desired weak order relation; e.g.,
for two aspects 𝑎1 and 𝑎2, each tuple of labels is represented as a
point in the Euclidean plane, and the best label l★ is represented
by the topmost and right-most point (see Fig. 1a). Then, given two
documents 𝑑 and 𝑑 ′, 𝑑 is ranked before 𝑑 ′ if GT(𝑑, 𝑡) is closer to
the best label than GT(𝑑 ′, 𝑡).

We formally define the distance order as the following relation:

l ⪯∗ l′ ⇐⇒ Dist(®𝑙, ®𝑙★) ≥ Dist( ®𝑙 ′, ®𝑙★) (2)

whereDist : L×L → [0, +∞[ is any function such that Dist(®𝑙★, ®𝑙★) =
03. The relation ⪯∗ is a weak order: all l, l′ are comparable because
Dist(®𝑙, ®𝑙★) is defined for all l, and as ≥ is reflexive and transitive

3Distance functions must be symmetric and satisfy the triangle inequality. Any such
distance function satisfies our condition on Dist, and so do our example distances.

on [0, +∞[, the relation ⪯∗ is reflexive and transitive (but not nec-
essarily antisymmetric). Since the distance order is a weak order,
it allows to deem items “equally good” when it is impossible or
undesirable to impose a strict total order4. Thus we write:

l =∗ l′ ⇐⇒ Dist(®𝑙, ®𝑙★) = Dist( ®𝑙 ′, ®𝑙★) (3)

which means that ®𝑙 and ®𝑙 ′ are at the same distance from ®𝑙★.
Note that the distance order can be tailored: we may instantiate

Dist with any valid distance function. We illustrate this in Fig. 1b-1d
with Euclidean (order relation ⪯2), Manhattan (order relation ⪯1),
and Chebyshev (order relation ⪯∞). With these choices of Dist, the
distance order defined in Eq. (2)-(3) respects the partial order ⊑,
which means that it satisfies the requirement in Eq. (1) because 𝑔𝑎 is
a non decreasing map (a proof is provided in the online appendix5).

3.3 Integration with IR measures
Next we integrate the distance order with known IR measures such
as AP or NDCG. The binary relation =∗ in Eq. (3) is an equivalence
relation. Given a tuple of labels l ∈ 𝐿, its equivalence class [l]∗ is
the set of all tuples of labels with equal distance from the best label
[l]∗ = {l′ ∈ 𝐿 : Dist( ®𝑙 ′, ®𝑙★) = Dist(®𝑙, ®𝑙★)}.

Inducing the relation defined in Eq. (2) on the set of documents𝐷
allows to rank documents by their membership to each equivalence
class, which corresponds to the distance of their tuple of labels to
the best label. We place closest to the top of the ranking documents
whose equivalence class is closest to the best label, and vice versa.

To combine the distance order with IR measures we map each
equivalence class (set of tuple of labels), to a non negative integer.
This is similar towhat happenswith single-aspect evaluation, where
each label is mapped to aweight: e.g., with 4 relevance labels, we can
compute NDCG with equi-spaced relevance weights {0, 1, 2, 3} [29]
or exponential weights {0, 2, 4, 8} [8]. We define a weight function
𝑊 : 𝐿 → N+0 as a map such that the order relation ⪯∗ is preserved:

∀ l, l′ ∈ 𝐿 : l ⪯∗ l′ =⇒ 𝑊 (l) ≤𝑊 (l′) (4)
where the constraint in Eq. (4) entails that𝑊 is a non-decreasing
function with respect to the weak order ⪯∗ on the set of tuples of
labels. This means that𝑊 can return different integers for each
equivalence class, but also the same integer for different equivalence
4This is the reason that weak orders (that are not necessarily anti-symmetric), rather
than strict total orders, are typically used in the literature [27, 47].
5https://mega.nz/file/mygEDBQC#zslzdU7lBLrACyMitAb2YmOwNowQP-
YXvFOuHD82jn4
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classes, i.e., 0 and 1, whenever we need to compute a binary single-
aspect IR measure as AP.

To summarize, our TOMA method has 3 steps:
(1) We embed tuples of labels into elements of Euclidean space,

and we derive the weak order ⪯∗ using a distance function;
(2) We define an adjustable weight function𝑊 that preserves ⪯∗

and maps each tuple of labels to a single integer weight (this
allows to aggregate tuple of labels so that better documents
can be given greater weight);

(3) Having such a weak order and the weight function𝑊 , any
existing single-aspect IR evaluation measure can be used to
assess the quality. Thus, we choose a single-aspect evaluation
measure 𝜇 and compute the final evaluation score as 𝑀 =
𝜇 ◦𝑊 : 𝑀 (𝑟𝑡 ) = 𝜇 (𝑊 (GT(𝑑1, 𝑡)), . . . ,𝑊 (GT(𝑑𝑁 , 𝑡))), where
𝑟𝑡 is a ranked list of documents.

The above is compatible with any number and type of aspect.

3.4 Example
We present an example on the role of different choices of embedding
functions, distance functions and weight functions in TOMAwith 4
relevance labels {nr, mr, fr, hr} and 3 correctness labels {nc, pc, c}.
As in real scenarios [34], we assume that not relevant documents
are not correct: as they do not include information about the topic,
they cannot be correct with respect to that topic.

Tab. 1 shows 3 different embeddings for correctness; the embed-
ding for relevance is fixed. Note that the distance functions are
invariant under translations and rotations, thus, rather than the ac-
tual values assigned from the embedding function 𝑔, it is important
to consider the relation between different aspects. Independently of
the choice of the embedding function and due to the definition of
the selected distance functions, we see that: (i) Chebyshev generates
the least number of equivalence classes and deems many tuples of
labels as equal, since by taking the maximum it considers just the
“furthest” or worst aspect to compute the distance; (ii) Manhatthan
is somehow in-between Chebyshev and Euclidean and generates
the equivalence classes by taking the sum across aspects; (iii) Eu-
clidean generates the highest number of equivalence classes as it
differentiates among tuples more than Manhatthan and is more
sensitive to extreme cases, e.g., cases where one aspect has the best
label and all other aspects have the lowest label.

In the 1𝑠𝑡 scenario of Tab. 1 we map relevance and correctness
to the same interval [0, 3] (i.e., a highly relevant document is as
“important” as a correct document). All labels are equi-spaced in
the given range (the difference between a fairly relevant and a
marginally relevant document is the same as that between a highly
relevant and a fairly relevant one). In the case of fake news, with
the Euclidean distance all relevant and not correct documents will
be deemed worse than all other documents, but will be placed
before not relevant and not correct documents. On the other hand,
Chebyshev places relevant and not correct documents in the same
equivalence class as not relevant documents, so those documents
do not provide any contribution and can be simply filtered out.
Manhattan represents a middle solution: highly relevant and not
correct documents are deemed better than marginally relevant and
partially correct documents, but worse than all other correct or
partially correct documents.

In the 2𝑛𝑑 scenario of Tab. 1 relevance and correctness are
mapped to different ranges, but all labels are equi-spaced with
the same step of size 1. Here, relevance is more important than cor-
rectness. This is reflected on the sorting of equivalence classes: for
all distance functions, highly relevant and not correct documents do
not belong to the worst equivalence classes, but they are somehow
better than partially correct documents. Even Chebyshev, which
can be seen as the “strictest” distance function, places all relevant
and not correct documents in the same equivalence class, which
is considered better than the equivalence class of not relevant and
not correct documents.

In the 3𝑟𝑑 scenario of Tab. 1 correctness is mapped to a range
twice the size as the relevance range and we do not use equi-spaced
labels for correctness. We assign more importance to correctness
than relevance, and among correctness labels we penalize not cor-
rect and partially correct documents. The result is that for all dis-
tance functions relevant and not correct documents are considered
among the worst equivalence classes. This particular setting affects
also the other equivalence classes: correctness is preferred over
relevance, e.g., correct documents should be always ranked before
partially correct documents, regardless of their relevance label.

Note that TOMA requires a weight function satisfying the re-
quirement in Eq. (4). If we wish to reward a system for sorting
documents exactly as presented by the equivalence classes in Tab. 1,
then the weight function should assign a different integer to each
equivalence class. This choice of weight is similar to the choice of
weights for relevance labels and its impact on the evaluation out-
come is strictly tight to the evaluation measure used, as for example
when one considers NDCG with different weighting schemes [29].

4 EXPERIMENTAL EVALUATION
We evaluate TOMA on 425 rankings that were submitted as official
runs to 10 TREC tracks [11–15, 20, 21, 34, 45, 48] (see Tab. 2).

4.1 Experimental Setup
We use up to 5 different aspects. All aspects are assessed by TREC
assessors as part of the corresponding track, except popularity and
non-spamminess. We approximate popularity by PageRank6, and
non-spamminess by the Waterloo Spam Ranking7. We discretize the
PageRank scores to generate 3 grades of popularity (not popular,
fairly popular, highly popular), while simulating a power law
distribution of popular and not popular documents (few highly
popular (5%), some fairly popular (10%), and most not popular
(85%)). For non-spamminess, we generate 3 grades of labels (spam,
fairly spam, not spam) from theWaterloo Spam Ranking. We treat
any document with score below 80 as spam (77%), documents with
score in [80, 89] (14%) as fairly spam, and documents with score
greater than 90 (9%) as not spam [38].

For the Web 2010-2014 and Task 2015-2016 tracks, we merge the
labels junk and non relevant into non relevant, as was done by
the TREC track organisers. For Task 2015-2016, Decision 2019 and
Misinformation 2020, usefulness, credibility, and correctnesswere not
assessed for not relevant documents, thus not relevant documents
are assumed to be not useful, not credible, and not correct.

6http://www.lemurproject.org/clueweb12/PageRank.php
7https://www.mansci.uwaterloo.ca/~msmucker/cw12spam/
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Table 1: Final ordering of tuples of labels embedded in the Euclidean space. Relevance labels are always embedded in the same
mapping (under Relevance). We use different mappings for correctness labels (under Correctness). Tuples that are relevant and
not correct (high-traffic fake news) are in red.

Relevance Correctness Distance Order among Tuples of Labels

{0, 1, 2, 3} {0, 3/2, 3}
Euclidean (3, 3) ⪯∗ (2, 3) ⪯∗ (3, 3/2) ⪯∗ (2, 3/2) ⪯∗ (1, 3) ⪯∗ (1, 3/2) ⪯∗ (3, 0) ⪯∗ (2, 0) ⪯∗ (1, 0) ⪯∗ (0, 0)
Manhattan (3, 3) ⪯∗ (2, 3) ⪯∗ (3, 3/2) ⪯∗ (1, 3) ⪯∗ (2, 3/2) ⪯∗ (3, 0) ⪯∗ (1, 3/2) ⪯∗ (2, 0) ⪯∗ (1, 0) ⪯∗ (0, 0)
Chebyshev (3, 3) ⪯∗ (2, 3) ⪯∗ (3, 3/2) =∗ (2, 3/2) ⪯∗ (1, 3) =∗ (1, 3/2) ⪯∗ (3, 0) =∗ (2, 0) =∗ (1, 0) =∗ (0, 0)

{0, 1, 2, 3} {0, 1, 2}
Euclidean (3, 2) ⪯∗ (3, 1) =∗ (2, 2) ⪯∗ (2, 1) ⪯∗ (3, 0) =∗ (1, 2) ⪯∗ (2, 0) =∗ (1, 1) ⪯∗ (1, 0) ⪯∗ (0, 0)
Manhattan (3, 2) ⪯∗ (3, 1) =∗ (2, 2) ⪯∗ (3, 0) =∗ (2, 1) =∗ (1, 2) ⪯∗ (2, 0) =∗ (1, 1) ⪯∗ (1, 0) ⪯∗ (0, 0)
Chebyshev (3, 2) ⪯∗ (3, 1) =∗ (2, 1) =∗ (2, 2) ⪯∗ (3, 0) =∗ (2, 0) =∗ (1, 0) =∗ (1, 1) =∗ (1, 2) ⪯∗ (0, 0)

{0, 1, 2, 3} {0, 2, 6}
Euclidean (3, 6) ⪯∗ (2, 6) ⪯∗ (1, 6) ⪯∗ (3, 2) ⪯∗ (2, 2) ⪯∗ (1, 2) ⪯∗ (3, 0) ⪯∗ (2, 0) ⪯∗ (1, 0) ⪯∗ (0, 0)
Manhattan (3, 6) ⪯∗ (2, 6) ⪯∗ (1, 6) ⪯∗ (3, 2) ⪯∗ (2, 2) ⪯∗ (1, 2) =∗ (3, 0) ⪯∗ (2, 0) ⪯∗ (1, 0) ⪯∗ (0, 0)
Chebyshev (3, 6) ⪯∗ (2, 6) ⪯∗ (1, 6) ⪯∗ (3, 2) =∗ (2, 2) =∗ (1, 2) ⪯∗ (3, 0) =∗ (2, 0) =∗ (1, 0) =∗ (0, 0)

Table 2: Experimental data. All aspects are labelled by TREC except popularity († approximated by PageRank) and non-
spamminess (‡ approximated by Waterloo Spam Ranking). * means that the junk labels are merged with non relevant.

TREC tracks
Web 2009 Web 2010 Web 2011 Web 2012 Web 2013 Web 2014 Task 2015 Task 2016 Decision 2019 Misinfo2020

Collection ClueWeb09 ClueWeb12 ClueWeb12-B13 CommonCrawl News
Topics 50 48 50 50 50 50 35 50 50 46
Submitted runs 71 56 61 48 61 30 6 9 32 51

relevance (4) relevance (5*) relevance (4*) relevance (5*) relevance (3*) relevance (3) relevance (2)
Aspects popularity† (3) popularity† (3) popularity† (3) popularity† (3) usefulness (3) credibility (2) credibility (2)
(label grades) non-spam‡ (3) non-spam‡ (3) non-spam‡ (3) non-spam‡ (3) popularity† (3) correctness (2) correctness (2)

non-spam‡ (3)

We evaluate three versions of our method, TOMA Euclidean,
TOMA Manhattan, and TOMA Chebyshev, as per the distance
metric used in Eq. (2) (abbreviated as EUCL, MANH, and CHEB
henceforth). We compare these to two state-of-the-art baselines,
CAM [35] and MM [37].

Given a set of aspects 𝐴8, CAM aggregates their scores through
a weighted average:

CAM(𝑟𝑡 ) =
∑
𝑎∈𝐴

𝑝𝑎 × 𝜇 (𝑟𝑡,𝑎) (5)

where 𝜇 (·) is the evaluation measure (e.g., NDCG), 𝑟𝑡,𝑎 is the rank-
ing labelled with respect to aspect 𝑎, and 𝑝𝑎 is a parameter control-
ling the importance of each aspect: 𝑝𝑎 ∈ [0, 1] and ∑

𝑎∈𝐴 𝑝𝑎 = 1.
MM [37] aggregates the evaluation measure scores computed

for each aspect individually with a weighted harmonic mean:

MM(𝑟𝑡 ) =
∑
𝑎∈𝐴 𝑝𝑎∑

𝑎∈𝐴
𝑝𝑎

𝜇 (𝑟𝑡,𝑎)
(6)

with the same notation as above.
Out of the other multi-aspect methods presented in §2, we do

not use WHAM [35] as baseline because it also uses the weighted
harmonic mean to aggregate the evaluation measure scores. How-
ever, WHAM is defined only for relevance and credibility, and can

8CAM was originally formulated for two aspects [35].

therefore be seen as an instantiation of MM restricted to two as-
pects. All other multi aspect measures in §2 need a predefined set
and number of aspects, thus are not applicable in our scenario.

We instantiate ourmethod and the baselines using (1) NDCG [31]
and graded labels (when available); and using (2) AP [7] and binary
labels (we convert all graded labels to binary by treating all grades
above zero as one, and grades equal/below zero as zero).We consider
all aspects equally important (all aspects are mapped to an integer
scale with one unit separating each grade). All source code will be
released upon publication of the paper.

4.2 Anomalies of CAM & MM
Next we discuss anomalies of CAM and MM that TOMA overcomes.

Problem 1: MM is ill-defined. As the harmonic mean is not defined
with zero values, MM is not defined if ∃𝑎 ∈ 𝐴 such that 𝜇 (𝑟𝑡,𝑎) = 0,
e.g., a ranking does not retrieve any correct or relevant document.
To compute MM even in these cases, as the denominator in Eq. (6)
tends to +∞ if any 𝜇 (𝑟𝑡,𝑎) tends to zero, we set MM(𝑟𝑡 ) = 0. For
classification measures, this problem is called the Strong Definite-
ness Axiom [41]. It represents a serious issue for collections where
there are a few documents with a positive label for certain aspects.
For example, for the Task Tracks, since useful documents are very
sparse, many systems are not able to retrieve any useful documents
and they all have a 0 score, independently of the number of rele-
vant documents they retrieve. TOMA does not have this problem,
because we first assign a weight to each tuple of labels and then
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Table 3: CAM, MM and TOMA scores instantiated with AP & NDCG for all rankings in 𝐷 . The highest scores are in bold.

AP
Length 3 CAM MM EUCL MANH CHEB Length 2 CAM MM EUCL MANH CHEB Length 1 CAM MM EUCL MANH CHEB
(𝑑1, 𝑑2, 𝑑3) 0.7917 0.3684 1 1 0.5 (𝑑1, 𝑑2) 0.6250 0.25 1 1 0.5 (𝑑1) 0.5 0 0.5 0.5 0
(𝑑1, 𝑑3, 𝑑2) 0.7917 0.3684 0.8333 0.8333 0.3333 (𝑑1, 𝑑3) 0.6250 0.25 0.5 0.5 0 (𝑑2) 0.25 0 0.5 0.5 1
(𝑑2, 𝑑1, 𝑑3) 0.6667 0.3125 1 1 1 (𝑑2, 𝑑1) 0.5 0.25 1 1 1 (𝑑3) 0.25 0 0 0 0
(𝑑2, 𝑑3, 𝑑1) 0.6667 0.25 0.8333 0.8333 1 (𝑑2, 𝑑3) 0.5 0 0.5 0.5 1 - - - - - -
(𝑑3, 𝑑1, 𝑑2) 0.6667 0.3125 0.5833 0.5833 0.3333 (𝑑3, 𝑑1) 0.5 0.25 0.25 0.25 0 - - - - - -
(𝑑3, 𝑑2, 𝑑1) 0.6667 0.25 0.5833 0.5833 0.5 (𝑑3, 𝑑2) 0.5 0 0.25 0.25 0.5 - - - - - -

NDCG
Length 3 CAM MM EUCL MANH CHEB Length 2 CAM MM EUCL MANH CHEB Length 1 CAM MM EUCL MANH CHEB
(𝑑1, 𝑑2, 𝑑3) 0.9073 0.4489 0.9367 0.9711 0.8597 (𝑑1, 𝑑2) 0.7682 0.3491 0.8080 0.8147 0.8597 (𝑑1) 0.4728 0.1491 0.4290 0.4693 0.3801
(𝑑1, 𝑑3, 𝑑2) 0.8824 0.4386 0.8917 0.9404 0.7602 (𝑑1, 𝑑3) 0.6483 0.3145 0.5914 0.6667 0.3801 (𝑑2) 0.4682 0.2258 0.6006 0.5475 0.7602
(𝑑2, 𝑑1, 𝑑3) 0.9056 0.4516 1 1 1 (𝑑2, 𝑑1) 0.7665 0.3776 0.8713 0.8436 1 (𝑑3) 0.2781 0 0.2574 0.3129 0
(𝑑2, 𝑑3, 𝑑1) 0.8801 0.4319 0.9775 0.9795 0.9502 (𝑑2, 𝑑3) 0.6437 0.2679 0.7630 0.7449 0.7602 - - - - - -
(𝑑3, 𝑑1, 𝑑2) 0.8106 0.3930 0.8284 0.8827 0.6199 (𝑑3, 𝑑1) 0.5765 0.2801 0.5281 0.6089 0.2398 - - - - - -
(𝑑3, 𝑑2, 𝑑1) 0.8100 0.3827 0.8509 0.8929 0.6697 (𝑑3, 𝑑2) 0.5735 0.1897 0.6364 0.6583 0.4796 - - - - - -
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Figure 2: Box-plots for CAM and MM with NDCG on the Decision Track 2019. Topic numbers are on the 𝑥-axis and measures
scores on the 𝑦-axis. The maximum achievable value for CAM and MM is variable and depends on the topic and the aspects.

compute a single-aspect evaluation measure 𝜇, thus there is no
division by 0 and TOMA is well defined.

Problem 2: CAM and MM can range in different intervals. Given a
set of documents 𝐷 and a set of aspects 𝐴, by definition CAM and
MM are multi-aspect evaluation measures𝑀 : 𝐷∗ → [0, 𝑋 ], where
𝐷∗ is the set of rankings and 𝑋 ≤ 1. Depending on 𝐷 and 𝐴, there
exist cases with 𝑋 < 1.

To prove this claim, we need to show that when 𝑀 is CAM or
MM, ∃ 𝐷,𝐴 such that:

max
𝑟 ∈𝐷∗ 𝑀 (𝑟𝑡 ) < 1 (7)

i.e., for each ranking of documents in 𝐷∗ the maximum measure
score will be less than 1. To build such an example, the set 𝐷 needs
to contain documents with not comparable tuples of labels:

∃𝑑1, 𝑑2 ∈ 𝐷 : GT(𝑑1) @ GT(𝑑2) and GT(𝑑2) @ GT(𝑑1) ⇐⇒
∃𝑑1, 𝑑2 ∈ 𝐷 and ∃𝑎1, 𝑎2 ∈ 𝐴 :

GT𝑎1 (𝑑1) ≺𝑎1 GT𝑎1 (𝑑2) and GT𝑎2 (𝑑2) ≺𝑎2 GT𝑎2 (𝑑1) (8)

In this case, CAM and MM cannot achieve a score equal to 1, as
illustrated by the following example.

Consider the example in §3.4 with 𝐴 = {relevance, correctness}.
Let 𝐷 be a set with 3 documents: 𝐷 = {𝑑1, 𝑑2, 𝑑3} that have the
following labels:

GT(𝑑1) = (mr, c) GT(𝑑2) = (hr, pc) GT(𝑑3) = (hr, nc) (9)

Documents (𝑑1, 𝑑2) and (𝑑1, 𝑑3) are not comparable and there is no
unequivocal way of sorting them, e.g., it is not clear if 𝑑1 should be
ranked before 𝑑2 or vice-versa.

Let us consider CAM and MM instantiated with AP and NDCG.
For AP we use a harsh mapping for relevance and correctness, i.e.,
{fr, hr} ↦→ 1 and {mr, nr} ↦→ 0, and c ↦→ 1 and {pc, nc} ↦→ 0. For
NDCG we map each category to a different integer, for relevance
we have: hr ↦→ 15, fr ↦→ 10, mr ↦→ 5, nr ↦→ 0, and for correctness
we have: c ↦→ 10, pc ↦→ 5, nc ↦→ 0. The NDCG ideal ranking [29]
for relevance is: (hr, hr, mr) and for correctness is (c, pc, nc). The
NDCG log base is set to 2.

For TOMA we use the embedding of the first row in Tab. 1 and
as weight function we map each equivalence class to a different
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integer with step 1. We instantiate TOMAwith AP and NDCG with
log base 2 (Tab. 3). Since AP does not handle multi-graded weights,
we map the top half of the equivalence classes to 1 and the rest to
0. Tab. 3 shows CAM, MM, and TOMA scores instantiated with AP
NDCG for each possible ranking of documents in 𝐷 .

In Tab. 3 none of the rankings in 𝐷∗ can achieve a score equal
to 1 for CAM and MM, while TOMA has at least one ranking with
score 1. In CAM and MM this happens because, any way we sort
the documents, either we penalize correctness, e.g., (𝑑2, 𝑑3, 𝑑1) or
we penalize relevance, e.g., (𝑑1, 𝑑2, 𝑑3). TOMA does not have this
problem, since it first defines how to sort tuples of labels, then
weights them accordingly and computes the measure score. Thus,
if we sort documents in the order induced by ⪯∗, we obtain a score
equal to 1 (proof in the appendix). Experiments on real data confirm
this, as detailed next.

Estimating CAM and MM Upper Bound. With the following ex-
periment we show that with real data CAM and MM can be upper
bounded by a value 𝑋 lower than 1. To estimate the value 𝑋 with
real data, we generate different ideal rankings of documents with
different strategies. The intuition is that by ranking documents in
the best possible way, we should achieve a score equal to 1, as it hap-
pens for any single-aspect evaluation measure computed against
the ideal ranking. Since CAM and MM do not define how to sort
documents, i.e., a total order relation ⪯∗, we need to test different
possible strategies to build these ideal rankings.

First, we define the ideal rankings obtained with a recursive
strategy: these are the ideal rankings for each aspect when consid-
ered separately, e.g., for 3 aspects, 𝑎1, 𝑎2 and 𝑎3, with a preference
order where 𝑎1 is followed by 𝑎2, followed by 𝑎3: (1) we sort the
documents with decreasing label for 𝑎1; (2) among the documents
with the same label for 𝑎1, we sort the documents with decreasing
label for 𝑎2; (3) among the documents with the same label for 𝑎1
and 𝑎2, we sort the documents with decreasing label for 𝑎3. We
generate these ideal rankings for each possible preference order
among the aspects.

We also generate 3 additional ideal rankings: (1) we sum the
weights across aspects and sort the documents by this sum; (2) we
sum the squared weights across aspects and sort the documents
by this sum; (3) we consider the highest weight across aspects and
sort documents by their highest weight regardless of the aspect.

Fig. 2 reports the distributions of CAM with AP scores for the
ideal rankings for the Decision Track 2019. These distributions
depend on the aspect and the topic. We see that the upper bound 𝑋
is variable and depends on the topic: just for 2% of topics it is equal
to 1 and for 26% topics it is lower than 0.9. We obtain similar or
even more extreme distributions of scores for all the other tracks
(except for Misinformation 2020, see online appendix).

Interpretability of CAM and MM scores. Problem 2 is especially
important because it affects the interpretability of CAM and MM
scores. When a measure is used to assess the quality of a single
ranking in isolation, it should be intuitively interpretable [33], e.g.,
NDCG=0.6 has the intuitive interpretation that the ranking can
be further improved by 0.4. If TOMA is instantiated with NDCG,
the intuitive interpretability of NDCG holds, but if CAM or MM
are instantiated with NDCG, the intuitive interpretability of NDCG
is lost: by the arguments above, CAM and MM may fail to obtain

an optimal score of 1, and the optimal score depends on 𝐴 and 𝐷 ,
hence it cannot in general be known a priori.

This issue is important for MM, which is affected also by Prob-
lem 1, and therefore may have 𝑋 << 1. Thus MM scores can be
compressed towards 0, and this can lead to cases with many ties,
where it is hard to distinguish between different rankings.

4.3 Experimental Findings
Empirically, evaluation measures are commonly assessed in terms
of their correlation [24], discriminative power [39], informative-
ness [6], intuitiveness [40], and unanimity [2]. Out of these, we
report only correlation and discriminative power because the rest
does not apply: the informativeness test [6] requires a precision
recall-curve, which cannot be defined for multi-aspect evaluation;
the intuitiveness test [40] requires simple single-aspect measures
(e.g. precision, recall), which do not apply to multi-aspect eval-
uation; the unanimity test [2], which is defined for multi-aspect
evaluation, requires that all the simple measures agree over all
aspects, which happened extremely rarely in our data, especially
as the number of aspects increased (see the low correlation among
aspects in Tab. 4).

4.3.1 Correlation Analysis. We use Kendall’s 𝜏 [32] to estimate
TOMA’s correlation to MM and CAM. Generally, if a new evalua-
tion measure strongly correlates to an existing one, it is likely to
represent redundant information [46]. We use Kendall’s 𝜏 because
it has better gross-error sensitivity than the Pearson correlation
coefficient [22], and because the Spearman correlation coefficient
cannot handle ties. As per [24], we compute the correlation topic-
by-topic. For each topic we consider the Rankings of Submitted
runs (RoS) corresponding to two different measures (one ranking
per measure) and then compute Kendall’s 𝜏 between the two RoS.
We report Kendall’s 𝜏 averaged across all topics. As per [43, 44], we
consider two rankings equivalent if Kendall’s 𝜏 is greater than 0.9.

Tab. 4 shows the findings, which are summarised as follows:
• The RoS corresponding to EUCL - MANH are equivalent
(𝜏 = 1) at all times for AP. This perfect correlation for AP
happens because, by definition, when the sets of equivalence
classes from these approaches are mapped to binary labels,
they produce the exact same set of labels (see also Tab. 3). For
NDCG, 𝜏 = 0.19−1, where higher correlations correspond to
tracks where some aspects are not assessed for non relevant
documents, thus there are less extreme cases and EUCL is
more similar to MANH.

• The RoS corresponding to (EUCL, MANH) - CHEB are very
weakly correlated (𝜏 = 0.01 − 0.32), this is due to Chebyshev
distance being very harsh, since many equivalence classes
are considered equivalent to the class of non relevant docu-
ments.

• The RoS corresponding to EUCL - CAM and MANH - CAM
are very weakly correlated (𝜏 = 0.11 − 0.41) for the Web
tracks, but moderately correlated (𝜏 = 0.54 − 0.76) for the
Task, Decision and Misinformation tracks. This happens be-
cause: (i) the runs submitted to the Web tracks were not
designed to account for multiple aspects and (ii) for the Task,
Decision and Misinformation tracks, usefulness, credibility
and correctness are not assessed for non relevant documents.
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Table 4: Kendall’s 𝜏 correlation between rankings of systems and discriminative power (the higher, the better; best is in bold).
Not all aspect combinations occur in all tracks (marked grey).

WEB2009 WEB2010 WEB2011 WEB2012 WEB2013 WEB2014 TASK15 TASK16 DECISION19 MISINFO 2020
NDCG AP NDCG AP NDCG AP NDCG AP NDCG AP NDCG AP NDCG AP NDCG AP NDCG AP NDCG AP

CORRELATION
EUCL - CAM 0.25 0.16 0.18 0.12 0.21 0.11 0.31 0.26 0.22 0.12 0.30 0.23 0.68 0.54 0.63 0.55 0.76 0.60 0.72 0.51
EUCL - MM 0.07 0.04 0.05 0.00 0.06 0.03 0.16 0.13 0.12 0.04 0.17 0.04 0.36 0.17 0.02 -0.10 0.46 0.31 0.45 0.27
MANH - CAM 0.22 0.16 0.21 0.12 0.16 0.11 0.34 0.26 0.31 0.12 0.41 0.23 0.62 0.54 0.60 0.55 0.69 0.60 0.72 0.51
MANH - MM 0.06 0.04 0.01 0.01 0.06 0.03 0.16 0.13 0.11 0.04 0.15 0.04 0.28 0.17 -0.06 -0.10 0.41 0.31 0.45 0.27
CHEB - CAM 0.01 0.02 0.06 0.05 0.02 0.02 0.19 0.15 0.11 0.00 0.19 0.07 0.26 0.16 -0.13 -0.18 0.27 0.27 0.29 0.24
CHEB - MM 0.06 0.09 0.00 0.03 0.09 0.01 0.19 0.16 0.12 0.08 0.14 0.05 0.88 0.86 0.52 0.53 0.58 0.60 0.54 0.52
EUCL - MANH 0.36 1.00 0.19 1.00 0.21 1.00 0.34 1.00 0.20 1.00 0.34 1.00 0.87 1.00 0.71 1.00 0.72 1.00 1.00 1.00
EUCL - CHEB 0.01 0.02 0.10 0.03 0.01 0.03 0.32 0.11 0.22 0.04 0.30 0.12 0.33 0.19 -0.21 -0.21 0.28 0.21 0.26 0.20
MANH - CHEB 0.01 0.02 0.03 0.03 0.02 0.03 0.21 0.11 0.10 0.04 0.18 0.12 0.32 0.19 -0.24 -0.21 0.25 0.21 0.26 0.20
CAM - MM 0.10 0.05 0.05 0.01 0.11 -0.01 0.23 0.13 0.16 0.03 0.26 0.04 0.30 0.18 0.09 0.00 0.51 0.41 0.51 0.42

CORRELATION
Relevance - Popularity 0.03 0.05 0.01 0.0 0.01 0.02 0.09 0.09 0.06 0.01 0.07 0.02 0.04 0.04 -0.03 0.01
Relevance - Non-spam 0.05 0.03 0.02 0.0 0.03 0.01 0.07 0.05 -0.02 -0.01 0.07 -0.01 0.25 0.17 -0.07 -0.08
Popularity - Non-spam 0.04 0.03 0.02 -0.01 0.04 0.01 0.07 0.04 -0.03 -0.02 0.04 0.00 0.07 0.02 0.08 0.06
Relevance - Usefulness 0.75 0.75 0.75 0.74
Usefulness - Popularity 0.10 0.06 -0.04 0.00
Usefulness - Non-spam 0.40 0.33 -0.16 -0.19
Credibility - Correctness 0.26 0.26 0.28 0.24
Relevance - Credibility 0.33 0.33 0.29 0.25
Relevance - Correctness 0.42 0.49 0.49 0.47

DISCRIMINATIVE POWER OF MEASURES
CAM 75.98 64.43 66.32 61.23 75.14 61.64 68.71 56.74 76.89 57.05 85.06 78.85 53.33 33.33 72.22 55.56 72.58 70.56 71.53 70.90
MM 75.61 50.58 72.89 67.79 67.32 67.81 62.68 56.12 80.71 46.99 74.25 53.56 0.00 0.00 0.00 0.00 60.08 53.23 68.31 62.20
EUCL 75.29 72.64 62.96 66.75 75.14 70.33 66.13 64.10 75.14 59.45 80.92 78.85 66.67 66.67 69.44 75.00 73.59 73.99 72.86 75.14
MANH 76.66 72.68 63.59 67.14 77.32 70.38 66.05 64.18 76.67 59.34 86.44 79.08 66.67 53.33 75.00 75.00 73.79 73.79 73.02 74.98
CHEB 50.18 6.32 59.82 51.49 73.06 50.11 61.08 39.36 77.10 49.34 75.17 66.21 0.00 0.00 0.00 0.00 42.54 29.84 65.41 53.33

Therefore, since some of the values are missing, these meth-
ods generate a lower number of equivalence classes, which
make them more similar to CAM. Whereas, for the Web
tracks, popularity and non-spamminess are approximated
for all documents, meaning that MANH and EUCL can pos-
sibly generate all the different equivalence classes, even for
non relevant documents. This makes them less similar to
CAM than on the Task or Decision tracks.

• For the Task, Decision and Misinformation tracks, the RoS
corresponding to MM and CHEB are moderately correlated
(𝜏 = 0.52 − 0.88). The fact that, for these tracks, usefulness,
credibility and correctness are not assessed for non relevant
documents, means that all the documents that are mapped
to a 0 weight with CHEB, are also contributing as 0 to MM.

To contextualise these findings, the middle part of Tab. 4 shows
the 𝜏 values of the RoS corresponding to evaluating a single aspect
only. Overall, the resulting correlations are low to non-existent,
meaning that considering multiple aspects affects the final evalua-
tion outcome. The two exceptions where the correlation between
RoS is not very low are:

• For Task 2015-2016, for relevance - usefulness, 𝜏 = 0.74 −
0.75. This happens because: (1) usefulness is not assessed for
non relevant documents, thus non relevant documents are
assumed to be not useful, and (2) usefulness is a very sparse
signal (1.75% of documents are useful).

• For the Decision and Misinformation Tracks, for all aspects,
𝜏 = 0.24−0.49. Again here credibility and correctness are not
assessed for non relevant documents (6.89% of documents
are credible and 9.75% are correct for the Decision Track;
13.73% of documents are correct and 27.62% are credible for

the Misinformation Track), so the correlation is not as high
as for the Task tracks.

Overall, the most correlated RoS correspond to: EUCL - MANH
(𝜏 up to 1), (EUCL, MANH)- CAM (𝜏 up to 0.76), and CHEB - MM
(𝜏 up to 0.88). Intuitively, EUCL and MANH may be more similar to
CAM (mean), while CHEB may be more similar to MM (harmonic
mean). Thus TOMA proposes an alternative evaluation framework,
which overcomes CAM andMManomalies (see §4.2). The fact that 𝜏
values between TOMA and the baselines are never above 0.9means
that there are noticeable differences between the RoS generated by
TOMAand by CAMorMM. Recall that all measures are instantiated
with NDCG or AP, meaning that differences between them are due
to how multi-aspect labels are treated.

4.3.2 Discriminative Power. We use Bootstrap Hypothesis Test [39]
to estimate the discriminative power of TOMA, CAM and MM.
Given a set of topics and a set of runs, we first generate subsets of
topics by sampling with replacement the complete set of topics. We
set the number of bootstrap samples to 10 000. To assess whether
the measure scores for pairs of runs can be considered different
at a given confidence level, we use a Paired Bootstrap Hypothesis
Test. The confidence level is 1 − 𝛼 , where 𝛼 is the Type I Error,
i.e., the probability to consider two systems different even if they
are equivalent. We set 𝛼 = 0.01, requiring strong evidence for two
systems to be different.

Tab. 4 (bottom part) displays the results of the discriminative
power analysis, where the higher the score, the more discriminative
(i.e., the better) the approach. We see that 16/20 times either MANH
(12/20) or EUCL (6/20)9 is best. The remaining 4 times, MM is best

9Ties are included in these counts.
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Table 5: Number of times (%) that the labels of all aspects
sum to 0 for a document that is ranked at position 1-5 (col-
umn 1) in a run that has been assessed as best per {topic,
track, year} separately with {CAM, MM, EUCL, MANH,
CHEB} using a retrieval cutoff of 5. The lower, the better.

Rank CAM MM EUCL MANH CHEB
1 51 (1.18%) 131 (3.02%) 39 (0.90%) 33 (0.76%) 154 (3.55%)
2 65 (1.50%) 159 (3.67%) 50 (1.15%) 48 (1.11%) 179 (4.13%)
3 103 (2.38%) 202 (4.66%) 88 (2.03%) 78 (1.80%) 185 (4.17%)
4 102 (2.35%) 173 (3.99%) 86 (1.99%) 74 (1.71%) 183 (4.23%)
5 107 (2.47%) 196 (4.53%) 95 (2.19%) 81 (1.87%) 205 (4.73%)
1-5 428 (9.88%) 861 (19.88%) 358 (8.27%) 314 (7.25%) 906 (20.92%)

Table 6: Average sum of aspect labels for a document that is
ranked at position 1-100 (column 1) in a run that has been as-
sessed as best per {topic, track, year} separately with {CAM,
MM, EUCL, MANH, CHEB} using a retrieval cutoff of 100.
The higher, the better.

Ranks CAM MM EUCL MANH CHEB
1-25 1.70 1.49 1.67 1.69 1.39
26-50 0.85 0.78 0.91 0.94 0.70
51-75 0.57 0.53 0.63 0.64 0.48
76-100 0.40 0.39 0.43 0.44 0.36

3 times, and CAM once. We also see that CHEB is never best, and
for Task 2015-2016 it is actually zero. This is due to the very small
amount of positive labels for usefulness in that track. For the same
reason, MM is also zero for the same track. Overall, CHEB is the
least discriminative measure, followed by MM; this is due to how
these methods treat tuples of labels: the fact that if one aspect label
is zero, then the whole score is zero, practically means that many
runs are considered equal purely on that basis.

4.3.3 Zero-aspect documents. Our next analysis is motivated by
the empirical trash@𝑘 measure often used in industry to mitigate
the high cost of retrieving “trash” in high ranks. We count how
often the labels of all aspects sum to zero for a document that has
been ranked at position 1-5 in a run that has been assessed as the
best run per track year, on a per query basis, using a retrieval cutoff
of 5, separately with {CAM, MM, EUCL, MANH, CHEB} when
instantiated separately with NDCG and AP. When the labels of all
aspects sum to zero, this means that the corresponding document is
of the worst quality. Ideally, such documents should not be retrieved,
but when they do, they should not be in the top 5.

In Tab. 5 we see that MANH is associated with the lowest amount
of zero-aspect documents, closely followed by EUCL. This hap-
pens because MANH is designed so that the higher the sum of a
document’s labels across aspects, the better that document will
be deemed. CHEB is overall worst, closely followed by MM. This
closeness between EUCL-MANH and CHEB-MM agrees with the
previous correlation and discriminative power analysis. Overall,
MANH (and less so EUCL) penalise low quality documents the best.

4.3.4 Document quality @1-100. We look at the quality of doc-
uments that have been ranked at positions 1-100 in a run that

has been assessed as best per {topic, track, year} separately with
{CAM, MM, EUCL, MANH, CHEB}, when instantiated separately
with NDCG and AP, using a retrieval cutoff of 100. We split the
ranks 1-100 into four sets (1-25, 26-50, 51-75, 76-100). For each doc-
ument in each set, we sum the labels of its aspects, and we report
the average of these sums, which can be seen as an approximation
of the average document quality (the higher, the better).

As expected, we see that the numbers in Tab. 6, and hence doc-
ument quality, drop as we move down the ranking, at all times.
Comparing across columns however, we see that, for the runs that
were assessed as best by MANH, document quality is overall, albeit
marginally, the best, at ranks 26-100. This illustrates that the design
of MANH (the higher the sum of a document’s labels across aspects,
the better that document will be considered) gives it the practical
advantage of, not only reducing the amount of low quality docu-
ments in the top ranks (as seen in Tab. 5), but also of increasing
the quality of documents further down the ranking, as we see now.
Again, as previously, we observe that EUCL is a close second-best
method, CHEB and MM are overall worst, and CAM is in between
(although best, together with MANH, for the top ranks).

5 CONCLUSION AND LIMITATIONS
Multi-aspect evaluation is a special case of IR evaluation where the
ranked list of documents returned by an IR system in response
to a query must be assessed in terms of not only relevance to
the query, but also other aspects (or dimensions) of the ranked
documents, e.g., credibility or usefulness. We presented a principled
multi-aspect evaluation approach, called TOMA, that is defined for
any number and type of aspect, and that allows for (i) aspects
having different gradings, (ii) any relative importance weighting
for different aspects, and (iii) integration with any existing single-
aspect evaluation measure, such as NDCG. We showed that TOMA
has better discriminative power than prior approaches to multi-
aspect evaluation, and that it is better at rewarding high quality
documents across the ranking.

One limitation of TOMA is represented by the arbitrary choices
in its definition: the embedding function, the distance function and
the weight function. The embedding function maps labels from a
nominal or ordinal scale to an interval or ratio scale. This calls for a
in-depth investigation of the theoretical properties of TOMA using
the existing axiomatic treatments of effectiveness for IR retrieval
measures [3, 4, 9, 23, 36]. This also motivates a deep analysis of the
interactions between different aspects and/or documents and how
to handle themwith TOMA, for example by defining a proper repre-
sentation and distance function in a vector space which accounts for
aspects as diversity, novelty, and redundancy. Moreover, the embed-
ding function combined with the distance function can generate a
large number of tuple of labels, which can be mapped to different in-
tegers through the weight function. This might represent a problem
for gain based measures, thus a possible solution is to use TOMA to
define the ideal ranking and then use effectiveness measures based
on similarity to ideal rankings [17–19]. Finally, the empirical impact
of varying both distance functions and weight functions should also
be investigated, as should the impact of employing further multi-
graded measures such as Expected Reciprocal Rank (ERR) [10], and
the alignment of our current approach with real user preferences.
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Test collection incompleteness and unjudged documents
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ABSTRACT
IR test collections are notoriously incomplete: they contain consid-
erably fewer assessed than non-assessed documents, and within
this minority class of assessed documents, considerably fewer doc-
uments are assessed as relevant than non-relevant to a query. One
state-of-the-art way of addressing this problem is to automatically
infer relevance assessments from document similarities. However,
this is currently done without accounting for the imbalance be-
tween relevant and non-relevant documents, which means that the
discriminative signal of relevant documents (minority) is weakened
by the much stronger noise signal of non-relevant documents (ma-
jority). We address this with a simple method of reducing the noisy
impact of highly dissimilar documents when inferring relevance
assessments from document similarities. We show that our method
is effective for inferring relevance assessments of non-assessed
documents by performing experiments with 8 different sampling
approaches, 3 different representations of document semantics (TF-
IDF, Glove and BERT word embeddings), and data from 5 different
TREC tracks (248 topics and 256 runs).
ACM Reference Format:
Anonymous Author(s). 2020. Test collection incompleteness and unjudged
documents. In CIKM ’21: 30th ACM International Conference on Information
and Knowledge Management, November 1-5 2021, Queensland, Australia.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
IR test collections are notoriously incomplete: not all documents are
assessed, and many more documents are assessed as non-relevant
than as relevant. This problem [3] has been generally addressed
in three ways. One is to consider non-assessed documents as non-
relevant, but this creates bias in favour of methods that contribute
more to the pooling [3]. Another way is to ignore non-assessed
documents altogether, but this can lead to unfair inferences, such
as treating the ranking of non-assessed documents in the top 𝑘 as
equally good to the ranking of only relevant documents in the top
𝑘 [16]. A third way is to reduce non-assessed documents by infer-
ring relevance judgements automatically [1, 2, 4, 17, 19, 20]. Even
if inferred judgments may be incorrect, having better-than-random
judgments may (i) yield a fairer comparison between systems, and
(ii) enable supervised or semi-supervised learning to be trained on
larger datasets of annotated documents. There are different ways
of automatically inferring judgements. Document relevance can be
approximated from IR system rankings [1, 17, 19, 20]: if a document
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classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
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is ranked close to the top of the ranking by several different systems,
then that document is considered relevant. Alternatively, we can
infer the precision/recall curve first, and then use it to estimate
the labels of non-assessed documents [2]. Both these approaches
have limitations (see § 2). Another alternative is to infer the as-
sessment of a document based on its similarity to a set of already
assessed documents [4]. A problemwith this approach is that it does
not account for the imbalance between relevant and non-relevant
documents: i.e. since the number of non-relevant documents is
considerably higher than the number of relevant ones, the discrim-
inative signal of relevant documents (minority) is weakened by the
much stronger noise signal of non-relevant documents (majority).
We address this, by contributing a tunable Document Similarity
Threshold (DST) that reduces the noisy impact of the many highly
dissimilar (non-relevant) documents.

2 RELATEDWORK
Roitero et al. [15] survey unsupervised ways of inferring document
labels and propose a method for combining them. None of these
methods use topic/document content, but instead: if a document is
placed close to the top of the ranking by many different systems,
then that document is considered relevant [15, 17, 19, 20]. One of
the main problems is that those approaches, stretched over time,
can really penalize diversity of thought in terms of what is relevant.

Aslam and Yilmaz [2] infer the precision/recall curve first, and
then use it to estimate the labels of unjudged documents. Since
different distributions of relevant and non-relevant documents can
possibly generate the same precision/recall curve, the labels es-
timated with this approach do not necessarily match the actual
relevance of unjudged documents, so, this approach is not compa-
rable to estimating the relevance of a specific document.

We relate to [4] instead, which is based on the cluster hypothe-
sis: “closely associated documents tend to be relevant to the same
request” [8, 22]. The relevance label of an unjudged document is
inferred from the similarity between the unjudged document and
a set of judged documents. However this does not account for the
imbalance between the number of relevant and non-relevant docu-
ments: since the number of non-relevant documents is considerably
higher than the number of relevant ones, the discriminative signal
of relevant documents is weakened by the much stronger noise
signal of non relevant documents. We overcome this with a simple
learnable threshold 𝜃 described in § 3 combined with oversampling
and undersampling approaches1 described next.

A popular oversampling method is Synthetic Minority Oversam-
pling Technique (SMOTE) [5]. In the feature representation space,
SMOTE randomly selects similar samples from the minority class,
draws a line between the sample representations and generates a
synthetic sample as a point along that line. A crucial step in SMOTE
is how to identify similar samples to be used as candidates for the
generation of synthetic samples [10, 13]. KmeansSmote [10] uses
1Sampling methods aim to modify imbalanced datasets by expanding the minority
class (oversampling) or reducing the majority class (undersampling).
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a clustering approach (k-means) [12] to identify similar samples
in the minority class and SMOTE to generate synthetic samples.
Borderline Oversampling (BO) [13] trains a Support-Vector Ma-
chine (SVM) classifier to learn the decision boundary between the
classes, and then uses SMOTE to generate synthetic samples of the
minority class near the decision boundary. The Adaptive Synthetic
sampling approach (ADASYN) [7], for each sample of the minor-
ity class, finds the 𝑘-Nearest Neighbours and calculates the ratio
between the number of samples from the neighbourhood in the
majority class and 𝑘 . The higher this ratio, the more samples from
the majority class are included in the neighbourhood. Thus this is a
region where minority samples are “isolated”, where it is beneficial
to create synthetic samples. The new synthetic samples are then
created by generating synthetic samples in between samples of the
minority class.

Undersampling can be done by removing Tomek’s links [21].
A Tomek’s link is defined when two training samples are nearest
neighbors, but belong to different classes. The assumption is that
only noisy/boundary samples would have Tomek’s links. Thus ma-
jority class samples that are Tomek-linked to minority class samples
are removed. Clustering-Based Undersampling (CBU) [11] builds 𝑘
clusters on the majority class, where 𝑘 is equal to the number of
samples in the minority class, and then uses the cluster centroids as
the new synthetic samples of the majority class. Instance Hardness
(IH) [18] predicts the instance hardness as the probability of each
sample being misclassified by different classification algorithms. If
a sample is often misclassified, it is considered a hard instance to
predict, thus it is removed from the training set.

3 APPROACH
Wepresent themethod by Carterette andAllan [4] to infer relevance
labels, and then how we address its limitation wrt. class imbalance
with our Document Similarity Thresholding (DST) method.

Inferring Relevance Assessments [4]. Let D be a set of documents.
For a topic 𝑡 , D = A ∪ Ā, where A and Ā are the sets of assessed,
resp. non-assessed documents wrt. 𝑡 . Similarly, A = R ∪ R̄, where
R and R̄ are the sets of relevant and non-relevant documents wrt.
𝑡 . Given a non-assessed document 𝑑 ∈ Ā, the goal is to predict
the relevance assessment of 𝑑 by exploiting its semantic similarity
to the set of assessed documents A. To do so, the probability of
relevance of 𝑑 is conditioned to its similarity to the documents in
A. Then, a logistic regression model learns the weight 𝛽 , where 𝛽𝑑
denotes the contribution of each document 𝑑 ∈ A to the estimation
of the relevance label for𝑑 . The logistic regressionmodel maximizes
the following log-likelihood:

log(L(𝛽)) =
∑
𝑑∈A

(𝑦𝑑 log(𝑝𝑑 )+(1−𝑦𝑑 ) log(1−𝑝𝑑 ))+𝜆
∑
𝑑∈A

𝛽2
𝑑 (1)

where 𝜆 is a penalization parameter to avoid overfitting, 𝑝𝑑 is the
probability of 𝑑 being relevant, 𝑦𝑑 = 1 if 𝑑 ∈ R, 𝑦𝑑 = 0 if 𝑑 ∈ R̄.
The log-odds of the probability of a non-assessed document 𝑑 to be
relevant are defined as a weighted sum:

log
(

𝑝𝑑
1 − 𝑝𝑑

)
= 𝛽0 +

∑
𝑑∈A

𝛽𝑑 sim(𝑑, 𝑑) (2)

sim is a similarity function (we use cosine similarity as per [4]).
The model returns 𝑝𝑑 , the probability of 𝑑 being relevant, which
we map to the relevance label with the highest probability.

Document Similarity Thresholding (DST). A problem with the
above is that the imbalance of non-relevant documents (majority)
and relevant documents (minority) affects directly the estimation of
the probability 𝑝𝑑 in Eq. (2). Let us assume that the correct label of
the currently non-assessed document 𝑑 is that it is relevant. When
computing the similarity of 𝑑 to the set of assessed documents,
we argue that 𝑑 should be more similar to documents that are
assessed relevant to the topic, and less similar to documents that
are assessed non-relevant to the topic. However, if the number of
highly dissimilar documents to 𝑑 in the set is very large, then even
if the individual contribution of each highly dissimilar document to
Eq. (2) is low, due to their numerical superiority, these dissimilar
documents can possibly surpass the contribution of highly similar
documents.

To reduce this effect, we define a decision boundary to filter out
noisy documents. This decision boundary can be applied to any
inferring label approach that relies on inter-document similarities.
Specifically, we define a learnable threshold 𝜃 to filter out docu-
ments with low similarity to 𝑑 , hence reducing the noisy impact of
highly dissimilar documents. Given a threshold 𝜃 , we define𝐴(𝑑, 𝜃 )
to be the set of assessed documents that have a similarity score
> 𝜃 with respect to 𝑑 , that is: 𝐴(𝑑, 𝜃 ) = {𝑑 ∈ A : sim(𝑑, 𝑑) > 𝜃 }.
Note that 𝜃 does not depend on 𝑑 , but it is rather a global parameter
which depends on the topic. This step is applied to Eq. (2) as follows:

log
(

𝑝𝑑
1 − 𝑝𝑑

)
= 𝛽0 +

∑
𝑑∈𝐴(𝑑,𝜃 )

𝛽𝑑 sim(𝑑,𝑑) (3)

where A is replaced with 𝐴(𝑑, 𝜃 ). This allows to discard a possibly
high number of very dissimilar documents when estimating the
probability of a document being relevant. Note that, if we do not
use the threshold 𝜃 , even if a relevant document is very similar to 𝑑 ,
the majority of dissimilar documents will likely mitigate this signal.

Sampling Approaches to Infer Labels. DST can be combined with
any sampling approach by modifying the representation of doc-
uments in the feature space. Formally, a sampling approach 𝑆
maps a given set of assessed documents A to a new set of doc-
uments 𝑆 (A) ↦→ A∗, where A∗ is balanced, i.e. |R |/|R̄ | ∼ 1. To
apply any sampling method, first we need to define the feature
representation of each document. We use the set of assessed doc-
uments A as reference and represent each document with the
vector of its similarity scores wrt. the assessed documents: 𝑑 ∈ D
is mapped to its feature vector ®𝑑 = (𝑠𝑖𝑚(𝑑,𝑑1), . . . , 𝑠𝑖𝑚(𝑑,𝑑 𝑗 )) for
all 𝑗 ∈ {1, . . . , |A|}. Given the document representations in this
feature space, the idea is to account for the threshold 𝜃 when repre-
senting documents. The new document representation is denoted
by ®𝑑 (𝜃 ) = (𝑠𝑖𝑚(𝑑, 𝑑1, 𝜃 ), . . . , 𝑠𝑖𝑚(𝑑, 𝑑 𝑗 , 𝜃 )) for all 𝑗 ∈ {1, . . . , |A|},
where

sim(𝑑, 𝑑 𝑗 , 𝜃 ) =
{
sim(𝑑,𝑑 𝑗 ) if sim(𝑑, 𝑑 𝑗 ) > 𝜃

0 otherwise
(4)

i.e. we only include documents that have similarity score > 𝜃 .
2
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4 EXPERIMENTAL EVALUATION
We experimentally evaluate our method by considering the task
of inferring the relevance labels of unjudged documents. We com-
pare: logistic regression to infer relevance labels [4] (baseline),
combined with DST, the sampling approaches in § 2, and both DST
and sampling approaches2. We use the TREC data shown below:

Web 2010 Web 2011 Web 2012 Web 2013 Web 2014
Dataset ClueWeb09 ClueWeb09 ClueWeb09 ClueWeb12 ClueWeb12
Topics 48 50 50 50 50
Submitted runs 56 61 48 61 30
Relevance grades 5 4 5 5 5

Percentage of Samples per Class after Mapping
Not Relevant 79.19% 86.73% 76.78% 71.27% 60.83%
Partially Relevant 15.68% 10.28% 14.81% 20.96% 26.48%
Relevant 5.24% 6.71% 10.22% 8.71% 12.95%

While [4] used binary relevance labels, we use graded relevance
labels.Wemerge negative (spam) and zero labels (non-relevant) into
the non-relevant class, and all labels higher or equal than 2 (highly
relevant and key) into the highly relevant class. When inferring
relevance assessments, we represent documents using TF-IDF (as
per [4]), average Glove word embedding [14]3, and the contextual
BERT embedding [6]4. As BERT is limited to 512 tokens, we split
the text into 512-token segments and compute the average BERT
embedding over all segments.

We refer to the logistic regression method [4] as LogReg (base-
line) and as LogReg-DST when combined with DST. In addition
to the sampling approaches from § 2, we use Random Oversam-
pling (RO). In the online appendix we also report undersampling
approaches 5. When combining DST with a sampling approach, we
first use DST to define the feature space as in Eq. (4), and then apply
sampling.We use the name convention: LogReg-<DST>-<sampling>
(representation).

We tune all variations of DST and the baseline using 3-fold cross
validation across documents per topic, where each fold is used
as testing once. We tune the threshold 𝜃 ∈ [0.01, 0.02, ..., 1.0] and
logistic regression parameter 𝜆 ∈ {0.001, 0.01, 0.1} with grid search.
Logistic regression is trained in a one-vs-rest scheme for handling
multiple classes. We also tune all the class imbalance methods by
making predictions with logistic regression on the new sample
data after handling class imbalance: we tune the k-neighbours 𝑘 ∈
[2, 3, 5] and 𝑜𝑢𝑡_𝑠𝑡𝑒𝑝 ∈ [0.1, 0.5, 1.0] for Borderline Oversampling
(BO), 𝑘 ∈ [2, 3, 5] for KmeansSmote, and 𝑘 ∈ [2, 3, 5] for Adasyn.
All sampling approaches are applied only on the training data.

We use macro F1, averaged over all topics, to choose the best
parameters. For inferring relevance labels, we report the best aver-
age performance over the 3 folds. For the other two experiments,
we could not learn 𝜃 and 𝜆 for all the combinations of: document
representations, sampling approaches, percentage of qrels and repe-
titions (2 700 combinations), as it was not computationally feasible.
Thus we fix the 𝜃 and 𝜆 parameters to be the best average perfor-
mance parameters used in the three folds.

2The source code is available online at URL-anonymized-for-review
3We use the 300-dimensional glove6b from https://nlp.stanford.edu/projects/glove/
4We use Uncased BERT-base from https://github.com/google-research/bert
5Online appendix: https://www.dropbox.com/s/12ghz00258xnham/CIKM2021_
inferring_labels_appendix.pdf?dl=0

Inferring Relevance Labels. We treat the problem of inferring
labels as classification and train all models to predict if a docu-
ment is non-relevant, relevant or highly relevant. Tab. 1 reports
macro-F1 scores across the 5 TREC tracks. We see that, with few
exceptions, TF-IDF is the best representation, followed by Glove
and BERT, independently of the oversampling method. For BERT,
most similarity values have a small effective range between 0.9-1.0,
so the absolute difference in similarity between pairs is relatively
small, which can obfuscate the signals necessary for the logistic
regression to identify which pairs to give weights to.

We also see that DST is always beneficial with a mean gain
of: 17.28% with min-max 0.9%-47.08% without any sampling, and
10.72% with min-max 0%-51.97% with oversampling. The threshold
𝜃 seems to effectively filter out low similarity documents which rep-
resent noise. Note that the maximum gain (%) is obtained when DST
is used with BERT representation, as the 𝜃 parameter helps logistic
regression to discriminate better between documents. Specifically,
whenever the similarity pair is below the threshold 𝜃 , its similarity
value is set to zero; this avoids the above problem of small effective
range between similarities by increasing the range to 0-1.0.

Predicting system rankings and evaluation scores. To gauge the
potential usefulness of the inferred labels, we perform two addi-
tional experiments: predicting the true ranking of systems (RoS)
and predicting NDCG scores.

In the first task, the aim is to predict the RoS when labels of
unjudged documents are replaced with inferred labels. We rep-
resent each TREC track by the RoS submitted to that track, and
for each topic, we use the RoS produced using (a) the official and
full TREC labels (qrels), and separately using (b) inferred labels
and TREC official qrels with varying percentages. We compute the
Rank-Biased Overlap (RBO) [23] coefficient with 𝜌 = 1.0 between
the two RoS for each topic and report its mean. The higher the
correlation, the better the predicted RoS, thus the more accurate is
the evaluation where labels of unjudged documents are replaced
with inferred labels. We use RBO as it is top-heavy and can handle
rankings with different elements (e.g. the top 10 systems per topic),
while Kendall’s 𝜏 and AP Correlation cannot [9, 24]. Tab. 1 shows
RBO@10. 6 Overall, all models achieve high RBO values, suggest-
ing that it is possible to infer the labels of unjudged documents, as
per [4]. Document representation does not have a major impact on
the prediction of the RoS. BERT is marginally the best represen-
tation, followed by Glove and TF-IDF. DST does not have a huge
impact on the RoS prediction. It is beneficial for TF-IDF and Glove,
but overall not for BERT. This may be because 𝜃 was not learned
for all the combinations in Table 1.

For predicting evaluation scores, we analyze how accurately the
inferred relevance labels of the documents approximate the original
NDCG score. We report 1 minus the absolute difference between
the average NDCG score of systems using the original and (partly)
inferred document assessments. The higher the score, the better
the NDCG score estimated when inferred labels are used.

Overall, all approaches perform well, with scores greater than
0.9 in most cases. This is aligned with the findings of [4], which
show that the difference between the true MAP score and estimated
MAP scores is greater than 0.88. All document representations are
6Results on the whole RoS are included in the online appendix.
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Table 1: Inferring labels: Macro F1-score on inferring graded relevance labels. Topics with documents assessed with only a
single label (e.g. all documents assessed as non-relevant for a topic) are omitted. Predicting system rankings: Mean RBO@10
for each step of randomly removed documents from original qrels of the best 10 runs using NDCG per TREC track and the
ranking produced using inferred document assessments. Each cell represents the mean across datasets and 100 repetitions.
Predicting NDCG scores: Average 1 minus the absolute value of the difference between the original score using NDCG and the
NDCG score obtained with the inferred labels for each step of randomly removed documents from original qrels. Each cell
represents the mean across datasets and 100 repetitions.

Inferring labels Predicting system rankings Predicting NDCG scores

Approach
Web Track Collections Web Track Collections 2010 - 2014 Web Track Collections 2010 - 2014

% of original qrels % of original qrels
2010 2011 2012 2013 2014 85 70 55 40 25 10 85 70 55 40 25 10

Without Sampling

LogReg (TFIDF) 0.502 0.495 0.501 0.465 0.488 0.95 0.945 0.936 0.909 0.889 0.874 0.986 0.991 0.989 0.974 0.949 0.911
LogReg-DST (TFIDF) 0.524 0.515 0.526 0.489 0.517 0.97 0.969 0.937 0.903 0.896 0.856 0.986 0.989 0.987 0.972 0.947 0.91
LogReg (Glove) 0.499 0.486 0.531 0.419 0.449 0.963 0.948 0.938 0.892 0.88 0.849 0.988 0.989 0.98 0.962 0.935 0.895
LogReg-DST (Glove) 0.528 0.503 0.536 0.432 0.477 0.963 0.952 0.934 0.892 0.862 0.858 0.988 0.989 0.982 0.965 0.94 0.902
LogReg (BERT) 0.395 0.367 0.375 0.365 0.373 0.983 0.963 0.959 0.950 0.921 0.924 0.989 0.986 0.966 0.941 0.91 0.873
LogReg-DST (BERT) 0.581 0.538 0.569 0.483 0.513 0.963 0.952 0.904 0.893 0.865 0.852 0.986 0.992 0.991 0.981 0.961 0.929

Oversampling

LogReg-RO (TFIDF) 0.525 0.524 0.541 0.519 0.533 0.889 0.874 0.838 0.828 0.809 0.787 0.978 0.98 0.984 0.989 0.984 0.952
LogReg-DST-RO (TFIDF) 0.542 0.530 0.560 0.527 0.539 0.895 0.874 0.84 0.828 0.809 0.787 0.978 0.98 0.983 0.989 0.984 0.952
LogReg-BO (TFIDF) 0.514 0.517 0.530 0.521 0.535 0.952 0.939 0.92 0.906 0.88 0.864 0.967 0.955 0.943 0.929 0.918 0.911
LogReg-DST-BO (TFIDF) 0.538 0.532 0.548 0.522 0.547 0.952 0.934 0.92 0.902 0.88 0.837 0.967 0.955 0.943 0.93 0.918 0.911
LogReg-KmeansSmote (TFIDF) 0.502 0.494 0.512 0.470 0.508 0.954 0.956 0.939 0.906 0.899 0.881 0.984 0.989 0.991 0.986 0.969 0.936
LogReg-DST-KmeansSmote (TFIDF) 0.522 0.518 0.531 0.497 0.524 0.954 0.956 0.932 0.906 0.902 0.881 0.984 0.989 0.99 0.987 0.969 0.936
LogReg-adasyn (TFIDF) 0.506 0.509 0.526 0.502 0.532 0.961 0.935 0.922 0.911 0.89 0.867 0.978 0.979 0.982 0.988 0.986 0.955
LogReg-DST-adasyn (TFIDF) 0.532 0.527 0.544 0.515 0.540 0.961 0.937 0.918 0.914 0.88 0.867 0.978 0.979 0.982 0.988 0.986 0.955
LogReg-RO (Glove) 0.535 0.495 0.525 0.454 0.493 0.922 0.903 0.88 0.865 0.821 0.766 0.984 0.986 0.987 0.984 0.966 0.927
LogReg-DST-RO (Glove) 0.537 0.514 0.539 0.454 0.493 0.918 0.903 0.882 0.865 0.821 0.770 0.984 0.986 0.987 0.984 0.966 0.927
LogReg-BO (Glove) 0.520 0.495 0.521 0.447 0.484 0.957 0.957 0.939 0.922 0.879 0.852 0.98 0.979 0.974 0.968 0.962 0.958
LogReg-DST-BO (Glove) 0.542 0.517 0.549 0.455 0.500 0.957 0.957 0.939 0.917 0.875 0.852 0.98 0.979 0.974 0.968 0.962 0.958
LogReg-KmeansSmote (Glove) 0.498 0.493 0.512 0.419 0.453 0.963 0.961 0.946 0.933 0.91 0.898 0.988 0.988 0.983 0.971 0.949 0.913
LogReg-DST-KmeansSmote (Glove) 0.528 0.503 0.540 0.434 0.483 0.958 0.959 0.946 0.925 0.91 0.898 0.987 0.988 0.983 0.971 0.949 0.914
LogReg-adasyn (Glove) 0.507 0.494 0.507 0.439 0.470 0.957 0.953 0.948 0.935 0.925 0.904 0.984 0.986 0.986 0.983 0.964 0.925
LogReg-DST-adasyn (Glove) 0.526 0.507 0.538 0.448 0.486 0.957 0.953 0.948 0.935 0.925 0.904 0.984 0.986 0.986 0.983 0.964 0.925
LogReg-RO (BERT) 0.464 0.431 0.400 0.409 0.415 0.961 0.953 0.947 0.939 0.921 0.890 0.985 0.99 0.991 0.971 0.939 0.897
LogReg-DST-RO (BERT) 0.476 0.431 0.411 0.418 0.424 0.957 0.949 0.947 0.935 0.908 0.878 0.985 0.99 0.99 0.971 0.939 0.897
LogReg-BO (BERT) 0.409 0.391 0.381 0.390 0.401 0.983 0.963 0.932 0.932 0.921 0.919 0.98 0.983 0.989 0.992 0.971 0.924
LogReg-DST-BO (BERT) 0.583 0.547 0.579 0.492 0.523 0.983 0.943 0.932 0.932 0.921 0.914 0.98 0.983 0.988 0.992 0.971 0.924
LogReg-KmeansSmote (BERT) 0.406 0.386 0.382 0.374 0.389 0.983 0.978 0.934 0.932 0.92 0.919 0.989 0.989 0.973 0.95 0.919 0.879
LogReg-DST-KmeansSmote (BERT) 0.578 0.535 0.565 0.485 0.389 0.983 0.978 0.934 0.932 0.92 0.908 0.989 0.989 0.973 0.95 0.919 0.879
LogReg-adasyn (BERT) 0.441 0.419 0.401 0.400 0.405 0.959 0.957 0.945 0.944 0.948 0.932 0.989 0.991 0.974 0.949 0.916 0.876
LogReg-DST-adasyn (BERT) 0.574 0.544 0.570 0.492 0.524 0.959 0.953 0.945 0.943 0.943 0.932 0.989 0.991 0.974 0.949 0.915 0.876

also on par. When combined with oversampling, BERT and Glove
seem marginally better than TF-IDF. DST does not seem to have an
impact on the prediction of NDCG scores, neither when combined
with sampling approaches, nor when considered in isolation. As
for the previous case, 𝜃 was not learned for each combination of
models and repetition of this experiment, this might affect DST
performance. We see that all oversampling methods improve over
the baseline for all representations when using less than 70% of the
original qrels. BO, Kmeans, and ADASYN achieve the best scores:
BO and kmeans have comparable results when used with BERT,
ADASYN seems to work well in the label-scarce scenario (lower
than 55% of original qrels).

5 CONCLUSION
We study the problem of inferring relevance labels for unjudged
documents in IR datasets. Currently, this is donewithout accounting
for the imbalance between relevant (very few) and non-relevant

(many) documents, which means that the discriminative signal of
relevant documents (minority) is weakened by the much stronger
noise signal of non-relevant documents (majority). We present a
simple method, called DST, for reducing the noisy impact of highly
dissimilar documents when inferring relevance assessments from
document similarities. This is done by defining a decision boundary
𝜃 to mitigate the noisy signal contributed by the high number
of dissimilar (non-relevant) documents. Experiments on 5 TREC
tracks (248 topics, 256 runs), where we apply DST either alone,
or combined with oversampling, show that DST is effective (both
without and with oversampling). Albeit simple, our method yields
a mean gain of +17.28% without oversampling and +10.72% with
oversampling, which means that there is room for improvement.
This paves the way for future work in refining alternatives to the
regression model, and establishing more topologically sensitive
boundary conditions for the decision boundary rather than the
current single threshold.
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