
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

PhD Thesis

Graphs, Algorithms, and Discrete Probabilities
Peter Michael Reichstein Rasmussen

Supervisor

Mikkel Thorup

This thesis has been submitted to the PhD School of The Faculty of Science, University of Copenhagen.

Submission date: September 3, 2021.

Abstract

In this thesis, we prove new results within algorithms, graph theory, and cryptography. The
thesis is divided into three topics covering two research papers each.

Hashing Algorithms: We say that a hash function is strongly concentrated if it provides
Chernoff-style concentration bounds on hash based sums, similar to a fully random hash function.
A string of research in tabulation based hashing, Pǎtraşcu and Thorup [JACM’12, SODA’13]
and Thorup [FOCS’13], has led to several strongly concentrated hash functions. However, the
hash functions are either slow in practise or only strongly concentrated when the expectation of
the hash sum is sufficiently low. We introduce the first hashing schemes overcoming both these
obstacles, tabulation-permutation and tabulation-1permutation hashing. Both hashing schemes
are easy to implement, very fast in practice, and strongly concentrated without restrictions.
Applying tabulation-1permutation hashing to streaming algorithms, in particular to the problems
of counting distinct elements and estimating set similarity, we show that it theoretically offers
significant speedups. For the problem of counting distinct elements, these speedups are verified
experimentally.

Spectral Graph Theory: First, we prove that for any graph G on n vertices of maximum
degree ∆, the multiplicity of the second eigenvalue of the normalised adjacency matrix of G
is Õ(n∆7/5/ log1/5 n). This improves upon a result by Jiang et al. To obtain this bound on
the eigenvalue multiplicity, we establish a result of independent interest. We show that the
expected support of a random closed walk on G of length 2k < n is Ω(k1/5). Before this work, no
such bound was known. Second, we show that split-state non-malleable codes, a cryptographic
primitive, can be derived from a spectral expander graph in a very natural way. Previously,
the only known constructions of split-state non-malleable codes relied on two-source randomness
extractors, an arguably more esoteric object.

k-Edge Connectivity: For k = 1, 2, we provide an optimal randomised algorithm for decre-
mental k-edge connectivity for graphs on n vertices andm = Ω(npolylog n) edges. This improves
upon the algorithm of Thorup [JACM’99], which is only optimal for dense graphs withm = Ω(n2)

edges. Furthermore, we improve the update time whenever k = logo(1) n. As a bonus, the al-
gorithm for k = 2 immediately yields an optimal Las Vegas algorithm for the unique perfect
matching problem for graphs on m = Ω(npolylog n) edges. In a related paper, we prove a graph
theoretic result bounding the number of k-edge connected components in a graph of high mini-
mum degree. Roughly, we show that for an integer k > 1 and ε > 0, the maximum number of
k-edge connected components of a graph on n vertices with minimum degree (2 + ε)(k − 1) is
Θ
(
n
εk

)
.

Resumé

I denne afhandling viser vi nye resultater indenfor algoritmer, grafteori og kryptografi. Afhan-
dlingen er inddelt i tre emner, som hver dækker to forskningsartikler.

Hashing Algoritmer: Vi kalder en hash funktion stærkt koncentreret hvis den opfylder Chernoff-
lignende koncentrationsuligheder for hash baserede summer, lig en fuldt tilfældig hash funktion.
Tidligere forskning i tabuleringsbaseret hashing, Pǎtraşcu og Thorup [JACM’12, SODA’13] og
Thorup [FOCS’13], har ledt til flere stærkt koncentrerede hash funktioner. Disse hash funk-
tioner lider dog enten under kun at være stærkt koncentrerede, når man restringerer forvent-
ningsværdien af hash summen, eller under at være langsomme i praksis. Vi introducerer de
første hash funktioner, som klarer begge disse udfordringer, tabulation-permutation og tabulation-
1permutation. Begge hash funktioner er simple at implementere, meget hurtige i praksis og stærkt
koncentrerede uden forbehold. Vi anvender tabulation-1permutation hash funktionen i streaming
algoritmer, i særdeleshed til at tælle antal forskellige elementer i en datastrøm og til estimer-
ing af mængdelighed. Vi viser at dette giver væsentligt hurtigere køretider. Dette verificeres
også eksperimentelt ved implementation af algoritmer til at tælle antal forskellige elementer i en
datastrøm.

Spektral Grafteori: Først viser vi, at enhver graf G på n knuder med maksimal valens
∆ opfylder at multipliciteten af den anden egenværdi af dens normaliserede nabomatrix er
Õ(n∆7/5/ log1/5 n). Dette forbedrer et resultat af Jiang et al. For at vise denne ulighed om
egenværdimultiplicitet, viser vi et resultat af uafhængig interesse. Vi beviser at den forventede
størrelse af støtten af en tilfældig vandring på G af længde 2k er Ω(k1/5). Før dette fandtes
ingen lignende nedre grænse. Dernæst viser vi at en delt-tilstands ikke-formbar kode på naturlig
vis kan fremstilles fra en spektral udvidelsesgraf. Tidligere var alle kendte konstruktioner af
delt-tilstands ikke-formbar koder baserede på to-kildes tilfældighedsudvindere, et noget mere
esoterisk objekt.

k-kantforbundethed: For k = 1, 2 præsenterer vi en optimal randomiseret algoritme til dekre-
mentel k-kantforbundethed for grafer på n knuder og m = Ω(npolylog n) kanter. Dette forbedrer
et resultat af Thorup [JACM’99], hvis algoritme kun er optimal for tætte grafer med m = Ω(n2)

kanter. Videre forbedrer vi opdateringstiden for k = logo(1) n. Som en bonus giver algoritmen
for k = 2 en optimal Las Vegas algoritme til unik perfekt matching problemet for grafer med
m = Ω(npolylog n) kanter. I en relateret artikel viser vi et grafteoretisk resultat, som estimerer
antallet af k-kantforbundne komponenter i en graf med høj minimumsvalens. Groft sagt viser vi
at for et heltal k > 1 og ε > 0 er det maksimale antal k-kantforbundne komponenter af en graf
på n knuder med minimumsvalens (2 + ε)(k − 1) givet ved Θ

(
n
εk

)
.

Preface

The PhD programme is a roller coaster, both of emotion and science. In the world of research,
predicting where a project will go or which subfield will provide the next promising opportunity
is an almost impossible task. Acknowledging this, the initial plan for this PhD project included
neither specific problems nor specific subfields to be explored. Instead, I have focused on meth-
ods and themes playing to my strengths, finding problems to work on in areas as far apart as
mathematical graph theory, graph algorithms, cryptography, computational geometry, hashing,
and streaming algorithms. Main threads for the research completed is that the results obtained
rely on discrete methods, focused either in discrete probabilities, graph theory, or combinatorics.
Furthermore, the research has often either been directly concerned with algorithms or applied
an algorithmic mindset.

Four categories more or less cover the PhD project. Here, they are presented in something
resembling chronological order. The papers mentioned are listed at the end of the preface in the
order they appear.

Hashing Algorithms. My first major work as a PhD student at BARC was on the subject
of fast hashing schemes satisfying Chernoff-style concentration bounds. I worked closely with
Anders Aamand, Jakob B. T. Knudsen, and my supervisor Professor Mikkel Thorup on this. In
the paper Fast hashing with Strong Concentration Bounds [AKK+20], we formalise the notion
of strong concentration of a hash function and introduce two constant-time hashing scheme,
tabulation-permutation hashing and tabulation-1permutation hashing. The hashing schemes are
both strongly concentrated and fast enough to compete with some of the fastest hash functions
in use, the only known hash functions in that speed range with such guarantees.

Having obtained fast, strongly concentrated hashing schemes, the natural work to follow
it up explores the consequences of applying them in the implementation of popular stream-
ing algorithms. In the paper No Repetition: Fast Streaming with Highly Concentrated Hashing
[ADK+21], we show theoretically and experimentally that implementing algorithms for the prob-
lems of distinct elements and set similarity with our new tabulation-1permutation hashing scheme
result in significant speedups.

Spectral Graph Theory. A passion of mine during the PhD programme has been the theory
of graph spectre. Spectral graph theory is the fascinating observation that many properties of a
graph are reflected in the spectrum of its adjacency matrix.

An especially noteworthy concept of spectral graph theory is the notion of expander graphs,
graphs that are well-connected and hard to “disconnect”. I was allowed the opportunity to visit
and work with my former advisor at UCLA, Professor Amit Sahai, on a project relating cryp-
tography and expander graphs. In the paper Expander Graphs are Non-Malleable Codes [RS20],
we prove a close connection between expander graphs and non-malleable codes, an information-
theoretical cryptographic primitive. We find a natural way to produce a coding scheme from a

i

graph and show that if the graph is a sufficiently good spectral expander, the resulting coding
scheme is non-malleable.

In spectral graph theory, the second eigenvalue of the normalised adjacency matrix of a
graph is of particular interest since it carries a close connection to the expansion of the graph.
On another stay abroad at University of California Berkeley, I visited Professor Nikhil Srivastava
and worked with him and Theo McKenzie on bounding the multiplicity of the second eigenvalue
of graphs. In the paper Support of Closed Walks and Second Eigenvalue Multiplicity of Graphs
[MRS21], we prove a bound stronger than what was previously known. To do so, we tackle a
problem of independent interest. We bound from below the support of closed random walks on
graphs using methods from the theory of electrical flows. Before this paper, no such bound was
known.

k-Edge Connectivity. In connection with writing my master’s thesis, my advisor Mikkel
Thorup suggested that I work with Anders Aamand on graph sampling. With collaborators,
Mikkel had some ideas towards an algorithm for the problem of decremental connectivity. These
ideas never quite panned out, but nonetheless, we arrived at an optimal algorithm for decremental
connectivity on graph with n vertices andm = Ω̃(n3/2) edges. This, along with other observations
made during the period, became my master’s thesis. Afterwards, we found a way to use the ideas
from the first result recursively. In the paper Optimal Decremental Connectivity in Non-Sparse
Graphs [AKL+21], we present an optimal algorithm for decremental k-edge connectivity for
graphs on n vertices and m = Ω(n polylog n) edges for k = 1, 2. For k = logo(1) n, we get
constant update time and no(1) query time whenever m = n3/2+o(1). Furthermore, results in
pure graph theory from the master’s thesis became a manuscript of its own. In the paper k-Edge
Connected Components and Minimum Degree [ART21], we bound from above the number of
k-edge connected components a graph can contain as a function of its minimum degree.

Computational Geometry. During my time at BARC, I have had many interesting and fun
side project in computational geometry courtesy of my wonderfully imaginative colleague Mikkel
Abrahamsen. In most cases, these projects have been collaborations with quite a few participants.
Two manuscripts resulted from this effort. First, in the paper Classifying Convex Bodies by
Their Contact and Intersection Graphs [AAKR21], we consider intersection, unit distance, and
contact graphs of convex bodies in the Euclidian plane. We shall only discuss intersection graphs
here. Given a convex body, A, the intersection graph of a number of translations of A in the
plane is the graph consisting of a vertex for each copy of A and edges connecting every pair
of vertices satisfying that their corresponding copies of A intersect. We find a necessary and
sufficient condition for convex bodies A and B to produce the same intersection (as well as unit
distance and contact) graphs. Second, in the paper Tiling with Squares and Packing Dominos in
Polynomial Time [AAAR20], we find an algorithm for tiling polyominos with 2× 2 squares and
an algorithm for packing polyominos with 2×1 dominos, both algorithms running in polynomial
time in the size of the representation of the polyomino as a set of corners.

Papers
In accordance with the guidelines of the PhD School of the University of Copenhagen, the thesis
is presented as a synopsis of a subset of the papers listed below. Together they present most of
the research output produced over the course of the PhD programme. In the body of the thesis,
a description of each of the selected papers is presented, and in the appendix, the papers are
included in full. Note that in some cases, the manuscripts in the appendix are not identical with

ii

the versions published.

Fast Hashing with Strong Concentration Bounds [AKK+20].
Anders Aamand, Jakob B. T. Knudsen, Mathias B. T. Knudsen, Peter M. R. Rasmussen, and
Mikkel Thorup.
STOC 2020.

No Repetition: Fast Streaming with Highly Concentrated Hashing [ADK+21].
Anders Aamand, Debarati Das, Evangelos Kipouridis, Jakob B. T. Knudsen, Peter M. R. Ras-
mussen, and Mikkel Thorup.
Manuscript, 2020.

Expander Graphs are Non-Malleable Codes [RS20].
Peter M. R. Rasmussen and Amit Sahai.
ITC 2020.

Support of Closed Walks and Second Eigenvalue Multiplicity of Graphs [MRS21].
Theo McKenzie, Peter M. R. Rasmussen, and Nikhil Srivastava.
STOC 2021.

Optimal Decremental Connectivity in Non-Sparse Graphs [AKL+21].
Anders Aamand, Adam Karczmarzand, Jakub Łącki, Nikos Parotsidis, Peter M. R. Rasmussen,
and Mikkel Thorup.
Manuscript, 2021.

k-Edge Connected Components and Minimum Degree [ART21].
Anders Aamand, Peter M. R. Rasmussen, and Mikkel Thorup.
Manuscript, 2021.

Classifying Convex Bodies by Their Contact and Intersection Graphs [AAKR21].
Anders Aamand, Mikkel Abrahamsen, Jakob B. T. Knudsen, and Peter M. R. Rasmussen.
SoCG 2021.

Tiling with Squares and Packing Dominos in Polynomial Time [AAAR20].
Anders Aamand, Mikkel Abrahamsen, Thomas D. Ahle, and Peter M. R. Rasmussen.
Manuscript, 2020.

iii

Acknowledgements

I have been blessed with excellent company on this journey.

I wish to thank my PhD supervisor Mikkel Thorup for his inspiring enthusiasm for science
and life, for his appreciation in good times, and for his support and understanding in bad times.
I would also like to thank my former supervisor Amit Sahai of UCLA for his kindness and for
believing in me.

To my colleagues at BARC, thank you all for creating a wonderfully quirky and fun work
environment. I am very grateful for the many discussions, excursions, puzzles, and conversations
we have shared.

I would like to thank my co-authors, Anders Aamand, Mikkel Abrahamsen, Thomas Dybdahl
Ahle, Debarati Das, Adam Karczmarzand, Evangelos Kipouridis, Jakub Łącki, Jakob Bæk Tejs
Knudsen, Mathias Bæk Tejs Knudsen, Theo McKenzie, Nikos Parotsidis, Amit Sahai, Nikhil
Srivastava, and Mikkel Thorup. It has been been a pleasure working with you, and I am proud
of what we have accomplished.

To my friends and family, thank you for your smiles, care, and hugs throughout the PhD
programme. I truly could not have done it without you.

And finally, I am grateful to Pernille for her love, support, and willingness to laugh at lame
jokes, particularly in these last few months of the PhD programme.

Contents

1 Introduction 1

2 Hashing with Strong Concentration 2
2.1 Strong Concentration with Tabulation-Permutation 4

2.1.1 Previous Work . 4
2.1.2 Fast, Strongly Concentrated Hashing . 4
2.1.3 Experiments . 7

2.2 Streaming with Strongly Concentrated Hashing 8
2.2.1 Estimators and Repetitions . 8
2.2.2 Universal Hashing versus Strong Concentration 8
2.2.3 Experiments . 10
2.2.4 Conclusion . 12

3 Graph Spectra and Expanders 13
3.1 Random Walks and the Multiplicity of the Second Graph Eigenvalue 15

3.1.1 Our Results . 15
3.1.2 Related Work and Open Problems . 17

3.2 Non-Malleable Codes from Expander Graphs . 18
3.2.1 Our Results . 18
3.2.2 Perspectives . 19

4 Edge Connectivity in Graphs 20
4.1 Maintaining k-edge Connected Components . 22

4.1.1 Overview of Previous Results . 22
4.1.2 Better k-Certificate and Optimal Decremental Connectivity 24
4.1.3 Discussion . 25

4.2 Counting k-edge Connected Components . 26

A Fast Hashing with Strong Concentration Bounds 32

B No Repetition: Fast Streaming with Highly Concentrated Hashing 90

C Expander Graphs are Non-Malleable Codes 104

D Support of Closed Walks and Second Eigenvalue Multiplicity of Graphs 115

E Optimal Decremental Connectivity in Non-Sparse Graphs 140

F k-Edge Connected Components and Minimum Degree 173

i

G Classifying Convex Bodies by Their Contact and Intersection Graphs 182

H Tiling with Squares and Packing Dominoes in Polynomial Time 199

ii

Chapter 1

Introduction

In accordance with the guidelines of the PhD School of the University of Copenhagen, this
thesis is presented as a synopsis of a subset of the papers produced over the course of the PhD
programme. Beyond the overarching category of algorithms, two main themes categorise the
selected works: connectivity properties of graphs and discrete probabilities. Most of the papers
presented fall in the intersection of these themes.

Organisation. The thesis has been divided into three chapters with two papers presented in
each chapter. The chapters correspond to the first three categories laid out in the preface. First,
a chapter on hashing algorithms, which relies heavily on theory from discrete probability to
introduce and apply new hash functions. Second, a chapter on spectral graph theory discussing
random sampling of edges from expander graphs, new results on random walks on graphs, and
multiplicity of graph eigenvalues. Third, a chapter on k-edge connectivity that considers the
problem of decremental k-edge connectivity and explores the impact of high minimum degree on
the number of distinct k-edge connected components of a graph.

Each chapter starts with an introduction to the overall topic followed by presentations of
the two papers associated with the topic. The presentations discuss the results of the papers,
relevant literature, and possible further research topics. It should be noted that the goal of this
synopsis is to give an overview of the research and not to present a complete picture. For details
and proofs, the interested reader is referred to the full manuscripts in the appendix.

Notation. Most notation will be introduced as needed. For n ∈ N, we denote by [n] the set
[n] = {0, 1, . . . , n− 1}. To avoid confusion, it should be noted that some papers included in the
appendix of this thesis do not adhere to this and instead let [n] = {1, 2 . . . , n}.

1

Chapter 2

Hashing with Strong Concentration

The following text is a slightly edited excerpt from the introduction of [AKK+20].

Chernoff’s concentration bounds [Che52] date back to the 1950s but bounds of this type go
even further back to Bernstein in the 1920s [Ber24]. Originating from the area of statistics they
are now one of the most basic tools of randomized algorithms [MR95]. A canonical form considers
the sum X =

∑n
i=1Xi of independent random variables X1, . . . , Xn ∈ [0, 1]. Writing µ = E [X]

it holds for every ε ≥ 0 that

Pr[X ≥ (1 + ε)µ] ≤ exp(−µ C(ε))
[
≤ exp(−ε2µ/3) for ε ≤ 1

]
, (2.1)

Pr[X ≤ (1− ε)µ] ≤ exp(−µ C(−ε))
[
≤ exp(−ε2µ/2) for ε ≤ 1

]
. (2.2)

Here C : (−1,∞)→ [0,∞) is given by C(x) = (x+ 1) ln(x+ 1)− x, so exp(−C(x)) = ex

(1+x)(1+x) .
Textbook proofs of (2.1) and (2.2) can be found in [MR95, §4]1. Writing σ2 = Var [X], a more
general bound is

Pr[|X − µ| ≥ t] ≤ 2 exp(−σ2C(t/σ2))
[
≤ 2 exp(−(t/σ)2/3) for t ≤ σ2

]
. (2.3)

Since σ2 ≤ µ and C(−ε) ≤ 1.5 C(ε) for ε ≤ 1, (2.3) is at least as good as (2.1) and (2.2), up to
constant factors, and often better. In this work, we state our results in relation to (2.3), known
as Bennett’s inequality [Ben62].

Hashing is another fundamental tool of randomized algorithms dating back to the 1950s
[Dum56]. A random hash function, h : U → R, assigns a hash value, h(x) ∈ R, to every key
x ∈ U . Here both U and R are typically bounded integer ranges. The original application
was hash tables with chaining where x is placed in bin h(x), but today, hash functions are
ubiquitous in randomized algorithms. For instance, they play a fundamental role in streaming
and distributed settings where a system uses a hash function to coordinate the random choices
for a given key. In most applications, we require concentration bounds for one of the following
cases of increasing generality.

1. Let S ⊆ U be a set of balls and assign to each ball, x ∈ S, a weight, wx ∈ [0, 1]. We wish to
distribute the balls of S into a set of bins R = [m] = {0, 1, . . . ,m− 1}. For a bin, y ∈ [m],
X =

∑
x∈S wx · [h(x) = y] is then the total weight of the balls landing in bin y.

1The bounds in [MR95, §4] are stated as working only for Xi ∈ {0, 1}, but the proofs can easily handle any
Xi ∈ [0, 1].

2

2. We may instead be interested in the total weight of the balls with hash values in the interval
[y1, y2) for some y1, y2 ∈ [m], that is, X =

∑
x∈S wx · [y1 ≤ h(x) < y2].

3. More generally, we may consider a fixed value function v : U × R → [0, 1]. For each key
x ∈ U , we define the random variable Xx = v(x, h(x)), where the randomness of Xx stems
from that of h(x). We write X =

∑
x∈U v(x, h(x)) for the sum of these values.

To exemplify applications, the first case is common when trying to allocate resources; the second
case arises in streaming algorithms; and the third case handles the computation of a complicated
statistic, X, on incoming data. In each case, we wish the variableX to be concentrated around its
mean, µ = E [X], according to the Chernoff-style bound of (2.3). If we had fully random hashing,
this would indeed be the case. However, storing a fully random hash function is infeasible. In
this chapter, we instead study hash functions satisfying the following definition when X is a
random variable as in one of the three cases above.

Definition 2.1. [Strong Concentration] Let h : [u]→ [m] be a hash function, S ⊆ [u] be a set of
hash keys of size n = |S|, and X = X(h, S) be a random variable, which is completely determined
by h and S. Denote by µ = E [X] and σ2 = Var [X] the expectation and variance of X. We say
that X is strongly concentrated with added error probability f(u, n,m) if for every t > 0,

Pr [|X − µ| ≥ t] ≤ O
(
exp

(
−Ω(σ2C(t/σ2)

))
+ f(u, n,m). (2.4)

Note that the expression of (2.4) differs asymptotically from (2.3) only in the term f(u, n,m).
Hence, satisfying the definition, h may be considered to perform as well as a fully random hash
function on the three cases listed above, except with probability f(u, n,m). Ideally, we would
like f to be inversely polynomial in the universe size u.

The remainder of this chapter presents the papers “Fast Hashing with Strong Concentra-
tion Bounds” [AKK+20] and “No repetition: Fast Streaming with Highly Concentrated Hash-
ing” [ADK+21]. In [AKK+20], we construct the first fast and practical hashing schemes which
provide strong concentration for the cases listed above, tabulation-permutation and tabulation-
1permutation hashing. In [ADK+21], we apply our new hashing schemes towards streaming
algorithms.

3

2.1 Strong Concentration with Tabulation-Permutation
In this section, we present the paper “Fast Hashing with Strong Concentration Bounds” [AKK+20].
First, we review previous work on constructing hashing with strong concentration as per Defi-
nition 2.1. Then, we present our new hashing schemes, our results, and some experiments. The
section is composed of edited excerpts from the introduction of [AKK+20].

2.1.1 Previous Work
One way to achieve Chernoff-style bounds in the three use cases listed in the chapter introduction
is through the classic k-independent hashing framework of Wegman and Carter [WC81]. The
random hash function h : U → R is k-independent if for any k distinct keys x1, . . . , xk ∈
U , (h(x1), . . . , h(xk)) is uniformly distributed in Rk. Schmidt, Siegel, and Srinivasan [SSS95]
have shown that with k-independence, the above Chernoff bounds hold with an added error
probability decreasing exponentially in k. Unfortunately, a lower bound by Siegel [Sie04] implies
that evaluating a k-independent hash function takes Ω(k) time unless we use an infeasible amount
of space.

Pǎtraşcu and Thorup have shown that Chernoff-style bounds can be achieved in constant
time with tabulation based hashing methods; namely simple tabulation [PT12] for the first case
described above and twisted tabulation [PT13] for all cases. However, their results suffer from
some severe restrictions on the expected value, µ, of the sum. More precisely, the speed of these
methods relies on using space small enough to fit in fast cache, and the Chernoff-style bounds
[PT12, PT13] all require that µ is much smaller than the space used. It can be shown that some
of these limitations are inherent to simple and twisted tabulation. For instance, they cannot
even reliably distribute balls into m = 2 bins, as described in the first case above, if the expected
number of balls in each bin exceeds the space used.

Thorup’s double tabulation [Tho13] is another constant-time tabulation based hashing scheme,
which achieves highly independent hashing except for a small error probability. It is the main
constant-time competitor of our new tabulation-permutation hashing. However, due to the large
size of the constants involved, double tabulation is not competitive on speed in practice. In fact,
double tabulation is 30 times slower than tabulation-permutation in our experiments.

In [AKK+20], we construct and analyse a new family of fast constant-time hash functions
tabulation-permutation hashing that satisfy Chernoff-style concentration bounds like (2.3) with-
out any restrictions on µ. Our bounds hold for all of the cases described above and all possible
inputs. Furthermore, tabulation-permutation hashing is an order of magnitude faster than any
other known hash function with similar concentration bounds, and almost as fast as simple and
twisted tabulation hashing. We demonstrate this both theoretically and experimentally.

2.1.2 Fast, Strongly Concentrated Hashing
In [AKK+20], we prove new results regarding three hashing schemes, simple tabulation, tabulation-
permutation, and tabulation-1permutation. The latter two are based on simple tabulation and
introduced for the first time in [AKK+20]. Here, we shall describe the hash functions and our
results.

Simple Tabulation Simple tabulation hashing dates back to Zobrist [Zob90]. In simple tab-
ulation hashing, we consider the key domain U to be of the form U = Σc for some character
alphabet Σ and c = O(1), such that each key consists of c characters of Σ. Let m = 2`

4

be given and identify [m] = {0, 1, . . . ,m − 1} with [2]`. A simple tabulation hash function,
h : Σc → [m], is then defined as follows. For each j ∈ {1, . . . , c} store a fully random character
table hj : Σ→ [m] mapping characters of the alphabet Σ to `-bit hash values. To evaluate h on
a key x = (x1, . . . , xc) ∈ Σc, we compute h(x) = h1(x1)⊕ · · · ⊕ hc(xc), where ⊕ denotes bitwise
XOR – an extremely fast operation. With character tables in cache, this scheme is the fastest
known 3-independent hashing scheme [PT12]. We will denote by u = |U | the size of the key
domain, identify U = Σc with [u], and always assume the size of the alphabet, |Σ|, to be a power
of two. For instance, we could consider 32-bit keys consisting of four 8-bit characters.

Let S ⊆ U and consider hashing n = |S| weighted balls or keys into m = 2` bins using
a simple tabulation function, h : [u] → [m], in line with the first case mentioned above. In
[AKK+20, Section 4], we prove the following.

Theorem 2.2. Let h : [u] → [m] be a simple tabulation hash function with [u] = Σc, c = O(1).
Let S ⊆ [u] be given of size n = |S| and assign to each key/ball x ∈ S a weight wx ∈ [0, 1]. Let
y ∈ [m], and define X =

∑
x∈S wx · [h(x) = y] to be the total weight of the balls hashing to bin

y. Then for any constant γ > 0, X is strongly concentrated with added error probability n/mγ ,
where the constants of the asymptotics are determined solely by c and γ.

Pǎtraşcu and Thorup [PT12] proved a similar probability bound, but without weights, and,
more importantly, with the restriction that the number of bins m ≥ n1−1/(2c). In particular,
this implies the restriction µ ≤ |Σ|1/2. Our new bound gives Chernoff-style concentration with
high probability in n for any m ≥ nε, ε = Ω(1). Indeed, letting γ′ = (γ + 1)/ε, the added error
probability becomes n/mγ′ ≤ 1/nγ .

However, for small m the error probability n/mγ is prohibitive. For instance, unbiased coin
tossing, corresponding to the case m = 2, has an added error probability of n/2γ which is useless.
In [AKK+20, Section 8], we show that it is impossible to get good concentration bounds using
simple tabulation hashing when the number of bins m is small. To handle all instances, including
those with few bins, and to support much more general Chernoff bounds, we introduce a new
hash function: tabulation-permutation hashing.

Tabulation-Permutation Hashing. We start by defining tabulation-permutation hashing
from Σc to Σd with c, d = O(1). A tabulation-permutation hash function h : Σc → Σd is given
as a composition, h = τ ◦ g, of a simple tabulation hash function g : Σc → Σd and a permu-
tation τ : Σd → Σd. The permutation is a coordinate-wise fully random permutation: for each
j ∈ {1, . . . , d}, pick a uniformly random character permutation τj : Σ→ Σ. Now, τ = (τ1, . . . , τd)
in the sense that for z = (z1, . . . , zd) ∈ Σd, τ(z) = (τ1 (z1) , . . . , τd (zd)). In words, a tabulation-
permutation hash function hashes c characters to d characters using simple tabulation and then
randomly permutes each of the d output characters. As is, tabulation-permutation hash functions
yield values in Σd, but we will soon see how we can hash to [m] for any m ∈ N.

Our main result is that with tabulation-permutation hashing, we get high probability Chernoff-
style bounds for the third and most general case described in the beginning of the chapter.

Theorem 2.3. Let h : [u] → [r] be a tabulation-permutation hash function with [u] = Σc and
[r] = Σd, c, d = O(1). Let v : [u] × [r] → [0, 1] be a fixed value function that to each key
x ∈ [u] assigns a value Xx = v(x, h(x)) ∈ [0, 1] depending on the hash value h(x) and define
X =

∑
x∈[u]Xx. For any constant γ > 0, X is strongly concentrated with added error probability

1/uγ , where the constants of the asymptotics are determined solely by c, d, and γ.

Tabulation-permutation hashing allows us to hash into m bins for any m ∈ N (not necessarily
a power of two) preserving the strong concentration from Theorem 2.3. To do so, simply define

5

the hash function hm : [u] → [m] by hm(x) = h(x) mod m. Relating back to Theorem 2.2,
consider a set S ⊆ U of n balls where each ball x ∈ S has a weight wx ∈ [0, 1] and balls x outside
S are defined to have weight wx = 0. To measure the total weight of the balls landing in a given
bin y ∈ [m], we define the value function v(x, z) = wx · [z mod m = y]. Then

X =
∑

x∈[u]

v(x, h(x)) =
∑

x∈S
wx · [hm(x) = y]

is exactly the desired quantity and we get the concentration bound from Theorem 2.3. Then
the big advantage of tabulation-permutation hashing over simple tabulation hashing is that it
reduces the added error probability from n/mγ of Theorem 2.2 to the 1/uγ of Theorem 2.3,
where u is the size of the key universe. Thus, with tabulation-permutation hashing, we actually
get Chernoff bounds with high probability regardless of the number of bins.

Pǎtraşcu and Thorup [PT13] introduced twisted tabulation that like our tabulation-permutation
achieved Chernoff-style concentration bounds with a general value function v. Their bounds are
equivalent to those of Theorem 2.3, but only under the restriction µ ≤ |Σ|1−Ω(1). To understand
how serious this restriction is, consider again tossing an unbiased coin for each key x in a set
S ⊆ [u], corresponding to the case m = 2 and µ = |S|/2. With the restriction from [PT13], we
can only handle |S| ≤ 2 |Σ|1−Ω(1), but recall that Σ is chosen small enough for character tables
to fit in fast cache, so this rules out any moderately large data set. In [AKK+20, Section 8]
we show that for certain sets S, twisted tabulation has the same problems as simple tabulation
when hashing to few bins. This implies that the restrictions from [PT13] cannot be lifted with
a better analysis.

Tabulation-1Permutation Above we introduced tabulation-permutation hashing which yields
Chernoff-style bounds with an arbitrary value function. This is the same general scenario as was
studied for twisted tabulation in [PT13]. However, for almost all applications we are aware of,
we only need the generality of the second case presented at the beginning of the introduction.
Recall that in this case we are only interested in the total weight of the balls hashing to a certain
interval. As it turns out, a significant simplification of tabulation-permutation hashing suffices
to achieve strong concentration bounds. We call this simplification tabulation-1permutation.
Tabulation-permutation hashing randomly permutes each of the d output characters of a sim-
ple tabulation function g : Σc → Σd. Instead, tabulation-1permutation only permutes the most
significant character.

More precisely, a tabulation-1permutation hash function h : Σc → Σd is a composition,
h = τ ◦ g, of a simple tabulation function, g : Σc → Σd, and a random permutation, τ : Σd → Σd,
of the most significant character, τ(z1, . . . , zd) = (τ1(z1), z2, . . . , zd) for a random character per-
mutation τ1 : Σ→ Σ. This scheme, needing only c+ 1 character lookups, is powerful enough for
concentration within an arbitrary interval.

Theorem 2.4. Let h : [u] → [r] be a tabulation-1permutation hash function with [u] = Σc and
[r] = Σd, c, d = O(1). Consider a key/ball set S ⊆ [u] of size n = |S| where each ball x ∈ S
is assigned a weight wx ∈ [0, 1]. Choose arbitrary hash values y1, y2 ∈ [r] with y1 ≤ y2. Define
X =

∑
x∈S wx · [y1 ≤ h(x) < y2] to be the total weight of balls hashing to the interval [y1, y2).

Then for any constant γ > 0, X is strongly concentrated with added error probability 1/uγ , where
the constants of the asymptotics are determined solely by c, d, and γ.

One application of Theorem 2.4 is in the following sampling scenario: We set y1 = 0, and
sample all keys with h(x) < y2. Each key is then sampled with probability y2/r, and Theorem 2.4
gives concentration on the number of samples. In [ADK+21], to be discussed in the next section,
this is used for more efficient implementations of streaming algorithms.

6

2.1.3 Experiments
To better understand the real-world performance of our new hash functions in comparison with
well-known and comparable alternatives, we performed some simple experiments on regular lap-
tops. We carried out two types of experiments.

• On the one hand we compared with potentially faster hash functions with weaker or re-
stricted concentration bounds to see how much we lose in speed with our theoretically
strong tabulation-permutation hashing. We see that our tabulation-permutation is very
competitive in speed.

• On the other hand we compared with the fastest previously known hashing schemes with
strong concentration bounds like ours. Here we see that we gain a factor of 30 in speed.

The findings of the experiments are presented in Table 2.1. For further details, see the full
manuscript in the appendix.

Running time (ms)
Computer 1 Computer 2

Hash function 32 bits 64 bits 32 bits 64 bits
Multiply-Shift 4.2 7.5 23.0 36.5
2-Independent PolyHash 14.8 20.0 72.2 107.3
Simple Tabulation 13.7 17.8 53.1 55.9
Twisted Tabulation 17.2 26.1 65.6 92.5
Mixed Tabulation 28.6 68.1 120.1 236.6
Tabulation-1Permutation 16.0 19.3 63.8 67.7
Tabulation-Permutation 27.3 43.2 118.1 123.6
Double Tabulation 1130.1 – 3704.1 –
“Random” (100-Independent PolyHash) 2436.9 3356.8 7416.8 11352.6

Table 2.1: The time for different hash functions to hash 107 keys of length 32 bits and 64
bits, respectively, to ranges of size 32 bits and 64 bits. The experiment was carried out on two
computers. The hash functions written in italics are those without general Chernoff-style bounds.
Hash functions written in bold are the contributions of this paper. The hash functions in regular
font are known to provide Chernoff-style bounds. Note that we were unable to implement double
tabulation from 64 bits to 64 bits since the hash tables were too large to fit in memory.

7

2.2 Streaming with Strongly Concentrated Hashing
In this section, we present the paper “No Repetition: Fast Streaming with Highly Concentrated
Hashing” [ADK+21]. The section is composed of edited excerpts from [ADK+21]. More specifi-
cally, Section 2.2.1 is an edited excerpt of Section 1 of [ADK+21]; Section 2.2.2 consists of edited
excerpts of Sections 2 and 3 of [ADK+21]; Section 2.2.3 consists of edited excerpts of Section 5
of [ADK+21]; and Section 2.2.4 is an excerpt of Section 6 of [ADK+21].

2.2.1 Estimators and Repetitions
Recent years have brought with them a huge demand for algorithms that can process and compute
statistics on large streams of data. Common statistics of interest include the number of distinct
elements of a stream and the set similarity between two large sets. The sheer volume of the data
makes storing a complete copy of the stream and performing exact computations an impossible
task, and so, if the data is not processed in time, the information is lost. To solve this problem,
we therefore have to resort to estimation algorithms. For instance, instead of precisely counting
the number of unique visitors to a website, we may settle for a good estimate. In simple terms,
the goal of these estimation algorithms are as follows: For a data stream S and some statistic
F = F(S), we want an estimator F̂ such that F̂ ∈ (1± ε)F with some high probability at least
1− δ.

To get such an estimator, a common strategy is to design one that works with constant
probability, and then boost the probability using independent repetitions. In [ADK+21], our
running example of such an algorithm is the classical algorithm of Bar-Yossef et al. [BYJK+02]
to estimate the number of distinct elements in a stream. Using strongly universal hashing to
process each element, we obtain an estimator such that the probability of getting too large an
error is at most a constant, e.g., 1/4. By performing r independent repetitions and taking the
median of the estimators, the error probability falls exponentially in r. However, running r
independent experiments increases the processing time by a factor r.

In [ADK+21], we make the point that with a hash function with strong concentration bounds
at hand, such as the tabulation-permutation or tabulation-1permutation hashing schemes of the
previous section, we can get the same high probability bounds without any need for repetitions.
Instead of r independent sketches, we have a single sketch that is Θ(r) times bigger, so the total
space is essentially the same. However, we only apply a single hash function, processing each
element in constant time regardless of r, and the overall algorithms just get simpler. The idea is
generic and can be applied to other algorithms.

2.2.2 Universal Hashing versus Strong Concentration
In this presentation, we shall not focus too closely on implementing algorithms for counting
distinct elements or set similarity, which is done in [ADK+21]. For such details, see the full
manuscript in the appendix. Instead, we shall describe how hashing with strong concentration
can be applied in general.

In [ADK+21], we consider a very common situation, where the crucial component of an
algorithm is a random hash function h : U → [0, 1) mapping some key universe U , e.g. 64-bit
keys, uniformly into R = [0, 1). The application is the following. Let S ⊂ U be a set of keys and
p ∈ [0, 1) a threshold value. We wish to compute the number X of keys of S that hash below p,
i.e.

X = |{s ∈ S | h(s) < p}| .

8

Here p could be an unknown function of S, but p should be independent of the random hash
function h. Since the mean µ of x is E [X] = |S| p, we may estimate the size of S by X/p with
precision increasing in the concentration of X around its mean. In particular, we are interested
in the probability δ that X deviates from µ by more than a factor ε > 0, i.e., the probability
δ = Pr [|X − µ| ≥ εµ].

If the hash function h is fully random, we get the classic Chernoff concentration bounds on
X (see, e.g, [MR95]):

Pr [X ≥ (1 + ε)µ] ≤ exp(−ε2µ/3) for 0 ≤ ε ≤ 1, (2.5)

Pr [X ≤ (1− ε)µ] ≤ exp(−ε2µ/2) for 0 ≤ ε ≤ 1. (2.6)

Unfortunately, we cannot implement fully random hash functions as it requires space as big as
the universe.

Strongly Universal Hashing. To get something implementable in practice, Wegman and
Carter [WC81] proposed strongly universal hashing.

Definition 2.5. [Strongly Universal Hashing] A hash function h : U → R is strongly universal
if for every pair of distinct keys x, y ∈ U , the distribution of (h(x), h(y)) is uniform on R2.

Many common hash functions are strongly universal. The textbook example of a strongly
universal hash function hashing into [0, 1) is the Multiply-Mod-Prime hash function [CW79].
Also worth mentioning is the Multiply-Shift hash function [DM92].

Assuming we have a strongly universal hash function h : U → [0, 1), we again let X be the
number of elements from S that hash below p. Then µ = E [X] = |S|p and because the hash
values are 2-independent, we have Var [X] ≤ E [X] = µ. Therefore, by Chebyshev’s inequality,

Pr [|X − µ| ≥ εµ] ≤ 1/(ε2µ). (2.7)

As ε2µ gets large, we see that the error probability of strongly universal hashing is much
higher than the Chernoff bounds with fully random hashing. However, using the well-known
median trick, it is still possible to guarantee high concentration by aiming for a constant error
probability like δ = 1/4 and then using the median over independent repetitions of the estimation
to reduce the error probability to something akin to (2.5) and (2.6).

Strong Concentration with Tabulation-1Permutation. Using a hashing scheme with
strong concentration as per Definition 2.1 instead, allows us to retain the beautiful concen-
tration bounds of the fully random hash function except with a small additive error probability.
Previously known hash functions such as k-wise PolyHash or double tabulation hashing are much
too slow for practical applications, and hence, this solution has not been properly considered.
Our introduction in [AKK+20] of the tabulation-1permutation hashing scheme changes this pic-
ture. As described in Section 2.1.3, tabulation-1permutation hashing exhibits speeds comparable
to some of the fastest universal hash functions. At the same time, it follows by Theorem 2.4
that for every γ > 1 and 0 < ε < 1, the estimator X implemented with tabulation-1permutation
satisfies the concentration inequality

Pr [|X − µ| ≥ εµ] ≤ 2 exp
(
−Ω(σ2C(εµ/σ2))

)
+ 1/ |U |γ

≤ 2 exp (−Ω(µC(ε))) + 1/ |U |γ

≤ 2 exp
(
−Ω(ε2µ/3)

)
+ 1/ |U |γ ,

9

where the second inequality follows by Lemma 3.4 of [AKK+20] and the fact that µ ≥ σ2, and
the third inequality is equivalent to (2.2). Comparing with (2.5) and (2.6), we see that up to a
constant factor in the exponent and the negligible term 1/ |U |γ , we get the same concentration
as with fully random hashing.

2.2.3 Experiments
In [ADK+21], we demonstrate that our approach performs well in practice by performing ex-
periments showing the strength of Tabulation-1Permutation for counting distinct elements in a
stream. We compare with the fastest known strongly universal hash functions, Multiply-Mod-
Prime [CW79] and Multiply-Shift [DHKP97], and with other commonly used hash functions such
as MurmurHash3 [App16] and BLAKE3 [JOWO20]. Without the use of independent repetitions,
we demonstrate that Tabulation-1Permutation provides more reliable estimates than the fast
strongly universal hash functions. Moreover, the implementation with Tabulation-1Permutation
is faster than when using MurmurHash3 and BLAKE3. In fact, BLAKE3 was approximately
150 times slower than Tabulation-1Permutation, so we disregard it in our experiments. On the
other hand, the implementation with Tabulation-1Permutation is both faster and provides better
estimates than when implementing the algorithm with the strongly universal hash functions and
independent repetitions.

Remark. It is important to note that no amount of experiments can prove that a hashing
scheme performs well on all possible data, and finding problematic data sets for a given hash fam-
ily is often a non-trivial task2. The results from [AKK+20] show that Tabulation-1Permutation
performs well on any possible data set with high probability. In other words, if implementing
the above streaming algorithms with Tabulation-1Permutation, we no longer have to cross our
fingers that the data sets encountered does not have hidden structure which interacts badly with
the hashing scheme. Furthermore, Tabulation-1Permutation is very fast, so this new guarantee
comes with no compromise on the speed of the algorithms.

In this presentation, we consider a subset of the experiments of [ADK+21] that compare
implementations of the bottom-k algorithm for counting distinct elements using tabulation-
1permutation, Multiply-Mod-Prime, Multiply-Shift, and MurmurHash3. The comparisons are on
the basis of speed and concentration. For a more comprehensive picture and other experimental
setups, see the full manuscript in the appendix.

First, we consider the case where none of the algorithms use repetitions to improve their
concentrations. The results are presented in Fig. 2.1. Here, we see that tabulation-1permutation
is slightly slower than the Multiply-Shift hashing scheme, but by less than a factor of three.
Furthermore, we see that the relative error of tabulation-1permutation stays nicely inside the
accepted range of error, while the universal hash functions Multiply-Mod-Prime and Multiply-
Shift have some large deviations in their estimates.

Second, we consider the case where the hash functions without strong concentration bounds
apply the median trick. The results are presented in Fig. 2.2. Inspecting the results, we observe
that with repetitions, the Multiply-Mod-Prime and Multiply-Shift hashing schemes achieve con-
centration on par with tabulation-1permutation. However, the repetitions cause them both to
be significantly slower.

2For Multiply-Shift and Multiply-Mod-Prime, we have concrete examples of data sets on for which they fail.
Moreover, in [Boß12] the authors provide concrete bad data sets for MurmurHash3.

10

(a) Relative error of independent repetitions
of bottom-k algorithm implemented with var-
ious hashing schemes applied to a structured
dataset. Parameters are calibrated to aim for
an error of ε = 3%, marked by the blue lines.
Dataset cardinality: 5× 105

Experiments per hash-function: 5× 104

(b) Time taken by bottom-k algorithm imple-
mented with various hashing schemes.
Dataset cardinality: 5× 107

k: 3500

Figure 2.1: Relative error and timing when estimating the number of distinct elements using
various hash functions on synthetic data. The experiments did not use independent repetitions.

(a) Relative error of independent repetitions of
bottom-k algorithms applied to a structured
dataset. Parameters are calibrated to aim for
an error of ε = 3%, marked by the blue lines.
For Multiply-Mod-Prime and Multiply-Shift
we have (r, k) = (5, 4900). For Tabulation-
1Permutation (r, k) = (1, 24500).
Dataset cardinality: 5× 105

Experiments per hash-function: 3× 104

(b) Time taken by bottom-k algorithms.
With Multiply-Mod-Prime and Multiply-Shift,
(r, k) = (5, 700). With Tabulation-
1Permutation, (r, k) = (1, 3500)
Dataset cardinality: 5× 107

Figure 2.2: Relative error and timing when estimating the number of distinct elements using
various hash functions on synthetic data. The experiments applied the median trick for Multiply-
Shift and Multiply-Mod-Prime. The parameter r is the number of sketches maintained in parallel.

11

2.2.4 Conclusion
In [ADK+21], we show that the use of hash functions with strong concentration bounds, like
Tabulation-1Permutation, can speed up streaming algorithms by avoiding time consuming inde-
pendent repetitions, and still provide accurate statistical estimates with high probability. Specif-
ically, we study algorithms for estimating the number of distinct elements in a stream and the
similarity between two large sets.

Our results are backed up by experiments. They show that widely used hash functions
like Multiply-Mod-Prime and Multiply-Shift yield inaccurate estimates when only maintaining a
single sketch. When boosting the success probability of Multiply-Shift and Multiply-Mod-Prime
using independent repetitions, the implementation with Tabulation-1Permutation both becomes
faster and still provides better estimates. Finally, the running time of Tabulation-1Permutation
is better than that of other commonly used hash functions like MurmurHash3, which provided
reliable estimates in our experiments but which have no similar general theoretical guarantees.

12

Chapter 3

Graph Spectra and Expanders

Let G = (V,E) be a multigraph on n = |V | vertices. The adjacency matrix of G is the n × n
matrix AG with rows and columns indexed by the set V and where for any u, v ∈ V , (AG)uv
is the number of edges between u and v. The spectrum of G is the spectrum of AG, i.e., the
set of eigenvalues of AG. The study of graph spectra, spectral graph theory, first emerged as a
purely mathematical subfield of graph theory, but has since found applications in several other
fields. As such it is a popular field of study within theoretical computer science. Among other
things, clues to the connectivity of a graph and the behaviour of random walks on a graph can
be determined from its spectrum. Both of these connections are something we shall touch upon
in this chapter.

A particularly interesting topic central to graph spectra is that of expander graphs and the
spectral gap. Suppose that G is connected and d-regular, meaning that each vertex of G has
degree exactly d ∈ N. The n eigenvalues of AG counted with multiplicity may be ordered as
λ1 ≥ λ2 ≥ · · · ≥ λn with λ1 = d and λ1 > λ2. Two quantities of interest are the spectral gap of G
given by d−λ2 and the spectral expansion of G given by λ(G) = max2≤i≤n{|λi|} = max{λ2, |λn|}.
These quantities reveal properties regarding the connectivity of G in the following senses.

First, the spectral gap bounds the Cheeger constant h(G), the largest real number satisfying
that for every set of vertices S ⊂ V , at least h(G) |S| edges connect S to the remaining graph.
Formally,

h(G) = min
S⊂V

0<|S|≤n/2

|∂S|
|S| ,

where ∂S denotes the edges in G from S to V \S. The Cheeger constant of a graph is also known
as its edge expansion. One of the iconic results of spectral graph theory relates the spectral gap
to the Cheeger constant. The larger the spectral gap, the larger the Cheeger constant and the
edge expansion.

Theorem 3.1 (Cheeger Inequality [Alo86], [SJ89]). For every d-regular graph G,

d− λ2(G)

2
≤ h(G) ≤

√
2d(d− λ2(G)).

Second, the spectral expansion λ(G) has many useful properties. The smaller λ(G) is com-
pared with d, the smaller the mixing time of random walks on G and the faster the running time
of certain randomised algorithms. Especially beautiful is the following theorem, the expander

13

mixing lemma, which bounds the number of edges between two subsets of vertices of G compared
with the expected number of such edges in a random d-regular graph. Here, for vertex subsets
A,B ⊂ V , E(A,B) denotes the set of edges between A and B in G.

Theorem 3.2 (Expander Mixing Lemma [AC88]). For every d-regular graph G = (V,E) and
every pair of subsets A,B ⊂ V ,

∣∣∣∣|E(A,B)| − d |A| |B|
n

∣∣∣∣ ≤ λ(G)
√
|A| |B|.

Given vertex subsets A,B ⊂ V , the expected number of edges between A and B in a random
d-regular graph on V is exactly d|A||B|

n . Thus, the expander mixing lemma can be interpreted
as saying that the smaller the spectral expansion λ(G), the closer the behaviour of G is to a
random d-regular graph. This is a key feature of good expander graphs. Random graphs have
many beautiful properties, but are not the static objects needed for algorithmic applications.
Expander graphs exhibit many of the same properties but can have succinct, static descriptions,
making them ideal for algorithmic applications.

In the sections to follow, the two papers “Support of Closed Walks and Second Eigenvalue
Multiplicity of Graphs” [MRS21] and “Expander Graphs are Non-Malleable Codes” [RS20] are
presented. The first explores the multiplicity of the second eigenvalue λ2 as well as the connec-
tion between spectral graph theory and random walks on graphs. The second applies spectral
expander graphs and the expander mixing lemma to construct a cryptographic primitive called
a non-malleable code.

14

3.1 Random Walks and the Multiplicity of the Second Graph
Eigenvalue

In this section, we present the paper “Support of Closed Walks and Second Eigenvalue Multi-
plicity of Graphs” [MRS21]. The section is composed of edited excerpts from sections 1 and 6 of
[MRS21].

As noted above, the eigenvalues of matrices associated with graphs play an important role
in many areas of mathematics and computer science. In their recent beautiful work on the
equiangular lines problem, Jiang, Tidor, Yao, Zhang, and Zhao [JTY+19] proved the following
novel result constraining the distribution of the adjacency eigenvalues of all connected graphs of
sufficiently low degree.

Theorem 3.3. If G is a connected graph of maximum degree ∆ on n vertices, then the multiplic-
ity of the second largest eigenvalue of its adjacency matrix AG is bounded by O(n log ∆/ log log(n)).

For their application to equiangular lines, [JTY+19] only needed to show that the multiplicity
of the second eigenvalue is o(n), but they asked whether the O(n/ log log(n)) dependence in
Theorem 3.3 could be improved, noting a huge gap between this and the best known lower
bound of Ω(n1/3) achieved by certain Cayley graphs of PSL(2, p) (see [JTY+19, Section 4]).

Meanwhile, in the theoretical computer science community, the largest eigenvalues of the
normalized adjacency matrix ÃG := D

−1/2
G AGD

−1/2
G (for DG the diagonal matrix of degrees)

have received much attention over the past decade due to their relation with graph partitioning
problems and the unique games conjecture (see e.g. [Kol11, BRS11, LRTV12, GT15, LOGT14,
ABS15, BGH+15, LOG18]); in particular, many algorithmic tasks become easier on graphs with
few large normalized adjacency eigenvalues. Thus, it is of interest to know how many of these
eigenvalues there can be in the worst case.

3.1.1 Our Results
In [MRS21], we prove significantly stronger upper bounds than Theorem 3.3 on the second
eigenvalue multiplicity for the normalized adjacency matrix. Order the eigenvalues of ÃG as
λ1(ÃG) ≥ λ2(ÃG) ≥ . . . ≥ λn(ÃG), and let mG(I) denote the number of eigenvalues of ÃG in an
interval I.

Theorem 3.4. If G is a connected graph of maximum degree ∆ on n vertices with λ2(ÃG) = λ2,
then1

mG

(
[(1− log log∆ n

log∆ n
)λ2, λ2]

)
= Õ

(
n · ∆7/5

log1/5 n

)
. (3.1)

Because of the relationship ÃG = 1
dAG when G is regular, (3.1) gives a substantial improve-

ment on Theorem 3.3 in the regular case (in the non-regular case, the results are incomparable as
they concern different matrices). In addition to the stronger O(n/ polylog(n)) bound, a notable
difference between our result and Theorem 3.3 is that we control the number of eigenvalues in a
small interval containing λ2. Though we do not know whether the exponents in (3.1) are sharp, we
show in [MRS21] that constant degree bipartite Ramanujan graphs have at least Ω(n/ log3/2 n)
eigenvalues in the interval appearing in (3.1), indicating that O(n/ polylog(n)) is the correct
regime for the maximum number of eigenvalues in such an interval when ∆ is constant.

1All asymptotics are as n→∞ and the notation Õ(·) suppresses polyloglog(n) terms.

15

Figure 3.1: For a regular graph composed of a near-clique attached to an infinite tree, a closed
walk of length 2k starting from within the near-clique does not typically go deeper than O(log k)
down the tree. However, the support of such a closed walk is typically kΘ(1).

Theorem 3.4 is nontrivial for all ∆ = õ(log1/7 n); as remarked in [JTY+19], Paley graphs have
degree Ω(n) and second eigenvalue multiplicity Ω(n), so some bound on the degree is required
to obtain sublinear multiplicity.

The main new ingredient in the proof of Theorem 3.4 is a polynomial lower bound on the
support of (i.e., number of distinct vertices traversed by) a simple random walk of fixed length
conditioned to return to its starting point. The bound holds for any connected graph and any
starting vertex and may be of independent interest.

Theorem 3.5. Suppose G is connected and of maximum degree ∆ on n vertices and x is any
vertex in G. Let γ2k

x = (x = X0, X1, . . . , X2k) denote a random walk of length 2k < n sampled
according to the simple random walk on G starting at x. Then

P(support(γ2k
x) ≤ s|X2k = X0) ≤ exp

(
− k

65∆7s4

)
for s ≤ 1

4

(
k

∆7 log ∆

)1/5

. (3.2)

In particular, this means that for constant ∆, the typical support of a closed random walk
of length 2k is least Ω(k1/5). It may be tempting to compare Theorem 3.5 with the familiar
fact that a random closed walk of length 2k on Z (or in continuous time, a standard Brownian
bridge run for time 2k) attains a maximum distance of Ω(

√
k) from its origin. However, as seen

in Fig. 3.1, there are regular graphs for which a closed walk of length 2k from a particular vertex
x travels a maximum distance of only polylog(k) with high probability. Theorem 3.5 reveals
that nonetheless the number of distinct vertices traversed is always typically poly(k). We do not
know if the specific exponent of k1/5 supplied by Theorem 3.5 is sharp, but considering a cycle
graph shows that it is not possible to do better than k1/2.

Given Theorem 3.5, our proof of Theorem 3.4 follows the strategy of [JTY+19]: since most
closed walks in G have large support, the number of such walks may be drastically reduced by
deleting a small number of vertices from G. By a moment calculation relating the spectrum to
self return probabilities and a Cauchy interlacing argument, this implies an upper bound on the
multiplicity of λ2(ÃG). The crucial difference is that we are able to delete only n/ polylog(n)
vertices whereas they delete n/ poly log log(n).

16

3.1.2 Related Work and Open Problems
We conclude the presentation of [MRS21] with some related work and potential further research.

Eigenvalue Multiplicity. Despite the straightforward nature of the question, relatively little
is known about eigenvalue multiplicity of general graphs. As discussed in [JTY+19], if one
assumes that G is a bounded degree expander graph, then the bound of Theorem 3.3 can be
improved to O(n/ log n).

There is a large gap between our upper bound of O(n/ log1/5 n) on the multiplicity of the
second eigenvalue and the lower bound of n1/3 mentioned after Theorem 3.3. It is very natural
to ask, whether the bound of this paper may be improved. To improve the bound beyond
O(n/ polylog(n)), however, it appears that a very different approach is needed.

Open Problem 1 (Similar to Question 6.3 of [JTY+19]). Let d > 1 be fixed integer. Does there
exist an ε > 0 such that for every connected d-regular graph G on n vertices, the multiplicity of
the second largest eigenvalue of ÃG is O(n1−ε)?

In the present paper, we rely on the trace method to bound eigenvalue multiplicity through
closed walks. There are three drawbacks to this approach that stops a bound on the second eigen-
value multiplicity below n/polylog(n). First, considering walks of length ω(log(n)) makes the
top eigenvalue dominate the trace, leaving no information behind. Second, considering the trace
Tr ÃkG for k = O(log(n)) it is impossible to distinguish eigenvalues that differ by O(1/ log(n)).
Third, in [MRS21], we give an example of graphs such that there are Ω(n/ polylog(n)) eigen-
values in a range of that size around the second eigenvalue. Thus, the trace method reaches a
natural barrier at n/ polylog(n).

Support of Walks. There are as far as we are aware no known lower bounds for the support
of a random closed walk of fixed length in a general graph (or even Cayley graph). It is relatively
easy to derive such bounds for bounded degree graphs if the length of the walk is sufficiently
larger than the mixing time of the simple random walk on the graph; the key feature of Theorem
3.5, which is needed for our application, is that the length of the walk can be taken to be much
smaller.

The support of open walks (namely removing the condition that the walk ends at the starting
point) is better understood. There are Chernoff-type bounds on the size of the support of a
random walk based on the spectral gap [Gil98, Kah97]. Such bounds and their variants are an
important tool in derandomization. It is very natural to ask whether a bound on the support of
closed random walks could also have applications in theoretical computer science. We leave it as
an open problem to apply Theorem 3.5 in such a setting.

We have no reason to believe that the exponent of 1/5 appearing in Theorem 3.5 is sharp.
In fact, we know of no example where where the answer is o(k1/2). An improvement over
Theorem 3.5 would immediately yield an improvement of Theorem 3.4.

Open Problem 2. Let d > 1 be a fixed integer. Does there exist an α > 1/5 such that for
every connected d-regular graph G on n vertices and every vertex x of G, a random closed walk
of length 2k < n rooted at x has support Ω(kα) in expectation? Is it even true for α = 1/2? Does
such a bound hold for simple random walks in general?

17

3.2 Non-Malleable Codes from Expander Graphs
In this section, we present the paper “Expander Graphs are Non-Malleable Codes” [RS20]. We
start by introducing non-malleable codes and then describe our results. The section consists of
edited excerpts from the introduction of [RS20].

A key goal in theoretical computer science is the identification of structures that exhibit
resilience to adversarial tampering. The classical notion in this space is that of an error-detection
or error-correction code, where we seek to ensure that tampering caused by an adversary that
can modify a bounded number of symbols in a codeword can be detected or corrected.

But what if the number of errors that an adversary can introduce is unbounded? The objective
of error detection or correction is clearly impossible to achieve in this setting – the adversary can
simply replace the transmitted codeword with an encoding of some other fixed value. Thus, the
main question of study in this context concerns the notion of malleability : informally speaking,
our core goal must be to prevent the adversary from replacing an encoding of a value x with an
encoding of some other related value x̃ 6= x.

The central information-theoretic object in this setting is called a split-state non-malleable
code [DPW18]. Since their introduction in 2010 [DPW18], split-state non-malleable codes have
been the subject of intense study within theoretical computer science [DPW18, DKO13, ADL14,
CZ14, CGL16, Li17]. A split-state non-malleable code [DPW18] consists of randomized encoding
and decoding algorithms (enc,dec). A message m ∈ M is encoded as a pair of strings (L,R) ∈
{0, 1}k × {0, 1}k, such that dec(L,R) = m. An adversary then specifies an arbitrary pair of
functions g, h : {0, 1}k → {0, 1}k. The code is said to be non-malleable if, intuitively, the
message obtained as dec(g(L), h(R)) is “unrelated” to the original message m. This is formalised
as follows.

Definition 3.6. [Split-State Non-Malleable Code] Let a coding scheme (enc,dec) be given by
functions enc: M → L × R and dec: L × R → M ∪ {⊥}. We say that (enc,dec) is ε-non-
malleable if for every pair of functions f : L → L and g : R → R there exists a distribution Df,g

taking values inM∪{⊥, ∗} such that for every m ∈M, the statistical distance between the two
experiments

A :=
{

(L,R):=enc(m)
Output dec(f(L),g(R))

}

B :=
{

Sample m̃ from Df,g

If m̃ = ∗ output m else output m̃

}

is at most ε.

3.2.1 Our Results
All known constructions and proofs of security for explicit split-state non-malleable codes have
required complex mathematical proofs, and all known such proofs either directly or indirectly
used the mathematics behind constructions of two-source extractors [DKO13, ADL14, CZ14,
CGL16, Li17]. In fact, after constructing the first non-malleable code in the split-state model
Dziembowski, Kazana, and Obremski wrote: “This brings a natural question if we could show
some relationship between the extractors and the non-malleable codes in the split-state model.
Unfortunately, there is no obvious way of formalizing the conjecture that non-malleable codes
need to be based on extractors” [DKO13].

In [RS20], we seek to establish new, simpler, foundations for the construction of split-state
non-malleable codes. We do so by answering in the negative the implicit conjecture of [DKO13];

18

we show that it is not necessary to base constructions of non-malleable codes on the theory of
extractors. Instead, we construct a non-malleable code for single bit messages from expander
graphs, an object arguably simpler and more fundamental than two-source extractors.

Taking a regular graph G, we introduce in [RS20] a natural way to encode a single bit message.

Definition 3.7. [Graph Code] Let G = (V,E) be a graph. The graph code associated with G,
denoted (encG,decG), encodes a single bit b ∈ {0, 1} as a pair of vertices of G as follows.

encG(b) =

{
(u, v)←u E, b = 1

(u, v)←u (V × V) \ E, b = 0,

dec(u, v) =

{
1, (u, v) ∈ E
0, (u, v) 6∈ E.

Here, X ←u A signifies that X is sampled uniformly at random from the set A.

The main theorem of [RS20] states that if G is a sufficiently good spectral expander, the
graph code associated with G is non-malleable.

Theorem 3.8. Let G be a d-regular graph with spectral expansion λ satisfying n = Ω(d3 log d/λ).
Then the single bit split-state non-malleable code (encG,decG) is O(λ3/2/d)-non-malleable.

3.2.2 Perspectives
Our main contribution is that the construction of non-malleable codes from expander graphs
opens up a new line of attack in the study of split-state non-malleable codes. It is important
to keep in mind that current constructions of non-malleable codes supporting messages of arbi-
trary length use many ideas pioneered in the construction of [DKO13], in particular the use of
extractors. While we do not yet know how to generalise our results beyond single-bit messages,
we speculate that further investigation building upon our work will reveal a deeper connection
and more powerful simple constructions based on expanders.

It should be noted that two-source extractors are well-known to exhibit expansion proper-
ties; however, in all previous proofs, much more than mere expansion was used to argue non-
malleability. Indeed previous proofs apply extractors repeatedly. We also note that it is not
surprising that 1-bit non-malleable codes will exhibit some sort of expansion properties. Our con-
tribution is the converse: that good expansion is sufficient for the construction of non-malleable
codes.

19

Chapter 4

Edge Connectivity in Graphs

Let G = (V,E) be a graph. A fundamental question in graph theory and algorithms is: Given
two vertices u, v ∈ V , is there a path on G that starts at u and ends at v? If this is the case, we
say that u and v are connected in G. This notion generalises in a natural way.

Definition 4.1. [k-Edge Connectivity] Let G = (V,E) be a graph. Two vertices u, v ∈ V are
k-edge connected if there exists k distinct paths γ1, . . . , γk on G each of them starting at u and
ending at v and no two of them sharing an edge.

Equivalently, u and v are k-edge connected in G if the removal of any k − 1 edges of G leave
u and v still connected. Being k-edge connected is an equivalence relation on the vertices of G,
and we call the corresponding equivalence classes the k-edge connected classes of G.

Taking a broader perspective, we say that the graph G itself is connected if every pair of
distinct vertices of G is connected. Generalising this notion as well, we say that G is k-edge
connected if every pair of vertices of G are k-edge connected. Equivalently, G is k-edge connected
if for every set S ⊂ E of |S| = k − 1 edges, G \ S is connected. Note that with this definition,
the trivial graph on a single vertex is k-edge connected.

Definition 4.2. [k-Edge Connected Component] Let G = (V,E) be a graph. An induced
subgraph H = G[U], U ⊂ V , is a k-edge connected component of G if H is k-edge connected and
for every U (U ′ ⊂ V the induced subgraph G[U ′] is not k-edge connected.

In other words, a k-edge connected component of G is a maximal k-edge connected induced
subgraph of G. Since the trivial graph is k-edge connected, every vertex of G is contained in a
k-edge connected component. Furthermore, every pair of distinct k-edge connected components
of a graph are disjoint. Thus, the k-edge connected components of G partition the vertices of G.

It is important to keep in mind the non-obvious distinction between k-edge connected classes
and components. For k = 1, 2 the k-edge connected classes and components coincide, but for
k ≥ 3 this is not necessarily the case. For an example with k = 3, see Fig. 4.1.

In this chapter, we present the two papers “Optimal Decremental Connectivity in Non-Sparse
Graphs” [AKL+21] and “k-Edge Connected Components and Minimum Degree” [ART21]. The
first considers the algorithmic problem of keeping track of the k-edge connected components of
a graph while edges are deleted one by one. The second studies how many k-edge connected
components a graph with high minimum degree may contain.

Remark 4.3. The work presented in this chapter partially overlaps with the master thesis
submitted by the author in September 2020 [Ras20]. The main results of [ART21] resemble

20

a

b

ec

d

Figure 4.1: The 3-edge connected classes of the above graph are {a, e}, {b}, {c}, and {d}, since a
and e are 3-edge connected by the paths through b, c, and d. The 3-edge connected components
of the graph are simply the individual vertices of the graph, since the subgraph induced by a
and e is not 3-edge connected (nor connected for that matter).

those presented in [Ras20]. However, the proofs have been rewritten, a significant error in
the main theorem has been fixed, and further observations have been added along with some
historical context. The research of [AKL+21] is a strong improvement over the work done in
[Ras20]. Most concretely, the algorithm of [Ras20] is only feasible for graphs on n vertices
and m = Ω(n3/2 polylog n) edges, whereas the algorithm presented in [AKL+21] is feasible for all
graphs withm = Ω(npolylog n) edges. Furthermore, while some of the central ideas from [Ras20]
appear in [AKL+21], a significant amount of work and new ideas have gone into strengthening
the results of [AKL+21].

21

4.1 Maintaining k-edge Connected Components
In this section, we present the paper “ ‘Optimal Decremental Connectivity in Non-Sparse Graphs”
[AKL+21]. We start with an introduction to dynamic graph algorithms and dynamic k-edge con-
nectivity, proceed with an overview of previous results, and finally describe the results of the
paper.

The topic of this section is dynamic graph algorithms. A traditional (static) graph algorithm
takes as input a graph G = (V,E) and a query q and outputs the answer to q with respect to G.
For instance, a graph algorithm may be tasked with deciding if two vertices u and v are connected
in G. In contrast, a dynamic graph algorithm A receives as input a starting graph G followed by
a sequence of updates, u1, . . . , ut, each of which either removes or adds an edge to G. We denote
by Gi, i ≥ 0 the graph G after i updates have been applied. The updates are interspersed with
queries q1, . . . , q`. The task of A is to maintain a data structure such that when query qj occurs
immediately after update ui, A may respond with the answer to the query qj on Gi. Note that
the updates and queries are received one at a time, so A is for instance oblivious to update ui+1

when processing update ui. Adopting the example from the static graph algorithm, the queries
may be to decide whether a pair of vertices u and v are connected in Gi. This is known as the
dynamic connectivity problem. In that case, A should maintain a data structure that makes such
queries quick to answer.

The performance of dynamic graph algorithms is measured in two ways: The update time and
the query time. If we denote by T (ui) and T (qj) the time taken to perform update ui and answer
query qj , the worst case update and query times will be maxT (ui) and maxT (qj), respectively.
In our case, we will mostly work with amortised update time, 1

t

∑
T (ui), i.e., the average time

taken to perform an update. In fact, since we are working with randomised algorithms, we
consider expected amortised update time.

Furthermore, dynamic graph algorithms come in three different flavours or settings. They
are the fully, decremental, and incremental dynamic graph algorithms. Fully dynamic graph
algorithms are as described above: an update is either the insertion or deletion of an edge.
Meanwhile, for decremental or incremental dynamic graph algorithms, respectively, we consider
the case where edges are only ever deleted or added. When measuring performance, we suppose
for the fully and incremental dynamic graph algorithms that the starting graph G is the empty
graph, and for decremental dynamic graph algorithms that all edges of G are eventually removed
such that the final graph Gt is empty.

Dynamic connectivity is perhaps the most fundamental dynamic graph problem. In [AKL+21],
we consider this problem and the more general problem of k-edge connectivity, i.e., asking whether
vertices are k-edge connected rather than simply connected.

4.1.1 Overview of Previous Results
The world of dynamic connectivity is vast, so we will only briefly describe the relevant results
from the literature.

Fully Dynamic Connectivity. Fully dynamic connectivity is extremely well-studied (see e.g.,
[CGL+20, EGIN97, Fre85, HK99, HdLT01, HHKP17, KKM13, KKPT16, NSW17, PD04, PT11,
Tho00, Wan15, Wul13]) with near-optimal upper and lower bounds. We shall not dwell on
the lower bounds of Pǎtraşcu and Demaine [PD04] and Pǎtraşcu and Thorup [PT11] except to
say that any fully dynamic algorithm for connectivity with amortised update time o(log n) has
query time at least Ω(n1−o(1)). In other words, with amortised update time o(log n) we can

22

k Amortised update time Worst case query time Source
1 O(log(n) log2 log(n)) O(log(n)/ log log(n)) Huang et al. [HHKP17]
2 O(log2(n) log2 log(n)) O(log(n)/ log log(n)) Holm, Rotenberg, and Thorup [HRT18]
logo(1)(n) no(1) no(1) Jin and Sun [JS20]

Figure 4.2: The state of the art in randomised fully dynamic k-connectivity. It is worth noting
that up to factors of polyloglog n, the algorithm of Huang et al. exhibits an optimal trade of in
performance between update and query time. Furthermore, the no(1) update time of Jin and
Sun is in fact worst case.

do almost no better on queries than to simply run a static connectivity algorithm. When it
comes to upper bounds, Fig. 4.2 displays the current state of the art for randomised algorithms.
For the purpose of this presentation, the results may be sufficiently summarised as follows. For
k = 1, 2, fully dynamic k-connectivity is solved with update and query time O(polylog n), while
for k = logo(1)(n), it may be solved with update and query time no(1).

Incremental Dynamic Connectivity. Consider a setting where we start from an empty
graph and insert edges until we arrive at a graph G on n vertices and m edges, asking q queries
along the way. Applying the union-find algorithm analysed by Tarjan [Tar75], we perform O(m+
q) find and O(n) union operations. The total cost is then O((m+q)α(m+q, n)), where α denotes
the inverse-Ackermann function. Since α(a log a, a) = O(1), the total running time is linear in
m+ q (and hence optimal) for all graphs with m = Ω(n log n) edges. This has been shown to be
optimal for incremental dynamic connectivity [FS89].

Decremental Dynamic Connectivity. In [Tho99], Thorup presents an algorithm for the
problem of decremental dynamic connectivity. The algorithm answers queries in constant time
and the time spent performing the updates required to delete every edge of a graph G on n
vertices and m edges is O(npolylog n+m log(n2/m)). In other word, the amortised update time
is O(1) for dense graphs with m = Ω(n2) and O(log n) otherwise. This also holds for 2-edge
connectivity. For k-edge connectivity with k ≥ 3, a slightly different result holds, which we will
get back to.

The algorithm by Thorup [Tho99] is in fact a reduction from the decremental dynamic k-
edge connectivity problem to the fully dynamic k-edge-cut problem and the fully dynamic k-edge
connectivity problem. The fully dynamic k-edge-cut problem is the problem of maintaining in
a graph H undergoing edge deletions and insertions an edge of H that is contained in a cut of
size < k if such an edge exists. We denote by Tk(n) the amortised update time needed to solve
the fully dynamic k-edge-cut problem. We have T1(n) = O(1) since for k = 1 there is nothing to
maintain, and, for k = 2, the algorithm of [HRT18] featured in Fig. 4.2 maintains the bridges of
the graph, so T2(n) = O(log2(n) log2 log(n)).

The reduction operates by maintaining a k-certificate of G.

Definition 4.4. [k-certificate] Let G be a graph. A subgraph H ⊂ G is a k-certificate for G if
the k-edge connected components of H and G are the same and H contains every edge of G that
connects distinct k-edge connected components.

A k-certificate H of G contains all information regarding k-edge connectivity of G. The
graph H has the same k-edge connected components and classes. Let G be a graph on n
vertices and m edges. The algorithm of Thorup [Tho99] maintains a k-certificate of G in total
time O(m log(n2/m) + knTk(n) polylog(n)) using an algorithm for the fully dynamic k-edge-cut

23

problem. Over the course of all deletions, a total of O(kn) edges are inserted in or deleted from the
certificate. To achieve an algorithm for decremental k-edge connectivity, we apply an algorithm
for fully dynamic k-edge connectivity to the certificate. For k ∈ {1, 2}, since the certificate
is only updated O(kn) times and the fully dynamic k-edge connectivity of [HHKP17, HRT18]
have polylogarithmic amortised update times, the total time to maintain decremental k-edge
connectivity is O(m log(n2/m) +n polylog n). For k = logo(1) n, we may apply the fully dynamic
min-cut algorithm of Thorup [Tho07] which establishes Tk(n) = n1/2+o(1) along with the no(1)

update time of the fully dynamic k-edge connecitivty algorithm of [JS20] to obtain decremental
k-edge connectivity in total time O(m log(n2/m) + n3/2+o(1)) and query time O(no(1)).

4.1.2 Better k-Certificate and Optimal Decremental Connectivity
In [AKL+21], we improve on the reduction of Thorup [Tho99] and get the following result.

Theorem 4.5. Let G be a graph on n vertices and m edges. There exists a randomised algorithm
for decrementally maintaining a k-certificate of G in total time O(m+knTk(n) polylog(n)) using
O(knpolylog(n)) updates to the certificate.

This replaces the term O(m log(n2/m)) in the running time of the algorithm of Thorup
[Tho99] with simply O(m). Applying the analysis above, this improvement immediately implies
the following.

Theorem 4.6. Let G be a graph on n vertices and m edges. There exist algorithms for the
decremental dynamic 1- and 2-edge connectivity problems on G with constant query time and
total update time O(n polylog(n) +m).

Thus, for every graph G on n vertices and m = Ω(n polylog(n)) edges, we present an optimal
algorithms for for decremental dynamic 1- and 2-edge connectivity. In contrast, the algorithm of
Thorup [Tho99] is only optimal whenever m = Ω(n2).

Furthermore, for k-edge connectivity, we obtain the following.

Theorem 4.7. Let G be a graph on n vertices and m edges. For k = logo(1) n, there exist
algorithms for the decremental dynamic k-edge connectivity problems on G with n0(1) query time
and total update time O(n3/2+o(1) +m).

A nice application of the results above is to the unique perfect matching problem. Gabow
et al. [GKT01] use decremental dynamic 2-edge connectivity to yield an algorithm for deciding
whether a graph has a unique perfect matching. Plugging in Theorem 4.6 immediately yields
the following.

Theorem 4.8. Let G be a graph on n vertices and m edges. There exists a Las Vegas algorithm
that decides in time O(n polylog(n) +m) whether G has a unique perfect matching.

Again, whenever G = Ω(n polylog(n)), this is O(m) and thus, optimal.

As evident above, our overall approach to the problem of decremental k-edge connectivity is
similar to Thorup’s. Our main innovation is a new sparse randomised k-certificate which may be
maintained with O(1) amortised time spent per edge deletion in contrast to the O(log(n2/m))
required by the certificate of Thorup [Tho99]. Unfortunately, a discussion of the details of the
certificates is beyond this synopsis. We refer the reader to the full manuscript of [AKL+21] in
the appendix.

24

4.1.3 Discussion
Given that we have near-optimal randomised algorithms for fully dynamic connectivity and an
optimal algorithm for incremental dynamic connectivity, it is very interesting that our work in
[AKL+21] also comes very close to establishing an optimal algorithm for decremental dynamic
connectivity. Except for sparse graphs on m = O(n polylog n) edges, our algorithm solves the
question of randomised decremental dynamic connectivity. This raises the question of what
happens for sparser graphs.

Open Problem 3. What expected amortised update time can be achieved for graphs on n vertices
and m = O(n polylog(n)) edges for the problem of decremental dynamic connectivity?

25

4.2 Counting k-edge Connected Components
In this section, we present the paper “k-Edge Connected Components and Minimum Degree”
[ART21]. The following text consists of edited excerpts from Sections 1, 3, and 4 of [ART21].

All graphs in this section are simple. A key observation applied in [AKL+21] is that graphs
with high minimum degree δ are well-connected. In particular, they have few k-edge connected
components whenever δ � k. In [ART21], we further explore and quantify this phenomenon. It
is well-known that whenever a graph with a fixed number of vertices contains sufficiently many
edges, non-trivial k-edge connected components begin to emerge. This is the content of a classical
result by Mader.

Theorem 4.9 (Mader [Mad71]). Let k and n > k be positive integers. Every graph on n vertices
and strictly more than (k−1)(n−k/2) edges contains a non-trivial k-edge connected component.
Furthermore, there exists a graph on n vertices and (k−1)(n−k/2) edges containing only trivial
k-edge connected components.

We consider a related question, establishing a connection between the minimum degree and
the number of k-edge connected components of a graph. The main result of [ART21] is an upper
bound on the number of k-edge connected components.

Theorem 4.10. Let k > 1 be an integer and ε > 0. Every graph on n vertices with minimum
degree (2 + ε)(k − 1) has at most 10n

εk distinct k-edge connected components.

We further show that this bound is tight in two ways. First, the upper bound is tight
asymptotically in the sense that for every integer k > 1 and ε > 0, the maximal possible number
of k-edge connected components of a graph on some n vertices with minimum degree (2+ε)(k−1)
is Θ

(
n
εk

)
. The lower bound establishing this is the content of another theorem of [ART21].

Theorem 4.11. For every integer k > 1 and every ε ≥ 1/(k− 1) there exists n ∈ N and a graph
G with n vertices, minimum degree ≥ (2 + ε)(k − 1), and at least n

3εk distinct k-edge connected
components.

Second, the limit at minimum degree 2(k − 1) proposed by the theorem is in fact tight in
the following sense. For fixed k > 1, there is a constant δ < 1 such that every graph on some
n vertices with minimum degree 2k − 1 has at most δn distinct k-edge connected components.
However, there is no such constant for graphs of minimum degree 2(k − 1). This is laid out in
the following two propositions.

Proposition 4.12. Let G be a graph on n vertices. If G has minimum degree 2k−1, the number
of distinct k-edge connected components of G is at most 2k−1

3k−1n.

Proposition 4.13. For every integer k > 1 and real γ ∈ (0, 1) there exists n ∈ N and a graph G
on n vertices satisfying that G has minimum degree 2(k− 1) and the number of k-edge connected
components of G is at least γn.

Finally, we note that since this work was focused on establishing the asymptotic behaviour
of the number of k-edge connected components, the constants appearing in the theorems can
almost certainly be improved.

Open Problem 4. What are the right constants for the results of Theorem 4.10 and Theo-
rem 4.11?

26

Bibliography

[AAAR20] Anders Aamand, Mikkel Abrahamsen, Thomas D. Ahle, and Peter Michael Reich-
stein Rasmussen. Tiling with squares and packing dominos in polynomial time.
CoRR, 2020. https://arxiv.org/abs/2011.10983. In submission.

[AAKR21] Anders Aamand, Mikkel Abrahamsen, Jakob Bæk Tejs Knudsen, and Peter
Michael Reichstein Rasmussen. Classifying Convex Bodies by Their Contact and
Intersection Graphs. In Proceedings of the 37th ACM Symposium on Computational
Geometry (SoCG), volume 189, pages 3:1–3:16, 2021.

[ABS15] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for
unique games and related problems. Journal of the ACM, 62(5):1–25, 2015.

[AC88] N. Alon and F.R.K. Chung. Explicit construction of linear sized tolerant networks.
In Graph Theory and Applications, volume 38, pages 15–19. 1988.

[ADK+21] Anders Aamand, Debarati Das, Evangelos Kipouridis, Jakob B. T. Knudsen, Peter
Michael Reichstein Rasmussen, and Mikkel Thorup. No repetition: Fast streaming
with highly concentrated hashing. Manuscript, 2021.

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from
additive combinatorics. In Proceedings of the 46th ACM Symposium on Theory of
Computing (STOC), pages 774–783, 2014.

[AKK+20] Anders Aamand, Jakob Bæk Tejs Knudsen, Mathias Bæk Tejs Knudsen, Peter
Michael Reichstein Rasmussen, and Mikkel Thorup. Fast hashing with strong con-
centration bounds. In Proceedings of the 52nd Annual ACM Symposium on Theory
of Computing (STOC), pages 1265–1278, 2020.

[AKL+21] Anders Aamand, Adam Karczmarzand, Jakub Łącki, Nikos Parotsidis, Peter
Michael Reichstein Rasmussen, and Mikkel Thorup. Optimal decremental connec-
tivity in non-sparse graphs. Manuscript, 2021.

[Alo86] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, June 1986.

[App16] Austin Appleby. Murmurhash3. https://github.com/aappleby/smhasher/wiki/
MurmurHash3, 2016.

[ART21] Anders Aamand, Peter Michael Reichstein Rasmussen, and Mikkel Thorup. k-edge
connected components and minimum degree. Manuscript, 2021.

[Ben62] George Bennett. Probability inequalities for the sum of independent random vari-
ables. Journal of the American Statistical Association, 57(297):33–45, 1962.

27

https://arxiv.org/abs/2011.10983
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3

[Ber24] Sergei Natanovich Bernstein. On a modification of Chebyshev’s inequality and of
the error formula of Laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math., (1):38–49,
1924.

[BGH+15] Boaz Barak, Parikshit Gopalan, Johan Håstad, Raghu Meka, Prasad Raghavendra,
and David Steurer. Making the long code shorter. SIAM Journal on Computing,
44(5):1287–1324, 2015.

[Boß12] Martin Boßlet. Breaking murmur: Hash-flooding dos reloaded. https://emboss.g
ithub.io/blog/2012/12/14/breaking-murmur-hash-flooding-dos-reloaded/,
2012.

[BRS11] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite pro-
gramming hierarchies via global correlation. In Proceedings of the 52nd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 472–481, 2011.

[BYJK+02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan.
Counting distinct elements in a data stream. In Proceedings of the 6th International
Workshop on Randomization and Approximation Techniques in Computer Science
(RANDOM), pages 1–10, 2002.

[CGL16] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and
codes, with their many tampered extensions. In Proceedings of the 48th Annual
ACM Symposium on Theory of Computing (STOC), pages 285–298, 2016.

[CGL+20] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and
Thatchaphol Saranurak. A deterministic algorithm for balanced cut with applica-
tions to dynamic connectivity, flows, and beyond. In Proceedings of the 61st Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 1158–1167,
11 2020.

[Che52] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations. Annals of Mathematical Statistics, 23(4):493–507, 1952.

[CW79] Larry Carter and Mark N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143–154, 1979. Announced at STOC’77.

[CZ14] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against con-
stant split-state tampering. In Proceedings of the 55th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 306–315, 2014.

[DHKP97] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen. A
reliable randomized algorithm for the closest-pair problem. Journal of Algorithms,
25(1):19–51, 1997.

[DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes
from two-source extractors. In Proceedings of the 33rd Annual Cryptology Conference
(CRYPTO), volume 8043, pages 239–257, 2013.

[DM92] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. Dynamic hashing in real
time. In Informatik, Festschrift zum 60. Geburtstag von Günter Hotz, pages 95–119.
1992.

28

https://emboss.github.io/blog/2012/12/14/breaking-murmur-hash-flooding-dos-reloaded/
https://emboss.github.io/blog/2012/12/14/breaking-murmur-hash-flooding-dos-reloaded/

[DPW18] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes.
Journal of the ACM, 65(4), 2018. Announced at ICS’10.

[Dum56] Arnold I. Dumey. Indexing for rapid random access memory systems. Computers
and Automation, 5(12):6–9, 1956.

[EGIN97] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Spar-
sification - a technique for speeding up dynamic graph algorithms. Journal of the
ACM, 44(5):669–696, 1997.

[Fre85] Greg N. Frederickson. Data structures for on-line updating of minimum spanning
trees, with applications. SIAM Journal on Computing, 14(4):781–798, 1985.

[FS89] M. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In
Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC),
pages 345–354, 1989.

[Gil98] David Gillman. A chernoff bound for random walks on expander graphs. SIAM
Journal on Computing, 27(4):1203–1220, 1998.

[GKT01] Harold N. Gabow, Haim Kaplan, and Robert Endre Tarjan. Unique maximum
matching algorithms. Journal of Algorithms, 40(2):159–183, 2001.

[GT15] S. Gharan and L. Trevisan. A new regularity lemma and faster approximation
algorithms for low threshold rank graphs. Theory of Computing, 11:241–256, 2015.

[HdLT01] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge,
and biconnectivity. Journal of the ACM, 48(4):723–760, 2001.

[HHKP17] Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dynamic
connectivity in O(log n(log log n)2) amortized expected time. In Proceedings of
the 28th Annual ACM/SIAM Symposium on Discrete Algorithms (SODA), pages
510–520, 2017.

[HK99] Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algo-
rithms with polylogarithmic time per operation. Journal of the ACM, 46(4):502–516,
1999.

[HRT18] Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Dynamic bridge-finding in Õ(log2
n) amortized time. In Proceedings of the 29th Annual ACM/SIAM Symposium on
Discrete Algorithms (SODA), pages 35–52, 2018.

[JOWO20] Samuel Neves Jack O’Connor, Jean-Philippe Aumasson and Zooko Wilcox-O’Hearn.
Blake3. https://github.com/BLAKE3-team/BLAKE3, 2020.

[JS20] Wenyu Jin and Xiaorui Sun. Fully dynamic c-edge connectivity in subpolynomial
time. CoRR, 2020. https://arxiv.org/abs/2004.07650.

[JTY+19] Zilin Jiang, Jonathan Tidor, Yuan Yao, Shengtong Zhang, and Yufei Zhao. Equian-
gular lines with a fixed angle. CoRR, 2019. https://arxiv.org/abs/1907.12466.

[Kah97] Nabil Kahale. Large deviation bounds for markov chains. Combinatorics Probability
and Computing, 6(4):465–474, 1997.

29

https://github.com/BLAKE3-team/BLAKE3
https://arxiv.org/abs/2004.07650
https://arxiv.org/abs/1907.12466

[KKM13] Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity
in polylogarithmic worst case time. In Proceedings of the 24th Annual ACM/SIAM
Symposium on Discrete Algorithms (SODA), pages 1131–1142, 2013.

[KKPT16] Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup.
Faster worst case deterministic dynamic connectivity. In Proceedings of the 24th
Annual European Symposium on Algorithms (ESA), pages 53:1–53:15, 2016.

[Kol11] Alexandra Kolla. Spectral algorithms for unique games. computational complexity,
20(2):177–206, 2011.

[Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and independent
source extractors. In Proceedings of the 49th Annual ACM Symposium on Theory
of Computing (STOC), pages 1144–1156, 2017.

[LOG18] Russell Lyons and Shayan Oveis Gharan. Sharp bounds on random walk eigen-
values via spectral embedding. International Mathematics Research Notices,
2018(24):7555–7605, 2018.

[LOGT14] James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral par-
titioning and higher-order cheeger inequalities. Journal of the ACM, 61(6):1–30,
2014.

[LRTV12] Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh Vempala. Many
sparse cuts via higher eigenvalues. In Proceedings of the 44th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 1131–1140, 2012.

[Mad71] W. Mader. Minimalen-fach kantenzusammenhängende graphen. Mathematische
Annalen, 191:21–28, 1971.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[MRS21] Theo McKenzie, Peter Michael Reichstein Rasmussen, and Nikhil Srivastava. Sup-
port of closed walks and second eigenvalue multiplicity of graphs. In Proccedings of
the 53rd Annual ACM Symposium on Theory of Computing (STOC), pages 396–407,
2021.

[NSW17] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic
minimum spanning forest with subpolynomial worst-case update time. In Proced-
dings of the 58th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 950–961, 2017.

[PD04] Mihai Pǎtraşcu and Erik D. Demaine. Lower bounds for dynamic connectivity. In
Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC),
pages 546–553, 2004.

[PT11] Mihai Pǎtraşcu and Mikkel Thorup. Don’t rush into a union: take time to find your
roots. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing
(STOC), pages 559–568, 2011.

[PT12] Mihai Pǎtraşcu and Mikkel Thorup. The power of simple tabulation-based hashing.
Journal of the ACM, 59(3):14:1–14:50, 2012. Announced at STOC’11.

30

[PT13] Mihai Pǎtraşcu and Mikkel Thorup. Twisted tabulation hashing. In Proceedings
of the 24th Annual ACM/SIAM Symposium on Discrete Algorithms (SODA), pages
209–228, 2013.

[Ras20] Peter Michael Reichstein Rasmussen. Decremental graph connectivity via uniform
edge sampling, 2020. Master’s Thesis.

[RS20] Peter Michael Reichstein Rasmussen and Amit Sahai. Expander graphs are non-
malleable codes. In Proceedings of the 1st Conference on Information-Theoretic
Cryptography (ITC), pages 6:1–6:10, 2020.

[Sie04] Alan Siegel. On universal classes of extremely random constant-time hash functions.
SIAM Journal on Computing, 33(3):505–543, 2004. Announced at FOCS’89.

[SJ89] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and
rapidly mixing markov chains. Information and Computation, 82(1):93–133, 1989.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-Hoeffding
bounds for applications with limited independence. SIAM Journal on Discrete Math-
ematics, 8(2):223–250, 1995. Announced at SODA’93.

[Tar75] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm.
Journal of the ACM, 22(2):215–225, 1975.

[Tho99] Mikkel Thorup. Decremental dynamic connectivity. Journal of Algorithms,
33(2):229–243, 1999.

[Tho00] Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of
the 32nd Annual ACM Symposium on Theory of Computing (STOC), pages 343–350,
2000.

[Tho07] Mikkel Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91–127, 2007.

[Tho13] Mikkel Thorup. Simple tabulation, fast expanders, double tabulation, and high
independence. In Proceedings of the 54th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 90–99, 2013.

[Wan15] Zhengyu Wang. An improved randomized data structure for dynamic graph con-
nectivity. CoRR, 2015. http://arxiv.org/abs/1510.04590.

[WC81] Mark N. Wegman and Larry Carter. New classes and applications of hash functions.
Journal of Computer and System Sciences, 22(3):265–279, 1981. Announced at
FOCS’79.

[Wul13] Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In
Proceedings of the 24th Annual ACM/SIAM Symposium on Discrete Algorithms
(SODA), pages 1757–1769, 2013.

[Zob90] A. Zobrist. A new hashing method with application for game playing. ICGA Jour-
nal, 13:69–73, 1990. Also appeared as Technical Report number 88, University of
Wisconsin-Madison, 1970.

31

http://arxiv.org/abs/1510.04590

Appendix A

Fast Hashing with Strong
Concentration Bounds

32

Fast Hashing with Strong Concentration Bounds

ANDERS AAMAND, BARC, University of Copenhagen, Denmark

JAKOB BÆK TEJS KNUDSEN, BARC, University of Copenhagen, Denmark

MATHIAS BÆK TEJS KNUDSEN, SupWiz, Denmark

PETER MICHAEL REICHSTEIN RASMUSSEN, BARC, University of Copenhagen, Denmark

MIKKEL THORUP, BARC, University of Copenhagen, Denmark

Previous work on tabulation hashing by Pǎtraşcu and Thorup from STOC’11 on simple tabulation and from SODA’13 on twisted
tabulation offered Chernoff-style concentration bounds on hash based sums, e.g., the number of balls/keys hashing to a given bin. Their
bounds, however, only hold under some quite severe restrictions on the expected values of these sums. The basic idea in tabulation
hashing is to view a key as consisting of c = O (1) characters, e.g., a 64-bit key as c = 8 characters of 8-bits. The character domain Σ

should be small enough that character tables of size |Σ | fit in fast cache. The schemes then use O (1) tables of this size, so the space of
tabulation hashing is O (|Σ |). However, the concentration bounds by Pǎtraşcu and Thorup only apply if the expected sums are ≪ |Σ |.

To see the problem, consider the very simple case where we use tabulation hashing to throw n balls intom bins and want to
analyse the number of balls in a given bin. With their concentration bounds, we are fine if n =m, for then the expected value is 1.
However, ifm = 2, as when tossing n unbiased coins, the expected value n/2 is ≫ |Σ | for large data sets, e.g., data sets that do not fit
in fast cache.

To handle expectations that go beyond the limits of our small space, we need a much more advanced analysis of simple tabulation,
plus a new tabulation technique that we call tabulation-permutation hashing which is at most twice as slow as simple tabulation. No
other hashing scheme of comparable speed offers similar Chernoff-style concentration bounds.

CCS Concepts: • Theory of computation → Pseudorandomness and derandomization; Data structures design and analysis;
Sketching and sampling.

Additional Key Words and Phrases: hashing, Chernoff bounds, concentration bounds, streaming algorithms, sampling

Authors’ addresses: Anders Aamand, aa@di.ku.dk, BARC, University of Copenhagen, Denmark; Jakob Bæk Tejs Knudsen, jakn@di.ku.dk, BARC, University
of Copenhagen, Denmark; Mathias Bæk Tejs Knudsen, mathias@tejs.dk, SupWiz, Denmark; Peter Michael Reichstein Rasmussen, pmrr@di.ku.dk, BARC,
University of Copenhagen, Denmark; Mikkel Thorup, mikkel2thorup@gmail.com, BARC, University of Copenhagen, Denmark.

1

2 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

Contents

Abstract 1
Contents 2
1 Introduction 1
1.1 Simple Tabulation Hashing 3
1.2 Tabulation-Permutation Hashing 4
1.3 Tabulation-1Permutation 5
1.4 Subpolynomial Error Probabilities 6
1.5 Generic Remarks on Universe Reduction and Amount of Randomness 6
1.6 Techniques 7
1.7 Related Work – Theoretical and Experimental Comparisons 9
2 Technical Theorems and how they Combine 16
2.1 Improved Analysis of Simple Tabulation 17
2.2 Permuting the Hash Range 18
2.3 Squaring the Hash Range 19
2.4 Concentration in Arbitrary Intervals. 19
3 Preliminaries 20
3.1 Notation 20
3.2 Probability Theory and Martingales 21
3.3 Martingale Concentration Inequalities 22
4 Analysis of Simple Tabulation 23
4.1 Simple Tabulation Basics 23
4.2 Bounding the Sum of Squared Deviations 24
4.3 Establishing the Concentration Bound 34
5 General Value Functions – Arbitrary Bins 38
6 Extending the Hash Range 44
7 Query invariance 48
8 Tightness of Concentration: Simple Tabulation into Few Bins 49
References 51
A Experiments 52

Fast Hashing with Strong Concentration Bounds 1

1 INTRODUCTION

Chernoff’s concentration bounds [12] date back to the 1950s but bounds of this types go even further back to Bernstein
in the 1920s [7]. Originating from the area of statistics they are now one of the most basic tools of randomized algorithms
[36]. A canonical form considers the sum X =

∑n
i=1 Xi of independent random variables X1, . . . ,Xn ∈ [0, 1]. Writing

µ = E [X] it holds for every ε ≥ 0 that

Pr[X ≥ (1 + ε)µ] ≤ exp(−µ C (ε))
[
≤ exp(−ε2µ/3) for ε ≤ 1

]
, (1)

Pr[X ≤ (1 − ε)µ] ≤ exp(−µ C (−ε))
[
≤ exp(−ε2µ/2) for ε ≤ 1

]
. (2)

Here C : (−1,∞) → [0,∞) is given by C (x) = (x + 1) ln(x + 1) − x , so exp(−C (x)) = ex
(1+x) (1+x) . Textbook proofs of (1)

and (2) can be found in [36, §4]1. Writing σ 2 = Var [X], a more general bound is

Pr[|X − µ | ≥ t] ≤ 2 exp(−σ 2C (t/σ 2))
[
≤ 2 exp(−(t/σ)2/3) for t ≤ σ 2]

. (3)

Since σ 2 ≤ µ and C (−ε) ≤ 1.5C (ε) for ε ≤ 1, (3) is at least as good as (1) and (2), up to constant factors, and often
better. In this work, we state our results in relation to (3), known as Bennett’s inequality [6].

Hashing is another fundamental tool of randomized algorithms dating back to the 1950s [23]. A random hash function,
h : U → R, assigns a hash value, h(x) ∈ R, to every key x ∈ U . Here both U and R are typically bounded integer ranges.
The original application was hash tables with chaining where x is placed in bin h(x), but today, hash functions are
ubiquitous in randomized algorithms. For instance, they play a fundamental role in streaming and distributed settings
where a system uses a hash function to coordinate the random choices for a given key. In most applications, we require
concentration bounds for one of the following cases of increasing generality.

(1) Let S ⊆ U be a set of balls and assign to each ball, x ∈ S , a weight,wx ∈ [0, 1]. We wish to distribute the balls of
S into a set of bins R = [m] = {0, 1, . . . ,m − 1}. For a bin, y ∈ [m], X = ∑

x ∈S wx · [h(x) = y] is then the total
weight of the balls landing in bin y.

(2) We may instead be interested in the total weight of the balls with hash values in the interval [y1,y2) for some
y1,y2 ∈ [m], that is, X = ∑

x ∈S wx · [y1 ≤ h(x) < y2].
(3) More generally, wemay consider a fixed value functionv : U×R → [0, 1]. For each keyx ∈ U , we define the random

variable Xx = v (x ,h(x)), where the randomness of Xx stems from that of h(x). We write X = ∑
x ∈U v (x ,h(x))

for the sum of these values.

To exemplify applications, the first case is common when trying to allocate resources; the second case arises in streaming
algorithms; and the third case handles the computation of a complicated statistic, X , on incoming data. In each case, we
wish the variable X to be concentrated around its mean, µ = E [X], according to the Chernoff-style bound of (3). If we
had fully random hashing, this would indeed be the case. However, storing a fully random hash function is infeasible.
The goal of this paper is to obtain such concentration with a practical constant-time hash function. More specifically,
we shall construct hash functions that satisfy the following definition when X is a random variable as in one of the
three cases above.

Definition 1 (Strong Concentration). Let h : [u] → [m] be a hash function, S ⊆ [u] be a set of hash keys of size
n = |S |, and X = X (h, S) be a random variable, which is completely determined by h and S . Denote by µ = E [X] and
σ 2 = Var [X] the expectation and variance of X . We say that X is strongly concentrated with added error probability

1The bounds in [36, §4] are stated as working only for Xi ∈ {0, 1}, but the proofs can easily handle any Xi ∈ [0, 1].

2 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

f (u,n,m) if for every t > 0,

Pr [��X − µ�� ≥ t] ≤ O
(
exp

(
−Ω(σ 2C (t/σ 2)

))
+ f (u,n,m). (4)

Throughout the paper we shall prove properties of random variables that are determined by some hash function. In
many cases, we would like these properties to continue to hold while conditioning the hash function on its value on
some hash key.

Definition 2 (Query Invariant). Let h : [u]→ [m] be a hash function, let X = X (h) be a random variable determined
by the outcome of h, and suppose that some property T is true of X . We say that the property is query invariant if
whenever we choose x ∈ [u] and y ∈ [m] and consider the hash function h′ = (h |h(x) = y), i.e., h conditioned on
h(x) = y, property T is true of X ′ = X (h′).

Remark. For example, consider the case (1) from above. We are interested in the random variableX = ∑
x ∈S wx · [h(x) =

y]. Suppose that for every choice of weights, (wx)x ∈S , X is strongly concentrated and that this concentration is query
invariant. Let x0 ∈ [u] be a distinguished query key. Then since for everyy0 ∈ [m], the hash functionh′ = (h |h(x0) = y0)
satisfies that X ′ = ∑

x ∈S wx · [h′(x) = y0] is strongly concentrated, it follows that X ′′ = ∑
x ∈S wx · [h(x) = h(x0)] is

strongly concentrated. Thus, h allows us to get Chernoff-style concentration on the weight of the balls landing in the
same bin as x0.

This may be generalized such that in the third case from above, the weight function may be chosen as a function
of h(x0). Thus, the property of being query invariant is very powerful. It is worth noting that the constants of the
asymptotics may change when conditioning on a query. Furthermore, the expected value and variance of X ′ may differ
from that of X , but this is included in the definition.

One way to achieve Chernoff-style bounds in all of the above cases is through the classic k-independent hashing
framework of Wegman and Carter [48]. The random hash function h : U → R is k-independent if for any k distinct
keys x1, . . . ,xk ∈ U , (h(x1), . . . ,h(xk)) is uniformly distributed in Rk . Schmidt and Siegel [43] have shown that
with k-independence, the above Chernoff bounds hold with an added error probability decreasing exponentially in k .
Unfortunately, a lower bound by Siegel [44] implies that evaluating a k-independent hash function takes Ω(k) time
unless we use a lot of space (to be detailed later).

Pǎtraşcu and Thorup have shown that Chernoff-style bounds can be achieved in constant time with tabulation based
hashing methods; namely simple tabulation [38] for the first case described above and twisted tabulation [41] for all
cases. However, their results suffer from some severe restrictions on the expected value, µ, of the sum. More precisely,
the speed of these methods relies on using space small enough to fit in fast cache, and the Chernoff-style bounds [38, 41]
all require that µ is much smaller than the space used. For larger values of µ, Pǎtraşcu and Thorup [38, 41] offered
some weaker bounds with a deviation that was off by several logarithmic factors. It can be shown that some of these
limitations are inherent to simple and twisted tabulation. For instance, they cannot even reliably distribute balls into
m = 2 bins, as described in the first case above, if the expected number of balls in each bin exceeds the space used.

In this paper, we construct and analyse a new family of fast hash functions tabulation-permutation hashing that has
Chernoff-style concentration bounds like (3) without any restrictions on µ. This generality is important if building
a general online system with no knowledge of future input. Later, we shall give concrete examples from streaming
where µ is in fact large. Our bounds hold for all of the cases described above and all possible inputs. Furthermore,
tabulation-permutation hashing is an order of magnitude faster than any other known hash function with similar
concentration bounds, and almost as fast as simple and twisted tabulation. We demonstrate this both theoretically and

Fast Hashing with Strong Concentration Bounds 3

experimentally. Stepping back, our main theoretical contribution lies in the field of analysis of algorithms, and is in
the spirit of Knuth’s analysis of linear probing [29], which shows strong theoretical guarantees for a very practical
algorithm. We show that tabulation-permutation hashing has strong theoretical Chernoff-style concentration bounds.
Moreover, on the practical side, we perform experiments, summarized in Table 1 of Section 1.7, demonstrating that it is
comparable in speed to some of the fastest hash functions in use, none of which provide similar concentration bounds.

When talking about hashing in constant time, the actual size of the constant is of crucial importance. First, hash
functions typically execute the same instructions on all keys, in which case we always incur the worst-case running
time. Second, hashing is often an inner-loop bottle-neck of data processing. Third, hash functions are often applied in
time-critical settings. Thus, even speedups by a multiplicative constant are very impactful. As an example from the
Internet, suppose we want to process packets passing through a high-end Internet router. Each application only gets
very limited time to look at the packet before it is forwarded. If it is not done in time, the information is lost. Since
processors and routers use some of the same technology, we never expect to have more than a few instructions available.
Slowing down the Internet is typically not an option. The papers of Krishnamurthy et al. [30] and Thorup and Zhang
[47] explain in more detail how high speed hashing is necessary for their Internet traffic analysis. Incidentally, our hash
function is a bit faster than the ones from [30, 47], which do not provide Chernoff-style concentration bounds.

Concrete examples of the utility of our new hash-family may be found in [1]. In [1] it is shown that some classic
streaming algorithms enjoy very substantial speed-ups when implemented using tabulation-permutation hashing;
namely the original similarity estimation of Broder [8] and the estimation of distinct elements of Bar-Yossef et al. [5].
The strong concentration bounds makes the use of independent repetitions unnecessary, allowing the implementations
of the algorithms to be both simpler and faster. We stress that in high-volume streaming algorithms, speed is of critical
importance.

Tabulation-permutation hashing builds on top of simple tabulation hashing, and to analyse it, we require a new and
better understanding of the behaviour and inherent limitations of simple tabulation, which we proceed to describe.
Afterwards we break these limitations by introducing our new powerful tabulation-permutation hashing scheme.

1.1 Simple Tabulation Hashing

Simple tabulation hashing dates back to Zobrist [49]. In simple tabulation hashing, we consider the key domainU to be
of the form U = Σc for some character alphabet Σ and c = O (1), such that each key consists of c characters of Σ. Let
m = 2ℓ be given and identify [m] = {0, 1, . . . ,m − 1} with [2]ℓ . A simple tabulation hash function, h : Σc → [m], is then
defined as follows. For each j ∈ {1, . . . , c} store a fully random character table hj : Σ→ [m] mapping characters of the
alphabet Σ to ℓ-bit hash values. To evaluate h on a key x = (x1, . . . ,xc) ∈ Σc , we compute h(x) = h1 (x1) ⊕ · · · ⊕hc (xc),
where ⊕ denotes bitwise XOR – an extremely fast operation. With character tables in cache, this scheme is the fastest
known 3-independent hashing scheme [38]. We will denote by u = |U | the size of the key domain, identifyU = Σc with
[u], and always assume the size of the alphabet, |Σ|, to be a power of two. For instance, we could consider 32-bit keys
consisting of four 8-bit characters. For a given computer, the best choice of c in terms of speed is easily determined
experimentally once and for all, and is independent of the problems considered.

Let S ⊆ U and consider hashing n = |S | weighted balls or keys intom = 2ℓ bins using a simple tabulation function,
h : [u]→ [m], in line with the first case mentioned above. We shall prove the theorem below.

Theorem 1.1. Let h : [u]→ [m] be a simple tabulation hash function with [u] = Σc , c = O (1). Let S ⊆ [u] be given of

size n = |S | and assign to each key/ball x ∈ S a weightwx ∈ [0, 1]. Let y ∈ [m], and define X = ∑
x ∈S wx · [h(x) = y] to

4 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

be the total weight of the balls hashing to bin y. Then for any constant γ > 0, X is strongly concentrated with added error

probability n/mγ , where the constants of the asymptotics are determined solely by c and γ . Furthermore, this concentration

is query invariant.

In Theorem 1.1, we note that the expectation, µ = E [X], and the variance, σ 2 = Var [X], are the same as if h were
a fully random hash function since h is 3-independent. This is true even when conditioning on the hash value of a
query key having a specific value. The bound provided by Theorem 1.1 is therefore the same as the variance based
Chernoff bound (3) except for a constant delay in the exponential decrease and an added error probability of n/mγ .
Since σ 2 ≤ µ, Theorem 1.1 also implies the classic one-sided Chernoff bounds (1) and (2), again with the constant delay
and the added error probability as above, and a leading factor of 2.

Pǎtraşcu and Thorup [38] proved an equivalent probability bound, but without weights, and, more importantly,
with the restriction that the number of binsm ≥ n1−1/(2c) . In particular, this implies the restriction µ ≤ |Σ|1/2. Our
new bound gives Chernoff-style concentration with high probability in n for anym ≥ nε , ε = Ω(1). Indeed, letting
γ ′ = (γ + 1)/ε , the added error probability becomes n/mγ ′ ≤ 1/nγ .

However, for smallm the error probability n/mγ is prohibitive. For instance, unbiased coin tossing, corresponding to
the casem = 2, has an added error probability of n/2γ which is useless. In Section 8, we will show that it is inherently
impossible to get good concentration bounds using simple tabulation hashing when the number of binsm is small. To
handle all instances, including those with few bins, and to support much more general Chernoff bounds, we introduce a
new hash function: tabulation-permutation hashing.

1.2 Tabulation-Permutation Hashing

We start by defining tabulation-permutation hashing from Σc to Σd with c,d = O (1). A tabulation-permutation hash
function h : Σc → Σd is given as a composition, h = τ ◦ д, of a simple tabulation hash function д : Σc → Σd and a
permutation τ : Σd → Σd . The permutation is a coordinate-wise fully random permutation: for each j ∈ {1, . . . ,d }, pick
a uniformly random character permutation τj : Σ→ Σ. Now, τ = (τ1, . . . ,τd) in the sense that for z = (z1, . . . , zd) ∈ Σd ,
τ (z) = (τ1 (z1) , . . . ,τd (zd)). In words, a tabulation-permutation hash function hashes c characters to d characters
using simple tabulation, and then randomly permutes each of the d output characters. As is, tabulation-permutation
hash functions yield values in Σd , but we will soon see how we can hash to [m] for anym ∈ N.

If we precompute tables Ti : Σ→ Σd , where

Ti (zi) =
*..,

i−1︷ ︸︸ ︷
0, . . . , 0,τi (zi),

d−i︷ ︸︸ ︷
0, . . . , 0

+//-
, zi ∈ Σ,

then τ (z1, . . . , zd) = T1 (z1) ⊕ · · · ⊕ Td (zd). Thus, τ admits the same implementation as simple tabulation, but with a
special distribution on the character tables. If in particular d ≤ c , the permutation step can be executed at least as fast
as the simple tabulation step.

Our main result is that with tabulation-permutation hashing, we get high probability Chernoff-style bounds for the
third and most general case described in the beginning of the introduction.

Theorem 1.2. Let h : [u]→ [r] be a tabulation-permutation hash function with [u] = Σc and [r] = Σd , c,d = O (1).
Let v : [u] × [r] → [0, 1] be a fixed value function that to each key x ∈ [u] assigns a value Xx = v (x ,h(x)) ∈ [0, 1]
depending on the hash value h(x) and define X =

∑
x ∈[u] Xx . For any constant γ > 0, X is strongly concentrated with

Fast Hashing with Strong Concentration Bounds 5

added error probability 1/uγ , where the constants of the asymptotics are determined solely by c , d , and γ . Furthermore, this

concentration is query invariant.

Tabulation-permutation hashing inherits the 3-independence of simple tabulation, so as in Theorem 1.1, µ = E [X]
and σ 2 = Var [X] have exactly the same values as if h were a fully-random hash function. Again, this is true even when
conditioning on the hash value of a query key having a specific value.

Tabulation-permutation hashing allows us to hash into m bins for any m ∈ N (not necessarily a power of two)
preserving the strong concentration from Theorem 1.2. To do so, simply define the hash function hm : [u]→ [m] by
hm (x) = h(x) modm. Relating back to Theorem 1.1, consider a set S ⊆ U of n balls where each ball x ∈ S has a weight
wx ∈ [0, 1] and balls x outside S are defined to have weightwx = 0. To measure the total weight of the balls landing in
a given bin y ∈ [m], we define the value function v (x , z) = wx · [z modm = y]. Then

X =
∑

x ∈[u]
v (x ,h(x)) =

∑

x ∈S
wx · [hm (x) = y]

is exactly the desired quantity and we get the concentration bound from Theorem 1.2. Then the big advantage of
tabulation-permutation hashing over simple tabulation hashing is that it reduces the added error probability from n/mγ

of Theorem 1.1 to the 1/uγ of Theorem 1.2, where u is the size of the key universe. Thus, with tabulation-permutation
hashing, we actually get Chernoff bounds with high probability regardless of the number of bins.

Pǎtraşcu and Thorup [41] introduced twisted tabulation that like our tabulation-permutation achieved Chernoff-style
concentration bounds with a general value function v . Their bounds are equivalent to those of Theorem 1.2, but only
under the restriction µ ≤ |Σ|1−Ω(1) . To understand how serious this restriction is, consider again tossing an unbiased
coin for each key x in a set S ⊆ [u], corresponding to the casem = 2 and µ = |S |/2. With the restriction from [41], we
can only handle |S | ≤ 2 |Σ|1−Ω(1) , but recall that Σ is chosen small enough for character tables to fit in fast cache, so
this rules out any moderately large data set. We are going to show that for certain sets S , twisted tabulation has the
same problems as simple tabulation when hashing to few bins. This implies that the restrictions from [41] cannot be
lifted with a better analysis.

Pǎtraşcu and Thorup [41] were acutely aware of how prohibitive the restriction µ ≤ |Σ|1−Ω(1) is. For unbounded µ,
they proved a weaker bound; namely that with twisted tabulation hashing, X = µ ±O (σ (logu)c+1) with probability
1 − u−γ for any γ = O (1). With our tabulation-permutation hashing, we get X = µ ±O (σ (logu)1/2) with the same
high probability, 1 − u−γ . Within a constant factor on the deviation, our high probability bound is as good as with
fully-random hashing.

More related work, including Siegel’s [44] and Thorup’s [45] highly independent hashing will be discussed in Sec-
tion 1.7.

1.3 Tabulation-1Permutation

Above we introduced tabulation-permutation hashing which yields Chernoff-style bounds with an arbitrary value
function. This is the same general scenario as was studied for twisted tabulation in [41]. However, for almost all
applications we are aware of, we only need the generality of the second case presented at the beginning of the
introduction. Recall that in this case we are only interested in the total weight of the balls hashing to a certain interval.
As it turns out, a significant simplification of tabulation-permutation hashing suffices to achieve strong concentration
bounds. We call this simplification tabulation-1permutation. Tabulation-permutation hashing randomly permutes each

6 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

of the d output characters of a simple tabulation function д : Σc → Σd . Instead, tabulation-1permutation only permutes
the most significant character.

More precisely, a tabulation-1permutation hash functionh : Σc → Σd is a composition,h = τ ◦д, of a simple tabulation
function, д : Σc → Σd , and a random permutation, τ : Σd → Σd , of the most significant character, τ (z1, . . . , zd) =
(τ1 (z1), z2, . . . , zd) for a random character permutation τ1 : Σ→ Σ.

To simplify the implementation of the hash function and speed up its evaluation, we can precompute a table
T : Σ→ Σd such that for z1 ∈ Σ,

T (z1) =
*..,
z1 ⊕ τ1 (z1),

d−1︷ ︸︸ ︷
0, . . . , 0

+//-
.

Then if д(x) = z = (z1, . . . , zd), h(x) = z ⊕ T (z1).
This simplified scheme, needing only c + 1 character lookups, is powerful enough for concentration within an

arbitrary interval.

Theorem 1.3. Let h : [u]→ [r] be a tabulation-1permutation hash function with [u] = Σc and [r] = Σd , c,d = O (1).
Consider a key/ball set S ⊆ [u] of size n = |S | where each ball x ∈ S is assigned a weight wx ∈ [0, 1]. Choose arbitrary
hash values y1,y2 ∈ [r] with y1 ≤ y2. Define X =

∑
x ∈S wx · [y1 ≤ h(x) < y2] to be the total weight of balls hashing to

the interval [y1,y2). Then for any constant γ > 0, X is strongly concentrated with added error probability 1/uγ , where the
constants of the asymptotics are determined solely by c , d , and γ . Furthermore, this concentration is query invariant.

One application of Theorem 1.3 is in the following sampling scenario: We set y1 = 0, and sample all keys with
h(x) < y2. Each key is then sampled with probability y2/r , and Theorem 1.3 gives concentration on the number of
samples. In [1] this is used for more efficient implementations of streaming algorithms.

Another application is efficiently hashing into an arbitrary numberm ≤ r of bins. We previously discussed using
hash values modulom, but a general mod-operation is often quite slow. Instead we can think of hash values as fractions
h(x)/r ∈ [0, 1). Multiplying bym, we get a value in [0,m), and the bin index is then obtained by rounding down to the
nearest integer. This implementation is very efficient because r is a power of two, r = 2b , so the rounding is obtained
by a right-shift by b bits. To hash a key x to [m], we simply compute hm (x) = (h(x) ∗m) >>b. Then x hashes to bin
d ∈ [m] if and only if d ∈ [y1,y2) ⊆ [r] where y1 = ⌊rd/m⌋ and y2 = ⌊r (d + 1)/m⌋, so the number of keys hashing to a
bin is concentrated as in Theorem 1.3. Moreover, hm uses only c + 1 character lookups and a single multiplication in
addition to some very fast shifts and bit-wise Boolean operations.

1.4 Subpolynomial Error Probabilities

In Theorem 1.2 and 1.3, we have Pr[|X − µ | ≥ t] = O (exp(−Ω(σ 2C (t/σ 2)))) + 1/uγ which holds for any fixed γ . The
value of γ affects the constant hidden in the Ω-notation delaying the exponential decrease. In Section 8, we will show
that the same bound does not hold if γ is replaced by any slow-growing but unbounded function. Nevertheless, it follows
from our analysis that for every α (u) = ω (1) there exists β (u) = ω (1) such that whenever exp(−σ 2C (t/σ 2)) < 1/uα (u) ,
Pr[|X − µ | ≥ t] ≤ 1/uβ (u) .

1.5 Generic Remarks on Universe Reduction and Amount of Randomness

The following observations are fairly standard in the literature. Suppose we wish to hash a set of keys S belonging to
some universeU . The universe may be so large compared to S that it is not efficient to directly implement a theoretically

Fast Hashing with Strong Concentration Bounds 7

powerful hashing scheme like tabulation-permutation hashing. A standard first step is to perform a universe reduction,
mappingU randomly to “signatures” in [u] = {0, 1, . . . ,u − 1}, where u = nO (1) , e.g. u = n3, so that no two keys from S

are expected to get the same signature [9]. As the only theoretical property required for the universe reduction is a low
collision probability, this step can be implemented using very simple hash functions as described in [46]. In this paper,
we generally assume that this universe reduction has already been done, if needed, hence that we only need to deal
with keys from a universe [u] of size polynomial in n. For any small constant ε > 0 we may thus pick c = O (1/ε) such
that the space used for our hash tables, Θ(|Σ|), is O (nε). Practically speaking, this justifies focusing on the hashing of
32- and 64-bit keys.

When we defined simple tabulation above, we said the character tables were fully random. However, for the all the
bounds in this paper, it would suffice if they were populated with a O (logu)-independent pseudo-random number
generator (PNG), so we only need a seed of O (logu) random words to be shared among all applications who want to
use the same simple tabulation hash function. Then, as a preprocesing for fast hashing, each application can locally fill
the character tables in O (|Σ|) time [13]. Likewise, for our tabulation permutation hashing, our bounds only require a
O (logu)-independent PNG to generate the permutations. The basic point here is that tabulation based hashing does
not need a lot of randomness to fill the tables, but only space to store the tables as needed for the fast computation of
hash values.

1.6 Techniques

The paper relies on three main technical insights to establish the concentration inequality for tabulation-permutation
hashing of Theorem 1.2. We shall here describe each of these ideas and argue that each is in fact necessary towards an
efficient hash function with strong concentration bounds.

1.6.1 Improved Analysis of Simple Tabulation. The first step towards proving Theorem 1.2 is to better understand the
distribution of simple tabulation hashing. We describe below how an extensive combinatorial analysis makes it possible
to prove a generalised version of Theorem 1.1.

To describe the main idea of this technical contribution, we must first introduce some ideas from previous work in
the area. This will also serve to highlight the inherent limitations of previous approaches. A simplified account is the
following. Let h : Σc → [m] be a simple tabulation hash function, let y ∈ [m] be given, and for some subset of keys
S ⊆ Σc , let X = ∑

x ∈S [h(x) = y] be the random variable denoting the number of elements x ∈ S that have hash value
h(x) = y. Our goal is to bound the deviation of X from its mean µ = |S | /m. We first note that picking a random simple
tabulation hash function h : Σc → [m] amounts to filling the c character tables, each of size Σ, with uniformly random
hash values. Thus, picking a simple tabulation hash function h : Σc → [m] corresponds to picking a uniformly random
hash function h : [c] × Σ→ [m]. We call [c] × Σ the set of position characters. Viewing a key x = (x1, . . . ,xc) ∈ Σc as a
set of position characters, x = {(1,x1), . . . , (c,xc)}, and slightly abusing notation, it then holds that h(x) =

⊕
α ∈x h(α).

Now let α1, . . . ,αr be a (for the sake of the proof) well-chosen ordering of the position characters. For each k ∈ [r + 1],
we define the random variable Xk = E [X | h(α1), . . . ,h(αk)], where h(αi) is the value of the entry of the lookup table
of h corresponding to αi . The process (Xk)rk=0 is then a martingale. We can view this as revealing the lookup table of h
one entry at a time and adjusting our expectation of the outcome of X accordingly. Defining the martingale difference
Yk = Xk − Xk−1, we can express X as a sum X = µ +

∑c · |Σ |
k=1 Yk . Previous work has then bounded the sum using a

Chernoff inequality for martingales as follows. Due to the nature of the ordering of {αi }ri=1, we can findM > 0 such
that with high probability, ��Yk �� ≤ M for every k . Then conditioned on each of the Yk s being bounded, X satisfies the

8 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

Chernoff bounds of (1) and (2) except the exponent is divided byM . As long as the expectation, µ, satisfies µ = O (|Σ|), it
is possible2 thatM = O (1), yielding Chernoff bounds with a constant in the delay of the exponential decrease. However,
since there are only c · |Σ| variables, Yk , it is clear that M ≥ µ/(c · |Σ|). Thus, whenever µ = ω (|Σ|), the delay of the
exponential decrease is super-constant, meaning that we do not get asymptotically tight Chernoff-style bounds. This
obstacle has been an inherent issue with the previous techniques in analysing both simple tabulation [38] as well
as twisted tabulation [41]. Being unable to bound anything beyond the absolute deviation of each variable Yk , it is
impossible to get good concentration bounds for large expectations, µ.

Going beyond the above limitation, we dispense with the idea of bounding absolute deviations and instead bound the
sum of variances, σ 2 =

∑c · |Σ |
k=1 Var [Yk]. This sum has a combinatorial interpretation relating to the number of collisions

of hash keys, i.e., the number of pairs y1,y2 ∈ Σc with h(y1) = h(y2).
An extensive combinatorial analysis of simple tabulation hashing yields high-probability bounds on the sum of

variances that is tight up to constant factors. This is key in establishing an induction that allows us to prove Theorem 1.1.
Complementing our improved bounds, we will show that simple tabulation hashing inherently does not support
Chernoff-style concentration bounds for smallm.

1.6.2 Permuting the Hash Range. Our next step is to consider the hash function h = τ ◦д : Σc → Σ where д : Σc → Σ is
a simple tabulation hash function and τ : Σ→ Σ is a uniformly random permutation. Our goal is to show that h provides
good concentration bounds for any possible value function. To showcase our approach, we consider the example of
hashing to some small set, [m], of bins, e.g., withm = 2 as in our coin tossing example. This can be done using the
hash function hm : Σc → [m] defined by hm (x) = (h(x) mod m). For simplicity we assume thatm is a power of two,
or equivalently, thatm divides |Σ|. We note that the case of smallm was exactly the case that could not be handled with
simple tabulation hashing alone.

Let us look at the individual steps of hm . First, we use simple tabulation mapping into the “character bins”, Σ.
The number of balls in any given character bin is nicely concentrated, but only because |Σ| is large. Next, perform a
permutation followed by the modm operation. The last two steps correspond to the way we would deal a deck of |Σ|
cards intom hands. The cards are shuffled by a random permutation, then dealt to them players one card at a time in
cyclic order. The end result is that each of the finalm bins is assigned exactly |Σ|/m random character bins. An important
point is now that because the partitioning is exact, the error in the number of balls in a final bin stems solely from the
errors in the |Σ|/m character bins, and because the partitioning is random, we expect the positive and negative errors
to cancel out nicely. The analysis, which is far from trivial, requires much more than these properties. For example,
we also need the bound described in Section 1.6.1 on the sum of variances. This bound ensures that not only is the
number of balls in the individual character bins nicely concentrated around the mean, but moreover, there is only a
small number of character bins for which the error is large. That these things combine to yield strong concentration,
not only in the specific example above, but for general value functions as in Theorem 1.2, is quite magical.

We finish the discussion by mentioning two approaches that do not work and highlight how a permutation solves the
issues of these strategies.

First, one may ask why we need the permutation at all. After all, the modm operation also partitions the |Σ| character
bins into groups of the same size, |Σ|/m. The issue is that while a simple tabulation hash function, д : Σc → Σ, has
good concentration in each of the individual character bins, the |Σ|/m character bins being picked out by the modm

2In [38], the actual analysis of simple tabulation using this approach achieves µ = O (
√|Σ |).

Fast Hashing with Strong Concentration Bounds 9

operation constitute a very structured subset of Σ, and the errors from this set of bins could be highly correlated. We
indeed show that the structure of simple tabulation causes this to happen for certain sets of keys, both theoretically
(Section 8) and experimentally (Appendix A).

Second, the reader may wonder why we use a permutation, τ : Σ→ Σ, instead of a random hash function as in double
tabulation [45]. In terms of the card dealing analogy, this would correspond to throwing the |Σ| cards at them astonished
card players one at a time with a random choice for each card, not guaranteeing that the players each get the same
number of cards. And this is exactly the issue. Using a fully random hash function τ ′, we incur an extra error stemming
from τ ′ distributing the |Σ| character bins unevenly into the final bins. This is manifested in the variance of the number
of balls hashing to a specific bin: Take again the coin tossing example with n ≥ |Σ| balls being distributed intom = 2
bins. With a permutation τ the hash function becomes 2-independent, so the variance is the same as in the fully random
setting, n/4. Now even if the simple tabulation hash function, д, distributes the n keys into the character bins evenly,
with exactly n/Σ keys in each, with a fully random hash function, τ ′, the variance becomes (n/|Σ|)2 · |Σ|/4 = n2/(4|Σ|),
a factor of n/|Σ| higher.

1.6.3 Squaring the Hash Range. The last piece of the puzzle is a trick to extend the range of a hash function satisfying
Chernoff-style bounds. We wish to construct a hash function h : Σc → [m] satisfying Chernoff-style bounds form
arbitrarily large as in Theorem 1.2. At first sight, the trick of the previous subsection would appear to suffice for the
purpose. However, if we let д = τ ◦ h be the composition of a simple tabulation hash function h : Σc → [m] and τ a
random permutation of [m], we run into trouble if for instance [m] = Σc . In this case, a random permutation of [m]
would require space equal to that of a fully random function f : Σc → [m], but the whole point of hashing is to use
less space. Hence, we instead prove the following. Let a : C → D and b : C → D be two independent hash functions
satisfying Chernoff-style bounds for general value functions. Then this property is preserved up to constant factors
under “concatenation”, i.e., if we let c : C → D2 be given by c (x) = (a(x),b (x)), then c is also a hash function satisfying
Chernoff-style bounds for general value functions, albeit with a slightly worse constant delay in the exponential
decrease than a and b. Thus, this technique allows us to “square” the range of a hash function.

With this at hand, let h1,h2 : Σc → Σ be defined as h1 = τ1 ◦ д1 and h2 = τ2 ◦ д2, where д1,д2 : Σc → Σ are simple
tabulation hash functions and τ1,τ2 : Σ→ Σ are random permutations. Then the concatenation h : Σc → Σ2 of h1 and
h2 can be considered a composition of a simple tabulation function д : Σc → Σ2 given by д(x) = (д1 (x),д2 (x)) and a
coordinate-wise permutation τ = (τ1,τ2) : Σ2 → Σ2, where the latter is given by τ (x1,x2) = (τ1 (x1),τ2 (x2)),x1,x2 ∈ Σ.
Applying our composition result, gives that д also satisfies Chernoff-style bounds. Repeating this procedure ⌈log(d)⌉ =
O (1) times, yields the desired concentration bound for tabulation-permutation hashing h : Σc → Σd described in
Theorem 1.2.

1.7 Related Work – Theoretical and Experimental Comparisons

In this section, we shall compare the performance of tabulation-permutation and tabulation-1permutation hashing with
other related results. Our comparisons are both theoretical and empirical. Our goal in this paper is fast constant-time
hashing having strong concentration bounds with high probability, i.e., bounds of the form

Pr[|X − µ | ≥ t] ≤ 2 exp(−Ω(σ 2C (t/σ 2))) + u−γ ,

as in Definition 1 and Theorems 1.2 and 1.3, or possibly with σ 2 replaced by µ ≥ σ 2. Theoretically, we will only compare
with other hashing schemes that are relevant to this goal. In doing so, we distinguish between the hash functions that

10 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

Running time (ms)
Computer 1 Computer 2

Hash function 32 bits 64 bits 32 bits 64 bits
Multiply-Shift 4.2 7.5 23.0 36.5
2-Independent PolyHash 14.8 20.0 72.2 107.3
Simple Tabulation 13.7 17.8 53.1 55.9
Twisted Tabulation 17.2 26.1 65.6 92.5
Mixed Tabulation 28.6 68.1 120.1 236.6
Tabulation-1Permutation 16.0 19.3 63.8 67.7
Tabulation-Permutation 27.3 43.2 118.1 123.6
Double Tabulation 1130.1 – 3704.1 –
“Random” (100-Independent PolyHash) 2436.9 3356.8 7416.8 11352.6

Table 1. The time for different hash functions to hash 107 keys of length 32 bits and 64 bits, respectively, to ranges of size 32 bits and 64
bits. The experiment was carried out on two computers. The hash functions written in italics are those without general Chernoff-style
bounds. Hash functions written in bold are the contributions of this paper. The hash functions in regular font are known to provide
Chernoff-style bounds. Note that we were unable to implement double tabulation from 64 bits to 64 bits since the hash tables were
too large to fit in memory.

Hash function Time Space Concentration Guarantee Restriction
Multiply-Shift O (1) O (1) Chebyshev’s inequality None

k-Independent PolyHash O (k) O (k) Chernoff-style bounds Requires k = Ω(logu) for
added error probability O (1/uγ)

Simple Tabulation O (c) O (u1/c) Chernoff-style bounds Added error probability: O (n/mγ)

Twisted Tabulation O (c) O (u1/c) Chernoff-style bounds Requires: µ ≤ |Σ|1−Ω(1)

Mixed Tabulation O (c) O (u1/c) Chernoff-style bounds Requires: µ = o(|Σ|)
Tabulation-Permutation O (c) O (u1/c) Chernoff-style bounds Added error probability: O (1/uγ)
Double Tabulation O (c2) O (u1/c) Chernoff-style bounds Added error probability: O (1/uγ)

Table 2. Theoretical time and space consumption of some of the hash functions discussed.

achieve Chernoff-style bounds with restrictions on the expected value and those that, like our new hash functions, do
so without such restrictions, which is what we want for all possible input. An overview of the theoretical guarantees
of the hash functions relevant to our discussion is presented in Table 2. Empirically, we shall compare the practical
evaluation time of tabulation-permutation and permutation-1permutation to the fastest commonly used hash functions
and to hash functions with similar theoretical guarantees. A major goal of algorithmic analysis is to understand the
theoretical behavior of simple algorithms that work well in practice, providing them with good theoretical guarantees
such as worst-case behavior. For instance, one may recall Knuth’s analysis of linear probing [29], showing that this very
practical algorithm has strong theoretical guarantees. In a similar vein, we not only show that the hashing schemes of
tabulation-permutation and tabulation-1permutation have strong theoretical guarantees, we also perform experiments,
summarized in Table 1, demonstrating that in practice they are comparable in speed to some of the most efficient hash
functions in use, none of which have similar concentration guarantees. Thus, with our new hash functions, hashing
with strong theoretical concentration guarantees is suddenly feasible for time-critical applications.

1.7.1 High Independence and Tabulation. Before this paper, the only known way to obtain unrestricted Chernoff-style
concentration bounds with hash functions that can be evaluated in constant time was through k-independent hashing.

Fast Hashing with Strong Concentration Bounds 11

Recall that a hash functionh : U → R is k-independent if the distribution of (h(x1), . . . ,h(xk)) is uniform in Rk for every
choice of distinct keys x1, . . . ,xk ∈ U . Schmidt, Siegel, and Srinivasan [43] have shown that with k-independent hashing,
we have Chernoff-style concentration bounds in all three cases mentioned at the beginning of the introduction up to an
added error probability decreasing exponentially in k . With k = Θ(γ logu), this means Chernoff-style concentration
with an added error probability of 1/uγ like in Theorem 1.2 and 1.3. However, evaluating any k-independent hash
function takes time Ω(k) unless we use a lot of space. Indeed, a cell probe lower bound by Siegel [44] states that
evaluating a k-independent hash function over a key domain [u] using t < k probes, requires us to use at least u1/t cells
to represent the hash function. Thus, aiming for Chernoff concentration through k-independence with k = Ω(logu)
and with constant evaluation time, we would have to use uΩ(1) space like our tabulation-permutation. Here it should be
mentioned that k-independent PolyHash modulo a prime p can be evaluated at k points in total time O (k log2 k) using
multipoint evaluation methods. Then the average evaluation time is O (log2 k), but it requires that the hashing can be
done to batches of k keys at a time. We can no longer hash one key at a time, continuing with other code before we hash
the next key. This could be a problem for some applications. A bigger practical issue is that it is no longer a black box
implementation of a hash function. To understand the issue, think of Google’s codebase where thousands of programs
are making library calls to hash functions. A change to multipoint evaluation would require rewriting all of the calling
programs, checking in each case that batch hashing suffices — a huge task that likely would create many errors. A
final point is that multipoint evaluation is complicated to implement yet still not as fast as our tabulation-permutation
hashing. Turning to upper bounds, Siegel designed a uΩ(1/c2)-independent hash function that can be represented in
tables of size u1/c and evaluated in cO (c) time. With c = O (1), this suffices for Chernoff-style concentration bounds by
the argument above. However, as Siegel states, the hashing scheme is “far too slow for any practical application”.

In the setting of Siegel, Thorup’s double tabulation [45] is a simpler and more efficient construction of highly
independent hashing. It is the main constant-time competitor of our new tabulation-permutation hashing, and yet it is
30 times slower in our experiments. In the following, we describe the theoretical guarantees of double tabulation hashing
and discuss its concrete parameters in terms of speed and use of space towards comparing it with tabulation-permutation
hashing.

A double tabulation hash function, h : Σc → Σc is the composition of two independent simple tabulation hash
functions h1 : Σc → Σd and h2 : Σd → Σc , h = h2 ◦ h1. Evaluating the function thus requires c + d character lookups.
Assuming that each memory unit stores an element from [u] = Σc and d ≥ c , the space used for the character tables
is (c (d/c) + d)u1/c = 2du1/c . Thorup [45] has shown that if d ≥ 6c , then with probability 1 − o(Σ2−d/(2c)) over the
choice of h1, the double tabulation hash function h is k-independent for k = |Σ|1/(5c) = uΩ(1/c2) . More precisely,
with this probability, the output keys (h1 (x))x ∈Σc are distinct, and h2 is k-independent when restricted to this set of
keys. If we are lucky to pick such an h1, this means that we get the same high indepence as Siegel [44]. With d = 6c ,
the space used is 12cu1/c = O (cu1/c) and the number of character lookups to compute a hash value is 7c = O (c).
Tabulation-permutation hashing is very comparable to Thorup’s double tabulation. As previously noted, it can be
implemented in the same way, except that we fill the character tables of h2 with permutations and padded zeros instead
of random hash values. To compare, a tabulation-permutation hash function h : Σc → Σc requires 2c lookups and uses
space 2cu1/c , which may not seem a big difference. However, in the following, we demonstrate how restrictions on
double tabulation cost an order of magnitude in speed and space compared with tabulation-permutation hashing when
used with any realistic parameters.

With Thorup’s double tabulation, for (logu)-independence, we need logu ≤ |Σ|1/(5c) = u1/(5c2) . In choosing values
for u and c that work in practice, this inequality is very restrictive. Indeed, even for c = 2, logu ≤ u1/20, which roughly

12 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

implies that logu ≥ 140. Combined with the fact that the character tables use space 12c |Σ|, and that |Σ| ≥ (logu)5c ,
this is an intimidating amount of space. Another problem is the error probability over h1 of 1 − o(Σ2−d/(2c)). If we
want this to be O (1/u), like in the error bounds from Theorem 1.2 and 1.3, we need d ≥ 2(c2 + 2c). Thus, while things
work well asymptotically, these constraints make it hard to implement highly independent double tabulation on any
normal computer. However, based on a more careful analysis of the case with 32-bit keys, Thorup shows that using
c = 2 characters of 16 bits, and d = 20 derived characters, gives a 100-independent hash function with probability
1 − 1.5 × 10−42. According to [45] we cannot use significantly fewer resources even if we just want 4-independence. For
hashing 32-bit keys, this means making 22 lookups for each query and using tables of total size 40 · 216. In contrast, if we
hash 32-bit keys with tabulation-permutation hashing, we may use 8-bit characters with d = c = 4, thus making only 8
lookups in tables of total size 8 · 28. For this setting of parameters, our experiments (summarized in Table 1) show that
double tabulation is approximately 30 times slower than tabulation-permutation hashing. For 64-bit keys, Thorup [45]
suggests implementing double tabulation with c = 3 characters of 22 bits and d = 24. This would require 26 lookups in
tables of total size 48 · 222. We were not able to implement this on a regular laptop due to the space requirement.

We finally mention that Christani et al. [14] have presented a hash family which obtains the even higher independence
uΩ(1/c) . The scheme is, however, more complicated with a slower evaluation time of Θ(c log c).

1.7.2 Space Bounded Independence and Chernoff Bounds. One of the earliest attempts of obtaining strong concentration
bounds via hashing is a simple and elegant construction by Dietzfelbinger and Meyer auf der Heide [19]. For some
parametersm, s,d , their hash family maps to [m], can be represented with O (s) space, and uses a (d + 1)-independent
hash function as a subroutine, where d = O (1), e.g., a degree-d polynomial. In terms of our main goal of Chernoff-style
bounds, their result can be cast as follows: Considering the number of balls from a fixed, but unknown, subset S ⊆ U ,
with |S | = n, that hashes to a specific bin, their result yields Chernoff bounds like ours with a constant delay in the
exponential decrease and with an added error probability of n

(
n
ms

)d . The expected number of balls in a given bin is
µ = n/m, so the added error probability is n(µ/s)d . To compare with tabulation-permutation, suppose we insist on using
space O (|Σ|) and that we moreover want the added error probability to be u−γ = |Σ|−cγ like in Theorems 1.2 and 1.3.
With the hashing scheme from [19], we then need µ = O (|Σ|1−γ c/d). If we want to be able to handle expectations of
order, e.g. |Σ|1/2, we thus need d ≥ 2cγ . For 64-bit key, c = 8, and γ = 1, say, this means that we need to evaluate a
16-independent hash function. In general, we see that the concentration bound above suffers from the same issues
as those provided by Pǎtraşcu and Thorup for simple and twisted tabulation [38, 41], namely that we only have
Chernoff-style concentration if the expected value is much smaller than the space used.

Going in a different direction, Dietzfelbinger and Rink [20] use universe splitting to create a hash function that is
highly independent (building on previous works [21, 22, 25, 27]) but, contrasting double tabulation as described above,
only within a fixed set S , not the entire universe. The construction requires an upper bound n on the size of S , and a
polynomial error probability of n−γ is tolerated. Here γ = O (1) is part of the construction and affects the evaluation
time. Assuming no such error has occurred, which is not checked, the hash function is highly independent on S . As
with Siegel’s and Thorup’s highly independent hashing discussed above, this implies Chernoff bounds without the
constant delay in the exponential decrease, but this time only within the fixed set S . In the same setting, Pagh and Pagh
[37] have presented a hash function that uses (1+o(1))n space and which is fully independent on any given set S of size
at most n with high probability. This result is very useful, e.g., as part of solving a static problem of size n using linear
space, since, with high probability, we may assume fully-random hashing as a subroutine. However, from a Chernoff
bound perspective, the fixed polynomial error probability implies that we do not benefit from any independence above

Fast Hashing with Strong Concentration Bounds 13

O (logn), using the aforementioned results from [43]. More importantly, we do not want to impose any limitations
to the size of the sets we wish to hash in this paper. Consider for example the classic problem of counting distinct
elements in a huge data stream. The size of the data stream might be very large, but regardless, the hashing schemes of
this paper will only use space O (u1/c) with c chosen small enough for hash tables to fit in fast cache.

Finally, Dahlgaard et al. [16] have shown that on a given set S of size |S | ≤ |Σ|/2 a double tabulation hash function,
h = h2 ◦ h1 as described above, is fully random with probability 1 − |Σ|1−⌊d/2⌋ over the choice of h1. For an error
probability of 1/u, we set d = (2c + 2) yielding a hash function that can be evaluated with 3c + 2 character lookups
and using (4c + 4) |Σ| space. This can be used to simplify the above construction by Pagh and Pagh [37]. Dahlgaard
et al. [16] also propose mixed tabulation hashing which they use for statistics over k-partitions. Their analysis is
easily modified to yield Chernoff-style bounds for intervals similar to our bounds for tabulation-1permuation hashing
presented in Theorem 1.3, but with the restriction that the expectation µ is at most |Σ|/ log2c |Σ|. This restriction
is better than the earlier mentioned restictions µ ≤ |Σ|1/2 for simple tabulation [38] and µ ≤ |Σ|1−Ω(1) for twisted
tabulation [41]. For mixed tabulation hashing, Dahlgaard et al. use 3c + 2 lookups and (5c + 4) |Σ| space. In comparison,
tabulation-1permutation hashing, which has no restriction on µ, uses only c + 1 lookups and (c + 1) |Σ| space.

1.7.3 Small Space Alternatives in Superconstant Time. Finally, there have been various interesting developments
regarding hash functions with small representation space that, for example, can hash n balls to n bins such that the
maximal number of balls in any bin is O (logn/ log logn), corresponding to a classic Chernoff bound. Accomplishing
this through independence of the hash function, this requires O (logn/ log logn)-independence and evaluation time
unless we switch to hash functions using a lot of space as described above. However, [10, 33] construct hash families
taking a random seed ofO (log logn) words and which can be evaluated usingO ((log logn)2) operations, still obtaining
a maximal load in any bin of O (logn/ log logn) with high probability. This is impressive as it only uses a small amount
of space and a short random seed, though it does require some slightly non-standard operations when evaluating the
hash functions. The running time however, is not constant, which is what we aim for in this paper.

A different result is by [26] who construct hash families which hash n balls to 2 bins. They construct hash families
that taking a random seed of O ((log logn)2) words get Chernoff bounds with an added error probability of n−γ for
some constant γ , which is similar to our bounds. Nothing is said about the running time of the hash function of [26].
Since one of our primary goals is to design hash functions with constant running time, this makes the two results
somewhat incomparable.

1.7.4 Experiments and Comparisons. To better understand the real-world performance of our new hash functions in
comparison with well-known and comparable alternatives, we performed some simple experiments on regular laptops,
as presented in Table 1. We did two types of experiments.

• On the one hand we compared with potentially faster hash functions with weaker or restricted concentration
bounds to see how much we lose in speed with our theoretically strong tabulation-permutation hashing. We
shall see that our tabulation-permutation is very competitive in speed.
• On the other hand we compared with the fastest previously known hashing schemes with strong concentration
bounds like ours. Here we will see that we gain a factor of 30 in speed.

Concerning weaker, but potentially faster, hashing schemes we have chosen two types of hash functions for the
comparison. First, we have the fast 2-independent hash functions multiply-shift (with addition) and 2-independent
PolyHash. They are among the fastest hash functions in use and are commonly used in streaming algorithms. It should

14 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

be noted that when we use 2-independent hash functions, the variance is the same as with full randomness, and it may
hence suffice for applications with constant error probability. Furthermore, for data sets with sufficient entropy, Chung,
Mitzenmacher, and Vadhan [15] show that 2-independent hashing suffices. However, as previously mentioned, we want
provable Chernoff-style concentration bounds of our hash functions, equivalent up to constant factors to the behavior of
a fully random hash function, for any possible input. Second, we have simple tabulation, twisted tabulation, and mixed
tabulation, which are tabulation based hashing schemes similar to tabulation-1permutation and tabulation-permutation
hashing, but with only restricted concentration bounds. It is worth noting that Dahlgaard, Knudsen, and Thorup [17]
performed experiments showing that the popular hash functions MurmurHash3 [3] and CityHash [40] along with the
cryptographic hash function Blake2 [4] all are slower than mixed tabulation hashing, which we shall see is even slower
than permutation-tabulation hashing. These hash functions are used in practice, but given that our experiments show
mixed tabulation to be slightly slower than tabulation-permutation hashing, these can now be replaced with our faster
alternatives that additionally provide theoretical guarantees as to their effectiveness.

Concerning hashing schemes with previous known strong concentration bounds, we compared with double tabulation
and 100-independent PolyHash, which are the strongest competitors that we are aware of using simple portable code.

The experiment measures the time taken by various hash functions to hash a large set of keys. Since the hash
functions considered all run the same instructions for all keys, the worst- and best-case running times are the same,
and hence choosing random input keys suffices for timing purposes. Further technical details of the experiments are
covered in Appendix A. We considered both hashing 32-bit keys to 32-bit hash values and 64-bit keys to 64-bits hash
values. We did not consider larger key domains as we assume that a universe reduction, as described in Section 1.5, has
been made if needed. The results are presented in Table 1. Below, we comment on the outcome of the experiment for
each scheme considered.

Multiply-Shift. The fastest scheme of the comparison is Dietzfelbinger’s 2-independent Multiply-Shift [18]. For 32-bit
keys it uses one 64-bit multiplication and a shift. For 64-bit keys it uses one 128-bit multiplication and a shift. As
expected, this very simple hash function was the fastest in the experiment.

2-Independent PolyHash. We compare twice with the classic k-independent PolyHash [48]. Once with k = 2 and
again with k = 100. k-independent PolyHash is based on evaluating a random degree (k − 1)-polynomial over a prime
field, using Mersenne primes to make it fast: 261 − 1 for 32-bit keys and 289 − 1 for 64-bit keys. The 2-independent
version was 2-3 times slower in experiments than multiply-shift. It is possible that implementing PolyHash with a
specialized carry-less multiplication [31] would provide some speedup. However, we do not expect it to become faster
than multiply-shift.

Simple Tabulation. The baseline for comparison of our tabulation-based schemes is simple tabulation hashing. Recall
that we hash using c characters from Σ = [u1/c] (in this experiment we considered u = 232 and u = 264). This implies c
lookups from the character tables, which have total size c |Σ|. For each lookup, we carry out a few simple AC0 operations,
extracting the characters for the lookup and applying an XOR. Since the size of the character alphabet influences
the lookup times, it is not immediately clear, which choice of c will be the fastest in practice. This is, however, easily
checkable on any computer by simple experiments. In our case, both computers were fastest with 8-bit characters,
hence with all character tables fitting in fast cache.

Theoretically, tabulation-based hashing methods are incomparable in speed to multiply-shift and 2-independent Poly-
Hash, since the latter methods use constant space but multiplication which has circuit complexity Θ(logw/ log logw)

Fast Hashing with Strong Concentration Bounds 15

for w-bit words [11]. Our tabulation-based schemes use only AC0 operations, but larger space. This is an inherent
difference, as 2-independence is only possible with AC0 operations using a large amount of space [2, 32, 34]. As is
evident from Table 1, our experiments show that simple tabulation is 2-3 slower than multiply-shift, but as fast or
faster than 2-independent PolyHash. Essentially, this can be ascribed to the cache of the two computers used being
comparable in speed to arithmetic instructions. This is not surprising as most computation in the world involves data
and hence cache. It is therefore expected that most computers have cache as fast as arithmetic instructions. In fact, since
fast multiplication circuits are complex and expensive, and a lot of data processing does not involve multiplication, one
could imagine computers with much faster cache than multiplication [28].

Twisted Tabulation. Carrying out a bit more work than simple tabulation, twisted tabulation performs c lookups of
entries that are twice the size, as well as executing a few extra AC0 operations. It hence performs a little worse than
simple tabulation hashing.

Mixed Tabulation. We implemented mixed tabulation hashing with the same parameters (c = d) as in [17]. With these
parameters the scheme uses 2c lookups from 2c character tables, where c of the lookups are to table entries that are
double as long as the output, which may explain its worse performance with 64-bit domains. In our experiments, mixed
tabulation performs slightly worse than tabulation-permutation hashing. Recall from above that mixed tabulation is
faster than many popular hash functions without theoretical guarantees, hence so is our tabulation-permutation.

Tabulation-1Permutation. Also only slightly more involved than simple tabulation, tabulation-1permutation performs
c + 1 lookups using c + 1 character tables. In our experiments, tabulation-1permutation turns out to be a little bit faster
than twisted tabulation, at most 30% slower than simple tabulation, and at most 4 times slower than multiply-shift.
Recall that tabulation-1permutation is our hash function of choice for streaming applications where speed is critical.

Tabulation-Permutation. Tabulation-permutation hashing performs 2c lookups from 2c character tables. In our
experiments, it is slightly more than twice as slow as simple tabulation, and at most 8 times slower than multiply-shift.
It is also worth noting that it performs better than mixed tabulation.

Double Tabulation. Recall that among the schemes discussed so far, only tabulation-permutation and tabulation-
1permutation hashing offer unrestricted Chernoff-style concentration with high probability. Double tabulation is the
first alternative with similar guarantees and in our experiments it is 30 times slower for 32-bit keys. For 64-bit keys, we
were unable to run it on the computers at our disposal due to the large amount of space required for the hash tables.
As already discussed, theoretically, double tabulation needs more space and lookups. The 32-bit version performed 26
lookups in tables of total size 48 · 222, while tabulation-permutation only needs 8 lookups using 8 · 28 space. It is not
surprising that double tabulation lags so far behind.

100-Independent PolyHash. Running the experiment with 100-independent PolyHash, it turned out that for 32-bit keys,
it is slower than 100-independent double tabulation. A bit surprisingly, 100-independent PolyHash ran nearly 200 times
slower than the 2-independent PolyHash, even though it essentially just runs the same code 99 times. An explanation
could be that the 2-independent scheme just keeps two coefficients in registers while the 100-independent scheme
would loop through all the coefficients. We remark that the number 100 is somewhat arbitrary. We need k = Θ(logu),
but we do not know the exact constants in the Chernoff bounds with k-independent hashing. The running times are,
however, easily scalable and for k-independent PolyHash, we would expect the evaluation time to change by a factor of
roughly k/100.

16 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

0.000 0.025 0.050 0.075 0.100 0.125
0.0
0.2
0.4
0.6
0.8
1.0

Multiply-Shift

0.000 0.025 0.050 0.075 0.100 0.125
0.0
0.2
0.4
0.6
0.8
1.0

2-wise PolyHash

0.000 0.025 0.050 0.075 0.100 0.125
0.0
0.2
0.4
0.6
0.8
1.0

Tabulation-Permutation

Fig. 1. Hashing the arithmetic progression {a · i | i ∈ [50000]} to 16 bins for a random integer a. The dotted line is a 100-independent
PolyHash.

Bad instances for Multiply-Shift and 2-wise PolyHash. We finally present experiments demonstrating concrete bad
instances for the hash functions Multiply-Shift [18] and 2-wise PolyHash, underscoring what it means for them to not
support Chernoff-style concentration bounds. In each case, we compare with our new tabulation-permutation hash
function as well as 100-independent PolyHash, which is our approximation to an ideal fully random hash function. We
refer the reader to Appendix A for bad instances for simple-tabulation [49] and twisted tabulation [41] as well as a
more thorough discussion of our experiments.

Bad instances for Multiply-Shift and 2-independent PolyHash are analyzed in detail in [39, Appendix B]. The specific
instance we consider is that of hashing the arithmetic progression A = {a · i | i ∈ [50000]} into 16 bins, where we are
interested in the number of keys from A that hashes to a specific bin. We performed this experiment 5000 times, with
independently chosen hash functions. The cumulative distribution functions on the number of keys from A hashing
to a specific bin is presented in Figure 1. We see that most of the time 2-independent PolyHash and Multiply-Shift
distribute the keys perfectly with exactly 1/16 of the keys in the bin. By 2-independence, the variance is the same
as with fully random hashing, and this should suggest a much heavier tail, which is indeed what our experiments
show. For contrast, we see that the cumulative distribution function with our tabulation-permutation hash function is
almost indistinguishable from that of 100-independent Poly-Hash. We note that no amount of experimentation can
prove that tabulation-permutation (or any other hash function) works well for all possible inputs. However, given
the mathematical concentration guarantee of Theorem 2, the strong performance of tabulation-permutation in the
experiment is no surprise.

2 TECHNICAL THEOREMS AND HOW THEY COMBINE

We now formally state our main technical results, in their full generality, and show how they combine to yield
Theorems 1.1, 1.2, and 1.3. A fair warning should be given to the reader. The theorems to follow are intricate and
arguably somewhat inaccessible at first read. Rather than trying to understand everything at once, we suggest that
the reader use this section as a roadmap for the main body of the paper. We will, however, do our best to explain the
contents of the results as well as disentangling the various assumptions in the theorems.

As noted in Section 1.6, the exposition is subdivided into three parts, each yielding theorems that we believe to be
of independent interest. First, we provide an improved analysis of simple tabulation (Section 4). We then show how
permuting the output of a simple tabulation hash function yields a hash function having Chernoff bounds for arbitrary
value functions (Section 5). Finally, we show that concatenating the output of two independent hash functions preserves
the property of having Chernoff bounds for arbitrary value functions (Section 6).

Fast Hashing with Strong Concentration Bounds 17

It turns out that the proofs of our results become a little cleaner when we assume that value functions take values in
[−1, 1], so from here on we state our results in relation to such value functions. Theorems 1.1, 1.2, and 1.3 will still
follow, as the value functions in these theorems can also be viewed as having range [−1, 1].

2.1 Improved Analysis of Simple Tabulation

Our new and improved result on simple tabulation is the subject of Section 4. It is stated as follows.

Theorem 2.1. Let h : Σc → [m] be a simple tabulation hash function and S ⊆ Σc be a set of keys of size n = |S |. Let
v : Σc × [m]→ [−1, 1] be a value function such that the setQ = {i ∈ [m] | ∃x ∈ Σc : v (x , i) , 0} satisfies |Q | ≤ mε , where

ε < 1
4 is a constant.

(1) For any constant γ ≥ 1, the random variable V =
∑
x ∈S v (x ,h(x)) is strongly concentrated with added error

probability Oγ ,ε,c (n/m
γ), where the constants of the asymptotics are determined by c and γ . Furthermore, this

concentration is query invariant.

(2) For j ∈ [m] define the random variableVj =
∑
x ∈S v (x ,h(x) ⊕ j) and let µ = E

[
Vj

]
, noting that this is independent

of j. For any γ ≥ 1,

Pr


∑

j ∈[m]
(Vj − µ)2 > Dγ ,c

∑

x ∈S

∑

k ∈[m]
v (x ,k)2

 = Oγ ,ε,c (n/m
γ) (5)

for some constant Dγ ,c and this bound is query invariant up to constant factors.

The technical assumption involving Q states that the value function has bounded support in the hash range: The
value v (x ,h(x)) can only possibly be non-zero if h(x) lies in the relatively small set Q of size at most mε . In fact,
when proving Theorem 1.1 it suffices to assume that |Q | = 1, as we shall see below, but for our analysis of tabulation-
permutation hashing we need the more general result above. Another nice illustration of the power of Theorem 2.1
holding with value functions of any bounded support will appear when we prove Theorem 1.3 in Section 2.4.

To see that Theorem 1.1 is implied by Theorem 2.1, one may observe that the latter is a generalization of the former.
Let y ∈ [m] be the bin and (wx)x ∈S be the weights of the balls from S in the setting of Theorem 1.1. Then defining the
value function v : Σc × [m]→ [0, 1],

v (x ,y′) =

wx · [y′ = y], x ∈ S,
0, x < S,

we find that X = ∑
x ∈S wx · [h(x) = y] = ∑

x ∈S v (x ,h(x)) is strongly concentrated by part 1 of Theorem 2.1 and the
concentration is query invariant.

Finally, the bound (5) requires some explaining. For this, we consider the toy example of Theorem 1.1. Suppose we
have a set S ⊆ [u] of balls with weights (wx)x ∈S and we throw them into the bins of [m] using a simple tabulation hash
function. We focus on the total weight of balls landing in bin 0, defining the value function by v (x ,y) = wx for x ∈ S
and y = 0, and v (x ,y) = 0 otherwise. In this case, µ = 1

m
∑
x ∈S wx denotes the expected total weight in any single bin

andVj =
∑
x ∈S wx · [h(x) = j] denotes the total weight in bin j ∈ [m]. Then (5) states that ∑j ∈[m] (Vj − µ)2 = O (∥w ∥22)

with high probability inm. This is exactly a bound on the variance of the weight of balls landing in one of the bins
when each of the hash values of the keys of S are shifted by an XOR with a uniformly random element of [m]. Note that
this example corresponds to the case where |Q | = 1. In its full generality, i.e., for general value functions of bounded
support, (5) is similarly a bound on the variance of the value obtained from the keys of S when their hash values are

18 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

each shifted by a uniformly random XOR. This variance bound turns out to be an important ingredient in our proof of
the strong concentration in the first part of Theorem 2.1. As described in Section 1.6.1 the proof proceeds by fixing
the hash values of the position characters [c] × Σ in a carefully chosen order, α1 ≺ · · · ≺ αr . DefiningGi to be those
keys that contain αi as a position character but no α j with j > i , the internal clustering of the keys of Gi is determined
solely by (h(α j))j<i and fixing h(αi) “shifts” each of these keys by an XOR with h(αi). Now (5), applied with S = Gi ,
exactly yields a bound on the variance of the total value obtained from the keys fromGi when fixing the random XOR
h(αi). Thus, (5) conveniently bounds the variance of the martingale described in Section 1.6.1. As such, (5) is merely a
technical tool, but we have a more important reason for including the bound in the theorem. As it turns out, for any
hash function satisfying the conclusion of Theorem 2.1, composing with a uniformly random permutation yields a hash
family having Chernoff-style concentration bounds for any value function as we describe next.

2.2 Permuting the Hash Range

Our next step in proving Theorem 1.2 is to show that, given a hash function with concentration bounds like in Theo-
rem 2.1, composing with a uniformly random permutation of the entire range yields a hash function with Chernoff-style
concentration for general value functions. The main theorem, proved in Section 5, is as follows.

Theorem 2.2. Let ε ∈ (0, 1] and m ≥ 2 be given. Let д : [u] → [m] be a 3-independent hash function satisfy-

ing the following. For every γ > 0, and for every value function v : [u] × [m] → [−1, 1] such that the set Q =

{i ∈ [m] | ∃x ∈ [u] : v (x , i) , 0} is of size |Q | ≤ mε , the two conclusions of Theorem 2.1 holds with respect to д.

Let v ′ : [u] → [−1, 1] be any value function, τ : [m] → [m] be a uniformly random permutation independent of д,

and γ > 0. Then the for the hash function h = τ ◦ д, the sum ∑
x ∈[u]v ′(x ,h(x)) is strongly concentrated with added

error probability Oγ ,ε (u/m
γ), where the constants of the asymptotics are determined solely by ε and γ . Furthermore, this

concentration is query invariant.

We believe the theorem to be of independent interest. From a hash function that only performs well for value
functions supported on an asymptotically small subset of the bins we can construct a hash function performing well
for any value function – simply by composing with a random permutation. Theorem 2.1 shows that simple tabulation
satisfies the two conditions in the theorem above. It follows that ifm = |U |Ω(1) , e.g., ifm = |Σ|, then composing a
simple tabulation hash function д : Σc → [m] with a uniformly random permutation τ : [m] → [m] yields a hash
function h = τ ◦ д having Chernoff-style bounds for general value functions asymptotically matching those from the
fully random setting up to an added error probability inversely polynomial in the size of the universe. In particular
these bounds hold for tabulation-permutation hashing from Σc to Σ, that is, using just a single permutation, which
yields the result of Theorem 1.2 in the case d = 1. If we desire a range of sizem ≫ |Σ| the permutation τ becomes
too expensive to store. Recall that in tabulation-permutation hashing from Σc to Σd we instead use d permutations
τ1, . . . ,τd : Σ→ Σ, hashing

Σc
дsimple

−−−−−→ Σd
(τ1, ...,τd)−−−−−−−−−→ Σd .

Towards proving that this is sensible, the last step in the proof of Theorem 1.2 is to show that concatenating the
outputs of independent hash functions preserves the property of having Chernoff-style concentration for general value
functions.

Fast Hashing with Strong Concentration Bounds 19

2.3 Squaring the Hash Range

The third and final step towards proving Theorem 1.2 is showing that concatenating the hash values of two independent
hash functions each with Chernoff-style bounds for general value functions yields a new hash function with similar
Chernoff-style bounds up to constant factors. In particular it will follow that tabulation-permutation hashing has
Chernoff-style bounds for general value functions. However, as with Theorem 2.2, the result is of more general interest.
Since it uses the input hash functions in a black box manner, it is a general tool towards constructing new hash functions
with Chernoff-style bounds. The main theorem, proved in Section 6, is the following.

Theorem 2.3. Let h1 : A → B1 and h2 : A → B2 be 2-wise independent hash functions with a common domain

such that for every pair of value functions, v1 : A × B1 → [−1, 1] and v2 : A × B2 → [−1, 1], the random variables

X1 =
∑
a∈A v1 (a,h1 (a)) and X2 =

∑
a∈A v2 (a,h2 (a)) are strongly concentrated with added error probability f1 and f2,

respectively, and the concentration is query invariant. Suppose further that h1 and h2 are independent. Then the hash

function h = (h1,h2) : A → B1 × B2, which is the concatenation of h1 and h2, satisfies that for every value function

v : A× (B1 ×B2) → [−1, 1], the random variable X =
∑
a∈A v (a,h(a)) =

∑
a∈A v (a,h1 (a),h2 (a)) is strongly concentrated

with additive error O (f1 + f2) and the concentration is query invariant.

We argue that Theorem 2.3, combined with the previous results, leads to Theorem 1.2.

Proof of Theorem 1.2. We proceed by induction on d . For d = 1 the result follows from Theorem 2.1 and 2.2 as
described in the previous subsection. Now suppose d > 1 and that the result holds for smaller values of d . Let γ = O (1)
be given. Let d1 = ⌊d/2⌋ and d2 = ⌈d/2⌉. A tabulation-permutation hash function h : Σc → Σd is the concatenation of
two independent tabulation-permutation hash functions h1 : Σc → Σd1 and h2 : Σc → Σd2 . Letting A = Σc , B1 = Σd1 ,
B2 = Σd2 , the induction hypothesis gives that the conditions of Theorem 2.3 are satisfied and the conclusion follows.
Note that since d = O (1), the induction is only applied a constant number of times. Hence, the constants hidden in the
asymptotics of Definition 1 are still constant. □

2.4 Concentration in Arbitrary Intervals.

We will now show how we can use our main result, Theorem 1.2, together with our improved understanding of simple
tabulation Theorem 2.1 to obtain Theorem 1.3 which shows that the extra efficient tabulation-1permutation hashing
provides Chernoff-style concentration for the special case of weighted balls and intervals. This section also serves as an
illustration of how our previous results play in tandem, and it illustrates the importance of Theorem 2.1 holding, not
just for single bins, but for any value function of bounded support.

Proof of Theorem 1.3. Let S ⊆ [u] be a set of keys, with each key x ∈ S having a weight wx ∈ [0, 1]. Let
h = τ ◦ д : Σc → Σd = [r] be a tabulation-1permutation hash function, with д : Σc → Σd a simple tabulation hash
function and τ : Σd → Σd a random permutation of the most significant character, τ (z1, . . . , zd) = (τ1 (z1), z2, . . . , zd)

for a uniformly random permutation τ1 : Σ→ Σ. Lety1,y2 ∈ Σd andX be defined as in Theorem 1.3,X = ∑
x ∈S wx ·[y1 ≤

h(x) < y2]. Set µ = E [X], and σ 2 = Var [X]. For simplicity we assume that |I | ≥ r/2. Otherwise, we just apply the
argument below with I replaced by [r] \ I = [0,y1) ∪ [y2, r), which we view as an interval in the cyclic ordering of [r].
We will partition I = [y1,y2) into a constant number of intervals in such a way that our previous results yield Chernoff
style concentration bound on the total weight of keys landing within each of these intervals. The desired result will
follow.

20 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

To be precise, let t > 0 and γ = O (1) be given. Let P1 = {x ∈ Σ | ∀y ∈ Σd−1 : (x ,y) ∈ I } and I1 = {(x1, . . . ,xd) ∈
Σd | x1 ∈ P1}. Whether or not h(x) ∈ I1 for a key x ∈ Σc depends solely on the most significant character of h(x). With
X1 =

∑
x ∈S wx · [h(x) ∈ I1], µ1 = E [X1], and σ 2

1 = Var [X1], we can therefore apply Theorem 1.2 to obtain that for any
t ′ > 0 and γ ′ = O (1),

Pr[|X1 − µ1 | ≥ t ′] ≤ C exp(−Ω(σ 2
1C (t ′/σ 2

1))) + 1/u
γ ′ ≤ C exp(−Ω(σ 2C (t ′/σ 2))) + 1/uγ

′
, (6)

for some constant C . Here we used that σ 2
1 ≤ σ 2 as |I1 | ≤ |I | ≤ |Σd |/2. Next, let d1 = lg |Σ| and d2, . . . ,dℓ ∈ N be such

that for 2 ≤ i ≤ ℓ, it holds that 2di ≤ (2d1+d2+· · ·+di)1/4, and further 2d1+d2+· · ·+dℓ = |Σ|d . We may assume that u and
hence |Σ| is larger than some constant as otherwise the bound in Theorem 1.3 is trivial. It is then easy to check that
we may choose ℓ and the (di)2≤i≤ℓ such that ℓ = O (logd) = O (1). We will from now on consider elements of Σd as
numbers written in binary or, equivalently, bit strings of length d ′ := d1 + · · · + dℓ . For i = 1, . . . , ℓ we define a map
ρi : Σd → [2]d1+· · ·+di as follows. If x = b1 . . .bd ′ ∈ [2]d

′ , then ρi (x) is the length d1+ · · ·+di bit string b1 . . .bd1+· · ·+di
Set J1 = I . For i = 2, . . . , ℓ we define Ji ⊆ I and Ii ⊆ I recursively as follows. First, we let Ji = Ji−1 \ Ii−1. Second, we
define Ii to consist of those elements of x ∈ Ji such that if y ∈ Σc has ρi (y) = ρi (x), then y ∈ Ji . In other words, Ii
consists of those elements of Ji that remain in Ji when the least significant di+1 + · · · + dℓ bits of x are changed in an
arbitrary manner. It is readily checked that for i = 1, . . . , ℓ, Ii is a disjoint union of two (potentially empty) intervals
Ii = I

(1)
i ∪ I

(2)
i such that for each j ∈ {1, 2} and x ,y ∈ I (j)i , ρi (x) = ρi (y). Moreover, the sets (Ii)ℓi=1 are pairwise disjoint

and I = ⋃ℓ
i=1 Ii .

We already saw in (6) that we have Chernoff-style concentration for the total weight of balls landing in I1. We
now show that the same is true for I (j)i for each i = 2, . . . , ℓ and j ∈ {0, 1}. So let such an i and j be fixed. Note that
whether or not h(x) ∈ I

(j)
i , for a key x ∈ Σc , depends solely on the most significant d1 + · · · + di bits of h(x). Let

h′ : Σc → [2]d1+· · ·+di be defined by h′(x) = ρi (h(x)). Then h′ is itself a simple tabulation hash function and h′(x) is
obtained by removing the di+1 + · · · +dℓ least significant bits of h(x). Letting I ′ = ρi (I

(j)
i), it thus holds that h(x) ∈ I (j)i

if and only if h′(x) ∈ I ′. Let now X
(j)
i =

∑
x ∈S wx · [h(x) ∈ I

(j)
i], µ (j)i = E

[
X
(j)
i

]
, and σ 2

1 = Var
[
X
(j)
i

]
≤ σ 2. As

|I ′ | ≤ 2di ≤ (2d1+· · ·+di)1/4, we can apply Theorem 2.1 to conclude that for t ′ > 0 and γ ′ = O (1),

Pr[|X (j)
i − µ

(j)
i | ≥ t ′] ≤ C exp(−Ω(σ 2

1C (t ′/σ 2
1))) + 1/u

γ ′ ≤ C exp(−Ω(σ 2C (t ′/σ 2))) + 1/uγ
′
. (7)

Now applying (6) and (7) with t ′ = t/(2ℓ − 1) and γ ′ = γ + log(2ℓ)
logu = O (1), it follows that

Pr[|X − µ | ≥ t] ≤ Pr[|X1 − µ1 | ≥ t ′] +
ℓ∑

i=2

2∑

j=1
Pr[|X (j)

i − µ
(j)
i | ≥ t ′] ≤ 2Cℓ exp(−Ω(σ 2C (t ′/σ 2))) + 2ℓ/uγ

′

=O (exp(−Ω(σ 2 C (t/σ 2)))) + 1/uγ ,

as desired. □

3 PRELIMINARIES

Before proceeding, we establish basic definitions and describe results from the literature which we will use.

3.1 Notation

Throughout the paper, we use the following general notation.

• We let [n] denote the set {0, 1, . . . ,n − 1}.

Fast Hashing with Strong Concentration Bounds 21

• For a statement or event Q we let [Q] be the indicator variable on Q , i.e.,

[Q] =

1, Q occurred or is true,

0, otherwise.

• Whenever Y0, . . . ,Yn−1 ∈ R are variables and i ∈ [n + 1], we shall denote by Y<i the sum
∑
j<i Yj . Likewise,

whenever A0, . . . ,An−1 are sets and i ∈ [n + 1], we shall denote by A<i the set
⋃
j<i Aj .

• Suppose we have a hash function h : A→ B with domain A and range B. We shall often associate weight and
value functions with h as follows.
– A functionw : A→ R is called a weight function, corresponding to the idea that every ball or key x ∈ A has an
associated weight,w (x) ∈ R. Occasionally, we shall writewx forw (x).

– A function v : A × B → R is called a value function, with the interpretation that a key x ∈ A yields a value
v (x ,h(x)) depending on the bin/hash value h(x) ∈ B.

For weight functionsw : A→ R, a subset of balls, S ⊂ A, and a bin y0 ∈ B, we will be interested in sums of the
formW =

∑
x ∈S w (x)[h(x) = y0], i.e., the total weight of the balls in S that are hashed to bin y0. Defining the

value function v : A × B → R by v (x ,y) = w (x)[y = y0],W is exactly equal to ∑
x ∈S v (x ,h(x)), i.e., the total

value obtained by the balls in S . From this perspective, value functions are more general objects than weight
functions.

3.2 Probability Theory and Martingales

In the following, we introduce the necessary notions of probability theory. A note of caution is in order. The paper at
hand relies on results from the theory of martingales to arrive at its conclusion. Working with martingales, we shall
require probability theoretic notions of a fairly general and abstract character. For an introduction to measure and
probability theory, see, for instance, [42].

For the most basic notation, let (Ω,F , Pr) be a probability space.

• Let X1, . . . ,Xn : Ω → R be F -measurable random variables. We denote by G = σ (X1, . . . ,Xn) ⊂ F the smallest
σ -algebra such that X1, . . . ,Xn are all G-measurable. We say that G is the sigma algebra generated by X1, . . . ,Xn .
Intuitively, σ (X1, . . . ,Xn) represents the collective information regarding the outcome of the joint distribution
(X1, . . . ,Xn).
• Let X : Ω → R be an F -measurable random variable, and let G be a σ -algebra with G ⊂ F . If E [|X |] < ∞, we
may define the random variable E [X | G] to be the conditional expectation of X given G. It is important to note
that E [X | G] is G-measurable. In the context of the above notation, E [X | σ (X1, . . . ,Xn)] = E [X | X1, . . . ,Xn]
is the expectation of X as a function of the outcomes of X1, . . . ,Xn .

We proceed to discuss martingales and martingale differences. For convenience we shall assume all random variables
to be bounded, i.e., whenever X is a random variable, we assume that there exists a constantM ≥ 0 such that |X | ≤ M

almost surely.

Definition 3 (Filtration). Let (Ω,P (Ω), Pr) be a finite measure space. A sequence of σ -algebras, (Fi)ri=0, is a filtration
of (Ω,P (Ω), Pr) if {∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆ Fr = P (Ω). We shall usually omit explicit reference to the background
space.

Definition 4 (Adapted Sequence). Let (Fi)ri=0 be a filtration. A sequence of random variables (Xi)ri=0 is adapted to
(Fi)ri=0 if for every i ∈ [r + 1], Xi is Fi -measurable. In that case, we say that (Xi ,Fi) is an adapted sequence.

22 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

Definition 5 (Martingale). A martingale is an adapted sequence, (Xi ,Fi), satisfying that for every i ∈ {1, . . . , r },
E [Xi | Fi−1] = Xi−1.

Definition 6 (Martingale Difference). A martingale difference is a an adapted sequence, (Yi ,Fi)r0=1, such that Y0 = 0
almost surely and for every i ∈ {1, . . . , r }, E [Yi | Fi−1] = 0.

If (Xi ,Fi)ri=0 is a martingale, we may define the sequence of random variables (Yi)ri=0 by Y0 = 0 and Yi = Xi − Xi−1
for i = 1, . . . , r . Then (Yi ,Fi)ri=0 is a martingale difference. Conversely, if (Yi ,Fi)ri=0 is a martingale difference, a
martingale (Xi ,Fi)ri=0 can be constructed by letting Xi = Y<i+1 =

∑
j≤i Yj . Under this correspondence, martingales

and martingale differences are in a sense two sides of the same coin.
Concluding the section, we describe canonical constructions of a martingale and a martingale difference, respectively,

that we shall use later on.

• Let X be a random variable and consider a filtration (Fi)ri=0. We may define a martingale from X with respect to
(Fi)ri=0 by defining the sequence of random variables (Xi)ri=0 by Xi = E [X | Fi] for each i ∈ [r + 1]. Clearly,
E [Xi | Fi−1] = E [X | Fi−1] = Xi−1, so (Xi ,Fi)ri=0 is indeed a martingale.
We shall apply this construction in the following situation. Suppose we have random variables Z1, . . . ,Zr taking
values in the measure spaces A1, . . . ,Ar and denote by Z the joint distribution (Z1, . . . ,Zr). For some function
f : A1 × . . .Ar → R, we wish to assess the value of f (Z). We may then define the filtration Fi = σ (Z1, . . . ,Zi)

for i ∈ [r +1] and setXi = E [f (Z) �� Fi]. This yields a martingale (Xi ,Fi)ri=0 withX0 = E [f (Z)] andXr = f (Z).
This is known as a Doob martingale and the construction will be used in Section 5 to prove Theorem 2.2.
• Let (Zi ,Fi)ri=0 be an adapted sequence and define Y0 = 0 and Yi = Zi − E [Zi | Fi−1] for i ∈ {1, . . . , r }. Then
(Yi ,Fi)ri=1 is a martingale difference. This construction is applied in Section 4 to prove Theorem 2.1.

3.3 Martingale Concentration Inequalities

In applications of probability theory, we often consider a sequence of random variables X0, . . . ,Xr . If we are lucky,
the random variables are independent, pair-wise independent, or a derivative thereof. It is unfortunately often the
case, however, that there is no such independence notion that apply to X0, . . . ,Xr . One reason that martingales have
been as successful as they are, is that frequently, one may instead impose a martingale structure on the variables, and
martingales satisfy many of the same theorems that independent variables do. In this exposition, we shall consider sums
of the form X =

∑r
i=0 Xi where the Xi are far from independent, yet we would like X to satisfy Chernoff-style bounds.

To this end, we state a martingale version of Bennett’s inequality due to Fan et al [24]. The reader may note the
similarity to Eq. (3).

Definition 7. We denote by C : (−1,∞) → [0,∞) the function given by C (x) = (x + 1) ln(x + 1) − x .

Theorem 3.1 (Fan et al. [24]). Let σ > 0 be given. Let (Xi ,Fi)ri=0 be a martingale difference such that almost surely

|Xi | ≤ 1 for all i ∈ {1, . . . , r } and ∑r
i=1 E

[
X 2
i | Fi−1

]
≤ σ 2. Writing X =

∑r
i=1 Xi , it holds for any t ≥ 0 that

Pr [X ≥ t] ≤ et ·
(

σ 2

σ 2 + t

)σ 2+t

.

Simple calculations yield the following corollary.

Fast Hashing with Strong Concentration Bounds 23

Corollary 3.2. Suppose that (Xi ,Fi)ri=0 is a martingale difference and there existM,σ ≥ 0 such that |Xi | ≤ M for all

i ∈ {1, . . . , r } and ∑r
i=1 E

[
X 2
i | Fi−1

]
≤ σ 2. Define X =

∑r
i=1 Xi . For any t ≥ 0 it holds that

Pr [X ≥ t] ≤ exp
(
− σ 2

M2 C
(tM
σ 2

))
,

where C (x) = (x + 1) ln(x + 1) − x .

Finally, we present three lemmas describing the asymptotic behavior of C. We omit the proofs of the first two since
the results are standard and follow by elementary calculus.

Lemma 3.3. For any x ≥ 0
1
2x ln(x + 1) ≤ C (x) ≤ x ln(x + 1) .

For any x ∈ [0, 1]
1
3x

2 ≤ C (x) ≤ 1
2x

2 ,

where the right hand inequality holds for all x ≥ 0.

Lemma 3.4. For any a ≥ 0. If b ≥ 1 then

bC (a) ≤ C (ab) ≤ b2C (a) .

If 0 ≤ b ≤ 1 then
b2C (a) ≤ C (ab) ≤ bC (a) .

Note that as a corollary, if b = Θ(1) and a ≥ 0, then C (ba) = Θ(C (a)). The final lemma shows that the bound
of Corollary 3.2 only gets worse when σ 2 orM is replaced by some larger number.

Lemma 3.5. Let a ≥ 0 be given. On R+, the following two functions are decreasing

x 7→ xC
(a
x

)
,

x 7→ C (ax)
x2

.

Proof. Let 0 < x ≤ y be given. We then observe that the first function is indeed decreasing since by the first bound
of Lemma 3.4, xC (a/x) = xC ((a/y) · (y/x)) ≥ yC (a/y). That the second function is decreasing follows from a similar
argument. □

4 ANALYSIS OF SIMPLE TABULATION

In this section, we analyze the simple tabulation hashing scheme. The section is divided in three parts. First, there will
be an introductory section regarding simple tabulation hashing and associated notation. Second, we shall prove the sum
of squares result (Eq. (5)). The final section presents a proof of Theorem 2.1. In order to make the exposition slightly
simpler and more accessible, we postpone the argument that our concentration bounds are query invariant to Section 7.

4.1 Simple Tabulation Basics

Simple tabulation hashing as introduced by Zobrist [49] is defined as follows.

Definition 8 (Simple Tabulation Hashing). Let Σ be an alphabet, c ≥ 1 an integer, andm = 2k ,k > 0, a power of two.
A simple tabulation hash function, h : Σc → [m], is a random variable taking values in the set of functions from Σc to

24 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

[m], chosen with respect to the following distribution. For each j ∈ {1, . . . , c}, let hj : Σ→ [m] be a fully random hash
function, in other words, a uniformly random function from Σ to [m]. We evaluate h on the key x = (x1, . . . ,xc) ∈ Σc
by computing h(x) =

⊕c
j=1 hj (x j), where ⊕ denotes bitwise XOR.

Now, towards analyzing simple tabulation hashing, we add the following notation.

Definition 9 (Position Character). Let Σ be an alphabet and c ≥ 1 an integer. We call an element α = (a,y) ∈
{1, . . . , c} × Σ a position character of Σc .

Let h : Σc → [m] be a simple tabulation hash function. We may consider a key x = (x1, . . . ,xc) ∈ Σc as a set of
c position characters, {(1,x1), . . . , (c,xc)} ⊆ {1, . . . , c} × Σ. Recall that h(x) =

⊕c
i=1 hi (xi) for uniformly random

functions hi : Σ → [m]. For a position character α = (a,y) ∈ {1, . . . , c} × Σ, we may overload notation and write
h(α) = ha (y). Extending this, for a set of position characters A = {α1, . . . ,αn } ⊆ {1, . . . , c} × Σc , h(A) =

⊕n
i=1 h(αi).

Note that this agrees with the correspondence between keys of Σc and sets of position characters mentioned before,
since for x = (x1, . . . ,xc) ∈ Σc , h(x) = h({(1,x1), . . . , (c,xc)}). If finally A,B ⊂ {1, . . . , c} × Σ are sets of position
characters we write A ⊕ B for the symmetric difference between A and B, i.e., A ⊕ B = (A \ B) ∪ (B \A). We note that
for a simple tabulation hash function h, h(A ⊕ B) = h(A) ⊕ h(B).

Definition 10 (Projection Onto an Index). Let c ≥ 1 be an integer and i ∈ {1, . . . , c} be given. We denote by
πi : Σc → {1, . . . , c} × Σ the projection onto the ith coordinate given by πi (x1, . . . ,xc) = (i,xi), i.e., projecting a key x
to its ith position character. We extend this to sets of keys, such that for S ⊆ Σc , πi (S) = {πi (x) | x ∈ S }.

The following lemma by Thorup and Zhang [47] describes the independence of sets of position characters of Σc

under a simple tabulation function h : Σc → [2r]. We provide a proof for completeness.

Lemma 4.1 (Thorup and Zhang [47]). Let h : Σc → [2r] be a simple tabulation hash function. For each i ∈ {1, . . . , t },
let si ⊆ {1, . . . , c} × Σ be a set of position characters of Σc . Let j ∈ {1, . . . , t }. If every subset of indices B ⊆ {1, . . . , t }
containing j satisfies

⊕
i ∈B si , ∅, then the distribution of h(sj) is independent of the joint distribution (h(si))i,j .

Proof. Let F2 be the field Z/2Z and V the F2-vector space F{1, ...,c }×Σ2 . For a set of position characters A, we define
vA ∈ V as follows: For (a,y) ∈ {1, . . . , c} × Σ we let vA (a,y) = 1 if and only if (a,y) ∈ A, and vA (a,y) = 0 otherwise.
Picking a random simple tabulation hash function h : Σc → [2r] is equivalent to picking a random linear function
h′ : V → [2r]. Here [2r] is identified with the F2-vector space Fr2 . Indeed, (v {α })α ∈{1, ...,c }×Σ forms a basis for V , and
choosing a random linear map h′ : V → [2r] can be done by picking independent and uniformly random values for h′

on the basis elements, and extending by linearity. To define h from h′, we simply put h(x) =
⊕

α ∈x h′(v {α }) for a key
x ∈ Σ viewed as a set of position characters. Conversely, a simple tabulation hash function h : Σc → [2r] uniquely
extends to a linear map h′ : V → [2r]. Now under this identification, the condition in the lemma is equivalent to vsj
being linearly independent of the vectors (vsi)i,j . As h′ is a random linear map, it follows by elementary linear algebra
that h′(vsj) = h(sj) is independent of the joint distribution (h′(vsi))i,j = (h(si))i,j , as desired.

□

4.2 Bounding the Sum of Squared Deviations

In the following section we shall prove the bound (5) of Theorem 2.1 from Section 2.1, stated independently here as
Theorem 4.5. It is a technical, albeit crucial, step on the way to proving Theorem 2.1 itself. The foundation of the proof
of Theorem 4.5 is a series of combinatorial observations regarding simple tabulation hashing.

Fast Hashing with Strong Concentration Bounds 25

Recall from Section 1.6.1 our general proof strategy when proving concentration bounds for simple tabulation
hashing. For a set of keys S ⊆ Σc to be hashed, we fix an ordering of the position characters of Σc . We then fix the hash
table entries corresponding to the position characters one at a time according to this ordering. Crucial to the success of
this strategy is fixing an ordering where each position character “decides” only a small part of the final outcome.

Definition 11 (Group of Keys). Let S ⊆ Σc be a set of keys and A = {α ∈ x | x ∈ S } be the set of position characters
of the keys of S . For an enumeration or ordering of the position characters of A as {α1, . . . ,αr } = A, we denote
by Gi ⊆ S the ith group of keys with respect to S and the ordering of the position characters. The set is given by
Gi = {x ∈ S | {αi } ⊆ x ⊆ {α1, . . . ,αi }}.

Put in other words, let ≺ denote the ordering on A, let x be a key of S , and let β1, . . . , βc be the position characters of
x such that β1 ≺ β2 ≺ · · · ≺ βc , i.e., βc is last in the ordering of A. Then x ∈ Gi if and only if αi = βc . In relation to
simple tabulation, this has the following meaning. In the proof, we shall fix the values h(α j) one at a time starting at
j = 1 and ending at j = r . For every x ∈ Gi , the value of h(x) is then undecided before h(αi) is known, but is known
once h(α1), . . . ,h(αi) are all fixed. In analyzing the contribution of each group to the final outcome of the process, we
start by proving a generalization of a result from [38]. It says that if we assign each key a weight, it is always possible to
choose the ordering of the position characters such that the total weight of each group is relatively small. The original
lemma simply assigned weight 1 to every key.

Lemma 4.2. Let S ⊆ Σc be given and letA = {α ∈ x | x ∈ S } be the position characters of the keys of S . Letw : Σc → R≥0
be a weight function. Then there exists an ordering of the position characters, {α1, . . . ,αr } = A such that for every

i ∈ {1, . . . , r }, the group Gi = {x ∈ S | {αi } ⊆ x ⊆ {α1, . . . αi }} satisfies
∑

x ∈Gi

w (x) ≤
(
max
x ∈S

w (x)
)1/c *,

∑

x ∈S
w (x)+-

1−1/c
.

Proof. We define the ordering recursively and backwards as αr , . . . ,α1. Let Ti = A \ {αi+1, . . . ,αr } and Si =

{x ∈ S | x ⊆ Ti }. We prove that we can find an αi ∈ Ti such that

Gi = {x ∈ Si | αi ∈ x } ,

satisfies
∑

x ∈Gi

w (x) ≤
(
max
x ∈Si

w (x)

)1/c *.,
∑

x ∈Si
w (x)+/-

1−1/c
,

which will establish the claim. Let Bk be the set of position characters at position k contained in Ti , i.e., Bk ={
(k,y) ∈ Ti } = πk (Ti). Then as ∏c

k=1
��Bk �� ≥ |Si |, we have ��Bk �� ≥ |Si |1/c for some k .

Since each key of Si contains at most one position character from Bk , we can choose αi such that

∑

x ∈Gi

w (x) ≤
∑
x ∈Si w (x)��Bk �� ≤

∑
x ∈Si w (x)

|Si |1/c
≤

(
max
x ∈Si

w (x)

)1/c *.,
∑

x ∈Si
w (x)+/-

1−1/c
.

□

Suppose we have keys x1, . . . ,xt ∈ Σc . It follows as a corollary of Lemma 4.1 that with a simple tabulation hash
function h : Σc → [m], the values h(x1), . . . ,h(xt) are completely independent if and only if there does not exist a subset
of indices B ⊆ {1, . . . , t } with ⊕

i ∈B xi = ∅. In this vein, it turns out to be natural, given sets of keys A1, . . . ,Aℓ ⊆ Σc ,

26 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

to bound the number of tuples x1 ∈ A1, . . . ,xℓ ∈ Aℓ with
⊕ℓ

i=1 xi = ∅. This is the content of Lemma 3 of [16]. We
prove the following generalization of this result, which deals with weighted keys. Note that the statements would be
identical if each key was assigned the weight 1.

Lemma 4.3. Let ℓ ∈ N be even,w1, . . . ,wℓ : Σc → R be weight functions, and A1, . . . ,Aℓ ⊆ Σc be sets of keys. Then

∑

x1∈A1, ...,xℓ ∈Aℓ⊕ℓ
k=1 xk=∅

ℓ∏

k=1
wk (xk) ≤ ((ℓ − 1)!!)c ·

ℓ∏

k=1

√ ∑

x ∈Ak
wk (x)

2.

Proof. For every (x1, . . . ,xℓ) ∈ A1 × · · · ×Aℓ satisfying
⊕ℓ

k=1 xk = ∅ we have
⊕ℓ

k=1{π (xk , c)} = ∅. This implies
that each character in the c-th position occurs an even number of times in (x1, . . . ,xℓ). Thus, for any such tuple we can
partition the indices 1, . . . , ℓ into pairs (i1, j1), . . . , (iℓ/2, jℓ/2) satisfying π (xik , c) = π (x jk , c) for every k ∈ {1, . . . , ℓ}.
Fix such a partition and let X ⊆ A1 × · · · ×Aℓ be the set

X = {(x1, . . . ,xℓ) ∈ A1 × . . . ×Aℓ | ∀k ∈ {1, . . . , ℓ/2} : π (xik , c) = π (x jk , c)}.

We proceed by induction on c .
For c = 1, π (xik , c) = π (x jk , c) implies xik = x jk such that

X = {(x1, . . . ,xℓ) ∈ A1 × . . . ×Aℓ | ∀k ∈ {1, . . . , ℓ/2} : xik = x jk }.

Thus, by the Cauchy-Schwartz inequality,

∑

(x1, ...,xℓ)∈X

ℓ∏

k=1
wk (xk) =

ℓ/2∏

k=1

∑

x ∈Aik ∩Ajk

wik (x)w jk (x)

≤
ℓ/2∏

k=1

*..,
√ ∑

x ∈Aik
wik (x)

2 ·
√ ∑

x ∈Ajk

w jk (x)
2+//-

≤
ℓ∏

k=1

√ ∑

x ∈Ak
wk (x)

2.

Since this is true for any partition into pairs, (i1, j1), . . . , (iℓ/2, jℓ/2), there are exactly (ℓ − 1)!! such partitions, and
every term in the original sum is counted by some partition, we get the desired bound for c = 1.

Let c > 1 and assume that the statement holds when each key has < c characters. For each a ∈ Σ and k ∈ {1, . . . , ℓ}
define the set

Ak [a] = {x ∈ Ak | π (x , c) = a}.

Fixing the last character of each pair in our partition by picking a1, . . . ,aℓ/2 ∈ Σ and considering the sets Aik [ak] and
Ajk [ak], we can consider the keys of ∏ℓ/2

k=1Aik [ak]×Ajk [ak] as only having c − 1 characters, which allows us to apply

Fast Hashing with Strong Concentration Bounds 27

the induction hypothesis. This yields

∑

(x1, ...,xℓ)∈X⊕ℓ
k=1 xk=∅

ℓ∏

k=1
wk (xk) =

∑

(ak)
ℓ/2
k=1∈Σℓ/2

*........,

∑

(xik ,x jk)
ℓ/2
k=1∈

∏ℓ/2
k=1 Aik [ak]×Ajk [ak]⊕ℓ
k=1 xk=∅

ℓ/2∏

k=1
wik (xik)w jk (x jk)

+////////-
≤

∑

(ak)
ℓ/2
k=1∈Σℓ/2

*..,
((ℓ − 1)!!)c−1 ·

ℓ/2∏

k=1

*..,
√ ∑

x ∈Aik [ak]
wik (x)

2 ·
√ ∑

x ∈Ajk [ak]
w jk (x)

2+//-
+//-

= ((ℓ − 1)!!)c−1 ·
ℓ/2∏

k=1

*..,
∑

a∈Σ

*..,
√ ∑

x ∈Aik [a]
wik (x)

2 ·
√ ∑

x ∈Ajk [a]
w jk (x)

2+//-
+//-

≤ ((ℓ − 1)!!)c−1 ·
ℓ/2∏

k=1

*..,
√∑

a∈Σ

∑

x ∈Aik [a]
wik (x)

2 ·
√∑

a∈Σ

∑

x ∈Ajk [a]
w jk (x)

2+//-
= ((ℓ − 1)!!)c−1 ·

ℓ/2∏

k=1

*..,
√ ∑

x ∈Aik
wik (x)

2 ·
√ ∑

x ∈Ajk

w jk (x)
2+//-
,

where the last inequality follows from the Cauchy-Schwartz inequality. Since the indices can be partitioned into pairs
in (ℓ − 1)!! ways, the same argument as in the induction start yields

∑

x1∈A1, ...,xℓ ∈Aℓ⊕ℓ
k=1 xk=∅

ℓ∏

k=1
wk (xk) ≤ ((ℓ − 1)!!)c ·

ℓ∏

k=1

√ ∑

x ∈Ak
wk (x)

2,

which was the desired conclusion. □

The following rather technical lemma bounds the moments of collisions between sets of keys. However, we shall dwell
on it for a moment as it reflects considerations that will come up repeatedly going forward. Consider a simple tabulation
function h : Σc → [m] and a value function v : Σc × [m]→ R. Hashing the keys of some subsets A1, . . . ,An ⊆ Σc into
[m] using h, we are interested in the sums Xi =

∑
x ∈Ai v (x ,h(x)) for 1 ≤ i ≤ n and, in particular, in properties of the

joint distribution (X1, . . . ,Xn). Here, the actual values of Xi are not as important as how much Xi deviates form its
mean. For 1 ≤ i ≤ n, We thus consider the variables

Yi = Xi − E [Xi] =
∑

x ∈Ai

∑

b ∈[m]
v (x ,b)

(
[h(x) = b] − 1

m

)
,

and for a level of generality required for proving the main theorems of this section, we consider the shifted variables

Y
(j)
i =

∑

x ∈Ai

∑

b ∈[m]
v (x ,b)

(
[h(x) = j ⊕ b] − 1

m

)
,

for j ∈ [m], corresponding to shifting the hash function h by j ∈ [m].

Lemma 4.4. Let h : Σc → [m] be a simple tabulation hash function and v : Σc × [m] → R a value function. Let

Q = {i ∈ [m] | ∃x ∈ Σc : v (x , i) , 0} be the support of v and write ℓ = |Q |. Let n ∈ N and A1, . . . ,An ⊆ Σc . For every

28 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

i ∈ {1, . . . ,n} and j ∈ [m] define the random variable

Y
(j)
i =

∑

x ∈Ai

∑

b ∈Q
v (x ,b)

(
[h(x) = j ⊕ b] − 1

m

)
,

and set

T =
∑

j1, ..., jn ∈[m]⊕n
j=1 jk=0

n∏

k=1
Y
(jk)
k .

Then for every constant t ∈ N,

���E [
T t

] ��� = Ot,n,c
*..,
ℓtn/2

n∏

k=1

*.,
∑

x ∈Ak

∑

b ∈Q
v (x ,b)2+/-

t/2+//-
.

Proof. We rewrite T as follows

T =
∑

j1, ..., jn ∈[m]⊕n
k=1 jk=0

n∏

k=1
Y
(jk)
k

=
∑

j1, ..., jn ∈[m]⊕n
k=1 jk=0

*.,
n∏

k=1

∑

x ∈Ak

∑

b ∈Q
v (x ,b)

(
[h(x) = jk ⊕ b] −

1
m

)+/-

=
∑

(x1, ...,xn)∈A1×...×An

∑

b1, ...bn ∈Q

*.....,
∑

j1, ..., jn ∈[m]⊕n
k=1 jk=0

*.,
n∏

k=1

(
v (xk ,bk)

(
[h(xk) = jk ⊕ bk] −

1
m

))+/-
+/////-

=
∑

(x1, ...,xn)∈A1×...×An

∑

b1, ...bn ∈Q

*.....,
*.,
n∏

k=1
v (xk ,bk)

+/- ·
*.....,

∑

j1, ..., jn ∈[m]⊕n
k=1 jk=0

*.,
n∏

k=1

(
[h(xk) = jk ⊕ bk] −

1
m

)+/-
+/////-

+/////-
=

∑

(x1, ...,xn)∈A1×...×An

∑

b1, ...bn ∈Q
*.,

*.,
n∏

k=1
v (xk ,bk)

+/- ·
*.,


n⊕

k=1
h(xk) =

n⊕

k=1
bk

 −
1
m

+/-
+/-

Here the last equality is derived by observing that for fixed (x1, . . . ,xn) ∈ An × . . . ×An and fixed b1, . . .bn ∈ Q ,
∑

j1, ..., jn ∈[m]⊕n
k=1 jk=0

*.,
n∏

k=1

(
[h(xk) = jk ⊕ bk] −

1
m

)+/- =
∑

j1, ..., jn ∈[m]⊕n
k=1 jk=0

*.,
∑

B⊆{1, ...,n }
(−m)−(n−|B |)

∏

k ∈B
[h(xk) = jk ⊕ bk]+/-

Fast Hashing with Strong Concentration Bounds 29

and since for ∅ ⊆ B ⊊ {1, . . . ,n} there are exactlymn−|B |−1 tuples (j1, . . . , jn) ∈ [m]n satisfying jk ⊕ bk = h(xk) for
every k ∈ B and

⊕n
k=1 jk = 0, we get

∑

j1, ..., jn ∈[m]⊕n
k=1 jk=0

*.,
n∏

k=1

(
[h(xk) = jk ⊕ bk] −

1
m

)+/- =
∑

j1, ..., jn ∈[m]⊕n
k=1 jk=0

*.,
n∏

k=1
[h(xk) = jk ⊕ bk]+/- +

1
m

∑

B⊊{1, ...,n }
(−1)n−|B |

=


n⊕

k=1
h(xk) =

n⊕

k=1
bk

 +
1
m

∑

B⊊{1, ...,n }
(−1)n−|B | .

By the principle of inclusion-exclusion, the last term is − 1
m , which concludes the rearrangement.

Write S = A1 × . . . ×An and let f : S → R be the function

f (x1, . . . ,xn) =
∑

b1, ...bn ∈Q
*.,

*.,
n∏

k=1
v (xk ,bk)

+/- ·
*.,


n⊕

k=1
h(xk) =

n⊕

k=1
bk

 −
1
m

+/-
+/- .

By the above rearrangement, we have T t = ∑
(si)i∈[t]∈S t

∏
i=1∈[t] f (si), such that,

E
[
T t

]
=

∑

(si)ti=1∈S t
E


t∏

i=1
f (si)

 .
Now, for a t-tuple (si)ti=1 ∈ St , we overload notation by for a subsetT ⊆ {1, . . . , t } defining

⊕
i ∈T si =

⊕
i ∈T

⊕n
j=1 (si)j ,

where we still think of the keys (si)j as sets of input characters, and where ⊕ is the symmetric difference. Let (si)ti=1 ∈ St
and let T1, . . . ,Tr ⊆ {1, . . . , t } be all subsets of indices satisfying

⊕
i ∈Tj si = ∅, 1 ≤ j ≤ t . If for some i ∈ {1, . . . , t },

i <
⋃r
j=1Ti then by Lemma 4.1, h(si) is independent of the joint distribution (h(sj))j,i and uniformly distributed in

[m]. It follows that f (si) is independent of the joint distribution (f (sj))j,i . Since it further holds that E [f (si)] = 0,
this implies

E


t∏

j=1
f (sj)

 = E [f (si)] · E

∏

j,i
f (sj)

 = 0 .

Hence, we shall only sum over the t-tuples (si)ti=1 ∈ St satisfying that there exist subsets of indicesT1, . . . ,Tr ⊆ {1, . . . , t }
such that

⊕
i ∈Tj si = ∅ for every j ∈ {1, . . . , r } and ⋃r

j=1Tj = {1, . . . , t }.
Fix such subsets T1, . . . ,Tr ⊆ {1, . . . , t } and for i ∈ {1, . . . , r } let Bi = Ti \

(⋃
j<i Tj

)
. Then we can write

∑

(si)ti=1∈S t
∀j ∈{1, ...,r } : ⊕

i∈Tj si=∅

t∏

i=1
f (si)

=
∑

(si)i∈{1, . . .,t }\Br ∈S t−|Br |
∀j ∈{1, ...,r−1} : ⊕

i∈Tj si=∅

∏

i ∈{1, ...,t }\Br
f (si)

∑

(si)i∈Br ∈S |Br |⊕
i∈Br si=

⊕
i∈Tr \Br si

∏

i ∈Br
f (si) (8)

Now fix (si)i ∈{1, ...,t }\Br ∈ St−|Br | such that for all j ∈ {1, . . . , r − 1} it holds that ⊕i ∈Tj si = ∅. We wish to upper
bound the inner sum in (8) for this choice of (si)i ∈{1, ...,t }\Br . In order to do this, observe that for s = (x1, . . . ,xn) ∈ S

30 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

we always have

��f (s)�� ≤ ∑

b1, ...bn ∈Q

∏

k ∈[n]
��v (xk ,bk)�� =

n∏

k=1

�������
∑

b ∈Q
v (xk ,b)

������� ≤
n∏

k=1

√
ℓ

∑

b ∈Q
v (xk ,b)

2 ,

by the QA-inequality. We now wish to combine this bound with Lemma 4.3 to obtain a bound on the inner sum in (8).
For this, we define let ℓ = |Tr |n and define sets of keys F1, . . . , Fℓ and weight functionsw1, . . . ,wℓ : Σc → R as follows.
EnumerateTr = {i1, . . . , i |Tr | } such that {i1, . . . , i |Br | } = Br . Now for 0 ≤ k < |Br | and 1 ≤ j ≤ n we define Fkn+j = Aj .
We further define the weight function wkn+j : Σc → R by wkn+j (x) =

√
ℓ
∑
b ∈Q v (x ,b)2 for x ∈ Σc . Observe that

these weight functions are all identical. Secondly, for |Br | ≤ k < |Tr | and 1 ≤ j ≤ n, we define Fkn+j = {sik (j)}, and
wkn+j : Σc → R bywkn+j (x) = 1 for all x ∈ Σc . Then,

������������

∑

(si)i∈Br ∈S |Br |⊕
i∈Br si=

⊕
i∈Tr \Br si

∏

i ∈Br
f (si)

������������
≤

∑

x1∈B1, ...,xℓ ∈Bℓ⊕ℓ
k=1 xk=∅

ℓ∏

k=1
wk (xk) ≤ (n |Tr | − 1)!!)c

n∏

k=1

*.,ℓ ·
∑

x ∈Ak

∑

b ∈Q
v (x ,b)2+/-

|Br |/2
,

where the last inequality follows from Lemma 4.3. Note that this upper bound does not depend on the choice of
(si)i ∈{1, ...,t }\Br ∈ St−|Br | in the outer sum in (8). Repeating this argument another r − 1 times, and using that {1, . . . , t }
is the disjoint union of B1, . . . ,Br , we obtain that

�������������

∑

(si)ti=1∈S t
∀j ∈{1, ...,r } : ⊕

i∈Tj si=∅

t∏

i=1
f (si)

�������������
≤ ((nt − 1)!!)cr ·

n∏

k=1

*.,ℓ
∑

x ∈Ak

∑

b ∈Q
v (x ,b)2+/-

t/2

.

Since there are at most 22t ways of choosing r and the subsets T1, . . . ,Tr and since r ≤ 2t , summing over these choices
yields

���E [
T t

] ��� ≤ 22
t
((nt − 1)!!)cr ·

n∏

k=1

*.,ℓ
∑

x ∈Ak

∑

b ∈Q
v (x ,b)2+/-

t/2

≤ Ot,n,c
*..,
ℓnt/2

n∏

k=1

*.,
∑

x ∈Ak

∑

b ∈Q
v (x ,b)2+/-

t/2+//-
.

□

We are now ready to prove the main theorem of the subsection, a bound on the sum of squared deviations of the value
function from its deviation when shifting by every j ∈ [m], the second part of Theorem 2.1. As described in Section 2.1,
this bound is an important ingredient in the proof of the first part of Theorem 2.1. Namely, in our inductive proof, it
bounds the variance of the value obtained from the keys of one of the groups Gi when the keys from this group are
shifted by a uniformly random XOR with h(αi).

Theorem 4.5. Let h : Σc → [m] be a simple tabulation hash function and S ⊆ Σc a set of keys. Letv : Σc ×[m]→ [−1, 1]
be a value function such that the set Q = {i ∈ [m] | ∃x ∈ Σc : v (x , i) , 0} satisfies |Q | ≤ mε , where ε < 1

4 is a constant.

For j ∈ [m] define the random variable Vj =
∑
x ∈S v (x ,h(x) ⊕ j) and let µ = E

[
Vj

]
, noting that this is independent of j.

Fast Hashing with Strong Concentration Bounds 31

For any γ ≥ 1,

Pr


∑

j ∈[m]
(Vj − µ)2 > Ccγ

∑

x ∈S

∑

k ∈[m]
v (x ,k)2

 = Oγ ,ε,c (n/m
γ) (9)

where Cγ = 3 · 26 · γ 2 and this bound is query invariant up to constant factors.

Proof. First, note that we may write

Vj − µ =
∑

x ∈S

∑

k ∈Q
v (x ,k)[h(x) = j ⊕ k] − 1

m

∑

x ∈S

∑

k ∈Q
v (x ,k) =

∑

x ∈S

∑

k ∈Q
v (x ,k)

(
[h(x) = j ⊕ k] − 1

m

)
(10)

Now, define v ′(x) = ∑
k ∈Q v (x ,k)2 and for X ⊆ Σc we let v ′(X) =

∑
x ∈X v ′(x) and define v ′∞ (X) = maxx ∈X v ′(x).

Now applying Lemma 4.2 with respect tov ′ we get position characters α1, . . . ,αr with corresponding groupsG1, . . . ,Gr ,
such that, ·∪ri=1Gi = S and for every i ∈ {1, . . . , r }, v ′(Gi) ≤ v ′(S)1−1/cv ′∞ (S)1/c . For i ∈ {1, . . . , r }, j ∈ [m] we define
the random variables

X
(j)
i =

∑

x ∈Gi

∑

k ∈Q
v (x ,k)

(
[h(x \ αi) = j ⊕ k] − 1

m

)
, Y

(j)
i = X

(j⊕h (αi))
i ,

where we recall that x \ αi denotes the set containing the position characters of x except αi . Notice that by (10),

Vj − µ = ∑
i ∈[r] Y

(j)
i . Writing V = ∑

j ∈[m] (Vj − µ)2 =
∑
j ∈[m]

(∑
i ∈[r] Y

(j)
i

)2
, the statement we wish to prove is

Pr
[
V > Ccγv

′(S)
]
≤ Oγ ,c

(
|S |m−γ

)
.

We proceed by induction on c . The induction start, c = 1, and the induction step are almost identical, so we carry them
out in parallel. Note that when c = 1 each group has size at most 1, i.e. |Gi | ≤ 1 for every i ∈ {1, . . . , r }.

Let γ ≥ 1 be fixed. We write

V =
∑

j ∈[m]

r∑

i=1

(
Y
(j)
i

)2

︸ ︷︷ ︸
V1

+
∑

j ∈[m]

r∑

i=1
Y
(j)
i Y

(j)
<i

︸ ︷︷ ︸
V2

(11)

and bound V1 and V2 separately starting with V1.

32 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

Interchanging summations, V1 =
∑r
i=1

∑
j ∈[m]

(
Y
(j)
i

)2
. In the case c = 1, let i ∈ {1, . . . , r } be given. If |Gi | = 0,

∑
j ∈[m]

(
Y
(j)
i

)2
= 0. If on the other hand Gi = {xi } for some xi ∈ Σc ,

∑

j ∈[m]

(
Y
(j)
i

)2
=

∑

j ∈[m]

*.,
∑

k ∈Q
v (xi ,k)

(
[h(xi) = j ⊕ k] − 1

m

)+/-
2

=
∑

j ∈[m]

*.,
∑

k ∈[m]
v (xi ,k)

(
[h(xi) ⊕ j = k] − 1

m

)+/-
2

=
∑

j ∈[m]

*.,
∑

k ∈[m]
v (xi ,k)

(
[j = k] − 1

m

)+/-
2

=
∑

j ∈[m]

*.,v (xi , j) −
1
m

∑

k ∈[m]
v (xi ,k)

+/-
2

≤
∑

j ∈[m]
v (xi , j)

2

where the last inequality follows from the inequality E
[
(X − E [X])2

]
≤ E

[
X 2

]
. Thus, we always have V1 ≤ v ′(S) ≤

Cc
γ
2 v ′(S). In the case c > 1 we observe that the keys of Gi have a common position character. Hence, we can apply the
induction hypothesis on the keys of Gi with the remaining c − 1 position characters to conclude that

Pr


∑

j ∈[m]

(
Y
(j)
i

)2
> Cc−1γ v ′(Gi)

 ≤ Oγ ,c (|Gi |m−γ) .

By a union bound,

Pr
V1 >

Ccγ

2 v ′(S)
 ≤ Pr

[
V1 > Cc−1γ v ′(S)

]
≤

∑

i ∈[r]
Oγ ,c (|Gi |m−γ) = Oγ ,c (|S |m−γ) . (12)

Next we proceed to bound V2. For 0 ≤ i ≤ r define Zi =
∑
j ∈[m] Y

(j)
i Y

(j)
<i with Z0 = 0 and Fi = σ ((h(α j))

i
j=1) with

F0 = {∅,Ω}. As Y (j)
<i is Fi−1 measurable for j ∈ [m] it holds that

E [Zi | Fi−1] =
∑

j ∈[m]
E

[
Y
(j)
i

���� Fi−1
]
Y
(j)
<i = 0 ,

and so (Zi ,Fi)ri=0 is a martingale difference. We will define a modified martingale difference (Z ′i ,Fi)ri=0 recursively as
follows: We define the events Ai ,Bi and Ci for i ∈ {1, . . . , r } as

Ai =
i⋂

k=1

*.,
∑

j ∈[m]

(
Y
(j)
k

)2
≤ Cc−1γ v ′(Gk)

+/- ,

Bi =
i⋂

k=1

(
Var [Zk �� Fk−1] ≤ m−1/2v ′(Gk)v

′(G<k)
)
,

Ci = *, max
1≤k≤i

{
Z ′<k

}
≤

Ccγ

2 v ′(S)+- .

Fast Hashing with Strong Concentration Bounds 33

Finally, we let Z ′i = [Ai ∩ Bi ∩Ci] · Zi . Clearly Bi ,Ci ∈ Fi−1. To see that this is also the case for Ai we note that for
k ≤ i , ∑

j ∈[m]
(Y

(j)
k)2 =

∑

j ∈[m]
(X

(j⊕h (αk))
k)2 =

∑

j ∈[m]
(X

(j)
k)2 ,

and as each X
(j)
k is Fk−1-measurable it follows that Ai ∈ Fi−1. Now, as [Ai ∩ Bi ∩Ci] is Fi−1-measurable,

E
[
Z ′i

��� Fi−1]
= [Ai ∩ Bi ∩Ci]E [Zi | Fi−1] = 0,

which implies that (Z ′i ,Fi)ri=0 is a martingale difference.
If Ar ,Br , and Cr all occur then

∑r
i=1 Zi =

∑r
i=1 Z

′
i . In particular

Pr
V2 >

Ccγ

2 v ′(S)
 = Pr


∑

i ∈[r]
Zi >

Ccγ

2 v ′(S)
 ≤ Pr


r∑

i=1
Z ′i >

Ccγ

2 v ′(S)
 + Pr

[
Acr ∪ Bcr ∪Ccr

]
.

If Cr does not occur then
∑
i ∈[r] Z ′i >

Cc
γ
2 v ′(S) so a union bound yields

Pr
V2 ≥

Ccγ

2 v ′(S)
 ≤ 2 Pr


r∑

i=1
Z ′i >

Ccγ

2 v ′(S)
 + Pr

[
Acr

]
+ Pr [

Bcr
]
. (13)

We now wish to apply Corollary 3.2 to the martingale difference (Z ′i ,Fi)ri=0. Thus, we have to bound |Z ′i | as well as the
conditional variances Var

[
Z ′i

��� Fi−1]
. For the bound on Z ′i , observe that by the Cauchy-Schwarz inequality,

���Z ′i ��� = [Ai ∩ Bi ∩Ci]
�������
∑

j ∈[m]
Y
(j)
i Y

(j)
<i

������� ≤ [Ai ∩ Bi ∩Ci]
√√ ∑

j ∈[m]

(
Y
(j)
i

)2√√ ∑

j ∈[m]

(
Y
(j)
<i

)2
.

If Ai occurs we obtain ∑

j ∈[m]

(
Y
(j)
i

)2
≤ Cc−1γ v ′(Gi) ≤ Cc−1γ v ′(S)1−1/cv ′∞ (S)1/c ,

by Lemma 4.2 and if Ai , Bi , and Ci all occur then
∑

j ∈[m]

(
Y
(j)
<i

)2
=

∑

j ∈[m]

∑

k<i

(
Y
(j)
k

)2
+ 2Z ′<i ≤ Cc−1γ v ′(G<i) + 2Ccγv ′(G<i) ≤ 3Ccγv ′(S) .

In conclusion
|Z ′i | ≤ Cc−1/2γ

√
3v ′(S)1−1/(2c)v ′∞ (S)1/(2c) .

For the bound on the conditional variance note that if Bi occurs then Var [Zi | Fi−1] ≤ m−1/2v ′(Gk)v
′(G<k) and thus,

Var
[
Z ′i

��� Fi−1]
= [Ai][Bi][Ci]Var [Zi | Fi−1] ≤ m−1/2v ′(Gk)v

′(G<k) .

It follows that ∑r
i=1 Var

[
Z ′i

��� Fi−1]
≤ m−1/2v ′(S)2. Letting

σ 2 =m−1/2v ′(S)2

and
M = Cc−1/2γ

√
3v ′(S)1−1/(2c)v ′∞ (S)1/(2c)

in Corollary 3.2 we thus obtain

Pr

r∑

i=1
Z ′i >

Ccγ

2 v ′(S)
 ≤ exp *,−

v ′(S)1/c

3C2c−1
γ · √m · v ′∞ (S)1/c

C *,
(Cγ)2c−1/2 · √3 · √m · v ′∞ (S)1/2c

2v ′(S)1/2c
+-+- .

34 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

Applying Lemma 3.4 first with b =
(
v ′∞ (S)
v ′ (S)

)1/(2c)
≤ 1 and then with b =

√
m > 1 yields

v ′(S)1/c

3C2c−1
γ
√
mv ′∞ (S)1/c

C *.,
C2c−1/2
γ

√
3
√
mv ′∞ (S)1/2c

2v ′(S)1/2c
+/- ≥

1
3C2c−1

γ
C *.,

C2c−1/2
γ

√
3
√
m

2
+/- .

We then use Lemma 3.3 to get

1
3C2c−1

γ
C *.,

C2c−1/2
γ

√
3
√
m

2
+/- ≥

√
Cγ√
3 · 4 log *,1 +

(Cγ)2c−1/2
√
3
√
m

2
+- ≥

√
Cγ√
3 · 8 log(m) = γ log(m) ,

where we have used that Cγ = 3 · 8 · γ 2 and γ ≥ 1. Combining this we get that

Pr

r∑

i=1
Z ′i >

Ccγ

2 v ′(S)
 ≤ m−γ . (14)

It thus suffices to bound the probabilities Pr[Acr−1] and Pr[B
c
r−1]. For A

c
r−1, if c = 1 the discussion from the bound on

V1 proves that Acr−1 never occurs. If c > 1, the inductive hypothesis on the groups Gi and a union bound yields

Pr
[
Acr−1

]
= Oγ ,ϵ,c *,

r∑

i=1
|Gi |m−γ +- = O (|S |m−γ) . (15)

For Bcr−1, we can for each i ∈ {1, . . . , r } write

Var [Zi | Fi−1] = E


*.,
∑

j ∈[m]
X
(j⊕h (αi))
i Y

(j)
<i

+/-
2 ������� Fi−1


=

1
m

∑

k ∈[m]

*.,
∑

j ∈[m]
X
(j⊕k)
i Y

(j)
<i

+/-
2

=
1
m

∑

k ∈[m]

∑

(j1, j2)∈[m]2
Y
(j1⊕k)
i Y

(j2⊕k)
i Y

(j1)
<i Y

(j2)
<i

=
1
m

∑

(j1, j2, j3, j4)∈[m]4
j1⊕j2⊕j3⊕j4=0

Y
(j1)
i Y

(j2)
i Y

(j3)
<i Y

(j4)
<i

Call this quantity Ti . It follows from Lemma 4.4 and Markov’s inequality that

Pr
[
Ti ≥ m−1/2v ′(Gk)v

′(G<k)
]
≤

E
[
T
2γ /(1−4ε)
i

]
mγ /(1−4ε) (v ′(Gk)v

′(G<k))
2γ /(1−4ε) ≤ Oγ ,ε,c (m

−γ).

Thus, Pr[Bcr−1] = O (|S |m−γ) by a union bound.
Combining equations (11)-(15) we conclude that indeed Pr

[
V ≥ Ccγv

′(S)
]
= Oγ ,ε,c (|S |m−γ). □

4.3 Establishing the Concentration Bound

With the results of the previous subsection at hand, we proceed to prove the first part of Theorem 2.1. We show that
for a value function of support bounded in size bymε for some ε < 1/4, simple tabulation supports Chernoff-style
bounds with added error probability inversely polynomial inm. For convenience, we restate the first part of Theorem 2.1

Fast Hashing with Strong Concentration Bounds 35

as Theorem 4.6. The statement is equivalent to Theorem 2.1 but for precision, we have chosen to write out the statement
more explicitly.

Theorem 4.6. Let h : Σc → [m] be a simple tabulation hash function and S ⊆ Σc be a set of keys. Let v : Σc × [m]→
[−1, 1] be a value such that the set Q = {i ∈ [m] | ∃x ∈ Σc : v (x , i) , 0} satisfies |Q | ≤ mε , where ε < 1

4 is a constant.

Define the random variableW =
∑
x ∈S v (x ,h(x)) and write µ = E [W] and σ 2 = Var [W]. Then for any constant γ ≥ 1,

Pr
[��W − µ�� ≥ Cγ ,c t

]
≤ 2 exp

(
−σ 2C

(t

σ 2

))
+Oγ ,ε,c

(
|S |m−γ

)
,

where Cγ ,c =
(
1 + 1

γ

)3 c (c−1)2 (Ccγ)3c for some large enough universal constant C .

Proof. First, akin to the proof of Theorem 4.5, we may write

V =W − µ =
∑

x ∈S

∑

k ∈Q
v (x ,k)

(
[h(x) = j ⊕ k] − 1

m

)
,

and note that

Var [V] = Var [W] =
∑

x ∈S

*..,
∑

k ∈Q

1
m
v (x ,k)2 − *.,

∑

k ∈Q

1
m
v (x ,k)+/-

2+//-
.

We proceed by induction on c . For c = 1 we have full randomness and it follows immediately from Corollary 3.2 that

Pr [|V | ≥ t] ≤ 2 exp
(
−σ 2C

(t

σ 2

))
.

Now assume that c > 1 and inductively that the result holds for smaller values of c . We define v ′(x) = ∑
k ∈Q v (x ,k)2

and for X ⊆ Σc we let v ′(X) =
∑
x ∈X v ′(x) and define v ′∞ (X) = maxx ∈X v ′(x). Now, applying Lemma 4.2 with respect

tow = v ′ we get position characters α1, . . . ,αr with corresponding groups G1, . . . ,Gr , such that ·∪ri=1Gi = S and for
every i ∈ {1, . . . , r }, v ′(Gi) ≤ v ′(S)1−1/cv ′∞ (S)1/c . For a bin j ∈ [m] and an i ∈ {1, . . . , r } we again define

X
(j)
i =

∑

x ∈Gi

∑

k ∈Q
v (x ,k) ·

(
[h(x \ αi) = j ⊕ k] − 1

m

)
, Yi = X

(h (αi))
i .

Note that ∑r
i=1 Yi = V . For i ∈ {1, . . . , r } we define the σ -algebra Fi = σ ((h(α j))

i
j=1). We furthermore define Y0 = 0 and

F0 = {∅,Ω}. As Yi is Fi -measurable for i ∈ [r + 1] and E [Yi | Fi−1] = 0 for i ∈ {1, . . . , r }, (Yi ,Fi)ri=0 is a martingale
difference. Furthermore, for i ∈ {1, . . . , r },

Var [Yi | Fi−1] = 1
m

∑

j ∈[m]

(
X
(j)
i

)2
.

According to Theorem 4.5 there exists a constant K = 3 · 26 · γ 2 such that

Pr


∑

j ∈[m]

(
X
(j)
i

)2
> Kc−1v ′(Gi)

 ≤ Oγ ,ε,c
(|Gi |mγ)

. (16)

36 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

For i ∈ {1, . . . , r } we define the events

Ai =
⋂

k≤i
*.,

∑

j ∈[m]
(X

(j)
k)2 ≤ Kc−1v ′(Gk)

+/- ,

Bi =
*..,
max
k≤i
j ∈[m]

|X (j)
k | ≤ Cγ+1,c−1M

+//-
,

for some M to be specified later. We define Zi = [Ai ∩ Bi]Yi for i ∈ {1, . . . , r } and Z0 = 0. As both Ai ,Bi ∈ Fi−1 we
have that E [Zi | Fi−1] = [Ai ∩Bi]E [Yi | Fi−1] = 0 for {1, . . . , r } so (Zi ,Fi)ri=0 is a martingale difference. By definition
of Ai and Bi it moreover holds for i ∈ {1, . . . , r } that

|Zi | ≤ Cγ+1,c−1M and Var [Zi | Fi−1] ≤ Kc−1v ′(Gi)

m
.

Setting σ 2
0 =

Kc−1v ′ (S)
m and applying Corollary 3.2 we obtain

Pr

������
r∑

i=1
Zi

������ ≥ t
 ≤ 2 exp *.,−

σ 2
0

C2
γ+1,c−1M2 C *,

tCγ+1,c−1M
σ 2
0

+-
+/- . (17)

If Ar−1 and Br−1 both occur then ∑r
i=1 Zi =

∑r
i=1 Yi so it must hold that

Pr [|V | ≥ t] ≤ Pr

������
r∑

i=1
Zi

������ ≥ t
 + Pr

[
Acr−1

]
+ Pr

[
Bcr−1

]
.

We may assume thatm > 1, i.e., the number of bins exceeds one, and then by the Cauchy-Schwarz inequality,

σ 2 =
∑

x ∈S

*..,
∑

k ∈Q

1
m
v (x ,k)2 − *.,

∑

k ∈Q

1
m
v (x ,k)+/-

2+//-
≥

∑

x ∈S
*.,
∑

k ∈Q

1
m
v (x ,k)2 − 1

m2(1−ε)
∑

k ∈Q

1
mε v (x ,k)

2+/-
=
v ′(S)
m

(
1 − 1

m1−ε
)

≥ v ′(S)
3m

≥ σ 2
0

3Kc−1

so using (17) we obtain

Pr
[
|V | ≥ Cγ ,c t

]
≤ 2 exp *.,−

3Kc−1σ 2

C2
γ+1,c−1M2 C

(
Cγ ,c · t ·Cγ+1,c−1M

3Kc−1σ 2

)+/- + Pr
[
Acr−1

]
+ Pr

[
Bcr−1

]
. (18)

By (16) and a union bound Pr
[
Acr−1

]
≤ O (|S |m−γ). For bounding Pr

[
Bcr−1

]
we use the induction hypothesis on the

groups, concluding that for i ∈ {1, . . . , r } and j ∈ [m],

Pr
[����X (j)

i
���� > Cγ+1,c−1M

]
≤ 2 exp *,−σ

2
i C *,

M

σ 2
i

+-+- +O (|Gi |m−γ−1) ,

Fast Hashing with Strong Concentration Bounds 37

where σ 2
i = Var

[
Y
(j)
i

]
≤ v ′(Gi)/m. By the initial assumption on the groups, this implies σ 2

i ≤ v ′(S)1−1/cv ′∞ (S)/m and
we denote the latter quantity τ 2. Combining with Lemma 3.5 we obtain by a union bound that

Pr
[
Bcr−1

]
≤ 2 |S |m exp

(
−τ 2C

(M
τ 2

))
+O (|S |m−γ) .

We fixM to be the unique real number with τ 2C
(
M
τ 2

)
= (γ + 1) log(m). With this choice ofM , Pr

[
Bcr−1

]
≤ O (|S |m−γ),

so by (18) it suffices to show that

3Kc−1σ 2

C2
γ+1,c−1M2 C

(
Cγ ,c · t ·Cγ+1,c−1M

3Kc−1σ 2

)
≥ min

{
σ 2C

(t

σ 2

)
,γ log(m)

}
. (19)

First since Cγ ,cCγ +1,c−1
3Kc−1 ≥ 1 Lemma 3.4 give us that

3 (Kγ)c−1 σ 2

C2
γ+1,c−1M2 C

(
Cγ ,c · t ·Cγ+1,c−1M

3 (Kγ)c−1 σ 2

)
≥ Cγ ,c

Cγ+1,c−1
σ 2

M2 C
(tM
σ 2

)
.

Now by definition of Cγ ,c and Cγ+1,c−1 we get that

Cγ ,c

Cγ+1,c−1
=

(
1 + 1

γ

)3 c (c−1)2 (Ccγ)3c

(
1 + 1

γ+1
)3 (c−1) (c−2)

2 (Cc (γ + 1))3(c−1)
≥ (Ccγ)3 .

So we have reduced the problem to showing that

(Ccγ)3
σ 2

M2 C
(tM
σ 2

)
≥ min

{
σ 2C

(t

σ 2

)
,γ log(m)

}
.

For that we have to check a couple of cases.

Case 1. tMσ 2 ≤ 1: Using Lemma 3.3 twice and the fact that (Ccγ)3 ≥ 3
2 , we get that

(Ccγ)3σ 2C
(tM
σ 2

)
≥ (Ccγ)3

3
t2

σ 2 ≥ σ 2C
(t

σ 2

)
.

Case 2. v ′(S) ≤ m(1−ε/c)(1+ 1
2c−1) : We then get that

τ 2 ≤ v ′(S)1−1/cv ′∞ (S)
m

≤ m(1−ε/c)(1− 1
2c−1)

m1−ε/c =m−
1−ε/c
2c−1 .

Now we note thatM ≤ 12γc since

τ 2C
(12γc
τ 2

)
≥ 12γc log

(
1 + 12γc

τ 2

)
/2 ≥ 6γc log(1/τ 2) ≥ 6γc 1 − ε/c2c − 1 log(m) ≥ (γ + 1) log(m) ,

where we have used that ε ≤ 1
4 and γ ≥ 1.

We then get that

(Ccγ)3
σ 2

M2 C
(tM
σ 2

)
≥ (Ccγ)3

M
σ 2C

(t

σ 2

)
≥ (Ccγ)3

12cγ σ 2C
(t

σ 2

)
≥ σ 2C

(t

σ 2

)
.

Case 3. tMσ 2 > 1 and v ′(S) > m(1−ε/c)(1+ 1
2c−1) : We see thatM ≤ max

{
6γ log(m),

√
6γ log(m)τ

}
since

τ 2C *.,
max

{
6γ log(m),

√
6γ log(m)τ

}
τ 2

+/- ≥ max
{
6γ log(m)

3 ,
6γ log(m)

3

}
≥ (γ + 1) log(m) ,

38 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

where we have used Lemma 3.3 and that γ ≥ 1. Now we have that σ 2 ≥ v ′ (S)
3m > m

1−2ε
2c−1 /3 and τ 2 ≤ v ′ (S)1−1/cv ′∞ (S)1/c

m .
Combining this we get that

σ 2

M2 ≥ min
{

σ 2

36γ 2 log(m)2
,

σ 2

6γ log(m)τ 2

}

≥ min


m
1−2ε
2c−1

108γ 2 log(m)2
,

(
v ′(S)
v ′∞ (S)

)1/c
· 1
3 · 6γ log(m)


≥ min


m

1−2ε
2c−1

108γ 2 log(m)2
,m

1−2ε
2c · 1

18γ log(m)


≥ m

1
4c

108γ 2 log(m)2

≥ log(m)

108 · 43c3γ 2 ,

where have used that ε < 1
4 and that m

1
4c

log(m)2
≥ log(m)

43c3 . Now we get that

(Ccγ)3
σ 2

M2 C
(tM
σ 2

)
≥ (Ccγ)3

log(m)

108 · 43c3γ 2 /3 ≥ γ log(m) .

□

5 GENERAL VALUE FUNCTIONS – ARBITRARY BINS

The goal of this section is to prove Theorem 2.2, the second step towards Theorem 1.2. Again, we postpone the argument
that our concentration bounds are query invariant to Section 7. Recall that Theorem 2.2 is concerned with a hash
function of the form h = τ ◦ д, where д : Σc → [m] is a simple tabulation hash function and τ is a uniformly random
permutation. Our goal is to prove that for any value function v : Σc × [m] → [−1, 1], the sum ∑

x ∈Σc v (x ,h(x)) is
strongly concentrated with high probability inm. This result follows by combining the distributional properties of д
with the randomness of τ .

We start out by proving a lemma. The lemma describes properties we need д to possess for the final composition
with τ to yield Chernoff-style concentration.

Lemma 5.1. Letm ≥ 2 be an integer and C,T ∈ R+ positive reals. Furthermore, let V : [m] × [m] → R be a value

function satisfying
∑
i ∈[m]V (i, j) = 0 for every j ∈ [m] and such that

max
i, j ∈[m]

|V (i, j) | ≤ M := max
{
C,

σ 2

T

}
,

where σ 2 = 1
m

∑
i ∈[m]

∑
j ∈[m]V (i, j)2. If τ : [m]→ [m] is a uniformly random permutation, then the random variable

Z =
∑
i ∈[m]V (τ (i), i) satisfies

Pr [|Z | ≥ Dt] ≤ 4
(
exp

(
−σ 2C

(t

σ 2

))
+ exp

(
− T 2

2σ 2

))
,

where D = max {8C, 12} is a universal constant depending on C .

Fast Hashing with Strong Concentration Bounds 39

Proof. We define Y1 =
∑ ⌈m/2⌉−1
i=0 V (τ (i), i) and Y2 =

∑m−1
i= ⌈m/2⌉ V (τ (i), i). Since Z = Y1 + Y2 it follows that if

Z > Dt then there exists i ∈ {1, 2} such that Yi ≥ D
2 t . It suffices to show that

Pr
[
Yi ≥ D

2 t
]
≤ exp

(
−σ 2C

(t

σ 2

))
+ exp

(
−σ 2C

(T
σ 2

))
, (20)

for i ∈ {1, 2}. A union bound over i then yields a bound on Pr[Z ≥ Dt]. Since we may instead consider the value
function −V , the same argument yields a bound on Pr[Z ≤ −Dt], which concludes the proof.

Thus, we shall prove (20) for Y1 – the proof is completely analogous for Y2. Define the filtration (Fi) ⌈m/2⌉
i=0 by

Fi = σ
(
(τ (j))j ∈[i]

)
and let Xi = E [Y1 | Fi] such that (Xi ,Fi) ⌈m/2⌉

i=0 is a martingale, X0 = E [Y1], and X ⌈m/2⌉ = Y1.
Towards applying Corollary 3.2, we bound |Xi − Xi−1 | and ∑ ⌈m/2⌉

i=1 Var [Xi − Xi−1 | Fi−1].
First, we bound |Xi − Xi−1 |. We start by writing

Xi − Xi−1 = E [Y1 | Fi] − E [Y1 | Fi−1]

= V (τ (i − 1), i − 1) − E [V (τ (i − 1), i − 1) | Fi−1] +
⌈m/2⌉−1∑

k=i

(E [V (τ (k),k) | Fi] − E [V (τ (k),k) | Fi−1]) .

Now, note that for k ≥ i ,

E [V (τ (k),k) | Fi] = − 1
m − i

i−1∑

j=0
V (τ (j),k) ,

since ∑
ℓ∈[m]V (ℓ,k) = 0, and furthermore,

E [V (τ (k),k) | Fi−1] = − 1
m − i

*.,E [V (τ (i − 1),k) | Fi−1] +
i−2∑

j=0
V (τ (j),k)+/- .

Hence, it follows that

Xi − Xi−1 = V (τ (i − 1), i − 1) − E [V (τ (i − 1), i − 1) | Fi−1]

− 1
m − i

⌈m/2⌉−1∑

k=i

(V (τ (i − 1),k) − E [V (τ (i − 1),k) | Fi−1]) .

Since |V (i, j) | ≤ M for all i, j ∈ [m], it follows that |Xi − Xi−1 | ≤ 4M .
Second, we bound Var [Xi − Xi−1 | Fi−1]. To this end, observe that

Var [Xi − Xi−1 | Fi−1] = Var
V (τ (i − 1), i − 1) − 1

m − i
⌈m/2⌉−1∑

k=i

V (τ (i − 1),k)
������� Fi−1


≤ 2 *.,Var [V (τ (i − 1), i − 1) | Fi−1] + 1

m − i
⌈m/2⌉−1∑

k=i

Var [V (τ (i − 1),k) | Fi−1]+/- ,

40 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

where the inequality follows from the fact that 2Cov (A,B | H) ≤ Var [A | H]+Var [B | H], for any random variables
A and B and any sigma algebraH . For any k ∈ [m],

Var [V (τ (i − 1),k) | Fi−1] ≤ E
[
V (τ (i − 1),k)2 ��� Fi−1]

=
1

m − i + 1
∑

j ∈[m]\τ ([i−1])
V (j,k)2

≤ 1
m − i + 1

∑

j ∈[m]
V (j,k)2

≤ 2
m

∑

j ∈[m]
V (j,k)2 ,

where the last inequality follows from the fact that i ≤ ⌈m/2⌉. Hence,

Var [Xi − Xi−1 | Fi−1] ≤ 2 *.,Var [V (τ (i − 1), i − 1) | Fi−1] + 1
m − i

⌈m/2⌉−1∑

k=i

Var [V (τ (i − 1),k) | Fi−1]+/-
≤ 4

m

∑

j ∈[m]
V (j, i)2 +

2
m − i ·

2
m

⌈m/2⌉−1∑

k=i

∑

j ∈[m]
V (j,k)2

≤ 4
m

∑

j ∈[m]
V (j, i)2 +

16
m2

∑

k ∈[m]

∑

j ∈[m]
V (j,k)2 ,

again using that i ≤ ⌈m/2⌉. We now see that
⌈m/2⌉∑

i=1
Var [Xi − Xi−1 | Fi−1] ≤

⌈m/2⌉∑

i=1

*.,
4
m

∑

j ∈[m]
V (j, i)2 +

16
m2

∑

k ∈[m]

∑

j ∈[m]
V (j,k)2+/-

≤
∑

i ∈[m]

*.,
4
m

∑

j ∈[m]
V (j, i)2 +

16
m2

∑

k ∈[m]

∑

j ∈[m]
V (j,k)2+/-

≤ 20σ 2 .

The assumption onV implies that E [V (τ (i), i)] = 0 for each i ∈ [m], so also E [Y1] = 0. Applying Corollary 3.2
then yields,

Pr
[
Y1 ≥ D

2 t
]
≤ exp

(
− 20σ 2

(4M)2
C

(
(D/2)t · 4M

20σ 2

))
= exp

(
− 5σ 2

4M2 C
(DMt

10σ 2

))
.

The goal is now to show that

5σ 2

4M2 C
(DMt

10σ 2

)
≥ min

{
σ 2C

(t

σ 2

)
,
T 2

2σ 2

}
. (21)

Because if this is the case, then as desired

Pr
[
Y1 ≥ D

2 t
]
≤ exp

(
−min

{
σ 2C

(t

σ 2

)
,
T 2

2σ 2

})
≤ exp

(
−σ 2C

(t

σ 2

))
+ exp

(
− T 2

2σ 2

)
.

We check (21) by cases. This completes the proof.

Fast Hashing with Strong Concentration Bounds 41

Case 1.M ≤ 10
D : In this case, DM10 ≤ 1. Thus, by Lemma 3.4,

5σ 2

4M2 C
(DMt

10σ 2

)
≥ D2

80 σ
2C

(t

σ 2

)
≥ σ 2C

(t

σ 2

)
,

using that D ≥ 12 ≥ √80.

Case 2. 10D ≤ M ≤ C : In this case, DM10 ≥ 1. Thus, by Lemma 3.4,

5σ 2

4M2 C
(DMt

10σ 2

)
≥ D

8Mσ 2C
(t

σ 2

)
≥ D

8C σ 2C
(t

σ 2

)
≥ σ 2C

(t

σ 2

)
,

using that D ≥ 8C .

Case 3.M ≤ σ 2
T : In this case, recall that D ≥ 12 such that D

10 ≥ 1 and we may apply Lemma 3.4, yielding

5σ 2

4M2 C
(DMt

10σ 2

)
≥ 5

4
T 2

σ 2 C
(D
10

t

T

)
≥ D

8
T 2

σ 2 C
(t
T

)
.

By Lemma 3.3,

C
(t
T

)
≥ C

(
min

{ t
T
, 1

})
≥ min

{
t2

3T 2 ,
1
3

}
.

So finally,

5σ 2

4M2 C
(DMt

10σ 2

)
≥ min

{
D

24
t2

σ 2 ,
D

24
T 2

σ 2

}
≥ min

{
D

12σ
2C

(t

σ 2

)
,
D

24
T 2

σ 2

}
≥ min

{
σ 2C

(t

σ 2

)
,
T 2

2σ 2

}
,

where we have used Lemma 3.3 and the fact that D ≥ 12.
□

With this result in hand we are ready to prove Theorem 2.2. We restate it here in a more technically explicit version.
For a more intuitive understanding, please refer back to the original statement. Note that we only require the hash
function h of the theorem to be 2-independent, whereas Theorem 2.2 requires the hash function to be 3-independent.
The difference lies in that the statement of Theorem 2.2 is slightly stronger, guaranteeing query invariance. Having
deferred the treatment of query invariance until later, we only need 2-independence for now.

Theorem 5.2. Let ε ∈ (0, 1] andm ≥ 2 be given. Let h : A → [m] be a 2-independent hash function satisfying the

following. For every γ > 0 and every value function ṽ : A × [m]→ [−1, 1] such that Q = {i ∈ [m] | ∃x ∈ A : ṽ (x , i) , 0}
has size |Q | ≤ mε , the random variablesW =

∑
x ∈A ṽ (x ,h(x)) andWj =

∑
x ∈A ṽ (x ,h(x) ⊕ j), j ∈ [m] with mean

µW = E [W] = E
[
Wj

]
and variance σ 2

W = Var [W] satisfy the inequalities

Pr [��W − µW �� ≥ C · t] ≤ 2 exp *,−σ
2
W C *,

t

σ 2
W

+-+- +O (|A|m−γ), (22)

Pr


∑

j ∈[m]

(
Wj − µW

)2 ≥ D ·
∑

x ∈A

∑

k ∈Q
ṽ (x ,k)2

 = O (|A|m−γ), (23)

for every t > 0, where C and D are universal constants depending on γ and ε .

Let v : A × [m]→ [−1, 1] be any value function, τ : [m]→ [m] a uniformly random permutation independent of h, and

γ > 0. The random variableU =
∑
x ∈A v (x ,τ (h(x))) with expectation µ = E [U] and variance σ 2 = Var [U] satisfies

Pr [��U − µ�� ≥ E · t] ≤ 6 exp
(
−σ 2C

(t

σ 2

))
+O (|A|m−γ) (24)

42 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

for every t > 0, where E is a universal constant depending on γ and ε .

Proof. Define v ′ : A× [m]→ [−1, 1] by letting v ′(x , i) = 1
2
(
v (x , i) − 1

m
∑
j ∈[m]v (x , j)

)
and writeV = U − µ. Since

∑
i ∈[m]

(
[τ (h(x)) = i] − 1

m

)
= 0, we may write

V =
∑

x ∈A

∑

i ∈[m]
v (x , i)[τ (h(x)) = i] − 1

m

∑

x ∈A

∑

i ∈[m]
v (x , i) +

∑

x ∈A
*.,

*.,
∑

i ∈[m]

(
[τ (h(x)) = i] − 1

m

)+/- ·
*.,
1
m

∑

j ∈[m]
v (x , j)+/-

+/-
=

∑

x ∈A

∑

i ∈[m]

*.,v (x , i) −
1
m

∑

j ∈[m]
v (x , j)+/-

(
[τ (h(x)) = i] − 1

m

)

=2
∑

x ∈A

∑

i ∈[m]
v ′(x , i)

(
[τ (h(x)) = i] − 1

m

)
.

We write V ′ = ∑
x ∈A

∑
i ∈[m]v

′(x , i)
(
[τ (h(x)) = i] − 1

m

)
such that V = 2V ′. We note that by 2-independence

σ 2 =
∑

x ∈A
Var [v (x ,τ (h(x)))] =

∑

x ∈A
E


*.,v (x ,τ (h(x))) −

1
m

∑

j ∈[m]
v (x , j)+/-

2 =
4
m

∑

x ∈A

∑

i ∈[m]
v ′(x , i)2.

Thus, we may write σ ′2 = Var [V ′] = 1
m

∑
x ∈A

∑
i ∈[m]v

′(x , i)2. We proceed to show that for some constant E ′

depending on γ and ε ,

Pr
[���V ′��� ≥ E ′ · t

]
≤ 6 exp

(
−σ ′2h

(t

σ ′2
))
+O (|A|m−γ) ,

As σ ′ ≤ σ and V = 2V ′ the theorem then follows with E = 2E ′ by applying Lemma 3.5.
For i ∈ [m] we define σ 2

i =
1
m

∑
x ∈A v ′(x , i)2, so that ∑

i ∈[m] σ
2
i = σ ′2. Assume without loss of generality that

σ 2
0 ≥ · · · ≥ σ 2

m−1. Now defineV : [m] × [m]→ R by

V (i, j) =
∑

x ∈A
v ′(x , j)

(
[h(x) = i] − 1

m

)
.

Note that for any j ∈ [m], ∑i ∈[m]V (i, j) = 0, regardless of the (random) choice of h. With this definition, V ′ =
∑
i ∈[m]V (i,τ (i)) =

∑
j ∈[m]V (τ−1 (j), j). Now let

V1 =
∑

j ∈[mε]
V (τ−1 (j), j) and V2 =

∑

j ∈[m]\[mε]
V (τ−1 (j), j),

and note that V1 +V2 = V ′. Defining value functions v ′1,v
′
2 : A × [m]→ [−1, 1] by

v ′1 (x , i) =

v ′(x , i), if i ∈ [mε]

0, otherwise
and v ′2 (x , i) =


v ′(x , i), if i ∈ [m] \ [mε]

0, otherwise
,

we observe that

V1 =
∑

x ∈A
v ′1 (x ,τ (h(x))) − E


∑

x ∈A
v ′1 (x ,τ (h(x)))

 and V2 =
∑

x ∈A
v ′2 (x ,τ (h(x))) − E


∑

x ∈A
v ′2 (x ,τ (h(x)))



Fast Hashing with Strong Concentration Bounds 43

Let D ≥ 1 be such that Eq. (23) holds with added error probability O (|A|m−γ−1) and letM = max
{
C, σ ′√

2Dγ logm

}

for some large constant C to be fixed later. Define the two events

A =
⋂

j ∈[m]\[mε]

(
max
i ∈m |V (i, j) | ≤ M

)
and B =

⋂

j ∈[m]

*.,
∑

i ∈[m]
V (i, j)2 < Dσ 2

jm
+/- .

By a union bound,

Pr[|V ′ | ≥ E ′t] ≤ Pr[|V1 | ≥ E ′t/2] + Pr[|[A] · [B] ·V2 | ≥ E ′t/2] + Pr[Ac] + Pr[Bc],

and we proceed to bound each of these terms individually.
First, we bound Pr[|V1 | ≥ E ′t/2]. To do so, suppose we fix the permutation τ = τ0. With this conditioning and by

2-independence,

Var [V1 | τ = τ0] =Var

∑

x ∈A
[τ0 (h(x)) ∈ [mε]] · v ′(x ,τ0 (h(x)))

 ≤
∑

x ∈A
E

[
[τ0 (h(x)) ∈ [mε]] · v ′(x ,τ0 (h(x)))2

]

=
1
m

∑

x ∈A

∑

j ∈[mε]
v ′(x , j)2 ≤ σ ′2.

Defining v : A × [m]→ [−1, 1] by v (x , i) = v ′1 (x ,τ0 (i)) it holds that

V1 =
∑

x ∈A

∑

i ∈τ −10 ([mε])
v (x , i)

(
[h(x) = i] − 1

m

)
.

As v has support of size at mostmε we can apply Eq. (22) to conclude that

Pr[|V1 | ≥ E ′t/2 | τ = τ0] ≤ 2 exp
(
−σ ′2C

(t

σ ′2
))
+O (|A|m−γ),

if the constant E ′ is large enough. Since this holds for any fixed τ0, it also holds for the unconditioned probability.
We now bound Pr[|[A] ·[B] ·V2 | ≥ E ′t/2]. It suffices to condition onh = h0 for someh0 satisfying that [A] = [B] = 1

and make the bound over the randomness of τ . For this we may use Lemma 5.1. Indeed if h = h0 for some h0 such
that [A] = [B] = 1, then ∑

i ∈[m]
∑
j ∈[m]

1
mV (i, j)2 ≤ Dσ ′2. Here we used the conditioning on A. Define the

function V0 : [m] × [m] → R by V0 (i, j) = V (i, j) when j ∈ [m] \ [mε] and V0 (i, j) = 0 otherwise. Then also
∑
i ∈[m]

∑
j ∈[m]

1
mV0 (i, j)2 ≤ Dσ ′2 and further, for each j ∈ [m], ∑i ∈[m]V0 (i, j) = 0. Finally, the conditioning on B

gives that maxi, j ∈[m]V0 (i, j) ≤ M . Note that V2 =
∑
j ∈[m]V0 (τ−1 (j), j). Applying Lemma 5.1 toV0, noting that the

bound obtained in that lemma is increasing in σ , we obtain that

Pr [|V2 | ≥ E ′t/2] ≤ 4
(
exp

(
−Dσ ′2C

(t

Dσ ′2
))
+ exp (−γ logm)

)
= 4 exp

(
−Ω

(
σ ′2C

(t

σ ′2
)))
+O (m−γ),

if E ′ is sufficiently large. From this it follows that,

Pr[[A] · [B] · |V2 | ≥ E ′t/2] ≤ 4 exp
(
−σ ′2C

(t

σ ′2
))
+O (m−γ).

We finally need to bound Pr[Ac] and Pr[Bc]. By the choice of D and a union bound we obtain that Pr[Bc] =
O (|A|m−γ), so for completing the proof it suffices to bound Pr[Ac] which we proceed to do now. More specifically we
bound Pr[|V (i, j) | ≥ M] for each (i, j) ∈ [m] × ([m] \ [mε]), finishing with a union bound over them2 choices. So let
(i, j) ∈ [m] × ([m] \ [mε]) be fixed and define ṽ : A × [m]→ [−1, 1] by ṽ (x , i) = v ′2 (x , j) and ṽ (x ,k) = 0 for k , i . Then

44 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

ṽ has support A × {i},
V (i, j) =

∑

x ∈A

∑

k ∈[m]
ṽ (x ,k)

(
[τ (h(x)) = i] − 1

m

)
,

and Var [V (i, j)] ≤ 1
m

∑
x ∈A v ′2 (x , j)

2 = σ 2
j ≤ σ ′2/mε . The last inequality follows from our assumption that σ 2

0 ≥ · · · ≥
σ 2
m−1 and j ≥ mε .
By the assumption of Eq. (22) with γ replaced by γ + 2 it follows that

Pr[|V (i, j) | ≥ M] ≤ 2 exp *,−Ω *,σ
2
j C *,

M

σ 2
j

+-+-+- +O (|A|m−γ−2) ≤ 2 exp
(
−D ′σ

′2
mε C

(
Mmε

σ ′2

))
+O (|A|m−γ−2),

for some constant D ′. We finish the proof by showing that if the constant C from the definition ofM is large enough,
then

2 exp
(
−D ′σ

′2
mε C

(
Mmε

σ ′2

))
= O (m−γ−2).

For this it suffices to show that if C is large enough andm is greater than some constant, then

σ ′2
mε C

(
Mmε

σ ′2

)
≥ (γ + 2) logm

D ′ .

Suppose first that σ ′2 ≤ mε/2. In that case we use Lemma 3.3 to conclude that

σ ′2
mε C

(
Mmε

σ ′2

)
≥ M

2 log
(
Mmε

σ ′2
+ 1

)
≥ C

2 log
(
Cmε/2 + 1

)
≥ Cε

4 logm,

so if C ≥ 4γ+2D′ε this is at least (γ+2) logm
D′ . Now supposemε/2 < σ ′2 ≤ m2ε/(2Dγ logm). In that case we recall that

M = max
{
C, σ ′√

2Dγ logm

}
and use the bound

σ ′2
mε C

(
Mmε

σ ′2

)
≥ M

2 log
(
Mmε

σ ′2
+ 1

)
≥ σ ′√

8Dγ logm
log *,

mε

σ ′
√
2Dγ logm

+ 1+- = Ω *,
mε/4

√
logm

+- .
Ifm is larger than some constant, this is certainly at least (γ+2) logm

D′ . Finally suppose that σ ′2 > m2ε/(2Dγ logm).
Using the inequality log(1 + x) ≥ x

2 holding for 0 ≤ x ≤ 1 we find that

σ ′2
mε C

(
Mmε

σ ′2

)
≥ σ ′√

8Dγ logm
log *,

mε

σ ′
√
2Dγ logm

+ 1+- ≥
mε

8Dγ logm .

Again it holds that ifm is greater than some constant, this is at least (γ+2) logm
D′ . It follows that ifC is large enough, then

Pr[|V (i, j) | ≥ M] = O (|A|m−γ−2). Union bounding over (i, j) ∈ [m] × ([m] \ [mε]) we find that Pr[Ac] = O (|A|m−γ).
Combining the bounds we find that

Pr[|V ′ | ≥ E ′t] ≤ 6 exp
(
−σ ′2h

(t

σ ′2
))
+O (|A|m−γ),

which completes the proof.
□

6 EXTENDING THE HASH RANGE

This section is dedicated to proving Theorem 2.3, which we will restate shortly. Again, we will postpone the argument
that our concentration bounds are query invariant to Section 7. First, we prove the following technical lemma.

Fast Hashing with Strong Concentration Bounds 45

Lemma 6.1. Let σ 2 > 0 and t > 0. Writing s = max
{
σ 2,
√
tσ 2

}
,

s · C
(t
s

)
≥ σ 2C

(t

σ 2

)
/4 .

Proof. For t ≤ σ 2 the inequality is trivial, so suppose t > σ 2. We note that for x ≥ 0, 1 +
√
x ≥ √1 + x , such that

lg(1 +
√
x) ≥ lg(1 + x)/2 for every x ≥ 0. Using this fact in between two applications of Lemma 3.3, we find that

√
tσ 2C

(
t√
tσ 2

)
≥ t lg *,1 +

√
t

σ 2
+- /2 ≥ t lg

(
1 + t

σ 2

)
/4 ≥ σ 2C

(t

σ 2

)
/4 .

□

Next, we recall the law of total variance.

Lemma 6.2 (Law of Total Variance). For every pair of random variables X ,Y ,

Var [Y] = E [Var [Y | X]] + Var [E [Y | X]] .

In particular, Var [Y] ≥ Var [E [Y | X]].

We are now ready to prove the main theorem of the section, which informally states that concatenating the output
values of hash functions preserves the property of having Chernoff-style bounds. Note that the following is a much
more explicit and elaborate statement of Theorem 2.3. The purpose of this restatement is to make a formal proof more
readable. The reader is encouraged to refer back to Theorem 2.3 for intuition regarding the theorem statement. Again,
we highlight that we have left out the part of Theorem 2.3 concerning query independence. How query independence
is obtained will be discussed in Section 7

Theorem 6.3. Let A be a finite set. Let (Xa)a∈A and (Ya)a∈A be pairwise independent families of random variables

taking values in BX and BY , respectively, and satisfying that the distributions of (Xa)a∈A and (Ya)a∈A are independent.

Suppose that there exist universal constants DX ,DY ≥ 1, KX ,KY > 0, and RX ,RY ≥ 0 such that for every choice of value

functions vX : A × BX → [0, 1] and vY : A × BY → [0, 1] and for every t > 0,

Pr

������
∑

a∈A
vX (a,Xa) − µX

������ > t
 < KX exp *,−σ

2
X C *,

t

σ 2
X

+- /DX +- + RX , (25)

Pr

������
∑

a∈A
vY (a,Ya) − µY

������ > t
 < KY exp *,−σ

2
Y C *,

t

σ 2
Y

+- /DY +- + RY . (26)

where µX = E [
∑
a∈A vX (a,Xa)], µY = E [

∑
a∈A vY (a,Ya)],σ 2

X = Var [∑a∈A vX (a,Xa)], andσ 2
Y = Var [∑a∈A vY (a,Ya)].

Then for every value function v : A × BX × BY → [0, 1] and every t > 0,

Pr

������
∑

a∈A
v (a,Xa ,Ya) − µXY

������ > t
 < KKY exp *,−σ

2
XY C *,

t

σ 2
XY

+- /DXY +- + RXY ,
where µXY = E [

∑
a∈A v (a,Xa ,Ya)], σ 2

XY = Var [∑a∈A v (a,Xa ,Ya)], DXY = max {144DX , 72DY }, KXY = 3KX + KY ,
and RXY = 3RX + RY .

Proof. Let a value function, v : A × BX × BY → [0, 1], and a positive real, t > 0, be given. Define Va = v (a,Xa ,Ya),
µa = E [Va], and σ 2

a = Var [Va]. We shall be concerned with the variance of Va when conditioned on Xa . Hence, we

46 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

define

La =


Var [Va | Xa] >

√
6σ 2

XY
t


and Sa =


Var [Va | Xa] ≤

√
6σ 2

XY
t


to be the indicators on the conditional variance of Va given Xa being larger or smaller, respectively, than the threshold√

6σ 2
XY
t . Noting that La + Sa = 1, we split the sum ∑

a∈A (Va − µa) into three parts.
∑

a∈A
(Va − µa) =

∑

a∈A
(E [Va | Xa] − µa)

︸ ︷︷ ︸
T1

+
∑

a∈A
La (Va − E [Va | Xa])

︸ ︷︷ ︸
T2

+
∑

a∈A
Sa (Va − E [Va | Xa])

︸ ︷︷ ︸
T3

Now, the triangle inequality and a union bound yields

Pr

������
∑

a∈A
v (a,Xa ,Ya) − µXY

������ > t
 = Pr


������
∑

a∈A
(Va − µa)

������ > t
 ≤

3∑

i=1
Pr [|Ti | > t/3] .

We shall bound each of the three terms T1,T2, and T3 individually.
For bounding Pr [|T1 | > t/3], define the value functionv (1)

X : A×BX → [0, 1] byv (1)
X (a,x) = E [Va | Xa = x]. Note that

E [E [Va | Xa]] = µa and Var [E [Va | Xa]] ≤ σ 2
a , by the law of total variance, such that Var

[∑
a∈A v

(1)
X (a,Xa)

]
≤ σ 2

XY .
Thus, by Equation (25) and Lemma 3.4,

Pr [|T1 | > t/3] = Pr

∑

a∈A

(
v
(1)
X (a,Xa) − µa

)
> t/3


< KX exp *,−σ

2
XY C *,

t/3
σ 2
XY

+- /DX +- + RX
≤ KX exp *,−σ

2
XY C *,

t

σ 2
XY

+- /(9DX)+- + RX .
For bounding Pr [|T2 | > t/3], we may assume that t > 6σ 2

XY since otherwise T2 = 0 almost surely. Now, recall that

La =
[
Var [Va | Xa] >

√
6σ 2

XY /t
]
and write Z = ∑

a∈A La . We observe that since Va ∈ [0, 1] almost surely, Z ≥ |T2 |
almost surely. By the law of total variance, E [Var [Va | Xa]] ≤ σ 2

a , so by Markov’s inequality,

E [La] = Pr

Var [Va | Xa] >

√
6σ 2

XY
t


≤ σ 2

a

√
t

6σ 2
XY
.

Now, Var [La] ≤ E [La] ≤ σ 2
a

√
t/(6σ 2

XY) as La ∈ [0, 1] almost surely. Thus, E [Z] ≤
√
tσ 2

XY /6 and Var [Z] ≤
√
tσ 2

XY /6.
Combining this with t > 6σ 2

XY , we may write

Pr [|T2 | > t/3] ≤ Pr
[
Z − E [Z] > t/3 −

√
tσ 2

XY /6
]
≤ Pr [|Z − E [Z]| > t/6] .

Fast Hashing with Strong Concentration Bounds 47

Applying Equation (25) with the value functionv (2)
X : A×BX → [0, 1] given byv (2)

X (a,Xa) = La to Pr [|Z − E [Z]| > t/6]
yields

Pr [|T2 | > t/3] < KX exp
*..,
−
√
tσ 2

XY /6 · C
*..,

t/6√
tσ 2

XY /6

+//-
/DX

+//-
+ RX

≤ KX exp *,−σ
2
XY C *,

t/6
σ 2
XY

+- /(4DX)+- + RX
≤ KX exp *,−σ

2
XY C *,

t

σ 2
XY

+- /(144 · DX)+- + RX ,
where the second follows from Lemma 6.1 and the third inequality follows from Lemma 3.4.

Lastly, we shall bound Pr [|T3 | > t/3]. By a union bound,

Pr [|T3 | > t/3] ≤ Pr
[
(|T3 | > t/3) ∧

(
Var [T3 | (Xa)a∈A] ≤ 2max

{
σ 2
XY ,

√
tσ 2

XY

})]
︸ ︷︷ ︸

R1

+ Pr
[
Var [T3 | (Xa)a∈A] > 2max

{
σ 2
XY ,

√
tσ 2

XY

}]
︸ ︷︷ ︸

R2

.

First, we bound R1. For each a ∈ A, let xa ∈ BX be given such that P (∀a ∈ A : Xa = xa) > 0. We bound the probability of
R1 conditioned on (Xa = xa)a∈A and since our bound will be the same for every choice of (xa)a∈A, the bound will hold
unconditionally. Now, if Var [T3 | (Xa = xa)a∈A] > 2max

{
σ 2
XY ,

√
tσ 2

XY

}
, then R1 = 0. So assume otherwise and define

the value function v (1)
Y : A × BY → [0, 1] by v (1)

Y (a,y) = Sa · v (a,xa ,y), where Sa =
[
Var [Va | Xa = xa] ≤

√
6σ 2

XY /t
]
.

Then T3 =
∑
a∈A

(
v
(1)
Y (Ya) − E

[
v
(1)
Y (Ya)

])
and by assumption, Var

[∑
a∈A v

(1)
Y (a,Ya)

]
≤ 2max

{
σ 2
XY ,

√
tσ 2

XY

}
. Thus,

we may apply Equation (26) with v (1)
Y to obtain

Pr
[
(|T3 | > t/3) ∧

(
Var [T3 | (Xa)a∈A] ≤ 2max

{
σ 2
XY ,

√
tσ 2

XY

}) ���� (Xa = xa)a∈A
]

≤ KY exp
*...,
−2max

{
σ 2
XY ,

√
tσ 2

XY

}
C

*...,
t/3

2max
{
σ 2
XY ,

√
tσ 2

XY

}
+///-
/DY

+///-
+ RY

≤ KY exp
*...,
−max

{
σ 2
XY ,

√
tσ 2

XY

}
C

*...,
t

max
{
σ 2
XY ,

√
tσ 2

XY

}
+///-
/(18DY)

+///-
+ RY

≤ KY exp *,−σ
2
XY C *,

t

σ 2
XY

+- /(72DY)+- + RY ,
where the second follows from Lemma 3.4 and the third inequality follows from Lemma 6.1. In conclusion,

R1 ≤ KY exp *,−σ
2
XY C *,

t

σ 2
XY

+- /(72DY)+- + RY .

48 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

Second, we bound R2. Define the value function v (3)
X : A × BX → [0, 1] by

v
(3)
X (a,xa) =


Var [Va | Xa = xa] ≤

√
6σ 2

XY
t


· Var [Va | Xa = xa] .

Then Var [T3 | (Xa)a∈A] = ∑
a∈A v

(3)
X (a,Xa). Now, by the law of total variance,

E [Var [T3 | (Xa)a∈A]] ≤ Var [T3] ≤ σ 2
XY ,

and since
√

t
6σ 2

XY
v
(3)
X (Xa) ∈ [0, 1] almost surely for every a ∈ A, pairwise independence yields

Var

√

t

6σ 2
XY

Var [T3 | (Xa)a∈A]
 ≤ E


√

t

6σ 2
XY

Var [T3 | (Xa)a∈A]
 ≤

√
tσ 2

XY /6 .

Applying Equation (25) with v (3)
X , Lemma 6.1, and Lemma 3.4, we obtain

R2 ≤ Pr
[
|Var [T3 | (Xa)a∈A] − E [Var [T3 | (Xa)a∈A]]| > max

{
σ 2
XY ,

√
tσ 2

XY

}]

= Pr

√

t

6σ 2
XY
|Var [T3 | (Xa)a∈A] − E [Var [T3 | (Xa)a∈A]]| > max

{√
tσ 2

XY /6, t/6
}

≤ Pr

√

t

6σ 2
XY
|Var [T3 | (Xa)a∈A] − E [Var [T3 | (Xa)a∈A]]| > t/6


< KX exp

*..,
−
√
tσ 2

XY /6C
*..,

t/6√
tσ 2

XY /6

+//-
/DX

+//-
+ RX

≤ KX exp *,−σ
2
XY C *,

t/6
σ 2
XY

+- /(4DX)+- + RX
≤ KX exp *,−σ

2
XY C *,

t

σ 2
XY

+- /(144DX)+- + RX .
Combining the bounds on Pr [|Ti | > t/3] for i ∈ {1, 2, 3} completes the proof. □

7 QUERY INVARIANCE

In the following, we will briefly explain for each of the main sections of the paper, why all theorems still hold when
adding the condition of query invariance of Definition 2. Recall that query invariance comes into play when we have a
hash function and a concentration bound in the following manner. The concentration bound is query invariant if for
any hash key q, a query key, the concentration bound still holds whenever we condition the hash function on the hash
value of q.

Simple Tabulation Hashing. In [38] it is observed that ordering the position characters α1 ≺ · · · ≺ αr such that
α1, . . . ,αc are the position characters of the query key q only worsens the bound on the groups,Gi , by a factor of 2. We
consider a slightly more general case, but exactly the same argument still applies. Always imposing this ordering in our
proofs lets us condition on the hash value of q and only causes some of the constants to increase by a small factor.

Fast Hashing with Strong Concentration Bounds 49

Tabulation-Permutation. In the proof of Theorem 2.2 we consider some specific value functionw . We proceed by
considering separately themε bins S ⊂ [m] of largest contribution to the variance, σ 2, and then the remaining bins,
[m] \ S . The contribution of each subset of bins is then individually bounded. In the first case, we simply use the
assumption on the hash function h that we received in a black box manner and use no properties of the permutation.
Now, say towards query invariance that we require that τ ◦ h(q) = i . To support this, we instead chose S to have have
size |S | = mε/2. This does not change the proof by more than constant factors and simply adding i to S yields a set
S ′ = S ∪ {i} of size S ′ < mε , such that the assumption on h directly yields the result. In conclusion, the proof goes
through exactly as before.

Extending the Codomain. In this section nothing in the proof requires us to take into special consideration the
conditioning on a query key. We simply consider families of hash functions in a black box manner and thus, we may as
well consider families that have already been condition on the hash value of the query key q.

8 TIGHTNESS OF CONCENTRATION: SIMPLE TABULATION INTO FEW BINS

Recall the result of Theorem 1.1. If h : [u]→ [m] is a simple tabulation hash function with [u] = Σc and c = O (1), and
S ⊆ [u] is a set of hash keys of size n = |S | where each key x ∈ S is given a weightwx ∈ [0, 1]. Then for arbitraryy ∈ [m]
and a constant γ > 0 the total weight of the balls landing in biny, given by the random variableX = ∑

x ∈S wx [h(x) = y],
satisfies the concentration bound

Pr [��X − µ�� ≥ t] ≤ 2 exp(−Ω(σ 2C (t/σ 2))) + n/mγ , (27)

where µ = E [X] and σ 2 = Var [X] are the expectation and variance, respectively, of X , and the constant in the
Ω-notation depends on γ . As mentioned in the introduction, the added error probability n/mγ renders the theorem
nearly useless for smallm, the prime example being the tossing of an unbiased coin corresponding tom = 2. The
purpose of this section is to show that the bound of (27) is optimal in the sense that an added error probability of at
leastm−γ for some constant γ is inevitable so long as we insist on strong concentration according to Definition 1. In
other words, we must accept an added error probability ofm−γ to have Chernoff-style bounds on the sum X . In fact, it
will turn out that unless allowing an error term of the formm−γ , the deviation from the case of a fully random hash
function can be quite significant.

The example where simple tabulation does not concentrate well, which we shall use in the formal proof below, is
the following. For some k < |Σ|, we consider the key set S = [k]c−1 × Σ ⊂ Σc with weights wx = 1 for every x ∈ S .
We shall think of k as slightly superconstant and mutually dependent on γ . Recall that h is defined by c fully random
functions h0, . . . ,hc−1 : Σ→ [m] and that h(x) =

⊕c
i=0 hi (xi). With probabilitym−(k−1) (c−1) , hi is constant on [k] for

each 0 ≤ i ≤ c − 2. Under such a collapse it holds for every α ∈ Σ that every key from the set [k]c−1 × {α } hashes to the
same value in [m] under h. Hence, each entry of hc−1 decides where kc−1 keys hash to. Thus, during such a collapse, we
may view the hashing of S into [m] as throwing |Σ| balls each of weight kc−1 intom bins. This increases the variance
by a factor of kc−1 affecting the Chernoff bounds accordingly.

Without further ado, let us present the formal statement of the above. Essentially, it states that there is a delay of
the exponential decrease which depends on γ . If γ is superconstant, so is the delay, and hence, we do not have strong
concentration according to Definition 1.

Theorem 8.1. Letm ≤ |Σ|1−ε for some constant ε > 0 and h : [u] → [m] be a simple tabulation hash function. Let

0 < ε ′ < ε be a constant and suppose that C : R+ → R+ is a function such that for all 0 ≤ γ ≤ |Σ|ε ′/c , all sets S ⊆ [u], all

50 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

choices of weightswx ∈ [0, 1],x ∈ S , and every y ∈ [m], the random variable X =
∑
x ∈S wx [h(x) = y] satisfies

Pr[|X − µ | ≥ t] ≤ 2 exp
(−σ 2C (t/σ 2)

C (γ)

)
+m−γ (28)

for all t > 0. Then C (γ) = Ω(γ c−2).

Proof. Assume the existence of the function C . As suggested above, consider the set of keys S = [k]c−1 × Σ for
some k to be determined. Denote by E the event that the first c − 1 position characters of S collapse, i.e., that each
hi , 0 ≤ i ≤ c − 2 is constant on [k]. We easily calculate Pr[E] =m−(k−1) (c−1) . Now, conditioning on E, we may consider
the situation as follows. Let y′ be the random variable satisfying

⊕c−2
i=0 hi (xi) = y

′ for all x0, . . . ,xc−2 ∈ [k]. The last
positional hash function hc−1 is a fully random hash function Σ→m such that the conditioned variable (X |E) satisfies

(X |E) =
∑

α ∈πc−1 (S)
kc−1[hc−1 (α) = y ⊕ y′] d

=
∑

α ∈Σ
kc−1[hc−1 (α) = 0] =: X ′,

where d
= denotes equality of distribution. We write σ ′2 = Var [X ′] = k2(c−1) |Σ| m−1m2 and note that E [X ′] = µ. Now,

since hc−1 is a uniformly random hash function, tightness of the Bennet inequality, Eq. (3), implies that for t = O (σ ′2),

Pr
[���X ′ − µ��� ≥ t

]
= Ω

(
exp

(
−σ ′2C (t/σ ′2)

))
= Ω

(
exp

(
− t2

3σ ′2

))
(29)

where we have applied Lemma 3.3.
Towards our main conclusion, observe that σ 2 = kc−1 |Σ| m−1m2 = σ ′2/kc−1. Letting t = σ ′

√
logm, t ≤ σ ′2 since

σ ′ >
√
logm by the assumption on the size ofm, so we may apply (29) to get

Pr [��X − µ�� ≥ t] ≥ Pr [E] · Pr
[���X ′ − µ��� ≥ t

]
≥ Ω

(
m−ck

)
.

On the other hand, (28) demands that whenever k ≤ γ ,

Pr [��X − µ�� ≥ t] ≤ 2 exp
*...,
−
σ 2C

(√
log(m)kc−1/σ

)

C (γ)

+///-
+m−γ ≤ 2m−

kc−1
C (γ) +m−γ ,

where the last inequality used Lemma 3.3 and
√
log(m)kc−1 < σ . Let k = γ

2c and combine the above inequalities to

conclude that 2m−
(γ /(2c))c−1

C (γ) +m−γ = Ω(m−γ /2). It follows that indeed, C (γ) = Ω(γ c−2).
□

Twisted Tabulation and “permutation-tabulation”. Variations upon the example above can also be used to show that
the analysis of twisted tabulation hashing is tight in the sense that the added error probability cannot be improved
while maintaining strong concentration. In twisted tabulation we twist the last position character of the input before
applying simple tabulation. The twist is a Feistel permutation that for the key set S = [k]b × Σc−b , will only permute
the keys within the set. Since the set of twisted keys is the same as the original set S , this has no effect on the filling of
bins. For almost the same reason, a reversal of the order of operations in our new tabulation-permutation hashing, i.e.,
if is first permuted each position character and the applied simple tabulation, would not improve the analysis, since the
set S while not invariant under the operation, would retain the same structure.

Fast Hashing with Strong Concentration Bounds 51

ACKNOWLEDGEMENT

Anders Aamand, Jakob B. T. Knudsen, Peter M. R. Rasmussen, and Mikkel Thorup are partly supported by Thorup’s
Investigator Grant 16582, Basic Algorithms Research Copenhagen (BARC), from the VILLUM Foundation.

REFERENCES
[1] Anders Aamand, Debarati Das, Evangelos Kipouridis, Jakob Bæk Tejs Knudsen, Peter M. R. Rasmussen, and Mikkel Thorup. 2020. No Repetition:

Fast Streaming with Highly Concentrated Hashing. CoRR (2020). arXiv:2004.01156 arxiv.org/abs/2004.01156.
[2] Arne Andersson, Peter Bro Miltersen, Søren Riis, and Mikkel Thorup. 1996. Static Dictionaries on AC0 RAMs: Query Time Θ(

√
logn/ log logn) is

Necessary and Sufficient. In 37th Annual Symposium on Foundations of Computer Science (FOCS). 441–450. https://doi.org/10.1109/SFCS.1996.548503
[3] Austin Appleby. 2016. MurmurHash3.
[4] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian Winnerlein. 2013. BLAKE2: Simpler, Smaller, Fast as MD5. In

Applied Cryptography and Network Security, Michael Jacobson, Michael Locasto, Payman Mohassel, and Reihaneh Safavi-Naini (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 119–135.

[5] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. 2002. Counting Distinct Elements in a Data Stream. In International
Workshop on Randomization and Approximation Techniques in Computer Science (RANDOM). 1–10.

[6] George Bennett. 1962. Probability Inequalities for the Sum of Independent Random Variables. J. Amer. Statist. Assoc. 57, 297 (1962), 33–45.
https://doi.org/10.1080/01621459.1962.10482149 arXiv:https://www.tandfonline.com/doi/pdf/10.1080/01621459.1962.10482149

[7] Sergei Natanovich Bernstein. 1924. On a modification of Chebyshev’s inequality and of the error formula of Laplace. Ann. Sci. Inst. Sav. Ukraine, Sect.
Math. 1 (1924), 38–49.

[8] Andrei Z. Broder. 1997. On the resemblance and containment of documents. In Compression and Complexity of Sequences (SEQUENCES). 21–29.
[9] Larry Carter and Mark N. Wegman. 1979. Universal classes of hash functions. J. Comput. System Sci. 18, 2 (1979), 143–154. Announced at STOC’77.
[10] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. 2011. Balls and Bins: Smaller Hash Families and Faster Evaluation. In 52nd Annual

Symposium on Foundations of Computer Science (FOCS). 599–608.
[11] Ashok K. Chandra, Larry J. Stockmeyer, and Uzi Vishkin. 1984. Constant Depth Reducibility. SIAM J. Comput. 13, 2 (1984), 423–439. https:

//doi.org/10.1137/0213028
[12] Herman Chernoff. 1952. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations. Annals of Mathematical

Statistics 23, 4 (1952), 493–507.
[13] Tobias Christiani and Rasmus Pagh. 2014. Generating k-Independent Variables in Constant Time. In 55th Annual Symposium on Foundations of

Computer Science (FOCS). 196–205.
[14] Tobias Christiani, Rasmus Pagh, and Mikkel Thorup. 2015. From independence to expansion and back again. In Proceedings of the 47rd ACM

Symposium on Theory of Computing (STOC).
[15] Kai-Min Chung, Michael Mitzenmacher, and Salil Vadhan. 2013. Why simple hash functions work: Exploiting the entropy in a data stream. Theory

of Computing 9, 1 (2013), 897–945.
[16] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and Mikkel Thorup. 2015. Hashing for Statistics over K-Partitions. In 56th Annual

Symposium on Foundations of Computer Science (FOCS). 1292–1310. https://doi.org/10.1109/FOCS.2015.83
[17] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Mikkel Thorup. 2017. Practical Hash Functions for Similarity Estimation and Dimensionality

Reduction. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS). Curran Associates Inc., 6618–6628.
http://dl.acm.org/citation.cfm?id=3295222.3295407

[18] Martin Dietzfelbinger. 1996. Universal hashing and k -wise independent random variables via integer arithmetic without primes. In Proceedings of
the 13th Symposium on Theoretical Aspects of Computer Science (STACS). 569–580.

[19] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. 1992. Dynamic Hashing in Real Time. In Informatik, Festschrift zum 60. Geburtstag von
Günter Hotz. 95–119. https://doi.org/10.1007/978-3-322-95233-2_7

[20] Martin Dietzfelbinger and Michael Rink. 2009. Applications of a Splitting Trick. In Proceedings of the 36th International Colloquium on Automata,
Languages and Programming (ICALP). 354–365.

[21] Martin Dietzfelbinger and Christoph Weidling. 2007. Balanced allocation and dictionaries with tightly packed constant size bins. Theor. Comput. Sci.
380 (06 2007), 47–68. https://doi.org/10.1016/j.tcs.2007.02.054

[22] Martin Dietzfelbinger and Philipp Woelfel. 2003. Almost Random Graphs with Simple Hash Functions. In Proceedings of the 25th ACM Symposium
on Theory of Computing (STOC). 629–638.

[23] A. I. Dumey. 1956. Indexing for rapid random access memory systems. Computers and Automation 5, 12 (1956), 6–9.
[24] Xiequan Fan, Ion Grama, and Quansheng Liu. 2012. Hoeffding’s inequality for supermartingales. Stochastic Processes and their Applications 122, 10

(2012), 3545 – 3559. https://doi.org/10.1016/j.spa.2012.06.009
[25] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul Spirakis. 2005. Space Efficient Hash Tables with Worst Case Constant Access Time. Theory

of Computing Systems 38, 2 (01 Feb 2005), 229–248. https://doi.org/10.1007/s00224-004-1195-x

52 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

[26] Parikshit Gopalan, Daniel M. Kane, and Raghu Meka. 2018. Pseudorandomness via the Discrete Fourier Transform. SIAM J. Comput. 47, 6 (2018),
2451–2487. https://doi.org/10.1137/16M1062132

[27] Torben Hagerup and Torsten Tholey. 2001. Efficient Minimal Perfect Hashing in Nearly Minimal Space. In Proceedings of the 18th Symposium on
Theoretical Aspects of Computer Science (STACS). 317–326.

[28] John L. Hennessy and David A. Patterson. 2012. Computer Architecture - A Quantitative Approach, 5th Edition. Morgan Kaufmann.
[29] Donald E. Knuth. 1963. Notes on open addressing. (1963). Unpublished memorandum. See http://citeseer.ist.psu.edu/knuth63notes.html.
[30] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. 2003. Sketch-based change detection: methods, evaluation, and applications.

In Proceedings of the 3rd Internet Measurement Conference (IMC). 234–247. https://doi.org/10.1145/948205.948236
[31] Daniel Lemire and Owen Kaser. 2016. Faster 64-bit universal hashing using carry-less multiplications. Journal of Cryptographic Engineering 6, 3 (01

Sep 2016), 171–185. https://doi.org/10.1007/s13389-015-0110-5
[32] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. 1993. The Computational Complexity of Universal Hashing. Theor. Comput. Sci. 107, 1 (1993),

121–133. https://doi.org/10.1016/0304-3975(93)90257-T
[33] Raghu Meka, Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. 2014. Fast Pseudorandomness for Independence and Load Balancing -

(Extended Abstract). In Proceedings of the 41st International Colloquium on Automata, Languages and Programming (ICALP). 859–870.
[34] Peter Bro Miltersen. 1996. Lower Bounds for Static Dictionaries on RAMs with Bit Operations But No Multiplication. In Proceedings of the 23rd

International Colloquium on Automata, Languages and Programming (ICALP). 442–453. https://doi.org/10.1007/3-540-61440-0_149
[35] Michael Mitzenmacher and Salil P. Vadhan. 2008. Why simple hash functions work: exploiting the entropy in a data stream. In Proceedings of the

19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 746–755.
[36] Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cambridge University Press.
[37] Anna Pagh and Rasmus Pagh. 2008. Uniform Hashing in Constant Time and Optimal Space. SIAM J. Comput. 38, 1 (2008), 85–96.
[38] Mihai Pǎtraşcu and Mikkel Thorup. 2012. The Power of Simple Tabulation-Based Hashing. J. ACM 59, 3 (2012), Article 14. Announced at STOC’11.
[39] Mihai Pǎtraşcu and Mikkel Thorup. 2016. On the k -Independence Required by Linear Probing and Minwise Independence. ACM Trans. Algorithms

12, 1 (2016), 8:1–8:27.
[40] Geoff Pike and Jyrki Alakuijala. 2011. Introducing cityhash. https://opensource.googleblog.com/2011/04/introducing-cityhash.html.
[41] Mihai Pǎtraşcu and Mikkel Thorup. 2013. Twisted Tabulation Hashing. In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA). 209–228.
[42] René Schilling. 2005. Measures, Integrals and Martingales. Cambridge University Press. https://doi.org/10.1017/CBO9780511810886
[43] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. 1995. Chernoff-Hoeffding bounds for applications with limited independence. SIAM

Journal on Discrete Mathematics 8, 2 (1995), 223–250. Announced at SODA’93.
[44] Alan Siegel. 2004. On Universal Classes of Extremely Random Constant-Time Hash Functions. SIAM J. Comput. 33, 3 (2004), 505–543. Announced

at FOCS’89.
[45] Mikkel Thorup. 2013. Simple Tabulation, Fast Expanders, Double Tabulation, and High Independence. In 54th Annual Symposium on Foundations of

Computer Science (FOCS). 90–99.
[46] Mikkel Thorup. 2015. High Speed Hashing for Integers and Strings. CoRR (2015). arxiv.org/abs/1504.06804.
[47] Mikkel Thorup and Yin Zhang. 2012. Tabulation-Based 5-Independent Hashing with Applications to Linear Probing and Second Moment Estimation.

SIAM J. Comput. 41, 2 (2012), 293–331. Announced at SODA’04 and ALENEX’10.
[48] Mark N. Wegman and Larry Carter. 1981. New Classes and Applications of Hash Functions. J. Comput. System Sci. 22, 3 (1981), 265–279. Announced

at FOCS’79.
[49] Albert Lindsey Zobrist. 1970. A New Hashing Method with Application for Game Playing. Technical Report 88. Computer Sciences Department,

University of Wisconsin, Madison, Wisconsin.

A EXPERIMENTS

This appendix is dedicated to provide further details regarding the timing experiments presented in the introduction
in Section 1.7.4. Furthermore, we present experiments which demonstrate concrete bad input sets for several hash
functions that do not guarantee strong concentration bounds.

As explained in Section 1.7.4, we ran experiments on various basic hash functions. More precisely, we compared
our new hashing schemes tabulation-permutation and tabulation-1permutation with the following hashing schemes:
k-independent PolyHash [9], Multiply-Shift [18], simple tabulation [49], twisted tabulation [41], mixed tabulation [16],
and double tabulation [45]. We were interested in both the speed of the hash functions involved, and the quality of the
output. For our timing experiments we studied the hashing of 32-bit keys to 32-bit hash values, and 64-bit keys to 64-bit

Fast Hashing with Strong Concentration Bounds 53

Running time (ms)
Computer 1 Computer 2

Hash function 32 bits 64 bits 32 bits 64 bits
Multiply-Shift 4.2 7.5 23.0 36.5
2-Independent PolyHash 14.8 20.0 72.2 107.3
Simple tabulation 13.7 17.8 53.1 55.9
Twisted tabulation 17.2 26.1 65.6 92.5
Mixed tabulation 28.6 68.1 120.1 236.6
Tabulation-1permutation 16.0 19.3 63.8 67.7
Tabulation-permutation 27.3 43.2 118.1 123.6
Double tabulation 1130.1 – 3704.1 –
“Random” (100-Independent PolyHash) 2436.9 3356.8 7416.8 11352.6

Table 3. The time for different hash functions to hash 107 keys of length 32 bits and 64 bits, respectively, to ranges of size 32 bits and 64
bits. The experiment was carried out on two computers. The hash functions written in italics are those without general Chernoff-style
bounds. Hash functions written in bold are the contributions of this paper. The hash functions in regular font are known to provide
Chernoff-style bounds. Note that we were unable to implement double tabulation from 64 bits to 64 bits since the hash tables were
too large to fit in memory.

hash values. Aside from having strong theoretical guarantees, our experiments show that tabulation-permutation and
tabulation-1permutation are very fast in practice.

All experiments are implemented in C++11 using a random seed from https://www.random.org. The seed for the
tabulation based hashing methods uses a random 100-independent PolyHash function. PolyHash is implemented using
the Mersenne primes p = 261 − 1 for 32 bits and p = 289 − 1 for 64 bits. Furthermore, it has been implemented using
Horner’s rule, and GCC’s 128-bit integers to ensure an efficient implementation. Double tabulation is implemented as
described in [45] with Σ = [216], c = 2,d = 20.

Timing. We timed the speed of the hash functions on two different computers. The first computer (Computer 1
in Table 3) has a 2.4 GHz Quad-Core Intel Core i5 processor and 8 GB RAM, and it is running macOS Catalina. The
second computer (Computer 2 in Table 3) has 1.5 GHz Intel Core i3 processor and 4 GB RAM, and it is running Windows
10. We restate the results of our experiments in Table 3 and refer the reader to Section 1.7.4 for a discussion of these
results and of the choice of parameters used in the various hashing schemes.

Quality. Wewill now present experiments with concrete bad instances for the schemes without general concentration
bounds, that is, Multiply-Shift, 2-independent PolyHash, simple tabulation, and twisted tabulation. In each case, we
compare with our new tabulation-permutation scheme as well as 100-independent PolyHash, which is our approximation
to an ideal fully random hash function. We note that all schemes considered are 2-independent, so they all have exactly
the same variance as fully-random hashing. From 2-independence, it also follows that the schemes work perfectly on
sufficiently random input [35]. Our concern is therefore concrete inputs making them fail in the tail.

First, we consider simple bad instances for Multiply-Shift and 2-independent PolyHash. These are analyzed in
detail in [39, Appendix B]. The specific instance we consider is that of hashing the arithmetic progression A =

{a · i | i ∈ [50000]} into 16 bins, where we are interested in the number of keys from A that hashes to a specific bin.
We performed this experiment 5000 times, with independently chosen hash functions. The cumulative distribution
functions on the number of keys from A hashing to a specific bin is presented in Figure 2. We see that most of the time
2-independent PolyHash and Multiply-Shift distribute the keys perfectly with exactly 1/16 of the keys in our bin. Since

54 A. Aamand, J. B. T. Knudsen, M. B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup

0.000 0.025 0.050 0.075 0.100 0.125
0.0
0.2
0.4
0.6
0.8
1.0

Multiply-Shift

0.000 0.025 0.050 0.075 0.100 0.125
0.0
0.2
0.4
0.6
0.8
1.0

2-wise PolyHash

0.000 0.025 0.050 0.075 0.100 0.125
0.0
0.2
0.4
0.6
0.8
1.0

Tabulation-Permutation

Fig. 2. Hashing the arithmetic progression {a · i | i ∈ [50000]} to 16 bins for a random integer a. The dotted line is a 100-independent
PolyHash.

the variance is the same as with fully random hashing, this should suggest a much heavier tail, which is indeed what
our experiments show. For contrast, we see that the cumulative distribution function with our tabulation-permutation
hash function is almost indistinguishable from that of 100-independent Poly-Hash. We note that our experiments with
tabulation-permutation is only a sanity check: No experiment can prove good performance on all possible inputs.

Our second set of experiments shows bad instances for simple tabulation and twisted tabulation. We already know
theoretically from Section 8 that these bad instances exist, but we shall now see that, in a sense, things can be even
worse than described in Section 8 for certain sets of keys. The specific instance we consider is hashing the discrete cube
Q = [2]7 × [26] tom = 2 bins using simple tabulation, twisted tabulation, and tabulation-permutation. We performed
this experiment 5000 times, with independently chosen hash functions, and again we were interested in the number of
keys from Q hashing to one of the bins. The cumulative distribution functions of the number of such keys is presented
in Figure 3. Let us explain the appearance of the curves for simple and twisted tabulation. In general, if we hash the set
of keys [2] × R to [2] with simple tabulation, then if h1 (0) , h1 (1), each bin will get exactly the same amount of keys.
When we hash the set of keys [2]7 × [26] this happens with probability 1 − 2−7. If on the other hand hi (0) = hi (1) for
each i = 1, . . . , 7, which happens with probability 2−7, the distribution of the balls in the bins is the same as that when
26 balls, each of weight 27, are distributed independently and uniformly at random into the two bins. If this happens, the
variance of the number of balls in a bin is a factor of 27 higher, so we expect a much heavier tail than in the completely
independent case. These observations agree with the results in Figure 3. Most of the time, the distribution is perfect,
but the tail is very heavy. We believe that this instance is also one of the worst instances for tabulation-permutation
hashing. We would therefore expect to see that on this instance it performs slightly worse than 100-independent
PolyHash, which is indeed what our experiments show. We note that that no amount of experimentation can prove that
tabulation-permutation always works well for all inputs. We do, however, have mathematical concentration guarantees,
and the experiments performed here give us some idea of the impact of the constant delay hidden in the exponential
decrease in the bounds of Theorem 1.2. For completeness, we note that the situation with mixed tabulation is unresolved.
Neither do we have strong concentration bounds, nor any bad instances showing that such bounds do not hold. Running
experiments is not expected to resolve this issue since mixed tabulation, as any other 2-independent hashing scheme,
performs well on almost all inputs [35].

Fast Hashing with Strong Concentration Bounds 55

0.35 0.40 0.45 0.50 0.55 0.60
0.0
0.2
0.4
0.6
0.8
1.0

Simple Tabulation

0.35 0.40 0.45 0.50 0.55 0.60
0.0
0.2
0.4
0.6
0.8
1.0

Twisted Tabulation

0.35 0.40 0.45 0.50 0.55 0.60
0.0
0.2
0.4
0.6
0.8
1.0

Tabulation-Permutation

Fig. 3. Hashing the discrete cube [2]7 × [26] to 2 bins. The dotted line is a 100-independent PolyHash.

Appendix B

No Repetition: Fast Streaming with
Highly Concentrated Hashing

90

No Repetition: Fast Streaming with Highly Concentrated
Hashing

Anders Aamand
BARC, University of Copenhagen

Copenhagen, Denmark
aa@di.ku.dk

Debarati Das
BARC, University of Copenhagen

Copenhagen, Denmark
debaratix710@gmail.com

Evangelos Kipouridis
BARC, University of Copenhagen

Copenhagen, Denmark
kipouridis@di.ku.dk

Jakob B. T. Knudsen
BARC, University of Copenhagen

Copenhagen, Denmark
jakn@di.ku.dk

Peter M. R. Rasmussen
BARC, University of Copenhagen

Copenhagen, Denmark
pmrr@di.ku.dk

Mikkel Thorup
BARC, University of Copenhagen

Copenhagen, Denmark
mikkel2thorup@gmail.com

ABSTRACT
Working with huge amounts of data, for instance in the setting of
streaming algorithms, it is common to replace precise statistics with
stochastic estimators. Such estimators typically rely on hashing-
based algorithms. In that vein, Aamand et al. (STOC’20) recently
proposed a fast and practical hashing scheme with strong concen-
tration bounds, Tabulation-1Permutation, the first of its kind. In
this paper, we demonstrate the benefits of applying such a hash
function to obtain reliable estimators.

In previous work, a common strategy to get estimators that work
within a certain error bound with high probability is to design one
that works with constant probability, and then boost the probability
using r independent repetitions. Important examples of applications
are small space algorithms for estimating the number of distinct
elements in a stream, or estimating the similarity between large sets.
We consider these problems and prove that using a hash function
with strong concentration bounds, akin to those of Tabulation-
1Permutation, we may achieve the same high probability bounds
without any need for repetitions. Using the same amount of space,
we thus save a factor r in time, and simplify the overall algorithm.

We validate our approach experimentally on both real and syn-
thetic data, focusing on the application of counting distinct ele-
ments. We compare Tabulation-1Permutation with other hash func-
tions such as strongly universal hash functions and various other
hash functions such as MurmurHash3 and BLAKE3, both with and
without resorting to repetitions. We see that if we want reliability
in terms of small error probabilities, then Tabulation-1Permutation
is significantly faster.

1 INTRODUCTION
Recent years have brought with them a huge demand for algorithms
that can process and compute statistics on large streams of data.
Common statistics of interest include the number of distinct ele-
ments of a stream and the set similarity between two large sets.
The sheer volume of the data makes storing a complete copy of
the stream and performing exact computations an impossible task,
and so, if the data is not processed in time, the information is lost.
To solve this problem, we therefore have to resort to estimation
algorithms. For instance, instead of precisely counting the number
of unique visitors to a website, we may settle for a good estimate. In
simple terms, the goal of these estimation algorithms are as follows:

For a data stream S and some statistic F = F (S), we want an
estimator F̂ such that F̂ ∈ (1 ± ε)F with some high probability at
least 1 − δ .

To get such an estimator, a common strategy is to design one
that works with constant probability, and then boost the probability
using independent repetitions. A classic example of this approach
is the algorithm of Bar-Yossef et al. [3] to estimate the number of
distinct elements in a stream. Using strongly universal hashing to
process each element, we obtain an estimator such that the proba-
bility of getting too large an error is at most a constant, e.g., 1/4. By
performing r independent repetitions and taking the median of the
estimators, the error probability falls exponentially in r . However,
running r independent experiments increases the processing time
by a factor r .

Here we make the point that if we have a hash function with
strong concentration bounds (to be defined in Section 2.2), then we
get the same high probability bounds without any need for repeti-
tions. Instead of r independent sketches, we have a single sketch
that is Θ(r) times bigger, so the total space is essentially the same.
However, we only apply a single hash function, processing each
element in constant time regardless of r , and the overall algorithms
just get simpler. The idea is generic and can be applied to other
algorithms. We will also apply it to Broder’s original min-hash
algorithm [6] to estimate set similarity.

Fast practical hash functions with strong concentration bounds
were recently proposed by Aamand et al. [1]. Using their hashing
scheme, Tabulation-1Permutation hashing, we obtain a very fast
implementation of the above streaming algorithms, suitable for
online processing of high volume data streams.

To illustrate a streaming scenario where the constant in the
processing time is critical, consider the Internet. Suppose we want
to process packets passing through a high-end Internet router. Each
application only gets very limited time to look at the packet before
it is forwarded. If it is not done in time, the information is lost.
Since processors and routers use some of the same technology,
we never expect to have more than a few instructions available.
Slowing down the Internet is typically not an option. The papers
of Krishnamurthy et al. [13] and Thorup and Zhang [17] explain in
more detail how high speed hashing is necessary for their Internet
traffic analysis. Incidentally, the hash function we use from [1] is a
bit faster than the ones from [13, 17], which do not provide strong
concentration bounds.

1.1 Experiments
To demonstrate that our approach performs well in practice, we per-
form experiments showing the strength of Tabulation-1Permutation
for counting distinct elements in a stream. We compare with the
fastest known strongly universal hash functions and with other
commonly used hash functions such as MurmurHash3 [2] and
BLAKE3 [12]. Without the use of independent repetitions, we
demonstrate that Tabulation-1Permutation provides more reliable
estimates than the fast strongly universal hash functions. Moreover,
the implementation with Tabulation-1Permutation is faster than
when using MurmurHash3 and BLAKE3. In fact, BLAKE3 was ap-
proximately 150 times slower than Tabulation-1Permutation, so we
disregard it in our experiments. On the other hand, the implemen-
tation with Tabulation-1Permutation is both faster and provides
better estimates than when implementing the algorithm with the
strongly universal hash functions and independent repetitions.

We include two figures from Section 5 (which will be explained
in more detail in that section). Figure 1a shows the relative error
incurred by different hash functions over 5 × 104 experiments on a
synthetic data set. We see that when implementing the algorithms
with classic strongly universal hash functions like Multiply-Shift
and Multiply-Mod-Prime, some of the estimates are significantly
off. Figure 1b shows the running time per experiment for each of the
hash functions tested.We see that Multiply-Shift is the only hashing
scheme that outperforms Tabulation-1Permutation in regards to
speed. However, in order to eliminate the outliers of Multiply-Shift
seen in Figure 1a, we need to run independent repetitions, making
Tabulation-1Permutation much faster. See Section 5 for details.

In this paper, we have chosen bottom-k sampling and threshold
sampling for our algorithms, see Section 3 for details. There are sev-
eral other estimators and algorithms for counting distinct elements.
For more details, a thorough survey by Harmouch and Naumann
[11] provides experimental data on the choice of algorithm for
counting distinct elements.

Remark. It is important to note that no amount of experiments
can prove that a hashing scheme performs well on all possible data,
and finding the problematic data sets for a given hash family is
often a non-trivial task1. The results from [1] show that Tabulation-
1Permutation performs well on any possible data set with high
probability. In other words, if implementing the above streaming al-
gorithms with Tabulation-1Permutation, we no longer have to cross
our fingers that the data sets encountered does not have hidden
structure which interacts badly with the hashing scheme. Further-
more, Tabulation-1Permutation is very fast, so this new guarantee
comes with no compromise on the speed of the algorithms.

Remark. An interesting statistical artifact appearing in our ex-
pimerents is the following. Looking at the accuracy of the estimators
when implemented with Multiply-Shift and Multiply-Mod-Prime,
it appears that for certain structured data sets, they provide even
better estimates than one would obtain with fully random hashing.
This could lead to the false impression that their performance is
always better than implementing the estimators with something

1For Multiply-Shift and Multiply-Mod-Prime, we have concrete examples of data sets
on for which they fail, as is evident from Figure 1a. Moreover, in [5] the authors provide
concrete bad data sets for MurmurHash3.

like Tabulation-1Permutation. Since the variance of the estimators
are the same for all the seeded hash functions, it follows that if
a hashing scheme yields estimators that are ’too good’, it must
inevitably fail occasionally and provide estimates that are far off.
We will see examples of this in Section 5 and discuss it further
in Section 5.5.

2 HASHING AND CONCENTRATION
In the present paper, the crucial component of our algorithms is a
random hash function h : U → [0, 1) mapping some key universe
U , e.g. 64-bit keys, uniformly into R = [0, 1). The application is the
following. Let S ⊂ U be a set of keys and p ∈ [0, 1) a threshold
value. We wish to compute the number X of keys of S that hash
below p, i.e.

X = ��{s ∈ S | h(s) < p}�� .
Here p could be an unknown function of S , but p should be inde-
pendent of the random hash function h. Since the mean µ of x is
E [X] = |S | p, we may estimate the size of S by X/p with precision
increasing in the concentration of X around its mean. In particular,
we are interested in the probability δ that X deviates from µ by
more than a factor ε > 0, i.e., the probability δ = Pr [��X − µ�� ≥ εµ].

If the hash function h is fully random, we get the classic Chernoff
concentration bounds on X (see, e.g, [14]):

Pr [X ≥ (1 + ε)µ] ≤ exp(−ε2µ/3) for 0 ≤ ε ≤ 1, (1)

Pr [X ≤ (1 − ε)µ] ≤ exp(−ε2µ/2) for 0 ≤ ε ≤ 1. (2)
Unfortunately, we cannot implement fully random hash functions
as it requires space as big as the universe.

2.1 Strongly Universal Hashing
To get something implementable in practice, Wegman and Carter
[18] proposed strongly universal hashing.

Definition 2.1 (Strongly Universal Hashing). A hash function
h : U → R is strongly universal if for every pair of distinct keys
x ,y ∈ U , the distribution of (h(x),h(y)) is uniform on R2.

Many common hash functions are strongly universal. Worth
mentioning is the Multiply-Shift hash function [8]. The textbook ex-
ample of a strongly universal hash function hashing into [0, 1) is the
Multiply-Mod-Prime hash function [7]. The Multiply-Mod-Prime
hash function picks a large prime ℘ and two uniformly random
numbers a,b ∈ Z℘. Then ha,b (x) = ((ax +b) mod ℘)/℘ is strongly
universal from U ⊆ Z℘ to R = {i/℘|i ∈ Z℘} ⊂ [0, 1). Obviously
this hash function is not uniform on [0, 1) as we considered above,
but for any p ∈ [0, 1), we have Pr [h(x) < p] ≈ p with equality if
p ∈ R. Below we ignore this deviation from uniformity on [0, 1).

Assuming we have a strongly universal hash function h : U →
[0, 1), we again let X be the number of elements from S that hash
below p. Then µ = E [X] = |S |p and because the hash values
are 2-independent, we have Var [X] ≤ E [X] = µ. Therefore, by
Chebyshev’s inequality,

Pr [|X − µ | ≥ εµ] ≤ 1/(ε2µ). (3)

As ε2µ gets large, we see that the error probability of strongly
universal hashing is much higher than the Chernoff bounds with
fully random hashing. However, as described in Section 3.4, it is

2

(a) The relative error when estimating the number of distinct
elements with various hash functions using no repetitions.

(b) The average running time per experiment with the different
hash functions.

Figure 1: Relative error and timingwhen estimating the number of distinct elements using various hash functions on synthetic
data. These experiments, did not use independent repetitions.

still possible to guarantee high concentration by aiming for a con-
stant error probability like δ = 1/4 and then using the median
over independent repetitions of the estimation to reduce the error
probability.

2.2 Strongly Concentrated Hashing
In this paper we discuss the benefits of hash functions with strong
concentration akin to that of fully random hashing.

Definition 2.2. A hash function h : U → [0, 1) is strongly con-
centrated with added error probability E if for any key set S ⊆ U ,
threshold p ∈ [0, 1), and 0 < ε ≤ 1, the number X of elements from
S hashing below p satisfies

Pr [|X − µ | ≥ εµ] = 2 exp(−Ω(ε2µ)) + E,
where µ = p |S |. If E = 0, we say that h is strongly concentrated.

It is worth noting that a fully random hash function is strongly
concentrated. Another way of viewing the added error probability
E is as follows. We have strong concentration as long as we do not
aim for error probabilities below E, so if E is sufficiently low, we
can simply ignore it. In other words, except for an error term of
E, the hash function performs asymptotically as well as a random
hash function.

What makes this definition interesting in practice is that Aamand
et al. [1] recently presented a practical hash function with small
constant running time that for a universeU = [u] = {0, . . . ,u − 1}
is strongly concentrated with added error probability u−γ for any
constant γ . For our applications, this term is so small that we can
ignore it as the universe sets we consider are huge.

2.3 Tabulation-1Permutation
The hash function introduced by Aamand et al. [1] we consider in
this paper is Tabulation-1Permutation. For the applications of this
paper it enjoys the benefits of being strongly concentrated with
a negligible added error probability, comparable in speed to the
fastest hash functions on the market, and simple to implement.

We note that [1] also presents a slightly slower scheme,
Tabulation-Permutation, which offers far more general concen-
tration bounds than those for Tabulation-1Permutation in Theorem

1 uint64_t T[4][65536];

2 uint64_t P[65536];

3

4 uint64_t Tab1Perm(uint64_t x) {

5 uint64_t y; int i;

6 y = 0;

7 for (i = 0; i < 4; ++i) {

8 y ^= R[i][(uint16_t) x];

9 x = x >> 16;

10 }

11 return y ^ P[(uint16_t) y];

12 }

Figure 2: The C-code for the evaluation of Tabulation-
1Permutation with 4 characters for 64-bit keys.

2.3. However, Tabulation-1Permutation is faster and sufficient for
the strong concentration needed for our streaming applications.

2.3.1 Implementation. Tabulation-1Permutation obtains its power
and speed using certain character tables in fast cache. The scheme
views a keys from a universe U = [u] = {0, . . . ,u − 1} as con-
sisting of a small, constant number c of characters from some al-
phabet Σ, that is, U = Σc . For 64-bit keys, this could be c = 4
characters of 16 bits each. For our applications, we only consider
the case where the hash values belong to the same universe U .
Tabulation-1Permutation needs c + 1 character tables mapping
characters to hash values. To compute the hash value of a key, we
make one lookup for each of the c + 1 tables and perform O (c)
fast AC0 operation to extract the characters and XOR the hash
values. The character tables can be populated with an O (logu)-
independent pseudo-random number generator, needing a random
seed of O (log2 u) bits. As such, Tabulation-1Permutation is simple
to implement and evaluate (see Figure 2). It takes up a dozen lines of
code and is extremely fast. For further details on the inner workings
of Tabulation-1Permutation see [1]. For details regarding running
time of Tabulation-1Permutation in practice see Section 5 as well
as [1, Section 1.7].

3

2.3.2 Strong Concentration. The exact concentration results re-
garding Tabulation-1Permutation [1, Theorem 1.3] are far too gen-
eral for our purposes. We instead state a version simplified for the
purposes of this exposition. Here we identify a hash value from [u]
as a fraction in [0, 1).

Theorem 2.3. Let h : [u]→ [0, 1) be a Tabulation-1Permutation
hash function with [u] = Σc , c = O (1), and let γ > 0 be fixed. For
any key set S ⊂ [u], threshold p ∈ [0, 1), and 0 < ε ≤ 1, the number
X of elements from S hashing below p satisfies

Pr[|X − µ | ≥ εµ] = 2 exp(−Ω(µε2)) + 1/uγ .

Thus, for our applications, we are theoretically guaranteed that
Tabulation-1Permutation will perform asymptotically as well as a
random hash function except for an error term of 1/uγ . However,
it is a crucial difficulty in said applications that the universe size is
huge, so the error term is indeed negligible.

2.3.3 Computer Dependent Versus Problem Dependent Resources.
We view the resources used for Tabulation-1Permutation as com-
puter dependent rather than problem dependent. More precisely,
you should pick the number of characters, c , and the size of the
character alphabet, |Σ|, depending on the computer’s architecture.
For hashing 64-bit keys one often picks either c = 4 or c = 8 which
yields a space usage of 9×28×8 bytes (less than 20 KB) and 5×216×8
bytes (less than 3 MB), respectively. An important property is that
once the tables are populated they will never be overwritten. This
means that the cache does not get dirty, that is, different computer
cores can access the tables and not worry about consistency.

3 COUNTING DISTINCT ELEMENTS WITH
STRONGLY CONCENTRATED HASHING

Consider a sequence (or stream) of keys x1, . . . ,xs ∈ U from some
universe U , where each element may appear multiple times. The
problem of counting distinct elements in such a stream is the follow-
ing. Using only little space, we wish to estimate the number n of dis-
tinct keys in the stream. We are given parameters 0 < ε,δ < 1, and
the goal is to create an estimator, n̂ such that (1−ε)n ≤ n̂ ≤ (1+ε)n
with probability at least 1 − δ . It is assumed that the space required
to store all n distinct elements of the stream is much too large.
In practice we often want ε to be a small constant, e.g. ε = 1%,
while δ should be so small that we are all but guaranteed that
(1 − ε)n ≤ n̂ ≤ (1 + ε)n, e.g. δ = 2−30.

In all previous work, hash functions have been a vital tool to
create such estimators. Typically, strongly universal hash functions
or hash functions with no theoretical guarantees have been used.
In this section, we demonstrate that with strongly concentrated
hash functions, we achieve both strong theoretical guarantees and
simpler, faster algorithms for the counting distinct elements prob-
lem.

3.1 Bottom-k Sampling
In our estimation, we follow the classic approach of Bar-Yossef
et al. [3], which was later revised by Beyer et al. [4] to introduce
their unbiased version of the estimator. We proceed as follows. Let
h : U → [0, 1) be a random hash function, and assume for simplicity
that h is collision-free over U . For some k > 1, assumed to be

significantly smaller than n, we process each element xi in order,
maintaining the k smallest distinct hash values h(xi) of the stream.
Let x (k) be the key with the kth smallest hash value under h, and
let h(k) = h

(
x (k)

)
. As in [3], our estimator for n is then n̂ = k/h(k) .

It is worth noting that [3] suggests several other estimators, but
the points we will make below apply to all of them. We call this the
bottom-k estimator for counting distinct elements.

The point of using a hash function h is that all occurrences of
a given key x in the stream get the same hash value. Thus, if S is
the set of distinct keys, h(k) is the kth smallest hash value from S .
In particular, n̂ depends only on S , not on the frequencies of the
elements of the stream.

We would like n̂ = k/h(k) to be concentrated around n. For any
probability p ∈ [0, 1], let X<p denote the number of elements from
S that hash below p. Let p− = k/((1 + ε)n) and p+ = k/((1 − ε)n).
Note that both p− and p+ are independent of the random hash
function h. Now,

n̂ = k/h(k) ≤ (1 − ε)n ⇐⇒ X<p+ < k = (1 − ε)E
[
X<p+

]
, (4)

n̂ = k/h(k) > (1 + ε)n ⇐⇒ X<p− ≥ k = (1 + ε)E
[
X<p−

]
. (5)

These observations form a good starting point for applying prob-
abilistic tail bounds using different types of hash functions as we
describe in the following.

3.2 Strongly Universal Hashing and
Independent Repetitions

Suppose we instantiate the bottom-k estimator with a strongly
universal hash function h : U → [0, 1), perhaps the most common
strategy for getting theoretical guarantees on the performance. In
that case, the hash values of any two distinct keys are independent,
so as noted in Section 2.1, Var [

X<p] ≤ E [
X<p] = np for every

0 < p < 1. Thus, applying Chebyshev’s inequality (as we did in (3))
and (4),

Pr [n̂ ≤ (1 − ε)n] = Pr
[
X<p+ ≤ (1 − ε)E

[
X<p+

]]
≤ 1/(npε2) = (1 − ε)/(kε2).

Similarly, using (5) we get

Pr [n̂ ≥ (1 + ε)n] ≤ (1 + ε)/(kε2).

Assuming ε < 1, it follows that

Pr [|n − n̂ | ≥ εn] ≤ 2/(kε2).

To get the desired error probability δ , we could now set k =
2/(δε2). However, if δ is small, e.g., δ = 1/u, k becomes much too
large. To solve this issue, the standard approach is, as in [3], to apply
classic median trick. Instead of aiming for a small error probability
right away, we start by aiming for a constant error probability δ0.
Here we use δ0 = 1/4 for simplicity. Then it suffices to maintain the
k0 = 2/(δ0ε2) = 8/ε2 smallest hash values. With these parameters,
k0 and δ0, we now sample r independent estimators forn, n̂1, . . . , n̂r ,
for some r to be determined later, by repeating the algorithm r
times with fresh randomness. For our final estimator n̂ we return
the median of n̂1, . . . , n̂r .

Now, for each 1 ≤ i ≤ r , Pr[|n̂i − n | ≥ εn] ≤ 1/4 and these
events are independent. If |n̂ − n | ≥ εn, then |n̂i − n | ≥ εn for at

4

least half of the 1 ≤ i ≤ r . By the standard Chernoff bound (1), this
probability can be bounded by

Pr [|n̂ − n | ≥ εn] ≤ exp(−(r/4)/3) = exp(−r/12).
Setting r = 12 ln(1/δ), we get the desired error probability 1/δ . The
total number of hash values stored is then

k0r = 96 ln(1/δ)/ε2 = Θ(ln(1/δ)/ε2).

3.3 Utopia: Fully Random Hashing
Suppose that we could implement a fully random hash function
h : U → [0, 1). In that case, instantiating the bottom-k estimator
with h would yield excellent guarantees. Combining (4) and (5)
with the standard Chernoff bounds (2) and (1), respectively, with
0 < ε ≤ 1 yield the bounds

Pr [n̂ ≤ (1 − ε)n] < exp
(
− kε2

2(1 − ε)
)
,

Pr [n̂ ≥ (1 + ε)n] ≤ exp
(
− kε2

3(1 + ε)

)
.

Hence,
Pr [|n̂ − n | ≥ εn] ≤ 2 exp(−kε2/6). (6)

Thus, to get error probability δ , we just use k = 6 ln(2/δ)/ε2. There
are several reasons why this is much better than the above approach
using 2-independence and independent repetitions. It avoids the in-
dependent repetitions, so instead of applying r = Θ(log(1/δ)) hash
functions to each key we just need one, and with independent repe-
titions, we are tuning the algorithm depending on ε and δ , whereas
with a fully-random hash function, we get the concentration from
(6) for every 0 < ε ≤ 1.

The only caveat is that fully-random hash functions cannot be
implemented in practice. In some applications, cryptographic hash
functions, or popular hash functions such as MurmurHash3 [2]
have been applied. On datasets which have high entropy, such
hash functions will perform well and appear “random”, however,
there is no guarantee that this will hold for every choice of dataset.
Importantly, it is impossible to predict how such a hash function
will do on a particular structured dataset.

3.4 Strongly Concentrated Hashing
Abandoning the infeasible fully random hashing for strongly con-
centrated hashing, let h : U → [0, 1) be a strongly concentrated
hash function with error term E. Instantiating the bottom-k esti-
mator with h, we may applying the same calculations as above. It
then follows that for 0 < ε ≤ 1,

Pr [n̂ ≤ (1 − ε)n] = exp
(
−Ω

(
kε2

1 − ε
))
+ E,

Pr [n̂ ≥ (1 + ε)n] = exp
(
−Ω

(
kε2

(1 + ε)

))
+ E,

so

Pr [|n̂ − n | ≥ εn] = 2 exp
(
−Ω

(
kε2

))
+O (E). (7)

To obtain the error probability δ = ω (E), we again need to
store k = O (log(1/δ)/ε2) hash values. Within a constant factor this
means that we use the same total number using 2-independence

and independent repetitions, and we still retain the following ad-
vantages from the fully random case.
• By avoiding repetitions, we save a factor Θ(log(1/δ)) in
running time.
• We avoid tuning the algorithm for a given ε and δ . Instead
we get the concentration from (7) for every 0 < ε ≤ 1.

3.4.1 Instantiating with Tabulation-1Permutation. Let us relate the
above discussion to the Tabulation-1Permutation hash function by
Aamand et al. [1]. It follows by Theorem 2.3 that implementing
the bottom-k estimator with Tabulation-1Permutation would imply
that for any γ > 0,

Pr [|n̂ − n | ≥ εn] = 2 exp
(
−Ω

(
kε2

))
+O (1/uγ).

Since the universe size u is usually huge, the error term O (1/uγ) is
negligible. Hence, from a practical perspective, the concentration
is as good as fully random up to constant factors in the exponent
of the exponential tail.

3.5 Implementing Bottom-k and an Alternative
Implementing the bottom-k estimator in practice requires main-
taining the k smallest hash values. The most obvious and widely
used approach is to use a priority queue. For instance, this is used in
tghe survey of Harmouch and Naumann [11]. If the input arrives in
random order then we need to update the priority queueO (k logn)
times which gives a total running time of O (n + k logk logn), and
with the reasonable assumption that k = O (n/ log(n)2) we get a
running time of O (n).

Unfortunately, it is not reasonable to assume that the data arrives
in random order and thus, for hash functions that are not strongly
concentrated we might need to update the priority queue much
more! But for strongly concentrated hash functions we can show
that the priority queue only needs to be updated O (k logn) times
no matter the input. This difference can cost as much as a factor of
O (logk).

3.5.1 Threshold Estimator. Alternatively, we could use a related,
but different sketch of Var-Yossef et al. [3], which is more effi-
cient. The algorithm identifies the smallest b such that the number
X<1/2b of keys hashing below 1/2b is at most k . For the online
processing of the stream, this means that we increment b when-
ever X<1/2b > k . At the end, we return 2bX<1/2b . The analysis of
this estimator is similar to the analysis of the bottom-k estimator.
Using strongly concentrated hashing, we get the same advantage
of avoiding independent repetitions: In [3] they achieve error prob-
ability δ by running Θ(log(1/δ)) independent experiments, each
storing up to k = Θ(1/ε2) hash values, whereas we achieve the
same error probability by running only a single experiment with
a strongly concentrated hash function storing k = O (log(1/δ)/ε2)
hash values. The total number of hash values stored is the same,
but asymptotically, we save a factor Θ(log(1/δ)) in time.

4 SET SIMILARITY WITH STRONGLY
CONCENTRATED HASHING

Another setting where the k smallest hash values of a key set is
often used is for the problem of set similarity. Consider two subsets
A,B ⊂ U of a universe U = [u] = {0, 1, . . . ,u − 1}. A common

5

metric for similarity between two such sets is the Jaccard similarity,
J (A,B) = |A ∩ B | / |A ∪ B |. In this section, we estimate the Jaccard
similarity using strongly concentrated hashing, applying similar
techniques to the previous section.

We consider Broder’s [6] original algorithm for set similarity
which we sketch for completeness. As in the previous section, let
h : [u]→ [0, 1) be a hash function assumed to be collision free. We
define the bottom-k sample MINk (S) of a set S ⊆ [u] to be the k
elements of S with the smallest hash values underh. We assume here
that k ≤ n = |S |. If h is fully random, then MINk (S) is a uniformly
random subset of S of size k , and if T ⊆ S , we may estimate the
frequency f = |T | / |S | as ��MINk (T) ∩MINk (S)�� /k . In [6], Broder
uses this observation to estimate the Jaccard similarity between
two sets A,B ⊂ [u] as follows. Given the bottom-k samples from
A and B, the bottom-k sample of their union may be constructed
as MINk (A ∪ B) = MINk (MINk (A) ∪MINk (B)). Then the Jaccard
similarity is estimated as Ĵ (A,B) = |MINk (A ∪ B) ∩ MINk (A) ∩
MINk (B) |/k .

For the hash function, h, Broder [6] first considers fully ran-
dom hashing and this particular case is very well understood. In
this case MINk (S) is a fully random sample of k distinct elements
from S . However, fully random hashing is not implementable in
practice. Broder also sketches some alternatives with realistic hash
functions. Continuing this line of work, Thorup [16] showed that
using strongly universal hashing, we get the same expected error
as with fully random hashing. Writing f = J (A,B) and f̂ = Ĵ (A,B),
his precise result is that E

[
| f − f̂ |

]
= O (1/

√
f k). Similarly to the

problem of counting distinct elements, in order to obtain an estima-
tor satisfying a similar bound with some high probability at least
1− δ , we have to performO (log(1/δ)) independent repetitions and
use the median of the estimators as the final estimate. Our next
result shows that when implementing the hashing using a scheme
with strong concentration bounds, like Tabulation-1Permutation,
we obtain the a similar error bound by running the algorithm just
a single time, but with a sketch which is O (log(1/δ)) times larger.
Again, the total space usage is the same, but we effectively elimi-
nate the need for independent repetitions, thus saving a factor of
O (log(1/δ)) in time.

Our analysis follows the simple union-bound approach from
[16]. It is simpler to study the case where we are sampling from
a set S and want to estimate the frequency f = |T |/|S | of a subset
T ⊆ S . Let h(k) be the kth smallest hash value from S as in the
above algorithm for estimating distinct elements. For any p let Y ≤p
be the number of elements from T with hash value at most p. Then
|T ∩MINk (S) | = Y ≤h (k) which is our estimator for f k .

Theorem 4.1. For ε ≤ 1, if h is strongly concentrated with added
error probability E, then

Pr
[
|Y ≤h (k) − f k | > ε f k

]
= 2 exp(−Ω(f kε2)) +O (E). (8)

Proof. Let n = |S |. We already saw in (7) that for any εS ≤ 1,
PS = Pr

[
|1/h(k) − n/k | ≥ εSn/k

]
≤ 2 exp(−Ω(kε2S))+O (E). Thus,

with p− = k/((1 + εS)n) and p+ = k/((1 − εS)n), we have h(k) ∈
[p−, p+] with probability 1−PS , and in that case, Y ≤p− ≤ Y ≤h (k) ≤
Y ≤p+ .

Let µ− = E
[
Y ≤p−

]
= f k/(1 + εS) ≥ f k/2. By strong concentra-

tion, for any εT ≤ 1, we get that

P−T = Pr
[
Y ≤p− ≤ (1 − εT)µ−

]
≤ 2 exp(−Ω(µ−ε2T)) + E
= 2 exp(−Ω(f kε2T)) + E .

Thus

Pr
[
Y ≤h (k) ≤ 1 − εT

1 + εS
f k

]
≤ P−T + PS .

Likewise, with µ+ = E
[
Y ≤p+

]
= f k/(1 − εS), for any εT , we get

that

P+T = Pr
[
Y ≤p+ ≥ (1 + εT)µ+

]
≤ 2 exp(−Ω(µ+ε

2
T)) + E

= 2 exp(−Ω(f kε2T)) + E .

and

Pr
[
Y ≤h (k) ≥ 1 + εT

1 − εS f k

]
≤ P+T + PS .

To prove the theorem for ε ≤ 1, we set εS = εT = ε/3. Then
1+εT
1−εS ≤ 1 + ε and 1−εT

1+εS ≥ 1 − ε . Therefore,

Pr
[
|Y ≤h (k) − f k | ≥ ε f k

]
≤ P−T + P

+
T + 2PS

≤ 8 exp(−Ω(f kε2T)) +O (E)
= 2 exp(−Ω(f kε2T)) +O (E).

This completes the proof of (8). □

Similarly to the discussion in Section 3.4.1, if we implement the
hashing as Tabulation-1Permutation, it follows from Theorem 2.3
and Theorem 4.1 that

Pr
[
|Y ≤h (k) − f k | > ε f k

]
= 2 exp(−Ω(f kε2)) +O (u−γ). (9)

for any γ = O (1). Ignoring the negligible term O (u−γ), this is as
good as with fully random hashing up to the constant delay the the
exponential decrease.

As for the problem of counting distinct elements in a stream,
in the online setting we may again modify the algorithm above to
obtain a more efficient sketch. Assuming that the elements from S
arrive in a stream, we again identify the smallest b such that the
number of keys from S hashing below 1/2b , X ≤1/2b , is at most k .
We increment b by one whenever X ≤1/2b > k and in the end we
return Y ≤1/2b /X ≤1/2b as an estimator for f . The analysis of this
modified algorithm is similar to the analysis provided above.

Remark. The case of set similarity illustrates the crucial impor-
tance of using a common hash functionh as a source of randomness.
In a distributed setting, different entities may generate the samples
MINk (A) and MINk (B). As long as they agree on h, they only need
to communicate the samples to estimate the Jaccard similarity of
A and B. As noted before, for Tabulation-1Permutation h can be
shared by exchanging a random seed of O ((logu)2) bits.

6

Brief synopsis of our C++ experiments
Dataset Algorithm Measurement Desired Error Cardinality Sketch-size Experiments Type Plots

Synthetic Bottom-k

Error 0.03
106 24,500 2 × 103 Single Rep. 3a
5 × 105 24,500 5 × 104 Single Rep. 3b, 3c
5 × 105 24,500 3 × 104 Median-Trick 6a

Time − 5 × 107 3500 10 Single Rep. 4a
5 × 107 3500 10 Median-Trick 4b

Synthetic Threshold
sampling

Error 0.01
5 × 106 8 × 105 5 × 104 Single Rep. 7a, 7b
2.5 × 105 1.6 × 105 5 × 105 Single Rep. 7c
2.5 × 105 1.6 × 105 3 × 104 Median-Trick 6b

Time − 109 8 × 105 10 Single Rep. 8a
5 × 106 8 × 105 10 Median-Trick 8b

Real-world Threshold
sampling

Error 0.03 1.8 × 106 17,500 104 Both 9a, 10a
6.5 × 105 28,000 3 × 104 Both 9b, 10b

Time − 1.8 × 106 17,500 10 Both 9c, 10c
6.5 × 105 28,000 10 Both 9d, 10d

Table 1: Overview of our experiments. All experiments are designed to compare Tabulation-1Permutation with various other
hashing schemes when estimating distinct elements. The type of the experiment indicates whether the other hashing schemes
use a single sketch, or 5 independent repetitions and the median trick. Tabulation-1Permutation always uses a single sketch.
When using the median trick, the size of each sketch is reduced by a factor of 5, so the total space usage is always the same.

5 EXPERIMENTAL EVALUATION
In this section we experimentally evaluate hash functions with
strong concentration bounds in the context of cardinality esti-
mation. In particular, we use the recently announced Tabulation-
1Permutation [1]. Our experiments address the following questions:
• Is it possible, in practice, to avoid independent repetitions
by using hash functions with strong concentration bounds
and still get reliable results?
• What are the implications on the running time of car-
dinality estimation algorithms, when using Tabulation-
1Permutation?

In our experiments, we restrict the space usage of our algorithms
to some parameter k . When we run our algorithm for counting
distinct elements using the fast Multiply-Mod-Prime and Multiply-
Shift hash functions, we report both the results of performing a
single repetition per experiment with a sketch of size k , and the
results of performing r independent repetitions per experiment
each with a sketch of size k/r and outputting the median of the
r estimations. The reason we use space k/r for each repetition,
instead of “reusing” the space k , is that in a streaming setting the in-
dependent repetitions are being run simultaneously. We expect the
first type of experiment to have about r times better running time,
and the second type of experiment to produce more reliable results.
Throughout our experiments, we adopt the widely used practice
of performing r = 5 repetitions. On the other hand, when using
Tabulation-1Permutation we only perform 1 repetition per experi-
ment, effectively demonstrating that the estimation is still reliable
without the need to spend more time for independent repetitions.

A brief synopsis of our experiments is presented in Table 1.
In what follows, we first discuss our experimental setup and the
implementation details. Then, we present our results for synthetic

data and the bottom-k algorithm discussed in previous sections.
Then we present similar results for synthetic data and a standard
threshold-sampling cardinality estimation algorithm. Finally, we
present our results on real-world datasets.

5.1 Experimental Setup
Hardware. We performed our experiments on two computers.

The first has an Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz, 16
GB RAM, and is running on 64bit Windows 10. The second has
an Intel(R) Core(TM) i5-8350U CPU @ 1.7 GHz, 8 GB RAM, and is
running on 64bit Ubuntu 18.04.4 LTS.

Datasets. We use both synthetic and real-world datasets. Notice
that theoretically we guarantee that, when using hash functions
with strong concentration bounds, the probability of getting a big
error is negligible (“big” is quantified in relation to the sketch size).
In order to test such a claim, one needs to run hundreds of thousands
of experiments and show that the result is always reliable. Therefore,
the quality of the results is tested against small datasets, so that
we can repeat the same experiment sufficiently many times. Big
datasets with cardinality in the order of 109 are also employed, but
only to test the running time.

Our synthetic datasets for testing accuracy are, therefore, sets
with cardinalities ranging between 2.5 × 105 and 5 × 106, while
the synthetic datasets for testing running times have cardinalities
ranging between 5 × 106 and 109. We use both structured synthetic
datasets, containing consecutive integers, and random synthetic
datasets containing random 64-bit integers.

Our real-world datasets are geometric datasets; we are using the
Openadresses dataset, which is a public database connecting the

7

geographical coordinates with their postal addresses2. To motivate
cardinality estimation in this case, we partition the space in squares
of fixed size, and compute the number of non-empty squares. We
also experiment directly on the initial dataset. The cardinality of
these datasets varies between 6.5 × 105 and 1.8 × 106.
5.1.1 Algorithms. We use two different algorithms for cardinality
estimation. First, we have the bottom-k algorithm [4] discussed
in previous sections; in this case, we expect that the k-th smallest
hash value is approximately k

n . The second algorithm, threshold-
sampling, can be seen as the dual approach; that is, we keep all
elements with hash values at most p = n

k , and expect their car-
dinality to be approximately k . Generally we do not know n in
advance, so determining p is not straightforward; the way to solve
this problem is discussed in Subsection 3.5. In our experiments we
know n in advance, so we directly use the proper value of p.

5.1.2 Hash-Functions. For each algorithm, we test it using some
of the most popular and fast hash functions employed in practice.
Their output is always 64-bit unsigned integers. In particular, we use
Tabulation-1Permutation [1], Multiply-Mod-Prime [7], Multiply-
Shift [9], and MurmurHash3 [2]. We use Multiply-Mod-Prime and
Multiply-Shift as they are very fast strongly universal hash func-
tions. MurmurHash3 is also used as it is known to perform well in
practice, even though it does not provide theoretical guarantees
(e.g. in [5] the authors show how to break MurmurHash3).

We did not experiment with random polynomials of degree 100,
or the cryptographic hash function BLAKE3 because they proved
to be more than 60 and 155 times slower than any other method,
respectively.

5.1.3 Randomness. The random seed needed for all hash functions
was drawn from https://www.random.org/. For tabulation based
methods, the seed was filled using a random polynomial of degree
100.

5.1.4 Implementation details. Most experiments are implemented
in C++ 11. Some are implemented in Java and used the Metanome
data profiling framework [15]. Metanome is a standard framework
decoupled from the algorithms, which provides basic functionali-
ties, such as input parsing and performance measurement3, having
already been used in the context of cardinality estimation [10].

5.1.5 Evaluation Metrics. As the measure of estimation accuracy,
we report the relative error. The relative error of an estimate n̂ of
a quantity n is defined as n−n̂

n . For measuring running time, we
report the average time per experiment.

5.2 The Bottom-k Algorithm on Synthetic Data
In this subsection, we present our results on applying the bottom-k
algorithm to synthetic data. These experiments are of three different
kinds. The first uses one repetition per experiment for all hash
functions, the second uses the previously mentioned Metanome
framework, and the third uses the median trick with the Multiply-
Shift and Multiply-Mod-Prime as described at the beginning of the
section.

2https://openaddresses.io/
3www.metanome.de

5.2.1 One Repetition Per Experiment. We performed experiments
on implementations of the Bottom-k algorithm, where we used only
a single sketch for each hash function. The experiments are listed
as rows 1, 2, and 4 of Table 1. All experiments were implemented
in C++ and had k = 24,500, aiming at a relative error of at most 3%
in all of the experiments (a suitable choice of k for a given relative
error ε and a desired low error probability δ is suggested in [4]).
The datasets used are structured datasets containing consecutive
integers.

Testing for accuracy, for the dataset with cardinality 106 (row 1
of Table 1) almost all experiments were within the acceptable 3%
error (Figure 3a). Only Multiply-Shift – the fastest hash function
tested – had some experiments with relative error above 3%. It
is to be expected that not too many outliers were observed since
2 × 103 experiments per hash function is not sufficient to consis-
tently observe big errors. On the other hand, for the dataset with
cardinality 5 × 105 (row 2 of Table 1) both Multiply-Mod-Prime
and Multiply-Shift have some experiments with huge errors (about
120% and 25%, respectively). See Figure 3b.

Testing running times, we tested on a dataset of cardinality
5× 107 (row 4 of Table 1) with k = 3500 (Figure 4a). We notice that
the implementation with Tabulation-1Permutation is significantly
faster than the other methods except for Multiply-Shift.

5.2.2 Metanome. Using Java and the Metanome data profil-
ing framework, we also tested Tabulation1-Permutation against
Multiply-Mod-Prime and MurmurHash3. The experiments were
performed on very large datasets (size 5 × 108), with sketch size
k = 3.2 × 105, and desired error 1%. We ran 400 experiments for
each hash-function.

The error results are shown in Figure 5. Once again we verify that
in order to test reliability, a lot more experiments are needed; just
400 experiments were not enough to show any unreliable behavior
of Multiply-Mod-Prime. However 400 experiments were enough to
show that MurmurHash3 gives results that are not within the 1%
error.

Concerning running times, MurmurHash3 required 14.15 sec-
onds per experiment, Multiply-Mod-Prime required 14.4 seconds,
and Tabulation-1Permutation required 15.65 seconds per experi-
ment. A possible explanation for the slightly longer running time
of Tabulation-1Permutation is that tabulation methods work best
when their look-up tables can be efficiently stored in the L1-cache.
When running on top of the Metanome framework, it may be the
case that there was not enough space in the L1-cache to completely
fit the look-up tables.

It is also interesting to notice that the running time for each
experiment was not very stable. For Tabulation-1Permutation the
time varied between 13.5 and 19 seconds, for Multiply-Mod-Prime
between 12.5 and 17.5 seconds, and for MurmurHash3 the range
was much larger (between 12 and 30 seconds). For Tabulation-
1Permutation this is likely due to cache misses, while for the other
two methods it is most likely due to the fact that their output did
not look “random” enough and thus values had to be inserted in
the bottom-k priority queue often; it can theoretically be proven
that Tabulation-1Permutation does not suffer from such problems.

The MurmurHash3 function we used was the one from the of-
ficial implementation of MurmurHash3 [2]. Additionally, we also

8

(a) Cardinality: 106
Experiments per hash-function: 2 × 103

(b) Cardinality: 5 × 105
Experiments per hash-function: 5 × 104

(c) Cardinality: 5 × 105
Experiments per hash-function: 5 × 104

Figure 3: Relative error of the single-repetition experiments using the bottom-k algorithm (k = 24,500). Each dot represents
an experiment, and the x-coordinate is the relative error. The more opaque the dots are, the more experiments had the corre-
sponding relative error. The vertical blue lines indicate the desired 3% relative error.

(a) Single-repetition experiments with structured synthetic
datasets (consecutive integers). Cardinality = 5 × 107, k = 3500.

(b) Experiments on random synthetic datasets. With Multiply-
Mod-Prime and Multiply-Shift, (r, k) = (5, 700). With
Tabulation-1Permutation, (r, k) = (1, 3500). Cardinality =
5 × 107

Figure 4: Timing of bottom-k experiments (synthetic data).

Figure 5: Cumulative plot of the relative errors of 400 exper-
iments per hash-function, using the bottom-k algorithm on
Metanome. Cardinality= 5 × 108 and k = 3.2 × 105.

experimented in the same setting, using the implementation of
MurmurHash3 used in a survey for cardinality estimation [10]. In

this case, we had some experiments with 15% errors. The reason is
possibly that the two implementations use different constants for
computing the hash value. This fact highlights the need for hash
functions with strong theoretical guarantees.

5.2.3 Applying the Median Trick. We performed experiments
where independent repetitions and the median trick were used
for the instantiations with Multiply-Shift and Multiply-Mod-Prime,
while the implementation with Tabulation-1Permutation still used
just a single sketch.

For accuracy, we performed 3 × 104 experiments on a dataset of
cardinality 5 × 105 (row 3 of Table 1). The results are shown in Fig-
ure 6a. We observe that the estimations, when using Tabulation-
1Permutation, are always within the 3% bound, and are generally
more concentrated around the actual cardinality.

For speed, we ran the algorithms on datasets of cardinality 5×107
with k = 3500 (row 5 of Table 1). Here Tabulation-1Permutation
was significantly faster, as seen in Figure 4b. Its average running
timewas 365ms , whileMultiply-Shift required 1118ms andMultiply-
Mod-Prime required 422ms .

9

(a) Bottom-k : Cardinality = 5 × 105
For Multiply-Mod-Prime and Multiply-Shift we have (r, k) =
(5, 4900). For Tabulation-1Permutation (r, k) = (1, 24,500).

(b) Threshold-sampling: Cardinality = 2.5 × 105
For Multiply-Mod-Prime and Multiply-Shift we have (r, p) =
(5, 0.128). For Tabulation-1Permutation (r, p) = (1, 0.64).

Figure 6: Relative error of 3 × 105 experiments for each hash-function, using the bottom-k and the threshold-sampling
algorithm on random synthetic data. Multiply-Mod-Prime and Multiply-Shift used 5 repetitions per experiment, whereas
Tabulation-1Permutation ran just once per experiment with a 5 times larger sketch. The plots should be interpreted as those
in Figure 3.

(a) Cardinality: 5 × 106
Experiments per hash-function: 5 × 104

(b) Cardinality: 5 × 106
Experiments per hash-function: 5 × 104

(c) Cardinality: 2.5 × 105
Experiments per hash-function: 5 × 105

Figure 7: Relative error of the single-repetition experiments using the threshold-sampling algorithm, using structured syn-
thetic datasets (consecutive integers). The plots should be interpreted as those in Figure 3.

5.3 Threshold-Sampling on Synthetic data
In this subsection, we present our experiments on the threshold-
sampling algorithm when using synthetic data. All experiments
were performed in C++11.We first consider an implementationwith
one repetition per experiment for all hash functions. Secondly, we
consider using the median trick with Multiply-Shift and Multiply-
Mod-Prime.

5.3.1 One Repetition Per Experiment. We performed experiments
on implementations of the threshold-sampling algorithm using only
a single sketch for each hash functions. Details of the experiments
are listed as rows 6, 7, and 9 of Table 1. All of them were aiming for
a relative error of at most 1%.

For accuracy, we performed experiments on a datasets with cardi-
nality 5× 106 (row 6 of Table 1). The results are plotted in Figure 7a.
Only Multiply-Mod-Prime and Multiply-Shift gave results with rel-
ative error worse than 1% error (about 15% and 2%, respectively).
If we zoom in (Figure 7b) we see that within the acceptable error

1% these two hash functions are far more accurate than all other.
This is actually not at all surprising, as we remark in Section 5.5.
Rather it is a direct consequence of the estimators having the same
variance. We also performed experiments for datasets with car-
dinality 2.5 × 105 (row 7 of Table 1). The results are plotted in
(Figure 7c). Here, we see a similar picture, but the errors are much
higher. Namely, Multiply-Mod-Prime has experiments with more
than 50% relative error, and Multiply-Shift has experiments with
more than 35% relative error.

Concerning the running time, we run datasets of cardinality 109
(row 9 of Table 1). The results can be seen in Figure 8a, and it is clear
that implementing the algorithm with Tabulation-1Permutation
is significantly faster than with any other hash function except
Multiply-Shift.

5.3.2 Applying the Median Trick. We performed experiments
where independent repetitions and the median trick were used
for the instantiations with Multiply-Shift and Multiply-Mod-Prime,

10

(a) Single repetition experiments on structured synthetic data
(consecutive integers). Cardinality = 109, p = 8 × 10−4. (b) Experiments on random synthetic datasets. With Multiply-

Mod-Prime and Multiply-Shift, (r, p) = (5, 0.032). With
Tabulation-1Permutation (r, p) = (1, 0.16). Cardinality=5 × 106.

Figure 8: Timing of threshold-sampling experiments (synthetic data).

while the implementation with Tabulation-1Permutation still used
just a single sketch.

For accuracy, we performed 3 × 104 experiments with a dataset
of cardinality 2.5 × 105 (row 8 of Table 1). We used the threshold
p = 0.128 for Multiply-Mod-Prime and Multiply-Shift and the
threshold p = 0.64 for Tabulation-1Permutation. The results are
shown in Figure 6b. Notice that the threshold p when performing 5
repetitions is 5 times smaller. This is to ensure that the elements
of each of the 5 independent sketches only use a fifth of the total
allowed space k . We observe that the estimations are much better
concentrated when using Tabulation-1Permutation, always keeping
within the 1% bound.

Testing for speed, we ran experiments on datasets of cardinal-
ity 5 × 106 (row 10 of Table 1). Here Tabulation-1Permutation is
much faster with an average running time of 19ms , while Multiply-
Shift required 33ms and Multiply-Mod-Prime required 78.5ms . The
results can be seen in Figure 8b.

5.4 Experiments on Real-world Data
In this subsection, we present our experiments with real-world
data. For these experiments, we used geometric datasets, namely
the Openadresses dataset. We experiment on this dataset in two
different ways. First, we estimate the distinct elements of the dataset
directly. Then, in order to bettermotivate counting distinct elements
on this dataset, we partition the geometric space in squares of
fixed size. Each geometric item is assigned to its corresponding
square, and we count the number of non-empty squares. All the
experiments aimed at error probability 3%. The experiments are
listed as rows 11 through 14 of Table 1.

5.4.1 One Repetition Per Experiment. In the setting where we were
only using a single sketch for all the hash functions, the results
were as follows.

For accuracy, when running on both the initial dataset and the
preprocessed dataset, Tabulation-1Permutation and MurmurHash3
were always within the 3% relative error bound on the initial dataset,
while Multiply-Mod-Prime and Multiply-Shift deviated from this
error bound in both cases. See Figure 9a and Figure 9b, respectively.

For the preprocessed data set some of these deviations were as
big as 80% and 40% for Multiply-Mod-Prime and Multiply-Shift,
respectively.

For running times, Tabulation-1Permutation is comparable with
Multiply-Mod-Prime (in the original dataset it is slightly slower
and in the preprocessed dataset it is slightly faster). It is also sig-
nificantly slower than Multiply-Shift and significantly faster than
MurmurHash3, in both cases. See Figures 9c and 9d for the results.

5.4.2 Applying the Median Trick. In the setting where we use the
median trick when instantiating the estimator with the median
trick, the results were as follows.

For accuracy, Tabulation-1Permutation (with a single repetition
per experiment) is always within the 3% relative error bound, and
is generally better concentrated. Multiply-Mod-Prime is within
the error bounds only in the case of the preprocessed input, and
Multiply-Shift is off the 3% error bound in both cases. See Figure 10a
for the results.

For speed, Tabulation-1Permutation also outperforms the other
two hash functions when we measure running time in this setting.
In the original dataset, Tabulation-1Permutation needs 9.5ms per
experiment, Multiply-Shift needs 16ms , and Multiply-Mod-Prime
needs 36ms . See Figure 10c for details. In the preprocessed dataset,
the situation is similar: Tabulation-1Permutation needs 5.5ms per
experiment, Multiply-Shift needs 7ms , and Multiply-Mod-Prime
needs 14ms . See Figure 10d for details.

5.5 Remark on Concentration
An interesting observation related to the errors when running
only a single sketch for all hash functions is the following: If we
only focus our attention on the successful experiments, i.e., the
outcomes with relative error less than ε , then on some data sets,
Multiply-Mod-Prime and Multiply-Shift appear more accurate than
Tabulation-1Permutation (see for instance Figure 3a and Figure 3c).
Running only a few experiments, this could lead to the false impres-
sion that these hash functions are in fact always better than hash
functions like Tabulation-1Permutations. However, the variance of
the estimators are approximately the same for all the seeded hash

11

(a) Accuracy on real-world
dataset.
Cardinality: 1.8 × 106
Experiments: 104

(b) Accuracy on real-world
preprocessed dataset.
Cardinality: 6.5 × 105
Experiments: 3 × 104

(c) Timing on real-world
dataset.
Cardinality: 1.8 × 106
Experiments: 104

(d) Timing on real-world
preprocessed dataset.
Cardinality: 6.5 × 105
Experiments: 3 × 104

Figure 9: Single repetition experiments on real-world datasets. Plots 9a and 9b should be interpreted as Figure 3.

(a) Accuracy on real-world
dataset.
Cardinality: 1.8 × 106
Experiments: 104

(b) Accuracy on real-world
preprocessed dataset.
Cardinality: 6.5 × 105
Experiments: 3 × 104

(c) Timing on real-world
dataset.
Cardinality: 1.8 × 106
Experiments: 104

(d) Timing on real-world
preprocessed dataset.
Cardinality: 6.5 × 105
Experiments: 3 × 104

Figure 10: Median-trick (5 repetitions) experiments on real-world datasets. Plots 10a and 10b should be interpreted as Figure 3.

functions. This means that if we obtain these ’to good to be true’
estimates most of the time, we must inevitably have some cases
where the estimates are far off. This is precisely the behaviour that
we see with Multiply-Mod-Prime and Multiply-Shift. On the other
hand, as seen in Figure 3a and Figure 3c, Tabulation-1Permutation
provides estimates that reliably lie within the 3% error margin, not
extremely close to the precise cardinality, yet with no wild outliers.

6 CONCLUSION
In this paper we showed that the use of hash functions with strong
concentration bounds, like Tabulation-1Permutation, can speed up
streaming algorithms by avoiding time consuming independent
repetitions, and still provide accurate statistical estimates with high
probability. Specifically, we studied algorithms for estimating the
number of distinct elements in a stream and the similarity between
two large sets.

Our results are backed up by experiments which show that
widely used hash functions like Multiply-Mod-Prime and Multiply-
Shift do not exhibit similar behavior. On the other hand, when
boosting the success probability of Multiply-Shift and Multiply-
Mod-Prime using independent repetitions, the implementation
with Tabulation-1Permutation both becomes faster and it provides
more reliable estimates. Finally, the running time of Tabulation-
1Permutation is better than that of other commonly used hash
functions like MurmurHash3, which provided reliable estimates
in our experiments but which have no similar general theoretical
guarantees.

Evaluating the strength of a hashing scheme experimentally is
an impossible task. The hash function may behave nicely on most
data, but when certain badly structured data sets are encountered, it
may fail miserably. This is an important reason why hash functions
with strong theoretical guarantees are desirable. This paper demon-
strates that when implementing the above streaming algorithms
with Tabulation-1Permutation, we not only obtain such strong theo-
retical guarantees for the estimators; the algorithms also experience
a significant speed-up.

ACKNOWLEDGMENTS
Research of all authors partly supported by Thorup’s Investigator
Grant 16582, Basic Algorithms Research Copenhagen (BARC), from
the VILLUMFoundation. Evangelos Kipouridis has received funding
from the European Union’s Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie grant agreement No
801199.

REFERENCES
[1] Anders Aamand, Jakob Bæk Tejs Knudsen, Mathias Bæk Tejs Knudsen, Peter

Michael Reichstein Rasmussen, and Mikkel Thorup. Fast hashing with strong
concentration bounds. In Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2020, pages 1265–1278. ACM, 2020.

[2] Austin Appleby. Murmurhash3. https://github.com/aappleby/smhasher/wiki/
MurmurHash3, 2016. Available at https://github.com/aappleby/smhasher/wiki/
MurmurHash3.

[3] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan.
Counting distinct elements in a data stream. In International Workshop on Ran-
domization and Approximation Techniques in Computer Science (RANDOM), pages
1–10, 2002.

12

[4] Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, and Rainer
Gemulla. On synopses for distinct-value estimation under multiset operations.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, Beijing, China, June 12-14, 2007, pages 199–210, 2007. doi: 10.1145/1247480.
1247504. URL https://doi.org/10.1145/1247480.1247504.

[5] Martin Boßlet. Breaking murmur: Hash-flooding dos reloaded. https://emboss.
github.io/blog/2012/12/14/breaking-murmur-hash-flooding-dos-reloaded/, 2012.
Available at https://emboss.github.io/blog/2012/12/14/breaking-murmur-hash-
flooding-dos-reloaded/.

[6] Andrei Z. Broder. On the resemblance and containment of documents. In Proc.
Compression and Complexity of Sequences (SEQUENCES), pages 21–29, 1997.

[7] Larry Carter and Mark N. Wegman. Universal classes of hash functions. Journal
of Computer and System Sciences, 18(2):143–154, 1979. Announced at STOC’77.

[8] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. Dynamic hashing
in real time. In Johannes Buchmann, Harald Ganzinger, and Wolfgang J. Paul,
editors, Informatik, Festschrift zum 60. Geburtstag von Günter Hotz, volume 1 of
Teubner-Texte zur Informatik, pages 95–119. Teubner / Springer, 1992. ISBN 978-3-
8154-2033-1. doi: 10.1007/978-3-322-95233-2_7. URL https://doi.org/10.1007/978-
3-322-95233-2_7.

[9] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, andMartti Penttonen. A
reliable randomized algorithm for the closest-pair problem. Journal of Algorithms,
25(1):19–51, 1997.

[10] Hazar Harmouch and Felix Naumann. Cardinality estimation: An experimental
survey. Proc. VLDB Endow., 11(4):499–512, 2017. doi: 10.1145/3186728.3164145.
URL http://www.vldb.org/pvldb/vol11/p499-harmouch.pdf.

[11] Hazar Harmouch and Felix Naumann. Cardinality estimation: An experimental
survey. Proceedings of the VLDB Endowment, 11:499–512, 12 2017. doi: 10.1145/
3164135.3164145.

[12] Samuel Neves Jack O’Connor, Jean-Philippe Aumasson and Zooko Wilcox-
O’Hearn. Blake3. https://github.com/BLAKE3-team/BLAKE3, 2020. Available at
https://github.com/BLAKE3-team/BLAKE3.

[13] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. Sketch-
based change detection: methods, evaluation, and applications. In Proceedings of
the 3rd ACM SIGCOMM Internet Measurement Conference, IMC 2003, Miami Beach,
FL, USA, October 27-29, 2003, pages 234–247, 2003. doi: 10.1145/948205.948236.
URL https://doi.org/10.1145/948205.948236.

[14] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[15] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and Felix
Naumann. Data profiling with metanome. Proc. VLDB Endow., 8(12):1860–1863,
2015. doi: 10.14778/2824032.2824086. URL http://www.vldb.org/pvldb/vol8/p1860-
papenbrock.pdf.

[16] Mikkel Thorup. Bottom-k and priority sampling, set similarity and subset sums
with minimal independence. In Proc. 45th ACM Symposium on Theory of Comput-
ing (STOC), 2013.

[17] Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with
applications to linear probing and second moment estimation. SIAM Journal on
Computing, 41(2):293–331, 2012. Announced at SODA’04 and ALENEX’10.

[18] Mark N. Wegman and Larry Carter. New classes and applications of hash func-
tions. Journal of Computer and System Sciences, 22(3):265–279, 1981. Announced
at FOCS’79.

13

Appendix C

Expander Graphs are
Non-Malleable Codes

104

Expander Graphs Are Non-Malleable Codes
Peter Michael Reichstein Rasmussen
Basic Algorithms Research Copenhagen, University of Copenhagen, Denmark
pmrr@di.ku.dk

Amit Sahai
UCLA, Los Angeles, CA, USA
sahai@cs.ucla.edu

Abstract
Any d-regular graph on n vertices with spectral expansion λ satisfying n = Ω(d3 log(d)/λ) yields a
O
(
λ3/2

d

)
-non-malleable code for single-bit messages in the split-state model.

2012 ACM Subject Classification Theory of computation→ Cryptographic primitives; Mathematics
of computing → Spectra of graphs

Keywords and phrases Non-Malleable Code, Expander Graph, Mixing Lemma

Digital Object Identifier 10.4230/LIPIcs.ITC.2020.6

Funding Peter Michael Reichstein Rasmussen: Supported in part by grant 16582, Basic Algorithms
Research Copenhagen (BARC), from the VILLUM Foundation.
Amit Sahai: Supported in part from a DARPA/ARL SAFEWARE award, NSF Frontier Award
1413955, and NSF grant 1619348, BSF grant 2012378, a Xerox Faculty Research Award, a Google
Faculty Research Award, an equipment grant rom Intel, and an Okawa Foundation Research Grant.
This material is based upon work supported by the Defense Advanced Research Projects Agency
through the ARL under Contract W911NF-15-C- 0205. The views expressed are those of the authors
and do not reflect the official policy or position of the Department of Defense, the National Science
Foundation, or the U.S. Government.

Acknowledgements A significant effort was made to simplify our proof as much as possible, which
eventually resulted in the approximately 2-page proof of our main result presented here; we thank
Anders Aamand and Jakob Bæk Tejs Knudsen for suggestions and insights regarding the main
theorem that helped simplify and improve the results presented. Furthermore, we thank Aayush
Jain, Yuval Ishai, and Dakshita Khurana for early discussions regarding simple constructions of
split-state non-malleable codes not based on expander graphs.

1 Introduction

A key goal in theoretical computer science is the identification of structures that exhibit
resilience to adversarial tampering. The classical notion in this space is that of an error-
detection or error-correction code, where we seek to ensure that tampering caused by an
adversary that can modify a bounded number of symbols in a codeword can be detected or
corrected.

But what if the number of errors that an adversary can introduce is unbounded? The
objective of error detection or correction is clearly impossible to achieve in this setting – the
adversary can simply replace the transmitted codeword with an encoding of some other fixed
value. Thus, the main question of study in this context concerns the notion of malleability:
informally speaking, our core goal must be to prevent the adversary from replacing an
encoding of a value x with an encoding of some other related value x̃ 6= x.

The central information-theoretic object in this setting is called a split-state non-malleable
code [5]. Since their introduction in 2010 [5], split-state non-malleable codes have been
the subject of intense study within theoretical computer science [5, 4, 1, 3, 2, 6]. Here,

© Peter Michael Reichstein Rasmussen and Amit Sahai;
licensed under Creative Commons License CC-BY

1st Conference on Information-Theoretic Cryptography (ITC 2020).
Editors: Yael Tauman Kalai, Adam D. Smith, and Daniel Wichs; Article No. 6; pp. 6:1–6:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

6:2 Expander Graphs Are Non-Malleable Codes

we consider the most basic form of a split-state non-malleable code, namely a code for
encoding a single bit. A split-state non-malleable code [5] for single-bit messages consists of
randomized encoding and decoding algorithms (enc,dec). A message m ∈ {0, 1} is encoded
as a pair of strings (L,R) ∈ {0, 1}k × {0, 1}k, such that dec(L,R) = m. An adversary
then specifies an arbitrary pair of functions g, h : {0, 1}k → {0, 1}k. The code is said to be
non-malleable if, intuitively, the message obtained as dec(g(L), h(R)) is “unrelated” to the
original message m. In particular, to be ε-non-malleable, it is enough [4] to guarantee that
when the message m is chosen uniformly at random and encoded into (L,R), the probability
that dec(g(L), h(R)) = 1−m is at most 1

2 + ε.

1.1 Previous Work
All known constructions and proofs of security for explicit split-state non-malleable codes have
required complex mathematical proofs, and all known such proofs either directly or indirectly
used the mathematics behind constructions of two-source extractors [4, 1, 3, 2, 6]. In fact,
after constructing the first non-malleable code in the split-state model Dziembowski, Kazana,
and Obremski wrote: “This brings a natural question if we could show some relationship
between the extractors and the non-malleable codes in the split-state model. Unfortunately,
there is no obvious way of formalizing the conjecture that non-malleable codes need to be
based on extractors” [4].

1.2 Our Contribution
In this work, we seek to establish new, simpler, foundations for the construction of single-bit
split-state non-malleable codes. We do so by answering in the negative the implicit conjecture
of [4]; we show that it is not necessary to base constructions of non-malleable codes on the
theory of extractors.

Specifically, we show that expander graphs immediately give rise to split-state non-
malleable codes for single-bit messages. We prove that any d-regular graph on n = 2k nodes
with spectral expansion λ satisfying n = Ω(d3 log(d)/λ) yields a O

(
λ3/2

d

)
-non-malleable code

for single-bit messages in the split-state model. Our proof is elementary, requiring a little
more than two pages to prove, having at its heart two nested applications of the Expander
Mixing Lemma. Furthermore, we only need expanders of high degree (e.g., d = n1/3), which
can be constructed and analyzed easily (see, e.g., [7] or Appendix C), yielding 2−Ω(k)-non-
malleable codes. It is worth noting that the manner in which we construct a single-bit code
from an expander graphs is similar to how [4] constructs a single-bit code from a two-source
extractor. Thus, our main discovery is that expander graphs suffice for such a construction
to succeed.

Our construction of non-malleable codes from expander graphs thus opens up a new line
of attack in the study of split-state non-malleable codes. It is important to keep in mind that
current constructions of non-malleable codes supporting messages of arbitrary length use
many ideas pioneered in the construction of [4], in particular the use of extractors. While
we do not yet know how to generalize our results beyond single-bit messages, we speculate
that further investigation building upon our work will reveal a deeper connection and more
powerful simple constructions based on expanders.

It should be noted that two-source extractors are well-known to exhibit expansion
properties; however, in all previous proofs, much more than mere expansion was used to
argue non-malleability. Indeed previous proofs apply extractors repeatedly; for instance
the proof of [4] uses the extractor property multiple times (e.g., in equation (22) and using

P.M.R. Rasmussen and A. Sahai 6:3

equation (43) in [4]). We also note that it is not surprising that 1-bit non-malleable codes
will exhibit some sort of expansion properties. Our contribution is the converse: that good
expansion is sufficient for the construction of non-malleable codes.

1.3 Parameters and a Comparison with DKO13
For completeness we include an analysis of the concrete parameters of our resulting code.
Let γ > 0 be given. Our construction yields a 1-bit γ-non-malleable split-state code where
each part of the message is a vertex of a d-regular graph G on n vertices. The graph G must
have expansion λ and satisfy n = Ω(d3 log(d)/λ) and λ3/2/d = O(γ). Suppose that G has
expansion Θ(

√
d), which is the case for the instantiation in Appendix C. We may then set

d = Θ((1/γ)4) and n = Θ̃((1/γ)10). Thus, our code uses space 20 log(1/γ) +O(log log(1/γ))
to encode a single bit. The instantiation from Appendix C is not able to choose n as flexibly
as suggested here and uses space 24 log(1/γ). The time taken to encode and decode a message
in this instantiation is O(log(1/γ)). In comparison, the instantiation of [4] uses space around
90 log(1/γ) and the time to encode and decode is O(log(1/γ) log2(log(1/γ))). It should be
noted, however, that the construction of [4] supports leakage as well, something that we are
not considering in this paper.

1.4 Intuition behind our construction and analysis
Every graph, G = (V,E) yields a single-bit split-state code in the following straightforward
manner: To encode 1, pick an edge (v, u) ∈ E uniformly at random, and set the left encoding
to be v and the right encoding to be u. To encode a 0, do the same with a uniformly random
non-edge in the graph.

Our analysis proceeds in two parts. First, in Proposition 6, using only elementary
manipulations, we give an exact characterization of the success probability of any particular
tampering split-state adversary against the code associated with any graph. The split-
state adversary uses two functions, g and h, to tamper with the left and right encodings,
respectively. The significant term of the probability to be analyzed is the quantity

∑

(v,u)∈E

(
d
∣∣g−1(v)

∣∣ ·
∣∣h−1(u)

∣∣
n

−
∣∣E(g−1(v), h−1(u))

∣∣
)
.

To bound this expression, we make the following observations. First, sparsity of the graph
allows us to bound many of the terms immediately. Second, the term in the parentheses
above immediately suggests a bound using the Expander Mixing Lemma, applied to the
number of edges from g−1(v) to h−1(u). Third, we observe that the sum itself is over edges
(v, u) ∈ E, and furthermore, the remaining sum of problematic terms are a sum over edges of
the form (v, u) ∈ E ∩ (T × S) for some vertex subsets S, T ⊂ V . This allows us to apply the
Expander Mixing Lemma a second time, effectively bounding the number of “error terms”
that accumulate through the initial use of the Expander Mixing Lemma. The actual analysis
of this bound is just over a page of calculation. The analysis follows the intuition above,
modulo a partitioning of terms into sets of appropriate size for the analysis to work.

2 Preliminaries

We shall assume familiarity with the basics of codes and non-malleable codes. A cursory
review of relevant definitions can be found in the appendix.

ITC 2020

6:4 Expander Graphs Are Non-Malleable Codes

I Notation 1 (Graphs). A graph G = (V,E) consists of vertices V and edges E ⊂ V ×V . In
this exposition every graph is undirected and n = |V | always denotes the number of vertices
of the graph in question.

For any v ∈ V we denote by N(v) the set of neighbors of v in G.
For any two subsets S, T ⊆ V we denote by E(S, T) the set of (directed) edges from S to
T in G. I.e. E(S, T) = {(v, u) ∈ S × T | (v, u) ∈ E}.

I Definition 2 (Spectral Expander). Let G = (V,E) be a d-regular graph, AG be its adjacency
matrix, and λ1 ≥ · · · ≥ λn be the eigenvalues of AG. We say that G is a λ spectral expander
if λ ≥ max{|λ2| , . . . , |λn|}.

I Theorem 3 (Expander Mixing Lemma). Suppose that G = (V,E) is a λ spectral expander.
Then for every pair of subsets S, T ⊂ V we have

∣∣∣∣|E(S, T)| − d · |S| · |T |
n

∣∣∣∣ ≤ λ
√
|S| · |T |.

Our results will rely on the following characterization of 1-bit non-malleable codes by
Dziembowski, Kazana, and Obremski found in [4].

I Theorem 4. Let (enc,dec) be a coding scheme with enc: {0, 1} → X and dec: X → {0, 1}.
Further, let F be a set of functions f : X → X . Then (enc,dec) is ε-non-malleable with
respect to F if and only if for every f ∈ F ,

Pr
b

u←−{0,1}
(dec(f(enc(b))) = 1− b) ≤ 1

2 + ε,

where the probability is over the uniform choice of b and the randomness of enc.

3 Results

We first formally introduce our candidate code and then prove that it is a non-malleable
code.

3.1 Candidate Code
From a graph we can very naturally construct a coding scheme as follows.

I Definition 5 (Graph Code). Let G = (V,E) be a graph. The associated graph code,
(encG,decG), consists of the functions

encG : {0, 1} → V × V, decG : V × V → {0, 1}

which are randomized and deterministic, respectively, and given by

encG(b) =
{

(u, v) u←− (V × V) \ E, b = 0,
(u, v) u←− E, b = 1,

decG(v1, v2) =
{

0, (v1, v2) 6∈ E,
1, (v1, v2) ∈ E.

P.M.R. Rasmussen and A. Sahai 6:5

3.2 Non-Malleability of Expander Graph Codes
Finally, arriving at the core of the matter, we first establish the following lemma casting the
expression of Theorem 4 in terms of graph properties.

I Proposition 6. Let G = (V,E) be a graph, functions g, h : V → V be given, and f =
(g, h) : V ×V → V ×V satisfy f(u, v) = (g(u), h(v)). For the probability that f flips a random
bit encoded by encG, write

T = Pr
b

u←−{0,1}
(decG(f(encG(b))) = 1− b)

where the probability is taken over the randomness of encG and the sampling of b. Then

T = 1
2 + 1

2d(n− d)
∑

(v,u)∈E

(
d
∣∣g−1(v)

∣∣ ·
∣∣h−1(u)

∣∣
n

−
∣∣E(g−1(v), h−1(u))

∣∣
)
. (1)

Proof. For b ∈ {0, 1} denote by Qb the probability

Qb = Pr(decG(f(encG(b))) = 1− b)

taken over the randomness of encG. It is clear that T = Q0+Q1
2 and that by definition

Q0 = Pr
(v,u)

u←−V×V \E
[(g(v), h(u)) ∈ E] , Q1 = Pr

(v,u)
u←−E

[(g(v), h(u)) 6∈ E] .

First, for b = 0 we see that the number of non-edges that are mapped by f to any given
(v, u) ∈ E is given by

∣∣g−1(v)
∣∣ ·
∣∣h−1(u)

∣∣−
∣∣E(g−1(v), h−1(u))

∣∣. There are n(n−d) non-edges
in G so it follows that

Q0 =
∑

(v,u)∈E
∣∣g−1(v)

∣∣ ·
∣∣h−1(u)

∣∣−
∣∣E(g−1(v), h−1(u))

∣∣
n(n− d) .

Second, for b = 1 the number of edges of G that are mapped to non-edges by f is given by∑
(v,u)6∈E

∣∣E(g−1(v), h−1(u))
∣∣. Since there are dn edges of G to choose from when encoding

the bit b = 1,

Q1 =
∑

(v,u) 6∈E
∣∣E(g−1(v), h−1(u))

∣∣
dn

.

Now, observing that the number of (directed) edges in the graph is dn and that {g−1(v)}v∈V
and {h−1(u)}u∈V are both partitions of V , we get

Q1 =
dn−∑(v,u)∈E

∣∣E(g−1(v), h−1(u))
∣∣

dn
= 1−

∑
(v,u)∈E

∣∣E(g−1(v), h−1(u))
∣∣

dn
.

Putting it all together,

T =
∑

(v,u)∈E
∣∣g−1(v)

∣∣ ·
∣∣h−1(u)

∣∣−
∣∣E(g−1(v), h−1(u))

∣∣
2n(n− d) + 1

2 −
∑

(v,u)∈E
∣∣E(g−1(v), h−1(u))

∣∣
2dn

= 1
2 + 1

2d(n− d)
∑

(v,u)∈E

(
d
∣∣g−1(v)

∣∣ ·
∣∣h−1(u)

∣∣
n

−
∣∣E(g−1(v), h−1(u))

∣∣
)
. J

We proceed immediately with the main theorem, which concludes the exposition. In order to
keep this presentation short and to the point, more elaborate calculations, which avoid the
log-factors, have been placed in the appendix as Theorem 10.

ITC 2020

6:6 Expander Graphs Are Non-Malleable Codes

I Theorem 7. Let G = (V,E) be d-regular with spectral expansion λ satisfying n =
Ω(d3 log(d)4/λ). Then (encG,decG) is an Õ

(
λ3/2

d

)
-non-malleable code in the split-state

model.
Proof. Let f = (g, h) : V × V → V × V be given. By Theorem 4 and Proposition 6 we just
need to show that

R = 1
2d(n− d) ·

∑

(v,u)∈E

(
d
∣∣g−1(v)

∣∣ ·
∣∣h−1(u)

∣∣
n

−
∣∣E(g−1(v), h−1(u))

∣∣
)

is bounded by Õ
(
λ3/2

d

)
. Define the sets

G1 =
{
v ∈ V |

∣∣g−1(v)
∣∣ > n

d2

}
, H1 =

{
u ∈ V |

∣∣h−1(u)
∣∣ > n

d2

}
,

G2 =
{
v ∈ V |

∣∣g−1(v)
∣∣ ≤ n

d2

}
, H2 =

{
u ∈ V |

∣∣h−1(u)
∣∣ ≤ n

d2

}
,

for i, j ∈ {1, 2} write

Ri,j = 1
2d(n− d)

∑

(v,u)∈E∩(Gi×Hj)

(
d
∣∣g−1(v)

∣∣ ·
∣∣h−1(u)

∣∣
n

−
∣∣E(g−1(v), h−1(u))

∣∣
)
,

and observe that R =
∑

1≤i,j≤2Ri,j .
Consider the case when i = 2. Simply bounding the terms of the form

∣∣g−1(v)
∣∣ ·
∣∣h−1(u)

∣∣
by using that each vertex has only d neighbours, we get

R2,1 +R2,2 ≤
1

2n(n− d)
∑

(v,u)∈E∩(G2×V)

∣∣g−1(v)
∣∣ ·
∣∣h−1(u)

∣∣

≤ 1
2n(n− d) · d ·

∑

u∈V

n

d2 ·
∣∣h−1(u)

∣∣

= n

2(n− d)d .

Thus, R2,1 +R2,2 = O
(
d−1). By symmetry, R1,2 = O

(
d−1). It only remains to show that

R1,1 = Õ
(
λ3/2

d

)
. To this end, partition G1 and H1, respectively, as

Gk1 =
{
v ∈ G1 |

n

2k−1 ≥
∣∣g−1(v)

∣∣ > n

2k
}
, H l

1 =
{
v ∈ H1 |

n

2l−1 ≥
∣∣h−1(u)

∣∣ > n

2l
}

for 1 ≤ k, l ≤
⌈
log2

(
d2)⌉. Now, focusing on each pair Gk1 and H l

1, we write

Sk,l = 1
2d(n− d)

∑

(v,u)∈E∩(Gk
1×Hl

1)

(
d
∣∣g−1(v)

∣∣ ·
∣∣h−1(u)

∣∣
n

−
∣∣E(g−1(v), h−1(u))

∣∣
)

and apply first the mixing lemma then the Cauchy-Schwartz inequality to get

2d(n− d)Sk,l =
∑

v∈Gk
1


d

∣∣g−1(v)
∣∣ ·∑

u∈N(v)∩Hl
1

∣∣h−1(u)
∣∣

n
−

∣∣∣∣∣∣
E


g−1(v),

⋃

u∈N(v)∩Hl
1

h−1(u)



∣∣∣∣∣∣




≤
∑

v∈Gk
1

λ

√
|g−1(v)| ·

∑

u∈N(v)∩Hl
1

|h−1(u)|

≤ λ
√

n

2k−1 ·
n

2l−1 ·
∑

v∈Gk
1

√∣∣N(v) ∩Hl
1

∣∣

≤ 2λn · 2−
l+k

2 ·
√∣∣Gk1

∣∣ ·
√∣∣E(Gk1 , Hl

1)
∣∣.

P.M.R. Rasmussen and A. Sahai 6:7

We use the fact that
∣∣Gk1

∣∣ ≤ 2k,
∣∣H l

1
∣∣ ≤ 2l, apply the mixing lemma to the last factor, and

wield Jensen’s inequality on the arising square root to obtain

d(n− d)Sk,l ≤ λn · 2−
l+k

2 ·
√∣∣Gk1

∣∣ ·

√
d ·
∣∣Gk1

∣∣ ·
∣∣H l

1
∣∣

n
+ λ
√∣∣Gk1

∣∣ ·
∣∣H l

1
∣∣

≤ λ
√

2kdn+ 2
k−l

4 λ3/2n ≤ λ ·
√
d3n+ 2

k−l
4 λ3/2n.

By symmetry of k and l, d(n− d)Sk,l ≤ λ ·
√
d3n+ 2 l−k

4 λ3/2n. Thus,

R1,1 =
∑

1≤k,l≤dlog2(d2)e
Sk,l

≤ O
(
λ log(d)2 ·

√
d√

n

)
+O

(
λ3/2

d

)
·

∑

1≤k,l≤dlog2(d2)e
2−
|k−l|

4

= O

(
log(d)λ3/2

d

)
. J

References
1 Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive

combinatorics. In Symposium on Theory of Computing, STOC, 2014.
2 Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes, with

their many tampered extensions. In Symposium on Theory of Computing, STOC, 2016.
3 Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against constant split-state

tampering. In Foundations of Computer Science, FOCS, 2014.
4 Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from

two-source extractors. In CRYPTO, 2013.
5 Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In ICS,

2010.
6 Xin Li. Improved non-malleable extractors, non-malleable codes and independent source

extractors. In Symposium on Theory of Computing, STOC, 2017.
7 Luca Trevisan. Luca trevisan’s ‘in theory’ blog. https://lucatrevisan.wordpress.com/

2011/02/28/cs359g-lecture-16-constructions-of-expanders/. Accessed: 2018-09-27.

A Definitions for Split-State Non-Malleable Codes

Here, we recall the basic definition of a split-state non-malleable code due to [5].

I Definition 8 (Coding scheme). We define a coding scheme to be a pair of functions
(enc,dec). The encoding function enc: M→ X is randomized while the decoding function
dec: X →M∪ {⊥} is deterministic. Further, for all s ∈M the pair satisfies

Pr[dec(enc(s)) = s] = 1

where the probability is taken over the randomness of enc.

I Definition 9 (Split State Non-Malleable Code). A coding scheme (enc,dec), enc: M →
L×R and dec: L ×R →M∪ {⊥}, is ε-non-malleable in the split state model if for every
pair of functions g : L → L, h : R → R and writing f = (g, h) there exists a distribution Df

ITC 2020

6:8 Expander Graphs Are Non-Malleable Codes

supported onM∪ {∗,⊥} such that for every s ∈M the two random variables defined by the
experiments

Asf =
{

(L,R)←enc(s);
Output dec(g(L),h(R))

}

Bsf =
{

s̃←Df ;
If s̃=∗ output s else output s̃

}

have statistical distance at most ε.

B Deliver Us from Log Factors

A more thorough analysis of the sums in the proof of Theorem 7 allows us to get slightly
better bounds. The technicalities are of little interest to the big picture and were hence
omitted in the body of the paper. The addition consists of an alternative ending to the proof
of Theorem 7.

I Theorem 10. Let G = (V,E) be d-regular with spectral expansion λ satisfying n =
Ω(d3 log(d)/λ). Then (encG,decG) is an O

(
λ3/2

d

)
-non-malleable code in the split-state

model.

Proof. At the very end of the proof of Theorem 7, we arrived at

d(n− d)Sk,l ≤ 2−
l+k

2 λn ·
√∣∣Gk1

∣∣ ·

√
d ·
∣∣Gk1

∣∣ ·
∣∣H l

1
∣∣

n
+ λ ·

√∣∣Gk1
∣∣ ·
∣∣H l

1
∣∣.

Applying Jensen’s inequality, we get

Sk,l ≤ O
(

λ√
dn

)
· 2− l+k

2 ·
∣∣Gk1

∣∣ ·
√∣∣H l

1
∣∣+O

(
λ3/2

d

)
· 2− l+k

2 · 4
√∣∣Gk1

∣∣3 ·
∣∣H l

1
∣∣ (2)

with the functions hidden by the O-notation being independent of k, l.
Now, note that
∣∣g−1(Gk1)

∣∣ ≥ n ·
∣∣Gk1

∣∣
2k

∣∣h−1(H l
1)
∣∣ ≥ n ·

∣∣H l
1
∣∣

2l (3)

and for all k ≤
⌈
log2(d2)

⌉
we have |G

k
1 |

2k/2 ≤ 2d. We shall bound each of the terms of (2)
separately.

First, write

L =
∑

1≤k,l≤dlog2(d2)e

(
2−

l+k
2 ·

∣∣Gk1
∣∣ ·
√∣∣H l

1
∣∣
)
.

Using the Cauchy-Schwartz inequality in the second inequality,

L ≤ 2d ·
∑

1≤l≤dlog2(d2)e

√
2−l

∣∣H l
1
∣∣

≤ O
(
d ·
√

log(d)
)
·
√ ∑

1≤l≤dlog2(d2)e
2−l ·

∣∣H l
1
∣∣

≤ O
(
d ·
√

log(d)
)
·
√√√√

∑

1≤l≤dlog2(d2)e

∣∣h−1(H l
1)
∣∣

n

= O
(
d ·
√

log(d)
)

P.M.R. Rasmussen and A. Sahai 6:9

since the H l
1 are disjoint subsets of V . In conclusion,

O

(
λ√
dn

)
·

∑

1≤k,l≤dlog2(d2)e
2−

l+k
2 ·

∣∣Gk1
∣∣ ·
√∣∣H l

1
∣∣ = O

(
λ ·
√
d · log(d)√
n

)

= O

(
λ3/2

d

)
.

Second, let k ≤ l and write t = l − k. We now bound the sum using (3). Write

K =
∑

1≤k<l≤dlog2(d2)e
2−

l+k
2 · 4

√∣∣Gk1
∣∣3 ·
∣∣H l

1
∣∣.

Then

K ≤
∑

1≤k<l≤dlog2(d2)e

(
2 k−l

4

n
· 4
√∣∣g−1(Gk1)

∣∣3 ·
∣∣h−1(H l

1)
∣∣
)

≤
dlog2(d2)e∑

t=0


2− t

4

n

dlog2(d2)e∑

l=t

4
√∣∣g−1(Gl−t1)

∣∣3 ·
∣∣h−1(H l

1)
∣∣




≤
dlog2(d2)e∑

t=0




2− t
4

n



dlog2(d2)e∑

l=t

∣∣g−1(Gl−t1)
∣∣




3/4

·



dlog2(d2)e∑

l=t

∣∣h−1(H l
1)
∣∣




1/4



≤
dlog2(d2)e∑

t=0
2− t

4 = O(1),

where the third inequality is established using Hölder’s inequalty.
It now follows that

∑

1≤k≤l≤dlog2(d2)e
Sk,l = O

(
λ3/2

d

)
.

By symmetry of k and l,

R1,1 =
∑

1≤k,l≤dlog2(d2)e
Sk,l = O

(
λ3/2

d

)
,

which completes the proof. J

C Instantiating Our Construction

Using our results to instantiate an efficient, secure split-state non-malleable code, we require
a family of graphs {Gk}k∈N, where each Gk = (Vk, Ek) is dk-regular with spectral expansion
λk, satisfying the following:
1. The function ε(k) = λ

3/2
k

dk
is negligible.

2. We have nk = |V (Gk)| = Ω(d3
k log(dk)/λk)

3. Both sampling an edge (u, v) u←− Ek and sampling a non-edge (u, v) u←− (Vk × Vk) \ Ek
can be done in time polynomial in k.

ITC 2020

6:10 Expander Graphs Are Non-Malleable Codes

4. Determining membership of a pair (u, v) ∈ V ×V in E(Gk) can be done deterministically
in time polynomial in k.

Given such a family of graphs it is clear that the corresponding graph code (encGk
,decGk

) is
an efficiently computable non-malleable code.

C.1 Instantiation with High-Degree Cayley Graphs
Explicit constructions of such families of graphs do indeed exist. We shall here give an
example from [7] from the class of graphs known as Cayley graphs. The construction is as
follows.

I Definition 11. For p a prime and 1 ≤ t < p let the graph LDp,t have vertex set Ft+1
p and

edge set

E(LDp,t) =
{

(x, x+ (b, ab, a2b, . . . , atb)) | x ∈ Ft+1
p , a, b ∈ Fp

}
,

i.e. x, y ∈ V (LDp,T) are connected by an edge if and only if there exists a, b ∈ Fp such that
y = x+ (b, ab, a2b, . . . , atb).

It is worth nothing that the graph LDp,t is p2-regular and that it is undirected as x is
connected to y if and only if y is connected to x.

Now, let t = 5 and for each k ∈ N let pk be some k-bit prime. We consider the family of
graphs {LDpk,5}k∈N for our instantiation. In the following, we shall check the criteria from
the beginning of the section point by point.

1. The family of graphs LDp,t has great expander properties.
I Theorem 12 (explicit in Trevisan [7]). For 1 < t < p, the graph LDp,t is a pt-spectral
expander.
This fact allows us to note that for our particular choice of graphs, ε(k) = (pkt)3/2

p2
k

< 12√
p

k
,

which in fact is 2−Ω(k) and the representation size is O(k) bits.
2. We have Ω

(
d3

k log(dk)
λk

)
= Ω(p5 log(p)) such that indeed,

nk = |V (LDpk,5)| = p6 = Ω
(
d3
k log(dk)
λk

)
.

3. Sampling an edge (u, v) u←− E(LDpk,t) is simply a question of picking x ∈ Ft+1
pk

, a, b ∈ Fpk

uniformly at random and then outputting the edge (x, x+ (b, ab, a2b, . . . , atb)).
To pick a non-edge, simply sample two random vertices u, v ∈ Ft+1

pk
uniformly at random

and check (with the procedure to be specified below) whether (u, v) ∈ E(LDpk,t). Since
for t > 1 the probability of hitting an edge with such a random choice is ≤ 1/pk, the
expected number of repetitions is constant and hence the procedure takes expected
polynomial time.

4. To test membership of some (u, v) ∈
(
Ft+1
pk

)2 in E(LDpk,t), perform the following opera-
tion: Compute x = u− v and write x = (x0, . . . , xt). It is now trival to check whether(

1, x1
x0
, . . . , xt

x0

)
is of the form (1, a, a2, . . . , at).

Appendix D

Support of Closed Walks and Second
Eigenvalue Multiplicity of Graphs

115

Support of Closed Walks and Second Eigenvalue Multiplicity
of the Normalized Adjacency Matrix

Theo McKenzie*

UC Berkeley
Peter M. R. Rasmussen†

University of Copenhagen
Nikhil Srivastava‡

UC Berkeley

July 9, 2021

Abstract

We show that the multiplicity of the second normalized adjacency matrix eigenvalue of any
connected graph of maximum degree ∆ is bounded by O(n∆7/5/ log1/5−o(1) n) for any ∆, and
by O(n log1/2 d/ log1/4−o(1) n) for simple d-regular graphs when d ≥ log1/4 n. In fact, the same
bounds hold for the number of eigenvalues in any interval of width λ2/ log1−o(1)

∆
n containing

the second eigenvalue λ2. The main ingredient in the proof is a polynomial (in k) lower bound
on the typical support of a closed random walk of length 2k in any connected graph, which in
turn relies on new lower bounds for the entries of the Perron eigenvector of submatrices of the
normalized adjacency matrix.

Contents

1 Introduction 2
1.1 Higher degree regular graphs . 4
1.2 Related work . 5
1.3 Notation . 6

2 Lower Bounds on the Perron Eigenvector 7

3 Support of Closed Walks 10

4 Bound on Eigenvalue Multiplicity 13

5 Examples 15
5.1 Bipartite Ramanujan Graphs . 15
5.2 Mangrove Tree . 16

6 Open Problems 18

*mckenzie@math.berkeley.edu. Supported by NSF Grant DGE-1752814.
†pmrr@di.ku.dk. Supported in part by grant 16582, Basic Algorithms Research Copenhagen (BARC), from the

VILLUM Foundation.
‡nikhil@math.berkeley.edu. Supported by NSF Grants CCF-1553751 and CCF-2009011.

1

A Proofs for high degree regular graphs 22

B Lollipop 23

1 Introduction

The eigenvalues of matrices associated with graphs play an important role in many areas of
mathematics and computer science, so general phenomena concerning them are of broad interest.
In their recent beautiful work on the equiangular lines problem, Jiang, Tidor, Yao, Zhang, and
Zhao [JTY+19] proved the following novel result constraining the distribution of the adjacency
eigenvalues of all connected graphs of sufficiently low degree.

Theorem 1.1. If G is a connected graph of maximum degree ∆ on n vertices, then the multiplicity of the
second largest eigenvalue of its adjacency matrix AG is bounded by O(n log ∆/ log log(n)).

For their application to equiangular lines, [JTY+19] only needed to show that the multiplicity of
the second eigenvalue is o(n), but they asked whether the O(n/ log log(n)) dependence in Theorem
1.1 could be improved, noting a huge gap between this and the best known lower bound of Ω(n1/3)
achieved by certain Cayley graphs of PSL(2, p) (see [JTY+19, Section 4]). Apart from Theorem
1.1, there are as far as we are aware no known sublinear upper bounds on the second eigenvalue
multiplicity for any general class of graphs, even if the question is restricted to Cayley graphs
(unless one imposes a restriction on the spectral gap; see Section 1.2 for a discussion).

Meanwhile, in the theoretical computer science community, the largest eigenvalues of the
normalized adjacency matrix ÃG := D−1/2

G AGD−1/2
G (for DG the diagonal matrix of degrees) have

received much attention over the past decade due to their relation with graph partitioning problems
and the unique games conjecture (see e.g. [Kol11, BRS11, LRTV12, OGT13, LOGT14, ABS15,
BGH+15, LOG18]); in particular, many algorithmic tasks become easier on graphs with few large
normalized adjacency eigenvalues. Thus, it is of interest to know how many of these eigenvalues
there can be in the worst case.

In this work, we prove significantly stronger upper bounds than Theorem 1.1 on the second
eigenvalue multiplicity for the normalized adjacency matrix. Graphs are undirected and allowed
to have multiedges and self-loops, unless specified to be simple. Order the eigenvalues of ÃG
as λ1(ÃG) ≥ λ2(ÃG) ≥ . . . ≥ λn(ÃG), and let mG(I) denote the number of eigenvalues of ÃG in an
interval I.

Theorem 1.2. If G is a connected graph of maximum degree ∆ on n vertices with λ2(ÃG) = λ2, then1

mG

(
[(1 − log log∆ n

log∆ n
)λ2, λ2]

)
= Õ


n · ∆7/5

log1/5 n


 . (1)

Because of the relationship ÃG = 1
d AG when G is regular, (1) gives a substantial improvement

on Theorem 1.1 in the regular case (in the non-regular case, the results are incomparable as they
concern different matrices). In addition to the stronger O(n/polylog(n)) bound, a notable difference
between our result and Theorem 1.1 is that we control the number of eigenvalues in a small interval
containing λ2. Though we do not know whether the exponents in (1) are sharp, we show in Section

1All asymptotics are as n→∞ and the notation Õ(·) suppresses polyloglog(n) terms.

2

5.1 that constant degree bipartite Ramanujan graphs have at least Ω(n/ log3/2 n) eigenvalues in the
interval appearing in (1), indicating that O(n/polylog(n)) is the correct regime for the maximum
number of eigenvalues in such an interval when ∆ is constant.

Theorem 1.2 is nontrivial for all ∆ = õ(log1/7 n); as remarked in [JTY+19], Paley graphs have
degree Ω(n) and second eigenvalue multiplicity Ω(n), so some bound on the degree is required to
obtain sublinear multiplicity. In Section 1.1, we present a variant of Theorem 1.2 (advertised in the
abstract) which yields nontrivial bounds in the special case of simple d−regular graphs with degrees
as large as d = exp(log1/2−δ n), which is considerably larger than the regime d = O(polylog(n))
handled by [JTY+19].

The main new ingredient in the proof of Theorem 1.2 is a polynomial lower bound on the
support of (i.e., number of distinct vertices traversed by) a simple random walk of fixed length
conditioned to return to its starting point. The bound holds for any connected graph and any
starting vertex and may be of independent interest.

Theorem 1.3. Suppose G is connected and of maximum degree ∆ on n vertices and x is any vertex in G. Let
γ2k

x = (x = X0,X1, . . . ,X2k) denote a random walk of length 2k < n sampled according to the simple random
walk on G starting at x. Then

P(support(γ2k
x) ≤ s|X2k = X0) ≤ exp

(
− k

65∆7s4

)
for s ≤ 1

4

(
k

∆7 log ∆

)1/5

. (2)

In particular, this means that for constant ∆, the typical support of a closed random walk of
length 2k is least Ω(k1/5). It may be tempting to compare Theorem 1.3 with the familiar fact that a
random closed walk of length 2k on Z (or in continuous time, a standard Brownian bridge run
for time 2k) attains a maximum distance of Ω(

√
k) from its origin. However, as seen in Figure 1,

there are regular graphs for which a closed walk of length 2k from a particular vertex x travels a
maximum distance of only polylog(k) with high probability. Theorem 1.3 reveals that nonetheless
the number of distinct vertices traversed is always typically poly(k). We do not know if the specific
exponent of k1/5 supplied by Theorem 1.3 is sharp, but considering a cycle graph shows that it is
not possible to do better than k1/2.

Given Theorem 1.3, our proof of Theorem 1.2 follows the strategy of [JTY+19]: since most closed
walks in G have large support, the number of such walks may be drastically reduced by deleting
a small number of vertices from G. By a moment calculation relating the spectrum to self return
probabilities and a Cauchy interlacing argument, this implies an upper bound on the multiplicity
of λ2(ÃG). The crucial difference is that we are able to delete only n/polylog(n) vertices whereas
they delete n/poly log log(n).

The key ingredient in our proof of Theorem 1.3 is a result regarding the Perron eigenvector (i.e.,
the unique, strictly positive eigenvector with eigenvalue λ1) of a submatrix of Ã.

Theorem 1.4. For any graph G = (V,E) of maximum degree ∆, take any set of vertices S (V such that
the induced subgraph on S is connected, and let ψS be the `2-normalized Perron vector of ÃS, the principal
submatrix of Ã corresponding to vertices in S. Then there is a vertex u ∈ S which is adjacent to V \ S such
that

ψS(u) ≥ 1/(∆5/2λ1(ÃS)|S|5/2). (3)

When we restrict this result to G being a d-regular graph and pass to the adjacency matrix,
we achieve a result about the unnormalized adjacency matrix of irregular graphs that may be of
independent interest.

3

Figure 1: For a regular graph composed of a near-clique attached to an infinite tree, a closed walk
of length 2k starting from within the near-clique does not typically go deeper than O(log k) down
the tree. However, the support of such a closed walk is typically kΘ(1). See Section B for a more
detailed discussion.

Corollary 1.5. Let H = (V,E) be an irregular connected graph of maximum degree ∆ with at least
two vertices, and let φH be the `2-normalized Perron vector of AH. Then there is a vertex u ∈ V
with degree strictly less than ∆ satisfying

φH(u) ≥ 1/(∆2λ1(AH)|V|5/2). (4)

Corollary 1.5 may be compared with existing results in spectral graph theory on the “principal
ratio” between the largest and smallest entries of the Perron vector of a connected graph. The
known worst case lower bounds on this ratio are necessarily exponential in the diameter of the
graph [CG07, TT15], and it is known that the Perron entry of the highest degree vertex cannot be
very small (see e.g. [Ste14, Ch. 2]). Corollary 1.5 articulates that there is always at least one vertex
of non-maximal degree for which the ratio is only polynomial in the number of vertices.

The proof of Theorem 1.4 is based on an analysis of hitting times in the simple random walk on
G via electrical flows, and appears in Section 2. Combined with a perturbation-theoretic argument,
it enables us to show that any small connected induced subgraph S of G can be extended to a
slightly larger induced subgraph with significantly larger Perron value λ1(ÃS). With some further
combinatorial arguments, this implies that closed walks cannot concentrate on small sets, yielding
Theorem 1.3 in Section 3, which is finally used to deduce Theorem 1.2 in Section 4.

We show in Section 5.2 via an explicit example (Figure 2) that the exponent of 5/2 appearing
in Corollary 1.5 is sharp up to polylogarithmic factors. We conclude with a discussion of open
problems in Section 6.

Remark 1.6 (Higher Eigenvalues). An update of the preprint of [JTY+19] generalizes Theorem 1.1
to the multiplicity of the jth eigenvalue. Our results can also be generalized in this manner by some
nominal changes to the arguments in Section 4, but for simplicity we focus on λ2 in this paper.

1.1 Higher degree regular graphs

If G = (V,E) is a simple, d-regular graph, and S (V such that |S| ≤ d, then necessarily all vertices
of S are adjacent to vertices in V \ S. Therefore we can improve the bound from Theorem 1.4

4

Figure 2: An example of a graph where all vertices u that are not of maximum degree have
ψ(u) = Õ(n−5/2). The circled sets X0, X1 and X2 will be used in the analysis of the graph in Section
5.2.

by assuming the vertex on the boundary is the maximizer of the Perron vector, which has value
ψS(u) ≥ 1/

√|S|. This leads to the following variants of our main results for simple, regular graphs
of sufficiently high degree.

Theorem 1.7. G is simple, d−regular, and connected with λ2 = λ2(AG), then

mG

(
[(1 − log logd n

logd n
)λ2, λ2]

)
=


Õ

(
n
d

)
when d = o(log1/4 n)

Õ
(

n log1/2 d
log1/4 n

)
when d = Ω(log1/4 n).

(5)

The above theorem is based on the following corresponding result for closed walks.

Theorem 1.8. If G is simple, d−regular, and connected on n vertices and γ is a random closed walk of length
2k < n started at any vertex in G, then:

Pr(support(γ) ≤ s) ≤ exp
(
− k

100s3

)
for s ≤ min


1
8

(
k

log d

)1/4

,
d
2

 . (6)

The proofs of both theorems appear in Appendix A

1.2 Related work

Eigenvalue Multiplicity. Despite the straightforward nature of the question, relatively little is
known about eigenvalue multiplicity of general graphs. As discussed in [JTY+19], if one assumes
that G is a bounded degree expander graph, then the bound of Theorem 1.1 can be improved to
O(n/ log n). On the other hand, if G is assumed to be a Cayley graph of bounded doubling constant
K (indicating non-expansion), then [LM08] show that the multiplicity of the second eigenvalue is
at most exp(log2 K). In the context of Cayley graphs, one interesting new implication of Theorem
1.7 is that all Cayley graphs of degree O(exp(log1/2−δ n)) have second eigenvalue multiplicity
O(n/ logδ/2 n).

Distance regular graphs of diameter D have exactly D+1 distinct eigenvalues (see [God93] 11.4.1
for a proof). However, besides the top eigenvalue (which must have multiplicity 1), generic bounds

5

on the multiplicity of the other eigenvalues are not known. As expanding graphs have diameter
Θ(logd n), the average multiplicity of eigenvalues besides λ1 for expanding distance regular graphs
is Θ(n/ logd n). It is tempting to see this as a hint that the multiplicity of the second eigenvalue
could be Ω(n/ logd n).

Sublinear multiplicity does not necessarily hold for eigenvalues in the interior of the spectrum
even assuming bounded degree. In particular, Rowlinson has constructed connected d−regular
graphs with an eigenvalue of multiplicity at least n(d − 2)/(d + 2) [Row19] for constant d.

Higher Order Cheeger Inequalities. The results of [LRTV12, LOGT14] imply that if a d−regular
graph G has a second eigenvalue multiplicity of m, then its vertices can be partitioned into Ω(m)
disjoint sets each having edge expansion O(

√
d(1 − λ2) log m). Combining this with the observation

that a set cannot have expansion less than the reciprocal of its size shows that m = O(n/polylog(n))
whenever 1 − λ2(ÃG) ≤ 1/ logc n for any c > 1, i.e., the graph is sufficiently non-expanding. Our
main theorem may be interpreted as saying that this phenomenon persists for all graphs.

Support of Walks. There are as far as we are aware no known lower bounds for the support of a
random closed walk of fixed length in a general graph (or even Cayley graph). It is relatively easy
to derive such bounds for bounded degree graphs if the length of the walk is sufficiently larger than
the mixing time of the simple random walk on the graph; the key feature of Theorem 1.3, which is
needed for our application, is that the length of the walk can be taken to be much smaller.

The support of open walks (namely removing the condition that the walk ends at the starting
point) is better understood. There are Chernoff-type bounds on the size of the support of a random
walk based on the spectral gap [Gil98, Kah97]. Such bounds and their variants are an important
tool in derandomization.

Entries of the Perron Vector. There is a large literature concerning the magnitude of the entries
of the Perron eigenvector of a graph — see [Ste14, Chapter 2] for a detailed discussion of results up
to 2014. Rowlinson showed sufficient conditions on the Perron eigenvector for which changing the
neighborhood of a vertex increases the spectral radius [Row90]. Cvetković, Rowlinson, and Simić
give a condition which, if satisfied, means a given edge swap increases the spectral radius [CRS93].
Cioabă showed that for a graph of maximum degree ∆ and diameter D, ∆ − λ1 > 1/nD [Cio07].
Cioabă, van Dam, Koolen, and Lee then showed that λ1 ≥ (n − 1)1/D [CVDKL10]. The results of
[VMSK+11] prove a lemma similar to Lemma 3.2, giving upper and lower bounds on the change in
spectral radius from the deletion of edges. However, their result does not quite imply Lemma 3.2,
and we prove a slightly different statement.

1.3 Notation

All logarithms are base e unless noted otherwise.

Electrical Flows. We use ReffH(·, ·) to denote the effective resistance between two vertices in H,
viewing each edge of the graph as a unit resistor. See e.g. [DS84] or [Bol13, Chapter IX] for an
introduction to electrical flows and random walks on graphs.

6

Graphs. For a matrix M, we use MS to denote the principal submatrix of M corresponding to the
indices in S. Consider a graph G = (V,E) and a subset H ⊂ V. Let P := AD−1 be the transition matrix
of the simple random walk matrix on G, where A is the adjacency matrix and D is the diagonal
matrix of degrees. We will also use the normalized adjacency matrix Ã := D−1/2AD−1/2. Note that P
and Ã are similar, and that Ã is symmetric. PS and ÃS are submatrices of P and Ã; they are not the
transition matrices and normalized adjacency matrices of the induced subgraph on S. Note PS and
ÃS are also similar.

Perron Eigenvector. We use ψS to denote the `2-normalized eigenvector corresponding to λ1(ÃS),
which is a simple eigenvalue if S is connected. Note that for connected S, ψS is strictly positive by
the Perron-Frobenius theorem.

A simple graph refers to a graph without multiedges or self-loops. We assume ∆ ≥ 2 for all
connected regular graphs, since otherwise the graph is just an edge, so log ∆ > 0.

2 Lower Bounds on the Perron Eigenvector

In this section we prove Theorem 1.4, which is a direct consequence of the following slightly more
refined result. In a graph G = (V,E), define the boundary of S as the set of vertices in S adjacent to
V\S in G.

Theorem 2.1 (Large Perron Entry). Let G = (V,E) be a connected graph of maximum degree ∆ and S (V
such that the induced subgraph on S is connected. Then there is a vertex u ∈ S on the boundary of S such that

ψS(u)/ψS(t) ≥ 1/(∆5/2λ1(ÃS)|S|2) (7)

where t = arg maxw∈S ψS(w).

At a high level, the proof proceeds as follows. First, we show that there exists a vertex x ∈ S
adjacent to the boundary of S such that a random walk started at x is somewhat likely to hit t before
it hits the boundary of S. Second, we express the ratio of D1/2

S ψS(x) and D1/2
S ψS(t) as a limit as k→∞

of the ratio PYk
x/PYk

t , where Yk
v is the event that the simple random walk started at v remains in S

for k steps; we bound this ratio from below using the hitting time estimate from the first step. Third,
by the eigenvector equation the ratio of the entries of an eigenvector at two neighboring vertices is
bounded. Hence, x is adjacent to some vertex u on the boundary of S satisfying the theorem.

Proof. Write S = M t B, where B is the boundary of S and M = S \ B. If t ∈ B then we are done,
so assume not. Let PG

x (·) denote the law of the simple random walk (SRW) (Xi)∞i=0 on G started at
X0 = x, and for any subset T ⊂ V, let τT := {min i : Xi ∈ T} denote the hitting time of the SRW to
that subset; if T = {u} is a singleton we will simply write τu.

Step 1. We begin by showing that there is a vertex x ∈M adjacent to B for which the random walk
started at x is reasonably likely to hit t before B. To do so, we use the well-known connection between
hitting probabilities in random walks and electrical flows. Define a new graph K = (V′ = V\B∪{s},E′)
by contracting all vertices in B to a single vertex s. Let f : V′ → [0, 1] be the vector of voltages in
the electrical flow in K with boundary conditions f (s) = 0, f (t) = 1, regarding every edge as a unit

7

Figure 3: In Step 1 of the proof of Theorem 2.1, we lower bound the probability that a random walk
started at a certain vertex x adjacent to B reaches t before reaching B. We do this by contracting B
to a vertex s, then lower bounding the current from s to t, which establishes the existence of the
desired x. The left graph in the figure is G and the right graph is the contracted graph K, with the
dotted lines indicating edges leaving the set of interest S = M t B.

resistor. By Ohm’s law, the current flow from s to t is equal to 1/ReffK(s, t). We have the crude
upper bound

ReffK(s, t) ≤ distanceK(s, t) ≤ |S|,
since S is connected, so the outflow of current from s is at least 1/|S|. By Kirchhoff’s current law,
there must be a flow of at least 1/(|S|degK(s)) on at least one edge (s, x) ∈ E′. By Ohm’s law again,
for this particular x ∈ V′ we must have

f (x) ≥ 1
|S|degK(s)

=
1

|S||∂GB| ≥
1

∆|S|2 , (8)

where ∂GB denotes the edge boundary of B in G. Appealing to e.g. [Bol13, Chapter IX, Theorem 8],
this translates to the probabilistic bound

PG
x (τt < τB) = PK

x (τt < τs) = f (x) ≥ 1
∆|S|2 . (9)

Finally, since f (s) = f (y) = 0 for every y ∈ V \ S, we must in fact have x ∈M.

Step 2. We now use (9) to show that ψS(x) is large. Because ÃS = D−1/2
S PSD1/2

S , the top eigenvector of
PS is D1/2

S ψS/‖D1/2
S ψS‖. Let P′ : (P + I)/2 denote the lazy random walk2 on G, and to ease notation let

P′x(·) := P′x
G(·) denote the law of the lazy random walk on G started at x. Note that the eigenvectors

of PS, as well as Px(τt < τB), do not change when passing to P′S.
For the lazy random walk, the Perron-Frobenius theorem implies that

(D1/2
S ψS)(w)

‖D1/2
S ψS‖

= lim
k→∞

1T
SP′S

kew

‖1T
SP′S

k‖ ,

2This modification is only to ensure non-bipartiteness; if S is not bipartite we may take the simple random walk

8

for every w ∈ S, where 1S ∈ RS is the all ones vector. We further have

1T
SP′S

kew = P′w(τV\S > k),

namely the probability a random walk of length k starting at w stays in S.
We are interested in the ratio

(D1/2
S ψS)(x)

(D1/2
S ψS)(t)

= lim
k→∞

P′x(τV\S > k)
P′t(τV\S > k)

. (10)

Fix an integer k > 0. The numerator of (10) is bounded as

P′x(τV\S > k) ≥ P′x(τV\S > k|τt < τB)P′x(τt < τB)

≥ 1
∆|S|2P

′
x(τV\S > k|τt < τB) by (9)

≥ 1
∆|S|2

k−1∑

θ=0

P′x(τV\S > k|τt = θ, τt < τB)P′x(τt = θ|τt < τB) (11)

=
1

∆|S|2
k−1∑

θ=0

P′t(τV\S > k − θ)P′x(τt = θ|τt < τB)

≥ 1
∆|S|2

k−1∑

θ=0

P′t(τV\S > k)P′x(τt = θ|τt < τB). (12)

Observe that E′xτB < ∞ since G is connected. Thus,

k−1∑

θ=0

P′x(τt = θ|τt < τB) = 1 − P′x(τt ≥ k|τt < τB)

≥ 1 − P
′
x(τB ≥ k)
P′x(τt < τB)

≥ 1 − E
′
xτB

k
· ∆|S|2 by Markov and (9).

Combining this bound with (12), we have

P′x(τV\S > k) ≥ 1
∆|S|2

(
1 − E

′
xτB

k
· ∆|S|2

)
P′t(τV\S > k)

Taking the limit as k→∞ in (10) yields

(D1/2
S ψS)(x)

(D1/2
S ψS)(t)

≥ 1
∆|S|2 .

9

Step 3. Since x is adjacent to B, we can choose a u ∈ B adjacent to x. The eigenvector equation and
nonnegativity of the Perron vector now imply ∆λ1(AS)ψS(u) ≥ ψS(x), whence

(D1/2
S ψS)(u) ≥ 1

λ1(ÃS)∆2|S|2 (D1/2
S ψS)(t). (13)

Therefore, as D is a diagonal matrix, and the entries of D range from 1 to ∆, it must be the case
that

ψS(u) ≥ 1
λ1(ÃS)∆5/2|S|2ψS(t).

�

Remark 2.2. As the proof shows, the right-hand side of (7) may be replaced with 1/∆3/2λ1(ÃS)|∂GB|R
where B is the boundary of S in G and R is the maximum effective resistance between two vertices
in S.

Proof of Corollary 1.5. Given an irregular graph H, construct a ∆−regular graph G containing H as
an induced subgraph (it is trivial to do this if we allow G to be a multigraph). Repeating the above
proof on G with S = H and observing that D1/2

S is a multiple of the identity since G is regular, (13)
yields the desired conclusion. �

3 Support of Closed Walks

In this section we prove Theorem 1.3, which is an immediate consequence of the following slightly
stronger result. Let W2k,s denote the event a simple random walk of length 2k has support at most s
and ends at its starting point.

Theorem 3.1 (Implies Theorem 1.3). If G is connected and of maximum degree ∆ on n vertices, then for
every vertex x ∈ G and k < n/2,

Px(W2k,s) ≤ exp
(
− k

65∆7s4

)
Px(W2k,2s) for s ≤ 1

4

(
k

∆7 log ∆

)1/5

. (14)

The proof requires a simple lemma lower bounding the increase in the Perron value of a
subgraph upon adding a vertex in terms of the Perron vector.

Lemma 3.2 (Perturbation of λ1). Take the normalized adjacency matrix Ã := D−1/2AD−1/2 of a graph
G = (V,E) of maximum degree ∆. For any S (V and vertex u ∈ S, the submatrix which includes the subset
S′ = (S ∪ {v},E(S) ∪ {(u, v)}), which adds a vertex v and the edge (u, v) to S, satisfies

λ1(ÃS′) ≥ 1
2

(
λ1(ÃS) +

√
λ1(ÃS)2 + ∆−2ψS(u)2

)
.

Proof. The largest eigenvalue of Ã is at least the quadratic form associated with the unit vectors

1α(x) =

{ √
1 − α2ψS(x) x ∈ V

α x = v

10

for 0 ≤ α ≤ 1. We have 1T
αÃ1α = (1− α2)λ1(ÃS) + d−1/2

u d−1/2
v α

√
1 − α2ψS(u), where du is the degree of

u in G. This quantity is maximized when

α =

√√√√1
2
− λ1(ÃS)

2
√
λ1(ÃS)2 + d−1

u d−1
v ψS(u)2

,

at which

1T
αÃ1α =

1
2

(
λ1(ÃS) +

√
λ1(ÃS)2 + d−1

u d−1
v ψS(u)2

)
.

�

Combining Lemma 3.2 and Theorem 2.1 yields a bound on the increase of the top eigenvalue of
the submatrix corresponding to an induced subgraph that may be achieved by adding vertices to it.

Lemma 3.3 (Support Extension). For any connected graph G = (V,E) of maximum degree ∆, consider its
normalized adjacency matrix Ã. For any connected subset S (V such that 2 ≤ |S| = s < |V|/2, there is a
connected subset T ⊂ V containing S such that |T| = 2s and

λ1(ÃT) ≥ λ1(ÃS)
(
1 +

5
128∆7s4

)
.

Proof. Define λ1 := λ1(ÃS) and note that λ1 ≥ 1/∆ since S contains at least one edge. As ψS is a
normalized vector with s entries, ψS(t) ≥ 1/

√
s. Therefore ψS(u) ≥ 1/(∆5/2λ1s5/2). Take v to be any

vertex in V \ S that neighbors u in G. By Lemma 3.2,

λ1(ÃS∪{v}) ≥ 1
2

(
λ1 +

√
λ2

1 + ∆−2ψS(u)2
)

≥ λ1 +
ψS(u)2

4λ1∆2 −
ψS(u)4

16λ3
1∆4

≥ λ1 +
1

6λ3
1∆7s5

as ψS(u)2/λ2
1 ≤ ∆2

≥ λ1 +
1

6∆7s5 since λ1 ≤ 1. (15)

Assuming that s < |V|/2, we can iterate this process s times, adding the vertices {v1, . . . vs}.
At each step we add the vertex vi and increase the Perron eigenvalue of ÃS∪{v1,...,vi−1} by at least
1/(6∆7(s + i − 1)5). Therefore, defining T = S ∪ {v1, . . . vs}, we have

λ1(ÃT) ≥ λ1 +
1

6∆7

s∑

i=1

1
(s + i − 1)5 ≥ λ1 +

5
128∆7s4

,

where the last inequality follows from approximating the sum with the integral. As λ1 ≤ 1, this
translates to the desired multiplicative bound. �

11

Proof of Theorem 3.1. We begin by showing (14). Let Γs
x be the set of connected subgraphs of G with

s vertices containing x. Choose S to be the maximizer of eT
x Ã2k

S ex among S ∈ Γs
x, and let T ∈ Γ2s

x be
the extension of S guaranteed by Lemma 3.3 to satisfy

λ1(ÃT) ≥
(
1 +

5
128∆7s4

)
λ1(ÃS).

P2k
S has the same diagonal entries as Ã2k

S , so

Px(W2k,s) ≤
∑

S′∈Γs
x

eT
x Ã2k

S′ ex,

since each walk of length 2k satisfying W2k,s is contained in at least one S′ ∈ Γs
x. Furthermore,

|Γs
x| ≤ ∆2s since each subgraph of Γs

x may be encoded by one of its spanning trees, which may in
turn be encoded by a closed walk rooted at x traversing the edges of the tree. We then have

Px(W2k,s) ≤ |Γs
x|eT

x Ã2k
S ex

≤ ∆2sλ1(ÃS)2k

≤ ∆2s
(
1 +

5
128∆7s4

)−2k
λ1(ÃT)2k. (16)

We will bound the right hand side in terms of Px(W2k,2s).
We claim that for every z ∈ T,

eT
x Ã2k

T ex ≥ ∆−4seT
z Ã2k−4s

T ez. (17)

To see this, let π be a path in T of length ` ≤ 2s between x and z, which must exist since T is
connected and has size 2s. Then every closed walk of length 2k−2` in T rooted at z may be extended
to a walk of length 2k in T rooted at x by attaching π and its reverse. Performing the walk of π twice
occurs with probability at least ∆−2`. Since all of the walks produced this way are distinct, we have

eT
x Ã2k

T ex ≥ ∆−2`eT
z Ã2k−2`

T ez.

By the same argument eT
z Ã2k−2`

T ez ≥ ∆−4s+2`eT
z Ã2k−4s

T ez, and inequality (17) follows.
Choose z ∈ T to be the maximizer of eT

z Ã2k−4s
T ez, for which we have:

eT
z Ã2k−4s

T ez ≥ 1
2s

Tr(P2k−4s
T) ≥ λ1(ÃT)2k−4s

2s
.

Combining this with (17) and substituting in (16), we obtain

Px(W2k,s) ≤ ∆6s · 2s
(
1 +

5
128∆7s4

)−2k
λ1(ÃT)4seT

x Ã2k
T ex

≤ ∆6s · 2s
(
1 +

5
128∆7s4

)−2k
λ1(ÃT)4sPx(W2k,2s).

Applying the inequality ex/2 ≤ 1 + x for 0 < x < 1 and the bound λ1(ÃT) < 1, we obtain

Px(W2k,s) ≤ exp
(
6s log ∆ + log(2s) − 5k

128∆7s4

)
Px(W2k,2s), (18)

12

which implies

Px(W2k,s) ≤ exp
(
− k

65∆7s4

)
Px(W2k,2s)

whenever

s ≤ 1
4

(
k

∆7 log(∆)

)1/5

,

establishing (14).
�

4 Bound on Eigenvalue Multiplicity

In this section we prove Theorem 1.2, restated below in slightly more detail.

Theorem 4.1 (Detailed Theorem 1.2). Let G be a maximum degree ∆ connected graph on n vertices. If3

∆ ≤ log1/7 n/ log log n then the spectrum of the normalized adjacency matrix Ã satisfies

mG

(
[(1 − log log∆ n

log∆ n
)λ2, λ2]

)
= O


n · ∆

7/5(log2/5 ∆) log log n

log1/5 n


 . (19)

Proof. For now, assume that |λn(P)| ≤ |λ2(P)|. Let P(·) denote the law of an SRW γ of length 2k on G,
started at a vertex chosen uniformly at random (i.e., not from the stationary measure of the SRW).
Let W2k := W2k,n denote the event that γ returns to its starting vertex after 2k steps. In an abuse of
notation, let W2k,≥s+1 := W2k\W2k,s be the event that a walk of length 2k is closed and has support at
least s + 1.

Set k := 1
3 log∆ n and c := 2 log k and let s be a parameter satisfying

P(W2k,s) ≤ e−cP(W2k) (20)

to be chosen later. Delete cn/s vertices from G uniformly at random and call the resulting graph H.
If γ has support at least s + 1, then the probability that none of the vertices of γ are deleted is at

most (
1 − s

n

) cn
s ≤ e−c.

Thus,
EHP(γ ⊂ H|γ ∈W2k,≥s+1) ≤ e−c,

where EH is the expectation over H. It then follows by the probabilistic method that there exists a
deletion such that the resulting subgraph H of G satisfies

P(W2k,≥s+1 ∩ {γ ⊂ H}) ≤ e−cP(W2k,≥s+1).

3If ∆ ≥ log1/7 n/ log log n then (1) is vacuously true.

13

Write λ2 := λ2(ÃG) and let m′ be the number of eigenvalues of H in the interval [(1 − ε)λ2, λ2]
for ε := c/2 log∆(n). Since 2k is even,

m′(1 − ε)2kλ2k
2 ≤ Tr(Ã2k

H)

= nP(W2k ∩ {γ ⊂ H})
= n(P(W2k,s ∩ {γ ⊂ H}) + P(W2k,≥s+1 ∩ {γ ⊂ H}))
≤ n(P(W2k,s) + e−cP(W2k,≥s+1)) by our choice of H

≤ n(e−cP(W2k) + e−cP(W2k,≥s+1)) by (20)

≤ 2e−c Tr(Ã2k
G)

≤ 2e−c(nλ2k
2 + 1).

We may assume that the diameter of G is at least 10 as otherwise ∆ ≥ n1/10, making the theorem
statement vacuous. Because of the diameter, we can take four edges (u1, v1), (a1, b2), (u2, v2), (a2, b2)
such that the distance between each pair of edges is at least 2. Then consider the vectors φ1, φ2 such
that for i ∈ {1, 2}

φi(x) =



1 x ∈ {ui, vi}
−1 x ∈ {ai, bi}
0 otherwise

Choose real numbers α and β such that at least one is nonzero. We have

(αφ1 + βφ2)TD−1/2AD−1/2(αφ1 + βφ2)
(αφ1 + βφ2)T(αφ1 + βφ2)

≥
4
∆ (α2 + β2)

4(α2 + β2)
≥ 1

∆
.

Therefore by Courant Fisher

λ2 ≥ min
α,β

(αφ1 + βφ2)TD−1/2AD−1/2(αφ1 + βφ2)
(αφ1 + βφ2)T(αφ1 + βφ2)

≥ 1
∆
.

By our choice of k, this means nλ2k
2 ≥ 1. Moreover,

ε ≤ 2 log log n
2 log∆ n

≤ log ∆ log log n
log n

< 1/2,

based on our assumptions on ∆. Thus, 1 − ε ≥ e−1.5ε. Combining these facts,

m′λ2k
2 ≤ 4e3kε−cnλ2k

2 ,

yielding

m′ ≤ 4ne3kε−c ≤ 4ne−c/2 = O
(

n
log∆ n

)
.

As we created H by deleting cn/s vertices, it follows by Cauchy interlacing that the number of
eigenvalues of Ã in [(1 − ε)λ2, λ2] is at most

cn
s

+ O
(

n
log∆ n

)
.

14

We now show that taking

s :=
1
4

(
k

∆7 log ∆

)1/5

satisfies (20). Applying Theorem 3.1 equation (14) to each x ∈ G and summing, we have

P(W2k,s)
P(W2k)

≤ exp
(
− k

65∆7s4

)

≤ exp


−Ω




log n log2/5 ∆

∆7/5






� exp(−c) = exp(−Θ(log log∆ n)),

satisfying (20) for sufficiently large n, and we conclude that

mG

(
[(1 − log log∆ n

log∆ n
)λ2, λ2]

)
= O


n · ∆

7/5 log2/5 ∆ log log n

log1/5 n


 ,

as desired.
If |λn| > |λ2|, we can do a lazy walk with probability of moving p = 1

2 , therefore making all
eigenvalues nonnegative. This is equivalent to doubling the degree of every vertex by adding loops.
This is the equivalent of taking the simple random walk on a graph with maximum degree 2∆,

requiring s ≤ 1
11

(
k

∆7 log ∆

)1/5
, yielding the same asymptotics. �

5 Examples

In this section, we consider examples demonstrating some of the points raised in the introduction
regarding the tightness of our results. As most of our results in this section are combinatorial rather
than probabilistic, we will consider multiplicity in the non-normalized adjacency matrix A. For
regular graphs, this is equivalent.

5.1 Bipartite Ramanujan Graphs

We show that bipartite Ramanujan graphs (see [LPS88]; known to exist for every d ≥ 3 by [MSS15])
have high multiplicity near λ2. This means that the bound of n/ logΘ(1) n of Theorem 1.2 is tight.

Theorem 5.1 (Friedman [Fri91] Corollary 3.6). Let G be a d-regular graph on n vertices. Then

λ2(AG) ≥ 2
√

d − 1(1 −O(1/ log2 n)).

Lemma 5.2 (McKay [McK81] Lemma 3). The number of closed walks on the infinite d-regular tree of

length 2k starting at a fixed vertex is Θ
(

4k(d−1)k

k3/2

)
.

Proposition 5.3. There exists a constant α > 0 such that for fixed d, every bipartite d-regular bipartite
Ramanujan graph G on n vertices satisfies

mG

(
[λ2(1 − α log log(n)

log(n)
), λ2]

)
= Ω(n/ log3/2(n)).

15

Proof. By Theorem 5.1,

λ2

(
1 − α log log(n)

log(n)

)
≤ 2
√

d − 1
(
1 − 1

2
α

log log(n)
log(n)

)
,

for sufficiently large n. Let k = β log n for some constant β to be set later and suppose that there
are m eigenvalues of AG in the interval [2

√
d − 1

(
1 − 1

2α
log log(n)

log(n)

)
, λ2]. Recall that the spectrum of a

bipartite graph is symmetric around 0. From Lemma 5.2 it follows that for some constant C,

Cn
(

4k(d − 1)k

k3/2

)
≤

n∑

i=1

λi(AG)2k

≤ 2d2k + (n − 2m)
(
2
√

d − 1
(
1 − 1

2
α

log log(n)
log(n)

))2k

+ 2m(2
√

d − 1)2k.

If we let β be sufficiently small and α > 3
2β , rearranging yields

m
n
≥

C 4k(d−1)k

k3/2 − 2d2k

n −
(
2
√

d − 1
(
1 − 1

2α
log log(n)

log(n)

))2k

2(2
√

d − 1)2k ·
(
1 −

(
1 − 1

2α
log log(n)

log(n)

)2k)

= Ω




1 − 2n2β−1

k3/2
−

(
1 − 1

2α
log log(n)

log(n)

)2k

1 −
(
1 − 1

2α
log log(n)

log(n)

)2k




= Ω
(1
k3/2
− 1

eαβ log log(n)

)

= Ω
(1
k3/2

)
.

�

5.2 Mangrove Tree

This section shows that the dependence on |V| in Corollary 1.5 is tight up to polylogarithmic factors.
Our example begins with a path of multiedges containing n vertices, where each multiedge of
the path is composed of d/2 edges for some even d. At both ends of the path, we attach a tree of
depth logd−1 n. The roots have degree d/2 and all other vertices (besides the leaves) have degree d.
Therefore the only vertices in the graph that are not degree d are the leaves of the two trees. Call
this graph Q. An example of this graph is shown in Figure 2.

Proposition 5.4. For every vertex u of degree less than d,ψQ(u) = Õ(n−5/2), where Õ suppresses dependence
on logarithmic factors and d.

Therefore, we cannot hope to do significantly better than our analysis in Lemma 3.3, in which
we find a vertex u of non-maximal degree with ψ(u) ≥ 1/(dλ1n5/2).

Proof. For simplicity, call λ1(AQ) = λ1 and ψQ = ψ. By the symmetry of the graph, the value of ψ at
vertices in the tree is determined by the distance from the root. Call the entries of ψ corresponding
to the tree r0, r1, . . . , r`, where the index indicates the distance from the root.

16

By the discussion in the proof of Kahale [Kah95] Lemma 3.3, if we define

θ := log




λ1

2
√

d − 1
+

√
λ2

1

4(d − 1)
− 1


 ,

then for 0 ≤ i ≤ `, entries of the eigenvector must satisfy

ri

r0
=

sinh((` + 1 − i)θ)(d − 1)−i/2

sinh((` + 1)θ)

where ` is the depth of the tree.

Therefore, r`/r0 =
sinh(θ)(d−1)−`/2

sinh((`+1)θ) . Examining the various terms, sinh(θ) ≤ d and (d − 1)−`/2 = 1√
n

.
To bound the third term, we use the definition sinh(x) = (ex − e−x)/2, which yields

sinh((` + 1)θ) ≥ 1 − on(1)
2




λ1

2
√

d − 1
+

√
λ2

1

4(d − 1)
− 1




logd−1 n+1

.

λ1 is at least the spectral radius of the path of length n with d/2 multiedges between vertices. This
spectral radius is d cos(π/(n + 1)). This gives

sinh((` + 1)θ) ≥ 1 − on(1)

2(2
√

d − 1)logd−1 n+1


d(1 − π2

2n2) +

√
d2(1 − π2

2n2)2 − 4d + 4




logd−1 n+1

≥ 1 − on(1)

2(2
√

d − 1)logd−1 n+1
(d + d − 2)logd−1 n+1

(
1 −O

(
d
n2

))logd−1 n+1

≥ 1 − on(1)
2

e−O(d logd−1 n/n2)√n ≥
√

n
3

for large enough n. Therefore
r`
r0

=
sinh(θ)(d − 1)−`/2

sinh((` + 1)θ)
≤ 3d

n
. (21)

At this point, we know the ratio between r` and r0, but still need to bound the overall mass of
the eigenvector on the tree. A “regular partition” is a partition of vertices V =

⊔k
i=0 X j where the

number of neighbors a vertex u ∈ Xi has in X j does not depend on u. We can create a quotient matrix,
where entry i, j corresponds to the number of neighbors a vertex u ∈ Xi has in X j. For an overview
of quotient matrices and their utility, see Godsil, [God93, Chapter 5]. In our partition, every vertex
in the path is placed in a set by itself. The vertices of each of the two trees are partitioned into sets
according to their distance from the two roots. Call the matrix according to this partition BQ. We
denote by BQ(Xi,X j) the entry in BQ corresponding to edges from a vertex in Xi to X j.

Define X0, . . .X` as the sets corresponding to vertices in the first tree of distance 0, . . . , ` from
the root. For 1 ≤ j ≤ ` − 1, BQ(X0,X1) = d/2. BQ(X j,X j+1) = d − 1. Moreover, for 0 ≤ j ≤ ` − 1,
BQ(X j+1,X j) = 1. All values between vertices in the path are unchanged at d/2.

Consider the diagonal matrix D with Di,i := |Xi|−1/2. D−1BQD is a symmetric matrix. Define
C := D−1BQD We now have C(X j+1,X j) = C(X j,X j+1) =

√
d − 1 for 1 ≤ j ≤ ` − 1, and C(X0,X1) =

C(X1,X0) =
√

d/2.

17

If a vector φ is an eigenvector of C, then Dφ is an eigenvector of BQ with the same eigenvalue.
By the definition of D this means

ψC(Xi)2 =
∑

u∈Xi

ψAQ(u)2. (22)

Define CX0:` as the submatrix of C corresponding the the sets {X0, . . . ,X`}, then extended

with zeros to have the same size as C. Every entry of C + d/2−√d−1√
d−1

CX0:` is less than or equal
to the corresponding entry of the adjacency matrix of a path of length n + 2 logd−1 n with d/2
edges between pairs of vertices. Also, ψC is a nonnegative vector. Therefore the quadratic form

ψT
C(C + d/2−√d−1√

d−1
CX0:`)ψC is at most the spectral radius of this path. Namely

ψT
CCψC +

d/2 − √d − 1√
d − 1

ψT
CCX0:`ψC ≤ d cos(π/(n + 2 logd−1 n + 1)).

Because C contains the path of length n, ψT
CCψC ≥ d cos(π/(n + 1)). Putting these together yields

ψT
CCX0:`ψC ≤

√
d − 1

d/2 − √d − 1
· d(cos(π/(n + 2 logd−1 n + 1))− cos(π/(n + 1))) ≤ d

√
d − 1

d/2 − √d − 1

3π2 logd n
n3 .

(23)
Define ψC(X1:`) as the projection of ψC on {X1, . . .X`}. CψC(X1:`) = CX0:`ψC(X1:`), so

ψT
CCX0:`ψC ≥ λ1‖ψC(X1:`)‖2 ≥ d(cos(π/(n + 1)))‖ψC(X1:`)‖2 (24)

Combining (23) and (24) yields

‖ψC(X1:`)‖2 ≤
√

d − 1

d/2 − √d − 1

(
3π2 logd n

n3

)
/ cos(π/n + 1) ≤

(
21π2 logd n

n3

)

assuming d ≥ 4 and n is sufficiently large.
Using (22) and the eigenvalue equation, we obtain

ψQ(r0) = ψC(X0) ≤ λ1(AC)‖ψC(X1:`)‖ ≤ d · 5π log1/2
d n

n3/2
.

Therefore, according to (21)

r` ≤
15d2π(log1/2

d n)

n5/2
.

�

6 Open Problems

We conclude with some promising directions for further research.

18

Beyond the Trace Method: Polynomial Multiplicity Bounds

There is a large gap between our upper bound of O(n/ log1/5 n) on the multiplicity of the second
eigenvalue and the lower bound of n1/3 mentioned after Theorem 1.1. It is very natural to ask,
whether the bound of this paper may be improved. To improve the bound beyond O(n/polylog(n)),
however, it appears that a very different approach is needed.

Open Problem 1 (Similar to Question 6.3 of [JTY+19]). Let d > 1 be fixed integer. Does there exist
an ε > 0 such that for every connected d-regular graph G on n vertices, the multiplicity of the
second largest eigenvalue of AG is O(n1−ε)?

In the present paper, we rely on the trace method to bound eigenvalue multiplicity through
closed walks. There are three drawbacks to this approach that stops a bound on the second
eigenvalue multiplicity below n/polylog(n). First, considering walks of length ω(log(n)) makes the
top eigenvalue dominate the trace, leaving no information behind. Second, considering the trace
Tr Ak

G for k = O(log(n)) it is impossible to distinguish eigenvalues that differ by O(1/ log(n)). Third,
as covered in Section 5.1, there exist graphs such that there are Ω(n/polylog(n)) eigenvalues in a
range of that size around the second eigenvalue. Thus, the trace method reaches a natural barrier at
n/polylog(n)).

Eigenvalue Multiplicity for Unnormalized Non-Regular Graphs

Another natural question is whether Theorem 1.2 may be extended to hold for the (non-normalized)
adjacency matrix of non-regular graphs.

Open Problem 2. Let ∆ > 1 be a fixed integer. Does it hold for every connected graph G on
n vertices of maximum degree ∆ that the multiplicity of the second largest eigenvalue of AG is
o(n/ log log(n))?

In order to handle unnormalized irregular graphs via the approach in this paper, the key
ingredient needed would be an “unnormalized” analogue of Theorem 1.3, showing that a uniformly
random closed walk (from the set of all closed walks) in an irregular graph must have large support.
We exhibit in Appendix B an irregular “lollipop” graph for which the typical support of a closed
walk from a specific vertex is only O(polylog(k)). It remains plausible that when starting from a
random vertex, a randomly selected closed walk has poly(k) support in irregular graphs.

Sharper Bounds for Closed Random Walks

We have no reason to believe that the exponent of 1/5 appearing in Theorem 1.3 is sharp. In fact,
we know of no example where where the answer is o(k1/2). An improvement over Theorem 1.3
would immediately yield an improvement of Theorem 1.2.

Open Problem 3. Let d > 1 be a fixed integer. Does there exist an α > 1/5 such that for every
connected d-regular graph G on n vertices and every vertex x of G, a random closed walk of length
2k < n rooted at x has support Ω(kα) in expectation? Is α = 1/2 true? Does such a bound hold for
SRW in general?

19

Acknowledgments

We thank Yufei Zhao for telling us about [JTY+19] at the Simons Foundation conference on High
Dimensional Expanders in October, 2019. We thank Shirshendu Ganguly for helpful discussions.

References

[ABS15] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique
games and related problems. Journal of the ACM (JACM), 62(5):1–25, 2015.

[BGH+15] Boaz Barak, Parikshit Gopalan, Johan Håstad, Raghu Meka, Prasad Raghavendra,
and David Steurer. Making the long code shorter. SIAM Journal on Computing,
44(5):1287–1324, 2015.

[Bol13] Béla Bollobás. Modern graph theory, volume 184. Springer Science & Business Media,
2013.

[BRS11] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite pro-
gramming hierarchies via global correlation. In 2011 ieee 52nd annual symposium on
foundations of computer science, pages 472–481. IEEE, 2011.

[CG07] Sebastian Cioabă and David Gregory. Principal eigenvectors of irregular graphs. The
Electronic Journal of Linear Algebra, 16, 2007.

[Cio07] Sebastian M Cioabă. The spectral radius and the maximum degree of irregular graphs.
The Electronic Journal of Combinatorics, 14(1):R38, 2007.

[CRS93] Dragoš Cvetković, Peter Rowlinson, and Slobodan Simić. A study of eigenspaces of
graphs. Linear algebra and its applications, 182:45–66, 1993.

[CVDKL10] Sebastian M Cioabă, Edwin R Van Dam, Jack H Koolen, and Jae-Ho Lee. A lower
bound for the spectral radius of graphs with fixed diameter. European Journal of
Combinatorics, 31(6):1560–1566, 2010.

[DS84] Peter G Doyle and J Laurie Snell. Random walks and electric networks, volume 22.
American Mathematical Soc., 1984.

[Fri91] Joel Friedman. Some geometric aspects of graphs and their eigenfunctions. Princeton
University, Department of Computer Science, 1991.

[Gil98] David Gillman. A chernoff bound for random walks on expander graphs. SIAM
Journal on Computing, 27(4):1203–1220, 1998.

[God93] Chris Godsil. Algebraic combinatorics, volume 6. CRC Press, 1993.

[JTY+19] Zilin Jiang, Jonathan Tidor, Yuan Yao, Shengtong Zhang, and Yufei Zhao. Equiangular
lines with a fixed angle. arXiv preprint arXiv:1907.12466, 2019.

[Kah95] Nabil Kahale. Eigenvalues and expansion of regular graphs. Journal of the ACM (JACM),
42(5):1091–1106, 1995.

20

[Kah97] Nabil Kahale. Large deviation bounds for markov chains. Combinatorics Probability and
Computing, 6(4):465–474, 1997.

[Kol11] Alexandra Kolla. Spectral algorithms for unique games. computational complexity,
20(2):177–206, 2011.

[LM08] James R Lee and Yury Makarychev. Eigenvalue multiplicity and volume growth. arXiv
preprint arXiv:0806.1745, 2008.

[LOG18] Russell Lyons and Shayan Oveis Gharan. Sharp bounds on random walk eigenvalues
via spectral embedding. International Mathematics Research Notices, 2018(24):7555–7605,
2018.

[LOGT14] James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning
and higher-order cheeger inequalities. Journal of the ACM (JACM), 61(6):1–30, 2014.

[LPS88] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combina-
torica, 8(3):261–277, 1988.

[LRTV12] Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh Vempala. Many sparse
cuts via higher eigenvalues. In Proceedings of the forty-fourth annual ACM symposium on
Theory of computing, pages 1131–1140, 2012.

[McK81] Brendan D McKay. The expected eigenvalue distribution of a large regular graph.
Linear Algebra and its Applications, 40:203–216, 1981.

[MSS15] Adam W Marcus, Daniel A Spielman, and Nikhil Srivastava. Interlacing families i:
Bipartite ramanujan graphs of all degrees. Annals of Mathematics, 182:307–325, 2015.

[OGT13] Shayan Oveis Gharan and Luca Trevisan. A new regularity lemma and faster approxi-
mation algorithms for low threshold rank graphs. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 303–316. Springer, 2013.

[Row90] Peter Rowlinson. More on graph perturbations. Bulletin of the London Mathematical
Society, 22(3):209–216, 1990.

[Row19] Peter Rowlinson. Eigenvalue multiplicity in regular graphs. Discrete Applied Mathemat-
ics, 269:11–17, 2019.

[Ste14] Dragan Stevanovic. Spectral radius of graphs. Academic Press, 2014.

[TT15] Michael Tait and Josh Tobin. Characterizing graphs of maximum principal ratio. arXiv
preprint arXiv:1511.06378, 2015.

[VMSK+11] Piet Van Mieghem, Dragan Stevanović, Fernando Kuipers, Cong Li, Ruud Van
De Bovenkamp, Daijie Liu, and Huijuan Wang. Decreasing the spectral radius of a
graph by link removals. Physical Review E, 84(1):016101, 2011.

21

A Proofs for high degree regular graphs

Theorem A.1 (Detailed Theorem 1.8). If G is d-regular, has exactly h self-loops at every vertex, and no
multi-edges4, then

Px(W2k,s) ≤ exp
(
− k

100s3

)
Px(W2k,2s) for s ≤ min


1
8

(
k

log d

)1/4

,
d − h

2

 . (25)

Proof. We show this via a small modification of the proof of Theorem 3.1. Assume s ≤ (d− h)/2. The
key observation is that each vertex has at least d− h edges in G to other vertices, so in a subgraph of
size at most 2s − 1 every vertex has at least one edge in G leaving the subgraph. In this case, we can
simply choose u ∈ S as u := arg maxw∈S ψS(w) in Lemma 3.3. Therefore, considering the adjacency
matrix, (15) can be improved to

λ1(AS∪{v}) ≥ 1
2

(
λ1 +

√
λ2

1 + ψS(u)2
)
≥ λ1 +

ψS(u)2

6λ2
1

≥ λ1 +
1

6λ2
1s
.

Therefore, after adding s vertices to S according to the process of Lemma 3.3, we find a set
T ∈ Γ2s

x satisfying

λ1(AT) ≥ λ1 +
1

6λ2
1

s∑

i=1

1
s + i − 1

≥ λ1 +
log 2

6λ2
1

≥ λ1


1 +

1
10λ3

1


 .

Using this improved bound, and keeping in mind that λ1(AT) ≤ 2s, we can replicate the
argument above to get to the following improvement over (18):

Px(W2k,s) ≤ exp
(
2s log d + 4s log(2s) + log(2s) − k

80s3

)
Px(W2k,2s).

This implies

Px(W2k,s) ≤ exp
(
7s log d − k

80s3

)
Px(W2k,2s) ≤ exp

(
− k

100s3

)
Px(W2k,2s

x)

whenever

s ≤ 1
8

(
k

log d

)1/4

,

establishing (25). �

Theorem A.2 (Detailed Theorem 1.7). If G is simple and d-regular, then

mG

(
[(1 − log logd n

logd n
)λ2, λ2]

)
=


O

(
n · log d log log n

d

)
when d log1/2 d ≤ α log1/4 n

O
(
n · log1/2 d log log n

log1/4 n

)
when d log1/2 d ≥ α log1/4 n

(26)

for all5 d ≤ exp(
√

log n), where α := 4√3/4.
4This technical assumption is used to handle the case when |λn(AG)| > λ2(AG) in Theorem A.2. Here we take h = 0.
5If d ≥ exp(

√
log n) then (26) is vacuously true.

22

Proof. The proof is the same as the proof of Theorem 1.2 in Section 4, except we choose different s.

1. If d log1/2 d < α log1/4 n set

s := min


1
8

(
k

log d

)1/4

,
d − h

2

 =
d
2

with h = 0. Applying Theorem A.1 it is easily checked that (20) is satisfied for large enough n,
yielding a bound of

mG

(
[(1 − log logd n

logd n
)λ2, λ2]

)
= O

(
n · log d log log n

d

)
.

2. If G is simple, d-regular and d log1/2 d ≥ α log1/4 n, set

s := min


1
8

(
k

log d

)1/4

,
d − h

2

 =
1
8




log n

log2 d




1/4

with h = 0. Then (20) is again satisfied by applying Theorem 3.1 equation (25), and we
conclude that

mG

(
[(1 − log logd n

logd n
)λ2, λ2]

)
= O


n · log1/2 d log log n

log1/4 n


 .

�

B Lollipop

Here, we show that if we do not assume that our graph is regular, the average support of a uniformly
chosen (from the set of all such walks) closed walk of length k from a fixed vertex is no longer
necessarily kΘ(1) (as opposed to the average support of a random walk) . We take the lollipop
graph, which consists of a clique of (d + 1) vertices for fixed d ≥ 3 and a path of length n {u1, . . . ,un}
attached to a vertex v of the clique, where n � k. Here ψ := ψ(A) and λ1 := λ1(A) are the Perron
eigenvector and eigenvalue of the adjacency matrix of the graph.

Lemma B.1. ψ(v) ≥ 1/
√

d + 2.

Proof. By symmetry, the value on all entries of the clique besides v are the same. Call this value
ψ(b). Then by the eigenvalue equation we have λ1ψ(b) = ψ(v) + (d − 1)ψ(b), so as λ1 ≥ d, it must be
that ψ(v) ≥ ψ(b).

Similarly, to satisfy the eigenvalue equation, vertices on the path must satisfy the recursive
relation

λ1ψ(ui) = ψ(ui−1) + ψ(ui+1) 1 ≤ i ≤ n − 1
λ1ψ(un) = ψ(un−1)

where we define v = u0. To satisfy this equation, we must have ψ(ui) ≥ (λ1 − 1)ψ(ui+1) for each i, so
as λ1 ≥ d ≥ 3, ψ(v) ≥ ∑n

i=1 ψ(uk). As the Perron vector is nonnegative, ψ(v)2 ≥ ∑n
i=1 ψ(uk)2, and

(d + 2)ψ(v)2 ≥ ψ(v)2 + dψ(b)2 +

n∑

i=1

ψ(uk)2 = 1,

so ψ(v) ≥ 1/
√

d + 2. �

23

Call γ2k
v the number of closed walks of length 2k, and γ2k,≥`+d+1

v as the subset of these walks with
support at least ` + d + 1.

Proposition B.2. For ` ≥ 2 log(k)/ log(λ1/2),

|γ2k,≥`+d+1
v | = O(k−2)|γ2k

v |.
Proof. For a closed walk to have support ` + d + 1, it must contain u`. For such walks, once the
path is entered, at least 2` steps must be spent in the path, as the walk must reach u` and return.
Therefore, closed walks starting at v that reach u` can be categorized as follows. First, there is a
closed walk from v to v. Then there is a closed walk from v to v going down the path containing
u`. On this excursion, the walk can only go forward or backwards, and it spends at least 2` steps
within the path. For each of these steps, there are 2 options. If we remain in the path after 2` steps,
upper bound the number of choices until returning to v by λ1 at each step. After returning to v, the
remaining steps form another closed walk. The number of closed walks from v of length i is at most
λi

1. Therefore the number of closed walks with an excursion to u` is at most

2k∑

i=0

λi
122`λ2k−2`−i

1 = (2k + 1)λ2k−2`
1 22`.

The total number of closed walks starting at v is at least ψ(v)2λn
1 . Therefore the fraction of closed

walks that have support at least ` is at most

(2k + 1)22`λ2k−2`
1

λ2k
1 /(d + 2)

=
(d + 2)(2k + 1)22`

λ2`
1

so for ` ≥ 2(log k)/ log(λ1/2), this is O(k−2).
�

Remark B.3. Instead of adding a path, we can add a tree (as exhibited in Figure 1). According to
the same analysis, the probability a walk reaches depth further than Θ(log k) is small. Therefore, in
Theorem 1.3 we can not get a sufficient bound on support from passing to depth, but must deal
with support itself.

24

Appendix E

Optimal Decremental Connectivity
in Non-Sparse Graphs

140

Optimal Decremental Connectivity in Non-Sparse Graphs

Anders Aamand
University of Copenhagen

aa@di.ku.dk

Adam Karczmarz
University of Warsaw

a.karczmarz@mimuw.edu.pl

Jakub Łącki
Google Research
jlacki@google.com

Nikos Parotsidis
Google Research

nikosp@google.com

Peter M. R. Rasmussen
University of Copenhagen

pmrr@di.ku.dk

Mikkel Thorup
University of Copenhagen
mikkel2thorup@gmail.com

September 2, 2021

Abstract

We present a dynamic algorithm for maintaining the connected and 2-edge-connected com-
ponents in an undirected graph subject to edge deletions. The algorithm is Monte-Carlo ran-
domized and processes any sequence of edge deletions in O(m+ n poly log n) total time. Inter-
spersed with the deletions, it can answer queries to whether any two given vertices currently
belong to the same (2-edge-)connected component in constant time. Our result is based on a
general Monte-Carlo randomized reduction from decremental c-edge-connectivity to a variant
of fully-dynamic c-edge-connectivity on a sparse graph.

For non-sparse graphs with Ω(npoly log n) edges, our connectivity and 2-edge-connectivity
algorithms handle all deletions in optimal linear total time, using existing algorithms for the
respective fully-dynamic problems. This improves upon an O(m log(n2/m) + n poly log n)-time
algorithm of Thorup [J.Alg. 1999], which runs in linear time only for graphs with Ω(n2) edges.

Our constant amortized cost for edge deletions in decremental connectivity in non-sparse
graphs should be contrasted with an Ω(log n/ log log n) worst-case time lower bound in the
decremental setting [Alstrup et al. FOCS’98] as well as an Ω(log n) amortized time lower-bound
in the fully-dynamic setting [Patrascu and Demaine STOC’04].

1 Introduction

In this paper, we present Monte Carlo randomized decremental dynamic algorithms for maintaining
the connected and 2-edge-connected components in an undirected graph subject to edge deletions.
Starting from a graph with n nodes and m edges, the algorithm can process any sequence of edge
deletions in O(m + n polylog n) total time while answering queries whether a pair of vertices is
currently in the same (2-edge-)connected component. Each query is answered in constant time.
The algorithm for decremental 2-edge-connectivity additionally reports all bridges as they appear.

For some concrete constant α ≤ 7, our decremental algorithms thus use O(m) total time on the
edge deletions from a graph with m ≥ n logα n edges, and we will refer to such graphs as non-sparse.
If we delete all the edges, we support edge deletions in constant amortized time. As we shall discuss
in Section 1.1, it is not possible to obtain a constant worst-case time bound for individual edge
deletions in this decremental setting, nor is it possible to obtain a constant amortized time bound
for edge updates in the fully-dynamic version of the connectivity problem.

Our algorithms are Monte Carlo randomized and answer all queries correctly with high proba-
bility1. We note that since the correct answer to each query is uniquely determined from the input,
the algorithms work against adaptive adversaries, that is, each deleted edge may depend on previous
answers to queries.

Furthermore, our algorithms offer a self-check capability. At the end, after all updates and
queries have been processed online, each algorithm can deterministically check if it might have
made a mistake. If the self-check passes, it is guaranteed that no incorrect answer was given.
Otherwise, the algorithm may have made a mistake. However, as we show in the following, the self-
check passes with high probability. This feature implies that we can obtain Las Vegas algorithms for
certain non-dynamic problems whose solutions employ decremental (2-edge-)connectivity algorithms
as subroutines: we simply repeat trying to solve the static problem from scratch, each time with
new random bits, until the final self-check is passed. With high probability, we are done already
after the first round. A nice concrete example is the algorithm of Gabow et al. [15] for the static
problem of deciding if a graph has a unique perfect matching. The algorithm uses a decremental 2-
edge-connectivity algorithm as a subroutine. With our decremental 2-edge-connectivity algorithm,
repeating until the self-check is passed, we obtain a Las Vegas algorithm for the unique perfect
matching problem that is always correct, and which terminates in O(m + n polylog n) time with
high probability.

The tradition of looking for linear time algorithms for non-sparse graphs goes back at least
to Fibonacci heaps, which can be used for solving single source shortest paths in O(m + n log n)
time [14]. Our results show that another fundamental graph problem can be solved in linear time
in the non-sparse case.

The previous best time bounds for the decremental connectivity and 2-edge-connectivity prob-
lems were provided by Thorup [36]. His algorithms run in O(m log(n2/m) +n polylog n) total time.
This is O(m) only for dense graphs with Ω(n2) edges. It should be noted that [36] used Las Vegas
randomization, that is, correctness was guaranteed, but the running time bound only held with high
probability. Our algorithms are Monte Carlo randomized, but offer the final self-check. Another
difference is that our new algorithms need only a polylogarithmic number of random bits, whereas
the ones from [36] used Θ(m) random bits.

Both our algorithm and the previous one by Thorup are based on a general reduction from
decremental c-edge-connectivity to fully-dynamic c-edge-connectivity on a sparse graph with Õ(cn)
updates. The reductions have a polylogarithmic cost per node as well as a cost per original edge.

1We define high probability as probability 1 −O(n−γ) for any given γ.

1

Our contribution is to reduce the edge cost from O(log(n2/m)) to the optimal O(1). The general
reduction and its consequences will be discussed in Section 1.2.

We will now give a more detailed discussion of our results in the context of related work.

1.1 Connectivity

Dynamic connectivity is the most fundamental dynamic graph problem. The fully dynamic version
has been extensively studied [8, 9, 12, 20, 21, 24, 26, 29, 32, 33, 34, 37, 40, 41] from both the lower and
upper bound perspective, even though close to optimal amortized update bounds have been known
since the 90s [20, 21, 37]. Currently, the best known amortized update time bounds are (expected)
O(log n · (log log n)2) using randomization [24] and O(log2 n/ log log n) deterministically [41]. Both
these results have optimal (wrt. to the lower bounds) query time.

Connectivity Lower Bounds Our result implies that decremental connectivity is provably easier
than fully-dynamic connectivity for a wide range of graph densities. Specifically, let tu be the
update time of a fully dynamic connectivity algorithm and let tq be its query time. Pǎtraşcu and
Demaine [33] showed a lower bound of Ω(log n) on max(tu, tq) in the cell-probe model. Pǎtraşcu and
Thorup [34] also showed that tu = o(log n) implies tq = Ω(n1−o(1)). These lower bounds hold for all
graph densities and allow for both amortization and randomization. As a result, no fully-dynamic
connectivity algorithm can answer connectivity queries in constant time and have an amortized
update time of o(log n).

In sharp contrast, assuming thatm = Ω(n poly log n) edges are deleted, our algorithm shows that
one can solve decremental connectivity handling both queries and updates in constant amortized
time.

We note that such a result is possible only because we allow for amortization, as any decremental
connectivity algorithm with worst-case update time O(polylog n) must have worst-case query time
Ω
(

logn
log logn

)
[3]. This lower bound holds even for trees supporting restricted connectivity queries

of the form "are u and v connected?" for a fixed “root” u. This lower bound also holds for dense
graphs, as we can always add a large static clique to the problem.

An optimal incremental connectivity algorithm has been known for over 40 years. Namely, to
handle m ≥ n edge insertion and q connectivity queries, one can use the union-find data struc-
ture [35] with n− 1 unions and 2(m+ q) finds. The total running time is Θ((m+ q)α((m+ q), n)),
which is linear for all but very sparse graphs (since α(Ω(n log n), n) = O(1)). It was later shown
that this running time is optimal for incremental connectivity [13].

Similarly to the decremental case, one cannot hope to obtain an analogous result with a worst-
case update time in the incremental setting: Pǎtraşcu and Thorup [34] showed that any incremental
connectivity data structure with o

(
logn

log logn

)
worst-case update time must have worst-case Ω(n1−o(1))

query time in the cell-probe model.

Other cases of optimal decremental connectivity There is much previous work on cases
where decremental connectivity can be supported in O(m) total time. Alstrup et al. [4] showed that
decremental connectivity can be solved in optimal O(m) total time on forests, answering queries
in O(1) time. This was later extended to other classes of sparse graphs: planar graphs [30], and
minor-free graphs [22]. All these special graph classes are sparse with m = O(n) edges.

For general graphs, we only have the previously mentioned work by Thorup [36], yielding a total
running time of O(m) for very dense graphs with m = Ω(n2) edges. We now obtain the same linear
time bound for all non-sparse graphs with m = Ω(npoly log n) edges.

2

1.2 General reduction for c-edge-connectivity

Our algorithm for decremental connectivity is based on a general randomized reduction from decre-
mental c-edge-connectivity (assuming all m edges are deleted) to fully-dynamic c-edge-connectivity
on a sparse graph with Õ(cn) updates. The reduction has a polylogarithmic cost per node as well
as a constant cost per edge. The previous decremental connectivity algorithm of Thorup [36] was
also based on such a general reduction, but the cost per edge was O(log(n2/m)) which is O(1) only
for very dense graphs with m = Ω(n2). Below we will describe the format of the reductions in more
detail.

Because there are different notions of c-edge-connectivity, we first need to clarify our definitions.
We say that two vertices u, v are c-edge-connected iff there exist c edge-disjoint paths between u and
v in G. It is known that c-edge-connectivity is an equivalence relation; we call its classes the c-edge-
connected classes. However, for c ≥ 3, a c-edge-connected class may induce a subgraph of G which
is not connected, so it also makes sense to consider c-edge-connected components, i.e., the maximal
c-edge-connected induced subgraphs of G.2 It is important to note that the c-edge-connected com-
ponents and the c-edge-connected classes are uniquely defined and both induce a natural partition
of the vertices of the underlying graph. Moreover, each c-edge-connected component of G is a subset
of some c-edge-connected class of G. For c = 1, 2, the c-edge-connected classes are c-edge-connected,
so the two notions coincide. To illustrate the difference, let us fix c ≥ 3 and consider a graph with
c + 2 vertices vs, vt, v1, . . . , vc and edges {vs, vt} × {v1, . . . , vc}; while all c-edge-connected compo-
nents in this graph are singletons, there is one c-edge-connected class, which is not a singleton,
namely {vs, vt}.

We define a c-certificate of G to be a subgraph H of G that contains all edges not in c-edge-
connected components, and a c-edge-connected subgraph of each c-edge-connected component. Both
Thorup’s and our reduction maintains a c-certificate H of G. Then, for any c′ ≤ c, we have that
the c′-edge-connected equivalence classes and the c′-edge-connected components are the same in G
and H. As the edges from G are deleted, we maintain a c-certificate with Õ(cn) edges undergoing
only Õ(cn) edge insertions and deletions in total.

The uniquely defined c-edge-connected components of a graph may be found by repeatedly
removing cuts of size at most c− 1. For the reductions, we need algorithms that can help us in this
process. We therefore define the fully dynamic c-edge-cut problem as follows. Suppose a graph G is
subject to edge insertions and/or deletions. Then, a fully dynamic c-edge-cut data structure should
maintain any edge e that belongs to some cut of size less than c. A typical application of such a data
structure is to repeatedly remove such edges e belonging to cuts of size less than c, which splits G
into its c-edge-connected components. For each c ≥ 1, denote by Tc(n) the amortized time needed
by the data structure to find an edge belonging to a cut of size less than c. For example, for c = 1
we have T1(n) = O(1) since we do not have to maintain anything. For c = 2, the data structure is
required to maintain some bridge of G and it is known that T2(n) = O((log n · log log n)2) [23]. For
c ≥ 3, in turn, we have Tc(n) = O(n1/2 poly (c)) [38].

Given a fully dynamic c-edge-cut data structure, whose update time for a graph on n nodes
is Tc(n), Thorup’s [36] reduction maintains, in O(m log(n2/m)) + Õ(c · n · Tc(n)) total time, a
c-certificate H of the decremental graph G starting with n nodes and m edges. The certificate
undergoes only Õ(cn) edge insertions and deletions throughout any sequence of deletions issued
to G. We reduce here the total time to O(m) + Õ(c · n · Tc(n)).

Combining our reduction with the polylogarithmic fully-dynamic connectivity and
2There is no consensus in the literature on the terminology relating to c-edge-connected components and classes.

Some authors (e.g., [16, 17]) reserve the term c-edge-connected components for what we in this paper call c-edge-
connected classes.

3

2-edge-connectivity algorithm of Holm et al. [21], we can now solve decremental connectivity and
2-edge-connectivity in O(m) + Õ(n) time.

We can also apply the fully dynamic min-cut algorithm of Thorup [38] which identifies cuts
of size no(1) in n1/2+o(1) worst-case time. For c = no(1), we then maintain a c-certificate H in
O(m+ n3/2+o(1)) total time. This includes telling which vertices are in the same c-edge-connected
component. If we further want to answer queries about c-edge-connectivity between pairs of nodes,
we can apply the fully-dynamic data structure of Jin and Sun [25] to the c-certificate H. By
definition, the answers to these queries are the same in H and G, and the algorithm takes no(1)

time per update or query. Hence the total time for the updates remains O(m+ n3/2+o(1)), and we
can tell if two vertices are c-edge-connected in no(1) time.

1.2.1 Results

We will now give a more precise description of our reduction, including the log-factors hidden in
the Õ(cn) bound. Let the decremental c-certificate problem be that of maintaining a c-certificate
of G when G is subject to edge deletions. Recall that Tc(n) denotes the amortized update time of
a fully-dynamic c-edge-cut data structure. Thorup [36] showed the following.

Theorem 1.1 (Thorup [36]). There exists a Las Vegas randomized algorithm for the decremental
c-certificate problem with expected total update time O(m log (n2/m)+n(c+log n)·Tc(n) log2 n). The
maintained certificate undergoes O(n · (c+ log n)) expected edge insertions and deletions throughout,
assuming Θ(m) random bits are provided. These bounds similarly hold with high probability.

In particular the total update time is O(m) for very dense graphs with Ω(n2) vertices. Our
main result, which we state below, shows that an amortized constant update time can be obtained
as long as the initial graph has Ω(n polylog(n)) edges.

Theorem 1.2. There exists a Monte Carlo randomized algorithm for the decremental c-certificate
problem with total update time O(m+n(c+log n)·Tc(n) log3 n+nc log7 n). The maintained certificate
undergoes O(nc log4 n) edge insertions and deletions throughout. The algorithm is correct with high
probability. Within this time bound, the algorithm offers a final self-check after processing all updates.

In fact, our algorithm is itself a reduction to O(log n) instances of the decremental c-certificate
problem on a subgraph of G with O(m/ log2 n) edges. To handle these instances, we use the state-
of-the-art data structure (Theorem 1.1) which costs only O(m) in terms of m. As a result, our
improved reduction (Theorem 1.2) requires Θ(m) random bits to hold.

However, our new randomized c-certificate that is the key to obtaining the new reduction requires
only pairwise independent sampling to work. This is in sharp contrast with the certificate of
Karger [28], used in the construction of Thorup’s data structure (Theorem 1.1), which requires full
independence, i.e., Θ(m) random bits. We show that we may instead plug our new certificate into
Thorup’s data structure at the cost of a single additional logarithmic factor in the running time.
Since Karger’s certificate constitutes the only use of randomness in Thorup’s data structure, and
full independence in our construction is required only for invoking Theorem 1.1, we obtain the below
low-randomness version of our main result.

Theorem 1.3. There exists a Monte Carlo randomized algorithm for the decremental c-certificate
problem with total update time O(m + nc · Tc(n) log4 n + nc log7 n). The maintained certificate
undergoes O(nc log4 n) edge insertions and deletions throughout. The algorithm is correct with high
probability if O(polylog n) random bits are provided. Within this time bound, the algorithm offers
the final self-check after processing all updates.

4

By using Theorem 1.3 with best known fully dynamic algorithms for different values of c [21,
25, 38], we obtain:

Theorem 1.4. There exists Monte Carlo randomized decremental connectivity and decremental
2-edge-connectivity algorithms with O(m+ n log7 n) total update time and O(1) query time.

Theorem 1.5. Let c = (log n)o(1). There exists a Monte Carlo randomized decremental c-edge-
connectivity data structure which can answer queries to whether two vertices are in the same c-edge
connected class in O(no(1)) time, and which has O(m) + Õ(n3/2) total update time.

Theorem 1.6. Let c = O(no(1)). There exists a Monte Carlo randomized decremental c-edge-
connected components data structure with O(m+ n3/2+o(1)) total update time and O(1) query time.

All the above applications of our main result work using only O(polylog n) random bits. They
moreover each have the self-check property as well. As discussed before, our new 2-edge-connectivity
data structure implies an optimalO(m)-time unique perfect matching algorithm form = Ω(n polylog n).

1.3 Adaptive updates and unique perfect matching

All our time bounds are amortized. Amortized time bounds are particularly relevant for dynamic
data structures used inside algorithms solving problems for static graphs. In such contexts, future
updates often depend on answers to previous queries, and therefore we need algorithms that work
with adaptive updates.

Our reduction works against adaptive updates as long as queries do not reveal any details about
the c-certificate H. The reduction will safely maintain the following public information about the
c-edge-connected components of G: between deletions, each such component will have an ID stored
with all its vertices, so two vertices are in the same c-edge-connected component if and only if
they have the same component ID. With the component ID, we store its size and a list with its
vertices in order of increasing vertex ID. Finally, we can have a list of all edges that are not in
c-edge-connected components. After each update, we can also tell what are the IDs of the new
c-edge-connected components, and what are the edges between them.

For the case of 2-edge-connectivity, the above means that we can maintain the bridges of a
decremental graph and we can also maintain the connected components and their sizes without
revealing what the current randomized certificate looks like. All this is needed for the unique
perfect matching algorithm of Gabow et al. [15]. The algorithm is an extremely simple recursion
based on the fact that a graph with a unique perfect matching has a bridge and all components
have even sizes. The algorithm first asks for a bridge (u, v) of some component. If there is none,
the is no unique matching. Otherwise we remove (u, v) and check the sizes of the components of u
and v. If they are odd, (u, v) is in the unique matching, and we remove all other incident edges.
Otherwise (u, v) is not in the unique matching. The important thing here is that the bridges do not
tell us anything about our 2-certificate of the 2-edge-connected components.

Thus we solve the static problem of deciding if a graph has a unique perfect matching in O(m)+
Õ(n) time. If the self-verification reports a possible mistake, we simply rerun. Thus we get a Las
Vegas algorithm that terminates in O(m) + Õ(n) time with high probability.

1.4 Techniques

Our main technical contribution is a new construction of a sparse randomized c-certificate that
witnesses the c-edge-connected components of G and can be maintained under edge deletions in G.

5

In the static case, deterministic certificates of this kind have been known for decades [31]. However,
they are not very robust in the decremental setting, where an adversary can constantly remove its
edges forcing it to update frequently. Consequently, Thorup [36] used a randomized sample-based
certificate to obtain his reduction. The general idea behind this approach is to ensure that the
certificate is sparse and undergoes few updates. Ideally, the sparse certificate will only have to be
updated whenever an edge from the certificate is deleted. Using a fully dynamic data structure
on the certificate, we may obtain efficient algorithms provided that we don’t spend too much time
on maintaining the certificate. Thorup’s reduction had an additive overhead O(m log(n2/m)) for
maintaining the certificate, which we will reduce to O(m). We shall, in fact, use Thorup’s reduction
as a subroutine, called on O(log n) decremental subproblems each starting with O(m/ log2 n) edges.

1.4.1 Thorup’s construction [36]

Let us first briefly describe how Thorup’s algorithm operates on certificates and highlight difficulties
in improving his reduction to linear time. First of all, the c-certificate is constructed as follows:
initially, sample edges of G uniformly with probability P ≤ 1/2, thus obtaining a subgraph S.
Then, compute the c-edge-connected components of S and form a certificate H out of two parts:
(1) A recursive certificate of S, and (2) the subgraph D consisting of edges of G connecting distinct
c-edge-connected components of S.

As proved by Karger [28], D has size Õ(cn/P) with high probability. Thorup [36] generalizes this
by proving that D undergoes only Õ(cn/P) insertions throughout any sequence of edge deletions to
S. SinceD depends only on the c-edge-connected components of S, it is enough to have a c-certificate
of S in order to define D. Hence, a c-certificate of S (which is a graph a size O(mP), i.e., a constant
factor smaller) is maintained under edge deletions recursively. The recursion stops when the size
of the input graph is O(cn). To maintain D at each recursive level, we first need to maintain the
c-edge-connected components of the (recursive) certificate of S under edge deletions. The certificate
of S can be (inductively) seen to have Õ(cn/P) edges and undergo Õ(cn/P) updates. As a result,
for P = 1/2 maintaining its c-edge-connected components costs Õ(cn · Tc(n)) total time using the
fully-dynamic c-edge-cut data structure. Since at each recursion level the certificate size decreases
geometrically, the expected cost of all the dynamic c-edge-cut data structures is Õ(cn · Tc(n)).

The additional cost of O(m log(n2/m)) comes from the fact that, at each level of the recursion,
when a c-edge-connected component in S splits into two components as a result of an edge dele-
tion, we need to find edges of G between these two components in order to update D. This takes
O(m log (n2/m)) total time throughout using a standard technique of iterating through the edges
incident to the nodes in the smaller component every time a split happens [11]. The O(log (n2/m))
(instead of O(log (n))) cost comes by noticing that a vertex can at most have q neighbors in a compo-
nent of order q, and that after we go through the edges of a vertex i times it is in a component of order
≤ n/2i; hence it is only the first O(log(n/ deg(v))) times that all neighbors of v have to be consid-
ered, so the total time spent on this becomes O

(∑
v∈V deg(v) log(n/deg(v))

)
= O(m log (n2/m)).

It turns out very challenging to get rid of the O(m log(n2/m)) term associated with finding
cuts when components split in Thorup’s reduction. If we knew that all of these cuts were small,
say of size at most δ, then we could apply a whole bag of tricks for efficiently finding them in a
total time of Õ(nδ), e.g., using invertible Bloom lookup tables [19], or the XOR-trick [1, 2, 27].
Unfortunately, the bound of Õ(cn/P) only gives an average bound on the number of edges between
pairs of components, and in fact there can be pairs of components having as many as Ω(n1/3) edges
between them, as we will later show. In order to resolve this, we have to introduce a new type of
sample based c-edge certificate obtained by only removing cuts of size at most δ = O(cpolylog n)
from G. In the following three subsections, we describe the ideas behind this new certificate, the

6

technical challenges encountered in efficiently maintaining it, and why such a certificate is relevant
for decremental connectivity algorithms.

1.4.2 A small cut sample certificate

On the highest level, our c-edge certificate of a graph G = (V,E) is constructed starting with a
sample S ⊂ G. For now we assume that the edges of S are sampled independently with some
probability P ≤ 1/2, but we will later see how to reduce the number of random bits needed for
the sampling to O(polylog n). In our algorithms, G will be the current decremental graph and
the sample S will be made from the original graph. Thus, when G has undergone a sequence of
deletions, the current sample will be S ∩G. At any point in time, the maintained c-edge certificate
only depends on the sample S and the current graph G, not on the sequence of edge updates made
to G so far. We may therefore describe the c-edge certificate statically.

The critical idea behind our certificate is to introduce a small-cut-parameter δ. Our certificate
is obtained by iteratively removing certain cuts from G where each cut is allowed to be of size at
most δ. We denote by D ⊂ G the graph whose edge set consists of the edges removed in this process.
The overall goal is to define this cut removal process in a way so that (1) each connected component
of G \D is c-edge-connected in S, and (2) it is easy to detect new small cuts under edge deletions
issued to G. We then use S ∪D as our c-edge connectivity certificate of G. Importantly, we want
δ to be as small as possible, ideally δ = O(cpolylog(n)). This is because Õ(δn) will show up as an
additive cost in our algorithm for maintaining the certificate. We will describe shortly how this type
of certificate can be used in the design of efficient decremental c-edge-connectivity algorithms, but
let us first demonstrate that the existence of such a cut removal process for a small δ is non-trivial.

First of all, we could simply remove all cuts from G of size at most δ leaving us with the (δ+1)-
connected components. Karger’s result [28] implies that with δ = O((c+log n)/P) sufficiently large,
these components will remain c-edge connected in S. However, in order to maintain the small cuts,
we would need a decremental δ-edge connectivity algorithm. As δ > c, this approach simply reduces
our problem to a much harder one.

Suppose on the other hand that we attempted to use Thorup’s sampling certificate [36] described
above. To simplify the exhibition, let’s assume that P = 1/2 and c = 1. If D is the set of edges
between connected components of S, D ∪ S is a certificate. Thorup’s algorithm recurses on S to
find a final certificate of G. At first sight it may seem like D can be constructed by iteratively
removing cuts of size at most δ = O(log n) between the connected components of S. After all,
isn’t it unlikely that a connected component of S has more than, say, 100 log n unsampled outgoing
edges when the sampling probability is P = 1/2? As tempting as this logic may be, it is flawed. To
illustrate this, let G = G(n, 2/n) be the Erdős–Rényi graph obtained by sampling each edge of the
complete graph on n vertices independently with probability 2/n. Let further S be the subgraph of
G obtained by sampling each edge with probability 1/2. Then S is distributed as the Erdős–Rényi
graph G(n, 1/n) and basic phase transition results [10] show that the two largest components of
S, C1 and C2, almost surely have size Θ(n2/3). Now, we can conversely construct G from S by
including each non-sampled edge of the complete graph with probability 1

n−1 , and then we expect G
to contain as many as Θ(n1/3) edges between C1 and C2. At some point in the iterative process, we
are thus forced to remove a cut of size Ω(n1/3) splitting C1 and C2, and we would have to choose δ
of at least this size (but it is possible that other examples could show that δ would have to be even
larger). Our algorithms spend total time Õ(nδ) on finding these cuts, and if δ = Ω(n1/3), this is not
good enough for a linear time algorithm for non-sparse graphs. We remark that in this example,
each vertex of G has degree O(log n) with high probability. Therefore, an alternative approach
yielding cuts of size O(log n) would be to cut out one vertex at a time moving all incident edges to

7

D. In particular this would cut the large sampled components C1 and C2 into singletons, one vertex
at a time. Clearly, we cannot proceed like this for general graphs which may have many vertices of
large degree. Nevertheless, this simple idea will be critically used in our construction.

Our actual certificate uses δ = O(c logn
P). The certificate can be constructed for any P ≤ 1/2,

but in our applications, P = 1/ polylog n. We proceed to sketch the construction now and refer
the reader to Section 4 for the precise details. On a high level, the sample S is partitioned into
` = O(log n) samples S1, . . . , S`, each having size approximately Pm/`. To construct our certificate,
we start by iteratively pruning G of the edges incident to vertices of degree less than δ, moving these
edges to D. The graph left after the pruning G1 = G\D satisfies that each vertex of positive degree
has degree at least δ. Next, S1 defines a sample of G1, H1 = S1∩G1 and the bound on the minimum
positive degree in G1 guarantees that with constant probability a fraction of 3/4 of the vertices with
positive degree in the sampled subgraph H1 has degree ≥ 4c . We prove a combinatorial lemma
stating that such a graph can have at most 5n/6 c-edge-connected components. As a result, if we
contract the c-edge-connected components of H1 in the pruned graph G1, the resulting graph G′1
would have at most 5n/6 vertices. Finally, we construct a c-certificate for G′1 recursively using
the samples S2, S3, . . . , stopping when the contracted graph has no edges between the contracted
vertices (here G played the role of G′0). The constant factor decay in the number of components
ensures that we are done after ` = O(log n) steps with high probability. All edges of D are obtained
as the removed edges of cuts of G of size less than δ, so D will have size O(nδ). Our certificate will
simply be S ∪D which we prove is in fact a c-certificate.

With this, we have thus completed the goal of obtaining a small cut sample certificate with δ as
small as O(c logn

P). Abstractly, our certificate has a quite simple description: we alternate between
sampling, removing small cuts around c-edge-connected components in the sample, and finally
contracting these components. However, in our implementation, we cannot afford to perform the
contractions as described above explicitly. This makes it difficult to efficiently find the edges leaving
the c-edge connected components of H (at a given recursive level), and we must be able to do this
since these c-edge-connected components may split as edges are deleted from G. It turns out that
since we are only concerned with cuts of size at most δ, we can in fact identify these cuts in total
time O(m) + Õ(δn). We will describe this in the following section.

A final property of our new randomized decremental c-certificate algorithm is that it requires
only O(log2 n) random bits to yield high-probability correctness bounds. This is in sharp contrast
with Thorup’s algorithm [36] which requires Ω(m) random bits. On a high level, the reason we can
do with few random bits is that in each step of the construction of our certificate, we only need
the bounds on the number of contracted components to hold with constant probability. Indeed,
we will still only have O(log n) recursive levels with high probability. This means that for the
probability bounds within a single recursive level, it suffices to apply Chebyshev’s inequality. While
the reduction of the number of required random bits is nice, the main point, however, is that
with our new certificate we can get down to constant amortized update time per edge-deletion for
decremental (2-edge)-connectivity for all but the sparsest graphs.

1.4.3 Maintaining our certificate

As edges are deleted from G, the recursive structure of the c-certificate H changes. Indeed, the
deletion of an edge may cause the following changes in one of the recursive layers of H: (1) introduce
a cut of size less than δ surrounding a c-edge-connected component or (2) break a c-edge-connected
component in two. In the first case, the edges of the cut have to be moved toD, and deleted from the
current and later layers of H, causing further cascading. When a c-edge-connected component (in
a recursive layer) of H breaks in two, we need to determine whether either of the new components

8

has less than δ outgoing edges in G. If we use the standard technique of iterating over all the edges
incident to nodes of the smaller component, this again incurs an O(log(n2/m)) cost per edge which
is insufficient. However, as we only care about components with at most δ outgoing edges, it turns
out that we can do better. We define the boundary of a component C of some graph H ⊂ G to be
the set of edges of G with one endpoint in C, and another in V \C. To overcome the O(log (n2/m))
cost per edge, we prove that we can maintain boundaries of size at most δ under splits using a Monte
Carlo randomized algorithm in O(m+ nδ polylog n) total time. We realize this result by deploying
the XOR-trick [1, 2, 27] in a somehow unusual manner. In particular, we randomly partition the set
of edges of G and use the XOR-trick to detect the parts that are relevant for scanning, as opposed
to standard applications of the XOR-trick, which are used to detect a single replacement edge over
a polylogarithmic number of independent samples which unavoidably introduces a polylogarithmic
dependence in the cost per edge. Since we are not interested in discovering a single edge incident
to some set, we only need to apply the XOR-trick once, which allows us to keep the running time
linear in m.

1.4.4 Combining our certificate with Thorup’s algorithm

With the certificate as above, the overall idea for a decremental connectivity algorithm is to maintain
a c-certificate of (each recursive layer of) the decremental graph H = S \ D using the algorithm
by Thorup [36]. By choosing P = 1/ log2 n, S has m′ = O(m/ log2 n) edges with high probability,
so employing the algorithm of Theorem 1.1 on each recursive layer takes total time O(m′ log2 n +
ncTc(n) polylog n) = O(m + ncTc(n) polylog n) with high probability. Let H∗ be the c-certificate
thus obtained for H. Using a fully dynamic c-edge-connectivity algorithm on H∗ ∪ D (which
undergoes O(cnpolylog n) updates), we maintain a c-edge certificate of G. As H∗ ∪ D undergoes
O(cnpolylog n) updates, running the fully dynamic algorithm takes total time O(cnTc(n) polylog n).

We remark that for c = 1, 2 we could instead use a fully dynamic c-edge connectivity algorithm
onH with polylogaritmic update and query time at the price of a smaller P (which would incur more
log-factors in our final time bound). For c > 2, however, we only know that Tc(n) = O(n1/2 poly(c)).
Since, running a fully dynamic algorithm on H takes total time Ω(mTc(n)/ polylog n), this is insuf-
ficient to obtain linear time algorithms for dense graphs.

1.4.5 Final self-check

Let us finally describe the ideas behind the final self-checks claimed in Theorem 1.2 and 1.3 in a
more general context. In particular, we show that if a randomized Monte Carlo dynamic algorithm
satisfies some generic conditions then it can be augmented to detect, at the end of its execution,
whether there is any chance that it answered any query incorrectly. That is, if the self-check
passes then it is guaranteed that all queries were answered correctly throughout the execution of
the algorithm. Otherwise, it indicates that some queries might have been answered incorrectly.
The self-check property is particularly useful in applications of dynamic algorithms as subroutines
in algorithms solving static problems, that is, it enables static algorithms to exhibit Las Vegas
guarantees instead of the Monte Carlo guarantees provided by the dynamic algorithm, as they can
simply re-run the static algorithm with fresh randomness until the self-check passes.

The properties of a dynamic algorithm amenable to a self-check behavior are as follows:

• Once a mistake is made by the dynamic algorithm it should be detectable and any subsequent
updates of the algorithm do not correct the mistake before it is detected.

• If the dynamic algorithm is stopped at any point in time, it should be able to still perform
the self-check within the guaranteed running time of the algorithm.

9

In our algorithm, as long as the c-certificate maintained by our algorithm is correct, the c-edge-
connectivity queries answered by our algorithm exhibit the same guarantees as the fully dynamic
c-edge-connectivity algorithm running on the c-certificate H. Hence, we only need to detect po-
tential mistakes in the process of maintaining the c-certificate H. Such mistakes only happen with
probability n−Ω(1).

The c-certificate H ⊆ G of G that we maintain is such that it includes every edge from G that is
not in a c-edge-connected component of G (more specifically, not in a c-edge-connected component
of the maintained sample S ⊂ G, which includes all edges not in c-edge-connected components of G)
and such that every c-edge-connected component of G is also a c-edge-connected component in H.
A different equivalent formulation is that for every edge (u, v) of G, if (u, v) is not in H, then u
and v are in the same c-edge-connected component of H.

As we later show, the only possible error in the maintenance of the c-certificate is that an edge
is missing from H while its endpoints are not c-edge-connected in S. Therefore, to satisfy the
properties above, any incorrectly missing edge in the c-certificate should remain missing until the
error is detected. We show (in the proof of Theorem 1.2) that before each update to H we can
check whether the edge should have been part of the certificate but was omitted due to an error. It
is trivial to check for such mistakes during the execution of our algorithm, as follows. For any edge
that is deleted from the graph we simply check whether the two endpoints of the deleted edge belong
to distinct c-edge-connected components of H and, if so, declare a potential error. For every edge
that is inserted to the certificate, due to the updates following an edge deletion, we check whether
the edge was supposed to be part of the certificate before the last edge deletion but was omitted
due to an error. In either case, our self-check flags an execution invalid only if there has been a
mistake (which might or might not have affected c-edge-connectivity queries on the certificate),
which happens with low probability. As long as each vertex knows the ID of its c-edge-connected
component in the c-certificate, the aforementioned check takes constant time to perform per edge
deletion, and thus does not affect the overall running time of our algorithm. Since our algorithm is
Monte Carlo randomized and we only flag an execution invalid if a mistake in the maintenance of
the certificate was detected, any single execution of our algorithm is flagged invalid with probability
n−Ω(1).

Notice that if the algorithm is terminated before all edges are deleted, we can simply iterate
over the remaining edges and apply the aforementioned check for each remaining edge.

2 Preliminaries

The problem of dynamic connectivity consists in designing a data structure that maintains a dy-
namic undirected graph and supports two operations: an update operation which modifies the
maintained graph, and a query operation, which asks if two given vertices belong to the same
connected component of the current graph.

Dynamic connectivity comes in three variants, which differ in the allowed types of update op-
erations. The most general is the fully dynamic connectivity problem, in which each update may
either add or remove a single edge. The two more restricted variants are incremental connectivity –
each update adds a single edge, and decremental connectivity – each update removes a single edge.

Graphs. Throughout the paper we consider undirected graphs which may have parallel edges,
but not self-loops. Generally, for G = (V,E), we denote by n and m the number of vertices and
edges of G, respectively. When referring to other graphs H = (V,E′), we write |H| to denote |E′|.

If G′ = (V ′, E′) is a graph with V ′ = V and E′ ⊂ E then G′ is a subgraph of G, denoted

10

G′ ⊆ G. If W is a set of edges, then we denote by G \W the graph with vertex set V and edge set
E′ = E \W . We often use G \H to denote G \E(H). Finally, if G = (V,EG) and H = (V,EH) are
graphs on the same set of vertices, then G∪H is the graph with vertex set V and edge set EG∪EH .

Let A,B ⊂ V be subsets of vertices of G = (V,E). The set of edges from A to B in G is denoted
EG(A,B). For A ⊂ V , we denote by ∂G(A) = EG(A, V \A) the boundary of A in G.

Cuts. A cut of G = (V,E) is a partition of the vertices of G into two non-empty sets V1, V2. We
shall mostly identify the cut with the set of edges crossing the cut, E(V1, V2). The number of such
edges is the size of the cut. A cut of G of size c ∈ N is called a c-cut of G. A simple cut of G is a
set of edges S ⊂ E such that G \ S has exactly one connected component more than G and such
that for every proper subset S′ (S, G \ S′ has the same connected components as G.

Edge connectivity. Let c a be positive integer. Two distinct vertices u, v of G are c-edge-
connected if there exist c pairwise edge-disjoint paths from u to v. Being c-edge-connected is an
equivalence relation on the vertices of G and we call the corresponding equivalence classes the c-edge-
connected classes. The graph G is c-edge-connected if it contains no cut of size < c. Equivalently, a
graph G is c-edge-connected if every pair of distinct vertices of G are c-edge-connected. It is worth
noting that the graph consisting of a single vertex is c-edge-connected since it contains no cut. The
c-edge-connected components of G are the maximal induced c-edge-connected subgraphs of G, i.e.,
an induced subgraph C of G is a c-edge-connected component if it is c-edge-connected and there
exists no intermediate subgraph C (C ′ ⊂ G such that C ′ is c-edge-connected.

For c = 1, we have simpler terminology. We say that 1-edge-connected vertices are connected
and call the 1-edge-connected components of G the connected components or simply components
of G. We also use C(G) to denote the set of connected components of G.

Fully dynamic c-edge-cut. The crucial ingredient in obtaining our general decremental algo-
rithm for arbitrary c ≥ 1 is the fully-dynamic c-edge-cut data structure, defined as follows. Let G
be a graph. Then, the data structure maintains any edge e (if one exists) satisfying the following:
e belongs to some cut of size < c of the connected component of G containing e. For each c ≥ 1,
we denote by Tc(n) the amortized update time bound of such a data structure that holds whp.

For example, for c = 1 we have T1(n) = O(1) since we do not have to maintain anything.
For c = 2, the data structure is required to maintain some bridge of G and it is known that
T2(n) = O((log n · log log n)2) [23]. For c ≥ 3, in turn, we have Tc(n) = O(n1/2 poly (c)) [38].

Chernoff Bound. In our analysis we will occasionally need the classic Chernoff concentration
bounds. We state a version here for convenience.

Theorem 2.1 (Chernoff Bound). Let X1, . . . , Xn be independent random variables supported on
[0, 1] and denote by µ = E [

∑n
i=1Xi] the mean of their sum. For every δ > 0,

∀µ′ ≥ µ : Pr

[
n∑

i=1

Xi > (1 + δ)µ′
]
≤ e−

µ′δ2
2+δ , ∀µ′ ≤ µ : Pr

[
n∑

i=1

Xi < (1− δ)µ′
]
≤ e−µ

′δ2
2 .

Uniform edge sampling. Finally, for a graph G = (V,E) and p ∈ [0, 1] a real number, we define
the uniform edge sampling G(p) as follows. Let {Xe}e∈E be independent Bernoulli random variables
with parameter p and E′ = {e ∈ E | Xe = 1}. Then G(p) = (V,E′).

11

3 Some Useful Properties of c-Edge-Connected Components

In this section, we present structural lemmas regarding the c-edge-connected components, in par-
ticular in graphs of high minimum degree. We note that some proofs from Sections 3, 5.1, and 5
can be found in Section 8.

Lemma 3.1 (Benczúr and Karger [5]). Let c and n be positive integers. Every graph on n vertices
with strictly more than (c− 1)(n− 1) edges contains a non-trivial c-edge-connected component.

Corollary 3.2. Let c be a positive integer and G be a graph on n vertices. Denote by qc the number
of c-edge-connected components of G. Then the number of edges connecting distinct c-edge-connected
components of G is at most (c− 1)(qc − 1).

Another central lemma is the following, stating that if a graph on n vertices has at least 3/4n
vertices with sufficiently high degree, the number of c-edge-connected components is at most 5/6n.

Lemma 3.3. Let G = (V,E) be a graph on n vertices such that at least 3n/4 of its vertices have
degree at least 4c. The number of c-edge-connected components of G is at most 5n/6.

Proof. Denote by qc the number of c-edge-connected components of G. Let V0 ⊂ V be the set
of vertices of G that are trivial c-edge-connected components. Then qc ≤ (n − |V0|)/2 + |V0| =
(n+ |V0|)/2. Furthermore, every edge incident to a vertex of V0 connects distinct c-edge-connected
components of G. Since there are at most n/4 vertices with degrees less than 4c, at least |V0| −n/4
vertices in V0 have degree at least 4c. Hence, there are at least 2c · (|V0| − n/4) edges incident to
vertices in V0. By Corollary 3.2, we have c · (n+ |V0|)/2 ≥ 2c(|V0|−n/4), which implies |V0| ≤ 2n/3.
The conclusion follows since qc ≤ (n+ |V0|)/2 ≤ 5n/6.

4 The new c-certificate

In this section we describe our new c-certificate that is instrumental in obtaining the near-optimal
decremental connectivity algorithm. A c-certificate H of a graph G allows us to answer queries
about c-edge-connected components and c-edge-connected classes of G.

Definition 4.1 (c-certificate). Let G be a graph and c ∈ N. A c-certificate for G is a subgraph
H ⊆ G such that the c-edge-connected components and classes of G are preserved in H.

Let δ > c and ` ≥ 1 be integers to be set later. The certificate is defined based on ` + 1 levels
of graphs Hi, Gi ⊆ G for i = 0, . . . , `.

The first step is to sample graphsH0
0 , H

0
1 , . . . ,H

0
` that constitute the basis for graphsH0, . . . ,H`.

Let p ∈ (0, 1) be a real number to be fixed later. The sampled subgraphs satisfy (V, ∅) = H0
0 ⊆

H0
1 ⊆ · · · ⊆ H0

` . Specifically, for each i = 1, . . . , `, H`
i is constructed as follows. Let s = dpme

and suppose E = {e1, . . . , em}. Let ri : {1, . . . , s} → {1, . . . ,m} be a pairwise independent random
number generator, or, in other words, a pairwise independent hash function. Then, we set:

H0
i := H0

i−1 ∪
(
V,
{
eri(1), eri(2), . . . , eri(s)

})
.

However, we stress that for each level i, we require the random generator to be fully independent
from the random generators at previous levels 1, . . . , i − 1. It is well known [6] that a pairwise
independent random number generator can be implemented using Θ(log n) random bits so that it
generates numbers in constant time in the word RAM model. As a result, if Θ(` log n) random bits
are provided, each H0

i can be constructed in O(si) = O(mpi) time and has O(mpi) edges.

12

Now, the graphs H0, G0, H1, G1, . . . ,H`, G` are defined inductively. Set G−1 = G. Then for
i = 0, . . . , ` the graphs Hi, Gi are obtained as follows. First, the graph Hi is obtained from H0

i ∩Gi−1

by repeatedly removing all the cuts of size less than c. In other words,Hi equals the c-edge-connected
components of H0

i ∩Gi−1. Afterwards, the graph Gi is in turn obtained from Gi−1 as follows. While
for some c-edge-connected component C of Hi, we have |∂Gi(C)| < δ, the edges of the boundary
∂Gi(C) are removed from both Hi and Gi. Equivalently, one could obtain Gi by first contracting all
the c-edge-connected components of Hi in the initial Gi, then repeatedly removing edges incident
to vertices of degree < δ in the contracted graph, and finally undoing all the contractions.

By the construction, the graphs H1, . . . ,H` and G1, . . . , G` satisfy the following properties:

(1) Every connected component of Hi is c-edge-connected.

(2) Hi ⊆ Gi and Gi+1 ⊆ Gi for all i ≥ 0.

(3) Each connected component C of Hi satisfies either ∂Gi(C) = ∅ or |∂Gi(C)| ≥ δ.

Moreover, we have the following property.

Lemma 4.2. For any i = 0, . . . , `− 1, Hi ⊆ Hi+1.

Proof. First of all, note that Hi ⊆ H0
i+1 ∩Gi since Hi ⊆ Gi and Hi ⊆ H0

i ⊆ H0
i+1. Moreover, each

component of Hi is c-edge-connected so it is contained in some c-edge-connected component of any
supergraph of Hi, in particular H0

i+1 ∩ Gi. As a result, when obtaining Hi+1 from H0
i+1 ∩ Gi by

taking the c-edge-connected components, we never remove edges of Hi.

Figure 1 shows the inclusion relations between the graphs Gi, Hi (property (2) and Lemma 4.2).

H` ⊂ G`

H`−1 ⊆ G`−1

...
...

H1 ⊆ G1

H0 ⊆ G0

G

⊇ ⊆

⊇ ⊆

⊇ ⊆

⊇ ⊆
⊆

Figure 1: Illustration for Algorithm 1

Lemma 4.3. There exists ` = O(log n) such that if p` < 1 and pδ ≥ 32c, then, with high probability,
the connected components of G` are c-edge-connected and equal to the connected components of H`.

13

Proof. Denote by G′i the graph Gi with the components of Hi contracted. By property (3), every
vertex in G′i has degree either 0 or at least δ. Let ki be the number of positive (in fact, at least δ)
degree vertices of G′i.

Recall thatHi+1 contains precisely the edges inside the c-edge-connected components ofH0
i+1 ∩Gi.

Moreover, let H ′i+1 ⊂ G′i be the graph H0
i+1 ∩ Gi with the (c-edge-connected) components of Hi

contracted. Consider some vertex v′ of G′i. If v′ has degree 0 in G′i it does so as well in H ′i+1.
Otherwise, by property (3), v′ has degree at least δ in G′i. Recall that the edges of H0

i+1 \ H0
i

are chosen independently of the graphs G′i and Hi (which only depend on the randomness from
levels 0, . . . , i) via sampling with replacement s = dpme edges using a pairwise independent random
number generator ri+1. Consider a random variable Xv′ equal to the degree of v′ in H ′i+1. We now
prove that v′ has degree less than 4c, i.e., Xv′ < 4c with probability no more than 3

16 .
To this end, we introduce two more random variables Yv′ , Zv′ :

• Yv′ equals the number of times an edge incident to v′ is sampled when sampling H0
i+1 \H0

i :

Yv′ =
∑

1≤j≤s
[eri+1(j) is incident to v′ in G′i]

• Zv′ equals the number of collisions incident to v′ during sampling H0
i+1 \H0

i , i.e.,

Zv′ =
∑

1≤j<k≤s
[ri+1(j) = ri+1(k) and eri+1(j) is incident to v′ in G′i]

Let d = degG′i(v
′) ≥ δ. Since Yv′ is a sum of s pairwise independent indicator variables with mean

d/m, we have:

E [Yv′] = s · d/m = dpme · d/m ≥ pd.
Var [Yv′] = s · (d/m) · (1− d/m) ≤ dpme · (d/m) ≤ 2pm · (d/m) = 2pd.

By pd ≥ pδ ≥ 32c ≥ 32 and Chebyshev’s inequality Pr[Yv′ ≤ (1− ε)µ] ≤ Var[Yv′]
ε2(E[Yv′])2

we have:

Pr[Yv′ ≤ pd/4] ≤ Pr[Yv′ ≤ E [Yv′] /4] ≤ 2pd
9
16(dp)2

≤ 32

9pd
≤ 1

9
<

1

8
. (1)

By pairwise independence we also have:

E [Zv′] =
∑

1<j<k≤s

1

m
· d
m
≤ s2

2
· d
m2
≤ 4p2m2

2
· d
m2

= 2p2d.

Since we are aiming at proving the lemma for ` = γ · log n for a constant γ of our choice, we can
without loss of generality require that p` < 1 implies p ≤ 1/256. Hence, using Markov’s inequality
we obtain:

Pr[Zv′ ≥ pd/8] ≤ E [Zv′]

pd/8
≤ 16p ≤ 1

16
.

Note that we have Xv′ ≥ Yv′ − Zv′ . So, Xv′ ≤ pd/8 implies Yv′ − Zv′ ≤ pd/8. This in turn implies
that either Yv′ ≤ pd/4 or Zv′ ≥ pd/8. As a result, via the union bound we get:

Pr[Xv′ ≤ pd/8] ≤ Pr[Yv′ − Zv′ ≤ pd/8] ≤ Pr[Yv′ ≤ pd/4] + Pr[Zv′ ≥ pd/8] ≤ 1

8
+

1

16
=

3

16
.

14

By pd ≥ 32c we have that Xv′ < 4c implies Xv′ ≤ pd/8, so we obtain Pr[Xv′ < 4c] ≤ 3
16 as desired.

Now let us consider the probability q that more than a fraction of 1/4 of such n′ vertices v′

(with degree at least δ in G′i) have degree less than 4c in H ′i+1. By (1), the expected number of such
vertices is clearly no more than 3n′

16 . As a result, by Markov’s inequality, q ≤ 3n′
16 · 4

n′ = 3
4 . In other

words, with probability at least 1− q ≥ 1/4, at least a fraction of 3/4 of positive-degree vertices v′

of G′i will have degree at least 4c in H ′i+1.
Observe that since Gi ⊇ Gi+1 ⊇ . . . G` ⊇ H` ⊇ . . . ⊇ Hi, the isolated vertices of G′i (which

are obviously also isolated in H ′i+1) correspond to c-edge-connected components of Hi that are also
c-edge-connected components of Hi+1, Hi+2, . . . ,H`, Gi, . . . , G`. Since Hi ⊆ Hi+1, by Lemma 3.3,
with probability at least 1/4, the ki non-isolated vertices of G′i are “merged” into at most 5ki/6 c-
edge-connected components of Hi+1. Observe that those are the only c-edge-connected components
of Hi+1 that can give rise to positive-degree vertices of G′i+1. Consequently, with probability ≥ 1/4
we have ki+1 ≤ 5ki/6. This proves that ki is very likely to decrease geometrically with i. More
concretely, the quantity ki is 0 for i = ` = z · log n (where z is a sufficiently large constant) with
high probability via the Chernoff bound.

Note that the lemma follows by k` = 0, the fact that H` ⊆ G`, and property (1) for i = `.

Finally, we obtain a c-certificate by taking a union of H` and G \G`. Roughly speaking, since
H` sparsifies the c-edge-connected components of G`, replacing the subgraph G` with H` preserves
both the c-edge-components and c-edge-classes. The formal proof can be found in the Appendix.

Lemma 4.4. Let D := G \G`. H` ∪D constitutes a c-certificate for G.

We now show that the basis of our construction, i.e., pairwise independent sampling at O(log n)
levels, yields an interesting low-randomness alternative to Karger’s result [28] saying that if a graph
G is c′-edge-connected graph, where c′ = Ω((c+ log n)/p), then G(p) is c-edge-connected with high
probability (depending on the constant hidden in the Ω notation). Roughly speaking, Karger’s proof
applies a Chernoff bound to an exponential number of cuts in G and therefore requires sampling
with full independence, i.e., Θ(m) random bits. We show that the graph H`

0 has a similar property,
but requires only polylogarithmic number of random bits: pairwise independence requires O(log n)
bits, and there are O(log n) sampling levels.

Lemma 4.5. Let ` = Θ(log n) be as in Lemma 4.3. Let p′ ∈ (0, 1). Suppose G is c′-edge-connected,
where c′ = Ω(c log n/p′) and the constant hidden in the Ω notation is sufficiently large. Then the
sampled graph H0

` , defined as before, has O(mp′) edges and is c-edge-connected with high probability.

Proof. By Lemma 4.3, if p` < 1 and pδ ≥ 12c, then H` has the same c-edge-connected components
as G`. In particular, for any c′ ≥ c, if G` is c′-edge-connected, then H` is c-edge-connected. Observe
that G` can be obtained from G be repeatedly removing from G some cuts of size less than δ.
However, if G is c′-edge-connected for c′ ≥ δ, no such cuts exist in G so in fact we have G = G`. Let
p = p′/`, δ = 12c/p = Θ(c log n/p′). It follows that if G is ≥ δ-edge-connected, i.e., Ω(c log n/p′)-
edge-connected, then H` is c-edge-connected with high probability. Since H` ⊆ H0

` , so is H0
` .

5 Decremental Maintenance of a c-certificate

In this section we give an algorithm for maintaining a c-certificate of Section 4 for a graph G that
is subject to edge deletions. Even though the graph G is decremental, our maintained certificate
will undergo both edge insertions and deletions. However, we will show that, for non-sparse graphs,
it is possible that the certificate undergoes only a sublinear-in-m number of updates throughout.

15

Moreover, we will show that it is possible to maintain the certificate in roughlyO(m)+Õ(c · n · Tc(n))
time which is O(m) for non-sparse graphs, depending on the known upper bounds on Tc(n).

In this section we disregard the total number of random bits needed to achieve the claimed
bounds. We discuss how the data structure can be implemented using only O(polylog n) random
bits later in Section 7.

During initialization the algorithm samples H0
0 , . . . ,H

0
` as described in Section 4 and initially

sets Hi := H0
i for all i. Furthermore, at the start of the algorithm, each Gi is (conceptually)

initialized to G. We stress at this point that the ` graphs Gi are stored explicitly only in the
basic version of the algorithm. The refined version avoids that, as will be discussed later on. The
initialization of graphs Hi and Gi – so that they match their definition from Section 4 – is completed
using the update procedure as described below.

The update procedure simply rebuilds the subsequent levels i = 0, . . . , ` of the certificate ac-
cording to their definition from Section 4. Each of these maintained graphs Hi, Gi is decremental
in time. A deletion of a single edge e of G (or the final step of the initialization) may in general
cause a deletion of a larger set A of edges from the level-j graphs Hj , Gj . More precisely, e is first
deleted from G0. This in turn may give rise to new vertices of degree less than δ in G0. Recall that
edges incident to such vertices should be repeatedly removed from G0 until there are none; denote
by A the set of edges removed in this process plus the edge e. Observe that all graphs at levels
1, . . . , ` are subgraphs of G0, so all the edges from A should also be removed from these graphs.
More generally, if the level j is passed a set A of edges to be removed, these edges are first removed
from both Hj and Gj . As a result of this change, some new cuts of size less than c may appear
in Hj , and consequently some c-edge-connected components of Hj may split. The splits (as well
as the deletions of edges from A) may give rise to new boundaries ∂Gj (C) of size less than δ that
have to be detected and pruned. The removed boundaries are added to the set A to be passed to
subsequent levels.

Algorithm 1 summarizes this conceptual implementation of the above procedure for rebuilding
the certificate. In the algorithm, as well as in the following we set D := G \G`.

The correctness of this approach follows by Lemmas 4.3 and 4.4 applied to each subsequent
version of the graph G. If the certificate is not revealed to the user, and is only used to answer
c-edge-connectivity queries or track c-edge-connected components, randomness is not leaked as long
as the algorithm gives correct answers (which happens with high probability). By suitably increasing
the constants hidden in Lemma 4.3 we obtain high probability correctness for all the O(m) versions
of the graph.

In the following we assume that ` = Θ(log n), p = O(1/ log n) and pδ = Ω(c) so that Lemma 4.3
implies that H` ∪D remains a c-certificate for G.

Lemma 5.1. The graph H`∪D has initially O(mp log n+nδ log n) edges and undergoes O(nδ log n)
edge insertions throughout.

Proof. The bound on the initial size of H` follows easily by the used sampling scheme. Moreover,
H` is decremental, whereas the set D can undergo both insertions (when an edge is removed from
G`) and deletions (when an edge deletion is issued to G). Therefore, we only need to prove that
D undergoes O(n`δ) insertions throughout. To this end, we show that each Gi undergoes O(nδ)
edge removals following a detection of a component C of Hi with 0 < |∂Gi(C)| < δ. Recall that Hi

and Gi are both decremental, so at most 2n − 1 different components can ever arise in Hi. Each
such component causes at most δ insertions to D if its boundary size ever drops below δ.

16

Algorithm 1: Abstract algorithm for maintaining a c-certificate decrementally.
Input : A graph G = (V,E), where E = {e1, . . . , em}
Parameters: A real p ∈ (0, 1) and integers `, δ ∈ N
Maintains : A c-certificate of G given by the graph D ∪H` as defined below

1 Procedure Initialize():
2 Initialize graphs G0, . . . , G` all equal to G;
3 Initialize the empty graph D;
4 H0 ←− (V, ∅);
5 s←− dpme;
6 for i = 1 to ` do
7 ri ←− a 2-independent random number generator {1, . . . , s} → {1, . . . ,m};
8 Hi ←− Hi−1 ∪ (V, {eri(1), eri(2), . . . , eri(s)});
9 CleanUp(∅);

10 Procedure Delete(e):
11 Delete e from G and D;
12 CleanUp({e});
13 /* Internal deletion of set of edges A, maintains D, {Hj}`j=0 and {Gj}`j=0 */
14 Procedure CleanUp(A):
15 for j = 0 to ` do
16 Delete the edges of A from Gj and Hj ;
17 while there exists an edge g ∈ Hj contained in a cut of Hj of size < c do
18 Delete g from Hj ;
19 while there exists a component C of Hj with S := ∂Gj (C) satisfying 0 < |S| < δ do
20 Add S to A and to D;
21 Delete S from Gj ;

5.1 Supporting data structures

Now we define a few data structures that we use as subroutines when maintaining the certificate.
These results are either known or should be considered folklore. For completeness, we provide the
proofs of the lemmas in this section in the Appendix.

Restricted fully-dynamic connectivity. Suppose G is a graph subject to edge insertions and
deletions. However, assume insertion of an edge {u, v} is allowed only if u and v are currently
connected. As a result, the connected components of G are decremental in time in the sense that
they can only split, but never merge. In this restricted setting we can explicitly maintain the
connected components of each vertex and thus support constant-time connectivity queries.

Lemma 5.2. Let G be a graph subject to edge insertions and deletions. Suppose the endpoints of
each edge inserted are connected in G immediately prior to the insertion. Let m be the number of
initial edges in G plus the number of insertions issued. There is a data structure that maintains the
connected components C = {C1, . . . , Ck} of G, and an explicit mapping q : V → {1, . . . , |C|} such
that v ∈ Cq(v). Moreover, after each edge deletion that increases the number of components of G,
the data structure outputs a pair (j, A) describing how C evolves: the component Cj is split into
Cj \A and A, where |A| ≤ |Cj \A|, and we set Cj := Cj \A and Ck+1 := A, and update k ← k+ 1.
The total update time is O(m log2 n), whereas the sum of sizes of sets A output is O(n log n).

17

Maintaining boundaries of splitting sets in a fully dynamic graph. We will often need to
solve the following abstract dynamic problem on graphs. Suppose we have two possibly unrelated
graphs: a fully dynamic graph G and a decremental graph H, both on V . We would like to maintain
boundaries ∂G(C) of all the connected components C of H under the allowed updates to G and H.

Lemma 5.3. Let G = (V,E) be a fully dynamic graph. Let C be the set of connected components of
some (possibly unrelated) decremental graph on V . Suppose the updates to C are given in the same
form as in the output of the data structure of Lemma 5.2. Then, the boundaries ∂G(C) for C ∈ C
can be maintained explicitly subject to edge insertions/deletions issued to G, and updates to C in
O((n + m) log n) total time, where m is the number of initial edges of G plus the number of edge
insertions issued to G.

5.2 Basic data structure

We now discuss how the algorithm maintaining the c-certificate can be efficiently implemented. We
start with a basic version of the data structure that does not yet achieve linear dependence on m.

First consider maintaining the graphs Hi. Recall that we need to efficiently detect cuts of size
< c in Hi under deletions, prune Hi of these cuts, and keep track of how the c-edge-connected
components (or, equivalently, the connected components) of Hi evolve. To this end, we will need
the following auxiliary dynamic graph data structures. First of all, we maintain a c-certificate of
Hi using the data structure of Theorem 1.1.3 On top of the c-certificate of Hi, we set up a fully-
dynamic c-edge-cut data structure, and the data structure of Lemma 5.2. Since the c-edge-connected
components of Hi are precisely the components of the graph obtained by repeatedly removing < c-
edge cuts from the c-certificate ofHi, these components combined can maintain the c-edge-connected
components of Hi and provide an efficient description of the splits these components undergo.

In the basic version of our algorithm, for eachGi in turn, we use a separate decremental boundary
maintenance data structure of Lemma 5.3, where the connected components whose boundaries we
care about come from Hi. This data structure is passed all the updates to the components of Hi

as described in Lemmas 5.2 and 5.3. Recall how the boundary maintenance structures are used:
while for some (c-edge-) connected component C of Hi, the boundary of C in Gi has positive size
< δ, we remove that boundary from Gi (and propagate that change to subsequent layers j > i). In
particular, for i = 0, sinceH0 is empty and has only trivial components, this corresponds to removing
from G0 all edges incident to vertices of degree < δ until no such vertices exist. The boundaries of
size less than δ can be accessed easily using the data structure of Lemma 5.3 associated with Gi.

Assuming a fully-dynamic c-edge-cut data structure with amortized update time Tc(n) and a
proper choice of parameters p, δ, the above algorithm runs in Õ(m) time and, most importantly,
updates the maintained c-certificate a sublinear (in m) number of times.

Lemma 5.4. There exists a decremental algorithm maintaining a c-certificate for G such that the
certificate undergoes O(nc log4 n) edge updates throughout. The total update time of the algorithm
is Õ(m) +O(n(c+ log n) · Tc(n) log3 n) with high probability.

Proof. We set p = 1
log3 n

. This forces us to set δ = 12c log3 n for pδ to be sufficiently large
which is required by Lemma 4.3. Recall that each Hi has O(mp`) edges initially and we main-
tain its c-certificate under edge deletions using Theorem 1.1. As a result, this incurs a cost of
O(mp` log n+n·(c+log n)·Tc(n) log2 n) time. Since the c-certificate of Hi undergoes O(n(c+log n))
updates, using a fully-dynamic c-edge-cut data structure upon the maintained c-certificate of Hi

3We could in principle use a decremental c-edge-cut data structure on the graph Hi itself as opposed to a fully
dynamic data structure on its c-certificate, but that would prove less efficient.

18

costs O(n(c+ log n) · Tc(n)) time. Similarly, using the data structure of Lemma 5.2 on the c-
certificate of Hi costs O(n(c log n) log2 n) time. Summing over all ` = O(log n) graphs Hi, we get
O(mp log3 n+ n(c+ log n) · Tc(n) log3 n) time. By our choice of p, the first term is O(m).

We also use a simple-minded boundary maintenance data structure of Lemma 5.3 on each of
O(log n) graphs Gi with components from Hi. The total update time of these data structures is
O(m log2 n). The bound on the number of updates to the certificate follows by Lemma 5.1.

Note that the only obstacle preventing us from getting an O(m) bound in Lemma 5.4 is the
maintenance of component boundaries for each pair (Hi, Gi) independently. The simple-minded
solution yields an O(m log2 n) overhead for this task and in fact solves an overly general problem
of maintaining the boundaries regardless of their size: recall that we only care about the precise
elements of the set ∂Gi(C) for a component C of Hi if |∂Gi(C)| ≤ δ. Otherwise, a (high-probability)
guarantee that |∂Gi(C)| > δ is sufficient for our needs.

5.3 Maintaining small boundaries

We now describe how to obtain an O(m) + Õ(nδ) bound for maintaining all the required small
boundaries. Note that this will imply the desired O(m) running time for sufficiently dense graphs,
assuming Tc(n) is low enough. First of all, let ∆i := Gi \G`. We can split the task of maintaining
∂Gi(C) into maintaining ∂G`(C) and ∂∆i(C) separately. Clearly, we have ∆i ⊂ D. Recall that D
(and thus also ∆i) is initially empty and undergoes only O(nδ log n) insertions throughout. As a
result, we can afford maintaining the boundaries of the form ∂∆i(C) even exactly (i.e., regardless
of their sizes) using the data structure of Lemma 5.3 in O(` · nδ log n · log n) = O(nδ log3 n) time.

It remains to show how to efficiently maintaining the boundaries ∂G`(C) for components C of the
graphs H1, . . . ,H`, provided that |∂G`(C)| ≤ δ. We accomplish this goal using three components.

The sampled graph R. The first component is responsible solely for estimating the sizes |∂G`(C)|.
Let R be a graph obtained from G` via uniform sampling with probability q = 1/ log2 n. Clearly, the
graph R has size Θ(mq) with high probability by the Chernoff bound. Recall that G` is decremental;
whenever an edge e of G` is deleted, it is removed from R as well if it was sampled. So R can be
initialized and maintained in O(m) total time. Assume δ = Ω(log2 n · logm), where the constant
hidden is sufficiently large. Then, for each version of G` in time, and each of some O(poly{n,m})
sets C ⊆ V chosen independently of R, |∂G`(C)| ≤ δ implies |∂R(C)| ≤ 2qδ, and |∂R(C)| ≤ 2qδ
implies |∂G`(C)| ≤ 4δ, both with high probability via the Chernoff bound.

The small-boundary oracle. Consider the following abstract problem. Suppose G = (V,E) is
a fully-dynamic graph. We would like to have a data structure that supports the following query:
given some S ⊆ V , compute ∂G(S). The obvious query procedure would be to go through all edges
incident to the vertices of S; this would give a O(|E(S, V)|) query bound. However, if |S| · |∂G(S)|
is significantly smaller than |E(S, V)|, a more efficient solution is possible. Formally, we prove the
following theorem which we believe might be of independent interest.

Theorem 5.5. Let G = (V,E) be an initially empty graph subject to edge insertions and deletions
and let s, 1 ≤ s ≤ n, be an integral parameter. There exists a data structure that can process up to
O(poly n) queries about the current set ∂G(S), where S ⊆ V is the query parameter, so that with
high probability, each query is answered correctly in O

(
|S|s+ |E(S, V)| · |∂G(S)|

s + log n
)
time. The

data structure is initialized in O(ns) time and can be updated in constant time.

19

We use the above data structure for G` and only ask queries when |∂G`(S)| = O(δ). By setting
s = δ · log2 n we will achieve O(|S|δ log2 n + |E(S, V)|/ log2 n) query time. Since G` undergoes m
updates, the total update time of this data structure is O(m+ nδ log2 n).

Maintaining small boundaries of G` under splits. Finally, we show how to combine the
above two components with a neat variant of the data structure of Lemma 5.3 in order to maintain,
for each i, the boundaries of components C of Hi with |∂G`(C)| ≤ δ in Õ(nδ) + O(m/ log n) time
with high probability. Through all i, this will imply the desired Õ(nδ) +O(m) total time bound.

Let C = {C1, . . . , Ck} be the components of Hi. Recall that the data structure of Lemma 5.2
for the c-certificate of Hi yields decremental updates of the form (j, C ′) (where ∅ 6= C ′ ⊆ Cj and
|C ′| ≤ |Cj \ C ′|) to C that set Cj := Cj \ C ′ and Ck+1 := C ′. As argued in Lemma 5.2, the total
number of updates is at most n− 1 and the sum of |C ′| over all updates is O(n log n). We will show
how to process these updates so that with high probability, at all times for each Cj , |∂G`(Cj)| ≤ δ
implies that we store the set ∂G`(Cj) explicitly. Wlog. assume that C = {V } initially.

We will say that a set S ⊆ V has small boundary if |∂R(S)| ≤ 2qδ. Otherwise, we say that S
has large boundary. As argued before, with high probability, the subset of components with small
boundary includes all components C or our interest, i.e., with |∂G`(C)| ≤ δ, and does not include any
components with |∂G`(C)| = ω(δ). We keep track of which components have large/small boundaries
by running a simple-minded boundary maintenance data structure of Lemma 5.3 on R. The total
update time of this data structure is O(n log n+ |R| log n) = O(n log n+m/ log n) whp.

A naive approach to solve our problem would be to maintain ∂G`(C) for small boundary compo-
nents C ∈ C. However, this approach fails for the following reason. Suppose a component C is split
into C ′, C ′′, where |C ′| ≤ |C ′′|. Assume that C ′′ does have a small boundary, whereas C and C ′ do
not. It is then unclear how to compute the set ∂G`(C

′′) (of size ≤ δ) using time less than linear
in either |C ′′| or |E(C ′, V)|. Had Ω(n) splits like this happened, we could spend time as much as
either Θ(n2) or Θ(m log n) which is obviously too much. We need a smarter approach.

First of all, denote by S be the family of sets C that ever appeared in C and had small boundary
when still in C. We will maintain ∂G`(S) for all S ∈ S – as opposed to exclusively for S ∈ S ∩ C as
in the naive approach. Moreover, for each C ∈ C, C 6= V , we store (a pointer to) s(C): the unique
smallest set in S such that C (s(C). Initially we have C = S = {V }, and ∂G`(V) = ∅.

We now show how to update the stored information when an update (j, C ′) comes. Let A = C ′

and B = Cj \ C ′. Recall that |A| ≤ |B|. Then, if Cj ∈ S, we have s(A) = s(B) = Cj . Otherwise,
we have s(A) = s(B) = s(Cj). Now, if some C ∈ C becomes small-boundary4 (either as a result
of edge deletion issued to R or immediately when it appears), we compute ∂G`(C) as follows. If
|C| ≤ |s(C)|/2, then we compute ∂G`(C) using the small boundary oracle query on C. Otherwise, we
compute it by issuing a query about the set s(C)\C to the small boundary oracle and then taking the
symmetric difference ∂G`(s(C))4∂G`(s(C)\C) which equals ∂G`(C). It is important to note that we
do not require that s(C)\C is an element of S here; it is sufficient to have that |∂G`(s(C)\C)| = O(δ),
which follows by ∂G`(s(C) \ C) ⊆ ∂G`(C) ∪ ∂G`(s(C)) and |∂G`(C)|, |∂G`(s(C))| ≤ δ with high
probability. Clearly, taking the symmetric difference takes O(δ) time.

Lemma 5.6. The total time spent on computing all the required boundaries ∂G`(C) for C ∈ S is
O(nδ log3 n+m/ log n) with high probability.

Proof. Consider a natural tree that the sets of S form, where each C 6= V is a child of s(C). Let
S∗ = {C ∈ S : |C| ≤ |s(C)|/2}. Computing boundaries of sets C ∈ S such that |C| ≤ |s(C)|/2, i.e.,

4Recall that the boundaries ∂R(C) are maintained explicitly using the simple-minded data structure of Lemma 5.3.
Consequently, it is easy to detect this event “on the fly”.

20

of sets C ∈ S∗, requires a single oracle query for ∂G`(C) per each C ∈ S∗. By Theorem 5.5, such a
query costs

O

(
|C|δ log2 n+

∑

v∈C

deg(v)

log2 n
+ log n

)

time. When |C| > |s(C)|/2, s(C) \ C equals the union of siblings of C in the tree that the sets of
S form. So the cost of a query for ∂G`(s(C) \ C) is:

O


 ∑

C′ a sibling of C

(
|C ′|δ log2 n+

∑

v∈C′

deg(v)

log2 n
+ log n

)


Observe that each C ′ ∈ S has at most one sibling whose size is at least |s(C ′)|/2. As a result, each
C ′ with |C ′| ≤ |s(C ′)|/2 contributes to a sum above for at most one C ∈ S with |C| > |s(C)|/2. As
a result, the total time spent on small boundary oracle queries (through all C ∈ S) is:

O

(∑

C∈S∗

(
|C|δ log2 n+

∑

v∈C

deg(v)

log2 n

))
= O

(∑

v∈V

(
δ log2 n+

deg(v)

log2 n

)
· |{C ∈ S∗ : v ∈ C}|

)
.

Observe that each v ∈ V can be an element of at most O(log n) sets of S∗: all these sets are ancestors
of {v} in the tree corresponding to S and have size smaller than their respective parent by a factor
of at least 2. As a result, the total time spent on this step is O(nδ log3 n+

∑
v∈V deg(v)/ log n) =

O(nδ log3 n+m/ log n). This dominates the O(nδ log n) cost of taking symmetric differences.

We also need to maintain the stored boundaries ∂G`(C) for C ∈ S under edge deletions that
G` undergoes. However, to avoid spending O(m) time per single Hi on this, for this part we need
to consider all the graphs Hi simultaneously. Note that for a fixed i, S only grows and contains at
most 2n− 1 elements. Hence, the total size of the stored sets ∂G`(C), C ∈ S, is O(nδ) (whp). For
each e ∈ E(G`) we maintain a list of pointers to such stored boundaries with e ∈ ∂G`(S), through
all Hi. The total number of pointers ever inserted into these lists is clearly O(nδ`) = O(nδ log n).
When an edge e is removed from G`, we scan the attached list of e and remove this edge from the
required boundaries it was contained in. The total time spent on this can be seen to be no more
than the total number of insertions into the lists, i.e., O(nδ log n).

Theorem 1.2. There exists a Monte Carlo randomized algorithm for the decremental c-certificate
problem with total update time O(m+n(c+log n)·Tc(n) log3 n+nc log7 n). The maintained certificate
undergoes O(nc log4 n) edge insertions and deletions throughout. The algorithm is correct with high
probability. Within this time bound, the algorithm offers a final self-check after processing all updates.

Proof. Recall that the simple reduction from Lemma 5.4 had O(m) +O(n(c+ log n) · Tc(n) log3 n)
operation cost of the fully-dynamic c-edge connected components data structures. It also required
setting δ to at least c log3 n. The cost of maintaining the needed small boundaries is dominated by
the application of Lemma 5.6 for each i = 1, . . . , `. The statement about the running time of the
algorithm follows.

We now turn to proving the statement that the algorithms offers a final self-check after process-
ing all updates. Notice that we only need to check that no edge between distinct c-edge-connected
components of the certificate was missing at any point throughout the execution of the algorithm; in-
deed, even if an edge with both endpoints in the same c-edge-connected component of the certificate
was missing that wouldn’t affect any answers to c-edge-connectivity queries on the certificate.

21

First note that in a correct execution of our algorithm all edges between distinct c-edge-connected
components of Hl (and hence, of the certificate) are always present in the certificate. That is, we
only need to verify that no edge between two distinct (c-edge-) connected components of Hl is
added and that each deleted edge from G is either present in the certificate or both of its endpoints
belong to the same (c-edge-) connected component of Hl. We assume that each vertex has access to
the ID of its (c-edge-) connected component in Hl, so that we can check in constant time whether
the two vertices are part of the same (c-edge-) connected component. These IDs are provided by
invocation of the Lemma 5.2 on the certificate. Whenever an edge e is deleted from the graph G
(and hence from the certificate), we simply check that e is part of the certificate if its endpoints are
in distinct (c-edge-) connected components of Hl; if that is not the case, we mark the execution of
the algorithm invalid, as edge e should have been part of the certificate. On the other hand, if both
the endpoints of a deleted edge e were part of the same (c-edge-) connected component of Hl, then
no query might have been answered incorrectly.

Finally, edges might be added to the certificate due to the update in our data structures following
an edge deletion from G. Again, we need to make sure that no edge is added to the certificate that
was supposed to be there before the edge deletion and is omitted due to an error. Specifically, for
the edges added to the certificate we need to check that both of their endpoints are in the same
(c-edge-) connected component of Hl right before the last edge deletion from G (which potentially
caused the splitting of connected components of Hl). If that is not the case, then we again flag
the execution invalid as the endpoints of these edges were part of distinct (c-edge-) connected
components of Hl and should already by part of the certificate. Notice that the splits of (c-edge-)
connected components of Hl are described by the output of the data structure of Lemma 5.2, and
hence the queries can be answered efficiently (even an O(log n) bound per query would be enough
to keep the running time withing the stated bound due to the limited number of updates to the
certificate).

5.4 Small boundary oracle

In this section we prove Theorem 5.5. Recall that the goal is to have a data structure that maintains
a fully dynamic graph G = (V,E) and supports queries regarding ∂G(S), where S ⊆ V is a query
parameter.

First of all, we will leverage the well-known XOR trick [1, 2] for deciding if a boundary of some
subset of vertices is non-empty. We now briefly describe this method. Suppose each e ∈ E is assigned
a random bit-string xe of length Θ(log n) that fits in O(1) machine words. Let xv =

⊕
vw=e∈E xe

denote the XOR of the respective bit-strings of edges incident to v. Then, one can prove that, given
S ⊆ V , with high probability the XOR

⊕
u∈S xu is non-zero if and only if ∂G(S) 6= ∅. So, emptiness

of ∂G(S) can be tested in O(|S|) time.
Let s ≥ 1 be an integral parameter. The main idea is as follows. We partition the edge

set E into E1, . . . , Es. Each e ∈ E is assigned to one of these sets uniformly at random. Let
us apply the XOR-trick for each Ei separately. To this end, now xv is a vector of s bit-strings,
where xv(i) =

⊕
vw=e∈Ei xe. Given that, in O(s|S|) time we can find the set I of all i such that

∂G(S) ∩ Ei 6= ∅ (whp). Clearly, in order to find ∂G(S), we only need to look for this boundary’s
elements in

(⋃
i∈I Ei

)
∩EG(S, V). If |∂G(S)| is small compared to s, one can prove that, with high

probability, this strategy is more efficient than iterating through the entire set E(S, V). We prove
this formally below.

Lemma 5.7. Let S ⊆ V . Then, with high probability, the query procedure computes ∂G(S) correctly
in O

(
s|S|+ |EG(S, V)| · |∂G(S)|

s + log n
)
time.

22

Proof. Let the bit-strings xe consist of γ = O(1) machine words, each with at least dlog2 ne bits.
As argued before, computing the bit-strings y(i) =

⊕
v∈S xv(i) for all i = 1, . . . , s and finding the

set I = {i : y(i) 6= 0} takes O(s|S|) worst-case time.
Now, let us consider the number of edges searched. Suppose that e ∈ EG(S, S) has endpoints

u, v ∈ S and belongs to Ej . Then xe does not contribute to y(j) as it is present twice in the
XOR, once in xv(j) and once in xu(j). Hence, if y(j) 6= 0, i.e., j ∈ I, then there is an edge of
Ej that has only one endpoint in S and thus belongs to ∂G(S). Since each e ∈ ∂G(S) contributes
to a single element of y, |I| ≤ |∂G(S)|. Now, for e ∈ E, let Ye be the indicator of the event
(e ∈ ⋃i∈I Ei), i.e., Ye = 1 if e ∈ ⋃i∈I Ei and Ye = 0 otherwise. The set I is entirely determined
by the variables (xe)e∈∂G(S), so for the remaining edges, EG(S, V) \ ∂G(S) = EG(S, S), the random
variables {Ye}e∈EG(S,S) are mutually independent and independent of the choice of I except for its
size, |I|. It follows that the sum Y =

∑
e∈EG(S,S) Ye satisfies

E [Y] = |EG(S, S)| · |I|
s
≤ |EG(S, V)| · |∂G(S)|

s
.

Since Y is a sum of independent random variables, we may write µ = |E(S, V)| · |∂G(S)| /s. Let
t > 0 be a constant and µ′ = µ+ 3t log n, and apply the Chernoff bound of Theorem 2.1 to get

Pr [Y > 2µ+ 6t log(n)] = Pr[Y > (1 + 1)µ′] ≤ exp(−max{µ, 3t log(n)}/3) ≤ n−t.
Thus, with high probability the number of edges checked by the algorithm is

O

(
|∂G(S)|+ |EG(S, V)| · |∂G(S)|

s
+ log n

)
,

and, as a result, the running time of the query procedure is

O

(
s|S|+ |∂G(S)|+ |EG(S, V)| · |∂G(S)|

s
+ log n

)
.

To obtain the desired bound note that if s ≥ |∂G(S)|, then the term |∂G(S)| above is dominated by
s|S|, and otherwise it is dominated by the third term.

Finally, let us consider the probability that the output of the query is correct. It is not hard to see
that the output is correct if and only if the set I corresponds to the set J = {j ∈ [s] | Ej∩∂G(S) 6= ∅},
since in that case, the algorithm searches all groups containing an edge of ∂G(S). We have already
established that I ⊂ J . So let j ∈ J be given. Then there is some edge e ∈ ∂G(S) ∩ Ej . We have:

y(j) =
⊕

v∈S
xv(j) =

⊕

f∈∂G(S)∩Ej
xf

since for every edge e of EG(S, S), xe appears twice in the XOR. The probability that y(j) = 0, or
equivalently j 6∈ I, is hence the probability that xe =

⊕
f∈(∂G(S)\{e})∩Ej xf . Since xe is independent

of the right-hand side, this probability is exactly 2|xe| ≤ 2−γ log2 n ≤ n−γ . By a union bound, it
follows that J ⊂ I with probability at least 1− |J | · n−γ ≤ 1− snγ ≤ 1− nγ−1.

When an edge e = uv is inserted into G, all we have to do is pick a random set Ej for e, sample
a random bit-string xe, and update xw(j) := xw(j) ⊕ xe for w ∈ {u, v}. To handle the deletion of
e, all we have to do is to repeat the last step of insertion and remove e from Ej . So an edge update
can be clearly performed in O(γ) = O(1) worst-case time. The data structure can be initialized in
O(ns+m) time by first filling the values xv(i) with zeros and then inserting all the edges.

Finally, to guarantee high-probability correctness and query time bounds for poly (n) queries,
it is enough to set constants γ and t (from the proof of Lemma 5.7) sufficiently large. The full
pseudocode of the data structure is given in Algorithm 2.

23

Algorithm 2: Small boundary oracle.
Input : A graph G = (V,E) on n vertices
Parameters: Positive integers γ = O(1) and s ≤ n.

1 Procedure Initialize():
2 Initialize s sets E1, . . . , Es;
3 Fill values xv(j) for v ∈ V and j ∈ [s] with all-zero bit-strings of length γ · dlog2 ne;
4 for e ∈ E do
5 Insert(e);

6 Procedure Insert(e = {u, v}):
7 Insert e into some Ej of E1, . . . , Es uniformly at random;
8 Let xe ∈ {0, 1}γ·dlog2 ne be a bit-string chosen uniformly at random;
9 Let xv(j) := xv(j)⊕ xe;

10 Let xu(j) := xu(j)⊕ xe;
11 Procedure Delete(e = {u, v}):
12 Let Ej be the set containing e;
13 Delete e from Ej ;
14 Let xv(j) := xv(j)⊕ xe;
15 Let xu(j) := xu(j)⊕ xe;
16 Function FindBoundary(S): /* Find ∂G(S) for a subset S ⊂ V */
17 Let B := ∅;
18 Let y :=

⊕
v∈S xv;

19 Let I := {i ∈ [s] | y(i) 6= 0};
20 for uv = e ∈ ⋃i∈I(Ei ∩ E(S, V)) with u ∈ S do
21 if v /∈ S then B := B ∪ {e} ;
22 return B

6 Decremental c-Edge-Connectivity

In this section we briefly explain how Theorem 1.2 implies decremental c-edge-connectivity algo-
rithms with O(m) total update time for sufficiently dense graphs.

It is important to note at this point that there are two settings that might be of interest. First,
we might want to have a decremental algorithm maintaining c-edge-connected components, that
is, supporting queries whether two vertices belong to the same c-edge-connected component of G.
However, we might alternatively want to have a decremental algorithm maintaining the c-edge-
connected classes, i.e., supporting queries whether there exist c edge-disjoint paths between some
two vertices. Recall that these settings are equivalent for c = 1, 2, but differ for c ≥ 3: then a pair
of c-edge-connected vertices might not belong to the same c-edge-connected component.

Let us first consider the decremental c-edge-connected components problem. Then we have:

Theorem 6.1. There exists a Monte Carlo randomized decremental c-edge-connected components
algorithm with O(m + nc(log7 n + log4 n · Tc(n))) total update time. The algorithm is correct with
high probability.

Proof. We maintain a c-certificate H of G using Theorem 1.2. Observe that H has the same
c-edge-connected components as G. We additionally maintain a fully-dynamic c-edge-cut data
structure for H, and a data structure of Lemma 5.2. These two combined allow us to prune the

24

certificate from < c-edge-cuts and explicitly maintain the c-edge-connected components of H (which
enables constant-time queries about the component a vertex belongs to). Since H undergoes only
O(nc log4 n) edge updates, and each can be processed in O(Tc(n) + log2 n) amortized time, the
theorem follows.

By plugging in the specific known upper bounds on Tc(n) for c = 1, 2, we obtain:

Theorem 1.4. There exists Monte Carlo randomized decremental connectivity and decremental
2-edge-connectivity algorithms with O(m+ n log7 n) total update time and O(1) query time.

For c ≥ 3, Tc(n) = O(n1/2 poly (c)) has been proved [38], and therefore for c = O(no(1)) the
c-edge-connected components can be maintained under deletions in O(m)+ Õ(n3/2+o(1)) total time.

Theorem 1.6. Let c = O(no(1)). There exists a Monte Carlo randomized decremental c-edge-
connected components data structure with O(m+ n3/2+o(1)) total update time and O(1) query time.

Now consider the decremental c-edge-connected classes problem., i.e., decremental pairwise c-
edge-connectivity.

Theorem 6.2. Suppose there exists a fully-dynamic c-edge-cut algorithm with Tc(n) amortized
update time, and a fully-dynamic pairwise c-edge-connectivity algorithm with Uc(n) amortized update
time and Qc(n) query time. There exists a Monte Carlo randomized decremental c-edge-connected
components algorithm with O(m+nc log7 n+n(c+log n)Tc(n) log2 n+nc log4 n ·Uc(n)) total update
time and O(Qc(n)) query time. The algorithm is correct with high probability.

Proof. We maintain a c-certificate H of G using Theorem 1.2. Recall that H has the same c-
edge-connected components as G. So, we additionally maintain the certificate using the assumed
fully-dynamic c-edge-connected classes data structure and use it to answer queries.

Jin and Sun [25] have recently showed that for c = (log n)o(1), a deterministic fully-dynamic
c-edge-connected classes data structure with Uc(n) = O(no(1)) andQc(n) = O(no(1)) exists. By com-
bining their result with the fully-dynamic c-edge-cut algorithm of Thorup [38] with
Tc(n) = O(n1/2 poly (c)), we obtain the following.

Theorem 1.5. Let c = (log n)o(1). There exists a Monte Carlo randomized decremental c-edge-
connectivity data structure which can answer queries to whether two vertices are in the same c-edge
connected class in O(no(1)) time, and which has O(m) + Õ(n3/2) total update time.

7 Reducing the Number of Random Bits

In this section we show that our algorithms can be tuned to require only O(cpoly log n) random
bits over all updates. We take advantage of the pseudorandom number generator by Christiani
and Pagh [7], which, given only a O(c poly log n) truly random bits, can generate O(n) random
numbers, such that each number is between 1 and n′, n ≤ n′ ≤ 2n and the generated numbers are
Θ(cpoly log n)-independent. Generating each number takes O(1) time, whereas initialization takes
O(cpolylog n) time.

The key property that we use is the fact that Θ(log n)-independence is sufficient for a Chernoff-
like bounds to hold [7].

Our algorithm uses randomness for three purposes:

25

1. In order to initially sample the graphs H0
i (for all i) and R.

2. Within the data structure of Theorem 1.1 to maintain a c-certificate of each Hi.

3. Within the small-boundary oracle, to partition the edges of E into sets E1, . . . , Es .

4. Within the small-boundary oracle, to generate the random bits associated with each edge.

We now discuss how to implement each item using the pseudorandom generator of [7].
We already argued in Section 4 that for sampling H0

1 , . . . ,H
0
` , a polylogarithmic number of

random bits is sufficient. For the sampled graph R we only used Chernoff bounds for a polynomial
number of sums of indicator variables, so indeed polylogarithmic independence is enough, and the
sampling can be performed using the pseudorandom generator of [7].

When making use of the partition in item (3), for efficiency we only apply the Chernoff bound to
a polynomial number of sums of independent indicator variables Ye with the same mean for edges e
in some subset of E. Hence, O(polylog n)-independence between the variables Ye is sufficient. The
partition of E can be performed by sampling each Ei to be a

⌈
(m−∑j<i |Ej |)/(s− i+ 1)

⌉
-subset

of E \
(⋃

j<iEj

)
. This is easily implemented using the pseudorandom generator.

Consider item (4). Whenever the decremental certificate algorithm performs a query on the
small boundary oracle, with high probability the requested boundary ∂G(S) contains O(c·polylog n)
edges. As a result, only O(c·polylog n) edge bit-strings xf participate in each computed value y(j) =⊕

f∈∂G(S)∩Ej xf . Therefore, it is enough that the edge bit-strings are O(cpolylog n) independent
instead of fully independent.5 As a result, the individual bit-strings can be obtained from the
pseudorandom generator in O(m) time.

Finally, dealing with item (2) is less straightforward. This is because in the analysis of the data
structure of [36, Theorem 6], Thorup invokes a result due to Karger [28] saying that if a graph G is
c′-edge-connected graph, where c′ = Ω((c+log n)/p′), and p′ ∈ (0, 1) then G(p′) is c-edge-connected
with high probability (depending on the constant hidden in the Ω notation). This is then used
to show that the number of edges between different c-edge-connected components of a certificate
(which is G(p′) augmented with the edges of G connecting distinct c-edge-connected components
of G(p) , where p′ is any constant less than 1) that Thorup uses is O(c′n) with high probability.
This is where the c+ log n term in the bounds in Theorem 1.1 comes from. Unfortunately, roughly
speaking, Karger’s proof applies a Chernoff bound to an exponential number of cuts in G and
therefore requires sampling with full independence, i.e., Θ(m) random bits.

We can eliminate the need for full independence in [36], albeit at the cost of replacing the
c+ log n terms in the bounds of Theorem 1.1 with c log n. To this end, one can leverage Lemma 4.5
and replace the uniformly sampled subgraph G(p′) with the graph H0

` from our construction with
p set to p′/` (computable in O(mp`) = O(mp′) time using O(polylog n) random bits), at the cost
of replacing the c+ log n terms with c log n in the bounds of Theorem 1.1.

8 Omitted Proofs

Lemma 3.1 (Benczúr and Karger [5]). Let c and n be positive integers. Every graph on n vertices
with strictly more than (c− 1)(n− 1) edges contains a non-trivial c-edge-connected component.

5In general, the XOR trick can be used with polylogarithmic independence even for testing non-emptiness of large
(i.e., up to size n) boundaries [18, 39]. Although a single bit of an edge bit-string can be generated in constant
time [39], we need Θ(logn) bits per edge to guarantee high probability correctness. As a result, using known tools,
generating all edge bit-strings would cost Θ(m logn) time which is too expensive for our application.

26

Proof. We proceed by strong induction on n. The statement is clearly true for n = 1, 2. Consider
now a graph G on n > 2 vertices and (c − 1)(n − 1) + 1 edges. If no simple cut of G of size d < c
exists, then G is c-edge-connected and we are done. Otherwise, deleting the simple cut from G, we
obtain subgraphs G1 and G2 of G of sizes n1 and n2, respectively, such that n1 + n2 = n. After
deleting the simple cut there are at least (c−1)(n−2)+1 = (c−1)(n1−1)+(c−1)(n2−1)+1 edges
left. Hence, by the pigeonhole principle and the induction hypothesis, either G1 or G2 contains a
non-trivial c-edge-connected component.

Corollary 3.2. Let c be a positive integer and G be a graph on n vertices. Denote by qc the number
of c-edge-connected components of G. Then the number of edges connecting distinct c-edge-connected
components of G is at most (c− 1)(qc − 1).

Proof. Contracting the c-edge-connected components of G we arrive at a graph G′ on qc vertices with
no c-edge-connected components. All edges of G that connect distinct c-edge-connected components
of G are still present in G′. By Lemma 3.1, G′ contains at most (c− 1)(qc − 1) edges, which
completes the proof.

Lemma 5.2. Let G be a graph subject to edge insertions and deletions. Suppose the endpoints of
each edge inserted are connected in G immediately prior to the insertion. Let m be the number of
initial edges in G plus the number of insertions issued. There is a data structure that maintains the
connected components C = {C1, . . . , Ck} of G, and an explicit mapping q : V → {1, . . . , |C|} such
that v ∈ Cq(v). Moreover, after each edge deletion that increases the number of components of G,
the data structure outputs a pair (j, A) describing how C evolves: the component Cj is split into
Cj \A and A, where |A| ≤ |Cj \A|, and we set Cj := Cj \A and Ck+1 := A, and update k ← k+ 1.
The total update time is O(m log2 n), whereas the sum of sizes of sets A output is O(n log n).

Proof. First of all, we store G in a fully-dynamic connectivity data structure with O(log2 n) amor-
tized update time and O(log n) query time [21]. This data structure also maintains a spanning
forest explicitly and allows O(log n)-time queries about the size of the component containing a
given vertex. If an edge is inserted, we just pass the insertion to the fully-dynamic data structure
– this insertion does not change the connected components of G. If an edge {u, v} is deleted, we
additionally check if u and v are still connected after removing {u, v}. If not, assume wlog. that
the component of u is not smaller than that of v afterwards. We set A to be the vertices of the
tree containing v in the spanning forest. Let q(u) = Cj . For each x ∈ A we remove x from Cj , and
set q(x) := k + 1. Finally, we set Ck+1 := A, increment k, and output (j, A). To bound the total
time spent outside the fully-dynamic connectivity data structure, note that each time we spend
time proportional to the size of the output set A. Whenever a vertex x belongs to A, the size of the
component of x decreases by a factor of at least two due to the edge update. As a result, each x can
occur O(log n) times in the output sets A, and hence the total size of these sets is O(n log n).

Lemma 5.3. Let G = (V,E) be a fully dynamic graph. Let C be the set of connected components of
some (possibly unrelated) decremental graph on V . Suppose the updates to C are given in the same
form as in the output of the data structure of Lemma 5.2. Then, the boundaries ∂G(C) for C ∈ C
can be maintained explicitly subject to edge insertions/deletions issued to G, and updates to C in
O((n + m) log n) total time, where m is the number of initial edges of G plus the number of edge
insertions issued to G.

Proof. Note that similarly as in Lemma 5.2, the updates to C are given in such a way that we can
explicitly maintain, for each v ∈ V , the component from C it belongs to. This takes O(n log n) total
time. It also enables us to decide in O(1) time whether an edge {u, v} belongs to two (if u, v are

27

disconnected) or zero boundaries (otherwise). Each boundary ∂G(C) is stored in a linked list L(C).
Each edge of G connecting endpoints in different components of C has associated two pointers to
its places in the two respective lists. Hence, whenever an edge is inserted/deleted from G, the lists
storing the boundaries can be easily updated in constant time.

Now suppose C is updated: some Cj ∈ C gets split into Cj \ A and A, where |A| ≤ |Cj \ A|.
Clearly, only the lists L(Cj) and L(A) may need to be fixed at this point. We now iterate through
all {u, v} = e ∈ EG(A, V) and proceed as follows. Suppose wlog. that u ∈ A. If v ∈ Cj \A, then we
add e to L(Cj) (it was not there before the split) and update all the auxiliary pointers. Otherwise,
if v ∈ V \ (Cj ∪A), then e is removed from L(Cj) and inserted into L(A). Otherwise, if v ∈ A, then
we skip that edge as it remains an intra-component edge after the split. It is easy to verify that the
lists represent the required boundaries after this step, which takes O

(∑
u∈A deg(u)

)
time.

Finally, the O(m log n) total update time bound follows since the incident edges of each vertex v
are traversed O(log n) times – when this happens, the size of v’s component in C halves.

Lemma 4.4. Let D := G \G`. H` ∪D constitutes a c-certificate for G.

Proof. First, we prove thatH`∪D preserves the c-edge-connected components ofG. For convenience,
denote Gc = H`∪D. Assume, by contradiction, this is not true. Note that for each c-edge-connected
component C ′ of H` it holds that C ′ ⊂ C for some c-edge-connected C component of G, as otherwise
G[C ′] contains a < c-cut and so does H`[C

′] since H` ⊂ G; a contradiction. Let C be a c-edge-
connected component of G that is not preserved in Gc. Then, there exists a k-cut S, for k < c,
in Gc[C] that is not a k-cut in G[C]. Let C1, C2 be the two different connected components of
Gc[C] \ S. To conclude the argument, we next show that all edges in (C1 × C2) ∩ E are present in
Gc, which implies that if S is a k-cut in Gc[C] it is also a k-cut in G[C], and hence we contradict
the assumption that C is a c-edge-connected component in G[C] but not in Gc[C]. Take any edge
in uv ∈ (C1 × C2) ∩ E. Vertices u and v belong to different c-edge-connected components of H`,
as otherwise, there would be no k-cut separating u, v in Gc which contains H`. Hence, the edge
uv ∈ D ⊆ Gc, since D contains all edges of G between components of H`. This concludes the proof
that Gc preserves the c-edge-connected components of G.

Now we turn to proving that Gc preserves also the c-edge-connected classes of G. To this end,
we first show that every < c-cut of Gc is a < c-cut of G. Let S be a < c-cut of Gc. For contradiction,
suppose some u, v ∈ V are connected in G \ S but not in Gc \ S. Let P be a u→ v path in G \ S.
The endpoints of some edge xy ∈ P have to be disconnected in Gc \ S, as otherwise a path from
u to v would exist in Gc \ S. However, if xy is contained in G`, then x and y lie in the same
c-edge-connected component of H`, i.e., they are connected in H` \ S by |S| < c. Otherwise, since
D = G \G`, we have xy ∈ D \ S, so x and y are connected in Gc \ S as well. This contradicts the
fact that x and y are disconnected in Gc \ S.

Now, let u, v ∈ V . If u and v are c-edge-connected in a subgraph of G, in particular Gc, then
they are c-edge-connected in G. Conversely, if u and v are not c-edge-connected in Gc then there is
a cut of size < c separating them in Gc. Such a cut is also a cut in G by the previous claim, so u
and v are not c-edge-connected in G either. This proves that the c-edge-connected classes of G and
Gc are identical.

28

References

[1] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear
measurements. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages
459–467. SIAM, 2012.

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners,
and subgraphs. In Michael Benedikt, Markus Krötzsch, and Maurizio Lenzerini, editors, Pro-
ceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 5–14. ACM, 2012.

[3] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In Proceedings 39th Annual
Symposium on Foundations of Computer Science (FOCS), pages 534–543, 1998.

[4] Stephen Alstrup, Jens Peter Secher, and Maz Spork. Optimal on-line decremental connectivity
in trees. Information Processing Letters, 64(4):161 – 164, 1997.

[5] András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts and
flows in capacitated graphs. SIAM Journal on Computing, 44(2):290–319, 2015.

[6] Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput. Syst. Sci.,
18(2):143–154, 1979.

[7] Tobias Christiani and Rasmus Pagh. Generating k-independent variables in constant time. In
55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014, pages 196–205. IEEE Computer Society, 2014.

[8] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Sara-
nurak. A deterministic algorithm for balanced cut with applications to dynamic connectivity,
flows, and beyond. CoRR, abs/1910.08025, 2019.

[9] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification - a
technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.

[10] Paul Erdos and Alfred Renyi. On the evolution of random graphs. Publ. Math. Inst. Hungary.
Acad. Sci., 5:17–61, 1960.

[11] Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1–4, 1981.

[12] Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees, with
applications. SIAM J. Comput., 14(4):781–798, 1985.

[13] M. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In Proceedings
of the Twenty-First Annual ACM Symposium on Theory of Computing (STOC), STOC ’89,
page 345–354, New York, NY, USA, 1989. Association for Computing Machinery.

[14] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987.

[15] Harold N. Gabow, Haim Kaplan, and Robert Endre Tarjan. Unique maximum matching
algorithms. J. Algorithms, 40(2):159–183, 2001.

29

[16] Zvi Galil and Giuseppe F. Italiano. Maintaining the 3-edge-connected components of a graph
on-line. SIAM J. Comput., 22(1):11–28, 1993.

[17] Dora Giammarresi and Giuseppe F. Italiano. Decremental 2- and 3-connectivity on planar
graphs. Algorithmica, 16(3):263–287, 1996.

[18] David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. Dynamic graph connectivity
with improved worst case update time and sublinear space. CoRR, abs/1509.06464, 2015.

[19] Michael T Goodrich and Michael Mitzenmacher. Invertible bloom lookup tables. In 2011 49th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
792–799. IEEE, 2011.

[20] Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms with
polylogarithmic time per operation. J. ACM, 46(4):502–516, 1999.

[21] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J.
ACM, 48(4):723–760, July 2001.

[22] Jacob Holm and Eva Rotenberg. Good r-divisions imply optimal amortised decremental bicon-
nectivity. CoRR, abs/1808.02568, 2018.

[23] Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Dynamic bridge-finding in Õ(log2 n) amor-
tized time. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 35–52, 2018.

[24] Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dynamic connectivity
in O(log n(log log n)2) amortized expected time. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 510–520, 2017.

[25] Wenyu Jin and Xiaorui Sun. Fully dynamic c-edge connectivity in subpolynomial time. CoRR,
abs/2004.07650, 2020.

[26] Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polyloga-
rithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages
1131–1142, 2013.

[27] Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polyloga-
rithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’13, page 1131–1142, USA, 2013. Society for Industrial and
Applied Mathematics.

[28] David R. Karger. Random sampling in cut, flow, and network design problems. Math. Oper.
Res., 24(2):383–413, 1999.

[29] Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Faster worst
case deterministic dynamic connectivity. In 24th Annual European Symposium on Algorithms,
ESA 2016, August 22-24, 2016, Aarhus, Denmark, pages 53:1–53:15, 2016.

30

[30] Jakub Lacki and Piotr Sankowski. Optimal decremental connectivity in planar graphs. Theory
Comput. Syst., 61(4):1037–1053, 2017.

[31] Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583–596, 1992.

[32] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum
spanning forest with subpolynomial worst-case update time. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 950–961, 2017.

[33] Mihai Pǎtraşcu and Erik D. Demaine. Lower bounds for dynamic connectivity. In Proceedings of
the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’04, page 546–553,
New York, NY, USA, 2004. Association for Computing Machinery.

[34] Mihai Pǎtraşcu and Mikkel Thorup. Don’t rush into a union: take time to find your roots.
In Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose,
CA, USA, 6-8 June 2011, pages 559–568, 2011.

[35] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22(2):215–225, April 1975.

[36] Mikkel Thorup. Decremental dynamic connectivity. Journal of Algorithms, 33(2):229 – 243,
1999.

[37] Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR,
USA, pages 343–350, 2000.

[38] Mikkel Thorup. Fully-dynamic min-cut. Comb., 27(1):91–127, 2007.

[39] Mikkel Thorup. Sample(x)=(a*x<=t) is a distinguisher with probability 1/8. SIAM J. Com-
put., 47(6):2510–2526, 2018.

[40] Zhengyu Wang. An improved randomized data structure for dynamic graph connectivity.
CoRR, abs/1510.04590, 2015.

[41] Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Sanjeev
Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1757–1769.
SIAM, 2013.

31

Appendix F

k-Edge Connected Components and
Minimum Degree

173

k-Edge Connected Components and Minimum
Degree

Anders Aamand Peter M. R. Rasmussen Mikkel Thorup

July 6, 2021

Abstract

A k-edge connected component of a graph is a maximal k-edge con-
nected induced subgraph. Let k > 1 be an integer. We prove that the
number of k-edge connected components of a simple graph on n vertices
with minimum degree (2 + ε)(k − 1), ε ≥ 1/(k − 1), is at most 10n

εk
. We

further prove that this bound is tight in two ways. First, for every k > 1
and ε ≥ 1/(k− 1) there exist a simple graph on n vertices with minimum
degree (2+ε)(k−1) and at least n

3εk
k-edge connected components. Hence,

the bound is asymptotically tight in ε and k. Second, the limit at 2(k−1)
is significant since for every 0 < γ < 1 there exists a simple graph on n
vertices with minimum degree 2(k − 1) and at least γn k-edge connected
components, while every simple graph on n vertices with minimum degree
2k − 1 has at most 2k−1

3k−1
n k-edge connected components.

1 Introduction
Throughout this paper, G = (V,E) denotes an undirected simple graph with
vertex set V and edge set E. A central notion in graph theory is the notion of
k-edge connectivity. Two distinct vertices u, v of a graph G are k-edge connected
if there exist k pairwise edge-disjoint paths connecting them. Equivalently, u
and v are k-edge connected if they cannot be disconnected by removing < k
edges from G. A graph G is k-edge connected if every pair of distinct vertices
of G are k-edge connected. Equivalently, a graph G is k-edge connected if after
the removal of any set of < k edges, G is still connected. Note that by this
definitions, the trivial graph is k-edge connected.

Our main objects of study are the k-edge connected components of G. We
shall define a k-edge connected components of a graph G to be a maximal k-
edge connected induced subgraph of G, i.e., H is a k-edge connected component
of G if H = G[U] for some vertex subset U ⊂ V and for every strictly larger
vertex subset, U (U ′ ⊆ V , H ′ = G[U ′] is not k-edge connected. Note that
each vertex v of G is contained in a k-edge connected component since v by
itself constitutes a k-edge connected induced subgraph of G. We call a k-edge
connected component consisting of a single vertex a trivial k-edge connected

1

component. The k-edge connected components of a graph G partitions the
vertices of G.

Remark 1. In the literature, the k-edge connected components of a graph some-
times refers instead to the equivalence classes of vertices generated by k-edge
connectivity, i.e., considering two vertices equivalent if they are k-edge con-
nected. It is important to keep in mind that whenever k > 2, these two views of
k-edge connected components are not equivalent.

Whenever a graph with a fixed number of vertices contains sufficiently many
edges, non-trivial k-edge connected components begin to emerge. This is the
content of a classical result by Mader.

Theorem 1 (Mader [1]). Let k and n > k be positive integers. Every graph on
n vertices and strictly more than (k − 1)(n− k/2) edges contains a non-trivial
k-edge connected component. Furthermore, there exists a graph on n vertices
and (k− 1)(n−k/2) edges containing only trivial k-edge connected components.

In this exposition, we consider a related question, establishing a connection
between the minimum degree and the number of k-edge connected components
of a graph. Let k > 1 be an integer and G be a graph on n vertices. Our main
result, stated as Theorem 2, is that if G has minimum degree (2 + ε)(k− 1) for
any ε > 0, then G contains at most 10n

εk distinct k-edge connected components.
We further show that this bound is tight in two ways. First, the upper

bound is tight asymptotically since for every integer k > 1 and ε ≥ 1/(k − 1)
there exists a graph G with some n vertices and at least n

3εk distinct k-edge
connected components, proven in Theorem 5. Second, the limit at 2(k − 1)
is natural in the sense that for every 0 < γ < 1 there exists a simple graph
on n vertices with minimum degree 2(k − 1) and at least γn k-edge connected
components, proven in Proposition 3. Furthermore, every graph on n vertices
with minimum degree 2k− 1 has at most 2k−1

3k−1n k-edge connected components,
proven in Proposition 4.

Remark 2. The main focus of this paper is to establish the asymptotic num-
ber of k-edge connected components as a function of the minimum degree and
furthermore to establish a natural limit at minimum degree 2(k − 1). Thus, the
constants stated in the theorems of this paper are almost certainly not optimal.
We leave it as an open problem to improve upon them.

2 Preliminaries
For every n ∈ N, we denote by [n] the set {1, . . . , n}.

A cut of a graph G = (V,E) is formally a partition of the vertices into
disjoint subsets V = V1 ∪ V2. However, we shall often identify a cut with its
cut-set, the edges of G connecting the two sides of the cut, V1 and V2. In this
vein, we shall call a cut non-trivial if the cut-set is non-empty and refer to the
size of a cut by the size of its cut-set. Furthermore, we shall often discuss cuts

2

of a connected component C of G. When doing so, we only care about the
partition of the vertices of C and the edges of C crossing the partition. Lastly,
a minimum cut of a graph G or a connected component of G is a non-trivial
cut where the cut-set has minimal size, i.e., there is no non-trivial cut with a
smaller cut-set.

3 Bound on k-Edge Connected Components
In this section, we prove our main result, an upper bound on the number of
k-edge connected components of a graph by its minimum degree. First, two
simple lemmas.

Lemma 2. Let G = (V,E) be a graph and let A ⊂ V be a non-empty subset of
vertices. Suppose that every vertex of A has degree at least δ and that strictly
less than δ edges leave A. Then |A| ≥ δ + 1.

Proof. We prove the contrapositive statement. Suppose that 1 ≤ |A| = t ≤ δ.
Then every vertex of A has at least δ− t+1 incident edges leaving A. Thus, at
least t(δ − t+ 1) ≥ δ edges leave A.

Lemma 3. Let G be a graph on n vertices and q k-edge connected components.
Then G contains at most (k − 1)(q − 1) edges that connect distinct k-edge con-
nected components of G.

Proof. Remove non-trivial cuts of G of size < k until no such cut remains.
What is left is exactly the k-edge connected components of G. The removal of a
non-trivial cut increases the number of components by at least one, so at most
q− 1 cuts were removed. Furthermore, every cut contained at most k− 1 edges.
Hence, at most (k − 1)(q − 1) edges were removed from the graph and none of
the remaining edges connect distinct k-edge connected components of G.

With this at hand, we proceed with the main theorem of the section.

Theorem 4. Let k > 1 be an integer and ε > 0. Every graph on n vertices
with minimum degree (2 + ε)(k − 1) has at most 10n

εk distinct k-edge connected
components.

Proof. Let G be a graph on n vertices of minimum degree δ ≥ (2 + ε)(k − 1).
We may assume n > 2k ≥ 4.

Consider the following process of repeatedly deleting non-trivial cuts of size
< k from G until no such cuts remain. Let G0 = G and for i ≥ 0, if Gi contains
a vertex v of minimum positive degree and the degree of v is strictly less than
k, remove the edges incident to v in Gi to obtain the graph Gi+1; else, if Gi

contains a component with a minimum cut with cut-set S of size 0 < |S| < k,
let Gi+1 = Gi \ S; and finally, if no such cut exists, then all components of Gi

are k-edge connected and the process terminates. We call the removal of all
edges incident to a single vertex v, corresponding to the first case, a vertex cut
and the vertex v the center of the vertex cut. Furthermore, the removal of a cut

3

of a component, corresponding to the second case, is called a non-vertex cut.
When the process terminates after some t steps, the remaining components, the
components of the graph Gt, are the k-edge connected components of G.

Claim 1. Strictly less than
⌊

n
k+1

⌋
non-vertex cuts occur in the process.

Proof. The key observation is the following. Suppose that a non-vertex
cut occurs during the process, dividing a component C of Gi into two
new components C1 and C2 in Gi+1 by the removal of a cut of size < k.
Note that the component may only break into two new components since
non-vertex cuts are minimum cuts. Now, since no vertex cut occurred,
every vertex of C1 and C2 has degree ≥ k in Gi. Hence, |C1| , |C2| ≥ k+1
by Lemma 1 as strictly less than k edges leave C1 and C2, respectively, in
Gi.

We now proceed by strong induction on n. Define a(n) =
⌊

n
k+1

⌋
−1 and let

b(n) denote the maximum number of non-vertex cuts that may occur for
a graph with n vertices. By the observation above, it immediately follows
that a(n) = 0 for k < n ≤ 2k + 1 and a(n) = 1 for 2k + 2 ≤ n ≤ 3k + 2.
Thus, b(n) ≤ a(n) for n ≤ 3k + 2 as desired.

Let G be a graph on n > 3k+2 vertices and suppose that b(m) ≤ a(m) for
all m < n. Running the above process on G, there are three cases. If the
process terminates immediately, there is nothing to prove. If the process
starts with a vertex cut, then G experiences no more than b(n − 1) ≤
a(n − 1) ≤ a(n) non-vertex cuts and we are done. Finally, if the process
starts with a non-vertex cut, G is divided into two components C1 and C2

each on at least k + 1 vertices. The number of additional non-vertex cuts
occurring in the process is now at most b(|C1|)+ b(|C2|). It follows by the
induction hypothesis that the total number of non-vertex cuts is at most

1 + b(|C1|) + b(|C2|) ≤ 1 +

⌊ |C1|
k + 1

⌋
− 1 +

⌊ |C1|
k + 1

⌋
− 1

≤
⌊ |C1|+ |C1|

k + 1

⌋
− 1

= a(n).

The conclusion follows. �

Suppose that C = {v} is a trivial k-edge connected component of G, and let
i ≥ 1 be such that v is an isolated vertex of Gi but not of Gi−1. The vertex
v has degree < k in Gi−1 as it can be isolated by removing < k edges. Hence,
Gi was produced by a vertex cut. It follows that any trivial k-edge connected
component of G is isolated during a vertex cut. This observation along with
Claim 1 yields the following.

4

Claim 2. The graph G contains strictly less than 2n
ε(k+1) trivial k-edge

connected components.

Proof. For i ≥ 0 and v a vertex of G, let xi
v denote the number of edges of

G incident to v that are not present in Gi. Furthermore, let Wi be the set
of non-isolated vertices of Gi and yi =

∑
v∈Wi

xi
v. Finally, denote by by Ii

the set of vertices of G that are isolated in Gi but not in Gi−1. Initially,
y0 = 0 and x0

v = 0 for every vertex v.
Let i ≥ 1. If a non-vertex cut occurs as step i, at most k − 1 edges are
removed from Gi−1, so yi ≤ yi−1 + 2(k− 1). Furthermore, |Ii| = 0 by the
remark preceding the claim. If a vertex cut occurs, at most k−1 edges are
removed and the vertices of Ii are isolated, so yi ≤ yi−1−

∑
v∈Ii

xi−1
v +k−1.

Since each v ∈ Ii has degree at most k − 1 in Gi−1,

xi−1
v ≥ (2 + ε)(k − 1)− (k − 1) ≥ (1 + ε)(k − 1).

Thus,

yi ≤ yi−1 − |Ii| (1 + ε)(k − 1) + k − 1 ≤ yi−1 − |Ii| ε(k − 1),

where the last inequality follows as |Ii| ≥ 1.
To sum up, for every non-vertex cut yi is increased by at most 2(k − 1),
and for every vertex isolated, yi is decreased by at least ε(k − 1). Since
yi is never negative, it follows that the number of vertices isolated cannot
exceed 2(k − 1)/(ε(k − 1)) = 2/ε times the number of non-vertex cuts.
The conclusion follows from Claim 1. �

Let C denote the k-edge connected components of G. Partition C as C =
C1 ∪ C2 ∪ C3, where C1 contains the trivial k-edge connected components of G;
C2 contains every component C ∈ C with k + 1 ≤ |C| ≤ (2 + ε)(k − 1); and C3
contains every component C ∈ C with |C| > (2 + ε)(k − 1). This is indeed a
partition since no k-edge connected (simple) graph contains strictly between 1
and k + 1 vertices. From Claim 2 it follows that |C1| < 2n

ε(k+1) . Furthermore,
by the size of the components, it trivially holds that |C3| ≤ n

(1+ε/2)(k−1) ≤ 4n
εk .

Thus, it only remains to bound the size of C2. To that end, denote by D the
vertices of G that have degree < (1+ε/2)(k−1) in Gt. Each of them is incident
to ≥ (1 + ε/2)(k − 1) edges of G that are not present in Gt. By Lemma 2, at
most (k − 1)(n− 1) edges of G are not present in Gt. It follows that

|D| ≤ 2(k − 1)(n− 1)

(1 + ε/2)(k − 1)
≤ 2n

1 + ε/2
≤ 4n/ε.

For every C ∈ C2, every vertex of C is contained in D. Hence, as each C ∈ C2
has size at least k + 1, |C2| ≤ 4n

ε(k+1) .
In conclusion, G has at most

|C1|+ |C2|+ |C3| ≤
2n

ε(k + 1)
+

4n

ε(k + 1)
+

4n

εk
≤ 10n

εk

distinct k-edge connected components.

5

4 On Tightness
The limit at minimum degree 2(k − 1) proposed by the theorem is in fact tight
in the following sense. For fixed k > 1, there is a constant δ < 1 such that every
graph on some n vertices with minimum degree 2k − 1 has at most δn distinct
k-edge connected components. However, there is no such constant for graphs of
minimum degree 2(k − 1). This is laid out in the following two propositions.

Proposition 5. If G has minimum degree 2k − 1, the number of k-edge con-
nected components is at most 2k−1

3k−1n.

Proof. Let G be a graph with minimum degree 2k− 1. Denote by q the number
of k-edge connected components of G and by ℓ the number of trivial k-edge con-
nected components of G. Every trivial k-edge connected component is adjacent
to at least 2k − 1 edges of G that connect distinct k-edge connected compo-
nents of G. Since each such edge connects at most two trivial k-edge connected
components, it follows by Lemma 2 that ℓ(2k − 1) ≤ 2(k − 1)(q − 1). Hence,
ℓ ≤ q(1 − 1/(2k − 1)). Furthermore, each non-trivial k-edge connected compo-
nent contains at least k+1 vertices, so q ≤ ℓ+(n− ℓ)/(k+1). Combining these
inequalities, we find that

q ≤ q

(
1− 1

2k − 1

)(
1− 1

k + 1

)
+

n

k + 1
.

Rearranging terms yields q ≤ 2k−1
3k−1n as desired.

Proposition 6. For every integer k > 1 and real γ ∈ (0, 1) there exists n ∈ N
and a graph G on n vertices satisfying that G has minimum degree 2(k− 1) and
the number of k-edge connected components of G is at least γn.

Proof. We construct the graph Gs, illustrated in Fig. 1. Let C1, . . . , Ck and
D1, . . . , Dk be copies of K2k−1, the complete graph on 2k − 1 vertices, and for
each i ∈ [k], let ci be a distinguished vertex of Ci and di a distinguished vertex
of Di. Furthermore, for each i ∈ [k] and j ∈ [s], add an additional vertex vi,j to
Gs. Denote by V0 the set {ci}ki=1, by Vs+1 the set {di}ki=1, and for each j ∈ [s],
denote by Vj the set {vi,j}ki=1. Introduce edges such that for every j ∈ [s + 1],
the induced subgraph on Vj−1 ∪ Vj is a (k − 1)-regular bipartite graph with
independent sets Vj−1 and Vj .

Now, Gs contains n = 2k(2k − 1) + sk vertices, and every vertex of Gs has
degree at least 2(k − 1). We proceed to count the number of k-edge connected
components of Gs. First, observe that each of the subgraphs C1, . . . , Ck and
D1, . . . , Dk is a k-edge connected component of Gs,t since it has k − 1 edges
on its boundary. Second, removing these components from Gs, it is clear that
each vertex of V1 or Vk is by itself a k-edge connected component of Gs since all
these vertices now have degree k− 1. Finally, continuing to remove k-edge con-
nected components in this manner, it is clear that each vertex of {vi,j}i∈[k],j∈[s]

is a k-edge connected component of Gs. Hence, the number of k-edge con-
nected components of Gs is (s + 2)k. Thus, Gs contains γn k-edge connected

6

C1

C2

C3

Ck

D1

D2

D3

Dk

V1 V2 V3 Vs

c1

c2

c3

ck

d1

d2

d3

dk

Figure 1: An illustration of the graph Gs,t from the proof of Proposition 4.

components, where

γ =
(s+ 2)k

2k(2k − 1) + sk
=

s+ 2

4k + s− 2
.

Since γ → 1 as s → ∞, the conclusion follows.

Next, the result of Theorem 2 is asymptotically tight in terms of ε and k.

Theorem 7. For every integer k > 1 and every ε ≥ 1/(k−1) there exists n ∈ N
and a graph G with n vertices, minimum degree ≥ (2 + ε)(k − 1), and at least
n

3εk distinct k-edge connected components.

Proof. For each s ≥ 2, we construct a graph Hs similar to the graph Gs from the
proof of Proposition 4. Let the sequence (ni)i≥0 be given by ni =

⌊
(1 + ε)ik

⌋
.

Starting from the empty graph, add the following to Hs. Let C1, . . . , Cn0 and
D1, . . .Dns be copies of K(2+ε)k; for each i ∈ [n0], let ci be a distinguished vertex
of Ci; and for each i ∈ [ns], let di be a distinguished vertex of Di. Furthermore,
for each j ∈ [s − 1] and i ∈ [nj], let vi,j be a vertex. Denote by V0 the set
{ci}i∈[n0], by Vs the set {di}i∈[ns], and for each j ∈ [s− 1], denote by Vj the set
{vi,j}i∈[nj].

Insert edges as follows. For each j ∈ [s], the induced subgraph of Vj−1 ∪ Vj

in Hs is a bipartite graph with independent sets Vj−1 and Vj such that every
vertex of Vj has degree k − 1 and every vertex of Vj−1 has degree at least
(1 + ε)(k − 1). Such a bipartite graph is always possible to construct since
|Vj | = nj ≥ (1 + ε)ni = (1 + ε) |Vj−1|. It is then clear that every vertex of Hs

has degree at least (2 + ε)(k − 1).

7

Now, let n denote the number of vertices of Gs. Then

n = (n0 + ns)(2 + ε)k +

s−1∑

i=1

ni

≤ k

(
(1 + (1 + ε)s)(2 + ε)k + (1 + ε)

(1 + ε)s−1 − 1

ε

)

= k ((1 + ε)s((2 + ε)k + 1/ε) +A) ,

where A = (2 + ε)k − (1 + ε)/ε. Furthermore, denote by q the number of k-
edge connected components of Hs. For every i ∈ [ns], Di is a k-edge connected
component of Hs since it has k − 1 edges on its boundary. Removing Di from
Hs for every i ∈ [ns], it becomes clear that every v ∈ Vs−1 is a trivial k-edge
connected components since it now has degree k− 1. Continuing to remove one
layer at a time, it is clear that for every j ∈ [s−1], every vertex of Vj is a trivial
k-edge connected component. Finally, it follows that Ci is a k-edge connected
component for every i ∈ [n0], since removing each of the previously mentioned
k-edge components from G leaves each Ci isolated. In conclusion,

q =
s∑

i=0

ni ≥ k
s∑

i=0

(1 + ε)i − s− 1 = k
(1 + ε)s+1

ε
− s− 1.

Combining the estimates for n and q,

n

q
≤ k ((1 + ε)s((2 + ε)k + 1/ε) +A)

k (1+ε)s+1

ε − s− 1

=
(2 + ε)εk + 1 + εA/(1 + ε)s

1 + ε− ε(s−1)
(1+ε)sk

.

As s → ∞, the last expression converges to

(2 + ε)εk + 1

1 + ε
< 3εk.

Hence, for s sufficiently large, n/q ≤ 3εk, which yields the conclusion.

References
[1] Mader, W. Minimalen-fach kantenzusammenhängende graphen. Mathe-

matische Annalen 191 (03 1971), 21–28.

8

Appendix G

Classifying Convex Bodies by Their
Contact and Intersection Graphs

182

Classifying Convex Bodies by Their Contact and
Intersection Graphs
Anders Aamand !

BARC, University of Copenhagen, Denmark

Mikkel Abrahamsen !

BARC, University of Copenhagen, Denmark

Jakob Bæk Tejs Knudsen !

BARC, University of Copenhagen, Denmark

Peter Michael Reichstein Rasmussen !

BARC, University of Copenhagen, Denmark

Abstract
Let A be a convex body in the plane and A1, . . . , An be translates of A. Such translates give rise to an
intersection graph of A, G = (V, E), with vertices V = {1, . . . , n} and edges E = {uv | Au ∩ Av ̸= ∅}.
The subgraph G′ = (V, E′) satisfying that E′ ⊂ E is the set of edges uv for which the interiors of
Au and Av are disjoint is a unit distance graph of A. If furthermore G′ = G, i.e., if the interiors of
Au and Av are disjoint whenever u ̸= v, then G is a contact graph of A.

In this paper, we study which pairs of convex bodies have the same contact, unit distance, or
intersection graphs. We say that two convex bodies A and B are equivalent if there exists a linear
transformation B′ of B such that for any slope, the longest line segments with that slope contained
in A and B′, respectively, are equally long. For a broad class of convex bodies, including all strictly
convex bodies and linear transformations of regular polygons, we show that the contact graphs of A

and B are the same if and only if A and B are equivalent. We prove the same statement for unit
distance and intersection graphs.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Graph theory; Mathematics of computing → Discrete mathematics

Keywords and phrases convex body, contact graph, intersection graph

Digital Object Identifier 10.4230/LIPIcs.SoCG.2021.3

Related Version Full Version: https://arxiv.org/abs/1902.01732 [1]

Funding The authors are part of BARC, Basic Algorithms Research Copenhagen, supported by the
VILLUM Foundation grant 16582.

Acknowledgements We thank Tillmann Miltzow for asking when the translates of two different
convex bodies induce the same intersection graphs which inspired us to work on these problems.

1 Introduction

Consider a convex body A, i.e., a convex, compact region of the plane with non-empty
interior, and let A = {A1, . . . , An} be a set of n translates of A. Then A gives rise to an
intersection graph G = (V, E), where V = {1, . . . , n} and E = {uv | Au ∩ Av ̸= ∅}, and a
unit distance graph G′ = (V, E′), where uv ∈ E′ if and only if uv ∈ E and Au and Av have
disjoint interiors. In the special case that G = G′ (i.e., the convex bodies of A have pairwise
disjoint interiors), we say that G is a contact graph (also known as a touch graph or tangency
graph). Thus, A defines three classes of graphs, namely the intersection graphs I(A), the
unit distance graphs U(A), and the contact graphs C(A) of translates of A.

© Anders Aamand, Mikkel Abrahamsen, Jakob Bæk Tejs Knudsen, and
Peter Michael Reichstein Rasmussen;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Computational Geometry (SoCG 2021).
Editors: Kevin Buchin and Éric Colin de Verdière; Article No. 3; pp. 3:1–3:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

3:2 Classifying Convex Bodies by Their Contact and Intersection Graphs

A1 A2

A3

Figure 1 Translates of a convex body not having the URTC property. The disk A3 can “slide”
along A1 and A2.

Figure 2 Reuleaux triangle (left), ellipse (middle), and regular hexagon (right).

The study of intersection graphs has been an active research area in discrete and com-
putational geometry for the past three decades. For instance, numerous papers consider
the problem of solving classical graph problems efficiently on various classes of geometric
intersection graphs; see Section 1.1 for some references. Meanwhile, the study of contact
graphs of translates of a convex body has much older roots. It is closely related to the
packings of such a body, which has a very long and rich history in mathematics going back
(at least) to the seventeenth century, where research on the packings of circles of varying
and constant radii was conducted and Kepler famously conjectured upon a 3-dimensional
counterpart of such problems, the packing of spheres.

In this paper we investigate the question of when two convex bodies A and B give rise
to the same classes of graphs. We restrict ourselves to convex bodies A that have the
URTC property (unique regular triangle constructibility). This is the property that given two
interior disjoint translates A1, A2 of A that touch, there are exactly two ways to place a third
translate A3 such that A3 is interior disjoint from A1 and A2, but touches both. Convex
bodies with the URTC property include all linear transformations of regular polygons except
squares and all strictly convex bodies [15]. Thus, almost all convex bodies in a measure
theoretic sense have the property [15, 18, 30]. A convex body without the property must
have a sufficiently long line segment on the boundary (to be made precise in Section 1.3); see
Figure 1 for an example.

The main result of the paper is summarized in the following theorem.

▶ Theorem 1. Let A and B be convex bodies with the URTC property. Then each of the
identities I(A) = I(B), U(A) = U(B), and C(A) = C(B) holds if and only if the following
condition is satisfied: there is a linear transformation B′ of B such that for any slope, the
longest segments contained in A and B′, respectively, with that slope are equally long.

If the condition from the theorem is satisfied, we say that A and B are equivalent. The
length of the longest segment with a given slope contained in a convex body A is often called
the width of A in the corresponding direction. A circle has constant width but there are
other convex bodies of constant width, the simplest example being the Reuleaux triangle;
see Figure 2. As an example it follows from the theorem that circles and Reuleaux triangles
have the same contact, unit distance, and intersection graphs, which in turn are the same as
those for ellipses (ellipses are linear transforms of circles). It also follows that these classes
are different from those of regular hexagons.

A. Aamand, M. Abrahamsen, J. B. T. Knudsen, and P. M. R. Rasmussen 3:3

Figure 3 The strength of radiation in every direction and at various frequencies for two different
transmitters described in [25]. In engineering circles, this known as the radiation pattern.

Figure 4 When the reachable region of a device is symmetric and the devices are oriented in the
same way, a communication network is the intersection graph of the reachable region scaled by 1/2.
Left: A network of five identical devices with the reachable regions shown. Right: The intersection
graph of the reachable regions scaled by 1/2.

1.1 Practical Implications

From a practical point of view, the research on intersection graphs is often motivated by the
applicability of these graphs when modeling wireless communication networks and facility
location problems. If a device is located at some point in the plane and is able to transmit to
and receive from all other devices within some distance, then the devices can be represented
as unit disks in such a way that two devices can communicate if and only if their disks
overlap. Many highly-cited papers gave this motivation for studying unit disk intersection
graphs [9, 14, 16, 21, 29] and it remains a motivation for new research [7, 12, 13, 24].

However, it is in general not the case that a transmitter emits an equally strong signal
in all directions. For a real-world example of how the signal strength may vary in different
directions; see Figure 3. If the networks that can be made with devices of a given type are not
the unit disk intersection graphs, the algorithms for unit disk graphs cannot be expected to
work when applied to the actual networks. It is therefore necessary to study how the possible
networks that can be made with devices of different types depend on the radiation pattern
of the devices. See Figure 4 for a demonstration of the connection between communication
networks of a device with a non-circular radiation pattern and intersection graphs of the
corresponding convex body.

SoCG 2021

3:4 Classifying Convex Bodies by Their Contact and Intersection Graphs

1.2 Other Related Work
An important notion in the area of contact graphs is that of the Hadwiger number of a
body K, which is the maximum possible number of pairwise interior-disjoint translates Ki

of K that each touch but do not overlap K. The Hadwiger number of K is thus the maximum
degree of a contact graph of translates of K. In the plane, the Hadwiger number is 8 for
parallelograms and 6 for all other convex bodies. We refer the reader to the books and
surveys by László and Gábor Fejes Tóth [28, 10] and Böröczky [3].

Another noteworthy result on contact graphs is the Circle Packing Theorem (also known
as the Koebe–Andreev–Thurston Theorem): A graph is simple and planar if and only if it is
the contact graph of some set of circular disks in the plane (the radii of which need not be
equal). The result was proven by Koebe in 1935 [19] (see [11] for a streamlined, elementary
proof). Schramm [26] generalized the circle packing theorem by showing that if a planar
convex body with smooth boundary is assigned to each vertex in a planar graph, then the
graph can be realized as a contact graph where each vertex is represented by a homothet
(i.e., a scaled translation) of its assigned body.

Several papers have compared classes of intersection graphs of various geometric objects,
see for instance [4, 6, 8, 17, 20]. Most of the results are inclusions between classes of
intersection graphs of one-dimensional objects such as line segments and curves.

A survey by Swanepoel [27] summarizes results on minimum distance graphs and unit
distance graphs in normed spaces, including bounds on the minimum/maximum degree,
maximum number of edges, chromatic number, and independence number.

In the area of computational geometry, Müller, van Leeuwen, and van Leeuwen [23]
gave sharp upper and lower bounds on the size of an integer grid used to represent an
intersection graph of translates of a convex polygon with corners at rational coordinates.
Their results imply that for any convex polygon R with rational corners, the problem of
recognizing intersection graphs of translates of R is in NP. On the contrary, it is open
whether recognition of unit disk intersection graphs in the Euclidean plane is in NP. Indeed,
the problem is ∃R-complete (and thus in PSPACE), and using integers to represent the center
coordinates and radii of the disks in some graphs requires exponentially many bits [5, 22].

Bonnet, Grelier, and Miltzow [2] showed how well-known algorithms for the clique
problem in unit disk intersection graphs and disk intersection graphs can be adjusted to
work for intersection graphs of translates or homothets of an arbitrary centrally symmetric
convex body.

1.3 Preliminaries
We begin by defining some basic geometric concepts and terminology.

For a subset A ⊂ R2 of the plane we denote by A◦ the interior of A, that is,

A◦ = {x ∈ A | ∃ open U ⊂ R2 such that {x} ⊂ U ⊂ A}.

We say that A is a convex body if A is compact, convex, and has non-empty interior. We
say that A is symmetric if whenever x ∈ A, then −x ∈ A. It is well-known that if A is a
symmetric convex body, then the map ∥·∥A : R2 → R≥0 defined by

∥x∥A = inf{λ ≥ 0 | x ∈ λA},

is a norm. Moreover A = {x ∈ R2 | ∥x∥A ≤ 1} and A◦ = {x ∈ R2 | ∥x∥A < 1}.
It follows from these properties that for translates A1 = A + v1 and A2 = A + v2 it

holds that A1 ∩ A2 ̸= ∅ if and only if ∥v1 − v2∥A ≤ 2 and A◦
1 ∩ A◦

2 ̸= ∅ if and only if
∥v1 − v2∥A < 2. This means that when studying contact, unit distance, and intersection

A. Aamand, M. Abrahamsen, J. B. T. Knudsen, and P. M. R. Rasmussen 3:5

graphs of a symmetric convex body A, we can shift our viewpoint from translates of A to point
sets in R2 and their ∥·∥A-distances: If A ⊂ R2 is a set of points we define IA(A) and UA(A)
to be the graphs with vertex set A and edge sets {(x, y) ∈ A2 | x ̸= y and ∥x − y∥A ≤ 2}
and {(x, y) ∈ A2 | ∥x − y∥A = 2}, respectively. Moreover, if for all distinct points x, y ∈ A it
holds that ∥x − y∥A ≥ 2, we say that A is compatible with A and define CA(A) to be the
graph with vertex set A and edge set {(x, y) ∈ A2 | ∥x − y∥A = 2}. Then IA(A), UA(A), and
CA(A), respectively, are isomorphic to the intersection, unit distance, and contact graph of A

realized by the translates (A + a)a∈A. When studying contact, unit distance, and intersection
graphs of a symmetric, convex body A we will view them as being induced by point sets
rather than by translates of A.

We say that a (not necessarily symmetric) convex body A in the plane has the URTC
property if the following holds: For any two interior disjoint translates of A, A1 and A2,
satisfying A1 ∩ A2 ≠ ∅, there exists precisely two vectors v ∈ R2 such that for i ∈ {1, 2},
(A+v)◦ ∩A◦

i = ∅ but (A+v)∩Ai ̸= ∅. If A is symmetric, this amounts to saying that for any
two points v1, v2 ∈ R2 with ∥v1 − v2∥A = 2, the set {v ∈ R2 | ∥v − v1∥A = ∥v − v2∥A = 2}
has size two. Gehér [15] proved that a symmetric convex body A has the URTC property if
and only if the boundary ∂A does not contain a line segment of length more than 1 in the
∥·∥A-norm. See Figure 1 for an example of a convex body not having the URTC property.

A drawing of a graph G ∈ I(A) as an intersection graph of a symmetric convex body A

is a point set A ⊂ R2 and a set of straight line segments L such that IA(A) is isomorphic to
G and L is exactly the line segments between the points u, v ∈ A which are connected by an
edge in G. We define a drawing of a graph G as a contact and unit distance graph similarly.

For a norm ∥·∥ on R2 and a line segment ℓ with endpoints a and b we will often write
∥ℓ∥ = ∥ab∥ instead of ∥a − b∥. Also, if A is a symmetric convex body and U, V ⊂ R2, we
define dA(U, V) := inf{∥uv∥A | (u, v) ∈ U × V }.

1.4 Structure and Techniques of the Paper
Establishing the sufficiency of the condition of Theorem 1, i.e., showing that if A and B are
equivalent then I(A) = I(B), U(A) = U(B), and C(A) = C(B), is relatively straightforward
and has been deferred to the full version of the paper. It is also relatively easy to reduce
Theorem 1 to the case where the convex bodies are symmetric so this too is deferred to
the full version. When both A and B are symmetric, they are equivalent according to the
condition of Theorem 1 if and only if they are linear transformations of each other.

Thus, left with the task of proving the necessity of the condition of Theorem 1 in the
symmetric case, we proceed in two steps. First, in Section 2, we prove the following result,
which for contact and unit distance graphs is a generalization of this direction of Theorem 1.

▶ Theorem 2. Let A and B be symmetric convex bodies with the URTC property such
that A is not a linear transformation of B. There exists a graph G ∈ C(A) such that
for all H ∈ C(B) and all subgraphs H ′ ⊆ H, G is not isomorphic to H ′. In particular
C(A) \ C(B) ̸= ∅.

As we will also discuss in Section 2 the same result holds if C(X) is replaced by U(X)
for X ∈ {A, B} everywhere in the theorem above and the proof is identical.

The core idea in proving Theorem 2 is to consider a graph G satisfying that any drawing
of G as a contact graph of A has certain structural properties. Concretely, we ensure that
any drawing of G as a contact graph of A consists of many large hollow hexagons. In the
interior of each hexagon, we force there to be a “bridge” of translates of A connecting the

SoCG 2021

3:6 Classifying Convex Bodies by Their Contact and Intersection Graphs

sides of the hexagon. We show that if B is not a linear transformation of A, then the contact
graph cannot be realized by translates of B if we make sufficiently many and sufficiently
large hexagons with bridges of different slopes. See Figures 6 and 7 for illustrations.

To include intersection graphs, we proceed with the second step. In Section 3, we prove
the following result which combined with Theorem 2 immediately yields the necessity of the
condition of Theorem 1 for intersection graphs.

▶ Theorem 3. Let A and B be symmetric convex bodies. If there exists a graph G ∈ C(A)
such that for all H ∈ C(B) and all subgraphs H ′ ⊂ H, G is not isomorphic to H ′, then
I(A) ̸= I(B).

This result holds for general symmetric convex bodies. An improvement of Theorem 2 to
general symmetric convex bodies (not necessarily having the URTC property) would thus
yield a version of Theorem 1 that also holds for general convex bodies.

In order to prove Theorem 3, we proceed as follows. For every positive integer k we
construct a gadget Qk ∈ I(A) which contains as a subgraph a distinguished cycle αk ⊂ Qk.
We prove that in any drawing of Qk as an intersection graph of translates of A, αk is contained
in a translation of the annulus kA \ (k − 1)A (here, kA = {ka | a ∈ A} is the scaling of A by
k). This allows us to view αk as an upscaled copy of the boundary of A with a precision
error decreasing in k. Similarly, in any drawing of the same gadget Qk as an intersection
graph of another body, B, the cycle αk appears as an upscaled copy of B. The idea is then
to simulate a contact graph G ∈ C(A) using distinct copies of Qk, where each copy plays
the role of a single vertex in G. If A is not a linear transformation of B, we can choose G

with the properties promised in Theorem 2. We are then able to prove that if we choose k

sufficiently large (i.e., obtaining sufficiently high resemblence between αk and an upscaled
copy of A resp. B), then we can realize the simulation of G as an intersection graph using
translates of A, but not using translates of B. This then implies I(A) ̸= I(B) as desired.

Beyond aiding us in the proof of our main theorem, we believe that this proof technique –
the reduction from intersection to contact graphs – is of independent interest. It appears a
novel approach with the potential to answer other questions on intersection graphs.

2 Contact and Unit Distance Graphs

In this section we prove Theorem 2. The proof for unit distance graphs is completely identical
so we will merely provide a remark justifying this claim by the end of the section.

Throughout the section A and B will denote symmetric convex bodies. For θ ∈ [0, 2π)
we define eA(θ) to be the vector of argument θ and with ∥eA(θ)∥A = 1. We also define
ρA(θ) = 2 ∥eA(θ)∥2. Then ρA(θ) can be thought of as the “diameter” of A in direction θ.
One of our most important tools is the following lemma.

▶ Lemma 4. Let A, B be symmetric convex bodies in R2. If for every finite set Θ ⊂ [0, π) and
for every ε > 0, there exists a linear map T : R2 → R2 satisfying that |ρT (B)(θ) − ρA(θ)| < ε

for all θ ∈ Θ, then there exists a linear map T : R2 → R2 with T (B) = A.

Due to space limitations we have left out the proof, but it can be found in the full version.
We proceed to describe certain lattices which give rise to contact graphs that can only be

realized in an essentially unique way. We start with the following definition.

▶ Definition 5. Let A ⊂ R2 be a symmetric convex body, and ∥·∥A the associated norm.
Let e1, e2 ∈ R2 be such that ∥e1∥A = ∥e2∥A = ∥e1 − e2∥A = 2. We define the lattice
LA(e1, e2) = {a1e1 + a2e2 | (a1, a2) ∈ Z2}.

A. Aamand, M. Abrahamsen, J. B. T. Knudsen, and P. M. R. Rasmussen 3:7

conv(SA)
1
2 conv(SA)

e2

e1

e2 − e1

−e1

−e2 e1 − e2

Figure 5 A symmetric convex body A and the sets 1
2 conv(SA) and conv(SA) (blue and green

respectively) which satisfies 1
2 conv(SA) ⊆ A ⊆ conv(SA).

The left hand side of figure Figure 6 illustrates the lattice structure. Let us assume that
A has the URTC property and describe a few properties of the lattice LA(e1, e2). After
choosing e1 with ∥e1∥A = 2, there are precisely two vectors v with ∥v∥A = ∥v − e1∥A = 2,
using the URTC property. If one is v2 the second is e1 − v2 so regardless how we choose
e2 we obtain the same lattice. Using the triangle inequality and the URTC property of A

it is easily verified that for distinct x, y ∈ LA(e1, e2), ∥x − y∥A ≥ 2 with equality holding
exactly if x − y ∈ SA := {e1, e2, e2 − e1, −e1, −e2, e1 − e2}. This implies that the contact
graph G0 := CA(LA(e1, e2)) is in fact (isomorphic to) an infinite triangular grid.

Another useful fact is the following:

▶ Lemma 6. With SA as above it holds that 1
2 conv(SA) ⊂ A ⊂ conv(SA). Here conv(SA)

is the convex hull of SA. If in particular B is another symmetric convex body for which
∥e1∥B = ∥e2∥B = ∥e1 − e2∥B = 2, then for all x ∈ R2 it holds that 1

2 ∥x∥A ≤ ∥x∥B ≤ 2 ∥x∥A.

Proof. See Figure 5. As 1
2 SA ⊂ A and A is convex the first inclusion is clear. For the

second inclusion we note that all points y on the hexagon connecting the points e1, e2, e2 −
e1, −e1, −e2, e1 − e2 of SA in this order have ∥y∥A ≥ 1 by the triangle inequality and so
A ⊂ conv(SA).

For the last statement of the lemma note that if x ∈ R2 then

∥x∥B ≥ inf
λ≥0

{x ∈ λ conv(SB)} = inf
λ≥0

{x ∈ λ conv(SA)} ≥ inf
λ≥0

{x ∈ 2λA} = 1
2 ∥x∥A ,

and similarly ∥x∥A ≥ 1
2 ∥x∥B . ◀

▶ Definition 7. We say that a graph G = (V, E) is lattice unique if |V | = n ≥ 3 and there
exists an enumeration of its vertices v1, . . . , vn such that

The vertex induced subgraph G[v1, v2, v3] ≃ K3 is a triangle.
For i > 3 there exists distinct j, k, l < i such that G[vj , vk, vl] ≃ K3 and both (vi, vj) and
(vi, vk) are edges of G.

Suppose that A is a symmetric convex body with the URTC property, that A ⊂ R2

is compatible with A, and that G = CA(A) is lattice unique. Enumerate the points of
A = {v1, . . . , vn} according to the definition of lattice uniqueness. Without loss of generality
assume that v1 = 0. Then the URTC property of A combined with the lattice uniqueness of G

gives that v4, . . . , vn are uniquely determined from v2 and v3 and all contained in LA(v2, v3).
If moreover B is another convex body with the URTC property, B = {v′

1, . . . , v′
n} ⊂ R2

has v′
1 = 0 and is compatible with B, and CB(B) ≃ CA(A) via the graph isomorphism

φ : v′
i 7→ vi, then the linear map T : R2 → R2 defined by T : a1v′

2 + a2v′
3 7→ a1v2 + a2v3

satisfies that T |B = φ.
We will use this observation in the proof of Theorem 2 which we now provide.

SoCG 2021

3:8 Classifying Convex Bodies by Their Contact and Intersection Graphs

θ

Hk

Bθ(`)

S1(θ)

S2(θ)

zθ1

zθ2

Figure 6 Left: The points of H6 along with the corresponding lattice unique subgraph G0[H6].
Right: The attachment of the beam Bθ(ℓ).

Proof of Theorem 2. We choose e1, e2 ∈ R2 be such that ∥e1∥A = ∥e2∥A = ∥e1 − e2∥A = 2
and define the lattice L := LA(e1, e2). We also define the infinite graph G0 := CA(L) which
by the remarks following Definition 5 is isomorphic to the infinite triangular grid. Without
loss of generality we can assume that e1 and e2 satisfy that ∥e1∥2 = ∥e2∥2 = ∥e1 − e2∥2 = 2,
since there exists a non-singular linear transformation T such that ∥T (e1)∥2 = ∥T (e2)∥2 =
∥T (e1) − T (e2)∥2 = 2, and C(A) = C(T (A)). Note that in this setting we can use Lemma 6
to compare A to the disk of radius 1 and obtain 1

2 ∥x∥2 ≤ ∥x∥A ≤ 2∥x∥2 for every x ∈ R2.
We will construct G by specifying a finite point set A ⊂ R2 compatible with A and define

G = CA(A). The construction of A can be divided into several sub-constructions. We start
by describing a hexagon of points Hk for k ∈ N which satisfies that CA(Hk) is lattice unique.

▶ Construction 8 (Hk). For an illustration of the construction see the left-hand side of
Figure 6. For x, y ∈ L we write d(x, y) for the distance between x and y in the graph G0,
and for k ∈ N we define Hk = {x ∈ L | d(x, 0) ∈ {k, k + 1}}.

Using that G0 is the infinite triangular grid, it is easy to check that G0[Hk] is a lattice
unique graph by specifying an enumeration of its vertices satisfying the condition in Defin-
ition 7. Moreover, using that e1 and e2 satisfy ∥e1∥2 = ∥e2∥2 = ∥e1 − e2∥2 = 2 it follows
that the points {x ∈ L | d(x, 0) = k} ⊂ Hk lie on a regular hexagon Hk whose corners have
Euclidean distance exactly 2k to the origin. In particular any point p ∈ Hk has ∥p∥2 ≥

√
3k,

and thus ∥p∥A ≥
√

3
2 k by Lemma 6.

For a given θ ∈ [0, π) and ℓ ∈ N we will construct a set of points Bθ(ℓ) ⊂ R2 compatible
with A which constitute a “beam” of argument θ:

▶ Construction 9 (Bθ(ℓ)). See Figure 6 (right). Let eθ ∈ R2 be the vector of argument
θ with ∥eθ∥A = 2, and let fθ ∈ R2 be such that ∥fθ∥A = ∥fθ − eθ∥A = 2 (by the URTC
property we have two choices for fθ). For a given ℓ ∈ N we define

Bθ(ℓ) = {aeθ | a ∈ {−ℓ, . . . , ℓ}} ∪ {aeθ + fθ | a ∈ {−ℓ, . . . , ℓ − 1}}

As Bθ(ℓ) ⊂ LA(eθ, fθ) it is compatible with A. Moreover it is easy to specify an enumeration
of the vertices of C(Bθ(ℓ)) showing that it is lattice unique.

For a given k we want to choose ℓ as large as possible such that Bθ(ℓ) “fits inside” G0[Hk].
We then wish to “attach” Bθ(ℓ) to G0[Hk] with extra points S, the number of which does
neither depend on k nor on θ. We wish to do it in such a way that Ak

1(θ) := Bθ(ℓ)∪G0[Hk]∪S
is compatible with A. The precise construction is as follows:

A. Aamand, M. Abrahamsen, J. B. T. Knudsen, and P. M. R. Rasmussen 3:9

θ1

θ2

θ3

θ4

θ5

θ6

θ7

Figure 7 The final point set A where the point sets Ck(θ) are “glued” together by translating
them such that the contact graph realized by the union of the subsets Hk ⊂ Ck(θ) is lattice unique.

▶ Construction 10 (Ck(θ)). See Figure 6 (right). Consider the open line segment Lθ =
{reθ | r ∈ (−rmax, rmax)} where rmax is maximal with the property that for all points
x ∈ Lθ and all y ∈ Hk it holds that ∥x − y∥A > 4. Also let ℓ ∈ N be maximal such that
{aeθ | a ∈ {−ℓ, . . . , ℓ}} ⊂ Lθ. Note that

4 < dA({ℓeθ}, Hk) ≤ 6. Observe moreover that ℓ ≥
√

3
4 k − 3 as the points p ∈ Hk have

∥p∥A ≥
√

3
2 k. In particular we have the following property which we highlight for later use:

If k >
12√
3 − 1

it holds that ℓ >
k

4 . (1)

When ℓ is chosen in this fashion, we have that Bθ(ℓ) is contained in the interior of Hk.
Now, Bθ(ℓ) will constitute our beam in direction θ and we will proceed to show that we can
attach it to Hk, as illustrated, using only a constant number of extra points. That this can
be done is conceptually unsurprising but requires a somewhat technical proof.

We define S1(θ) to be extra points going from the boundary of Hk and zθ
1 to be the extra

point which connects Bθ(ℓ) and S1(θ). This attaches one end of the beam, Bθ(ℓ), to Hk, and we
similarly define S2(θ) and zθ

2 to attach the other end. See Figure 6 (right). In the full version
we show that |Si(θ)| ≤ 13 for i ∈ {1, 2}. Letting Ck(θ) = Hk ∪Bθ(ℓ)∪S1(θ)∪S2(θ)∪

{
zθ

1 , zθ
2
}

be the combination of the components completes the construction.

We are now ready to construct A which will consist of several translated copies Ck(θ).

▶ Construction 11 (A). By Lemma 4 we can find an ε ∈ (0, 1) and a finite set of directions
Θ ⊂ [0, π) such that for all linear maps T : R2 → R2 there exists θ ∈ Θ such that

∣∣∣∣
ρA(θ)

ρT (B)(θ) − 1
∣∣∣∣ ≥ ε. (2)

That we can scale the deviation to be multiplicative rather than additive is possible because
0 < infθ∈[0,π) ρA(θ) ≤ supθ∈[0,π) ρA(θ) < ∞.

For each θ ∈ Θ we construct a copy of Ck(θ) = Hk ∪Bθ(ℓ)∪S1(θ)∪S2(θ)∪{zθ
1 , zθ

2} where k

is yet to be fixed (ℓ is of course determined by k and θ). We then choose translations tθ ∈ R2

for each θ ∈ Θ such that the sets (Hk + tθ)θ∈Θ are pairwise disjoint, and
⋃

θ∈Θ(Hk + tθ) ⊂ R2

is compatible with A and induces a lattice unique contact graph. We can choose (tθ)θ∈Θ
in numerous ways to satisfy this. One is depicted in Figure 7. Another is obtained by

SoCG 2021

3:10 Classifying Convex Bodies by Their Contact and Intersection Graphs

enumerating Θ = {θ1, . . . , θq} and defining tθi = ((2k + 3)e1 − (k + 1)e2) × (i − 1). The exact
choice is not important and picking one, we define A(k) =

⋃
θ∈Θ(Ck(θ) + tθ) which is a point

set compatible with A. Lastly, we set A = A
(⌈ 180

ε

⌉)
.

We are now ready for the final step of the proof:

Proving that no graph in C(B) contains a subgraph isomorphic to G = CA(A).

Suppose for contradiction that there exists a set of points B ⊂ R2 such that G is isomorphic
to a subgraph of CB(B). We may clearly assume that |A| = |B| and we let φ : A → B be a
bijection which is also a graph homomorphism when considered as a map CA(A) → CB(B).
The points

⋃
θ∈Θ(Hk + tθ) induce a lattice unique contact graph of A. Thus, we may write⋃

θ∈Θ(Hk + tθ) = {p1, . . . , pn} such that p1, p2 and p3 induce a triangle of G and such that
for i > 3 there exist distinct j, k, l < i such that pj , pk and pl induce a triangle and such
that (pi, pk) and (pi, pl) are edges of G. By translating the point sets A and B we may
assume that φ(p1) = p1 = 0. Then applying an appropriate linear transformation T , thus
replacing B by T (B), we may assume that φ(p2) = p2 and φ(p3) = p3. Finally, the discussion
succeeding Definition 7 implies that in fact φ|⋃

θ∈Θ
(Hk+tθ) is the identity.

As noted in Construction 11, there exists θ ∈ Θ such that
∣∣∣ ρA(θ)

ρT (B)(θ) − 1
∣∣∣ ≥ ε. The outline

of the remaining argument is as follows: The Euclidean distance between the “endpoints”
of the beam Bθ(ℓ) is 2ℓρA(θ), but the rigidity of

⋃
θ∈Θ(Hk + tθ) means that it is also

2ℓρT (B)(θ) + O(1). When k (and hence ℓ) is large, this will contradict the inequality above.
We refer the reader to the full version of the paper for the technical details. ◀

▶ Remark 12. We claimed that the proof of the part of Theorem 1 concerning unit distance
graphs is identical to the proof above. In fact, if we replace C(X) by U(X) for X ∈ {A, B}
in the statement of Theorem 2, the result remains valid. To prove it we would construct A
in precisely the same manner. The important point is then that the comments immediately
prior to Theorem 1 concerning the rigidity of the realization of lattice unique graphs remains
valid. If in particular B ⊂ R2 satisfies that UA(A) ≃ UA(B) via the isomorphism φ : A → B,
we may assume that φ|⋃

θ∈Θ
(Hk+tθ) is the identity as in the proof above. The remaining part

of the argument comparing the lengths of the beams then carries through unchanged. In
conclusion, we are only left with the task of proving Theorem 1 for intersection graphs.

3 Intersection Graphs

In this section we prove Theorem 3. Consider two convex bodies A and B. We are going to
prove that if I(A) = I(B), then for every graph G ∈ C(A), there exists a graph Hk(G) ∈ I(A)
with properties as stated in the following lemma.

▶ Lemma 13. Assume that I(A) = I(B). For any G ∈ C(A) and k ≥ 7, there exists a graph
Hk(G) ∈ I(A) satisfying the following: Let X ∈ {A, B}. For any vertex w of G, there is a
corresponding vertex s0(w) of Hk(G) with the following properties. Consider an arbitrary
drawing of Hk(G) as in intersection graph of X and any two vertices w, w′ of G and let
s0 := s0(w) and s′

0 := s0(w′). Then ∥s0s′
0∥X ≥ 4k − 18. Furthermore, if ww′ is an edge of

G, then ∥s0s′
0∥X ≤ 4k + 2.

As is evident from the lemma, the vertices (s0(u))u∈V (G), of any drawing of Hk(G) as
an intersection graph of X, are placed approximately as the vertices of a drawing of G as
a contact graph of scaled convex body 2kX. To capture the uncertainty, we introduce the
concept of ε-overlap graphs.

A. Aamand, M. Abrahamsen, J. B. T. Knudsen, and P. M. R. Rasmussen 3:11

▶ Definition 14 (ε-overlap Graph). Let ε > 0 and A ⊂ R2 be a symmetric convex body, and
let v1, . . . , vn ∈ R2 be n points in the plane. Suppose that for any i, j ∈ [n], ∥vivj∥A ≥ 2 − ε.
A graph G with vertex set [n] and edge set satisfying E(G) ⊆

{
(i, j) ∈ [n]2

∣∣ ∥vivj∥A ≤ 2
}

is
called an ε-overlap graph of A. We say that {v1, . . . , vn} realize the graph G as an ε-overlap
graph of A. Further, we denote by Cε(A) the set of graphs that can be realized as ε-overlap
graphs of A.

We next show how Lemma 13 leads to a proof of Theorem 3. First, the following lemma
provides a reduction from ε-overlap graphs to contact graphs. The proof is a standard
compactness argument and can be found in the full version of the paper.

▶ Lemma 15. Let G1 = (V, E1) be a graph and A a convex body. If for every ε > 0, it holds
that G1 ∈ Cε(A), then there is a graph G2 = (V, E2) ∈ C(A) such that E1 ⊆ E2.

The following lemma uses Lemma 13 to show that if I(A) = I(B), then any G ∈ C(A) is
an ε-overlap graph of B for all ε > 0.

▶ Lemma 16. Assume that I(A) = I(B). For any G ∈ C(A), and any ε > 0, G ∈ Cε(B).

Proof. Write G = (V, E) and let k ≥ 7 be arbitrary. The assumption I(A) = I(B) in
particular implies that Hk(G) ∈ I(B). Consider a drawing of Hk(G) as an intersection graph
of B and define B :=

{
su

0
2k+1

∣∣∣ u ∈ V
}

. It follows from Lemma 13 that IB(B) is a drawing

of G as a
(

2 − 4k−18
2k+1

)
-overlap graph of B. Since 4k−18

2k+1 ≥ 2 − 10/k, it follows that G is an
10/k-overlap graph of B. As k ≥ 7 was arbitrary, the desired result follows. ◀

Theorem 3 is an easy consequence of Lemma 15 and Lemma 16:

Proof of Theorem 3. Let the graph G ∈ C(A) have the properties of the theorem, i.e., for
all H ∈ C(B), G is not isomorphic to a subgraph of H. Suppose that I(A) = I(B). By
Lemma 15 and 16, there is a graph H = (V, E) ∈ C(B) such that E′ ⊆ E, which is a
contradiction. ◀

It remains to prove Lemma 13. We will proceed to describe the construction of Hk(G)
and provide several lemmas needed in order to prove that it satisfies the desired properties.

The proofs of these lemmas and of Lemma 13 are deferred to the full version of the paper.
For each vertex u ∈ V (G), we make a copy of a graph Qk to be defined in the following.

The vertices of Hk(G) will in turn be the union of the vertices of these copies. We will
construct Qk to have a designated vertex s0 and a cycle αk with the property that for
every drawing of Qk as an intersection graph of X ∈ {A, B}, the cycle αk is contained in
(and winds all the way around) the annulus

{
x ∈ R2 ∣∣ ∥s0x∥X ∈ (2k − 3, 2k]

}
. We may then

informally view αk as an upscaled copy of X up to a slight imprecision that, compared to the
size, decreases in k. In order to construct Qk, we first define another graph Pk (which will be
contained in Qk) with a vertex s0 such that in every drawing of Pk as an intersection graph,
s0 is contained in k nested disjoint cycles. A priori, it is not clear what it means for s0 to be
contained in a cycle of the graph in every drawing, since the drawing is not necessarily a
plane embedding of the graph. However, as the following lemma shows, it is well-defined if
Pk is triangle-free. We believe the result to be well-known but have been unable to find the
exact formulation that we require in the literature.

▶ Lemma 17. If G is a triangle-free graph then every drawing of G as an intersection graph
is a plane embedding.

SoCG 2021

3:12 Classifying Convex Bodies by Their Contact and Intersection Graphs

t0, s0
s1

a1

b1
t1s2

a2

b2
κ1κ2t2

σ1

σ2

Figure 8 The construction of P2.

Proof. See the full version of the paper. ◀

We are now ready to define Pk ∈ I(A) for any k > 0. Besides being triangle-free, our aim
is that Pk should have the following properties:
1. There is a vertex s0 such that in any drawing of Pk as an intersection graph of A and B,

s0 is contained in k nested disjoint, simple cycles σ1, . . . , σk.
2. There is a path κk from a vertex sk to a leaf tk such that in any drawing of Pk as an

intersection graph of A or B, the path κk is on the boundary of the outer face.

▶ Construction 18 (Pk). See Figure 8. We define Pk = IA(Ak), where Ak is a set of points
to be defined inductively. Let A0 = {0} and P0 = IA(A0) be the trivial graph consisting
of one vertex s0 = t0, which is also the path κ0. Suppose now that Pk−1 = IA(Ak−1) has
been defined. In order to define Pk, we first add vertices ak, bk, sk and edges such that
τk := (ak, tk−1, bk, sk) is a 4-cycle. We now add vertices and edges that together with the
path ak, sk, bk form a cycle σk. We make σk so long that there exists a drawing as an
intersection graph in which Pk−1 is contained in σk with respect to both A and B. We finish
the construction of Pk by adding vertices and edges that together with sk form a path κk

from sk to a vertex tk, where κk is so long that it cannot be contained in the cycle σk, neither
as an intersection graph of A nor B. (Note that a path of length n contains n/2 independent
vertices. A simple volume argument implies a bound on the number of independent vertices
contained in the region enclosed by a cycle of a plane intersection embedding.) Let Ak consist
of Ak−1 together with all the added points.

▶ Lemma 19. The graph Pk has properties 1–2.

Proof. See the full version of the paper. ◀

The most important property of Pk is that every vertex u ∈ σk has distance Ω(k) to s0
in any drawing of Pk as intersection graph of any X ∈ {A, B} in the norm ∥·∥X . This is
exactly what we will use when constructing Qk.

▶ Lemma 20. Let X ∈ {A, B}. Consider any drawing of Pk as an intersection graph of X.
For any vertex u ∈ σk, we have ∥s0u∥X > 2(k/9 − 1).

Proof. See the full version of the paper. ◀

Having defined Pk we are now ready for the construction of Qk.

▶ Construction 21 (Qk). We here define a graph Qk ∈ I(A) by specifying a drawing of Qk

as an intersection graph of A. Let k′ := 18(k + 1). We start with Pk′ and explain what to
add to obtain Qk. Let u0, . . . , un−1 be the vertices of σk′ in cyclic, counter-clockwise order.
Consider an arbitrary drawing of Pk′ as an intersection graph of A and a vertex ui. Note
that d :=

⌈
∥s0ui∥A−2

2

⌉
is the number of vertices needed to add in order to create a path from

s0 to ui. It follows from Lemma 20 that d ≥ 2k.

A. Aamand, M. Abrahamsen, J. B. T. Knudsen, and P. M. R. Rasmussen 3:13

s0
α1

α2

σk′

u0

un−1

u1

πn−1
π0
π1

Figure 9 A part of a graph Qk. The vertices vi(j) are only shown for j ∈ {1, 2}, and only edges
on paths πi and cycles α1, α2, σk′ are shown.

We want to minimize the vector of these values d with respect to each vertex ui ∈ σk′ .
To be precise, we define

(d0, . . . , dn−1) := min
(⌈∥s0u0∥A − 2

2

⌉
, . . . ,

⌈∥s0un−1∥A − 2
2

⌉)
,

where the minimum is with respect to the lexicographical order and taken over all drawings
of Pk′ as an intersection graph. Consider a drawing of Pk′ as an intersection graph realizing
the minimum and let P be the set of vertices in the drawing. For each vertex ui, we create
a path πi from s0 to ui as follows. Let vi be the unit-vector in direction ui − s0. We add
new vertices placed at the points vi(j) := s0 + 2jvi for j ∈ {1, . . . , di}. We now define the
vertices of Qk as Q := P ∪ ⋃n−1

i=0 {vi(1), . . . , vi(di)} and define Qk = IA(Q). See Figure 9.

▶ Remark 22. By construction, there exists a drawing of Qk as an intersection graph of A.
If there does not exist one of B, we are done, since we then clearly have that I(A) ̸= I(B).
Now suppose that there exists a drawing of Pk′ as an intersection graph of B such that

(⌈∥s0u0∥B − 2
2

⌉
, . . . ,

⌈∥s0un−1∥B − 2
2

⌉)
≺ (d0, . . . , dn−1), (3)

where ≺ denotes the lexicographical order. We can now define a graph QB
k ∈ I(B) from Pk′

in a similar way as we defined Qk by adding
⌈

∥s0ui∥B−2
2

⌉
vertices to form a path from s0 to

each ui. It then follows from (3) that QB
k /∈ I(A), so in this case we have likewise succeeded

in proving I(A) ̸= I(B). In the following, we therefore assume that Qk ∈ I(B) for any k and
that no drawing of Pk′ as an intersection graph of B satisfying (3) exists.

First we need to show that Qk contains a cycle αk as described earlier.

▶ Lemma 23. The set of edges of Qk contains the pairs vi(j)vi+1(j) for any i ∈ [n] and
j ∈ {1, . . . , k}, and for each j ∈ {1, . . . , k}, these edges thus form a cycle αj. In the specific
drawing of Qk as an intersection graph defined in Construction 21, the cycle αj is contained
in the annulus

{
x ∈ R2 ∣∣ ∥s0x∥A ∈ [2j − 1, 2j]

}
.

Proof. See the full version of the paper. ◀

The above lemma shows that the cycle αk behaves nicely in one particular drawing of Qk

as an intersection graph. To see that something similar holds for every drawing, we refer the
reader to the full version.

We now provide the definition of the graph Hk(G), as mentioned in the beginning of this
section.

SoCG 2021

3:14 Classifying Convex Bodies by Their Contact and Intersection Graphs

s0 s′0A

αj

π′i′

s0 s′0A

αk−3 α′k−3

A′

Figure 10 From the proof of Lemma 13 (notation as in Lemma 25). There is either an intersection
between αj and π′

i′ (left) or between αk−3 and α′
k−3 (right) that violates Lemma 25.

▶ Construction 24 (Hk(G)). For any G ∈ C(A), consider a fixed drawing of G as a contact
graph of A. For each vertex w of G, we make a copy of the drawing of Qk as an intersection
graph as defined in Construction 21 which we translate so that s0 is placed at sw

0 := (2k−2)w.
We then add all edges induced by the vertices, and the result is denoted as Hk(G).

The following lemma characterizes some of the edges of Hk(G) and will be crucial in the
proof of Lemma 13.

▶ Lemma 25. Consider two vertices w, w′ of a drawing of a graph G as a contact graph.
Denote by Q and Q′ the copies of Qk in Hk(G) corresponding to w and w′, respectively,
such that s0, πi, αj , vi(j) denote objects in Q and s′

0, π′
i, α′

j , v′
i(j) denote objects in Q′. If

vi(j)v′
i′(j′) is an edge of Hk(G), then j + j′ ≥ 2k − 4.

If ww′ is an edge of G, then there is an edge vi(k)v′
i′(k) in Hk(G).

Proof. See the full version of the paper. ◀

As mentioned, the final proof of Lemma 13 is deferred to the full version, but we can now
provide the main ideas. We first need to prove that in any drawing of Qk as an intersection
graph with respect to X ∈ {A, B}, any cycle αj is contained in an annulus only slightly
wider than as stated in Lemma 23. Furthermore, αj winds around s0 in the sense that if we
trace the full curve αj , the change of argument with respect to s0 will be ±2π. To prove the
lower bound ∥s0s′

0∥X ≥ 4k − 18 in Lemma 13, we exclude that the distance is smaller by
dividing into two cases depending on the actual distance. Figure 10 depicts the two cases
for each of which we prove that there would be an edge in Hk(G) violating Lemma 25. The
upper bound ∥s0s′

0∥X ≤ 4k + 2 when ww′ is an edge of G is likewise an easy consequence of
Lemma 25, as otherwise, an edge vi(k)v′

i′(k) would be missing from Hk(G).

4 Concluding remarks

It is natural to investigate the special case of convex bodies with the URTC property. Here
our proof of Theorem 2 fails since the hexagons are not rigid structures. Together with
Konrad Swanepoel, we have promising progress in generalizing Theorem 1 to also handle
this case.

Another interesting direction is to consider convex bodies in three and higher dimensions.
Already in three dimensions, it appears to be very difficult to characterize when two bodies
induce the same graph classes.

References
1 Anders Aamand, Mikkel Abrahamsen, Jakob Bæk Tejs Knudsen, and Peter Michael Reichstein

Rasmussen. Classifying convex bodies by their contact and intersection graphs, 2019. Preprint.
arXiv:1902.01732.

A. Aamand, M. Abrahamsen, J. B. T. Knudsen, and P. M. R. Rasmussen 3:15

2 Édouard Bonnet, Nicolas Grelier, and Tillmann Miltzow. Maximum clique in disk-like
intersection graphs. Preprint, 2020. arXiv:2003.02583.

3 Károly Böröczky Jr. Finite packing and covering, volume 154 of Cambridge Tracts in Math-
ematics. Cambridge University Press, 2004.

4 Sergio Cabello and Miha Jejčič. Refining the hierarchies of classes of geometric intersection
graphs. The Electronic Journal of Combinatorics, 24(1):1–19, 2017.

5 Jean Cardinal. Computational geometry column 62. SIGACT News, 46(4):69–78, 2015.
6 Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogtenhuber.

Intersection graphs of rays and grounded segments. In Hans L. Bodlaender and Gerhard J.
Woeginger, editors, Graph-Theoretic Concepts in Computer Science, pages 153–166, Cham,
2017. Springer International Publishing.

7 Timothy M. Chan and Dimitrios Skrepetos. Approximate shortest paths and distance oracles
in weighted unit-disk graphs. Journal of Computational Geometry, 10(2), 2019.

8 Steven Chaplick, Stefan Felsner, Udo Hoffmann, and Veit Wiechert. Grid intersection graphs
and order dimension. Order, 35:363–391, 2018.

9 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86(1-3):165–177, 1990.

10 László Fejes Tóth. Lagerungen in der Ebene auf der Kugel und im Raum, volume 65 of Die
Grundlehren der mathematischen Wissenschaften. Springer, second edition, 1972.

11 Stefan Felsner and Günter Rote. On primal-dual circle representations. In 34th European
Workshop on Computational Geometry (EuroCG 2018), pages 72:1–72:6, 2018.

12 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discrete &
Computational Geometry, 62(4):879–911, 2019.

13 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
ETH-Tight Algorithms for Long Path and Cycle on Unit Disk Graphs. In 36th International
Symposium on Computational Geometry (SoCG 2020), pages 44:1–44:18, 2020. doi:10.4230/
LIPIcs.SoCG.2020.44.

14 Stefan Funke, Alexander Kesselman, Ulrich Meyer, and Michael Segal. A simple improved
distributed algorithm for minimum CDS in unit disk graphs. ACM Transactions on Sensor
Networks, 2(3):444–453, 2006. doi:10.1145/1167935.1167941.

15 György Pál Gehér. A contribution to the Aleksandrov conservative distance problem in two
dimensions. Linear Algebra and its Applications, 481:280–287, 2015.

16 Albert Gräf, Martin Stumpf, and Gerhard Weißenfels. On coloring unit disk graphs. Algorith-
mica, 20(3):277–293, 1998.

17 Svante Janson and Jan Kratochvíl. Thresholds for classes of intersection graphs. Discrete
Mathematics, 108:307–326, 1992.

18 Victor Klee. Some new results on smoothness and rotundity in normed linear spaces. Math-
ematische Annalen, 139(1):51–63, 1959.

19 P. Koebe. Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen
der Sächsische Akademie der Wissenschaften zu Leipzig, Mathematisch–Physische Klasse,
88:141–164, 1936.

20 Jan Kratochivíl and Jiří Matoušek. Intersection graphs of segments. Journal of Combinatorial
Theory Series B, 62(2):289–315, 1994.

21 M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple heuristics
for unit disk graphs. Networks, 25(2):59–68, 1995. doi:10.1002/net.3230250205.

22 Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs. Journal
of Combinatorial Theory, Series B, 103(1):114–143, 2013.

23 Tobias Müller, Erik Jan van Leeuwen, and Jan van Leeuwen. Integer representations of convex
polygon intersection graphs. SIAM Journal on Discrete Mathematics, 27(1):205–231, 2013.

SoCG 2021

3:16 Classifying Convex Bodies by Their Contact and Intersection Graphs

24 Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Contraction decomposition in unit
disk graphs and algorithmic applications in parameterized complexity. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pages
1035–1054, 2019.

25 Marco A. Peyrot-Solís, Giselle M. Galvan-Tejada, and Hildeberto Jardon-Aguilar. Proposal
of a planar directional UWB antenna for any desired operational bandwidth. International
Journal of Antennas and Propagation, 2014:1–12, 2014.

26 Oded Schramm. Combinatorically prescribed packings and applications to conformal and
quasiconformal maps. Preprint, 2007. arXiv:0709.0710.

27 Konrad Swanepoel. Combinatorial distance geometry in normed spaces. In Gergely Ambrus,
Imre Bárány, Károly J. Böröczky, Gábor Fejes Tóth, and János Pach, editors, New Trends in
Intuitive Geometry, volume 27 of Bolyai Society Mathematical Studies. Springer, 2018.

28 G. Fejes Tóth. New Results in the Theory of Packing and Covering, pages 318–359. Birkhäuser
Basel, Basel, 1983. doi:10.1007/978-3-0348-5858-8_14.

29 Weili Wu, Hongwei Du, Xiaohua Jia, Yingshu Li, and Scott C-H Huang. Minimum connected
dominating sets and maximal independent sets in unit disk graphs. Theoretical Computer
Science, 352(1-3):1–7, 2006.

30 Tudor Zamfirescu. Nearly all convex bodies are smooth and strictly convex. Monatshefte für
Mathematik, 103(1):57–62, 1987.

Appendix H

Tiling with Squares and Packing
Dominoes in Polynomial Time

199

Tiling with Squares and Packing Dominos in Polynomial Time

Anders Aamand∗ Mikkel Abrahamsen∗ Thomas D. Ahle∗
Peter M. R. Rasmussen∗

August 9, 2021

Abstract

A polyomino is a polygonal region with axis parallel edges and corners of integral coordinates,
which may have holes. In this paper, we consider planar tiling and packing problems with
polyomino pieces and a polyomino container P . We give two polynomial time algorithms, one
for deciding if P can be tiled with k × k squares for any fixed k which can be part of the
input (that is, deciding if P is the union of a set of non-overlapping k × k squares) and one for
packing P with a maximum number of non-overlapping and axis-parallel 2×1 dominos, allowing
rotations by 90◦. As packing is more general than tiling, the latter algorithm can also be used
to decide if P can be tiled by 2× 1 dominos.

These are classical problems with important applications in VLSI design, and the related
problem of finding a maximum packing of 2× 2 squares is known to be NP-Hard [J. Algorithms
1990]. For our three problems there are known pseudo-polynomial time algorithms, that is,
algorithms with running times polynomial in the area or perimeter of P . However, the standard,
compact way to represent a polygon is by listing the coordinates of the corners in binary. We
use this representation, and thus present the first polynomial time algorithms for the problems.
Concretely, we give a simple O(n log n) algorithm for tiling with squares, and a more involved
O(n3 polylogn) algorithm for packing and tiling with dominos, where n is the number of corners
of P .

∗Basic Algorithms Research Copenhagen (BARC), University of Copenhagen. BARC is supported by the VILLUM
Foundation grant 16582.

1 Introduction

Figure 1: The chessboard polyomino
envisioned by Max Black.

A chessboard has been mutilated by removing two diagonally
opposite corners, leaving 62 squares. Philosopher Max Black
asked in 1946 whether one can place 31 dominoes of size 1×2 so
as to cover all of the remaining squares? Tiling problems of this
sort are popular in recreational mathematics, such as the math-
ematical olympiads1 and have been discussed by Golomb [14]
and Gamow & Stern [12]. The mutilated chessboard and the
dominos are examples of the type of polygon called a poly-
omino, which is a polygonal region of the plane with axis par-
allel edges and corners of integral coordinates. We allow poly-
ominos to have holes.

From an algorithmic point of view, it is natural to ask
whether a given (large) polyomino P can be tiled by copies
of another fixed (small) polyomino Q, which means that P is
the union of non-overlapping copies of Q that may or may not
be rotated by 90◦ and 180◦. As the answer is often a boring no, one can ask more generally for the
largest number of copies of Q that can be packed into the given container P without overlapping.
Algorithms answering this question (for various Q) turn out to have important applications in very
large scale integration (VLSI) circuit technology. As a concrete example, Hochbaum & Maass [16]
gave the following motivation for their development of a polynomial time approximation scheme for
packing 2× 2 squares into a given polyomino P (using the area representation of P , to be defined
later):

“For example, 64K RAM chips, some of which may be defective, are available on a
rectilinear grid placed on a silicon wafer. 2 × 2 arrays of such nondefective chips could
be wired together to produce 256K RAM chips. In order to maximize yield, we want to
pack a maximal number of such 2×2 arrays into the array of working chips on a wafer.”

Although the mentioned amounts of memory are small compared to those of present day technology,
the basic principles behind the production of computer memory are largely unchanged, and methods
for circumventing defective cells of wafers (the cells are also known as dies in this context) is still
an active area of research in semiconductor manufacturing [7, 9, 18, 21].

The most important result in tiling is perhaps the combinatorial group theory approach by
Conway & Lagarias [8]. Their algorithmic technique is used to decide whether a given finite region
consisting of cells in a regular lattice (triangular, square, or hexagonal) can be tiled by pieces drawn
from a finite set of tile shapes. Thurston [26] gives a nice introduction to the technique and shows
how it can be used to decide if a polyomino without holes can be tiled by dominos. The running
time is O(a log a), where a is the area of P . Pak, Sheffer, & Tassy [22] described an algorithm with
running time O(p log p), where p is the perimeter of P .

The problem of packing a maximum number of dominos into a given polyomino P was apparently
first analyzed by Berman, Leighton, & Snyder [5] who observed that this problem can be reduced
to finding a maximum matching of the incidence graph G(P) of the cells in P : There is a vertex for
each 1× 1 cell in P , and two vertices are connected if the two cells share a geometrical edge. The

1See e.g. the “hook problem” of the International Mathematical Olympiad 2004.

1

graph G(P) is bipartite, so the problem can be solved in O(n3/2) time using the Hopcroft–Karp
algorithm, where n is the number of cells (i.e., the area of P).

On the flip-side, a number of hardness results have been obtained for simple tiling and packing
problems: Beauquier, Nivat, Remila, & Robson [2] showed that if P can have holes, the problem of
deciding if P can be tiled by translates of two rectangles 1×m and k × 1 is NP-complete as soon
as max{m, k} ≥ 3 and min{m, k} ≥ 2. Pak & Yang [23] showed that there exists a set of at most
106 rectangles such that deciding whether a given hole-free polyomino can be tiled with translates
from the set is NP-complete. Other generalizations have even turned out be undecidable: Berger [3]
proved in 1966 that deciding whether pieces from a given finite set of polyominos can tile the plane
is Turing complete. For packing, Fowler, Paterson, & Tanimoto [11] showed already in the early 80s
that deciding whether a given number of 3× 3 squares can be packed into a polyomino (with holes)
is NP-complete, and the result was strengthened to 2 × 2 squares by Berman, Johnson, Leighton,
Shor, & Snyder [4].

As it turns out, for all of the above results, it is assumed that the container P is represented
either as a list of the individual cells forming the interior of P or as a list of the boundary cells. We
shall call these representations the area representation and perimeter representation, respectively.
The area and perimeter representations correspond to a unary rather than binary representation of
integers and the running times of the existing algorithms are thus only pseudo-polynomial. It is much
more efficient and compact to represent P by the coordinates of the corners, where the coordinates
are represented as binary numbers. This is the way one would usually represent polygons (with
holes) in computational geometry: The corners are given in cyclic order as they appear on the
boundary of P , one cycle for the outer boundary and one for each of the holes of P . We shall call
such a representation a corner representation. With a corner representation, the area and perimeter
can be exponential in the input size, so the known algorithms which rely on an area or perimeter
representation to be polynomial, are in fact exponential when using this more efficient encoding of
the input. Problems that are NP-complete in the area or perimeter representation are also NP-
hard in the corner representation, but NP-membership does not necessarily follow. In our practical
example of semiconductor manufacturing, the corner representation also seems to be the natural
setting for the problem. Hopefully, there are only few defective cells to be avoided when grouping
the chips, so the total number of corners of the usable region is much smaller than its area.

El-Khechen, Dulieu, Iacono, & Van Omme [10] showed that even using a corner representation
for a polymino P , the problem of deciding if m squares of size 2 × 2 can be packed into P is in
NP. That was not clear before since the naive certificate specifies the placement of each of the m
squares, and so, would have exponential length. Beyond this, we know of no other work using the
corner representation for polyomino tiling or packing problems.

Our contribution. While the complexity of the problem of packing 2×2 squares into a polyomino
P has thus been settled as NP-complete, the complexity of the tiling problem was left unsettled.
Tiling and packing are closely connected in this area of geometry, but their complexities can be
drastically different. Indeed, we show in Section 3 that it can be decided in O(n log n) time by a
surprisingly simple algorithm whether P can be tiled by k × k squares for any fixed k ∈ N which
can even be part of the input. Here, n is the number of corners of P .2 With the area and perimeter

2We assume throughout the paper that we can make basic operations (additions, subtractions, comparisons)
on the coordinates in O(1) time. Otherwise, the time complexities of our two algorithms will be O(nt logn) and
O(n3t+ n3 polylogn), respectively, where t is the time it takes to make one such operation.

2

representations, it is trivial to decide if P can be tiled in polynomial time (see Section 3), but as
noted above, using the corner representation, it is not even immediately obvious that the problem
is in NP.

In Section 4.1-4.5, we provide and analyse an algorithm that can decide in O(n3 polylogn) time if
m dominos (i.e., rectangles of size 1×2 that can be rotated 90◦) can be packed in a given polyomino
P . This algorithm is more complicated and we consider it our most important contribution. The
algorithm implicitly constructs a maximum packing, and the same algorithm can be used to decide if
P can be tiled by dominos. In Section 4.6, we further describe a much simpler algorithm that works
by truncating long edges of P (using a multiple-sink multiple-source maximum flow algorithm as
a black box). The simplicity of this algorithm comes at the cost of a higher running time of
O(n4 polylogn). The proof that the simple algorithm works uses the same structural results as we
developed for the faster but more complicated algorithm. Table 1 summarises the known and new
results.

Shapes Tiling Packing

O(n3 polylogn) [This paper] O(n3 polylogn) [This paper]

O(n log n) [This paper] NP-complete [4, 10]

Table 1: Complexities of the four fundamental tiling and packing problems. Here, n is the number of corners
of the container P . The algorithm for tiling with squares works for any size k × k.

Further related work. The technique by Conway & Lagarias [8] has been adapted to obtain
algorithms for tiling with other shapes than dominos: Kenyon & Kenyon [19] showed how to decide
whether a given hole-free polyomino P can be tiled with translates of the rectangles 1 × m and
k × 1 for fixed integers m and k. The running time is again linear in the area of P . They also
described an algorithm to decide if a polyomino can be tiled by the rectangles k×m and m×k with
running time quadratic in the area. Rémila [25] generalized the work by Kenyon and Kenyon and
obtained a quadratic time algorithm for deciding whether a given hole-free polyomino can be tiled
by translates of two fixed rectangles k×m and k′×m′. Wijshoff & van Leeuwen [27] and Beauquier
& Nivat [1] gave algorithms for deciding whether a given polyomino tiles the entire plane. For work
on packing trominos, that is, polyominos consisting of three unit squares, see [17].

1.1 Our techniques

Tiling with k × k squares. We sort the corners of the given polyomino P by the x-coordinates
and use a vertical sweep-line ` that sweeps over P from left to right. The intuition is that the
algorithm keeps track of how the tiling looks in the region of P to the left of ` if a tiling exists. As
` sweeps over P , we keep track of how the tiling pattern changes under `. Each vertical edge of P
that ` sweeps over causes changes to the tiling, and we must update our data structure accordingly.

Packing with dominos. Our basic approach is to reduce the packing problem in the polyomino P
(with n corners) to a maximum matching problem in a graph G∗ with only O(n3) vertices and edges.

3

We prove that a maximum matching in G∗ corresponds to a maximum packing of dominos in P . The
construction of G∗ requires many techniques and the correctness relies on several structural results
on domino packings and technical lemmas regarding the particular way we define the intermediate
polyominos and graphs that are used to eventually arrive at G∗.

We first find the maximum subpolyomino P1 ⊂ P such that all corners of P1 have even coor-
dinates. We then use a hole-elimination technique: By carving channels in P1 from the holes to
the boundary, we obtain a hole-free subpolyomino P2 ⊂ P1. The particular way we choose the
channels is important in order to ensure that the final graph G∗ has size only O(n3). We now apply
a technique of reducing P by removing everything far from the boundary of P2: We consider the
subpolyomino Q ⊂ P2 of all cells with at least some distance Ω(n) to the boundary of P2, and then
we define P3 := P \Q (note that Q is removed from P and not from P2). The main insight is that
any packing of dominos in P3 can be extended to a packing of all of P that, restricted to Q, is a
tiling. For this to hold, it turns out to be important that P2 has no holes.

A crucial step is to prove that every cell in the polyomino P3 has distance O(n) to the boundary
of P3 and that P3 has O(n) corners. There may, however, still be an exponential number of cells in
P3 due to long pipes (corridors). We then develop a technique for contracting these long pipes. The
contraction is not carried out geometrically, but in the incidence graph G3 := G(P3) of the cells of
P3, by contracting long horizontal and vertical paths to single edges, and the resulting graph is G∗.

All vertices of G∗ correspond to cells of P3 with distance at most O(n) from a corner of P3,
and since P3 has O(n) corners, we get that G∗ has size O(n3). We then compute a maximum
matching in G∗ using a multiple-source multiple-sink maximum flow algorithm by Borradaile, Klein,
Mozes, Nussbaum, & Wulff-Nilsen [6], which has since been improved slightly by Gawrychowski &
Karczmarz [13]. This results in a running time of O(n3 polylogn). The number of dominos in a
maximum packing in the original polyomino P is then the size of the maximum matching plus half
of the area of everything that has been removed from P .

2 Preliminaries

We define a cell to be a 1× 1 square of the form [i, i+ 1]× [j, j + 1], i, j ∈ Z. A subset P ⊆ R2 is
called a polyomino if it is a finite union of cells. For a polyomino P , we define G(P) to be the graph
which has the cells in P as vertices and an edge between two cells if they share a (geometrical)
edge. We say that P is connected if G(P) is a connected graph. Figure 2 (a) illustrates a connected
polyomino. For a simple closed curve γ ⊂ R2, we denote by Int γ the interior of γ. An alternative
way to represent a connected polyomino is by a sequence of simple closed curves (γ0, γ1, . . . , γh)
such that (1) each of the curves follows the horizontal and vertical lines of the integral grid Z2, (2)
for each i ∈ {1, . . . , h}, Int γi ⊆ Int γ0, (3) for each distinct i, j ∈ {1, . . . , h}, Int γi ∩ Int γj = ∅,
and (4) for distinct i, j ∈ {0, . . . , h}, γi ∩ γj ⊆ Z2. For a connected polyomino P , there exists
a unique such sequence (up to permutations of γ1, . . . , γh) with P = Int γ \ (

⋃h
i=1 Int γi). It is

standard to reduce our tiling and packing problems to corresponding tiling and packing problems for
connected polyominos, so for simplicity we will assume that the input polyominos to our algorithms
are connected. The corners of a polyomino P (specified by a sequence (γ0, γ1, . . . , γh)), are the
corners of the curves γ0, . . . , γh. We assume that an input polyomino with n corners is represented
using O(n) words of memory by describing the corners of each of the curves γ0, . . . γh in cyclic order.

In this paper we will exclusively work with the L∞-norm when measuring distances. For two

4

γ0

γ2

(a) (b)

γ1

Figure 2: (a) A polyomino with two holes. (b) Extending a domino packing using an augmenting path in
G(P).

points a, b ∈ R2 we define dist(a, b) = ‖a− b‖∞. For two subsets A,B ⊆ R2 we define

dist(A,B) = inf
(a,b)∈A×B

dist(A,B).

In our analysis, A and B will always be closed and bounded (they will in fact be polynomios), and
then the inf can be replaced by a min. Finally, we need the notion of the offset B(A, r) of a set
A ⊆ R2 by a value r ∈ R. If r ≥ 0, we define

B(A, r) :=
{
x ∈ R2

∣∣ dist(x,A) ≤ r
}
,

and otherwise, we define B(A, r) := B(Ac,−r)c. Note that if r ≥ 0, we have A ⊂ B(A, r) and
otherwise, we have B(A, r) ⊂ A.

Note that a domino packing of P naturally corresponds to a matching of G(P) and we will
often take this viewpoint. We therefore require some basic matching terminology and a result on
how to extend matchings. Let G be a graph and M a matching of G. A path (v1, . . . , v2k) of G
is said to be an augmenting path if v1 and v2k are unmatched in M and for each 1 ≤ i ≤ k − 1,
v2i and v2i+1 are matched to each other in M . Modifying M restricted to {v1, . . . , v2k} by instead
matching (v2i−1, v2i) for 1 ≤ i ≤ k, we obtain a larger matching which now includes the two vertices
v1 and v2k. See Figure 2 (b) for an illustration in the context of domino packings. We require the
following basic result by Berge which guarantees that any non-maximum matching of G can always
be extending to a larger matching using an augmenting path as above.

Lemma 1 (Berge). Let G be a graph and M a matching of G which is not maximum. Then there
exists an augmenting path between two unmatched vertices G.

3 Tiling with squares

Naive algorithm. The naive algorithm to decide if P can be tiled with k × k tiles works as
follows. Consider any convex corner c of P . A k × k square S must be placed with a corner at c.
If S is not contained in P , we conclude that P cannot be tiled with k × k squares. Otherwise, we
recurse of the uncovered part P \ S. When nothing is left, we conclude that P can be tiled. This
algorithm runs in time polynomial in the area of P and also shows that if P can be tiled, there is
a unique way to do it.

5

Sweep line algorithm. For the ease of presentation, we focus on the case of deciding tileability
using 2×2 squares. It is straightforward to adapt the algorithm to decide tileability by k×k squares
for any fixed k ∈ N, as explained in the end of this section.

Our algorithm for deciding if a given polyomino P can be tiled with 2×2 squares uses a vertical
sweep line that sweeps over P from left to right. The intuition is that the algorithm keeps track of
how the tiling looks in the region of P to the left of ` if a tiling exists. As ` sweeps over P , we keep
track of how the tiling pattern changes under `. Each vertical edge of P that ` sweeps over causes
changes to the tiling, and we must update our data structures accordingly.

Recall that if P is tileable, then the tiling is unique. We define T (P) ⊂ P to be the union of
the boundaries of the tiles in the tiling of P , i.e., such that P \ T (P) is a set of open 2× 2 squares.
If P is not tileable, we define T (P) := ⊥.

Consider the situation where the sweep line is some vertical line ` with integral x-coordinate
x(`). The algorithm stores a set I of pairwise interior-disjoint closed intervals I = I1, . . . , Im ⊂ R,
ordered from below and up. Each interval Ii has endpoints at integers and represents the segment
I ′i := {x(`)} × Ii on `. In the simple case that no vertical edge of P has x-coordinate x(`) (so that
no change to the set P ∩ ` happens at this point), the intervals I together represent the part of ` in
P , i.e., we have P ∩ ` =

⋃
i∈[m] I

′
i. If one or more vertical edges of P have x-coordinate x(`), then

P ∩ ` changes at this point and the intervals I must be updated accordingly.
For each interval Ii we store a parity p(Ii) ∈ {0, 1}, which encodes how the tiling must be at I ′i

if P is tileable. To make this precise, we state the following parity invariant of the algorithm under
the assumption that P is tileable; see also Figure 3.

e2e3

e4 e6
e3

e4

Figure 3: Two instances that cannot be tiled. Left: The edge e2 splits the only interval in I into two smaller
intervals. Then e3 introduces a new interval with a different parity than the existing two. The edge e4 makes
the algorithm conclude that P cannot be tiled since e4 overlaps an interval with the wrong parity. Right:
The edges e3 and e4 introduce new intervals that are merged with the existing one. Edge e6 introduces an
interval which is merged with the existing interval and the result has odd length, so the algorithm concludes
that P cannot be tiled.

• If p(Ii) and x(`) have the same parity, then I ′i ⊂ T (P), i.e., I ′i follows the boundaries of some
tiles and does not pass through the middle of any tile.

• Otherwise, I ′i ∩ T (P) consists of isolated points, i.e., I ′i passes through the middle of some of
the tiles and does not follow the boundary of any tile.

We say that two neighboring intervals Ii, Ii+1 of I are true neighbors if Ii and Ii+1 share an
endpoint. In addition to the parity invariant, we require I to satisfy the following neighbor invariant :
Any pair of true neighbors of I have different parity.

6

The pseudocode of the algorithm is shown in Algorithm 1. Initially, we sort all vertical edges
after their x-coordinates and break ties arbitrarily. We then run through the edges in this order.
Each edge makes a change to the set P ∩ `, and we need to update the intervals I accordingly so
that the parity and the neighbor invariants are satisfied after each edge has been handled. Figure 3
shows the various events.

Consider the event that the sweep line ` reaches a vertical edge ej = {x}× [y0, y1]. If the interior
of P is to the left of ej , then P ∩ ` shrinks. Each interval Ii ∈ I that overlaps [y0, y1] must then
also shrink, be split into two, or disappear from I. This is handled by the for-loop at line 5. If
the parity of one of these intervals Ii does not agree with the parity of ej , we get from the parity
invariant that P cannot be tiled, and hence the algorithm returns “no tiling” at line 7.

If on the other hand the interior of P is to the right of ej , then P ∩ ` expands and a new interval
I must be added to I. This is handled by the else-part at line 9. The new interval I may have one
or two true neighbors in I. If one or two such neighbors also have the same parity as I, we merge
these intervals into one interval of I. This ensures that the neighbor invariant is satisfied after ej
has been handled.

In line 13, we consider the case that we finished handling all vertical edges at some specific
x-coordinate so that the sweep line will move to the right in order to handle the next edge ej+1 in
the next iteration. If there is an interval Ii of odd length in I, it follows from the parity invariant
together with the neighbor invariant that P cannot be tiled, so the algorithm returns “no tiling” at
line 14.

Algorithm 1:
1 Let e1, . . . , ek be the vertical edges of P in sorted order.
2 for j = 1, . . . , k do
3 Let [y0, y1] be the interval of y-coordinates of ej .
4 if the interior of P is to the left of ej
5 for each Ii ∈ I that overlaps [y0, y1] do
6 if Ii and x(ej) have different parity
7 return “no tiling”

8 Remove Ii from I, let J := Ii \ [y0, y1], and if J 6= ∅, add the interval(s) in J to I.
9 else

10 Make a new interval I := [y0, y1] with the parity p(I) := x(ej) mod 2 and add I to I.
11 if I has one or two true neighbors in I that also have the same parity as I
12 Merge those intervals in I.

13 if j < k and x(ej+1) > x(ej) and some Ii ∈ I has odd length
14 return “no tiling”

15 return “tileable”

The above explanation of the algorithm argues that if the invariants hold before edge ej is
handled, they also hold after. It remains to argue that they also hold before the next edge ej+1 is
handled in the case that the sweep line ` jumps to the right in order to sweep over ej+1. In the
open strip between the vertical lines containing ej and ej+1, there are no vertical segments of P .
Hence, the pattern of the tiling T (P) must continue as described by the parities p(Ii) in between

7

the edges ej and ej+1, so the parity invariant also holds before ej+1 is handled.
We already argued that if the algorithm returns “no tiling”, then P is not tileable. Suppose on

the other hand that the algorithm returns “tileable”. In order to prove that P can then be tiled,
we define for each j ∈ [k] a polyomino Pj ⊂ P . We consider the situation where the sweep line `
contains ej and ej has just been handled by the algorithm. We then define Pj to be the union of

• the part of P to the left of `, and

• the rectangle [x(`), x(`) + 1]× Ii for each Ii ∈ I with a different parity than x(`).

We first see that for each j ∈ [k], we have Pj ⊂ P . To this end, we just have to check that the
rectangles [x(`), x(`) + 1]× Ii are in P . If one such interval was not in P , there would be an edge of
P overlapping the segment {x(`)} × Ii. Since Ii has a different parity than x(`), this would make
the algorithm report “no tiling” at line 7, contrary to our assumption.

We now prove by induction on j that each Pj can be tiled. Since P = Pk, this is sufficient.
Along the way, we will also establish that P1 ⊂ P2 ⊂ . . . ⊂ Pk. When j = 1, we see that Pj is
empty, so the statement is trivial. Suppose now that Pj can be tiled and consider Pj+1. Note that
if x(ej) = x(ej+1), so that ` does not move, then Pj = Pj+1, since all intervals that are created or
modified when handling ej+1 have the same parity as x(`), so in this case, Pj+1 is tileable because
Pj is.

I1

I2

I3

I4

I5

x(ej) x(ej+1)

Figure 4: The polyomino Pj is the part of P to the left of the line x = x(ej) (this part of Pj is not shown)
plus the grey rectangles along the line. Here, the difference x(ej+1)− x(ej) is odd. The difference Pj+1 \ Pj

has been tiled with green 2× 2 squares.

Consider now the case x(ej) < x(ej+1). Note that as Pj ⊂ P and Pj is to the left of the vertical
line x = x(ej) + 1, we have Pj ⊂ Pj+1. We now consider the set Pj+1 \ Pj and argue that it is
tileable; see Figure 4. Let I1, . . . , Im be the intervals in I after ej was handled. For each Ii, we add
a rectangle X × Ii to Pj in order to obtain Pj+1, where X ⊂ R is an interval with lower endpoint
x(ej) or x(ej) + 1 and upper endpoint x(ej+1) or x(ej+1) + 1, and by the definition of Pj and Pj+1,
it follows that X has even length. Since each Ii also has even length (otherwise, the algorithm
would have returned “no tiling” at line 14 when ej was handled), the difference Pj+1 \ Pj is a union
of rectangles with even edge lengths, so Pj+1 is tileable since Pj is.

8

Runtime analysis. Assuming that we can compare two coordinates in O(1) time, we sort the
vertical edges by their x-coordinates in O(n log n) time. Since the intervals of I are pairwise interior-
disjoint, we can implement I as a balanced binary search tree, where each leaf stores an interval Ii.

We now argue that each vertical edge ej , with y-coordinates [y0, y1], takes only O(log n) time to
handle, since we need to make only O(1) updates to I. If the interior of P is to the left of ej , then
[y0, y1] ⊂

⋃
i∈[m] Ii. It then follows from the neighbor invariant that if [y0, y1] overlaps more than

one interval Ii, then the algorithm will return “no tiling”. We therefore do at most O(1) updates to
I, so it takes O(log n) time to handle ej .

On the other hand, if the interior of P is to the right of ej , we need to insert a new interval into
I and possibly merge it with one or two neighbors in I, so this also amounts to O(1) changes to I.

At line 13, we need to check the O(1) intervals that were added or changed due to the edge ej ,
so this can be done in O(1) time. Hence, the algorithm has runtime O(n log n).

Adaptation to k × k squares. In order to adapt the algorithm to k × k squares, we need to
compare coordinates modulo k instead of modulo 2. Specifically, each interval in I stores a number
p(I) ∈ {0, 1, . . . , k−1}, which is set to x(ej) mod k at line 10. We fail at line 6 if x(ej) mod k 6= p(Ii)
and at line 13 if some Ii has a length not divisible by k. At line 12, we merge I with the true
neighbours that have the same p-value. With these modifications, all arguments carry over to the
case of k × k squares.

4 Packing dominos

In this section we will present our polynomial time algorithm for finding the maximum number of
1× 2 dominos that can be packed in a polyomino P . We assume that the dominos must be placed
with axis parallel edges, but they can be rotated by 90◦. In any such packing, we can assume the
pieces to have integral coordinates: if they do not, we can translate the pieces as far down and
to the left as possible, and the corners will arrive at positions with integral coordinates. We first
describe a naive algorithm which runs in polynomial time in the area of the polyomino.

Naive algorithm. The naive algorithm considers the graph G(P) = (V,E) where V is the set
of cells of P and e = (u, v) ∈ E if and only if the two cells u and v have a (geometrical) edge in
common. The maximum number of 1 × 2 dominos that can be packed in P is exactly the size of
a maximum matching of G and it is well known that such a maximum matching can be found in
polynomial time in |V |, i.e., in the area of P .

Our goal is to find an algorithm running in polynomial time, even with the compact represen-
tation of P described in Section 2. In essence, we take the graph G = G(P) above and construct
from it a smaller graph, G∗, with O(n3) vertices. A maximum matching of G∗ yields an (implicit)
description of a maximum matching of G and we show that the maximum matching of G∗ can be
found in time O(n3 polylogn).

4.1 Polynomial-time algorithm

We will next describe the steps of our algorithm for finding the maximum domino packing of a
polyomino P . We first introduce the notion of a pipe (see Figure 5) and consistent parity.

9

Definition 1. Let P and Q be polyominos with Q ⊂ P . We say that Q is a pipe of P if Q is
rectangular and both vertical edges of Q or both horizontal edges of Q are contained in edges of
P . The width of the pipe is the distance between this pair of edges. The length of the pipe is the
distance between the other pair of edges. We say that a pipe is long if its length is at least 3 times
its width.

k
ℓ

Q

Figure 5: A pipe of width k and length `.

Definition 2. We say that a polyomino P has consistent parity if all first coordinates of the
corners of P have the same parity and vice versa for the second coordinates. Equivalently, P has
consistent parity if there exists an open 2× 2 square, S, such that for all choices of integers i, j and
S′ = S + (2i, 2j), either S′ ⊆ P or S′ ∩ P = ∅.

Next we present the steps of the algorithm. Figures 6–8 demonstrates the steps on a concrete
polyomino P .

Step 1: Compute the unique maximal polyomino P1 ⊂ P with all coordinates even.
We define P1 to be the union of all 2 × 2 squares S of the form S = [2i, 2i + 2] × [2j, 2j + 2] with
i, j ∈ Z and S ⊆ P . See the upper left and bottom part of Figure 6. It is readily checked that P1

has at most n corners. As we will see, P1 can be computed in time O(n log n).

Step 2: Compute a polyomino P2 ⊂ P1 with no holes and consistent parity by carving
channels in P1. Define P ′0 := P1. For i = 0, 1, . . ., we do the following. If there are holes in P ′i ,
we find a set of minimum size of 2 × 2 squares S1, . . . , Sk contained in P ′i and with even corner
coordinates that connects an edge of a hole to an edge of the outer boundary of P ′i . To be precise,
an edge of S1 should be contained in the boundary of a hole of P ′i , an edge of Sk should be contained
in the outer boundary of P ′i , and for each j ∈ {1, . . . , k − 1}, Sj and Sj+1 should share an edge.
We choose these squares such that they together form a 2 × 2k or 2k × 2 rectangle or an L-shape,
which is clearly always possible. We then define the polyomino P ′i+1 := P ′i \

⋃k
j=1 Sj , which has

less holes than P ′i . We stop when there are no more holes and define P2 := P ′i to be the resulting
hole-free polyomino. Note that in iterations i ≥ 1, the holes may get connected to holes that were
eliminated in earlier iterations or to channels carved in earlier iterations. See the upper right part
of Figure 6. We will later see that P2 has strictly less than 3n corners and that it can be computed
in time O(n3).

Step 3: Compute the offset Q := B(P2,−b3n/2c) and then P3 := P \Q. See the left part of
Figure 7. Note that we remove Q from the original polyomino P in order to get P3, and not from
P2. It is easy to check that Q has at most 3n corners and consistent parity. Hence P3 := P \ Q
has at most 4n corners and, as we will see, P3 has the property that for any x ∈ P3, we have
dist(x, ∂P3) = O(n). We will show how this step can be carried out in time O(n log n).

10

P1P

Figure 6: Steps 1 and 2 of the algorithm. Top left: Step 1, where the part P \ P1, that is excluded from P1

in order to make all coordinates even, is shown in red. Top right: Step 2, where the holes of a polyomino
P1 are connected to the outer boundary by the grey channels. Bottom: Closeup of the region in the dashed
rectangle.

Step 4: Find the long pipes of P3. Find all maximal long pipes T1, . . . , Tr in P3 (recall that
a pipe is long if its length is at least 3 times its width). See the right part of Figure 7. As we will
see, there are at most O(n) such pipes, they are disjoint, and they each have width O(n). Later we
will show how the pipes can be found in time O(n log n).

Step 5: Shorten the pipes and compute the associated graph G∗. Define G3 := G(P3).
We modify G3 by performing the following shortening step for each 1 ≤ i ≤ r; see Figure 8. Assume
with no loss of generality that the pipe Ti is of the form Ti = [0, `] × [0, k] where ` is the length
and k ≤ `/3 is the width. If ` ≤ 6, we do nothing. Otherwise, for each j ∈ {0, . . . , k − 1}, we
let Sj = [k + 2, r] × [j, j + 1], where r := 2d`/2e − k − 2, so that G(Sj) is a horizontal path in
G3 consisting of an even number of vertices. For each j ∈ {1, . . . , k − 1}, we proceed by deleting
the vertices of Sj and their incident edges from G3, and instead, we add an edge from the cell
[k+ 1, k+ 2]× [j, j+ 1] to the cell [r, r+ 1]× [j, j+ 1] (i.e., we connect the cells to the left and right
of Sj with each other).

We denote the graph obtained after iterating over all i by G∗. Note that in G∗, there are only
O(k2) = O(n2) vertices corresponding to cells in each pipe Ti, since each pipe has width k = O(n).
We show below that G∗ has O(n3) vertices and can be computed in time O(n3).

11

P2 QQ P3

Figure 7: Steps 3 and 4 of the algorithm, performed on the instance from Figure 6. Left: Step 3, where
the grey region Q is an offset of the hole-free polyomino P2. In this example, Q is connected, but that is in
general not the case. For pedagogical reasons, we offset by a smaller value than the algorithm would actually
use. Right: Step 4, where the grey and blue areas are P3 := P \Q. The blue rectangles show the seven long
pipes.

x = k + 2 x = 2⌈ℓ/2⌉ − k − 2

Ti

Figure 8: Step 5 of the algorithm. The part of the graph G(Ti) in between the dashed vertical lines is
substituted for long horizontal edges.

Step 6: Find the size of a maximum domino packing of P . We finally run a maximum
matching algorithm on G∗. Let M be the resulting maximum matching, N0 be the area of P , and
N2 be the number of vertices of G∗. The algorithm outputs |M |+(N0−N2)/2 as the value of a maxi-
mum domino packing of P . We show below that this step can be performed in time O(n3 polylogn).

This completes the description of the algorithm. In Section 4.2, we will provide some structural
results on domino packings and polyominos. In Section 4.3, we will use these results to argue that
the algorithm works correctly. In Section 4.4, we will show that the reduced graph G∗ has O(n3)
vertices and edges. Finally, in Section 4.5, we will use this to argue how the steps of the algorithm
can be implemented with the claimed running times.

4.2 Structural results on polyominos and domino packings

Building up to our structural results on domino packings, we require a definition and a few simple
lemmas. Variations of the following lemma is well-known. We present a proof for completeness.

Lemma 2. Let P be an orthogonal polygon with n corners and h holes. P can be divided into at
most n/2 + h− 1 rectangular pieces by adding only vertical line segments to the interior of P . If P
is a polyomino, the rectangular pieces can be chosen to be polyominos too.

Proof. For each concave corner of the polygon we add a vertical line segment in the interior of the
polygon starting from that corner and going upwards or downwards (depending on the rotation of

12

Figure 9: A partition of a polyomino with two holes into rectangles using vertical line segments (blue).

the given corner). This is illustrated in Figure 9. Let s be the number of line segments added. It
is easy to check that this gives a partition of P into exactly s− h+ 1 rectangles. With h holes, the
number of concave corners is n/2 + 2(h− 1), so also s ≤ n/2 + 2(h− 1) and the result follows.

Note that for a polygon with n corners, h ≤ (n− 4)/4, so we have the following trivial corollary.

Corollary 3. The number of rectangular pieces in Lemma 2 is at most 3
4n− 2.

We next show that the property of consisting parity is preserved under integral offsets.

Lemma 4. Let P be a polyomino. If P has consistent parity, then B(P, 1) and B(P,−1) have
consistent parity

Proof. Suppose P has consistent parity. Let S be a 2 × 2 square as in Definition 2. Define S1 =
S + (1, 1). It is easy to check that for all choices of integers i, j and S′1 := S1 + (2i, 2j), either
S′1 ⊆ B(P, 1) or S′1 ∩B(P, 1) = ∅. Thus B(P, 1) has consistent parity. The argument that B(P,−1)
has consistent parity is similar.

Lemma 5. Let P be a connected polyomino of consistent parity and without holes. Define L1 =
B(P, 1) \ P and L−1 = P \ B(P,−1). Then G(L1) and G(L−1) both have a Hamiltonian cycle of
even length.

Proof. To obtain a Hamiltonian cycle of G(L1), we can simply trace P around the outside of its
boundary, visiting all cells of L1 in a cyclic order. The corresponding closed trail of G(L1) visits
each vertex at least once. The assumption of consistent parity is easily seen to imply that we in
fact visit each vertex exactly once, so the obtained trail is a Hamiltonian cycle. The graph G(L1)
is bipartite, so the cycle has even length. The argument that G(L−1) has a Hamiltonian cycle of
even length is similar.

With the above in hand, we are ready to state and prove our main structural results on domino
packings. They are presented in Lemma 6 and Lemma 7.

Lemma 6. Let P and P0 be polyominos such that P0 ⊆ P , P0 has no wholes, and P0 has consistent
parity. Let the total number of corners of P and P0 be n. Define r = b38nc and Q = B(P0,−r).
There exists a maximum packing of P with 1× 2 dominos which restricts to a tiling of Q.

Let us briefly pause to explain the importance of Lemma 6. Suppose that P contains a region Q
as described. Then Lemma 6 tells us that any domino tiling of Q can be extended to a maximum
domino packing of P . We can thus disregard Q and focus on finding a maximum packing of P \Q,
thus reducing the problem to a smaller instance. This is one of our key tools for reducing the size
of the original polyomino P to a matching problem of polynomial size. Another tool, namely to

13

contract long pipes, will be described in Lemma 7 below, and in Section 4.4, we will conclude that
these two tools used carefully together reduce the packing problem to that of finding a maximum
matching in a graph G∗ of size O(n3).

Proof. It follows from Lemma 4 that Q has consistent parity, and it can thus be tiled with 2 × 2
squares and hence with dominos. Let Q be a tiling of Q.

P0

Q

Q

Q

Figure 10: The polyomino P0 and the offset Q (shown in green). The figure also illustrates the ’layers’ Ai

and their domino tilings, Ai.

Define R = P \ P0 and note that R has at most n corners. It follows from Corollary 3 that
R can be partitioned into less than 3

4n rectangular polyominos. Each of these rectangles has a
domino packing with at most one uncovered cell (which happens when the total number of cells in
the rectangle is odd). Fix such a packing R of the rectangles of R with dominos.

We next describe a tiling of P0 \Q as follows. For integers 1 ≤ i ≤ r we define, Ai = B(P0,−i+
1)) \ B(P0,−i). Intuitively, we can construct Q from P0 by peeling off the ‘layers’ Ai of P0 one
at a time. Let i ∈ {1, . . . , r} be fixed. As P0 has consistent parity, it follows from Lemma 4 that
B(P0,−i+ 1) has consistent parity. It is also easy to check that B(P0,−i+ 1) has no holes either,
and it then follows from Lemma 5 that each connected component of G(Ai) has a Hamiltonian cycle
of even length. These cycles give rise to a natural tiling of Ai; if (v1, . . . , v2k) is the sequence of
cells corresponding to such a cycle, then {v1 ∪ v2, v3 ∪ v4, . . . , v2k−1 ∪ v2k} is a tiling of the cells of
the cycle, and the union of such tilings over all connected components in G(Ai) gives a tiling of Ai

with dominos. Denote this tiling by Ai. See Figure 10 for an illustration of this construction.
Combining the tilings A1, . . . ,Ar and Q with the packing R, we obtain a domino packing, P, of

P where at most 3
4n cells of P are uncovered. We now wish to extend this packing to a maximum

packing in a way where we do not alter the tiling Q of Q. If we can do this, the result will follow.
Let M be the matching corresponding to P in G(P). We make the following claim.
Claim. Let k ≤ r. Suppose that the matching M can be extended to a matching of size |M | + k.
Then this extension can be made using a sequence C1, . . . , Ck of k augmenting paths one after the
other (that is, Ci is an augmenting path after the matching has been extended using C1, . . . , Ci−1)
such that for each i ∈ {1, . . . , k}, we have that Ci only uses vertices of G(R ∪⋃i

j=1Aj).

Before proving this claim, we first argue how the result follows. Since there are less than 3
4n

unmatched vertices in M , we can extend M to a maximum matching using at most r = b38nc
augmenting paths. By the claim, these paths can be chosen so that they avoid the vertices of G(Q).

14

In particular, we never alter the matching of G(Q), so the final maximum matching restricted to
G(Q) is just the tiling Q.

Figure 11: Left: An alternating path between two unmatched vertices which enters a connected component of
G(Ak). Right: Modifying the alternating path using the the Hamiltonian cycle of the connected component.

We proceed to prove the claim by induction on k. The statement is trivial for k = 0, so let
1 ≤ k ≤ r satisfy the assumptions of the claim and suppose inductively that C1, . . . , Ck−1 can be
chosen such that for each i ∈ {1, . . . , k − 1}, we have that Ci only uses vertices of G(R ∪⋃i

j=1Aj).
After augmenting the matching using C1, . . . , Ck−1, we have only modified the matching restricted
to G(R ∪⋃k

j=1Aj). By Lemma 1, we can find an augmenting path C ′k connecting two unmatched
vertices u, v of G(P). We will modify C ′k to a path Ck with Ck ⊂ R ∪ ⋃k

j=1Aj . Write C ′k : u =
u1, u2, . . . , u2` = v. Let D be a Hamiltonian cycle of one of the connected components of G(Ak);
see Figure 11. If the path C ′k ever enters the vertices of D, we let i be minimal such that ui ∈ D
and j be maximal such that uj ∈ D. We can now replace the subpath ui, ui+1, . . . , uj of Ck with
part of the Hamiltonian cycle D. Whether we go clockwise or counterclockwise along D depends on
whether ui is matched with ui+1 in a clockwise or counterclockwise fashion in D. We do the same
modification for every Hamiltonian cycle D corresponding to a connected component of G(Ak) that
that C ′k intersects. Note that each cycle D partitions the vertices G(P) \D into an interior and an
exterior part. Since P0 has no holes and u, v ∈ R, the original path C ′k enters D from the exterior
at ui and likewise leaves D into the exterior at uj . Also note that Q is contained in the interior
parts of the cycles of G(Ak). It then follows that the final resulting path Ck avoids Q and Aj for
j > k, so it is contained in R ∪⋃k

j=1Aj .

As it turns out, Lemma 6 is not in itself sufficient to yield a polyomino with area nO(1). For
example, P may contain exponentially long and narrow pipes (see Definition 1), say of width n/10,
which will remain even when Q is removed. Surprisingly, it turns out that such narrow pipes are
the only obstacles that prevent us from reducing to an instance of size polynomial in n. This is
what motivates the following lemma which intuitively yields a reduction for shortening long narrow
pipes.

Lemma 7. Let k, ` ∈ N with ` even. Let L ⊆ [−1, 0] × [0, k], R ⊆ [`, ` + 1] × [0, k] be polyominos
and define P = L ∪ R ∪ ([0, `] × [0, k]). Color the cells of the plane in a chessboard like fashion
and let b and w be respectively the number of black and white cells contained in P . Assume without
loss of generality that b ≥ w. If ` ≥ 2k, then the number of uncovered cells in a maximum domino
packing of P is exactly b − w. Moreover, there exists a maximum domino packing such that the
rectangle [k + 1, ` − k − 1] × [0, k] is completely covered and all dominos intersecting the rectangle
are horizontal.

15

(a) (b) (c)

(d)

Figure 12: (a) The polyomino P . (b) Shifting a notch. (c) Cancelling two notches. (d) The partial packing
obtained after shifting notches downwards and cancelling notches when possible (gray) and the horizontal
dominos completing the packing (green).

Proof. As each domino covers one black and one white cell, any packing will leave at least b−w cells
uncovered. We thus need to demonstrate the existence of a packing with exactly b − w uncovered
cells. To see that such a packing exists, it is very illustrative to consider Fig. 12. An example of a
polyomino, P , is illustrated in Fig. 12(a). We first tile as many cells of L and R as possible, such
that no two uncovered cells of L and R share an edge. We will call these uncovered cells notches.
We next show how we can alter the configuration of notches by only adding a layer of width 2.
First, we note that a notch can be shifted an even number of cells downwards or upwards using
the construction in Fig. 12 (b). In case we have two notches of different colours in the chessboard
coloring and with no other notches between them, we can use the construction in Fig. 12 (c) to
cancel these two notches from the configuration of notches. Our goal is to use the constructions of
(b) and (c) to shift the notches of L and R downwards, cancelling notches if possible. Going through
the notches of L from bottom to top, we shift them down as far as possible using the construction in
(b). In case a notch has a different color than the nearest notch below it, we use construction (c) to
cancel them. We further add horizontal dominos such that the configuration of notches is preserved
at all other positions than where the shifting or cancelling occurs. We do a similar thing for R. The
process from start to end is illustrated in Fig. 12(d) which also shows the resulting partial tiling.
The red lines in the figure separate the steps of the process.

Note that each added layer of the process has thickness 2. Initially, each of L and R consists of
at most dk/2e notches (after the first step which isolates the notches). Moreover, if k is odd and

16

there is dk/2e notches in L or R, then no shifting/cancelling is needed on that side. It then follows
from the assumption l ≥ 2k that we are able to finish this partial packing. Let b′ and w′ be the
number of black and white cells uncovered by this partial packing. Then b′ −w′ = b−w. It is also
easy to check that we can complete the packing of P using only horizontal dominos and leaving
exactly b′ − w′ = b− w cells uncovered. This completes the proof.

Lemma 7 allows us to ’shorten’ long and narrow pipes when searching for the maximum domino
packing. It follows from the Lemma that going from G3 to G∗ in the shortening step 5 of our
algorithm does not alter the number of unmatched vertices in a maximum matching. We will return
to this in Section 4.3. Note that, unlike in Lemma 6, we cannot simply remove (part of) the pipe
from the polyomino. The following lemma allows us to upper bound the size of a set of overlapping
pipes no two of which are contained in the same larger pipe.

Lemma 8. Let G = (V,E) be a graph of order n ≥ 2 with no self-loops but potential multiple edges.
Suppose that G has a planar embedding such that for any pair of multiple edges (e1, e2), the Jordan
curve formed by e1 and e2 in the planar embedding of G contains a vertex of G in its interior. Then
the number of edges of G is upper bounded by 3n− 5.

Proof. In what follows, we will use the classic result that the number of edges of a simple planar
graph of order n is upper bounded by 3n − 6. We prove the result by strong induction on n. For
n = 2 the result is trivial so let n > 2 be given and suppose the bound holds for smaller values
of n. Let E be a planar embedding of G. Let (e1, e2) be a pair of distinct multiple edges that is
minimal in the sense that no other such pair (e′1, e

′
2) exists with the following property: If γ and γ′

are the Jordan curves formed by (e1, e2) and (e′1, e
′
2) in E , then Int γ′ ⊂ Int γ. Assume that e1 and

e2 connect vertices u and v. Let V ′ be the set of vertices of G that are contained in Int γ under E
and let k = |V ′|. Then, 1 ≤ k ≤ n− 2. Let G1 = (V1, E1) where V1 = V ′ ∪ {u, v} and E1 is formed
by e1 together with all edges of G that are incident to a vertex in V ′. Let G2 = (V2, E2) where
V2 = V \ V ′ and E2 = E \ E1. Clearly G1 is a simple planar graph on k + 2 vertices. Moreover, it
is readily checked that G2 is a planar graph on n− k vertices which satisfies the assumptions of the
lemma. Note that 2 ≤ n− k < n. It thus follows from the inductive hypothesis that the number of
edges of G is upper bounded by

3(n− k)− 5 + 3(k + 2)− 6 = 3n− 5.

This completes the proof.

Lemma 9. Let P be a polyomino with n corners. Let Q1, . . . , Qr be pairwise disjoint pipes of P ,
no two of which are contained in a larger pipe of P , i.e., for no two distinct i, j does there exist a
pipe Q with Qi ∪Qj ⊆ Q. Then r ≤ 3n− 5.

Proof. We construct a graph G = (V,E) as follows. V is the set of (geometric) edges of P . For
each i ∈ {1, . . . , r} we let ui, vi ∈ V be the two parallel edges of P which contain two opposite sides
of Qi and we add the edge (ui, vi) to E. G is thus a graph of order n with exactly r edges. We note
that G may have multiple edges but it has a natural planar embedding, E , such that for each pair
of multiple edges (e1, e2) the Jordan curve formed by e1 and e2 under E contains a vertex of G in
its interior (see Figure 13). Here we used that for any two i, j with 1 ≤ i < j ≤ r, the two pipes Qi

and Qj are not contained in a larger pipe of P . It thus follows from Lemma 8 that r ≤ 3n− 5.

17

Qi Qj

Figure 13: The construction of the planar graph G. Pipes are shown in grey. The white rectangle between,
Qi and Qj must contain some nonempty subset of ∂P in its interior — otherwise this rectangle could joined
with Qi and Qj forming a larger pipe of P containing both Qi and Qj .

We need to argue that the algorithm outputs the correct value and that the different steps can
be implemented to obtain the stated running times.

4.3 Correctness of the domino packing algorithm

We now refer the reader back to the description of our domino packing algorithm from Section 4.1
and show that it correctly finds the size of a maximum domino packing. To show this, it suffices
to show that maximum matchings of G0 and G∗, leave the same number of unmatched vertices.
First note that P1 has at most n corners. Further, a polyomino with n corners can have at most
(n − 4)/4 holes, and since we remove a hole and add at most 6 new corners in going from P ′i to
P ′i+1, P2 has at most 5n/2 < 3n corners. It follows that also Q = B(P2, b3n/2c) has at most 3n
corners. Letting n1 denote the number of corners of P3 = P \Q it finally follows that n1 ≤ 4n. Now
dist(∂P,Q) ≥ b3n/2c ≥ b38n1c and moreover, Q has consistent parity and no holes, so Lemma 6
applies, giving that G0 has a maximum matching, which restricts to a perfect matching of G(Q)
and to a maximum matching of G3. In particular, maximum matchings of G0 and G1 leave the
same number of vertices unmatched.

Next, we argue that maximum matchings of G3 and G∗ again leave the same number of vertices
unmatched. It is easy to see that a maximum matching of G∗ can be extended to a matching of G3

with the same number of unmatched vertices by simply inserting more horizontal dominos in the
horizontal pipes and vertical dominos in the vertical pipes (here we use that the Sj ’s as defined in
Step 3, each consists of an even number of cells). Conversely, let M1 be a maximum matching of
G3. We show that G∗ has a matching, M2, with the same number of uncovered cells. For this we
consider the pipes (Ti)

r
i=1 found in step 4 of the algorithm. For each 1 ≤ i ≤ r, we let T ′i be the

pipe obtained from Ti by shortening Ti by one layer of cells in each end. The length of T ′i is thus
two shorter than that of Ti. Let further Li ⊇ T ′i consist of all cells of P which are covered by a
domino which cover at least one cell of T ′i . The sets (Li)

r
i=1 are pairwise disjoint and they are each

of the form of the set L in Lemma 7 (up to a 90 degree rotation). Moreover, the maximum matching
M1 restricts to a maximum matchings of M ′1 of G(P3 \

⋃r
i=1 Li) and a maximum matching M (i)

1 of
G(Li) for 1 ≤ i ≤ r. For 1 ≤ i ≤ r, we let G(i)

3 = G(Li) and G(i)
2 be the corresponding subgraph

of G2. We define M2 to be M ′1 combined with any maximum matchings of the G(i)
2 , 1 ≤ i ≤ r. By

applying Lemma 7 to each Li, it follows that the maximum matchings of G(i)
3 and G

(i)
2 leave the

same number of unmatched vertices. It thus follows that M2 and M1 leave the same number of
unmatched vertices. This finishes the argument that the algorithm works corrrectly.

18

4.4 Bounding the size of the reduced instance

In determining the running time of our algorithm, it is crucial to bound the size of the reduced
instance G∗. In this section we show that G∗ has O(n3) vertices. As explained in the next section,
we can then find a maximum matching of G∗ in O(n3 polylogn) time.

We start out by proving the following lemma.

Lemma 10. The polyomino P3 contains no 63n× 63n square subpolyomino.

Proof. Let n′ = b3n/2c. We show that P3 contains no 41n′×41n′ square as a subpolyomino and the
desired result will follow. Suppose for contradiction that S ⊆ P3 is such a subpolyomino. Note that
Q consists of exactly those points of P1 of distance at least n′ to all the channels of C := P1 \ P2

and to ∂P1. Thus any point x ∈ P3 has distance at most n′ to C or to ∂P1. In particular S contains
a 39n′ × 39n′ square subpolyomino, S1 ⊆ P1, all points of which are of distance at least n′ to ∂P1

and thus, of distance at most n′ to C.

S1

S′
1

S2

S2

S
(1)
2 S

(2)
2 S

(3)
2 S

(4)
2 S

(5)
2 S

(6)
2

S3

(b) (c)(a)

C ′

C ′′

C ′

Ĉ ′′C1

C1

C2 C3

Figure 14: Situations in the proof of Lemma 10.

By the way we chose the channels, each channel connects a hole of P1 with either the boundary
of P1 or with a channel already carved in an earlier iteration. Since ∂P1 ∩ S1 = ∅, it follows that
any channel intersecting S1 has an end outside S1 and thus leaves S1 through an edge of S1.

Write S′1 for the central 3n′ × 3n′ square polyomino of S1; see Figure 14 (a). Since any point of
S1 is of distance at most n′ to C, S′1 must intersect a channel C1 ⊂ C (depicted in red in the figure).
We know that C1 leaves S1. It is simple to check that this leads to the existence of an 18n′ × 19n′

rectangular polyomino S2 ⊆ S1 having along one of its sides a straight part of the channel C1 of
length 18n′; see Figure 14 (b). Assume with no loss of generality that S2 = [0, 18n′]× [0, 19n′] and
that the channel C1 runs along the base of the rectangle S2 as in the figure. For 1 ≤ i ≤ 6 we define
S
(i)
2 to be the square polyomino [3(i− 1)n′, 3in′]× [0, 3n′]. By the same reasoning as above, each of

these squares must intersect the set of channels C non-trivially. As each channel turns at most once
by construction, the squares S(i)

2 are disjoint from C1. To finish the proof, we require the following
claim.

19

Claim. Let B = [0, k]× [0, `], k, ` ∈ N be a k × ` square polyomino. Suppose that [0, k]× [−1, 0] is
contained in some channel, C ′, and that [0, k] × [`, ` + 1] is contained in some other channel, C ′′.
Then k ≤ `+ 2.

Proof of Claim. See Figure 14 (c). Suppose without loss of generality that C ′ was carved in iteration
i and C ′′ was carved in iteration j in the process of generating P2 in step 2 of the algorithm, and
that i < j. The channel C ′′ was chosen to connect a yet unconnected hole H of P ′j−1 with the
outer boundary of P ′j−1 along a shortest path in the L∞-norm. At the time C ′′ was carved, C ′ had
already been carved and thus the edges of C ′ (except the two “ends” of length 2) is part of the outer
face of P ′j−1. Under the assumption k > `+ 2, we can find a shorter path connecting H to ∂P ′j−1;
see the bottom part of Figure 14 (c). This shorter path shows that we could have picked a shorter
channel Ĉ ′′ in place of C ′′. This is a contradiction, so we conclude that k ≤ `+ 2.

Let us now finish the proof of the lemma. We know that the two squares S(2)
2 and S

(5)
2 each

intersect channels of C. Let us denote these not necessarily distinct channels respectively C2 and
C3. If these channels are the same, the channel C2 passes straight through S(3)

2 . But then the two
channels C1 and C2 run in parallel for a length of at least 3n′ + 4 and they have distance at most
3n′ which gives a contradiction with the claim. Thus C2 and C3 are different channels. By the same
reasoning as for C1, the channel C2 must leave S2. If it does so in a direction parallel to C1, we
similarly obtain a contradiction with the claim. Thus, it most leave S2 in a direction perpendicular
to C1. The same logic applies to C3; see Figure 14 (b). Now the two channels C2 and C3 provide a
contradiction to the claim. Indeed, their straight segments span a box, S3, of dimensions ` × 18n′

where ` ≤ 18n′− 4. With this contradiction, we conclude that P3 contains no 41n′× 41n′ square as
a subpolyomino and the proof is complete.

Remark. No serious effort has been made to optimize the constants in Lemma 10.

Corollary 11. For any x ∈ P3, we have dist(x, ∂P3) ≤ 32n.

Proof. If not, P3 contains a 63n× 63n square, a contradiction.

Corollary 11 shows that each point of P3 is of distance O(n) to the boundary of P3. In particular,
this shows that the long pipes, T1, . . . , Tr, found in step 4 of the algorithm all have width at most
O(n). By Lemma 9, r = O(n), so when performing the shortening reduction in step 5 of our
algorithm, the part of G∗ contained in contracted pipes gets size O(n3). We finish this section by
showing that P3 \

⋃r
i=1 Ti also consists of O(n3) cells. From this it will follow that G∗ is of order

O(n3) which is what we require. We state the result as a lemma.

Lemma 12. The reduced instance G∗ found by our algorithm has O(n3) vertices and edges.

Proof. For technical reasons to be made clear shortly we define T ′i to be the pipe obtained from Ti
by shortening Ti by a layer of cells in each end. The length of T ′i is thus exactly the length of Ti
minus 2. Let R be the polyomino P3 \

⋃r
i=1 T

′
i . Consider a (geometrical) edge, e, in the set ∂R\∂P3

which is an edge forming an end of a shortened pipe T ′i . It then follows that the endpoints of e
are corners of R and in particular that e is not contained in a longer edge of ∂R (this would not
necessarily be the case if we had not shortened the pipes a layer in each end when defining R). We
will use this observation shortly.

20

As discussed, it suffices to show that R has O(n3) cells. Note that R has O(n) corners: Indeed,
R is obtained from P3, which has O(n) corners, by removing O(n) pipes, each of which adds only
4 corners. We show that any point x ∈ R is of distance O(n) from a corner. Since each corner can
have at most O(n2) cells within distance O(n), this will show that R has O(n3) cells.

So let x ∈ R be arbitrary. Also let c := 32. By Corollary 11, any point of P3 is of distance at
most cn to ∂P3. It follows that, similarly, any point of R is of distance at most cn to ∂R. Let S be
the 6cn× 6cn square centered at x and suppose that S contains no corner of R. Then ∂R ∩ S is a
collection of horizontal and vertical straight line segments. Moreover, they are either all horizontal
or all vertical as otherwise, they would intersect in a corner of R inside S. Assume without loss of
generality that they are all horizontal. Using that any point of R is of distance at most cn to ∂R,
it follows that there exists two such parallel segments of distance at most 2cn, one being above x
and one being below. Take a closest pair of such segments. Together they form a pipe, T , of R of
length 6cn and width at most 2cn, i.e., a pipe of a length at least three times its width. Now T
is disjoint from the pipes T1, . . . , Tr (since T ⊂ R and each T ′i is disjoint from R). T is a pipe of
R but we claim that it is in fact also a pipe of P3. To see this, we note that by Corollary 11, the
pipes found in step 4 of our algorithm have width at most 2cn. In particular, the edges of ∂R \ ∂P3

have length at most 2cn and we saw that they are not contained in longer edges of ∂P3. However,
the pipe T has length 6cn and so, the long edges of T are in fact edges of ∂P3, so T is a pipe of
P3. This contradicts the maximality of the set of pipes T1, . . . , Tr. We thus conclude that S must
contain a corner of ∂R. Since x ∈ R was arbitrary, this shows that any point in R is of distance at
most 3cn = O(n) to a corner of R and the proof is complete.

4.5 Implementation of the individual steps

We next describe how the different step of our domino tiling algorithm can be implemented.

Step 1: Compute the unique maximal polyomino P1 ⊂ P with all coordinates even. We
first compute the set P1 ⊂ P with consistent parity. To obtain P1, we move all corners of P to the
interior of P to the closest points with even coordinates as shown in Figure 6.

Moving the corners may cause some corridors of P to collapse (namely the corridors of P of
thickness 1), so that P1 has overlapping edges corresponding to degenerate corridors. The degenerate
vertical corridors can be filtered out in O(n log n) time as follows (and the degenerate horizontal ones
are handled analogously). We sort the vertical edges after their x-coordinates and thus partition
the edges into groups with identical x-coordinates. For each group of vertical edges with the same
x-coordinate, we sort them according to the y-coordinates of their lower endpoints. Let e1, . . . , ek
be one such sorted group. We run through the edges e1, . . . , ek in this order. For each edge ei, we
run through the succeeding edges until we get to an edge ej which is completely above ei. For each
of the overlapping edges ek, k ∈ {i+ 1, . . . , j−1}, we remove the corresponding degenerate corridor
of P1 created by ei and ek. Since no triple of edges can be pairwise overlapping, there are O(n)
overlapping pairs in total, so this process is dominated by sorting, which takes O(n log n) time.

Step 2: Compute a polyomino P2 ⊂ P1 with no holes and consistent parity by carving
channels in P1. Remember that we need to find a set of minimum size of 2×2 squares S1, . . . , Sk
contained in P ′i and with even coordinates that connects an edge of a hole to an edge of the outer
boundary of P ′i . For each pair of an edge of a hole of P ′i and an edge of the outer boundary of P ′i ,
we can compute the size of the smallest set of squares connecting those two edges in O(1) time, so

21

by checking all pairs, we find the overall smallest set in O(n2) time. Note that no edge of a middle
square Sj , 2 ≤ j ≤ k − 1, is contained in the boundary ∂P ′i , since otherwise, there would be a
smaller set of squares with the desired properties. Therefore, constructing P ′i+1 := P ′i \

⋃k
j=1 Sj can

then be done in O(1) time once the squares Sj have been found. Since there are initially O(n) holes
to eliminate, the process takes O(n3) time in total.

P2 P2

Figure 15: Left: The L∞ Voronoi diagram V D = V D(P2) of the edges of a polyomino P2. Right: The blue
parts of V D are the subgraphs that have some sufficient distance d to the boundary ∂P2. The red cycles
enclose the regions of P2 with at least distance d to ∂P2.

Step 3: Compute the offset Q := B(P2,−b3n/2c) and then P3 := P \ Q. We now explain
how to compute the set Q ⊂ P2 defined by Q := B(P2,−d3n/4e). The boundary of Q can be
computed from the L∞ Voronoi diagram V D := V D(P2) of the edges of P2 by a well-known
technique described by Held, Lukács, & Andor [15], as follows. The Voronoi diagram V D is a plane
graph contained in P2 that partitions P2 into one region R(ei) for each edge ei of P2, such that if
x ∈ R(ei) then dist(x, ei) = dist(x, ∂P2), and V D consists of horizontal and vertical line segments
and line segments that make 45◦ angles with the x-axis; see Figure 8 (left).

We find all maximal subgraphs of V D consisting of points with distance at least d3n/4e to ∂P2.
The leafs of each subgraph G lie on a cycle in P2 where the distance to ∂P2 is constantly d3n/4e,
and the cycles can be found by traversing the leafs of G in clockwise order; see [15] for the details
and Figure 8 (right) for a demonstration.

We can compute V D in O(n log n) time using the sweep-line algorithm of Papadopoulou &
Lee [24]. In our special case where all edges are horizontal or vertical, the algorithm becomes
particularly simple as described by Martínez, Vigo, Pla-García, & Ayala [20]. Once we have V D, it
takes O(n) time to compute ∂Q.

One can avoid the computation of V D by offsetting the boundary into the interior by distance
1 repeatedly d3n/4e times. After each offset, we remove collapsed corridors as described in step 1.
This would take in total O(n2 log n) time.

The representation of P3 := P \ Q is obtained by simply adding the cycles representing the
boundary of Q to the representation of P .

Step 4: Find the long pipes of P3. Recall that each long pipe Ti ⊂ P3 is a maximal rectangle
with a pair of edges contained in ∂P3 which are at least 3 times as long as the other pair of edges.

To find the pipes, we compute the L∞ Voronoi diagram V D1 := V D(P3) of the edges of P3 in
O(n log n) time, as described in step 3. Consider a long pipe Ti. Assume without loss of generality
that Ti = [0, `] × [0, k] where ` is the length and k ≤ `/3 is the width. We now observe that the

22

segment e := [k/2, ` − k/2] × k/2 in the horizontal symmetry axis of Ti is contained in an edge of
V D1, since for any point p in e, the edges of P3 closest to p are the horizontal edges of Ti.

Each horizontal or vertical edge e of V D1 separates the regions of points that are closest to a
pair s1, s2 of horizontal or vertical edges of P3. It is easy to check whether s1, s2 define a long pipe
containing (a part of) e. Hence, all pipes can be identified by traversing the edges of V D1. As V D1

has complexity O(n), this step takes O(n log n) time in total.

Step 5: Shorten the pipes and compute the associated graph G∗. Recall that we define
G3 := G(P3) and obtain the final graph G∗ by replacing long horizontal (resp. vertical) paths in
pipes with long horizontal (resp. vertical) edges. Once P3 and the long pipes have been computed,
it is straightforward to construct G∗ in O(n3) time, since the size of G∗ is O(n3) by Lemma 2.

Step 6: Find the size of a maximum domino packing of P . Recall that our algorithm
outputs |M | + (N0 − N2)/2, where M is a maximum matching of G∗, N0 is the area of P , and
N2 is the number of vertices of G∗. In order to compute M , we use the multiple-source multiple-
sink maximum flow algorithm by Borradaile, Klein, Mozes, Nussbaum, & Wulff-Nilsen [6]. In
a directed plane graph with m vertices and edge capacities, where a subset of the vertices are
sources and another subset are sinks, the algorithm finds the maximum flow from the sources to
the sinks respecting the capacities in time O(m log3m). Gawrychowski & Karczmarz [13] described
an improved algorithm with running time O(m log3 m

log2 logm
). Our graph G∗ is bipartite, so a maximum

matching equals a maximum flow between the two vertex classes, when each edge has capacity 1.
We can therefore find the maximum matching of G∗ in time O(n3 polylogn).

Remark. We note that we can also find an (implicit) description of a maximum domino packing of
P . We simply extend the matching of G∗ by inserting horizontal dominos in the horizontal pipes
and vertical dominos in the vertical pipes. We further decide to give Q any standard tiling, e.g.,
the one that uses only horizontal dominos. It follows from the correctness of the algorithm that this
gives a maximum domino packing of P .

4.6 Simpler but slower algorithm

Using the structural results on domino packings, we are able to prove the correctness of the following
much simpler algorithm, which works by truncating the long edges of P . We sort the corners of
P by x-coordinates and consider the corners in this order c1, . . . , cn. When x(ci+1) − x(ci) > 9n,
we move all the corners ci+1, . . . , cn to the left by a distance of 2bx(ci+1)−x(ci)

2 c − 6n. We call
this operation a contraction. The result after all of the contractions is a polyomino P ′ with the
parities of the x-coordinates unchanged and with the difference between the x-coordinates of any two
consecutive corners at most 6n. We then consider the corners in order according to y-coordinates
and do a similar truncation of the long vertical edges. We have now reduced the container P to
an orthogonal polygon P ′′ of area at most O(n4), since the span of the x-coordinates is O(n2), as
is the span of the y-coordinates. We then compute a maximum matching M in the graph G(P ′′)
and return |M |+ area(P)−area(P ′′)

2 as the size of a maximum packing in P . Using the multiple-source
multiple-sink maximum flow algorithm to compute the matchingM , this leads to an algorithm with
running time O(n4 polylogn).

We now verify that the number of uncovered cells in maximum packings is invariant under a
single contraction, and the correctness of the algorithm hence follows. To this end, suppose that

23

ci

ci+1

v1 v2

R′
2

Q

R1

R3

v′1 v′2

Figure 16: A contraction of the simple algorithm with one fat and two skinny rectangles. The algorithm
moves all corners ci+1, . . . , cn to the left, essentially contracting the area between the vertical lines v′1 and
v′2 to nothing.

x(ci+1) − x(ci) > 9n, so that we move the corners ci+1, . . . , cn to the left; see Figure 16. Let v1
and v2 be vertical lines with x-coordinates x(ci) and x(ci+1), respectively, and let V be the vertical
strip bounded by v1 and v2. The intersection P ∩ V is a collection of disjoint rectangles R1, . . . , Rk

of width x(ci+1)−x(ci) and various heights. We define a rectangle Ri to be fat if its height is more
than 3n, and otherwise Ri is skinny. We now define a polyomino P0 in order to apply Lemma 6.
For each fat rectangle Ri, we let R′i ⊆ Ri be the maximum rectangle with even coordinates and
add R′i to P0. As each rectangle Ri corresponds to exactly two horizontal edges, the number of
rectangles k is upper bounded by n/4 and in particular, the number of corners of P \ P0 is at most
2n. Letting Q := B(P0,−b3n/2c), we get from Lemma 6 that there exists a maximum tiling of P
that restricted to Q is a tiling.

We define P1 := P \Q and observe that the contraction corresponds to contracting a set of long
pipes in P1. These pipes are the skinny rectangles Ri and the parts of the fat rectangles vertically
above and below the removed part Q. We therefore get from Lemma 7 that the number of uncovered
cells is invariant under the contraction.

For some containers P , the graph G(P ′′) really has Ω(n4) vertices, so the algorithm is slower
than the complicated algorithm. For instance when the boundary of P consists of four “staircases”,
each consisting of n/4 vertices, where each step has width and height n; see Figure 17 (left). Here
the complicated algorithm will remove most of the interior, leaving a layer of cells of thickness O(n)
around the boundary, but the simple algorithm will not make any contractions.

One might be tempted to think that we can even truncate the edges so that the difference
between consecutive x- and y-coordinates is either 1 or 2, keeping the parity of all coordinates.
However, this does not work, as seen in Figure 17 (right). Two dominos can be packed in the
reduced container P ′, and the reduction decreases the area by eigth cells, so the formula would give

24

P P ′

n
n

Figure 17: Left: A polyomino with area Ω(n4) that the simple algorithm will not reduce. Right: If we truncate
edges so that consecutive x-coordinates have difference either 1 or 2 (keeping the parities invariant), then
there may be more uncovered cells in a maximum packing of the reduced instance than in the original.

that the original container P has room for six dominos, but there is actually room for seven.

References

[1] Danièle Beauquier and Maurice Nivat. On translating one polyomino to tile the plane. Discrete
& Computational Geometry, 6:575–592, 1991.

[2] Danièle Beauquier, Maurice Nivat, Eric Remila, and Mike Robson. Tiling figures of the plane
with two bars. Computational Geometry, 5(1):1–25, 1995.

[3] Robert Berger. The undecidability of the domino problem. Memoirs of the American Mathe-
matical Society, 1(66), 1966.

[4] Fran Berman, David Johnson, Tom Leighton, Peter W. Shor, and Larry Snyder. Generalized
planar matching. Journal of Algorithms, 11(2):153–184, 1990.

[5] Francine Berman, Frank Thomson Leighton, and Lawrence Snyder. Optimal tile salvage, 1982.
Technical report, Purdue University, Department of Computer Sciences, https://docs.lib.
purdue.edu/cgi/viewcontent.cgi?article=1321&context=cstech.

[6] Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-
Nilsen. Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear
time. SIAM Journal on Computing, 46(4):1280–1303, 2017.

[7] Chen-Fu Chien, Shao-Chung Hsu, and Jing-Feng Deng. A cutting algorithm for optimizing the
wafer exposure pattern. IEEE Transactions on Semiconductor Manufacturing, 14(2):157–162,
2001.

[8] J.H Conway and J.C Lagarias. Tiling with polyominoes and combinatorial group theory. Jour-
nal of Combinatorial Theory, Series A, 53(2):183 – 208, 1990.

[9] Dirk K. de Vries. Investigation of gross die per wafer formulas. IEEE Transactions on Semi-
conductor Manufacturing, 18(1):136–139, 2005.

25

[10] Dania El-Khechen, Muriel Dulieu, John Iacono, and Nikolaj Van Omme. Packing 2 × 2 unit
squares into grid polygons is NP-complete. In Proceedings of the 21st Canadian Conference on
Computational Geometry (CCCG 2009), pages 33–36, 2009.

[11] Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. Optimal packing and covering
in the plane are NP-complete. Information processing letters, 12(3):133–137, 1981.

[12] George Gamow and Marvin Stern. Puzzle-math. Macmillan, 1958.

[13] Pawel Gawrychowski and Adam Karczmarz. Improved bounds for shortest paths in dense
distance graphs. In 45th International Colloquium on Automata, Languages, and Programming
(ICALP 2018), pages 61:1–61:15, 2018.

[14] S. W. Golomb. Checker boards and polyominoes. The American Mathematical Monthly,
61(10):675–682, 1954.

[15] Martin Held, Gábor Lukács, and László Andor. Pocket machining based on contour-parallel
tool paths generated by means of proximity maps. Computer-Aided Design, 26(3):189–203,
1994.

[16] Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM (JACM), 32(1):130–136, 1985.

[17] Takashi Horiyama, Takehiro Ito, Keita Nakatsuka, Akira Suzuki, and Ryuhei Uehara. Packing
trominoes is NP-complete, #P-complete and ASP-complete. In 24th Canadian Conference on
Computational Geometry (CCCG 2012), pages 211–216, 2012.

[18] S. Jang, J. Kim, T. Kim, H. Lee, and S. Ko. A wafer map yield prediction based on machine
learning for productivity enhancement. IEEE Transactions on Semiconductor Manufacturing,
32(4):400–407, 2019.

[19] C. Kenyon and R. Kenyon. Tiling a polygon with rectangles. In Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science (FOCS 1992), pages 610–619, 1992.

[20] J. Martínez, M. Vigo, N. Pla-García, and D. Ayala. Skeleton computation of an image using a
geometric approach. In 31st Eurographics (EG 2010), 2010.

[21] Hanno Melzner and Alexander Olbrich. Maximization of good chips per wafer by optimization
of memory redundancy. IEEE Transactions on Semiconductor Manufacturing, 20(2):68–76,
2007.

[22] Igor Pak, Adam Sheffer, and Martin Tassy. Fast domino tileability. Discrete & Computational
Geometry, 56(2):377–394, 2016.

[23] Igor Pak and Jed Yang. Tiling simply connected regions with rectangles. Journal of Combina-
torial Theory, Series A, 120(7):1804 – 1816, 2013.

[24] Evanthia Papadopoulou and D.T. Lee. The L∞ Voronoi diagram of segments and VLSI ap-
plications. International Journal of Computational Geometry & Applications, 11(05):503–528,
2001.

26

[25] Eric Rémila. Tiling a polygon with two kinds of rectangles. Discrete Comput. Geom., 34(2):313–
330, 2005.

[26] William P. Thurston. Conway’s tiling groups. The American Mathematical Monthly, 97(8):757–
773, 1990.

[27] H.A.G. Wijshoff and J. van Leeuwen. Arbitrary versus periodic storage schemes and tessella-
tions of the plane using one type of polyomino. Information and Control, 62(1):1–25, 1984.

27

	Preface
	Introduction
	Hashing with Strong Concentration
	Strong Concentration with Tabulation-Permutation
	Previous Work
	Fast, Strongly Concentrated Hashing
	Experiments

	Streaming with Strongly Concentrated Hashing
	Estimators and Repetitions
	Universal Hashing versus Strong Concentration
	Experiments
	Conclusion

	Graph Spectra and Expanders
	Random Walks and the Multiplicity of the Second Graph Eigenvalue
	Our Results
	Related Work and Open Problems

	Non-Malleable Codes from Expander Graphs
	Our Results
	Perspectives

	Edge Connectivity in Graphs
	Maintaining k-edge Connected Components
	Overview of Previous Results
	Better k-Certificate and Optimal Decremental Connectivity
	Discussion

	Counting k-edge Connected Components

	Fast Hashing with Strong Concentration Bounds
	No Repetition: Fast Streaming with Highly Concentrated Hashing
	Expander Graphs are Non-Malleable Codes
	Support of Closed Walks and Second Eigenvalue Multiplicity of Graphs
	Optimal Decremental Connectivity in Non-Sparse Graphs
	k-Edge Connected Components and Minimum Degree
	Classifying Convex Bodies by Their Contact and Intersection Graphs
	Tiling with Squares and Packing Dominoes in Polynomial Time

