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A B S T R A C T

Grammatical Error Correction (GEC) is the research field concerned
with computational methods for correcting grammatical errors in text.
With the vast amounts of content currently being produced online,
these methods hold the promise of improving human communication
by enabling clear and error-free prose.

While GEC is a thoroughly studied field in academia, industrial
adoption has been limited. Three specific obstacles are particularly
holding back wide-spread industrial adoption: current academic GEC
systems 1) depend on a lot of expensive data for training the systems;
2) are mostly evaluated on text written by English language learners,
leaving the systems’ performance beyond this domain unclear; and 3)
are mainly developed for the English language.

This thesis presents research into tackling these obstacles, in order
to bridge the gap between academic research and industrial use. In
the first part of the thesis, we investigate two avenues for building
low-resource GEC systems. Firstly, we show that leveraging artificially
generated training data improves systems’ ability to detect subject-
verb-agreement errors, particularly improving robustness to challeng-
ing linguistic phenomena. Secondly, we show that language models
trained by self-supervision can be used for creating viable GEC sys-
tems that do not rely on annotated training data. In the second part of
the thesis, we look into GEC systems’ ability to generalize beyond the
English language learner domain – we release a new GEC benchmark,
CWEB, consisting of website text annotated for correctness, and show
that current GEC systems do not generalize well to this domain. In the
final part, we focus on GEC for non-English languages and investigate
strategies for leveraging available sources of noisy data. We show that
GEC systems pre-trained on noisy data can be fine-tuned effectively
on only small amounts of expert-annotated data, which opens up for
creating inexpensive GEC systems in new languages.
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A B S T R A C T I N D A N I S H – R E S U M É PÅ D A N S K

Grammatical Error Correction (GEC) er forskningsfeltet, der beskæfti-
ger sig med algoritmiske metoder til at rette grammatiske fejl i tekst.
Med de store mængder indhold, der i øjeblikket produceres online, har
disse metoder potentiale til at forbedre menneskelig kommunikation
ved at gøre den skrevne tekst klar og fejlfri.

Mens GEC er et grundigt studeret felt i den akademiske verden,
har industriel anvendelse været begrænset. Især tre specifikke for-
hindringer holder udbredt industriel anvendelse tilbage: nuværende
akademiske GEC systemer 1) afhænger af store mængder dyr data
til træning af systemerne; 2) evalueres for det meste på tekst skre-
vet af studerende med engelsk som fremmedsprog, hvilket gør det
uklart, hvordan systemerne klarer sig uden for dette domæne; og 3)
er hovedsageligt udviklet til det engelske sprog.

Denne afhandling præsenterer forskning i at overkomme disse for-
hindringer for at bygge bro mellem akademisk forskning og industriel
anvendelse. I den første del af afhandlingen undersøger vi to mulige
veje til at bygge lav-ressource GEC-systemer. Først viser vi, at brugen
af kunstigt genereret træningsdata forbedrer systemers evne til at
opdage uoverensstemmelse i subjekt og verbums bøjning. Det for-
bedrer især robustheden over for udfordrende sproglige fænomener.
For det andet viser vi, at sprogmodeller trænet med selv-supervision,
kan bruges til at skabe GEC-systemer af rimelig kvalitet, der ikke
afhænger af annoteret træningsdata. I anden del af afhandlingen ser
vi på GEC-systemers evne til at generalisere ud over det engelske
sprogindlærings domæne – vi lancerer et nyt GEC-benchmark, CWEB,
der består af hjemmesidetekst annoteret for korrekthed, og viser, at
nuværende GEC-systemer ikke generaliserer godt til dette domæne. I
den sidste del fokuserer vi på GEC for ikke-engelske sprog og under-
søger strategier til brug af tilgængelige kilder til støjfyldt data. Vi viser,
at GEC-systemer, der er pre-trænede på støjfyldt data, kan fintunes
effektivt på kun små mængder ekspert-annoteret data. Dette muliggør
udviklingen af billige GEC-systemer på nye sprog.
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B A C K G R O U N D





1
I N T R O D U C T I O N

1.1 motivation

Since its invention, the written medium has been a decisive factor for
humanity’s societal progress. The ability to persist ideas in writing
and share them across time and space has dramatically increased
the speed and reach of knowledge sharing and communication. The
written medium’s importance holds increasingly true in the current
digital age, where the communication speed and range enabled by the
internet is a cornerstone of modern society (Bazerman, 2013).

A typical hindrance to effective written communication is the pres-
ence of grammatical errors, which writers of all skill levels are prone to
make. Grammatical errors are a source of distraction and confusion for
the reader and can result in the message not being conveyed properly,
or in the worst case cause misinformation by changing the meaning
of the message (Tomiyana, 1980). It could also have commercial im-
plications by decreasing the perceived trustworthiness of the source
of the text (Appelman and Schmierbach, 2018). When adding up the
vast amount of written communication done each day, these errors
present a large impediment to the overall effectiveness of the world’s
communication.

The quality of written work is commonly improved by getting a
human language expert to proofread it. This process is, however,
expensive, time-consuming, and the quality can vary. Therefore the
ability to use computational methods to automatically detect and cor-
rect grammatical errors in text carries a lot of potential for augmenting
human communication.

In recent decades the task of computationally correcting grammati-
cal errors in text has been approached with Machine Learning (ML)
methods coming from the field of Natural Language Processing (NLP).
These NLP methods hold the promise of enabling high quality au-
tomatic error checking, which can be scaled up to processing large
amounts of text. This would open up opportunities for many industrial
applications of automatic error correction.

In this industrial PhD project, we investigate computational gram-
matical error correction from a commercial point of view, aiming to
tackle roadblocks on the way to industrial adoption. The following
section expands on computational methods for correcting grammatical
errors.
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4 introduction

1.2 natural language processing for grammatical er-
ror correction

In the NLP field, computational methods for correcting grammatical
errors are studied under the term Grammatical Error Correction (GEC).
GEC can be cast as the problem of transforming grammatically incor-
rect text into an error-free version. In the last decade, the NLP field
has progressed immensely, mostly due to advances in the subfield
of ML called Deep Learning. This has, in turn, led to rapid progress
in GEC, enabling higher quality checks for grammatical correctness.
GEC methods now go beyond brittle rule-based approaches, and are
able to correct errors that require a deeper syntactic and sometimes
semantic understanding of the sentence.

Current GEC methods use supervised ML algorithms, where a ML
model uses large amounts of human-annotated examples to learn a
function that maps from inputs to outputs. The model then uses the
learned function to perform inference on unseen data. The human-
annotated examples consist of pairs of sentences before and after being
corrected for grammatical errors – optimally, these corrections are car-
ried out by professional proofreaders. As this data is expensive to
acquire, only small amounts of annotated data are available for train-
ing models, which poses a challenge for the data-hungry supervised
methods. A large part of the recent progress in GEC has stemmed
from learning to take advantage of auxiliary data sources of lower
quality than expert-annotated data.

GEC in academia has mostly been focused on developing systems
for English language learners (ELLs). Here, the systems are trained
and evaluated on error-annotated text written by ELLs. While this is
an important task, this narrow focus has limited the field; it remains
unclear how current systems perform across different domains.

Another aspect of GEC, which remains largely unexplored, is the
development of GEC systems in languages other than English. This
is mostly due to the fact that, until recently, annotated data in other
languages has simply not been available to train and evaluate GEC
systems. Furthermore, GEC approaches have historically been heavily
dependent on expert-level linguistic knowledge of the language. It is
only with recent data-driven methods that we can hope for approaches
that generalize across languages.

1.3 from academia to industry

While GEC is a well-studied field in academia, industrial adoption
has been limited. Approaches taken in industry have generally been
very dependent on expert-level linguistic knowledge of the language.
Therefore, the industrial landscape has been dominated by a few
large organizations, with the economic resources to employ a set of
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computational linguists for each of the languages they desire GEC
systems in (Smith, 2016). The costs of this approach have especially
put a limit on the quality of GEC on smaller languages.

A lot of untapped potential lies in transferring the quality of current
state-of-the-art academic algorithms to industry and broadening them
to other languages: Word-processing tools could offer better grammar
checking, as well as chat tools, email providers, etc. Furthermore,
educational applications could enable quick feedback of grammatical
correctness to language learners. Grammar checking algorithms could
also be used as a post- or pre-processing step for other NLP tools,
such as using GEC to normalize erratic speech patterns captured by
automatic speech recognition tools.

This thesis is based on an industrial PhD project funded by the
company Siteimprove. The aim of the project has been to investigate
automatic methods of correcting text from a commercial point of
view, in particular for Siteimprove’s use cases. Siteimprove offers a
web-based platform that assists companies in improving their digital
presence. This currently involves automatically spell-checking text
on websites, but a lot of commercial potential lies in more advanced
checks for sentence correctness. Siteimprove is therefore interested in
adding capabilities for correcting grammatical errors to their suite of
products.

Given the industrial focus of this PhD project, the project’s aim has
been two-fold: 1) identify the boundaries of current GEC approaches
in regard to industrial usage; and 2) actively push the research horizon
of the field towards industrial usability.

When considering the industrial use cases of GEC, three considera-
tions are particularly important. Firstly, data acquisition costs should
be manageable. Secondly, GEC models should perform well across
many domains. And finally, the methods should generalize to other
languages than English. This has led us to investigate three core
research questions:

How can data-scarcity in GEC be dealt with?

State-of-the-art GEC systems in academic research are heavily de-
pendent on annotated GEC data for training the models. With few
exceptions, this data is only available for research use and not for
commercial use, and acquiring new data is expensive.

How do GEC systems perform outside the ELL domain?

In academia, GEC systems are usually trained and evaluated on
data from essays written by ELLs. However, it is important that models
generalize outside this domain to different types of text written by
more advanced writers, which might contain errors that are more
subtle and more difficult to detect and correct.
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How can GEC be broadened to non-English languages?

Although little work has been done on GEC for non-English lan-
guages, a lot of commercial potential lies there. It is yet uncertain
to which extent we can apply methods from English GEC to other
languages. Data-scarcity, in particular, is a large issue, since when
moving beyond English, little to no high quality GEC data is available.

1.4 contributions of the thesis

This thesis presents research into the challenges of bringing GEC from
academia to industry. The contributions presented in the following
chapters are summarized below.

• We show that leveraging artificially generated training data re-
sults in a substantial positive impact on the performance of
systems for detecting subject-verb agreement errors. Including
artificial errors with human-annotated training data makes the
system more robust to other errors in the sentence and challeng-
ing linguistic phenomena (Chapter 3 in Part ii).

• We show that by leveraging strong language models trained
by self-supervision for GEC, reasonable performance can be
achieved while allowing the system to be fully unsupervised
(Chapter 4 in Part ii).

• We contribute a new GEC benchmark of website text annotated
for correctness and show that state-of-the-art GEC systems do
not generalize well to this new domain (Chapter 5 in Part iii).

• We show a set of best practices for data generation and utilization
for GEC on non-English languages (Chapter 6 in Part iv).

1.5 thesis overview

The thesis is divided into four parts. The following Chapter 2 in the
first part provides an introduction to the background of the GEC task.

Part ii of this thesis is focused on answering the first research ques-
tion, by investigating approaches to deal with data-scarcity in GEC.
We follow two particularly promising lines of investigation for amelio-
rating data-scarcity: artificial error generation and self-supervision.

• In Chapter 3, we focus on using artificially generated errors to
train systems. While artificial errors have been shown to benefit
GEC systems, not much analysis has been done on how they
affect the capabilities of systems. We focus on a specific linguistic
phenomenon, subject-verb-agreement, and limit the task to error
detection, a precursor to error correction. We show that large
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amounts of realistic errors can be easily generated. Combining
this data with available high-quality training data leads to more
robust detection of subject-verb agreement errors – performance
is improved on both in-domain and out-of-domain benchmarks,
as well as in the context of other errors, long-distance dependen-
cies, and other challenging linguistic phenomena.

• In Chapter 4, we present our research on unsupervised GEC
by leveraging language models trained with self-supervision,
which was a contribution to the low-resource track of the BEA
2019 shared task on GEC (Bryant et al., 2019). Our approach to
GEC builds on the theory of the noisy channel by combining
a channel model and language model. We generate confusion
sets from the Wikipedia edit history and use the frequencies of
edits to estimate the channel model. We experiment with using
two state-of-the-art language models and show that basing GEC
systems on pure language modeling is a viable approach to
unsupervised GEC.

In Part iii of the thesis, we present our work on GEC beyond the
ELL domain to answer the second research question.

• In Chapter 5, our work on GEC for low-error density domains
is presented, which introduces a new GEC benchmark, CWEB,
consisting of corrected websites. This domain differs from exist-
ing benchmarks by containing far fewer errors, which we show
poses a challenge to state-of-the-art systems. We suggest that a
reason behind this is that GEC systems cannot rely on a strong
internal language model in low error-density domains.

Part iv presents our work on GEC for non-English languages to
answer our third research question.

• In Chapter 6, we look into determining a set of best-practice
strategies for data generation and usage for non-English lan-
guages. We show that for morphologically rich languages, ar-
tificial error generation methods can benefit from including
morphology-based confusion sets. We also demonstrate that
Wikipedia revisions and the website Lang8 are very useful
sources of data for pre-training systems, despite their inher-
ent noise. We further show that not much expert-annotated data
is needed when leveraging these noisy data sources.

Finally, in Part v, we summarize, discuss and conclude on the
contributions made in this thesis.





2
B A C K G R O U N D

The work presented in this thesis is a contribution to the field of
Grammatical Error Correction (GEC). The GEC task has seen immense
progress throughout the last decades. The progress has particularly
accelerated in recent years due to increasing attention being placed
on GEC, as well as on the NLP field in general. In the following, an
overview of the background of the GEC field is provided, setting the
starting point for the contributions of this thesis.

2.1 task definition

Grammatical Error Correction can be defined as an automatic sequence-
to-sequence task – that is, a GEC system should automatically trans-
form a sequence of words of potentially incorrect language to a se-
quence of words in correct language while retaining the meaning of
the sentence. An example of an error-correction pair is:

(1) Its always a pleasure to here from you.
It’s always a pleasure to hear from you.

In practice, the GEC task is not restricted to correcting grammatical
errors, but covers other aspects of sentence correctness, such as lexical
and orthographic errors. The quality of GEC systems is measured by
the degree of agreement between a system’s predictions and a test
corpus. This test corpus is a dataset of text which has been annotated
for correctness by human experts. Thereby, the types of errors to
correct are defined by the specific corpus used to benchmark a system.

2.2 approaches

Research on GEC can be traced back to the 1980s (Smith, Kiefer, and
Gingrich, 1984), with different paradigms in the approaches taken
being dominant throughout time. The general trend is that methods
leveraging more specialized human linguistic knowledge have been
gradually replaced by more general data-dependent methods. In the
following, we give an overview of the different approaches that have
been prevalent throughout time.

rules First approaches to GEC were based on hand-crafted rules
(e.g., Park, Palmer, and Washburn (1997) and Schneider and Mc-
Coy (1998)). However, the complexity of language, with the many

9
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exceptions to the rules, made it unfeasible for this approach to yield
high-quality performance across many languages.

classifiers Given progress in data-driven methods, the field
started moving away from expert-knowledge based systems towards
hybrid methods, where computational linguists trained classifiers to
detect and correct specific error types (e.g., De Felice and Pulman
(2007), Rozovskaya et al. (2013), Rozovskaya and Roth (2011), and
Tetreault, Foster, and Chodorow (2010)). However, the classification
approach was only able to correct a subset of error types. Further-
more, separate classifiers were typically trained for different error
classes, which meant the system could not account for the complex
combinations of interacting errors that are often present.

language models Another approach taken was to leverage lan-
guage models (e.g., Gamon et al. (2008) and Turner and Charniak
(2007)). Here, sequences of words assigned a low probability by the
language model were assumed to be erroneous and could be corrected
by being replaced with a sequence of words of higher probability.
However, a weakness of this approach is its inability to distinguish
between rare but correct sequences of words and erroneous ones.

statistical machine translation In the last decade, the
field has moved towards modeling the problem as a machine trans-
lation problem, where incorrect sentences are translated to corrected
sentences. Statistical machine translation approaches gave a large im-
provement over previous methods as they were better able to draw
knowledge from corpora of error-correction examples (e.g., Felice et al.
(2014) and Junczys-Dowmunt and Grundkiewicz (2016)).

neural machine translation More recently, neural machine
translation methods have surpassed the statistical ones by better being
able to extract knowledge from large amounts of training data. Several
iterations of neural sequence-to-sequence models have yielded greater
performance in GEC: Xie et al. (2016) employed Long Short-Term
Memory networks (Hochreiter and Schmidhuber, 1997), which was
followed by Chollampatt and Ng (2018b) using convolutional neural
networks (Fukushima, 1980) and more recently Kiyono et al. (2019)
used the transformer architecture (Vaswani et al., 2017).

edit based models Most recently, a new paradigm of edit-based
models has yielded state-of-the-art results (e.g., Awasthi et al. (2019),
Omelianchuk et al. (2020), and Stahlberg and Kumar (2020)). This
approach leverages that GEC is, in fact, different from machine trans-
lation – in GEC, most of the time, a majority of the input sequence
should not be changed, as opposed to machine translation where there
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Figure 2.1: Progress in GEC performance (F0.5) on CoNLL14 since 2014.

usually is not much overlap between the input and output sequence.
The edit-based approach simply aims to only output the edits.

2.3 progress

The progress in the quality of GEC systems has been remarkable. A
common benchmark for measuring the quality of GEC systems is the
test set of the CoNLL-2014 shared task on GEC (CoNLL14) (Ng et al.,
2014), where the performance is measured by the F0.5 score. Below is
an overview of state-of-the-art approaches throughout the years since
the benchmark was introduced. The systems’ scores on CoNLL14 are
plotted in Figure 2.1, where a clear upward-going trend is evident,
while the paradigms have moved from statistical machine translation
to neural machine translation to edit based models.

• 2014 The winner of the CoNLL-2014 shared task on GEC was
Felice et al. (2014), who used a hybrid system consisting of
a pipeline of several approaches: rules derived from corpora,
language modeling, statistical machine translation, and finally, a
rule-based filtering of the suggestions.

• 2016 Junczys-Dowmunt and Grundkiewicz (2016) explored ex-
ploiting the full potential of statistical machine translation, by
tuning the model towards the MaxMatch GEC metric (Dahlmeier
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and Ng, 2012), and using feature engineering to create task-
specific input features.

• 2018 Chollampatt and Ng (2018b) used a convolutional sequence-
to-sequence approach combined with re-ranking output hypothe-
ses with a quality estimation model.

• 2019 Kiyono et al. (2019) used a transformer sequence-to-sequence
model pre-trained with large amounts of artificial data.

• 2020 Omelianchuk et al. (2020) used an edit-based model, em-
ploying a pre-trained transformer model to tag sequences with a
set of custom grammatical transformations.

2.4 data

The current state-of-the-art methods are supervised ML algorithms
trained using parallel corpora, consisting of pairs of sentences before
and after being corrected. Especially the current deep learning-based
methods are very data-hungry, requiring large amounts of parallel
data. Optimally systems are trained on expert annotated Gold data. As
this resource is scarce, a lot of work has been done leveraging data
sources of lower quality, such as artificially generated errors, edits
mined from Wikipedia revisions, and crowdsourced data. The data
sources are described in more detail in the following.

gold data Gold data is created by human experts, such as linguists
or professional proofreaders. For English, a range of high-quality Gold
corpora is available, totaling more than 100,000 training examples
(Bryant et al., 2019; Dahlmeier, Ng, and Wu, 2013b; Yannakoudakis,
Briscoe, and Medlock, 2011). For other languages, however, little to no
high-quality data is available. But even for English, these amounts are
still relatively small for training deep learning systems. Furthermore,
most of these datasets are generated from texts written by ELLs, which
limits the data’s applicability to other domains. Additionally, this data
is generally only available for research use, preventing it from being
used to train commercial systems.

artificial errors The grammatical structure of a sentence can
easily be destroyed by injecting noise into the fluent sentence – thereby,
artificial training examples can be created cheaply in large amounts.
It has been shown that pre-training GEC systems on artificial data
is an essential component of state-of-the-art systems (Kiyono et al.,
2019). Several methods for generating artificial errors have given good
results, including round-trip translations (Lichtarge et al., 2019), rule-
based noising (Grundkiewicz, Junczys-Dowmunt, and Heafield, 2019)
and back-translation (Kiyono et al., 2019).
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wikipedia revisions Wikipedia keeps a record of all versions of
its articles throughout history. By taking sentences altered in adjacent
versions of Wikipedia articles, it is possible to extract examples to
train GEC systems. These examples are useful since a lot of revisions
are correcting grammatical errors in the articles. However, this data
also contains a lot of noise since many revisions are unrelated to the
GEC task, e.g., containing information change or acts of vandalism.
Despite this noise, Wikipedia revisions have shown to be very useful
for training GEC systems (Grundkiewicz and Junczys-Dowmunt, 2014;
Lichtarge et al., 2019).

crowdsourced data Lang81 is a web platform where language
learners post essays, which native speakers correct. By scraping this
website, a GEC dataset of crowdsourced corrections can be generated
(Mizumoto et al., 2011). In general, the data is of good quality, although
some characteristics of the crowdsourced nature make it less clean than
Gold data. Furthermore, the data is produced by language learners
and therefore represents a narrow domain. Substantial amounts of
data are available for larger languages, such as English and Japanese,
but the quantity drops drastically for smaller languages.

2.5 evaluation

GEC algorithms are measured by their performance on an unseen test
set – inference is performed, and the predicted outputs are compared
with human annotations. The end goal is to agree with the humans;
however, perfect agreement is unattainable since what constitutes an
error is subjective, and often there are many different valid ways to
correct a mistake (Bryant and Ng, 2015). The following describes the
various scoring measures and benchmark datasets commonly used to
score systems.

measures As measuring the performance of GEC algorithms is
an unsolved problem, several scoring measures have been proposed,
e.g., GLEU (Mutton et al., 2007), I-measure (Felice and Briscoe, 2015),
MaxMatch (Dahlmeier and Ng, 2012), and ERRANT (Bryant, Felice,
and Briscoe, 2017). In this thesis, the presented systems are evaluated
based on the F0.5 score calculated by either MaxMatch or ERRANT.
The F0.5 score puts two times more weight on precision than recall,
reflecting the importance of offering the end-user precise suggestions.

benchmarks In the last decade, several shared tasks have helped
set the direction of GEC research and have pushed the field forward
significantly, e.g, HOO-2012 (Dale, Anisimoff, and Narroway, 2012),
CoNLL-2013 (Ng et al., 2013), CoNLL-2014 (Ng et al., 2014), AESW

1 https://lang-8.com/

https://lang-8.com/
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(Daudaravicius et al., 2016), and BEA-2019 (Bryant et al., 2019). Partic-
ularly, the test sets of the CoNLL-2014 shared task, and the BEA-2019

shared task are commonly used to benchmark systems. CoNLL-2014

focused on GEC for essays written by ELLs. The more recent BEA-
2019 shared task focused on both essays written by ELLs and native
speakers. In addition to the test sets from shared tasks, several other
benchmarks are available, e.g., FCE (Yannakoudakis, Briscoe, and
Medlock, 2011), JFLEG (Napoles, Sakaguchi, and Tetreault, 2017), and
GMEG (Napoles, Nădejde, and Tetreault, 2019).

2.6 current trends

As described in Section 2.3, English GEC has seen immense progress
in the last decade. However, many areas are still under active explo-
ration, and several current research trends are challenging some of
the weaknesses in current approaches. In the following, we highlight
recent work related to the three core research questions of this thesis.

low-resource systems Current state-of-the-art approaches to
GEC are based on data-hungry neural models, which require large
numbers of high-quality training examples. Several lines of investi-
gation into low-resource approaches are currently showing promise:
A lot of benefit is seen from leveraging lower quality data sources
described in Section 2.4, such as Wikipedia edits and artificial data
(Grundkiewicz, Junczys-Dowmunt, and Heafield, 2019; Kiyono et al.,
2019; Lichtarge et al., 2019). However, there remains a need for a more
in-depth analysis of how training on artificial errors impacts the gram-
matical understanding of systems – our work in Chapter 3 delves into
this aspect. Recently, language model-based approaches have been
revisited for low-resource GEC (Bryant and Briscoe, 2018). Our work
in Chapter 4 shows that unsupervised GEC systems of reasonable
quality can be created by leveraging state-of-the-art neural language
models – other concurrent work have similarly achieved strong results
using this approach (Alikaniotis and Raheja, 2019; Stahlberg, Bryant,
and Byrne, 2019).

non-ell domains GEC systems are commonly evaluated based
on their performance on benchmarks from the ELL domain. This
domain, however, only represents part of the full spectrum of GEC
applications. In the last few years, some research has gone into broad-
ening GEC into other domains. The BEA-2019 shared-task (Bryant
et al., 2019) evaluated the contributions in part on a set of essays writ-
ten by native speakers, and showed that the approaches, in general,
transferred well across essays written by beginner-level learners to
native speakers. Napoles, Nădejde, and Tetreault (2019) released a new
benchmark, GMEG, which consists of corrected text gathered from
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Wikipedia revisions and online comments, and showed that current
systems also generalize well across these domains. Despite these con-
tributions showing good generalizability in particular domains, a lot
of future work still lies in assessing GEC in an open-domain setting.
Our work in Chapter 5 highlights one domain where current GEC
systems do not generalize well.

non-english languages Research on GEC in languages other
than English is still in its infancy, mostly due to a lack of Gold corpora
in other languages. But in recent years, several GEC corpora have
been released for languages such as German (Boyd, 2018), Spanish
(Davidson et al., 2020), Czech (Náplava and Straka, 2019), and Russian
(Rozovskaya and Roth, 2019), which has enabled investigations into
GEC in these languages. Some lines of investigation into non-English
languages have shown the usefulness of techniques from English GEC,
such as using artificial data (Grundkiewicz and Junczys-Dowmunt,
2019; Náplava and Straka, 2019) and Wikipedia revisions (Boyd, 2018).
But there remains a need for a more thorough investigation of best
practices for data generation and utilization across languages, which
is the aim of our work in Chapter 6.
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A S I M P L E A N D R O B U S T A P P R O A C H T O D E T E C T I N G
S U B J E C T– V E R B A G R E E M E N T E R R O R S

abstract

While rule-based detection of subject–verb agreement (SVA) errors is
sensitive to syntactic parsing errors and irregularities and exceptions
to the main rules, neural sequential labelers have a tendency to over-
fit their training data. We observe that rule-based error generation is
less sensitive to syntactic parsing errors and irregularities than error
detection and explore a simple, yet efficient approach to getting the
best of both worlds: We train neural sequential labelers on the com-
bination of large volumes of silver standard data, obtained through
rule-based error generation, and gold standard data. We show that
our simple protocol leads to more robust detection of SVA errors on
both in-domain and out-of-domain data, as well as in the context of
other errors and long-distance dependencies; and across four standard
benchmarks, the induced model on average achieves a new state of
the art.

3.1 introduction

grammatical error detection. Grammatical Error Detection
(GED, Leacock et al., 2010) is the task of detecting grammatical er-
rors in text. It is used in various real-world applications, such as
writing assistance tools, self-assessment frameworks and language
tutoring systems, facilitating incremental and/or exploratory editing
of one’s writing. Accurate error detection systems also have potential
applications for language generation and machine translation sys-
tems, guiding automatically generated output towards grammatically
correct sequences.

The problem of detecting subject–verb agreement (SVA) errors is
an important subtask of GED. In this work, we focus on detecting
subject–verb agreement errors in the English as a Second Language
(ESL) domain. Most SVA errors occur at the third-person present tense
when determining whether the subject describes a singular or a plural
concept. The following examples demonstrate subject–verb agreement
errors (bold):

(1) a. *They all knows where the conference is.
b. *The Hotel are very close to Town Hall.

19
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The task can be formulated as a sequence labeling problem, with
the goal of labeling subject–verb pairs as being in agreement or not.

approaches . Sequence labeling problems in NLP, including GED
and the subtask of identifying SVA errors, have, in recent years, been
handled with Recurrent Neural Networks (RNNs) trained on large
amounts of data (Rei et al., 2017; Rei and Yannakoudakis, 2016). How-
ever, most publicly available datasets for GED are relatively small,
making it difficult to learn a general grammar representation and
potentially leading to over-fitting. Previous work has also shown that
neural language models with a similar architecture have difficulty
learning subject–verb agreement patterns in the presence of agreement
attractors (Linzen, Dupoux, and Goldberg, 2016).

Rule-based approaches (Andersen et al., 2013) are still considered a
strong alternative to end-to-end neural networks, with many industry
solutions still relying on rules defined over syntactic trees. The rule-
based approach has the advantage of not requiring manual annotation,
while also allowing easy access to adding and removing individual
rules. On the other hand, language is continuously evolving, and there
are exceptions to most grammar rules we know. Additionally, rule-
based matching typically relies on syntactic pre-processing, which is
error-prone, leading to compounding errors that hurt the downstream
GED performance.

our contributions . In this work, we compare the performance
of rule-based approaches and end-to-end neural models for the detec-
tion of SVA errors. We show that rule-based systems are vulnerable
to errors in the underlying syntactic parsers, while also failing to
capture irregularities and exceptions. In contrast, end-to-end neural
architectures are limited by the available labeled examples and sen-
sitive to the variance in these datasets. We then make the following
observation: while rule-based error detection is severely affected by
errors and irregularities in syntactic parsing, rule-based error genera-
tion is more robust. SVA errors can be generated without identifying
subject dependency relations in advance, and changing the number of
a verb almost always leads to an error. This generated data can be used
as a silver standard for optimizing neural sequence labeling models.
We demonstrate that a system trained on a combination of available
labeled data and large volumes of silver standard data outperforms
both neural and rule-based baselines by a margin on three out of four
standard benchmarks, and on average achieves a new state-of-the-art
on detecting SVA errors.
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3.2 related work

neural approaches . Recent neural approaches to GED include
Rei and Yannakoudakis (2016) who argue that bidirectional (bi-)
LSTMs, in particular, are superior to other RNNs when evaluated
on standard ESL benchmarks for GED and give state-of-the-art re-
sults. Rei and Yannakoudakis (2017) show even better performance
using a multi-task learning architecture for training bi-LSTMs that
additionally predicts linguistic properties of words, such as their part
of speech (PoS).

Recent studies (Gulordava et al., 2018; Kuncoro et al., 2018; Linzen,
Dupoux, and Goldberg, 2016) have specifically analyzed the perfor-
mance of LSTMs in learning syntax-sensitive dependencies such as
SVA.

rule-based approaches . Cai et al. (2009) use a combination of
dependency parsing and sentence simplification, as well as special
handling of wh-elements, to detect SVA errors. Once the subject–verb
relation is identified, after parsing the simplified input sentence, a
PoS tagger is used to check agreement. This is similar in spirit to
the rule-based baseline system used in our experiments below. Wang
and Zhao (2015) use a similar approach, distinguishing between four
different sentence types and using slightly different rules for each
type. Their rules are, again, defined over the outputs of a dependency
parser and a PoS tagger. Sun et al. (2007) use labeled data to derive
rules based on dependency tree patterns.

automatic error generation. Because of the scarcity of an-
notated datasets in GED, research has been carried out on creating
artificial errors, where errors are injected into otherwise correct text
using deterministic rules or probabilistic approaches using linguistic
information (Felice and Yuan, 2014; Kasewa, Stenetorp, and Riedel,
2018). Studies focusing on detecting specific error types such as deter-
miners and prepositions (Rozovskaya and Roth, 2011) or noun number
(Brockett, Dolan, and Gamon, 2006) are mainly developed within the
framework of automatic error generation. Recent work, expanding the
detection (Rei et al., 2017) and the correction (Xie et al., 2018) tasks
to all types of errors, improves the performance of neural models
by training on additional artificial error data generated via machine
translation methods.

miscellaneous . Recent work has also led to good performance in
correcting grammatical errors (Bryant and Briscoe, 2018; Chollampatt
and Ng, 2018a; Yannakoudakis et al., 2017). However, in this paper,
we are interested in the task of grammatical error detection and we
therefore compare our work to current state-of-the-art approaches
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to detecting errors and do not report the performance of correction
systems.

3.3 subject–verb agreement detection

Following recent work on GED (Rei and Yannakoudakis, 2016), we
define SVA error detection as a sequence labeling task, where each
token is simply labeled as correct or incorrect. For a given SVA error,
only the verb is labeled as incorrect. Error types other than SVA are
ignored, i.e., we do not correct the errors in the text and we do not
attempt to predict them as incorrect.

In this paper, we only study SVA in English. We note that even for
English, there is some controversy about what constitutes an SVA error.
Manaster-Ramer (1987), cites this example, which has been used by
some as an argument for English exhibiting cross-serial dependencies:

(2) The man and the women dance and sing, respectively.

We also note that subject–verb agreement can be more or less per-
vasive across languages, depending on how rich the morphology
is, whether the given language exhibits pro-drop, and how far apart
subjects and verbs are likely to occur.

3.4 systems

3.4.1 Rule-based system

Typically, building a GED rule-based system is time-consuming and
requires specific knowledge to deal with the multiple exceptions and ir-
regularities of languages. Difficult cases (such as long distance subject–
verb relations) are often ignored in order to ensure high precision,
at the expense of the recall of the system. However, our rule-based
system is not limited to the detection of simple cases of SVA errors.
It relies on PoS tags and dependency relations to identify all types of
SVA errors. Specifically, our rule-based system operates as follows: (i)
it identifies the candidate verbs based on PoS tags;1 (ii) for a given
verb, it uses the dependency relations to find its subject;2 (iii) the PoS
tag of the verb and its subject are used to check whether they agree in
number and person. We use predicted Penn Treebank PoS tags and
dependency relations provided by the Stanford Log-linear PoS Tagger
(Toutanova et al., 2003) and the Stanford Neural Network Dependency
Parser (Chen and Manning, 2014) respectively.

1 Present tense verbs + “was” and “were”.
2 The subject can be direct – attached with a nsubj relation – or indirect, such as when

the syntactic subject is a relative pronoun, e.g., who, or an expletive, e.g., there.
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3.4.2 Neural system

We use the state-of-the-art neural sequence labeling architecture for
error detection (Rei and Yannakoudakis, 2016). The model receives
a sequence of tokens (w1, ..., wT) as input and outputs a sequence of
labels (l1, ..., lT), i.e., one for each token, indicating whether a token
is grammatically correct (in agreement) or not, in the given context.
All tokens are first mapped to distributed word representations, pre-
trained using word2vec (Mikolov et al., 2013) on the Google News
corpus. Following Lample et al. (2016), character-based representa-
tions are also built for every word using a bi-LSTM (Hochreiter and
Schmidhuber, 1997) and then concatenated onto the word embedding.

The combined embeddings are then given as input to a word-level
bi-LSTM, creating representations that are conditioned on the context
from both sides of the target word. These representations are then
passed through an additional feedforward layer, in order to combine
the extracted features and map them to a more suitable space. A
softmax output layer returns the probability distribution over the two
possible labels (correct or incorrect) for each word. We also include the
language modeling objective proposed by Rei (2017), which encour-
ages the model to learn better representations via multi-tasking and
predicting surrounding words in the sentence. Dropout (Srivastava
et al., 2014) with probability 0.5 is applied to word representations and
to the output from the word-level bi-LSTM. The model is optimised
using categorical cross-entropy with AdaDelta (Zeiler, 2012).

3.5 data

3.5.1 Data preprocessing

As the public datasets either have their own taxonomy or they are not
annotated with error types at all, we apply the error type extraction
tool of Bryant, Felice, and Briscoe (2017) to automatically get error
types mapped to the same taxonomy for all datasets. The tool automat-
ically annotates parallel original and corrected sentences with error
type information. When evaluated by human raters, the predicted
error types were rated as “good” or “acceptable” in at least 95% of the
cases. We use their publicly available tool3 to automatically get error
types for all public datasets mapped to the same taxonomy of 25 error
types in total. We then set SVA errors as our target class.

3.5.2 Test data

We compare the rule-based and neural approaches for the task of SVA
error detection on four benchmarks in the ESL domain.

3 https://github.com/chrisjbryant/errant
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• FCE. The Cambridge Learner Corpus of First Certificate in En-
glish (FCE) exam scripts consists of texts produced by ESL
learners taking the FCE exam, which assesses English at the
upper-intermediate proficiency level (Yannakoudakis, Briscoe,
and Medlock, 2011). We use the publicly available test set.

• AESW. The dataset from the Automated Evaluation of Scien-
tific Writing Shared Task 2016 (AESW) is a collection of text
extracts from published journal articles (mostly in physics and
mathematics) along with their (sentence-aligned) corrected coun-
terparts (Daudaravicius et al., 2016). We test on the combined
train, development and test set.4

• JFLEG. The JHU Fluency-Extended GUG corpus (JFLEG) repre-
sents a cross-section of ungrammatical data, consisting of sen-
tences written by ESL learners with different proficiency levels
and L1s (Napoles, Sakaguchi, and Tetreault, 2017). We evaluate
our models on the public test set.

• CoNLL14. The test dataset from the CoNLL 2014 shared task
consists of (mostly argumentative) essays written by advanced
undergraduate students from the National University of Singa-
pore, and are annotated for grammatical errors by two native
speakers of English (Ng et al., 2014).

3.5.3 Training data

esl writings . We use the following ESL datasets as training data:

• Lang8 is a parallel corpus of sentences with errors and their cor-
rected versions created by scraping the Lang-8 website5, which
is an open platform where language learners can write texts
and native speakers of that language can provide feedback via
error correction (Mizumoto et al., 2011). It contains 1, 047, 393
sentences.

• NUCLE comprises around 1, 400 essays written by students
from the National University of Singapore. It is annotated for
error tags and corrections by professional English instructors
(Dahlmeier, Ng, and Wu, 2013a). It contains 57, 151 sentences.

• FCE train set. We use the publicly available FCE training set,
containing 25, 748 sentences. A subset of 5, 000 sentences was
separated and used for development experiments.

4 Sentences containing special placeholders for mathematical equations, dates, etc. are
filtered out.

5 http://lang-8.com/



3.6 experiments 25

Rules Bert-LM LSTMESL LSTMESL+art

FC
E

P 43.75 66.67 71.88 72.41

R 40.23 52.87 26.44 48.84

F0.5 43.00 63.36 53.49 66.04
A

ES
W

P 14.82 18.36 27.75 19.05

R 49.75 39.61 10.33 40.66

F0.5 17.24 20.57 20.75 21.31

C
oN

LL
14 P 27.93 50.00 54.84 49.32

R 31.96 35.24 17.53 37.11

F0.5 28.65 46.13 38.46 46.27

JF
LE

G P 37.50 60.00 73.91 64.71

R 48.21 32.14 30.91 39.29

F0.5 39.24 51.14 57.82 57.29

F0.5 avg. 32.03 45.30 42.63 47.73

Table 3.1: Performance of our systems (rule-based and LSTMs) and baselines.
Bert-LM is the language model baseline.

artificial errors . We generate artificial subject–verb agreement
errors from large amounts of data. Specifically, we use the British
National Corpus (BNC, BNC-Consortium et al., 2007), a collection of
British English sentences that includes samples from different media
such as newspapers, journals, letters or essays. Subject–verb agreement
in English merely consists of inflecting 3rd person singular verbs in
the present tense (and be in the past), which makes any text in English
fairly easy to corrupt with SVA errors. We assume that the BNC data is
written in correct British English. Using predicted PoS tags provided
by the Stanford Log-linear PoS Tagger, we identify verbs in present
tense, as well as was and were for the past tense, and flip them to
their respective opposite version using the list of inflected English
words (annotated with morphological features) from the Unimorph
project (Kirov et al., 2016). The final artificial training set includes
the sentences with injected errors (265, 742 sentences), their original
counterpart, and sentences where SVA errors could not be injected
due to not containing candidate verbs that could be flipped (241, 295
sentences).

3.6 experiments

the models . We compare our neural model trained on both artifi-
cially generated errors and ESL data (LSTMESL+art) to three baselines:
a neural model trained only on ESL data (LSTMESL) (i.e., reflecting
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the performance of current state-of-the-art approaches for GED), a
language model based method (Bert-LM) and our rule-based system.
In order to measure the real performance of a language model (LM)
on the detection of SVA errors, we choose to use the BERT system
(Devlin et al., 2019) to assign probabilities to different versions of the
test sentences. Specifically, we use the pre-trained uncased BERT-Base
model. We duplicate the sentences each time a corruptible verb occurs
(flipping its number). The LM assigns a probability to both possible
versions of the verbs. We select the version which has the highest prob-
ability, if this probability is at least 0.16 higher than the probability of
the verb in the original sentence.

hyper-parameters . We tune the model hyper-parameters on the
FCE development set, according to the F0.5 score. Training is stopped
when F0.5 on the FCE development set does not improve over 7 epochs.
Word representations have size 300, while character representations
have size 100. The word-level LSTM hidden layers have size 300 for
each direction, and the character-level LSTM hidden layers have size
100 for each direction.

evaluation. Existing approaches are typically optimised for high
precision at the cost of recall, as a system’s utility depends strongly
on the ratio of true to false positives, which has been found to be
more important in terms of learning effect. A high number of false
positives would mean that the system often flags correct language
as incorrect, and may therefore end up doing more harm than good
(Nagata and Nakatani, 2010). Because of this, F0.5 is preferred to F1 in
the GED domain as it puts more weight on precision than recall. For
each experiment, we report the token-level precision (P), the recall (R),
and the F0.5 scores.

3.7 results

The main results are summarized in Table 3.1. Looking at the perfor-
mance of the LSTMESL+art system, we see that on 3 out of 4 bench-
marks, our neural model trained on artificially generated errors out-
performs the LSTMESL system with respect to F0.5. On average, over
the four benchmarks, its F0.5 score is 2.43 points higher than the best
performing baseline. Both neural models obtain higher F0.5 scores than
the rule-based baseline, on average and across the board, i.e., +10.6
for LSTMESL and +15.7 for LSTMESL+Art. The Bert-LM outperforms
the LSTMESL (mostly due to its higher recall, i.e., +18.66) but still does

6 We tune the threshold on the test dataset from the CoNLL 2013 shared task on
Grammatical Error Correction of ESL learner essays.
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Figure 3.1: Performance (F0.5 scores) of the systems with respect to the noise
in test data (i.e., the number of additional non-SVA errors in
sentences).

not reach the F0.5 score of the LSTMESL+Art system which gets higher
precision and recall overall (+2.62 and +1.51 respectively).

Furthermore, we observe a trend that the two LSTM systems trade
off precision and recall, with the LSTMESL system yielding the highest
precision across most datasets, but also yielding significantly lower
recall than LSTMESL+Art. It is also evident that the performance varies
over domains: all models struggle with AESW. This is likely due to
the complexity of the scientific writing genre where, for example,
sentences contain parentheses interposed between a verb and its sub-
ject. We also note errors are far less frequent in this genre, leading to
moderate recall and very low precision. For the rest of the datasets,
system performance is generally better.

3.8 analysis

We analyze the effect of adding artificial errors to the training data.
In particular, we focus on the robustness of our models by looking
at how sensitive they are to grammatical errors in the surrounding
context; and by looking at how good the models are at predicting
agreement relative to the distance between the subject and verb. This
set of experiments is similar in spirit to Linzen, Dupoux, and Goldberg
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(2016). We also analyze our rule-based baseline: so far, we know our
rule-based baseline was sensitive to parser errors and irregularities.
We inspect the quality of the underlying parser by evaluating it on data
that resembles the data used in our experiments, to see whether errors
seem to result more from parser errors or irregularities. Finally, we also
look at the sensitivity of our systems to other linguistic phenomena
such as relative clauses or conjunctions.

3.8.1 Sensitivity to other errors in the surrounding context

In ESL writings, multiple errors can occur in the same sentence. This
means more variable contexts, which can lead to degradation in the
performance of both syntactic parsers / rule-based systems and GED
models.

testing on noisy contexts We first evaluate how our systems
are impacted by additional non-SVA errors in the surrounding context
of SVA errors in our test data. For each of the test datasets, we create
multiple versions, allowing for n non-SVA errors per sentence (we
correct the extra non-SVA errors). This way we can create datasets
with different levels of complexity with respect to the grammatical
errors within them.

In Figure 3.1, the F0.5 scores of the models are shown for different
numbers of grammatical errors per sentence. It is evident that all of
the models are negatively affected by the presence of other errors in
the same sentence. Using more data for training – i.e., our artificial
training data which does not include context errors – generally boosts
performance on data with and without grammatical errors in the
context. In other words, training with additional artificially generated
errors seems, overall, to be making our model more robust. We also
note that our rule-based baseline is affected by errors to roughly the
same extent as our baseline neural model is. One might have thought
the rule-based baseline would suffer more, because of it being sensitive
to errors in the underlying syntactic parser. We return to this issue
below.

training on non-noisy contexts In order to assess the benefit
of training on non-erroneous contexts, we create a new dataset from
our ESL training data (see §3.5.3). Based on the annotations in the
data, we apply the corrections of error types other than SVA, thereby
only leaving SVA errors in the data. We experiment with how adding
this ‘clean’ dataset to the training set of our existing systems affects
performance. The resulting F0.5 scores are listed in Table 3.2. Using
‘clean’ sentences in addition to our original ESL data for training
always positively affects performance. In this regard, as experimented
in (Rei and Yannakoudakis, 2016), training on more data in the same



3.8 analysis 29

domain is a valid solution for improving the performance of LSTM
models. However, when also adding artificially generated data to the
training set, we reach higher scores only on 2 out of the 4 benchmarks.
It greatly improves the average recall (+11.03), without hurting the
precision on FCE and CoNLL14 but affects negatively the precision
on AESW and JFLEG.

FCE AESW CoNLL14 JFLEG

System F0.5 F0.5 F0.5 F0.5

LSTMESL 53.49 20.75 38.46 57.82

LSTMESL+art 66.04 21.31 46.27 57.29

LSTMESL+cor 65.08 27.16 46.26 59.52

LSTMESL+art+cor 67.16 21.12 52.28 54.64

Table 3.2: Performance (F0.5 scores) of the LSTM models when trained using
an additional set of ‘clean’ sentences (cor) where non-SVA errors
have been corrected.

3.8.2 Sensitivity to long-distance dependencies

Next, we want to study how well our models perform when the
subjects and verbs are far apart, i.e., when the agreement relation is
defined over a long-distance dependency. In order to see how our
systems are affected by the distance between the subject and verb, we
split the test sets based on different subject–verb distances.

Note, however, that our benchmarks are not annotated with PoS
tags and dependency relations. If we binned our test data based on
predicted dependencies, the inductive bias of our syntactic parser and
the errors it made would bias our evaluation. Instead, we perform
our analyses on section 22 and 23 of the Penn Treebank (PTB) dataset
(Marcus, Santorini, and Marcinkiewicz, 1993). The PTB however is not
annotated with grammatical errors. We therefore corrupt the sentences
by injecting SVA errors, in the same way we corrupted the BNC (§3.5.3)
to create additional training data.

For each sentence in the PTB, we identify a subject–verb pair, and
group the sentences by the subject–verb distance. We then run our
models on two versions of each sentence: an unaltered version and a
corrupted one, where we have generated an SVA error by corrupting
the verb, using the method described earlier (§3.5.3). This way we
can compute the performance of our models as F0.5 scores over this
dataset. The results are displayed in Figure 3.2. We can see that the
LSTM trained with artificial data performs significantly better on long-
distance subject–verb pairs than the LSTM trained only on ESL data.
This suggests that training on artificially generated errors also makes
our models more robust to this potential source of error.
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Figure 3.2: F0.5 scores of the systems on the PTB as a function of subject–verb
distance.

Note that, in general, there is a substantial gap between the per-
formance of the two LSTM models. This is because one is trained on
artificial data – similar to the data we use in our analysis. However,
the conclusions are based on the relative differences in performance
over long-distance dependencies, and these differences should still be
comparable across the two models.

3.8.3 Sources of error for our rule-based baseline

There are two obvious potential sources of error for our rule-based
baseline: sensitivity to errors in the underlying syntactic parsers, and
sensitivity to the irregularities of language, e.g., when collective nouns
or named entities are subjects, subject–verb agreement cannot always
be determined by the PoS tags. We show that the main source of error
seems to be irregularities by showing that the underlying syntactic
parsers perform relatively well, even in the ESL domain.

Table 3.3 lists the parsing and tagging performance of our under-
lying syntactic parsers across three domains: learner data (ESL) and
web data (EWT) from the Universal Dependencies (UD) project (Nivre
et al., 2017), as well as the newswire data it was trained on (PTB). We
only evaluate subject–verb relations, since these are the only ones of
interest in this paper. We see that while there is a noticeable out-of-
domain drop going from newswire to learner language or web data,
the parser is still able to detect subject–verb relations with high preci-
sion and recall. This suggests that the vulnerability of our rule-based
baseline is primarily a result of linguistic irregularities and exceptions
to the implemented rules.
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UD-esl UD-ewt PTB 23

Subject–verb precision 88.47 88.86 91.31

Subject–verb recall 89.37 85.11 89.84

PoS tags accuracy 96.36 93.20 97.79

Table 3.3: The Stanford PoS Tagger and Dependency Parser’s performance on
different treebanks. Subject–verb precision/recall relates to subject–
verb relations. PoS tag accuracy is only for PoS tags of the subjects
and verbs.

3.8.4 Sensitivity to other linguistic phenomena

Finally, manually reviewing the errors made by the rule-based system,
we identified frequent linguistic sources of errors, including relative
clauses, conjunctions, ambiguous PoS tags, and collective nouns. We
therefore analyze how the LSTMs and the rule-based system are glob-
ally sensitive to these potential sources of error. Since our benchmarks
are not annotated with PoS and dependency relations, we again use
the corrupted PTB sentences (see §3.8.2).

Many of the examples in which our rule-based baseline fails include
relative clauses (when the verb is the root of a relative clause) and
conjunctions (when the subject is a conjunction). A second major cause
of failure is ambiguous verbs, i.e., verb forms that can also be nouns
(ambiguous PoS, e.g., “need”, “stop”, “point”, etc.), and subjects which
are singular nouns describing groups of people or things (collective
nouns, e.g., “team”, “family”, “staff”, etc.). The following examples
illustrate these cases (underlined):

(3) a. The church and the cathedral are very interesting [. . . ] (con-
junction)

b. If there is someone who doesn’t agree with me, he or she
[. . . ] (relative clause)

c. It is said that the majority of the citizens has got a car [. . . ]
(collective noun)

d. [. . . ] and police officer walk around the building as well.
(ambiguous PoS)

We evaluate our models on the PTB data and report the error rate (the
lower the better) on present tense verbs (Figure 3.3). Overall, results
show that all models are negatively affected when they encounter
complex syntactic structures and ambiguous cases. Figure 3.3 also
confirms that the rule-based baseline is the most sensitive one to
complex structures. Especially in comparison with the LSTMESL+art
model, the rule-based system achieves good scores on verbs which
are not part of complex structures, but performs significantly worse
on difficult cases. The LSTMESL model is the worst across almost all
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Figure 3.3: SVA error rates on the PTB data for complex syntactic structures
and ambiguous cases.

cases, while the LSTMESL+art shows significant improvements over the
baselines, in particular for the difficult cases.

3.9 conclusion

In this paper, we argue for artificial error generation as an effective
approach to learning more robust neural models for subject–verb
agreement detection. We demonstrate that error generation is much
less sensitive to parsing errors and irregularities than rule-based sys-
tems for detecting subject–verb agreement. On the other hand, artificial
error generation enables us to utilise much more training data, and
therefore can develop more robust neural models for SVA error detec-
tion that do not overfit the available, manually annotated training data.
Our simple approach to detecting subject–verb agreements achieves a
new state of the art on three out of four available benchmarks, and, on
average, is better than previous approaches on the task. We show that,
in particular, models trained on large volumes of artificially generated
errors become more robust to other errors in the surrounding context
of SVA, long-distance dependencies, and other challenging linguistic
phenomena.
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4
N O I S Y C H A N N E L F O R L O W R E S O U R C E
G R A M M AT I C A L E R R O R C O R R E C T I O N

abstract

This paper describes our contribution to the low-resource track of
the BEA 2019 shared task on Grammatical Error Correction (GEC).
Our approach to GEC builds on the theory of the noisy channel
by combining a channel model and language model. We generate
confusion sets from the Wikipedia edit history and use the frequencies
of edits to estimate the channel model. Additionally, we use two pre-
trained language models: 1) Google’s BERT model, which we fine-tune
for specific error types and 2) OpenAI’s GPT-2 model, utilizing that
it can operate with previous sentences as context. Furthermore, we
search for the optimal combinations of corrections using beam search.

4.1 introduction

grammatical error correction Grammatical Error Correc-
tion (GEC) is the task of automatically correcting grammatical errors
in written text. The task is relevant for users producing text through
text interfaces, both as assistance during the writing process and for
proofreading already written work. In recent years, GEC has received
increasing attention in the research community with several shared
tasks on the topic, such as CoNLL 13-14 (Ng et al., 2014, 2013), HOO
(Dale and Kilgarriff, 2011), and AESW (Daudaravicius et al., 2016),
and most recently the BEA 2019 shared task on GEC (Bryant et al.,
2019), which this work is a contribution to.

supervised gec Current state-of-the-art approaches to GEC use
a supervised machine translation setup (Ge, Wei, and Zhou, 2018;
Grundkiewicz and Junczys-Dowmunt, 2018), that relies on large
amounts of annotated learner data. This means that systems do not
generalize well to non-learner domains and that these approaches do
not work well for low-resource languages. As most existing datasets
are not freely available for commercial use, the supervised approach
also limits industrial uses.

unsupervised gec In order to combat these problems, in recent
years several approaches to GEC have used the concept of language
modeling, which allows for training GEC systems without supervised
data, and have so far given promising results. Bryant and Briscoe

35
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(2018) uses a 5-gram language model while Makarenkov, Rokach, and
Shapira (2019) uses a bidirectional LSTM-based language model. Kaili
et al. (2018) fine-tunes LSTM-based language models for specific error
types.

Using a language modeling approach means that we can create
models that are trained unsupervised by only being based on high
quality native text corpora. This means that our systems will only
require a small amount of labeled data for tuning purposes. We can
therefore build GEC systems for any language given enough native
text.

the noisy channel The core idea that these language model-
ing approaches are using for GEC is that low probability sequences
are more likely to contain grammatical errors than high probability
sequences. However this formulation does not take into account the
writer’s likelihood of making particular errors. For example, “then”
→ “than” is much more common than “then” → “the” due to an
underlying similarity in phonetics.

In order to take this into account we utilize the concept of the noisy
channel model, which allows for modeling the users likelihood of
making particular errors, instead of only relying on which sequences
of words are more probable.

contributions In the following, we present our low-resource
approach to GEC, which ranked as the 6th best performing system
in the low-resource track of the BEA 2019 shared task. We utilize
confusion sets and edit statistics gathered from the Wikipedia edit
history, as well as unsupervised language models in a noisy channel
setting.

Our contributions are 1) formalizing GEC in the noisy channel
framework, 2) generating confusion sets from the Wikipedia edit
history, 3) estimating a channel model based on frequencies of edits
from the confusion sets, 4) combining existing pre-trained language
models, with each their own strength, 5) specializing models for
specific grammatical error types, and 6) using beam search to find the
optimal combination of corrections.

4.2 the noisy channel

The intuition of the noisy channel model (Kemighan, Church, and
Gale, 1990; Mays, J. Damerau, and Mercer, 1990) is that for any given
word in a sentence, we have a true underlying word, that has been
passed through a noisy communication channel, which potentially has
modified the word into an erroneous surface form.

Our goal is to build a model of the channel. With this, given a
confusion set, we can pass every candidate correction through this
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noisy channel to see which one is most likely to have produced the
surface word.

The noisy channel model can be formulated as a form of Bayesian
inference. Given a potentially erroneous surface word, x, we want to
find the hidden word, c∗, from all candidates c ∈ C, that generated x.

ĉ =c∈C P(c|x)

Using Bayes’ rule this can be restated as

ĉ =c∈C P(x|c) ∗ P(c)

where P(x|c) is the likelihood of the noisy channel producing a par-
ticular x. This is referred to as the channel model. The prior probability
of a hidden word, P(c), is modeled by a language model (Jurafsky
and Martin, 2009).

4.3 system

Our system is a combination of several components: a PoS tagger,
the channel model, two language models (BERT and GPT-2) and
beam search. We first PoS tag the sentence. Then, the sentence is
processed from left to right, and for every word x, we identify the
set C of possible correction candidates, based on the PoS tag and our
generated confusion sets. We then pick the c ∈ C with the highest
P(c|x) estimated using our components in the following formula:

P(c|x) = PChannel ∗ PBERT ∗ PGPT−2

We allow the system to consider multiple hypotheses by using beam
search, which continuously keeps track of a beam of the most likely
hypotheses.

In the following, we describe the different components that make
up our GEC system in more detail.

4.3.1 Channel model

We estimate the channel model in two ways, depending if the written
word is in our vocabulary (real-word error) or not (non-word error).

real-word errors In order to estimate the channel model P(x|c)
for real-word errors, we first make a simplifying assumption that a
human only makes a mistake for 1 in 20 words. This means that there
is a 5% probability (denoted as α) of the surface word x being wrong.
This probability can be distributed between the candidate corrections
taken from the confusion set. For a given candidate word ci we can
calculate the channel probability using frequency counts of edits for
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all candidates in C. We gather frequency counts from the Wikipedia
edit history (§ 4.4.1).

P(x|ci) = α ∗ |x → ci|
|C|
∑

j=1
|x → cj|

non-word errors For non-word errors we assume that any x
not in our vocabulary and not a named entity1 is an error. Assuming
a list of candidate corrections, we use the inverse Levenshtein distance
to distribute the error probability between the candidates. Hereby,
candidates which are lexically closer to the original word are made
more likely.

4.3.2 Language models

For language modeling we use a combination of two pre-trained
models that have recently given good results: BERT (Devlin et al.,
2019) and GPT-2 (Radford et al., 2019).

bert BERT is a Transformer-based (Vaswani et al., 2017) language
model pre-trained on a large text corpus. It estimates probabilities
by jointly conditioning on both left and right context. We use the
pre-trained BERT-Base Uncased model as a starting point for several
models, which are each fine-tuned for specific error types on sentences
extracted from a Wikipedia dump. We do three types of fine-tuning,
using the default hyperparameters of BERT.

• PoS-based fine-tuning, where a word is removed and the model
predicts its PoS tag. This is used to classify which word category
should be at the position for verb form errors and noun number
errors.

• Word-based fine-tuning, where a word is removed and the model
predicts the word from a vocabulary of the most common 40.000

words from the Wikipedia dump. This is used to estimate proba-
bilities for words in our confusion sets.

• Comma prediction, where we remove all commas and let the
model predict where to insert commas. Any discrepancies be-
tween the produced and original sentence is used as comma
edits, if the model is more than 95% certain.

gpt-2 GPT-2 is another Transformer-based language model trained
on a dataset of 8 million web pages. GPT-2 only looks at the previous
context to estimate probabilities. We take advantage of the fact that

1 as estimated by Spacy, https://spacy.io

https://spacy.io
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GPT-2 is trained using previous sentences as context by including the
previous sentence when estimating probabilities.

4.3.3 Beam search

Since our error correction models make a decision separately for every
word, sometimes conflicting corrections can be made, e.g., “the cats
is big.” might be corrected to “the cat are big”. Therefore we utilize
beam search in order to efficiently explore combinations of corrections
in order to find the optimal output sentence. We utilize a beam width
of 3.

4.4 confusion sets

The first step in correcting a sentence is to identify the potentially
erroneous tokens (or groups of tokens) and determine a set of possi-
ble corrections for each. We use several methods for deducing these
confusion sets according to different error types.

4.4.1 Wikipedia edit history

We utilize the WikEd Error Corpus (Grundkiewicz and Junczys-
Dowmunt, 2014) generated from Wikipedia revision histories to create
confusion sets. We only retain edits of sentences where only a single
word has been changed. We first end up with a list of confused token
pairs which includes all types of edits, i.e., semantic or grammatical.
We set up a set of rules to filter the edits not adapted to the task
(e.g., the semantic replacements), and infrequent ones. We thus re-
move confusion pairs which define: (i) the replacement of a verb form
(e.g., tense/subject–verb agreement errors); (ii) noun number errors;
(iii) replacement of numbers or dates; (iv) synonyms and antonyms
(using Wordnet2 (Miller, 1995)); (v) replacement of pronouns with
determiners; (vi) insertion/deletion of content words (e.g., nouns) and
numbers; (vii) spelling errors.

We end up with a list of 348 edit pairs and their corresponding
frequency counts in the WikedEd Error Corpus (ranging from 741

to 60,184 instances). The list includes, for instance, determiner re-
placements (e.g., “a”→“an”) and frequently confused tokens (e.g.
“to”→“too”). It covers most replacement error types but mostly closed-
class words replacements such as R:Det or R:Prep.

2 https://wordnet.princeton.edu/

https://wordnet.princeton.edu/
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4.4.2 Misspelled words

Given a misspelled word (which we refer as non-word in the channel
model) we use the Enchant library3 to derive a set of suggestions
for corrections. It mostly covers the R:Spell error type but can also
include other replacement types (such as content word replacements).

4.4.3 Specialized models

For fine-tuned models on specific error types, we define specific rules
(mainly based on Part-of-Speech tags) to detect the corresponding
tokens and their possible replacements. We use the Spacy4 library to
PoS-tag the sentences.

noun number model We detect the nouns by their PoS-tags: NN
(singular) and NNS (plural) and use a list of matching singular/plural
nouns derived from Wiktionary5 to suggest a correction. It covers the
R:Noun:Num and R:Noun:Infl error types.

verb forms model We detect all forms of verbs through their
PoS-tags and derive a list of potential corrections (i.e., all possible in-
flections) using the list of English verb inflections from the Unimorph
project (Kirov et al., 2016). Here, we mainly cover the R:Verb:Form and
R:Verb:Sva error types but also cases of R:Verb:Infl and R:Verb:Tense

error types.

4.5 discussion

4.5.1 Results

Results on the BEA 2019 shared task test dataset are listed per edit
and error type in Table 4.1. It is evident, that out approach deals
with a wide array of error types, but with varying quality. The model
performs particularly well on spelling errors, subject–verb agreement
errors and inserting missing commas. However, the model performs
rather poorly on the replacement of adjectives, adverbs and conjunc-
tions which are based on confusion sets derived from Wikipedia edits
suggesting that more filtering would be necessary.

3 Wrapper for various spell checker engines.
4 https://spacy.io/

5 https://www.wiktionary.org/

https://spacy.io/
https://www.wiktionary.org/
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Error type # P R F0.5

M:Punct 422 80.10 38.15 65.66

R:Adj 24 12.50 4.17 8.93

R:Adv 17 33.33 5.88 17.24

R:Conj 5 2.22 20.00 2.70

R:Det 129 20.48 52.71 23.34

R:Morph 128 46.15 18.75 35.71

R:Noun 70 50.00 8.57 25.42

R:Noun:Infl 19 42.86 31.58 40.00

R:Noun:Num 290 43.79 68.31 47.18

R:Orth 349 10.20 1.43 4.59

R:Other 618 20.43 6.15 13.95

R:Part 15 38.89 46.67 40.23

R:Prep 292 39.49 58.56 42.24

R:Pron 50 34.15 56.00 37.04

R:Spell 321 76.51 75.08 76.22

R:Verb 134 25.00 2.99 10.10

R:Verb:Form 169 47.96 55.62 49.32

R:Verb:Infl 7 100.00 85.71 96.77

R:Verb:SVA 146 74.39 83.56 76.06

R:Verb:Tense 160 42.50 10.62 26.56

U:Punct 118 34.90 88.14 39.69

All error types 4498 44.52 28.88 40.17

Table 4.1: Span-level correction results of our system. We do not show results
for the error types we do not predict.

4.5.2 Ablation analysis

We do an ablation analysis of the different components of our model
to see how each part contributes to the performance. The global results
are shown in Table 4.2. Detailed results per error type are shown in
Appendix A.1 for all models.

beam search removing the beam search results in a considerable
drop in F0.5 by 2.73. This shows that figuring out how to optimally
combine multiple local edits is important.

gpt-2 removing GPT-2 results in the largest drop in F0.5 score of
5.09. The drop is large for most error types but the ablation is especially
damaging on the precision of verb form errors.
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bert dropping BERT results in a 1.11 drop in F0.5 score. This indi-
cates that GPT-2 is pulling most of the weight.

channel model we ablate the channel model by dividing out
probabilities by uniform distribution over the candidates instead of us-
ing the frequency counts of the confusion sets and reverse Levenshtein
distance. It results in a drop in F0.5 score by 0.44.

P R F0.5

Chan + BERT + GPT 40.29 29.19 37.44

Chan + BERT + beam 37.03 28.98 35.08

Chan + GPT + beam 42.31 29.89 39.06

BERT + GPT + beam 43.50 29.49 39.73

Chan + BERT + GPT + beam 44.52 28.88 40.17

Table 4.2: Span-level correction results of the ablated models.

4.6 conclusions

In this work we have presented our system for the BEA 2019 shared
task on Grammatical Error Correction, which ranked as the 6th best
in the low resource track.

Our ablation analysis showed that each of the components of our
system has a positive effect on the overall performance, meaning that
the combination of all of our components leads to the best score.

Future work could explore using more advanced channel models,
such as using phonetic features to determine the similarity of words.
Furthermore our approach could also be adapted to handle insertions
and deletions. Additionally, there are several parameters that could be
tuned for better performance, including for example, α, the probability
that the channel inserts an error, and the beam width.
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G R A M M AT I C A L E R R O R C O R R E C T I O N I N L O W
E R R O R D E N S I T Y D O M A I N S :
A N E W B E N C H M A R K A N D A N A LY S E S

abstract

Evaluation of grammatical error correction (GEC) systems has primar-
ily focused on essays written by non-native learners of English, which
however is only part of the full spectrum of GEC applications. We
aim to broaden the target domain of GEC and release CWEB, a new
benchmark for GEC consisting of website text generated by English
speakers of varying levels of proficiency. Website data is a common
and important domain that contains far fewer grammatical errors than
learner essays, which we show presents a challenge to state-of-the-art
GEC systems. We demonstrate that a factor behind this is the inability
of systems to rely on a strong internal language model in low error
density domains. We hope this work shall facilitate the development
of open-domain GEC models that generalize to different topics and
genres.

5.1 introduction

Grammatical error correction (GEC) is the task of automatically editing
text to remove grammatical errors; for example: [A link to registration
can also be found at on the same page.]. GEC systems so far have pri-
marily focused on correcting essays produced by English-as-a-second-
language (ESL) learners, providing fast and inexpensive feedback to
facilitate language learning. However, this is only one target domain
in the full spectrum of GEC applications. GEC models can also help
to improve written communication outside of the formal education
setting. Today the largest medium of written communication is the
internet, with approximately 380 new websites created every minute.1

Ensuring grammatical correctness of websites helps facilitate clear
communication and a professional commercial presentation. There-
fore, it is important that GEC models perform well in the open-domain
setting and generalize, not only to writing produced in the educa-
tional context, but also to language production “in the wild”. Website
data specifically represent a broad and diverse range of writing and
constitute a major part of what people read and write on an everyday
basis.

1 https://www.millforbusiness.com/how-many-websites-are-there/
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Figure 5.1: Percentage of erroneous tokens per domain. CWEB-G/S are our
newly devised datasets.

This work highlights two major prevailing challenges of current
approaches to GEC: domain adaptation and low precision in texts with
low error density. Previous work has primarily targeted essay-style
text with high error density (see Figure 5.1); however, this lack of
diversity means that it is not clear how systems perform on other
domains and under different error distributions (Sakaguchi, Napoles,
and Tetreault, 2017).2

Current publicly available datasets are restricted to non-native En-
glish essays [e.g. FCE (Yannakoudakis, Briscoe, and Medlock, 2011);
CoNLL14 (Ng et al., 2014)], student essays [W&I+LOCNESS (Bryant et
al., 2019; Granger, 1998)] or target a specific domain [scientific writing;
AESW (Daudaravicius et al., 2016)]. Supervised systems trained on spe-
cific domains are less likely to be as effective at correcting distinctive
errors from other domains, as is the case for systems trained on learner
data with different native languages (Chollampatt, Hoang, and Ng,
2016; Nadejde and Tetreault, 2019). The recent BEA 2019 shared task
(Bryant et al., 2019) encouraged research in the use of low-resource
and unsupervised approaches; however, evaluation primarily targeted
the restricted domain of student essays. We show that when applied to
data outside of the language learning domain, current state-of-the-art
systems exhibit low precision due to a tendency to over-predict errors.
Recent work tackled the domain adaptation problem, and released
GEC benchmarks from Wikipedia data and online comments [GMEG
Wiki+Yahoo (Napoles, Nădejde, and Tetreault, 2019)]. However, these
datasets present a high density of errors and represent a limited subset
of the full distribution of errors in online writing.

2 Leacock et al. (2010) highlighted the variations in the distribution of errors in non-
native and native English writings.
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CWEB-S CWEB-G Total

D
ev

sent. 2,862 3,867 6,729

tokens 68,857 79,689 148,546

edits 895 1595 2490

Te
st

sent. 2,864 3,981 6,845

tokens 68,459 80,684 149,143

edits 1004 1679 2683

To
ta

l

sent. 5,726 7,848 13,574

tokens 137,316 160,373 297,689

websites 453 625 1,078

parag. 659 630 1,289

Table 5.1: Distribution of sentences and tokens in the CWEB dataset.

Contributions: We (i) release a new dataset, CWEB (Corrected Websites),
of website data that is corrected for grammatical errors;3 (ii) systemat-
ically compare it to previously released GEC corpora; (iii) benchmark
current state-of-the-art GEC approaches on this data and demonstrate
that they are heavily biased towards existing datasets with high error
density, even after fine-tuning on our target domain; (iv) perform an
analysis showing that a factor behind the performance drop is the
inability of systems to rely on a strong internal language model in low
error density domains.

We hope that the new dataset will contribute towards the develop-
ment of robust GEC models in the open-domain setting.

5.2 cweb dataset

We create a new dataset of English texts from randomly sampled
websites, and annotate it for grammatical errors. The source texts are
randomly selected from the first 18 dumps of the CommonCrawl4

dataset and represent a wide range of data seen online such as blogs,
magazines, corporate or educational websites. These include texts
written by native or non-native English speakers and professional as
well as amateur online writers.

text extraction To ensure English content, we exclude websites
with country-code top-level domains; e.g., .fr, .de. We use the jusText5

tool to retrieve the content from HTML pages (removing boilerplate

3 https://github.com/SimonHFL/CWEB

4 https://commoncrawl.org/

5 https://github.com/miso-belica/jusText

https://github.com/SimonHFL/CWEB
https://commoncrawl.org/
https://github.com/miso-belica/jusText
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# sents type tok err. sents edits # annotators sent-K NEs

-token /sent (%) /sent /sents

JFLEG 747 0.44 18.9 86.4 3.6 4 0.53 0.35

FCE 2,695 0.39 15.6 67.8 2.6 1 -†
0.59

CoNLL14 1,312 0.39 22.9 75.8 2.7 2 0.25 0.31

W&I-A 1,036 0.43 18.0 80.5 3.6 1 -†
0.58

W&I-B 1,285 0.45 18.4 72.1 2.7 1 -†
0.52

W&I-C 1,068 0.47 20.1 53.8 1.9 1 -†
0.78

LOCNESS 988 0.47 23.4 52.2 1.8 1 -†
0.77

GMEG wiki 992 0.55 26.9 82.3 2.5 4 0.43 2.83

GMEG yahoo 1,000 0.46 16.9 50.5 2.7 4 0.51 0.59

AESW 52,124 0.52 23.9 36.1 1.6 1 -†
0.93

CWEB-S 2,864 0.56 23.9 24.5 1.5 2 0.39 1.44

CWEB-G 3,981 0.53 20.3 25.6 1.9 2 0.44 1.04

Table 5.2: Statistics on GEC Corpora; type–token is the average ratio of vocab-
ulary size by the total number of tokens (calculated as an average
over a sliding window of 1, 000 tokens); ratio of edits per sentence
is calculated on erroneous sentences; sent-K is sentence-level Co-
hen’s Kappa score (†: calculated for datasets with > 1 annotator);
NEs stands for Named Entities (extracted using Spacy).

elements and splitting the content into paragraphs). We heavily filter
the data by removing paragraphs which contain non-English6 and
incomplete sentences. To ensure diversity of the data, we also remove
duplicate sentences. Among the million sentences gathered, we select
paragraphs randomly.

We split the data with respect to where they come from: sponsored7

(CWEB-S) or generic8 (CWEB-G) websites. The sponsored data repre-
sent a more focused domain (professional writing) than the generic
one which includes writing from various proficiency levels.

annotation The data is corrected for errors by two expert anno-
tators, trained for correcting grammatical errors in English text: not
attempting to rewrite the text nor make fluency edits, but rather to
make minimal edits – minimum number of edits to make the text
grammatical. During error annotation, the annotators have access to
the entire paragraph in which a sentence belongs, therefore using
the context of a sentence to help them in the correction. Examples of

6 Using the langdetect package.
7 top-level domains: .gov, .edu, .mil, .int, and .museum.
8 top-level domains: .com, .info, .net, .org.

https://github.com/Mimino666/langdetect
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Error type Example sentence

Verb:Sva They develop positive relationships with swimmers
and members, and promotes promote programs in
order to generate more participation.

Morph / Orth In a small agriculture agricultural town on the east
side of Washington state State called Yakima.

Prep [. . . ] the distance between the two should be on of the
order of 50 microns.

Table 5.3: Example sentences from the CWEB dataset. Erroneous text is struck
through and corrections are in bold.

erroneous sentences from our data are shown in Table 5.3. Annotator
agreement is calculated at the sentence level using Cohen’s Kappa,
i.e. we calculate whether annotators agree on which sentences are
erroneous. This approach is preferable to relying on exact matching
of error corrections, as as there are often many different ways to
correct a sentence (Bryant and Ng, 2015). Kappa is 0.39 and 0.44 for
sponsored (CWEB-S) and generic website (CWEB-G) data respectively,
and Table 5.2 presents how our agreement results compare to those
of existing GEC datasets. The table also includes a number of other
statistics, and the different datasets are further analyzed, compared
and contrasted in Section 5.5.

The texts are tokenized using SpaCy9 and automatically labeled
for error types (and converted into the M2 format) using the ERRor
ANnotation Toolkit (ERRANT) (Bryant, Felice, and Briscoe, 2017).

release For each dataset, we release a development and a test set:
we propose a roughly equal division of the data into the two splits,
which presents a fair amount of errors to evaluate on (see Table 5.1).

To avoid copyright restrictions, we split the collected paragraphs into
sentences and shuffle all sentences in order to break the original and
coherent structure that would be needed to reproduce the copyrighted
material. This approach has successfully been used in previous work
for devising web-based corpora (Biemann et al., 2007; Schäfer, 2015).
The data is available at https://github.com/SimonHFL/CWEB.

5.3 gec corpora

We compare our data with existing GEC corpora which cover a range
of domains and proficiency levels. Table 5.2 presents a number of
different statistics and Table 5.4 their error-type frequencies.10

9 https://spacy.io/

10 See links to downloadable versions in Appendix A.2

https://github.com/SimonHFL/CWEB
https://spacy.io/
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Punct Verb Other Det Noun Prep Spell All

JFLEG 147.7 233.5 295.6 180.7 167.7 107.1 242.5 1675.6

FCE 2.1 112.3 176.7 138.3 149.1 105.4 113.8 107.8 1084.9

CoNLL14 65.5 200.5 158.1 134.9 116.8 92.7 26.0 919.6

W&I-A 244.8 300.0 237.3 159.1 139.8 137.2 79.3 1561.2

W&I-B 188.2 202.5 136.7 124.1 89.0 114.4 36.3 1050.7

W&I-C 100.4 79.4 57.4 65.8 49.9 64.9 16.3 504.1

LOCNESS 152.3 19.9 43.3 16.4 32.4 28.1 51.0 400.6

GMEG Wiki 230.0 48.1 93.8 40.3 63.6 37.1 86.9 732.3

GMEG Yahoo 194.0 24.2 98.0 22.6 26.2 21.1 68.0 635.3

AESW 80.6 17.8 42.7 33.7 16.8 11.4 5.1 239.2

CWEB-G 48.9 23.4 31.6 20.9 19.6 15.6 3.8 208.9

CWEB-S 48.7 13.1 21.0 19.7 12.8 9.8 2.4 147.2

Table 5.4: Number of error occurrences for the most frequent error types (per
10, 000 token).

5.3.1 English as a second language (ESL)

jfleg (Napoles, Sakaguchi, and Tetreault, 2017) The JHU Fluency-
Extended GUG corpus consists of sentences written by English lan-
guage learners (with different proficiency levels and L1s) for the
TOEFL® exam, covering a range of topics. Texts have been corrected
for grammatical errors and fluency.

fce (Yannakoudakis, Briscoe, and Medlock, 2011) consists of 1, 244
error corrected texts produced by learners taking the First Certificate
in English exam, which assesses English at an upper-intermediate
level. We use the data split made available for the BEA GEC shared
task 2019 (Bryant et al., 2019).

conll14 (Ng et al., 2014) consists of (mostly argumentative) essays
written by ESL learners from the National University of Singapore,
which are annotated for grammatical errors by two native speakers of
English.

write&improve (W&I) (Bryant et al., 2019) Cambridge English
Write & Improve (Yannakoudakis et al., 2018) is an online web plat-
form that automatically provides diagnostic feedback to non-native
English-language learners, including an overall language proficiency
score based on the Common European Framework of Reference for
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Languages (CEFR).11 The W&I corpus contains 3, 600 texts across 3 dif-
ferent CEFR levels – A (beginner), B (intermediate), and C (advanced)
– that have been annotated for errors.12

5.3.2 Other corpora

locness (Bryant et al., 2019; Granger, 1998) The LOCNESS corpus
consists of essays written by native English students. A sample of 100
essays has been annotated for errors with a 50:50 development/test
split.13

gmeg wiki (Napoles, Nădejde, and Tetreault, 2019) is devised
based on edits in the Wikipedia revision history, and the writing there-
fore represents formal articles. Note that collecting sentences based
on edits in the Wikipedia revision history introduces a substantial
bias.14 This means that evaluation results on this benchmark are not
truly representative of how a system would perform when applied to
realistic online data and full-length articles.

gmeg yahoo (Napoles, Nădejde, and Tetreault, 2019) comprises
paragraphs of informal web posts gathered from answers in the Yahoo!
Answers platform. The style is informal, and contains slang terms and
non-conventional mechanics.

aesw (Daudaravicius et al., 2016) was released as part of the Auto-
mated Evaluation of Scientific Writing Shared Task. It is a collection
of text extracts from published journal articles (mostly in physics and
mathematics) along with their (sentence-aligned) corrected counter-
parts.15

5.4 system performance

We evaluate performance on GEC benchmarks for two approaches to
GEC that currently have state-of-the-art performance on CoNLL14.
The first approach, that we refer to as GEC-pseudodata and is pro-
posed by Kiyono et al. (2019),16 uses a transformer-based seq2seq
model. The second approach uses the PIE system (Awasthi et al.,

11 https://www.cambridgeenglish.org/exams-and-tests/cefr/

12 Since error corrections on test sets are not publicly available, we carry out our analyses
on the development sets.

13 See footnote 12.
14 Sentences that have been edited are more likely to contain grammatical errors, and

grammatical errors will therefore be over-represented. This is reflected in the 82.3%
erroneous sentence rate (see Table 5.2).

15 We exclude sentences that use AESW’s normalization scheme (e.g. citations replaced
with __CITE__), as the models we use are not trained with these special tokens.

16 www.github.com/butsugiri/gec-pseudodata; We use the PRETLARGE+SSE (fine-
tuned) model.

https://www.cambridgeenglish.org/exams-and-tests/cefr/
www.github.com/butsugiri/gec-pseudodata
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GEC-pseudodata system PIE system

P R F0.5 P R F0.5

JFLEG 55.73 38.73 51.13 51.04 35.21 46.74

FCE 2.1 55.11 41.61 51.75 49.55 36.34 46.19

CoNLL14 44.96 29.03 40.35 43.47 27.93 38.95

W&I-A 54.89 37.92 50.38 50.24 36.10 46.59

W&I-B 54.86 35.14 49.32 49.12 31.20 44.06

W&I-C 44.53 32.04 41.31 39.12 27.13 35.94

LOCNESS 47.09 34.13 43.77 32.77 23.11 30.24

GMEG Wiki 52.81 23.02 41.89 44.71 19.66 35.58

GMEG Yahoo 37.57 32.26 36.00 33.08 26.97 31.29

AESW 14.05 13.24 13.88 8.78 9.67 8.94

CWEB-G 21.34 23.00 21.58 14.29 18.91 14.98

CWEB-S 17.27 15.75 16.91 5.73 8.78 6.15

CWEB-G+S 19.97 20.28 19.98 10.80 15.11 11.43

Table 5.5: Scores of two sota GEC systems on each domain. For both systems
performance is substantially lower on CWEB than ESL domains.
Scores are calculated against each individual annotator and aver-
aged

2019)17 which leverages a BERT-based architecture for local sequence
transduction tasks. Both models are pre-trained on synthetic errors
and fine-tuned on learner data from the train section of FCE (Yan-
nakoudakis, Briscoe, and Medlock, 2011), Lang-8 (Mizumoto et al.,
2011), and NUCLE (Dahlmeier, Ng, and Wu, 2013a) and for GEC-
PSEUDODATA additionally on the W&I train split (Bryant et al.,
2019).

Performance is evaluated using the F0.5 metric calculated by ER-
RANT (Bryant, Felice, and Briscoe, 2017).18 However, the more an-
notators a dataset has, the higher score a system will get on this
data (Bryant and Ng, 2015). In order to perform a fair comparison
of systems across datasets with a different number of annotators, we
calculate the ERRANT score against each individual annotator and
then take the average to get the final score.

Evaluation results are presented in Table 5.5. Across all datasets,
we observe lower scores with the PIE system (−6.05 F0.5 on aver-
age), while GEC-pseudodata is consistently better. Overall F0.5 ranges
from around 30 to 52 for most datasets; however, when the models

17 www.github.com/awasthiabhijeet/PIE

18 www.github.com/chrisjbryant/errant

www.github.com/awasthiabhijeet/PIE
www.github.com/chrisjbryant/errant
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P R F0.5

CWEB-G 42.09 16.56 32.01

CWEB-S 35.91 12.96 26.46

CWEB (G+S) 39.89 15.2 30.0

Table 5.6: Scores of the GEC-pseudodata system fine-tuned on CWEB data.
Fine-tuning yields substantial improvements, but scores are still
worse than on ESL domains. Scores are calculated against each
individual annotator and averaged.

are evaluated on CWEB and AESW, we observe a substantial drop
in performance, with the lowest F0.5 score being the PIE system on
CWEB-S (6.15). Precision, in particular, suffers due to the systems
over-correcting sentences that should remain unchanged.

Using the GEC-pseudodata system, on average, we find a higher
F0.5 on ESL corpora (JFLEG, FCE, CoNLL, W&I) compared to non-ESL
ones (47.4 vs. 29.0). This demonstrates that GEC systems trained on
language learning data do not perform as well on other domains and
further work is needed to improve their generalization.

5.4.1 Fine-tuning

We investigate the extent to which the GEC-pseudodata system can
be adapted to our domain, and fine-tune it using our development
sets.19 We take 1, 000 sentences from each of the development sets of
CWEB-G and CWEB-S and use them as a development set for this
experiment. The remaining 4, 729 sentences of our development sets
are used as training data for fine-tuning the GEC system.

In Table 5.6, we can see that fine-tuning substantially improves
performance (around +10.0 F0.5 across all CWEB sets). In particular,
precision is improved (+20.8/+18.6 on CWEB-G/S) at the expense
of recall (−6.4/−2.8 on CWEB-G/S). However, performance is still
low compared to the language learning domain (F0.5 of at least 41),
further indicating that there is scope for developing more robust
and general-purpose, open-domain GEC systems. For the purpose of
future benchmarking, Appendix A.3 lists the system's ERRANT scores
based on both annotators – as opposed to the average of individual
annotator scores reported in Table 5.6.

5.5 analysis

In order to assess the impact our new dataset can have on the GEC
field, we carry out analyses to show 1) to what degree the domain of
our data is different from existing GEC corpora, and how existing GEC

19 We use the fine-tuning parameters of Kiyono et al. (2019).
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systems are affected by the domain shift; and 2) that a factor behind
the performance drop on CWEB data is the inability of systems to rely
on a strong internal language model in low error density domains.

5.5.1 Domain shift

Moving from error correction in learner texts to error correction in
diverse, online texts, many of which are written by professional writers,
amounts to a drift in data distribution. In general, distributional
drift comes in different flavors; given two distributions P(X, Y) and
Q(X, Y):

covariate shift concerns change in the marginal distribution
of the independent variable, i.e., P(X) 6= Q(X). In the context of
grammatical errors, this refers to the degree to which the type of
sentences written varies between domains. Table 5.2 clearly shows
covariate shift effects: see, for example, differences in vocabulary
variation (measured by the type–token ratio) and the frequency of
named entities.

label bias describes the change in distribution of the dependent
variable, i.e., P(Y) 6= Q(Y). In terms of GEC, this refers to the differ-
ence in error distributions across domains. In Table 5.2, we can see that
CWEB data contains errors that are substantially more sparse than
other domains – a smaller proportion of sentences are erroneous, and
these erroneous sentences also contain fewer edits compared to other
domains. Additionally, looking at Table 5.4, we can see that almost all
error types are substantially less frequent in our data than in existing
benchmarks – for example, spelling errors are 38 times more prevalent
in GMEG Wiki compared to CWEB-S.

Moving from learner text to web data involves both forms of drift:
covariate shift and label bias. We further analyze the effects of these
shifts on system performance.

5.5.1.1 Impact of error density

To demonstrate that the error density of corpora has a substantial
impact on the performance of GEC systems, we vary the proportion
of erroneous sentences in each dataset by either removing correct
sentences or by adding correct sentences of the same domain.20 By
fixing the frequency of errors across datasets, we can observe, in isola-
tion, how the systems are affected by co-variate shift across domains.

20 For each dataset, we apply the gold corrections on incorrect sentences, creating new
examples of in-domain, correct sentences, which are then randomly selected for
inclusion.
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Figure 5.2: Precision as a function of the proportion of erroneous sentences in
3 different domains; comparing the GEC-pseudodata (PSEUDO)
and PIE systems.

Precision as a function of the proportion of erroneous sentences for
selected datasets21 is presented in Figure 5.2 (recall is unchanged).

For each domain, we observe precision being highly sensitive to the
proportion of errors. This indicates that differences in error distribution
across domains (i.e. label bias) is likely to be a large contributor to
performance drop. We also observe the effect of covariate shift across
the datasets: while the percentage of erroneous sentences is the same,
precision differs for the different datasets which suggests that covariate
shift across domains has an impact on the performance of the system.

5.5.1.2 Analysis of gold edits

In addition to error density, the type of errors present in the dataset
also has an impact on the performance of GEC systems. We investigate
how errors and their corresponding corrections differ across domains.
In particular, we look at how gold edits in different domains change
the sentence in terms of two factors: 1) How much do edits change

21 Scores for all datasets can be found in Appendix A.5.
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Figure 5.3: Average semantic similarity and perplexity ratio (sentence im-
provement) of sentences before and after being edited, plotted per
dataset. The analysis is limited to sentences containing exactly
one edit.

the semantics of the sentence, and 2) to what degree do edits improve
the sentence.

We limit our analysis to sentences containing exactly one edit, as we
are interested in how individual edits change a sentence, regardless
of how domains differ in amounts of erroneous sentences and in the
number of edits per sentence (Table 5.2).

Regarding 1), to measure the semantic change of a sentence after
an edit is introduced, we use sentence embeddings generated by
Sentence-BERT (Devlin et al., 2019) and calculate the cosine similarity
between the original sentence and its corrected counterpart. Regarding
2), the degree of sentence improvement is calculated as the ratio of
the perplexity of GPT-2 (Radford et al., 2019) on a sentence after and
before it has been edited.

∆P =
PPL(edited_sentence)

PPL(original_sentence)

A lower ratio suggests that the edited sentence is an improvement,
since its perplexity is lower than the original sentence.

Using the outputs of machine learning models as a proxy for seman-
tic change and sentence improvement inevitably introduces biases, but
nevertheless provide valuable insights into domain differences.

corpus level In Figure 5.3, the average semantic similarity and
perplexity ratio is plotted for each dataset. It is evident that ESL
datasets consist of edits with a higher degree of semantic change and
sentence improvements than datasets from more advanced speakers.
CWEB and AESW in particular stand out, with edits that largely
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Figure 5.4: Difference in semantic similarity and perplexity ratio between
CWEB-S and FCE for the most frequent error types (M: missing;
R: replace; U: unnecessary).

retain the semantics of a sentence and that result in more subtle
improvements.

error type level In order to gain further insight on what is
driving the differences between datasets, we look separately at how
edits of each error type change the sentence. We compare FCE and
CWEB-S, which lie at opposite ends in Figure 5.3. For each dataset,
we obtain an average of semantic similarity, S, and perplexity ratio, P,
separately for sentences of each error type. Then, for each error type,
the difference, ∆, between scores in the two datasets is calculated.

∆S = SCWEB-S − SFCE

∆P = PCWEB-S − PFCE

Figure 5.4 plots these differences for the most common error types.
We can observe that, for all error types, edits in CWEB-S result in both
a lower degree of semantic change and sentence improvement than
edits in FCE. This is particularly evident for the error types R:OTHER,
R:SPELL and R:VERB. These are open class errors, where the error and
correction can be quite different. It is therefore reasonable that differ-
ences in edits’ degree of semantic change and perplexity improvement
across domains are particularly observed in these cases.22

22 Score differences for the R:SPELL error type seem to be driven by a different propen-
sity of spelling errors being of a typographical vs. phonetical nature in the two
datasets.
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P R F0.5

JFLEG 57.55 21.59 43.07

FCE 51.33 17.39 36.92

CoNLL14 40.30 16.56 31.17

W&I-A 45.79 15.10 32.55

W&I-B 43.17 14.46 30.90

W&I-C 33.02 9.81 22.42

LOCNESS 42.09 16.09 31.81

GMEG Wiki 52.36 13.35 32.99

GMEG Yahoo 62.50 16.45 39.45

AESW 10.18 3.58 7.44

CWEB-G 15.20 5.96 11.54

CWEB-S 8.94 1.33 4.17

Table 5.7: Scores of a language model based GEC system. The lower scores
on CWEB and AESW indicate an inability to rely on language
modelling in low error-density domains.

5.5.2 Language model importance

We also investigate the degree to which systems can rely on a strong
internal language model representation when evaluated against dif-
ferent domains. We examine this by looking at the performance of a
purely language model based GEC system over the different datasets.

We build on the approach of Bryant and Briscoe (2018), using confu-
sion sets to generate alternative versions of an input sentence and then
deciding if any of the alternatives are preferable to the original version,
based on language model probabilities. The authors use an n-gram
language model, which we replace with GPT-2 (Radford et al., 2019)
to see how a strong neural language model performs – this approach
is similar to Alikaniotis and Raheja (2019). Hyperparameters are tuned
for each dataset (see Appendix A.4 for details).

Table 5.7 displays the results on the different datasets. Recall and,
in particular, precision is substantially lower on CWEB and AESW
compared to other datasets. In general, scores are higher in domains
with a higher proportion of errors and those containing edits which
result in high perplexity improvements. In these cases systems can
rely on a rough heuristic of replacing low probability sequences with
high probability ones. However, in CWEB, where errors are fewer and
more subtle, this leads to low precision, as perplexity alone cannot
differentiate an erroneous sequence from a sequence that is rare but
correct. Table 5.8 displays several examples of this, where false positive
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False Positive Examples Perplexity ratio

All types of work are callings called to individuals. 0.34

Get started at with ACC 0.51

That is was actually kind of fun! 0.69

Table 5.8: Examples of false positives on the CWEB dataset that improve
perplexity substantially – even more than the average gold edit in
CWEB (0.86 perplexity ratio).

corrections suggested by the language model based GEC system have
large perplexity improvements.

This analysis suggests that the inability to rely on a strong internal
language model representation can negatively impact SOTA system
performance on CWEB and on low error density domains in general.
This would mean that having large amounts of error examples for
training is more important in high-level domains.

5.6 conclusion

We release a new GEC benchmark, CWEB, consisting of website text
generated by English speakers at varying levels of proficiency. Com-
parisons against existing benchmarks demonstrate that CWEB differs
in many respects: 1) in the distribution of sentences (higher vocabulary
variation and named entity frequency); 2) in error density (lower); and
3) in the types of edits and their impact on language model perplexity
and semantic change.

We showed that existing state-of-the-art GEC models achieve consid-
erably lower performance when evaluated on this new domain, even
after fine-tuning. We argue that a factor behind this is the inability
of systems to rely on a strong internal language model in low error
density domains.

We hope that the dataset shall broaden the target domain of GEC
beyond learner and/or exam writing and facilitate the development
of robust GEC models in the open-domain setting.
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D ATA S T R AT E G I E S F O R L O W- R E S O U R C E
G R A M M AT I C A L E R R O R C O R R E C T I O N

abstract

Grammatical Error Correction (GEC) is a task that has been extensively
investigated for the English language. However, for low-resource lan-
guages the best practices for training GEC systems have not yet been
systematically determined. We investigate how best to take advantage
of existing data sources for improving GEC systems for languages
with limited quantities of high quality training data. We show that
methods for generating artificial training data for GEC can benefit
from including morphological errors. We also demonstrate that noisy
error correction data gathered from Wikipedia revision histories and
the language learning website Lang8, are valuable data sources. Fi-
nally, we show that GEC systems pre-trained on noisy data sources
can be fine-tuned effectively using small amounts of high quality,
human-annotated data.

6.1 introduction

Grammatical Error Correction (GEC) research has thus far been mostly
focused on the English language. One reason for this narrow focus is
the difficulty of the task – even for English, which has a reasonable
amount of high quality data, the task is challenging. Another reason
for the English-centric research has been the lack of available GEC
benchmark datasets in other languages, which has made it harder to
develop GEC systems on these languages.

In the past few years, there are several languages for which GEC
benchmarks have become available (Boyd et al., 2014; Davidson et
al., 2020; Náplava and Straka, 2019; Rozovskaya and Roth, 2019).
Simultaneously, there has been considerable progress in GEC for
English using cheap data sources such as artificial data and revi-
sion logs (Grundkiewicz and Junczys-Dowmunt, 2014; Grundkiewicz,
Junczys-Dowmunt, and Heafield, 2019; Lichtarge et al., 2019). Since
these resources are language-agnostic, the time is ripe for investigating
these techniques for other languages.

Pretraining GEC systems on artificially generated errors is now
common practice for English. Grundkiewicz and Junczys-Dowmunt
(2019) showed good results on English, Russian, and German, us-
ing a rule based error generation approach that Náplava and Straka
(2019) extended to Czech. This approach employed the Aspell dictio-
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Gold WikiEdits Lang8

Train Dev Test

es 10,143 1,408 1,127 4,871,833 1,214,781

de 19,237 2,503 2,337 9,160,287 863,767

ru 4,980 2,500 5,000 8,482,683 684,936

cs 42,210 2,485 2,676 1,193,447 17,061

Table 6.1: Number of sentences for each language.

nary to create confusion sets of phonologically and lexically similar
words. In this work, we additionally investigate the usefulness of
morphology-based confusion sets. For English, model-based error
generation approaches have also been shown to be useful (Kiyono
et al., 2019).

State-of-the-art English GEC systems also make use of lower quality
data sources, such as Wikipedia revision histories and crowd-sourced
corrections from the language learning website Lang8 (Lichtarge et al.,
2019; Mizumoto et al., 2011). Given that it is possible to extract data
from both Wikipedia and Lang8 in multiple languages, it would be
interesting to determine if this data will help improve GEC for non-
English languages. Boyd (2018) have already shown promising results
for German using Wikipedia revisions with a custom language-specific
filtering method.

contributions In this work we investigate data strategies for
Grammatical Error Correction on languages without large quantities
of high quality training data. In particular we answer the following
questions: i) Can artificial error generation methods benefit from
including morphological errors?; ii) How can we best make use of
noisy GEC data when other data is limited?; iii) How much gold
training data is necessary?

6.2 gec data sources

6.2.1 Gold data

In recent years, high quality GEC datasets have been made available
in several languages – in this work we look into Spanish (es), German
(de), Russian (ru), and Czech (cs). An overview of the number of
sentences for each language is shown in Table 6.1.

spanish COWS-L2H (Davidson et al., 2020) is a corpus of learner
Spanish corrected for grammatical errors, gathered from essays writ-
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ten by mostly beginner level Spanish students at the University of
California at Davis.

german Falko-Merlin (Boyd, 2018) is a parallel error-correction
corpus generated by merging two German learner corpora, the Falko
(Reznicek et al., 2012) and Merlin (Boyd et al., 2014) corpus. The
Falko part of the corpora is gathered from essays from advanced
German learners, while Merlin consists of essays from a wider range
of proficiency levels.

russian RULEC-GEC (Rozovskaya and Roth, 2019) is a GEC-
annotated subset of the RULEC corpus. The sources of the corpora
are essays and papers written in a university setting by non-native
Russian speakers of various levels.

czech AKCES-GEC (Náplava and Straka, 2019) is a GEC corpus
generated from a subset of the AKCES corpora, which consists of texts
written by non-native speakers of Czech.

6.2.2 Artificial data

Text can be easily manipulated to destroy its grammatical structure,
for example by deleting a word, or swapping the order of two words.
Given that large quantities of text in multiple languages are avail-
able on the internet it is easy to produce large amounts of artifi-
cial training data. Even though these types of rule-based corruption
methods do not always simulate realistic errors by human writers, it
has been shown that they are still very useful for pre-training GEC
models (Grundkiewicz and Junczys-Dowmunt, 2014; Grundkiewicz,
Junczys-Dowmunt, and Heafield, 2019; Lichtarge et al., 2019).

Both rule-based and model-based methods for generating artificial
data have been shown to be important components of top-performing
GEC systems for English, with model-based methods currently yield-
ing the best results (Kiyono et al., 2019). However, model-based meth-
ods typically need a large amount of training data to be able to
produce an errorful data set that matches the distribution of human
writers. For our low-resource setting we therefore employ a rule-based
approach.

Rule based error creation approaches using insertion, deletion and
replacement operations to corrupt sentences have given good results
on both English and other languages (Grundkiewicz and Junczys-
Dowmunt, 2019; Náplava and Straka, 2019). Here, for word replace-
ment operations, the Aspell dictionary is commonly used to generate
confusion sets of lexically and phonetically similar words that are
plausible real-world confusions (Grundkiewicz, Junczys-Dowmunt,
and Heafield, 2019). Another potential source of confusion sets, which
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we explore in this work, is Unimorph, a database of morphological
variants of words available for many languages1 (Kirov et al., 2018).

6.2.3 Noisy data

wikipedia edits Wikipedia is a publicly available, online ency-
clopedia for which all content is communally created and curated,
and is currently available for 316 languages.2 Wikipedia maintains a
revision history of each page, making it possible to extract edits made
between subsequent revisions. A subset of the edits contain corrections
for grammatical errors. However there are many other types of edits
unrelated to the GEC task, such as stylistic changes, change in context,
vandalism etc. This noise poses a challenge for training GEC systems.

Data from the Wikipedia edit history is commonly used for training
English GEC systems (Grundkiewicz and Junczys-Dowmunt, 2014;
Lichtarge et al., 2019), and has also been shown useful for German,
when using a custom language-specific filtering method (Boyd, 2018).
In order to keep our experiments language-independent, we do not
use this filtering method. Instead, we expect that the effects of noise in
the Wikipedia data would be mitigated by the subsequent finetuning
on gold data. For our experiments, we use the data generation scripts
from Lichtarge et al. (2019) to gather training examples from the
Wikipedia edit history (see Table 6.1); we refer to this data source as
WikiEdits.

lang8 Lang8 is a social language learning website, where users can
post texts in a language they are learning, which are then corrected
by other users who are native or proficient speakers of the language.
The website contains relatively large quantities of sentences with their
corrections (Table 6.1) which can be used for training GEC models
(Mizumoto et al., 2011). Lang8, however, also contains considerable
noise. The corrections may include additional comments. Also, there
is high variability in the language proficiency of users providing the
corrections.

6.3 systems

For all experiments we use the Transformer sequence-to-sequence
model (Vaswani et al., 2017) available in the Tensor2tensor library.3

The model is trained with early stopping, using Adafactor as optimizer
with inverse square root decay (Shazeer and Stern, 2018). A detailed
overview of hyperparameters is listed in Appendix A.6.4

1 http://unimorph.org

2 https://meta.wikimedia.org/wiki/List_of_Wikipedias

3 https://github.com/tensorflow/tensor2tensor

4 We used the “transformer_clean_big_tpu” setting

https://lang-8.com/
http://unimorph.org
https://meta.wikimedia.org/wiki/List_of_Wikipedias
https://github.com/tensorflow/tensor2tensor
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cs de ru es

Artificial

Unimorph 71.08 60.87 32.91 44.68

Aspell 71.53 63.49 32.86 48.22

Aspell+Unimorph 71.90 62.55 35.95 48.20

WikiEdits

WikiEdits 55.14 58.00 23.92 47.35

Artificial→WikiEdits 74.64 66.74 40.68 52.56

Artificial+WikiEdits 72.91 66.66 42.80 51.55

Summary

N&S (2019) 80.17 73.71 50.20 -

G&J (2019) - 70.24 34.46 -

Artificial 71.90 63.49 35.95 48.22

+ WikiEdits 74.64 66.74 42.80 52.56

+ Lang8 75.07 69.24 44.72 57.32

Table 6.2: F0.5 scores of experiments on the Artificial, WikiEdits, and
Lang8 data sources.

We compare our results to two baseline GEC systems, Grundkiewicz
and Junczys-Dowmunt (2019) (G&J) and Náplava and Straka (2019)
(N&S), which have both been evaluated on Russian and German, and
for Náplava and Straka (2019) additionally on Czech. Both of these
systems are pretrained on artificial data and finetuned on gold data.
When training the models several strategies were used: source and
target word dropouts, edit-weighted maximum likelihood estimation
and checkpoint averaging. In this work we do not employ these tech-
niques because our focus is primarily on comparing methods for data
collection and generation and less on surpassing the state-of-the-art.

6.4 experiments

We evaluate our models using F0.5 score computed using the Max-
Match scorer (Dahlmeier and Ng, 2012). For all experiments, the
reported scores are computed for the model trained on the specified
data source, further finetuned on the gold training data.



68 data strategies for low-resource grammatical error correction

6.4.1 Creating artificial data

We first investigate if artificial data creation methods can benefit from
the inclusion of morphology-based confusion sets generated from
Unimorph.

We train the systems on 10 million examples generated from the
WMT News Crawl using the rule-based method from Náplava and
Straka (2019) which is a modification of the method presented by
Grundkiewicz and Junczys-Dowmunt (2019).

First, for each sentence a word-level (or character-level) error proba-
bility is sampled from a normal distribution with a predefined mean
and standard deviation. The number of words (or characters) to cor-
rupt are then decided by multiplying the probability by the number
of words (or characters) in the sentence. Each corruption is then
performed using one of the following operations: insert, swap-right,
substitute and delete. Furthermore, at the word level an operation to
change the casing is included and at the character level an operation to
replace diacritics is included. The operation to apply is selected based
on probabilities estimated from the development sets. All parameters
used in our experiments are presented in Appendix A.7.

When creating the artificial data we report three experiments – for
the word substitution operation a replacement word is chosen from a
confusion set generated by either 1) Aspell; 2) Unimorph; or 3) Aspell
or Unimorph with equal likelihood (Aspell + Unimorph).

Table 6.2 shows that only using Unimorph performs the worst. This
is expected since the system would only learn to correct morphological
substitution errors. Mixing Aspell and Unimorph works better for
Russian and Czech but for the other languages, using Aspell alone
performs better. Thus including Unimorph can help for morphological
rich languages, such as Russian and Czech. We will refer to the best
performing artificially created dataset for each language as Artificial.

6.4.2 Including noisy data

We next investigate whether data extracted from Wikipedia revisions
and Lang8 can improve our systems even further.

wikiedits We perform three experiments: 1) training on WikiEd-
its from scratch; 2) fine-tuning on WikiEdits, starting from models
pre-trained on Artificial (Artificial→WikiEdits); and 3) training
on an equal-proportion mix of Artificial and WikiEdits (Artificial

+ WikiEdits). From Table 6.2, training only on WikiEdits performs
worse than the models trained solely on Artificial. However, fine-
tuning the Artificial-trained model on WikiEdits gives a large im-
provement. This suggests that the model primed for the GEC task by
pre-training on Artificial can better handle the noise in WikiEdits.
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Figure 6.1: GEC performance (F0.5) for different amounts of gold training
data. Systems have been pretrained on Artificial. The + denotes
system has additionally been pretrained on WikiEdits and Lang8

Mixing the two sources is generally worse, indicating that WikiEdits,
despite its noise, is of a higher quality and contains realistic GEC
errors. However, this is not the case for Russian, where it is better
to mix the two data sources. This suggests that Russian Wikipedia
revisions are more likely to be unrelated to GEC, and mixing it with
Artificial regularizes this noise.

lang8 Fine-tuning the best model from the WikiEdits experiments
on Lang8 improves performance on all languages (Table 6.2), which
confirms the utility of this data source as a valuable source of gram-
matical corrections.

6.4.3 How much gold data do we need?

Human annotated (Gold) data is a scarce resource, as human annota-
tions are expensive. Therefore it is important to determine how much
data is necessary to train useful GEC systems in new languages. We
analyze the performance of systems finetuned on increasingly larger
subsets of available data.

We investigate two scenarios: 1) finetuning a model pretrained only
on Artificial, and 2) finetuning a model pretrained on Artificial,
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WikiEdits, and Lang8 (using the best method from previous experi-
ments). This ablation allows us to assess whether noisy data sources
can ameliorate the need for gold data.

Performance curves (Figure 6.1) flatten out quickly at around 15k
sentences, suggesting that not much data is needed. This is especially
the case when the system has additionally been trained on WikiEdits

and Lang8. This demonstrates that it is possible to obtain a reasonable
quality without much human-annotated data in new languages.

6.5 conclusion

In this paper we have investigated how best to make use of available
data sources for GEC in low resource scenarios. We have shown a set
of best practices for using artificial data, Wikipedia revision data and
Lang8 data, that gives good results across four languages.

We show that using Unimorph for generating artificial data is useful
for Russian and Czech, which are morphologically rich languages.
Using Wikipedia edits is a valuable source of data, despite its noise.
Lang8 is an even better source of high-quality GEC data, despite its
smaller size and uncertainties associated with crowdsourcing. When
using gold data for fine-tuning, even small amounts of data can yield
good results. This is especially true when the initial model has been
pretrained on Wikipedia edits and Lang8. We expect this work to
provide a good starting point for developing GEC systems for a wider
range of languages.
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D I S C U S S I O N O F T H E C O N T R I B U T I O N S

Throughout this thesis, we have made contributions to the GEC field,
pushing the field towards greater usability in an industrial setting.
In this final chapter, we present a summary and discussion of our
contributions.

In the first part of the thesis, we focused on the issue of current
GEC systems being dependant on large amounts of expensive data
not available outside academia. The first research question asked in
this thesis was:

How can data-scarcity in GEC be dealt with?

In Chapter 3, we did a deep-dive into the benefits of artificial error
generation, by looking through the narrow lens of subject-verb agree-
ment error detection. We showed that including large amounts of
artificially generated data when training the systems yields better and
more robust models. In particular, it makes the system more robust to
challenging linguistic phenomena and other errors in the sentence. As
artificial data can be produced cheaply in large amounts, this approach
is an effective avenue for dealing with data-scarcity in industrial GEC
systems. In Chapter 4, we presented an unsupervised approach to
GEC based on the noisy channel framework. This approach leveraged
strong pre-trained language models and a channel model estimated
from edits extracted from Wikipedia revisions. While the system did
not yield state-of-the-art results, it still highlighted a viable avenue for
creating GEC systems without annotated training data. It is also likely
that this approach will benefit from future generations of improved
language models.

The second part of this thesis focused on domain generalization of
current GEC systems to answer the second research question:

How do GEC systems perform outside the ELL domain?

In Chapter 5, we introduced a new GEC benchmark, CWEB, consisting
of website text annotated for correctness, and showed that state-of-the-
art GEC systems do not generalize well to this domain; While these
systems perform well in the ELL domain, text from more advanced
writers poses a challenge to them. In particular, we show that systems
perform poorly on text with a low density of errors and suggest that a
factor behind this is GEC systems’ inability to rely on a strong internal
language model in low-error density domains. While GEC has been
shown to generalize to some domains outside the ELL domain, this
work indicates that more effort is needed to develop open-domain
GEC systems.
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The third part of this thesis focused on GEC for non-English lan-
guages, to answer the third research question:

How can GEC be broadened to non-English languages?

In Chapter 6, we showed a set of strategies for leveraging available
data sources of lower quality to achieve good results across a range
of languages. Pre-training GEC models on artificially generated data
served as a strong starting point while being a cheap and effective
method for all investigated languages. For morphologically rich lan-
guages, GEC systems further benefited from including morphological
confusions when creating artificial errors. The Wikipedia revision his-
tory, freely available for many languages, also proved a useful resource
for extracting training data, despite containing a lot of noise in the
form of non-GEC-related edits. Data extracted from the website Lang8

proved an even better source of very high-quality data. Finally, we
showed that systems, when pre-trained on noisy data, can be finetuned
effectively on just small amounts of expert-annotated data. This work
has demonstrated that data strategies commonly used for English
GEC can be successfully transferred to non-English languages and
highlights the feasibility of inexpensively broadening GEC systems to
new languages.

In sum, during this PhD project, several of the obstacles holding
back GEC in industry have been bridged. GEC can now be adopted in
industry with low data acquisition costs and work well across many
languages. However, more effort is still needed for GEC to generalize
to an open-domain setting.
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a.1 results per error type

Error type # All models C+B+G C+B+beam C+G+beam B+G+beam

M:Punct 422 65.66 65.86 65.54 64.15 65.65

R:Adj 24 8.93 7.69 8.20 7.81 15.38

R:Adv 17 17.24 12.20 17.24 16.67 13.16

R:Conj 5 2.70 1.92 2.65 2.65 2.36

R:Det 129 23.34 19.92 23.15 22.24 23.29

R:Morph 128 35.71 29.48 28.12 31.18 35.09

R:Noun 70 25.42 23.81 25.21 23.08 23.81

R:Noun:Infl 19 40.00 38.46 37.31 69.57 46.67

R:Noun:Num 290 47.18 43.82 42.59 47.11 46.46

R:Orth 349 4.59 4.58 4.57 4.61 4.60

R:Other 618 13.95 13.30 14.24 13.29 15.07

R:Part 15 40.23 44.12 38.89 33.98 41.67

R:Prep 292 42.24 39.47 41.46 40.46 42.01

R:Pron 50 37.04 34.25 32.22 34.04 35.48

R:Spell 321 76.22 73.66 75.59 70.85 75.02

R:Verb 134 10.10 9.76 9.35 11.57 10.47

R:Verb:Form 169 49.32 44.53 17.86 46.58 48.03

R:Verb:Infl 7 96.77 96.77 96.77 96.77 96.77

R:Verb:SVA 146 76.06 72.73 72.66 73.16 74.88

R:Verb:Tense 160 26.56 26.88 26.61 31.73 30.03

U:Pron 21 0.00 20.00 0.00 18.52 20.00

U:Punct 118 39.69 39.13 39.91 39.79 39.91

All types 4498 40.17 37.44 35.08 39.06 39.73

Table A.1: Span-level correction results (F0.5) for different error types (we do
not show results for the error types that we do not predict). C:
Channel Model, B: BERT, G: GPT-2.
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a.2 dataset download links

• JFLEG: https://github.com/keisks/jfleg

• FCE: https://www.cl.cam.ac.uk/research/nl/bea2019st/#data

• CoNLL14: https://www.comp.nus.edu.sg/~nlp/conll14st.html

• Write&Improve-A/B/C: https://www.cl.cam.ac.uk/research/
nl/bea2019st/#data

• LOCNESS: https://www.cl.cam.ac.uk/research/nl/bea2019st/
#data

• GMEG Yahoo/Wiki: https://github.com/grammarly/GMEG

• AESW: http://textmining.lt/aesw/aesw2016down.html

a.3 non-averaged fine-tuning scores

P R F0.5

CWEB-G 53.88 34.24 48.33

CWEB-S 43.65 31.1 40.39

CWEB (all) 50.25 33.2 45.57

Table A.2: Scores of the GEC-pseudodata system fine-tuned on CWEB data,
calculated against both annotators.

https://github.com/keisks/jfleg
https://www.cl.cam.ac.uk/research/nl/bea2019st/#data
https://www.comp.nus.edu.sg/~nlp/conll14st.html
https://www.cl.cam.ac.uk/research/nl/bea2019st/#data
https://www.cl.cam.ac.uk/research/nl/bea2019st/#data
https://www.cl.cam.ac.uk/research/nl/bea2019st/#data
https://www.cl.cam.ac.uk/research/nl/bea2019st/#data
https://github.com/grammarly/GMEG
http://textmining.lt/aesw/aesw2016down.html
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a.4 language model gec hyperparameter tuning

A threshold, τ, determines the degree of probability improvement
needed before an alternative sentence is preferred. For each dataset,
we find τ, in the 0.9 to 1.0 range, resulting in the best development
set F0.5. For CoNLL14, we tune on CoNLL13; for W&I, we use the
dedicated training sets; for LOCNESS, there is no training set available
and so we tune on the W&I subset of advanced texts (W&I-C).

τ

JFLEG 0.97

FCE 2.1 0.97

CoNLL14 0.98

W&I-A 0.98

W&I-B 0.98

W&I-C 0.97

LOCNESS 0.97

GMEG Wiki 0.96

GMEG Yahoo 0.91

AESW 0.96

CWEB-G 0.96

CWEB-S 0.93

Table A.3: Best performing threshold τ for each domain.
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a.5 precision as a function of the proportion of erro-
neous sentences
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a.6 model hyperparameters

An overview of model hyperparameters used for our GEC system:

• 6 layers for both the encoder and the decoder.

• 8 attention heads.

• A dictionary of 32k word pieces.

• Embedding size dmodel = 1024.

• Position-wise feed forward network at every layer of inner size
d f f = 4096.

• Batch size = 4096.

• For inference we use beam search with a beam width of 4.

• When pretraining we set the learning rate to 0.2 for the first 8000

steps, then decrease it proportionally to the inverse square root
of the number of steps after that.

• When finetuning, we use a constant learning rate of 3× 10−5.

a.7 artificial data parameters

Language Token-level operations Character-level operations

sub ins del swap recase sub ins del swap toggle diacritics

es 0.69 0.17 0.11 0.01 0.02 0.25 0.25 0.25 0.25 0

cs 0.7 0.1 0.05 0.1 0.05 0.2 0.2 0.2 0.2 0.2

de 0.64 0.2 0.1 0.01 0.05 0.25 0.25 0.25 0.25 0

ru 0.65 0.1 0.1 0.1 0.05 0.25 0.25 0.25 0.25 0

Table A.4: Language specific parameters for token- and character-level nois-
ing operations. For all languages word error rate is set to 0.15 and
character error rate to 0.02
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