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Abstract

Development and utilization of Internet-of-Things (IoT) applications are in-

creasing at an unprecedented speed in many domains, such as supply chain

and logistics tracking, smart agriculture, e-health, and intelligent transporta-

tion systems, to name a few. Among these applications, mobile IoT applications

have received special attention by virtue of having an ever more significant

impact on people’s day-to-day and society. Mobile IoT applications employ

widely used portable and movable IoT entities that collect data, share informa-

tion, and interact with each other to achieve common goals. While a host of

data management solutions may be employed in the architecture of IoT appli-

cations, ranging from edge data processing to historical analytical database

systems, a particularly interesting component is the IoT data platform, which

is a cloud-resident infrastructure for online management of IoT data.

The growing connection coverage and increasing requirements in mobile IoT

applications bring about special problems and challenges to be explored in IoT

data platforms. Firstly, scalability is a necessary requirement for an IoT data

platform because of the explosive growth of the IoT. Secondly, tight low-latency

reactivity in an IoT data platform is required while managing a massive amount

of highly concurrently generated data. Thirdly, support for heterogeneous

data types is demanded in an IoT data platform due to the variety of IoT

devices. Fourthly, elasticity is also required in an IoT data platform to handle

dynamically changing IoT workloads. Last but not least, guidance on ensuring

the dynamic and flexible development of IoT data platforms is crucial for

application developers.

Existing approaches have explored how to support different properties required

in IoT data platforms, but they fall short of fulfilling our goal of providing

programmable, scalable, and reactive data management for mobile IoT ap-

plications. Recently, Actor-Oriented Databases (AODBs) have been proposed
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as a new cloud-based data management architecture for distributed, scalable,

stateful, and interactive applications. We find that AODBs are naturally suit-

able for satisfying the requirements and solving the challenges of building IoT

data platforms. Therefore, we inspect the distinct requirements of building

IoT data platforms through two case studies, and we investigate how to ef-

fectively model and build IoT data platforms with AODBs. Then, we focus

on easing the complexity of building mobile IoT data platforms with AODBs

while providing scalability and reactivity. We propose a novel class of data

management systems called Moving Actor-Oriented Databases (M-AODBs),

which integrate the new abstraction of moving actors for reactive moving

objects with two data concurrency semantics for different application use

scenarios. A first implementation, Dolphin, is presented to validate the design

of M-AODBs. Afterward, to handle the typically skewed spatial distributions in

mobile IoT applications, we apply varied classic spatial partitioning techniques

in Dolphin to evaluate, analyze, and manage bottlenecks due to data skew.

Our experimental study illustrates the impact of spatial partitioning in Dolphin

and unveils several promising directions for future work.
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Resumé

Udvikling og anvendelse af Internet-of-Things (IoT) applikationer sker med en

hidtil uset hastighed på flere anvendelsesområder, såsom forsyningskæde og

logistiksporing, smart landbrug, e-sundhed og intelligente transportsystemer.

Blandt disse applikationer har mobile IoT-applikationer fået særlig opmærk-

somhed i kraft af at have en stadig større indflydelse på samfundet og folks

dagligdag. Mobile IoT-applikationer anvender meget bærbare og bevægelige

IoT-enheder, der indsamler data, deler information og interagerer med hinan-

den for at nå et større fælles mål. Mens en række datastyringsløsninger kan

anvendes i arkitekturen af IoT-applikationer, der spænder fra kantdatabehan-

dling til historiske analytiske databaser, så er en særlig interessant komponent

IoT-dataplatformen, som er en cloud-resident infrastruktur til online styring af

IoT-data.

Den voksende forbindelsesdækning og stigende krav i mobile IoT applika-

tioner medfører specielle problemer og udfordringer, der skal udforskes i

IoT-dataplatforme. For det første er skalerbarhed et nødvendigt krav til en

IoT-dataplatform på grund af den eksplosive vækst i IoT. For det andet kræves

en lav-latency-reaktivitet i en IoT-dataplatform, når der skal administreres

en massiv mængde stærkt samtidig genererede data. For det tredje kræves

det at heterogene datatyper understøttes i en IoT-dataplatform på grund af

forskelligheden blandt IoT-enhederne. For det fjerde kræves elasticitet i en IoT-

dataplatform for at kunne håndtere dynamisk skiftende IoT-arbejdsbelastninger.

Sidst men ikke mindst, så er der behov for vejledning til at sikre en dynamisk

og fleksibel udvikling af IoT-dataplatforme for applikationsudviklere.

Eksisterende løsninger har udforsket, hvordan de forskellige egenskaber der

kræves i IoT-dataplatforme kan understøttes, men opfylder ikke vores mål

om at sikre programmerbar, skalerbar og reaktiv geodatastyring til mobile
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IoT-applikationer. For nylig er Actor-Oriented Databaser (AODBs) blevet fores-

lået som en ny skybaseret datastyringsarkitektur for distribuerede, skalerbare,

stateful og interaktive applikationer. Vi finder, at AODBs naturligvis er velegnet

til at opfylde kravene og løse udfordringerne der er relateret til opbyggelsen

af IoT-dataplatforme. Derfor undersøger vi de specifikke krav der er relateret

til opbygningen af IoT-dataplatforme gennem to casestudier, samt hvordan

man kan effektivt modellere og bygge IoT-dataplatforme med AODBs. Derefter

fokuserer vi på at lette kompleksiteten relateret til opbyggelsen af mobile IoT-

dataplatforme med AODBs, mens vi samtidig sikre skalerbarhed og reaktivitet.

Vi foreslår en ny klasse af datahåndteringssystemer kaldet Moving Actor-

Oriented Databases (M-AODBs), der integrerer den nye abstraktion af moving

actors til reaktive bevægende objekter med to datasamtidige semantikker til

forskellige applikations scenarier. Den første implementering, Dolphin, præsen-

teres for at validere designet af M-AODBs. Bagefter anvender vi forskellige

klassiske partitioneringsteknikker i Dolphin til at evaluere, analysere og styre

flaskehalse på grund af dataforskydning for efterfølgende at kunne håndtere

de typisk ikke-ensartet spatialle fordelinger i mobile IoT-applikationer. Vores

eksperimentelle undersøgelse illustrerer virkningen af rumlig partitionering i

Dolphin og afslører flere lovende retninger for fremtidigt arbejde.
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1Introduction

1.1 Motivation

1.1.1 Background
Deployment of the Internet-of-Things (IoT) has seen unprecedented growth

in many aspects of today’s society (Fizza et al., 2021; Lee and Lee, 2015;

Kraijak and Tuwanut, 2015). IoT consists of a diverse range of interconnected

entities, such as sensors, mobile phones, appliances, and actuators, that collect

data, share information, and interact with each other. IoT entities connect

through the Internet to achieve common goals (Gubbi et al., 2013). The

IoT enables users and devices to become more informed and informative

through sharing information and it facilitates many current and emerging

applications in various areas, e.g., supply chain and logistics tracking (Sørensen

and Bochtis, 2010; Burgard et al., 2000), intelligent transportation (Papp et al.,
2008; Li and Nashashibi, 2013; Hu et al., 2020; Tak et al., 2020), smart

agriculture (Jeppesen et al., 2018; Agricultural Robotics: The Future of Robotic
Agriculture 2020; Albani et al., 2017; McLellan, 2020), hazard monitoring (Paul

and Sarath, 2018; Qin et al., 2018), to name a few. Meanwhile, IoT applications

include assisted living and e-health (Minoli et al., 2017; Javaid and Khan, 2021;

Bhowmick et al., 2021), IoT social network enhancement (Atzori et al., 2012),

augmented reality (Billinghurst et al., 2015; Gutierrez et al., 2012), and smart

building and smart city (Arasteh et al., 2016; Flores-Martin et al., 2021), etc..

IoT applications are subject of lively debate as they increasingly permeate

today’s life. IoT devices are also increasing in quantity, density, diversity, as

well as becoming critical for end users (Nahrstedt et al., 2016). Unquestionably,

as a concept that has been actively discussed and developed in many areas for
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many years, the IoT is having an ever greater impact on people’s day-to-day

and behavior and represents a window of opportunity for business, industry,

and academic research.

In an IoT system, we find IoT not only interconnects static devices that are

built into unmovable infrastructures. Mobile IoT is also incorporating spatial

flexibility, through, e.g., vehicles, wearable devices, and mobile phones. Mo-

bile IoT applications include intelligent transportation systems (ITS) (Muthu-

ramalingam et al., 2019; Anand et al., 2015; Tak et al., 2020), augmented

maps (Woods, 2021), location-based recommendation (Ojagh et al., 2020;

Chen et al., 2017), and restraining order violation monitoring (Abd El-Aziz

et al., 2012; Elrefaei et al., 2017; Tundis et al., 2020), to mention a few. The

differences between mobile vs. traditional IoT applications include: 1) mobil-

ity, in that mobile IoT applications are usually deployed on portable devices

that can move around in space (Nahrstedt et al., 2016); 2) Internet access

and connection, in that mobile IoT applications often connect to the Internet

through wireless networks due to their mobility (Srinivasan et al., 2019); 3)

energy availability, in that due to the relatively small size of batteries and

bounded energy density, available energy in mobile IoT devices is limited

(Pasricha et al., 2020); and 4) security and privacy, in that mobile IoT devices

dynamically connect with different entities and exchange device identifiers, but

must preserve anonymity and privacy of users (Sharma et al., 2020). Among

those differences, mobility becomes the first property that separates mobile

from traditional IoT, and the explosion of the mobile IoT has helped increase

the generation of spatial data (Iyer and Stoica, 2017).

To be noticed, investigations of mobile IoT and its interaction with the sur-

rounding environment have been conducted for many years, such as in ITS (Li

and Nashashibi, 2013; Hu et al., 2020). However, the growing connection

coverage of mobile IoT and increasing reactive cooperation requirements in

the IoT bring new challenges. For example, regular ITS collect information

from vehicles and utilize received information to conduct optimization and

coordination on system level. By contrast, in cooperative intelligent vehicle

systems (C-ITS) (Mitsakis et al., 2020; Bussche, 2020; Nguyen et al., 2020;

Uhlemann, 2018), vehicles are more than information providers, actively and

directly participating in information exchange and decision making. Coop-

eration among vehicles in C-ITS is a crucial feature that assists in driving

behaviors and enhances transportation effectiveness, security, and safety (Ni,

2016). All of these application scenarios make mobile IoT applications an
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integral part of the fabric of IoT applications that brings about special problems

and challenges.

1.1.2 Problem and Challenge Statements
The explosion of the IoT and its applications brings not only potential bene-

fits, but also engenders the complexity of IoT systems. IoT systems include

hardware systems such as IoT devices and physical transmission media as well

as software systems such as applications software and data management plat-

forms. In our work, we exclusively focus on the data and data management

software modules that are part of an IoT system, and leave the entire IoT

software ecosystem and hardware systems involved in an IoT scenario out of

our discussion.

There are numerous data management challenges to be explored to realize

the full potential of IoT applications, which contain broad areas that cover

many systems and stakeholders. For instance, in-device data management

and edge computing in IoT ecosystems; data management on historical data

for analytical databases; privacy, security, and trust issues; quality of IoT

service and management of massive datasets. While IoT applications provide

valuable insights in varied aspects, online IoT data processing provides time-

sensitive insights with high potential impact. Therefore, our work focuses on

IoT data platforms, including online data processing, querying, updating, and

reactivity.

The problems of IoT data platforms arise from the following aspects and are

accompanied by challenges that need to be solved. First and most basically,

an IoT data platform needs to be capable to scalably manage online IoT data

due to the explosive growth of IoT. Scalability for IoT data platforms must not

only consider data volumes, but also the speed of data flow and the handling

of data streams from a multitude of devices.

Second, it is necessary to facilitate reactivity to incoming IoT data with low

latency. Many IoT systems require processing of a massive amount of highly

concurrently generated data. However, how to achieve the management of

potential interactions among data to enable reactive behaviors with low latency

remains an open research problem.

Third, mobile IoT applications can be arbitrarily distributed across space,

and data from varied IoT devices have heterogeneous structure. It is usually

1.1 Motivation 3



infeasible to store data from IoT in a single relational table with a fixed format.

Therefore, IoT data management needs to be flexible and adapt to handling

increasingly heterogeneous IoT data while guaranteeing data protection from

different entities.

Fourth, the existence of IoT entities is also dynamic. In many IoT scenarios, it

is common for devices to join and leave the system over time. Therefore, the

elasticity of data management systems is also required.

Last but not least, there is a lack of support to application developers for the

construction of an IoT data platform. Because there is no standard functional-

ity that is logically defined for IoT applications, the data platform functionality

heavily depends on the given application domain, and IoT data platform devel-

opers need to take on the burden of building functionality while considering

associated data management. There is an absence of a consolidated way

of how to design and develop an IoT system. Therefore, when focusing an

investigation on how to manage the data from large volumes of devices, at the

same time ensuring the dynamic and flexible development of applications is

also a significant challenge of an IoT data platform.

Currently, there is a lack of data management frameworks to scalably manage

mobile IoT data while achieving low-latency reactions in potentially complex

software applications, as we discuss further in the following section.

1.2 State of the Art
In this section, we introduce existing popular approaches that are related to

our work. These approaches have explored how to support different properties

required in building reactive mobile IoT data platforms. These systems employ

a variety of data-centric system abstractions. We illustrate their advantages

and limitations and explain why it is necessary to explore a new system to

solve all the issues identified.

1.2.1 Spatial Data Management Systems
Given the importance and broad relevance of spatial data from mobile IoT ap-

plications, firstly, we investigate database systems that support spatial services.

There is an extensive range of spatial data management solutions that we
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Figure 1.1: Spatial Data Management Systems Summary.

categorize into two dimensions: spatial interactive services vs. spatial batch

processing; and disk-based vs. in-memory, as shown in Figure 1.1.

There are disk storage databases for batch processing and multiple types of

spatial queries such as SpatialHadoop (Eldawy and Mokbel, 2015; Eldawy and

Mokbel, 2013), Hadoop-GIS (Aji et al., 2013), GeoSpark (Yu et al., 2015; Yu

et al., 2016) and SpatialSpark (You et al., 2015). Disk storage databases can

be used as repositories for analysis of historical mobile IoT data, but they are

not adequate for services that require online interaction with IoT data.

Other than batch processing and analysis, a number of specialized systems

have been developed to support online interactive requests, often through

short database transactions. For instance, PostGIS (Holl and Plum, 2009) is

a geospatial extension to PostgreSQL (Momjian, 2001) that supports spatial

SQL queries. GeoServer (Deoliveira, 2008) is built on PostGIS and designed

for interoperability. It implements industry-standard OGC protocols (OGC,

2021). H2GIS (Bocher et al., 2015) to H2 (H2 Database Engine 2021) and

SpatialLite (Furieri, 2014) to SQLite (Owens and Allen, 2010) are both as

PostGIS is to PostgreSQL. GeoMesa (Hughes et al., 2015) integrates OGC

APIs and protocols as well, and it also supports Apache Spark for distributed

geospatial analytics. GeoWave (Annex, 2018) is a similar spatial library that

can provide OGC services and Map-Reduce processing for distributed analysis

of geospatial data.
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Despite the popularity of spatial databases such as PostGIS, their design has not

benefited substantially from developments in in-memory databases. PostGIS

still utilizes disk as its primary storage, which raises the problem to reduce

expensive geospatial data querying cost due to disk I/O and system overheads.

Since IoT applications are experiencing growing popularity, this problem is

made worse by large numbers of concurrent requests. With the increasing

capacity and the decreasing price of memory, there is a greater possibility to

cache substantial amounts of spatial data in memory. Storing data in mem-

ory is especially valuable for running concurrent workloads as it eliminates

the inevitable bottlenecks caused by disk-centric architectures (Stonebraker

et al., 2007), while at the same time increasing throughput and resource

utilization.

Disk-based spatial databases utilize main-memory by adding caches, such as

GeoWebCache (Nie et al., 2011) integrated with GeoServer, or MapCache (Bon-

fort and Bonfort, 2013), which is a disk cache similar to GeoWebCache. How-

ever, disk-based caches cannot eliminate the I/O cost and system overheads,

while fully in-memory spatial data platforms can achieve that by design.

To the best of our knowledge, only a few data management platforms stand

out in this category. One is HyperSpace (Pandey et al., 2016), a geospatial

main-memory database system that can efficiently process geospatial queries.

The other one is SpaceBase (Universe, 2012), a system that handles concurrent

spatial queries with low latency based on R-Tree indexing. iSPEED (Vo et al.,
2018) is an in-memory spatial query system for large and structurally complex

3D data. Vecstra (Wang, 2018) is an efficient and scalable OGC standards-

compliant in-memory geospatial cache. Simba (Xie et al., 2016) is a spatial

in-memory system for big data analytics. SingleStore (SingleStore: All Data,
One Platform. 2021) is designed to fit all data within the main memory and

has recently been extended to support disk-based OLAP workloads.

These in-memory spatial databases can efficiently support queries and up-

dates of spatial data. However, these described in-memory solutions have

limited support for reactivity features that are required in reactive mobile IoT

applications.
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1.2.2 Actor-Oriented Data Management Systems
As reactive IoT applications demand scalability and elasticity, as well as ef-

ficiency in distributed resource utilization, actor programming models have

attracted attention in this setting (Haller, 2012; Hewitt, 2010).

Actors comprise a programming model that provides high concurrency and

distribution (Agha, 1990). The inherently distributed property of actors make

them ideal building blocks to provide a scalable computing infrastructure when

building IoT applications.

Actors provide modularity by keeping private states and only modifying other

actors’ states via immutable asynchronous messages (Bowers and Ludäscher,

2005). Actors encapsulate different logic and tasks, which is a perfect match

for heterogeneous IoT devices with distinct functionality. An encapsulated

state in an actor is an alternative to conventional shared-memory concurrency,

which eliminates the need for the developer to ponder about complex lock-

based synchronization, thus being a huge help for frequently changed IoT

data.

There are popular actor programming implementation options such as

Akka (Akka - Build Powerful Reactive, Concurrent, and Distributed Applica-
tions More Easily 2020), Erlang (Erlang-Build massively scalable soft real-time
systems 2020), Orleans (Bykov et al., 2011; Bernstein et al., 2014), and Or-

bit (Orbit 2020). In particular, Orleans provides a virtual actor abstraction that

treats actors as entities in perpetual existence. Deactivation and activation of

virtual actors are automatically taken care of by the Orleans runtime. Virtual

actors can help ease the burden on developers by providing support for fault

tolerance and resource management (Bernstein and Bykov, 2016). Moreover,

Orleans is inherently scalable and distributed, and used in many Microsoft

research projects and products (Halo: Combat Evolved 2021; Sarwat et al.,
2012). Orleans is an open-source project implemented in C#, while Orbit is a

Java implementation inspired by the virtual actor abstraction.

Despite the great advantages of the actor model and its potential fit to IoT ap-

plications, this model of computation has not been sufficiently explored in the

design of IoT data platforms. An Actor-Oriented Database (AODB) (Bernstein,

2018) is a data management solution that integrates classic DBMS features

with the actor programming model so as to provide database properties, such

as transactions (Bykov et al., 2011) and indexing (Bernstein et al., 2017b).

1.2 State of the Art 7



Non-spatial Spatial 

Reactive

Streaming

Flink

Kafka

RxSpatial

ReactiveX

R2DBC

GeoFlink

Shuttle services optimization (Ali et al.)

Samza
Storm

Spark Streaming

Reactive Streams

Reactive Extensions (RX)

Azure Stream Analytics

Event Hubs

StreamInsight

...

Reactor

Orleans Streams

BAD

Figure 1.2: Reactive Data Management Systems Summary.

AODBs are an attractive choice for building IoT data platforms. However,

current AODBs lack spatial data and reactive functionality support.

1.2.3 Reactive Data Management Systems

Reactivity is one crucial feature in many IoT applications. IoT entities con-

tinuously move and trigger reactions based on nearby events and execute

queries to explore their surroundings. A reactive mobile IoT data platform

needs to support spatial reactivity functionality. A wide range of solutions

in commercial systems and previous research efforts has explored how to

provide data-driven operations and reactivity. To meet IoT data platforms’

requirements, we categorize them into two dimensions to ease discussion:

Reactive vs. Streaming, Spatial vs. Non-spatial, shown in Figure 1.2.

Kafka (Apache Kafka 2021), Flink (Carbone et al., 2015), Samza (Apache Samza
- A distributed stream processing framework 2021), Event Hubs (Event Hubs
- Simple, secure, and scalable real-time data ingestion 2021), Storm (Apache
Storm 2021), Microsoft StreamInsight (Microsoft StreamInsight 2020) and

Spark Streaming (Apache Spark Streaming 2021), to name a few, are popular

stream processing and analysis frameworks. There are also some solutions

that provide spatial event monitoring using streaming systems. For instance,

GeoFlink (Shaikh et al., 2020) extended Flink to support spatial data types,
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indexes, and continuous queries over spatial data streams. The studies con-

ducted in (Ali et al., 2010a; Ali et al., 2010b) combine Microsoft SQL Server

Spatial Library (Microsoft SQL Server Spatial 2020) with StreamInsight to build

a demo for shuttle service optimization by using spatial continuous queries and

various real-time analytics. Works in (Kazemitabar et al., 2010; Miller et al.,
2011) support continuous spatial queries for monitoring as well. (Galic et al.,
2017) further proposed a distributed spatio-temporal mobility data stream

framework to support continuous queries over streams.

The streaming solutions we mentioned above often expect a topology of stream

operators, which are suitable for specifying a set of bulk operations over a

large number of data items with fairly regular schemas, such as transformation,

filtering, join, and aggregate. However, it is unnatural and difficult to use

these solutions to specify complex application logic, such as heterogeneous

operations over varied data items as necessary in reactive IoT applications.

Meanwhile, the described streaming systems have limited support for external

functions that may be triggered in the reactive operations. Luckily, there are

some reactive programming frameworks that target solving those scenarios.

Reactive systems are driven by messages and require responsiveness in a timely

manner, in the face of failure, and under varying workloads as stated in the

Reactive Manifesto (Bonér et al., 2014). To be noticed, reactive is not the

opposite of streaming. We see reactive behavior as a counterpart to event

streams in interactive data management scenarios. Reactive enriches event

streams with interactive data processing logic, i.e., responding when some

underlying data changes.

Reactive Relational Database Connectivity (R2DBC) (The Reactive Relational
Database Connectivity (R2DBC) 2021) provides a reactive API that can integrate

with common SQL databases such as Microsoft SQL Server, PostgreSQL, and

MySQL. Orleans Streams (Orleans Streams - Microsoft Orleans Documentation
2020) is a streaming extension that helps achieve reactivity on top of Orleans.

It allows developers to write reactive functions that operate over events in

a structured way. ReactiveX (Microsoft Reactive Framework - ReactiveX: An
API for asynchronous programming with observable streams 2020) supplies

observable streams that provide reactivity in asynchronous programming.

Reactive Streams (Reactive Streams 2021) is designed on the JVM for reactivity

based on asynchronous stream processing. Reactor (Reactor - Create Efficient
Reactive Systems 2021) is based on the Reactive Streams for helping build
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non-blocking applications. Reactive Extensions (RX) (Reactive Extension 2020)

serve reactions to asynchronous events based on an observable interface. A Big

Active Data (BAD) system is introduced by (Jacobs et al., 2020) and combines

Apache AsterixDB with an active toolkit, which can publish information to

subscribed users in a timely fashion. However, spatial data management is not

taken into consideration in these reactive solutions.

To the best of our knowledge, one of the most related reactive spatial data

management solution to our work is RxSpatial (Shi et al., 2016a). RxSpatial

provides real-time spatial-aware reactivity by combining Microsoft SQL Server

Spatial Library and ReactiveX (Hendawi et al., 2016). However, RxSpatial only

monitors the relation between explicitly subscribed objects, which is not a

practical solution in dynamically changing IoT applications, making it hard to

maintain performance for varied workloads.

Summary. In-memory spatial databases efficiently support data processing

by reducing the I/O cost and overheads. However, they fail to fully satisfy

the characteristics necessary for building reactive mobile IoT data platforms,

such as support for heterogeneous data representations, easy of management

towards scalability and elasticity, and support for reactivity functionality. Dis-

tributed actor systems can help solve some of these problems by providing

inherent modularity and scalability. However, actor systems lack support for

reactivity and spatial data management. Current reactive systems have limited

support for defining flexible operations over heterogeneous data items and

support spatial features in a limited and constrained way.

To provide a scalable and reactive data management for mobile IoT applica-

tions, we aim to explore how to utilize the actor programming model to build

IoT data platforms. In addition, we investigate how to build a scalable mobile

IoT data management system that integrates reactivity functionality.

1.3 Summary of Goals and Contributions
The main objective of the work presented in this dissertation is to explore

abstractions and systems for developing scalable and reactive data manage-

ment for mobile IoT applications. To achieve this goal, firstly, we illustrate

new and distinct requirements of building IoT data platforms, elaborate on

the challenges of modeling IoT data platforms, discuss why actor-oriented

databases are naturally suitable for satisfying these requirements and solving
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these challenges, then provide guidelines for modeling and building IoT data

platforms with AODBs. Afterward, to ease the burden of developers and to re-

duce the complexity of building reactive mobile IoT data platforms, we propose

a novel abstraction for reactive moving objects and utilize the proposed model

of moving actors to discuss the architecture of a new data management system

called Moving Actor-Oriented Databases (M-AODBs). A first implementation,

Dolphin, is presented to validate the design of M-AODBs. In the end, to handle

the typically skewed spatial distributions in IoT applications, we apply varied

classic partitioning techniques in Dolphin to evaluate, analyze, and manage

bottlenecks due to data skew.

1.3.1 Modeling and Building IoT Data Platforms with
Actor-Oriented Databases

Due to the unprecedented development of IoT applications, the massive

amount of data generated from IoT applications has brought about new chal-

lenges associated with data processing and management.For instance, it is

needed to support data variety, efficient processing under high degrees of

concurrency, as well as scalability and elasticity. Those challenges necessitate

the exploration of new ways to build IoT data management and processing

platforms.

In this part of the thesis, we investigate the functional and non-functional

requirements for IoT data platforms through two case studies. One is Structural

Health Monitoring (SHM) systems that utilize sensors to identify damaged

sections on parts of large constructions that can cause safety concerns. The

other one is Beef Cattle Tracking and Tracing systems that refer to a part of the

beef cattle supply chain. The IoT application utilizes sensors to provide cow

tracking information and help retailers and consumers trace meat products.

Based on the requirements, we show the challenges to be met in constructing

IoT data platforms. We advocate that Actor-Oriented Databases (AODBs) are

suitable for solving these challenges by providing a modular, stateful, and

scalable substrate. Then, we illustrate how to model the case studies with

AODBs and provide guidelines for how to solve typical questions in the actor

modeling process effectively. Following the proposed guidelines, we implement

an SHM data platform based on AODBs.
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1.3.2 Dolphin: An Actor-Oriented Database for
Reactive Moving Object Data Management

Reactivity has been seen as a feature that gets increasing attention in varied

mobile IoT applications scenarios. Current reactive mobile IoT data platforms

enrich well-researched spatio-temporal data management with reactivity logic

in the application tier, which is undesirable due to the resulting high complexity

of application development and the overheads of data shipping, making it

challenging to meet the tight low-latency constraints of reactive functionality.

Placing application logic together with the data while providing correctness

under concurrency are desiderata to facilitate the construction of complex

mobile IoT applications.

In this part of the thesis, we present an actor-based abstraction for reac-

tive moving objects, moving actors, to represent them in an Actor-Oriented

Database. Then, we explore Moving Actor-Oriented Databases (M-AODBs)

– a new system that integrates reactive functionality into a distributed actor

framework with spatial data management. Based on an analysis of reactive

moving object application use scenarios, two data concurrency semantics are

presented to outfit this distributed asynchronous system. One is Actor-Based

Freshness semantics, which is used in scenarios needing real-time reactions.

The other one is Actor-Based Snapshot semantics, which can provide consistent

images of the locations of moving actors. After we present the design and

architecture of M-AODBs, a first implementation of M-AODBs called Dolphin is

discussed. Our experiments show that Dolphin can achieve the requirements

of scalability and low-latency reactions for reactive moving object scenarios.

1.3.3 An Evaluation of Spatial Partitioning
Techniques to Handle Skew in Moving
Actor-Oriented Databases

M-AODBs utilize spatial partitioning to achieve scalability through parallelism

and distribution. Through spatial partitioning, queries, moves, and reactions

in M-AODBs are processed across logical partitions based on their spatial

attributes. Therefore, spatial partitioning influences the load balance in M-

AODBs. Besides, spatial skew is a common situation in reactive moving object

applications. Skewed data can make load balance hard to achieve in M-AODBs,
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which may not only drag down the performance of M-AODBs but also increase

the long-tail latency of reactions. However, the impact of different partitioning

methods in M-AODBs under spatial skew is unknown.

In this part of the thesis, we evaluate varied partitioning techniques in M-

AODBs under skewed spatial data. We aim to find the critical factors in M-

AODBs for keeping consistent performance and providing low-latency reactions.

First, we illustrate how spatial partitioning is integrated in M-AODBs. We

show how to adapt several classic partitioning techniques to the concrete

M-AODB Dolphin and conduct experiments to show their impact. Then, we

give guidance on how to choose partitioning methods in different scenarios

and point out aspects that can be further optimized in the implementation of

M-AODBs.

1.3.4 Publications

Previous versions of some of the chapters of this dissertation have been pub-

lished or are in submission or will be submitted to international conferences

and journals. We list these chapters along with their respective publications

below:

• Chapter 1 - Vecstra: An Efficient and Scalable Geo-spatial In-Memory

Cache (Wang, 2018). Yiwen Wang. Proceedings of the VLDB 2018 PhD

Workshop co-located with the 44th International Conference on Very

Large Databases (VLDB 2018). Rio de Janeiro, Brazil, Aug 27-31, 2018.

• Chapter 2 - Modeling and Building IoT Data Platforms with Actor-

Oriented Databases (Wang et al., 2019b)1 Yiwen Wang, Julio Cesar

Dos Reis, Kasper Myrtue Borggren, Marcos Antonio Vaz Salles, Claudia

Bauzer Medeiros, Yongluan Zhou. Advances in Database Technology —

EDBT 2019 Series ISSN: 2367-2005. Proceedings of the 22nd Interna-

tional Conference on Extending Database Technology. Lisbon, Portugal,

March 26–29, 2019. page 512-523. DOI: 10.5441/002/edbt.2019.47.

1The paper contains data material that has also formed part of a MSc thesis - Scalable
Structural Health Monitoring Data Platform using Actors as a Database, by Kasper Myrtue
Borggren. All work about this paper (i.e., designing of the work; conducting research;
interpreting of data; drafting and revising the manuscript) have been produced as part of
the PhD study except experiment coding and data generation.

1.3 Summary of Goals and Contributions 13



• Chapter 3 - Dolphin: An Actor-Oriented Database for Reactive Mov-

ing Object Data Management. Yiwen Wang, Vivek Shah, Marcos Anto-

nio Vaz Salles, Claudia Bauzer Medeiros, Julio Cesar Dos Reis, Yongluan

Zhou. Manuscript in submission. April, 2021.

• Chapter 4 - An Evaluation of Spatial Partitioning Techniques to Han-

dle Skew in Moving Actor-Oriented Databases. Yiwen Wang and Mar-

cos Antonio Vaz Salles. Manuscript in preparation. April, 2021.

1.3.5 Structure of Dissertation
The remainder of this dissertation is organized as follows. In Chapter 2, we

explore the problem of modeling IoT data platforms based on two case studies

and explain why we choose a recently proposed approach, Actor-Oriented

Databases (AODBs), to build IoT data platforms. We then provide guidelines

on how to model and build IoT data platforms using AODBs and verify their

applicability in an implementation of one of the two case studies. In Chapter 3,

we focus on the construction of IoT data platforms for reactive moving object

applications. We introduce a new abstraction of moving actors for reactive

moving objects, then present a new reactive moving actor data management

platform – namely Moving Actor-Oriented Databases (M-AODBs). We also

provide a realization of M-AODBs named Dolphin. Our experiments on Dolphin

validate our proposal of M-AODBs and allow us to observe its scalability and

reactivity characteristics. In Chapter 4, we extend Dolphin with a variety

of spatial partitioning techniques to improve the throughput and reduce tail

latencies of Dolphin in the presence of spatial skew of reactive moving object

applications. In Chapter 5, we summarize the dissertation and outline future

research directions.
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2Modeling and Building IoT
Data Platforms with
Actor-Oriented Databases

Vast amounts of data are being generated daily with the adoption of Internet-

of-Things (IoT) solutions in an ever-increasing number of application domains.

There are problems associated with all stages of the life cycle of these data

(e.g., capture, curation and preservation). Moreover, the volume, variety,

dynamicity and ubiquity of IoT data present additional challenges to their

usability, prompting the need for constructing scalable data-intensive IoT

data management and processing platforms. This chapter presents a novel

approach to model and build IoT data platforms based on the characteristics of

an Actor-Oriented Database (AODB). We take advantage of two complementary

case studies – in structural health monitoring and beef cattle tracking and

tracing – to describe novel software requirements introduced by IoT data

processing. Our investigation illustrates the challenges and benefits provided

by AODB to meet these requirements in terms of modeling and IoT-based

systems implementation. Obtained results reveal the advantages of using

AODB in IoT scenarios and lead to principles on how to effectively use an actor

model to design and implement IoT data platforms.

2.1 Introduction
Internet-of-Things (IoT) systems enable data interactions through machine-to-

machine communication stemming from supporting devices connected to the

Internet (Bandyopadhyay and Sen, 2011). IoT systems generate a potentially

huge amount of data from devices that dynamically enter and leave the IoT

environment, with very high-speed data flow and processing. Data, in turn, are

generated by a wide variety of devices, thus giving rise to highly heterogeneous

data streams. In this work, we distinguish between IoT systems (i.e., the entire

software ecosystem involved in an IoT scenario) and IoT data platforms (i.e.,

the data and data management software modules that are part of an IoT

system). Our work focuses on the latter.
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Enormous challenges need to be addressed in order to realize the full poten-

tial of IoT. First, there is a tension between effective data management and

fulfillment of performance requirements in IoT data platforms. Indeed, many

IoT systems are processor-intensive and require processing a massive amount

of highly concurrently generated data. The management of these interactions

among data with low latency remains an open research problem. Second,

being able to deal with dynamic scaling while guaranteeing protection of data

from different entities is another significant challenge. Therefore, we focus our

investigation on how to manage the data from large volumes of devices and, at

the same time, ensure the dynamic and flexible development of applications.

This dual aim must be achieved while respecting application constraints for

low latency in interactive functionality as well as data protection and access

control.

Given these characteristics, we propose that actor-oriented databases (AODBs)

are ideally suited to manage the data of real-world IoT systems. Actors com-

prise a model of computation specifically aimed at high concurrency and

distribution (Agha, 1990). To that effect, actors keep their private states

and can modify states by communicating with each other via immutable asyn-

chronous messages (Bowers and Ludäscher, 2005). As such, actors are natively

applicable to support the management of an arbitrary number of independent

and heterogeneous streaming data sources. AODBs, in turn, enrich actors with

classic RDBMS functionality by integrating data management features, such as

indexing, transactions, and query interfaces, into actor runtimes (Bernstein

et al., 2017b). These features make AODBs attractive for building an IoT data

platform. In more detail, AODBs stand out for several reasons. First, IoT

systems comprise many different devices with distinct functionality. This re-

quirement is directly met by the actor model, through the principle of assigning

different logic and tasks to actors. Second, in IoT, data changes frequently;

actors provide a natural alternative to conventional concurrency models that

rely on synchronization of shared mutable state using locks. Third, the charac-

teristics of non-blocking interactions via immutable messages between actors

match well with the demands of IoT systems. Fourth, the number of actors

can scale out quickly without consuming excessive resources. Dynamic scaling

is a common situation in IoT in which all kinds of sensing devices (including

humans!) can quickly enter – but also leave – a system.

There are several examples of the use of actors in IoT scenarios (Akka Docu-
mentation, Version 2.5.17, IoT example use case 2018; Persson and Angelsmark,
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2015; Sánchez et al., 2015; Who Is Using Orleans? 2018). However, these

previous studies concentrate on implementation aspects, neither providing

guidance on how to model IoT data platforms with actors nor analyzing the

fit of AODB to the requirements and challenges brought about by IoT. By

contrast, to the best of our knowledge, this work is the first that builds an

end-to-end case for the suitability of AODBs to manage IoT data, going from

requirements and modeling to implementation and performance evaluation.

Our work covers a wide gamut of issues to justify and showcase the adoption

of AODBs as an appropriate solution to meet the main challenges of data

management in IoT systems. Our main contributions are therefore:

1. We discuss core requirements of IoT data platforms, and challenges to

be met in their implementation. We illustrate this discussion through the

analysis of two real world IoT case studies.

2. We present a methodology and guidelines to model an AODB for such

platforms.

3. We develop a prototype of one of the case studies and present its evalua-

tion to show the effectiveness of adopting AODBs for IoT data platforms.

The remaining of this chapter is organized as follows. Section 2.2 presents

two case studies of IoT systems, which we use to extract functional and non-

functional requirements, and to present some of the major challenges to be

faced. Section 2.3 justifies our choice of AODBs as an appropriate technology

to meet such requirements and challenges. In Section 2.4, we provide a

detailed discussion of the challenges of modeling such platforms, and show

how these challenges can be overcome for the running cases. Sections 2.5 and

2.6 respectively present our prototype for one of these cases and its evaluation.

Section 2.7 revisits the work by contrasting it with related work. Finally,

Section 2.8 presents conclusions and ongoing work.

2.2 IoT Data Platform Case Studies
In this section, we discuss the requirements for an IoT data platform and

analyze two specific case studies. There are several scenarios in IoT data

platforms, such as healthcare, personal security, traffic control, environmental

monitoring, and disaster response. The two IoT data platform cases that we

focus on are drawn from our experience with a structural health monitoring
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system (cf. Subsection 2.2.1) and a beef cattle tracking and tracing system (cf.

Subsection 2.2.2). We have worked directly with these case studies, helping us

validate common non-functional requirements for IoT data platforms as well

as collect illustrative functional requirements for these applications.

For the first study, we have cooperated with SenMoS (SenMoS: your sensor
monitoring system 2018) in the area of structural health monitoring for large

constructions, e.g., bridges. SenMoS is a Danish company that provides users

with entire monitoring solutions, including requirement elicitation and cloud

data management. The developers at SenMoS have participated in the design

and implementation of the IoT data platform for the Great Belt Bridge (Facts
and History 2018). The second case focuses on the management of cattle

produce (and in particular the beef supply chain) from the perspective of

traceability. This study is based on previous work with domain experts from

the Brazilian agricultural research corporation Embrapa (Brazilian Agricultural
Research Corporation - A Embrapa 2018) that studied traceability in food for

supply chains (Kondo et al., 2007), and on interactions within the Danish

Future Cropping partnership (Future Cropping partnership website 2018), par-

ticularly with experts from the agriculture solution provider SEGES (SEGES
Landbrug & Fødevarer F.m.b.A. website 2018). Both of these organizations

have substantial experience in the agricultural sector and are key players in

agricultural extension systems of the respective countries. Both case studies

concern the development of a scalable data platform that collects and stores

data from IoT devices, processes operations, and provides information services

to different users. Although these two IoT platforms target different scenarios,

they present several common aspects and non-functional requirements. In

particular, the systems should operate as Software-as-a-Service (SaaS) solu-

tions and thus manage the data from several different tenants. Moreover, it is

desired that scalability to large data volumes or users be achieved without a

high burden on the data platform developers.

Non-Functional Requirements for IoT Data Platforms

We elicited the following common non-functional requirements shared by

different IoT data platforms:

1. Data ingestion from endpoints. The IoT data platform must have the

capability to receive and store data from IoT devices, e.g., GPS collars on

cows.
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2. Multi-tenancy. The IoT data platform must provide varied information

services to different users.

3. Support for heterogeneous data. The IoT data platform must be mod-

ular in its support for data ingested from IoT devices and allow for

communication employing different data formats.

4. Cloud-based deployment. The IoT data platform can be distributed in

the cloud for ease of operation, management, and maintenance.

5. Scalable data platform. The IoT data platform must not degrade in

functionality or performance while expanding. This must occur without

modifying existing software components.

6. High efficiency. The IoT data platform must process massive amounts

of concurrently generated data effectively.

7. Access control and data protection. The IoT data platform should

support data protection, enforcing authentication and access control over

different users and profiles.

In addition to the requirements above, it is often the case that IoT data

platforms must serve queries over historical data accumulated from devices

over long time periods. In this chapter, we focus, however, on online data

ingestion and querying in SaaS scenarios. We note that at present, there is

only limited support for declarative multi-actor querying in AODBs (Bernstein

et al., 2017b), and thus complex historical analyses could still be served by a

data warehouse.

2.2.1 Case Study 1: Structural Health Monitoring
Structural Health Monitoring (SHM) systems aim to identify damaged sections

on parts of large constructions that can cause safety concerns. SHM systems

can help organizations save time on inspections by gathering and processing

data so that the system can generate alerts when problems arise or suggest

actions that can prevent faults. SHM systems are equipped with a set of sensors,

e.g., to measure a bridge’s extension, inclination, temperature, wind speed,

and wind direction. Each sensor is connected to a data logger that converts

the sensors analog signal into a digital one. The platform must collect, process

and store data from the sensors. Figure 2.1 presents a context diagram of the

Structural Health Monitoring Data Platform. This design is based on a real case
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study. Sensors provide data to different stakeholders, e.g., engineering experts

monitoring the structure, data analysts, or the maintenance personnel who

manages the monitoring projects. The SHM system must meet the following

functional requirements:

1. The system must control several construction structures (e.g., bridges)

using the same data platform.

2. The system must be structured to support data storage, i.e., data must be

saved in a way that allows for further data manipulation and analysis.

3. The data platform must be able to maintain data from multiple sensors,

users, projects, and organizations.

4. The data platform must calculate the accumulated change for each data

stream from a sensor, e.g., to gauge how far elements have moved when

using extension sensors.

5. The data platform must send customized alerts to users when thresholds

are met, depending on individual sensors or sensor types. Thresholds can

be used for determining the need for maintenance, or to call attention to

ongoing events.

Structural Health Monitoring Data Platform

sensor1

Get sensor
data

Manage sensor
configurations

sensor2

Get bridge 
information

Maintenance personnel

Provide 
information

Engineering expertsData analysts

Provide 
sensor data

Adjust warning 
thresholds

Get 
warnings

Figure 2.1: Context Diagram for Structural Health Monitoring Case Study.
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6. The data platform must support plots providing statistical aggregates to

help users spot meaningful events in time series. Besides, online plotting

of recent raw sensor data is required to let personnel explore events

interactively.

7. The data platform must allow for browsing of live data from sensors,

along with continuously derived equations, to provide a view of the

current state of the structure.

2.2.2 Case Study 2: Beef Cattle Tracking and
Tracing

Agricultural supply chains involve a complex network of producers, retailers,

distributors, transporters, storage facilities, and consumers in the sale, delivery,

and production of a particular product. Trackability and traceability are

essential requirements in food marketing (Cimino et al., 2005). Tracking refers

to following the path of an entity from the source to destination. Tracing

refers to identifying original information regarding an entity and tracing it

back in the system (Mousavi et al., 2002). Systems for tracking and tracing

agricultural products increase consumer confidence on provenance and quality

of the food they buy, while at the same time helping retailers and certification

authorities to monitor products.

The ability of IoT to collect data from sensors as well as trace entities is a

crucial enabler for monitoring such chains. Systems that automate tracking and

tracing in an agricultural supply chain should not only collect data, but also

connect users and objects at any place and time. Data integration, processing,

analysis and service support present many challenges in this context. For the

sake of feasibility, we assume for this case study, similarly to other food tracing

systems (IBM Food Trust: trust and transparency in our food 2018), that a

global standard for supply chain messages, GS1 (Global Standards One 2018),

is adopted by participants that connect with the IoT data platform. As such,

we do not discuss the data integration problem in this chapter.

Our case study refers to a part of the beef cattle supply chain, concentrating

on cow tracking and meat product tracing, providing tracking information

and helping consumers trace meat products. Figure 2.2 presents the entities

interacting within the data platform. The system must provide multi-tenancy

services to host the data of different participants and supply chains. From a
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Figure 2.2: Context Diagram for Beef Cattle Tracking and Tracing Case Study.

high-level point of view, there are five kinds of tenants in our system: farmers,

slaughterhouses, distributors, retailers, and consumers. Each involved part is

the source of different types of data in the system to enable the tracing of the

whole life-cycle of a given meat product.

Full-fledged cattle sensor-based systems involve the deployment of very many

kinds of sensors – both in individual animals and in their environment. For

instance, each animal has external sensors (e.g., collars, earrings) to measure

movement, speed, location. Cattle often also have sensors inside their digestive

tract (usually swallowed, sometimes implanted), to measure factors such as

temperature, metabolic variables, or digestive characteristics. Environmental

sensors may monitor factors such as cattle weight, or soil humidity. Additional

sensors along the supply chain include devices that provide trackability (e.g.,

in transportation), but also traceability and quality (e.g., monitoring tempera-

ture inside warehouses). Without loss of generality, we have simplified this

scenario to consider only a few of these sensing sources, keeping only enough

distinct sensors to illustrate actual data and sampling rate heterogeneity. This

simplified scenario must fulfill the following functional requirements:

1. The data platform must store the data from animal and environment

sensors, such as collars bound to each individual cow, to enable retrieval

of location, motion, and other facts regarding traceable entities.
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2. Farmers need to track each cow’s trajectory and behavior, and thus the

data platform must record the locations of each cow over time. Geo-

fencing can help identify whether a cow is in an appropriate area (e.g.,

when rotating pasture grounds) (Breen, 2009).

3. Slaughterhouses wish to access services that provide information about

cows that will be slaughtered. For instance, it must be possible to access

tracing information such as the provenance of the cows and tracking

information about where the meat cuts produced after slaughter are

transferred to.

4. Distributors wish to get tracing information of a meat cut and tracking

information of where those cuts are to be sent to.

5. Retailers aim to know the source of the meat cuts and manage their

transformation into meat products for consumers.

6. Consumers wish to get tracing information about meat products over the

whole supply chain.

2.2.3 Challenges for IoT Data Platforms
The functional and non-functional requirements discussed in this section ren-

der the modeling and building of IoT data platforms a non-trivial undertaking.

The construction of such a platform involves technical issues related to captur-

ing, identifying and storing relevant events, managing associated constraints,

processing varied types of queries, etc. Further complexity arises from taking

into account the necessities of different stakeholders, and issues related to

data precision, synchronization and availability.

Choosing the right database architecture is therefore a key decision for the

success of an IoT data platform project. Virtualized deployment for efficiency

and ease of scaling to large request volumes are significant obstacles (Shah

and Salles, 2018a). Moreover, support for multi-tenancy needs to be carefully

designed. While physical sharing of tenant data lowers overhead and increases

efficiency (Aulbach et al., 2008), this strategy opens up security risks, which

are related to the lack of modularity at the database level (Shah and Salles,

2018b).

Thus, several questions need to be addressed when building IoT data platforms.

First, a vast amount of data is concurrently generated from IoT devices. How
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can this data be managed and processed in the data platform? Second, how

can data protection and access control across different entities be enforced

while sharing data effectively? Third, our case studies suggest that a variety of

queries, including analyses of time series from bridge sensors, spatial queries

for cow locations, or graph navigation for tracing, need to be efficiently

supported over IoT data. How can applications be modeled and built to

support different types of queries? Fourth, it is necessary that the system

be easily scaled without affecting functionality and performance. How can

the platform be architected to easily scale out when it becomes necessary

to manage more users and data? In this investigation, we observe that the

issues regarding modularity and scalability pointed out in this section can

be simultaneously addressed by AODBs (Bernstein et al., 2017b). We design

cloud-centric actor-oriented database backends for the two IoT case studies

introduced in this section. As a first step, we explain the motivation of taking

an approach based on AODBs in the next section.

2.3 Why Actor-Oriented Databases?

We argue that an actor-oriented database is the ideal organization for an IoT

data platform, enabling fulfillment of all common non-functional requirements

identified in Section 2.2. Moreover, AODBs ease the achievement of functional

requirements by providing a modular, stateful, and scalable substrate for the

modeling, design and implementation of an IoT data platform. The following

characteristics of an AODB illustrate its suitability to address the challenges of

IoT data platforms.

AODBs facilitate the management of distribution and the encapsulation
of data.

Actors are logically distributed, and can thus naturally map to dispersed entities

such as sensors. The latter promotes the expression of parallelism in the

application logic responsible for data ingestion into the platform. Moreover, an

AODB-centric design functionally decomposes the data platform into different

actors. State is encapsulated within each actor, and can only be communicated

by asynchronous messages. As such, actors provide a mechanism for isolation

of different functions and data, enabling efficient support for multi-tenancy.
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Actor modularity in AODBs supports representation and sharing of
heterogeneous data.

Actors are the unit of modularity in an AODB. By encapsulating state and

supporting specification of user-defined APIs, actors abstract heterogeneous

data representations. Moreover, arbitrary data transformations can be coded in

actor methods, enabling asynchronous exchange of data across heterogeneous

actors. As such, actors offer an attractive model to capture heterogeneity of

data formats and representations originating at multiple IoT devices.

AODBs employ multiple actor types and concurrent execution among
actors to achieve scalability.

The support for multiple actor types enables the representation of different

kinds of entities in the IoT data platform. When a new entity type is added to

the system, it is represented by a new actor type added to the data platform.

AODBs thus support a gradual extension of the platform through new actors

and actor types with minimal impact on existing components. The use of

actors makes scaling out easier, since new actors can be deployed over addi-

tional hardware components to avoid violation of performance constraints.

The resulting concurrent and distributed execution facilitates efficient use of

computational resources to bolster scalability.

Parallelism across actors in AODBs allows for processing of massive
amounts of concurrently generated data.

By identifying tasks and associated logic among entities, we can model entities

as independent actors, so that they can perform tasks concurrently. When

independent tasks are then run in parallel across actors deployed on separate

hardware components, data platform performance can be improved. Since

sensors are naturally modeled as different actors, parallel execution can be

leveraged in processing data from a large number of data streams.

Encapsulation and modularity in AODBs support data protection and
access control.

As data in one actor are invisible to others, access permissions can be checked

when data are exchanged by asynchronous messaging (Grain Call Filters 2018).

In other words, data are protected inside an actor, and mechanisms for access

control can ensure data are only shared with authorized users.
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2.4 Modeling the Case Studies with
Actor-Oriented Databases

AODBs provide scalable data processing, management, and storage over a set

of application-defined actors (Bernstein et al., 2017b). However, to the best of

our knowledge, there is scant guidance on how to model applications to reap

the benefits of AODBs. In this section, we fill this gap by an in-depth modeling

discussion of the two IoT case studies described in Section 2.2. We contribute to

the construction of IoT data platforms in two ways: (1) we provide guidelines

for modeling IoT data platforms with AODBs; and (2) we explain how an actor

model affects the system both in design and implementation.

It is believed that application modeling helps to preserve and reuse information

in other projects, as well as facilitates the automated generation of a system

from models (Teorey, 1999). To support the latter aim, we leverage UML

notation (OMG Unified Modeling Language (OMG UML) Version 2.5.1 2018)

to create models of actors, their encapsulated state and their operations.

These data-centric models harken back to conceptual modeling approaches in

databases, enabling both specifications of data requirements and, in the future,

code generation for AODB platforms. To support the former aim, we focus on

documenting database actors and their asynchronous interactions. In addition

to database actors, the classic architecture of an IoT data platform contains a

stateless tier that mediates the interaction with users or devices. The analysis

of this tier is outside the scope of our work; we abstract its functionality as

stateless actors operating as proxies and omit this tier from our models.

In the presented models, we represent the minimal necessary information to

emphasize techniques for actor-oriented database design. Application details

that would make the presentation unnecessarily complex are thus omitted,

and simplifications are made where appropriate. In the sections that follow,

we identify each core modeling question encountered in the two IoT data

platform case studies and discuss lessons learned.

2.4.1 How can Actors be Identified?
A variety of entities exist in any system, and these entities either perform or

collaborate to achieve different tasks. Moreover, these entities have different

life cycles, distinct types, and varied needs regarding heavy computation or
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communication (Bernstein, 2018). To take advantage of the actor program-

ming model as well as achieve high availability and performance, it is an

essential question to decide which entities or entity sets should be modeled as

actors.

To appreciate a concrete example of this challenge, consider the beef cattle

system introduced in Section 2.2, where many entities perform different tasks

to satisfy multiple requirements. For instance, a collar sensor that is bound to

a cow continuously collects real-time geo-data for this cow and sends it to the

data platform. A historical trajectory for each individual cow is thus updated

based on this sensor data. Besides, additional information may be needed,

such as the cow’s identifier or health-related data. In this sense, we can observe

both collar and cow as separate entities engaged in cooperation to provide

real-time and historical geo-information to farmers and slaughterhouses. The

question is whether these two entities, the collar sensor, and the cow, should

be one or two independent actors.

Actors comprise a model of computation for concurrency and distribution (Agha,

1990). So not only should actors encapsulate state, as it is the case with non-

actor objects, but they should also abstract concurrent tasks that need to be

processed by the system. In our experience, we found it useful to answer the

following questions when attempting to identify actors: (a) What services are

provided by the system being modeled? (b) Who should provide these services

and who are their users? (c) What is the output and input of every single task

performed and can these tasks be executed concurrently?

Take our beef cattle tracking and tracing system as an example. Typically one

actor is designed to carry out one specific real-world task with associated logic,

such as slaughter or distribute. Different actors then capture simultaneous

tasks. For instance, farmers would like to obtain information on cows and

manage the herds that they own. Slaughterhouses would like to obtain in-

formation about cows that will be slaughtered and record how these cows

get transformed into meat cuts. Farmers and slaughterhouses can thus be

conceptualized as users of cow information services, which a cow ought to

provide. Moreover, the interactions between farmers, slaughterhouses, and

cows are concurrently executed by independent entities in the real world. In

particular, farmers manage cows and their respective information, and slaugh-

terhouses slaughter cows and record their transformation into meat cuts. Cows

are associated with their sensor data, which are continuously updated by their
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Figure 2.3: Actor Model of Beef Cattle Tracking and Tracing Data Platform.

collars. As such, we model farmers, slaughterhouses, and cows as independent

actor types. Since each collar is bound to a cow, we encapsulate this sensor

information inside cow actors.

Figure 2.3 shows the data platform model for the beef cattle system. Every

actor encapsulates its state and communicates with other actors via asyn-

chronous messages. Therefore, simple accesses to data in the state of an actor

are rendered as asynchronous communication events across actors. As we can

see from the figure, we model one cow as a Cow actor. A Cow actor has an

aggregation relationship with many collar sensor readings indicating the GPS

locations of the cow, and each such sensor reading is bound to exactly one cow.

In other words, we use aggregation relationships to indicate that the objects

of a non-actor class are encapsulated in the referred actors. Since cows are

modeled as actors, real-time locations are reported to Cow actors, which serve

this information to all interested readers along with other associated cow state

data such as the cow identifier.

We model one farmer or several farmers who work together (e.g., a cooper-

ative) as one single Farmer actor because the state of this farmer or these

farmers is organized as a unit.1 One cow is owned by one farm unit, but one

farm unit can own many cows. The Farmer actor can read the properties of

any Cow actor that is associated with it through message passing. If such

1Notice that this unit can be broken down into smaller units at will, depending on the focus
of an application – e.g., individual farmers unite to provide beef, but a cooperative handles
each farmer individually.
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messages are exchanged under a security model with authentication, then we

can enforce that cow information is only visible to its owner farmer tenant or

properly authorized slaughterhouse.

A physical slaughterhouse is modeled as a Slaughterhouse actor. A cow can

only be slaughtered once in exactly one slaughterhouse, but a slaughterhouse

is responsible for slaughtering many cows. This constraint is reflected in

the association between Cow and Slaughterhouse actors, and as above a

Slaughterhouse actor can read data from any Cow actor via asynchronous

messaging. The Slaughterhouse actor processes such data to derive Meat Cut
actors, which represent units of beef to be distributed as a whole.

A Meat Cut actor processes updates to its itinerary property generated by

Delivery actors as meat cuts are transported. In our model, a Distributor actor

manages multiple Delivery actors, which themselves manage a transportation

process with different source and destination locations. For example, a logistics

company is modeled as a Distributor actor, and transportation processes in this

company are modeled as various Delivery actors managed by the Distributor

actor. A Delivery actor tracks a meat cut delivery from a source to a destination

location using a given vehicle at a well-defined time. A meat cut can be

delivered many times by one or several distributors during the whole itinerary,

and a distributor is responsible for delivering many meat cuts.

We model the final destination of a meat cut to be a retailer, e.g., a supermarket

chain, whose information is managed by a Retailer actor. Retailer actors can

create Meat Product actors by disaggregating or combining meat cuts. Thus,

Meat Product actors have a many-to-many association with Meat Cut actors.

Based on the above modeling process, we can summarize a general principle

of how to identify actors:

Typically, one actor is designed to carry out one specific real-world task

with associated logic. Different actors capture different simultaneous

tasks.
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2.4.2 What should the Granularity of Actor State
be?

In an AODB, we allocate different tasks into separate actors, as this organiza-

tion can help increase concurrency. However, if a single actor concentrates too

much state or too much of the application logic, i.e., if an actor is coarse-grained,

then it becomes increasingly difficult to reap the benefits of concurrency stem-

ming from the application of the actor model. At the other extreme, since

actors do not share state and communicate only through asynchronous mes-

saging, an excessively fine-grained actor design can introduce unnecessary

overheads in state manipulation as well as increased communication overhead.

Moreover, a fine-grained design may cause the actors in the system to explode

in number, e.g., one actor per data item or record in the system, which can

challenge efficiency in an AODB platform. So deciding the granularity of actors

is an essential problem when modeling any application with actor-oriented

databases.

Previously, we have formulated a principle to identify actors out of the entities

in an application scenario. However, we should balance this principle against

the potential effect of actor granularity on application performance. In particu-

lar, we wish to keep concurrency high, but at the same time avoid unnecessary

overheads and reduce the complexity of application modeling. To balance

these goals, our experience has been that it is natural to make actors more

fine-grained when they represent active entities for which detailed tracking is

required by the application.

Figure 2.4: Actor Model of Structural Health Monitoring Data Platform.
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Figure 2.4 presents the data platform model for the structural health moni-

toring system. We observed during modeling that organization entities own

project entities representing different constructions and that each such con-

struction project is associated with some installed sensors. Note that only

organizations are active, as they initiate and manage construction activities,

while projects are passive structural schemes used by organizations. As such,

we create Organization actors that encapsulate project information, as dis-

played by an aggregation relationship with a non-actor Project class, instead of

utilizing separate actors. This modeling decision minimizes message exchange

when there is no clear advantage in having the two entities run concurrently.

This notwithstanding, sensors are themselves active entities in that they may

be relocated, leading to change of position, and also may generate multiple

data streams originating from different physical sensor channels (e.g., if we

consider a regular smartphone as a sensor, then the accelerometer and micro-

phone would be sensor channels). Moreover, messaging is minimal between

sensors and sensor channels, as data streams arriving at the platform can be

disaggregated by proxies directly by sensor channel instead of being relayed

through sensor entities. As such, we model separate Sensor and Sensor Channel
actors. Sensor Channel actors hold a window of data points originating in the

respective data stream. The data points are captured as non-actor objects since

these entities are not active.

To help structure information about data points, additional actors are included.

First, Sensor Channel is specialized into Physical Sensor Channel and Virtual
Sensor Channel actor classes. Whereas the former represents a channel in a

physical sensor, the latter represents a computation over potentially multiple

physical channels (e.g., in our smartphone example, an equation merging the

data from accelerometer and microphone sensor channels). While a virtual

sensor channel provides data at the finest level of detail, it is necessary to

provide statistical aggregates for online queries posed by data analysts at

various levels of detail (e.g., per hour, day, or month). Since there can be

parallelism in computing these aggregations across levels of detail (e.g., hourly

aggregates serving as input to daily aggregates), it is useful to conceptualize

them as active entities. We thus introduce Aggregator actors in the model.

Based on the above modeling process in the context of our case studies, we

summarize a general principle of how to decide on actor granularity:
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An actor should represent the functionality of one active entity for which

detailed tracking is required.

2.4.3 What is the Trade-Off between Employing
Actors or Non-actor Objects for Frequently
Accessed Entities?

We discussed the issue of actor granularity, which may result in decisions

where entities from the domain are modeled as actors or alternatively as

non-actor objects. The modeling principle for actor granularity calls our

attention to active entities. By contrast, there are a number of entities that

store data but do not proactively perform tasks. We call them inanimate entities,
and they are exemplified in the beef cattle tracking and tracing case study

by meat cuts and meat products. In Figure 2.3, we model these inanimate

entities as actors. However, these actors only encapsulate state and manage

corresponding queries and updates originating from active entities such as

slaughterhouse, distributor or retailer, e.g., when meat cuts and products are

created or transported. As such, a natural question is whether these inanimate

entities could have been modeled as non-actor objects instead of actors.

For example, suppose a distributor wishes to obtain information about a meat

cut that it transports. The corresponding Distributor actor would have to send

a message to the respective Meat Cut actor to fetch this information. Further-

more, when a meat cut is transported, the Meat Cut actor has to communicate

with a number of other source or destination actors, such as Slaughterhouse,

Distributor, or Retailer actors. As such, a Meat Cut actor frequently interacts

with other actors in the system. Since all information on meat cuts needs to be

exchanged across actors through asynchronous messaging, casting meat cuts

as actors can generate a considerable communication overhead.

To explore this question, we have created an alternative model for the beef

cattle tracking and tracing case study (cf. Figure 2.5). In this alternative model,

we capture inanimate, but frequently updated entities, such as meat cuts and

meat products, as non-actor objects instead of actors. Actors are marked in

red in Figures 2.3, 2.4 and 2.5, while the non-actor objects are marked in

black. The non-actor objects represent a state and thus cannot exist in an

AODB independently of some actor. To capture state mutation as meat cuts
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and products move across the supply chain, we create object versions that are

always associated with a responsible actor at every stage. Consider how a meat

cut is transferred from a slaughterhouse to a distributor. The meat cut is the

same real-world entity, but the slaughterhouse and distributor may identify the

meat cut differently. Upon transfer, the object representing the meat cut will

be copied from the Slaughterhouse actor to the Distributor actor, where this

new object version can be updated. Since each actor keeps a separate object

version of the meat cut throughout the supply chain, communication to obtain

meat cut information is obviated. All the actor logic that reads this information

can now access the encapsulated entities in the respective actor state. For

frequently accessed entities, this reduction in communication may pay off with

respect to the overhead of copying non-actor objects. Furthermore, potentially

more concurrency can be exploited in reading local object versions across

several actors independently. However, some degree of data redundancy may

be introduced in the model.

Based on the above modeling process, we can summarize a general princi-

ple of when to model frequently accessed entities as non-actor objects

instead of actors:

Frequently accessed entities can be modeled as actors or non-actor ob-

jects, and the latter representation should be preferred when reductions

in communication overheads and gains from concurrency offset the

disadvantages of copying overhead and data redundancy.

2.4.4 How can Relationship Constraints be
Enforced across Actors?

Because actors encapsulate state and only communicate through asynchronous

messaging, relationships between actors are conceptually distributed. For

instance, in the model of Figure 2.3, a farmer may own many cows, but a cow

belongs to at most one farmer. In a typical implementation, each direction of

this relationship would be represented as properties in Cow and Farmer actors.

When performing updates to this relationship, we need to update both sides

and make sure these two properties in different actors remain consistent. In

particular, when a farmer sells a cow, the Cow actor should have its ownership
relationship changed to the next owner, and the properties in the two affected

Farmer actors ought to reflect that only one farmer retains the ownership
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Figure 2.5: Alternative Actor Model of Beef Cattle Tracking and Tracing Data Plat-
form.

of that cow. Since communication between actors is asynchronous, it is a

challenge to keep consistency across actors in the presence of updates.

The consistency problem can be addressed by a transaction facility in the

AODB, when available, or alternatively by a workflow that ensures that all

actors in a relationship change are eventually updated to a consistent state.

These options are similar in spirit to the proposal for indexing support in

AODBs (Bernstein et al., 2017b). Since some actor systems, such as Akka,

no longer support transactions (Akka Migration Guide 2.3.x to 2.4.x 2018),

and update workflows operate under relaxed consistency, a final alternative

is to keep all data related to a relationship, or more generally constraint,

encapsulated in a single actor. This discussion leads us to our final principle

of how to enforce constraints when using actors:

Employ transactions to update data across actors consistently; however,

in the absence of transactions, keep data related to a constraint in a

single actor or design a multi-actor workflow for updates.
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2.5 Implementation
In this section, we discuss the implementation of the IoT data platform for

the first case study of Section 2.2 with an AODB. We choose the Structural

Health Monitoring Data Platform (SHMDP) since the resulting implementation

has been transitioned to the company SenMoS. However, the lessons learned

and discussion extend more broadly to the applicability of AODBs to IoT data

platforms in other domains, e.g., in beef cattle supply chains, among others.

2.5.1 Choice of AODB
Our implementation of the structural health monitoring data platform was

based on the model of Figure 2.4 (Borggren, 2018). The first implementation

challenge to be overcome was to find an appropriate platform supporting actor

and non-actor object constructs, as well as the AODB approach. The vision for

AODBs (Bernstein et al., 2017b) was proposed in the context of the Orleans

project (Bernstein et al., 2014), and we thus elect this actor runtime for the

SHMDP. Orleans has also been used successfully in the context of other scalable

applications (Who Is Using Orleans? 2018), and can thus support real-world

deployments. Unlike many other actor programming languages or frameworks

such as Erlang (Erlang-Build massively scalable soft real-time systems 2020) or

Akka (Akka - Build Powerful Reactive, Concurrent, and Distributed Applications
More Easily 2020), Orleans employs the concept of virtual actors, i.e., named

actors that are logically in perpetual existence. The Orleans actor runtime

automatically creates activations of these virtual actors for processing when-

ever functions are asynchronously invoked on them, and eliminates activations

when there is pressure on resources. As such, virtual actors simplify actor

lifecycle management for an application built on Orleans.

In addition to virtual actors, Orleans provides an explicit storage model for

actor state. In particular, actors run in a stateful middle-tier that can be concep-

tualized as an in-memory cache of actor state enriched with application code

expressed as actor functions. Whenever persistence of actor state is required,

a cloud storage system is employed by Orleans. The concrete storage system

is specified through annotations in actor code. To meet the vision for AODBs,

additional features are currently being implemented in Orleans to close the gap

between actor runtime and DBMS functionality, e.g., indexing (Bernstein et al.,
2017b) and ACID transactions across actors (Eldeeb and Bernstein, 2016).
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2.5.2 Data Platform Architecture
A second implementation challenge was to architect an IoT data platform based

on AODBs that fulfills all of the non-functional requirements of Section 2.2.

Ideally, an AODB should handle online data ingestion and querying as well as

analyses of historical data. However, as pointed out in Section 2.2, declarative

querying functionality is still incomplete in AODBs currently (Bernstein et al.,
2017b). Thus, we identify three core components for the SHMDP: actor run-

time, cloud storage system, and analytical database system. The actor runtime

was implemented by Orleans and provides the virtual actor abstraction. It

also keeps any necessary in-memory data structures for online data processing

and analysis as expressed in the model of Figure 2.4. The storage system

provides durability of actor state, and allows large amounts of historical data

to be archived. A key-value database system with efficient data ingestion (Luo

and Carey, 2018) is useful for this purpose. Finally, data recorded in the

storage system can be exported into a classic star schema implemented in

the analytical database (Kimball and Ross, 2013). The latter component is

targeted at analytical queries over historical data, and its description is outside

the scope of this work. The former two components comprised the online data

ingestion, processing, and analysis functions of the SHMDP.

2.5.3 Support for Non-Functional Requirements
The AODB architecture supports the non-functional requirements listed in

Section 2.2 as follows:

1. Data ingestion from endpoints. Data from different endpoints was

managed by distinct actors in Orleans, and recorded in the cloud storage

system for durability.

2. Multi-tenancy. Modularity, data encapsulation, and asynchronous com-

munication were provided by virtual actors in Orleans, allowing isolation

of functions and data sensitive to different users.

3. Support for heterogeneous data. Orleans virtual actors support a

number of data types and structures, e.g., representing simple alerts or

real-time derived data for virtual sensors. In addition, Orleans was used

to query time ranges of raw data, and to build aggregates for low latency

requests over time periods. The problem of using Orleans for these
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functionalities was that declarative queries cannot access data across

actors, and thus needed to be decomposed by the developer.

4. Cloud-based deployment. Orleans was built to scale out on servers, and

extend over multiple geographical locations. It is, moreover, open-source

and designed with cloud deployment as a primary target.

5. Scalable data platform. Modularization allows scalability in the number

of actors, thus easily enabling the addition of more endpoints or users to

the data platform.

6. High efficiency. All processing in virtual actors occurs in-memory. Or-

leans employs multi-core and multi-server architectures to execute appli-

cation logic in different actors in parallel.

7. Access control and data protection. Authentication and access con-

trol were implemented at the application level by building on actor

modularity features.

2.5.4 Virtual Actor Durability and Deployment
Further implementation challenges arise from ensuring that the IoT data

platform can effectively ingest and process the large number of concurrent

update streams originating from devices. Two issues may impact performance

substantially: enforcing durability and deploying actors over multiple machines

in a cloud infrastructure.

Orleans virtual actors are called grains, and managed automatically by the

Orleans runtime. When a grain has work to do, the grain is activated; when the

grain has been standing idle for too long, the grain’s resources are reclaimed by

the system, removing it from memory. To provide durability, grains in Orleans

may have a state storage class. This class defines all variables the developer

wishes to store persistently. The developer can force the current state to

persistent storage by invoking the WriteStateAsync grain method or configure

the grain class to store state persistently when Orleans deactivates a grain.

Whenever the Orleans runtime re-activates a grain, the runtime retrieves by

default the latest grain state from cloud storage, if available. As such, Orleans

lets the developer decide when state is written to persistent state storage.

In the SHMDP, durability requirements may vary depending on the task being

implemented. Certain tasks require that the state of actors be immediately
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made durable, e.g., for creating structural entities such as organizations,

sensors, projects, and sensor channels. Other tasks, such as gathering sensor

data, can collect a window of updates before forcing them to storage. For

example, in the Great Belt Bridge (Facts and History 2018), the structural

health monitoring project consisted of more than 200 sensor channels, with

a typical requirement for live data being a reporting rate of one packet of

readings per sensor per second. So if we wrote state to persistent storage after

each request, we would need 200 write requests every second to the cloud

storage system.

Activated grains in Orleans get distributed across a set of silos, where each silo

is typically deployed in a server in a cluster of machines. The distribution of

grain activations to silos is by default random, which is adequate for most use

cases since it will spread load. However, this actor deployment can increase

the cost of communication when certain actors interact frequently. Orleans

suggests using prefer-local activation in these cases. For our data platform,

we have had to change the activation placement strategy away from random

placement for our sensor channels and aggregators. The prefer-local placement

in these instances minimizes the need to perform remote procedure calls when

processing incoming requests.

2.6 Experimental Evaluation
Our goal in the experiments is to assess if the AODB-based implementation of

our model from Figure 2.4 yields an IoT data platform that can scale in the

number of sensors simulated and at the same time support low-latency online

query functionality. In the following, we present our setup and the obtained

results.

2.6.1 Setup
Benchmarking Tool

To stress-test the SHMDP, we created a command line tool in .NET that uses

the Orleans framework client directly. This tool simulates data requests from

sensors and users in order to generate variable load for the data platform.

Sensors are simulated by tasks that each call a sensor grain and insert 10 data

points. This procedure is repeated each second if all sensors have finished
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their calls, so as to adhere to the behavior expected in the real scenario based

on our experience.

Even though we simulate sensors for experimentation with the benchmarking

tool above, we envision that ingestion of sensor data points will be based on a

REST interface in a production deployment. This way, sensors can send HTTP

calls to the data platform. As part of data ingestion, message queues can be

employed to accommodate for bursty behavior in sensor measurements (Azure
Queue (AQ) Stream Provider 2019). To limit the scope of our evaluation,

however, we focus on stressing only the virtual actor implementation of the

IoT data platform, and not other layers related to communication with sensor

devices.

The benchmarking tool stores data from each request sent to the data platform

in a log. Each log entry includes the latency for the request, which request was

sent (data insertion, live user data, or user data request), the sampling rate,

and a timestamp. With this information, we can derive detailed throughput

and latency statistics for the experiments.

Summary of Software

We needed the execution of several components for the experiments. The first

one was the Orleans silo, typically with one instance deployed per server, where

virtual actors are activated and run all application logic. We also employed

Amazon RDS (Amazon Relational Database Service 2018) for Orleans system

storage, which keeps track of silo instances, reminders, and general system

state. Amazon DynamoDB (Amazon DynamoDB - Fast and flexible NoSQL
database service for any scale 2021) was used for Orleans grain state storage.

Besides, the C# benchmarking tool described above is invoked to generate

load to silos.

Cloud Service and Deployment

To characterize the SHMDP’s data ingestion and processing capabilities, we set

up our benchmark environment on Amazon AWS (Amazon Web Service 2020),

employing the Amazon DynamoDB and RDS services (Amazon DynamoDB -
Fast and flexible NoSQL database service for any scale 2021; Amazon Relational
Database Service 2018) as stated above and EC2 on-demand instances (Amazon
EC2 - Secure and resizable compute capacity to support virtually any workload
2020) for all remaining components. Given our budget, two types of instances
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were employed: T2 for low cost and burst performance features as well as

M5 for more stable performance. All instances were running Windows Server

2012 R2 and Orleans 1.5.0. The configuration, unless otherwise mentioned,

was designed to simulate a possible future production deployment of the data

platform based on our previous experience with the project for the Great Belt

Bridge (Facts and History 2018): m5.xlarge instances were employed for the

Orleans silos, RDS db.t2.small for Orleans system storage, DynamoDB with 200

writes and 200 reads per second for Orleans grain storage, and an m5.2xlarge

instance for the benchmark tool.

Environment Configuration

For the experiments, we simulate sensors with two sensor channels each; every

tenth sensor has a virtual sensor channel that is a summation of the two other

sensor channels on the corresponding sensor. The latter choice reflects that

only a subset of sensor data require additional processing to create a derived

virtual sensor stream, which is close to the real life scenario from the Great

Belt Bridge. We populated our actor-oriented database with synthetic data

for users, organizations, projects, sensors, and sensor channels simulating a

realistic scenario. For every 100 sensors, a new organization was constructed

with a single user and a single project. Following the sensor configuration,

these 100 sensors represent 210 sensor channels in total, out of which 200 are

physical sensor channels and 10 are virtual sensor channels. This structure

was used for all experiments, so that we can calculate exactly how many

organizations, projects, users, and sensor channels are created given a number

of sensors. Employing 100 sensors with 210 sensor channels in total is a

configuration similar in size to the one in our previous experience with the

Great Belt Bridge.

To achieve our experimental goal related to low latency queries, the upload of

data points to the grain state storage has been configured to only happen when

the Orleans silo service is shut down. This configuration ensures that we are

not benchmarking DynamoDB storage, but rather the execution of in-memory

actors. When using the system in production, the grains have to be configured

to store data points to grain storage at an acceptable rate as explained in the

considerations for durability in Section 2.5.

Load was offered to the SHMDP by sending requests with 20 data points for

each sensor currently being simulated (i.e., 10 data points were generated
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Figure 2.6: Single-server throughput ex-
periment.
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Figure 2.7: Scale out experiment over
multiple servers.
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Figure 2.8: Latency percentiles for raw
sensor channel data point
time range requests.
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Figure 2.9: Latency percentile for organi-
zation live data requests.

for each physical sensor channel in each sensor). The requests were sent at a

rate of 1 request per second. This frequency simulates sensors sampling data

at 10 Hz, as specified in the Great Belt Bridge project for most sensors. As

an example, consider that we wish to simulate 500 sensors: this number of

sensors would correspond to 1,000 physical sensor channels and 50 virtual

sensor channels. Thus, the resulting load would be of 500 requests per second

being used to transmit 10,000 data points per second, and leading to the

calculation of 500 virtual data points each second.

For each experiment, Figures 2.6, 2.7, 2.8 and 2.9 present the results. A single

point on the figures aggregates 10 minutes of the whole service configuration

running. The data was split into windows of 1 minute, and the first minute

was removed to make sure the platform had started up correctly before mea-

surement. In addition, the last minute was removed to ensure that only whole

minutes were used. The average latency or throughput was then calculated

as a measurement, and depicted along with standard deviation as error bars

where appropriate.
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2.6.2 Experimental Results
How many sensor readings can the SHMDP ingest using a single cloud
server?

In our first experiment, we aimed at establishing a relationship between the

number of simulated sensors and the hardware utilization at the data platform,

so that we can create a baseline load for the other experiments. In particular

for these measurements, we employed the smallest VM size in the M5 series,

the m5.large instance, and observed when the instance cannot process any

more data insertion requests. We have chosen the smallest server size so that

the experiment can be used for both scale up and scale out baselines.

Figure 2.6 shows the results from this single-server throughput experiment.

Because each simulated sensor in the experiment was configured to send one

request every second, note that the SHMDP deployment was processing all

requests as long as the throughput is equal to the amount of simulated sensors.

We observe that the ratio between simulated sensors and throughput is close

to one until the number of simulated sensors reaches 2,000. At that point,

throughput ceases to increase even if more load is offered. By monitoring the

VM instance when performing the experiment, we have remarked that CPU

Usage in Windows Task Manager was at 100% when the number of simulated

sensors was above 1,800.

Does the SHMDP scale simultaneously on the number of sensors and
servers?

Our second aim was to verify whether the data platform can scale out in the

number of data requests that it can ingest from simulated sensors by utilizing

the computing power of more servers. To simulate a production environ-

ment, we employed larger m5.xlarge VMs as described in the experimental

setup. From our single-server throughput experiments, we can estimate a

baseline load to be offered per server. Based on this baseline, we can propor-

tionally scale the load, number of servers, and organization structure in the

experiment.

To estimate baseline load, we note that in a production environment, we wish

to leave some CPU resources for user interaction. We chose to leave roughly

20% utilization for handling user online query requests and creating statistical

aggregates. From the single-server throughput experiment of Figure 2.6, we
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know that roughly 1,800 requests per second can be processed by a m5.large

instance. By removing 20% and rounding to the nearest 100 requests per

second, we obtain 1,400 requests per second. Now, we can scale that number

by the difference in computing power between the m5.large and m5.xlarge

instances, which is estimated by their EC2 Compute Unit (ECU) values to be of

a factor 1.5x. So the baseline for a single server corresponds to the load offered

by 2,100 simulated sensors. This configuration is employed for a scale factor

of one. As the scale factor is increased, we proportionally increase the number

of simulated sensors and the number of servers used for Orleans silos.

Figure 2.7 shows that the throughput sustained by the data platform scales

close to linearly with the scale factor. To illustrate this observation, consider

that at a scale factor of five, we have five server instances and 10,500 simulated

sensors. We observe as expected a throughput above 10,000 requests per

second. Similarly, for a scale factor of eight, we have eight server instances

and 16,800 simulated sensors, and a throughput above 16,000 requests per

second is observed.

The results indicate that the data platform can potentially scale out even

further than the 8 servers used in this experiment, since we did not hit any

bottlenecks. We expect that the behavior can be maintained as we add a larger

number of servers, since there are no dependencies across organizations and

there is enough processing slack left to support eventual online user queries

and calculation of statistical aggregates.

Does the SHMDP deliver low latency on online query functions
concurrently with data ingestion?

We have simplified the previous experiments by removing any user interactions,

and made all sensors sample data at 10 Hz sending 1 request each second

to the data platform. This scenario is close enough to our experience with

a real deployment that we can observe how the data platform scales as we

increase the number of sensor insertion requests. However, we still need to

show that the 80% utilization rate chosen earlier will indeed leave enough

room for the processing of online user queries. Furthermore, we aimed at

better characterizing user request latencies under this target utilization level

to make informed decisions when creating a production environment in the

future.
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To simulate user requests to the data platform, we estimated a relationship

between simulated sensor requests and user interaction requests. We know

from the requirements for the SHMDP that requests for live data as well as

raw data kept in the sensor channel actors need to be supported. Requests

for live data retrieved the most recent values from all sensor channels of a

given organization, while requests for raw data retrieved the time series in a

given sensor channel actor in an organization. From actual user interactions

observed at the Great Belt Bridge project, we expect these online queries to

be generated by at most one person looking at live data for each organization

requesting data once every second, and at most one request for raw data a

second for each organization. Since a deployment in that project would have

around 100 sensors, we thus generate roughly 1% of the requests for live data

from all sensor channels in a organization, 1% for raw data, and the remaining

98% as sensor data insertions.

Figures 2.8 and 2.9 show that the latency of online query requests increase,

as expected, for higher percentiles of the latency distribution. This growth is

especially pronounced for 99.9th percentile latency; however, even these ex-

treme tail latencies can be ameliorated if utilization is reduced in the machine

by offering load from less sensors. For example, for 500 simulated sensors,

99.9th percentile latency is minimal for raw data requests, and under 1 sec

for live data requests. It is expected that latency of user interactions on the

website be kept within a few seconds. This requirement can be fulfilled by the

data platform even with the targeted 80% utilization load offered by 2,000

simulated sensors and at extreme latency percentiles. Moreover, the latency of

raw data requests is often substantially below 0.5 sec, while that of live data

requests is often below 1 sec at 2,000 simulated sensors.

2.7 Related Work and Discussion
This section discusses research efforts related to our work. To the best of

our knowledge, the literature lacks contributions explicitly justifying why and

discussing how AODBs meet the challenges of IoT data platforms. However,

earlier approaches have explored how to support different aspects of IoT data

management employing a variety of data-centric system abstractions.

Approaches based on data stream management systems (DSMSs), in particular,

are a commonly used solution in the context of IoT systems (Shen et al., 2015;
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Calbimonte et al., 2010; AWS IoT Core 2018; Google IoT Core 2018). DSMSs are

apt at transforming multiple input streams, through a topology of data flow op-

erators, into output streams containing, e.g., alerts and notifications for further

processing. One challenge in these systems has been flexibility in responding

to dynamically changing conditions as typical in IoT, e.g., through the addition

or removal of input sources (Singhal et al., 2018). Actor-based streaming

implementations have been proposed to address these concerns (Akka Streams
version 2.5.18 2018; Orleans Streams - Microsoft Orleans Documentation 2020),

as adaptability is a built-in feature of the actor model (Agha, 1990). However,

a problem with data streaming approaches has been to additionally provide

for data storage and online queries (Chandrasekaran and Franklin, 2004;

Dindar et al., 2011). In the context of IoT, AllJoyn Lambda explored a lambda

architecture for IoT data storage analytics. Adnan et al. combined streaming

and historical data to perform predictions in IoT systems based on machine

learning models (Akbar et al., 2017). In contrast to AODBs, which abstract

storage management with virtual actors and storage annotations, these ap-

proaches require developers to master complex APIs, often spanning across

data stream and database systems. Moreover, while these systems provide

for low-latency alerts, online queries are non-trivial to support efficiently. By

contrast, an AODB acts as an in-memory, programmable cache where complex

analyses can be executed in parallel over the encapsulated state of multiple

actors employing user-defined methods.

Another class of solutions explored by previous work is that of cloud-centric

actor-based IoT middleware, such as Ptolemy Accessor (The Ptolemy Project:
Accessors 2018) and Calvin (Persson and Angelsmark, 2015). In these systems,

every IoT device is modeled as an actor so that those multiple IoT compo-

nents can be easily integrated into a potentially complex edge-cloud system.

However, these middleware platforms lack integration with data management

features that are central to an IoT data platform, such as efficient data storage

with support for multi-tenancy and data protection. In addition to middleware,

specific IoT applications have also been directly built over actor runtimes (Akka
Documentation, Version 2.5.17, IoT example use case 2018; Who Is Using Or-
leans? 2018). For example, Pegasus is a cloud-based project aimed at gathering

data with high-altitude balloons (Chansanchai, 2018). The system employs the

Orleans actor runtime so as to simplify the development process of building a

parallel, interactive and dynamic cloud service (Bernstein and Bykov, 2016).

In contrast to our work, these previous implementation efforts do not provide
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any insights on data modeling decisions, nor do they analyze case studies to

connect requirements for IoT data platforms with the necessary support from

an actor-based solution. Even though there have been explorations of how

to employ actors as a modeling construct for cyber-physical systems (Derler

et al., 2012), none of these investigations fully satisfy our data platform re-

quirements, namely storing, managing and processing large-scale data as well

as providing for high scalability, real-time computation, data protection, and

access control.

In line with the vision of Bernstein et al. (Bernstein et al., 2017b), we argue

that the integration of data management features into actor runtimes can help

meet the increasing demand for scalable, low-latency data platforms. Recently,

a relational actor programming model has been proposed for in-memory

databases and realized in ReactDB (Shah and Salles, 2018a). Even though

ReactDB shows that the actor model can be used to provide for low latency in

databases, we did not consider it as a possible option for our data platform

because it is a research prototype and currently not available for production

use. Furthermore, in previous work combining actors and databases, there

is no systematic review of how to model and structure IoT data platforms,

nor discussion of the implementation of such IoT platforms employing an

AODB approach. Our work matches the characteristics of an AODB with

the requirements and challenges of IoT data platforms, showing how recent

research on AODBs can be the basis for a new methodology to model and build

IoT data platforms.

2.8 Conclusion
IoT systems require adequate data platforms for handling data storage, man-

agement, query and preservation. The modeling and deployment of these

platforms remain an open research challenge. In this chapter, we presented

a generic actor-oriented data platform modeling approach for IoT data plat-

forms, showing how actor-oriented databases can address challenges in the

management of IoT data. Our discussion of challenges and their solution was

showcased via two distinct case studies, specifically systems for structural

health monitoring and beef cattle tracking and tracing. Our contribution cov-

ered the detailed modeling of these two real-world case studies and presented

the entities and the patterns used to represent their dynamic behavior. This

was accompanied by a discussion of modeling challenges, together with our
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recommendation of technologies and methodologies to address these chal-

lenges. As part of this work, we developed a prototype of a structural health

monitoring system, which was transitioned to SenMoS. This prototype was

validated through experiments demonstrating scalability as more simulated

sensors are added as well as low latency in interactive query functions.

We believe that adopting AODBs for IoT systems can help attain the full

potential of IoT by extending the reach, scalability, and maintainability of IoT

data platforms. As future work, we plan to explore data integration issues in

IoT data platforms modeled with the AODB approach, and devise approaches

to enforce constraints in AODBs.

Implement data integration in data platform to help analysis, build and main-

tain an index on actors to quickly locate actors in constraints and design of

transaction or workflow to keep data consistency across actors are potential

paths for future work.

2.8 Conclusion 47





3Dolphin: An Actor-Oriented
Database for Reactive
Moving Object Data
Management

Novel reactive moving object applications require solutions to support object

reactive behaviors as a way to query and update dynamic data. While moving

object scenarios have long been researched in the context of spatio-temporal

data management, reactive behavior is usually left to end-user implementa-

tions. However, it is not just a matter of hardwiring reactive constraints: the

required solutions need to satisfy tight low-latency computation requirements

and be scalable. This emerging class of applications builds on database tech-

nology, but implements substantial data management logic in the application

tier. This part of dissertation explores a novel approach to enrich a distributed

actor-based framework with reactive functionality and complex spatial data

management along with concurrency semantics. Our goal is to better meet

the needs of reactive moving object applications. Our approach relies on a

proposal of the moving actor abstraction, which is a conceptual enhancement

of the actor model with reactive sensing, movement, and spatial querying

capabilities. This enhancement helps developers of reactive moving object

applications avoid the significant burden of implementing application-level

schemes to balance performance and consistency. Based on moving actors, we

define a reactive moving object data management platform, named Moving
Actor-Oriented Databases (M-AODBs), and build Dolphin – an implementation

of M-AODBs. Dolphin embodies a non-intrusive actor-based design layered

on top of the Microsoft Orleans distributed virtual actor framework. In a set

of experimental evaluations with realistic reactive moving object scenarios,

Dolphin exhibits scalability on multi-machines and provides near-real-time

reaction latency.
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3.1 Introduction
Recent years are witnessing a growth in research in data-intensive scenarios

involving mobile devices and sensors (Costa, 2018; Cao and Wachowicz, 2020).

Moving objects and their trajectories have long been subject to research in

spatiotemporal databases, e.g., storage and indexing of trajectories, query

processing or linking to semantics – such as Points of Interest. Nowadays,

applications such as collaborative transportation systems (Khajenasiri et al.,
2017; Cui et al., 2019), fleet management and traffic monitoring (Duckett et al.,
2018; Albani et al., 2017; McLellan, 2020; Shorinwa et al., 2020; Honkote

et al., 2020; Atten et al., 2016), tracking of mobile objects and crowd sensing

platforms (Capponi et al., 2019), etc., concern objects that continuously move

in space and react to their surroundings. These highly relevant and emerging

mobile Internet-of-Things scenarios require data management frameworks to

support reactive behavior and to query and update large amounts of dynamic

spatial data.

Consequently, new requirements regarding reactive features for those objects

are emerging. For example, such objects are sensitive to their surroundings

– in particular, to the objects moving around them, – e.g. changing their

states and sharing information to affect other “surrounding” moving objects.

We name such objects reactive moving objects and these applications reactive
moving object applications – to characterize the emphasis on surroundings-

sensitive object behaviour, and the collective participation of such objects in a

spatially-sensitive decision-making process.

Figure 3.1: C-ITS Example

Running Example. In Cooperative Intelli-

gent Transportation Systems (C-ITS) (Mit-

sakis et al., 2020; Bussche, 2020; Nguyen

et al., 2020), vehicles communicate and coop-

erate towards improving overall transporta-

tion effectiveness, driving behaviours, secu-

rity and safety (Ni, 2016). While regular ITS

(Li and Nashashibi, 2013; Hu et al., 2020; Tak

et al., 2020) concentrate on local information

sharing, optimization and coordination (e.g.,
involving drivers, traffic controllers, or trans-

portation system operators) to make better decisions, in C-ITS, global infor-

50 Chapter 3 Dolphin: An Actor-Oriented Database for Reactive Moving Object Data

Management



mation ingestion is required and vehicles themselves are active participants in

transportation actions and decisions. Figure 3.1 presents an example of C-ITS.

Reactive vehicles (shown as red vehicle icons) start reactive sensing within

a specific spatial region (shown as a semi-transparent red range). A reactive

vehicle is aware of other vehicles if those vehicles’ movements satisfy its prede-

fined spatial predicates (e.g., cross, cover, or overlap) against its spatial sensing

area. Sensing areas and predicates may vary from vehicle to vehicle. In a

simplified way, vehicle behavior in standard ITS is managed by the application,

whereas vehicles in C-ITS are active participants in deciding their movements.

Thus, a reactive vehicle can take reactive actions, such as communication with

approaching vehicles to send warnings to help them avoid hazards (Uhlemann,

2018). We envision cooperation will be a critical ingredient for self-driving or

assisted-driving.

Three-tier architecture, which decomposes user interface, application logic and

data management into three separate tiers, is the predominant architecture

for client-server systems (Kambalyal, 2010). However, as pointed out by Sal-

vaneschi and Mezini (2013) and Bonér et al. (2014), a reactive system needs

to update and react to the changes of inputs correspondingly in tight real-time

computation constraints. This is challenging to meet in data intensive settings.

In conventional multi-tier distributed data architectures, frequent data ship-

ment is required between the stateless application tier running the application

codes and the database tier storing the application state. In addition, system

performance would be constrained by the network bandwidth and latency.

One might suggest to push the whole logic of a reactive moving object ap-

plication down into a spatial DBMS. However, reactive features for moving

objects are lacking in these systems. Trigger systems are the primary reactive

abstraction available, but they are riddled with complex semantic issues for de-

velopers (Widom and Ceri, 1996). Furthermore, there are concerns regarding

trigger scalability (Hanson et al., 1999), which are only made worse in highly

dynamic and distributed environments.

Distributed in-memory application architectures have proved to be a viable

solution to address the aforementioned performance challenges (Agha, 1990;

Bernstein and Bykov, 2016). These architectures often leverage the actor

model as a programming abstraction for middle tier implementation (He-

witt, 2010; Karmani and Agha, 2011), while employing distributed DBMS

for selective persistence of actor state (Bernstein et al., 2014). Application
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logic and data are encapsulated into actors, each of which naturally repre-

sents the digital twin of a real-world object (Wang et al., 2019b; Bernstein,

2018). The decomposition of application logic and data into actors, as well as

the distributed and concurrent actor model execution enable efficient use of

computational resources to boost scalability.

In light of the success of the actor model in building high-throughput and low-

latency applications, we envision it as a compelling implementation abstraction

for the application tier in reactive moving object applications – each reactive

object, as the digital twin of a real-world physical reactive moving entity, can

be modeled as an actor. However, present actor runtimes do not have any

built-in support for representing movement of objects in space, for querying

their locations, or, most importantly, for specifying reactive behaviors to be

triggered in response to the movement of other objects. Developers must face

a choice between either: (a) scalably implementing these challenging reactive

and spatial functionalities in the application tier; or (b) weaving together a

complex web of systems, e.g., spatial streaming platforms, spatial DBMS, and

distributed mid-tier frameworks, with little support to navigate the trade-offs

in cross-system data consistency semantics.

In this work, we investigate how to design and build an actor-based data plat-

form with high-throughput, low-latency, and reactive spatial data management

functionalities. Our solution supports the development of application tiers for

large-scale reactive moving object data intensive applications. Our platform al-

leviates the burden on application developers by allowing them to concentrate

on their application logic instead of being distracted by complex spatial data

management tasks. In line with the terminology in (Bernstein, 2018), we call

such a platform a Moving Actor-Oriented Database (M-AODB).

There are several major challenges to achieve this goal. First, it is necessary

to provide a proper abstraction for representing reactive moving objects. In

this sense, the classic actor model needs to be enriched with features required

by reactive moving object applications, including geo-referenced attributes,

spatial indexing and querying, spatial-driven reactive behaviors, etc. Second,

in the actor model, actors update and query data in a concurrent and asyn-

chronous manner. In our context, concurrency semantics have to be defined,

not only to provide proper data consistency guarantees to developers, but

also to achieve trade-offs between data latency and consistency. Third, these

additional features need to be offered in a manner that preserves the benefits
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of scalability and low latency that actor runtimes exhibit for conventional,

non-spatial applications. A fourth major challenge is the coherent design

and implementation of a M-AODB that facilitates distributed deployment of

reactive moving object applications in the cloud.

Our research addresses these challenges through Dolphin, a concrete imple-

mentation of an M-AODB. To the best of our knowledge, Dolphin is the first

in-memory spatial data platform that can be deployed on the cloud in a dis-

tributed fashion and supports scalable and reactive spatial data management

for reactive moving object applications.

The major contributions of this part of this chapter thus include the follow-

ing:

• In Section 3.2, we propose a Moving Actor abstraction, which brings to-

gether the actor model with reactive spatial data management. Moving

Actors provide a natural and easy-to-understand approach for developers

to construct scalable applications and manage reactive spatial data at the

application tier. Moreover, we propose a novel architecture named Moving
Actor-Oriented Databases (M-AODBs) that supports the proposed moving

actor model. In this context, a M-AODB is a reactive, stateful, and scalable

distributed actor-oriented data platform, which supports managing spatial

data updates, conducting spatial queries, and processing reactive actions of

moving actors.

• In Section 3.3, based on the analysis of reactive moving object application

use scenarios, we define and implement two concurrency semantics for

the spatial data of reactive moving actors, namely Actor-Based Freshness
semantics and Actor-Based Snapshot semantics. They are essential to pro-

vide concurrency semantics for developers to reason about correctness and

performance, as well as to achieve trade-offs between data latency and

consistency.

• In Section 3.4, we present Dolphin – our implementation of the conceptual

proposal of M-AODBs. We adopt a non-intrusive approach and implement

Dolphin as a software library on top of the virtual actor framework Microsoft

Orleans (Bernstein et al., 2014). The latter allows Dolphin to leverage

advantages of Orleans as a substrate – such as being cloud-ready, based on

a popular object-oriented programming language (C#), and battle-tested

on production services – as well as to be compatible with other projects in
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the Orleans ecosystem. In addition to Dolphin be scaled over multiple cores

in a single machine, it runs over multiple machines in the cloud. In Dolphin,

the functionalities of reactive spatial data management were implemented

using actors over space partitions to achieve scalability. We present how

these actors interact asynchronously to perform data management under

Freshness and Snapshot concurrency semantics.

• In Section 3.5, we conduct experimental evaluations on synthetic and realis-

tic datasets to showcase the capabilities of our design and implementation

of M-AODBs. Our results show that Dolphin supports low-latency reactions,

frequent data updates and queries, and scales over multiple machines in a

distributed setting.

Related work is discussed in Section 3.6, and we conclude this part of disserta-

tion in Section 3.7.

3.2 Towards Moving Actor-Oriented
Databases

3.2.1 Design Objectives
Our goal is to develop a data platform for application tier development for the

aforementioned novel reactive moving object applications. We summarize the

high-level design objectives as follows:

O1. Support Non-reactive Spatial Data Management. Conventional spatial

data management functionalities such as data updates, spatial indices and

queries, and maintenance of spatial static integrity constraints are necessary

to build these applications.

O2. Support Spatial Reactive Behavior. Reactive objects must be able to

sense their surroundings or other areas of space to perform reactive actions.

This requires efficient processing of reactive actions of every object triggered

by its surrounding peer objects in the environment.

O3. Support Concurrent Heterogeneous Moving Objects. To achieve low

latency, the updates and reactive operations of moving objects should be exe-

cuted concurrently. The data platform should provide a concurrent program-

ming abstraction. Moreover, different moving objects could have customized
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and heterogeneous behaviors. So the abstraction should allow modeling

objects by their types and behaviors.

O4. Provide Scalability and Elasticity. The platform should scale to arbi-

trary numbers of objects while supporting the processing of complex space-

dependent application logic. Additionally, a reactive moving object is a digital

twin of a real-world entity. Its lifecycle should be the same as that of the

corresponding real world entity as it enters and/or leaves the system. Since

load may vary dynamically depending on the relative positions of moving

objects, the system should have the possibility to manage underlying resources

elastically.

3.2.2 The Moving Actor Abstraction
To achieve the above objectives, we start by looking at the programming

abstraction of our data platform. Among the programming abstractions of

reactive applications, the actor model represents a distinctive choice (Hewitt,

2010; Karmani and Agha, 2011; Gupta, 2012). In particular, the virtual actor
abstraction introduced by Bykov et al. (2011), considers actors as modular

and stateful virtual entities in perpetual existence, which facilitates a one-to-

one mapping to moving objects in our context. Since virtual actors always

exist, they do not require management of actor lifecycle and failures, which

enhances developer productivity. Virtual actors are a natural fit to meet the

scalability, availability, and elasticity challenges of emerging reactive moving

object workloads, since they can be automatically and dynamically activated

or deactivated and replicated to handle demand while balancing load across

servers (Bernstein, 2018; Bernstein et al., 2014). Moreover, the concerns of

fault tolerance and elasticity are managed by the runtime, which makes virtual

actors a very intuitive and developer friendly programming abstraction. The

widespread deployment of the virtual actor runtime Microsoft Orleans in a

variety of highly available and scalable low-latency production cloud services

highlights the popularity of the programming model as well as the performance

and maturity of the system (Bernstein et al., 2014).

Therefore, we consider virtual actors to be a promising abstraction for man-

aging reactive moving object data, as demonstrated by its successful and

wide deployment in reactive applications. However, the actor model does not

provide features that we require: (a) support for geo-referenced attributes

and defining spatial and reactive functionalities in addition to user-defined
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methods; and (b) reacting to actions from other objects in space or information

from environment, e.g., updating its state or building connections with other

moving objects. To fill this gap, we propose the novel abstraction of moving
actors, which integrates the actor programming model with reactive moving

object features.

Moving Actor Formalization

An actor is a computational entity that keeps its private state and can only

modify other actors’ states by communicating via immutable asynchronous

messages (Agha, 1990). To extend the actor model with the two required

features above, we formalize a moving actor as follows:

Definition 1. A Moving Actor a (id, P, M) is an actor comprising of the fol-

lowing characteristics:

1. A unique identity id to identify the moving actor a;

2. Properties P of a containing spatial information, namely: (a) the current

known location l of this moving actor, where l = (x, y) ∈ R2,1 and (b) a

fence f around location l representing a polygon to define its spatial sensing

boundaries.

3. Methods M including:

• Move(ld): Updates the location property of a from its current location l to a

next location ld. The movement of a generates a corresponding new fence

f that moves along with it. Besides, a’s movement may trigger reactive

functions in other moving actors upon satisfaction of the spatial predicates

associated to their fences (see below).

• FindActors(q): Given a spatial query q, returns the actors that satisfy q.

As a proof of concept, we focus on spatial range query. Here, q contains

a spatial range r, where r is a regular quadrilateral, s.t. r= { (xmin, ymin),
(xmax, ymax) } ∈ R2. This method can be extended with other types of spatial

queries, such as KNN.

• StartReactiveSensing(p, m): Enables the sensing behavior of the moving

actor. a calls StartReactiveSensing(p, m) to start sensing the environment

using a spatial predicate p, e.g., cross, cover, overlap (Clementini and Di

1R2 refers here to a two-dimensional real-valued space under a projected geospatial coordi-
nate system, while x, y are respectively latitude and longitude.
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Felice, 1995), which tests whether any moving actor’s itinerary crosses, is

covered by, overlaps the f of a respectively. If the movement of another

moving actor satisfies p with respect to a’s fence f , an application-defined

reactive method m in a is invoked; m encodes the reactive behaviors of a.

• EndReactiveSensing(): Disables the environment sensing behavior of the

moving actor.

Moving Actors in the C-ITS Example

In C-ITS, each vehicle i can be modeled as a moving actor ai. Accordingly,

properties ai.P contain the current known location of the vehicle and its fence

to enable it to sense and react to the movement of other nearby vehicles. ai.P

can be further augmented with application-specific properties, such as the

vehicle’s weight or class.

As vehicle i moves in the physical world, ai.Move(ld) is called to update its

location and fence. This movement may trigger reactive functions of other

moving actors. Moreover, while i moves, it may have a series of complex

behaviors, depending on the spatial events on its path. Consider the scenario

where the vehicle finds a hazard (e.g., aquaplaning) as it goes along a road.

Not only does it want to warn approaching vehicles, but also those that it

will encounter later along its trajectory. This will require not only reactive

behavior in the present moment (when it finds the hazard), but also in the

future over a period of time. This can be achieved by taking advantage of the

reactive sensing feature with reactive methods encoding the desired reactive

behavior.

If the reactive behavior of i is to warn vehicles in the hazard’s proximity, ai

can invoke FindActors(r) to find out which other vehicles are already in a

spatial range r around it and directly send a message to the corresponding

moving actors about the hazard – a single reaction to its present spatial context.

ai.StartReactiveSensing(p,m), on the other hand, can be used for subsequent

future (and continuous) behavior. Here, p is a cross spatial predicate to

identify other vehicles cross i’s path as it continues moving forward. Whenever

this happens, m will notify the corresponding digital twin about the hazard.

Finally, when i is too far from the hazard for the warning to be effective,

ai.EndReactiveSensing() can be invoked.
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Figure 3.2: High-level Architecture of an M-AODB

Moving Actors vs. Moving Objects

It is noteworthy to point out the differences between the concepts of moving

actor and moving objects as in spatiotemporal databases. Moving objects can

be seen as data (Brinkhoff, 2002), over which operations are conceptually

updates or queries from front-ends to back-ends on database representations

of the moving objects. By contrast, moving actors compose data, operations,

and reactive behaviors. They are not only used for moving object data registra-

tion and retrieval, but also to encode independently running digital twins of

moving objects. As a key aspect, reactive moving objects modeled as moving

actors interact with their surrounding objects and execute reactive functions

themselves. For instance, in C-ITS, every individual vehicle can be modeled as

a moving actor, which maintains its current location and can send queries to

get information on other moving actors. Also, as exemplified in Section 3.2.2,

moving actors can take reactive actions based on other moving actors’ behav-

iors.

3.2.3 Architecture of an M-AODB

To achieve our design objectives, we build upon the concept of Actor-Oriented

Databases (AODBs) (Bernstein, 2018), and propose Moving Actor-Oriented
Database (M-AODB), a data platform for stateful, scalable, elastic, and dis-

tributed reactive moving object data management. Figure 3.2 depicts the

conceptual architecture of an M-AODB, highlighting its key components, which

we describe below.
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AODB

To leverage all the advantages of an AODB, an M-AODB utilizes an AODB as

a building block, and enriches the virtual actor abstraction to realize moving

actors. We present one possible concrete realization of this integration in

Section 3.4.2, wherein the M-AODB’s functionality is built into the virtual

actors of AODBs.

Moving Actors

Reactive moving object applications interact with M-AODBs by leveraging the

abstraction of moving actors (Definition 1, Section 3.2.2). Application-defined

actors extend moving actors in our abstraction, enabling them to process moves,

spatial range queries, and reactive function invocations, termed henceforth

reactions. For brevity, the data transfer stage from physical entities to their

application-defined digital twins is not included in our architecture and further

discussion.

Actor-Based Spatiotemporal Concurrency Control

Moves, spatial range queries, and reactions in M-AODBs are invoked concur-

rently by distinct distributed moving actors. Since the logic in each actor is con-

ceptually isolated, actor-based spatiotemporal concurrency control semantics

is needed to clearly specify the visibility of movement of other moving actors

within each moving actor operation. Building on the moving objects literature,

we develop two such actor-based semantics, described in Section 3.3.

Reactive Event Monitoring

A move operation by a moving actor may dynamically generate reactions on

other moving actors that are currently observing the spatial region where

the movement took place. In M-AODBs, this is achieved by reactive event

generation and matching. Section 3.4.3 gives an overview of the mechanism

used in our implementation.

Spatial Partitioning and Indexing

The spatial data systems literature has shown repeatedly that spatial awareness

is a pre-requisite for achieving scalability behavior over spatial workloads (El-

dawy and Mokbel, 2015). In M-AODBs, spatial partitioning can be leveraged
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to drive inter- and intra-machine parallelism in move and reaction processing

as well as – combined with spatial indexing – to support spatial range queries

(as we verify for our implementation in Section 3.5).

Using the components described above, M-AODBs inherit the benefits of AODBs

and extend it with support for spatial data management and reactivity.

3.3 Actor-Based Spatiotemporal
Concurrency Semantics of M-AODBs

In an M-AODB, moves, queries, and reactions take place concurrently in

distinct distributed moving actors. Even though moving actors can be seen as

isolated processes, their operations affect each other due to data dependencies.

Therefore, a semantics needs to be defined to guarantee the correct result of

concurrent operations on moving actors. M-AODBs need to decide at which

identified points of time to make actor updates visible. Based on the analysis

of reactive moving object application use scenarios, we specify and implement

two concurrency semantics, Actor-Based Freshness semantics and Actor-Based
Snapshot semantics, which are offered by M-AODBs and recommended on

application level.

3.3.1 Actor-Based Freshness Semantics

The Freshness semantics, originally proposed by Šidlauskas et al. (2012),

always provides fresh results of moving objects. Due to the asynchronous

messaging in M-AODBs, we adapt it to provide “fresh" (i.e., with a recency

guarantee) results of moving actors. More precisely, we define the Actor-Based

Freshness semantics as:

Definition 2 (Adapted from (Šidlauskas et al., 2012)). For a range query

FindActors(r) concurrently executed with movement Move(ld), assume the

processing of the query lasts from ts to te, the movement update completion

time of a moving actor a in an M-AODB is tu, and a moves from ls to ld. Assume

further for any a that it can only be updated at most once during [ts, te].2 The

2This assumption is made in (Šidlauskas et al., 2012) to avoid keeping a history of move
locations similarly to MVCC.
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Figure 3.3: Actor-Based Freshness semantics for StartReactiveSensing

result A of FindActors(r) satisfies the Actor-Based Freshness semantics if, for

any moving actor a, the following holds:

• if a.tu < ts then a ∈ A if and only if a.ld ∈ r.

• if ts < a.tu < te then:

– if a.ls ∈ r and a.ld ∈ r, then a ∈ A.

– if a.ls /∈ r and a.ld /∈ r, then a /∈ A.

– if a.ls ∈ r and a.ld /∈ r, then a may or may not belong to A.

– if a.ls /∈ r and a.ld ∈ r, then a may or may not belong to A.

Query results under Actor-Based Freshness semantics are dependent on the

query processing time. That is because when queries are being processed,

updates are also carried out concurrently, so the query results might or might

not contain such concurrent updates depending on when the data are accessed

by the query executor. Assume the processing of a query starts at ts and ends

at te. With the Actor-Based Freshness semantics, query results would reflect

all updates of moving actors that have been completed before ts, and some of

the fresher updates of moving actors that are completed between ts and te.

While there is no prior semantics defined for reactive actions in reactive object

data management systems, we extended Actor-Based Freshness semantics to

reactive behavior in M-AODBs. Figure 3.3 presents the situation that moving

actors a0 and a are in a two-dimensional space R2, where a0 is defined with a

continuously updated fence f under spatial predicate p and a reactive method

m. After a0 issues StartReactiveSensing(p, m), if any other moving actors

satisfy spatial predicate p against its fence, method m of a0 will be triggered.
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For example, p can be set to detect if any moving actor a’s movement cross

a0’s fence. If true, method m is triggered to build a connection with a and

to share the information a0 has obtained. We provide a formal definition

for StartReactiveSensing(p, m) under Actor-Based Freshness semantics as

follows.

Definition 3. Given a0.StartReactiveSensing(p, m) is invoked, assume the

latest move of a0 is at a0.tu from a0.ls to a0.ld. The sensing fences of a0 before

and after this move are a0.fs and a0.fd, respectively. Assume further that

for any moving actor a, a move is at a.tu and the itinerary of this move is

a.iti={a.ls, a.ld}. Analogously to Definition 2, we assume for any such a0, it

can only be updated at most once during the time needed to process a move

of a to eliminate checking predicate over multiple fences.3 A reactive action

satisfies Actor-Based Freshness semantics if the following holds:

• When a0.tu<=a.tu, the reactive method m in a0 is triggered if a.iti satisfies

spatial predicate p against a0.fd,

• When a0.tu>a.tu,

– the reactive method m in a0 is triggered if a.iti satisfies spatial predicate

p against a0.fs and a0.fd.

– the reactive method m in a0 will not be triggered if a.iti does not satisfy

spatial predicate p against neither a0.fs nor a0.fd.

– the reactive method m in a0 may or may not be triggered if a.iti satisfies

spatial predicate p against only a0.fs or a0.fd.

3.3.2 Actor-Based Snapshot Semantics
As mentioned earlier, an M-AODB is an asynchronous distributed system. In or-

der to satisfy applications with operations on a global state of an asynchronous

distributed system, we define a Actor-Based Snapshot semantics in M-AODBs.

Under this semantics, a global snapshot of the system at an approximate point

in time is given. In contrast to the Actor-Based Freshness semantics, where the

3The given assumption is not guaranteed in realistic reactive moving object applications
setting, but it is true for most real cases. In the C-ITS example, given a fast speed of moving
object is 80 km/h and a required high accuracy of 5 meters, move time is around 225
milliseconds, which is longer than the processing time of move in an in-memory setting.
Relaxing this assumption is an extension that we leave to future work.
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length of a query affects the time difference between locations returned, the

results of operations depend only on the snapshot, thus making the processing

time of operations irrelevant. The snapshot of the distributed application is

updated periodically.

We utilize loosely synchronized clocks to facilitate checkpoint coordination in

M-AODBs. In single data center cloud distributed nodes, loosely synchronized

clocks differ at most by an acceptable skew (Adya et al., 1995), which can be

enforced by the Network Time Protocol (Mills, 1992). We argue that this is

acceptable for reactive moving object applications, since minor differences in

real time cannot be effectively observed in physical reality.

In M-AODBs, moving actors store update information locally. The loosely

synchronized clock in each moving actor triggers its local action of exposing

local state at approximately the same time to build a global snapshot in the

distributed system (Adya et al., 1995; Du et al., 2013). Actor-Based Snapshot

semantics, outlined in Figure 3.4, is defined as follows:

Definition 4. Assume the time of starting and completing the construction

of a snapshot Sn is denoted by Sn.ti and Sn.tj, respectively. Sn should start

being constructed after the construction of the last snapshot Sn−1 is finished,

where Sn−1.tj ≤ Sn.ti. Sn completely replaces Sn−1 at the time Sn.tj. For any

moving actor a, assume a moves to ld at time tu. The snapshot Sn satisfies the

following:

• a.ld /∈ Sn if a.tu ≥ Sn.ti.

• a.ld ∈ Sn if a.tu < Sn.ti.

Given a range query FindActors(r) starts at time ts, the result of FindActors(r)
satisfies the Actor-Based Snapshot semantics if the following holds:

• if ts ≤ Sn.ti, FindActors(r) is executed over Sn−1.

• if Sn.ti < ts ≤ Sn.tj, FindActors(r) is executed over either Sn−1 or Sn.

• if Sn.tj < ts, FindActors(r) is executed over Sn.

In addition to formalizing the Actor-Based Snapshot semantics as above, we

also extend it to reactive actions in M-AODBs. Figure 3.5 illustrates two moving

actors a0 and a in a two-dimensional space R2, where a0 is doing reactive

sensing with fence f , spatial predicate p and reactive function m. An M-AODB
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Figure 3.4: Actor-Based Snapshot semantics: Queries read from active snapshot as of
their start time. Updates are guaranteed to be reflected if they precede
the start of the construction of the next snapshot.

periodically updates snapshots and a snapshot Sn starts being generated at

Sn.ti. The accumulated spatial fence of a0 is a minimum convex polygon

covering all the fences of all the locations of a0 between Sn−1.ti and Sn.ti. In

other words, it is the convex hull of the union of all the fences associated

with the locations in the itinerary of a0, denoted as a0.AccumulatedFenceSn . A

moving actor a’s accumulated itinerary since the last snapshot start is a.itiSn=

{a.lSn
1 , ..., a.lSn

d−1, a.lSn
d }. The location a.lSn

d is the latest update location before

snapshot Sn updates begin; it is also the first location for next snapshot

Sn+1, shown as a.l
Sn+1
1 . The spatial predicate p of a0 is satisfied when a.itiSn

meets p against a0.AccumulatedFenceSn. That is, we check in this example

whether a.itiSn crosses the a0.AccumulatedFenceSn. In summary, the result

of StartReactiveSensing(p, m) satisfies Actor-Based Snapshot semantics if the

following holds:

a0.fkSn

a.ldSn {a.l1Sn+1}
a0.Accumulated
FenceSn

a0.fk-2Sn

   a.itiSn     a.itiSn+1

Sn.ti     

a.ld-1Sn
lng

lat

t

a.l2Sn+1 a0.fkSn {a0.fk-1Sn}

a0.fk-1Sn

Figure 3.5: Actor-Based Snapshot semantics for StartReactiveSensing

Definition 5. The reactive method m in a0 is triggered once at snapshot Sn if

and only if a.itinSn satisfies spatial predicate p against a0.AccumulatedFenceSn .

Actor-Based Freshness semantics vs. Actor-Based Snapshot semantics

Actor-Based Freshness semantics provides the most recent updates in M-AODBs.

However, under Actor-Based Freshness semantics, query processing time affects
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the amount of uncertainty in terms of location update time in the results. In

general, the longer the query processing time, the more uncertain it becomes

when the location updates in the results are carried out wrt. each other. Actor-

Based Snapshot semantics is needed when sufficiently close to point-in-time

results are needed. Actor-Based Snapshot semantics provides an image of the

moving objects’ locations where different locations can be contrasted with each

other as they are from roughly the same time. However, these self-consistent

results are achieved by staling updates. The results from Actor-Based Snapshot

semantics could be stale and the construction of the snapshot is expensive, but

the generated results are not affected by the query processing time. Therefore,

for complex queries that take a long time to process, or queries that can tolerate

data staleness but not data inconsistency, snapshot semantics is recommended.

For instance, the calculation of object density would likely prefer stale results

over a point-in-time snapshot, rather than fresh results over inconsistent

location data. Actor-Based Snapshot semantics is also adequate for inter-object

distance queries asking for the distance between pairs of objects at a point in

time, because returning results with object locations at different time points

would result in incorrect distances. In short, the type of semantics should

be chosen based on the specific application scenarios, depending on whether

the relaxed Actor-Based Freshness semantics is acceptable for the queries and

reactions in the application.

3.4 Dolphin: Design and Implementation

Dolphin is our prototype implementation of an M-AODB that supports the

moving actor abstraction. We design and implement Dolphin as a library to

extend Microsoft Orleans (Orleans Microsoft - Microsoft Orleans Documentation
2021), which is a virtual actor programming framework for building robust,

distributed systems in the cloud. Orleans provides the high-level programming

abstraction of virtual actors while handling the complex responsibilities of

actor lifecycle and cluster management. The design of Dolphin maintains

all the benefits of Orleans while enabling the programming abstraction of

moving actors. Even though we built Dolphin using Orleans, the programming

abstraction of moving actors is not tightly coupled to Orleans and can be im-

plemented using any other system infrastructure. We chose Orleans because of

the maturity of the system and the convenience of the high-level programming

model, which makes it a natural starting point for the design of an M-AODB.
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3.4.1 Moving Actor API in Dolphin
The actor-oriented database vision (Bernstein, 2018) advocates pluggability

of various database features, e.g., transactions, indexing, or streaming, to

allow the application to choose and use the required features. Since C# does

not support multiple inheritance using classes, we support pluggability of the

moving actor abstraction by exposing it conceptually as a mixin using C#

interface. An application can define a moving actor by instantiating the

moving actor mixin as a property in the virtual actor thus allowing it to freely

compose or inherit any class that it needs to.

IMovingActorMixin (cf. Listing 3.1a) declares the core moving actor oper-

ations described in Section 3.2.2. MovingActorMixin (cf. Listing 3.1b) is a

class that implements IMovingActorMixin and provides default implementa-

tions for all operations in the IMovingActorMixin interface.4 These default

implementations cover the design and workflows described in Sections 3.4.2

and 3.4.3.

1 public interface IMovingActorMixin {
2 Task Move(Point ld);
3 Task <List <ActorInfo >> FindActors ( Envelope q);
4 Task StartReactiveSensing ( Predicates p, Func < ReactionInfo ,

Task > foo);
5 Task StopReactiveSensing ();
6 }

1 public class MovingActorMixin : IMovingActorMixin {
2 async Task IMovingActorMixin .Move( Point ld){...}
3 async Task <List <ActorInfo >> IMovingActorMixin . FindActors (

Envelope q){...}
4 async Task IMovingActorMixin . StartReactiveSensing (

Predicates p, Func < ReactionInfo ,Task > foo){...}
5 async Task IMovingActorMixin . StopReactiveSensing () {...}
6 }

Listing 3.1: (a) top: moving actor interface in Dolphin. (b) bottom: default

implementations of interface.

Listing 3.2 shows in a simplified manner how a C-ITS example is implemented

in Dolphin. An cooperative intelligent vehicle is a moving actor, but also

includes additional capabilities, such as sending warnings to other vehicles

4We could alternatively employ default interface methods in C#, albeit at the cost of forcing
users of Dolphin to commit to C# 8.0 or later.
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who are approaching it when a hazard happens. IVehicle (cf. Listing 3.2a)

is an application-defined interface for such cooperative intelligent vehicles.

IVehicle extends IMovingActorMixin and further defines native functionality of

vehicle moving actors. Vehicle (cf. Listing 3.2b) derives from the framework

class Grain and implements IVehicle. Note that it also reuses the default

implementations provided by MovingActorMixin. The methods ReactToHazard
or ReactToFireTruck, for example, can be supplied as the application-defined

reactive method m in a call to StartReactiveSensing as per Definition 1.

The attribute [SpatialPreferPlacementStrategy] is our spatial-preference grain

placement strategy, which enables spatial partitioning across Orleans silos (cf.

Subsection 3.5.2).

1 public interface IVehicle : IGrainWithGuidKey ,
IMovingActorMixin {

2 // application - defined functionality
3 Task UpdateHazardInfo ( HazardInfo hinfo);
4 ...
5 }

1 [ SpatialPreferPlacementStrategy ]
2 public class Vehicle : Grain , IVehicle {
3 IMovingActorMixin movingActor = new MovingActorMixin ();
4 HazardInfo hazardInfo ;
5 async Task IMovingActorMixin .Move( Point ld) {
6 await movingActor .Move(ld);
7 }
8 async Task <List <ActorInfo >> IMovingActorMixin . FindActors (

Envelope q) {
9 return await movingActor . FindActors (q);

10 }
11 async Task IMovingActorMixin . StartReactiveSensing (

Predicates p, Func < ReactionInfo ,Task > reactiveFunc ) {
12 await movingActor . StartReactiveSensing (p, reactiveFunc );
13 }
14 Task IMovingActorMixin . StopReactiveSensing () {
15 return movingActor . StopReactiveSensing ();
16 }
17 async Task ReactToHazard ( ReactionInfo rinfo) {
18 // coordinate with other actor that satisfied predicate
19 // over this moving actor ’s fence
20 IVehicle other = GrainFactory .GetGrain <IVehicle >( rinfo.

Id);
21 await other. CoordinateHazard ( hazardInfo );
22 }
23 async Task ReactToFireTruck ( ReactionInfo rinfo) {...}
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24 Task IVehicle . UpdateHazardInfo ( HazardInfo hinfo){...}
25 ...
26 }

Listing 3.2: Application-defined cooperative intelligent vehicle(a) top: interface. (b)

bottom: actor implementation.

3.4.2 Dolphin’s Actor-Based Design

To build Dolphin, we implemented the components of an M-AODB outlined in

Section 3.2.3, namely spatiotemporal concurrency control, spatial indexing,

and reactive event monitoring using the Orleans virtual actor programming

model. Dolphin is a partitioned system where grid partitioning is employed to

logically divide the space into cells. Currently, only uniform grid partitioning

is supported in the system where developers can define the size of the cell.

However, various spatial partitioning methods, such as learned index struc-

tures (Kraska et al., 2018; Nathan et al., 2020), can be employed to better deal

with data with skewed spatial distribution. In the current work, we focus on

the design and implementation of the overall system and defer the exploration

of spatial partitioning functions to future work.

Virtual actors (referred to as grains in Orleans5) encapsulate data while pro-

viding the abstraction of a lightweight thread that executes methods invoked

on it sequentially. Thus, concurrent method invocations on the same actor

are processed sequentially while concurrent method executions on different

actors happen in parallel. Method invocation on virtual actors is exposed

through asynchronous function calls (Promises in C#), which allows the caller

to invoke multiple function calls over multiple actors in parallel.

Figure 3.6 illustrates the mapping of a representative C-ITS application to

various components (actors) in Dolphin’s architecture. L0 represents a real-

world C-ITS application, where the circles around the vehicle icons represent

the sensing fences of physical moving objects. A developer models the digital

representation of the physical moving objects using moving actors shown as

a green circle in L1. The fence of a moving actor is shown as green dashed

circles in L1. Space is logically partitioned into uniform grid cells.

5In the rest of the chapter, we use the terms virtual actor, actor, and grain interchangeably
unless stated otherwise.
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Figure 3.6: Dolphin Design: An Example
for C-ITS

L2 shows the functional system com-

ponents in Dolphin that have been

modeled as actors. Each cell con-

sists of an Indexing Actor (red circles),

Monitoring Actor (blue circles), and

Snapshot Update Actor (light yellow

circles). The Snapshot Controller Ac-
tor (a deep yellow circle in L2) is not

present per cell (placed outside the

grid) because it is a single actor for

the entire application. The roles of

these actors have been outlined be-

low.

Indexing Actor. It is responsible for

indexing locations of moving actors

in the cell. We currently implement

R-trees for indexing the location of moving objects in the system.

Monitoring Actor. It is responsible for helping moving actors continuously

monitor on their fences against predefined predicates and generate reactions.

A monitoring actor acts as an endpoint for communication between moving

actors so it receives updates from moving actors in its cell and then relays

those updates to all the moving actors who have subscribed to it using the

Orleans Streams API.

Snapshot Update Actor. It is only used to support Snapshot semantics. It is

responsible for collecting buffered location updates of moving actors in the

cell, dispensing received data to related monitoring actors, and distributing

them to other snapshot update actors (if necessary), then finally applying

the updates by dispatching them to the indexing actor. Since moving actors

may move arbitrarily during a snapshot update interval, the data received by

a snapshot update actor may contain location data belonging to other cells,

which it needs to relay to the appropriate snapshot update actors.

Snapshot Controller Actor. It is only used to support Snapshot semantics. It

is responsible for aiding snapshot update actors determine when updates for

a snapshot should be reflected on indexes. This coordination is necessary to

ensure all the updates for a snapshot have been received from other snapshot

update actors before an index is updated in case actors move across cells. It is
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also necessary in the case where there are no crossings between cells by actors

to ensure snapshots across cells do not diverge and are consistent.

We elaborate upon the workflows for processing the operations exposed by

the moving actor abstraction utilizing the aforementioned actors in the next

section of this chapter.

3.4.3 Query and Move Workflows in Dolphin
In this section, we present the workflow of FindActors(r) and Move(ld) meth-

ods of the moving actor abstraction spanning the functional components

(actors) in the system under the Actor-Based Freshness and Snapshot seman-

tics.

Query Workflow under Actor-Based Freshness and Snapshot Semantics

Moving Actors a

Indexing
Actors ia

Messaging

Figure 3.7: Query Workflow

Figure 3.7 shows the query workflow in Dolphin

under both Actor-Based Freshness and Snapshot

semantics. When a moving actor a receives a

FindActors(r) request, it first determines the

cells that are spanned by the requested query

range r. Then a asynchronously messages each

of the indexing actors ia of those cells to exe-

cute an index lookup for the range overlapped

by that cell and the requested query range. The

communication between the moving actor and the indexing actors is done

asynchronously so that the index look-ups are performed in parallel by the

indexing actors. Note that in snapshot semantics, every index maintains a

monotonically increasing version number that is updated when the index is

updated at the end of the snapshot to ensure that a query reads data from

indices with the same version number. If the version numbers read from the

indexing actors are not the same, then the query result is discarded and the

query is retried.

Move Workflow under Actor-Based Freshness Semantics

Figure 3.8 (a) shows the move workflow in Dolphin under Actor-Based Fresh-

ness semantics. Since reactions are generated during move, they are explained

under the move workflow over the next steps:
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Figure 3.8: Move and Reaction Workflow in Dolphin

Step 1. When a moving actor a receives a Move(ld) request, it gets the itinerary

(a.iti = {ls, ld} in Definition 2) and finds the cells spanned by a.iti. Then a

sends the information of this update to the indexing actors in the cells (one in

case of a local move, two in case the actor crosses cells) using asynchronous

messages. In the meantime, a also updates its state that consists of the loca-

tion (from ls to ld), fence (from fs to fd), and subscription to the necessary

monitoring actors using the Orleans Stream API so that it can receive up-

dates of other moving actors in cells within range of its fence for generating

reactions. Note that only moving actors that have enabled sensing using

StartReactiveSensing(p,m) subscribe to the stream.

Step 2. Moving actor a sends the update information to the monitoring actors

spanned by a.iti so that necessary reactions can be generated on the moving

actors that have sensing enabled.

Step 3. When a monitoring actor ma receives updates from moving actors, it

publishes the updates on its stream channel6 that is consumed by the moving

actors. Recall from Definition 3, only a moving actor (e.g., a0) that has enabled

6Every cell has a single stream channel with the monitoring actor being the sole publisher
and moving actors with sensing enabled being the subscribers.
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sensing by invoking StartReactiveSensing(p,m) receives location updates

from the monitoring actors on the subscribed stream channel, then checks if

the received a.iti satisfies its spatial predicate p against latest fence f (either fs

or fd, depending on the relation between a.tu and a0.tu shown in Definition 3).

If the spatial predicate is satisfied, then the registered method m is executed

to perform the reactive action.

Move Workflow under Actor-Based Snapshot Semantics

Figure 3.8 (b) shows the move workflow in Dolphin under Actor-Based Snap-

shot semantics. Since reactions are also generated during move, they are

explained under the move workflow over the next steps:

Step 1. When a moving actor a receives a Move(ld) request, it updates its

state that consists of its location and fence, and buffers the updated state

locally. Aligned with Definition 5, this process creates a.itinSn for any moving

actor and a0.AccumulatedFenceSn for moving actors who have started sensing.

When the timer in the moving actor7 expires at Sn.ti mentioned in Definition

4, a finds the cell that the first buffered location refers to, and sends the entire

buffered itinerary a.itinSn to the snapshot update actor sua of this cell. Later

data exchanges for snapshot consistency and reaction correctness are carried

out between snapshot update actors.

Step 2.1. Every snapshot update actor sua tracks the moving actors that are

present in its cell, which is updated at the end of every snapshot. When a

snapshot update actor sua receives the buffered location data from all the

moving actors that were present in its cell in the last snapshot, it sends the

buffered itineraries to monitoring actors ma in the cells that spanned those

itineraries.

Step 2.2. When a monitoring actor ma receives the buffered itineraries, it

distributes them to the sensing moving actors using the mechanism (Step 3)

outlined in the move workflow under Actor-Based Freshness semantics. To

fulfill Definition 5, when a sensing moving actor a0 receives itineraries a.itinSn ,

it checks them using its predicate p against a0.AccumulatedFenceSn.

Step 3.1. The following steps help switch from a snapshot Sn−1 to snapshot

Sn (see Definition 4). When a snapshot update actor sua receives the buffered

7Every moving actor uses a timer configured to the snapshot interval time that fires periodi-
cally to signal the start of a snapshot.
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data from all the moving actors in its cell in the previous snapshot, it sends a

message to the snapshot controller actor sca informing the snapshot update

actors they would be sending their buffered location updates to. Recall that

there is a single snapshot controller actor in the system.

Step 3.2. The snapshot controller sca tracks cells (active) that have moving

actors in it. When the snapshot controller actor sca receives the requests from

sua in all active cells from Step 3.1, it responds by informing them about the

corresponding suas from whom they should receive messages (final location)

from.

Step 3.3. The snapshot update actors sua exchange information between each

other to get the needed update data in this snapshot round.

Step 3.4. After sending all data out and receiving all data from the others,

every sua sends update information to its cell’s indexing actor to update the

indices. After all the indices of all the cells are updated, a new snapshot is

completed.

3.5 Experimental Evaluation

This section presents experimental evaluation to show that Dolphin has met

the requirements for reactive moving object data management in Section 3.2.1.

Our goals in evaluation are the following:

1. Characterize the relationship between moves and reactions, including

aspects such as client-side load and reactive sensing intensity (cf. Sec-

tions 3.5.2, 3.5.2 and 3.5.2);

2. Observe how spatial range queries affect Dolphin and their interaction with

moves and reactions (cf. Section 3.5.2);

3. Evaluate if Dolphin scales out over multiple machines in a distributed

setting (cf. Section 3.5.2);

4. Investigate how the performance of moves and reactions is affected by

spatial skew and realistic spatial distributions (cf. Sections 3.5.2 and 3.5.2).
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3.5.1 Experimental Setup
Cloud Service and Deployment

We deployed several components for the experiments. The first one was

Orleans silo (Orleans Silo - Microsoft Orleans Documentation 2020), where

virtual actors are activated in a server and run all application logic. We set

up our benchmark environment on AWS (Amazon Web Service 2020). We

employed Amazon DynamoDB (Amazon DynamoDB - Fast and flexible NoSQL
database service for any scale 2021) for storing the silo membership table

(Cluster Management in Orleans 2020) and we utilized EC2 (Amazon EC2 -
Secure and resizable compute capacity to support virtually any workload 2020)

for deploying all our instances. Three types of EC2 computing optimized

instances were employed. One c5.xlarge instance for controlling and syn-

chronizing benchmark client threads; and one c5.4xlarge instance to simulate

moving object client threads. Eight c5.xlarge instances are used as silos to

run distributed experiments; and one c5.9xlarge instance to run single-silo

experiments. All instances run on Windows Server 2019 Base and Orleans

3.1.2. We placed them in one subnet and one cluster deployment group to

reduce network latency (Zou et al., 2011). We built a spatial-preference grain

placement strategy (Grain Placement - Mircosoft Orleans 2020) to reduce the

number of messages across silos (cf. Subsection 3.5.2).

Query, Move, and Reactions

Our experiments start by initializing a set of moving actors. All clients issue a

sequence of requests as soon as possible. Client requests only include queries

and moves to moving actors. We define the following processes in Dolphin:

Query. Queries are range queries using the method FindActors(r). In our

experiment, we fix the query window size for simplicity.

Move. Moves are Move(ld) requests. Moves may trigger a reactive method of

all moving objects that have started reactive sensing accordingly. Client bench-

marks were responsible for interpreting movement models and generating the

necessary move calls.

Reaction. A fraction (0-100%) of moving actors are set to call

StartReactiveSensing(p, m) at initialization so that each triggers reactive

action m when other actors’ move requests satisfy p against its fence. In our
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Figure 3.9: uniform distri-
bution bench-
mark dataset.

Figure 3.10: gaussian
distribution
benchmark
dataset.

Figure 3.11: c-its scenario
benchmark
dataset.

experiments, for all moving actors, we chose cross as a spatial predicate. We

also defined the reactive method as building a connection with the actor who

crosses the fence.

This section analyses performance issues concerning underlying workflows

associated with queries and move. We called them client requests as they are

triggered by clients. Differently, reactions themselves occur when reactive

sensing is on. Related work on moving objects considers two kinds of requests:

queries and move, but without reactions. Our work better reflects the real

world as we include reactive behaviors; as such, our experiments cannot be

directly comparable to experiments performed in related work. On the other

hand, reactions come with a processing cost. Therefore, while in other systems,

the move request does not imply additional processing, moves in Dolphin are

more expensive than in other works due to associated reaction processing.

Benchmark Implementation

We conducted experiments under three benchmarks, namely uniform distribu-

tion benchmark (cf. Figure 3.9), Gaussian distribution benchmark (cf. Figure

3.10) and C-ITS scenario benchmark (cf. Figure 3.11) . In the first two bench-

marks, moving objects can move freely in a 2D space under two distributions –

uniform or Gaussian. In the C-ITS scenario benchmark, objects are constrained

to move along a real-life urban network. We set the configuration of our bench-

marks from (Chen et al., 2008; Sowell et al., 2013), adapting their settings to

our scenario (cf. details at Subsection 3.5.1).

Uniform Distribution Benchmark. In the uniformly distributed dataset, mov-

ing actors are instantiated uniformly at random in positions in a fixed size

square space and move towards random directions with a random speed under

a speed limitation.
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Gaussian Distribution Benchmark. Gaussian distributed dataset models a

skewed spatial workload. In this configuration, moving actors are clustered

around a set of hotspots. Those hotspots are uniformly initialized at random

locations, and moving actors are distributed around each hotspot based on a

Gaussian distribution. Actors move at a speed related to the location of the

hotspot. A moving actor moves faster when it is farther away from hotspots

and takes a slower movement when close to hotspots (Chen et al., 2008; Sowell

et al., 2013).

For both uniformly and Gaussian distributed datasets, if a moving actor moves

across the borders of the square space, it is bounced back to the opposite

direction and moves the same excess distance that should not exceed the

border. If this is not possible, the moving actor remains stationary and expects

a new update.

C-ITS Scenario Benchmark. C-ITS scenario benchmark models constrained

spatial movement with the aim of observing the performance of Dolphin in a

realistic setting. For this benchmark, we used the TIGER/Line data (Bureau,

2020) corresponding to “All roads2019 San Francisco Country". Moving actors

behave as digital twins for vehicles in San Francisco. According to the authors

of (Zhou, 2020), we initialized 38000 vehicles8 and limited the space to the

main part of San Francisco city. Furthermore, vehicles move along the road

network at a fixed speed (22m/s (Wikipedia, 2020)), while following two

rules: (1) A moving actor keeps moving along an edge; and (2) when the

moving actor arrives at the conjunction of edges, it chooses to follow a random

direction along the edges and continues.

Workloads

Table 3.1 presents our workload settings, where parameters are adapted

whenever possible from previous benchmarks (Sowell et al., 2013; Chen et al.,
2008). We deviate from previous settings in the following: we set a maximum

speed of moving actors to be 80km/h, which is the speed limit for urban areas

in many countries (Wikipedia, 2020). We adopted the proportion between

moving object numbers and space sizes from the study in (Sowell et al., 2013).

In contrast to previous studies that focus on notions of virtual time, e.g., ticks

85700 transportation network companies (TNCs) vehicles operate during peak period, and
those trips represent 15% of all intra-San Francisco vehicle trips. For the sake of simplicity,
we estimate 5700/15%=38000, which may be less than real traffic because more commute
trips exist in peak period.
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Table 3.1: Workloads for Benchmarks.

Parameters Benchmarks
Uniform Gaussian C-ITS

Number of Servers 1, 2, 4, 8 8 8

Client Threads per Server
8 (single server) or
4 (multiple servers) 4 4

Number of Moving Actors 5000 per server 40000 38000
Space Size (km2) 100,199.94,400,799.98 799.98 154
Number of Cells 100,196,400,784 784 805

Number of Hotspots / 8,80,400,800,8000,40000 /
Fence Size (m2) 1000× 1000
Query Size (m2) 1000× 1000

Max Speed (km/h) 80
Reactive Sensing Percentage (%) 0,12.5,25,50,100 12.5 12.5

Query Ratio (%) 0,20,40,60,80,100 0 0
Snapshot Interval Time (s) 1 or 4

or timestamps (Chen et al., 2008; Sowell et al., 2013), our study configured

the base number of moving actors for one silo to 5,000. We aimed to match a

workload that could be easily handled by a silo while delivering reasonable

real-time performance.

In line with previous studies, however, the fence and query sizes were chosen

based on a realistic setting, where vehicles are interested in a range of 1km. We

set the default query rate to be 0, which means all client’s requests are move

requests to maximize the reaction influence. There is no guide for reactive

sensing percentage setting in previous studies. We then set and assume it

to be 12.5% based on a reality assumption. We set the number of cells in

the spatial partitioning scheme used (100) as well as the snapshot interval

time (1 sec) based on corresponding tuning experiments. Based on snapshot

interval time tuning experiments, for a single server, the system can achieve

snapshot update within 1 sec. Also, the system provides a reasonable reaction

throughput and 1 sec can satisfy most use cases. The snapshot interval time

for distributed experiments are set to be both 1 sec and 4 secs.

In our setup, c5.xlarge instances were used for the Orleans silo in most ex-

periments except a experiment shows in Section 3.5.2. Every client thread

was configured to send requests as fast as possible to moving objects so that

we can increase update frequency and thus trigger reactions more quickly to

the application. Our focus was on the scalability of updates and reactions,

which stands in contrast to previous studies, where each moving object only

sends updates infrequently. In previous studies, scalability is sought in terms

of the numbers of moving objects (Chen et al., 2008). Based on our workload

tuning experiments results (cf. Figure 3.12), clients only send move requests

because we emphasized exploring reaction behavior. When client threads are
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8, the workload saturates our 4vCPUs server. Meanwhile, moving actors up-

date frequency is around every 0.6 secs and every 0.5 secs under Actor-Based

Freshness and Actor-Based Snapshot semantics, respectively. For distributed

experiments, we choose not to saturate each server to give some resources to

extra overhead. In this sense, we used four client threads for each server.

3.5.2 Experimental Results

This section presents the experimental results. For brevity, we use Fresh and

Snap to express ’Actor-Based Freshness semantics’ and ’Actor-Based Snapshot

semantics’, respectively.

How do reactions behave as Dolphin is faced with increasing move
workloads?

Figure 3.12: Correlation of reaction
and move throughputs
under increasing client-
side workload intensity.

In this experiment, we increased the

client-generated move workload up to

the saturation point of a single server, and

observed the effects on reactions. Figure

3.12 shows that reaction throughput in-

creases along with move throughput for

both Fresh and Snap(1s). This is expected

because more moves increase the chances

to trigger more reactions. However, re-

action generation also increases the re-

source consumption on the server side,

which limits the attainable throughput of

moves. Since Snap(1s) batches reaction generation at the snapshot interval of

1s, its move throughput is more resilient to interference and is 1.52x higher

than Fresh at 16 client threads. We found that 8 client-thread workloads

saturate the system well. With this setting, each moving actor is able to report

a move on average every 0.637 sec and 0.484 sec for Fresh and Snap(1s), re-

spectively, with corresponding move request latencies of 1.02 ms and 0.77 ms

measured at the client side. This shows that our system can handle most cases

in real life.
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Figure 3.13: Inverse relationship
between reaction and
move throughputs under
excessive reactive sensing.

Figure 3.14: Move latency breakdown
and reaction latency for ex-
cessive reactive sensing in
Actor-Based Freshness se-
mantics.

How do reactions behave under a saturated move workload and excessive
reactive sensing?

In this experiment, we fixed the workload generation at the saturation level of 8

client threads, and increased the reactive sensing percentage. Since the system

was already saturated with the default 12.5% reactive sensing percentage, we

aimed at observing if Dolphin’s performance degrades gracefully with excessive

reactive sensing.

Figure 3.13 shows that move throughput goes down as expected, but counter-

intuitively, reaction throughput increases. The reasons for that are: firstly,

with increasing percentage of moving actors doing reactive sensing, more

reactive methods are issued by a single move; moreover, move throughput

going down makes every moving actor update less frequently, which results in

moving actors becoming prone to move a longer distance. Longer distances

also increase the possibility of moves crossing spatial fences. For decreased

move throughput, we believe that since reactions are more expensive, their

processing queues up move requests.

To validate this effect, we break down move latency and compare it with

reaction latency under Fresh (cf. Figure 3.14). We confirm that move latency is

mostly caused by client-server queuing and communication, while server-side

components such as index update together with monitoring communication

plus stream subscription update represent a small fraction of the latency. We

also observe that reactions are more expensive than moves: Reaction latency

at the server side is generally higher than move latency, e.g., 0.526 ms vs.
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0.144 ms at 25% reactive sensing percentage. However, we remark a dilation

of both move and reaction latencies due to overload at higher reactive sensing

percentages. The latter effect reduces the number of moves processed by

the system, which in turn also limits the system’s potential to generate more

reactions. This interplay explains why reaction throughput tends to flatten

above 50% reactive sensing in Figure 3.13. We observed similar results in

Snap.

Can Dolphin leverage additional server capacity to improve reaction and
move throughtputs under a high reactive sensing percentage?

Figure 3.15: Reaction and move
throughputs with more
server vCPUs and 50%
reactive sensing.

We now understand that when system

capacity is insufficient to handle an ex-

cessive reactive sensing situation, the per-

formance of Dolphin degrades. In this ex-

periment, we fix the reactive sensing per-

centage of moving actors to 50%, which

is an excessive reactive sensing situation,

and increase the server capacity.In or-

der to support that, c5.x9large instance

with 36 vCPUs is used for Orleans silo in

this experiment. Meanwhile, workloads

were controlled to saturate server capac-

ity while maintaining latency within an

acceptable varied range. By doing that,

we aimed to understand if increasing additional server capability helps to

handle the excessive reactive sensing situation.

In Figure 3.15, move reaction throughput increased linearly along with the

increase of server capability for both Fresh and Snap(1s). Move throughout

increased 7.44x under Fresh and 7.91x under Snap(1s) when server capacity

increased 8x. Snap(1s)’s throughput is more resilient to interference because it

batches requests. In sum, when the server hits the excessive reactive sensing

percentage situation in which queuing of tasks degrades system performance,

the issue can be solved by allocating sufficient server capacity.
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Figure 3.16: Client request and reaction
throughputs under increas-
ing query ratio.

Figure 3.17: Latency breakdown with in-
creasing query ratio under
Freshness semantics.

How does increasing spatial range query ratio affect Dolphin’s request
and reaction throughputs and latencies?

Except for the new reactive feature, Dolphin provides range query and moves

like other spatial data management systems. We have explored how reactions

and moves affect the system. We now proceed to describe the performance of

Dolphin regarding different kinds of client requests. This scenario is a mix of

“query plus move" in different query ratios in order to understand trade-offs

in workload configuration and overall performance costs. Query ratio is the

percentage of client query requests against all client requests. We varied query

ratio from 0% to 100%, which means varied client requests from composed by

100% move, 0% query to 100% query, 0% move. Meanwhile, 12.5% moving

actors are reactive moving actors in this experiment to understand how query

ratio affects the reaction generation.

Figure 3.16 shows that for both Fresh and Snap(1s), as expected, reaction

throughput decreased with increased query ratio because reactions are gener-

ated by move. Client request throughput also goes down along with increased

query ratio. This effect can be analyzed by the interplay of query and re-

action expenses and a breakdown of the client request latency under Fresh.

Our results in the latency analysis of Figure 3.17 show that a query is about

3.44x-4.10x more expensive than a move in this scenario. However, client

request throughput only degrades by 2.60x. That is explained by reactions

being more relatively expensive in Dolphin. With the decrease of moves, the

influence of reactions decreased. Therefore, with the increase of query ratio,

the degradation in client task throughput is not so dramatic in Dolphin. A

similar result is found in Snap(1s) as well.
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Figure 3.18: Move throughput scalability
with increasing servers and
workloads.

Figure 3.19: Reaction latency and
throughput with increasing
servers and workloads.

Can Dolphin scale out move and reaction throughputs with increasing
servers and workloads?

To test the scalability of Dolphin, we scale the number of servers, datasets,

and workloads (cf. Table 3.1). All client requests are move requests. In

Orleans, the actor runtime decides which server to activate an actor (grain) on,

which is called grain placement. The default grain placement in Orleans is to

activate grains on a random server in the cluster (Grain Placement - Mircosoft
Orleans 2020). In Figure 3.18, move throughput Fresh(Random), Snap(4s,
Random) increases non-linearly afterward because communications among

servers increase with the number of servers. To solve that, we developed

a customized spatial grain placement that partitioned the whole space by

employing a KD-tree (Orenstein, 1982). Spatially close moving actors having

a higher chance to communicate with each other can then be placed on a

server.

Move throughput scalability under spatial grain placement, especially of

Fresh(Spatial), improved substantially. However, throughput is still not per-

fectly linearly increased because communication between servers cannot be

eliminated, and moving actors may move outside the placement partitions

along with time. Moreover, due to the single component to control snapshot

update, the throughput of Snap(1s, Spatial) is still not optimal. That can be

solved by enlarging the snapshot interval time to reduce the overhead of the

snapshot update, seen from the move throughput Snap(4s, Spatial). We employ

our customized spatial grain placement for the following experiments and

omit that in legends.
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In Figure 3.19, as the system scales, reaction throughput Fresh(Spatial) and

Snap(4s, Spatial) increase along the same trend as the corresponding move

throughput in Figure 3.18. For Snap variants, reaction latency is constrained

by snapshot interval time because reactions are only triggered during the

snapshot update. For two different snapshot interval times, 50th-percentile

reaction latency from 1 sec interval time is 1.53x-1.73x faster than from 4

secs. But they are both uncompetitive to the reaction latency of Fresh, which

provides a more than one thousand times faster reaction. So for applications

extremely sensitive to real-time reactions, Actor-Based Freshness semantics is

recommended.

How do move and reaction throughputs behave under increasing spatial
skew?

We employ a Gaussian distributed workload (cf. Table 3.1) to answer this

question. All client requests are move requests. We analyzed the move

and reaction throughput behavior with increasing spatial skew in data. In

Figure 3.20, as expected, move throughput goes down with more spatial skew,

because skewed data increases the workload to a single cell, which causes

more queuing and communication in those over-loaded cells.

Figure 3.20: Move and reaction
throughputs with
increasing spatial skew.

We can also see that Snap(4s) provides

a better move throughput performance

compared with Snap(1s). For both Fresh
and Snap(4s), reaction throughput in-

creased from near-uniform data (1 mov-

ing actor/hotspot) to 500 moving ac-

tors/hotspot data, but then decreased

for further skew. The reason for in-

creasing reaction throughput is that due

to the fixed number of moving actors,

with fewer hotspots, more moving actors

gather together around one hotspot. In

this sense, one single move trajectory is

more likely to satisfy predicates against more fences. However, reactions

should also decrease along with the decrease of move throughput as shown in

Subsection 3.5.2. Also, in our Gaussian movement setting, a moving actor in

more skewed data would have a lower chance to move faster, which would
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Table 3.2: Results for C-ITS scenario benchmark.

Results
Semantics

Fresh Snap(1s) Snap(4s)
Moves/s 3349.99(±34.65) 5211.61(±2583.67) 9276.87(±2583.67)
50% Latency (ms) 6.26 0.59 0.55
99% Latency (ms) 53.55 89.94 60.84
Reactions/s 1925.86(±49.31) 120.29(±32.54) 287.86(±134.29)
50% Latency (ms) 22.56 5605.49 8261.29
99% Latency (ms) 1092.66 18835.36 22364.91

decrease the length of a trajectory. Those counterfactors make the reaction

throughput flatten and finally decrease as in Figure 3.20.

How does Dolphin perform in the C-ITS scenario benchmark?

We generate workload according to the C-ITS scenario (cf. Table 3.1) to

understand how Dolphin behaves in a realistic benchmark. Table 3.2 shows

the results. We observe that the 50% latency and 99% latency of vehicle

move under Fresh is 6.26 ms and 53.55 ms, respectively. The corresponding

latencies under Snap(1s) is 0.59 ms and 89.94 ms, respectively; and 0.55 ms

and 60.84 ms, respectively, for Snap(4s). According to ETSI ITS Specifications

2020 (ETSI EN 302 890-2 V2.1.1 (2020-10) 2020), the threshold for waiting

to be serviced by a GNSS Positioning Correction service of a Roadside ITS is

2 seconds. So the move latency provided by Dolphin in the C-ITS scenario

benchmark satisfies this requirement well. Also, we note that the 50% reaction

latency of Fresh is 22.56 ms, which provides a near-real-time reaction latency.

Snap(4s) provides faster reaction and higher move and reaction throughput

than Snap(1s). Therefore, 4 secs is a more suitable snapshot interval time for

our C-ITS scenario benchmark.

3.6 Related Work and Discussion
As modern interactive and data-intensive applications demand a scalable and

elastic application tier (Bernstein et al., 2014), actor programming frameworks

such as Akka (Akka - Build Powerful Reactive, Concurrent, and Distributed
Applications More Easily 2020), Erlang (Erlang-Build massively scalable soft
real-time systems 2020), Orbit (Orbit 2020), and Orleans (Orleans Microsoft -
Microsoft Orleans Documentation 2021) are becoming popular implementation

options that have led to significantly increased programmer productivity. In

particular, the abstraction of virtual actors (Bykov et al., 2011) in Orleans
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considers actors as modular and stateful virtual entities in perpetual existence,

facilitating a one-to-one mapping to moving objects, among other IoT scenarios.

The Orleans runtime increases productivity and convenience for developers by

handling failure, automatically and dynamically managing actors’ life cycle and

balancing load across servers, which also helps developers achieve the desired

scalability and availability (Bernstein, 2018; Bernstein et al., 2014). Orleans

has been used in many production services, which validate its readiness and

reliability.

By building upon virtual actors and Orleans, Dolphin leverages many of its

characteristics. However, scalability for reactive moving actor applications

does not come by default. Specifically, to provide scalability and reliabil-

ity, physical instantiations of actors in Orleans are distributed across the silo

instances (Bernstein et al., 2014). Actors are activated on silos based on the cal-

culation of an actor placement strategy. However, Newell et al. (2016) pointed

out, Orleans built-in actor placement policies are insufficient to achieve scala-

bility, which can also be seen in our experiments, particularly in Figure 3.18.

For instance, the default RandomPlacement strategy results in good load bal-

ancing, but this strategy ignores spatial locality in interactions among moving

actors. The latter leads to unnecessary latency and overheads, which signif-

icantly degrades system scalability. These effects are avoided in Dolphin by

our spatially aware system-level actor design. Moreover, existing actor pro-

gramming models, including Orleans, lack built-in support – with well-defined

concurrency semantics – for the reactive data management functionalities

required by reactive moving object applications, complicating the development

of these applications.

Previous investigations about location-aware sensors, devices, and infrastruc-

tures have studied how to represent, manage, and query moving objects

(e.g., Guting and Schneider (2005) and Güting et al. (2006)), as well as how

to define and implement correct behaviors of moving object databases (e.g., Lu

and Güting (2014) and Wolfson et al. (1998)). Such studies on moving object

databases are mainly focused on data structures, algorithms, and architectures

for supporting past, present, and near-future queries (Pelanis et al., 2006;

Sidlauskas et al., 2014; Sowell et al., 2013; Jensen et al., 2004; Jensen and

Pakalnis, 2007). However, reactive moving object applications require novel

reactive API as demonstrated by our Moving Actor abstraction, which is not

supported in existing moving object databases and libraries.
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RxSpatial (Hendawi et al., 2017) is probably one of the only works toward

reactive spatial data management. RxSpatial married the Microsoft SQL

Server Spatial Library (Andzic et al., 2020) with ReactiveX (Microsoft Reactive
Framework - ReactiveX: An API for asynchronous programming with observable
streams 2020) to implement a real-time reactive spatial library. RxSpatial

provides a reactive spatial API, employs a spatial index structure for moving

object queries, and continuously monitors and detects the intersection and

distance between moving objects (Shi et al., 2016a; Shi et al., 2016b; Hendawi

et al., 2016). However, the reactivity model in RxSpatial is limiting in terms

of supporting reactive moving object applications. Reactive moving objects

in RxSpatial need to explicitly subscribe to other objects in order to monitor

the relation between them, which is not an efficient solution. For example,

in order to implement the the reactive sensing API in our platform, every

reactive moving object would have to subscribe to the movements of all

the other moving objects in the system, which could be highly expensive.

Dolphin, by contrast, allows reactive moving objects to subscribe to intensional

representations in terms of fences and spatial predicates, obviating explicit

object-to-object subscriptions and enabling a partitioned actor-based design.

There are also some solutions that provide spatial event monitoring by using

stream processing systems. The studies conducted in (Ali et al., 2010a; Miller

et al., 2011; Kazemitabar et al., 2010; Ali et al., 2010b) support continuous

spatial queries for monitoring. Galic et al. (2017) proposed a distributed spatio-

temporal mobility data stream framework to support continuous queries over

streams. GeoFlink (Shaikh et al., 2020) extended Apache Flink to support

spatial data types, indexes, and continuous queries over spatial data streams.

The stream processing abstraction in these systems, often in the form of a

topology of stream operators, is suitable for specifying a set of bulk operations

over a large number of data items, such as transformation, filtering, join, and

aggregate. However, it is unnatural and difficult to use this abstraction to

specify complex application logic, such as heterogeneous behaviors of reactive

moving objects. The latter creates an impedance for practitioners to implement

the application tier of reactive applications. Additionally, stream processing

systems do not naturally fulfill the design objective O1 in Section 3.2.1, which

introduces complexities for developers in plugging together the concurrency

semantics of these engines with those of spatially aware data stores. By con-

trast, Dolphin enriches the popular actor programming model with features of

reactive moving object data management as well as with principled actor-based
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spatiotemporal concurrency semantics covering movement, spatial queries,

and reactions.

3.7 Conclusion
Emerging moving object applications require additional support for reactivity

based on spatial sensing of dynamic data. Furthermore, these applications

require scalability, elasticity and low-latency, all of which affect programmer

productivity. We proposed a scalable, elastic, reactive, spatial data caching

layer for moving object applications to meet these requirements holistically. We

posited a new data management system architecture for reactive moving object

applications by adding reactive moving object data management functionality

in actor-oriented databases. We judiciously designed a new programming

model for this new class of moving actor-oriented databases and carefully

implemented it in a system called Dolphin, which extends the Microsoft Orleans

virtual actor runtime. Our experiments using both micro-benchmarks and a C-

ITS scenario benchmark showed that Dolphin meets the real-time performance

requirements for spatial data ingestion, querying, and reactivity. Moreover, our

experiments highlighted that our system seamlessly scales out across multiple

machines.

We hope that Dolphin, for which we plan to release artifacts upon acceptance,

can help alleviate the complexity of development and data management for

reactive moving object applications. Additionally, given the huge potential for

societal impact of these mobile Internet-of-Things applications, we aspire that

our work may serve as a catalyst to further motivate the research community

to explore the possibilities and challenges of enriching actor runtimes with

programming abstractions and algorithms tailored to this scenario.
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4An Evaluation of Spatial
Partitioning Techniques to
Handle Skew in Moving
Actor-Oriented Databases

Reactive moving object applications are emerging in domains such as cooper-

ative intelligent transportation systems, collaborative robotics, and location-

aware trans-reality games, among other mobile Internet-of-Things scenarios.

These applications necessitate tracking of the movement of populations of

moving objects – e.g., vehicles on the road – and low-latency reactions to situa-

tional conditions – e.g., a vehicle becoming aware of a hazard and coordinating

a response with other vehicles in its vicinity. Moving Actor-Oriented Databases

(M-AODBs) have recently been introduced as a novel data management ar-

chitecture for such reactive moving object applications. However, tolerating

spatial skew in the distribution of reactive moving objects remains a significant

challenge for M-AODBs supporting these applications, given the impact of skew

on tail latencies and load balance. To achieve scalability through parallelism

and distribution, M-AODBs utilize spatial partitioning, which directly affects

load balance in the split of movement processing as well as tail latencies in

the communication induced by reactions.

In this chapter, we conduct a comprehensive evaluation on the impact of dif-

ferent spatial partitioning techniques on the performance of a state-of-the-art

M-AODB, called Dolphin, under various skewed spatial distributions. Our

experiments reveal how partitioning techniques behave in the light of signifi-

cant parameters in Dolphin such as varied partition capacity, reactive sensing

rate, reactive range, and query rate. Furthermore, we observe how different

partitioning techniques in Dolphin perform under skew when scaling across

servers. Results are obtained that reveal how to choose the most adequate

partitioning techniques among the ones evaluated under different scenarios.

Moreover, the results include a breakdown of the most significant factors

affecting system performance, which comprise primarily the communication
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dissemination overhead in reaction generation, but also the coefficient of move

load balance among partitions.

4.1 Introduction
Reactive moving object applications are increasingly attracting attention from

both industry and academic research related to the mobile Internet-of-Things (Shi

et al., 2016a; Costa, 2018) in areas spanning cooperative intelligent transporta-

tion systems (Mitsakis et al., 2020; Bussche, 2020; Nguyen et al., 2020), col-

laborative robotics (Duckett et al., 2018; Albani et al., 2017; McLellan, 2020),

location-aware trans-reality games (Gutierrez et al., 2012; Lindley and Elad-

hari, 2005), and emerging criminal trajectory tracking systems (Abd El-Aziz

et al., 2012; Elrefaei et al., 2017; Tundis et al., 2020), among others. Reactive

moving object applications both track the movement of objects in space as

well as allow objects to trigger reactions based on the movement of other

objects. Critically, these applications need to scale to large populations of

moving objects and process reactions with low latency.

In Chapter 3, we introduced a novel approach to providing data manage-

ment system support to reactive moving object applications, namely that of

Moving Actor-Oriented Databases (M-AODBs). An M-AODB is a scalable and

distributed reactive actor-oriented database exposing the novel abstraction of

moving actors. Moving actors allow applications to specify object movement

updates, query the current locations of moving objects, as well as process

reactions to changes in object locations. In addition, moving actors facilitate

object-based application modeling under simple concurrency semantics for

reactions, avoiding the scalability and complex execution semantics issues in

trigger systems (Widom and Ceri, 1996; Hanson et al., 1999).

To achieve scalability through parallelism and distribution, M-AODBs utilize

spatial partitioning to allocate reactive moving objects to spatial regions. Pro-

cessing of movement is then split across these regions, while the generation of a

reaction from movement may affect several nearby regions. Therefore, spatial

partitioning directly affects load balance in the split of movement processing

as well as tail latencies in the communication induced by reactions.

As such, a significant problem in scaling reactive moving object applications

with M-AODBs is that of handling skew in the spatial distribution of moving
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objects. For instance, in collaborative intelligent transportation systems, ve-

hicles move along the road network and are thus not uniformly distributed

in space. Furthermore, vehicle density in hotspots (e.g., city centre) is higher

than in other areas (e.g., a rural area). Spatial skew can lead to load imbalance

if certain regions get overloaded with moving objects; additionally, spatial

skew can lead to high tail latencies if significant inter-region communication is

induced by reactions.

We observe that spatial skew patterns in reactive moving object applications

are fairly stable, since they reflect the concentrations of objects around areas

of interest (e.g, city centre vs. rural area). Thus, the spatial partitioning

utilized by the M-AODB could exploit knowledge about the expected spatial

distribution of reactive moving objects.1 Fortunately, there is a great variety of

spatial access methods (Gaede and Günther, 1998), offering a wide range of

trade-offs, that can be utilized to realize spatial partitioning in a manner that is

sensitive to skew. However, the impact of these techniques on reactive moving

object data management – and M-AODBs in particular – is unknown.

In this chapter, we investigate the impact of a set of classic spatial partitioning

techniques on the performance of Dolphin, a state-of-the-art M-AODB, under

a variety of skewed spatial distributions. To allow for scalable movement

processing and low-latency reactions, we discuss constraints that a spatial

partitioning method must satisfy to be integrated with Dolphin, and how

existing methods can be adapted to allow for partitioning both within and

across multiple servers. Additionally, to reflect realistic moving object scenarios,

we focus on workloads proposed in previous benchmark studies (Chen et al.,
2008; Sowell et al., 2013), but adapted to our scenario discussed in Chapter 3,

comprising mainly variations of Gaussian skew. We compare the results of

five different spatial partitioning methods to observe how they influence the

performance of movement and reaction processing in Dolphin. Specifically,

we delve into details about factors that affect parallelism and communication

intensity to explain the impact of each partitioning method in the chosen

M-AODB.

In summary, our contributions in this chapter are as follows:

1We note that spatial skew could change over time or due to seasonal patterns, e.g., the city
centre may exhibit a high concentration of objects during the day, but low at night. In such
cases, periodic re-partitioning techniques could be employed (Taft, 2017). We leave the
exploration of this possibility, however, to future work.
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1. We discuss how to integrate spatial partitioning techniques into a state-

of-the-art M-AODB, Dolphin, including how to adapt five classic spatial

partitioning techniques to work within and across servers.

2. We conduct a thorough evaluation of the spatial partitioning methods

in Dolphin based on a synthetic Gaussian distribution benchmark with

controllable spatial skew. The evaluation delves into explanatory metrics

related to load balance and communication, revealing how different

partitioning techniques behave under varied use scenarios.

The remainder of this chapter is organized as follows. In Section 4.2, we

review movement, query, and reaction processing in M-AODBs, particularly

Dolphin, as well as design constraints and goals for spatial partitioning in these

systems. Section 4.3 presents the spatial partitioning methods that we chose to

evaluate in this study, along with how they were adapted to work in Dolphin.

Section 4.4 presents our experimental setup and results, including discussion

of the main effects observed. Related work is reviewed in Section 4.5, while

Section 4.6 concludes the chapter.

4.2 Moving Actor-Oriented Databases
Moving actor-oriented databases (M-AODBs) are actor-oriented databases

that support spatial queries, movement, and associated reactions through the

abstraction of moving actors. The goal of M-AODBs is to provide scalability for

reactive moving object applications while facilitating actor-oriented application

modeling and construction. In M-AODBs, moving actors can be conceptualized

as digital twins (Cimino et al., 2019) of reactive moving objects. As such,

moving actors are the construct for management of data originating from

reactive moving objects in a cloud-based server infrastructure.2

Diverse architectural choices can be made to design an M-AODB implementing

the abstraction of moving actors. For concreteness, we focus our attention

in this study on a state-of-the-art M-AODB, Dolphin, introduced in previous

Chapter 3. This section first reviews how Dolphin supports spatial range

queries, movement, and associated reactions (Section 4.2.1). Subsequently,

2While in practical scenarios potentially remote physical moving objects need to exchange
data with such a cloud-based infrastructure, we do not include this communication in
our study, focusing on scalability and reactivity of data management with moving actors
instead.
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design goals for spatial partitioning methods are set forth, building the basis

for our choice and integration of these methods in Dolphin (Section 4.2.2).

4.2.1 Partitioned Spatial Data Processing in
M-AODBs

Moving actors offer the API and core application programming construct for

M-AODBs. Internally, however, M-AODBs are architected around a set of

components that partition, index, and monitor events on moving actor data.

In particular, to achieve scalability through parallelism and distribution, M-

AODBs utilize spatial partitioning by allocating reactive moving objects to

spatial regions, which we term logical cells in the remainder of this chapter.

Within logical cells, spatial indexing and event monitoring components further

support the core spatial range query, movement, and associated reaction

processing in an M-AODB.

Moving Actors 

System-level
Actors

Function Call
Messaging

2 

Partitioning 
Structure

1

Figure 4.1: Moving actors, parti-
tioning, and system-
level actors in Dolphin.

Dolphin represents the internal components

associated to each logical cell as a set of

system-level actors. The relationship be-

tween moving actors, spatial partitioning,

and system-level actors is depicted schemat-

ically in Figure 4.1. Applications specialize

moving actors to represent reactive moving

objects. As the application interacts with

the moving actor APIs, moving actors in

Dolphin will engage system-level actors for

data management tasks. This is mediated

by a partitioning structure, which allows

moving actors to address the system-level

actors associated to the logical cells affected by any particular task. For effi-

ciency, the partitioning structure is accessed directly through function calls

by moving actors and initialized with Dolphin at startup. Communication

between actors is achieved by leveraging the abstractions and services of an

AODB. In the case of Dolphin, we build on the AODB substrate of Microsoft Or-

leans (Bernstein et al., 2017b), and thus all actors are virtual actors interacting

via asynchronous RPCs (Bernstein et al., 2014; Bernstein and Bykov, 2016).
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Dolphin provides two application-level concurrency semantics, namely Actor-

Based Freshness semantics and Actor-Based Snapshot semantics, to accom-

modate different application use scenarios and requirements. Actor-Based

Freshness semantics provides the most recent results in M-AODBs, but cannot

guarantee these results are observed at a consistent point in time. By contrast,

Actor-Based Snapshot semantics provides point-in-time images of M-AODBs,

but reaction latency is distributed around the snapshot update time. Given the

cost of taking a distributed snapshot, the latter implies that scenarios demand-

ing low latency reactions, e.g., on the order of milliseconds, should privilege

Actor-Based Freshness semantics; meanwhile, scenarios that can accept larger

latencies for reactions, e.g., on the order of seconds, but demand higher data

consistency should opt for Actor-Based Snapshot semantics.

Data processing between moving actors, spatial partitioning structures, and

system-level actors differ between these two semantics, but the partition

lookup mechanism is the same. To focus on exploring the impact of parti-

tioning techniques on reaction latency, we only discuss Actor-Based Freshness

semantics in the remainder of the chapter. We have validated that the trends

we observe for the latter are similar for Actor-Based Snapshot semantics, albeit

variance in request throughput and reaction latencies is higher overall due to

the snapshotting mechanism.

At a high level, Dolphin utilizes spatial indexing inside logical cells to speed

up processing of spatial range queries as well as Orleans streams to mediate

the triggering of reactions from movement events. These two system-level

functionalities are encapsulated in two different actor types, indexing actors

and monitoring actors, where one instance of each type is associated to each

logical cell. We review the approaches taken in Dolphin for spatial range query,

movement, and reaction processing in more detail in the following.

Spatial Range Query Processing

The moving actor abstraction exposes a method FindActors(r), which in

Dolphin enables applications to pose spatial range queries. Such a query

obtains the identifiers and locations of the moving actors that lie inside the

spatial range r, where r is a regular quadrilateral r= { (xmin, ymin), (xmax, ymax)
} ∈ R2. We distinguish two phases for query processing:
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1. Partition lookup - shown as Step 1 in Figure 4.1: The query range r is

intersected with spatial partitioning data structures to find which logical cells

are spanned by the query.

2. Search - shown as Step 2 in Figure 4.1: Indexing actors in the repective

logical cells are searched to find the relevant information for actors in r.

Move Processing

The method Move(ld) in the moving actor abstraction updates the current

location ls of a moving actor to a next location ld. Besides, this movement

may asynchronously trigger reactive functions in other moving actors upon

satisfaction of the spatial predicates associated to their fences (see below).

Similarly to spatial range query processing, we identify two phases for move

processing under Actor-based Freshness semantics:

1. Partition lookup - shown as Step 1 in Figure 4.1: ls and ld are used to intersect

with the spatial partitioning data structure to find the partitions corresponding

to these locations, namely cellIds and cellIdd, respectively.

2. Update - shown as Step 2 in Figure 4.1: The moving actor updates its local

state and triggers asynchronous reactions. If cellIds=cellIdd, the moving actor

calls the indexing actor in this logical cell to record the its update of ls to

ld. If cellIds 6=cellIdd, the moving actor calls the indexing actor in the logical

cell cellIdd to insert ld, then calls the indexing actor in cellIds to delete ls in

next round of update.3 Further steps necessary for reaction processing are

described in the following.

Reaction Processing

Each moving actor has a fence f in addition to its location. When a mov-

ing actor a calls the method StartReactiveSensing(p, m) in the moving actor

abstraction, a will conceptually monitor f with a spatial predicate p – for exam-

ple, cross, cover, overlap – and process a reaction whenever any other moving

actor’s itinerary satisfies p with respect to f . The monitoring continues until a

invokes the method StopReactiveSensing(). A reaction entails executing an

application-defined reactive method m in a; m encodes the reactive behavior

of a.
3The delayed deletion, associated to duplicate elimination in queries, is employed to achieve

Freshness semantics (Sidlauskas et al., 2014).
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When a is monitoring f with p, Dolphin will update the subscription of a to all

monitoring actors in logical cells that overlap its updated fence. This process

is performed in two phases:

1. Partition lookup - shown as Step 1 in Figure 4.1: The updated fence f of a is

intersected with the spatial partitioning data structure to find the logical cells

spanned by it.

2. Subscription update - shown as Step 2 in Figure 4.1: Monitoring actors in the

respective logical cells are contacted to subscribe a to movement in their cells.

Subscriptions to monitoring actors that are in logical cells no longer spanned

by f are also dropped.

Additionally, when any moving actor a′ processes a move, the location update

is sent to the relevant monitoring actors for asynchronous processing. This

process is performed in two phases:

1. Partition lookup - shown as Step 1 in Figure 4.1: a′.iti is intersected with

spatial partitioning data structures to find the logical cells spanned by it.

2. Reaction generation - shown as Step 2 in Figure 4.1: Monitoring actors

in spanned logical cells asynchronously send a′.iti to all moving actors a in

their cells whom have called StartReactiveSensing(p, m) (and not yet called

StopReactiveSensing()) to check if a.p is satisfied over a.f .

4.2.2 Constraints and Design Goals for Spatial
Partitioning in M-AODBs

To achieve a division of space into logical cells, M-AODBs utilize a spatial

partitioning strategy. We call this strategy logical cell partitioning. As described

in the previous section, logical cell partitioning allows the M-AODB to allocate

the processing of distinct operations – and sometimes parts of a single opera-

tion – across multiple logical cells. We argue that logical cell partitioning in an

M-AODB should satisfy two natural constraints:

1. The spatial partitioning strategy must derive a set of logical cells that cover

the entire space. This constraint ensures that each moving actor can always be

allocated to a logical cell, regardless of its pattern of movement.
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2. The logical cells derived by the spatial partitioning strategy cannot be

overlapped. This constraint ensures that a moving actor will be allocated

to a single logical cell. Since state is encapsulated in actors, we thus avoid

replicating actor state, which is complex given that data can only be propagated

by asynchronous communication (Bernstein et al., 2017a).

Cell-level indexing

Logical cell partitioning

Server placement partitioning

System-level actors
Moving actors

Figure 4.2: Levels of partitioning
in Dolphin.

In Dolphin, logical cell partitioning is comple-

mented by two other mechanisms, resulting

in a three-level structure as shown in Fig-

ure 4.2. The first level is server placement
partitioning. Here, sets of logical cells are

grouped into servers. The second level is

logical cell partitioning as discussed above,

where logical cells are rectangular shapes.

These first two levels allow Dolphin to ex-

ploit parallelism across logical cells within a

server as well as distribution over multiple

servers.

As mentioned previously, moving actors and

system-level actors are allocated to logical

cells, and a system-level actor of each type

– indexing or monitoring actors – supports

data management for the moving actors in

a given cell. The third level of cell-level in-
dexing is implemented by the indexing actors

in each cell, and aims at accelerating search

operations. Dolphin currently employs in-memory R-trees for this purpose.

This chapter focuses on server placement partitioning and logical cell parti-

tioning in M-AODBs, and thus no further discussion of cell-level indexing is

presented.

To increase scalability, spatial partitioning in Dolphin is aimed at two main

goals:

1. For logical cell partitioning, the goal is primarily to balance load across

logical cells so as to minimize asynchronous RPC queuing, especially in system-

level actors. While communication across logical cells is not irrelevant, its

impact is smaller within servers due to shared-memory accesses.
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2. For server placement partitioning, the goal is twofold, namely to both

balance the load across servers to utilize server capacity and at the same

time minimize communication overhead among servers. This is because

communication costs in a distributed deployment can become substantial.

To achieve the load balancing aspect of both goals, the ideal is to allocate a

similar number of actors in each logical cell or server. On the other hand,

we ought to also try to minimize the communication across different logical

cells and servers. In the extreme case, if all actors are allocated in a single

logical cell, we can eliminate all communication across logical cells, but at the

expense of achieving the load balancing goal and deriving a scalable setup.

Note that a good spatial partitioning at the logical cell level should result

in most calls between moving actors and system-level actors being inside

logical cells, since most interactions in reactive moving object applications are

localized in space. When grouping logical cells into servers, it is ideal that this

spatial characteristic be preserved. Thus, to reduce communication, we allocate

logical cells as a whole, i.e., following logical cell integrity, and also respecting

spatial locality at the server placement partitioning level. Additionally, we

evenly partition logical cells across servers to assist in achieving load balancing

in server placement partitioning.

4.3 Spatial Partitioning Techniques in
Dolphin

This section first provides a summary of spatial partitioning techniques (Sec-

tion 4.3.1), then discusses which ones we choose to evaluate based on the

constraints and goals for spatial partitioning in M-AODBs (Section 4.3.2), and

finally presents how each technique is incorporated in Dolphin (Sections 4.3.3

to 4.3.6).

4.3.1 Summary of Spatial Partitioning Techniques
A great variety of spatial partitioning techniques has been proposed throughout

decades of research in spatial database systems (Jones, 1997). In general,

methods can be arranged into two broad categories: space-driven partitioning

and data-driven partitioning (Rigaux et al., 2002). Space-driven partition-

ing techniques decompose space into regular or semi-regular shapes that are
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indirectly related to data objects. Data objects are then placed into those

partitioned shapes based on their spatial features. By contrast, data-driven

partitioning techniques identify regions of the space, e.g., coordinates, bound-

ing rectangles, or geometric objects, directly based on data objects. In both

categories, a wide range of geometric representations are supported for data

objects. However, given our scenario of spatial partitioning in M-AODBs, we

assume throughout point data representations.

The space-driven partitioning methods most widely used include the fixed

grid (Nievergelt et al., 1984), the Quad-Tree (Finkel and Bentley, 1974), and

space-filling curves (SFCs) (Sagan, 2012). In fixed grid partitioning, space

is partitioned into regular grids. The choice of the grid size is a critical

parameter when discretizing the space into grid cells. Differently, the Quad-

Tree recursively partitions space into four equal quadrants until the number

of objects in each quadrant does not exceed a predetermined node capacity.

As such, the cell size of a Quad-Tree (i.e., the size of leaf nodes) varies

depending on the data distribution. Alternatively, in SFCs, space is partitioned

by enumerating grid cells that contain at most one object. The visiting order

of each such grid cell is the curve value of this cell or object. By doing that,

a clustering property is achieved by way of preserving the spatial locality

between objects. The two most commonly adopted SFCs are the Hilbert

curve (Hilbert, 1935) and the Z-Ordering curve (Morton, 1966).

The K-D-Tree (Bentley, 1975) and the R-Tree (Hadjieleftheriou et al., 2017)

are popular data-driven partitioning techniques. K-D-Tree partitioning applies

the divide-and-conquer principle to select points to partition the space into

regions. Initially, an x coordinate is chosen to partition the whole space into

two regions; subsequently, the procedure recursively continues by partitioning

sub-regions along another axis until each cell contains no other points. The

R-Tree bucketizes data objects into minimum bounding rectangles (MBRs),

which are then bucketized into higher-level MBRs recursively. Leaf nodes in

the R-Tree group a certain number of data objects, while non-leaf nodes group

lower-level nodes in a manner reminiscent of B-Trees.
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4.3.2 Discussion Spatial Partitioning Methods
Chosen for M-AODB Evaluation

We would like to include in our evaluation of spatial data partitioning in

M-AODBs as many as possible of the popular methods as summarized in

the previous section, as long as they respect the constraints discussed in

Section 4.2.2. As such, we employ four space-driven structures – namely,

fixed grid partitioning, Quad-Tree partitioning, Hilbert curve partitioning, and

Z-Ordering curve partitioning – and one data-driven structure, K-D-Tree parti-

tioning. The reason why R-Tree partitioning is not included in our evaluation

is that R-Tree partitioning in general violates the second of the two constraints

presented earlier. Namely, MBRs in the R-tree structure may overlap. We

note that there are some R-Tree variants, e.g., the R+Tree (Sellis et al., 1987),

R*Tree (Beckmann et al., 1990), and R* Grove (Vu and Eldawy, 2020), that

can be adapted to guarantee disjoint partitions at any given level of the R-Tree,

but that does not apply across levels. If one attempts to simply use the MBRs

of a single level of such an R-Tree variant, then the first of our constraints

would be violated, namely that the partitioning must cover the whole space.

Properly clipping, expanding, or combining MBRs of such an R-Tree variant to

fulfill both constraints of spatial partitioning in M-AODBs is an extension that

we leave to future work.

Since the locations of moving actors are dynamic, it is important to consider

how to employ the above methods to derive a spatial partitioning to be used

by the M-AODB. Importantly, we observe that data distributions in reactive

moving object applications are relatively stable. For instance, the vehicle

density in a city center is prone to be larger than in a rural area. We assume

for the remainder of this work that the variations in distribution that occur

over periods of time, e.g., peak time vs. night, do not substantively affect the

stability of the spatial distribution. Under this assumption, we conceptually use

our spatial partitioning results as a static lookup table for allocating moving

actors to partitions or finding the partitions that a moving actor is associated

to (see Section 4.2.1). Moreover, in Dolphin, actors are initialized in servers

based on server placement partitioning, and re-initialisation of actors is not

considered in this chapter. We leave the adoption of periodic updates of such

a lookup table to reflect changes over time, e.g,. as discussed by Akdogan et

al. (Akdogan et al., 2016), for further work.
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4.3.3 Default Partitioning Methods in Dolphin
Fixed grid partitioning is widely adopted in distributed spatial database sys-

tems, such as Hadoop-GIS (Aji et al., 2013), SpatialHadoop (Eldawy and

Mokbel, 2015; Eldawy and Mokbel, 2013), GeoSpark (Yu et al., 2015; Yu

et al., 2016) and SpatialSpark (You et al., 2015). The popularity of fixed grid

partitioning stems from the observation that a well-tuned fixed grid is hard

to beat in terms of in-memory performance (Sowell et al., 2013; Sidlauskas

and Jensen, 2014; Sidlauskas et al., 2009). In the original Dolphin design,

this observation from the literature motivated the adoption of this method for

logical cell partitioning, since the latter is employed to allocate work within a

server.

In short, fixed grid partitioning works as follows. Based on the partition

capacity B, i.e., the target number of moving actors per logical cell, the total

number of moving actors MA, and the whole space size S, the regular grid

size g can be calculated as g = S/d
√
dMA/Bee. To be noticed, we use the

partition capacity B to decide the grid size, but the number of moving actors

in each grid cell is not necessarily equal to B in fixed grid partitioning. This

is due to potential skew in the spatial distribution, which could lead to grid

cells with many more actors than the partition capacity (and conversely, cells

with many less). This potential partition imbalance is a feature of the fixed

grid, since the cell size is not adaptable to different regions of space. After

partitioning the whole space into such a regular grid, moving actor locations

can be allocated to grid cells based on spatial containment, which achieves

logical cell partitioning. An example of Fixed Grid logical cell partitioning is

shown in Figure 4.6e.

x

y1
y2

Figure 4.3: Default server place-
ment partitioning
grouping.

Dolphin employs by default K-D-Tree par-

titioning for server placement partitioning.

This method respects our spatial partition-

ing constraints and allows us to decompose

the space into any desired number of parti-

tions, which is important for being able to

effectively utilize any number of servers. Fur-

thermore, the method has been shown in

literature to exhibit competitive performance

in a distributed setting, as it adapts to spatial

skew (Eldawy et al., 2015; Aji et al., 2015).
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Dolphin combines K-D-Tree server placement partitioning with fixed grid log-

ical cell partitioning as follows. Firstly, we partition the whole space by a

K-D-Tree structure, but limiting the dividing points based on the number of

servers. For instance, in Figure 4.3, to place moving actors into four servers, a

dividing point x is used to segregate the whole space into two balanced parti-

tions. Then, in each partition, we choose another dividing point for further

partitioning (points y1 and y2 in the left and right partitions, respectively).

After this step, we group logical cells into servers based on these dividing

points while respecting the boundaries of logical cells. By way of example, in

Figure 4.3, if the position of the left boundary of a logical cell is equal to or

smaller than x, then this logical cell will be grouped into the left partition;

and if the upper boundary of a logical cell is greater than y, the logical cell

will be grouped into upper partition. Following this procedure, logical cells

will be assigned to different servers, as shown in different colors in Figure 4.3.

This procedure of K-D-Tree partitioning respects the natural spatial proximity

of logical cells. Additionally, K-D-Tree partitioning adapts to skew in a way

that is ignored by fixed grid partitioning, thus addressing costly inter-server

communication costs. An example of default server placement partitioning,

which corresponds to the logical cell partitioning in Figure 4.6e, is shown in

Figure 4.6j.

4.3.4 SFC Partitioning in Dolphin

As known from previous research, the Hilbert curve has a higher spatial

clustering performance than Z-Ordering (Abel and Mark, 1990; Rong and

Faloutsos, 1991; Jagadish, 1990), making the Hilbert curve the primary choice

of space-filling curve for spatial partitioning. For the sake of comparison,

however, we implement both Hilbert and Z-Ordering in Dolphin for logical cell

partitioning. In both cases of SFC partitioning, the whole space is conceptually

partitioned into regular grids that contain at most one object. We define the

curve value of each moving actor cv as the visiting order of each grid. Then,

moving actors are packed into logical cells bcv/Bc based on curve value and

partition capacity B. Hilbert and Z-Ordering logical cell partitioning examples

are shown in Figures 4.6a and 4.6b, respectively.

After applying the partitioning techniques to the logical cell partitioning level,

we achieve a partitioning of the whole space into M logical cells such that

M = dMA/Be. We then group logical cells based on their number as given
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by logical cell generation (see above) so that = dM/Ne consecutive adjacent

logical cells are grouped into a server, where N is the number of servers. After

grouping all logical cells, server placement partitioning is achieved. The latter

partitioning also preserves spatial proximity among server-level partitions, as

the logical cell numbers can be seen as a coarsening of the original moving

actor curve values. An example of Hilbert and Z-Ordering server placement

partitioning, which corresponds to the logical cell partitioning in Figure 4.6a

and Figure 4.6b, are shown in Figures 4.6f and 4.6g, respectively.

4.3.5 K-D-Tree Partitioning in Dolphin

   1|2   3|4     5     6|7   8|9    10    11    12|13        

 1              3         8              10
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Figure 4.4: K-D-Tree partitioning
example.

A K-D-Tree splits the whole space into leaf-

node regions containing no data. We derive

logical cells from nodes in a level from a bal-

anced K-D-Tree. Here, the level is chosen to

be dlog2 dMA/Bee so as to create partitions

with size close to the partition capacity B. If

this level is the maximum level of K-D-Tree,

the regions induced by leaf nodes become the

logical cells, as show in Figure 4.4; otherwise,

for each node in this level, the regions in-

duced by its left-child node with correspond-

ing children nodes are grouped as a logical

cell, and the same is done for the right-child

node. Since the splits created by a K-D-Tree always intersect a point from

the input, the partitioning derived for the space is based on the data. We

number logical cells based on the Z-Ordering curve. By doing that, cells that

are adjacent in space end up keeping proximity in the numbering. An example

of K-D-Tree logical cell partitioning is shown in Figure 4.6c.

After logical cell partitioning is performed based on the K-D-Tree, we obtain a

number M of logical cells. Since spatial proximity is preserved by logical cell

numbering, we can apply the grouping strategy of SFC to calculate a server

placement partitioning. Namely, we get a server placement partitioning by

grouping consecutive logical cells so that each of N servers contains dM/Ne
logical cells. For instance, as shown in Figure 4.4, if there are two servers,

logical cells numbered 1 to 7 are grouped into server 1 (colored in red), while

logical cells 8 to 13 are grouped into server 2 (colored in blue). An example of
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K-D-Tree server placement partitioning, which corresponds to the logical cell

partitioning in Figure 4.6c, is shown in Figure 4.6h.

4.3.6 Quad-Tree Partitioning in Dolphin

Quad-Tree partitioning as implemented in Dolphin splits the whole space into

leaves with maximum capacity B. A logical cell is created for each such leaf.

These logical cells are numbered based on the Z-Ordering curve by way of

bit interleaving as illustrated in Figure 4.5. The latter makes the numbering

sensitive to the partitioning depth found by the Quad-Tree. Note that the

numbering preserves proximity of adjacent logical cells. an example of Quad-

Tree logical cell partitioning is shown in Figure 4.6d.

000 001  010 011    100 110

000

100
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110
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111
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Figure 4.5: Quad-Tree partition-
ing example.

After logical cell partitioning by the Quad-

Tree, we get a number M of logical cells.

Once again, we derive a server placement

partitioning by following the clustering strat-

egy of SFC, where dM/Ne logical cells are

placed into each of N servers. For instance, as

shown in Figure 4.5, if there are two servers,

the first to tenth logical cells are grouped into

server 1 (colored in red), and the eleventh

to nineteenth logical cells are grouped into

server 2 (colored in blue). An example of

Quad-Tree server placement partitioning, which corresponds to the logical cell

partitioning in Figure 4.6d, is shown in Figure 4.6i.

4.4 Experimental Evaluation

This section presents our experimental evaluation of the implemented spatial

partitioning techniques in light of several significant features of M-AODBs. In

particular, the goals of the evaluation are as follows:

1. Investigate the effect of partition capacity and determine proper settings

of partitioning capacity for different spatial partitioning techniques (Sec-

tion 4.4.2).
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(a) Hilbert
logical cell
partitioning

(b) Z-Ordering
logical cell
partitioning

(c) K-D-Tree logi-
cal cell parti-
tioning

(d) Quad-Tree
logical cell
partitioning

(e) Default logi-
cal cell parti-
tioning

(f) Hilbert server
placement
partitioning

(g) Z-Ordering
server
placement
partitioning

(h) K-D-Tree
server
placement
partitioning

(i) Quad-Tree
server
placement
partitioning

(j) Default server
placement
partitioning

Figure 4.6: Examples of partitioning methods in Dolphin for logical cell partition-
ing and server placement partitioning (Number of moving actors=5000,
Space size= 10km2, Number of Hotspots=1, Partition capacity=100,
Number of servers=8).

2. Explore the trade-offs in the choice of spatial partitioning technique in

Dolphin for varied reactive sensing ratio, query intensity, and reaction range

scenarios (Sections 4.4.2, Section 4.4.2, and Section 4.4.2, respectively).

3. Evaluate how spatial partitioning techniques affect scalability under skewed

data (Section 4.4.2).

4. Illustrate how partitioning techniques affect move and reaction performance

under varied degrees of spatial skew. (Section 4.4.2).

4.4.1 Experimental Setup
As mentioned previously, our experimental evaluation builds on Dolphin, a first

implementation of an M-AODB leveraging Microsoft Orleans. In the original

proposal of Dolphin in Chapter 3, a comprehensive experimental setup was

employed, covering cloud-based deployment, adaptation of benchmarks and

workloads from the moving objects literature, and datasets with varied spatial

skew. We adopt broadly the same experimental setup as this previous work;

however, a few adaptations are pursued to focus on skewed data and explore

additional parameters. We document these adaptations in the following, as

well as briefly review the general setup to make this chapter as self-contained
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as possible. We refer the reader to previous work for additional details and

justifications for the various settings in Chapter 3.

Cloud Service and Deployment

In our experiments, Orleans silos (Microsoft, 2021) are used as servers to host

all actors and run all application logic. We deploy all silos in separate instances

on AWS EC2 (Amazon EC2 - Secure and resizable compute capacity to support
virtually any workload 2020) and store the membership table for the silos in

Amazon DynamoDB (Amazon DynamoDB - Fast and flexible NoSQL database
service for any scale 2021). One c5.xlarge instance is used for synchronizing

benchmark client threads, and up to another eight of the same type of instance

are used as silos. Client threads are run in a c5.4xlarge instance. All instances

run on Windows Server 2019 Base and Orleans 3.1.2. They are placed in one

cluster deployment group (Amazon, 2021) and the same subnet (Zou et al.,
2011) to reduce the physical network latency.

Benchmarks, Workloads, and Datasets

We implement a Gaussian distribution benchmark to investigate the perfor-

mance of Dolphin over datasets with varied settings of spatial skew. In the

Gaussian distribution benchmark, hotspots are uniformly distributed in space,

and moving actors are then distributed around these hotspots under a Gaussian

distribution. A moving actor moves faster when it is closer to the hotspot (Sow-

ell et al., 2013).

Our experiments start by initializing a set of moving actors. Each client thread

continuously sends either move or spatial range query requests, depending

on the experiment, without interruption. As discussed before, reactions are

triggered in the system asynchronously by move requests. Client threads are

set so that enough load is generated to fully saturate the servers. We have

observed that servers run stably at high CPU utilization in all experiments.

As in previous work in Chapter 3, we primarily experiment with moves and

reactions, unless otherwise stated, to focus on reactive behaviors.

As discussed in Section 4.2.1, all of the categories of spatial data processing

supported by Dolphin, namely spatial range queries, moves, and reactions,

make use of spatial data partitioning structures. We implement the latter as

an immutable lookup table given our assumption of stability in spatial data

distribution. The immutability of the structure allows us to easily replicate it
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Table 4.1: Benchmark, Workload, and Dataset Parameters.
Parameters Gaussian Distribution Benchmark

Number of Servers 1, 2, 4, 8
Client Threads per Server 8 (single server) or 4 (multiple servers)
Number of Moving Actors 5000 per server

Space Size (km2) 100, 200, 400, 800
Partition Capacity 10, 25, 50, 100, 250, 500 moving actors per logical cell

Data Skewness 5000/500/100/50/5/1 moving actors per hotspot
Fence Size (m2) 500×500, 707×707, 1000×1000, 1414×1414, 2000×2000
Query Size (m2) 1000×1000

Max Speed (km/h) 80
Reactive Sensing Percentage (%) 0,12.5,25,50,100

Query Ratio (%) 0,20,40,60,80,100

in each silo. We leave the investigation of techniques to update our spatial

partitioning lookup table for future work.

The datasets we used for the experiments correspond to the workloads de-

scribed above. As mentioned previously, we keep the data aligned with the

experiments in the original Dolphin proposal in Chapter 3.

The parameters used for benchmarks, workloads, and datasets are shown in

Table 4.1, where default settings are highlighted in bold when applicable.

Single- vs. Multi-Server Experiments

We chose to run the experiments in Sections 4.4.2, 4.4.2, 4.4.2, and 3.5.2

on a single server, since the effect of the parameters we test can already be

observed well in the absence of distributed data placement. To stress the

behavior of the system under an extreme case of spatial skew, we chose the

most skewed Gaussian data distribution, i.e., the one with only one hotspot

in space, in single-server experiments. Furthermore, in these experiments all

actors are activated in one server, thus obviating server placement partitioning.

Since only logical cell partitioning is used, for clarification, we name the

partitioning methods employed Fixed Grid, Hilbert, Z-Ordering, K-D-Tree,

and Quad-Tree. Recall that these methods are discussed in Sections 4.3.3

to 4.3.6.

Experiments that test scalability and vary spatial skew – namely, the ones in

Sections 4.4.2 and 4.4.2 – are conducted in multiple servers. In these sections,

we refer to Default as the partitioning method of Section 4.3.3 instead of

Fixed Grid, since server placement partitioning is also employed.
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Metrics and Measurement Methodology

To characterize the performance of Dolphin utilizing different spatial partition-

ing methods, we primarily measure client request throughput, composed of

moves and spatial range queries, and reaction throughput. These metrics are

obtained by an epoch-based measurement approach. In more detail, client

threads submit requests to the system when an epoch starts and stop doing so

when the epoch ends. After the end of the epoch, client threads can record how

many move and query tasks were sent, how many tasks have been finished,

latencies of finished tasks, along with other data. Each epoch is set to be 10

seconds. A measurement for an experiment is run for ten epochs, including

three warm-up epochs.

Because reactions are asynchronously triggered by moves in Dolphin rather

than sent as client requests, we cannot measure reaction throughput directly

from the client side. We thus record reactions and their latencies in every

moving actor. After synchronizing all client threads, the client calls all moving

actors to collect the reaction numbers and latencies in the whole system in this

epoch. When this process is completed, another epoch can start.

Task throughput is a calculated as an average, along with its standard deviation,

of per-epoch measurements aggregated across all client threads, except for

warm-up epochs. Reaction throughput is calculated in a similar fashion as task

throughput. Move latency and query latency are measured as the time from

the moment a moving actor receives a move or query request to the time this

move or query has finished execution in this moving actor. Task latency is the

end-to-end latency of either move or query requests measured at the client

side. Client-server latency represents the communication and queuing overhead

between client and server, which is the task latency exclusive of move or query

latency. While we focus on reporting both throughput and latency as averages

with standard deviation as error bars, we have also collected the 25%, 50%,

90%, 99% percentile latencies as well as maximum task and reaction latencies

for validation purposes.

In addition to throughput and associated latency distribution measurements,

we delve down into observed performance issues by calculating further metrics

related to load balance and communication. We define the communication
from moving actors to system-level actors as the total number of messages

that are sent from moving actors to both indexing and monitoring actors

divided by the number of non-warm-up epochs. Since indexing actors never
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perform asynchronous RPCs to moving actors, the complement to the former

metric is the communication from monitoring actors to moving actors, which

is defined as the total number of disseminated messages from monitoring

actors to their subscribed reactive moving actors divided by the number of

non-warm-up epochs. Similarly, we further define an efficiency metric to

capture how many disseminated messages from monitoring actors are required

to generate one reaction on average, which we term the monitoring-to-moving-
actor communication per reaction. The move load balance is the coefficient

of variation of the communication from moving actors to system-level actors

under a workload consisting of 100% moves and no queries, and it aims to

capture how well the load directly generated by moves is spread between

logical cells. Note that a number close to zero in this metric indicates near-

perfect load balance, while higher numbers indicate imbalanced load.

4.4.2 Experimental Results
What is the impact of partition capacity on different spatial partitioning
techniques?

The partition capacity B, i.e., the target number of moving actors per logical

cell, influences the amount of communication between moving actors and

system-level actors as well as the intensity of the load placed on system-level

actors. For smaller B, the load on system-level actors in each logical cell is

smaller, in general, but the resulting finer-grained partitioning can introduce

more communication across logical cells. By contrast, coarse-grained parti-

tioning increases the burden on system-level actors, but potentially lessens

communication intensity. For various spatial partitioning methods in Dolphin,

we would like to observe the relationship between partition capacity and sys-

tem performance so as to derive guidelines for the choice of spatial partitioning

methods under a range of different partition capacities.

We tested all spatial partitioning methods implemented in Dolphin and varied

the partition capacity B from 10 to 500 under Actor-Based Freshness semantics.

As can be seen in Figures 4.7 and 4.8, to achieve the best move and reaction

throughputs, different spatial partitioning methods would need to be config-

ured with distinct partition capacity. If we compare the performance of these

methods under their best setting for the partition capacity B, we can observe

that the Fixed Grid exhibits the best move and reaction throughput overall.

However, the variance in both metrics is much larger for the Fixed Grid than
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for other methods when we enlarge the partition capacity (cf. B =10, B =250,

and B =500). In other words, spatial partitioning methods other than the

Fixed Grid, especially the Quad-Tree and the K-D-Tree, are more resilient to

the setting chosen for partition capacity.

To explain the variation of throughput across methods for different settings

of B, we profiled Dolphin and remarked that a large contributor to observed

performance is the cost of communication. We analyze two primary types of

communication among actors in Dolphin: communication from moving actors

to system-level actors and communication from monitoring actors to moving

actors.The former communication component is shown in Figure 4.9a. Here,

we see that the the differences in this communication component between

B =10 and B =500 are 2.123x, 2.133x, 1.861x, 1.914x, and 1.272x for

Hilbert, Z-Ordering, K-D-Tree, Quad-Tree, and Fixed Grid, respectively.

The reason for additional communication with smaller partition capacity is that

fine-grained partitions lead to more interactions across logical cells. However,

this effect is not reflected in move throughput, in which the differences are

1.065x, 1.068x, 1.043x, 1.147x, and 1.166x between B =10 and B =500 for

the same methods listed above.

To explain this reverse trend in move throughput compared with communi-

cation between moving actors and system-level actors, we analyze the other

major component of communication, namely communication from monitoring

actors to moving actors. This latter metric is shown in Figure 4.9b. We observe

a general trend of higher dissemination from monitoring actors to reactive

moving actors as the partition capacity is increased. Also, we notice that the

monitoring dissemination number dominates the total amount of communica-

tion. The reason for these effects is that in the current system implementation,

only spatial partitioning helps restrict which reactive monitoring actors receive

monitoring information. In other words, monitoring information regarding

the movement of actors is distributed to all reactive moving actors in relevant

partitions. Thus, the amount of monitoring information disseminated is in

proportion to the number of reactive moving actors in each such relevant

partition. Additionally, under the same reactive sensing rate, more and more

moving actors are contained in a given partition as we enlarge the partition

size. This increases the number of moves that need to be disseminated and

eventually filtered by reactive moving actors.
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Figure 4.7: Move throughputs under var-
ied partition capacities with
different partitioning meth-
ods

Figure 4.8: Reaction throughputs under
varied partition capacities
with different partitioning
methods

To fully characterize the latter observation, we report in Figure 4.9c the

monitoring-to-moving-actor communication per reaction. We can observe a

strong correlation between this metric and the observed throughput, especially

of moves. This result indicates that there is significant asynchronous processing

of monitoring information sent to reactive moving actors with no chance to

trigger reactions, and that this processing takes valuable system resources that

could otherwise have been utilized to increase throughput.

As a final remark, in this experiment, we can see parameter tuning is necessary

for fixed grid partitioning. After fine-tuning the partition capacity B, the fixed

grid is the best choice, which agrees with its use in many popular spatial

databases (Yu et al., 2015; Yu et al., 2016; You et al., 2015; Aji et al., 2013;

Eldawy and Mokbel, 2015; Eldawy and Mokbel, 2013). However, other spatial

partitioning methods are more resilient to the tuning of the partition capacity

parameter. In particular, when partition capacity may be hard to tune, then

Quad-Tree and K-D-Tree are recommended.

For our following experiments, we employ the best observed setting for parti-

tion capacity B for different partitioning methods, i.e., B=50 for the two SFC

methods, B=25 for K-D-Tree, B=100 for Quad-Tree, and B=10 for fixed

grid partitioning.
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(a) Communication from
moving actors to system-
level actors under varied
partition capacities

(b) Communication from
monitoring actors to
moving actors under
varied partition capacities

(c) Monitoring-to-moving-
actor communication per
reaction under varied
partition capacities

Figure 4.9: The impact of partition capacity B in Dolphin with different partitioning
methods.

How does reactive sensing rate affect system performance under
different partitioning methods?

In the previous section, we have noted that dissemination of monitoring infor-

mation in logical cells represents a substantial cost and drives the throughput

of Dolphin. The amount of this type of communication that is generated by the

system is related to both the numbers of moving actors and reactive moving

actors in each logical cell. Since we fix the partition capacity B, the number

of reactive moving actors per logical cell becomes the main variable, which

is itself primarily driven by the reactive sensing rate. Thus, we would like to

investigate how the system behaves with increasing reactive sensing intensity

under the best partition capacity observed for each partitioning technique.

Move and reaction throughput generated by different spatial partitioning tech-

niques under varied reactive sensing rate is shown in Figures 4.10a and 4.10b,

respectively. The move throughputs of all partitioning methods decrease dra-

matically with increasing reactive sensing rate in the system, while the reaction

throughputs keep stable. This trend in move throughput is consistent with

a corresponding substantial increase in reaction latencies, which we can see

in Figure 4.10c, since as observed previously there is interference between

reaction generation and move throughput. Move task latencies, shown in Fig-

ure 4.10d, further confirm this observation. Here, we can see a large increase

in client-server latencies, indicating that the system is experiencing queuing

from concurrent load. Lower move throughput will imply that reactions are

triggered relatively less frequently, but the growing reactive sensing rate in-

creases the number of reactive moving actors. The balance between these two

competing factors results in the reaction throughput remaining stable.
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(a) Move throughput under varied reactive
sensing rate with different partitioning
methods

(b) Reaction throughput under varied reac-
tive sensing rate with different partition-
ing methods

(c) Reaction latencies under varied reactive
sensing rate with different partitioning
methods

(d) Task latency breakdown under varied re-
active sensing rate with different partition-
ing methods

Figure 4.10: The impact of reactive sensing rate on system performance with different
partitioning methods.

We can also see that among the spatial partitioning techniques, the most

resilient to increasing reactive sensing rates were the Quad-Tree and the

Fixed Grid, both of which exhibit relatively lower reaction latencies than

other methods. At 100% reactive sensing rate, these methods exhibit reaction

latencies of 36.319 ms and 32.558 ms, respectively, while the latencies of

other methods exceed 46.193 ms. Therefore, Quad-Tree and Fixed Grid are

recommended for higher reactive sensing rates due to their better observed

reaction latency.

How does reaction range affect system performance under different
partitioning methods?

Based on our observations in the experiments varying partition capacity and

reactive sensing rate, we conjecture that other variables that affect the amount
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(a) Move throughput under varied reaction
ranges with different partitioning methods

(b) Reaction throughput under varied reac-
tion ranges with different partitioning
methods

(c) Reaction latencies under varied reaction
ranges with different partitioning methods

(d) Task latencies breakdown under varied
reaction ranges with different partitioning
methods

Figure 4.11: The impact of reaction range on system performance with different
partitioning methods.

of information disseminated from monitoring actors to moving actors may

impact move or reaction throughput. A natural question is whether the

reaction range would have such an effect, since the larger the range, the more

monitoring actors in nearby logical cells a given reactive moving actor needs

to subscribe to. Consequently, it becomes easier for reactions to be triggered

because of the larger coverage of space containing potentially more moving

actors. We conduct experiments on a set of reaction ranges – 500m×500m,

707m×707m, 1000m×1000m, 1414m×1414m, and 2000m×2000m – that

are meaningful to be used in real scenarios.

As expected, Figures 4.11a shows that move throughput decreases with larger

reaction ranges for all spatial partitioning methods. Perhaps surprisingly,

reaction throughput also declines slightly with expanding reaction ranges, as

can be seen in Figure 4.11b. This slight decrease stands in contrast to the
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stable reaction throughput observed when we varied the reactive sensing rate,

suggesting that the expected increase in reactions triggered by a larger range

is partly offset by the expected reduction in reactions triggered due to lower

move throughput.

Figures 4.11c and 4.11d also confirm that the system behaves in a similar

way as observed above when we varied reactive sensing rate, indicating that

overload leads reaction and move task latencies to soar. Similarly to what was

observed in the original Dolphin proposal (cf. Chapter 3), we expect that this

overload situation could be addressed by by employing a server with larger

capacity. For brevity, we leave a validation experiment to future work.

We further remark that K-D-Tree is not recommended for large reaction range

settings, because the reaction latency increased 13.013x when the size of the

reaction range increased by 16x. Meanwhile, only a 5.45x increase was seen

for Fixed Grid, from 1.141ms to 6.223ms. Thus, for large reaction range

scenarios, Fixed Grid is recommended because it provides tighter reaction

latency, while K-D-Tree suffers the most.

How does query ratio affect system performance under different
partitioning methods?

Workloads in M-AODBs may not only include move requests from clients, but

also spatial query requests. To observe how Dolphin behaves under spatial

skew with various combinations of spatial range query and move requests, we

vary the ratio between queries and moves to which the system is exposed. We

explore a wide range of query ratios, going from 0% queries and 100% moves

to 100% queries and 0% moves.

In Figure 4.12a, we can see that the task throughput, which includes both

queries and moves, increases for all spatial partitioning methods as the query

ratio is increased. This trend is opposite to one observed in the original

Dolphin proposal under a uniform data distribution in Section 3.5.2, wherein

the task throughput decreased with increase query ratio. We observed then

that reaction latencies were kept stable, and the dominant effect was that

spatial range query requests are more costly than move requests.

With a skewed distribution as in the present experiment, we see a different

dynamic is revealed by reaction and task latencies, shown in Figures 4.12c

and 4.12d, respectively. Reaction latencies drop, indicating that load in the
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(a) Move throughputs under varied query ra-
tios with different partitioning methods

(b) Reaction throughputs under varied query
ratios with different partitioning methods

(c) Reaction latencies under varied query ra-
tios with different partitioning methods

(d) Task latency breakdown under varied
query ratios with different partitioning
methods

Figure 4.12: The impact of query ratio on system performance with different parti-
tioning methods.
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system is getting reduced. The effect is confirmed by the drop in the client-

server component of task latencies. At the same time, it is still verified that

the spatial range queries take more time to process at the server side than

move requests for all partitioning methods (cf. move and query components

of task latencies in Figure 4.12d). However, the decrease in load is sufficiently

large to release resources that offset the extra cost of queries and boost task

throughput.

Additionally, from Figures 4.12a and 4.12b, we remark that the move and

reaction throughputs of Fixed Grid, the method exhibiting the best perfor-

mance under a pure move workload, are taken over by the other four spatial

partitioning methods as query ratio is increased. Furthermore, the Quad-Tree
catches up on reaction latencies with the Fixed Grid when the query ratio

becomes bigger.

Can system leverage different partitioning methods to achieve scalability
under spatial skew?

The spatial partitioning methods evaluated above in Dolphin exhibit similar

behaviors across a range of parameters in a single-server setting. For multi-

server experiments, we focus our attention on two representative methods.

As the first method, we employ the default partitioning implementation of

Dolphin. It includes Fixed Grid for logical cell partitioning, which performed

well on most experiments after partition capacity tuning, and extends it with

K-D-Tree server placement partitioning while respecting logical cell boundaries

(see Section 4.3.3). Second, we select Quad-Tree, which among the remaining

methods performed best overall and was also more resilient to the specific

tuning of partition capacity. It is extended multiple servers by Z-Ordering

grouping (see Section 4.3.6). For simplicity, we refer to the two methods as

Default and Quad-Tree, respectively, in the remainder.

We first vary scale factors from 1 to 8, where each increase in scale factor is

associated with proportionally expanded numbers of server numbers, client

requests, dataset sizes, and numbers of hotspots. We can see from Figure 4.13a

that Dolphin does not scale linearly with the scale factor under data distri-

butions with spatial skew. In particular, when the scale factor increases 8x,

move throughput only rises by 2.761x and 2.246x for Default and Quad-Tree,

respectively. Correspondingly, reaction throughput respectively increases by
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2.842x and 2.394x. Both move task and reaction latencies, shown in Fig-

ure 4.13b, also increase with scale factor, and particularly so when the scale

factor doubles from 4 to 8. This effect is more pronounced for the Quad-Tree
than for Default.

To characterize the above effects, we first argue that the load imposed in the

system with higher scale factors is increased superlinearly, and thus linear

scalability cannot be expected in this scenario. In more depth, Figure 4.13c

illustrates the data distribution for scale factor equal to 1, where there is

one hotspot and 5000 moving actors that are arranged around it following a

Gaussian distribution. Suppose that we kept on adding hotspots with the same

number of actors each that are fully disjoint in space as we also increased

the number of servers. In this hypothetical case, we would expect load on

Dolphin to increase linearly by 8x when the scale factor would be 8. By

contrast, the actual spatial distribution we encounter at scale factor 8 is shown

in Figure 4.13d. The space size and the number of actors are proportionally

enlarged by the scale factor, and the same amount of moving actors are

placed around each hotspot following the same distribution. However, since

hotspots are placed randomly in space, they do not end up being disjoint, but

actually overlapping. This implies that there are regions of higher density

that can create dramatic increases in load even if the reaction range remains

unchanged.

To further delve into the differences between Default and Quad-Tree, we

display the move load balance coefficient with scale factor in Figure 4.13e

and the monitoring-to-moving-actor communication per reaction metric in

Figure 4.13f. The move load balance coefficient of Default is relatively stable

(e.g., increases of 0.9443x, 1.040x, and 0.922x between scale factors 1-2, 2-4,

and 4-8, respectively). By contrast, move load balance for Quad-Tree increases

by 1.871x from scale factor 1 to 8. Additionally, the efficiency in monitoring

information dissemination is worse in the Quad-Tree than it is on Default.

The combination of the two factors indicates that the Quad-Tree will suffer

more than Default as the scale factor is increased, even if neither method

could scale linearly.
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(a) Move and reaction
throughputs with increas-
ing servers and workload
under Quad-Tree and
Default partitioning

(b) Move and reaction laten-
cies with increasing servers
and workload under Quad-
Tree and Default partition-
ing

(c) Visualization of
data distribution in
one server

(d) Visualization of
data distribution in
eight servers

(e) Move load balance with in-
creasing servers and work-
load under Quad-Tree and
Default partitioning

(f) Monitoring-to-moving-
actor communication per
reaction with increasing
servers and workload
under Quad-Tree and
Default Partitioning

Figure 4.13: System scalability when employing Quad-Tree and Default partitioning.
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How does the system behave under varied spatial skew with different
partitioning methods?

We also test how different spatial partitioning techniques can help with perfor-

mance under various spatially skewed distributions. We run experiments from

near-uniform data (1 moving actor per hotspot) to heavily skewed data (5000

moving actors per hotspot).

For both Quad-Tree and Default, as seen in Figure 4.14a, move throughput

declines along with the increase in spatial skew. As pointed out in the previous

section, more skewed data can lead to worse move load balance, which

is confirmed in Figure 4.14b for both methods. However, we remark that

Default is more resilient to the changes in skew. The move throughput

of Default decreases by 5.625x, while the move throughput of Quad-Tree
declines by 7.163x across the whole range of skew settings. In Figure 4.14b,

we further observe that Default has worse move load balance coefficients

across all skew settings than those of the Quad-Tree. However, the move load

balance coefficient degrades across the skew settings by 4.040x for Default,

but by as much as 5.133x for the Quad-Tree. The latter suggests that the

Quad-Tree is more affected by increasing skew. Notwithstanding, to fully

explain the move throughput differences between the methods, the overhead

of communication due to reaction processing needs to be taken into account.

Figure 4.14c contrasts the two methods with the monitoring-to-moving-actor

communication per reaction metric. The results suggest that the interference

from reaction processing on system resources available for ingesting moves is

significantly higher for the Quad-Tree than for Default, reinforcing the effect

seen for move load balance.

Reaction throughput goes up with increasing skew up to the 500 moving

actors/hotspot distribution, then falls off when data distribution gets denser.

We reason that with a denser data distribution, one move would be more

likely to generate more reactions, because more moving actors may have been

affected by this move. However, the drop in move throughput counterbalances

this trend. In particular, if the frequency of movement is reduced, so must be

the frequency of triggering reactions. Still, compared with the throughputs for

both moves and reactions in the original Dolphin proposal in Section 3.5.2,

this result underscores the need of careful tuning to data distribution for

Default, which achieves higher numbers, as well as the possibility to utilize
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(a) Move and reaction
throughputs under var-
ied spatial skew with
Quad-Tree and Default
partitioning.

(b) Move load balance under
increasing spatial skew
distribution with Qua-
Tree and Default partition-
ing

(c) Monitoring-to-moving-
actor communication per
reaction under varied spa-
tial skew with Quad-Tree
and Default Partitioning

Figure 4.14: System performance under varied spatial skew settings with Quad-Tree
and Default partitioning.

methods that require less tuning to deliver competitive performance, such as

the Quad-Tree.

4.5 Related Work
In most spatial databases, spatial data partitioning generates a set of partitions

that are processing units for spatial processes, which not only aids in load

balancing, but also helps with parallelization of computations. As observed

by Zhou et.al (Zhou et al., 1998), it is critical to preserve spatial locality when

designing a data partitioning framework for spatial parallel processing. Dis-

tributed spatial databases that are currently widely used employ a variety

of such spatial partitioning techniques to achieve parallelism. For instance,

Hadoop-GIS (Aji et al., 2013) uses recursive grid partitioning and a global direc-

tory (R-tree, R*-tree) that helps identify partitions that need to be loaded. Aji

et al. (Aji et al., 2015) evaluate a wide range of spatial partitioning algorithms,

including fixed grid, Hilbert curve, Binary split, Strip, Sort-tile-recursive, and

Boundary optimized strip, and observe their effects on partition balance, query

performance, and partition efficiency in the context of this system. Also, this

work points out that finding a optimal spatial partitioning is NP-hard. It is thus

argued that an efficient partitioning choice is based on practical requirements

and application scenarios. Similarly, SpatialHadoop (Eldawy and Mokbel,

2015; Eldawy and Mokbel, 2013) supports grid files, R-tree, and R+-trees

to index partitions across all nodes. Eldawy et al. (Eldawy et al., 2015) ex-

perimentally evaluate other four alternative partitioning techniques, namely

Quad-Tree, K-D-Tree, Z-Ordering, and Hilbert, together with the three default
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partitioning techniques in SpatialHadoop. The results reveal the impact of

these different partitioning methods on spatial query performance as well as

the partitioning structure quality obtained in SpatialHadoop. GeoSpark (Yu

et al., 2015; Yu et al., 2016) allows fixed grid, Hilbert, R-tree, and Voronoi

partitioning. SpatialSpark (You et al., 2015) employs fixed grid partitioning, bi-

nary space partitioning, as well as tile partitioning. LocationSpark (Tang et al.,
2016) employs grids and Quad-Trees to ensure data partition are balanced

in data size. GeoMesa (Hughes et al., 2015) utilizes geo-hashing based on Z-

Ordering to derive a spatio-temporal partitioning. MD-HBase (Nishimura et al.,
2013) builds K-D-Tree and Quad-Tree partitioning on top of HBase by utilizing

Z-curve linearization. Even though various spatial partitioning techniques

are used in a number of spatial data management solutions to aid in parallel

processing and data distribution, none of those systems has investigated the

impact of partitioning techniques on reactivity and reactive systems, as our

work does.

Dolphin is the first implementation of recently proposed Moving Actor-Oriented

Databases (cf. Section 3.4). Dolphin relies by default on a fixed grid for logical

cell partitioning, which is complemented by server placement partitioning

based on a K-D-Tree. Previous experiments in Dolphin have not included a

detailed investigation of a variety of spatial partitioning techniques to evaluate

their potential to aid in handling data skewed in space, which is discussed in

this chapter.

There exist specialized partitioning methods that we can explore in the future.

For instance, Anwar et al. (Anwar et al., 2014) and Ji and Geroliminis (Ji

and Geroliminis, 2012) propose specific traffic congestion-based spatial parti-

tioning methods for urban transportation networks. Deep learning has been

investigated as a possible methodology to automatically choose an optimal

partitioning technique based on a specific spatial data distribution (Vu et al.,
2020). In a similar vein, instead of relying only on classic partitioning tech-

niques, a potential avenue for future work is the exploration of learned data

structures as they hold potential to adapt to a particular dataset and work-

load (Kraska et al., 2018). ZM-index (Wang et al., 2019a), ML-index (Davitkova

et al., 2020), LISA (Li et al., 2020a), PolyFit (Li et al., 2020b), Flood (Nathan

et al., 2020), TRS-Tree (Wu et al., 2019), and XIndex (Tang et al., 2020) are all

methodologies that extend learned data structures to spatial data. Some of

these methodologies are limited, e.g., offering only constrained support for

spatial queries and datatypes or not offering support for dynamic workloads.
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Additionally, and more importantly, none of them have been implemented and

tested in a reactive spatial system.

4.6 Conclusions and Future Work
This chapter has evaluated classic spatial partitioning techniques in Dolphin,

the first implementation of recently proposed Moving Actor-Oriented Databases

(M-AODBs) for reactive moving object applications. In particular, the evalu-

ation has focused on the behavior of these methods in Dolphin when faced

with data distributions with spatial skew, which is typical in reactive moving

object applications. Spatial skew can cause load imbalances in parallel pro-

cessing as well as increase communication overheads. To explore how spatial

partitioning techniques can help handle problems caused by spatially skewed

data in Dolphin, we firstly analyzed the multiple levels of spatial partitioning

used in Dolphin and discussed the associated goals and constraints that need

to be respected by spatial partitioning methods. Secondly, we integrated sev-

eral classic partitioning methodologies into Dolphin. Thirdly, we conducted

experiments in Dolphin on the basis of important parameters to delineate

the impact of different partitioning methods on varied performance metrics.

Our results identify how to choose adequate partitioning techniques based on

use scenarios. Additionally, we also reveal that increasing the efficiency of

dissemination of monitoring information in Dolphin is likely to substantially

impact system performance, thus being a worthy direction for future study.
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5Conclusion

Due to the unprecedented popularization of Internet-of-Things (IoT) applica-

tions, new challenges in the construction of IoT data platforms have emerged:

1) an IoT data platform needs to be scalable because of the explosive growth

of IoT data and expanding user requests; 2) the heterogeneity of IoT data

formats and arbitrary degree of distribution of IoT devices requires an IoT data

platform to be flexible; 3) the dynamicity in deployment of IoT devices raises

the need for elasticity in an IoT data platform; 4) a new requirement of tight

latency reactivity has been put forward, especially with the advent of mobile

IoT applications; and, 5) providing programmability in an IoT data platform

is crucial to ease the burden of application developers in designing complex

application functionality with associated data management features.

There are a number of solutions that can help with building IoT data platforms.

Spatial data management is an essential part of managing mobile IoT data,

but many spatial data management systems fail to provide reactivity function-

ality, which is by contrast supported in reactive systems. However, reactive

systems have limited and constrained support for spatial features. Meanwhile,

Actor-Oriented Databases (AODBs) are a recently proposed cloud-based data

management solution for distributed, interactive, and scalable applications,

and these new systems are a natural to fit the requirements of building IoT

data platforms. However, AODBs lack support for reactivity and spatial data

management.

Based on our analysis of the requirements, characteristics, and constraints

of IoT data platforms, we provided guidance on how to model IoT data

platforms with AODBs. Furthermore, we presented a new proposal detailing

how to enrich an AODB with spatial data management features and reactivity

functionality to support building scalable and reactive data platforms for

mobile IoT applications.

5.1 Summary of the Dissertation
There are three main contributions in this dissertation:
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1. Modeling and Building IoT Data Platforms with Actor-Oriented

Databases. In the first part of this dissertation, we discussed the challenges

of building IoT data platforms, including how to support and manage a

massive amount of concurrently generated heterogeneous data from IoT

applications, how to effectively share and protect those data, and how

to achieve system scalability. We investigated two distinct real-world IoT

application case studies, namely beef cattle tracking and tracing and struc-

tural health monitoring (SHM). These case studies helped us illustrate

functional and non-functional requirements of IoT data platforms. We

further remarked that Actor-Oriented Databases (AODBs) are naturally

suitable for addressing the challenges and fulfilling the requirements of IoT

data platforms. However, how to utilize AODBs to model and build IoT

data platforms to manage data from IoT applications is an open research

question. Therefore, we investigated and provided guidelines on how to

model IoT data platforms with AODBs, including: how to identify actors

from IoT entities; how to decide the granularity of actors; how to enforce

relationship constraints across actors; and how to navigate the trade-offs

between employing actors or non-actor objects for frequently accessed IoT

entities. A prototype of an SHM data platform based on our suggested

guidance was built and validated through experiments.

2. Building a Moving Actor-Oriented Database for Reactive Mobile IoT

Applications. To provide an effective and programmable data platform

for reactive mobile IoT applications, in this part of the dissertation, we

introduced a novel system that combines scalable spatial data management

with reactivity. As part of this proposal, we defined a new abstraction of

moving actors that provides fundamental functionalities needed by moving

objects in reactive mobile IoT data platforms. We term our novel system

architecture supporting moving actors Moving Actor-Oriented Databases

(M-AODBs), underscoring that it builds upon the substrate given by AODBs.

To tackle a core challenge in realizing M-AODBs, we defined two concur-

rency semantics, namely Actor-based Freshness semantics and Actor-based

Snapshot semantics, satisfying different use scenarios. Furthermore, we

provided the first implementation of M-AODBs called Dolphin based on the

Microsoft Orleans virtual actor runtime. Experiments on synthetic distri-

bution and C-ITS benchmarks showed that Dolphin can satisfy the mobile

IoT data platform requirements of providing for spatial data management,

scalability, and low-latency reactions.
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3. Evaluating Partitioning Techniques to Handle Spatial Skew in Dolphin.

Dolphin achieves scalability and provides low-latency reactions based on

parallelism, distribution, and appropriate concurrency semantics. However,

spatial skew is typical in mobile IoT applications, which can affect the load

balance and communication overhead between partitions. In our Dolphin

experiments, we noticed that spatial skew heavily affected system perfor-

mance. To understand and quantify the impact of spatial partitioning in

Dolphin, we conducted a thorough evaluation of several classic partitioning

techniques in Dolphin in this part of the dissertation. First, we analyzed the

partitioning architecture of Dolphin, illustrating the goals and constraints

at different levels of Dolphin partitioning. Then, we discussed the integra-

tion of classic spatial partitioning methods into Dolphin and conducted an

evaluation of essential factors that affect system performance. Based on an

analysis of our results, we discussed how to choose the most adequate parti-

tioning techniques under various scenarios. Furthermore, our experiments

revealed that the dominant factor that influences Dolphin performance is

the overhead of disseminating monitoring information inside logical cells.

This dissertation aimed to provide scalable and reactive data management for

mobile IoT applications based on Actor-Oriented Databases. To achieve this

goal, we firstly clarified the problems, challenges, and requirements of IoT data

platforms and provided clear guidance on modeling IoT data platforms based

on AODBs. Secondly, we proposed the novel architecture of Moving Actor-

Oriented Databases that provides scalability and supports low-latency reactions

for reactive moving object applications. Dolphin, the first prototype of an M-

AODB, is a concrete implementation that can help alleviate the complexity of

development and data management for this challenging scenario. Lastly, we

conducted a thorough evaluation of how classic partitioning methods can help

with handling spatial skew in Dolphin.

5.2 Ongoing and Future Work
Given the enormous potential impact of mobile IoT applications on society, we

hope that our work can serve the role of a catalyst to encourage the research

community to explore further novel data management solutions, programming

abstractions, and algorithms for this scenario. We present our current ongoing

work and list several promising directions for future work in this section:
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1. Guarantee Fault Tolerance and Failure Recovery in M-AODBs. The Or-

leans runtime dynamically manages actor life-cycle and provides fault

tolerance on actor instances, but recovery of the system to a consistent

state in the presence of failures is not given by Orleans. To achieve failure

recovery in M-AODBs, it is necessary to take into consideration how to

persist and reload actor state during processing and reactivations.

2. Integrate Historical Data Processing and Management to M-AODBs.

Even though M-AODBs employ data storage as a back-end, historical data

processing and management were not in our consideration. In the future,

support for queries on historical data or reactions based on historical data

analysis comprise a promising direction for enriching M-AODBs to meet

even more of the requirements of mobile IoT applications.

3. Enforce Data Constraints between Actors in AODBs. Due to encapsu-

lated state in actors and actors only influencing each other by asynchronous

messaging, relationship constraints between actors are actually distributed

even though in some situations data changes need to be consistent. It re-

mains as an interesting direction for further exploration to develop special-

purpose transaction or workflow models to guarantee these constraints

across actors are respected.

4. Reduce Stream Dissemination Costs by Indexing during Reaction Pro-

cessing. Our evaluation shows that the communication from monitoring

actors to their subscribed moving actors in each logical cell is the main

bottleneck exhibited by Dolphin. Additionally, we have observed that the

number of messages sent is much larger than the number of reactions that

are eventually triggered. Implementing indexing on the monitoring range

of reactive moving actors, and sending monitoring information based on

indexing is a feasible way to solve the issue. However, reaction monitoring

areas of moving actors are dynamic, changing along with their movements.

Indexing the dynamic reaction monitoring areas of moving actors while

respecting concurrency semantics in an asynchronous distributed system is

a nontrivial direction of further exploration.

5. Employ Dynamic Partitioning Techniques in M-AODBs. In this work,

we assume the spatial distribution of moving actor locations is relatively

stable even though data is dynamic. For instance, a hotspot in space is

always considered to be denser than other areas most of the time. For some

applications, this assumption may not hold. These applications may require
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dynamic partitioning that accommodates highly dynamic data where the

skew in the spatial distribution of moving actors changes over long periods

of time. Therefore, dynamic partitioning techniques can be evaluated, and

potentially adopted, to improve performance in these scenarios.

6. Utilize Learned Partitioning Techniques in M-AODBs. Recent research

has explored the idea of employing a learned data structure to derive a spa-

tial index that fits a given dataset. Instead of employing a general-purpose

classic partitioning structure, recent studies on learned data structures

suggest that we can capture spatial properties of specific data distributions,

and tailor a partitioning to adapt to this data distribution. However, learned

partitioning techniques have not been implemented or evaluated in a re-

active IoT data platform, which is a worthy path for future research in

M-AODBs.
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