
yova kementchedjhieva

M E T H O D S , E VA L UAT I O N S A N D R E S O U R C E S F O R
M U LT I L I N G UA L T R A N S F E R L E A R N I N G





M E T H O D S , E VA L UAT I O N S A N D R E S O U R C E S F O R
M U LT I L I N G UA L T R A N S F E R L E A R N I N G

yova kementchedjhieva

PhD Thesis

February 2021



thesis supervisor:
Anders Søgaard

assessment committee:
Christian Igel, University of Copenhagen
Mirella Lapata, University of Edinburgh
Mikel Artetxe, DeepMind

affiliation:
Department of Computer Science
Faculty of Science
University of Copenhagen

Yova Kementchedjhieva: Methods, Evaluations and Resources for Multi-
lingual Transfer Learning, February 2021



A B S T R A C T

Language technology has transformed the way we write, the way
we interact with our devices, and the way we share and consume
information. This was made possible by advancements in the field of
Natural Language Processing (NLP), a largely data-driven subfield
of machine learning. Since data are limited for many of the tasks,
domains and languages studied in NLP, transfer learning has gained
great prominence in the field as a way to alleviate data scarcity. This
thesis presents work on methods, evaluations and resources for mul-
tilingual transfer learning. Our research shows how to improve and
correctly evaluate cross-lingual embeddings obtained through align-
ment. It sheds light on the source of performance in cross-lingual
transfer learning for dependency parsing. And it introduces two new
resources for language generation tasks, one best viewed as a test bed
for cross-domain transfer methods and the other, as a test bed for
meta-learning techniques. This thesis contributes to efforts in NLP to-
wards optimal transfer of knowledge across languages and highlights
some remaining limitations.

A B S T R A C T I N D A N I S H – A B S T R A K T PÅ D A N S K

Sprogteknologi har transformeret den måde vi skriver på, den måde
vi interagerer med vores digitale enheder på og den måde vi deler og
forbruger information på. Denne transformation er muliggjort som
følge af fremskridt inden for Natural Language Processing (NLP),
et hovedsageligt datadrevet underfelt indenfor maskinlæring. Da da-
ta er en begrænset ressource der anvendes til mange af de opgaver,
domæner og sprog der studeres i NLP, har overførselslæring fået frem-
trædende plads i feltet som en måde at lindre dataknaphed på. Denne
afhandling præsenterer metoder, evalueringer og ressourcer der kan
anvendes til flersproget tranfer learning. Den udarbejdede forskning
viser, hvordan man kan forbedre og korrekt evaluere flersprogede
indlejringer opnået gennem matchning. Ydermere kastes der lys over
grundlaget for ydeevnen i flersproget tranfer learning for dependency
parsing. Derudover introducerer afhandlingen to nye ressourcer til
sproggenereringsopgaver, den ene ses bedst som en testplatform til
transfer metoder på tværs af domæner og den anden som en testplat-
form til metalæringsteknikker. Denne afhandling bidrager til indsatsen
i NLP mod optimal overførsel af viden på tværs af sprog og fremhæver
nogle resterende begrænsninger.
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1
I N T R O D U C T I O N

Language technology has become integral to the digital activities one
carries out on a daily basis. That is, if one carries out their daily
activities in English, or in one of a few other languages of similarly
high socioeconomic status. For the purposes of Natural Language
Processing (NLP), the machine learning subfield behind all language
technology we know, this status translates into high data availability.
That in turn enables the development of a range of high-quality func-
tionalities for these high-resource languages, like getting assistance in
writing emails, easily finding relevant content online, making appoint-
ments with voice control, discovering the best restaurants, movies,
books for one’s taste, and many more. Meanwhile, the development
of language technology for the other several thousand languages spo-
ken in the world is lagging behind for two main reasons: a data
scarcity ranging in magnitude from merely inconvenient to largely in-
surmountable, and a longstanding lack of an incentive for researchers
in both industry and academia to work outside of the few ‘chosen’ lan-
guages. The last few years have seen a shift in attitudes with respect
to the latter, motivated by goals of equality and democratization of the
Internet and its associated technology. The matter remains, however,
that data for many of the world’s languages are limited, rendering
most of the methods designed for high-resource languages unusable
in the general case.

Consider as an example the spell-checking function of Google Docs,
the widely used online word processor, and how it responds to the
same sentence when presented in English, Bulgarian and Macedonian.
In all cases the sentence contains two errors, a grammatical one and a
typographical one:

He
:::::
speak to the

::::::::::
manageer.

Той говоря с
:::::::::::::
мениджъъра.

Тоj зборувам со менаџеерот.

In Google Docs a blue wavy line signifies bad grammar and a red
wavy line signifies a typo. In the English sentence, we see the incorrect
verb form marked as a grammatical error and the typo in manager
marked as such. In Bulgarian, on the other hand, the word processor
can detect typos but not grammatical errors. Bulgarian is a language
of only about nine million speakers, but it is also one of the 24 official
languages of the European Union.1 Meanwhile, Macedonian, which
has not yet obtained this status and is spoken by only about two

1 The proceedings of the European Parliament are a great source of language data.
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million people, is simply not supported by Google’s spelling and
grammar tools.

The future of language technology for Bulgarian, Macedonian and
the numerous even less resourceful languages of the world lies with
multilingual NLP, a branch of NLP which focuses on the development
of algorithms that work for languages with very different linguistic
properties and that, crucially, can work in settings of limited data
availability. The latter requirement motivates the development of a
range of techniques that fall under the scope of transfer learning. They
aim to alleviate the problems that arise in low-resource settings by
leveraging data, i.e. transferring knowledge, from other domains,
tasks, and languages.

transfer learning is a broad term that refers to training NLP models
on data other than those available for the specific task one wants to
solve (Pan and Yang, 2010). One example of a target task, domain and
language is grammatical error correction (GEC) for formal documents
in Macedonian. If insufficient data are available for this specific task,
one could resort to transfer learning (a) across domains, if GEC data
are available for other types of text in Macedonian, e.g. for Wikipedia
articles, (b) across tasks, if data are available for another task that is re-
lated to grammar e.g. part-of-speech tagging, and (c) across languages,
if GEC data are available for another language. In many cases data
would be available in multiple other languages, and the choice among
them can be very consequential. Cross-lingual transfer takes place
more naturally between languages with similar properties, which is
often the case for languages from the same family. For Macedonian,
for example, a good source language for transfer learning could be
Bulgarian, a closely related Slavic language with similar vocabulary
and grammar.

Transfer of knowledge, whether it is across domains, tasks or lan-
guages, can happen in three main ways: via the pre-training of an NLP
model on source data, optionally followed by fine-tuning on target
data or used directly to solve the target task in a zero-shot fashion;
via multi-task, cross-domain or cross-lingual training, which all refer
to the training of a model simultaneously on source and target data
across tasks, domains or languages, respectively; or via meta-learning
of the initial parameters of an NLP model—in this case the knowledge
being transferred does not pertain to the specific task at hand, but
rather to the general skill of learning to solve a task from limited
evidence.

this thesis presents work on the development of methods and re-
sources for transfer learning in multilingual, low-resource settings.

The first three chapters concern the topic of cross-lingual word em-
bedding (CLWE) alignment. Chapter 2 presents a supervised method
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for the alignment of English to a low-resource language improved
via anchoring to a third high-resource language related to the low-
resource language of interest. Chapter 3 argues for a fair comparison
of unsupervised methods for cross-lingual embedding alignment,
showing that their separate components need to be set side by side in
a controlled setting. And Chapter 4 shows that one key benchmark
used in the evaluation of cross-lingual embeddings on the task of
bilingual dictionary induction is deeply flawed.

Chapter 5 measures the individual and combined merit of data aug-
mentation and cross-lingual transfer learning for dependency parsing
in extremely low-resource settings.

Chapter 6 presents a multi-lingual, multi-domain dataset for the
little studied task of appositive generation, a task which we argue is
best approached through transfer learning, due to the rare occurrence
of appositives in text which results in data sparsity.

In Chapter 7 we introduce a challenge dataset based on language
puzzles from Linguistic Olympiads. This dataset tests the abilities of
NLP models to learn to translate from one language to another based
on as few as ten parallel sentences.
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G E N E R A L I Z I N G P R O C R U S T E S A N A LY S I S F O R
B E T T E R B I L I N G UA L D I C T I O N A RY I N D U C T I O N

abstract

Most recent approaches to bilingual dictionary induction find a linear
alignment between the word vector spaces of two languages. We show
that projecting the two languages onto a third, latent space, rather
than directly onto each other, while equivalent in terms of expressiv-
ity, makes it easier to learn approximate alignments. Our modified
approach also allows for supporting languages to be included in
the alignment process, to obtain an even better performance in low
resource settings.

2.1 introduction

Several papers recently demonstrated the potential of very weakly su-
pervised or entirely unsupervised approaches to bilingual dictionary
induction (BDI) (Artetxe, Labaka, and Agirre, 2017; Barone, 2016; Con-
neau et al., 2018; Søgaard, Ruder, and Vulić, 2018; Zhang et al., 2017),
the task of identifying translational equivalents across two languages.
These approaches cast BDI as a problem of aligning monolingual word
embeddings. Pairs of monolingual word vector spaces can be aligned
without any explicit cross-lingual supervision, solely based on their
distributional properties (for an adversarial approach, see Conneau
et al. (2018)). Alternatively, weak supervision can be provided in the
form of numerals (Artetxe, Labaka, and Agirre, 2017) or identically
spelled words (Søgaard, Ruder, and Vulić, 2018). Successful unsuper-
vised or weakly supervised alignment of word vector spaces would
remove much of the data bottleneck for machine translation and push
horizons for cross-lingual learning (Ruder, Vulić, and Søgaard, 2018).

In addition to an unsupervised approach to aligning monolingual
word embedding spaces with adversarial training, Conneau et al.
(2018) present a supervised alignment algorithm that assumes a gold-
standard seed dictionary and performs Procrustes Analysis (Schöne-
mann, 1966). Søgaard, Ruder, and Vulić (2018) show that this ap-
proach, weakly supervised with a dictionary seed of cross-lingual
homographs, i.e. words with identical spelling across source and target
language, is superior to the completely unsupervised approach. We
therefore focus on weakly-supervised Procrustes Analysis (PA) for
BDI here.

5
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The implementation of PA in Conneau et al. (2018) yields notable
improvements over earlier work on BDI, even though it learns a simple
linear transform of the source language space into the target language
space. Seminal work in supervised alignment of word vector spaces
indeed reported superior performance with linear models as compared
to non-linear neural approaches (Mikolov, Le, and Sutskever, 2013).
The relative success of the simple linear approach can be explained
in terms of isomorphism across monolingual semantic spaces,1 an
idea that receives support from cognitive science (Youn et al., 2016).
Word vector spaces are not perfectly isomorphic, however, as shown by
Søgaard, Ruder, and Vulić (2018), who use a Laplacian graph similarity
metric to measure this property. In this work, we show that projecting
both source and target vector spaces into a third space (Faruqui and
Dyer, 2014), using a variant of PA known as Generalized Procrustes
Analysis (Gower, 1975), makes it easier to learn the alignment between
two word vector spaces, as compared to the single linear transform
used in Conneau et al. (2018).

contributions We show that Generalized Procrustes Analysis
(GPA) (Gower, 1975), a method that maps two vector spaces into a
third, latent space, is superior to PA for BDI, e.g., improving the state-
of-the-art on the widely used English-Italian dataset (Dinu, Lazaridou,
and Baroni, 2015) from a P@1 score of 66.2% to 67.6%. We com-
pare GPA to PA on aligning English with five languages representing
different language families (Arabic, German, Spanish, Finnish, and
Russian), showing that GPA consistently outperforms PA. GPA also
allows for the use of additional support languages, aligning three
or more languages at a time, which can boost performance even fur-
ther. We present experiments with multi-source GPA on an additional
five low-resource languages from the same language families (He-
brew, Afrikaans, Occitan, Estonian, and Bosnian), using their bigger
counterpart as a support language. Our code is publicly available.2

2.2 procrustes analysis

Procrustes Analysis is a graph matching algorithm, used in most
mapping-based approaches to BDI (Ruder, Vulić, and Søgaard, 2018).
Given two graphs, E and F, Procrustes finds the linear transformation
T that minimizes the following objective:

arg min
T
||TE− F||2 (2.1)

thus minimizing the trace between each two corresponding rows of
the transformed space TE and F. We build E and F based on a seed

1 Two vector spaces are isomorphic if there is an invertible linear transformation from
one to the other.

2 https://github.com/YovaKem/generalized-procrustes-MUSE

https://github.com/YovaKem/generalized-procrustes-MUSE
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(a) Procrustes Analysis (b) Generalized Procrustes Analy-
sis

Figure 2.1: Visualization of the difference between PA, which maps the source
space directly onto the target space, and GPA, which aligns both
source and target spaces with a third, latent space, constructed
by averaging over the two language spaces.

dictionary of N entries, such that each pair of corresponding rows in E
and F, (en, fn) for n = 1, . . . , N consists of the embeddings of a trans-
lational pair of words. In order to preserve the monolingual quality
of the transformed embeddings, it is beneficial to use an orthogonal
matrix T for cross-lingual mapping purposes (Artetxe, Labaka, and
Agirre, 2017; Xing et al., 2015).3 Conveniently, the orthogonal Pro-
crustes problem has an analytical solution, based on Singular Value
Decomposition (SVD):

F>E = UΣV>

T = VU>
(2.2)

2.3 generalized procrustes analysis

Generalized Procrustes Analysis (Gower, 1975) is a natural extension
of PA that aligns k vector spaces at a time. Given embedding spaces
E1, . . . , Ek, GPA minimizes the following objective:

arg min
{T1,...,Tk}

k

∑
i<j
||TiEi − TjEj||2 (2.3)

For an analytical solution to GPA, we compute the average of the
embedding matrices E1...k after transformation by T1...k:

G = k−1
k

∑
i=1

EiTi (2.4)

3 Recently, Doval et al. (2018) showed that the monolingual quality of embeddings
need not suffer from a transformation guided by cross-lingual alignment, but their
method still relies on an initial alignment obtained e.g. with Procrustes analysis, as
described here.
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thus obtaining a latent space, G, which captures properties of each of
E1...k, and potentially additional properties emerging from the combi-
nation of the spaces. On the very first iteration, prior to having any
estimates of T1...k, we set G = Ei for a random i. The new values of
T1...k are then obtained as:

G>Ei = UΣV>

Ti = VU> for i in 1 . . . k
(2.5)

Since G is dependent on T1...k (see Eq.2.4), the solution of GPA cannot
be obtained in a single step (as is the case with PA), but rather requires
that we loop over subsequent updates of G (Eq.2.4) and T1...k (Eq.2.5)
for a fixed number of steps or until satisfactory convergence. We
observed little improvement when performing more than 100 updates,
so we fixed that as the number of updates.

Notice that for k = 2 and with the orthogonality constraint in place,
the objective for Generalized Procrustes Analysis (Eq. 2.3) reduces to
that for simple Procrustes (Eq. 2.1):

arg min
{T1,T2}

||T1E1 − T2E2||2

= arg min
T
||TE1 − E2||2

where T = T1TT
2

(2.6)

Here T itself is also orthogonal. Yet, the solution found with GPA
may differ from the one found with simple Procrustes: the former
maps E1 and E2 onto a third space, G, which is the average of the
two spaces, instead of mapping E1 directly onto E2. To understand
the consequences of this difference, consider a single step of the
GPA algorithm where after updating G according to Eq.2.4 we are
recomputing T1 using SVD. Due to the fact that G is partly based on
E1, these two spaces are bound to be more similar to each other than
E1 and E2 are.4 Finding a good mapping between E1 and G, i.e. a
good setting of T1, should therefore be easier than finding a good
mapping from E1 to E2 directly. In this sense, by mapping E1 onto
G, rather than onto E2 (as PA would do), we are solving an easier
problem and reducing the chance of a poor solution.

2.4 experiments

In our experiments, we generally use the same hyper-parameters
as used in Conneau et al. (2018), unless otherwise stated. When
extracting dictionaries for the bootstrapping procedure, we use cross-
domain local scaling (CSLS, see Conneau et al. (2018) for details) as a
metric for ranking candidate translation pairs, and we only use the
ones that rank higher than 15,000. We do not put any restrictions

4 A theoretical exception being the case there E1 and E2 are identical.
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High-resource ar de es fi ru

575k 2,183k 1,412k 437k 1,474k

Low-resource he af oc et bs

224k 49k 84k 175k 77k

Table 2.1: Statistics for Wikipedia corpora.

ar de es fi ru ave

k = 1 k = 10 k = 1 k = 10 k = 1 k = 10 k = 1 k = 10 k = 1 k = 10 k = 1 k = 10

PA 34.73 61.87 73.67 91.73 81.67 92.93 45.33 75.53 47.00 79.00 56.48 80.21

GPA 35.33 64.27 74.40 91.93 81.93 93.53 47.87 76.87 48.27 79.13 57.56 81.15

Table 2.2: Bilingual dictionary induction performance, measured in P@k, of
PA and GPA across five language pairs.

on the initial seed dictionaries, based on cross-lingual homographs:
those vary considerably in size, from 17,012 for Hebrew to 85,912 for
Spanish. Instead of doing a single training epoch, however, we run PA
and GPA with early stopping, until five epochs of no improvement
in the validation criterion as used in Conneau et al. (2018), i.e. the
average cosine similarity between the top 10,000 most frequent words
in the source language and their candidate translations as induced
with CSLS. Our metric is Precision at k×100 (P@k), i.e. percentage
of correct translations retrieved among the k nearest neighbor of the
source words in the test set (Conneau et al., 2018). Unless stated
otherwise, experiments were carried out using the publicly available
pre-trained fastText embeddings, trained on Wikipedia data,5 and
bilingual dictionaries—consisting of 5000 and 1500 unique word pairs
for training and testing, respectively—provided by Conneau et al.
(2018)6.

2.4.1 Comparison of PA and GPA

high resource setting We first present a direct comparison
of PA and GPA on BDI from English to five fairly high-resource
languages: Arabic, Finnish, German, Russian, and Spanish. The
Wikipedia corpus sizes for these languages are reported in Table 2.1.
Results are listed in Table 2.2. GPA improves over PA consistently for
all five languages. Most notably, for Finnish it scores 2.5% higher than
PA.

common benchmarks For a more extensive comparison with
previous work, we include results on English–{Finnish, German,
Italian} dictionaries used in Conneau et al. (2018) and in Artetxe,

5 https://github.com/facebookresearch/fastText

6 https://github.com/facebookresearch/MUSE

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/MUSE
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it de fi

5000 Identical Num. 5000 Identical Num. 5000 Identical Num.

Wacky

VecMap 45.27* 38.33 39.40* 44.27* 40.73 40.27* 32.94* 27.39 26.47*

PA 44.90 45.47 01.13 47.26 47.20 45.93 33.50 31.46 01.05

GPA 45.33 45.80 45.93 48.46 47.60 47.60 31.39 31.04 28.93

Wikipedia

PA 66.24 66.39 - 65.33 64.77 - 36.77 35.40 -

GPA 67.60 67.14 - 66.21 65.81 - 38.14 37.87 -

Table 2.3: Results on standard benchmarks, measured in P@1. * Results
as reported in the original paper. Notes: Conneau et al. (2018)
report 63.7 on Italian with Wikipedia embeddings; results with
different embedding sets are not comparable due to a non-zero
out-of-vocabulary rate on the test set for Wikipedia embeddings;
Wikipedia embeddings are trained on corpora with removed nu-
merals, so supervision from numerals cannot be applied.

Labaka, and Agirre (2018b). The latter introduced the second best
approach to BDI known to us, VecMap, which also uses Procrustes
Analysis. We conduct experiments using three forms of supervision:
gold-standard seed dictionaries of 5000 word pairs, cross-lingual ho-
mographs, and numerals. We use train and test bilingual dictionaries
from Dinu, Lazaridou, and Baroni (2015) for English-Italian and from
Artetxe, Labaka, and Agirre (2017) for English-{Finnish, German}.
Following Conneau et al. (2018), we report results with a set of CBOW
embeddings trained on the WaCky corpus (Barone, 2016), and with
Wikipedia embeddings.

Results are reported in Table 2.3. We observe that GPA outperforms
PA consistently on Italian and German with the WaCky embeddings,
and on all languages with the Wikipedia embeddings. Notice that
once more, Finnish benefits the most from a switch to GPA in the
Wikipedia embeddings setting, but it is also the only language to
suffer from that switch in the WaCky setup.

Interestingly, PA fails to learn a good alignment for Italian and
Finnish when supervised with numerals, while GPA performs com-
parably with numerals as with other forms of supervision. Conneau
et al. (2018) point out that improvement from subsequent iterations of
PA is generally negligible, which we also found to be the case. We also
found that while PA learned a slightly poorer alignment than GPA, it
did so faster. With our criterion for early stopping, PA converged in 5

to 10 epochs, while GPA did so within 10 to 15 epochs7 . In the case of
Italian and Finnish alignment supervised by numerals, PA converged
in 8 and 5 epochs, respectively, but clearly got stuck in local minima.

7 Notice that one epoch with both PA and GPA takes less than half a minute, so the
slower convergence of GPA is in no way prohibitive.
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af bs et he oc Ave

k = 1 k = 10 k = 1 k = 10 k = 1 k = 10 k = 1 k = 10 k = 1 k = 10 k = 1 k = 10

PA 28.87 50.53 22.40 48.40 30.00 57.93 37.53 67.27 17.12 33.26 27.18 51.48

GPA 29.93 50.67 24.20 50.20 31.87 60.07 38.93 68.93 17.12 34.91 28.41 52.96

MGPA 28.93 49.20 21.00 48.60 30.73 59.53 37.53 66.47 23.82 40.18 28.40 52.80

MGPA+
28.80 49.20 23.46 48.87 31.27 59.80 40.40 68.80 22.83 38.53 29.35 53.04

Table 2.4: Results for low-resource languages with PA, GPA and two multi-
support settings.

GPA took considerably longer to converge: 27 and 74 epochs, respec-
tively, but also managed to find a reasonable alignment between the
language spaces. This points to an important difference in the learning
properties of PA and GPA—unlike PA, GPA has a two-fold objective of
opposing forces: it is simultaneously aligning each embedding space
to two others, thus pulling it in different directions. This characteristic
helps GPA avoid particularly adverse local minima.

2.4.2 Multi-support GPA

In these experiments, we perform GPA with k = 3, including a third,
linguistically-related supporting language in the alignment process. To
best evaluate the benefits of the multi-support setup, we use as targets
five low-resource languages: Afrikaans, Bosnian, Estonian, Hebrew
and Occitan (see statistics in Table 2.1)8. Three-way dictionaries,
both the initial one (consisting of cross-lingual homographs) and
subsequent ones, are obtained by assuming transitivity between two-
way dictionaries: if two pairs of words, em–en and em–el , are deemed
translational pairs, then we consider en–em–el a translational triple.

We report results in Table 2.4 with multi-support GPA in two set-
tings: a three-way alignment trained for 10 epochs (MGPA), and a
three-way alignment trained for 10 epochs, followed by 5 epochs of
two-way fine-tuning (MGPA+). We observe that at least one of our
new methods always improves over PA. GPA always outperforms PA
and it also outperforms the multi-support settings on three out of
five languages. Yet, results for Hebrew and especially for Occitan, are
best in a multi-support setting—we thus mostly focus on these two
languages in the following subsections.

mgpa has variable performance: for four languages precision suf-
fers from the addition of a third language, e.g. compare 38.93 for
Hebrew with GPA to 37.53 with MGPA; for Occitan, however, the
most challenging target language in our experiments, MGPA beats all
other approaches by a large margin: 17.12 with GPA versus 23.81 with

8 Occitan dictionaries were not available from the MUSE project, so we extracted a
test dictionary of 911 unique word pairs from an English-Occitan lexicon available at
http://www.occitania.online.fr/aqui.comenca.occitania/en-oc.html.

http://www.occitania.online.fr/aqui.comenca.occitania/en-oc.html
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Figure 2.2: Progression of dictionary size during GPA and MGPA+ training.
The dotted line marks the boundary between MGPA and fine-
tuning.

MGPA. This pattern relates to the effect a supporting language has
on the size of the induced seed dictionary. Figure 2.2 visualizes the
progression of dictionary size during training with and without a sup-
porting language for Occitan and Hebrew. The portion of the purple
curves to the left of the dotted line corresponds to MGPA: notice how
the curves are swapped between the two plots. Spanish actually pro-
vides support for the English-Occitan alignment, by contributing to an
increasingly larger seed dictionary—this provides better anchoring for
the learned alignment. Having Arabic as support for English-Hebrew
alignment, on the other hand, causes a considerable reduction in the
size of the seed dictionaries, giving GPA less anchor points and thus
damaging the learned alignment. The variable effect of a supporting
language on dictionary size, and consequently on alignment preci-
sion, relates to the quality of alignment of the support language with
English and with the target language: referring back to Table 2.2,
English-Spanish, for example, scores at 81.93, while English-Arabic
precision is 35.33. Notice that despite our linguistically-motivated
choice to pair related low- and high-resource languages for multi-
support training, it is not necessarily the case that those should align
especially well, as that would also depend on practical factors, such as
embeddings quality and training corpora similarity (Søgaard, Ruder,
and Vulić, 2018).

mgpa+ applies two-way fine-tuning on top of MGPA. This leads
to a drop in precision for Occitan, due to the removed support of
Spanish and the consequent reduction in size of the induced dictionary
(observe the fall of the purple curve after the dotted line in Figure 2.2
(a)). Meanwhile, precision for Hebrew is highest with MGPA+ out
of all methods included. While Arabic itself is not a good support
language, its presence in the three-way MGPA alignment seems to
have resulted in a good initialization for the English-Hebrew two-way
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fine-tuning, thus helping the model reach an even better minimum
along the loss curve.

2.5 discussion : why it works

If word vector spaces were completely isomorphic, the introduction of
a third (or fourth) space, and the application of GPA, would lead to the
same alignment as the alignment learned by PA, projecting the source
language E into the target space F. This follows from the transitivity
of isomorphism: if E is isomorphic to G and G is isomorphic to F, then
E is isomorphic to F, via the isomorphism obtained by composing the
isomorphisms from E to G and from G to F. So why do we observe
improvements?

Søgaard, Ruder, and Vulić (2018) have shown that word vector
spaces are often relatively far from being isomorphic, and approximate
isomorphism is not transitive. What we observe therefore appears to
be an instance of the Poincaré Paradox (Poincaré, 1902). While GPA
is not more expressive than PA, it may still be easier to align each
monolingual space to an intermediate space, as the latter constitutes a
more similar target (albeit a non-isomorphic one); for example, the loss
landscape of aligning a source and target language word embedding
with an average of the two may be much smoother than when aligning
source directly with target. Our work is in this way similar in spirit to
Raiko, Valpola, and LeCun (2012), who use simple linear transforms
to make learning of non-linear problems easier.

2.5.1 Error Analysis

Table 6.5 lists example translational pairs as induced from alignments
between English and Bosnian, learned with PA, GPA and MGPA+. For
interpretability, we query the system with words in Bosnian and seek
their nearest neighbors in the English embedding space. P@1 over
the Bosnian-English test set of Conneau et al. (2018) is 31.33, 34.80,
and 34.47 for PA, GPA and MGPA+, respectively. The examples are
grouped in three blocks, based on success and failure of PA and GPA
alignments to retrieve a valid translation.

It appears that a lot of the difference in performance between PA
and GPA concerns morphologically related words, e.g. campaign v.
campaigning, dialogue v. dialogues, merger v. merging etc. These word
pairs are naturally confusing to a BDI system, due to their related
meaning and possibly identical syntactic properties (e.g. merger and
merging can both be nouns). Another common mistake we observed
in mismatches between PA and GPA predictions, was the wrong
choice between two antonyms, e.g. stable v. unstable and visible v.
unnoticeable. Distributional word representations are known to suffer
from limitations with respect to capturing opposition of meaning
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query gold PA GPA MGPA+

PA
7

,G
PA

3

variraju vary varies vary varies

kanjon canyon headwaters canyon headwaters

dijalog dialogue dialogues dialogue dialogue

izjava statement deniable statement statements

plazme plasma conduction plasma microspheres

računari computers minicomputers computers mainframes

aparat apparatus duplex apparatus apparatus

sazviježd̄a constellations asterisms constellations constellations

uspostavljanje establishing reestablishing establishing establishing

industrijska industrial industry industrial industrial

stabilna stable unstable stable stable

disertaciju dissertation habilitation dissertation thesis

protivnici opponents opposing opponents opponents

pozitivni positive negative positive positive

instalacija installation installations installation installation

duhana tobacco liquors tobacco tobacco

PA
3

,G
PA

7

hor choir choir musicum choir

crijevo intestine intestine intestines intestine

vidljiva visible visible unnoticeable visible

temelja foundations foundations superstructures pillars

kolonijalne colonial colonial colonialists colonialists

spajanje merger merger merging merging

suha dry dry humid dry

janez janez janez mariza janez

kampanju campaign campaign campaigning campaign

migracije migration migration migrations migrations

sobu room room bathroom bathroom

predgrad̄u suburb suburb outskirts suburb

specijalno specially specially specialist specially

hiv hiv hiv meningococcal hiv

otkrije discover discover discovers discover

proizlazi arises arises differentiates deriving

tajno secretly secretly confidentially secretly

PA
7

,G
PA

7

odred squad reconnoitre stragglers skirmished

učesnik attendee participant participant participant

saznao learned confided confided confided

dobiva gets earns earns earns

harris harris guinn zachary zachary

snimke videos footage footages footage

usne lips ear ear toes

ukinuta lifted abolished abolished abolished

objave posts publish publish publish

obilježje landmark commemorates commemorates commemorates

molim please appologize thank kindly

čvrste solid concretes concretes concretes

intel intel genesys motorola transputer

transformacije transformations transformation transformation transformation

Table 2.5: Example translations from Bosnian into English.
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Figure 2.3: Procrustes fit test. Circles mark the results from fitting and
evaluating GPA on the test dictionaries to measure the Procrustes
fit. xs mark the weakly-supervised results reported in Tables 2.2
and 2.4.

(Mohammad et al., 2013), so it is not surprising that both PA- and
GPA-learned alignments can fail in making this distinction. While it
is not the case that GPA always outperforms PA on a query-to-query
basis in these rather challenging cases, on average GPA appears to
learn an alignment more robust to subtle morphological and semantic
differences between neighboring words. Still, there are cases where PA
and GPA both choose the wrong morphological variant of an otherwise
correctly identified target word, e.g. transformation v. transformations.

Notice that many of the queries for which both algorithms fail, do
result in a nearly synonymous word being predicted, e.g. participant
for attendee, earns for gets, footage for video, etc. This serves to show that
the learned alignments are generally good, but they are not sufficiently
precise. This issue can have two sources: a suboptimal method for
learning the alignment and/or a ceiling effect on how good of an
alignment can be obtained, within the space of orthogonal linear
transformations.

2.5.2 Procrustes fit

To explore the latter issue and to further compare the capabilities of PA
and GPA, we perform a Procrustes fit test, where we learn alignments
in a fully supervised fashion, using the test dictionaries of Conneau
et al. (2018)9 for both training and evaluation10. In the ideal case, i.e.
if the subspaces defined by the words in the seed dictionaries are
perfectly alignable, this setup should result in precision of 100%.

We found the difference between the fit with PA and GPA to be
negligible, 0.20 on average across all 10 languages (5 low-resource
and 5 high-source languages). It is not surprising that PA and GPA
results in almost equivalent fits—the two algorithms both rely on
linear transformations, i.e. they are equal in expressivity. As pointed
out earlier, the superiority of GPA over PA stems from its more robust

9 For Occitan, we use our own test dictionary.
10 In this experiment, we only run a single epoch of each alignment algorithm, as that is

guaranteed to give us the best Procrustes fit for the particular set of training word
pairs we would then evaluate on.
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learning procedure, not from higher expressivity. Figure 2.3 thus only
visualizes the Procrustes fit as obtained with GPA.

The Procrustes fit of all languages is indeed lower than 100%, show-
ing that there is a ceiling on the linear alignability between the
source and target spaces. We attribute this ceiling effect to variable
degrees of linguistic difference between source and target language
and possibly to differences in the contents of cross-lingual Wikipedias
(recall that the embeddings we use are trained on Wikipedia corpora).
An apparent correlation emerges between the Procrustes fit and preci-
sion scores for weakly-supervised GPA, i.e. between the circles and
the xs in the plot. The only language that does not conform here
is Occitan, which has the highest Procrustes fit and the lowest GPA
precision out of all languages, but this result has an important caveat:
our dictionary for Occitan comes from a different source and is much
smaller than all the other dictionaries.

For some of the high-resource languages, weakly-supervised GPA
takes us rather close to the best possible fit: e.g. for Spanish GPA
scores 81.93%, and the Procrustes fit is 90.07%. While low-resource
languages do not necessarily have lower Procrustes fits than high-
resource ones (compare Estonian and Finnish, for example), the gap
between the Procrustes fit and GPA precision is on average much
higher within low-resource languages than within high-resource ones
(52.46

11 compared to 25.47, respectively). This finding is in line with
the common understanding that the quality of distributional word
vectors depends on the amount of data available—we can infer from
these results that suboptimal embeddings results in suboptimal cross-
lingual alignments.

2.5.3 Multilinguality

Finally, we note that there may be specific advantages to including
support languages for which large monolingual corpora exist, as
those should, theoretically, be easier to align with English (also a
high-resource language): variance in vector directionality, as studied
in Mimno and Thompson (2017), increases with corpus size, so we
would expect embedding spaces learned from corpora comparable in
size, to also be more similar in shape.

2.6 related work

bilingual embeddings Many diverse cross-lingual word em-
bedding models have been proposed (Ruder, Vulić, and Søgaard,
2018). The most popular kind learns a linear transformation from
source to target language space (Mikolov, Le, and Sutskever, 2013).
In most recent work, this mapping is constrained to be orthogonal

11 Even if we leave Occitan out as an outlier, this number is still rather high: 47.10.



2.7 conclusion 17

and solved using Procrustes Analysis (Artetxe, Labaka, and Agirre,
2017, 2018b; Conneau et al., 2018; Lu et al., 2015; Xing et al., 2015).
The approach most similar to ours, Faruqui and Dyer (2014), uses
canonical correlation analysis (CCA) to project both source and target
language spaces into a third, joint space. In this setup, similarly to
GPA, the third space is iteratively updated, such that at timestep t, it
is a product of the two language spaces as transformed by the map-
ping learned at timestep t− 1. The objective that drives the updates
of the mapping matrices is to maximize the correlation between the
projected embeddings of translational equivalents (where the latter
are taken from a gold-standard seed dictionary). In their analysis of
the transformed embedding spaces, Faruqui and Dyer (2014) focus on
the improved quality of monolingual embedding spaces themselves
and do not perform evaluation of the task of BDI. They find that the
transformed monolingual spaces better encode the difference between
synonyms and antonyms: in the original monolingual English space,
synonyms and antonyms of beautiful are all mapped close to each
other in a mixed fashion; in the transformed space the synonyms
of beautiful are mapped in a cluster around the query word and its
antonyms are mapped in a separate cluster. This finding is in line
with our observation that GPA-learned alignments are more precise
in distinguishing between synonyms and antonyms.

multilingual embeddings Several approaches extend exist-
ing methods to space alignments between more than two languages
(Ammar et al., 2016b; Ruder, Vulić, and Søgaard, 2018). Smith et al.
(2017) project all vocabularies into the English space. In some cases,
multilingual training has been shown to lead to improvements over
bilingually trained embedding spaces (Vulić, Mrkšić, and Korhonen,
2017), similar to our findings.

2.7 conclusion

Generalized Procrustes Analysis yields benefits over simple Procrustes
Analysis for Bilingual Dictionary Induction, due to its smoother loss
landscape. In line with earlier research, benefits from the introduction
of a common latent space seem to relate to a better distinction of
synonyms and antonyms, and of syntactically-related words. GPA
also offers the possibility to include multi-lingual support for inducing
a larger seed dictionary during training, which better anchors the
English to target language alignment in low-resource scenarios.
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O N E S T E P AT A T I M E : T H E I M P O RTA N C E O F
E VA L UAT I N G O N LY T H E F I R S T S T E P O F
U N S U P E RV I S E D W O R D T R A N S L AT I O N

abstract

Cross-lingual word vector space alignment is the task of mapping the
vocabularies of two languages into a shared semantic space, which can
be used for dictionary induction, unsupervised machine translation,
and transfer learning. In the unsupervised regime, an initial seed
dictionary is learned in the absence of any known correspondences be-
tween words, through distribution matching, and the seed dictionary
is then used to supervise the induction of the final alignment in what
is typically referred to as a (possibly iterative) refinement step. We
focus on the first step and compare distribution matching techniques
in the context of language pairs for which mixed training stability
and evaluation scores have been reported. We show that, surprisingly,
when looking at this initial step in isolation, vanilla GANs are superior
to more recent methods, both in terms of precision and robustness.
The improvements reported by more recent methods thus stem from
the refinement techniques, and we show that we can obtain state-of-
the-art performance combining vanilla GANs with such refinement
techniques.

3.1 introduction

A word vector space – sometimes referred to as a word embedding –
associates similar words in a vocabulary with similar vectors. Learning
a projection of one word vector space into another, such that similar
words – across the two word embeddings – are associated with similar
vectors, is useful in many contexts, with the most prominent example
being the alignment of vocabularies of different languages, i.e., word
translation. This is a key step in machine translation of low-resource
languages (Lample, Denoyer, and Ranzato, 2018).

Projections between word vector spaces have typically been learned
from seed dictionaries. In seminal papers (Faruqui and Dyer, 2014;
Gouws and Søgaard, 2015; Mikolov, Le, and Sutskever, 2013), these
seeds would comprise thousands of words, but Vulić and Korhonen
(2016) showed that we can learn reliable projections from as little
as 50 words. Smith et al. (2017) and Hauer, Nicolai, and Kondrak
(2017) subsequently showed that the seed can be replaced with just
words that are identical across languages; and Artetxe, Labaka, and
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Agirre (2017) showed that numerals can also do the job, in some cases;
both proposals removing the need for an actual dictionary. Even
more recently, entirely unsupervised approaches to projecting word
vector spaces onto each other have been proposed, which induce seed
dictionaries in the absence of any known correspondences between
words, using distribution matching techniques. These seed dictionaries
are then used as supervision for alignment algorithms based on, e.g.,
Procrustes Analysis (Schönemann, 1966). These unsupervised systems,
in other words, typically combine two steps: an unsupervised step of
distribution matching and a (possibly iterative) (pseudo-)supervised
step of refinement, based on a seed dictionary learned in the first step.
See Table 3.1 for an overview.

The first unsupervised dictionary induction (UBDI) systems (Barone,
2016; Conneau et al., 2018; Zhang et al., 2017) were based on Gener-
ative Adversarial Networks (GANs) (Goodfellow et al., 2014). These
approaches learn a linear transformation to minimize the divergence
between a target distribution (say French word embeddings) and a
source distribution (the English word embeddings projected into the
French space). GAN-based approaches achieve impressive results for
some language pairs (Conneau et al., 2018), but show instabilities for
others. In particular, Søgaard, Ruder, and Vulić (2018) presented re-
sults suggesting that GAN-based UBDI is difficult for some language
pairs exhibiting very different morphosyntactic properties, as well as
when the monolingual corpora are very different. Recently, a range of
unsupervised approaches that do not rely on GANs have been pro-
posed (Artetxe, Labaka, and Agirre, 2018a; Grave, Joulin, and Berthet,
2019; Hoshen and Wolf, 2018a) in the hope they would provide a more
robust alternative. In this paper, we show none of these are more robust
on the language pairs we consider. Instead we propose a simple tech-
nique for making (vanilla) GAN-based UBDI more robust and show
that combining this with a recently proposed refinement technique –
stochastic dictionary induction (Artetxe, Labaka, and Agirre, 2018a) –
leads to state-of-the-art performance in UBDI.

contributions We present the first systematic comparison of (a
subset of) recently proposed methods for UBDI. These methods are
two-step pipelines of unsupervised distribution matching for seed
induction and supervised refinement. While the authors typically
introduce new approaches to both steps (see Table 3.1), distribution
matching and refinement are independent, and in this paper, we focus
on the distribution matching step - by either omitting refinement
or using the same refinement method across different distribution
matching, or seed dictionary induction methods. On the language
pairs considered here, vanilla GANs are superior to more recently
improved distribution matching techniques. Moreover, we show that
using an unsupervised model selection method, we can often pick out
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the best vanilla GAN runs in the absence of cross-lingual supervision.
Since vanilla GANs thus seem to remain an interesting technique for
inducing seed dictionaries, we explore what causes the instability
of vanilla GAN seed induction, by looking at how they perform
on simple transformations of the embedding spaces, and by using a
combination of supervised training and model interpolation to analyze
the loss landscapes. The results lead us to conclude that the instability
is caused by a mild form of mode collapse, that cannot easily be
overcome by changes in the number of parameters, batch size, and
learning rate. Nevertheless, vanilla GANs with unsupervised model
selection seem superior to more recently proposed methods, and we
show that when combined with a state-of-the-art refinement technique,
vanilla GANs with unsupervised model selection is superior to these
methods across the board.

3.2 gan-initialized ubdi

In this section, we discuss the dynamics of GAN-based UBDI. While
the idea of using GANs for UBDI originates with Barone (2016), we
refer to Conneau et al. (2018) as the canonical implementation of
GAN-based UBDI. Note that GANs are not a necessary component to
unsupervised distribution matchning for alignment of vector spaces,
albeit a popular approach (Conneau:ea:17; Barone, 2016; Zhang et
al., 2017). In §3, we briefly discuss how GAN-based initialization
compares to the alternative of using point set registration techniques
(Hoshen and Wolf, 2018a) and related strategies.

A GAN consists of a generator and a discriminator (Goodfellow et
al., 2014). The generator G is trained to fool the discriminator D. The
generator can be any differentiable function; in Conneau et al. (2018),
it is a linear transform Ω. Let e ∈ E be an English word vector, and
f ∈ F a French word vector, both of dimensionality d. The goal of the
generator is then to choose Ω ∈ Rd×d such that ΩE has a distribution
close to F. The discriminator is a map Dw : X → {0, 1}, implemented
in Conneau et al. (2018) as a multi-layered perceptron. The objective of
the discriminator is to discriminate between vector spaces F and ΩE.
During training, the model parameters Ω and w are optimized using
stochastic gradient descent by alternately updating the parameters of
the discriminator based on the gradient of the discriminator loss and
the parameters of the generator based on the gradient of the generator
loss, which, by definition, is the inverse of the discriminator loss. The
loss function used in Conneau et al. (2018) and in our experiments
below is cross-entropy. In each iteration, we sample N vectors e ∈ E
and N vectors f ∈ F and update the discriminator parameters w
according to w→ w + α ∑N

i=1∇[log Dw( fi) + log(1− Dw(GΩ(ei)].
Theoretically, the optimal parameters are a solution to the min-max

problem: minΩ maxw E[log(Dw(F)) + log(1−Dw(GΩ(E)))], which re-
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duces to minΩ JS(PF | PΩ). If a generator wins the game against an
ideal discriminator on a very large number of samples, then F and ΩE
can be shown to be close in Jensen-Shannon divergence, and thus the
model has learned the true data distribution. This result, referring to
the distributions of the data, pdata, and the distribution, pg, G is sam-
pling from, is from Goodfellow et al. (2014): If G and D have enough
capacity, and at each step of training, the discriminator is allowed
to reach its optimum given G, and pg is updated so as to improve
the criterion Ex∼pdata [log D∗G(x)] then pg converges to pdata. This result
relies on a number of assumptions that do not hold in practice. The
generator in Conneau et al. (2018), which learns a linear transform Ω,
has very limited capacity, for example, and we are updating Ω rather
than pg. In practice, therefore, during training, Conneau et al. (2018)
alternate between k steps of optimizing the discriminator and one step
of optimizing the generator. Another common problem with training
GANs is that the discriminator loss quickly drops to zero, when there
is no overlap between pg and pdata (Arjovsky, Chintala, and Bottou,
2017); but note that in our case, the discriminator is initially presented
with IE and F, for which there is typically no trivial solution, since
the embedding spaces are likely to overlap. We show in §4 that the
discriminator and generator losses are poor model selection crite-
ria, however; instead we propose a simple criterion based on cosine
similarities between nearest neighbors in the learned alignment.

From ΩE and F, a seed (bilingual) dictionary can be extracted us-
ing nearest neighbor queries, i.e., by asking for the nearest neighbor
of ΩE in F, or vice versa. Conneau et al. (2018) use a normalized
nearest neighbor retrieval method to reduce the influence of hubs
(Dinu, Lazaridou, and Baroni, 2015; Radovanović, Nanopoulos, and
Ivanovic, 2010). The method is called cross-domain similarity local
scaling (CSLS) and used to expand high-density areas and condense
low-density ones. The mean similarity of a source language embed-
ding Ωe to its k nearest neighbors in the target language is defined as
µk

E(Ω(e)) = 1
k ∑k

i=1 cos(e, fi), where cos is the cosine similarity. µF(fi)

is defined in an analogous manner for every i. CSLS(e, fi) is then cal-
culated as 2 cos(e, fi)− µE(Ω(e))− µF(fi). Conneau et al. (2018) use
an unsupervised validation criterion based on CSLS. The translations
of the top k (10,000) most frequent words in the source language are
obtained with CSLS and average pairwise cosine similarity is com-
puted over them. This metric is considered indicative of the closeness
between the projected source space and the target space, and is found
to correlate well with supervised evaluation metrics. After inducing
a bilingual dictionary, Ed and Fd, by querying ΩE and F with CSLS,
Conneau et al. (2018) perform a refinement step based on Procrustes
Analysis (Schönemann, 1966). Here, the optimal mapping Ω that
maps the words in the seed dictionary onto each other, is computed
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initialization and optimization steps

Authors Unsupervised step Supervised step Extras

Barone (2016) GAN None

Zhang et al. (2017) Wasserstein GAN Procrustes

Conneau et al. (2018) GAN Procrustes

Hoshen and Wolf (2018a) ICP Procrustes Restarts

Alvarez-Melis and Jaakkola (2018) Gromov-Wasserstein Procrustes

Artetxe, Labaka, and Agirre (2018a) Gromov-Wasserstein Stochastic

Yang et al. (2019) Gromov-Wasserstein MMD

Xu et al. (2018) GAN Sinkhorn Back-translation

Grave, Joulin, and Berthet (2019) Gold-Rangarajan Sinkhorn

Table 3.1: Approaches to unsupervised alignment of word vector spaces.
We break down these approaches in two steps (and extras): (1)
Unsupervised distribution matching for seed dictionary learning):
(W)GANs, ICP, Gromov-Wasserstein initialization, and the convex
relaxation proposed in Gold and Rangarajan (1996). (2) Supervised
refinement: Procrustes, stochastic dictionary induction, maximum
mean discrepancy (MMD), and the Sinkhorn algorithm.

analytically as Ω = UVT, where U and V are obtained via the singular
value decomposition UΣVT of FT

d Ed.

3.3 alternatives to gan-initialized ubdi

This section introduces some recent alternatives to (vanilla) GAN-
initialized UBDI. In Table 3.1, we list more approaches and classify
them by how they perform unsupervised distribution matching and
supervised refinement.

iterative closest point The idea of minimizing nearest neigh-
bor distances for unsupervised model selection is also found in point
set registration and lies at the core of iterative closest point (ICP)
optimization (Besl and McKay, 1992). ICP typically minimizes the λ2

distance (mean squared error) between nearest neighbor pairs. The
ICP optimization algorithm works by assigning each transformed
vector to its nearest neighbor and then computing the new relative
transformation that minimizes the cost function with respect to this
assignment. ICP can be shown to converge to local optima (Besl and
McKay, 1992), in polynomial time (Ezra, Sharir, and Efrat, 2006). ICP
easily gets trapped in local optima, however, exact algorithms only
exist for two- and three-dimensional point set registration, and these
algorithms are slow (Yang et al., 2016). Generally, it holds that the
optimal solution to the GAN min-max problem is also optimal for
ICP. To see this, note that a GAN minimizes the Jensen-Shannon di-
vergence between F and ΩE. The optimal solution to this is F = ΩE.
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As sample size goes to infinity, this means the L2 loss in ICP goes to 0.
In other words, the ICP loss is minimal if an optimal solution to the
UBDI min-max problem is found. ICP was independently proposed
for UBDI in Hoshen and Wolf (2018a). They report their method
only works using PCA initialization, i.e. they project a subset of both
sets of word embeddings onto the 50 first principal components, and
learn an initial seed dictionary using ICP on the lower-dimensional
embeddings. This seed mapping is then used as starting point for
ICP on the full word embeddings. We explored PCA initialization for
GAN-based distribution matching, but observed the opposite effect,
namely that PCA initialization leads to a degradation in performance.
The most important thing to note from Hoshen and Wolf (2018a),
however, is that they do 500 random restarts of the PCA initialization
to obtain robust performance; ICP, in other words, is extremely sensi-
tive to initialization. This explains their poor performance under our
experimental protocol below (Table 3.2).

wasserstein gan Zhang et al. (2017) were the first to introduce
Wasserstein GANs as a way to learn seed dictionaries in the context of
UBDI. In their best system, they train simple Wasserstein GANs and
use the resulting seed dictionaries to supervise Procrustes Analysis.
We modified the MUSE code to experiment with Wasserstein GANs
in a controlled way. Simple Wasserstein GANs were unsuccessful, but
with gradient penalty (Gulrajani et al., 2017), we obtained almost com-
petitive results, after tuning the learning rate and the gradient penalty
λ using nearest neighbor cosine distance as validation criterion. On
the other hand, the results were not significantly better, and instability
did not improve. Finally, we experimented with CT-GANs (Wei et al.,
2018), an extension of Wasserstein GANs with gradient penalty, but
this only lowered performance and increased instability. Since Wasser-
stein GANs and CT-GANs were consistently worse and less stable
than vanilla GANs, we do not include them in the experiments below.

gromov-wasserstein Alvarez-Melis and Jaakkola (2018) present
a very different initialization strategy. In brief, Alvarez-Melis and
Jaakkola (2018) learn a linear transformation to minimize Gromov-
Wasserstein distances of distances between nearest neighbors, in the
absence of cross-lingual supervision. We report the performance of
their system in the experiments below, but results (Table 3.2) were
all negative. We think the reason is that Alvarez-Melis and Jaakkola
(2018) only consider small subsamples of the vector spaces, and that
in hard cases, alignments induced on subspaces are unlikely to scale.
It achieved an impressive P@1 of 85.6 on the Greek MUSE dataset
(Conneau et al. (2018) obtain 59.5); but on the datasets, where Conneau
et al. (2018) are instable, considered here, it consistently fails to align
the vector spaces.
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Artetxe, Labaka, and Agirre (2018a) introduce a very simple, re-
lated initialization method that is also based on Gromov-Wasserstein
distances of distances between nearest neighbors: They use these
second-order distances to build a seed dictionary directly by aligning
nearest neighbors across languages. By itself, this is a poor initial-
ization method (see Table 3.2). Artetxe, Labaka, and Agirre (2018a),
however, combine this with a new refinement method called stochastic
dictionary induction, i.e., randomly dropping out dimensions of the
similarity matrix when extracting a seed dictionary for the next itera-
tion of Procrustes Analysis. Artetxe, Labaka, and Agirre (2018a) show
in an ablation study for one language pair (English-Finnish) that the
initialization method only works in combination with the stochastic
dictionary induction step, i.e., without the application of stochasticity,
the induced mapping is degenerate. In our experiments below, we
show that this finding generalizes to other language pairs, suggesting
that the stochastic dictionary induction is the main contribution in
their work. We show that when combined with vanilla GANs for the
initial step of learning a seed dictionary through distribution matching,
stochastic dictionary induction performs even better.

convex relaxation The Gold-Rangarajan relaxation is a convex
relaxation of the (NP-hard) graph matching problem and can be
solved using the Frank-Wolfe algorithm. Once the minimal optimizer
is computed, an initial transformation is obtained using singular-value
decomposition. The Gold-Rangarajan relaxation can thus be used for
stable learning of seed dictionaries (Grave, Joulin, and Berthet, 2019).
It remains an open question how this strategy fairs on challenging
language pairs such as the ones included here. We would have liked
to include this approach in our experiments, but the code was not
publicly available at the time of writing.

properties of unsupervised alignment algorithms The
above approaches provably work if the two vector spaces to be aligned,
are isomorphic, except for the pathological case where the vectors
are placed on an equidistant grid forming a sphere.1 A function Ω

1 In this case, there is an infinite set of equally good linear transformations (rotations)
that achieve the same training loss. Similarly, for two binary-valued, n-dimensional
vector spaces with one vector in each possible position. Here the number of local
optima would be 2n, but since the loss is the same in each of them the loss landscape
is highly non-convex, and the basin of convergence is therefore very small (Yang et al.,
2016). The chance of aligning the two spaces using gradient descent optimization
would be 1

2n . In other words, minimizing the Jensen-Shannon divergence between
the word vector distributions, even in the easy case, is not always guaranteed to
uncover an alignment between translation equivalents. From the above, it follows that
alignments between linearly alignable vector spaces cannot always be learned using
UBDI methods. In §3.1 , we test for approximate isomorphism to decide whether two
vector spaces are linearly alignable.§3.2–3.3 are devoted to analyzing when alignments
between linearly alignable vector spaces can be learned.
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from E to F is a linear transformation if Ω( f + g) = Ω( f ) + Ω(g)
and Ω(k f ) = kΩ( f ) for all elements f , g of E, and for all scalars k.
An invertible linear transformation is called an isomorphism. The two
vector spaces E and F are called isomorphic, if there is an isomorphism
from E to F. Equivalently, if the kernel of a linear transformation
between two vector spaces of the same dimensionality contains only
the zero vector, it is invertible and hence an isomorphism. Most
work on supervised or unsupervised alignment of word vector spaces
relies on the assumption that they are approximately isomorphic,
i.e., isomorphic after removing a small set of vertices (Barone, 2016;
Conneau et al., 2018; Mikolov, Le, and Sutskever, 2013; Zhang et al.,
2017). It is not difficult to show that many pairs of vector spaces are
not approximately isomorphic, however. See Søgaard, Ruder, and
Vulić (2018) for examples.

3.4 experiments

In our experiments, we focus on aligning word vector spaces be-
tween two languages, by projecting from the foreign language into
English. Our languages are: Estonian (et), Farsi (fa), Finnish (fi), Lat-
vian (lv), Turkish (tr), and Vietnamese (vi). This selection of languages
is motivated by observed instability when training vanilla GANs, e.g.,
Søgaard, Ruder, and Vulić (2018). In addition, the languages span four
language families: Finno-Ugric (et, fi), Indo-European (fa, lv), Turkic
(tr), and Austroasiatic (vi).

data In all our experiments, we use pretrained FastText embed-
dings (Bojanowski et al., 2017) and the bilingual test dictionaries
released along with the MUSE system.2 The FastText embeddings are
trained on Wikipedia dumps3; the bilingual dictionaries were created
using an in-house Facebook translation tool and contain translations
for 1500 test words for each language pair. Since we cannot do reliable
hyper-parameter optimization in the absence of cross-lingual supervi-
sion, we use MUSE with the default parameters (Conneau et al., 2018).
For the experiments with stochastic dictionary induction (Table 3.3),
we use the implementation in the VecMap framework (Artetxe, Labaka,
and Agirre, 2018a).4

3.4.1 Comparison of distribution matching strategies

Our main experiments, reported in Table 3.2, compare the initializa-
tion strategies listed in Table 3.1: vanilla GANs, the two varieties

2 https://github.com/facebookresearch/MUSE

3 https://fasttext.cc/docs/en/pretrained-vectors.html

4 https://github.com/artetxem/vecmap

https://github.com/facebookresearch/MUSE
https://fasttext.cc/docs/en/pretrained-vectors.html
https://github.com/artetxem/vecmap
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to english

et fa fi lv tr vi av

max fail max fail max fail max fail max fail max fail max fail

no refinement

Conneau et al. GAN 6.4 9 22.5 3 28.5 1 14.3 9 32.1 2 2.4 9 17.7 5.5

Hoshen and Wolf ICP 0.1 10 0 10 0 10 0 10 0 10 0 10 0 10

Artetxe, Labaka, and Agirre GW 0 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10

Alvarez-Melis and Jaakkola GW 0 10 0 10 0 10 0 10 0 10 0 10 0 10

with procrustes refinement

Conneau et al. GAN 27.5 9 40.9 3 58.9 1 33.2 9 60.6 2 51.3 9 45.4 5.5

Hoshen and Wolf ICP 0.1 10 0 10 0 10 0 10 0 10 0 10 0 10

Artetxe, Labaka, and Agirre GW 1.1 10 40.2 0 60.5 0 0.1 10 59.6 0 0.3 10 27.0 5

Alvarez-Melis and Jaakkola GW 0 10 0 10 0 10 0 10 0 10 0 10 0 10

Table 3.2: Comparisons of unsupervised seed dictionary learning strategies
in the absence of refinement (upper half) or using the same refinement
technique (orthogonal Procrustes) (lower half). For results with
refinement, we use GANs, ICPs, and Gromov-Wasserstein (GW)
distribution matching and feed seed dictionaries to Procrustes
refinement. We then report maximum performance (P@1) and
stability (fails) across 10 runs. We consider a P@1 score below 2% a
failure. The results suggest that GANs, in spite of their instability,
have the highest potential for inducing useful seed dictionaries.

of Gromov-Wasserstein (see §3), and ICP.5 Table 3.2 is split in two:
First we report the performance, measured as precision at one, in the
absence of refinement; and then we report the performance with re-
finement, using the same refinement technique (Procrustes Analysis)
across the board. For all the randomly initialized algorithms (the first
three), we report the best of 10 runs and the number of fails, where
fails are runs with scores lower than 2%.6 The reported scores are P@1,
i.e., the fraction of words whose neighbors are translation equivalents.

We believe it is crucial to evaluate the different techniques this way,
instead of simply comparing the numbers reported in the relevant
papers: First of all, no three of these authors report performance
on the same datasets. Secondly, if the authors use different refine-
ment techniques, it is impossible to see the impact of the initialization
strategies in the reported numbers. Instead we control for the re-
finement techniques and study the distribution matching techniques
in Table 3.1 in isolation. This means, for example, that we evaluate
the Artetxe, Labaka, and Agirre (2018a) in the absence of stochastic
dictionary induction, and Hoshen and Wolf (2018a) in the absence of
500 random restarts. In §4.2 (Table 3.3), we compare vanilla GANs and
Gromov-Wasserstein in the context of stocastic dictionary induction.

5 We ignore Wasserstein GANs, which proved more instable than vanilla GANs in our
preliminary experiments, as well as Gold-Rangarajan, which performs considerably
below current state of the art.

6 In practice, performance tends to be much higher than 2% for successful runs, hence
slight changes in the threshold value would not affect results.
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The patterns in Table 3.2 are very consistent. Vanilla GAN dis-
tribution matching is very instable, with 1/10 fails for Finnish and
Turkish, but 6, 7 and 9 fails for Estonian, Latvian, and Vietnamese,
respectively. All other methods are more instable, however, with the
distribution matching techniques in Hoshen and Wolf (2018a) and
Alvarez-Melis and Jaakkola (2018) failing across the board, with or
without supervised Procrustes refinement. Vanilla GAN distribution
matching also leads to higher precision for 5/6 language pairs.

Vanilla GAN distribution matching thus seems to have the high-
est potential for inducing useful seed dictionaries among all these
methods. If we could only manage their instability, GANs seem to
provide us with a better point of departure. This naturally leads us
to ask: Is it feasible to select good vanilla GAN UBDI runs from a batch of
random restarts, in the absence of cross-lingual supervision? This question
is explored in §4.2, in which we also explore whether state-of-the-art
performance can be achieved with vanilla GANs and a more advanced
refinement technique, namely stochastic dictionary induction.

3.4.2 GAN distribution matching with random restarts

Exploring this question we found that the discriminator loss during
training, which is used as a model selection criterion in Daskalakis
et al. (2018), is a poor selection criterion. However, we did find another
unsupervised model selection criterion that correlates well with UBDI
performance: cosine similarity of (induced) nearest neighbors. This
criterion is also used as a stopping criterion in Conneau et al. (2018),
and can be used with or without CSLS scaling. This stopping criterion
in fact turns out to be a quite robust model selection criterion for
picking the best out of n random restarts.

In Table 3.3, we compare MUSE with 10 random restarts and using
CSLS cosine similarity of nearest neighbors as an unsupervised model
selection criterion, to the full state-of-the-art model in Artetxe, Labaka,
and Agirre (2018a) with stochastic dictionary induction. What we see
in these results, is that Artetxe, Labaka, and Agirre (2018a) is still
superior to MUSE with random restarts, but even with 10 restarts,
the gap narrows considerably, and MUSE is better on 2/6 languages.
Note, however, that this is a comparison of two systems using two
different refinement techniques. If we combine vanilla GAN distribu-
tion matching from MUSE with the stochastic dictionary induction
technique from Artetxe, Labaka, and Agirre (2018a), we obtain slightly
better performance than Artetxe, Labaka, and Agirre (2018a) (Table 3.3,
mid-column): While overall improvements are small, compared to
the differences in seed dictionary quality, the combination of vanilla
GANs for distribution matching and stochastic dictionary induction
provides a promising and fully competitive alternative to the state of
the art for unsupervised word translation.
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procrustes stochastic dictionary induction

C-MUSE C-MUSE Artetxe, Labaka, and Agirre

et-en 27.5 47.6 47.6

fa-en 40.9 41.5 40.2

fi-en 58.9 62.5 63.6

lv-en 33.2 44.1 41.6

tr-en 60.6 62.8 60.6

vi-en 51.3 54.3 0.3

average 45.4 52.1 42.3

Table 3.3: Comparison of MUSE with cosine-based model selection over 10

random restarts (C-MUSE) with and without stochastic dictionary
induction (with suggested hyper-parameters from Artetxe, Labaka,
and Agirre (2018a)), against state of the art. Using vanilla GANs
is better than Gromov-Wasserstein on average and better on 4/6

language pairs.

3.4.3 Discussion and Further Experiments

We have shown that while vanilla GANs are instable, they carry a
seemingly unique potential for UBDI. We have shown that a simple
unsupervised cosine-based model selection criterion can achieve ro-
bust state-of-the-art performance. We have performed several other
experiments to probe this instability in search of ways to stabilize
vanilla GANs without significant performance drops. This subsection
summarizes these experiments.

normalization We observed that GAN-based UBDI becomes
more instable and performance deteriorates with unit length normal-
ization. We performed unit length normalization (ULN) of all vectors
x, i.e., x′ = x

||x||2 , which is often used in supervised bilingual dictio-
nary induction (Artetxe, Labaka, and Agirre, 2017; Xing et al., 2015).
We used this transform to project word vectors onto a sphere – to
control for shape information. If vectors are distributed smoothly
over two spheres, there is no way to learn an alignment in the ab-
sence of dictionary seed; in other words, if vanilla GAN distribution
matching is unaffected by this transform, vanilla GANs learn from
density information alone. While supervised methods are insensitive
to or benefit from ULN, we find that vanilla GANs are very sensitive
to such normalization; in fact, the number of failed runs over six
languages increases from below 50% to 90%. For example, while for
Finnish, MUSE only fails in 1/10 runs, MUSE with ULN failed across
the board; for Farsi, MUSE with ULN failed in 6/10 runs, compared to
3/10. We verify that supervised alignment is not affected by ULN by
running Procrustes refinement with a seed dictionary as supervision;
here, performance remains unchanged under this transformation.
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noise injection On the contrary, GAN-based UBDI is largely
unaffected by noise injection. We saw this from running experiments
on a few languages, but do not report performance across the board.
Specifically, we add 25% random vectors, randomly sampled from a
hypercube bounding the vector set. GAN-based UBDI results are not
affected by noise injection. This, we found, is because the injected
vectors rarely end up in the seed dictionaries used for subsequent
refinement.

over-parameterization GAN training is instable because dis-
criminators end up in poor local optima or saddle points (see below).
A known technique for escaping local optima is over-parameterization
(Brutzkus et al., 2018). We experimented with widening our discrimi-
nators to smoothen the loss landscape. Results were mixed, with more
stability and better performance on some languages, and less stability
and worse performance on others. We provide the full list of results
in the Appendix.

large batches and small learning rates Previous work
has shown that large learning rate and small batch size contribute
towards SGD finding flatter minima (Jastrzebski et al., 2018), but in our
experiments, we are interested in the discriminator not ending up in
flat regions, where there is no signal to update the generator. We there-
fore experiment with (higher and) smaller learning rate and (smaller
and) larger batch sizes. The motivation behind both is decreasing the
scale of random fluctuations in the SGD dynamics (Balles, Romero,
and Hennig, 2017; Smith and Le, 2018), enabling the discriminator to
explore narrower regions in the loss landscape. Increasing the batch
size or varying the learning rate (up or down), however, leads to worse
performance, and it seems the MUSE default hyperparameters are
close to optimal. We provide the full list of results in the Appendix.

exploring the loss landscapes GAN training instability arises
from discriminators getting stuck in saddle points, where neither the
discriminator nor the generator has a learning signals. To show this,
we analyze the discriminator loss in areas of convergence by plotting
it as a function of the generator parameters. Specifically, we plot
the loss surface along its intersection with a line segment connect-
ing two sets of parameters (Goodfellow, Vinyals, and Saxe, 2015; Li
et al., 2018). In our case, we interpolate between the model induced
by GAN-based UBDI and the (oracle) model obtained using super-
vised Procrustes Analysis. Results are shown in Figure 1. The green
loss curves represent the current discriminator’s loss along all the
generators between the current generator and the generator found
by Procrustes refinement. We see that while performance (P@1 and
mean cosine similarity) goes up as soon as we move closer toward the
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Figure 3.1: Discriminator loss averaged over all training data points (green),
P@1 on the test data points (blue) and mean cosine similarity
(red) on the training data – for generator parameters on the line
segment that connects the unsupervised GAN solution with the
supervised Procrustes Analysis solution. α is the interpolation pa-
rameter moving the generator parameters from the unsupervised
GAN solution (α = 0) to the supervised solution (α = 1).

supervised solution, the discriminator loss does not change until we
get very close to this solution, suggesting there is no learning signal
in this direction for GAN-based UBDI. This is along a line segment
representing the shortest path from the failed generator to the oracle
generator, of course; linear interpolation provides no guarantee there
are no almost-as-short paths with plenty of signal. A more sophis-
ticated sampling method is to sample along two random direction
vectors (Goodfellow, Vinyals, and Saxe, 2015; Li et al., 2018). We used
an alternative strategy of sampling from normal distributions with
fixed variance that were orthogonal to the line segment. We observed
the same pattern, leading us to the conclusion that instability is caused
by discriminator saddle points.

3.5 conclusions

This paper explores the dynamics of (vanilla) GAN training in the
context of unsupervised word translation and a systematic comparison
of GANs with different distribution matching (seed induction) meth-
ods across six challenging language pairs. Our main finding is that
vanilla GANs, in spite of their instability, have the highest potential for
inducing useful seed dictionaries. We explore an unsupervised model
selection criterion for selecting the best models from multiple random
restarts, narrowing the gap between MUSE and Artetxe, Labaka, and
Agirre (2018a), and further show that combining GANs with stochastic
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dictionary induction provides a new state of the art for unsupervised
word translation.
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L O S T I N E VA L UAT I O N : M I S L E A D I N G
B E N C H M A R K S F O R B I L I N G UA L D I C T I O N A RY
I N D U C T I O N

4.1 abstract

The task of bilingual dictionary induction (BDI) is commonly used
for intrinsic evaluation of cross-lingual word embeddings. The largest
dataset for BDI was generated automatically, so its quality is dubious.
We study the composition and quality of the test sets for five diverse
languages from this dataset, with concerning findings: (1) a quarter
of the data consists of proper nouns, which can be hardly indicative
of BDI performance, and (2) there are pervasive gaps in the gold-
standard targets. These issues appear to affect the ranking between
cross-lingual embedding systems on individual languages, and the
overall degree to which the systems differ in performance. With
proper nouns removed from the data, the margin between the top two
systems included in the study grows from 3.4% to 17.2%. Manual
verification of the predictions, on the other hand, reveals that gaps
in the gold standard targets artificially inflate the margin between
the two systems on English to Bulgarian BDI from 0.1% to 6.7%. We
thus suggest that future research either avoids drawing conclusions
from quantitative results on this BDI dataset, or accompanies such
evaluation with rigorous error analysis.

4.2 introduction

Bilingual dictionary induction (BDI) refers to retrieving translations
of individual words. The task has been widely used for intrinsic
evaluation of cross-lingual embedding algorithms, which aim to map
two languages into the same embedding space, for transfer learning
purposes (Klementiev, Titov, and Bhattarai, 2012). Recently, Glavaš
et al. (2019) reported limited evidence in support of this practice—they
found that cross-lingual embeddings optimized for a BDI evaluation
metric were not necessarily better on downstream tasks. Here, we
study BDI evaluation in itself, as has been done for other evaluation
methods in the past (cf. Faruqui et al., 2016’s work on word similarity),
with concerning findings about its reliability.

A massive dataset of 110 bilingual dictionaries, known as the MUSE

dataset, was introduced in early 2018 along with a strong baseline
(Conneau et al., 2018). Subsets of the MUSE dictionaries have been used
for model comparison in the evaluation of numerous cross-lingual

33
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embedding systems developed since (cf. Grave, Joulin, and Berthet,
2019; Hoshen and Wolf, 2018a,b; Jawanpuria et al., 2019; Joulin et
al., 2018a; Wada, Iwata, and Matsumoto, 2019). Even though the
field has been very active, progress has been incremental for most
language pairs. Moreover, there have been very few attempts at a
linguistically-informed error analysis of BDI performance as measured
on MUSE (cf. Kementchedjhieva et al., 2018). This is problematic for
two reasons: on one hand, most systems greatly vary in their approach
and architecture, so it is difficult to identify the source of the reported
performance gains; on the other hand, the MUSE dataset was compiled
automatically, with no manual post-processing to clean up noise, so
the real impact of the performance gains is unclear.

In this work, we study the composition and quality of the MUSE

data for five diverse languages: German, Danish, Bulgarian, Arabic
and Hindi. A manual part-of-speech annotation of the test sets for
these languages reveals a strikingly high number of proper nouns.
We refer to linguistic literature to argue that proper nouns, having no
lexical meaning but rather just a referential function, cannot reliably
be used in the evaluation of word-level translation systems. We find
that excluding proper noun pairs from the test dictionaries for the
aforementioned languages affects the ranking and degree of perfor-
mance gaps between five of the most influential recent systems for
BDI.

With a new, more reliable ranking at hand, we perform qualitative
analysis on the performance gap between the best and second best
systems for Bulgarian. This reveals another major issue with the
data: limited coverage of morphological variants for the target words.
Through manual verification of the models’ predictions, we find that
the gap in performance between the two systems is far smaller than
previously perceived.

The uncovered issues of high noise levels (proper nouns) and lim-
ited coverage (missing gold standard targets) clearly have a crucial
impact on BDI results obtained on the MUSE dataset, and need to be
addressed. Filtering out proper nouns could be achieved automati-
cally, by checking against gazetteers of named entities. We find that an
automatic procedure for the filling of missing targets, however, yields
only minor improvements. We thus urge researchers to be cautious
when reporting quantitative results on MUSE, and to account for the
problems presented here through manual verification and analysis
of the results. As an alternative, we point them to morphologically
complete BDI resources, built bottom-up (Czarnowska et al., 2019).
We share our part-of-speech annotations, such that future work can
use this resource for analysis purposes.1

1 Available at https://github.com/coastalcph/MUSE_dicos
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4.3 bilingual dictionary induction

Improvements on BDI mostly stem from developments in the space of
cross-lingual embeddings, which use BDI for intrinsic evaluation.

systems Five influential recent systems for cross-lingual embed-
dings are MUSE (Conneau et al., 2018), which can be supervised
(MUSE-S) or unsupervised (MUSE-U); VecMap, which also can be
supervised (VM-S) (Artetxe, Labaka, and Agirre, 2018b) or unsuper-
vised (VM-U) (Artetxe, Labaka, and Agirre, 2018a); and RCSLS (Joulin
et al., 2018a), a supervised system (RCSLS), which scores best on BDI
out of the five. We refer the reader to the respective publications for a
general description of the systems.

metrics Performance on BDI in these works is evaluated by ver-
ifying the system-retrieved translations for a source word against a
set of gold-standard targets. The metric used is Precision at k (P@k),
which measures how often the set of k top predictions contains one of
the gold-standard targets, i.e. what is the ratio of True Positives to the
sum of True Positives and False Positives.

data All systems listed above report results on one or both of two
test sets: the MUSE test sets Conneau et al. (2018) and/or the Dinu test
sets (Artetxe, Labaka, and Agirre, 2017; Dinu, Lazaridou, and Baroni,
2015). Similarly to MUSE, the Dinu dataset was compiled automatically
(from Europarl word-alignments), but it only covers four languages.
Due to the bigger size of MUSE (110 language pairs), we deem its impact
larger and focus our study entirely on it.

4.4 annotation-based observations

In order to gain insights into the linguistic composition of the MUSE

dictionaries, we employ annotators fluent in German, Danish, Bulgar-
ian, Arabic and Hindi (hereafter, de, da, bg, ar, hi) to annotate the
entire dictionaries from English to one of these languages (hereafter,
from- en) and the entire dictionaries from these languages to English
(hereafter, to- en) with part-of-speech (POS) tags. Details on the an-
notation procedure can be found in Appendix A. Below, we discuss
our findings on the POS composition of the data, and we evaluate the
performance of RCSLS per POS tag.2

2 For all experiments, we use the pretrained embeddings of Bojanowski et al. (2017),
trained on Wikipedia.
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4.4.1 Analysis of POS composition

The average percentage of common nouns, proper nouns, verbs, and
adjectives/adverbs in the dictionaries to- en was respectively 49.6,
24.9, 12.5, and 12.9.3 Nouns constitute half of the dictionaries’ volume,
while verbs and adjectives/adverbs collectively make up only about
a fourth of the average dictionary. A skewed ratio between these
three categories is not surprising: in the EWT dependency treebank,
for example, which contain gold-standard POS tags, the proportion
of noun, verb and adjective/adverb types is 34, 17 and 14 percent,
respectively. Notice, however, that in the case of the MUSE data, the
ratio is even more skewed in favour of nouns over the other two
categories.

The large number of proper nouns in the dictionaries seems even
more problematic. Proper nouns are considered to have no lexical
meaning, but rather just a referential function (Pierini, 2008). Personal
names usually refer to a specific referent in a given context, but they
can, in general, be attributed to different referents across different
contexts, and they are almost universally interchangeable in any given
context. Some personal names and most place and organization names
may have a unique referent, e.g. Barack Obama, Wisconsin, Skype, but
these names still do not carry a sense, their referent is resolved through
access to encyclopedic knowledge (Pierini, 2008). Considering that the
pretrained embeddings which we use were trained on Wikipedia, we
can expect that such encyclopedic information would indeed appear in
the context of certain unique names, but importantly, the alignability
of the embeddings for such entities would depend on the level of
parallelism between the contents of Wikipedia articles in the different
languages.

With these considerations in mind, one should wonder how stable
the representation of names can be in an embedding space. This
question has previously been raised by Artetxe, Labaka, and Agirre
(2017). We address it empirically below.

4.4.2 Evaluation by POS

Figure 4.1 shows the precision of the RCSLS embedding alignment
method on different POS segments of the test data in mapping to- en

(results from- en were similar and are shown in Appendix B). Verbs
pose a greater challenge to BDI systems than nouns and adjectives do.
Generally, we can attribute this observation to the higher abstraction
of concepts described by verbs. This is a known problem for word
embedding methods in general (Gerz et al., 2016), which BDI systems
naturally inherit.

3 The numbers were similar across from- en dictionaries.
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Figure 4.1: Precision of RCSLS by POS tag on to- en data.

With respect to proper nouns, we observe that they indeed introduce
a level of instability in the evaluation of BDI systems. Notice that while
the other parts of speech follow a similar pattern across languages,
with higher precision obtained for nouns and adjectives/adverbs than
for verbs, relative precision on proper nouns is highly variable. For
de, proper nouns are easier to translate than other parts of speech
by a margin of 15%, for hi and ar they are easier than nouns and
adjectives/adverbs, but harder than verbs, and for da and bg they
are hardest out of all four categories. We looked into the individual
word pairs marked as proper nouns in the de and da data, as
these languages are related and RCSLS performs comparably on them
otherwise, and did not find any patterns that could explain the large
differences. In fact, between the 384 proper noun pairs in the en-de

dictionary and the 330 proper noun pairs in the en-da dictionary,
there was an overlap of 279 pairs, retrieved with precision of 89.21%
in the en-de setting and 51.30% in the en-da setting. We conjecture
that this result relates to the level of parallel content between the
Wikipedia dumps for the different language pairs, which is likely
higher for en-de , since the dumps for these languages are also closer
in size: 5.8M articles in en, 2.3M in de (and only 0.2M in da).4

We evaluate this hypothesis through an experiment where we train
an RCSLS alignment for de-en using the de embeddings of Artetxe,
Labaka, and Agirre (2017), trained on SdeWaC (Baroni et al., 2009) and
the en embeddings of Dinu, Lazaridou, and Baroni (2015), trained
on ukWaC (Baroni et al., 2009), Wikipedia and the BNC 5 corpora.
The level of parallel content between the data used to train the two
sets of embeddings is thus far more limited in this case, and the de

embeddings are not explicitly trained on Wikipedia data. Table 4.1
summarizes the results: while with the new embeddings performance
is somewhat reduced for nouns, verbs and adjectives/adverbs, preci-
sion at 1 for proper nouns, in particular, drops by over 50%, indicating

4 https://meta.wikimedia.org/wiki/List_of_Wikipedias
5 Available at http://www.natcorp.ox.ac.uk
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Corpora noun verb ad pnoun

Wikipedia 69.0 57.9 66.4 83.0

Mixed* 64.0 55.5 59.4 37.6

Table 4.1: Comparison in performance by POS category with two different
embedding sets. * The out-of-vocabulary rate for items in the
dictionaries is negligible: 2, 0, and 1 for noun, verb , and ad ,
respectively.
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Figure 4.2: Absolute difference in performance on from- en BDI, relative
to MUSE-S. Pattern-filled bars show results as estimated on the
original data (old), while colored bars show results as estimated
on the cleaned data (new).

that this category of test word pairs is indeed highly sensitive to the
nature of the training data.

4.4.3 Re-ranking on clean data

Based on the analysis presented above, we removed all pairs that were
annotated as proper nouns and all pairs that were marked as invalid
during the annotation process.6 This clean-up resulted in a drop in the
size of the test dictionaries of about 25% on average. A detailed size
comparison between the old test dictionaries and their new cleaned
versions is presented in the top rows of Table 4.4 in Appendix B.
Figure 4.2 visualizes a re-evaluation of the five systems for BDI listed
in Section 4.3, on the original test data and on the new clean versions
of the test dictionaries from- en.7 The results are reported in terms
of change in performance relative to MUSE-S (chosen as a baseline)
as estimated on the original MUSE data (pattern-filled bars) and on
the cleaned version of the data (colored bars). The absolute system

6 The latter constitute less than 1% of the removed data.
7 The to- en results were similar, see Appendix B.
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Ex. SRC TGT RCSLS VM-S Description

A joke шега шега [INDEF] шегата [DEF] definite form missing from targets

лаф

виц

B remembered запомнен запомнен [M] запомнена [F] feminine form missing from targets

C hide скриване скриване [N] скриват [V] hide as a verb vs. hide as a noun

D bench пейка пейка скамейка synonym missing from targets

пейката

E depot депо депо гара VM-S predicted ‘train station’

F crowned коронован коронована [F] коронован [M] feminine form missing from targets

G pond езерце къщичка езерце RCSLS predicted ‘cottage’

H grants субсидии стипендии стипендии synonym missing from targets

I armies армии армиите армиите definite form missing from targets

Table 4.2: Example translations from en to bg. Underlined forms are more
canonical. Grey forms are incorrect.

performances before and after the clean-up can be found in Table 4.4
in Appendix B.

We see that the ranking between the models changes most notably
for ar, where RCSLS appears inferior to VM-S on the original test
data, but on the clean data it emerges as best. For bg, the evaluation
on the clean test data reveals that RCSLS outperforms the next best
system, VM-S, by a larger factor than it appeared on the original test
data. Lastly, for da, evaluation on the original test data makes RCSLS
seem far inferior to VM-S and VM-U, but on the clean test data we
see that it outperforms VM-S and matches the performance of VM-U.
These observations show that the noise coming from proper nouns has
a large impact on the perceived ranking and difference in performance
between systems.

4.5 false false positives

With a more reliable estimate of the models’ performance at hand, we
next manually study the remaining performance gap between RCSLS,
the best-performing model overall, and VM-S, the second best model
overall, for en–bg.8 We present some examples in Table 4.2 and more
can be found in Table 6.5, Appendix C.

We find that there are 125 source words that RCSLS translated
correctly and VM-S did not. Upon closer inspection, we find that
for 54% of these words, both RCSLS and VM-S predicted a valid
translation, but RCSLS predicted a more canonical translation, which
was listed among the gold-standard targets, while VM-S predicted
another word form that was missing from the list of gold-standard
targets. By more canonical we mean, for example, indefinite instead of
definite forms of nouns and adjectives (see Ex. A, Table 4.2, masculine
instead of feminine or neuter forms of adjectives (see Ex. B), singular
instead of plural forms. To the extent that a more canonical translation

8 We also analyzed en– de, with very similar results.



40

should be considered better, RCSLS is definitely showing superiority
over VM-S. It is not clear, however, if that should be the case, since
for some words, the test dictionary exhibits higher coverage than for
others, i.e. the less canonical translations are not omitted by design,
but appear to be accidental gaps.

Another 19% of the instances where RCSLS outperformed VM-S,
we find to be clear cases of a missing translation in the test dictionary,
i.e. not a missing form of a listed target, but a missing synonym or a
missing sense altogether (see Ex. C and D).

The two types of errors in precision at 1 discussed above can be
considered cases of false False Positives, because they really should
have been True Positives. The remaining 27% of the gap between the
two models’ performance indeed illustrate that RCSLS provides better
translations in some cases (see Ex. E).

Notice, however, that it is not the case that RCSLS outperformed
VM-S in all cases–for 50 test words, VM-S predicted a correct trans-
lation and RCSLS did not. Among these, there are cases of missing
translations from the dictionary as well (see Ex. F), but they can
explain less of the lack in performance of RCSLS, i.e. 50% of the
translations of RCSLS are indeed erroneous (see Ex. G).

To summarize, originally the performance gap between the two
models appeared to be (125− 50)/1125 ∗ 100 = 6.67%, while after the
manual verification, it is (27% ∗ 125− 50% ∗ 50)/1125 ∗ 100 = 0.1%.9

Such a substantial narrowing in the gap between the two models
clearly indicates that conclusions drawn on the original result, i.e.
that RCSLS is far superior that VM-S for this language pair, is hardly
supported by the updated result.

A surface analysis of the subset of words for which neither RCSLS
nor VM-S retrieved correct translations revealed similar patterns of
extensive false False Positives, due to gaps in the coverage of the
dictionary (see Ex. H and I). Our takeaway from these observations
is two-fold. Firstly, when RCSLS retrieves a correct target form, it
also usually retrieves its most canonical form. More importantly, the
evaluation of BDI systems on even the cleaned test dictionaries still
does not represent accurately the differences in quality between them,
due to major gaps in the coverage of the test dictionaries.

4.6 concluding remarks

Our study of the MUSE dataset revealed two striking problems: a
high level of noise coming from proper nouns, and an issue of false
False Positives, due to gaps in the gold-standard targets. The for-
mer problem, we conjecture, can be solved by filtering names out
with gazetteers. The quality of this solution would depend on the
coverage of the gazetteers. The more challenging problem, however,

9 1125 is the total dictionary size.
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is filling in the gaps, especially in terms of inflectional forms. We
carried out preliminary experiments aiming to enrich the en–bg and
en-de dictionaries. We extracted additional word forms of verbal
and nominal targets from the UniMorph inflectional tables (Kirov
et al., 2018), according to a manually designed morphosyntactic cor-
respondence map.10 Unfortunately, due to limited coverage of the
UniMorph data, and, in the case of bg, limited vocabulary of the
pretrained embeddings, the impact of this procedure was almost negli-
gible. Alternative approaches for enrichment exists, of course, but we
wonder how worthwhile further efforts would be. That is, especially
in light of Glavaš et al. 2019’s findings that BDI performance is not
necessarily indicative of cross-lingual embedding quality. We therefore
hope that our work adds weight to the call of Glavaš et al. (2019) for
more reliable evaluation methods in cross-lingual embedding research.
When BDI performance is used for evaluation purposes, it should be
accompanied by manual verification, of the type presented here.
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appendices

A Appendix

In order to obtain a reliable part-of-speech (POS) tagging of the MUSE

test dictionaries efficiently, we used a two-step procedure. First, we
ran the Stanford POS tagger (Toutanova et al., 2003) on the English
side of each dictionary. We reduced the annotation schema to five
categories: nouns (NOUN), proper nouns (PNOUN), verbs (VERB),
adjectives and adverbs combined (AD), and others. Next, we asked
NLP researchers with the appropriate language background to verify
and correct the generated tags, based on both words in a pair. Where
one word in the pair is ambiguous with respect to POS, but the other
is not, they were told them to use the tag of the latter. If both words
were ambiguous, we told them to use the tag they considered more
frequent for these words.

We instructed annotators that if a word can be both a proper noun
and a common noun, it should be marked as the latter. We told them to
mark pairs of identical words as proper nouns, under the assumption
that they can be part of a company name or a brand, for example. That
is, unless the words in the pair are actual cognates between the source
and target language, or they are loanwords. See Table 4.3 for some
examples. Lastly, we asked the annotators to mark pairs as invalid, if
the source word is not a valid word in either the source or the target
language, or the target word is not a valid translation of the source
word. We note that this was a considerable annotation effort if over 40

hours in total. Each annotator had to process over 2000 word pairs:
the dictionaries each consist of 1,500 source words, many of which
have multiple translations, each processed separately. Annotation was
performed in Microsoft Excel.

src tgt pos valid explanation

tea té noun 3 actual translation

tea tea pnoun 3 part of a name,

e.g. “Lipton Iced Tea”

rugby rugby noun 3 loanword

ugby ugby – 7 not a word in either language

Table 4.3: Example of annotated gold-standard word pairs from English to
Spanish.
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B Appendix

The pattern of performance per POS tag is similar for to- en mappings
(see Figure 4.3), as we saw it for from- en mapping—proper nouns
yield highly variable performance.

Similarly to mappings from- en, in mappings to- en (see Figure 4.4)
we see RCSLS outperforming other systems on the clean data for all
languages (and by a large margin for most of them), whereas on the
original data it appeared inferior to VM-S for da and hi. Another
interesting observation here is that MUSE-U and VM-U occasionally
appear inferior to the MUSE-S baseline (for da and hi, respectively)
on the original test data, but on the clean test data all models yield an
improvement over the baseline.11
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Figure 4.3: Precision of the RCSLS system, measured per POS tag, on to- en

data.
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Figure 4.4: Change in performance on to- en BDI relative to MUSE-S. Pattern-
filled bars show results as estimated on the original data, while
colored bars show results as estimated on the cleaned data.

11 That is, excluding MUSE-U evaluated on hi and ar, where all solutions found were
degenerate, so they have been excluded.
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es de da bg hi ar

→ en en→ → en en→ → en en→ → en en→ → en en→ → en en→

Source words
1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500

1145 1171 1111 1188 974 1158 1124 1125 963 1104 1212 1080

MUSE-S
83.47 81.66 72.67 73.93 67.07 56.80 56.93 43.93 44.07 33.60 49.93 34.13

79.56 73.36 66.79 64.47 68.79 55.44 60.63 45.33 46.73 37.68 50.83 34.63

MUSE-U
83.67 82.07 72.60 74.20 64.00 55.40 56.80 39.93 0.00 28.27 0.00 34.60

80.09 73.78 67.60 64.31 69.82 54.40 62.39 41.51 0.00 34.87 0.00 36.39

VM-S
85.47 81.40 74.93 74.67 70.47 64.60 63.20 48.80 48.96 41.07 53.95 43.53

81.48 72.50 68.68 65.49 71.46 62.52 66.61 49.78 50.57 45.74 54.62 44.07

VM-U
84.53 82.33 74.00 75.20 68.07 64.87 58.40 44.73 38.71 36.93 48.73 35.73

80.70 73.53 67.51 65.66 70.64 63.04 64.76 48.44 47.77 44.02 51.90 39.54

RCSLS
86.40 84.46 76.00 79.00 70.07 61.93 63.60 51.73 47.15 38.27 55.56 42.20

82.79 76.17 71.38 71.97 75.36 62.69 69.24 56.44 50.78 44.57 57.92 45.83

Table 4.4: Cyan rows correspond to the original test data and white rows to
the clean test data. The top rows report the sizes of the dictionaries,
measured in terms of source words. For unstable models, e.g.
MUSE-U, we train ten models and report results from one random
successful model. For a fair comparison of MUSE-U and MUSE-S,
we run Procrustes for 5 iterations in both cases, and use the same
model selection criterion, mean cosine similarity, in both cases. All
systems are evaluated using CSLS for retrieval. * Instead of full
annotation for Spanish, we only mark proper nouns and remove
them from the test dictionaries to and from English.
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C Appendix

SRC TGT RCSLS VM-S Description

V
M

-S
7

,R
C

SL
S

3

joke шега шега шегата definite form missing from targets

лаф

виц

arbitrators арбитри арбитри арбитрите definite form missing from targets

revolt бунт бунт бунта definite form missing from targets

въстание

remembered запомнен запомнен запомнена feminine form missing from targets

hide скриване скриване скриват hide as a verb vs. hide as a noun

bench пейката пейка скамейка synonym missing from targets

пейка

depot депо депо гара VM-S predicted ‘station’

gaelic келтски келтски ирландският VM-S predicted ‘the irish’

footage кадри кадри заснети VM-S predicted ‘shot’

V
M

-S
3

,R
C

SL
S

7

egg яйцето яйчен яйце translation for attributive use of noun

яйца missing from targets

яйце

crowned коронован коронована коронован feminine form missing from targets

volcanic вулканична вулканичен вулканична masculine form missing from targets

penny пени паричка пени synonym missing from targets

pound паунд кило паунд RCSLS predicted a non-word

кг

thursday четвъртък петък четвъртък RCSLS predicted ‘friday’

striker нападател защитник нападател RCSLS predicted ‘defender’

страйкър

pond езерце къщичка езерце RCSLS predicted ‘cottage’

flute флейтата тромпет флейта RCSLS predicted ‘trumpet’

флейта

V
M

-S
7

,R
C

SL
S

7

circular кръгло кръгла кръгла feminine form missing from targets

sailed отплава отплавал отплавал participle form missing from targets

grants субсидии стипендии стипендии synonym missing from targets

spots петна петната петната definite form missing from targets

armies армии армиите армиите definite form missing from targets

nose нос врат задницата RCSLS predicted ‘neck’,

носа VM-S predicted ‘bottom’

носът

foods храни сладкиши напитки RCSLS predicted ‘sweets’,

VM-S predicted ’drinks’

cliff скала терас скалата RCSLS predicted non-word,

клиф definite form missing from targets

elevated повишени понижен понижен models predicted ‘reduced’

повишена

повишен

Table 4.5: Example translations from en to bg. In cases where both models
predicted forms of the same word, one being more canonical
than the other, we underline the canonical form. Truly incorrect
translations are marked in grey. Notice the high number of correct
translations that are not listed as gold-standard targets.
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src tgt

V;NINF V;IMP;2;SG

V;IMP;2;PL

V;IND;PRS;1;SG

V;IND;PRS;1;PL

V;IND;PRS;2;SG

V;IND;PRS;2;PL

V;IND;PRS;3;PL

Table 4.6: Example of an inflectional correspondence map from English to
Bulgarian.

de bg

VM-S
65.5 49.8

67.6 50.3

RCSLS
72.0 56.4

72.5 56.8

∆
6.5 6.7

4.9 6.5

Table 4.7: Results before (cyan rows) and after (white rows) coverage enrich-
ment for de and bg.

D Appendix

Table 4.6 shows an example of an inflectional correspondence map.
It signifies that whenever an English word is encountered which is a
verb in the infinitive, seven Bulgarian forms would be added to the list
of targets, if not in it already. Addition of targets is also conditioned
on their presence in the pretrained embeddings vocabulary.

The modifications performed in this manner narrowed the gap in
performance between RCSLS and VM-S by only 0.1 percentage points
for en–bg (from 6.7% to 6.4%) and by 1.6 percentage points for en–
de (from 6.5% to 4.9%). Detailed results can be found in Table 4.7.
Recall that for Bulgarian, we estimated 54% of the gap in performance
to stem from false False Positives. If the enrichment procedure was
perfect, it should have reduced the gap from 6.6% to less than 3.3%.
Unfortunately, due to limited coverage of the inflectional tables and
of the pretrained embeddings, only 240 additional word forms were
added to the en–bg dictionary, making for a an almost negligible
effect on precision.
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A S Y S T E M AT I C C O M PA R I S O N O F M E T H O D S F O R
L O W- R E S O U R C E D E P E N D E N C Y PA R S I N G O N
G E N U I N E LY L O W- R E S O U R C E L A N G UA G E S

abstract

Parsers are available for only a handful of the world’s languages, since
they require lots of training data. How far can we get with just a small
amount of training data? We systematically compare a set of simple
strategies for improving low-resource parsers: data augmentation,
which has not been tested before; cross-lingual training; and translit-
eration. Experimenting on three typologically diverse low-resource
languages—North Sámi, Galician, and Kazakh—we find that (1) when
only the low-resource treebank is available, data augmentation is very
helpful; (2) when a related high-resource treebank is available, cross-
lingual training is helpful and complements data augmentation; and
(3) when the high-resource treebank uses a different writing system,
transliteration into a shared orthographic spaces is also very helpful.

5.1 introduction

Large annotated treebanks are available for only a tiny fraction of the
world’s languages, and there is a wealth of literature on strategies
for parsing with few resources (Hwa et al., 2005; McDonald, Petrov,
and Hall, 2011; Søgaard, 2011; Zeman and Resnik, 2008). A popular
approach is to train a parser on a related high-resource language and
adapt it to the low-resource language. This approach benefits from
the availability of Universal Dependencies (UD; Nivre et al., 2016),
prompting substantial research (Agić, 2017; Rosa and Mareček, 2018;
Tiedemann and Agic, 2016), along with the VarDial and the CoNLL
UD shared tasks (Zampieri et al., 2017; Zeman et al., 2018, 2017).

But low-resource parsing is still difficult. The organizers of the
CoNLL 2018 UD shared task (Zeman et al., 2018) report that, in general,
results on the task’s nine low-resource treebanks “are extremely low
and the outputs are hardly useful for downstream applications.” So if
we want to build a parser in a language with few resources, what can
we do? To answer this question, we systematically compare several
practical strategies for low-resource parsing, asking:

1. What can we do with only a very small target treebank for a
low-resource language?

47
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2. What can we do if we also have a source treebank for a related
high-resource language?

3. What if the source and target treebanks do not share a writing
system?

Each of these scenarios requires different approaches. Data aug-
mentation is applicable in all scenarios, and has proven useful for
low-resource NLP in general (Bergmanis et al., 2017; Fadaee, Bisazza,
and Monz, 2017; Sahin and Steedman, 2018). Transfer learning via
cross-lingual training is applicable in scenarios 2 and 3. Finally,
transliteration may be useful in scenario 3.

To keep our scenarios as realistic as possible, we assume that no
taggers are available since this would entail substantial annotation.
Therefore, our neural parsing models must learn to parse from words
or characters—that is, they must be lexicalized—even though there
may be little shared vocabulary between source and target treebanks.
While this may intuitively seem to make cross-lingual training difficult,
recent results have shown that lexical parameter sharing on characters
and words can in fact improve cross-lingual parsing (Lhoneux et al.,
2018); and that in some circumstances, a lexicalized parser can outper-
form a delexicalized one, even in a low-resource setting (Falenska and
Çetinoğlu, 2017).

We experiment on three language pairs from different language
families, in which the first of each is a genuinely low-resource lan-
guage: North Sámi and Finnish (Uralic); Galician and Portuguese
(Romance); and Kazakh and Turkish (Turkic), which have different
writing systems1. To avoid optimistic evaluation, we extensively exper-
iment only with North Sámi, which we also analyse to understand why
our cross-lingual training outperforms the other parsing strategies.
We treat Galician and Kazakh as truly held-out, and test only our best
methods on these languages. Our results show that:

1. When no source treebank is available, data augmentation is very
helpful: dependency tree morphing improves labeled attachment
score (LAS) by as much as 9.3%. Our analysis suggests that
syntactic rather than lexical variation is most useful for data
augmentation.

2. When a source treebank is available, cross-lingual parsing im-
proves LAS up to 16.2%, but data augmentation still helps, by an
additional 2.6%. Our analysis suggests that improvements from
cross-lingual parsing occur because the parser learns syntactic
regularities about word order, since it does not have access to
POS and has little reusable information about word forms.

1 We select high-resource language based on language family, since it is the most
straightforward way to define language relatedness. However, other measurement
(e.g., WALS (Dryer and Haspelmath, 2013) properties) might be used.
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Sámi and Finnish (Uralic); Galician and Por-
tuguese (Romance); and Kazakh and Turkish (Tur-
kic), which have different writing systems1. To
avoid optimistic evaluation, we extensively exper-
iment only with North Sámi, which we also anal-
yse to understand why our cross-lingual training
outperforms the other parsing strategies. We treat
Galician and Kazakh as truly held-out, and test
only our best methods on these languages. Our
results show that:

1. When no source treebank is available, data
augmentation is very helpful: dependency
tree morphing improves labeled attachment
score (LAS) by as much as 9.3%. Our anal-
ysis suggests that syntactic rather than lexi-
cal variation is most useful for data augmen-
tation.

2. When a source treebank is available, cross-
lingual parsing improves LAS up to 16.2%,
but data augmentation still helps, by an addi-
tional 2.6%. Our analysis suggests that im-
provements from cross-lingual parsing occur
because the parser learns syntactic regulari-
ties about word order, since it does not have
access to POS and has little reusable informa-
tion about word forms.

3. If source and target treebanks have differ-
ent writing systems, transliterating them to a
common orthography is very effective.

2 Methods

We describe three techniques for improving low-
resource parsing: (1) two data augmentation meth-
ods which have not been applied before for depen-
dency parsing, (2) cross-lingual training, and (3)
transliteration.

2.1 Data augmentation by dependency tree
morphing (Morph)

Sahin and Steedman (2018) introduce two opera-
tions to augment a dataset for low-resource POS
tagging. Their method assumes access to a depen-
dency tree, but they do not test it for dependency
parsing, which we do here for the first time. The
first operation, cropping, removes some parts of a
sentence to create a smaller or simpler, meaningful

1We select high-resource language based on language
family, since it is the most straightforward way to define lan-
guage relatedness. However, other measurement (e.g., WALS
(Dryer and Haspelmath, 2013) properties) might be used.

She wrote me a letter
PRON VERB PRON DET NOUN

ROOT

NSUBJ IOBJ DET

OBJ

(a) Original sentence.

She wrote a letter
PRON VERB DET NOUN

ROOT

NSUBJ

OBJ

DET

(b) Cropped sentence.

She me wrote a letter
PRON PRON VERB DET NOUN

ROOT

IOBJ

NSUBJ OBJ

DET

(c) Rotated sentence.

Figure 1: Examples of dependency tree morphing op-
erations on the sentence “She wrote me a letter”.

sentence. The second operation, rotation, keeps all
the words in the sentence but re-orders subtrees at-
tached to the root verb, in particular those attached
by NSUBJ (nominal subject), OBJ (direct object),
IOBJ (indirect object), or OBL (oblique nominal)
dependencies. Figure 1 illustrates both operations.

It is important to note that while both opera-
tions change the set of words or the word order,
they do not change the dependencies. The sen-
tences themselves may be awkward or ill-formed,
but the corresponding analyses are still likely to be
correct, and thus beneficial for learning. This is
because they provide the model with more exam-
ples of variations in argument structure (cropping)
and in constituent order (rotation), which may ben-
efit languages with flexible word order and rich
morphology. Some of our low-resource languages
have these properties—while North Sámi has a
fixed word order (SVO), Galician and Kazakh
have relatively free word order. All three lan-
guages use case marking on nouns, so word order
may not be as important for correct attachment.

Both rotation and cropping can produce many
trees. We use the default parameters given in
(Sahin and Steedman, 2018).

Figure 5.1: Examples of dependency tree morphing operations on the sen-
tence “She wrote me a letter”.

3. If source and target treebanks have different writing systems,
transliterating them to a common orthography is very effective.

5.2 methods

We describe three techniques for improving low-resource parsing:
(1) two data augmentation methods which have not been applied
before for dependency parsing, (2) cross-lingual training, and (3)
transliteration.

5.2.1 Data augmentation by dependency tree morphing (Morph)

Sahin and Steedman (2018) introduce two operations to augment a
dataset for low-resource POS tagging. Their method assumes access
to a dependency tree, but they do not test it for dependency parsing,
which we do here for the first time. The first operation, cropping,
removes some parts of a sentence to create a smaller or simpler,
meaningful sentence. The second operation, rotation, keeps all the
words in the sentence but re-orders subtrees attached to the root verb,
in particular those attached by nsubj (nominal subject), obj (direct
object), iobj (indirect object), or obl (oblique nominal) dependencies.
Figure 5.1 illustrates both operations.

It is important to note that while both operations change the set of
words or the word order, they do not change the dependencies. The
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sentences themselves may be awkward or ill-formed, but the corre-
sponding analyses are still likely to be correct, and thus beneficial for
learning. This is because they provide the model with more examples
of variations in argument structure (cropping) and in constituent order
(rotation), which may benefit languages with flexible word order and
rich morphology. Some of our low-resource languages have these
properties—while North Sámi has a fixed word order (SVO), Galician
and Kazakh have a relatively free word order. All three languages use
case marking on nouns, so word order may not be as important for
correct attachment.

Both rotation and cropping can produce many trees. We use the
default parameters given in (Sahin and Steedman, 2018).

5.2.2 Data augmentation by nonce sentence generation (Nonce)

Our next data augmentation method is adapted from Gulordava et al.
(2018). The main idea is to create nonce sentences by replacing some
of the words which have the same syntactic annotations. For each
training sentence, we replace each content word—nouns, verbs, or
adjectives—with an alternative word having the same universal POS,
morphological features, and dependency label.2 Specifically, for each
content word, we first stochastically choose whether to replace it; then,
if we have chosen to replace it, we uniformly sample the replacement
word type meeting the corresponding constraints. For instance, given
a sentence “He borrowed a book from the library.”, we can generate the
following sentences:

1. He bought a book from the shop .

2. He wore a umbrella from the library .

This generation method is only based on syntactic features (i.e.,
morphology and dependency labels), so it sometimes produces non-
sensical sentences like 2. But since we only replace words if they have
the same morphological features and dependency label, this method
preserves the original tree structures in the treebank. Following (Gu-
lordava et al., 2018), we generate five nonce sentences for each original
sentence.

5.2.3 Cross-lingual training

When a source treebank is available, model transfer is a viable option.
We perform model transfer by cross-lingual parser training: we first
train on both source and target treebanks to produce a single model,
and then fine tune the model only on the target treebank. In our
preliminary experiments (Appendix A), we found that fine tuning

2 The dependency label constraint is new to this paper.
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on the target treebank was effective in all settings, so we use it in all
applicable experiments reported in this paper.

5.2.4 Transliteration

Two related languages might not share a writing system even when
they belong to the same family. We evaluate whether a simple translit-
eration would be helpful for cross-lingual training in this case. In
our study, the Turkish treebank is written in extended Latin while
the Kazakh treebank is written in Cyrillic. This difference potentially
makes model transfer less useful, and means we might not be able
to leverage lexical similarities between the two languages. We pre-
process both treebanks by transliterating them to the same “pivot”
alphabet, basic Latin.3

The mapping from Turkish is straightforward. Its alphabet consists
of 29 letters, 23 of which are in basic Latin. The other six letters,
‘ç’, ‘ğ’, ‘ı’, ‘ö’, ‘ş’, and ‘ü’, add diacritics to basic Latin characters,
facilitating different pronunciations.4 We map these to their basic Latin
counterparts, e.g., ‘ç’ to ‘c’. For Kazakh, we use a simple dictionary
created by a Kazakh computational linguist to map each Cyrillic letter
to the basic Latin alphabet.5.

5.3 experimental setup

5.3.1 Dependency Parsing Model

We use the Uppsala parser, a transition-based neural dependency
parser (Kiperwasser and Goldberg, 2016; Lhoneux et al., 2017; Lhoneux,
Stymne, and Nivre, 2017). The parser uses an arc-hybrid transition sys-
tem (Kuhlmann, Gómez-Rodrìguez, and Satta, 2011), extended with
a static-dynamic oracle and Swap transition to allow non-projective
dependency trees (Nivre, 2009).

Let w = w0, . . . , w|w| be an input sentence of length |w| and let w0

represent an artificial Root token. We create a vector representation
for each input token wi by concatenating (; ) its word embedding,
ew(wi) and its character-based word embedding, ec(wi):

xi = [ew(wi); ec(wi)] (5.1)

Here, ec(wi) is the output of a character-level bidirectional LSTM (biL-
STM) encoder run over the characters of wi (Ling et al., 2015); this

3 Another possible pivot is phonemes (Tsvetkov et al., 2016). We leave this for future
work.

4 https://www.omniglot.com/writing/turkish.htm
5 The mapping from Kazakh Cyrilic into basic Latin alphabet is provided in Appendix

B
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makes the model fully open-vocabulary, since it can produce represen-
tations for any character sequence. We then obtain a context-sensitive
encoding hi using a word-level biLSTM encoder:

hi = [LSTM f (x0:i); LSTMb(x|w|:i)] (5.2)

We then create a configuration by concatenating the encoding of a
fixed number of words on the top of the stack and the beginning of
the buffer. Given this configuration, we predict a transition and its arc
label using a multi-layer perceptron (MLP). More details of the core
parser can be found in (Lhoneux et al., 2017; Lhoneux, Stymne, and
Nivre, 2017).

5.3.2 Parameter sharing

To train cross-lingual models, we use the strategy of Lhoneux et al.
(2018) for parameter sharing, which uses soft sharing for word and
character parameters, and hard sharing for the MLP parameters. Soft
parameter sharing uses a language embedding, which, in theory,
learns what parameters to share between the two languages. Let cj
be an embedding of character cj in a token wi from the treebank of
language k, and let lk be the language embedding. For sharing on
characters, we concatenate character and language embedding: [cj; lk]

for input to the character-level biLSTM. Similarly, for input to the
word-level biLSTM, we concatenate the language embedding to the
word embedding, modifying Eq. 5.1 to

xi = [ew(wi); ec(wi); lk] (5.3)

We use the default hyperparameters of Lhoneux et al. (2018) in our
experiments. We fine-tune each model by training it further only
on the target treebank (Shi, Padhi, and Knight, 2016). We use early
stopping based on Label Attachment Score (LAS) on a development
set.

5.3.3 Datasets

We use Universal Dependencies (UD) treebanks version 2.2 (Nivre
et al., 2018). Our target treebanks are North Sámi Giella (Sheyanova
and Tyers, 2017), Galician TreeGal, and Kazakh KTB (Makazhanov
et al., 2015; Tyers and Washington, 2015). None of these treebanks
have a development set, so we generate new train/dev splits by 50:50.
Having large development sets allows us to perform better analysis
for this study. We use Finish TDT, Portuguese Bosque (Rademaker
et al., 2017), and Turkish IMST for our source treebanks. Table 5.1
shows the statistics of our datasets.
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Language Treebank ID train dev. test

Finnish fi_tdt 14981 1875 1555

North Sámi sme_giella 1128 1129 865

Portuguese pt_bosque 8329 560 477

Galician gl_treegal 300 300 400

Turkish tr_imst 3685 975 975

Kazakh kk_ktb 15 16 1047

Table 5.1: Train/dev split used for each treebank.

original +Morph +Nonce

T100 1128 7636 4934

T50 564 3838 2700

T10 141 854 661

Table 5.2: Number of North Sámi training sentences.

5.4 parsing north sámi

North Sámi is our largest low-resource treebank, so we use it for a
full evaluation and analysis of different strategies before testing on
the other languages. To understand the effect of target treebank size,
we generate three datasets with different training sizes: T10 (~10%),
T50 (~50%), and T100 (100%). Table 5.2 reports the number of training
sentences after we augment the data using the methods described in
Section 5.2. We apply Morph and Nonce separately to understand
the effect of each method and to control the amount of noise in the
augmented data.

We employ two baselines: a monolingual model (§5.3.1) and a
cross-lingual model (§5.2.3), both without data augmentation. The
monolingual model acts as a simple baseline, to resemble a situation
when the target treebank does not have any source treebank (i.e., no
available treebanks from related languages). The cross-lingual model
serves as a strong baseline, simulating a case when there is a source
treebank. We compare both baselines to models trained with Morph

and Nonce augmentation methods. Table 5.3 reports our results, and
we review our motivating scenarios below.

scenario 1 : we only have a very small target treebank .
In the monolingual experiments, we observe that both dependency tree
morphing (Morph) and nonce sentence generation (Nonce) improve
performance, indicating the strong benefits of data augmentation
when there are no other resources available except the target treebank



54

monolingual cross-lingual

size mono-base +Morph +Nonce cross-base +Morph +Nonce

T100 53.3 56.0 (+3.3) 56.3 (+3.0) 61.3 (+8.0) 60.9 (+7.6) 61.7 (+8.4)

T50 42.5 46.6 (+4.1) 46.5 (+4.0) 52.0 (+9.5) 51.7 (+9.2) 52.0 (+9.5)

T10 18.5 27.1 (+8.6) 27.8 (+9.3) 34.7 (+16.2) 37.3 (+18.8) 35.4 (+16.9)

Table 5.3: LAS results on North Sámi development data. mono-base and cross-
base are models without data augmentation. % improvements over
mono-base shown in parentheses.

itself. In particular, when the number of training data is the lowest
(T10), data augmentations improves performance up to 9.3% LAS.

scenario 2 : a source treebank is available . We see that
the cross-lingual training (cross-base) performs better than monolin-
gual models even with augmentation. For the T10 setting, cross-base
achieves almost twice as much as the monolingual baseline (mono-
base). The benefits of data augmentation are less evident in the
cross-lingual setting, but in the T10 scenario, data augmentation still
clearly helps. Overall, cross-lingual combined with data augmentation
yields the best result.

5.4.1 What is learned from Finnish?

Why do cross-lingual training and data augmentation help? To put
this question in context, we first consider their relationship. Finnish
and North Sámi are mutually unintelligible, but they are typologically
similar: of the 49 (mostly syntactic) linguistic features annotated
for North Sámi in the Word Atlas of Languages (WALS; Dryer and
Haspelmath, 2013), Finnish shares the same values for 42 of them.6

Despite this and their phylogenetic and geographical relatedness, they
share very little vocabulary: only 6.5% of North Sámi tokens appear in
Finnish data, and these words are either proper nouns or closed class
words such as pronouns or conjunctions. However, both languages
do share many character-trigrams (72.5%, token-level), especially in
terms of suffixes.

Now we turn to an analysis of the T10 data setting, where we see
the largest gains for all methods.

5.4.2 Analysis of data augmentation

For dependency parsing, POS features are important because they
can provide a strong signal as to whether there exists dependency

6 There are 192 linguistic features in WALS, but only 49 are defined for North Sámi.
These features are mostly syntactic, annotated within different areas such as mor-
phology, phonology, nominal and verbal categories, and word order.
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POS %dev baseline
%diff. with

+Morph +Nonce

intj 0.1 0.0 20.0 20.0

part 1.5 70.1 7.7 0.8

num 1.9 19.2 15.1 -4.1

adp 1.9 15.7 24.5 19.7

sconj 2.4 57.8 5.9 7.6

aux 3.2 26.3 27.2 -4.9

cconj 3.4 91.3 -0.8 -4.2

propn 4.7 5.9 5.9 -5.9

adj 6.5 12.7 3.8 0.2

adv 9.0 42.9 11.8 11.5

pron 13.4 63.2 5.4 -2.7

verb 25.7 72.4 -6.2 -4.5

noun 26.4 67.0 8.6 13.2

Table 5.4: Results for the monolingual POS predictions, ordered by the fre-
quency of each tag in the dev split (%dev). %diff shows the
difference between each augmentation method and monolingual
models.

between two words in a given sentence. For example, subject and object
dependencies often occur between a noun and a verb, as can be seen
in Fig. 5.1a. We investigate the extent to which data augmentation is
useful for learning POS features, using diagnostic classifiers (Adi et al.,
2017; Shi, Padhi, and Knight, 2016; Veldhoen, Hupkes, and Zuidema,
2016) to probe our model representations. Our central question is:
do the models learn useful representations of POS, despite having no
direct access to it? And if so, is this helped by data augmentation?

After training each model, we freeze the parameters and generate
context-dependent representations (i.e., the output of word-level biLSTM,
hi in Eq. 5.2), for the training and development data. We then train a
feed-forward neural network classifier to predict the POS tag of each
word, using only the representation as input. To filter out the effect of
cross-lingual training, we only analyze representations trained using
the monolingual models. Our training and development data consists
of 6321 and 7710 tokens, respectively. The percentage of OOV tokens
is 40.5%.

Table 5.4 reports the POS prediction accuracy. We observe that rep-
resentations generated with monolingual Morph seem to learn better
POS, for most of the tags. On the other hand, representations gen-
erated with monolingual Nonce sometimes produce lower accuracy
on some tags; only on nouns the accuracy is better than monolingual
Morph. We hypothesize that this is because Nonce sometimes gen-
erates meaningless sentences which confuse the model. In parsing



56

this effect is less apparent, mainly because monolingual Nonce has
the poorest POS representation for infrequent tags (%dev), and better
representation of nouns.

5.4.3 Effects of cross-lingual training

Next, we analyze the effect of cross-lingual training by comparing the
monolingual baseline to the cross-lingual model with Morph.

cross-lingual representations . The fact that the cross-lingual
model improves parsing performance is interesting, since Finnish
and North Sámi have so little common vocabulary. What linguistic
knowledge is transferred through cross-lingual training? We analyze
whether words with the same POS category from the source and
target treebanks have similar representations. To do this, we analyze
the head predictions, and collect North Sámi tokens for which only the
cross-lingual model correctly predicts the headword.7 For these words,
we compare token-level representations of North Sámi development
data to Finnish training data.

We ask the following questions: Given the representation of a
North Sámi word, what is the Finnish word with the most similar
representation? Do they share the same POS category? Information
other than POS may very well be captured, but we expect that the
representations will reflect similar POS since POS is highly revelant to
parsing. We use cosine distance to measure similarity.

We look at four categories for which cross-lingual training sub-
stantially improves results on the development set: adjectives, nouns,
pronouns, and verbs. We analyze the representations generated by
two layers of the model in §5.3.1: (1) the output of character-level
biLSTM (char-level), ec(wi) and (2) the output of word-level biLSTM
(word-level), i.e., hi in Eq. 5.2.

Table 5.5 shows examples of the top three closest Finnish training
words for a given North Sámi word. We observe that the character-
level representation focuses on orthographic similarity of suffixes,
rather than POS. On the level of word representations, we find more
cases when the top closest Finnish words have the same POS with
the North Sámi word. In fact, when we compare the most similar
Finnish word (Table 5.6) quantitatively, we find that the word-level
representations of North Sámi are often similar to Finnish word with
the same POS; the same trend does not hold for character-level rep-
resentations. Since very few word tokens are shared, this suggests
that improvements in cross-lingual training might simply be due to
syntactic (i.e. word order) similarities between the two languages,

7 Another possible way is to look at the label predictions. But since the monolingual
baseline LAS is very low, we focus on the unlabeled attachment prediction since it is
more accurate.
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Top nearest Finnish words

North Sámi char-level word-level

borrat herrat (noun; gentleman) käydä (verb; go)

(verb; eat) kerrat (noun; time) otan (verb; take)

naurat (verb; laugh) sain (verb; get)

veahki nuuhki (verb; sniff) tyhjäksi (adj; empty)

(noun; help) väki (noun; power) johonki (pron; something)

avarsi (verb; expand) lähtökohdaksi (noun; basis)

divrras harras (adj; devout) välttämätöntä (adj; essential)

(adj; expensive) reipas (adj; brave) mahdollista (adj; possible)

sarjaporras (noun; series) kilpailukykyisempi (adj; competitive)

Table 5.5: Most similar Finnish words for each North Sámi word based on
cosine similarity.

POS char-level (%) word-level (%)

adj 12.1 37.1

noun 55.8 63.5

pron 12.9 68.0

verb 34.2 69.0

Table 5.6: Number of North Sámi tokens for which the most similar Finnish
word has the same POS.

captured in the dynamics of the biLSTM encoder—despite the fact
that it knows very little about the North Sámi tokens themselves. The
word-level representation has an advantage over the character-level
representation in that it has access to contextual information like word
order, and it has knowledge about the other words in the sentence.

head and label prediction. Lastly, we analyze the parsing
performance of the monolingual compared to the cross-lingual models.
Looking at the produced parse trees, one striking difference is that
the monolingual model sometimes predicts a “rootless" tree. That is,
it fails to assign a head with index ‘0’ to any word and to label the
dependency with a root label. In cases where the monolingual model
predicts wrong parses and the cross-lingual model predicts the correct
ones, we find that the “rootless" trees are predicted more than 50% of
the time.8 Meanwhile, the cross-lingual model learns to assign a word
with head index ‘0’, although sometimes it is the incorrect word (e.g.,
it is the second word, but the parser predicts the fifth word). This

8 The parsing model enforces the constraint that every tree should have a head, i.e., an
arc pointing from a dummy root to a node in the tree. It does not, however, enforce
that this arc be labeled root—the model must learn the labeling.
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Figure 5.2: Differences between cross-lingual vs. monolingual confusion
matrices. The last column represents cases of incorrect heads and
the other columns represent cases for correct heads, i.e., each row
summing to 100%. Blue cells show higher cross-lingual values
and red cells show higher monolingual values.

pattern suggests that more training examples at least helps the model
to learn the structural properties of a well-formed tree.

The ability of a parser to predict labels is contingent on its ability
to predict heads, so we focus our analysis on two cases. How do
monolingual and cross-lingual head prediction compare? And if
both models predict the correct head, how do they compare on label
prediction?

Figure 5.2 shows the difference between two confusion matrices: one
for cross-lingual and one for monolingual models. The last column
shows cases of incorrect heads and the other columns show label
predictions when the heads are correct, i.e., each row sums to 100%.
Here, blue cells highlight confusions that are more common for the
cross-lingual model, while red cells highlight those more common
for the monolingual model. For head prediction (last column), we
observe that the monolingual model makes higher errors especially
for nominals and modifier words. In cases when both models predict
the correct heads, we observe that cross-lingual training gives further
improvements in predicting most of the labels. In particular, regarding
the “rootless" trees discussed before, we see evidence that cross-lingual
training helps in predicting the correct root index, and the correct root
label.
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5.5 parsing truly low-resource languages

Now we turn to two truly low-resource treebanks: Galician and
Kazakh. These treebanks are most analogous to the North Sámi
T10 setting and therefore we apply the best approach, cross-lingual
training with Morph augmentation. Table 5.1 provides the statistics
of the augmented data. For Galician, we use the Portuguese treebank
as source while for Kazakh we use Turkish. Portuguese and Galician
have high vocabulary overlap; 62.9% of Galician tokens appear in
Portuguese data, while for Turkish and Kazakh they do not share
vocabulary since they use different writing systems. However, after
transliterating them into the same basic Latin alphabet, we observe
that 9.5% of Kazakh tokens appear in the Turkish data. Both lan-
guage pairs also share many (token-level) character trigrams: 96.0%
for Galician-Portuguese and 66.3% for transliterated Kazakh-Turkish.

To compare our best approach, we create two baselines: (1) a pre-
trained parsing model of the source treebank (zero-shot learning),
and (2) a cross-lingual model initialized with monolingual pre-trained
word embeddings. The first serves as a weak baseline, in a case where
training on the target treebank is not possible (e.g., Kazakh only has
15 sentences for training). The latter serves as a strong baseline, in a
case when we have access to pre-trained word embeddings, for the
source and/or the target languages.

We treat a pre-trained word embedding as an external embedding,
and concatenate it with the other representations, i.e., modifying Eq.
5.3 to xi = [ew(wi); ep(wi); ec(wi); lk], where ep(wi) represents a pre-
trained word embedding of wi, which we update during training. We
use the pre-trained monolingual fastText embeddings (Bojanowski
et al., 2017).9 We concatenate the source and target pre-trained word
embeddings.10 For our experiments with transliteration (§5.2.4), we
transliterate the entries of both the source and the target pre-trained
word embeddings.

5.5.1 Experimental results

Table 5.7 reports the LAS performance on the development sets.
Morph augmentation improves performance over the zero-shot base-
line and achieves comparable or better LAS with a cross-lingual model
trained with pre-trained word embeddings.

Next, we look at the effects of transliteration (see Kazakh vs Kazakh
(translit.) in Table 5.7). In the zero-shot experiments, simply mapping
both Turkish and Kazakh characters to the Latin alphabet improves

9 The embeddings are available at
https://fasttext.cc/docs/en/pretrained-vectors.html.

10 If a word occurs in both source and target, we use the word embedding of the source
language.
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cross-lingual

Language zero-shot +fastText +Morph

Galician 51.9 72.8 71.0

Kazakh 12.5 27.7 28.4

Kazakh (translit.) 21.2 31.1 36.7

Table 5.7: LAS results on the development sets. zero-shot denotes results
where we predict using a model trained only on the source tree-
bank.

cross-lingual

baseline best system +fastText +Morph rank

Galician 66.16 74.25 70.46 69.21 10/27

Kazakh (translit.) 24.21 31.93 25.28 28.23 2/27

Table 5.8: Comparison to CoNLL 2018 UD Shared Task on test sets. best
system is the state-of-the-art model for each treebank: UDPipe-
Future (Straka, 2018) for Galician and Uppsala (Smith et al., 2018)
for Kazakh. rank shows our best model position in the shared task
ranking for each treebank.

accuracy from 12.5 to 21.2 LAS. Cross-lingual training with Morph

further improves performance to 36.7 LAS.

5.5.2 Comparison with CoNLL 2018

To see how our best approach (i.e., cross-lingual model with Morph

augmentation) compares with the current state-of-the-art models, we
compare it to the recent results from CoNLL 2018 shared task. Train-
ing state-of-the-art models may require lots of engineering and data
resources. Our goal, however, is not to achieve the best performance,
but rather to systematically investigate how far simple approaches
can take us. We report performance of the following: (1) the shared
task baseline model (UDPipe v1.2; Straka and Straková, 2017) and (2)
the best system for each treebank, (3) our best approach, and (4) a
cross-lingual model with fastText embeddings.

Table 5.8 presents the overall comparison on the test sets. For each
treebank, we apply the same sentence segmentation and tokenization
used by each best system.11 We see that our approach outperforms
the baseline models on both languages. For Kazakh, our model (with
transliteration) achieves a competitive LAS (28.23), which would be the
second position in the shared task ranking. As comparison, the best

11 UD shared task only provides unsegmented (i.e., sentence-level and token-level) raw
test data. However, participants were allowed to use predicted segmentation and
tokenization provided by the baseline UDPipe model.
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system for Kazakh (Smith et al., 2018) trained a multi-treebank model
with four source treebanks, while we only use one source treebank.
Their system use predicted POS as input, while ours depends solely on
words and characters. The use of more treebanks and predicted POS is
beyond the scope of our paper, but it is interesting that our approach
can achieve the second best score with such minimal resources. For
Galician, our best approach outperforms the baseline by 8.09 LAS
points. Note that, the Galician treebank does not come with training
data. We use 50:50 train/dev split, while other teams might use higher
split for training (for example, the best system (Straka, 2018) uses
90:10 train/dev split). Since we treat Galician as a held-out data point,
we did not tune on the proportion for training data, but we guess that
this is the main reason why our system achieve rank 10 out of 27.

Compared to cross-lingual models with fastText embeddings (fast-
Text vs. Morph), we observe that our approach achieves better or
comparable performance, showing its potential when there is not
enough monolingual data available for training word embeddings.

5.6 conclusions

In this paper, we investigated various low-resource parsing scenarios.
We demonstrate that in the extremely low-resource setting, data aug-
mentation improves parsing performance both in monolingual and
cross-lingual settings. We also show that transfer learning is possible
with lexicalized parsers. In addition, we show that transfer learning
between two languages with different writing systems is possible, and
future work should consider transliteration for other language pairs.

While we have not exhausted all the possible techniques (e.g., use of
external resources (Rasooli and Collins, 2017; Rosa and Mareček, 2018),
predicted POS (Ammar et al., 2016a), multiple source treebanks (Lim,
Partanen, and Poibeau, 2018; Stymne et al., 2018), among others), we
show that simple methods which leverage the linguistic annotations
in the treebank can improve low-resource parsing. Future work might
explore different augmentation methods, such as the use of synthetic
source treebanks (Wang and Eisner, 2018) or contextualized language
models (Devlin et al., 2018; Howard and Ruder, 2018; Peters et al.,
2018) for scoring the augmented data (e.g., using perplexity).

Finally, while the techniques presented in this paper might be
applicable to other low-resource languages, we want to also highlight
the importance of understanding the characteristics of languages being
studied. For example, we showed that although North Sámi and
Finnish do not share vocabulary, cross-lingual training is still helpful
because they share similar syntactic structures. Different language
pairs might benefit from other types of similarity (e.g., morphological)
and investigating this would be another interesting future work for
low-resource dependency parsing.
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appendices

A Effects of Fine-Tuning for Cross-Lingual Training

For our cross-lingual experiments in Section 5.2.3, we observe that fine-
tuning on the target treebank always improves parsing performance.
Table 5.9 reports LAS for cross-lingual models with and without fine-
tuning.

size cross-base +Morph +Nonce

T100 57.9 (+4.6) 59.5 (+6.2) 59.3 (+6.0)

T50 48.3 (+5.8) 49.8 (+7.3) 50.1 (+7.6)

T10 29.8 (+11.3) 34.9 (+16.4) 34.8 (+16.3)

↓ with fine tuning (FT) ↓

T100 61.3 (+8.0) 60.9 (+7.6) 61.7 (+8.4)

T50 52.0 (+9.5) 51.7 (+9.2) 52.0 (+9.5)

T10 34.7 (+16.2) 37.3 (+18.8) 35.4 (+16.9)

Table 5.9: Effects of fine-tuning on North Sámi development data, measured
in LAS. mono-base and cross-base are models without data augmen-
tation. % improvements over mono-base shown in parentheses.

B Cyrillic to Latin Alphabet mapping

We use the following character mapping for Cyrillic to Latin Kazakh
treebank transliteration.
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Figure 5.3: Cyrillic to Latin alphabet mapping.
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T H E A P P O S C O R P U S : A N E W M U LT I L I N G UA L ,
M U LT I - D O M A I N D ATA S E T F O R FA C T UA L
A P P O S I T I V E G E N E R AT I O N

abstract

News articles, image captions, product reviews and many other texts
mention people and organizations whose name recognition could vary
for different audiences. In such cases, background information about
the named entities could be provided in the form of an appositive
noun phrase, either written by a human or generated automatically.
We expand on the previous work in appositive generation with a
new, more realistic, end-to-end definition of the task, instantiated by
a dataset that spans four languages (English, Spanish, German and
Polish), two entity types (person and organization) and two domains
(Wikipedia and News). We carry out an extensive analysis of the data
and the task, pointing to the various modeling challenges it poses.
The results we obtain with standard language generation methods
show that the task is indeed non-trivial, and leaves plenty of room for
improvement.

6.1 introduction

News articles, image captions, product reviews and many other texts
mention people and organizations, whose name recognition could
vary for different audiences. A piece of news, for example, may con-
cern people and organizations that are known locally, but are not
necessarily well-recognized on a global level. In such cases, news
pieces targeted at a wider audience would provide background infor-
mation about the entity in focus, often in the form of an appositive. For
example:

In March 2017 , Natalie Jaresko, former Minister of Finance
in Ukraine, was appointed as the board’s executive director.

It is unlikely that many people outside of Ukraine know the name
Natalie Jaresko, so a foreign reader would likely benefit from the extra
bit of information about her former occupation as justification for her
new appointment. An appositive could also be less contextualized
and provide information of more general importance, for example:

The conservation unit is in the Calhau bairro of São Luís,
the state capital.

65
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In general terms, appositives are phrases that appear next to a noun
phrase and serve an explicative function (Bauer, 2017). Adding such
explanations to text is a multi-step process. First, one has to decide
whether an entity mention needs an appositive. That may not be the
case for entities that are sufficiently well-known or that have been
introduced earlier in the text. In case an appositive is indeed needed,
the next step is to choose what information about the entity to disclose.
If the information is to be of a factual nature, the writer needs to have
prior knowledge of the entity, or access to an external knowledge
resource–Kang et al. (2019) found appositives to be frequently based
on facts of particular relevance to the context of the mention. Lastly, the
surface form of the appositive, well-fitted to the surrounding context,
needs to be produced. Viewed from the perspective of NLP, appositive
generation is therefore an interesting and challenging natural language
generation problem that involves reasoning over facts from an external
knowledge source, with reference to a given context.

The task of appositive generation, first introduced by Kang et
al. (2019), is still in its early stages and data resources are limited.
We expand on previous work in appositive generation with a new,
more realistic, end-to-end definition of the task, instantiated by a
dataset,ApposCorpus,1 that spans four languages (English, Spanish,
German and Polish), two entity types (person and organization) and
two domains (Wikipedia and News). While Wikipedia as a domain is
curated for a world-wide audience and as such may not benefit much
from appositive generation, we posit that it is a valuable source of
abundant cross-lingual data which could be used as the basis for trans-
fer learning. In addition to a large training set automatically sourced
from Wikipedia, we therefore also introduce a gold standard test
sourced from news wire, one of the true target domains for appositive
generation (Kang et al., 2019).

6.2 the task : appositive generation

Kang et al. (2019) laid the groundwork for appositive generation and
our work can be seen as an expansion of their efforts. Yet, we both
rename the task and redefine it in more general terms.

6.2.1 Prior work

Kang et al. (2019) introduced the task of appositive generation. To
date this is the only work on this task. They designed a data collection
procedure where appositives are identified by locating instances of
the appos dependency label (Nivre et al., 2020) in parsed text, and
used it to build a dataset of appositives for person entities in English
news articles. The candidate appositives were cross-referenced with

1 Available at https://yovakem.github.io/#ApposCorpus.

https://yovakem.github.io/#ApposCorpus
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the WikiData knowledge base (Vrandečić and Krötzsch, 2014) through
word matching, and only those appositives were included in the final
dataset which matched a fact from WikiData.

More generally, appositive generation relates to work on joint fact
selection and generation (Angeli, Liang, and Klein, 2010; Kim and
Mooney, 2010; Konstas and Lapata, 2013; Liang, Jordan, and Klein,
2009).

6.2.2 A shift in terminology

Kang et al. (2019) actually called the phrases in question post-modifiers,
rather than appositives. The linguistic term post-modifier can be seen as
subsuming appositives, but it is much broader, including also prepo-
sitional, non-finite and dependent clauses that appear in postposi-
tion. Meanwhile, appositives come in two forms, nominal appositives,
where a single noun identifies or qualifies another noun, e.g. Pres-
ident Washington, and explicative appositives, where a pronoun, an
infinitive or a noun phrase is used to explain or specify the status of a
noun (Bauer, 2017). Explicative appositives are further characterized
as non-essential, meaning that they are not integral to the grammatical
or semantic well-formedness of the sentence it appears in, and as such
are often delimited from the rest of the sentence by punctuation marks
(Traffis, 2019). For the purposes of providing background information
about named entities, we are in particular interested in explicative
appositive noun phrases, and that is what we refer to as an appositive
throughout this work.

6.2.3 Expanding the task definition

Being built with reference to WikiData, the dataset of Kang et al. (2019)
creates the illusion that all facts necessary to generate an appositive
are available in the knowledge base. Balaraman, Razniewski, and Nutt
(2018) studied the relative completeness of WikiData entries and found
gaps to be the norm rather than an exception. Moreover, the dataset of
Kang et al. (2019) only includes positive samples, i.e. instances where
an appositive is due. A more realistic scenario would also require the
model to choose whether or not to add an appositive to a given entity
mention. ApposCorpus is not constrained by WikiData in terms of fact
matching, and contains positive and negative samples, i.e. instances
of empty appositives. See Figure 6.1 for an illustration. Moreover, it
is multilingual and covers both person and organization named
entities. We built this dataset primarily based on text from Wikipedia,
chosen for its rich cross-lingual coverage.
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Input text

Input facts

Output

<	N	sentences	of	past	context	>	...	
Blogrel	notes	the	passing	of	Aram
Asatryan.

sex	or	gender:	male
citizenship:	Armenia,	Soviet
Union
date	of	birth:	3	March	1953
occupation:	singer,	composer
genre:	Rabiz,	pop	music

an	Armenian	musician

<	N	sentences	of	past	context	>	...	
In	particular	,	tweeps	took	note	of	Abed
Rabbo’s	attacks	on	Qatar.

part	of:	Middle	East
inception:	1870
official	language:	Arabic
capital:	Doha
lowest	point:	Persian	Gulf

the	home	of	Al	Jazeera

<	N	sentences	of	past	context	>	...	
Yandex	is	being	forced	to	change	the
terms	of	its	information	sharing	policy.

industry:	internet,	software
inception:	23	September	1997
CEO:	Arkady	Volozh
country:	Russia
59,790,000,000	Russian	ruble

<EMPTY>

Constrained task Full, end-to-end task

Figure 6.1: Illustration of the task in a constrained setting, where an appositive
is always due and the facts in it are always available in the
knowledge base; and in a full, end-to-end setting, where a decision
has to be made as to whether or not to generate an appositive, and
the facts in the appositive may be missing from the knowledge
base. The entity in focus is shown in bold, the relevant facts
are underlined (where available), and the <EMPTY> tag means
no appositive is needed. Optionally, previous context can be
included in the input, e.g. the three previous sentences–this is
not shown in the figure.

6.3 dataset collection : wikipedia

We used the March 2020 Wikipedia dump2 for English, Spanish, Ger-
man and Polish, which we parsed with WikiExtractor,3 preserving
internal links.4 The choice of these particular languages was mostly
based on the availability of good dependency parsers. Since depen-
dency parsing is an integral step of the data collection process (Kang
et al., 2019), it has to be as precise as possible, to maximize the qual-
ity of the outcome.5 Below, we describe in detail the data collection
procedure.

6.3.1 Preprocessing

We processed every article as follows: (1) tokenize the text and segment
sentences; (2) normalize mentions of the entity in the article’s title
and annotate them with internal links; (3) identify sentences which
contain a linked named entity listed as an instance of type human or
of (a subclass of) type organization in WikiData (corresponding to the
person and organization named entity types); (4) run a dependency
parser on these sentences. Steps (1) and (4) were performed with
Stanza (Qi et al., 2020).

2 https://dumps.wikimedia.org/

3 https://github.com/attardi/wikiextractor

4 These links point to other pages on Wikipedia and allow us to identify the Wikidata
entry for the given named entity.

5 We only considered parsers with labeled accuracy score over 90.0

https://dumps.wikimedia.org/
https://github.com/attardi/wikiextractor
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6.3.2 Detecting appositives

Any instance of the appos label that depends on a linked named entity
and is separated from it with a comma or an opening parenthesis was
considered a valid candidate. In this case, we recorded the source
sentence, replacing the appositive with special token <appos>, as input
data, and the appositive as a target. The beginning of the appositive
was taken to be the first token after the comma or opening parenthesis,
and the end is taken to be the last token before the next comma/semi-
colon/full stop (if beginning was marked by a comma) or closing
parenthesis (if beginning was marked by an opening parenthesis). We
discarded any commas and parenthesis surrounding the appositive,
but kept semicolons and full stops as part of the input sentence. We
also recorded the three preceding sentences from the article and one
following sentence. Similarly to Kang et al. (2019), we process one
appositive per sentence, i.e. if there are multiple appositives in a
sentence, we select the first one and do not consider the rest.

Appositives containing just dates (usually the date of birth and/or
death of a person) are ubiquitous across Wikipedia articles to the point
that they constitute up to 30% of the data samples that we get with the
procedure described above. We reduced this imbalance in the data by
downsampling this type of appositives to only 10% of its occurrences.

6.3.3 Negative samples

We added negative samples to the dataset, matching the number of
positive ones. They were drawn according to the following criteria: (1)
there is a person or organization entity in the sentence, (2) it is not
followed by a comma or opening parenthesis, and (3) the rest of the
sentence does not contain an appositive dependent on the person or
organization entity. Condition (2) was used to reduce the chance of
including instances of appositives that were not correctly tagged as
such by the parser (recall that appositives are often delimited from
the rest of the sentence by a punctuation), while (3) was used to
ensure that we did not include instances that contain a non-essential
appositive, which the author had failed to delimit by any punctuation.
In negative samples the input is the original source sentence with an
added token <appos> just after the person/organization entity, and
the target is a special <EMPTY> token.

The procedure described above was used to collect training data
for factual appositive generation. As it is our goal to study the
potential of a cross-domain approach to appositive generation, the
ApposCorpus also contains an out-of-domain test set, sourced from
news wire.
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6.4 dataset collection : news

We sourced our data for cross-domain evaluation from the news
domain, following previous work (Kang et al., 2019), using these news
corpora: Global Voices (English, Spanish, German, Polish) (Tiedemann,
2012), News Commentary (English, Spanish, German) (Tiedemann,
2012) and Paralela (Pęzik, 2016).

6.4.1 Entity linking

Unlike Wikipedia, where entities are explicitly linked to WikiData
entries through internal links, here, we had to perform additional
entity linking. We did so in the following manner: (1) extract candi-
dates from WikiData based on exact match between the full span of
the named entity and all aliases of entities in the respective subset of
WikiData (instances of type human if NER label is person , else organi-
zation), (2) obtain relative alias frequency distributions from Wikipedia,
and (3) the candidate entity with the highest relative frequency given
the alias is selected. We chose to use this prior-based method instead
of a modeling approach since off-the-shelf entity linkers were not
available for all the languages involved. Candidate appositives were
then identified as described in 3.2.

As errors could occur both in the entity linking and in the appositive
detection, we hired manual annotators to verify the output of the two
procedures (see details in Appendix A). The News portion of the
ApposCorpus is therefore gold standard and will serve for stable,
accurate evaluation.

6.4.2 Negative samples

We added 1, 000− n negative samples to each subset of the data, where
n is the number of positive samples. The exact ratio of positive samples
in each test set is reflected in the always yes baseline shown in the
Results section (see Figure 6.2a), a dummy baseline which always
predicts an appositive.

6.5 data analysis

This section outlines some findings on the properties of our dataset,
based on general statistics and WikiData cross-referencing. The proce-
dure described above yielded less than four thousand samples of org

appositives for Polish, so this subset is omitted from the ApposCorpus.
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en es de pl

p
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r

Size 559k 164k 269k 14k

Length 3.4 4.16 2.7 2.67

WD (%) 25.5 28.1 21.2 22.3

o
r

g

size 612k 104k 333k -

Length 2.19 4.09 1.64 -

WD (%) 27.8 24.9 22.2 -

(a) Wikipedia

en es de pl

p
e

r

size 1k 1k 1k 1k

Length 4.07 3.51 3.43 2.32

WD (%) 29.3 30.8 21.7 20.7

o
r

g

Size 1k 1k 1k -

Length 3.31 3.08 1.87 -

WD (%) 35.4 30.0 22.8 -

(b) News

Table 6.1: Dataset statistics. Size: full dataset size, Length: average appositive
length, WD: ratio of appositives matching a fact from WikiData.

6.5.1 General statistics

Table 6.1 lists some statistics about the two parts of the dataset, one
based on Wikipedia (Wikipedia data) and the other on news (News
data). Row Size refers to the full size of the data as split into language
and entity type. We further split each Wikipedia subset for training
(70%), validation (15%) and testing (15%). Size varies greatly across
the data, with the Polish person subset being merely 2.5% the size
of the English person subset. This relates both to a difference in the
Wikipedia sizes for these languages (6M English articles v. 1.4M Polish
articles) and to a difference in the frequency of use of appositives
across the languages.

Row Length in Table 6.1 lists the average number of tokens per
appositive, which varies from two to four tokens, and is generally
lower for organization appositives than for person ones.

6.5.2 Cross-referencing with WikiData

As discussed before, fact matching is not part of our data collection
procedure, but at training time it would be beneficial to have access to a
knowledge base such as WikiData, and to draw from it, when possible.
So we extract the WikiData entries for all named entities in our dataset
and perform word matching between facts and appositives in the
following way: (1) tokenize the fact and the appositive, (2) remove
stopwords, (3) measure token overlap. If the overlap is non-zero, we
consider there to be a match and annotate the fact as used.6

Cross-referencing the data with WikiData is also useful as an insight
into the makeup of the data, albeit an insight that is biased the scope
and completeness of the knowledge base.

6 We experimented with other thresholds (2 and 3-word overlap) and with fuzzy
matching, but found this method to work best.
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Fact type News (%) Wiki(%) Fact type News (%) Wiki(%)

p
e

r

position held 20.9 9.4

o
r

g

instance of 23.1 10.9

occupation 15.9 10.6 official website 6.3 6.2

citizenship 10.1 4.3 country 5.9 3.3

member of party 7.6 1.9 member of 4.2 2.4

award received 5.2 3.9 subsidiary 3.5 2.1

nominated for 3.6 0.4 capital of 3.2 0.1

educated at 3.1 3.1 has quality 3.0 0.0

Table 6.2: Top fact types. English.

coverage Row WD in Table 6.1a shows the rather low percentage
of appositives from the Wikipedia dataset that are matched to at least
one fact from WikiData: from 21.2 for German person appositives to
28.1 for Spanish person appositives. The numbers for the News test
set, shown in Table 6.1b, are mostly similar to those for the WikiData.
Another way to view these percentages is as an effective upper bound
on the performance of a model trained with WikiData as the source
of knowledge. Further work in identifying other sources of facts for
appositive generation and new means of integrating them into a model
could therefore prove very fruitful.

We manually inspected a random sample of 100 appositives from the
English section of the Wikipedia dataset that were not matched to any
fact from WikiData. In the majority of cases, the appositives concerned
the occupation of a person, their position within an organization, their
country of origin, or other type of information that is typically found
in WikiData, but was missing for the given named entry.

composition We studied the composition of the data, as observed
with reference to WikiData. We performed our analysis on all lan-
guages and found that similar trends hold cross-lingually, so here we
discuss the English portion of the data only, and in the Appendix B
we include the corresponding tables for Spanish, German and Polish.

We looked at the types of facts that were matched to appositives
from the News data. For all fact types that constitute 3% or more of
all facts matched, we also looked at their frequency in the Wikipedia
data. Results are shown in Table 6.2. We see that half of the top
fact types in the News dataset are also well-attested in the Wikipedia
data, i.e. their relative frequency is 3% or more. We can expect that
knowledge concerning appositives based on these fact types would
trivially transfer from one domain to the other. The low frequency
for the remaining fact types (cf. has quality and capital of ), on the
other hand, poses a challenge whose solution would require deeper
natural language understanding and, possibly, explicit domain transfer
techniques.
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6.6 experiments

To show how the new task formulation can be used, we experiment
with three established language generation methods: the main method
of Kang et al. (2019), which we refer to as base; an extension of
base with external knowledge injected through embeddings with
knowledge-base grounding (KB); and a model enhanced with an ex-
plicit copy mechanism (copynet, Gu et al. (2016)). Notice that our
goal here is not to build the best model for this task, but to develop
reasonable models which can serve as baselines for future work in this
area.7

6.6.1 Architectures

lstm baseline , base Kang et al. (2019) introduced an LSTM-
based encoder-decoder architecture with an auxiliary objective used
to guide the attention of the decoder towards the WikiData facts that
were matched during the data collection process. Input sentences and
facts are represented with the same word embeddings and encoded
by separate biLSTMs. The decoder is initialized with the encoding
of the input and attends over the encodings of the facts. Our only
modification here is to add a “None of the above” item to the list of
facts about an entity and point the attention to that when no other
fact was matched or the appositive was empty (i.e. for negative data
instances).

lstm with external knowledge , kb External knowledge can
be beneficial to a better understanding of the context and how it
relates to the different facts known about an entity. Here, we use the
same architecture as above, but initialize the embedding matrix of the
model with the NTEE (Neural Text-Entity Encoder) word embeddings,
trained on Wikipedia with WikiData grounding (Yamada et al., 2017).
They aim to represent a text and its relevant entities close to each other.
We deem these embeddings suitable for our modeling setup, where
input text and facts are represented in a shared space. Unfortunately,
the NTEE embeddings are available only for English. So we used
word-level translation to “project” them to Spanish, German and
Polish. See more details in Appendix D. This approach is likely to
introduce some noise, but we only use the projection to initialize the
embedding matrix which is then further trained. So any signal coming
from the embeddings can be used by the model and any noise can be
filtered out during training.

7 We also experimented with a transformer architecture, but encountered optimization
problems. See details in Appendix E.
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lstm with a copy mechanism , copynet Motivated by the
observation that there is an overlap of at least one token between
WikiData facts and appositives for about 25% of the datapoints in
our dataset, we experiment with a method that allows the decoder to
copy tokens directly from the input: Copynet (Gu et al., 2016). Kang
et al. (2019) correctly point out that in their constrained data setting,
where data points were selected based on word overlap with WikiData
facts, using a copy mechanism would result in double-counting, i.e.
artificially boosted results. In our data setting, however, this is not the
case.

All three approaches are end-to-end in the sense that we do not split
up the classification task of whether or not to predict an appositive
from the task of generating an appositive where it is due. As negative
samples in the dataset have the special <EMPTY> token as target, the
models are performing the classification task implicitly by choosing
whether to predict the <EMPTY> token or not.

Preliminary experiments with the base architecture showed that the
choice between providing the model with three sentences of preceding
context, one or zero had little impact on its performance, so all results
reported below use one sentence of preceding context, following
Kang et al. (2019). Further details on the implementations and the
hyperparameters we used can be found in Appendix C.

6.6.2 Evaluation

We follow Kang et al. (2019) in the choice of performance metrics for
predictions over the positive instances in the data: we measure F1 score
of the predicted bag-of-words excluding stopwords; BLEU (Papineni et
al., 2002) over n-grams, where n = 1, 2, 3;8 and METEOR (Denkowski
and Lavie, 2014), which supports stemming and synonymy only in
English, Spanish and German, so these features are not used for Polish.
We use accuracy to measure the models’ ability to determine when an
appositive is due.

6.7 results

We view the results of our experiments from two angles: one concerns
the expansion of the task definition we achieve with ApposCorpus,
from a constrained scenario to an end-to-end one; the other concerns
the increased coverage of the dataset, which allows us to compare and
contrast appositive generation across different languages and named
entity types.

8 Kang et al. (2019) also included four-grams, but seeing that the average length of
an appositive across the different subsets of the data is 3.08 tokens, we exclude
four-grams from consideration.
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Train setting Test setting Dataset Acc(%) F1 BLEU MET.

constrained constrained
ApposCorpus (News) - 19.61 7.93 9.12

PoMo - 11.21 3.44 5.03

end-to-end

constrained
ApposCorpus (News) 95.0 10.76 3.39 4.41

PoMo 91.7 4.52 0.57 2.03

end-to-end ApposCorpus (News) 72.33 5.97 1.03 2.96

Table 6.3: Generation of English person appositives in a constrained v. end-
to-end train and test setting.

6.7.1 Constrained v. end-to-end scenario

To draw a direct comparison to the work of Kang et al. (2019), in
this subsection we focus on English person appositives, as this is
the subset that was covered by their dataset, dubbed PoMo. We begin
by replicating exactly their train and test settings, both constrained,
using the model architecture they proposed, base. In the first two
rows of Table 6.3, the performance of the model is reported on both
the constrained subset of our News test data and on the PoMo test
set, constrained by design. There is a considerable difference in
performance as measured on the two test sets. Since they were both
drawn from the same domain, this difference may largely be due to
one test set being gold standard and the other silver standard, which
highlights the importance of having gold standard evaluation data.

Using these results as a starting point, we consider two important
factors in the shift from a constrained to an end-to-end setting: one
concerns learning and the other, evaluation.

learning complexity can be expected to increase in the end-
to-end training setting, since the model has to learn not just what
appositive to predict, but also whether or not to predict an appositive.
Due to gaps in WikiData, the model also has to learn how to best
handle instances of appositives based on unobserved facts. We demon-
strate how these factors affect performance by comparing the base

model trained in a constrained setting to one trained in an end-to-end
setting. We measure the models’ performance in a constrained test
setting, to make the comparison fair to the former. Shifting from a
constrained train setting (rows 1 and 2 of Table 6.3) to an end-to-end
setting (rows 3 and 4), we observe a drop in performance of around
50% on all generation metrics. The model trained end-to-end does
very well on choosing whether or not to predict an appositive (ac-
curacy is 95% for ApposCorpus and 91.7% for PoMo) , so we have to
conclude that the lower generation scores are not a matter of predict-
ing empty appositives, but rather of predicting worse appositives due
to the increased learning complexity.
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evaluation is another aspect to consider when comparing the
constrained and full data settings. The quality of evaluation is key
to understanding how well a model would perform if deployed in
the real world. Constrained evaluation, however, only tells us how a
model would do in an idealistic scenario, where all the facts about all
the entities were indeed covered by a knowledge base. As this is not
the case with WikiData (Balaraman, Razniewski, and Nutt, 2018), and
with any existing knowledge base for that matter, it is important to
evaluate models in a manner that reflect gaps in external knowledge
sources. We report the performance of a model trained and tested in
an end-to-end setting in the last row of Table 6.3. Compared to the
model’s performance as measured on the constrained test set (row
3), these numbers are substantially lower. Yet, they are the numbers
that most truly represent the performance of the base model, at least
in terms of automatic evaluation. We return to this matter when
analysing the model’s performance in Section 6.8.

6.7.2 Languages and entity types

The full range of results on the News test set are shown in Figure 6.2.
Results are averaged over three models trained from different random
initializations. We evaluate how well the models can detect when
an appositive is needed (implicit classification) and how well it can
perform the end-to-end task of classifying and generating a good
appositive.

implicit classification of the positive and negative samples
in the data appears to be roughly equally challenging across the two
entity types and the four languages, as viewed across all three models
(see Figure 6.2a. One exception is Polish person appositives, where
base and kb score higher than they do on the other subsets, while
copynet barely beats the baseline. Since the models are not explicitly
trained to perform this type of classification, it is encouraging to see
that even in this setting, they can outperform the baseline (always
predicting the positive class) by as much as 20% in several cases.

generation is the more difficult aspect of the task, as shown
in Figure 6.2b. We see that, somewhat surprisingly considering the
amounts of training data (see Table 6.1a), performance is not highest
on English, but rather on Spanish. In line with the small amount of
training data, on the other hand, performance on Polish is virtually
non-existent. There are no clear differences between overall perfor-
mance on person and organization appositives. Only in English,
the latter seem to pose a greater challenge to all three models and ac-
cording to all three metrics. Model comparison is not straightforward
since the different metrics reveal different strengths and weaknesses
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Figure 6.2: Evaluation of (a) the models’ ability to correctly decide when
an appositive is due, (b) generated predictions for positive test
instances. Measured on the News test set.
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true system neutral true system neutral

per 46.3% 47.3% 6.1% org 66.0% 26.5% 7.4%

Table 6.4: Results from the ranking paradigm study comparing true apposi-
tives to system-generated ones.

in each approach. It does appear to be the case that injecting ex-
ternal knowledge through pretrained knowledge-base embeddings
(kb) is beneficial to the prediction of organization appositives and
somewhat harmful to the prediction of person appositives. Since the
differences between the three methods are not consistent across all
languages, named entity types and metrics, we cannot conclusively
say which method is best, but we do note that copynet scores high on
the most metrics, languages and entity types. To better understand
the performance of this model, we stepped away from automatic gen-
eration metrics, which are known to suffer from certain biases and
can be difficult to interpret, and we carried out an additional manual
evaluation.

6.8 analysis

6.8.1 Manual evaluation

We used Amazon Mechanical Turk to carry out a ranking paradigm
study on the predictions of copynet for English person and orga-
nization appositives. The annotators were shown a true appositive
and a predicted appositive side-by-side (in the context of the input
sentence) and were asked to express their preference towards either of
these two, or their lack of preference as a third option. One example
prompt is shown in Appendix F. Five annotations were obtained per
data instance, and we then took the majority vote as an indication of
the overall preference. The results are shown in Table 6.4. For person

appositives, the writer’s choice (true) and the system’s prediction were
preferred at almost equal rates—this observation challenges the num-
bers obtained with the automatic evaluation metrics, as it suggests
that the predicted appositives were not necessarily of poor quality. A
bigger gap was observed between true and system-generated organi-
zation appositives, where the crowdworkers preferred the original
appositive 66.0% of the time. The lower preference for organization

predictions is in line with the trend in the automatic results, where
performance on English organization appositives was shown to be
lower than that on English person appositives. Notice, however, that
even for organization appositives, annotators still showed preference
for the predicted ones at a considerable rate. This suggests that the
automatic metrics may have severely under-represented the abilities
of the models.
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Gold sentence Prediction

1 In response to an April 9 court ruling declaring the military backed
government of Frank Bainimarama <EMPTY> to power illegally when he
dissolved Parliament and deposed the government of Laisenia Qarase , the
country ’s President nullified the Fiji ’s constitution , fired the entire
judiciary and appointment himself head of state and the armed forces.

the President of
Fiji

2 Artyom Loskutov, creator of the popular counter - culture art movement "
Monstration ", made waves on RuNet by signing a letter in support of
Dmitry Kiselyov , a journalist who many consider to be Putin ’s chief
propagandist.

a Russian painter

3 In a fatal blow to our already lackluster sources of entertainment , the
Sudanese government has blocked access to YouTube, the online video
sharing Web site.

platform

3 Modi, a tech-savvy nationalist from the right-wing Bharata Janatiya Party,
has traveled the world to sell the idea of India as an emerging digital
economy, making deals with the likes of Google and ( less successfully )
Facebook.

the Prime minister
of India

4 Some critics also highlighted the fact that Jabrailov is from Chechnya, a
republic in the Northern Caucasus region of Russia where Muslim
separatists fought two bloody wars against the Russian army.

Chechnya

5 He steers between Soukous , rhumba and RnB ” , and links to an interview
with the singer on Radio Okapi, the nationwide radio station sponsored by
the UN and Fondation Hirondelle.

the Democratic
Republic of the
Congo

6 In particular , tweeps took note of Abed Rabbo ’s attacks on Qatar, the
home of Al Jazeera.

Qatar

Table 6.5: Examples where true appositives were preferred over predicted
ones by human annotators.

6.8.2 Qualitative analysis

To better understand the source of error in the models’ predictions,
we manually inspected 50 data points from the person subset and 50

data points from the organization subset, where a choice was made
in favour of the true appositive over the predicted one. Half of the
data points were instances where the true appositive was not empty,
but the models predicted an empty appositive. The annotators seemed
to strongly prefer non-empty appositives, possibly due to the fact that
they where shown sentences without their original context, where the
role of an entity might have been clarified at an earlier mention. Yet,
that is not categorically so as seen in example 1 in Table 6.5, where
the predicted appositive is redundant in the given context, so the
annotators preferred the true empty appositive. Other types of errors
the models made were to predict appositives that concern the right
piece of information but are too general (examples 2 and 3), to predict
appositives based on the wrong piece of information (examples 4

and 5), and, specifically for organization appositives, to just repeat
the named entity (example 6). While the latter is the result of either
suboptimal learning or noise in the data, the rest of the errors we saw
point to the need for an approach with deeper understanding of the
facts and their relevance to the context.
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6.9 conclusion

ApposCorpus targets factual appositive generation, a phenomenon
frequently occurring in a range of textual domains. It substantially
extends the prior resources in the area by spanning four languages,
two named entity types , and two domains. This resource also allows
the burgeoning field to investigate end-to-end appositive generation.
Our manual and automatic evaluations with ApposCorpus show that
standard model architectures can approach the quality of human
targets in specific cases but there is still room for improvement. With
this dataset, appositive generation can be studied in much more depth
than previously possible, ultimately paving the way for novel NLP
applications in the generation and writing space. The focus in future
research, we believe, should fall on explicit methods for cross-domain
learning, on richer knowledge sources, and on the development of test
sets for new domains.
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appendices

A Manual validation

We hired annotators fluent in the languages of the data to manually
validate it. They had to mark instances where an error had occurred in
the appositive detection, the detected appositive was not factual, or the
entity had been incorrectly linked to WikiData (all instances of noise
in the data, resulting from errors in appositive detection and entity
linking). Our ultimate goal was to build test sets of 1,000 instances per
language per entity type, equally balanced between positive and nega-
tive instances, i.e. we needed 500 valid data instances per language
per entity type. Based on a pilot study, we determined that noise levels
for candidate appositives for person entities were approximately 33%
and for organization entities, 50% (averaged across languages). We
therefore gave annotators 750 and 1,000 candidates to annotate for the
person and organization types, respectively. For most language-
entity type combinations, the manual annotation successfully yielded
close to 500 valid instances. That was not the case for Polish orga-
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Fact type News (%) Wiki(%)

p
e

r

position held 20.9 9.4

occupation 15.9 10.6

citizenship 10.1 4.3

member of party 7.6 1.9

award received 5.2 3.9

nominated for 3.6 0.4

educated at 3.1 3.1

o
r

g

instance of 23.1 10.9

official website 6.3 6.2

country 5.9 3.3

member of 4.2 2.4

subsidiary 3.5 2.1

capital of 3.2 0.1

has quality 3.0 0.0

Table 6.6: Top fact types in the English data.

nization appositives, where only 80 valid candidates were retrieved,
so we excluded this language-entity type combination from our work.
It remains an open question whether organization appositives in
Polish are rare or our automatic detection method failed at catching
them.

B Composition of cross-lingual data

Tables 6.6-6.9 present findings on the composition of the Spanish,
German and Polish positions of the data, respectively, as observed
through cross-referencing with WikiData. The low number of facts for
Polish is the result of one fact type dominating a large amount of the
data (position held).

C Implementations and hyperparameters

[base] and [kb] We use the implementation of Kang et al. (2019)
from https://github.com/rloganiv/claimrank-allennlp. We set
the model hyperparameters to the ones reported in their paper, chang-
ing only the dimension of the embeddings from 500 to 300, to make
the comparison between [Base] and [KB] fair in terms of model pa-
rameterization. Training hyperparameters were tweaked to achieve
stable training that fits on one 16 GB GPU. See the full list of hyperpa-
rameters in Table 6.10.

https://github.com/rloganiv/claimrank-allennlp
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Fact type News (%) Wiki(%)

p
e

r

position held 27.1 4.9

occupation 11.2 10.3

citizenship 9.8 4.8

participant of 8.7 1.1

member of party 7.3 1.3

award received 4.1 3.2

employer 3.2 0.5

o
r

g

instance of 28.9 10.5

country 7.8 3.5

has quality 5.1 0.1

capital of 4.4 0.5

member of 4.3 2.9

is located in 3.4 2.2

Table 6.7: Top fact types in the Spanish data.

Fact type News (%) Wiki(%)

p
e

r

position held 35.2 6.7

employer 5.9 2.9

citizenship 5.9 1.3

member of party 5.3 2.4

award received 4.9 2.1

occupation 4.8 3.6

participant of 4.6 1.5

member of 3.6 1.0

o
r

g

official website 15.6 12.4

instance of 15.1 4.5

owner of 7.5 2.4

member of 5.8 0.9

has quality 4.6 0.0

Commons category 3.2 4.5

Table 6.8: Top fact types in the German data.

Fact type News (%) Wiki(%)

p
e

r position held 77.2 5.7

participant of 3.2 0.7

Table 6.9: Top fact types in the Polish data.
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Base/KB Copynet

vocab size 50k 50k

embedding dim 300 300

hidden units 250 250

num layers 2 2

optimizer Adam Adam

learning rate 0.001 0.0001

batch size 16 6

dropout 0.3 0.3

Table 6.10: Hyperparameter configurations for Base/KB models and Copynet
models.

D Projection of NTEE embeddings

We obtained a bilingual dictionary with CSLS retrieval over the cross-
lingual FastText embeddings (Bojanowski et al., 2017). CSLS retrieval
is similar to nearest neighbor retrieval, but has proven more accurate:
(Joulin et al., 2018b) report an accuracy of 83.7%, 77.6% and 73.5% for
word translation, respectively, from Spanish, German and Polish to
English, as measured on a sample of 1,500 medium frequency words.
Any errors in the bilingual dictionaries would inevitably lead to noise
in the NTEE embedding projection.

copynet We use the AllenNLP (Gardner et al., 2018) implementa-
tion of Copynet with the hyperpameters shown in Table 6.10.

E Transformer experiments

Transformer-based architectures are state-of-the-art for many NLP
tasks, so it is only fair that we experiment with such an architecture as
well. As BERT models (Devlin et al., 2019) have been made available
for all four languages we work with, we chose to train BERT-to-BERT
encoder-decoder models for appositive generation. Rothe, Narayan,
and Severyn (2020) found that architecture to give strong performance
on tasks like sentence fusion and rephrasing. We used their training
schedule but unfortunately, found that all models learned to predict
the <empty> token exclusively. As it is not the goal of our work to
explore the capabilities of the BERT-to-BERT architecture in particular,
we did not use further resources to adjust the training schedule. Yet,
we do believe this to be an optimization problem, and we would
not discourage future research from attempting to solve the task of
appositive generation with a transformer-based approach.
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Figure 6.3: Prompt for manual evaluation.

F Ranking paradigm study

Figure 6.3 shows an example prompt from the blind taste test. In-
stances where either the true appositive was empty or the predicted
one was empty were included in the the study, but instances where
both were empty were excluded, as the comparison would not have
been meaningful in this case. The average time for completing a HIT
was 53 seconds.

G Results

The results as measured on the Wikipedia test set are shown in Fig-
ure 6.4. Compared to results on the News test set (see Figure 6.2, the
numbers seen here are higher, which is to be expected considering
that this test set is in-domain and any noise found in it (due to it being
silver standard) likely resembles the noise found in the training data.
It is worth noting though, that certain patterns repeat between the
two test sets, as for example the fact that copynet, as measured on
F1 score and BLEU, outperforms the other models on the majority of
language-named entity type combinations, but not on Polish person

appositives and Spanish organization appositives. This suggests
that, while evaluation on the silver-standard Wikipedia test set cannot
be consider fully stable and representative, it can be taken as a proxy
in model comparison for developmental purposes.

The numbers behind the results from Figures 6.2 and 6.4 are shown
in Tables 6.11 and 6.12, respectively.
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Figure 6.4: (a) Evaluation of (a) the models’ ability to correctly decide when
an appositive is due, (b) generated predictions for positive test
instances. Measured on the News test set.
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Acc F1 BLEU METEOR

e
n

-p
e

r

always yes 0.5 0.0 0.0 0.0

base 71.91 0.72 1.03 2.96

kb 71.73 0.73 1.03 2.9

copynet 70.19 0.71 2.45 2.24

e
n

-o
r

g
always yes 0.5 0.0 0.0 0.0

base 68.09 0.74 0.23 1.61

kb 66.58 0.74 0.21 1.58

copynet 65.98 0.73 0.52 1.37

e
s
-p

e
r

always yes 0.58 0.0 0.0 0.0

base 62.84 0.67 1.24 5.44

kb 61.18 0.68 0.79 4.79

copynet 64.08 0.67 2.2 4.36

e
s
-o

r
g

always yes 0.4 0.0 0.0 0.0

base 47.39 0.68 1.32 5.64

kb 60.91 0.71 2.02 6.83

copynet 33.57 0.62 0.33 2.77

d
e
-p

e
r

always yes 0.54 0.0 0.0 0.0

base 62.94 0.67 0.8 3.19

kb 63.47 0.68 0.75 2.84

copynet 67.63 0.69 1.75 1.76

d
e
-o

r
g

always yes 0.46 0.0 0.0 0.0

base 62.77 0.72 0.54 3.21

kb 65.13 0.73 0.19 3.47

copynet 62.22 0.72 0.43 1.08

p
l

-p
e

r

always yes 0.54 0.0 0.0 0.0

base 72.83 0.78 0.16 0.09

kb 73.8 0.77 0.06 0.13

copynet 2.75 0.58 0.0 0.12

Table 6.11: Evaluation of the models’ ability to correctly decide when an
appositive is due and of generated predictions for positive test
instances. Measured on the News test set.
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Acc F1 BLEU METEOR

e
n

-p
e

r base 85.42 0.87 3.59 4.7

kb 85.32 0.87 3.94 5.07

copynet 81.95 0.84 5.7 3.57

e
n

-o
r

g base 89.47 0.9 5.99 7.54

kb 89.43 0.9 5.65 7.49

copynet 89.17 0.91 6.17 8.53

e
s
-p

e
r base 78.49 0.8 4.57 11.17

kb 78.73 0.8 4.71 11.19

copynet 79.1 0.8 7.54 11.04

e
s
-o

r
g base 61.63 0.73 3.58 9.07

kb 80.69 0.82 5.45 11.92

copynet 46.91 0.62 1.14 4.46

d
e

-p
e

r base 79.28 0.81 6.19 10.35

kb 80.09 0.81 5.24 9.19

copynet 80.12 0.81 7.85 6.11

d
e

-o
r

g base 84.09 0.85 12.04 14.45

kb 84.58 0.85 10.28 13.31

copynet 82.07 0.84 11.57 4.19

p
l

-p
e

r base 82.67 0.83 4.23 4.61

kb 84.46 0.85 3.67 4.29

copynet 24.49 0.55 1.1 1.71

Table 6.12: Evaluation of the models’ ability to correctly decide when an
appositive is due and of generated predictions for positive test
instances. Measured on the Wiki test set.
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P U Z Z L I N G M A C H I N E S : A C H A L L E N G E O N
L E A R N I N G F R O M S M A L L D ATA

abstract

Deep neural models have repeatedly proved excellent at memoriz-
ing surface patterns from large datasets for various ML and NLP
benchmarks. They struggle to achieve human-like thinking, however,
because they lack the skill of iterative reasoning upon knowledge.
To expose this problem in a new light, we introduce a challenge on
learning from small data, PuzzLing Machines, which consists of Rosetta
Stone puzzles from Linguistic Olympiads for high school students.
These puzzles are carefully designed to contain only the minimal
amount of parallel text necessary to deduce the form of unseen ex-
pressions. Solving them does not require external information (e.g.,
knowledge bases, visual signals) or linguistic expertise, but meta-
linguistic awareness and deductive skills. Our challenge contains
around 100 puzzles covering a wide range of linguistic phenomena
from 81 languages. We show that both simple statistical algorithms
and state-of-the-art deep neural models perform inadequately on
this challenge, as expected. We hope that this benchmark, available
at https://ukplab.github.io/PuzzLing-Machines/, inspires further
efforts towards a new paradigm in NLP—one that is grounded in
human-like reasoning and understanding.

7.1 introduction

It is beyond doubt that recent deep learning (DL) models have be-
come a real success story for the ML and NLP communities. Previous
work has shown that these DL models are good at tasks which hu-
mans consider fast and intuitive/automatic, such as object detection
and document classification. Such tasks require training on large
labeled datasets and are handled by the so called System1, follow-
ing the commonly used terminology by Kahneman (2011). However,
human-level understanding involves another mechanism: the slow, ra-
tional and sequential System2 (Kahneman, 2011), that enables learning
with fewer samples—achieved via reasoning with the right abstractions.
Recent debates and research on the shortcomings of deep learning
models (Bengio, 2020; LeCun, 2020; Marcus, 2020; McClelland et al.,
2019) have emphasized the importance of System2 skills and reached
a consensus on expanding DL models with System2 abilities being
one of the next big challenges. To foster research in this promising
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https://ukplab.github.io/PuzzLing-Machines/
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Chikasaw English

1. Ofi’at kowi’ã lhiyohli. The dog chases the cat.

2. Kowi’at ofi’ã lhiyohli. The cat chases the dog.

3. Ofi’at shoha. The dog stinks.

4. Ihooat hattakã hollo. The woman loves the man.

5. Lhiyohlili. I chase her/him.

6. Salhiyohli. She/he chases me.

7. Hilha. She/he dances.

Now you can translate the following into Chickasaw:

The man loves the woman.

The cat stinks.

I love her/him.

Translate the following into English:

Ihooat sahollo.

Ofi’at hilha.

Kowi’ã lhiyohlili.

Table 7.1: The “Chickasaw” puzzle (Payne, 2005)

direction, we propose a unique challenge on learning from small data
named PuzzLing Machines based on the Linguistic Olympiads—one
of the 13 recognized International Science Olympiads targeted at
high-school students. Kahneman (2011) discusses the two modes of
human thinking which perfectly encapsulate the current (so called
System1) and the desired state (System1+System2) of the deep learn-
ing field. System1 handles tasks that humans consider fast, intuitive
and automatic, such as object detection and document classification.
Recent deep learning (DL) models have shown great promise at this
type of tasks—thanks to large training datasets. Yet, it is through
slow, rational and sequential mechanisms that human-like abstract
reasoning happens, to enable learning from just a few examples. This
System2-style modeling is still in its early stages in DL, but is recog-
nized as a much needed next step in the field (Bengio, 2020; LeCun,
2020; Marcus, 2020; McClelland et al., 2019). To foster research in this
promising direction, we propose a unique challenge on “learning from
small data”: PuzzLing Machines, based on the Linguistic Olympiads—
one of the 13 recognized International Science Olympiads targeted at
high-school students.

The PuzzLing Machines challenge is based on one of the most com-
mon puzzle types in the Linguistic Olympiads: the Rosetta Stone
puzzles (Bozhanov and Derzhanski, 2013), a.k.a. translation puzzles.
An example is given in Table 7.1.1 Although these puzzles take the
form of a traditional “machine translation” task, they are different
in many ways: Rosetta Stone puzzles contain a minimal, carefully

1 Copyright University of Oregon, Department of Linguistics.
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designed set of parallel expressions (words, phrases or sentences) in
a foreign and in a familiar language (e.g., Chickasaw-English). This
minimal set is just enough to deduce the underlying translation model,
which typically involves deriving mini-grammar rules, extracting a
lexicon, and discovering morphological and phonological rules. The
actual task then is to translate new expressions—generally in both
directions—using the model deduced from the parallel data. The
assignments are carefully designed so that the expressions cannot be
generated through simple analogy, but rather through the application
of the discovered rules. These properties distinguish the PuzzLing
Machines challenge from the modern MT task, as it relies on deductive
reasoning with linguistic concepts that are central to System2, rather
than exploiting statistical properties from large datasets as in System1.

The lack of reasoning skills of statistical systems has recently gained
a lot of attention. Various datasets that require a wide range of
background knowledge and different types of reasoning abilities have
been introduced, such as ARC (Clark et al., 2018), GQA (Hudson
and Manning, 2019a), GLUE benchmarks (Wang et al., 2018) and
SWAG (Zellers et al., 2018). Our challenge distinguishes from previous
benchmarks with some key properties. First, most of these reasoning
tasks require external scientific or visual knowledge, which makes it
hard to measure the actual reasoning performance. On the other hand,
our challenge does not rely on any external, multimodal or expert-
level information. Second, and more importantly, PuzzLing challenge
consists of a minimal set of examples required for solution. That
means, there exists no extra training data, ensuring that exploiting
surface patterns would not be possible unlike in some of existing
benchmarks (Gururangan et al., 2018).

In summary, this paper introduces a unique challenge, PuzzLing
Machines, made up of ∼100 Rosetta Stone, a.k.a translation puzzles
covering 81 languages from 39 different language families based on
the Linguistic Olympiads. The challenge requires System2 skills—
sequential reasoning and abstraction of linguistic concepts, discussed
in detail in §7.2. We discuss the dataset and the linguistic phenomena
in the resulting dataset supported with statistics and examples in
§7.3. In §7.4, we present the results of intuitive baseline methods and
strong MT baselines such as Transformers encoder-decoder (Vaswani
et al., 2017) with integrated pretrained language models as applied
to these puzzles. We show that, unsurprisingly, the puzzles cannot
be easily or robustly solved by currently existing methods. We hope
that this benchmark is going to evoke development of new deep
MT/NLP models that operate in a human-like manner and reason
upon linguistic knowledge, providing a new future research direction
for NLP.
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7.2 meta-linguistics

Meta-linguistics is defined by Chomsky (1976) as “the knowledge of the
characteristics and structures of language” as realised on the level of
phonology, morphology, syntax and semantics. Any English speaker
would likely have the linguistic capacity to produce the word undo
when asked “What is the opposite of do?” Only a speaker with some
level of meta-linguistic awareness, however, would further be able to
reflect on the structure of the word they have produced: to identify un-
as a unit that serves to negate words, to spot its similarity in function
to other units like dis- and de-. He/she would also be aware that un-
is not interchangeable with dis- and de-, since it attaches to the front
of verbs and adjectives but not to nouns.

Meta-linguistic awareness is especially useful (and often improved)
in the process of learning a new language, as it allows the learner
to compare and contrast the structure and characteristics of the new
language to those that he/she is already familiar with. It is desirable
that systems for natural language processing possess meta-linguistic
awareness, too, as that could hugely improve their cross-lingual gen-
eralizability, a problem that remains open after being approached
from various engineering perspectives, often with little recourse to
linguistics. However, measuring the meta-linguistic awareness of a
system is not trivial. Existing probing techniques are mostly designed
to measure how well neural models capture specific linguistic phe-
nomena, e.g., whether a specific layer of an English language model
can capture that undo is negative, instead of testing for meta-linguistic
awareness. Our challenge takes a step further and tests whether the
model can apply the underlying morphological processes, e.g. of
verbal negation through prefixing. In addition, our challenge spans
a wide-range of language families and covers a variety of linguistic
phenomena (see §7.3.1), that qualifies it as a favorable testbed for
measuring meta-linguistic awareness.

Let us demonstrate how meta-linguistic reasoning skills are used
to solve the “Chickasaw puzzle” given in Table 7.1. The translation
model is iteratively deduced as follows: (1) the word order in Chicka-
saw is Subject-Object-Verb (SOV), unlike the English SVO word order;
(2) nouns take different suffixes when in a subject or object position
(at and ã, respectively); (3) verbs take a suffix for 1st person singular
pronomial subject or object (li and sa, respectively). Notice that, cru-
cially, it is not possible to learn the function of the prefix sa, which
corresponds to me in English, without deducing that lhiyohli corre-
sponds to the verb chases and that third person agency in Chickasaw
is not explicitly expressed. As demonstrated, inferring a translation
model requires iterative reasoning on the level of words, morphemes
and syntactic abstractions (classes), or, to put things differently, it
requires meta-linguistic awareness.
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7.3 the dataset

The puzzles from Linguistic Olympiads cover many aspects of lan-
guage such as phonetics, morphology, syntax and semantics. They
are carefully designed by experts according to several key criteria: (1)
The puzzles should be self-contained and unambiguous, meaning that
no prior knowledge in the foreign language is requires, just the com-
mand of one’s own native language and some level of meta-linguistic
awareness and that a solution is guaranteed; (2) They should require
no specialized external knowledge or formal linguistic knowledge, i.e.
linguistic terms are either excluded from the instructions that accom-
pany a puzzle or they are explicitly defined; (3) The foreign language
used in a puzzle should be from a truly lesser known language family
(e.g. Chickasaw, Lakhota, Khmer, Ngoni), such that there is no unfair
advantage to participants whose native language is related.

We based our data collection efforts on a rich and publicly available
database of language puzzles maintained by the organizers of NA-
CLO.2 This resource contains puzzles from IOL and a wide range of
local competitions3. We only included puzzles written in English (or
translated to English) to ensure a quality transcription and to enable
error analysis. Expert solutions are available for most puzzles; we
excluded the rest. In addition to the translation puzzle type shown
in Table 7.1, we also collected ‘matching’ puzzles. These are two-step
puzzles, in which the participants first align a shuffled set of sentences
to obtain parallel data, and then translate a set of unseen sentences.
We converted these puzzles to the translation puzzle format by refer-
ring to the solution files to align the training sentence pairs. Appendix
A describes how we selected the puzzles and how we transcribed
them into a machine-readable format.

The final dataset contains 96 unique puzzles from 81 languages that
span 39 different language families from all over the world, as well as
two creoles and two artificial languages (see Appendix F for the full
list). Some of the large language families have multiple representatives,
e.g. there are 13 Indo-European languages, seven Austronesian and six
from the Niger-Congo family. But the majority of languages are single
representatives of their respective family. This genealogical diversity
leads to a great diversity in the linguistic phenomena attested in the
data. Some puzzles are designed to explore a specific aspect of the
unknown language in isolation, e.g. case markers on demonstrative
pronouns in Hungarian (Pudeyev, 2009). In general, however, the
correct solution of a puzzle involves processing on the level of syntax,
morphology, phonology, and semantics all at once.

2 http://tangra.cs.yale.edu/naclobase/
3 NACLO (North America), OzCLO (Australia), UKLO (UK), Olimpíada Brasileira

(Brazil), OLE (Spain), Panini (India), Russian LO, Russian Little Bear, Swedish LO,
Polish LO, Estonian LO, Slovenian LO, Bulgarian LO, Netherlands LO and more.
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7.3.1 Linguistic Phenomena

Source balan waymin bambun baNgu jugaNgu jamiman.

Gloss OBJ mother-in-law healthy SUBJ sugar-SUBJ fat-MAKE.

Target Sugar makes the healthy mother-in-law fat.

Table 7.2: Example sentence in Dyibral.

The foreign languages used in linguistic puzzles are purposefully
chosen to demonstrate some interesting linguistic phenomena, not
found in English (or in the respective source language of the puz-
zle) (Bozhanov and Derzhanski, 2013), resulting in a challenging,
non-trivial translation process between these diverse languages and
English. In this section, we outline some key linguistic properties
of the languages found in the dataset, but the list is by no means
exhaustive.

syntax : Three common configurations for the order between sub-
ject (S), verb (V) and object (O) in a sentence are exemplified in the
dataset: SVO, SOV and VSO. In addition to these three, our dataset
covers the rather rare OSV word order: see the example in Table 7.2
from the Australian language Dyirbal (Semenuks, 2012).

morphology : We see examples of highly analytic languages (e.g.
Yoruba from West Africa) as well as highly polysythetic ones (e.g.
Inuktitut from Canada). Within the synthetic type, we see both agglu-
tinative languages (e.g. Turkish) and inflectional ones (e.g. Polish).
Some specific morphological properties explored in the puzzles are
verbal inflection with its many categories concerning tense, aspect and
mood, nominal declension and noun class systems. The aforemen-
tioned “Dyirbal” puzzle also exemplifies an interesting classification
of nouns, wherein women and dangerous animals and objects are
treated as one class, men and other animals constitute another class
and a third class captures all remaining nouns. The choice of the
articles balan and bagu in Table 7.2, for example, is guided by this
classification.

phonology : A wide range of phonological assimilation processes
interplay with the morphological processes described above and obfus-
cate morpheme boundaries. These can concern voicing, nasality and
vowel quality, among other features. As an example of morphological
and phonological processes working together, consider the realiza-
tion of pronomial possession in Australian language Wembawembda
(Laughren, 2009). Unlike English, which expresses this feature with
pronouns his/her/its, Wembawemba expresses it with a suffix on the
noun it modifies, e.g. wutyupuk ‘(his/her/its) stomach’. The form of



7.3 the dataset 95

Form nyuk duk nuk buk guk uk

After vowel n r m ng other

Table 7.3: Variants of a possessive suffix in Wembawemba and their phono-
logical distribution.

the suffix, however, depends on the ending of the noun it attaches to
and can vary greatly as shown in Table 7.3.

semantics : Semantics come into play when we consider the com-
positionality of language and figurative speech: the phrase “falepak
hawei” in the Indonesian language Abui, for example, literally trans-
lates into “pistol’s ear”, but a more fitting translation would be “trig-
ger” (Peguševs, 2017).

As a side note, it is important to note that while here we use exten-
sive linguistic terminology to discuss the properties of the languages
in our dataset, the high-school students who participate in Linguis-
tic Olympiads need not and may not be familiar with any of the
terminology. Their good performance depends on a well-developed
meta-linguistic awareness, not on formal linguistic training.

7.3.2 Dataset statistics

In total, 2311 parallel instances are transcribed—1559 training and 752

test. 63% of the test pairs are in the English→ foreign direction, while
the rest are in the foreign→ English direction.

Statistics concerning the number of words per sentence4 are shown
on the left of Figure 7.1. The majority of both training and test pairs
are fairly short, but length varies considerably. This is due to the fact
that some puzzles in the dataset concern the translation of individual
words, some take scope over noun-modifier phrases and some, over
entire sentences. English sentences are generally longer (median 4)
than their translations (median 2). This is rather intuitive considering
the synthetic nature of many of the foreign languages in the dataset,
wherein a single long word in the foreign language may translate into
4-5 words on the English side, as in this translation from tΛckotoyatih
in the Mexican language Zoque to the English only for the tooth.

Sentence statistics about the length of the train and test split per
problem are shown on the right of Figure 7.1. Intuitively, train splits
are bigger than test splits. However, the number of training instances
varies greatly between the puzzles, which is related to a number
of factors such as the difficulty and type of the task, as well as the
linguistic properties of the foreign language.

4 We naively tokenize on space.
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Figure 7.1: Box-plots for Left: Word# per language and split, Right: Sen-
tence# per split.

7.3.3 Train versus Test Splits

One property of the data splits in linguistic puzzles, which diverges
from the standard paradigm in machine learning, is that the input test
data should not be considered “held out”. On the contrary, in some
cases, vocabulary items attested in the input of foreign→English test
instances may be crucial to the translation of English→foreign test
instances, and vice versa. So it is only the targets of test instances
that should be truly held out. This specificity is not ubiquitous across
the puzzles, but it should be accounted for by any approach to their
solution, for example by building the system vocabulary over the
union of the train and input test data.

7.4 baselines

We attemp to solve these puzzles with models of varying complexity,
i.e. from random guessing to state-of-the-art neural machine transla-
tion systems.

random words (rw): Since the vocabularies of source and target
languages are quite small, we test what random word picking can
accomplish. We simply tokenize the training sentence pairs and then
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randomly choose a word from the target language’s vocabulary for
each token in the source sentence.5

fastalign (fa): We use the translation alignment tool FastAlign
(Dyer, Chahuneau, and Smith, 2013), to test whether the puzzles can
be solved by early lexical translation models (Brown et al., 1993). Since
FA produces alignments for each training pair, we postprocess the
output to create a translation dictionary separately for each direction.
We then randomly choose from the translation entries for each token
in source test sentence. 6

phrase based statistical machine translation (pbsmt)
Since Koehn and Knowles (2017) report that PBSMT models outper-
form vanilla NMT models in case of small parallel training data, we
use PBSMT as one of the baselines. For the foreign→English direc-
tion, we implement two models—one using no external mono-lingual
English data and one otherwise.

7.4.1 Neural Machine Translation

We implement three different models based on Transformers (Vaswani
et al., 2017) using the implementation of Ott et al. (2019). In the
first scenario, we train an off-the-shelf Transformer encoder-decoder
model for each direction, referred to as Transformer. Second, we use a
strong pretrained English language model, RoBERTa (Liu et al., 2019),
to initialize the encoder of the NMT model for English to foreign
translation. Finally, for foreign to English translation, we concatenate
the translation features extracted from the last Transformer decoder
layer, with the language modeling features extracted from RoBERTa
(Liu et al., 2019), before mapping the vectors to the output vocabulary.
These models are denoted as Transformer+RoBERTa.

7.5 experiments

7.5.1 Experimental Settings

We first compile a subset from the puzzles that are diverse by means
of languages and contain translation questions in both directions.
During tuning, we use the test sentences on these puzzles to validate
our models. Since our foreign languages are morphologically rich, we
use BPE (Sennrich, Haddow, and Birch, 2016) to segment words into

5 We don’t use frequency of the words, i.e., pick words that occur more often, since
they are not that meaningful due to the tininess of the data.

6 We add all aligned target phrases of the source token to the dictionary. Hence,
when one target phrase is seen multiple times, it is more likely to be chosen during
inference.
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subwords. For the sentences in the foreign language, we learn the BPE
from the training data, while for English sentences we use the already
available GPT2-BPE dictionary to exploit English language prior. For
convenience, before we train the models, we lowercase the sentences,
remove certain punctuations, remove pronoun tags and brackets, and
augment training data with multiple reference translations.

pbsmt : We use Moses (Koehn et al., 2007) with default settings.
We employ wikitext-103 corpus to train a 5-gram English LM for the
model with access to external data. The other model only uses training
sentences for the LM.

nmt : Following the suggestions for low-resource NMT systems
by Sennrich and Zhang (2019), we use small and few layers and
high dropout rates. Similarly we use the smallest available language
model (RoBERTa Base) and freeze its parameters during training to
reduce the number of trainable parameters. We tune the following
hyper-parameters: BPE merge parameter, learning rate and number
of epochs.

7.5.2 Evaluation Metrics

The submissions to Linguistic Olympiads are manually graded by
experts. For a full mark, an exact solution has to be provided, as well
as a correct and detailed discussion of the underlying processes that
led to this solution, e.g., concerning findings about word-order, the
function of individual morphemes, etc. Participants are also given
partial marks in case of partial solutions or valid discussions. Since
we don’t have access to expert evaluation, we use readily available
automatic machine translation measures. We also note grading of
system interpretations or its solution steps as an interesting future
research direction.

The first is the BLEU (Papineni et al., 2002) score since it is still the
standard metric in MT. We use BLEU-2 to match the lower median of
sentence lengths we observe across the English and the foreign data
(see Fig 7.1). BLEU matches whole words rather than word pieces,
which prevents us from assigning partial credit to subword matches,
which could be especially relevant for foreign target languages with
rich morphology. We therefore use three additional metrics that oper-
ate on the level of word pieces: CharacTER (Wang et al., 2016), ChrF
(Popovic, 2016) and ChrF++ (Popovic, 2017). CharacTER is a measure
derived from TER (Translation Edit Rate), where edit rate is calcu-
lated on character level, whereas shift rate is measured on the word
level. It calculates the minimum number of character edits required
to adjust a hypothesis, until the reference is matched, normalized
by the length of the hypothesis sentence. For easier comparison, we
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report 1.0− characTER scores. ChrF is a simple F-measure reflecting
precision and recall of the matching character n-grams. ChrF++ adds
word unigrams and bi-grams to the standard ChrF for a higher hu-
man correlation score. We experiment with different combinations of
character n-grams (n = 3, 5 as suggested in Popovic (2016)) and word
n-grams (n = 0, 1, 2 as suggested in Popovic (2017)).

Finally, we also measure the average exact match of the puzzles,
which is calculated as 1 if the prediction and reference sentences
match and 0 otherwise. As it is not feasible to report and compare
results on all of these metrics (nine in total), we compute the pair-
wise Pearson correlation coefficient between them, and average over
all pairs to arrive at the following four metrics that show the least
correlation with each other: BLEU−2, CharacTER, ChrF−3 and exact
match. We note, however, that of these four, exact match is really the
most meaningful metric. Since the sentences in the dataset are rather
short and the puzzles are designed to be solvable and unambiguous,
an exact match should be attainable. Moreover, as the puzzles in the
dataset are of varying difficulty, the average exact match score can be
seen as a continuous metric.

7.6 results and analysis

We report the results for the best models in Fig. 7.2. The hyperpa-
rameter configuration and the development set results are given in
Appendix D. The maximum exact match score among all results is
only 3.4%; and the highest scores are consistently achieved by PBSMT
models on both directions and dataset splits.

The overall results for foreign→ English are generally higher than
English → foreign. This may be due to (a) having longer sentences
for English; (b) the scores (except from EM) being more suitable for
English (even the character-based ones) or (c) the more challenging
nature of translation into foreign languages, which needs another
dedicated study.

english→foreign : Initializing the NMT encoder with RoBERTa
has severely worsened the results, compared to standard Transformer
model. We believe the main reason is the imbalance between encoder
(huge encoder) and the decoder (tiny decoder), that makes training
very challenging. The gap between the simplest baselines (RW, FA)
and more sophisticated models (Transformers, PBSMT) is also con-
siderably small; FA even surpassing Transformers’s CTER and ChrF
performance. For most of the foreign languages, even when two words
are semantically distant, there may still be significant morpheme over-
lap. These suggest that simple lexical alignment models (including
random assignment) can achieve higher partial matching scores that
hints at the unreliability of CTER and ChrF measures for the puzzles.
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Chikasaw English PBSMT Transformer

Now you can translate the following into Chickasaw:

(1) Hattakat ihooã hollo. The man loves the woman. the the woman hattakã hollo ihooat hattakã hollo

(2) Kowi’at shoha. The cat stinks. the lhiyohli stinks ofi’at shoha

(3) Holloli. I love her/him. i love him lhiyohlili

Translate the following into English:

(4) Ihooat sahollo. The woman loves me. ihoothe sahollo the woman loves the man

(5) Ofi’at hilha. The dog dances. the(he/she) dances the cat chases the dog

(6) Kowi’ã lhiyohlili. I chase the cat. cat ch thei chase (him/her) the dog stinks

Table 7.4: Predictions for the “Chickasaw” puzzle. Gold-standard target
sentences are shown in yellow.

foreign→english : We observe that the gap between the simple
and more sophisticated baselines are higher in this direction by means
of all measures, as we would expect. Using RoBERTa features in
the decoder does not hurt the performance while providing a small
increase in EM score compared to standard Transformers. It should
be noted that the decoder is still tiny and LM features are only incor-
porated via a separate linear layer at a very late stage, which prevents
the imbalance problem we saw in English→ foreign.

We see similar results for the validation data with the exception
that Transformer-based models achieve either higher or the same
EM scores than PBSMT while surpassing PBSMT’s BLEU-2 scores in
foreign → English. It supports the findings of Sennrich and Zhang
(2019), drawing attention to the importance of hyper-parameter tuning
for low-resource NMT models.

7.6.1 Error Analysis

We perform manual error analysis on the predictions of our top two
models for the Chickasaw puzzle presented in Table 7.1. The predicted
translations are shown in Table 7.4. We also provide the predictions
of the simple baselines in Appendix E for comparison. Although
the PBSMT model is best on average, we find that for this particular
puzzle, the Transformer model did much better. PBSMT had very few
hits overall: it correctly chose to include the lexical items hattak and
hollo in (1), but the position and inflection of the former is incorrect.
In (5) and (6) there are indications of correct lexicon induction, but
the overall quality of the translations is very poor both in terms of
accuracy and fluency. The Transformer model, on the other hand,
predicts fluent translations in both directions. In the direction from
English to Chickasaw, we see that the model correctly acquired the
relevant morphological patterns: subjects take suffix at, objects take
suffix ã, and, importantly, that first person agency is expressed through
suffix li. The translations are still not perfect, though, due to lexical
confusion: the words for cat and dog have been swapped in both
(1) and (2), as well as the words for love and chase in (3). In the
direction from Chickasaw to English, the Transformer’s predictions
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remain fluent, but they hardly relate to the input. Contrary to the
overall results, for this puzzle translation to English appears to be
more challenging for the model.

7.7 related work

Recently, reasoning tasks and datasets that require natural language
processing have been introduced, such as common-sense reason-
ing in the form of pronoun resolution e.g., WSC (Levesque, 2011),
multiple-choice question answering e.g., SWAG (Zellers et al., 2018)
and ARC (Clark et al., 2018); inference tasks in the form of binary or
multi-label classification problems e.g., the GLUE benchmarks (Wang
et al., 2018); and visual reasoning in the form of question answer-
ing (Zellers et al., 2019) e.g., GQA (Hudson and Manning, 2019a). In
these tasks, the required level of semantics is mostly limited to single
sentences rather than a collection; almost all tasks target English; data
is derived from running text and is mostly close-domain. In addition,
some require external knowledge bases or high-level knowledge on
physical models or experiments as in ARC classified by Boratko et al.
(2018), which leaves room for accumulating errors from external parts
and complicates the analysis of individual parts like reasoning.

Another body of early work on symbolic AI provides a different
set of tools to model reasoning such as rule-engines, rule-induction
algorithms, logic programs and case-based reasoning models (Kolod-
ner, 1992). However, it is not trivial to represent and model our task
in these frameworks, since they mostly require defining primitives,
expressions, discrete features and cases. Furthermore, the strength
of statistical/neural models has been repeatedly shown to surpass
rule-based models. Our goal is to encourage researchers to incorpo-
rate reasoning into statistical models, rather than replacing them with
symbolic models.

7.8 conclusion and future work

The field of NLP has developed deep neural models that can exploit
large amounts of data to achieve high scores on downstream tasks.
Still, the field lacks models that can perform human-like reasoning
and generalization. To mitigate this gap, we draw inspiration from the
Linguistic Olympiads that challenge the meta-linguistic and reasoning
abilities of high-school students. We create a new benchmark dataset
from available Linguistic Puzzles that spans over 81 languages from 39

language families, which is released at https://ukplab.github.io/
PuzzLing-Machines/. We implement and evaluate simple baselines
such as alignment, and state-of-the-art machine translation models
with integrated a pretrained English language model. We show that
none of the models can perform well on the puzzles, suggesting that

https://ukplab.github.io/PuzzLing-Machines/
https://ukplab.github.io/PuzzLing-Machines/
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we are still far from having systems with meta-linguistic awareness
and reasoning capabilities.
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appendices

A Transcription of Puzzles

The puzzles are generally provided as pdf files. Many languages
in the dataset use the Latin script, optionally with some diacritics.
Some which use a non-Latin script (or have no writing system at
all), are transcribed with IPA or transliterated into the Latin script.
Only one language, Georgian, uses a non-Latin script, namely the
Mkhedruli script. As there are various types of puzzles presented at
the Olympiads, we identified the ones relevant to our task through
automatic filtering for the keywords “translation” or “matching”, and
manually verified the results.

To represent linguistic puzzles in a unified, machine-readable for-
mat, we defined a JSON format shown in Appendix B. The relevant
data was manually extracted from the PDF files and mapped to this
format in a semi-automated fashion. We faced encoding issues with
many of the puzzles. For some of these, the database owner kindly
provided us with the source files of the pdf documents, which enabled
us to generate UTF-8 encoding of the data; others we fixed manually.
Some puzzles, which use pictorial scripts or are otherwise UTF-8
incompatible, were discarded.

During the transcription we came across various formats of lin-
guistic annotation in the puzzles. This kind of information was not
consistently provided across puzzles, but we included it where avail-
able, as it can be both helpful and crucial to a correct solution. In
the next paragraphs, we provide details on the different types of an-
notated information and the standardized format we used to encode
those.
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Language Source sentence Target sentence Other accepted forms

1. Chickasaw Hilha. (She/He) dances. She dances.

He dances.

2a. Blackfoot Nitoki’kaahpinnaan. We.PL2- camped. We camped.

2b. Blackfoot Oki’kaao’pa. We.PL2 camped. We camped.

3. Wambaya Bardbi ga bungmanya. The old woman ran [away]. The old woman ran away.

4. Euskara Umea etorri da. The child has (come/arrived). The child has come.

The child has arrived.

Table 7.5: Examples of special transcription notation.

gender distinction in pronouns : When the foreign language
does not mark gender on pronouns (or omits pronouns altogether),
singular pronouns in the English translations are provided consistently
as (he/she) and (him/her), or (he/she/it) and (his/her/its), as in Ex. 1 in
Table 7.5. During evaluation, instances of this notation are accepted,
as well as instances of the individual alternatives.

number marking on pronouns : When the foreign language
marks two levels of plurality for the second person pronoun you, they
are marked accordingly as you.SG and you.PL. Some languages make
a distinction between plural forms concerning two objects and plural
forms concerning three or more objects. In this case, we mark pro-
nouns (not just you, but also we and they) with the notation .PL2 and
.PL3, respectively. Some languages also make a distinction between
an inclusive we ‘you and me’ and an exclusive we ‘me and someone
else’. We reserve we.PL2 for the inclusive sense, and mark the exclu-
sive sense with we.PL2-. See examples 2a and 2b in Table 7.5. The
notation presented here holds for both personal pronouns, e.g. you,
and possessive pronouns, e.g. your. During evaluation, we disregard
this notation on the side of the target language.

zero-to-one matching : Words that are semantically implied or
required by English grammar, but not directly expressed on the side
of the foreign language are shown in square brackets in some of the
puzzles, as in Table 7.5-Ex. 3. This bracketing exists only to aid the
learning of a translation model. During evaluation, we remove these
brackets from the target test sentences.

Notice that number marking and special notation for zero-to-one
matching is not ubiquitous across the puzzles. We included it only
when it was provided in the original puzzle.

multiple reference translations : Occasionally, several pos-
sible translations are listed in a puzzle for a given word, phrase or
sentence–see Table 7.5-Ex. 4. We represent these options inside paren-
thesis separated with a slash (/), e.g., (alternative1/.../alternative N).
Since the alternatives are of different granularity, nested bracketing
may sometimes occur. During evaluation, we calculate the scores
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between the prediction and all possible references, and take the maxi-
mum.

additional information Roughly half of the puzzles contain
remarks on individual characters and diacritics in the inventory of
the foreign language, e.g. “In the following orthography a colon (:)
marks a long vowel, and the P symbol marks a glottal stop (like the
sound in the middle of uh-oh)”. In many cases, the instructions state
that these are pronunciation notes, i.e. they are made available only to
allow the participants to vocalize the words they see on the page. On
some occasions, however, they might introduce a character that is not
present in the training data, but is relevant to the translation of the
test sentences, e.g. the voiceless counterpart of a voiced consonant in
a language with voice assimilation. As this kind of information cannot
be mapped to the parallel data format, we include it in a separate field
in the JSON files, directly as it appeared in the puzzles. 7

With the aforementioned guidelines, each puzzle was transcribed by
one transcriber and verified by at least one other transcriber. For the
test pairs, the direction of translation is stored as well, since a possible
and singular solution is only guaranteed in the direction as given in
the puzzle.

B JSON File Format

Each puzzle is represented with a JSON file containing the following
fields: source_lang, target_lang, meta, train and test. Each field
is explained in Table 7.6.

C Development Results

The results on the validation set are given in Fig. 7.3.

D Hyperparameter Settings

The best hyperparameters found for each NMT model is given as
following. FA: word to word alignments; PBSMT for English→Foreign:
word alignment with external English LM; PBSMT for Foreign→English:
BPE with 30 merge operations. For both Transformers-based models
in Foreign→English direction, we used BPE with 10 merge opera-
tions, learning rate of 0.001 and 500 epochs; while for the standard
Transformer in English→Foreign direction, BPE with 30 merge op-
erations have been used. For all models except from Transformers
with RoBERTa encoder, both the encoder and decoder had 1 layers,

7 We believe that even if all instances of such remarks are ignored, the puzzles should
remain mostly solvable, but we note that without this information, the ceiling for
human performance would not be quite 100 percent.
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Field Definition Example

source_lang Name of the source lan-
guage

Foreign language e.g., Kiswahili,
Pali

target_lang Name of the target lan-
guage

English

meta Additional information
about the foreign lan-
guage provided in the
original puzzle (as free
text)

"The sound represented as ã is a
’nasalized’ vowel. It is pronounced
like the ’a’ in ’father’, but with the
air passing through the nose, as in
the French word ’ban’."

train Parallel training sen-
tences given as a list of
lists

[[“Bonjour”, “Good morning”],
[“chat”, “cat”]], where the source
and the target language is French
and English respectively.

test Parallel test sentences
with direction informa-
tion

[[“Bonjour”, “Good morning”, >],
[“chat”, “cat”, <]]. “>” implies
that the translation is required from
source to target language, vice versa
for “<”

Table 7.6: JSON file format used in the linguistic puzzles shared task

Chikasaw English RW FA

Hattakat ihooã hollo. The man loves the woman. Ihooat lhiyohli hollo salhiyohli ofi’at. The hollo loves the woman.

Kowi’at shoha. The cat stinks. Lhiyohlili lhiyohlili kowi’ã. The lhiyohli shoha.

Holloli. I love her/him. Ofi’ã hilha lhiyohlili. I love lhiyohlili.

Ihooat sahollo. The woman loves me. Dog loves Ihooat sahollo

Ofi’at hilha. The dog dances. I the ofi’at he dances

Kowi’ã lhiyohlili. I chase the cat. stinks cat Kowi’ã I chase (him/her).

Table 7.7: Predictions of the simple baseline models for the “Chickasaw”
puzzle. Gold-standard target sentences are shown in yellow.

and all hidden dimesions were set to 128, dropout was set to 0.3, and
the models were trained with Adam optimizer. For Transformer with
RoBERTA LM Encoder for English→Foreign, we have used 0.0001

learning rate with reduction on plateau, batches of size 2, dropout of
0.1, 1 layer, 64 embedding units, 128 hidden units, and BPE with 5

merge operations.

E Chickasaw Additional Predictions

In Table 7.7, the predictions of RW and FA are shown for comparison.

F List of Languages and Families

The full list for the languages and the families they belong to, as
classified in WALS (Dryer and Haspelmath, 2013) and, where WALS



7.8 conclusion and future work 107

0

10
B

LE
U

2
2.7 1.0

4.5
8.9

11.8

0

25

50

C
TE

R

16.1
24.3 24.1 22.9 26.1

0

25

50

C
hr

F

22.7
36.5 37.5 34.5 36.3

Transformers
+RoBERTa

Random FastAlign Transformer PBSMT
0

25

50

E
xa

ct
 M

at
ch

0.0 0.0 0.0 2.2 0.0

0

20

B
LE

U
2

3.0 3.3

22.8 23.1 20.6

0

25

50

C
TE

R

2.4
9.3

27.9 21.8
32.5

0

50

C
hr

F

17.6 20.1

39.4 37.2
47.2

Random FastAlign Transformers
+RoBERTa

Transformer PBSMT
0

25

50

E
xa

ct
 M

at
ch

0.0 0.0 2.3 2.3 2.3

Figure 7.3: Development set results. Left: English→foreign Right:
foreign→English

lacks an entry, Glottolog (Hammarström, Forkel, and Haspelmath,
2019), are given in Table 7.8.
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Language Family Language Family

Abkhaz Northwest Caucasian Luiseño Uto-Aztecan

Abma Austronesian Madak Austronesian

Abui Timor-Alor-Pantar Malay Austronesian

Afrihili Artificial Maori Austronesian

Amele Trans-New Guinea Mayangna Misumalpan

Ancient Greek Indo-European Miwoc Penutian

Bambara Mande Muna Austronesian

Basque Basque Nahuatl Uto-Aztecan

Beja Afro-Asiatic Ndebele Niger-Congo

Benabena Trans-New Guinea Nen Trans-New Guinea

Blackfoot Algic Nepali Indo-European

Bulgarian Indo-European Nhanda Pama-Nyungan

Central Cagayan Agta Austronesian Norwegian Indo-European

Chamalal Nakh-Daghestanian Nung Tai-Kadai

Chickasaw Muskogean Old English Indo-European

Choctaw Muskogean Pali Indo-European

Cupeño Uto-Aztecan Papiamento creole

Danish Indo-European Persian Indo-European

Dyirbal Pama-Nyungan Polish Indo-European

Esperanto Artificial Proto-Algoquian Algic

Fula Niger-Congo Quechua Quechuan

Georgian Kartvelian Somali Afro-Asiatic

Guaraní Tupian Swahili Niger-Congo

Haitian Creole Creole Tadaksahak Songhay

Hmong Hmong-Mien Tanna Austronesian

Hungarian Uralic Teop Austronesian

Icelandic Indo-European Tok Pisin creole

Ilokano Austronesian Tshiluba Niger-Congo

Inuktitut Eskimo-Aleut Turkish Altaic

Irish Indo-European Udihe Altaic

Jaqaru Aymaran Waanyi Garrwan

Kabardian Northwest Caucasian Wambaya Mirndi

Kayapo Macro-Ge Warlpiri Pama-Nyungan

Kimbundu Niger-Congo Welsh Indo-European

Kunuz Nubian Eastern Sudanic Wembawemba Pama-Nyungan

Kurdish Indo-European Witsuwit’en Dené–Yeniseian

Lakhota Siouan Yidiny Pama-Nyungan

Lalana Chinantec Oto-Manguean Yolmo Sino-Tibetan

Latvian Indo-European Yonggom Nuclear Trans New Guinea

Lopit Nilo-Saharan Yoruba Niger-Congo

Zoque Mixe-Zoque

Table 7.8: Full list of languages and their families.
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C O N C L U S I O N

The work presented in this thesis contributes to efforts in the field of
low-resource, multilingual NLP. It does so through novel methods,
evaluations and resources, which provide insights into the existing
multilingual NLP solutions and avenues for further research.

From Chapters 2, 3 and 4 of the thesis we can conclude that while
apparent improvements can be achieved in CLWE alignment, both su-
pervised and unsupervised, it is important to evaluate those fairly and
with recourse to the flaws of the evaluation data available. Even in the
era of large pretrained transformer-based language encoders, which
have shown promising results in the space of cross-lingual transfer
(Wu and Dredze, 2019), cross-lingual word embedding alignment still
finds its applications (Cao, Kitaev, and Klein, 2020; Schuster et al.,
2019). Therefore the findings presented here remain relevant.

In Chapter 5, an analysis of the source of performance in depen-
dency parsing models trained with cross-lingual transfer showed
that even in the absence of high vocabulary overlap between source
and target language, transfer of knowledge on the level of syntax
(part of speech) from the source language can lead to improved de-
pendency parsing of the target language. This finding corroborates
more recent work on the transfer of knowledge through multilingual
transformer-based language encoders showing that vocabulary over-
lap is not required for transfer of knowledge to occur (Artetxe, Ruder,
and Yogatama, 2020).

Chapter 6 showed that zero-shot cross-domain transfer learning
for appositive generation is not sufficiently robust across the four
languages explored. Improvements over this baseline can be expected
to come from the application of domain adaptation methods (Jiang,
2008), as well as more elaborate methods for querying a knowledge
base.

In Chapter 7, we showed that no current NLP model is equipped to
solve the PuzzLing challenge dataset, and argued that advancements
in the space of meta-learning (Finn, Abbeel, and Levine, 2017), along
with multi-hop reasoning and abstract learning (Hudson and Man-
ning, 2019b), will bring NLP models to the level of sample-efficiency
and reasoning skill needed to solve a complex task from just a few
examples.

Low-resource language scenarios certainly pose a challenge in NLP,
but advancements in this area are an important step towards the
democratization of the Internet and of language technology. The
lack of high-quality language technology for these languages is cur-
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rently setting them even further back in terms of socioeconomic status,
whereas the introduction of new technology that supports them has
the potential to reverse this process.
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Gerz, Daniela, Ivan Vulić, Felix Hill, Roi Reichart, and Anna Korhonen
(Nov. 2016). „SimVerb-3500: A Large-Scale Evaluation Set of Verb
Similarity.“ In: Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing. Austin, Texas, pp. 2173–2182.

Glavaš, Goran, Robert Litschko, Sebastian Ruder, and Ivan Vulić (July
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