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Abstract

In this thesis we focus on clustering problems where the input is the ideal relationship between all
pairs of objects in the final clustering. More particularly, we concern ourselves with the following
problems.

L1-fitting tree metrics and ultrametrics: We are given the ideal distance between all pairs of
n objects, and the goal is to output a weighted tree (resp. ultrametric) which spans the set of
objects and minimizes the sum of pairwise distance errors. Both problems are closely related
to evolutionary biology and the reconstruction of the tree of life. In fact, discussions related
to the reconstruction of the optimal tree are traced back to Plato and Aristotle (350 BC), in
the context of classification. Both problems were known to be APX-Hard and the best known
approximation factor was O((log n)(log logn)) by Ailon and Charikar [FOCS ’05]. We design
asymptotically optimal constant factor approximations for both problems. Our paper “Fitting
Distances by Tree Metrics Minimizing the Total Error within a Constant Factor” appeared in
FOCS ’21.

Constrained Correlation Clustering: For each pair of objects, we are given a preference related
to whether the two objects should be in the same cluster or not. Furthermore, we are also given
hard constraints for certain pairs. The output clustering must satisfy all hard constraint, and
minimize the number of violated preferences. We design a deterministic combinatorial algorithm
with a constant approximation factor. A key ingredient in our approach is a novel nearly-optimal
pivoting algorithm for Correlation Clustering. This is a deterministic combinatorial algorithm
achieving the best approximation factor among all known deterministic combinatorial algorithms
for Correlation Clustering, not just pivoting ones. Part of these results have been submitted to
ICALP ’22.

Apart from clustering, we also study graph and string problems.
Multiple Source Shortest Paths in Planar Graphs: Given an embedded planar digraph with

positive edge weights and a face f , we are interested in a data structure supporting shortest path
queries, where the source is in f . The best known data structure by Klein [SODA ’05] requires
O(n log n) time for preprocessing and O(log n) time for queries, where n is the number of nodes.
We improve the preprocessing/query time to O(n log |f |)/O(log |f |), where |f | is the number
of nodes in f . More importantly, our approach is much simpler, requiring only single source
shortest path computations and contractions. In contrast, Klein’s solution required persistency,
dynamic trees, and an interplay between the primal and the dual graph. Our paper “A Simple
Algorithm for Multiple-Source Shortest Paths in Planar Digraphs” appeared in SOSA ’22.

Longest Common Subsequence on Weighted Sequences: Weighted sequences generalize the
concept of strings, so that in each position we have a probability distribution over the alphabet,
rather than a single character. The motivation comes from the inherent uncertainty of the
actual methods used for “reading” a DNA sequence. We suggest that the alphabet size is a
crucial parameter for this problem, and provide optimal results both in the case of bounded and
unbounded alphabets. Furthermore, this is the first work on Weighted Sequences avoiding the
Log-Probability model, a simplifying assumption related to exact computations of reals. Our
paper “Longest Common Subsequence on Weighted Sequences” received the Best Paper Award
at CPM ’20.



Resumé

Denne afhandling omhandler klyngedannelsesproblemer, hvori input er givet som en række egen-
skaber der beskriver ideelle forhold mellem alle par af objekter der indgår i en endelig klyngedan-
nelse. Mere specifikt beskæftiger vi os med følgende problemer:

L1-passende træmetrikker og ultrametrikker: Vi er givet den ideelle afstand mellem alle par af
n objekter, og målet er at beregne et vægtet (hhv. ultrametrisk) træ, der udspænder mængden
af objekter og minimerer summen af parvise afstandsfejl. Begge problemer er motiveret af deres
nære kobling til evolutionær biologi og genopbygningen af livets træ. Diskussioner vedrørende
rekonstruktionen af det optimale træ daterer helt tilbage til Platon og Aristoteles (350 f.Kr.),
i forbindelse med klassifikation. Det er velkendt at begge problemer er APX-hårde, og den
hidtil bedst kendte tilnærmelsesfaktor var O((log n)(log log n)) af Ailon og Charikar [FOCS ’05].
Vi beskriver asymptotisk optimale konstantfaktorapproksimationer for begge problemer. Vores
artikel “Fitting Distances by Tree Metrics Minimizing the Total Error within a Constant Factor”
udkom i FOCS ’21.

Korreleret Klyngedannelse med Begrænsninger: For ethvert par af objekter er vi givet en
præference, der angiver hvorvidt det ønskes at to objekter skal indgå i samme klynge. Derudover
er vi også givet hårde begrænsninger, der angiver hvilke par, der ikke må indgå i den samme
klynge. Det er et krav at den resulterende klynge skal opfylde samtlige hårde begrænsninger
imens antallet af uopfyldte præferencer samtidig minimeres. Til dette problem beskriver vi en
deterministisk, kombinatorisk algoritme med en konstant tilnærmelsesfaktor. En nøglekompo-
nent i vores tilgang er en ny, næroptimal, pivotbaseret algoritme til beregning af korrelerede
klynger uden begrænsninger. Denne er en deterministisk, kombinatorisk algoritme, der opnår
den bedste tilnærmelsesfaktor blandt alle kendte deterministiske, kombinatoriske algoritmer til
dette problem, og altså dermed ikke kun de pivotbaserede. En delmængde af disse resultater er
blevet indsendt til ICALP ’22.

Udover klyngeproblemer studerer vi også graf- og strengproblemer.
Korteste Veje fra flere Knuder i Plane Grafer: Givet en indlejret, plan, orienteret graf med

positive kantvægte og en flade f , er vi interesserede i en datastruktur, der understøtter korteste-
vejforespørgsler af veje der har en knude i f som endepunkt. Den mest velkendte datastruktur til
dette er beskrevet af Klein [SODA ’05] og kræver O(n log n) forbehandlingstid og O(log n) fore-
spørgselstid, hvor n er antallet af knuder. Vi forbedrer forbehandlings-, hhv. forespørgselstiden
til O(n log |f |)hhv.O(log |f |), hvor |f | angiver antallet af knuder i f . Vigtigere endnu er at vores
tilgang er langt simplere sammenlignet med Kleins idet den udelukkende beror på beregninger
af korteste veje fra én enkelt knude samt kantsammentrækninger. I modsætning hertil anvender
Kleins tilgang vedvarende datastrukturer, dynamiske træer og et samspil mellem den primære og
den duale graf. Vores artikel “A Simple Algorithm for Multiple-Source Shortest Paths in Planar
Digraphs” udkom i SOSA ’22.

Længste Fælles Delfølger af Vægtede Følger: Vægtede følger generaliserer strenge, således at
vi i for enhver indgang er givet en sandsynlighedsfordeling over alfabetet i stedet for et enkelt
tegn. Motivationen kommer fra den iboende usikkerhed ved gængse metoder, der i praksis
anvendes til at læse en DNA-sekvens. Vi foreslår, at størrelsen på alfabetet kan anvendes som
en afgørende parameter, der beskriver kompleksiteten af problemet. Vi giver optimale resultater
både i tilfældet af afgrænsede og ubegrænsede alfabeter. Ydermere er dette det første arbejde med
vægtede sekvenser, der omgår log-sandsynlighedsmodellen, en forsimplende antagelse relateret
til nøjagtige beregninger af reelle værdier. Vores artikel “Longest Common Subsequence on
Weighted Sequences” blev tildelt prisen for bedste artikel ved CPM ’20.



Preface

The General rules and guidelines for the PhD programme at the Faculty of Science, University
of Copenhagen allows for a PhD dissertation to be written “as a synopsis with manuscripts of
papers or already published papers attached”. The present dissertation has this form.

Throughout my PhD, I have written 4 published papers and 3 unpublished manuscripts. Out
of these, I include a paper and a manuscript related to clustering, as this was the main focus of
my PhD. I also include 2 papers related to graphs and strings, to demonstrate the breadth of my
PhD project. For completeness, I provide a very brief synopsis of all 7 results in this preface.

Included in the thesis
Clustering: Clustering is a fundamental task related to unsupervised learning, with many
applications in machine learning and data mining. The goal of clustering is to partition a set
of objects into disjoint clusters, such that (ideally) all objects within a cluster are similar, and
objects in different clusters are dissimilar. As no single definition best captures this high-level
goal, a lot of different clustering objectives have been suggested. In this thesis we focus on
clustering problems where the input is the ideal relationship between all pairs of objects in the
final clustering. More particularly, we concern ourselves with the following problems.

L1-fitting tree metrics and ultrametrics: We are given the ideal distance between all pairs of
n objects, and the goal is to output a weighted tree which spans the set of objects and respects
the input distances as much as possible. More formally, for each pair of objects we have an error,
the absolute difference between their distance in the input and their distance in the tree. The
goal is to minimize the sum of errors. A closely related problem asks for the output tree to be a
rooted tree whose leaves are the input objects and they are all in the same depth (ultrametric).
An ultrametric naturally induces a hierarchical clustering of the objects. These problems closely
relate to evolutionary biology and the reconstruction of the tree of life. In fact, discussions
related to the reconstruction of the optimal tree are traced back to Plato and Aristotle (350
BC), in the context of classification. Both problems were known to be APX-Hard and the
best known approximation factor was O((log n)(log log n)) by Ailon and Charikar [AC11] (FOCS
’05). We design asymptotically optimal constant factor approximations for both problems. Our
paper “Fitting Distances by Tree Metrics Minimizing the Total Error within a Constant Factor”
[CDK+21] appeared in FOCS ’21.

Constrained Correlation Clustering: For each pair of objects, we are given a preference related
to whether the two objects should be in the same cluster or not. Furthermore, for certain pairs
we are given a hard constraint related to whether the two objects must be in the same cluster
or not. The goal is to provide a partition (clustering) of the objects so that no hard constraint
is violated, and the number of violated preferences is minimized. Van Zuylen et al. [vZW09]
(SODA ’07) solved this APX-Hard problem within a 3 approximation factor, using a deterministic
algorithm; even though in their paper they are mostly interested in deterministic combinatorial
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algorithms, their solution to this problem requires solving an LP. We design a deterministic
combinatorial algorithm with a constant approximation factor. A key ingredient in our approach
is a novel nearly-optimal pivoting algorithm for Correlation Clustering (the version where no
hard constraints are given). This is a deterministic combinatorial algorithm achieving the best
approximation factor among all known deterministic combinatorial algorithms for Correlation
Clustering, not just pivoting ones. Part of these results have been submitted to ICALP ’22.

Planar Graphs: We study the Multiple Source Shortest Paths problem in Planar Digraphs.
Given an embedded planar digraph with positive edge weights and a face f , we are interested in a
data structure supporting shortest path queries, where the source is in f . The best known solution
by Klein [Kle05] (SODA ’05) requires O(n log n) time for preprocessing and O(log n) time for
queries, where n is the number of nodes. We design a data structure with O(n log |f |)/O(log |f |)
preprocessing/query time, where |f | is the number of nodes in f . More importantly, our approach
is much simpler, requiring only single source shortest path computations and contractions. In
contrast, Klein’s solution required persistency, dynamic trees, and an interplay between the
primal and the dual graph. Our paper “A Simple Algorithm for Multiple-Source Shortest Paths
in Planar Digraphs” [DKGW22] appeared in SOSA ’22.

Strings: In this work we study the Longest Common Subsequence problem on Weighted Se-
quences. Weighted sequences generalize the concept of strings, so that in each position we have
a probability distribution over the alphabet, rather than a single character. The motivation
comes from the inherent uncertainty of the actual methods used for “reading” a DNA sequence.
We suggest that the alphabet size is a crucial parameter for this problem, and provide optimal
results both in the case of bounded and unbounded alphabets. In the natural case of a bounded
alphabet, we design an EPTAS while no FPTAS is possible. When the alphabet is of unbounded
size, we prove that no EPTAS is possible, while a PTAS was known. This is the first work on
Weighted Sequences avoiding the Log-Probability model, a simplifying assumption related to
exact computations of reals. Our paper “Longest Common Subsequence on Weighted Sequences”
[KT20] received the Best Paper Award at CPM ’20.

Not included in the thesis
Hashing: A general algorithmic paradigm (e.g. in streaming) is Bernoulli Sampling, where we
do not process the whole input, but rather just a sampled subset of it. In certain cases, such
as Set Similarity, Distinct Elements, and Trajectory Sampling, it is crucial that this sampling is
coordinated. This is implemented by applying a hash function and keeping the elements whose
hash value is below a certain threshold. However, due to the hash function the samples are no
longer independent, which results in weak correctness guarantees. The standard solution is then
to boost the probability of success by performing independent repetitions of the same algorithm.

In this work we show that using Tabulation-1Permutation, a hash function with strong con-
centration guarantees, we can run a single repetition of such algorithms without sacrificing the
probability of success, as if the hash function was truly random. We support our theoretical re-
sults through experiments which also demonstrate the practicality of Tabulation-1Permutation.
The manuscript [ADK+20] is submitted to VLDB ’22.

Network Dynamics: In this work we suggest a particular type of Network Dynamics support-
ing structural dynamics, guided by local thresholding rules executed in each node. Its microscopic
structure appears to be simple, so that we are able to rigorously argue about it, but still flexible,
so that we are able to design meaningful microscopic local rules that give rise to interesting
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macroscopic behaviors. We rigorously exhibit our claims by designing a simple protocol that
provably computes the k-core of the network as well as by showing that the suggested Network
Dynamics is Turing-Complete. Most importantly, we construct general tools for proving stabi-
lization of our Network Dynamics and prove speed of convergence in a restricted setting. We
also disprove the conjectured convergence of a certain community detection algorithm by Zhang
et al. [ZWWZ09] (KDD ’09), which falls under our framework. Our paper “Threshold-based
Network Structural Dynamics” [KST21] was accepted at SIROCCO ’21 and invited to a special
issue of the Theoretical Computer Science journal.

Labeling Schemes: In Labeling Schemes for graph problems, we preprocess the input graph
and assign a binary string (label) to each node. Then, given the labels of two nodes (but no
access to the input graph) one should be able to compute some function of the graph and the
two nodes. The goal is to minimize the maximum size of any label. We studied the problem of
routing in trees, where the input graph is a tree and given the labels of two nodes u, v the goal is
to output the first edge on the path from u to v. We improved the state-of-the-art solution from
log n+O(loglogn n log log log n) bits to log n+O(loglogn n). This is an unpublished result, as few
months after our solution the optimal size was improved to log n+O(log log2 n) by Gawrychowski
et al. [SODA ’21].

Papers
Fitting distances by tree metrics minimizing the total error within a constant factor
V. Cohen-Addad, D. Das, E. Kipouridis, N. Parotsidis, and M. Thorup
FOCS 2021 [CDK+21]

Constrained Correlation Clustering: Deterministically and Combinatorially
E. Kipouridis, J. Ø. Klausen, and M. Thorup
Submitted to ICALP 2022

A simple algorithm for multiple-source shortest paths in planar digraphs
D. Das, E. Kipouridis, M. P. Gutenberg, and C. Wulff-Nilsen
SOSA 2022 [DKGW22]

Longest Common Subsequence on Weighted Sequences
E. Kipouridis, K. Tsichlas
CPM 2020 [KT20]

No repetition: Fast streaming with highly concentrated hashing
A. Aamand, D. Das, E. Kipouridis, Jakob B. T. Knudsen, P. M. R. Rasmussen, and M. Thorup
Submitted to VLDB 2022 [ADK+20]

Threshold-based network structural dynamics
E. Kipouridis, K. Tsichlas, and P. Spirakis
SIROCCO 2021 [KST21]

Compact routing schemes
E. Kipouridis, and M. Thorup
Unpublished Manuscript
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Chapter 1

Introduction

In accordance with the guidelines of the PhD School of the University of Copenhagen, this
thesis is presented as a synopsis of a subset of the papers produced over the course of the PhD
programme. The main focus is on clustering problems, and more specifically on ones where the
input describes the ideal pairwise relationship between any two objects in the final clustering.
To demonstrate the breadth of my PhD work, I also include results related to shortest paths and
strings.

Organisation. The thesis has been divided into four chapters, each one presenting a different
paper or manuscript. The first two are related to clustering, while the following two touch on
different aspects of Theoretical Computer Science. More specifically, the first chapter is related to
a paper on finding the closest Tree Metric to a Distance Matrix. The second chapter discusses the
results of a manuscript related to variants of Correlation Clustering. The third chapter discusses
the results of a paper on the Multiple Source Shortest Paths in Planar Digraphs problem. Finally,
the fourth chapter relates to a paper addressing the Longest Common Subsequence problem on
a generalization of regular strings known as Weighted Sequences. The appendix contains the full
versions of these 4 papers and manuscripts, in the same order.

Each chapter introduces the related problems, provides a survey of the relevant literature,
and discusses the results of the corresponding paper or manuscript. Finally it considers further
related research topics and open problems. As each chapter is a synopsis of an actual paper or
manuscript, no full proofs are provided. Instead, the appendix contains the full versions for the
interested reader.

Notation. Most notation will be introduced as needed. For n ∈ N, we denote by [n] the set
{1, 2, . . . , n}. We use Õ(·)-notation to suppress logarithmic factors in n. We denote all subsets of
size k of a set S by

(
S
k

)
. The symmetric difference between two sets A,B is denoted by A△B.

1



Chapter 2

Fitting Distances by Tree Metrics
Minimizing the Total Error within a
Constant Factor

In this chapter, we present the paper “Fitting Distances by Tree Metrics Minimizing the Total
Error within a Constant Factor”, presented at FOCS ’21. We start with a short introduction
of the problem, proceed with an overview of previous work, and then discuss the results of the
paper. We conclude with addressing further research directions and open problems.

2.1 Introduction
Suppose we are given a tree with n special nodes, which we call species, and O(n) other nodes.
Furthermore, the edges of the tree have positive weights. The set of pairwise distances between
the species forms a type of metric known as tree metric. In the special case where the tree is
rooted, all the species are leaves, and all leaf-to-root distances are equal, we get a type of metric
known as an ultrametric.

In this work we consider the numerical taxonomy problem [CSE67, SS62, SS63]. In the simple
model introduced by Cavalli-Sforza and Edwards in 1967 [CSE67], the weight of an edge in an
evolutionary tree is the evolutionary distance between its 2 endpoints, and the evolutionary
distance between 2 non neighboring species is the sum of weights along their path. Therefore,
given an evolutionary tree, the set of pairwise evolutionary distances induces a tree metric.

Now consider the reconstruction version of the above model, where instead of determining
distances given a tree, we are given the distances and need to determine a tree. As there may
be no tree metric exactly satisfying all distances, we ask for a closest tree metric (or closest
ultrametric) to the input distances.

Perhaps the most natural definition of a closest tree metric (resp. ultrametric) is a tree metric
(resp. ultrametric) on the same n species as the input distances, such that the sum of pairwise
errors between the input distances and the metric distances is minimized. More formally, given a
set S of n species and pairwise distances D :

(
S
2

)
→ R>0, a closest tree metric (resp. ultrametric)

T is any tree metric (resp. ultrametric) T minimizing

∥T −D∥ =
∑

{i,j}∈(S
2)

|T (i, j)−D(i, j)|

2



We call the problem L1-fitting tree metrics when we ask for any tree metric, and L1-fitting
ultrametrics when we specifically ask for an ultrametric. Similarly, as we discuss in the related
work, one can work on different Lp norms, and minimize

∥T −D∥p =




∑

{i,j}∈(S
2)

|T (i, j)−D(i, j)|p



1/p

L1 and L2 are the most interesting cases and this is exactly how the reconstruction problem
was introduced back in the 1960s [CSE67, SS62, SS63].

These problems are directly related to evolutionary biology. For example, viewing the depth
of a node in an ultrametric as the time in which a corresponding species existed, we can view all
leaves as species that exist today. For these species we can estimate their evolutionary distance,
and want to reconstruct the tree of evolution. Of course evolution is not that linear, and a tree
metric may be more relevant than an ultrametric. In fact, the whole concept of distances in
the tree relating to evolutionary distance may be too simplistic, as certain changes from parent
to child may be reverted in the grandchild. However, Farach and Kannan show that even for
more accurate stochastic models [Cav78, Far72], one can apply logarithms to convert estimated
distances into a different type of distances for which we can then find the closest tree metric or
ultrametric. In short, even when not applied directly, finding the closest tree metric or ultrametric
is a powerful tool for solving problems related to the reconstruction of evolution.

Biology is not the only field related to our problems. Medicine, ecology and linguistics are
just some of the fields where these concepts appear. In fact, even from as early as 350 BC, we
have discussions between Plato and Aristotle concerning the optimal such trees, in the context
of classification1. Moreover, ultrametrics are important objects for machine learning and data
analysis [CM10], and many different algorithms (such as single, complete or average “linkage”
algorithms) have been suggested to approach the closest ultrametric problem [CKMM19, MW17].
Finally, many NP-Hard problems on general metrics are easy to solve on tree metrics (see Chapter
10.2 “Solving NP-Hard Problems on Trees” in [KT06]), and thus finding the closest tree metric
before solving them is a natural approach.

2.2 Previous work
In 1977, an O(|S|2) time algorithm [WSSB77] (linear in the size of the input) for detecting
the tree T was developed, in the special case where the input distances D form a tree metric.
The result trivially holds for the case of ultrametrics as well. However, in the case where input
distances D do not form a tree metric, progress was much slower.

In 1993, about 25 years after the introduction of the simple model by Cavalli-Sforza and
Edwards [CSE67], the problem of L∞-fitting ultrametrics was solved exactly [FKW95]. In 1996,
the L∞-fitting tree metrics problem was approximated with a factor 3 in linear time [ABF+99].
In fact, the authors show something more powerful: under some technical assumptions, an α
approximation for the Lp-fitting ultrametrics problem can be converted to a 3α approximation
for the Lp-fitting tree metrics problem, for any p.

The progress for Lp norms, p < ∞, was even slower. In 1999, Ma et al. [MWZ99] designed
an O(n1/p) approximation for a problem related to Lp-fitting ultrametrics, where distances in
the ultrametric are not smaller than the input distances. In 2004, Dhamdhere [Dha04], in an
attempt to develop techniques to solve the L1-fitting tree metrics problem, gave an O(log n)

1https://iep.utm.edu/classifi/, Internet Encyclopedia of Philosophy
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Norm L1 Lp, p <∞ L∞
Tree metric Θ(1) O(((log n)(log log n))1/p) Θ(1)
Ultrametric Θ(1) O(((log n)(log log n))1/p) 1

Table 2.1: Tree fitting approximation factors.

approximation for the problem of finding a line metric minimizing additive distortion. The first
non-trivial result regarding the general Lp-fitting ultrametrics problem came from Harb, Kannan
and McGregor [HKM05] in 2005. The authors designed an O(min{n, k log n}1/p) approximation,
where k is the number of distinct input distances. The authors erroneously claim the same
approximation for Lp-fitting tree metrics, using the reduction from [ABF+99]. However, this
reduction may create ω(k) distinct distances.

The same year as [HKM05], Ailon and Charikar [AC11] designed the first truly polylogarith-
mic approximation for general Lp-fitting tree metrics and Lp-fitting ultrametrics. They provide
a general O(((log n)(log log n))1/p) approximation for both problems. Their solution proceeds by
rounding an LP, using techniques similar to the ones used for Multicut. In fact their approach
also solves more difficult weighted versions of the problems, that are equivalent to Multicut. The
authors also design a k + 2 approximation for the special L1 case, where k is the number of
distinct input distances.

Ailon and Charikar [AC11] conclude that “Determining whether an O(1) approximation can be
obtained is a fascinating question. The LP formulation used in our [their] work could eventually
lead to such a result”. The integrality gap of the natural LP that they round was only known to
lie between 2 and O((logn)(loglogn)). However, breaking the log n barrier requires considerably
new techniques, as an o(log n) approximation for Multicut would be a major breakthrough.

2.3 Our contribution
In this work, we provide constant factor approximations, both for L1-fitting tree metrics and
for L1-fitting ultrametrics. Under some assumptions (which we also remove in this work) it
was known that these problems are APX-Hard, therefore our algorithms achieve asymptotically
optimal approximation factors. Furthermore, we show that the integrality gap of the natural LP
relaxation for L1-fitting ultrametrics is O(1). Finally, we prove that for any p, an α approximation
for Lp-fitting ultrametrics translates to a (3 + o(1))α approximation for Lp-fitting tree metrics,
bypassing the need for the extra assumptions of the similar result in [ABF+99].

2.3.1 Techniques
The main technical contribution of our work is solving L1-fitting ultrametrics, as the tree metrics
version follows by modifications of the result in [ABF+99]. In what follows, we discuss some key
points of our approach.

Correlation Clustering One can view an ultrametric as a hierarchical clustering, where at
the bottommost level (leaves) every species is in a singleton cluster, on the topmost level (root)
every species is in the same cluster, and in general the clustering at any level subdivides the
clustering at higher levels. Therefore, if we approximate the optimal clustering at each level
within a constant factor, the total cost is within a constant factor of the optimal cost, with the
only problem being that the clusterings we produce are not consistent with each other.
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In our algorithm we first solve each level of the problem independently, and then focus on
modifying the acquired clusterings so that they become consistent. The per-level problem we
need to solve is Correlation Clustering, a well studied clustering problem for which efficient
constant factor approximations are known.

Modifying the objective of the LP The objective of the natural LP relaxation for L1-fitting
ultrametrics has hierarchical consistency, in the sense that for any two species u, v, it wants them
separated from the bottommost level up to some level lu,v, and wants them in the same cluster
at levels higher than lu,v. However, it does not have level consistency, in the sense that for three
species u, v, w and a level t, it may be that at level t it wants u, v together, u,w together, but
v, w separated. Interestingly enough, existing solutions do not make any use of the hierarchical
consistency of the LP relaxation; in fact they would work even in the more general setting where
none of the aforementioned properties hold2.

Our solution solves the more general setting as well. It does so by using the per-level clus-
terings to carefully modify the objective of the LP relaxation to a new objective that has level
consistency, but not hierarchical consistency. The modifications are done in a way that ensures
that a solution to the new objective is an approximate solution to the initial objective as well3.

LP-Cleaning Having a new LP at hand, we use it to produce candidate clusters for each
level. In particular, we start with the clusters produced by solving Correlation Clustering per
level. Then we use the solution of the LP to determine which of these clusters are indeed good
candidates, and which can be completely disregarded. In fact, the LP is used to remove species
from clusters; we only keep the clusters that are mostly intact (say more than 99% of them is
intact), and disregard the rest. We note that we only use the solution of the LP for this cleaning
part of the algorithm.

Deriving Hierarchy Finally, using the candidate clusters, we apply a simple algorithm that
modifies them in a way that produces a consistent ultrametric. The algorithm works bottom-up,
and never modifies an already processed cluster. When processing a new cluster C at level t
that intersects but does not contain a processed cluster C ′ at a lower level, the algorithm simply
decides whether to remove their intersection from C or extend C to include C ′. The only criterion
in this decision is whether the two clusters intersected before applying the Deriving Hierarchy
part of the algorithm (in which case C extends to include C ′) or not.

2.4 Further research directions
Perhaps the most important open question related to our work is an O(1) approximation for the
L2-fitting tree metrics problem. Given the result from [ABF+99], and its extension in our work,
it is enough to give an O(1) approximation for L2-fitting ultrametrics. However, the techniques
used in the current work exploited properties of L1 that L2 does not have. Therefore it seems
that considerably new techniques need to be developed for L2.

Concerning L1, the best known approximation factor for the weighted version (where the
cost of an edge is weighted by an input edge weight) is O((log n)(log log n)), by Ailon and
Charikar[AC11]. Getting rid of the log log n factor would be an interesting problem. However

2We explicitly define this more general setting as the Hierarchical Correlation Clustering problem, as it is of
independent interest.

3We explicitly define this new problem as the Hierarchical Cluster Agreement problem, as we believe it to be
of independent interest.
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going beyond that would also improve the best known approximation factor for Multicut, a
notoriously hard problem.

Other than the weighted version of L1-fitting tree metrics, there is also another interesting
generalization, namely the constrained version of the problem. In this problem, we are given all
pairwise distances between n species; furthermore, for each pair of species u, v we are given a
lower bound xu,v and an upper bound yu,v. The goal is to find a tree metric minimizing the L1

error, with the constraint that for any pair of species {u, v}, the distance between u, v in the tree
is in [xu,v, yu,v].

Finally, our algorithms for L1-fitting tree metrics and ultrametrics does not need to employ
randomization. As also stated by Ailon and Charikar [AC11], it would be nice if one can provide
a combinatorial algorithm that even avoids solving an LP.
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Chapter 3

Constrained Correlation Clustering:
Deterministically and
Combinatorially

In this chapter, we present the manuscript “Constrained Correlation Clustering: Deterministi-
cally and Combinatorially”, part of which was submitted to ICALP ’22. We start with a short
introduction of the problem, proceed with an overview of previous work, and then discuss the
results of the manuscript. We conclude with addressing further research directions and open
problems.

3.1 Introduction
Given a graph G = (V,E), a clustering C = {C1, . . . , Ck} is a partition of V . Each Ci ∈ C is
called a cluster. With each clustering C, we associate an edge-set EC defined as EC =

⋃k
i=1

(
C
2

)
.

In other words, we create a clique connecting all nodes in the same cluster of the clustering.
In the Correlation Clustering problem, we are given an input graph G = (V,E) and the

output is a clustering C. The goal is to minimize the symmetric difference |E△EC |. Intuitively,
we want to approximate a given graph by a collection of cliques.

One can view Correlation Clustering in a slightly different way: the input graph G contains
all pairwise preferences of the nodes. This means that for every two nodes, we know whether we
prefer to include them in the same cluster or not. The goal is then to produce a clustering that
violates the minimum number of such preferences.

There are certain applications however where some pairs are more important than others, and
we must always satisfy their preference in the output clustering. This motivates the Constrained
Correlation Clustering problem, where the input is a graph G = (V,E), a set of friendly pairs
F ⊆

(
V
2

)
and a set of hostile pairs H ⊆

(
V
2

)
. The output is a clustering C such that for all

pairs {u, v} ∈ F we have u, v in the same cluster, and for all pairs {u′, v′} ∈ H we have u′, v′

in different clusters. The clustering C shall minimize |E△EC | among all clusterings that satisfy
the same properties related to F,H.

In the case of Constrained Correlation Clustering we refer to the pairs in F and H as hard
constraints, or simply constraints, because we must always satisfy them.

Finally, we introduce the Node-Weighted Correlation Clustering problem, where each node u
has a different importance. The input is a graph G = (V,E) and a function w : V → N>0. The
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output is a clustering C of V minimizing
∑

{u,v}∈E△EC

w(u) · w(v)

Therefore, instead of having a cost 1 for each violated preference, as in the previous two
problems, we have a cost w(u) · w(v).

3.2 Previous work
Correlation Clustering is one of the most successful clustering objectives, mainly due to its
simplicity and the fact that, in contrast with clustering objectives like k-Means and k-Median, the
number of clusters in the output clustering does not need to be given as input. It was introduced
by Bansal et al. [BBC04], who proved NP-Hardness and provided a deterministic constant factor
approximation, the constant being about 15, 000. Subsequently a 4 approximation was given by
Charikar et al. [CGW05], a 2.5 approximation by Ailon et al. [ACN08], and a deterministic 2.06
approximation by Chawla et al. [CMSY15]. The last three solutions are all based on rounding
the natural LP.

Due to the important practical applications of Correlation Clustering, minimizing the ap-
proximation factor is not the only research direction. Among several other directions, such as
parameterized algorithms [FKP+14], sublinear and streaming algorithms [AW21], massively par-
allel computation (MPC) algorithms [CLM+21], and differentially private algorithms [BEK21],
in this work we mainly focus in the following:

1. (Randomized) Combinatorial Algorithms: We use the term combinatorial to refer to algo-
rithms not solving an LP. Charikar et al. [ACN08] provide a randomized combinatorial 3
approximation; even though its approximation is worse than the 2.5 approximation they
design in the same paper, its advantage is being combinatorial.

2. Deterministic Combinatorial Algorithms: Much later than the aforementioned solutions
with less than 5 approximation factors, a deterministic combinatorial 6 approximation al-
gorithm was designed in [Vel21]. Deterministic combinatorial algorithms were also pursued
in [vZW09].

3. Pivoting Algorithms: These are algorithms which select one node u and include u and
all nodes that prefer to be with u in one cluster. Then they remove these nodes and
recurse. The simplicity of these algorithms, as well as some of their applications make
them desirable. The 3 approximation in [ACN08] as well as algorithms in [vZW09] fall
under this category.

The main problem with the formulation of Correlation Clustering is that each violated pref-
erence costs the same. In the weighted version of Correlation Clustering, we are given a weight
for each preference, and violating a preference induces cost equal to its weight. Even though this
problem has more applications, its O(log n) approximation is very difficult to improve (if at all
possible), as the problem is equivalent to Multicut [DEFI06].

Due to the hardness of the general weighted version, research has focused on special cases
where constant factor approximations are possible [MTG21, PM15]. Constrained Correlation
Clustering is one such special case, where certain preferences, which we call hard-constraints,
must never be violated (infinite weight), while the rest of the preferences all have weight 1.

Regarding Constrained Correlation Clustering, van Zuylen at al. designed a deterministic 3
approximation [vZW09] working as follows:
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1. Using the hard constraints F,H, the input graph G = (V,E) is modified to produce a new
graph G′ = (V,E′).

2. Graph G′ = (V,E′) is treated as an instance of (unconstrained) Correlation Clustering,
ignoring the actual hard constraints. A pivoting algorithm is applied on G′.

We note that no pivoting algorithm is possible for Constrained Correlation Clustering. Even
though in the last step a pivoting algorithm is used, it is applied in a graph G′ different from the
original graph G. The use of this pivoting subroutine is however crucial, as this is what ensures
that no hard-constraints are violated.

Throughout [vZW09], the authors focus on deterministic algorithms, and, whenever possible,
combinatorial algorithms are preferred. Their solution for Constrained Correlation Clustering is,
however, not combinatorial; in fact both the modification of the graph and the pivoting algorithm
need to use the values of the LP variables.

3.3 Our contribution
In this work, we give a deterministic combinatorial constant factor approximation for Constrained
Correlation Clustering. In order to do so, we design the first deterministic combinatorial pivoting
algorithm for Correlation Clustering. In fact, our algorithm is the best known deterministic
combinatorial algorithm for Correlation Clustering, even among non-pivoting algorithms. Finally,
using the insight from our Constrained Correlation Clustering solution, we introduce the Node
Weighted Correlation Clustering problem and provide a constant factor approximation.

Constrained Correlation Clustering Regarding Constrained Correlation Clustering, we
prove the following theorem:

Theorem 3.1. There exists a deterministic combinatorial algorithm that solves Constrained
Correlation Clustering in O(|V |6) time with an approximation factor less than 29. There exists
a faster such algorithm running in O(|V |3) time, with a 42 approximation.

To solve this problem, we provide deterministic combinatorial counterparts for both steps of
the algorithm in [vZW09].

Concerning the first step, we carefully modify the input graph so that any pivoting algorithm
on the modified graph produces a clustering that does not violate any hard constraint. We also
make sure that the cost of the output clustering in the modified graph is not much larger than
the cost of the same clustering in the input graph. From a high level view, this is guaranteed by
only modifying parts of the input graph for which even the optimal clustering is bound to pay
a lot. As we cannot use an LP to guide these modifications, we determine 4 types of subgraphs
for which any clustering is bound to pay.

Concerning the second step, we design the first deterministic combinatorial pivoting algorithm
for (unconstrained) Correlation Clustering.

Correlation Clustering Regarding Correlation Clustering, we prove the following theorem:

Theorem 3.2. There exists a deterministic combinatorial algorithm based on pivoting that solves
Correlation Clustering in O(|V |6) time with a 5.8 approximation factor. There exists a faster
such algorithm running in O(|V |3) time, with a 9 approximation.
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Our deterministic combinatorial pivoting algorithm for Correlation Clustering achieves the
best known approximation factor among any deterministic combinatorial algorithm for Correla-
tion Clustering, even among non-pivoting ones.

To the best of our knowledge, all deterministic algorithms for Correlation Clustering lower
bound the optimal clustering using bad triplets. A bad triplet is an induced subgraph on 3
vertices, such that only one pair is not connected. Notice that any clustering needs to pay at
least 1 for the 3 pairs in a bad triplet.

To go below 6 approximation (the state-of-the-art deterministic combinatorial approximation
[Vel21]), we use new subgraphs for which any optimal clustering needs to pay. The main advan-
tage of these new subgraphs is that the minimum cost any clustering needs to pay for them is
larger than the maximum number of pair-disjoint bad triplets in them.

As an example, take the claw graph (K1,3). Any clustering needs to pay at least 2 for the
four pairs in K1,3. However no 2 bad triplets in K1,3 are pair disjoint, which made previous
approaches relate K1,3 with a cost less than 2.

Using our stronger lower bounds, we are able to give a deterministic combinatorial 5.8 ap-
proximation algorithm for Correlation Clustering based on pivoting.

We also prove a lower bound on the approximation factor of any pivoting algorithm for
Correlation Clustering:

Theorem 3.3. No pivoting algorithm for Correlation Clustering has 3 − Ω(1) approximation
factor.

This means that if we allow randomization, the solution from [ACN08] is optimal. Similarly,
if we do not allow randomization but allow solving an LP, the solution from [vZW09] is optimal.

Node Weighted Correlation Clustering As weighted Correlation Clustering is equivalent
to Multicut, an o(log n) lower bound requires a major breakthrough. In this work we introduce
an alternative type of weighting, where weights are assigned on the nodes, rather than on pairs
of nodes. We provide a constant factor approximation for this problem.

The solution relates an instance I of Node Weighted Correlation Clustering with an expo-
nentially larger instance I ′ of Constrained Correlation Clustering. Despite of its large size, the
special structure of I ′ allows us to simulate an approximation algorithm in time linear in the size
of I.

We prove the following result:

Theorem 3.4. There exists a randomized combinatorial algorithm for Node Weighted Correla-
tion Clustering with a 3 (expected) approximation factor. The running time of the algorithm is
O(|V |+ |E|).

3.4 Further research directions
Perhaps the most interesting research direction stemming from this work is the design of opti-
mal pivoting algorithms for Correlation Clustering. Our lower bound shows that any pivoting
algorithm has approximation factor at least 3. If randomization is allowed, the algorithm from
[ACN08] is thus optimal, and if solving an LP is allowed, then the algorithm from [vZW09] is op-
timal. However there is still a small gap (3 vs 5.8) when we insist on deterministic combinatorial
algorithms.

Furthermore, Node Weighted Correlation Clustering seems to be a very natural generalization
of Correlation Clustering. It would be interesting to see practical applications of it. From a more
theoretical perspective, it would be interesting to design a deterministic combinatorial algorithm;
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it is not clear if efficiently simulating our deterministic combinatorial algorithm for Correlation
Clustering in the larger implicit instance is possible, as we did with the randomized algorithm
from [ACN08].

Finally, for Constrained Correlation Clustering, the analysis seems somewhat loose: the two
parts of the algorithm are analyzed separately, and the final approximation factor is, roughly,
the product of the two approximations. It would be interesting to improve the current analysis
or at least find some example showing it is tight.
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Chapter 4

Multiple-Source Shortest Paths in
Planar Digraphs

In this chapter, we present the paper “A Simple Algorithm for Multiple-Source Shortest Paths
in Planar Digraphs” [DKGW22], presented at SOSA ’22. We start with a short introduction of
the problem, proceed with an overview of applications and previous work, and then discuss the
results of the paper. We conclude with addressing further research directions and open problems.

4.1 Introduction
Let G = (V,E) be a planar embedded directed graph with non-negative edge weights, and f be
a face of G. We are interested in a data structure supporting shortest path queries from vertices
in f to any other vertex. The objective is to minimize the preprocessing and the query time.

This problem is known as the Multiple-Source Shortest Paths Problem in Planar Digraphs
(MSSP), and is a fundamental building block in many state-of-the-art algorithms for planar
graph problems, including All Pairs Shortest Paths, Max Flow and Min Cut algorithms. Due
to the problem’s importance and the technical complexity of previous work, our aim was also a
significantly simpler algorithm.

4.2 Applications
APSP The most straightforward application of Multiple-Source Shortest Paths in Planar Di-
graphs is arguably the All Pairs Shortest Paths problem (APSP) in Planar Digraphs. There are
3 different versions of APSP whose state-of-the-art solutions use MSSP as a building block:

• Exact Distance Oracles: The most standard version of APSP where we are interested in
exact solutions. Recently a data structure with no(1) query time, requiring n1+o(1) space,
was achieved through a series of breakthrough papers [CADWN17, GMWW18, CGMW19,
LP21]. MSSP is used as a subroutine by the state-of-the-art result in [LP21], as well as by
[CGMW19].

• Approximate Distance Oracles: In this version of APSP we are satisfied with 1 + ϵ ap-
proximating the answer. Such a data structure using Õ(nϵ−1) space and preprocessing
time was designed by Thorup [Tho04], assuming that the ratio between the largest and the
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smallest edge weight is polynomial in n. The query time is only O(log log n+ ϵ−1). Further
improvements have then sped-up the preprocessing time by polylogarithmic factors, via
improvements to the state-of-the-art MSSP data structure.

• Exact Dynamic APSP: The exact version of APSP under the dynamic setting, where up-
dates of edge weights are supported. The classic data structure in [FR06] uses Õ(n) space
and preprocessing time, and Õ(

√
n) query time for the static case. It can be modified to

work in the dynamic setting, with Õ(n2/3) update time and Õ(n2/3) query time. Again,
while [FR06] does not directly employ MSSP, Klein [Kle05] sped-up this solution by poly-
logarithmic factors, via incorporating an improved MSSP data structure.

There are various improvements over these seminal results, mainly by considering differ-
ent trade-offs [FHMWN20, LP21] or by improving logarithmic or doubly-logarithmic factors
[MWN10, GK18, MNW18]. The important point is that MSSP is present in almost all of those
articles. Furthermore, it is important that improvements via the use of MSSP result in a more
modular and re-usable design that makes APSP algorithms simpler to understand and imple-
ment.

One more direct application of MSSP is dense distance graphs. From a high level view, this
is a common strategy for planar graph problems, where the input graph G is decomposed using
vertex separators recursively. The dense distance graph of any (planar) subgraph G′ obtained
by such a decomposition is basically a complete graph on the vertices of the outer face of G′,
such that the weight of an edge is the shortest path distance in G′ between its two endpoints.
MSSP can then be applied to obtain the dense distance graph, which in turn finds applications
in cuts and flows problems [BKM+17, BSWN15, INSWN11].

4.3 Previous work
Fakcharoenphol’s and Rao’s solution to MSSP [FR06] gives the first non-trivial bounds for
the problem. It requires Õ(n) preprocessing time and space and Õ(

√
n) query time. Klein’s

work [Kle05] significantly improved the query time to O(log n), while requiring O(n log n) pre-
processing time and space. This preprocessing time and space is tight in n, as later demonstrated
by [EK13]. Klein and Eisenstat [EK13] also show how to remove all logarithmic factors in the
special but natural case of undirected, unit-weighted planar graphs.

The solution of Klein requires the use of dynamic trees, persistency [DSST89], and the explicit
use of the dual of the input planar graph by the algorithm. It is based on the non-trivial
observation that, on average, the shortest path trees of two successive vertices along the face f
differ by a constant number of edges.

Finally, Cabello, Chambers and Erickson [CCE13] used the same structural observations of
Klein, along with a new perspective to the problem, to extend the results to surface-embedded
graphs of genus g. Their data structure requires O(gn log n) preprocessing time and space, and
O(log n) query time.

4.4 Our contribution
Bounds In this work we give a new solution to MSSP that slightly improves the state-of-the-
art solution by Klein [Kle05] when the number of vertices |f | in the face f is subpolynomial in n,
and recovers his bounds otherwise. More specifically, it requires O(n log |f |) preprocessing time
and space, which is optimal for parameters n, |f | by a straightforward extension of the arguments
in [EK13]. The query time is O(log|f |).
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Simplicity An important feature of our algorithm is its simplicity. We only apply a standard
divide and conquer approach on the input graph. In each recursive call we compute two shortest
path trees from two vertices and contract certain edges that are common in both trees before
recursing. The analysis is also considerably simpler.

In contrast with Klein’s data structure which requires black-box access to algorithms for
single source shortest paths, persistency, dynamic trees, and an interplay between primal and
dual planar graphs, our algorithm only requires black-box access to single source shortest paths
computations. Replacing the O(n) result by Henzinger et al. [HKRS97] by standard Dijkstra’s
algorithm gives a self-contained algorithm and analysis that we believe can be taught even at an
advanced undergraduate level, at the expense of an O(log n) factor in the preprocessing time.

Practical algorithm We believe that our algorithm, using Dijkstra’s algorithm for computing
single source shortest paths, is also a very practical one. That is because it does not need to
use persistency or dynamic trees, while Dijkstra’s algorithm is known to perform exceptionally
well on real-world graphs. In fact, a very successful method of computing shortest-paths in road
networks is based on contraction hierarchies and fast single source shortest path computations
[GSSD08]. It is perceivable that our algorithm can be implemented rather easily by adapting
the components of this framework.

4.4.1 Techniques
From a high-level view, our algorithm is a divide and conquer one. Initially we want to compute
the shortest path trees from all vertices r0, . . . , r|f |−1 in f . To do that, we compute the shortest
path trees from two vertices that split the problem in two halves, namely r0 and r⌊ |f|−1

2 ⌋. Instead
of directly recursing on the two natural subproblems, which would result in the trivial algorithm,
we first contract certain edges that are common in both shortest path trees computed (different
set of contractions for each one of the two subproblems). This effectively reduces the size of the
graphs when recursing, and gives us the desired time bounds.

The intuition is that we contract an edge when we verify that all shortest paths trees related to
a subproblem contain this edge. We also need to change the weight of edges whose tail coincides
with the head of a contracted edge in a straightforward manner, but we omit the details in this
synopsis.

The whole approach therefore boils down to detecting edges contained in all shortest path
trees related to a subproblem (see Figure 4.1 for a graphical example). Suppose the shortest
path P from r0 to a vertex y and the shortest path P ′ from r⌊ |f|−1

2 ⌋ to y both contain an edge
(x, y). For simplicity, assume that shortest paths are unique, f is the outer face of the graph,
and that (x, y) is the only edge shared by these two shortest paths.

By planarity, the union of these two paths (modulo the edge (x, y)) is a path that splits the
graph in two faces, one containing r1, . . . r⌊ |f|−1

2 ⌋−1
, and the other containing r⌊ |f|−1

2 ⌋+1
, . . . , r|f |−1.

Assuming that (x, y) lies in the second face, notice that a shortest path from anywhere in the
first face to y intersects either P or P ′ by Jordan’s Curve Theorem; it is straightforward to verify
that it thus includes (x, y), by properties of shortest paths. Similarly if (x, y) lies in the first
face.

For a query (ri, u), we find the recursive call where we computed the shortest path tree from
ri, and retrieve the distance from ri to the supervertex U containing u. By the preprocessing,
each supervertex corresponds to a contracted rooted tree. Then we move to the parent recursive
call and retrieve the distance from the root of U to the supervertex U ′ containing u, and so
on until we reach the initial call. As the initial call refers to the input graph, the supervertex
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r⌊ |f|−1
2 ⌋

r|f |−1

r0

r1 . . .

. . .

x

y

Figure 4.1: Both the shortest r0 − y and the shortest r⌊ |f|−1
2 ⌋ − y paths use edge (x, y). We

contract (x, y) when recursing on the top-half, as (x, y) is contained in the bottom half. That
is because the shortest path from any vertex in the top-half (e.g. r1) to y intersects either the
r0 − y or the r⌊ |f|−1

2 ⌋ − y shortest path, and thus contains (x, y).

containing u is the vertex u itself. It is thus straightforward to verify that adding these distances
gives the distance from ri to u in O(log |f |) time.

4.5 Further research directions
The solution of Klein [Kle05] was later extended to work on surface-embedded graphs of genus
g with an extra factor g in the preprocessing time and space [CCE13]. It would be interesting
to see if such an extension is possible with the current approach as well.

Furthermore, it is possible that under some assumptions on the input (either bounded weights
or further structural assumptions), there exist asymptotically improved solutions.

Finally, our approach replaced the log n factor in Klein’s [Kle05] solution with a log |f | factor.
An obvious future direction would be to find applications where MSSP can be used as a subroutine
and indeed the size of f is subpolynomial in n, so that they benefit from our approach.
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Chapter 5

Longest Common Subsequence on
Weighted Sequences

In this chapter we present the paper “Longest Common Subsequence on Weighted Sequences”,
which received the Best Paper Award at CPM ’20. We start with a short introduction of the
problem and previous related work, and then discuss the results of the paper. We conclude with
addressing further research directions and open problems.

5.1 Introduction
Weighted Sequences are generalizations of classical strings, where in each position we have a
probability distribution over some alphabet Σ, instead of a single character from Σ. We say that
the probability of σ ∈ Σ appearing in position i of a Weighted Sequence X is pX(σ, i). For any
i, it holds that pX(σ, i) ≥ 0 for all σ ∈ Σ and

∑
σ∈Σ pX(σ, i) = 1. The realized character in

position i is independent from the realized characters in all other positions.
In molecular biology, there is an inherent uncertainty related with strategies for obtaining

chromosome sequences (e.g. whole-genome shotgun strategies [Mye00, Ven02]). Representing
chromosome sequences obtained by such strategies as a classical string disregards information
and oversimplifies the data. This is what motivates the introduction of Weighted Sequences, as
they better capture the obtained information.

In the Weighted Longest Common Subsequence problem (WLCS), we are given two Weighted
Sequences X,Y and two cut-off probabilities αX , αY > 0. The goal is to provide a maxi-
mum length string s = (σ1, σ2, . . . , σ|s|) such that there exists a strictly increasing sequence
i1, i2, . . . , i|s| with

∏|s|
k=1 pX(σk, ik) ≥ αX , and similarly a strictly increasing sequence j1, j2, . . . , j|s|

with
∏|s|

k=1 pY (σk, jk) ≥ αY . Intuitively, we ask for a string that has a high probability of ap-
pearing in both Weighted Sequences. It is straightforward to verify that when X,Y are classical
strings (in each position one character has weight 1 and the others 0), WLCS coincides with the
classical Longest Common Subsequence problem, irrespective of the values of aX , aY .

5.2 Previous work
Weighted sequences have been theoretically studied in many different contexts, such as weighted
suffix trees [IMP+04], Crochemore’s partitioning [BIP14, BP18, CIM+06], the Karp-Miller-Rabin
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algorithm [CIM+06], approximate and gapped pattern matching [AIKP06, ZGI10a, RS20], online
pattern matching [CIPR19], weighted indexing [ACI+08, BKL+20], swapped matching [ZGI04],
the all-covers and all-seeds problem [ZGFI10, ZGI10b], extracting motifs [IPT+04], and the
weighted shortest common supersequence problem [AGS11, CKP+19]. Due to their applica-
tions, researchers have also provided more practical results, even without theoretical guarantees
[AIMP09, IMP12].

Concerning WLCS, it was introduced by Amir, Gotthilf and Shalom [AGS10]. In this paper,
the authors extend the notion of LCS in strings to the case of Weighted Sequences. They
introduce two different formulations, one being the WLCS we defined, and one being an easier
version for which they provide a polynomial time algorithm. Unfortunately, the applications of
the second formulation are much more limited. They also hint on the NP-Hardness of WLCS
by using a Turing reduction to prove the hardness of a closely related problem that replaces the
products in the definition of WLCS with sums. Furthermore, their hardness result only works
for unbounded alphabets. Finally, they provide a |Σ| approximation algorithm.

Later, Cygan et al. [CKR+16] strengthen the hardness evidence by using a Karp reduction
that works even for alphabets of size 2 (notice that for alphabets of size 1 the problem is trivial)
on the closely related problem that replaces products with sums. They also show that, assuming
the NP-Hardness of WLCS, no FPTAS is possible unless P=NP. On the positive side, they
provide a PTAS for WLCS, and a more practical 2 approximation algorithm. Finally, they show
that it is enough to assume αX = αY in the definition of WLCS, by implicitly assuming exact
computations of roots and logarithms are possible.

Charalampopoulos et al. [CKP+19] proved that, unless P=NP, WLCS cannot be solved in
O(nf(a)) time, for any function f(a), where a is the minimum of the cut-off probabilities. We
note that this result concerns exact solutions rather than approximations.

Finally, the reporting version of WLCS has been considered from a practical point of view in
[BP18].

5.3 Our contribution
In our work, we essentially close the gap between upper and lower bounds for WLCS by improving
both.

The first question we settle is the actual hardness of WLCS. We show that the problem is
NP-Hard for all alphabet sizes other than the trivial |Σ| = 1 where no uncertainty is involved
and thus the answer is simply the length of the shorter Weighted Sequence. Together with our
NP-Hardness, previous results imply that there exists a PTAS but no FPTAS (unless P=NP)
for WLCS.

Based on the above, the most natural open question left was the existence of an EPTAS. We
show that the problem behaves differently depending on the alphabet size. In the natural case
of bounded alphabets (e.g. when studying DNA sequences we have |Σ| = 4) we design the first
EPTAS for WLCS, which is also an improved PTAS for the case of unbounded alphabets. In
the case of unbounded alphabets we show that WLCS is W[1]-Hard, meaning no EPTAS exists
unless FPT=W[1].

In the latter case we even provide a lower bound on the running time of any PTAS, assuming
the Exponential Time Hypothesis. This lower bound shows that the dependency of our PTAS
in ϵ is in fact optimal, up to constant factors.

Finally, we reprove that assuming the cut-off probabilities αX , αY to be equal is sufficient.
Unlike the result of Cygan et al., we do not need to assume exact computations of roots and
logarithms.
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Table 5.1 summarizes the above discussion. Table 5.2 summarizes our results depending on
the alphabet-size.

New ideas There are two main areas on which we made progress, namely proving the NP-
Hardness of WLCS, and studying the existence of an EPTAS.

Concerning the existence of an EPTAS, our most crucial observation is the fact that the
problem behaves differently in the two natural cases of bounded and unbounded alphabets.
This distinction is crucial because, on the one hand, no EPTAS could be designed as none
exists for unbounded alphabets. On the other hand, proving that no EPTAS exists would be
very challenging, as the existing techniques were working even with bounded alphabet sizes, for
which an EPTAS in fact exists. Therefore, without significantly new ideas, modifying existing
reductions would be futile.

Concerning the NP-Hardness of WLCS, previous work considered a closely related problem,
replacing products with sums in the definition of WLCS. In fact this is not unique to WLCS, but
rather a paradigm known as the Log-Probability model, often used when studying the hardness
of problems on Weighted Sequences. The underlying assumption is that the difference between
sums and products is just a technicality. It is then natural to attempt a reduction from the
log-probability version to the original problem. To the best of our knowledge, no such general
reduction is known and the straightforward ones assume exact computations with reals. In our
work, we show how to work directly with products, circumventing the need to go through the
log-probability version of the problem. This same set of techniques allowed us to reprove the
result of [CKR+16] related to the cut-off probabilities without assuming exact computations with
reals.

Table 5.1: Results on WLCS.

Amir et al. Cygan et al. Our results

NP-Hardness of WLCS

Hinted, by NP-Hardness of
Log-probability version
(Turing reduction -
only for unbounded alphabets)

Hinted, by NP-Hardness of
Log-probability version
(Karp reduction -
for alphabets of size 2)

Proved
(Karp Reduction -
for alphabets of size 2)

Approximation Algorithms 1
Σ -Approximation PTAS

EPTAS for bounded
alphabets,
Improved PTAS for
unbounded

Proof that no EPTAS exists
for unbounded alphabets No No Yes

Lower bound on any PTAS No No
Matching the
upper bound,
under ETH

Reduction to a restricted
class of instances No Yes, by assuming exact

computations of logarithms
Yes, without any
extra assumptions

5.4 Further research directions
To the best of our knowledge, this is the only work related to Weighted Sequences that drops the
Log-Probability Model. It would be very interesting to design a general framework for proving
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Table 5.2: Results depending on the Alphabet Size

Alphabet Size Previous Results Our results
1 Trivial Trivial
Constant Size No FPTAS possible Achieved EPTAS

Depending on the input Achieved PTAS
No EPTAS possible,
Improved PTAS,
Matching Lower Bound

NP-Hardness of problems on Weighted Sequences without resorting to the Log-Probability Model.
The understanding we gained by this work hints that non-trivial problems immediately become
hard due to the very nature of Weighted Sequences (at least if the alphabet size is large). Given
the techniques we used in our work, we believe it is possible to capture this understanding
in a clear framework where, assuming a problem satisfies certain simple properties, one can
immediately claim NP-Hardness.

Concerning WLCS, most natural questions have been answered by this work. An open
problem is the exact classification of the complexity of WLCS in the W[]-Hierarchy.
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Fitting Distances by Tree Metrics Minimizing the Total Error

within a Constant Factor

Vincent Cohen-Addad∗ Debarati Das† Evangelos Kipouridis†‡ Nikos Parotsidis∗

Mikkel Thorup†

Abstract
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→ R>0 by a tree metric. We want a tree T with positive edge weights and includ-

ing S among the vertices so that their distances in T match those in D. A nice application is in
evolutionary biology where the tree T aims to approximate the branching process leading to the
observed distances in D [Cavalli-Sforza and Edwards 1967]. We consider the total error, that is
the sum of distance errors over all pairs of points. We present a deterministic polynomial time
algorithm minimizing the total error within a constant factor. We can do this both for general
trees, and for the special case of ultrametrics with a root having the same distance to all vertices
in S.

The problems are APX-hard, so a constant factor is the best we can hope for in polynomial
time. The best previous approximation factor was O((log n)(log log n)) by Ailon and Charikar
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1 Introduction

Taxonomy or hierarchical classification of species goes back at least to discussions between Aristotle
and his teacher Plato1 (∼350BC) while modern taxonomy is often attributed to Linnaeus2 (∼1750).
The discussions of evolution in the nineteenth century, clarified the notion of evolutionary trees,
or phylogenies, and the notion that species were close due to a common past ancestor. Such
evolutionary trees are seen in the works of Hitchcock3 (1840) and Darwin4 (1859). Viewing the
descendants of each node as a class, the evolutionary tree induces a hierarchical classification.

In the 1960s came the interest in computing evolutionary trees based on present data, the so-
called numerical taxonomy problem [11, 49, 50]. Our focus is on the following simple model by
Cavalli-Sforza and Edwards from 1967 [11]. In an evolutionary tree, let the edge between the child
and its parent be weighted by the evolutionary distance between them. Then the evolutionary
distance between any two species is the sum of weights on the unique simple path between them.
We note that the selection of the root plays no role for the distances. What we are saying is that
any tree with edge weights, induces distances between its nodes; a so-called tree metric assuming
that all weights are positive.

We now have the converse reconstruction problem of numerical taxonomy [11, 49, 50]: given a
set S of species with measured distances between them, find a tree metric matching those observed
distances on S. Thus we are looking for an edge-weighted tree T which includes S among its nodes
with the right distances between them. Importantly, T may have nodes not in S representing
ancestors explaining proximity between different species. The better the tree metric T matches the
measured distances on S, the better the tree T explains these measured distances.

Other applications This very basic reconstruction problem also arises in various other contexts.
First, concerning the evolutionary model, it may be considered too simplistic to just add up dis-
tances along the paths in the tree. Some changes from parent to child could be reverted for a
grandchild. Biologists [12, 34] have suggested stochastic models for probabilistic changes that also
have a chance of being reverted further down. However, Farach and Kannan [32] have shown that
applying logarithms appropriately, we can convert estimated distances into some other distances
for which we find a matching tree metric that we can then convert back into a maximum likelihood
stochastic tree. The basic point is that finding tree metrics can be used as powerful tool to invert
evolution even in cases where tree metric model does not apply directly.

Obviously, the numerical taxonomy problem is equally relevant to other historical sciences with
an evolutionary branching process leading to evolutionary distances, e.g., historical linguistics.

More generally, if we can approximate distances with a tree metric, then the tree of this metric
provides a very compact and convenient representation that is much easier to navigate than a general
distance function. Picking any root, the tree induces a distance based hierarchical classification,
and referring to the discussions between Plato and Aristotle’s, humans have been interested in such
hierarchical classifications since ancient time.

It is not just humans but also computers that understand trees and tree metrics much better
than general metrics. Many questions that are NP-hard to answer in general can be answered very

1https://iep.utm.edu/classifi/, Internet Encyclopedia of Philosophy
2https://britannica.com/science/taxonomy/The-Linnaean-system
3https://en.wikipedia.org/wiki/Edward Hitchcock
4https://en.wikipedia.org/wiki/On the Origin of Species
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efficiently based on trees (see, e.g., Chapter 10.2 “Solving NP-Hard Problems on Trees” in the text
book [41]).

Computing “good” tree representations is nowadays also a major tool to learn from data. In
this context, we are sometimes interested in a special kind of tree metrics, called ultrametrics,
defined by rooted trees whose sets of leaves is S and where the leaf-to-root distance is the same
for all points in S. Equivalently, an ultrametric is a metric so that for any three points i, j, k, the
distance from i to j is no bigger than the maximum of the distance from i to j and the distance
from j to k 5.

An ultrametric can be seen as modeling evolution that is linear over time. This may be not
the case in biology where the speed of evolution depends on the local evolutionary pressure for
example. However, ultrametrics are key objects in machine learning and data analysis, see e.g.:
[10], and there are various algorithms for embedding arbitrary metrics into ultrametrics such as the
popular “linkage” algorithms (single, complete or average linkage), see also [24, 45].

1.1 Tree fitting (Numerical Taxonomy Problem)

Typically our measured distances do not have an exact fit with any tree metric. We then have the
following generic optimization problem for any Lp-norm:

Problem: Lp-fitting tree (ultra) metrics

Input: A set S with a distance function D :
(
S
2

)
→ R>0. 6

Desired Output: A tree metric (or ultrametric) T that spans S and fits D in the sense of
minimizing the Lp-norm

‖T −D‖p =




∑

{i,j}∈(S2)

|distT (i, j)−D(i, j)|p



1/p

. (1)

Cavalli-Sforza and Edwards [11] introduced this numerical taxonomy problem for both tree and
ultrametrics in the L2-norm in 1967. Farris suggested using L1-norm in 1972 [34, p. 662].

1.2 Our result

In this paper we focus on the L1-norm, that is, the total sum of errors. The problem is APX-hard,
both for tree metrics and ultrametrics (see Section 9 and also [3]), so a constant approximation
factor is the best we can hope for in polynomial time. The best previous approximation factor for
both tree metrics and ultrametrics was O((log n)(log logn)) by Ailon and Charikar [3].

In this paper we present a deterministic polynomial time constant factor approximation both
for tree metrics and for ultrametrics, that is, in both cases, we can find a tree T minimizing the
L1-norm within a constant factor of the best possible.

Thus, we will prove the following theorem.

Theorem 1. The L1-fitting tree metrics problem can be solved in deterministic polynomial time
within a constant approximation factor. The same holds for the L1-fitting ultrametrics problem.

5https://en.wikipedia.org/wiki/Ultrametric space.
6
(
S
k

)
denotes all subsets of S of size k.
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1.3 History of Lp tree fitting

Since Cavalli-Sforza and Edwards introduced the tree fitting problem, the problem has collected an
extensive literature. In 1977 [54], it was shown that if there is a tree metric coinciding exactly with
D, it is unique and it can be found in time linear in the input size, i.e., O(|S|2) time. The same
then also holds trivially for ultrametrics. Unfortunately there is typically no tree metric coinciding
exactly with D, and in 1987 [27] it was shown that for L1 and L2 the numerical taxonomy problem
is NP-hard, both in the tree metric and the ultrametric cases. The problems are in fact APX-hard
(see Section 9), which rules out the possibility of a polynomial-time approximation scheme. Thus,
a constant factor, like ours for L1, is the best one can hope for from a complexity perspective for
these problems.

For the L∞ numerical taxonomy problem, there was much more progress. In 1993 [33] it was
shown that for the ultrametric case an optimal solution can be found in time proportional to the
number of input distance pairs (i.e.: the number of entries in S). More recently, it was shown
that when the points are embedded into Rd and the distances are given by the pairwise Euclidean
distances, the problem can be approximated in subquadratic time [25, 22]. For the general trees
case (still in the L∞-norm objective), [2] gave an O(|S|2) algorithm that produces a constant factor
approximation and proved that the problem is APX-hard (unlike the ultrametric case).

The technical result from [2] was a general reduction from general tree metrics to ultrametrics.
It modifies the input distance matrix and asks for fitting this new input with an ultrametric that
can later be converted to a tree metric for the original distance matrix. The result states that for
any p, if we can minimize the restricted ultrametric Lp error within a factor α in polynomial-time,
then there is a polynomial-time algorithm that minimizes the tree metric Lp error within a factor
3α. The reduction from [2] imposes a certain restriction on the ultrametric, but the restriction is not
problematic and in Section 8, we will even argue that the restriction can be completely eliminated
with a slightly modified reduction. With n species, the reduction from tree metrics to ultrametrics
can be performed in time O(n2). Applying this to the optimal ultrametric algorithm from [33]
for the L∞-norm objective yielded a factor 3 for general metrics for the L∞-norm objective. The
generic impact is that for any Lp, later algorithms only had to focus on the ultrametric case to
immediately get results for the often more important tree metrics case, up to losing a factor 3
in the approximation guarantee. Indeed, the technical result of this paper is a constant factor
approximation for ultrametric. Thus, when it comes to approximation factors, we have

TreeMetric ≤ 3 ·UltraMetric

For Lp norms with constant p, the developments have been much slower. Ma et al. [43]
considered the problem of finding the best Lp fit by an ultrametric where distances in the ultrametric
are no smaller than the input distances. For this problem, they obtained an O(n1/p) approximation.

Later, Dhamdhere [28] considered the problem of finding a line metric to minimize additive
distortion from the given data (measured by the L1 norm) and obtained an O(log n) approximation.
In fact, his motivation for considering this problem was to develop techniques that might be useful
for finding the closest tree metric with distance measured by the L1 norm. Harb, Kannan and
McGregor [39] developed a factor O(min{n, k log n}1/p) approximation for the closest ultrametric
under the Lp norm where k is the number of distinct distances in the input7.

7The authors erroneously claim that they get the same approximation for the closest tree metric problem. However,
the known reduction may create ω(k) distinct distances.
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The best bounds known for the ultrametric variant of the problem are due to Ailon and Charikar
[3]. They first focus on ultrametrics in L1 and show that if the distance matrix has only k distinct
distances, then it is possible to approximate the L1 error within a factor k+2. Next they obtain an
LP-based O((log n)(log logn)) approximation for arbitrary distances matrices. Finally they sketch
how it can be generalized to an O(((log n)(log logn))1/p) approximation of the Lp error for any
p. Using the reduction from [2], they also get an O(((log n)(log logn))1/p) approximation for tree
metrics under the Lp-norm objective. The O(((log n)(log log n))1/p) approximation comes from an
O((log n)(log logn)) approximation of the p’th moment Fp:

‖T −D‖pp =




∑

{i,j}∈(S2)

|distT (i, j)−D(i, j)|p

 . (2)

Technically, Ailon and Charikar [3] present a simple LP relaxation for L1 ultrametric fitting—an LP
that will also be used in our paper. They get their O((log n)(log logn)) approximation using an LP
rounding akin to the classic O(log n) rounding of Leighton and Rao for multicut [42]. The challenge
is to generalize the approach to deal with the hierarchical issues associated with ultrametric and
show that this can be done paying only an extra factor O(log log n) in the approximation factor.
Next they show that their LP formulation and rounding is general enough to handle different
variants, including other Lp norms as mentioned above, but also they can handle the weighted
case, where for each pair of species i, j, the error contribution to the overall error is multiplied
by a value wij . However, this weighted problem captures the multicut problem (and the weighted
minimization correlation clustering problem) [3]. Since the multicut cannot be approximated within
a constant factor assuming the unique games conjecture [19] and the best known approximation
bound remains O(log n), it is beyond reach of current techniques to do much better in these more
general settings.

Ailon and Charikar [3] conclude that “Determining whether an O(1) approximation can be
obtained is a fascinating question. The LP formulation used in our [their] work could eventually
lead to such a result”. For their main LP formulation for the (unweighted) L1 ultrametric fitting,the
integrality gap was only known to be somewhere between 2 and O((log n)(log log n)). To break the
log n-barrier we must come up with a radically different way of rounding this LP and free ourselves
from the multicut-inspired approach.

For L1 ultrametric fitting, we give the first constant factor approximation, and we show this can
be obtained by rounding the LP proposed by Ailon and Charikar, thus demonstrating a constant
integrality gap for their LP. Our solution breaks the log n barrier using the special combinatorial
structure of the L1 problem.

Stepping a bit back, having different solutions for different norms should not come as a surprise.
As an analogue, take the generic problem of placing k facilities in such a way that each of n cities is
close to the nearest facility. Minimizing the vector of distances in the L1 norm is called the k-median
problem. In the L2 norm it is called the k-means problem, and in the L∞-norm is called the k-center
problems. Indeed, while the complexity of the k-center problem has been settled in the mid-1980s
thanks to Gonzalez’ algorithm [37], it has remained a major open problem for the next 15 years
to obtain constant factor approximation for the k-median and the k-means problems. Similarly,
our understanding of the k-means problems (L2-objective) remains poorer than our understanding
of the k-median problem, and the problem is in fact provably harder (no better than 1 + 8/e-
approximation algorithm [38] while k-median can be approximated within a factor 2.675 at the
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Norm L1 Lp, p <∞ L∞
Treemetric Θ(1) O(((log n)(log log n))1/p) Θ(1)

Ultrametric Θ(1) O(((log n)(log log n))1/p) 1

Table 1: Tree fitting approximation factors.

moment [9]).
For our tree fitting problem, the L∞ norm has been understood since the 1990s, and our

result shows that the L1 norm admits a constant factor approximation algorithm. The current
status of affairs for tree and ultrametrics is summarized in Table 1. The status for Lp tree fitting
is that we have good constant factor approximation if we want to minimize the total error L1

or the maximal error L∞. For all other Lp norms, we only have the much weaker but general
O(((log n)(log log n))1/p) approximation from [3]. In particular, we do not know if anything better
is possible with L2. The difference is so big that even if we are in a situation where we would
normally prefer an L2 approximation, our much better approximation guarantee with L1 might be
preferable.

1.4 Other related work

Computational Biology. Researchers have also studied reconstruction of phylogenies under
stochastic models of evolution (see Farach and Kannan [32] or Mossel et al. [46] and the references
therein, see also Henzinger et al. [40]).

Finally, related to our hierarchical correlation clustering problem is the hierarchical clustering
problem introduced by Dasgupta [26] where the goal is, given a similarity matrix, to build a
hierarchical clustering tree where the more similar two points are, the lower in the tree they are
separated (formally, a pair (u, v) induces a cost of similarity(u, v) times the size of the minimal
subtree containing both u and v, the goal is to minimize the sum of the costs of the pairs). This has
received a lot of attention in the last few years ([5, 14, 15, 16, 18, 23, 24, 44, 47], see also [1, 6, 13, 21]),
but differs from our settings since the resulting tree may not induce a metric space.

Metric Embeddings. There is a large body of work of metric embedding problems. For example,
the metric violation distance problem asks to embed an arbitrary distance matrix into a metric
space while minimizing the L0-objective (i.e.: minimizing the number of distances that are not
preserved in the metric space). The problem is considerably harder and is only known to admit an
O(OPT1/3)-approximation algorithm [30, 31, 35] while no better than a 2 hardness of approximation
is known. More practical results on this line of work includes [51] and [36]. Sidiropoulos et al [48]
also considered the problem of embedding into metric, ultrametric, etc. while minimizing the total
number of outlier points.

There is also a rich literature on metric embedding problems where the measure of interest is
the multiplicative distortion, and the goal of the problem is to approximate the absolute distortion
of the metric space (as opposed to approximating the optimal embedding of the metric space).
Several such problems have been studied in the context of approximating metric spaces via tree
metrics (e.g. [8, 29]). The objective of these works is very different since they are focused on the
absolute expected multiplicative distortion over all input metrics while we aim at approximating
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the optimal expected additive distortion for each individual input metric.
While these techniques have been very successful for designing approximation algorithms for

various problems in a variety of contexts, they are not aimed at numerical taxonomy. Their goal
is to do something for general metrics. However, for our tree-fitting problem, the idea is that
the ground-truth is a tree, e.g., a phylogeny, and that the distances measured, despite noise and
imperfection of the model, are close to the metric of the true tree. To recover an approximation
to the true tree, we therefore seek a tree that compares well against the best possible fit of a tree
metric.

1.5 Techniques

We will now discuss the main idea of our algorithm. Our solution will move through several
combinatorial problems that code different aspects of the L1-fitting of ultrametrics, but which do
not generalize nicely to other norms.

Our result follows from a sequence of constant-factor-approximation reductions between prob-
lems. To achieve our final goal, we introduce several new problems that have a key role in the
sequence of reductions. Some of the reductions and approximation bounds have already been ex-
tensively studied (e.g.: Correlation Clustering). A roadmap of this sequence of results is given in
Figure 1.

1.5.1 Correlation Clustering

Our algorithms will use a subroutine for what is known as the unweighted minimizing-disagreements
correlation clustering problem on complete graphs [7]. We simply refer to this problem as Correla-
tion Clustering throughout the paper.

First, for any family P of disjoint subsets of S, let

E(P ) =
⋃

T∈P

(
T

2

)

Thus E(P ) represents the edge sets over an isolated clique over each set T in P . Often P will be a
partition of S, that is,

⋃
P = S.

The correlation clustering takes as input an edge set E ⊆
(
S
2

)
and seeks a partition P minimizing

|E∆E(P )|,

where ∆ denotes symmetric difference. It is well-known that correlation clustering is equivalent to
ultrametric fitting with two distances (see, e.g., [39]).

A randomized polynomial time 2.06 + ε factor approximation from [20] (see also [4]) and a
2.5 deterministic approximation algorithm [52] are known. We shall use this as a subroutine with
approximation factor

CorrClust = O(1) (D) from Figure 1

We note that Ailon and Charikar, who presented the previous best O((log n)(log log n)) approx-
imation for tree metrics and ultrametrics at FOCS’05 [3] had presented a 2.5 approximation for
correlation clustering at the preceding STOC’05 with Newman [4]. In fact, inspired by this con-
nection they proposed in [3] a pivot-based (M + 2)-approximation algorithm for the L1 ultrametric
problem where M is the number of distinct input distances.
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Problem Introduced in

TreeMetric Beginning of Section 1

UltraMetric Beginning of Section 1

Correlation Clustering (CorrClust) Section 1.5.1

Hierarchical Correlation Clustering (HierCorrClust) Section 1.5.2

Hierarchical Cluster Agreement (HierClustAgree) Section 1.5.3

TreeMetric ≤ (3 + o(1)) ·UltraMetric (A)

UltraMetric ≤ HierCorrClust (B)

HierCorrClust < (CorrClust + 1)(HierClustAgree + 1) (C)

CorrClust = O(1) (D)

HierClustAgree = O(1) (E)

Approximation factors. Abbreviated problem names used as approximation factors.

1: procedure TreeMetric(S,D) . See Section 8
2: Reduction to UltraMetric based on [2]

3:

4: procedure UltraMetric(S,D) . See Section 7
5: Reduction to HierCorrClust based on [3, 39]

6:

7: procedure HierCorrClust(S,E(∗), δ(∗)) . NEW. See Section 3
8: for t ∈ [`] do Q(t) ← CorrClust(E(t))
9: return HierClustAgree(S,Q(∗), δ(∗))

10:

11: procedure CorrClust(S,E) . See Section 1.5.1
12: Use Algorithm from [7]

13:

14: procedure HierClustAgree(S,Q(∗), δ(∗)) . NEW. See Section 4
15: x(∗) ← Solve(LP-relaxation(S,Q(∗), δ(∗)))
16: L(∗) ← LP-Cleaning(S,Q(∗), x(∗))
17: return Derive-Hierarchy(S,L(∗))

Figure 1: Roadmap leading to our result for L1-fitting tree metrics.
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1.5.2 Hierarchical correlation clustering

We are going to work with a generalization of the problem of L1-fitting ultrametric which is implicit
in previous work [3, 39], but where we will exploit the generality in new interesting ways.

Problem Hierarchical Correlation Clustering.
Input The input is ` weights δ(1), . . . , δ(`) ∈ R>0 and ` edge sets E(1), . . . , E(`) ⊆

(
S
2

)
.

Desired output ` partitions P (1), . . . , P (`) of S that are hierarchical in the sense that P (t) subdi-
vides P (t+1) and such that we minimize

∑̀

t=1

δ(t)|E(t) ∆ E(P (t))| (3)

Thus we are having a combination of ` correlation clustering problems where we want the output
partitions to form a hierarchy, and where the objective is to minimize a weighted sum of the costs
for each level problem.

We shall review the reduction from L1-fitting of ultrametrics to hierarchical correlation cluster-
ing in Section 7. The instances we get from ultrametrics will always satisfy E(1) ⊆ · · · ⊆ E(`), but
as we shall see shortly, our new algorithms will reduce to instances where this is not the case, even
if the original input is from an ultrametric.

1.5.3 Hierarchical cluster agreement

We will be particularly interested in the following special case of Hierarchical Correlation Clustering.
Problem Hierarchical Cluster Agreement.
Input The input is ` weights δ(1), . . . , δ(`) ∈ R>0 and ` partitions Q(1), . . . Q(`) of S.
Desired output ` partitions P (1), . . . , P (`) of S that are hierarchical in the sense that P (t) subdi-
vides P (t+1) and such that we minimize

∑̀

t=1

δ(t)|E(Q(t)) ∆ E(P (t))| (4)

This is the special case of hierarchical correlation clustering, where the input edge set E(t) are
the disjoint clique edges from E(Q(t)). The challenge is that the input partitions may disagree in
the sense that Q(t) does not subdivide Q(t+1), or equivalently, E(Q(t)) 6⊆ E(Q(t+1)), so now we have
to find the best hierarchical agreement.

We are not aware of any previous work on hierarchical cluster agreement, but it plays a central
role in our hierarchical correlation clustering algorithm, outlined below.

1.6 High-level algorithm for hierarchical correlation clustering

Our main technical contribution in this paper is solving Hierarchical Correlation Clustering. Re-
ductions from Ultrametric to Hierarchical Correlation Clustering, and from general Tree Metric
to Ultrametric are already known from [3, 39] and [2] respectively. We discuss both reductions in
Sections 7 and 8. This includes removing some restrictions in the reduction from Tree Metrics to
Ultrametrics.

Focusing on Hierarchical Correlation Clustering, our input is the ` weights δ(1), . . . , δ(`) ∈ R>0

and ` edge sets E(1), . . . , E(`) ⊆
(
S
2

)
.
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Step 1: Solve correlation clustering independently for each level The first step in our
solution is to solve the correlation clustering problem defined by E(t) for each level t = 1, . . . , `
independently, thus obtaining an intermediate partitioning Qt. As we mentioned in Section 1.5.1,
this can be done so that Qt minimizes |E(t)∆E(Qt)| within a constant factor.

Step 2: Solve hierarchical cluster agreement We now use the ` weights δ(1), . . . , δ(`) ∈ R>0

and ` partitions Q(1), . . . , Q(`) of S as input to the hierarchical cluster agreement problem, which we
solve using an LP very similar to the one Ailon and Charikar [3] used to solve general hierarchical
correlation clustering. However, when applied to the special case of hierarchical cluster agreement,
it allows a special simple LP rounding where the LP decides which sets from the input partitions
are important to the hierarchy, and which sets can be ignored. Having decided the important
sets, it turns out that a very simple combinatorial algorithm can generate the hierarchical output
partitions P (1), . . . , P (`) bottom-up. The result is a poly-time constant factor approximation for
hierarchical cluster agreement, that is

HierClustAgree = O(1)

The output partitions P (1), . . . , P (`) are also returned as output to the original hierarchical corre-
lation clustering problem.

We now provide a high level overview and the intuition behind the hierarchical cluster agreement
algorithm. The algorithm can be broadly divided into two parts.

LP cleaning. We start by optimally solving the LP based on the weights δ(1), . . . , δ(`) and
partitions Q(1), . . . , Q(`). For each level t ∈ {1, . . . , `}, we naturally think of the relevant LP
variables as distances, and call them LP distances. That is because a small value means that the
LP wants the corresponding species to be in the same part of the output partition at level t, and
vice versa, while the LP constraints also enforce the triangle inequality. The weights δ(1), . . . , δ(`)

impact the optimal LP variables, but will otherwise not be used in the rest of the algorithm.
Using the LP distances, we clean each set in every partition Q(t) independently. The objective

of this step (LP-Cleaning - Algorithm 2) is to keep only the sets whose species are very close to each
other and far away from the species not in the set. All other sets are disregarded. Even though this
is not a binary decision, it can be thought of as one, since the algorithm may only slightly modify
each surviving set. The property that we can clean each set independently to decide whether it is
important or not, without looking at any other sets makes this part of our algorithm quite simple.

Omitting exact thresholds for simplicity, the algorithm works as follows. We process each set
CI ∈ Q(t) by keeping only those species that are at very small LP distance from at least half of
the other species in CI and at large LP distance to almost all the species outside CI . Let us note
that by triangle inequality and the pigeonhole principle, all species left in a set are at relatively
small distance from each other. After this cleaning process, we only keep a set if at least 90% of
its species are still intact, and we completely disregard it otherwise. The LP cleaning algorithm
outputs the sequence L(∗) = (L(1), . . . , L(`)) where L(t) is the family of surviving cleaned sets from
Q(t).

Derive hierarchy. Taking L(∗) as input, in the next step the algorithm Derive-Hierarchy
(Algorithm 3) computes a hierarchical partition P (∗) = (P (1), . . . , P (`)) of S. This algorithm works
bottom-up while initializing an auxiliary bottom most level of the hierarchy with |S| sets where
each set is a singleton and corresponds to a species of S. Then the algorithm performs ` iterations
where at the t-th iteration it processes all the disjoint sets in L(t) and computes partition P (t) while
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ensuring that at the end of the iteration P (1), . . . , P (t) are hierarchical. An interesting feature of
our algorithm is that, once created, no further computation processing the upper levels can modify
the already created partitions. Next, we discuss how to compute P (t) given L(t) and all the lower
level sets in partitions P (1), . . . , P (t−1).

Consider a set CLP ∈ L(t). Now if for each lower level set C ′, either C ′ ∩CLP = ∅ or C ′ ⊆ CLP ,
then introducing CLP at level t does not violate the hierarchy property. Otherwise let C ′ be a lower
level set such that C ′ ∩ CLP 6= ∅ and C ′ 6⊆ CLP . Note that we already mentioned, once created,
C ′ is never modified while processing upper level sets. Thus, to ensure the hierarchy condition, the
algorithm can either extend CLP so that it completely covers C ′ or can discard the common part
from CLP .

In the process of modifying CLP (where we can add or discard some species from it), at any
point we define the core of CLP to be the part that comes from the initial set. Now to resolve
the conflict between CLP and C ′ we work as follows. If the core of CLP intersects the core of C ′

then we extend CLP so that C ′ becomes a subset of it. Omitting technical details, there are two
main ideas here: first, we ensure that the number of species in C ′ (resp. CLP ) that are not part
of its core is negligible with respect to the size of C ′ (resp. CLP ). Furthermore, since the cores
of CLP , C

′ have at least one common species, using triangular inequality we can claim that any
pair of species from the cores of C ′, CLP also have small LP distance; therefore, nearly all pairs of
species in CLP , C

′ have small LP distance, meaning that the extension of CLP is desirable (i.e. its
cost is within a constant factor from the LP cost while it ensures the hierarchy).

Here we want to emphasize the point that because of the LP-cleaning, we can ensure that for
any lower level set C ′ at level t there exists at most one set whose core has an intersection with the
core of C ′. We call this the hierarchy-friendly property of the LP cleaned sets. This property is
crucial for consistency, as it ensures that at level t there cannot exist more than one sets that are
allowed to contain C ′ as a subset.

In the other case, where the cores of CLP and C ′ do not intersect, the algorithm removes
CLP ∩ C ′ from CLP . The analysis of this part is more technical but follows the same arguments,
namely using the aforementioned properties of LP-cleaning along with triangle inequality.

After processing all the sets in L(t), the algorithm naturally combines these processed sets with
P (t−1) to generate P (t), thus ensuring that P (1), . . . , P (t) are hierarchical.

High-level analysis We will prove that the partitions P (1), . . . , P (`) solves the original hierar-
chical clustering problem within a constant factor.

Using triangle inequality, we are going to show that the switch in Step 1, from the input edge
sets E(1), . . . , E(`) to the partitions Q(1), . . . , Q(`) costs us no more than the approximation factor
of correlation clustering used to generate each partition. This then becomes a multiplicative factor
on our approximation factor for hierarchical cluster agreement, more specifically,

HierCorrClust < (CorrClust + 1)(HierClustAgree + 1)

We will even show that we can work with the LP from [3] for the original hierarchical correlation
clustering problem, and get a solution demonstrating a constant factor integrality gap.

1.7 Organization of the paper

In Section 2 we present the LP formulation and related definitions for Hierarchical Correlation Clus-
tering. In Section 3 we show how to reduce Hierarchical Correlation Clustering to Hierarchical Clus-
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ter Agreement. In Section 4 we present the algorithm for Hierarchical Cluster Agreement, and in
Section 5 we analyze it. In Section 6 we show that the LP formulation for Hierarchical Corre-
lation Clustering has constant integrality gap. In Section 7 we show how Lp-fitting ultrametrics
reduces to Hierarchical Correlation Clustering. In Section 8 we discuss the reduction from Lp-
fitting tree metrics to Lp-fitting ultrametrics. In Section 9 we prove APX-Hardness of L1-fitting
ultrametrics and L1-fitting tree metrics. We conclude in Section 10.

2 LP definitions for Hierarchical Correlation Clustering

In this section we present the IP/LP formulation of Hierarchical Correlation Clustering, implicit in
[3, 39]. In what follows we use [n] to denote the set {1, . . . , n}.

Definition 2 (IP/LP formulation of Hierarchical Correlation Clustering). Given is a set S, `
positive numbers δ(1), . . . , δ(`) and edge-sets E(1), . . . , E(`) ⊆

(
S
2

)
. The objective is:

min
∑̀

t=1

δ(t)


 ∑

{i,j}∈E(t)

x
(t)
i,j +

∑

{i,j}6∈E(t)

(1− x(t)
i,j )




subject to the constraints

x
(t)
i,j ≤ x

(t)
i,k + x

(t)
j,k ∀{i, j, k} ∈

(
S

3

)
, t ∈ [`] (5)

x
(t)
i,j ≥ x

(t+1)
i,j ∀{i, j} ∈

(
S

2

)
, t ∈ [`− 1] (6)

x
(t)
i,j ∈

{
{0, 1} if IP
[0, 1] if LP

∀{i, j} ∈
(
S

2

)
, t ∈ [`] (7)

Concerning the IP, the values x
(t)
i,j encode the hierarchical partitions, with x

(t)
i,j = 0 meaning

that i, j are in the same part of the partition at level t, and x
(t)
i,j = 1 meaning that they are not.

Inequality (5) ensures that the property of being in the same part of a partition is transitive.
Inequality (6) ensures that the partitions are hierarchical.

In the LP, where fractional values are allowed, x
(t)
i,j is said to be the LP-distance between i, j at

level t. If their LP-distance is small, one should think of it as the LP suggesting that i, j should be
in the same part of the output partition, while a large LP-distance suggests that they should not.
Notice that for any given level t, the LP-distances satisfy the triangle inequality, by (5).

We also note that the Correlation Clustering problem directly corresponds to the case where
` = δ1 = 1.

3 From Hierarchical Correlation Clustering to Hierarchical Clus-
ter Agreement Problem

Our main technical contribution is proving the following theorem.

Theorem 3. The Hierarchical Correlation Clustering problem can be solved in deterministic poly-
nomial time within a constant approximation factor.

11



In this section, we present a deterministic reduction from Hierarchical Correlation Clustering
to Hierarchical Cluster Agreement that guarantees:

HierCorrClust < (CorrClust + 1)(HierClustAgree + 1) (C) from Figure 1

In Sections 4 and 5 we present a deterministic polynomial time constant factor approximation
algorithm for Hierarchical Cluster Agreement; combined with a known deterministic polynomial
time constant factor approximation algorithm for Correlation Clustering [52], it completes the proof
of Theorem 3.

Assume that Correlation Clustering can be approximated within a factor α and that Hierarchical
Cluster Agreement can be approximated within a factor β (Section 4). We prove Inequality (C),
by providing an algorithm to approximate Hierarchical Correlation Clustering within a factor (α+
1)(β + 1)− 1.

Suppose we have a Hierarchical Correlation Clustering instance S, δ(1), . . . , δ(`), E(1), . . . , E(`).
Our algorithm first solves the Correlation Clustering instance S,E(t) to acquire partitionQ(t), for ev-
ery level t. Then, we solve the Hierarchical Cluster Agreement instance S, δ(1), . . . , δ(`), E(Q(1)), . . . ,
E(Q(`)) and obtain hierarchical partitions P (1), . . . , P (`).

The proof that the hierarchical partitions P (1), . . . , P (`) are a good approximation to the Hi-
erarchical Correlation Clustering instance follows from two observations. First, by definition, the
cost of Hierarchical Correlation Clustering is related to certain symmetric differences. Since the
cardinality of symmetric differences satisfy the triangle inequality, we can switch between the cost
of Hierarchical Correlation Clustering and Hierarchical Cluster Agreement under the same output,
with only an additive term related to |E(t)4E(Q(t))| and not related to the output. Second, by
definition of Q(t), the cardinality of the symmetric difference |E(t)4E(Q(t))| is minimized within a
factor α.

More formally, for this proof we need to define the following three concepts:

• For any t ∈ [`], OPT
(t)
CorrClust is an optimal solution to the Correlation Clustering instance at

level t, that is a partition minimizing

|E(t)4E(OPT
(t)
CorrClust)|

• OPTHierCorrClust = (OPT
(1)
HierCorrClust, . . . , OPT

(`)
HierCorrClust) is an optimal solution to the

Hierarchical Correlation Clustering instance, that is a sequence of hierarchical partitions
minimizing

∑̀

t=1

δ(t)|E(t)4E(OPT
(t)
HierCorrClust)|

• OPTHierClustAgree = (OPT
(1)
HierClustAgree, . . . , OPT

(`)
HierClustAgree) is an optimal solution to

the Hierarchical Cluster Agreement instance, that is a sequence of hierarchical partitions
minimizing

∑̀

t=1

δ(t)|E(Q(t))4E(OPT
(t)
HierClustAgree)|
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Notice, for any t, the difference between OPT
(t)
CorrClust and OPT

(t)
HierCorrClust. The first one opti-

mizes locally (per level), meaning that |E(t)4E(OPT
(t)
CorrClust)| ≤ |E(t)4E(OPT

(t)
HierCorrClust)|, and

therefore
∑`

t=1 δ
(t)|E(t)4E(OPT

(t)
CorrClust)| ≤

∑`
t=1 δ

(t)|E(t)4E(OPT
(t)
HierCorrClust)|. This does not

contradict the definition of OPTHierCorrClust, as the sequence OPT
(1)
CorrClust, . . . , OPT

(`)
CorrClust is

not a sequence of hierarchical partitions.
The cost of our solution is

∑̀

t=1

δ(t)|E(t)4E(P (t))| ≤
∑̀

t=1

δ(t)|E(t)4E(Q(t))|+
∑̀

t=1

δ(t)|E(Q(t))4E(P (t))| (8)

By definition of P (1), . . . , P (`), they minimize the second term of (8) within a factor β. There-

fore, the second term is upper bounded by β
∑`

t=1 δ
(t)|E(Q(t))4E(OPT

(t)
HierClustAgree)|, which, by

optimality of OPTHierClustAgree is upper bounded by β
∑`

t=1 δ
(t)|E(Q(t))4E(OPT

(t)
HierCorrClust)|.

Using the triangle inequality again, we further upper bound the second term by:

β
∑̀

t=1

δ(t)|E(Q(t))4E(t)|+ β
∑̀

t=1

δ(t)|E(t)4E(OPT
(t)
HierCorrClust)|

Therefore, we can rewrite (8) as:

∑̀

t=1

δ(t)|E(t)4E(P (t))| ≤ (β + 1)
∑̀

t=1

δ(t)|E(t)4E(Q(t))|+ β
∑̀

t=1

δ(t)|E(t)4E(OPT
(t)
HierCorrClust)|

Since Q(t) is obtained by solving Correlation Clustering at level t within a factor α, we get

∑̀

t=1

δ(t)|E(t)4E(Q(t))| ≤ α
∑̀

t=1

δ(t)|E(t)4E(OPT
(t)
CorrClust)|

By optimality of OPT
(t)
CorrClust, for each t ∈ [`], we have

∑̀

t=1

δ(t)|E(t)4E(OPT
(t)
CorrClust)| ≤

∑̀

t=1

δ(t)|E(t)4E(OPT
(t)
HierCorrClust)|

which proves that

∑̀

t=1

δ(t)|E(t)4E(P (t))| ≤ ((β + 1)α+ β)
∑̀

t=1

δ(t)|E(t)4E(OPT
(t)
HierCorrClust)|

= ((α+ 1)(β + 1)− 1)
∑̀

t=1

δ(t)|E(t)4E(OPT
(t)
HierCorrClust)|
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4 Constant approximation Algorithm for Hierarchical Cluster
Agreement

In this section we introduce our main algorithm, which consists of three parts: Solving the LP
formulation of the problem, the LP-Cleaning subroutine and the Derive-Hierarchy subroutine.

Informally, the LP-Cleaning subroutine uses the fractional solution of the LP relaxation of
Hierarchical Cluster Agreement to decide which of our input-sets are important and which are
not. The decision is not a binary one, because important sets are also cleaned, in the sense that
bad parts of them may be removed. However, at least a 0.9 fraction of them is left intact, while
unimportant sets are completely discarded.

The Derive-Hierarchy part then receives the cleaned input-sets by LP-Cleaning, and applies a
very simple combinatorial algorithm on them to compute the output.

We notice that the weights δ(∗) are only used for solving the LP. Moreover, the fractional LP-
solution is only used by LP-Cleaning to guide this “nearly-binary” decision for each input-set. The
rest of the algorithm is combinatorial and does not take the LP-solution into account.

4.1 LP Definitions for Hierarchical Cluster Agreement

The IP-formulation of Hierarchical Cluster Agreement is akin to the IP-formulation of Hierarchi-
cal Correlation Clustering. Namely, the constraints are exactly the same for both problems. The
only difference is in the objective function where we replace the general edge-sets E(1), . . . , E(`)

with the disjoint clique edges from E(Q(1)), . . . , E(Q(`)). Similarly for the LP-relaxation of Hierar-
chical Cluster Agreement. Here each component in Q(t) is called a level -t input cluster.

To simplify our discussion, we use x(∗) to denote a fractional solution to the LP-relaxation of

Hierarchical Cluster Agreement, that is a vector containing all x
(t)
i,j , {i, j} ∈

(
S
2

)
, t ∈ [`]. One can

think of x(∗) as the optimal fractional solution, but in principle it can be any solution.

We use x(t), for some particular t ∈ [`], to denote the vector containing all x
(t)
i,j , {i, j} ∈

(
S
2

)
.

As previously, we use the term LP distances to refer to the entries of x(∗), and notice that for
any particular t ∈ [l] the LP distances even satisfy the triangle inequality, by the LP constraints.

Given x(∗) we define B
(t)
<r(i) to be the ball of species with LP-distance less than r from i at level

t. More formally, B
(t)
<r(i) = {j ∈ S | x(t)

i,j < r}. Similarly, for a subset S′ of S we define the ball

B
(t)
<r(S

′) = {j ∈ S | ∃i ∈ S′ s.t. x
(t)
i,j < r}.

We also define the LP cost of species i, j at level t as

cost
(t)
i,j =

{
δ(t)x

(t)
i,j if {i, j} ∈ E(Q(t))

δ(t)(1− x(t)
i,j ) otherwise

as well as the LP cost of species in a set S′ ⊆ S at level t as

cost
(t)
S′ =

∑

{i,j}∈(S2)
i∈S′ or j∈S′

cost
(t)
i,j

and in case S′ only contains a single species i, we write cost
(t)
i instead of cost

(t)
{i}.

Then the LP cost at level t is denoted as cost(t) = cost
(t)
S .

Finally, the LP cost is simply cost(∗) =
∑`

t=1 cost
(t).
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4.2 Main Algorithm

The pseudocode for our main algorithm for Hierarchical Cluster Agreement is given in Algorithm 1.

Algorithm 1 Hierarchical Cluster AgreementAlgorithm

Input A set S, a sequence Q(∗) = (Q(1), · · · , Q(`)) of partitions of S, and weights
δ(∗) = (δ(1), · · · , δ(`))

Returns A sequence P (∗) = (P (1), · · · , P (`)) of hierarchical partitions of S

1: x(∗) ← Solve(LP-relaxation(S,Q(∗), δ(∗)))
2: L(∗) ← LP-Cleaning(S,Q(∗), x(∗))
3: return Derive-Hierarchy(S,L(∗))

Our LP relaxation has size polynomial in S, `, and the two subroutines also run in polynomial
time, as we show later. Therefore the whole algorithm runs in polynomial time.

4.3 LP cleaning Algorithm

In Algorithm 2 we provide the pseudocode of the LP Cleaning step of our algorithm.
Intuitively, the aim of this algorithm is to clean the input sets so that (ideally) all species

remaining in a set have small LP distances to each other, and large LP distances to species not in
the set.

Algorithm 2 LP-Cleaning

Input A set S, a sequence Q(∗) = (Q(1), · · · , Q(`)) of partitions of S,
and a fractional solution x(∗)

Returns A sequence L(∗) = (L(1), · · · , L(`)) of families of disjoint subsets of S

1: for t← 1, . . . , ` do
2: L(t) ← ∅
3: for CI ∈ Q(t) do

4: CLP ←
{
i ∈ CI

∣∣∣∣∣
|B(t)

<0.1(i) ∩ CI | > 1
2 |CI |,

|B(t)
<0.6(i) \ CI | ≤ 0.05|CI |

}

5: if |CLP | ≥ 0.9|CI | then
6: L(t) ← L(t) ∪ {CLP }
7: return L(∗) = (L(1), · · · , L(`))

Formally Algorithm 2 takes a sequence Q(∗) = (Q(1), . . . , Q(`)) of partitions of S and a fractional
solution x(∗) containing LP distances. It outputs a sequence of families of disjoint subsets of S,
L(∗) = (L(1), . . . , L(`)). Here each component of L(t) is called a level -t LP-cluster.

In the algorithm, for each input partition Q(t) we process every level-t input-cluster CI ∈ Q(t)

separately. For this we remove all the species in CI that do not have very small LP distance to
at least half the species in CI or that have small LP distance to many species not in CI . More
formally, we remove all the species in CI with LP distance less than 0.1 to at most half the species
in CI or with LP distance less than 0.6 to more than 0.05|CI | species not in CI .
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After the cleaning step we discard CI if less than 9/10 fraction of the species survive. Otherwise
we create an LP-cluster CLP containing the species in CI that survive. Next we add the level-t
LP-cluster CLP to L(t).

Out of several properties that we prove concerning the output of the LP-Cleaning, we briefly
mention the following one: The output sequence L(∗) is hierarchy-friendly in the sense that no
two LP-clusters at the same level t can be intersected by the same LP-cluster at level t′ < t. We
formally prove this in Lemma 7.

The LP-Cleaning subroutine trivially runs in time polynomial in S, `.

4.4 Derive-hierarchy Algorithm

In this section, we introduce Derive-Hierarchy (Algorithm 3). It takes as input a hierarchy-
friendly sequence L(∗) = (L(1), · · · , L(`)) of families of disjoint subsets of S and outputs a sequence
P (∗) = (P (1), · · · , P (`)) of hierarchical partitions of S. The execution of the algorithm can be seen,
via a graphical example, in Figure 2.

Algorithm 3 Derive-Hierarchy

Input A set S, and a hierarchy-friendly sequence L(∗) = (L(1), · · · , L(`))
of families of disjoint subsets of S

Returns A sequence P (∗) = (P (1), · · · , P (`)) of hierarchical partitions of S

1: Construct an empty forest F
2: for i ∈ S do
3: Create a singleton tree T with a node ui and add it to F
4: Set C(ui)← C+(ui)← {i}
5: for t← 1, . . . , l do
6: for CLP ∈ L(t) do
7: Create a node u and set C(u)← CLP

8: for all roots v ∈ F s.t. C(v) ∩ C(u) = ∅ do
9: C(u)← C(u) \ C+(v)

10: C+(u)← C(u)
11: for all roots v ∈ F s.t. C(v) ∩ C(u) 6= ∅ do
12: C+(u)← C+(u) ∪ C+(v)
13: Make v a child of u in F
14: Set P (t) to contain the extended-clusters C+(v) of all roots v ∈ F
15: return P (∗) = (P (1), · · · , P (`))

The algorithm works bottom-up while performing ` iterations for t = 1, . . . , `. In the process
it incrementally builds a forest F . Throughout the algorithm each non leaf node u in F can be
identified by an LP-cluster in L(∗). Moreover for each node u the algorithm maintains two sets
C(u) and C+(u) ⊆ S.

The algorithm starts by initializing F with |S| trees where each tree contains a single node ui
identified by a species i ∈ S. Also it initializes both sets C(ui), C

+(ui) with {i}. Next in iteration
t the algorithm processes the LP-clusters in L(t) and at the end of the iteration, the C+() sets
associated with the root nodes in F define the partition P (t). Precisely here, the C+() set of a root
node contains all the species descending from the respective root.
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Figure 2: Example of Derive-Hierarchy (Algorithm 3). Nodes 1, 2, 3, 4 (left) are the roots of the for-
est before inserting the new LP-cluster L(u) (dashed line). Each node is described by its extended-
cluster, with the shaded part being the core-cluster. Core-cluster of nodes 2 and 3 intersect L(u);
thus they become children of u and the extended-cluster of u covers the extended-clusters of 2, 3
(right). Notice that the core-cluster of u is reduced due to node 1.

In the t-th iteration, for each cluster CLP ∈ L(t) the algorithm adds a root node u to forest F
while initializing the set C(u) with CLP . Next for the root node u the algorithm decides on its
children by processing the pre-existing roots in the following way. For consistency first it detects
all the pre-existing root nodes v such that C(u) does not intersect C(v). Then it removes from
C(u) all the species that are descending from v; i.e. sets C(u) ← C(u) \ C+(v). Lastly it sets u
as a parent of all other pre-existing root nodes v such that C(u) intersects C(v). Also accordingly
it modifies the set of leaf nodes of the subtree rooted at u by setting C+(u) ← C+(u) ∪ C+(v).
Notice here that some of the root-nodes may correspond to sets from levels lower than t, in case
no parent was assigned to them.

At the end of iteration t the algorithm completes processing all the LP-clusters in L(1), . . . , L(t)

and constructs partitions P (1), . . . , P (t). At the end of the ` iterations it outputs the ` partitions
P (∗) = (P (1), . . . , P (`)).

The Derive-Hierarchy subroutine trivially runs in time polynomial in S, `.

5 Analysis of Hierarchical Cluster Agreement Algorithm

In this section, we proceed with our analysis. We first lay out some terminology, then provide
some results related to the LP Cleaning, then some structural results, and finally prove that our
algorithm is a constant factor approximation for Hierarchical Cluster Agreement.

5.1 Terminology

Notice that throughout the execution of the algorithm, F is an incrementally updated graph (that
is, no deletions occur). In fact it is always a forest, as we start with |S| isolated nodes and only
introduce new nodes as parents of roots of some of the existing trees. Moreover, this process implies
that the subtree rooted at any specific node is never modified.

From now on we use F to refer to the final instance of the incrementally updated forest. We
use F(u) to refer to the state of this incrementally updated forest after introducing u; therefore
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F(u) \ {u} denotes the state of the forest exactly before introducing node u. We naturally identify
the leaves of F with the species of S.

For any node u in the forest F , the Derive-Hierarchy algorithm defines C(u), which we call
the core-cluster of u, and C+(u), which we call the extended-cluster of u. Furthermore, notice
that each core-cluster C(u) is a subset of some LP-cluster CLP (Line 7 of Algorithm 3); we call
this the LP-cluster of u and denote it by L(u). Moreover, each LP-cluster L(u) is a subset of an
input-cluster CI (Line 3 of Algorithm 2); we call this the input-cluster of u and denote it by I(u).
These concepts are well defined for any new node u and never change throughout the algorithm.
We remind the reader that LP-Cleaning discards some of the input clusters, in the sense that they
have no corresponding LP-cluster, and therefore they do not match I(u), for any node u.

Directly from the algorithm we get that

C(u) ⊆ L(u) ⊆ I(u)

C(u) ⊆ C+(u)

To help with our discussion, we also define the following variables related to the Derive-Hierarchy
algorithm (Algorithm 3):

∆−(u) = L(u) \ C(u)

∆+(u) = C+(u) \ C(u)

For a node u ∈ F , we define its level t(u) to be the value of iteration t in Algorithm 3 when
internal node u was introduced, and 0 when u is a leaf node.

5.2 LP-Cleaning Results (Algorithm 2)

We start with some observations that are heavily used in proving structural results regarding the
core and the extended-clusters. These are in turn used for lower-bounding the LP cost.

The most important reason we are using the LP-Cleaning subroutine is so that any two species
belonging in the same LP-Cluster at level t have small LP-distance.

Lemma 4. Given a node u ∈ F and a species i in u’s LP-cluster L(u), it holds that the LP-distance

from i to any other species in L(u) is less than 0.2 for all levels t ≥ t(u), that is B
(t)
<0.2(i) ⊇ L(u).

Proof. It suffices to prove that x
(t)
i,j < 0.2 for all j ∈ L(u) only for level t = t(u), as the LP

constraints enforce x
(t+1)
i,j ≤ x(t)

i,j .

By pigeonhole principle, since both B
(t)
<0.1(i) ∩ I(u) and B

(t)
<0.1(j) ∩ I(u) have size more than

|I(u)|/2 (Line 4 of Algorithm 2), there exists a node k ∈ I(u) for which both x
(t)
i,k and x

(t)
j,k are less

than 0.1. Since the LP-distances in x(t) satisfy the triangle inequality, it follows that x
(t)
i,j < 0.2

(enforced by the LP constraints).

For the analysis, it is convenient that our relations involve the LP-clusters instead of the input-
clusters. Therefore, we rephrase Line 4 of Algorithm 2 in terms of LP-clusters, effectively proving
that few species outside of an LP-cluster L(u) have small LP-distances to L(u).

Lemma 5. For any node u ∈ F it holds that |B(t(u))
<0.4 (L(u))| ≤ (1 + 1

6)|L(u)|. In particular,

|B(t(u))
<0.4 (L(u)) \ L(u)| ≤ 1

6 |L(u)|.
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Proof. Let t = t(u). We claim that species close to some species in L(u) are close to all species in
L(u). Formally, we claim that for any i ∈ L(u)

B
(t)
<0.4(L(u)) ⊆ B(t)

<0.6(i)

Let j ∈ B(t)
<0.4(L(u)). We bound the LP-distance between i, j by finding an intermediate i′ that

is close to both and applying the triangle inequality forced by the LP constraints. By definition
of j, there exists a species i′ ∈ L(u) with LP-distance less than 0.4 from j. By Lemma 4, the

LP-distance between i and i′ is less than 0.2, and thus by triangle inequality x
(t)
i,j < 0.6.

Line 4 of Algorithm 2 gives that

|B(t)
<0.6(i) \ I(u)| ≤ 0.05|I(u)| =⇒ |B(t)

<0.6(i)| ≤ 0.05|I(u)|+ |I(u)|

Combining these two relations, and by |L(u)| ≥ 0.9|I(u)| (Line 5 of Algorithm 2):

|B(t)
<0.4(L(u))| ≤ |B(t)

<0.6(i)| ≤ (1 + 0.05)

0.9
|L(u)| = (1 +

1

6
)|L(u)|

The following lemma is just a convenient application of the triangle inequality of our LP, that
is heavily used in subsequent proofs. Informally, it states that, under certain mild conditions, the
LP-distance is small not only if i, j belong in the same LP-cluster (or core-cluster), but even if they
happen to be in different clusters that are both intersected by the same third cluster.

Lemma 6. Let u, v, w ∈ F be three arbitrary nodes. Assume that the LP-cluster of v intersects the
LP-clusters of u and w and tmax = max{t(u), t(v), t(w)}. Then for any i, j ∈ {L(u)∪L(v)∪L(w)}
their LP-distance at level tmax is less than 0.6, and B

(tmax)
<0.4 (L(u)) ⊇ L(u) ∪ L(v) ∪ L(w).

Proof. If both i, j are either in L(u) or L(v) or L(w) then the claim follows trivially from Lemma 4.
Otherwise we use triangle inequality twice, with species in the intersections of the clusters as
intermediates. More formally, let k ∈ L(u)∩L(v), k′ ∈ L(v)∩L(w). Lemma 4 implies three things:

(1) x
(tmax)
i,k < 0.2, for any i ∈ L(u) ∪ L(v)

(2) x
(tmax)
k,k′ < 0.2, as both k, k′ ∈ L(v)

(2) x
(tmax)
k′,j < 0.2, for any node j ∈ L(v) ∪ L(w)

Since the LP-distances x(tmax) respect the triangle inequality it holds that x
(tmax)
i,j < 0.6. The

claim about the ball of L(u) follows by taking the distance from k to j.

We are now ready to prove the hierarchy-friendly property of the output of LP-Cleaning, as we
informally claimed when introducing the algorithm. We claim that two LP-clusters of the same
level cannot be intersected by the same lower level LP-cluster.

Lemma 7. Given two nodes v, w ∈ F on the same level, there is no lower level node u such that
L(u) intersects both L(v) and L(w).

In particular, there is also no C(u) intersecting both L(v) and L(w).
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Proof. The intuition is that L(v), L(w) are close and thus Algorithm 2 would discard at least one
of them.

Without loss of generality, let |L(v)| ≥ |L(w)|. L(v), L(w) are disjoint as they are subsets of
different parts of the partition Q(t(v)), by Algorithm 2.

By Lemma 6 |B(t(w))
<0.4 (L(w))| ≥ |L(v)|+ |L(w)| ≥ 2|L(w)|, which contradicts Lemma 5.

We finally present a simple lower bound on the LP cost.

Lemma 8. Let CI ∈ Q(t) be an input-cluster at level t, and CLP be the respective LP-cluster from

Algorithm 2. Fix a species i ∈ CI \ CLP . Then the fractional LP cost cost
(t)
i = Ω(δ(t)|CI |).

Proof. There are two reasons for i to be in CI \ CLP , by Line 4 of Algorithm 2. Either half the
species in CI are at distance at least 0.1 from i, or more than 0.05|CI | species not in CI are at
distance at most 0.6 from i.

In the first case cost
(t)
i ≥ 0.1 · (1

2 |CI |)δ(t), and in the second case cost
(t)
i ≥ (1−0.6) ·0.05|CI |δ(t).

5.3 Derive-Hierarchy results (Algorithm 3)

In this section we present several structural results related to our algorithm.
We start with pointing out that our algorithm ends up with the same output, no matter the

order in which we process LP-clusters of the same level. This is due to the input sequence L(∗)

being hierarchy-friendly.

Remark 9. The output of Algorithm 3 is the same, irrespective of the order in which LP-clusters
of the same level are processed in Line 6.

Proof. For each level, fix any ordering in which LP-clusters of the same level are processed, and
run the algorithm. For any t ∈ [`], let Ft−1 be the state of the forest just before processing the first
node of level t. We show that for any level-t LP-cluster CLP with corresponding node u (that is
t(u) = t and L(u) = CLP ), no matter when it was actually processed due to the ordering we fixed,
the effect is the same as if it was the first level-t LP-cluster processed. More formally, let N(u) be
the set of children of u, and Ct−1(u), C+

t−1(u), Nt−1(u) be the core-cluster, the extended-cluster and
the set of children of u in the case where CLP was the first LP-cluster of level-t to be processed.
Then C(u) = Ct−1(u), C+(u) = C+

t−1(u), N(u) = Nt−1(u).
The main idea is that if a root v ∈ Ft−1 has a core-cluster intersecting L(u), then it is still a

root just before inserting u; else v would have another parent w of level t, meaning C(v) ⊆ L(v)
would also intersect C(w) ⊆ L(w) (Line 11), which contradicts that L(∗) is hierarchy-friendly.

For u’s children, we first show that N(u) ⊆ Nt−1(u). Suppose this was not true, then there
would exist a level-t node v ∈ N(u) \ Nt−1(u). That would imply that u’s and v’s core clusters
intersect (Line 11). But, core-clusters are always subsets of their corresponding LP-clusters, and
LP-clusters of the same level are disjoint.

Before proving Nt−1(u) ⊆ N(u), we need to show that C(u) = Ct−1(u). We show it by proving
that L(u) \C(u) = L(u) \Ct−1(u). If a species i is in L(u) \C(u), then it is in the extended-cluster
of some node v processed before u such that their core-clusters do not intersect (Line 8). If t(v) = t,
then i is either in C(v) (contradiction as it would then not be in L(u)), or in the extended-cluster
of one of its children w, which we proved are of lower-level. Thus w was a root in Ft−1. Again by
L(∗) being hierarchy-friendly, C(w) ⊆ L(w) does not intersect L(u), meaning it does not intersect
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Ct−1(u) ⊆ L(u) and so i would also be in L(u) \ Ct−1(u) (Line 8). If t(v) < t, then v itself was a
root in Ft−1. The same argument in reverse order is used to prove that if i is in L(u) \ Ct−1(u)
then it is in L(u) \ C(u).

We now see that Nt−1(u) ⊆ N(u); that is because if v ∈ Nt−1(u), then v is a root in Ft−1 with
a core-cluster intersecting L(u), and by L(∗) being hierarchy-friendly it is also a root in F(u) \ {u}.
As C(v) intersects Ct−1(u) = C(u), we get v ∈ N(u) (Line 11).

Finally, a species i in C+
t−1(u)\Ct−1(u) is part of the extended cluster of a node in Nt−1(u); this

child is still a root in F(u) \ {u} by L(∗) being hierarchy-friendly, therefore i ∈ C+(u) \ C(u). The
other way around, a species i in C+(u) \ C(u) is part of the extended cluster of a node in N(u);
this child is a root in Ft−1 as u has no children of level t, therefore i ∈ C+(u) \ Ct−1(u).

Next, we prove two claims that we have already mentioned informally while introducing Algo-
rithm 3 (Derive-Hierarchy). First we claim that the incrementally built graph is always a forest
and also for any node u, its extended-cluster contains exactly the species descending from u. We
notice that the previously stated results do not require these properties.

Lemma 10. For any u ∈ F , F(u) is a forest of rooted trees with |S| leaves identified with the
species of S, and for each u ∈ F , C+(u) is the set of u’s descending species.

Proof. We prove this inductively based on the order in which the nodes are added in F . The base
case for both the claims follows by the initialization of the forest with |S| leaves identified with the
species of S.

When we insert a node, it becomes the parent of some of the existing roots, therefore the forest
structure is preserved.

Next let u be some node in F and let v1, . . . , vk be the children of u. Then by construction
all these children nodes are added to F before u, and thus by induction argument for each vm the
set of descending species of vm is exactly the set C+(vm). Now we need to prove the same for
node u. Note that the set of descending species of u is precisely the set

⋃
m∈[k]C

+(vm). Moreover

by construction C+(u) = C(u) ∪ (
⋃

m∈[k]C
+(vm)). Hence to prove the claim we need to show

that C(u) ⊆ ⋃m∈[k]C
+(vm). For the sake of contradiction let w ∈ C(u) be a species such that

w /∈ ⋃m∈[k]C
+(vm). As F(u) \ {u} is a forest, there exists a unique node r which is the root

node of the tree of F(u) \ {u} that contains w. Hence again by induction argument w ∈ C+(r).
By our assumption, as r is not a child of u, C(u) ∩ C(r) = ∅. Thus Algorithm 3 (Line 8) sets
C(u)← C(u) \ C+(r) and hence w /∈ C(u), which is a contradiction.

This simple lemma alone is enough to prove the following corollaries:

Corollary 11. For any u ∈ F , the extended-clusters of the root nodes in F(u) form a partition of
S.

Proof. As F(u) is a forest, each species is a descendant of exactly one such root and thus belongs
in exactly one such extended cluster.

Corollary 12. The output of our algorithm is a sequence of hierarchical partitions of S.

Proof. By Corollary 11 the output of the algorithm is a sequence of partitions of S. To see that
the output partitions are hierarchical, notice that if two species are in the same rooted tree at some
point in the algorithm, then they are never separated as we only add nodes in the forest.
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Corollary 13. For any node u ∈ F , the species removed from its LP-cluster and the species inserted
in its core cluster are disjoint, ∆−(u) ∩∆+(u) = ∅.
Proof. For the sake of contradiction let i ∈ ∆−(u) ∩ ∆+(u). Since the extended clusters of root
nodes in F(u) \ {u} form a partition, let v be the unique such root for which i ∈ C+(v). Now as
i ∈ ∆−(u), C(v)∩C(u) = ∅ (Line 8 of Algorithm 3). But again i ∈ ∆+(u) implies C(v)∩C(u) 6= ∅
(Line 11 of Algorithm 3) and both these can never be satisfied together.

Corollary 14. If two nodes u, v ∈ F do not have an ancestry-relationship, then their extended
clusters do not intersect.

Proof. If their extended clusters intersected, then they would have a descending species in common,
which implies an ancestry-relationship.

We also need the following result.

Lemma 15. For any node u ∈ F , its extended-cluster is equal to the union of the core clusters of
all descendant nodes v of u.

Proof. We prove this inductively. As a base-case, the claim trivially holds for the |S| initial leaves.
For an internal node u, let v1, . . . , vk be the children of u and let D(u) be the descendant nodes of
u. Then D(u) = ∪m∈[k]D(vm). Also, by induction, for each vm, C+(vm) = ∪w∈D(vm)C(w). Now
as C+(u) = C(u) ∪ (∪m∈[k]C

+(vm)) we have C+(u) = C(u) ∪ (∪w∈D(u)C(w)). which proves our
claim.

5.4 Managing removals and extensions

Using the developed toolkit of structural results, we are ready to show that for any node u ∈ F ,
all three of the LP-cluster L(u), the core-cluster C(u) and the extended-cluster C+(u) are similar;
more than that, we show lower bounds of the LP cost related to ∆−(u) = L(u)\C(u) and ∆+(u) =
C+(u) \ C(u).

In particular, we claim that the following inequality holds for every u ∈ F .

|∆+(u)| ≤ 0.3|C(u)| (9)

We prove this claim inductively, based on the order in which nodes are added in F . As a base
case, we initially create a node ui for each species i ∈ S with C(ui) = C+(ui) = {i}, meaning that
∆+(ui) = ∅.

For any other node u, we argue about the size of its extended-cluster C+(u) in relation with
the core-clusters of its descendants, as suggested by Lemma 15. We now partition the descendants
of u in three parts and argue about each one of them.

Informally, for a node u we define its top-non-intersecting descendants J as the set of highest
level descendant nodes in F whose core-clusters do not intersect C(u) (the reader is encouraged to
consult Figure 3 before proceeding). More formally, using v ≺F u to denote that v is a descendant
of u in forest F , we have:

J =



v ∈ F

∣∣∣∣∣∣

v ≺F u
C(u) ∩ C(v) = ∅
C(u) ∩ C(w) 6= ∅,∀w s.t. v ≺F w ≺F u





22



b

g

i j

a

c

C+(a)

d e f

h

Figure 3: Part of the forest F(a). Intervals around nodes denote core-clusters (two core-clusters
intersect if a vertical line intersects both); colored nodes {d, e, f, h, i, j} have core-clusters not
intersecting the core-cluster of a. In particular, the circle-shaped colored nodes are a’s top-non-
intersecting descendants (denoted by J = {d, e, f, h}). Their proper descendants define J+ =
{g, i, j}. R = {b, c} contains all other proper descendants of a.

Notice that, by definition, if two nodes v, w belong in u’s top-non-intersecting descendants,
then none is an ancestor of the other. Therefore u’s top-non-intersecting descendants J naturally
partitions the proper descendants of u in three parts: J itself, the set J+ of proper descendants of
nodes in J , and R containing the rest of the proper descendants of u (i.e., the proper descendants
of u that are not descendants of any node in J). We also define sets of species related to these sets:

SJ =
⋃

v∈J
C(v) (10)

SJ+ =
⋃

v∈J+

C(v) \ (C(u) ∪ SJ)

SR =
⋃

v∈R
C(v) \ (C(u) ∪ SJ ∪ SJ+)

The apparent asymmetry of not excluding C(u) from SJ follows from the definition of u’s top-
non-intersecting descendants J ; the core-clusters of nodes in J are disjoint from C(u), meaning
SJ would be the same even if we excluded species in C(u). Note that this is not the case for the
core-clusters in J+ as proper descendants of nodes in J might still intersect C(u), as in Figure 3.

Notice that by Lemma 15 we have C+(u) = C(u) ∪ (SJ ∪ SJ+ ∪ SR), thus

∆+(u) = SJ ∪ SJ+ ∪ SR (11)

If v ∈ J ∪J+∪R, and its core-cluster does not intersect the core-cluster of u, then by definition
of J we have that v is in descendants (not necessarily proper) of J . Therefore v ∈ J ∪J+, meaning
that nodes in R have core-clusters that intersect C(u). Furthermore, by definition, each node v in
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u’s top-non-intersecting descendants has a parent whose core-cluster intersects C(u). Therefore,
for any species i ∈ C(u) and any species j ∈ SJ ∪ SR, by Lemma 6 we have that their LP-distance
is small, that is

x
(t(u))
i,j < 0.6,∀i ∈ C(u), j ∈ SJ ∪ SR (12)

Species in SJ ∪ SR are not in C(u), and so by Corollary 13 they are not in L(u) as they belong
in ∆+(u). Then Lemma 5 gives

|SJ ∪ SR| <
1

6
|L(u)| (13)

We are left to argue about species in J+, that is in core-clusters of the descendants of u’s
top-non-intersecting descendants. By Lemma 15, these species all belong in the extended-clusters
of u’s top-non-intersecting descendants,

⋃
v∈J C

+(v) ⊇ SJ
⋃
SJ+ . By Corollary 14 these extended-

clusters are disjoint, thus SJ+ ⊆ ⋃v∈J ∆+(v). By the inductive hypothesis (9) we get

|SJ+ | ≤ 0.3|SJ | (14)

Therefore, by Inequality (13) we get that

|SJ+ | < 1

6
· 0.3|L(u)| = 1

6
· 0.3|C(u) ∪∆−(u)| (15)

By (13) and (15) we bound the size of ∆+(u):

|∆+(u)| < 1.3 · 1

6
|L(u)| (16)

We are only left with bounding |L(u)|. For this we prove that

|∆−(u)| < 0.1|C(u)| (17)

which, combined with (16), proves our initial claim.
Before proving (17) we make some definitions (see Figure 4). Roughly speaking, we want to

identify an appropriate set K of nodes such that the union of their extended-clusters both contains
∆−(u) and its cardinality is reasonably boundable. In fact, the nodes in K are descendants of
roots of F(u) \ {u} that satisfy the condition in Line 8 of Algorithm 3 (i.e., nodes v such that
C(v) ∩ C(u) = ∅, and C+(v) ∩ L(u) 6= ∅).

We now give a formal constructive definition of the set K. Let M be the set containing all the
non-descendants of u at level at most t(u) whose core-clusters intersect L(u). We define K ′ to be
the set of parents of the nodes in M . Finally, K is obtained from K ′ by removing the nodes who
have a proper ancestor in K ′. Notice by Corollary 14, their extended-clusters are disjoint. We also
define sets of species associated with K as follows.

SK =
⋃

v∈K
C(v) (18)

SK+ =
⋃

v∈K
C+(v)

24



a

e

h

i

L(a)

C(a)
b

d

g

j

c

f

Figure 4: Part of the forest F(a). Intervals around nodes denote core-clusters (two core-clusters
intersect if a vertical line intersects both); for node a we also denote its LP-cluster by horizontal
dotted lines. All other depicted nodes are not descendants of a. The diamond-shaped nodes
{c, f, g, j} are contained in M , colored nodes {b, d, e, g} are contained in K ′, and circle-shaped
nodes {b, d} are contained in K ⊆ K ′.

Note ∆−(u) ⊆ SK+ . Next we claim for each node v ∈ K, C(v)∩L(u) = ∅. Now if we can prove
this claim then it implies SK ∩L(u) = ∅ and thus we can write ∆−(u) ⊆ SK+ \SK . Next we prove
the claim. Notice that for any node v ∈ M , v is not a descendant of u but C(v) ∩ L(u) 6= ∅; thus
there always exists a node w ∈ K such that w is an ancestor of v and C(w) ∩ L(u) = ∅.

Now, for the sake of contradiction, assume there exists a node w ∈ K such that C(w)∩L(u) 6= ∅.
But then w ∈M , and following the previous argument there exists a node w′ ∈ K such that w′ is
an ancestor of w and C(w′) ∩ L(u) = ∅. This is a contradiction, as by construction both w and w′

cannot be present in K.
Furthermore, notice that no node w ∈ K is at level t(w) = t(u), as that would imply a child

w′ ∈ M of w; but C(w′) intersects C(w) (and therefore L(w)) as w′ is a child of w, and C(w′)
intersects L(u) since w ∈M . This is a contradiction, by Lemma 7.

We conclude that K contains nodes at level at most t(u) − 1, which allows us to apply the
inductive hypothesis |∆+(w)| ≤ 0.3|C(w)| for nodes w ∈ K. Thus, from ∆−(u) ⊆ SK+ \SK we get

|∆−(u)| ≤ 0.3|SK | (19)

Furthermore, all nodes in K have a child whose core-cluster intersects C(u), and so by Lemma 6

the LP -distance between a species i ∈ L(u) and a species j ∈ SK is small, x
t(u)
i,j < 0.6. By Lemma 5

we get |SK | < 1
6 |L(u)|, which gives us |∆−(u)| ≤ 1

6 · 0.3|L(u)|.
By the definition of ∆−(u) = L(u) \ C(u) we get |C(u)| ≥ (1− 1

6 · 0.3)|L(u)|, by which

|∆−(u)| ≤
1
6 · 0.3

1− 1
6 · 0.3

|C(u)| (20)

which concludes the proof of claim (17), and as previously argued, the proof of claim (9).
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As a byproduct of this analysis, we can also give some lower bounds on the LP cost.

Lemma 16. Given a node u ∈ F , cost
(t(u))
I(u) = Ω(δ(t(u))|L(u)||∆−(u)|).

Proof. Fix a j ∈ SK , as defined in (18). We have shown that for all i ∈ L(u), the LP-distance with j

is small, x
(t(u))
i,j < 0.6. If j ∈ SK is not in the input-cluster I(u), then cost

(t(u))
i,j = δ(t(u))(1−x(t(u))

i,j ) >

δ(t(u))(1− 0.6) for each {i, j} pair with i ∈ L(u). Else, it was removed from the input-cluster in the

LP-Cleaning step, cost
(t(u))
j = Ω(δ(t(u))|I(u)|) by Lemma 8.

By the algorithm, I(u) ⊇ L(u), so summing up these costs gives cost
(t(u))
I(u) = Ω(δ(t(u))|L(u)||SK |)

which is Ω(δ(t(u))|L(u)||∆−(u)|) by (19).

Lemma 17. Given a node u ∈ F , cost
(t(u))
I(u) = Ω(δ(t(u))|C(u)||∆+(u)|).

Proof. Let SJ , SJ+ , SR be defined as in (10). It holds that ∆+(u) = SJ ∪SJ+∪SR by (11) and these
three sets are pairwise disjoint by definition. By (14), the size of SJ+ is small compared to |SJ |
which implies that |∆+(u)| = Ω(|SJ ∪ SR|). Furthermore, by (12), for any i ∈ C(u), j ∈ SJ ∪ SR,

we have that their LP-distance is small, that is x
(t)
i,j < 0.6.

We fix such a j ∈ SJ ∪ SR, therefore j 6∈ C(u). If j ∈ SJ ∪ SR is not in the input-cluster

I(u), then cost
(t(u))
i,j = δ(t(u))(1 − x(t(u))

i,j ) > δ(t(u))(1 − 0.6) for each {i, j} pair with i ∈ C(u). Else,
j ∈ I(u), but j 6∈ L(u). That is because, j is not in C(u), and if it was in L(u) then it would
contradict Corollary 13. Therefore j was removed from the input-cluster in the LP-Cleaning step

(Line 4 of Algorithm 2), and cost
(t(u))
j = Ω(δ(t(u))|I(u)|) by Lemma 8. Summing these costs proves

our claim.

5.5 Approximation factor

In this section we prove that Algorithm 1 is an O(1) approximation of the LP cost.
We first make some definitions. Let t ∈ [`]. An input-cluster CI ∈ Q(t) is strong if there exists

a level-t node u ∈ F such that I(u) = CI . Similarly, a part P of the output partition P (t) is strong
if there exists a level-t node u ∈ F such that C+(u) = P . In both cases we say that u is the
corresponding node. We characterize an input-cluster as weak if it is not strong, and similarly a
part of the output partition P (t) as weak if it is not strong.

We start with upper bounding the cost of Algorithm 1. The upper bound is related to the input-
clusters (distinguishing between strong and weak) and the parts of the output partitions (again
distinguishing between strong and weak). Informally, for weak input-clusters and weak parts, the
cost of our algorithm is proportional to the sum of squares of their size. For a strong input-cluster
with corresponding node u, the cost of our algorithm is proportional to its size times the number of
species of the input-cluster that did not end up in u’s core-cluster. For a strong part of the output
partitions, the cost of our algorithm is proportional to its size times the number of its species that
did not end up in u’s core-cluster.

Lemma 18. Suppose we are given a Hierarchical Cluster Agreement instance S,Q(∗), δ(∗) and LP-
distances x(∗). Then the cost of the output of Algorithm 1 at level t is at most

δ(t)




∑

CI∈Q(t)

CI is weak

(|CI |
2

)
+

∑

P∈P (t)

P is weak

(|P |
2

)
+
∑

u∈F
t(u)=t

(
|I(u) \ C(u)||I(u)|+ |∆+(u)||C+(u)|

)
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Proof. The cost at level t is δ(t) times the number of pairs {i, j} that do not end up in the same
part of the output partition P (t) but {i, j} ∈ E(Q(t)), plus the number of pairs {i, j} that end up
in the same part of the output partition but {i, j} 6∈ E(Q(t)). This is

δ(t)|E(Q(t)) \ E(P (t))|+ δ(t)|E(P (t)) \ E(Q(t))|

= δ(t)
∑

CI∈Q(t)

|
(
CI

2

)
\ E(P (t))|+ δ(t)

∑

P∈P (t)

|
(
P

2

)
\ E(Q(t))|

= δ(t)
∑

CI∈Q(t)

CI is weak

|
(
CI

2

)
\ E(P (t))|+ δ(t)

∑

CI∈Q(t)

CI is strong

|
(
CI

2

)
\ E(P (t))|

+δ(t)
∑

P∈P (t)

P is weak

|
(
P

2

)
\ E(Q(t))|+ δ(t)

∑

P∈P (t)

P is strong

|
(
P

2

)
\ E(Q(t))|

Notice that if i, j are in the same core-cluster C(u) of some node u at level t(u) = t, then
{i, j} ∈ E(Q(t)) ∩ E(P (t)). Also, for each strong input-cluster there exists a corresponding node u,
and vice-versa (similarly for strong parts of the output-partitions). Therefore:

δ(t)
∑

CI∈Q(t)

CI is strong

|
(
CI

2

)
\ E(P (t))| ≤ δ(t)

∑

u∈F
t(u)=t

(|I(u)|
2

)
−
(|C(u)|

2

)

δ(t)
∑

P∈P (t)

P is strong

|
(
P

2

)
\ E(Q(t))| ≤ δ(t)

∑

u∈F
t(u)=t

(|C+(u)|
2

)
−
(|C(u)|

2

)

For an input cluster CI with a corresponding node u at level t such that I(u) = CI , and since
always C(u) ⊆ I(u)

(|I(u)|
2

)
−
(|C(u)|

2

)
= |I(u) \ C(u)||I(u)| −

(|I(u) \ C(u)|
2

)
≤ |I(u) \ C(u)||I(u)|

Notice that subtraction is needed since |I(u) \ C(u)||I(u)| double-counts the pairs in
(
I(u)\C(u)

2

)
.

Similarly, for a part P of the output partition P (t) with a corresponding node u at level t such
that C+(u) = P , and since always C(u) ⊆ C+(u)

(|C+(u)|
2

)
−
(|C(u)|

2

)
= |C+(u) \ C(u)||C+(u)| −

(|C+(u) \ C(u)|
2

)
≤ |C+(u) \ C(u)||C+(u)|

= |∆+(u)||C+(u)|

For each term of Lemma 18, we show a matching lower bound for the LP cost. First, we give a
lower bound of the LP cost related to the weak input-clusters.
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Lemma 19. The LP cost at level t cost(t) is

Ω


δ

(t)
∑

CI∈Q(t)

CI is weak

(|CI |
2

)



Proof. Let CI ∈ Q(t) be an input-cluster and CLP be the corresponding LP-cluster by Algorithm 2.

By Lemma 8, cost
(t)
CI\CLP

= Ω(δ(t)|CI \ CLP ||CI |).
If CI has no corresponding node u with I(u) = CI , t(u) = t, this means that |CLP | < 0.9|CI |,

therefore |CI \ CLP | = Ω(|CI |), which makes the aforementioned cost Ω(δ(t)|CI |2) = Ω(δ(t)
(|CI |

2

)
).

Summing over all these input-clusters may only double-count each pair, which completes the
proof.

Next, we give a lower bound of the LP cost related to the strong input-clusters.

Lemma 20. The LP cost at level t cost(t) is

Ω


δ

(t)
∑

u∈F
t(u)=t

(|I(u) \ C(u)||I(u)|)




Proof. Summing the cost of Lemma 16 over all nodes u at level t(u) = t gives a cost of

Ω


δ

(t)
∑

u∈F
t(u)=t

(|L(u) \ C(u)||L(u)|)




since we may only double-count some pairs. Similarly, summing the cost of Lemma 8 over all
species in such nodes gives a cost of

Ω


δ

(t)
∑

u∈F
t(u)=t

(|I(u) \ L(u)||I(u)|)




We prove our claim by summing these two, and noticing that |L(u)| ≥ 0.9|I(u)| by Line 5 of
Algorithm 2.

The following lemma lower bounds the LP cost in relation to the strong parts of the output
partition P (t).

Lemma 21. The LP cost at level t cost(t) is

Ω


δ

(t)
∑

u∈F
t(u)=t

(
|∆+(u)||C+(u)|

)
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Proof. Summing the cost of Lemma 17 over all nodes u at level t(u) = t proves our claim, since we
may only double-count some pairs.

The following lemma lower bounds the LP cost in relation to the weak parts of the output
partition P (t).

Lemma 22. The LP cost at level t cost(t) is

Ω


δ

(t)
∑

P∈P (t)

P is weak

(|P |
2

)



Proof. Fix any such part P . By Algorithm 3, each part of the output-partition P (t) corresponds
to the extended-cluster of some node u ∈ F . We use CP to refer to the core-cluster of this node
corresponding to P , and notice that |CP | = Ω(|P |) by (9). Furthermore, by Lemma 4 any two

species i, j ∈ CP ⊆ P have x
(t)
i,j < 0.2.

We take two cases based on whether there exists an input-cluster CI ∈ Q(t) such that |CI∩CP | >
|CP /2|. Since Q(t) is a partition, there may be at most one such CI for each part P . If none exists,
then there exist Ω(

(|CP |
2

)
) pairs of species in CP which belong in different input-clusters, and thus

cost
(t)
CP

= Ω(δ(t)
(|CP |

2

)
) = Ω(δ(t)

(|P |
2

)
) by (9).

For the remaining parts, we first partition them based on parts that have the same corresponding
input-cluster. Let P1, . . . , Pk be such a maximal group with the same corresponding input cluster
CI , meaning that |CI | = Ω(

∑k
r=1 |CPr |) = Ω(

∑k
r=1 |Pr|). If CI does not correspond to any node u

at level t such that I(u) = CI , then cost
(t)
CI

= Ω(δ(t)
(|CI |

2

)
) by Lemma 8, which is Ω(δ(t)

∑k
r=1

(|Pr|
2

)
).

Else there exists such a node u with I(u) = CI , while by the statement of our Lemma there is no
v such that C+(v) = Pr for r ∈ [k]. Therefore all these parts are disjoint from C+(u) (Corollary 12),
and thus disjoint from C(u). This implies

k⋃

r=1

CPr ∩ I(u) ⊆ I(u) \ C(u)

Then

|I(u) \ C(u)| ≥ |
k⋃

r=1

CPr ∩ I(u)| >
k∑

r=1

|CPr |/2 = Ω(
k∑

r=1

|Pr|)

By Lemma 20 the LP cost at level t is Ω(δ(t)|I(u) \ C(u)||I(u)|) = Ω(δ(t)
∑k

r=1

(|Pr|
2

)
).

We combine all our lower bounds in the following corollary.

Corollary 23. The LP cost at level t is

Ω


δ

(t)




∑

CI∈Q(t)

CI is weak

(|CI |
2

)
+

∑

P∈P (t)

P is weak

(|P |
2

)
+
∑

u∈F
t(u)=t

(
|I(u) \ C(u)||I(u)|+ |∆+(u)||C+(u)|

)






Proof. Follows by summing the LP cost at level t by Lemmas 19, 20, 21, 22.
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We are now ready to combine all the aforementioned results:

Lemma 24. Given a Hierarchical Cluster Agreement instance S,Q(∗), δ(∗) and LP-distances x(∗),
the output of Derive-Hierarchy(S,LP-Cleaning(S,Q(∗), x(∗))) is a sequence of hierarchical partitions
P (∗) with cost O(cost(∗)).

Proof. By Corollary 12, the output is a sequence of hierarchical partitions of S.
For any level t, by Lemma 18 and Corollary 23 the cost of the output of Derive-Hierarchy(S,LP-

Cleaning(S,Q(∗), x(∗))) is within a constant factor from the LP cost. Summing over all levels t proves
our lemma.

Lemma 24 directly proves:
HierClustAgree = O(1) (E) from Figure 1

as Algorithm 1 simply picks x(∗) to be an optimal fractional solution to the LP relaxation.
Combining this with Inequality (C) concludes the proof of Theorem 3.

6 Constant integrality gap

In this section, we prove that the LP formulation for Hierarchical Correlation Clustering (Section 2)
has constant integrality gap. This directly extends to the integrality gap of the LP formulation
used by Ailon and Charikar for ultrametrics [3], as the LP formulation for Hierarchical Corre-
lation Clustering is a generalization of the one for ultrametrics (implicit in [3, 39], discussed in
Section 7).

Notice that this is not direct from our algorithm, as for Hierarchical Correlation Clustering we
do not directly work with the LP from Section 2; we rather reduce our problem to an instance of
Hierarchical Cluster Agreement, and then round the LP of this instance.

We start with some definitions. Suppose we have an instance of Hierarchical Correlation Clus-
tering S, δ(∗) = (δ(1), . . . , δ(`)), E(∗) = (E(1), . . . , E(`)). We say that x is an LP vector if it consists
of LP distances xi,j satisfying the triangle inequality and being in the interval [0, 1], for all species
i, j ∈ S. For any E ⊆

(
S
2

)
, we extend the previously used notion of LP cost as:

cost(t)(E, x) =
∑

{i,j}∈E
(xi,j) +

∑

{i,j}6∈E
(1− xi,j)

Notice that for any LP vector x and edge-sets E1, E2 ⊆
(
S
2

)
, we have that

cost(t)(E1, x) ≤ cost(t)(E2, x) + δ(t)|E14E2| (21)

That is because only pairs in their symmetric difference may be charged differently by cost(E1, x)
and cost(E2, x), and the maximum such difference is δ(t), as the LP-distances are between 0 and 1.

The LP formulation of Correlation Clustering, which is a special case of the formulation of
Hierarchical Correlation Clustering, has constant integrality gap [17]. Therefore, for a Correlation
Clustering instance S,E, integral solution Q whose cost is within a constant factor from the optimal
integral solution OPT , and any t and LP vector x, it holds that

δ(t)|E4Q| = O(δ(t)|E4OPT |) = O(cost(E, x)) (22)
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Finally, let Q(∗) = (Q(1), . . . , Q(`)) be partitions of S such that for each t ∈ [`], Q(t) is a solution
to Correlation Clustering with input S,E(t) whose cost is within a constant factor from the optimal.
Let x(∗) = (x(1), . . . , x(`)) be ` LP vectors satisfying (6) that are an optimal fractional solution to
Hierarchical Correlation Clustering.

We need to prove that some integral solution P (∗) = (P (1), . . . , P (l)) to Hierarchical Corre-
lation Clustering has cost within a constant factor of the optimal fractional solution. We pick
P (∗) = Derive-Hierarchy(S,LP-Cleaning(S,Q(∗), x(∗))), that is the integral solution suggested by
Lemma 24. Formally, we prove

∑̀

t=1

δ(t)|P (t)4E(t)| = O

(∑̀

t=1

cost(E(t), x(∗))

)

It holds that

∑̀

t=1

δ(t)|P (t)4E(t)| ≤
∑̀

t=1

δ(t)(|P (t)4E(Q(t))|+ |E(Q(t))4E(t)|)

By Lemma 24 we have that

∑̀

t=1

δ(t)|P (t)4E(Q(t))| = O

(∑̀

t=1

cost(E(Q(t)), x(∗))

)

≤ O
(∑̀

t=1

(cost(E(t), x(∗)) + |E ∩ E(Q(t))|
)

with the later following by (21). Therefore we bound
∑`

t=1 δ
(t)|P (t)4E(t)|:

∑̀

t=1

δ(t)|P (t)4E(t)| ≤
∑̀

t=1

δ(t)(|P (t)4E(Q(t))|+ |E(Q(t))4E(t)|)

= O

(∑̀

t=1

(cost(E(t), x(∗)) + |E(t) ∩ E(Q(t))|
)

= O

(∑̀

t=1

cost(E(t), x(∗))

)

with the last step following from (22).

7 From L1-fitting ultrametrics to hierarchical correlation cluster-
ing

For completeness, we here review the reduction from ultrametrics to hierarchical correlation clus-
tering implicit in previous work [3, 39].
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Given an L1-fitting ultrametrics instance with input D :
(
S
2

)
→ R>0, we construct an input

to the Hierarchical Correlation Clustering instance as follows. Let D(1) < . . . < D(`+1) be the
distances that appear in the input distance function D. For t = 1, . . . , `, define

δ(t) = D(t+1) −D(t) and E(t) =

{
{i, j} ∈

(
S

2

)
| D(i, j) ≤ D(t)

}
(23)

Now given the solution to this hierarchical correlation clustering problem, to construct a corre-
sponding ultrametric tree, we first complete the partition hierarchy with P (0) partitioning S into
singletons and P (`+1) consisting of the single set S. Moreover, we set δ(0) = D(1).

To get the ultrametric tree U , we create a node for each set in the hierarchical partitioning.
Next, for t = 0, . . . , `, the parent of a level t node u is the node on level t + 1 whose set contains
the set of u, and the length of the parent edge is δ(t)/2. Then nodes on level t are of height∑t−1

i=0 δ
(t)/2 = D(t)/2 and if two species have their lowest common ancestor on level t, then their

distance is exactly D(t).
The construction is reversible in a manner that given any ultrametric tree U with leaf set S

and all distances from {D(1), . . . , D(`+1)}, we get the partitions P (1), . . . , P (`) as follows. First,
possibly by introducing nodes with only one child, for each species i we make sure it has ancestors
of heights D(t)/2 for t = 1, . . . , ` + 1. Then, for t = 1, . . . , `, we let partitions P (t) consist of the
sets of descendants for each level t node in U .

With this relation between U and P (1), . . . , P (`), it follows easily that they have the same cost
relative to D in the sense that

∑̀

t=1

δ(t)|E(t) ∆E(P (t))| =
∑

{i,j}∈(S2)

|distU (i, j)−D(i, j)|.

Thus, with (23), the hierarchical correlation clustering is equal to L1-fitting ultrametrics with
ultrametric distances from the set of different distances in D.

Finally, from Lemma 1(a) in [39], we have that among all ultrametrics minimizing the L1 dis-
tance to D, there is at least one using only distances from D. This implies that an α-approximation
algorithm for hierarchical correlation clustering implies an α-approximation algorithm for L1-fitting
ultrametrics, that is

UltraMetric ≤ HierCorrClust (B) from Figure 1

Combining this with Theorem 3 concludes the second part of Theorem 1, namely that the
L1-fitting ultrametrics problem can be solved in deterministic polynomial time within a constant
approximation factor.

8 Tree metric to ultrametric

Agarwala et al. [2] reduced tree metrics to certain restricted ultrametrics. In fact, their reduction
may make certain species have distance 0 in the final tree, which means that it is actually a
reduction from tree pseudometrics8 to certain restricted ultrametrics. In this section we show that
the restrictions are not needed, and that the reduction can be made in a way that does not introduce
zero-distances.

8Pseudometrics are a generalization of metrics that allow distance 0 between distinct species.
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8.1 Tree pseudometric to (unrestricted) ultrametric

The claim from [2] is that approximating a certain restricted ultrametric within a factor α can be
used to approximate tree pseudometric within a factor 3α. Here we completely lift these restrictions
for L1, and show that they can be lifted for all Lp with p ∈ {2, 3, . . .} with an extra factor of at
most 2.

We will need the well-known characterization of ultrametrics discussed in the introduction, that
U is an ultrametric iff it is a metric and ∀{i, j, k} ∈

(
S
3

)
: U(i, j) ≤ max{U(i, k), U(k, j)}.

For simplicity, we prove the theorem only for p <∞, as for L∞ the 3 approximation [2] cannot
be improved by our theorem.

Theorem 25. For any integer 1 ≤ p <∞, a factor α ≥ 1 approximation for Lp-fitting ultrametrics
implies a factor 3 · 2(p−1)/p · α approximation for Lp-fitting tree pseudometrics.
In particular, for L1 it implies a factor 3α.

Proof (Extending proof from [2]). The restriction from Agarwala et al. [2] is as follows. For every
species i ∈ S, we have a “lower bound” βi. Moreover, we have a distinguished species k ∈ S with
an upper bound γk.

We want an ultrametric U such that

γk ≥ U(i, j) ≥ max{βi, βj} ∀{i, j} ∈
(
S

2

)

γk = U(k, i) ∀i ∈ S \ {k}.

We note that the conditions can only be satisfied if γk ≥ βi for all i ∈ S, so we assume this is the
case. We can even have βk = γk.

The result from [2] states that for any p and D :
(
S
2

)
→ R>0, if we can minimize the restricted

ultrametric Lp error within a factor α in polynomial-time, then there is a polynomial-time algorithm
that minimizes the tree pseudometric Lp error within a factor 3α.

We start with creating a new distance function D′.

D′(i, j) = min{γk,max{D(i, j), βi, βj}}.

Intuitively, we squeeze D′ to satisfy the restrictions. For any restricted ultrametric U , the error
between U and D′ can never be larger than the error between U and D, no matter the norm Lp.
Formally, since U is restricted, we have max{βi, βj} ≤ U(i, j) ≤ γk.

• If D(i, j) > γk, then D′(i, j) = γk ≥ U(i, j) and |U(i, j)−D′(i, j)|p < |U(i, j)−D(i, j)|p.

• If D(i, j) < max{βi, βj}, then D′(i, j) = max{βi, βj} ≤ U(i, j) and |U(i, j) − D′(i, j)|p <
|U(i, j)−D(i, j)|p.

• If max{βi, βj} ≤ D(i, j) ≤ γk, then D′(i, j) = D(i, j) and |U(i, j) − D′(i, j)|p = |U(i, j) −
D(i, j)|p.

We now ask for an arbitrary ultrametric fit U ′ for D′. With exactly the same reasoning, we can
only improve the cost if we replace U ′ with

U(i, j) = min{γk,max{U ′(i, j), βi, βj)}}.
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Clearly U now satisfies the restrictions (in the end of the proof we show that it is an ultrametric).
Our solution to Lp-fitting tree pseudometrics is to first create D′ from D, obtain ultrametric

U ′ by an α approximation to Lp-fitting ultrametrics, and then obtain the restricted ultrametric U
from U ′. Finally we apply the result from [2] to get the tree pseudometric.

Let OPTD,R be the closest restricted ultrametric to D, and OPTD′ be the closest ultrametric
to D′. It suffices to show that ‖U − D‖p ≤ 2(p−1)/pα‖OPTD,R − D‖p (equivalently ‖U − D‖pp ≤
2p−1αp‖OPTD,R −D‖pp, and that U is indeed an ultrametric.

By the above observations, it holds that

‖D′ − U‖p ≤ ‖D′ − U ′‖p ≤ α‖D′ −OPTD′‖p ≤ α‖D′ −OPTD,R‖p =⇒
‖D′ − U‖pp ≤ αp‖D′ −OPTD,R‖pp

By definition of D′, and since U is restricted, for any species i, j it holds min{D(i, j), U(i, j)} ≤
D′(i, j) ≤ max{D(i, j), U(i, j)}. The proof follows by a direct case study of the 3 cases D(i, j) ≤
max{βi, βj}, max{βi, βj} < D(i, j) ≤ γk, γk < D(i, j). Therefore

|D(i, j)− U(i, j)| = |D(i, j)−D′(i, j)|+ |D′(i, j)− U(i, j)|
For p ≥ 1 we have |x|p + |y|p ≤ (|x|+ |y|)p, meaning |D(i, j)−D′(i, j)|p + |D′(i, j)−U(i, j)|p ≤

|D(i, j)− U(i, j)|p.
Moreover, by the convexity of |x|p for real x, we get ((x + y)/2)p ≤ (|x|p + |y|p)/2, meaning

|D(i, j)− U(i, j)|p ≤ 2p−1(|D(i, j)−D′(i, j)|p + |D′(i, j)− U(i, j)|p). Therefore

|D(i, j)−D′(i, j)|p+|D′(i, j)−U(i, j)|p ≤ |D(i, j)−U(i, j)|p ≤ 2p−1(|D(i, j)−D′(i, j)|p+|D′(i, j)−U(i, j)|p)

The same holds if we replace U with OPTD,R, as we only used that U is restricted. We now
have
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‖D − U |pp =
∑

{i,j}∈(S2)

|D(i, j)− U(i, j)|p

≤
∑

{i,j}∈(S2)

2p−1(|D(i, j)−D′(i, j)|p + |D′(i, j)− U(i, j)|p)

= 2p−1(
∑

{i,j}∈(S2)

|D(i, j)−D′(i, j)|p + ‖D′ − U‖pp)

≤ 2p−1(
∑

{i,j}∈(S2)

|D(i, j)−D′(i, j)|p + αp‖D′ −OPTD,R‖pp)

≤ 2p−1αp(
∑

{i,j}∈(S2)

|D(i, j)−D′(i, j)|p + ‖D′ −OPTD,R‖pp)

= 2p−1αp
∑

{i,j}∈(S2)

(|D(i, j)−D′(i, j)|p + |D′(i, j)−OPTD,R(i, j)|p)

≤ 2p−1αp
∑

{i,j}∈(S2)

(|D(i, j)−OPTD,R(i, j)|p)

= 2p−1αp‖D −OPTD,R‖pp

Finally, we need to prove that U inherits that it is an ultrametric. This is clear if we proceed
in rounds; each round we construct a new ultrametric, and the last one will coincide with U .

More formally, let U0 = U ′. In the first |S| rounds, we take out a different i′ ∈ S at a time, and
let

Ur(i, j) = max{Ur−1(i, j), βi′}.
Suppose r > 0 is the first round where Ur is not an ultrametric. Then there exists a triple
{i, j, k} such that Ur(i, j) > max{Ur−1(i, k), Ur−1(k, j)} As we only increase distances, this may
only happen if Ur(i, j) > Ur−1(i, j). But this means that Ur(i, j) = max{βi, βj}, which is a lower
bound on Ur(i, k) and Ur(k, j) by construction.

Finally, U is simply
U(i, j) = min{γk, U|S|(i, j)}.

Suppose there exists a triple {i, j, k} that now violates the ultrametric property, then it holds that

U(i, j) > max{U|S|(i, k), U|S|(k, j)}

As we did not increase any distance, this means that both U(i, k) < U|S|(i, k) and U(k, j) <
U|S|(k, j); but distances can only reduce to γk which is an upper bound on U(i, j) by construction.

8.2 From tree metric to tree pseudometric

In this section we prove that in order to find a good tree metric, it suffices to find a good tree
pseudometric. This is a minor detail that we add for completeness. Informally, the construction
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simply replaces 0 distances with some parameter ε, and accordingly adapts the whole metric. By
making the parameter ε very small, the cost is not significantly changed.

Technically, our main lemma is the following.

Lemma 26. Given is a set S, a distance function D :
(
S
2

)
→ R>0, a tree T with non-negative edge

weights describing a tree pseudometric on S, and a parameter α ∈ (0, 1]. In time polynomial in the
size of T we can construct a tree T ′ with positive edge weights describing a tree metric on S, such
that for any p ≥ 1, it holds that ‖T ′ −D‖p ≤ (1 + α)‖T −D‖p.

Proof. We construct T ′ from T as follows. First, we contract all edges with weight 0. This may
result in several species from S coinciding in the same node. For each such node u and species i
coinciding with some other species in u, we create a new leaf-node ui connected only with u with
edge-weight ε > 0 (to be specified later). We identify i with ui, instead of u.

T ′ describes a tree metric on S, as by construction each species i ∈ S is identified with a distinct
node in T ′, and T ′ only contains positive edge-weights.

If T matches D exactly, that is ‖T−D‖p = 0, then no pair of species i, j ∈ S have distT (i, j) = 0,
as D(i, j) > 0. But then no species coincided in the same node due to the contractions, meaning
that no distances changed, which proves our claim. From here on we assume that at least one pair
has distT (i, j) 6= D(i, j).

To specify the parameter ε we first make some definitions. Let Y be the set containing all
species i ∈ S for which we created a new leaf node in T ′. Moreover, let dmin be the smallest
positive |distT (i, j)−D(i, j)| among all i, j ∈ S. Then

ε = αdmin/(8|S|)

For any two species i, j, their distance stays the same, increases by ε, or increases by 2ε.
Therefore, for p = ∞ we directly get ‖T ′ − D‖p ≤ ‖T − D‖p + 2ε. By definition of dmin we have
also have ‖T − D‖p ≥ dmin =⇒ 2ε ≤ α‖T − D‖p/(4|S|) < α‖T − D‖p, which proves our claim.
Therefore we can assume that p <∞.

We start with a lower bound related to ‖T −D‖p. By definition of Y , for any i ∈ Y there exists
a j ∈ Y such that distT (i, j) = 0, meaning that |distT (i, j)−D(i, j)| = |D(i, j)| ≥ dmin. Therefore

‖T −D‖pp ≥
|Y |
2
dpmin

We now upper bound ‖T ′ − D‖p. If distT (i, j) 6= D(i, j), then |distT (i, j) − D(i, j)| ≥ dmin by
definition of dmin. For the rest of the pairs i, j, if their distance increased then either i ∈ Y or
j ∈ Y , by construction; thus there are at most |Y ||S| such pairs. Using these observations, we take
the following three cases:
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∑

{i,j}∈(S2)
distT (i,j)6=D(i,j)

|distT ′(i, j)−D(i, j)|p ≤
∑

{i,j}∈(S2)
distT (i,j)6=D(i,j)

(|distT (i, j)−D(i, j)|p + |2ε|p)

∑

{i,j}∈(S2)
distT (i,j)=D(i,j)

distT (i,j)=distT ′ (i,j)

|distT ′(i, j)−D(i, j)|p = 0

∑

{i,j}∈(S2)
distT (i,j)=D(i,j)

distT (i,j)<distT ′ (i,j)

|distT ′(i, j)−D(i, j)|p ≤
∑

{i,j}∈(S2)
distT (i,j)=D(i,j)

distT (i,j)<distT ′ (i,j)

|2ε|p ≤ |Y ||S||2ε|p

Adding these 3 upper bounds ‖T ′ −D‖pp by
∑

{i,j}∈(S2)
distT (i,j)6=D(i,j)

(|distT (i, j)−D(i, j)|p + |2ε|p) + |Y ||S||2ε|p

Using our lower bound and the definition of ε

|Y ||S||2ε|p ≤ 2p+1|S||ε|p‖T −D‖pp/dpmin ≤ (α/2)‖T −D‖pp
By the definition of ε and dmin, for i, j such that distT (i, j) 6= D(i, j) it holds that (|distT (i, j)−

D(i, j)|p + |2ε|p) ≤ (α/2)|distT (i, j)−D(i, j)|p. Therefore, we get

‖T ′ −D‖pp ≤
∑

{i,j}∈(S2)
distT (i,j)6=D(i,j)

(1 + α/2)|distT (i, j)−D(i, j)|p + (α/2)‖T −D‖pp

= (1 + α/2)‖T −D‖pp + (α/2)‖T −D‖pp = (1 + α)‖T −D‖pp

Therefore, for any p ≥ 1, we can approximate Lp-fitting tree metrics by using an approximation
to Lp-fitting tree pseudometrics. The error is at most (1 + α) times the approximation factor of
the tree pseudometric, as any tree metric is also a tree pseudometric.

Setting α = 1
|S| and using the result from [2], we conclude that

TreeMetric ≤ (3 + o(1)) ·UltraMetric (A) from Figure 1

This concludes the proof of Theorem 1.
As a final note, in the case of L0 (that is, we count the number of disagreements between D and

T ′) one cannot hope for a similar result. To see this, let S be a set of species, and let c1, c2 ∈ S be
two special species. The distance between any pair of species is 2, except if the pair contains either
c1 or c2, in which case the distance is 1. The optimal tree pseudometric simply sets the distance
between c1 and c2 to 0, and preserves everything else (1 disagreement).

Any tree metric requires at least |S|−3 disagreements: we say that a non-special species is good
if it has tree-distance 1 to both c1 and c2, and bad otherwise. Bad species have distance different
than 1 to at least one special species, while good species have distance less than 2 with each other;
the disagreements minimize at |S| − 3, when there is either one or two good species.
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9 APX-Hardness

The problems of L1-fitting tree metrics and L1-fitting ultrametrics are regarded as APX-Hard in the
literature [3, 39]. However, we decided to include our own versions of these proofs for a multitude of
reasons: First and foremost, [3] attributes the APX-hardness to [53], which is an unpublished Master
thesis that is non-trivial to read. Also [39] claims that APX-Hardness of L1-fitting ultrametrics
follows directly by the APX-Hardness of Correlation Clustering [17]; but this is only true if all
the distances in the ultrametric are in {1, 2}. Second, we think that our proofs are considerably
simpler and more direct. Finally, our constant factor approximation algorithms for these problems
make it important to have formal proofs of their APX-Hardness, since the combination settles that
a constant factor approximation is best possible in polynomial time unless P=NP.

9.1 L1-fitting ultrametrics

The correlation clustering problem has been shown to be APX-Hard in [17]. As noted in [3, 39]
correlation clustering is the same as the L1-fitting ultrametrics in case both the input and the
output are only allowed to have distances in {1, 2}. We refer to this problem as L1-fitting {1, 2}-
ultrametrics. Therefore the L1-fitting {1, 2}-ultrametrics is also APX-Hard.

For completeness, we sketch this relation here. Let E ⊆
(
S
2

)
be an instance of correlation

clustering, then D(i, j) is an instance to L1-fitting {1, 2}-ultrametrics, where D(i, j) = 1 if {i, j} ∈
E, and D(i, j) = 2 otherwise. Similarly, given D we can obtain E by setting {i, j} ∈ S iff D(i, j) = 1.
Given any solution to correlation clustering (permutation P of S), we get a solution T to L1-
fitting {1, 2}-ultrametrics with T (i, j) = 1 if i, j are in the same part of P , and T (i, j) = 2
otherwise. As T is an ultrametric, we are guaranteed that T (i, j) ≤ max{T (i, k), T (j, k)}, therefore
if T (i, k) = T (j, k) = 1, then T (i, j) = 1 as only distances in {1, 2} are allowed. Thus distance-1 is
a transitive relation and P can be obtained by the equivalence classes of species with distance 1 in
T . The observation from [3] is that |E4E(P )| = ‖T −D‖1, which follows by trivial calculations.

The bird’s eye view of our approach for showing APX-Hardness of L1-fitting ultrametrics is the
following. For the sake of contradiction, we assume that L1-fitting ultrametrics is not APX-Hard.
We then show how to solve the L1-fitting {1, 2}-ultrametrics problem in polynomial time within
any constant factor greater than 1, contradicting the fact that it is APX-Hard. The main idea is
that we first solve the general L1-fitting ultrametrics problem. Then we apply a sequence of local
transformations that converts the general ultrametric to an ultrametric with distances in {1, 2}
without increasing the error. To achieve this, we first eliminate distances smaller than 1, then
eliminate distances larger than 2, and then eliminate distances in (1, 2).

We first prove the following result concerning the local transformations. We remind the reader
that an ultrametric T is defined as a metric with the property that for i, j, k ∈ S we have T (i, j) ≤
max{T (i, k), T (j, k)}.

Lemma 27. Let S be a set of species, D :
(
S
2

)
→ {1, 2} be a distance function with distances only

in {1, 2}, and T be a rooted tree such that each species i ∈ S corresponds to a leaf in T (more
than one species may correspond to the same leaf) and all leaves are at the same depth. Then, in
polynomial time, we can create a tree T1,2 describing an ultrametric with distances only in {1, 2}
such that ‖T1,2 −D‖1 ≤ ‖T −D‖1.

Proof. We set T ′ = T and apply the following local transformation to T ′. If T (i, j) < 1, we
set T ′(i, j) = 1. It holds that ‖T ′ − D‖1 ≤ ‖T − D‖1 as D(i, j) ≥ 1 and T (i, j) < 1 implies
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|1−D(i, j)| < |T (i, j)−D(i, j)|. Furthermore T ′ still describes an ultrametric. To see this, notice
that max{T ′(i, k), T ′(j, k)} ≥ max{T (i, k), T (j, k)} ≥ T (i, j) as we do not decrease distances and T
is an ultrametric. Therefore if T ′(i, j) > max{T ′(i, k), T ′(j, k)}, this means that T ′(i, j) > T (i, j).
But this only happens if T ′(i, j) = 1, which is a lower bound on T ′(i, k), T ′(j, k) by construction.
This contradicts that T ′(i, j) > max{T ′(i, k), T ′(j, k)}, therefore T ′ describes an ultrametric. Notice
that no two species in S coincide in the same node in T ′ as the minimum distance between any two
distinct species is 1.

Similarly, we set T ′′ = T ′ and apply the following local transformation to T ′′. If T ′(i, j) > 2,
we set T ′′(i, j) = 2. It holds that ‖T ′′ − D‖1 ≤ ‖T ′ − D‖1 as D(i, j) ≤ 2 and T ′(i, j) > 2 implies
|2 − D(i, j)| < |T ′(i, j) − D(i, j)|. Furthermore T ′′ still describes an ultrametric. To see this,
notice that T ′′(i, j) ≤ T ′(i, j) ≤ max{T ′(i, k), T ′(j, k)}. If T ′′(i, j) > max{T ′′(i, k), T ′′(j, k)} then
max{T ′′(i, k), T ′′(j, k)} < max{T ′(i, k), T ′(j, k)} which only happens if either of T ′(i, k) or T ′(j, k)
dropped to 2, meaning that max{T ′′(i, k), T ′′(j, k)} = 2. But 2 is an upper bound on T ′′(i, j). This
contradicts that T ′′(i, j) > max{T ′′(i, k), T ′′(j, k)}, therefore T ′′ describes an ultrametric.

Now, by construction, the ultrametric tree describing T ′′ has leaves at depth 1 (the maximum
distance is 2) and internal nodes at depth between 0 and 0.5 (the minimum distance is 1). If an
internal node u has depth du ∈ (0, 0.5), let x1 be the number of pairs {i, j} ⊆

(
S
2

)
whose nearest

common ancestor is u and D(i, j) = 1, and x2 be the number of pairs {i, j} ⊆
(
S
2

)
whose nearest

common ancestor is u and D(i, j) = 2. If x2 ≥ x1, we remove u and connect the children of u directly
with the parent of u. We still have an ultrametric as we have an ultrametric tree describing the
metric. The L1 error is not larger, as the error of x2 pairs drops by twice the absolute difference
in depths between u and its parent (their distance increases but does not exceed 2), and the error
of x1 ≤ x2 pairs increases by the same amount. Otherwise x2 < x1. In this case we increase the
depth of u until it coincides with the depth of some of its children, and merge these children with
u. Similarly with the previous argument, we still have an ultrametric with smaller L1 error.

Each time we apply the above step, we remove at least one node from our tree. Therefore
when we can no longer apply this step, we spent polynomial time and acquired an ultrametric T1,2

with distances only in {1, 2} whose L1 error from D is ‖T1,2 − D‖1 ≤ ‖T ′′ − D‖1 ≤ ‖T ′ − D‖1 ≤
‖T −D‖1.

Theorem 28. L1-fitting ultrametrics is APX-Hard. In particular, L1-fitting ultrametrics where
the input only contains distances in {1, 2} is APX-Hard.

Proof. Let D :
(
S
2

)
→ {1, 2} be a distance function, OPT be the optimal ultrametric for the

L1-fitting ultrametrics problem, and OPT1,2 be the optimal ultrametric for the L1-fitting {1, 2}-
ultrametrics. We solve this L1-fitting ultrametrics instance in polynomial time and obtain T such
that ‖T − D‖1 ≤ (1 + ε)OPT for a sufficiently small constant ε, as we assumed that L1-fitting
ultrametrics is not APX-Hard. Notice that any solution to the L1-fitting {1, 2}-ultrametrics is also
a solution to the L1-fitting ultrametrics, meaning that ‖T −D‖1 ≤ (1 + ε)OPT ≤ (1 + ε)OPT1,2.

Let T1,2 be the ultrametric we get from T by applying Lemma 27. Then T1,2 is a solution to
the L1-fitting {1, 2}-ultrametrics instance, and ‖T1,2 − D‖1 ≤ ‖T − D‖1 ≤ (1 + ε)OPT1,2. This
contradicts the fact that L1-fitting {1, 2}-ultrametrics is APX-Hard.

9.2 L1-fitting tree metrics

In this section, we show that L1-fitting tree metrics is APX-Hard. Our reduction is based on the
techniques used in [27] to prove NP-Hardness of the same problem. The bird’s eye view of our
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approach is that we solve L1-fitting ultrametrics by solving L1-fitting tree metrics on a modified
instance. In this instance we introduce new species having small distance to each other and large
distance to the original species. Through a sequence of local transformations, we show that we can
modify the tree describing the obtained tree metric so as to consist of a star connecting the new
species, and an ultrametric tree connecting the original species (the center of the star and the root
of the ultrametric tree are connected by a large edge). This ultrametric would refute APX-Hardness
of L1-fitting ultrametrics, in case L1-fitting tree metrics was not APX-Hard.

Theorem 29. L1-fitting tree metrics is APX-Hard.

Proof. Let D :
(
S
2

)
→ {1, 2} be an input to L1-fitting ultrametrics, such that all distances in D

are in {1, 2}. Moreover, let n = |S| and OPTD,U be the ultrametric minimizing ‖OPTD,U − D‖1.
By Theorem 28, this problem is APX-Hard. For the sake of contradiction, assume L1-fitting tree
metrics is not APX-Hard.

Let ε ∈ (0, 1) be a sufficiently small constant, and M = 2(1 + ε)
(
n
2

)
+ 1 be a large value. We

extend S to S′ ⊇ S such that |S′| = 2n. For {i, j} ∈
(
S
2

)
we set D′(i, j) = D(i, j). For i, j ∈

(
S′\S

2

)

we set D′(i, j) = 2. For all other i, j we set D′(i, j) = M . As we assumed L1-fitting tree metrics not
to be APX-Hard, in polynomial time we can compute T , a tree metric such that for any other tree
metric T0 it holds that ‖T −D′‖1 ≤ (1 + ε)‖T0 −D′‖, for sufficiently small ε such that 0 < ε < 1.

We first show that each species k ∈ S′ \ S has an incident edge contained in all paths from
this species to any species in S. To do so, we need to upper bound ‖T − D′‖1. If we make a star
whose leaves are the species in S with distance 1 from the center, a second star whose leaves are
the species in S′ \ S with distance 1 from the center, and connect the two centers with an edge of
weight M − 2 then only pairs with both species in S may have the wrong distance, and the error
for each such pair is at most one. Therefore ‖T −D′‖1 ≤ (1 + ε)

(
n
2

)
. This means that if k ∈ S′ \ S,

then in the tree describing T there exists a path Πk starting from k and having weight larger than
1, such that the path from k to any species i ∈ S has Πk as a prefix. To see why this is true,
notice that otherwise two species i, j would exist such that the paths from k to i and from k to
j only share a prefix Πi,j of weight wΠi,j ≤ 1. But T (i, k) > M/2 as otherwise we would have
‖T −D′‖1 ≥ |T (i, k)−D′(i, k)| ≥ M/2 > (1 + ε)

(
n
2

)
, and similarly T (j, k) > M/2. Then T (i, j) =

T (i, k) + T (j, k)− 2 · wΠi,j > M − 2, meaning again ‖T −D′‖1 > |T (i, j)−D′(i, j)| > (1 + ε)
(
n
2

)
.

Using the aforementioned structural property, we show how to modify our tree so that all species
in S are close to each other, all species in S′ \S are close to each other, but species in S are far from
species in S′ \ S. Let k ∈ S′ \ S be the species minimizing

∑
i∈S |T (i, k)−D′(i, k)|. We transform

the tree describing T by inserting a node u in the path Πk at distance 1 from k, and creating a
star with u as its center and all species in S′ \ S as leaves at distance 1. Let T ′ be the resulting
tree metric and notice that ‖T ′ − D′‖1 ≤ ‖T − D′‖1 because the errors from species in S′ \ S to
species in S did not increase (by definition of k), the errors between species in S′ \ S are exactly
zero, and the errors between species in S stay exactly the same (we did not modify the part of the
tree formed by the union of paths between species in S).

Then, we modify the tree describing T ′ to obtain T ′′ so that the distance from any species in
S to any species in S′ \ S is M . If for any i ∈ S we have T ′(i, k) 6= M , we move i in the tree so
as to make its distance with k equal to M : if T ′(i, k) < M , we create a new leaf node connected
with i with distance M − T ′(i, k), and move i to this new leaf node. Else if T ′(i, k) > M there
exists an i′ (possibly by subdividing an edge) in the path from k to i having distance M from k
and we move i to this node. Notice that ‖T ′′ − D′‖1 ≤ ‖T ′ − D′‖1 because we move each i ∈ S
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by |M − T ′(i, k)| so that it has zero error with each k′ ∈ S′ \ S, meaning that the error drops by
|S′ \ S||M − T ′(i, k)| = n|M − T ′(i, k)| (|M − T ′(i, k)| for each k′ ∈ S′ \ S), and increases by at
most (n− 1)|M − T ′(i, k)| (|M − T ′(i, k)| for each i′ ∈ S \ {i}).

If we remove all nodes not in a path from k to any i ∈ S in the tree describing T ′′, then by
construction we have a tree TD,U rooted at k, having leaves identified with the species in S, and all
leaves having depth M . By the above discussion its error is ‖TD,U − D‖1 = ‖T ′′ − D′‖1. As some
species may coincide in the same nodes, we get an ultrametric T ′D,U of S having the aforementioned
properties so that no two species coincide in the same node, using Lemma 27.

Notice that OPTD,U has maximum distance between species less than M ; otherwise its error
would be at least M − 2, which is a contradiction to the fact that an ultrametric where all species
have distance 1 has error at most

(
n
2

)
< M − 2. But then we can take the tree describing this

optimal ultrametric, connect its root with a node u so that u has distance M −1 to all species in S,
and identify each species k′ ∈ S′ \ S with a leaf u′k′ connected with u with an edge of weight 1. If
the resulting tree metric is T1, then ‖OPTD,U−D‖1 = ‖T1−D′‖1. We conclude that ‖T ′D,U−D‖1 =
‖TD,U −D‖1 = ‖T ′′−D′‖1 ≤ ‖T ′−D′‖1 ≤ ‖T −D′‖1 ≤ (1 + ε)‖T1−D′‖1 = (1 + ε)‖OPTD,U −D‖1.
This contradicts Theorem 28.

10 Conclusion

We have given the first constant factor approximation for L1-fitting tree metrics, the first improve-
ment on the problem for the last 16 years. This problem was one of the relatively few remaining
problems for which obtaining a constant factor approximation or showing hardness was open.
Breaking through the best known O((log n)(log log n))-approximation had thus been stated as a
fascinating open problem.

Interestingly, our journey brought us to the study of a natural definition of hierarchical cluster
agreement that may be of broader interest, in particular to the data mining community where
correlation clustering has been a successful objective function and where hierarchical clustering is
often desired in practice.

Finding a polynomial time constant factor approximation (or showing that this is hard, e.g., by
reduction to unique games) for L2-fitting tree metrics is a great open problem. Recall from Section 8
that it suffices to focus on approximating the problem of fitting into an arbitrary ultrametric (no
need for restricted versions). Finally, the O((log n)(log log n))-approximation algorithm of Ailon
and Charikar for the weighted case (where the cost of an edge is weighted by an input edge weight)
could potentially be improved to O(log n) without improving multicut, and it would be interesting
to do so. Going even further would require improving the best known bounds for multicut, a
notoriously hard problem.
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1 Introduction

Clustering is a fundamental task related to unsupervised learning, with many applications in
machine learning and data mining. The goal of clustering is to partition a set of objects into
disjoint clusters, such that (ideally) all objects within a cluster are similar, and objects in
different clusters are dissimilar. As no single definition best captures this high-level goal, a
lot of different clustering objectives have been suggested.



2 Constrained Correlation Clustering

Correlation Clustering is one of the most well studied such formulations for a multitude
of reasons: its definition is simple and natural, it does not need the number of clusters to be
part of the input, and it has found success in many applications. Some few examples include
automated labeling [1, 8], clustering ensembles [6], community detection [11], disambiguation
tasks [15], duplicate detection [3] and image segmentation [16, 22].

In Correlation Clustering, we are given a graph G = (V, E), and the output is a partition
C = {C1, . . . , Ck} of the vertex-set V . We refer to the sets Ci of C as clusters. We define
EC =

⋃k
i=1

(
Ci

2
)
, that is we think of each cluster as a clique over its nodes. The goal is to

minimize |E△EC |. In other words the goal is to approximate the input graph by a collection
of cliques.

The intuition is the following: the input graph describes preferences, where an edge
implies that we prefer its two endpoints to be clustered together, and a non-edge implies
that we prefer them not to be clustered together. The output is a clustering (partition) of
V , which defines a graph (V, EC) such that two nodes share an edge if and only if they are
in the same cluster. The definition of EC makes the cost |E△EC | equal to the number of
violated preferences (edges of G with endpoints in different clusters, and non-edges of G with
endpoints in the same cluster).

1.1 Previous Results
The problem was initially introduced by Bansal et al. [5], who proved that it is NP-Hard,
and provided a deterministic combinatorial1 algorithm with an O(1) approximation factor,
the constant being larger than 15, 000. The improvements that followed were all based on
rounding the natural LP: Charikar et al. gave a deterministic 4 approximation [9], while
Ailon et al. gave a randomized 2.5 approximation and proved that the problem is APX-Hard
[2]. Finally a deterministic 2.06 approximation was given by Chawla et al. [10]. The last
result is near-optimal among algorithms rounding the natural LP, as its integrality gap is at
least 2.

Given the importance of Correlation Clustering, research does not only focus on improving
its approximation factor. Another important goal is the design of combinatorial algorithms;
in the same paper with their 2.5 approximation [2], Charikar et al. design a randomized
3 approximation algorithm, which, despite its worse approximation, enjoys the benefit of
being combinatorial. Similarly, much later than the 2.06 approximation [10], we have a
combinatorial 6 approximation [20]. Deterministic algorithms is also an important direction.
It is explicitly pursued by [19] and [20], and is also a significant part of the technical
contribution of [10].

An interesting class of algorithms for Correlation Clustering is pivoting algorithms. These
are algorithms that, based on some criterion, pick an object (the pivot) and set the first
cluster to be the pivot along with all the objects that prefer to be with the pivot. Then
these objects are removed and we recurse on the remaining ones. Such algorithms are very
simple and enjoy properties that are crucial in certain applications [19]. In [2] a randomized
combinatorial pivoting algorithm with a 3 approximation was given. In [19] a deterministic
pivoting algorithm also achieved 3 approximation, and avoided randomization by rounding
an LP. However, if we insist on both deterministic and combinatorial algorithms, no constant
factor approximation based on pivoting is known.

Correlation Clustering has also been studied in different settings such as parameterized

1 Throughout this work, we use the term combinatorial to refer to algorithms that do not use LP.
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algorithms [14], sublinear and streaming algorithms [4], massively parallel computation
(MPC) algorithms [12], and differentially private algorithms [7].

In the weighted version of Correlation Clustering, we are also given a weight for each
preference. The final cost is then the sum of weights of the violated preferences. An O(log n)
approximation for weighted Correlation Clustering is known by Demaine et al. [13]. In the
same paper they show that the problem is equivalent to Multicut, meaning that an o(log n)
approximation would require a major breakthrough. As efficiently approximating the general
weighted version is out of reach, research has focused on special cases for which constant
factor approximations are possible [17, 18].

Constrained Correlation Clustering is an interesting variant of Correlation Clustering
capturing the idea of critical pairs of nodes. To address these situations, Constrained
Correlation Clustering also introduces hard constraints. A clustering is valid if it satisfies all
hard constraints, and the goal is to find a valid clustering of minimal cost.

Constrained Correlation Clustering can be phrased as a restrictive weighting of Correlation
Clustering as well: we simply give infinite weight to pairs associated with a hard constraint,
and weight 1 to all other pairs.

Our paper is mostly related to the work of van Zuylen at al. on Constrained Correlation
Clustering, who designed a deterministic 3 approximation [19]. Their algorithm works in
two steps.

1. The hard constraints are used to create an edge-set E′ from input (V, E) such that any
pivoting algorithm applied to (V, E′) would result in a valid clustering of V .

2. It then treats (V, E′) as an instance of (unconstrained) Correlation Clustering, ignoring
the actual hard constraints. On this graph it applies a pivoting algorithm.

We note that the algorithm itself is not pivoting, as it first modifies the preferences graph;
in fact no pivoting algorithm can exist for Constrained Correlation Clustering. It is however
crucial that a pivoting algorithm is used on the unconstrained instance (step 2), as this is
what ensures that no hard constraint is violated.

Throughout [19], the authors give deterministic algorithms for several problems, and
whenever possible, combinatorial algorithms are preferred. Their solution for Constrained
Correlation Clustering is, however, not combinatorial; in fact both the modification of the
graph and the pivoting algorithm need to use the values of the LP variables.

1.2 Our contribution
In this work we solve Constrained Correlation Clustering deterministically and combinatorially.
In order to achieve this, we give deterministic combinatorial counterparts for both steps of
the algorithm in [19].

For the first step, our algorithm carefully modifies the input graph so that on one hand
the optimal cost is not significantly changed, and on the other hand any pivoting algorithm
on the transformed graph returns a clustering that respects all hard constraints. As we
cannot use LP to lower bound the optimal value, we rely on subgraphs of the original graph
for which we argue that any valid clustering needs to pay.

Concerning the second step, we design a deterministic combinatorial algorithm for
(unconstrained) Correlation Clustering based on pivoting. No such algorithm was known
before. In fact, the approximation factor of our algorithm is the best known among all
deterministic combinatorial algorithms for Correlation Clustering, not just pivoting ones.
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▶ Theorem 1. There exists a deterministic combinatorial algorithm based on pivoting that
solves Correlation Clustering in O(|V |6) time with a 5.8 approximation factor. There exists
a faster such algorithm running in O(|V |3) time, with a 9 approximation.

Exactly as in [19], our overall algorithm for Constrained Correlation Clustering is not
pivoting as no pivoting algorithm can exist for Constrained Correlation Clustering; only the
subroutine for unconstrained Correlation Clustering (step 2) is pivoting.

Concerning the effect of modifying the graph, roughly speaking we get that the final
approximation factor is (2 +

√
5) · α + 3, where α is the approximation factor of the

pivoting algorithm we use. Along with two combinatorial pivoting algorithms (randomized 3
approximation from [2] and deterministic 5.8 and 9 approximation from Theorem 1) we get
the first combinatorial algorithms for Constrained Correlation Clustering:

▶ Theorem 2. There exists a randomized combinatorial algorithm that solves Constrained
Correlation Clustering in O(|V |(|V |+ |E|)) time with an expected approximation factor less
than 16.

▶ Theorem 3. There exists a deterministic combinatorial algorithm that solves Constrained
Correlation Clustering in O(|V |6) time with an approximation factor less than 29. There
exists a faster such algorithm running in O(|V |3) time, with a 42 approximation.

A result of independent interest concerning the unconstrained Correlation Clustering is a
lower bound on the approximation factor of any pivoting algorithm:

▶ Theorem 4. No pivoting algorithm for Correlation Clustering has 3−Ω(1) approximation
factor.

Notice that if we are satisfied with randomized pivoting algorithms, then Theorem 4 implies
that the algorithm from [2] is optimal. Similarly, if we are satisfied with non-combinatorial
pivoting algorithms, then the algorithm from [19] is optimal.

In this work we also introduce the Node-Weighted Correlation Clustering problem.
As weighted Correlation Clustering is equivalent to Multicut, improving over the current
Θ(log n) approximation seems out of reach. The advantage of our alternative type of weighted
Correlation Clustering is that it is natural and approximable within a constant factor.

In Node-Weighted Correlation Clustering we assign weights to the nodes, rather than
on pairs of nodes. Violating a preference between nodes u, v with weights w(u), w(v) costs
w(u)·w(v). We provide a randomized combinatorial algorithm for Node-Weighted Correlation
Clustering with a 3 approximation factor.

▶ Theorem 5. There exists a randomized combinatorial algorithm for Node-Weighted Cor-
relation Clustering with a 3 approximation factor. Its running time is O(|V |+ |E|).

In order to solve Node-Weighted Correlation Clustering, we reduce it to a Constrained Cor-
relation Clustering instance. Even though the size of the new instance may be exponentially
larger, we show that its special structure allows us to solve it efficiently.

In fact, the final algorithm boils down to a modification of the pivoting algorithm from [2],
where instead of sampling uniformly at random, we sample with probabilities proportional
to the weights. However, it is not clear to us whether a modification of the original analysis
could work, as it relies on the fact that the instance is unweighted2.

2 For the more knowledgeable reader, in the original analysis it is enough that any clustering pays at
least 1 for a bad triplet, no matter which of the 3 implied preferences is violated. In our weighted case
however this is not enough, as the 3 preferences may have significantly different weights.
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2 Preliminaries

We denote the set {1, . . . , n} by [n]. We denote all subsets of size k of a set S by
(

S
k

)
. The

symmetric difference between two sets A, B is denoted by A△B.
Given a graph G = (V, E) and two disjoint subsets U1, U2 ⊆ V , we denote the set of

edges with one endpoint in U1 and the other in U2 by E(U1, U2). The subgraph of G induced
by vertex-set U1 is denoted by G[U1]. We denote by Kn1,n2 the complete bipartite graph on
n1 vertices on one set of the bipartition and n2 on the other.

We use the terms clustering and partition interchangeably. We say that the edge-set of a
clustering C = {C1, . . . Ck} of V is the set of pairs with both endpoints in the same set in C.
More formally, the edge-set of C is

⋃k
i=1

(
Ci

2
)
.

We now formally define the problems of interest. We start with the simplest problem,
(unweighted) Correlation Clustering.

▶ Definition 6. Correlation Clustering: The input is a set of nodes V and a set of edges
E ⊆

(
V
2
)
. The output is a clustering C = {C1, C2, . . . , Ck} of V with edge-set EC minimizing

|E△EC |.

An algorithm for Correlation Clustering is said to be pivoting if based on some criterion it
picks an unclustered node u (which we call the pivot), creates a cluster containing u and all
its unclustered neighbors in (V, E), and repeats the same process until all nodes are clustered.

The constrained version of Correlation Clustering is defined as:

▶ Definition 7. Constrained Correlation Clustering: The input is a set of nodes V , a set of
edges E ⊆

(
V
2
)
, a set of friendly pairs F ⊆

(
V
2
)

and a set of hostile pairs H ⊆
(

V
2
)
. The output

is a clustering C = {C1, C2, . . . , Ck} of V with edge-set EC such that no pair {u, v} ∈ F has
u, v in different clusters and no pair {u, v} ∈ H has u, v in the same cluster. The clustering
C shall minimize |E△EC |.

We refer to the set of nodes of a connected component of (V, F ) as a supernode. The
set of supernodes partition V and is denoted by SN . Given a node u, we let s(u) be the
unique supernode containing u. Two supernodes U, W are hostile if there exists a hostile
pair {u, w} with u ∈ U, w ∈W . Two supernodes U, W are connected if |E(U, W )| ≥ 1. Two
supernodes U, W are β-connected if |E(U, W )| ≥ β|U ||W |.

We also introduce Node-Weighted Correlation Clustering, a new related problem that
may be of independent interest. It is defined as follows:

▶ Definition 8. Node-Weighted Correlation Clustering: The input is a set of nodes V , a
set of edges E ⊆

(
V
2
)
, and a weight function w : V → N>0. The output is a clustering

C = {C1, C2, . . . , Ck} of V with edge-set EC minimizing

∑

{u,v}∈E△EC

w(u) · w(v)

This is similar to Correlation Clustering, but in the end we pay w(u) ·w(v) (instead of 1)
for each pair {u, v} violating a preference.

The model of computation for all problems considered is the standard word RAM, with
word size w = Θ(log |V |).
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3 Combinatorial Algorithms for Constrained Correlation Clustering

The first step of our combinatorial approach is to transform the graph G in a more manageable
form G′. The high-level idea is that in G′:
1. if {u, v} is a friendly pair, then u and v are connected and have the same neighborhood.
2. if {u, v} is a hostile pair, then u and v are not connected and have no common neighbor.
3. an O(1) approximation of the G′ instance is also an O(1) approximation of the G instance.

As was already noticed in [19], Properties 1 and 2 imply that a pivoting algorithm on G′

gives a clustering satisfying the hard constraints. Along with Property 3 and the randomized
pivoting O(1) approximation from [2], we prove Theorem 2. Similarly, using our deterministic
pivoting O(1) approximation from Section 4, we prove Theorem 3.

3

1

4

7 6

2
5

(a) The original graph. The set of friendly
pairs is F = {{1, 2}, {2, 3}, {4, 5}, {6, 7}},
and the only hostile pair in H is {2, 5}.

2

3

1

4

5

7 6

(b) Line 3 introduces edge {1, 3}, and
Line 4 disconnects the supernodes contain-
ing 2 and 5.

2

3

1

4

5

7 6

(c) Line 6 removes the pair of edges {1, 7}
and {4, 6} because 1, 4 are in hostile super-
nodes while 6, 7 are in the same supernode.

2

3

1

4

5

7 6

(d) Line 9 introduces all edges connecting
supernodes {4, 5} and {6, 7} because there
were enough edges between them already.

Figure 1 Procedure TRANSFORM (Algorithm 1). For any two supernodes U1, U2, either all
pairs with an endpoint in U1 and an endpoint in U2 share an edge, or none of them does. Furthermore
all pairs within a supernode are connected and no hostile supernodes are connected.

Our algorithm works as follows. If some supernode is hostile to itself, then it outputs
that no clustering satisfies the hard constraints. Else, starting from edge-set E, it adds all
edges within a supernode. Then it drops all edges between hostile supernodes. Subsequently,
it repeatedly detects hostile supernodes that are connected with the same supernode, and
drops one edge from each such connection. Finally, for each β-connected pair of supernodes,
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Algorithm 1 The procedure MAIN is given a vertex-set V , an edge-set E describing the
preferences, a set of friendly pairs F , a set of hostile pairs H, and a Pivoting_Algorithm
for Correlation Clustering. It creates a new G′ using procedure TRANSFORM and uses
Pivoting_Algorithm on G′ to return a clustering.

Procedure TRANSFORM(G = (V, E), F, H)
1 Compute the connected components of (V, F )

// Impossible iff some pair must both be and not be in the same
cluster.

2 if ∃U ∈ SN hostile to itself then return G′ = (∅, ∅)

// Connect nodes in the same supernode.
3 E1 ← E ∪ {{u, v} ∈

(
V
2
)
| s(u) = s(v)}

// Disconnect pairs in hostile supernodes.
4 E2 ← E1 − {{u, v} ∈

(
V
2
)
| s(u) and s(v) are hostile}

// While hostile supernodes U1, U2 are both connected with supernode
U3, drop an edge between U1, U3 and an edge between U2, U3

5 E3 ← E2

6 while ∃U1, U2, U3 ∈
(

SN
3

)
such that U1, U2 are hostile and

∃u1 ∈ U1, u2 ∈ U2, u3 ∈ U3, u′
3 ∈ U3 such that {u1, u3} ∈ E3, {u2, u′

3} ∈ E3 do
7 E3 ← E3 − {{u1, u3}, {u2, u′

3}}

// Round connections between pairs of supernodes
8 E4 ← E3

9 foreach {U1, U2} ∈
(

SN
2

)
do

10 EU1,U2 ← {{u1, u2} | u1 ∈ U1, u2 ∈ U2}
11 if |EU1,U2 ∩ E4| > 3−

√
5

2 |U1||U2| then E4 ← E4 ∪ EU1,U2

12 else E4 ← E4 − EU1,U2

13 return G′ = (V, E4)

Procedure MAIN(G = (V, E), F, H, Pivoting_Algorithm)
14 G′ ← TRANSFORM(G=(V,E), F, H )
15 if G′ = (∅, ∅) then return “Impossible”
16 return Pivoting_Algorithm(G′)

it connects all their nodes if β > 3−
√

5
2 , and disconnects them otherwise3.

From a high-level view, the first two modifications are directly related to the hard
constraints: if u1, u2 are friendly and u2, u3 are friendly, then any valid clustering has u1, u3
in the same cluster, even if a preference discourages it. Similarly, if u1, u2 are friendly, u3, u4

3 The constant 3−
√

5
2 optimizes the approximation factor. The natural choice of 0.5 would still give a

constant approximation factor, although slightly worse.
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are friendly, but u1, u3 are hostile, then any valid clustering has u2, u4 in different clusters,
even if a preference discourages it. Our first two modifications simply make the preferences
consistent with the hard constraints.

The third modification guarantees that hostile supernodes share no common neighbor.
Intuitively, a pivoting algorithm will thus never put their nodes in the same cluster, as the
hostility constraints require. Concerning the cost, notice that if hostile supernodes U1, U2
are connected with supernode U3, then no valid clustering can put all three of them in the
same cluster. Therefore we always need to pay either for the connections between U1 and
U3, or for the connections between U2 and U3.

Finally, after rounding, for each pair of supernodes U1, U2, the edge-set E(U1, U2) is either
empty or the full set of size |U1||U2|. This ensures that a pivoting algorithm always puts
all nodes of a supernode in the same cluster, thus also obeying the friendliness constraints.
Concerning the cost of the rounded instance, a case analysis shows that it is always within a
constant factor of the cost of the instance before rounding.

Before proceeding with the approximation ratio and the correctness, we first prove the
running time of our algorithm.

▶ Lemma 9. The running time of Algorithm 1 is O(|V |(|V |+ |E|) + T (|V |,
(|V |

2
)
)), where

T (n, m) is an upper bound on the running time of the pivoting algorithm we use on a graph
with n nodes and m edges.

Proof. Computing the connected components of (V, F ) takes O(|V |+ |F |) time. Adding all
the edges between supernodes takes O(|V |2) time. Then we can contract the supernodes
(allowing parallel edges) in O(|V |2) time. Removing the edges between hostile supernodes
takes O(|E|+ |H|) time.

For the steps in the loop of Line 6, notice that there are at most |E| edges connecting
distinct supernodes, as the only edges we added were internal in supernodes. We can iterate
over all these edges {u, v}, and over all supernodes W . If W is connected with s(u) and
hostile with s(v), then we remove {u, v} and an arbitrary edge connecting W with s(u), and
similarly if W is connected with s(v) and hostile with s(u). This takes O(|V ||E|) time. Each
pair of edges removed trivially satisfies the requirements of Line 6. As we do not add edges
in this step, it is impossible that when finishing there is still a pair of edges {e1, e2} that
needed to be removed; when processing e1, we would remove e1 along with some other edge
(possibly different from e2).

Rounding the connections between pairs of supernodes is done in O(|V |2) time.
The final graph may have at most

(|V |
2

)
edges (even if |E| was much smaller, e.g. in the

case where all nodes belong in the same supernode), therefore the time spent by the pivoting
algorithm is at most T (|V |,

(|V |
2

)
).

The claimed bound follows by both |F | and |H| being O(|V |2). ◀

3.1 Approximation factor
In this section we prove the approximation factor of Algorithm 1. We assume that there
exists at least one clustering satisfying the hard constraints.

We will use the following terminology. Let E′ be the edge-set of the transformed graph
G′, E 1

2
be the edge-set at Line 8 (exactly before the rounding step), OPT be the edge-set of

an optimal clustering for E satisfying the hard constraints described by F and H, OPT ′ be
the edge-set of an optimal clustering for the preferences defined by E′, and C be the edge-set
of the clustering returned by our algorithm. Finally, let α be the approximation factor of the
Pivoting_Algorithm we use.
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We start with a simple observation about supernodes.

▶ Lemma 10. Given an instance (V, E, F, H) of Constrained Correlation Clustering, if two
nodes u1, u2 are in the same supernode, then they must be in the same cluster.

Proof. The proof follows by “in the same cluster” being a transitive property.
More formally, u1, u2 are in the same connected component in (V, F ), as s(u1) = s(u2).

Thus there exists a path from u1 to u2. We claim that all nodes in a path must be in the same
cluster. This is trivial if the path is of length 0 (u1 = u2) or of length 1 ({u1, u2} ∈ F ). Else,
the path is u1, w1, . . . , wk, u2 for some k ≥ 1. We inductively have that all of w1, . . . , wk, u2
must be in the same cluster, and u1 must be in the same cluster with w1 because {u1, w1} ∈ F .
Therefore all nodes in the path must be in the same cluster with w1. ◀

We now show that it is enough to bound the symmetric difference between E and E′, or
in other words changes in the graph created by our algorithm. The high level idea is that for
any fixed clustering, the difference between the cost of the clustering with respect to E and
the cost of the clustering with respect to E′ cannot be larger than |E△E′|. That is because
we can flip edges from E to reach E′ and then from E′ to reach the edge-set of the desired
clustering (triangle inequality). The proof uses manipulations of triangle inequality and the
definition of C.

▶ Lemma 11. The cost of our clustering is |E△C| ≤ (α + 1)|E△E′|+ α|E△OPT |.

Proof. Symmetric difference satisfies the triangle inequality, therefore we have

|E△C| ≤ |E△E′|+ |E′△C|

As C is an α approximation of the optimal clustering OPT ′ for E′, it is also an α approxim-
ation of any clustering for E′, including OPT . Therefore:

|E△C| ≤ |E△E′|+ α|E′△OPT |

Using the triangle inequality again, we get

|E△C| ≤ |E△E′|+ α|E′△E|+ α|E△OPT |

which proves our claim. ◀

In order to upper bound |E△E′| related to the cost of the optimal clustering |E△OPT |,
we first need to lower bound the cost of the optimal clustering.

▶ Lemma 12. Let S be the set of all pairs of distinct supernodes U, W that are in the same
cluster in OPT . Then |E△OPT | ≥∑

{U,W }∈S |E(U, W )△E 1
2
(U, W )|.

Proof. The high level idea is that when a node is connected to two hostile nodes, then
any valid clustering needs to pay for at least one of these edges. Extending this fact to
supernodes, we construct an edge-set of size

∑
{U,W }∈S |E(U, W )△E 1

2
(U, W )| such that the

optimal clustering needs to pay for each edge in this set.
First, for any {U, w} ∈ S it holds that E(U, W )△E 1

2
(U, W ) = E(U, W ) \ E 1

2
(U, W )

because Line 3 does not modify edges between pairs of distinct supernodes, and Lines 4 and
6 only removes edges. Each edge of E(U, W ) \ E 1

2
(U, W ) is the result of applying Line 6,

seeing as Line 4 only removes edges from hostile pairs of supernodes.
Thus each edge {u, w} ∈ E(U, W ) \ E 1

2
(U, W ) can be paired up with a unique edge

{x, y} ∈ E which is removed together with {u, w}. Without loss of generality it holds that
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x ∈ U, y ∈ Z for some supernode Z different from U and W . Due to the way Line 6 chooses
edges it must be the case that Z and W are hostile, hence {x, y} ∈ E△OPT .

Summing over all pairs of clustered supernodes gives the result stated in the lemma. ◀

We are now ready to bound |E△E′|.

▶ Lemma 13. |E△E′| ≤ (1 +
√

5)|E△OPT |

Proof. To prove this, we first charge each pair of nodes in a way such that the total charge
is at most 2|E△OPT |. Then we partition the pairs of nodes into 5 different sets, and show
that the size of the intersection between E△E′ and each of the 5 sets is at most (1+

√
5)

2
times the total charge given to the pairs in the given set.

The first three sets contain the pairs across non-hostile supernodes; out of them the first
one is the most technically challenging, requiring a combination of Lemma 12 (related to
Line 6) and a direct analysis on E△OPT , as neither of them would suffice on its own. The
analysis of the second and third sets relate to the rounding in Line 9. The fourth set contains
pairs across hostile supernodes, while the fifth set contains pairs within supernodes. Their
analysis is directly based on the hard constraints.

Concerning our charging scheme: first, each pair of nodes is charged 1 if the optimal
clustering pays for it, i.e. if this pair is in E△OPT . We also put charge 1 on certain pairs
not in E△OPT , namely on edges e ∈ E connecting supernodes that are put together in
the optimal clustering, and e ∈ E△E 1

2
. Notice that the number of such edges is a lower

bound on |E△OPT |, by Lemma 12. Therefore the total charge in all pairs of nodes is at
most 2|E△OPT | and no pair is charged twice.

Case 1: Consider two distinct supernodes U, W that are not hostile, have more than
3−

√
5

2 |U ||W | edges between them in E, and have at most 3−
√

5
2 |U ||W | edges in E 1

2
. Then

the rounding of Line 9 removes all edges between them. Therefore |E(U, W )△E′(U, W )| =
|E(U, W )| ≤ |U ||W |. If OPT separates U and W , then the pairs are charged |E(U, W )|;
else they are charged |U ||W | − |E(U, W )| due to the part of the charging scheme related to
E△OPT . In the latter case, they are also charged |E(U, W )| − |E 1

2
(U, W )| due to the part

of the charging scheme related to Lemma 12. Therefore they are charged at least

|U ||W | − |E(U, W )|+ |E(U, W )| − |E 1
2
(U, W )| = |U ||W | − |E 1

2
(U, W )|

≥ |U ||W | − 3−
√

5
2 |U ||W |

Thus, in the worst case, these pairs contribute max{ |E(U,W )|
|E(U,W )| ,

|E(U,W )|
|U ||W |− 3−

√
5

2 |U ||W |
} ≤ 1

1− 3−
√

5
2

=
(1+

√
5)

2 times more in |E△E′| compared to their charge.
Case 2: Consider two distinct supernodes U, W that are not hostile, have more than

3−
√

5
2 |U ||W | edges between them in E, and more than 3−

√
5

2 |U ||W | edges in E 1
2
. Then the

rounding of Line 9 will include all |U ||W | edges between them. Thus we have |E(U, W )△E′(U, W )| =
|U ||W |−|E(U, W )| < (1− 3−

√
5

2 )|U ||W |. If OPT separates U, W , then it pays for |E(U, W )| >
3−

√
5

2 |U ||W | pairs, else it pays for |U ||W | − |E(U, W )|. Thus, in the worst case, these pairs

contribute (1− 3−
√

5
2 )

3−
√

5
2

= (1+
√

5)
2 times more in |E△E′| compared to their charge.

Case 3: If two distinct supernodes U, W are not hostile and have at most 3−
√

5
2 |U ||W |

edges between them in E, then they also have at most that many edges in E 1
2

as we only
remove edges between such supernodes. Therefore after the rounding step there is no edge
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between them in E′, meaning that |E(U, W )△E′(U, W )| = |E(U, W )| ≤ 3−
√

5
2 |U ||W |. If

OPT separates U, W then it pays for |E(U, W )| pairs related to the connection between
U, W ; else it pays for |U ||W | − |E(U, W )| ≥ (1− 3−

√
5

2 )|U ||W | > 3−
√

5
2 |U ||W |. Thus, these

pairs’ contribution in |E△E′| is at most as much as their charge.
Case 4: Pairs {u, v} with s(u) ̸= s(v) and s(u) hostile with s(v) are not present in

E′. That is because by Line 4 no pair of hostile supernodes is connected; then Line 6
only removes edges, and Line 9 does not add any edge between s(u) and s(v) as they had
0 ≤ 3−

√
5

2 |s(u)||s(v)| edges between them. Edge {u, v} is also not present in OPT as s(u)
and s(v) are not in the same cluster because they are hostile. These pairs’ contribution in
|E△E′| is exactly equal to their charge.

Case 5: Pairs {u, v} with s(u) = s(v) are present in E′ by Line 3 and the fact that all
subsequent steps only modify edges whose endpoints are in different supernodes. Pair {u, v}
is also present in OPT , by Lemma 10. Therefore these pairs’ contribution in |E△E′| is
exactly equal to their charge.

In the worst case, the pairs of each of the five sets contribute at most (1+
√

5)
2 times more

in |E△E′| compared to their charge, which proves our lemma. ◀

3.2 Correctness
Having proven the approximation factor of Algorithm 1, in this section we prove its correctness.
That is, we prove that either the final algorithm satisfies all hard constraints, or no clustering
can satisfy the hard constraints and the algorithm outputs “Impossible”.

We start with showing that our algorithm correctly detects all cases where the hard
constraints are impossible to satisfy.

▶ Lemma 14. Given an instance (V, E, F, H) of Constrained Correlation Clustering, the
graph G′ ← TRANSFORM(V,E,F,H ) is equal to (∅, ∅) if and only if the Constrained
Correlation Clustering instance is impossible to satisfy.

Proof. We show that if two hostile nodes are in the same supernode, then the instance is not
satisfiable and the algorithm correctly determines it; on the other hand, if no such hostile
nodes exist, then there exists at least one valid clustering.

It holds that G′ = (∅, ∅) if there exist nodes u1, u2 such that u1, u2 are in the same
connected component of (V, F ) and {u1, u2} ∈ H. Then u1, u2 must be in the same cluster
(Lemma 10) and not be in the same cluster (because {u1, u2} ∈ H). Therefore the instance
is impossible to satisfy.

Else no u1, u2 in the same supernode are hostile. Creating a cluster for each supernode is a
valid clustering. To see this, notice that no hostility constraint is violated, by hypothesis. All
friendliness constraints are satisfied because any two nodes that must be linked belong in the
same supernode, and thus in the same cluster. Therefore such an instance is satisfiable. ◀

In the following we can thus assume that we have a satisfiable instance with no supernode
being hostile to itself.

The next lemma shows that friendly nodes have the same neighborhood and are connected.

▶ Lemma 15. Given a satisfiable instance (V, E, F, H) of Constrained Correlation Clustering,
let G′ ← TRANSFORM(V,E,F,H ). For any {u, v} ∈ F , it holds that u, v are connected in
G′ and their neighborhoods are the same.

Proof. The idea is that all nodes in the same supernode are explicitly connected by the
algorithm, in Line 3. Then all nodes of the same supernode connect to the exact same nodes
due to the rounding step in Line 9.
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More formally, as {u, v} ∈ F , they are trivially both in the same connected component of
(V, F ). Thus they are in the same supernode.

As s(u) = s(v), u and v get connected in Line 3. All subsequent steps only modify edges
{u′, v′} where s(u′) ̸= s(v′), therefore u, v remain connected in G′. Similarly both u and v

are connected with all other nodes in s(u).
For nodes w ̸∈ s(u), when {s(u), s(w)} is processed in the loop of Line 9, either both u

and v get connected to w or both get disconnected by w. ◀

Similarly, hostile nodes are disconnected and do not share any common neighbor.

▶ Lemma 16. Given a satisfiable instance (V, E, F, H) of Constrained Correlation Clustering,
let G′ ← TRANSFORM(V,E,F,H ). For any {u, v} ∈ H it holds that u, v are not connected
in G′ and they have no common neighbor.

Proof. The idea is that all nodes in hostile supernodes are explicitly disconnected by the
algorithm, in Line 4. Then if two hostile nodes share a common neighbor, we drop both
edges in Line 6.

More formally, as the instance is satisfiable, we have that s(u) ̸= s(v) by Lemma 14.
Therefore no node in s(u) is connected with a node in s(v) after Line 4. In Line 6 we only
remove edges, meaning that when we process {s(u), s(v)} in the loop of Line 9, the two
supernodes are not connected, and they stay like that. Thus u, v (and even s(u), s(v)) are
not connected in G′.

After Line 6, for any supernode W we have that at least one from s(u), s(v) are not
connected with W , or else the loop would not terminate. Assume without loss of generality
that s(u) is not connected with W . Therefore s(u) is also not connected with W after the
loop of Line 9, meaning that even if v is connected with a node w ∈W , u is not as s(u) is
not connected with s(w) = W . This guarantees that they have no common neighbor. ◀

With these lemmas, we can conclude that a pivoting algorithm on G′ gives a clustering
that satisfies the hard constraints. This was already observed in [19]; we include a short
proof for intuition, as we also use this lemma in Section 5.

▶ Lemma 17. Let (V, E, F, H) be a satisfiable instance of Constrained Correlation Clustering
and G′ = (V, E′) be a graph such that any two friendly nodes are connected and have the
same neighborhood in G′, while hostile nodes are not connected and have no common neighbor
in G′. Then applying a pivoting algorithm on G′ gives a clustering that satisfies the hard
constraints. In particular, this holds for G′ = TRANSFORM(V,E,F,H ).

Proof. The high level idea is that due to the assumptions, the choice of the first pivot does
not violate any hard constraint. As pivoting algorithms progress, they work with induced
subgraphs of the original graph, which also satisfy the assumptions, and therefore no hard
constraint is ever violated.

For the sake of contradiction, assume that two hostile nodes u, v are placed in the same
cluster by a pivoting algorithm. By definition of a pivoting algorithm, this happens when we
work with some V ′ ⊆ V on the induced subgraph G′[V ′], and we pivot on a node w that is
connected with both u, v. As w is connected with both u, v in G′[V ′], it is also connected
with u, v in G′. But this contradicts the assumption on hostile nodes.

Similarly, for the sake of contradiction assume that two friendly nodes u, v are put in
separate clusters by a pivoting algorithm. Without loss of generality assume that u is the first
to be placed in a cluster that does not contain v. Again, this happens when we work with
some V ′ ⊆ V on the induced subgraph G′[V ′], and we pivot on a node w that is connected
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with u but not with v. As G′[V ′] is an induced subgraph, w is connected with u but not
with v in G′. But this contradicts the assumption on friendly nodes.

Therefore, by Lemmas 15 and 16 the claim holds for G′ = TRANSFORM(V,E,F,H ). ◀

To prove Theorem 2, notice that there exists a randomized combinatorial pivoting
algorithm which gives a 3 approximation and runs in O(|V |+ |E|) = O(|V |2) time. Using
this algorithm in our Algorithm 1 gives a valid clustering. By Lemmas 11 and 13, its
approximation is 4(1 +

√
5) + 3 < 14. The running time follows from Lemma 9 and its

correctness by Lemma 17.
Similarly, Theorem 3 is proved by using the deterministic combinatorial pivoting al-

gorithms of Section 4.

4 Deterministic Combinatorial Pivoting for Correlation Clustering

4.1 Lower Bound

First, we prove Theorem 4, that is no pivoting algorithm for Correlation Clustering has
approximation factor 3− Ω(1).

Let G = ([n], E) be a graph where n is an even integer, and the edge-set contains all
pairs of nodes except for pairs of the form (2k + 1, 2k + 2) for integer k. In other words, the
edge-set of G contains all edges except for a perfect matching.

Notice that if we create a single cluster containing all nodes, then the cost is n
2 . On

the other hand, let u be the first choice that a pivoting algorithm makes. If u is even, let
v = u− 1, else let v = u + 1. By definition of G, v is the only node not adjacent to u. Then
the algorithm creates two clusters, one containing all nodes except for v, and one containing
only v. There are n− 2 edges across the two clusters, and n

2 − 1 missing edges in the big
cluster, meaning that the cost is 3n

2 − 3.

Therefore, the approximation factor of any pivoting algorithm is at least
3n
2 −3

n
2

= 3− 6
n .

This proves Theorem 4, as for any constant less than 3, there exists a large enough n such
that 3− 6

n is larger than the constant.

4.2 Upper Bound

In this section we design a 5.8 approximation pivoting algorithm for (unconstrained) Cor-
relation Clustering. To the best of our knowledge this is the first pivoting algorithm for
Correlation Clustering that is both deterministic and combinatorial4.

We start with a simple 9 approximation algorithm in order to demonstrate the framework
we use, developed in [19]. Then we provide a 6 approximation matching the best known
deterministic combinatorial approximation from [20]; this solution demonstrates our new ideas.
Finally, using a more complicated version of our ideas we provide the 5.8 approximation.

4 Independently from our work, a deterministic combinatorial 6 approximation algorithm was presented
in [20]. However it is not a pivoting algorithm as it first modifies the input graph and then applies
pivoting, meaning it does not satisfy the conditions of Lemma 17.
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4.2.1 Framework from [19] and 9 approximation
In [19] the authors provide a general framework for designing pivoting algorithms with good
approximation guarantees. A high level description of their framework is5:

Determine a lower bound L for the cost of the optimal clustering.
Assign each pair of nodes {u, v} a budget bu,v so that the sum of all budgets is L.
Let A be a number such that for all triplets {u, v, w} satisfying {u, v} ∈ E, {u, w} ∈ E

but {v, w} ̸∈ E, it holds that A ≥ 3
bu,v+bu,w+bv,w

.
The above steps can then directly be used to give an A approximation pivoting algorithm.

Before providing their result more formally, let us give some intuition on the last point
of the framework. Such a triplet {u, v, w} is known as a bad triplet because any clustering
needs to pay for at least one of the three pairs among these nodes. To see this, assume
w.l.o.g. that u is connected with both v, w. Then not paying for any pair would mean that u

is in the same cluster with v, and u is in the same cluster with w. But then the clustering
would pay for having v and w in the same cluster.

Furthermore, a pivoting algorithm pays for two types of costs: either because when
pivoting on some u there is a missing {v, w} edge on the new cluster, or there is an edge
{v, w} but v is in the new cluster while w is not. In both cases {u, v, w} is a bad triplet. The
third point of the framework is basically used to show that, on average, when the algorithm
pays for a pair of nodes, there is a large budget associated with it.

The result from [19], using the terminology of our paper, is:

▶ Lemma 18 (Theorem 3.1 and Lemma 3.1 of [19]). Given an input (V, E) of Correlation
Clustering with optimal cost OPT and a set of budgets {bu,v | {u, v} ∈

(
V
2
)
}, let A be a

number such that for all bad triplets {u, v, w} in (V, E) it holds that A ≥ 3
bu,v+bu,w+bv,w

.
If

∑
{u,v}∈(V

2 )bu,v
≤ OPT , then there exists a pivoting algorithm explicitly using the set of

budgets, whose approximation factor is A and its running time is O(|V |3).

Our pivoting algorithm is based on this framework. The way budgets were assigned in
[19] was by solving an LP. In our case we compute a maximal set T of pair-disjoint bad
triplets, and assign budget 1

3 to each pair of each triplet. The maximality ensures that any
bad triplet not in T shares a pair with at least one triplet in T . The pair-disjointness ensures
that |T | ≤ OPT .

▶ Lemma 19. It holds that |T | ≤ OPT .

Proof. Given a bad triplet t = {u, v, w}, any clustering needs to pay at least 1 for the three
pairs of nodes in t. As all t ∈ T are pair-disjoint, any clustering needs to pay |T | for the 3|T |
pairs of nodes {u′, v′} for which there exists a bad triplet {u′, v′, w′} ∈ T . ◀

▶ Lemma 20. A maximal set T of pair-disjoint bad triplets can be computed in O(|V |3)
time.

Proof. Set T = ∅ and for each pair of nodes store a bit (initially zero) describing whether a
bad triplet in T contains this pair. Iterate over all O(|V |3) triplets {u, v, w} in the graph,
and check in constant time whether {u, v, w} is a bad triplet. If it is, check in constant

5 Their framework is in fact more general, allowing weights in the edges (satisfying certain constraints)
and allowing the pivoting to be done on a graph different than the natural one from the input. Here we
restrict it to our case, where their (w+

u,v, w−
u,v) are simply (1, 0) if {u, v} ∈ E and (0, 1) otherwise, while

E+ = E, E− =
(

V
2

)
− E.
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time if any of {u, v}, {v, w}, {u, w} is in T . If none is, then add {u, v, w} in T and set the
bit of {u, v}, {v, w}, {u, w} to 1. Trivially, the bad triplets in T are pair-disjoint and T is
maximal. ◀

By Lemmas 18 and 20, the running time of our pivoting algorithm is O(|V |3). We now
prove that it is a 9 approximation.

▶ Lemma 21. Let {u, v, w} be a bad triplet. Then 3
bu,v+bv,w+bu,w

≤ 9.

Proof. As T is a maximal pair-disjoint set of bad triplets, there exists a bad triplet {u′, v′, w′}
sharing a pair with {u, v, w}. By our budgeting scheme the budget of this pair is 1

3 , therefore
3

bu,v+bv,w+bu,w
≤ 9. ◀

Using Lemmas 18, 19 and 21 concludes the proof of the second part of Theorem 1.

4.2.2 New ideas - 6 approximation
To the best of our knowledge, existing combinatorial algorithms for Correlation Clustering
lower bound the optimal value by arguing about bad triplets. Especially for deterministic
algorithms, the state-of-the-art solution in [20] uses a maximal set of pair-disjoint bad triplets,
as we did with our 9 approximation. However, there are certain cases where such an approach
gives weak lower bounds.

For example, both in the case of the claw graph (K1,3), and in the case of the complete
bipartite graph K2,2, a maximal set of pair-disjoint bad triplets contains only one bad triplet.
Therefore, the lower-bound for these graphs would be 1. However, any clustering for these
graphs incurs a cost of at least 2.

In our 6 approximation algorithm, we rely on lower-bounding OPT related to the existence
of pair-disjoint bad triplets K1,2, claw graphs K1,3, and complete bipartite graphs K2,2.

▶ Lemma 22. Any clustering of K1,3 incurs a cost of at least 2. Similarly for K2,2.

Proof. K1,3: If the cluster C containing the central node u1 contains all nodes, we pay for
3 missing edges in C. If it contains 3 nodes, then we pay for 1 missing edge in C plus one
outgoing edge from u1. Else we pay for at least 2 outgoing edges from u1.

K1,3: Let C be any cluster. If it contains all nodes, we pay for 2 missing edges. In all
other cases we pay for at least 2 outgoing edges. ◀

Before providing our algorithm, we lay out some terminology. Let T be a maximal set of
pair-disjoint bad triplets. By definition of T , any bad triplet shares a pair of nodes with some
bad triplet in T . We say that a bad triplet is poor if it contains exactly one pair of nodes
shared with some triplet in T . We say that a bad triplet {u, v, w} ∈ T is {u, v} associated
(or just associated) with a bad triplet {u, v, w′} if {u, v, w′} is poor. There are two reasons
we are interested in such cases:

If {u, v, w} ∈ T is both {u, v} associated with {u, v, w′} and {v, w} associated with
{u′, v, w}, and u′ ̸= w′, then we can extend T by removing {u, v, w} and inserting
{u, v, w′} and {u′, v, w}. See Figure 2.
The reason our 9 approximation is not better is exactly poor bad triplets.

The inutition behind our new algorithm is the following: poor bad triplets were only
charged 1

3 in the 9 approximation, because the charging of bad triplets in T was symmetric.
We now apply an asymmetric charging, giving 0.5 charge to 1 pair of nodes, and 0.25 to the
other two.



16 Constrained Correlation Clustering

u

w’

v

u’

w

Figure 2 The only bad triplet in T is t = {u, v, w} (diagonal pattern). It is associated with
t1 = {u, v, w′} and t2 = {u′, v, w} (gray-filled). We can extend T by removing t and inserting t1, t2.

The problem that occurs is that a bad triplet in T may also be associated with a bad
triplet on a different pair of nodes, and thus only give charge 0.25 to it. However, in this
case we use the idea presented in Figure 2 to extend T and obtain a stronger lower bound
for OPT ; if extending is not possible, this is because we have a very special case, a subgraph
K1,3 or K2,2. Even though we cannot extend T , we again obtain stronger lower bounds by
arguing directly about K1,3 and K2,2, instead of through the use of bad triplets.

Finally, stronger lower bounds imply more available budget to distribute, which allows us
to charge “problematic” bad triplets more.

The pseudocode of our 6 approximation is in Algorithm 2. It assigns budgets to pairs of
nodes and then applies the algorithm from Lemma 18. We use the terms charge and budget
interchangeably.

▶ Lemma 23. In Algorithm 2, T is a maximal set of pair-disjoint bad triplets from Line 6
and beyond.

Proof. By definition, T is initially a maximal set of pair-disjoint bad triplets. Then, when
we remove a bad triplet t = {u, v, w} and insert bad triplets t1 = {u, v, w′}, t2 = {u′, v, w},
no pair from {u, w′}, {v, w′}, {u′, v}, {u′, w} has both nodes simultaneously in the same bad
triplet of T , as t1, t2 are poor. Moreover, pairs {u, v} and {v, w} are not associated with any
bad triplet in T , as they were only associated with t and we remove t from T . Finally, all
6 pairs are distinct, as u′ ≠ w′ and u′, w′ ̸∈ {u, v, w} (t1, t2 are disjoint from t as they are
poor). Therefore T is a set of pair-disjoint bad triplets.

Concerning its maximality, notice that {u, w} is the only pair of nodes that was contained
in a bad triplet in T but is not contained after such a modification. Therefore if T stops
being maximal, it is because of a bad triplet including u, w. Our algorithm includes such a
bad triplet in T , if one exists, and thus ensures the maximality of T . ◀

▶ Lemma 24. The running time of Algorithm 2 is O(|V |5).

Proof. There are trivially O(|V |3) bad triplets. Furthermore, there are O(|V |2) bad triplets
in T as they are pair-disjoint (Lemma 23 and

(|V |
2

)
pairs in total). Computing T takes

O(|V |3) time by Lemma 20. Extending T can happen O(|V |2) times as we always increase
its size by at least 1. Each time we check over all bad triplets in T and iterate over all
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Algorithm 2 Deterministic combinatorial 6 approximation for Correlation Clustering,
based on pivoting.

1 Compute a maximal set of pair-disjoint bad triplets T

2 while ∃{u, v, w} ∈ T that is associated both with {u, v, w′} and with {u′, v, w}, and
u′ ̸= w′ do

3 Remove {u, v, w} from T and insert {u, v, w′} and {u′, v, w}
4 if a bad triplet {u, v′, w} shares no pair with bad triplets in T then
5 Insert {u, v′, w} in T

6 while ∃{u, v, w} ∈ T , a node x such that G[{u, v, w, x}] is isomorphic to either K1,3
or K2,2 with no pair of nodes charged, and all bad triplets in G[{u, v, w, x}]
containing x are poor do

7 Give 1
3 budget to all 6 pairs of nodes

8 Let T ′ be the set of bad triplets containing no pair of nodes with assigned budget
9 foreach t = {u, v, w} ∈ T that has no pair of nodes with assigned budget do

10 if t is not associated with any bad triplet in T ′ then
11 Give 1

3 budget to each one of its 3 pairs of nodes
12 else
13 Pick an arbitrary associated t′ ∈ T ′ (w.l.o.g. assume they share nodes u, v)
14 Give 0.5 budget to {u, v} and 0.25 to {u, w} and {v, w}
15 Update T ′

16 Run the pivoting algorithm from Lemma 18 using the assigned budgets

other nodes. Therefore it takes O(|V |5) time. Detecting uncharged subgraphs K1,3 and K2,2
containing a bad triplet in T again happens at most O(|V |2) times and each time we need
O(|V |3) time. Computing T ′ takes O(|V |3) time. Finally, for each bad triplet in T we spend
O(|V |) time to find associated uncharged triplets and update T ′. The algorithm from 18
takes O(|V |3) time. ◀

We now prove that the total budget in all pairs of nodes is a lower bound for the cost of
the optimal clustering.

▶ Lemma 25. The total budget from Algorithm 2 in all pairs of nodes is a lower bound for
the cost of the optimal clustering.

Proof. During the algorithm, we either give total budget 2 to all pairs of a K1,3 subgraph,
or total budget 2 to all pairs of a K2,2 subgraph, or total budget 1 to all pairs of a bad
triplet. In all cases, this is a lower bound on the cost of the optimal clustering for these pairs
(folklore for bad triplets, Lemma 22 for K1,3 and K2,2). As we only assign budgets if all
pairs of such a subgraph have not been assigned budget, no pair of nodes is charged more
than once. This proves our claim. ◀

It remains to show that our algorithm is a 6 approximation.

▶ Lemma 26. Algorithm 2 for Correlation Clustering is a 6 approximation.

Proof. By Lemmas 18 and 25, it suffices to show that every bad triplet is charged at least
0.5. Notice that every time we charge all pairs of a bad triplet in T , the total sum of charges
related to the bad triplet is 1. Furthermore, we either charge only the 3 pairs related to
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the bad triplet, or the 3 pairs related to the bad triplet and 3 pairs none of which is related
to a bad triplet in T (in the case of K1,3 or K2,2). As bad triplets in T are pair-disjoint
(Lemma 23), this means that every time we charge some pairs, we charge all pairs of one bad
triplet in T and no pair of any other bad triplet in T . Therefore after the loop at Line 9,
each bad triplet in T is charged exactly 1.

By maximality of T (Lemma 23) each bad triplet t′ = {u, v, w′} ̸∈ T shares 2 nodes with
at least one bad triplet in T . If t′ is not poor, then it is charged at least 0.5, as at least two
of its pairs are charged and no pair of nodes is ever charged less than 0.25. It thus suffices
to show that any poor bad triplet t′ = {u, v, w′} associated with some t = {u, v, w} ∈ T is
charged at least 0.5.

If we charge t because G[{u, v, w, w′}] is isomorphic to K1,3 or K2,2, then t′ is charged
1 ( 1

3 on each of its 3 pairs). If we charge t because there exists some w′′ ̸= w′ such that
G[{u, v, w, w′′}] is isomorphic to K1,3 or K2,2, then either {u, w, w′′} or {v, w, w′′} is a bad
triplet (follows by a straightforward case analysis) and is thus poor by Line 6. Also t′ is
associated with t and w′ ̸= w′′, meaning that we never reach such cases because we would
have instead extended T in previous steps (Line 2). Therefore we can assume that t was not
charged as part of a K1,3 or K2,2.

If the bad triplet t′ was not in T ′ when t was charged, then another one of its pairs
was already charged; again, as the minimum charge we ever give is 0.25 the claim follows.
If t′ was in T ′ when t was charged, assume for the sake of contradiction that {u, v} was
charged 0.25. Then t is associated with another t′′ = {u′, v, w} and {v, w} was charged 0.5.
If u′ ̸= w′, then t′ and t′′ would replace t and extend T before starting charging pairs of
nodes (Line 2). Thus, u′ = w′. Notice that this means that G[{u, u′, v, w}] is either K1,3
or K2,2, all 6 pairs of nodes are uncharged, and t′, t′′ are poor. Even if {u, u′, w} is a bad
triplet, it is poor because {u, u′} is not contained in any bad triangle in T (as it is part of
t′ which is poor and sharing u, v with t) and similarly {u′, w} is not contained in any bad
triangle in T (as it is part of t′′ which is poor and sharing v, w with t). Therefore all pairs
would be charged 1

3 in Line 6, making the charge of t′ equal to 1. ◀

4.2.3 5.8 approximation
We take a step back to understand the ideas behind improving the 9 approximation to a 6
approximation. The problem with the 9 approximation was bad triplets t′ sharing only one
pair of nodes with some bad triplet t ∈ T .
1. Conceptually, the first tool used was modifying the charging so that the problematic

pair of nodes shared between t and t′ is charged more. However, sometimes this was
not possible because t was also associated with some other t′′, sharing a different pair of
nodes.

2. The second tool was to use the new problem to our advantage, by finding a related rule
extending T , effectively improving our lower bound. In our case, under some assumptions
we could replace the bad triplet t in T with the two problematic ones t′, t′′. However,
sometimes this could not work.

3. The third tool used was to argue that when the second tool fails, it is because of the
existence of a subgraph which incurs a large cost, even if it does not have enough
pair-disjoint bad triplets in it. In our case this was K1,3 and K2,2.

We now use this intuition to give a better-than-6 approximation. There are two problems
with the previous algorithm, poor bad triplets (where the charge was 0.5 for one pair and 0
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for the others), and bad triplets sharing a pair of nodes with two bad triplets T (where the
charge was 0.25 for two pairs and 0 for the other).

In order to eliminate one problem, we use our first tool: modifying the charging to
0.5 + δ and 0.25− δ

2 for some δ > 0, when the previous algorithm was charging 0.5 and 0.25.
Therefore we are now only left to worry about the bad triplets sharing two pairs of nodes
with bad triplets in T , each of which is charged 0.25− δ

2 .
We now use our second tool: if both these pairs are charged 0.25− δ

2 , it is because their
corresponding bad triplets in T are associated with some other bad triplet in a different pair
of nodes. In Figure 3 we show how to use this to our advantage and extend T .

u

w’

v

u’

x1

x2w

Figure 3 Bad triplet t0 = {u, v, w} (horizontal pattern) shares a pair with two bad triplets in T ,
namely t = {u, v, w′}, t′ = {u′, v, w} (gray-filled). Each of them is associated with a different bad
triplet, namely t1 = {v, w′, x1}, t2 = {u′, w, x2} (diagonal pattern). We extend T by removing t, t′

and inserting t0, t1, t2.

Finally, there are certain (in fact a lot) cases where extending T is not possible. Using
our third tool, we directly argue about a large lower bound of the optimal clustering for all
these cases.

Having given the intuition, we proceed to the actual description of our algorithm, which
slightly modifies Algorithm 2. In fact, our new algorithm only adds the conditional in Line 7
and the loop in Line 13. Notice that they both basically refer to the situation of Figure 3.

We follow the same proof strategy as for Algorithm 2. As our new algorithm only adds
the conditional in Line 7 and the loop in Line 13, we mainly focus on the effect of them.

▶ Lemma 27. In Algorithm 3, T is a maximal set of pair-disjoint bad triplets from Line 11
and beyond.

Proof. By definition, T is initially a maximal set of pair-disjoint bad triplets. We then
either enter the conditional in Line 3, for which we argued in Lemma 23 that it preserves
the properties of T , or the conditional in Line 7. In the latter case, t1 is associated with
t, t2 is associated with t′, and t0 does not share any pair of nodes with bad triplets in
T \ {t, t′}. Thus, we have that t0, t1, t2 do not share any pair of nodes with bad triplets in
T \ {t, t′}. As we remove t, t′ from T and insert t0, t1, t2, the only bad triplets in T that may
not be pair-disjoint are t0, t1, t2. However on Line 7 we explicitly make sure that these bad
triplets are also pair-disjoint, meaning that T is still a set of pair-disjoint bad triplets after
its modification.
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Algorithm 3 Deterministic combinatorial 5.8 approximation for Correlation Clustering,
based on pivoting.

1 Compute a maximal set of pair-disjoint bad triplets T

2 while any of the following conditionals is true do
3 if ∃{u, v, w} ∈ T that is associated both with {u, v, w′} and with {u′, v, w}, and

u′ ̸= w′ then
4 Remove {u, v, w} from T and insert {u, v, w′} and {u′, v, w}
5 if a bad triplet {u, v′, w} shares no pair with bad triplets in T then
6 Insert {u, v′, w} in T

7 if ∃t = {u, v, w′} ∈ T, t′ = {u′, v, w} ∈ T , bad triplet t0 = {u, v, w} such that no
bad triplet in T contains u, w, bad triplet t1 associated with t, bad triplet t2
associated with t′, and t0, t1, t2 are pair-disjoint then

8 Remove t, t′ from T and insert t0, t1, t2
9 while a bad triplet t′′ shares no pair with bad triplets in T do

10 Insert t′′ in T

11 while ∃{u, v, w} ∈ T , a node x such that G[{u, v, w, x}] is isomorphic to either K1,3
or K2,2 with no pair of nodes charged, and all bad triplets in G[{u, v, w, x}]
containing x are poor do

12 Give 1
3 budget to all 6 pairs of nodes

13 while ∃t = {u, v, w′} ∈ T, t′ = {u′, v, w} ∈ T , bad triplet t0 = {u, v, w} such that no
bad triplet in T contains u, w, bad triplet t1 associated with t such that
t∩ t1 ̸= {u, v}, bad triplet t2 associated with t′ such that t′ ∩ t2 ̸= {v, w} and no pair
of nodes contained in any of t0, t1, t2, t, t′ is charged do

14 if t2 is the only uncharged bad triplet associated with t′ then
15 Charge 15

29 to t ∩ t1 and 8
29 to other pairs of nodes in any of t, t′, t0, t1, t2

16 else
17 Charge 15

29 to t′ ∩ t2 and 8
29 to other pairs of nodes in any of t, t′, t0, t1, t2

18 Let T ′ be the set of bad triplets containing no pair of nodes with assigned budget
19 foreach t = {u, v, w} ∈ T that has no pair of nodes with assigned budget do
20 if t is not associated with any bad triplet in T ′ then
21 Give 1

3 budget to each one of its 3 pairs of nodes
22 else
23 Pick an arbitrary associated t′ ∈ T ′ (w.l.o.g. assume they share nodes u, v)
24 Give 15

29 budget to {u, v} and 7
29 to {u, w} and {v, w}

25 Update T ′

26 Run the pivoting algorithm from Lemma 18 using the assigned budgets

Concerning maximality, we explicitly have a loop adding bad triplets as long as this is
possible. ◀

The running time of our algorithm is now O(|V |6).

▶ Lemma 28. The running time of Algorithm 3 is O(|V |6).

Proof. The second rule for extending T can happen at most O(|V |2) times, as in the proof
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of Lemma 24. Each time we iterate over all bad triplets t0 in O(|V |3) time, find the two bad
triplets t, t′ in T with which it shares a pair of nodes in O(1) time (as each pair of nodes
belongs in at most one bad triplet in T ), and verify that {v, w} is not contained in any bad
triplet in T in O(1) time. We can find the associated bad triplets t1 and t2 in O(|V |) time
as follows:

We find all bad triplets associated with t and pair-disjoint with t0 by iterating over all
nodes and over the 2 pairs of t not shared with t0. Let A be the set of these bad triplets. We
keep track of how many of these bad triplets contain any pair of nodes. Then we repeat the
same process with t′; each time we find a new bad triplet q, it suffices to check if there exists
any pair-disjoint bad triplet in A. Notice that bad triplets cannot share exactly two pairs of
nodes, and if they share 3 then they are the same bad triplet. Therefore, when we have a bad
triplet q, we remove it (if it exists) from A, decrement the counter of the 3 corresponding
pairs by 1, and check the sum of the 3 counters of the 3 pairs of nodes in q. Then we undo
the modifications and continue. It easily follows that the sum of the counters is less than |A|
if and only if there exists a bad triplet in A that is pair-disjoint from q.

This process clearly runs in O(|V |) time and finds proper bad triplets t1, t2 if and only if
a pair of bad triplets with the desired properties exists. In total, the running time for this
step is O(|V |6).

The other extra step is the loop of Line 13 when we detect the same type of subgraphs
without the pair-disjointness conditions for t0, t1, t2. We also check the number of associated
bad triplets to a given triplet in O(|V |) time and charge the related pairs in O(1) time. Thus
running time of this loop is O(|V |4) as we do not need to repeat O(|V |2) times.

The rest of the steps run in O(|V |5) time as in the proof of Lemma 24. ◀

As with the cases of K1,3 and K2,2 (Lemma 22), we need to bound the cost of any
clustering for the cases appearing in Line 13 of Algorithm 3.

▶ Lemma 29. Let t, t′, t0, t1, t2 be the bad triplets in Line 13 of Algorithm 3. These five bad
triplets contain at most 6 nodes, at most 10 distinct pairs of nodes, and any clustering needs
to pay at least 3 for the pairs of nodes in them.

Proof. Let x1 be the only node in t1 \ t and x2 the only node in t2 \ t′. For the sake of
contradiction, assume that x1 ̸= x2 and both x1, x2 are not contained in {u, u′, v, w, w′};
then t0, t1, t2 would be pair-disjoint, which is impossible due to the conditional in Line 7.
This means that the five bad triplets contain at most 6 nodes in total, and that a pair of
nodes in t0, t1 or t2 is shared by at least two of these three bad triplets. Therefore t0, t1, t2
contain at most 8 distinct pairs of nodes. Bad triplet t shares {u, v} with t0 and a different
pair with t1; similarly t′ shares {v, w} with t0 and a different pair with t2. We conclude that
there are at most 10 pairs in total.

Concerning the lower bound on the cost, notice that if a clustering pays for {u, w}, then
it also pays for some pair in t and some pair in t′; as t, t′ are pair-disjoint and none includes
both u and w, any such clustering pays at least 3.

If it does not pay for {u, w}, then it pays for some other pair of t0; w.l.o.g. assume it is
{u, v}. It holds that t1 contains w, therefore it cannot contain both u and v. Furthermore t1
is associated with t, meaning that it is pair-disjoint from t′. As t1, t′ are pair-disjoint and
none contains {u, v}, any such clustering pays at least 3.

We conclude that any clustering pays at least 3 for pairs of nodes in t, t′, t0, t1, t2. ◀

Using Lemma 29 we can now show that the sum of charges lower bounds the cost of the
optimal clustering.
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▶ Lemma 30. In Algorithm 3, the total budget in all pairs of nodes is a lower bound for the
cost of the optimal clustering.

Proof. During the algorithm, we either give total budget 2 to all pairs of a K1,3 subgraph,
or total budget 2 to all pairs of a K2,2 subgraph, or total budget 3 to at most 10 pairs of
the five triplets of Line 13 (Lemma 29), or total budget 1 to all pairs of a bad triplet. In
all cases, this is a lower bound on the cost of the optimal clustering for these pairs (folklore
for bad triplets, Lemma 22 for K1,3 and K2,2, Lemma 29 for the rest). As we only assign
budgets if all pairs of such a subgraph have not been assigned budget, no pair of nodes is
charged more than once. This proves our claim. ◀

It remains to show that our algorithm is a 5.8 approximation. As the proof resembles the
one from Lemma 26, we make a separate lemma for the main new technical ingredient.

▶ Lemma 31. Let t, t′, t0, t1, t2 be the bad triangles when entering the conditional in Line 13
of Algorithm 3. Let t′

1 be a bad triplet associated with either t or t′ that is uncharged at this
point of the execution. Then t′

1 is charged at least 15
29 at the end of the algorithm’s execution.

Proof. Assume that t′
1 is associated with t, as the other case is symmetric. The high-level

idea is that for t′
1 to be charged less than 15

29 , there exists at least one more t′
2 associated

with t′. Then we can always find a bad triplet t′′
1 ∈ {t1, t′

1} and a bad triplet in t′′
2 ∈ {t2, t′

2}
such that t0, t′′

1 , t′′
2 can replace t, t′ and extend T (Line 7). There is only one corner-case

where no such three pair-disjoint bad triplets can be found; but in this case t′
1 anyway has at

least 2 pairs of nodes charged 8
29 .

Let x1 be the only node in t1 \ t and x2 the only node in t2 \ t. Furthermore, we assume
t′
1 ̸∈ {t, t′, t0, t1, t2}, as else it is charged at least 3 · 8

29 . Also t, t1, t′
1 all share the same pair,

as else either T would be extended in Line 3, or they would form a K1,3 or a K2,2; but then
at least one of their pairs would be charged in Line 11, contradicting the fact that all of
these bad triplets are uncharged (by the assumptions of Lemma 31 and Line 13). Similarly,
we can assume that there exists some t′

2 associated with t′ (else t1 ∩ t′
1 is charged 15

29 ) and
t′, t2, t′

2 all share the same pair.
We first note that if t1 = {v, w′, x1}, then x1 ̸∈ {u, u′, w}, because then t1 would not be

poor (as it is associated with t). Similarly, x2 ̸∈ {u, w, w′} if t2 = {u′, v, x2}.
If t′

1 = {v, w′, x′
1}, then we take cases on t2. If t2 = {u′, v, x2} and x2 ̸= x′

1, then t0, t′
1, t2

are pair-disjoint, meaning that T would be further extended in Line 7. If t2 = {u′, v, x′
1},

then t0, t1, t2 are pair-disjoint. If t2 = {u′, w, x2} with x2 ̸= u then t0, t′
1, t2 are pair-disjoint.

Finally, if t2 = {u′, w, u}, then t0, t′
1, t′

2 are pair-disjoint.
If t′

1 = {u, w′, x′
1}, then at least one of t1, t′

1 is equal to t′′
1 = {u, w′, x} with x ̸= w (if

both t1, t′
1 satisfy this, pick one where x ̸= u′). We again take cases on t2. If t2 = {u′, v, x2},

then t0, t′′
1 , t2 are pair-disjoint. If t2 = {u′, w, x2}, then at least one of t2, t′

2 is equal to
t′′
2 = {u′, w, y} with y ̸= u (if both t2, t′

2 satisfy this, pick one where y ̸= w′). As t′′
1 , t0 are

pair-disjoint, and t′′
2 , t0 are pair-disjoint, the only case where t′′

1 , t′′
2 , t0 are not pair-disjoint is

if t′′
1 , t′′

2 are not pair-disjoint. This only happens if t′′
1 = {u, w′, u′} and t′′

2 = {u′, w, w′}. In
this case {t1, t′

1, t2, t′
2} = {{u, w′, w}, {u, w′, u′}, {u′, w, u}, {u′, w, w′}}, which means that t′

1
is charged for at least 2 pairs of nodes, thus being charged at least 2 · 8

29 in total. ◀

The proof of correctness is very similar to the one for the 6 approximation (Lemma 26),
but we need to incorporate Lemma 31 as well.

▶ Lemma 32. Algorithm 3 for Correlation Clustering is a 5.8 approximation.
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Proof. By Lemmas 18 and 30, it suffices to show that every bad triplet is charged at least
15
29 . Notice that as bad triplets in T are pair-disjoint (Lemma 27) every time we charge some
pairs of nodes, we either charge all pairs of a bad triplet in T (a total charge of at least 3 · 8

29 ),
or none. Thus, after the loop at Line 9, every bad triplet in T is charged at least 3 · 8

29 .
By maximality of T (Lemma 27) each bad triplet t0 ̸∈ T shares 2 nodes with at least one

bad triplet in T . If t0 shares all its pairs with bad triplets in T , then it is charged at least
thrice the minimum charge on a pair of a bad triplet in T , which is 3 · 7

29 . Else, if some pair
in t0 that is not shared with any bad triplet in T is charged, then it is charged at least 8

29 ,
and therefore t0 is charged at least 8

29 + 7
29 = 15

29 . Therefore, from now on we can assume
that t0 is only charged on pairs shared with bad triplets in T and that at least one pair of t0
is not charged.

If t0 is not poor, then the only way that its total charge is less than 15
29 is if it is charged

7
29 on two pairs. This only happens if it shares a pair with a bad triplet t ∈ T , another
pair with a bad triplet t′ ∈ T , and each of them is associated with a bad triplet, sharing
a different pair than the one they share with t0 (say t with t1 and t′ with t2). By Line 7
t0, t1, t2 are not pair-disjoint, as that would extend T . But then, by Line 13 t0 would be
charged at least 3× 8

29 . We can therefore assume that t0 = {u, v, w0} is poor, and associated
with a t = {u, v, w} ∈ T .

It cannot be that we charge t because G[{u, v, w, w0}] is isomorphic to K1,3 or K2,2
(Line 11), as that would charge some pair of t0 not shared with a bad triplet in T . If we
charge t because there exists some w1 ̸= w0 such that G[{u, v, w, w1}] is isomorphic to K1,3
or K2,2, then either {u, w, w1} or {v, w, w1} is a bad triplet (follows by a straightforward
case analysis) and is thus poor by Line 6. Also t0 is associated with t and w0 ̸= w1, meaning
that we never reach such cases because we would have instead extended T in previous steps
(Line 3). If t is charged due to Line 13, then by Lemma 31 t0 it is charged at least 15

29 .
Therefore we can assume that t was charged in the loop of Line 19.

By our assumptions, t0 was in T ′ when t was charged. Assume for the sake of contradiction
that {u, v} was charged 7

29 . Then t is associated with another t1 = {u′, v, w} and {v, w} was
charged 15

29 . If u′ ̸= w0, then t0 and t1 would replace t and extend T before starting charging
pairs of nodes (Line 2). Thus, u′ = w0. Notice that this means that G[{u, u′, v, w}] is either
K1,3 or K2,2, all 6 pairs of nodes are uncharged, and t0, t1 are poor. Even if {u, u′, w} is a
bad triplet, it is poor because {u, u′} is not contained in any bad triangle in T (as it is part
of t0 which is poor and sharing u, v with t) and similarly {u′, w} is not contained in any bad
triangle in T (as it is part of t1 which is poor and sharing v, w with t). Therefore all pairs
would be charged 1

3 in Line 6, making the charge of t′ equal to 1. ◀

5 Node-Weighted Correlation Clustering

Let I = (V, E, w) be an instance of Node-Weighted Correlation Clustering. We describe
an instance I ′ = (V ′, E′, F ′, H ′) of Constrained Correlation Clustering that we claim is
equivalent to I, in the sense that there is a bijection between valid clusterings of I ′ and
clusterings of I, and each such pair has the same cost in its respective problem. We note
that the size of I ′ may be much larger than the size of I, which is not a problem because we
do not explicitly build I ′ in our algorithm.

For each node u ∈ V , we create nodes u1, . . . , uw(u) ∈ V ′ and all pairs among them are
both in E′ and in F ′. For each edge {u, v} ∈ E, we introduce edges {ui, vj} in E′, for all
i ∈ [w(u)], j ∈ [w(v)]. Finally H ′ = ∅. Notice that each supernode of I ′ trivially corresponds
to a node in I.
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▶ Lemma 33. For each clustering C of I, there exists a valid clustering C ′ of I ′ with the
same cost, and vice-versa.

Proof. Let C be a clustering of I. For each cluster X = {u1, . . . , u|X|} ∈ C, we create a
valid clustering C ′ of I ′ containing all nodes ui

j such that i ∈ [|X|], j ∈ [w(i)]. Conversely,
given any valid clustering C ′ of I ′, by Lemma 10 we have that it does not split the nodes
of any supernode in different clusters. Thus it follows that we can reverse the process and
acquire C, given C ′, I, I ′.

Concerning the costs, notice that given a node u ∈ V , we have that u1, . . . , uw(u) ∈ V ′

are all in the same supernode and connected by edges. Therefore, for C ′, no cost is paid for
any pair {ui, uj}, {i, j} ∈

([w(u)]
2

)
.

Given two nodes u, v ∈ V , if they are connected and are in the same cluster of C, or
are not connected and are in different clusters, then no cost is paid; similarly all pairs
{ui, vj}, i ∈ [w(u)], j ∈ [w(v)] either have connected endpoints that are in the same cluster,
or not connected endpoints that are in different clusters. Thus they do not incur any cost.

On the other hand if u, v are connected and not put in the same cluster, or are not
connected and put in the same cluster, then cost w(u) · w(v) is paid; similarly all pairs
{ui, vj}, i ∈ [w(u)], j ∈ [w(v)] need to pay 1, incurring a cost w(u) · w(v). ◀

▶ Corollary 34. Both I and I ′ have the same optimal cost.

It follows that it is enough to approximate I ′. However implementing Algorithm 1 naively
would not be efficient, because explicitly building I ′ would be expensive (I ′ may be much
larger than I as its size depends on the weights of I). Instead, we make two observations:

There is no need to run Procedure TRANSFORM because our instance already has the
desired properties.
Given access to I, we can efficiently simulate the execution of the random pivoting
algorithm from [2] on I ′.

These observations imply an efficient way to approximate I through approximating I ′.
The algorithm simply applies the randomized pivoting algorithm from [2] on I, but samples
with probability proportional to the weights, instead of uniform.

▶ Lemma 35. Let u1, . . . , un be n objects such that each object u has an associated positive
integer weight w(u). We can design a data structure that supports sampling an object with
probability proportional to its weight and immediately deleting it. Furthermore it supports
arbitrary deletions of objects. The running time until all objects are removed is O(|V |) with
probability 1− 1

nc , for any constant c > 0.

We first use this lemma as a black-box to show how our algorithm works. Then we show
how to prove it.

▶ Lemma 36. There exists a randomized combinatorial algorithm with 3 (expected) approx-
imation for Node-Weighted Correlation Clustering. Its running time is O(|V | + |E|) with
probability 1− 1

|V |c , for any constant c > 0.

Proof. Let I = (V, E, w) be an instance of Node-Weighted Correlation Clustering. Let
I ′ = (V ′, E′, F ′, H ′) be the corresponding instance of Constrained Correlation Clustering.

By construction of I ′, if two nodes are in the same supernode (corresponding to a node
of I), then they are connected and have the same neighborhood. Trivially, as H ′ = ∅, no
two hostile nodes are connected or have a common neighbor. Therefore a pivoting algorithm
satisfies the hard constraints, by Lemma 17.
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We now make some remarks about running the randomized pivoting algorithm of [2] on
I ′. We then show how to simulate this using only I. If we run the randomized pivoting
algorithm on (V ′, E′), we would simply pick a random node u in V ′ and create a cluster
out of u and its (remaining) neighborhood, then remove these nodes from the graph and
repeat. By Lemma 10 and the fact that no hard constraint would be violated during this
process, at any time step the remaining graph would consist of all the nodes of some subset
{U1, . . . , Uk} of the supernodes, and each cluster would only consist of intact supernodes.

Notice that it would thus be enough for the algorithm to only store the remaining
supernodes and the connections among them, as they anyway imply the connections between
the actual nodes contained in them. Similarly, it would be enough to store the clustering in
the form of supernodes included in the clusters. However there is a natural bijection between
nodes in V and supernodes in I ′, as well as a natural bijection between edges in E and
connections of supernodes in I ′. Therefore, assuming we can properly perform the sampling,
we can run the pivoting algorithm directly on I, instead of I ′. By the proof of Lemma 33
the clustering we get in I is exactly the equivalent of the clustering that would be output
by the pivoting algorithm on (V ′, E′). Together with Corollary 34, we get a 3 (expected)
approximation for the I instance.

Sampling a node uniformly at random among the remaining ones remaining in V ′ is the
same as first sampling a supernode U from {U1, . . . , Uk} with probability proportional to
its weight, and then sampling a node in U uniformly at random. As all nodes within U are
connected and have the same neighborhood, which one we would pick would not make any
difference for the pivoting algorithm as they would all lead to the same cluster (containing
this same neighborhood). This neighborhood consists of the nodes in U and the nodes in
supernodes connected with U .

Therefore it suffices to simply sample a supernode U from {U1, . . . , Uk} with probability
proportional to its weight. To simulate this by only working with I, it suffices to employ a
sampling technique that allows deletions of nodes and supports sampling with probability
proportional to the nodes’ weight. We perform the sampling using Lemma 35, and the
running bound follows trivially. ◀

We are only left with proving Lemma 35. By [21], Alias Method allows us to preprocess
n objects u1, . . . , un with associated weights w(u1), . . . , w(un) in O(n) time so that we can
sample in O(1) time with probability proportional to the weights.

Our new data structure first partitions the objects in buckets, such that the i-th bucket
Bi contains objects with weights in [2i−1, 2i). Let S be the set of buckets. As we are working
in the word RAM model of computation with word-size Θ(log n), |S| = O(log n) buckets.
We set both the initial weight winit(B) and the actual weight w(B) of a bucket B equal to
the sum of the weights of objects inside B. We then preprocess in O(log n) time the set of
O(log n) buckets based on their initial weights, using the Alias Method. We also preprocess
each bucket B individually, in O(|B|) time, using the Alias Method. The whole preprocessing
clearly runs in O(n) time.

In order to delete an object u on bucket Bu, we mark it as deleted, remove it from Bu, and
update the actual weight w(Bu) (but not the initial weight winit(Bu)). If w(Bu) < winit(Bu)

2 ,
we update winit(Bu) and re-apply the preprocessing of the Alias Method twice, both for
bucket B and for the set of buckets (based on the initial weights).

To sample an object, we sample a bucket B with probability proportional to its initial
weight in O(1) time using the Alias Method. We accept it with probability w(B)

winit(B) , and reject
it otherwise. Then we sample an object from this bucket with probability proportional to its
weight in O(1) time, and reject it if it is already deleted. If at any point we rejected, we restart
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the process. The probability of sampling a deleted object is trivially 0, and the probability
of sampling a non-deleted object u in bucket Bu is winit(Bu)∑

B∈S
winit(B) ·

w(Bu)
winit(Bu) ·

w(u)
w(Bu) =

w(u)∑
B∈S

winit(B) , which is proportional to the weight of the object. Furthermore, as the actual
weight of each bucket is always within a factor 2 of the initial weight, we have a probability
0.5 not to reject.

As we can successfully sample at most n times, by a standard Chernoff bound for any
constant c > 0 there exists a constant c′ such that the probability of spending more than c′n
time is less than 1

nc .
We are left to argue about the total time of rebuilding. Whenever we rebuild the structure

of a single bucket, it is because its actual weight dropped in half since the last rebuilding.
As the objects in a bucket have weights that are within a factor 2, the bucket’s weight
dropping in half means that at least 1

3 of the objects were removed. Thus the total number
of rebuildings of a bucket B is O(log |B|) and the total time needed for these rebuildings is at
most |B|+ 2

3 |B|+ 2
3

2|B|+ . . ., which is O(|B|). Therefore the total rebuilding of individual
buckets is proportional to the total number of objects in all buckets, which is n. We also
rebuild the structure of the set of buckets each time a bucket is rebuilt, meaning we may
rebuild it O(log2 n) times. Each rebuilding costs O(log n) as there are that many buckets.
This concludes the proof of Lemma 35.
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A Simple Algorithm for Multiple-Source Shortest Paths in Planar
Digraphs

Debarati Das∗† Evangelos Kipouridis∗†‡ Maximilian Probst Gutenberg§

Christian Wulff-Nilsen∗¶

Abstract

Given an n-vertex planar embedded digraph G with non-negative edge weights and a face
f of G, Klein presented a data structure with O(n logn) space and preprocessing time which
can answer any query (u, v) for the shortest path distance in G from u to v or from v to
u in O(logn) time, provided u is on f . This data structure is a key tool in a number of
state-of-the-art algorithms and data structures for planar graphs.

Klein’s data structure relies on dynamic trees and the persistence technique as well as a
highly non-trivial interaction between primal shortest path trees and their duals. The con-
struction of our data structure follows a completely different and in our opinion very simple
divide-and-conquer approach that solely relies on Single-Source Shortest Path computations
and contractions in the primal graph. Our space and preprocessing time bound is O(n log |f |)
and query time is O(log |f |) which is an improvement over Klein’s data structure when f has
small size.

1 Introduction

In the Planar Multiple-Source Shortest Paths (MSSP) problem, an embedded digraph G is given
along with a distinguished face f , and the goal is to compute a data structure answering distance
queries between any vertex pair (u, v) where either u or v belong to f . Data structures for this
problem are measured by the preprocessing time required to construct the data structure, the space
required to store the data structure, and the query time required to answer a query.

Applications. MSSP data structures are a crucial building block for the All-Pairs Shortest Paths
(APSP) problem in planar graphs where the data structure needs to be able to return the (approx-
imate or exact) distance between any two vertices in the graph. Such data structures are often
called distance oracles if the query time is subpolynomial in n. Broadly, there are three different
APSP data structure problems that currently rely on MSSP algorithms:
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• Exact Distance Oracles: In a recent series of breakthroughs, [5, 14, 4, 20] showed that it is
possible to obtain an APSP data structure that requires only space n1+o(1) and query time
no(1) where both [4] and the state-of-the-art result in [20] employs MSSP as a building block
in their construction.

• Approximate Distance Oracles: Thorup [25] presented a data structure that returns (1 + ε)-

approximate distance estimates using preprocessing time and space Õ(nε−1)1 and query time
O(log log n + ε−1). Since, his construction time was sped-up by polylogarithmic factors via
improvements to the state-of-the-art MSSP data structure [18].

• Exact (Dynamic) APSP: A classic algorithm by Fakcharoenphol and Rao [11] gives a data

structure that uses Õ(n) space and preprocessing time, and takes query time Õ(
√
n) to answer

queries exactly. A variant of this algorithm further gives a data structure that processes edge
weight changes to the graph G in time Õ(n2/3) while still allowing for query time Õ(n2/3).
Again, while [11] did not directly employ an MSSP data structure, Klein [18] showed that
incorporating MSSP leads to a speed-up in the logarithmic factors.

We point out that various improvements were made during the last years over these seminal results
when considering different trade-offs [12, 21] or by improving logarithmic or doubly-logarithmic
factors [23, 13, 22], however, the fundamental sub-problem of MSSP is present in almost all of these
articles. We emphasize that beyond the run-time improvements achieved by MSSP data structure,
an additional benefit is a more modular and re-usable design that makes it simpler to understand
and implement APSP algorithms.

Another key application of MSSP is the computation of a dense distance graph. An often
employed strategy for a planar graph problem is to decompose the embedded planar input graph
G into smaller graphs using vertex separators in order to either obtain a recursive decomposition
or a flat so called r-division of G. For each subgraph R obtained, let ∂R denote its set of boundary
vertices (vertices incident to edges not in R). The dense distance graph of R is the complete graph
on ∂R where each edge (u, v) is assigned a weight equal to the shortest path distance from u to
v in R. Since the recursive or flat decomposition can be done in such a way that ∂R is on a
constant number of faces of R, MSSP can then be applied to each such face to efficiently obtain
the dense distance graph of R. There are numerous applications of dense distance graphs, not only
for shortest path problems but also for problems related to cuts and flows [1, 2, 17].

Previous Work. The MSSP problem was first considered implicitly by Fakcharoenphol and Rao
[11] who gave a data structure that requires Õ(n) preprocessing time and space and query time
Õ(
√
n). Since, the problem has been systematically studied by Klein [18] who obtained a data

structure with preprocessing time and space O(n log n) and query time O(log n). Klein’s seminal
result was later proven to be tight in n for preprocessing time and space [8]. Klein and Eisenstat
[8] also demonstrated that one can remove all logarithmic factors in the special case of undirected,
unit-weighted graphs2. Finally, Cabello, Chambers and Erickson [3] gave an algorithm exploiting
the same structural claims as in [18] but give a new perspective by recasting the problem as a
parametric shortest paths problem. This allowed them to generalize the result in [18] to surface-
embedded graphs of genus g, with preprocessing time/space Õ(gn log n) and query time O(log n).

1We use Õ(·)-notation to suppress logarithmic factors in n. To state the bounds in a clean fashion, we assume
that the ratio of smallest to largest edge weight in the graph is polynomially bounded in n.

2[8] also shows how to use this data structure to obtain a linear-time algorithm for the Max Flow problem in
planar, unit-weighted digraphs
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The Seminal Result by Klein [18]. On a high-level, the result by Klein [18] is obtained by
the observation that moving along a face f with vertices v1, v2, . . . , vk, from vertex vi to vi+1, the
difference between the shortest path trees Tvi and Tvi+1

consists on average of O(n/k) edges. [18]
therefore suggests to dynamically maintain a tree T , initially equal to the shortest path tree Tv1 of
v1, and then to make the necessary changes to T to obtain the shortest path tree Tv2 of v2, and so
on for v3, . . . , vk. Overall, this requires only O(n) changes to the tree T over the entire course of
the algorithm while passing through all shortest path trees.

To implement changes to T efficiently, Klein uses a dynamic tree data structure to represent
T , and uses duality of planar graphs in the concrete form of an interdigitizing tree/ tree co-tree
decomposition, with the dual tree also maintained dynamically as a top tree. Finally, he uses an
advanced persistence technique [7] to allow access to the shortest path trees Tvi for any i efficiently.

Even though formalizing each of these components requires great care, the algorithm by Klein is
commonly taught in courses and books on algorithms for planar graphs (see for example [19, 6, 9]),
but with dynamic trees and persistence abstracted to black box components.

Our Contribution. We give a new approach for the MSSP problem that we believe to be signif-
icantly simpler and that matches (and even slightly improves) the time and space bounds of [18].
Our algorithm only uses the primal graph, and consist of an elegant interweaving of Single-Source
Shortest Paths (SSSP) computations and contractions in the primal graph.

Our contribution achieved via two variations of our MSSP algorithm comprises of:

• A Simple, Efficient Data Structure: We give a MSSP data structure with preprocessing
time/space O(n log |f |) and query time O(log |f |) which slightly improves the state-of-the-
art result by Klein [18] for |f | subpolynomial and otherwise recovers his bounds.

Our result is achieved by implementing SSSP computations via the linear-time algorithm for
planar digraphs by Henzinger et al. [16]. Abstracting the algorithm [16] in black-box fashion,
our data structure is significantly simpler than [18] and we believe that it can be taught at
an advanced undergraduate level.

Further, by replacing the black-box from [16] with a standard implementation of Dijkstra’s
algorithm, our algorithm can easily be taught without any black-box abstractions, at the
expense of only an O(log n)-factor to the preprocessing time.

• A More Practical Algorithm: We also believe that our algorithm using Dijkstra’s algorithm
for SSSP computations is easier to implement and performs significantly better in practice
than the algorithm by Klein [18]. We expect this to be the case since dynamic trees and
persistence techniques are complicated to implement and incur large constant factors, even in
their heavily optimized versions (see [24]). In contrast, it is well-established that Dijkstra’s
algorithm performs extremely well on real-world graphs, and contractions can be implemented
straight-forwardly.

In fact, one of the currently most successful experimental approaches to compute shortest-
paths in road networks is already based on a framework of clever contraction hierarchies and
fast SSSP computations (see for example [15]), and it is perceivable that our algorithm can
be implemented rather easily by adapting the components of this framework.

We point out that our result can be shown to be tight in |f | and n by straight-forwardly
extending the lower bound in [8]. We can report paths in the number of edges plus O(log |f |) time.
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2 Preliminaries

Given a graph H, we use V (H) to refer to the vertices of H, and E(H) to refer to its edges. We
denote by wH(e) or wH(u, v) the weight of edge e = (u, v) in H, by dH(u, v) the shortest distance
from u to v in H and by PH [u, v] a shortest path from u to v. By SSSP tree from a vertex u ∈ V (H),
we refer to the shortest path tree from u in H obtained by taking the union of all shortest paths
starting in u (where we assume shortest paths satisfy the subpath property). We use T (r) to denote
a tree rooted at a vertex r. For a vertex v 6= r of T , we let πT (v) denote the parent of v in T .

Induced Graph/Contractions. For a vertex set X ⊆ V (H), we let H[X] denote the subgraph
of H induced by X. We sometimes abuse notation slightly and identify an edge set E′ with the
graph having edges E′ and the vertex set consisting of endpoints of edges from E′. For any edge
set E′ ⊆ E(H), we let H/E′ denote the graph obtained from H by contracting edges in E′ where
we remove self-loops and retain only the cheapest edge between each vertex pair (breaking ties
arbitrarily). If E only contains a single edge (u, v), we slightly abuse notation and write H/(u, v)
instead of H/{(u, v)}. When we contract components of vertices x1, x2, . . . , xk into a super-vertex,
we will identify the component with some vertex xi. We use the convention that when we refer to
some vertex xj from the original graph in the context of the contracted graph, then xj refers to the
identified vertex xi.

Simplifying assumptions. We let G = (V,E) refer to the input graph and assume that G is a
planar embedded graph where the embedding is given by a standard rotation system, meaning that
neighbors of a vertex are ordered clockwise around it. We assume that G has unique shortest paths,
that f is the infinite face f∞, and that this face is a simple cycle with edges of infinite weight. We
let V∞ denote the vertex set of f∞ and let r0, r1, . . . , r|V∞|−1 be the vertices of V∞ in clockwise
order, starting from some arbitrary vertex r0.

We assume that no shortest path has an ingoing edge to a vertex of V∞; in particular, infinite-
weight edges are not allowed to be used in shortest paths. In addition, we assume that every vertex
ri ∈ V∞ can reach every vertex u of V \ V∞ in G[(V − V∞) ∪ {ri}]; in words, there is a path from
ri to u that only intersects V∞ in ri.

With simple transformations, it is easy to show that all assumptions can be ensured with only
O(n) additional preprocessing time; see Appendix A for details.

3 High-Level Overview

To make it easier to understand the formal construction and analysis of our new data structure, we
start by giving a high-level overview.

Preprocessing. We first focus on the preprocessing step which constructs the data structure using
a divide-and-conquer algorithm. A formal description can be found as pseudo-code in Algorithm 1
but here we only give a sketch.

The general subproblem is to compute shortest path trees from roots forming an interval I
of vertices along f∞ (the initial interval contains every vertex of f∞). Shortest path trees are
computed from the two endpoints of I as well as from the middle vertex of I. These three roots
split I into two equal-sized sub-intervals on which the algorithm recurses. Since a shortest path
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tree can be computed in linear time in a planar graph, the naive implementation would thus give
an O(n|f∞|) running time.

To obtain an efficient construction, we rely on the following well-known result about shortest
path trees from the roots on f∞: given two roots and a vertex u, the union of the shortest paths
from the roots to u split f∞ in two regions. If the shortest path trees from these two roots share
an edge e = (u, v) lying in one of the regions, it holds that all roots in the other region contain e
in their shortest path trees as well. An immediate corollary is that if the shortest path trees from
the two roots share a tree T rooted at u and lying in one of the regions, then all roots in the other
region contain T in their shortest path trees.

To exploit this result in the divide-and-conquer algorithm, let I ′ be one of the two sub-intervals
of I above and let T1 and T2 be the two shortest path trees computed from the endpoints of I ′.
The intersection of edges of T1 and T2 forms a forest. Consider any tree T in this forest and the
two regions defined by the endpoints of I ′ and the root of T , as in the previous paragraph. If T lies
on the region not containing the roots in I ′, then for the recursive call to I ′, T can be contracted
since all shortest path trees computed in that recursive call must contain T ; see Figure 2 with T (s)
playing the role of T .

Hence, instead of recursing on I ′ with the entire graph G, the algorithm instead recurses on the
graph obtained from G by contracting all trees T satisfying the above condition. To ensure that
contractions preserve shortest paths, let T (s) be one of the contracted trees. Then edge weights
are modified as follows (see Figure 1):

• For every edge ingoing to T (s), its weight is increased to ∞ unless its endpoint is the root s;
this ensures that shortest paths can only enter T (s) through s.

• For every edge (u, v) outgoing from T (s), its weight is increased by the shortest path distance
from s to u in T (s); this ensures that the contraction of T (s) does not decrease shortest path
distances.

It turns out that this simple preprocessing only requires O(n log |f∞|) time. To sketch why this
is true, consider any edge e of G and let Ie be the interval of roots of f∞ whose shortest path trees
contain e. Let us refer to the intervals obtained during the recursion as subproblem intervals. We
can now make the following observations:

• If a subproblem interval I is disjoint from Ie then e is not part of any shortest path tree in
the recursive call to I.

• If a subproblem interval I is contained in Ie then since e is contracted, e is also not part of
any shortest path tree in the recursive call to I.

• On each recursion level, only O(1) subproblem intervals partially intersect Ie.

It follows that e is only part of O(log |f∞|) shortest path trees in all recursive calls so the total size
of all shortest path trees is O(n log |f∞|). The time spent on computing a shortest path tree in a
graph H is linear in the size of H. By sparsity of simple planar graphs, the size of H is proportional
to the number of tree edges. It follows that all shortest path trees can be computed in a total of
O(n log |f∞|) time.

We argue that the additional work spent in the recursive calls can also be executed within this
time bound. For instance, determining whether to contract a tree T in the intersection of two
shortest path trees T1 and T2 can be done by looking at the cyclic ordering of the two parent edges
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of T1 resp. T2 ingoing to the root r of T and the edges of T emanating from r; see Figure 2. This
takes time linear in the size of the current graph over all trees T .

Handling a query. Efficiently answering a query is now simple, given the above preprocessing.
Pseudo-code for the query algorithm can be found in Algorithm 2 but here we only describe it in
words and sketch the analysis.

A query for the shortest path distance from a root r of f∞ to a vertex u is done by following the
path down the recursion tree for the subproblem intervals containing r. For each such subproblem
interval I, if r is an endpoint of I, the shortest path distance is returned since it is stored in the
shortest path tree computed from r. Otherwise, let T (s) be the tree that contains u and that is
contracted for the next recursive step (this includes the special case where T (s) is the trivial tree
consisting of the single vertex u). The shortest path from r to u passes through the root s of T (s).
We compute the r-to-u distance by recursively computing the r-to-s distance and adding to it the
s-to-u distance; the latter is precomputed within the time bound for the preprocessing step above.
As each recursive step takes O(1) time, we get a total query time of O(log |f∞|).

4 The MSSP Data Structure

We now give a formal description and analysis of our MSSP data structure.
The preprocessing procedure MSSP(I = [i1, i2], HI) in Algorithm 1 starts by partitioning the

interval I into two roughly equally sized subintervals [i1, i] and [i, i2], in Lines 1-3. It then computes
the shortest path trees of the boundary vertices ri1 , ri2 , ri in the graph HI (after removing the
other boundary vertices). If i2 − i1 > 1, the data structure is recursively built for each of the two
subintervals J = [j1, j2] in the loop starting in Line 5. To get the desired preprocessing time, the
data structure ensures that the total size of all graphs at a given recursion level is O(n). For each
subinterval J , this is ensured by letting the graph HJ for the recursive call be a suitable contraction
of HI . More precisely, HJ is obtained from HI by contracting suitable edges e that are guaranteed
to be in the SSSP trees of every root rj with j ∈ J . The construction of T and the procedure
Contract handle the details of these contractions (illustrated in Figure 1). They also store in
Line 11 the information necessary for later queries.

s

u

T (s)

5

3 9

1

s

8

1

Figure 1: To the left, we have tree T (s). To the right we contract T (s) and identify the supervertex
with s. We update the weight of outgoing edges and remove the edges ingoing in T (s)− s.

A small but important implementation detail, we point out, is that while the pseudocode spec-
ifies that Algorithm 1 initializes each graph HJ as a copy of HI in Line 6, the data structure
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Algorithm 1: The procedure MSSP is given an interval I = [i1, i2] and a graph HI

obtained by contracting edges in G. HI contains roots rj for j ∈ I. The initial call is to
([0, |V∞| − 1], G).

Procedure MSSP(I = [i1, i2], HI)
1 i← b i1+i2

2 c
2 foreach k ∈ {i1, i2, i} do
3 Compute and store SSSP tree TI,k from rk in HI

4 if i2 − i1 ≤ 1 then return
5 foreach J = [j1, j2] ∈ {[i1, i], [i, i2]} do
6 HJ ← HI

7 Eshared ← E(TI,j1) ∩ E(TI,j2)
8 Let T be the collection of maximal vertex-disjoint trees T (s) rooted at s in Eshared

such that πTI,j1
(s) 6= πTI,j2

(s), and for each child v of s in T (s) the edges

(s, v), (s, πTI,j1
(s)), (s, πTI,j2

(s)) are clockwise around s

9 foreach T (s) ∈ T do HJ ← Contract(HJ , T (s), i)
10 MSSP(J,HJ)

Procedure Contract(HJ , T (s), i)
11 foreach vertex u ∈ T (s) do (si(u), δi(u))← (s, dT (s)(s, u)) // Global variables

12 foreach (u, v) ∈ E(HJ) with exactly one endpoint in T (s) do
13 if v /∈ T (s) then wHJ

(u, v)← wHJ
(u, v) + δi(u) // (u, v) outgoing from T (s)

14 else if v 6= s then wHJ
(u, v)←∞ // (u, v) ingoing to T (s)− {s}

15 Contract T (s) to a vertex in HJ and identify it with s
16 return HJ

technically only copies the subset {rj1 , rj1+1, . . . , rj2} of the vertices on f∞. By our earlier simpli-
fying assumption, the omitted roots are not part of any shortest path tree in any recursive calls
involving sub-intervals of J so omitting them will not affect the behaviour of MSSP. Including the
entire face f∞ in all recursive calls, however, eases the presentation of proofs.

Query. The query procedure is straight-forward and given by Algorithm 2.

Algorithm 2: The procedure to query dG(bj , u). Initial call is Query(u, j, [0, |V∞| − 1]).

Procedure Query(u, j, I = [i1, i2])
1 if j = i1 or j = i2 then return dTI,j

(rj , u)

2 i← b i1+i2
2 c

3 if j ≤ i then return Query(si(u), j, [i1, i]) + δi(u)
4 else return Query(si(u), j, [i, i2]) + δi(u)

7



rj1rj2

v2

v1

s

v

rj

uR

Figure 2: The shortest path trees from rj1 and rj2 share the dashed edges denoting the tree T (s)
containing u. The shortest rj1-to-s, rj2-to-s paths and the subpath from rj2 to rj1 in clockwise
order along f∞ define C (fat line). As v, v1, v2 are in clockwise order around s, T (s) − s is in R.
For j ∈ [j1, j2], any rj-to-u path intersects either the shortest rj1 -to-s or the shortest rj2 -to-s path.

5 Analysis

We now prove the following theorem which summarizes our main result.

Theorem 5.1. Let G be an n-vertex planar embedded graph and f∞ be the infinite face on G. Then
we can build a data structure answering the distance dG(bj , u) between any vertex bj ∈ f∞ and any
other vertex u in O(log |f∞|) time, using procedure Query(u, j, [0, |f∞|−1])). Preprocessing requires
O(n log |f∞|) time and space, using procedure MSSP([0, |f∞| − 1], G).

Correctness. Let us first prove correctness of the data structure. We start with the observation
that no edge incident to f∞ is ever contracted.

Claim 5.2. For any graph HI , no edge incident to f∞ is contracted by MSSP(I,HI).

Proof. This is immediate from our assumption that no shortest path has an ingoing edge to a vertex
of f∞ since only edges shared by shortest path trees are contracted.

Next, we prove a lemma and its corollary that roughly show that the contractions made in
Procedure MSSP do not destroy shortest paths from roots on sub-intervals J of f∞. The reader is
referred to Figure 2 for intuition. We first need the following simple claim.

Claim 5.3. For any invocation of MSSP(I,HI), any i ∈ I, and any u ∈ V (HI) − V∞, some
ri-to-u path exists in HI [(V (HI)− V∞) ∪ {ri}].
Proof. By assumption, an ri-to-u path exists in G[(V − V∞) ∪ {ri}]. The claim now follows since
HI is obtained from contractions in G \ V∞ by Claim 5.2.

Lemma 5.4. Consider any invocation of MSSP(I,HI) where HI has unique shortest paths from
ri for each i ∈ I. Then for each vertex u ∈ T (s) ∈ T in Line 8 and for each j ∈ J , PHI

[s, u] ⊆
PHI

[rj , u].

8



Proof. The proof is trivial for u = s, thus we assume u 6= s. Now consider paths PTI,j1
[rj1 , s] and

PTI,j2
[rj2 , s]. Both paths exist by Claim 5.3. By uniqueness of shortest paths in Hi, they share

only vertex s.
Next, consider the concatenation P [j1, j2] of PTI,j1

[rj1 , s] and the reverse of PTI,j2
[rj2 , s]. From

the above, P [j1, j2] is simple. Further, consider the concatenation C of P [j1, j2] and the path
segment F∞[rj2 , rj1 ] from rj2 to rj1 in clockwise order around f∞. We note that C is a cycle. As
f∞ is simple, so is F∞[rj2 , rj1 ], and by our simplifying assumption for shortest paths and Claim 5.2,
P [j1, j2] only intersects f∞ in vertices rj1 and rj2 . Thus, C is a simple directed cycle.

By the Jordan curve theorem, C partitions the plane into two regions. One region, denoted
R, is the region to the right when walking along C. T (s) − s does not intersect the simple curve
P [j1, j2] since HI is a planar embedded graph and since shortest paths are simple. It also does not
intersect F∞[rj2 , rj1 ] as there are no ingoing edges to f∞ in G∞ (and f∞ is preserved in contractions
by Claim 5.2). Since for each child v of s in T (s), the edges (s, v), (s, πTI,j1

(s)), (s, πTI,j2
(s)) are

clockwise around s, children of s are contained in R, and hence so is T (s)− s.
By the choice of F∞[rj2 , rj1 ], rj does not belong to R so PHI

[rj , u] intersects C. Since u /∈
F∞[rj2 , rj1 ] and since there is no edge (a, b) of HI with a /∈ V∞ and b ∈ V∞, PHI

[rj , u] can-
not intersect F∞[rj2 , rj1 ] − {rj1 , rj2} so it must intersect C in P [j1, j2] and hence intersect either
PTI,j1

[rj1 , s] or PTI,j2
[rj2 , s]; assume the former (the other case is symmetric). Then PHI

[rj , u] in-
tersects PTI,j1

[rj1 , s] in some vertex x. Since shortest paths are unique, the subpath of PHI
[rj , u]

from x to u must then equal PTI,j1
[x, u] and since s is on this subpath, the lemma follows.

Corollary 5.5. Let HJ be one of the graphs obtained in a call to MSSP(I,HI) by contracting
edges E′ in HI . Then, for each j ∈ J and each u ∈ V (HJ) − V∞, PHJ

[rj , u] = PHI
[rj , u]/E′ is

unique and wHJ
(PHJ

[rj , u]) = wHI
(PHI

[rj , u]).

Proof. By Lemma 5.4, when contracting PHI
[rj , u] by E′, no edge on the path has its weight

increased to ∞. Further, for any edge (x, y) ∈ PHJ
[rj , u], either (x, y) existed already in HI in

which case its weight is unchanged, or (x, y) originated from an edge (w, y) for w ∈ T (x). But
in the latter case, PHI

[rj , u] contains PHI
[x,w] followed by (w, y) (Lemma 5.4), whose weight is

dHI
(x,w) + wHI

(w, y) = dHJ
(x, y). Thus wHJ

(PHJ
[rj , u]) ≤ wHI

(PHI
[rj , u]).

It is straight-forward to see that distances in HJ also have not decreased since edges affected
by the contractions obtain weights corresponding to paths in HI between their endpoints or weight
∞. Uniqueness follows since two different shortest paths in HJ from rj to a vertex u would imply
two different shortest paths between the same pair in HI and, by an inductive argument, also in
G, contradicting our assumption of uniqueness.

In fact, Corollary 5.5 is all we need to prove correctness of our algorithm.

Lemma 5.6. The call Query(u, j, I = [i1, i2]) outputs dHI
(rj , u), for u ∈ V (HI) − V∞. In

particular, Query(u, j, I = [0, |V∞| − 1]) outputs dG(rj , u) for u ∈ V .

Proof. We prove this by induction on i2−i1. If j ∈ {i1, i2} then Query(u, j, [i1, i2]) directly returns
dTI,j

(rj , u) = dHI [(HI−V∞)∪{rj}](rj , u). This, in turn, is equal to dHI
(rj , u) as the only rj-to-u paths

not considered contain an ∞-weight edge with both endpoints in V∞. Therefore the claim holds if
0 ≤ i2 − i1 ≤ 1 as j ∈ {i1, i2} is implied.

For the inductive step, we thus assume i2 − i1 > 1 and i1 < j < i2. Let i = b i1+i2
2 c and assume

j ≤ i (the case j > i is symmetric). Let s be the vertex in HI such that u ∈ T (s), where possibly u =
s (Line 11). By the inductive hypothesis, Query(u, j, [i1, i]) returns Query(si(u), j, [i1, i])+δi(u) =
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dH[i1,i]
(rj , s) + dT (s)(s, u). By Corollary 5.5, dH[i1,i]

(rj , s) = dHI
(rj , s). By definition of T (s),

dT (s)(s, u) is a suffix of dHI
(ri1 , u), meaning that dT (s)(s, u) = dHI

(s, u). Finally, by Lemma 5.4
the shortest path in HI from rj to u contains s, therefore dH[i1,i],j

(rj , s) +dT (s)(s, u) = dHI
(rj , s) +

dHI
(s, u) = dHI

(rj , u).

Bounding Time and Space. The following Lemma captures our key insight about Algorithm 1
that ensures that the algorithm can be implemented efficiently.

Definition 5.7. Let Ih be the set of all intervals I, such that MSSP(I,HI) is executed at recursion
level h after invoking MSSP([0, |V∞| − 1], G).

Lemma 5.8. For each edge e = (u, v) ∈ E(G) and recursion level h, there are only O(1) intervals
I ∈ Ih for which there exists an i ∈ I such that the SSSP tree TI,i from ri in HI contains e.

Proof. We use induction on h. As I0 = {[0, |V∞| − 1]} the Lemma is trivial for level h = 0. For
h ≥ 0, we show the inductive step h 7→ h+ 1. Each interval [i1, i2] = I ∈ Ih satisfies exactly one of
the following conditions:

• ∀i ∈ I, e 6∈ E(TI,i): Consider a recursive call MSSP(J,HJ) for J ⊆ I issued in MSSP(I,HI)
where HJ was obtained by contracting some edge set E′ in HI . By Corollary 5.5, for any
j ∈ J , PHJ

[rj , u] = PHI
[rj , u]/E′, but due to our condition and j ∈ I, this path cannot

contain e.

• ∀i ∈ I, e ∈ E(TI,i): Let I ′h be the subset of intervals I ∈ Ih satisfying this condition and let
J ′h+1 be the intervals J ∈ Ih+1 contained in such intervals I. We show that for at most one
I ∈ I ′h does there exist a sub-interval J ∈ J ′h+1 where e has not been contracted in HJ .

Consider the set P of shortest paths in G from each endpoint of an interval in J ′h+1 to vertex
u. Their union is a tree T with leaves in V∞ and with all edges directed towards the root u;
see the dashed paths in Figure 3. By definition of I ′h and J ′h+1 and by repeated applications
of Corollary 5.5 to intervals containing I at recursion levels less than h, each shortest path in
P is a subpath of a shortest path to v in G with (u, v) as the final edge. Since shortest paths
are simple, v cannot belong to T .

Now, consider an interval J = [j1, j2] ∈ J ′h+1. Let x be the nearest common ancestor of rj1
and rj2 in T . Let CJ be the simple directed cycle obtained by the concatenation of the path
T [rj1 , x], the reverse of the path T [rj2 , x], and the path from rj2 to rj1 in counter-clockwise
order along f∞. Let RJ be the open region of the plane to the left of CJ . Note that shortest
path PG[x, v] is T [x, u] concatenated with (u, v). If PG[x, v] emanates to the left of CJ at x
then since a shortest path cannot cross itself, v must belong to RJ . In this case, v cannot also
belong to RJ′ for any other J ′ ∈ J ′h+1 since these regions are pairwise disjoint; see Figure 3.
Hence, there is at most one choice of J where PG[x, v] emanates to the left of CJ at x.

Using the above notation, it now suffices to show that for an interval J = [j1, j2] ∈ J ′h+1

where PG[x, v] emanates to the right of CJ at x, e is contracted in HJ .

Let I ∈ I ′h be the parent interval containing J . By Corollary 5.5, PHI
[rj1 , v] is obtained

from PG[rj1 , v] by edge contractions and PHI
[rj2 , v] is obtained similarly from PG[rj2 , v]. Let

(u1, x) resp. (u2, x) be the ingoing edge to x in PG[rj1 , v] resp. PG[rj2 , v]. Edge (u1, x) is
not in the shortest path tree from rj2 in G (otherwise, this tree would have both (u1, x) and
(u2, x) ingoing to x) so by Corollary 5.5, (u1, x) is not contracted in HI . Similarly, (u2, x)
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is not contracted in HI . It follows that x is a vertex in HI . Let (x, y) be the first edge on
PHI

[x, v]; this is well-defined since PHI
[x, v] contains at least one edge, namely e. By the

choice of J and by the embedding-preserving properties of contractions, (x, y), (x, πTI,j1
(x)),

and (x, πTI,j2
(x)) are clockwise around x. Inspecting the description of MSSP(I,HI), we see

that PHI
[x, v] is contained in a tree T (s) ∈ T with s = x, so e is contracted in HJ .

r0

x
v

R[0,2]

r1

r2

r3

r4

r5

r6

r7

r8

R[2,4]

R[4,6]

R[6,8]

u

Figure 3: Dashed lines are parts of shortest paths PG[ri, v] from vertices ri in f∞ to v and form
a tree. In the second recursion level we have intervals I0 = [0, 2], I1 = [2, 4], I2 = [4, 6], I3 = [6, 8].
Vertex x is the nearest common ancestor of r2 and r4 and R[2,4] is the open region to the left of
the simple cycle defined by PG[r2, x], the reverse of PG[r4, x] and the part of f∞ from r4 to r2
in counter-clockwise order. Regions R[0,2], R[4,6], R[6,8] are defined similarly for the other intervals.
Focusing on interval I1, let y be the vertex after x towards u in the tree (in this case y = u). Edges
(x, y), (x, πPG[r2,u](x)), (x, πPG[r4,u](x)) are in counter-clockwise order, implying that v belongs to
R[2,4]. Since regions are pairwise disjoint, v belongs to no other region.

• ∃i, i′ ∈ I, e ∈ E(TI,i) and e /∈ E(TI,i′): At most two intervals I ∈ Ih satisfy this condition
which can then spawn at most four intervals in Ih+1; this follows from repeated applications
of Corollary 5.5 combined with the easy observation that roots of f∞ whose shortest path
trees in G contain e are consecutive in the cyclic ordering along f∞ [18].

Corollary 5.9. The procedure MSSP([0, |V∞| − 1], G) uses O(n log |f |) time and space. Procedure
Query(u, j, [0, |V∞| − 1]) has O(log |f |) running time.

Proof. For each recursion level h, Lemma 5.8 implies that each edge e ∈ E(G) appears in at most
O(1) computed SSSP trees. Further,

∑
I∈Ih |I| = O(n). Thus, the total number of vertices in HI

summed over all I ∈ Ih is O(n). By sparsity of planar graphs, the total number of edges in these
graphs is O(n) as well.

For each such graph HI , each SSSP computation in HI can be implemented in time linear in
the size of HI by [16]. We also spend this amount time on constructing the graphs HJ from HI

since the set Eshared ⊆ E(HI) and associated trees T (s) can be found in O(1) time per edge. Each
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edge is outgoing from at most one and ingoing to at most one contracted tree and thus possibly
changing its weight requires only O(1) time.

It follows that the entire time spent on recursion level h is O(n). Since there are at most
O(log |f∞|) levels, the first part of the corollary follows. The second part follows since each recursive
step in Query takes constant time.
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A Satisfying the input assumptions

In this section, we show how to ensure the input assumptions from the preliminaries.
If f is not the external face f∞, a linear time algorithm can reembed G to ensure this.
Next, we need f∞ to be a simple cycle. We let b0, b1, . . . , b|f∞|−1 be the vertices on f∞ ordered

by their first appearance in the walk along f∞ in clockwise order starting in an arbitrary vertex
b0, such that the rest of G is on the right when moving on the walk. For each 0 ≤ i < |f∞|, we
add a vertex ri, and a zero-weight edge (ri, b

′
i) embedded in the region enclosed by f∞ that does

not contain the rest of G. Finally, we add edges (ri, ri+1 mod |f∞|) in a simple cycle, with infinite
weights, and redefine f∞ to be this cycle. It is not hard to see that this transformation can be done
in O(n) time and that any query (bi, u) in the original graph can be answered by querying (ri, u)
in the transformed graph.

Let V∞ = {r0, r1, . . . , r|f∞|−1. To ensure the requirement that every ri ∈ V∞ can reach every
vertex of V \ V∞ in G[(V − V∞) ∪ {ri}], we add suitable edges of large finite weight to G \ V∞ to
make this subgraph strongly connected without violating the embedding of G.

Disallowing shortest paths from having edges ingoing to V∞ will not disallow any shortest path
from bi in the original graph: each such path can be mapped to a path of the same weight in the
transformed graph that only intersects f∞ in ri.

Finally, unique shortest paths can be ensured using the deterministic perturbation technique
in [10]).
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1 Introduction

1.1 General concepts
We consider the problem of determining the LCS (Longest Common Subsequence) on
weighted sequences. Weighted sequences, also known as p-weighted sequences or Position
Weighted Matrices (PWM) [3, 35] are probabilistic sequences which extend the notion of
strings, in the sense that in each position there is some probability for each letter of an
alphabet Σ to occur there.

Weighted sequences were introduced as a tool for motif discovery and local alignment
and are extensively used in molecular biology [23]. They have been studied both in the
context of short sequences (binding sites, sequences resulting from multiple alignment, etc.)
and on large sequences, such as complete chromosome sequences that have been obtained
using a whole-genome shotgun strategy [31, 36]. Weighted sequences are able to keep all
the information produced by such strategies, while classical strings impose restrictions that
oversimplify the original data.

Basic concepts concerning the combinatorics of weighted sequences (like pattern matching,
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repeats discovery and cover computation) were studied using weighted suffix trees [26],
Crochemore’s partitioning [9, 11, 18], the Karp-Miller-Rabin algorithm [18], and other
approaches [42, 29]. Other interesting results include approximate and gapped pattern
matching [6, 40, 33], online pattern matching [16], weighted indexing [2, 10], swapped
matching [39], the all-covers and all-seeds problem [38, 41], extracting motifs [28], and the
weighted shortest common supersequence problem [4, 17]. There are also some more practical
results on mapping short weighted sequences to a reference genome [7] (also studied in the
parallel setting [27]), as well as on the reporting version of the problem which we also consider
in this paper [11].

The Longest Common Subsequence (LCS) problem is a well-known measure of similarity
between two strings. Given two strings, the output should be the length of the longest
subsequence common to both strings. Dynamic programming solutions [25, 37] for this
problem are classical textbook algorithms in Computer Science. LCS has been applied in
computational biology for measuring the commonality of DNA molecules or proteins which
may yield similar functionality. A very interesting survey on algorithms for the LCS can
be found in [13]. The current LCS algorithms are considered optimal, since matching lower
bounds (under the Strong Exponential Time Hypothesis) were proven [1, 14].

Extensions of this problem on more general structures have also been investigated (trees
and matrices [5], run-length encoded strings [8], and more). One interesting variant of the
LCS is the Heaviest Common Subsequence (HCS) where the matching between different
letters is assigned a different weight, and the goal is to maximize the weight of the common
subsequence, rather than its length.

1.2 Weighted LCS

The problem studied in this paper is the weighted LCS (WLCS) problem. It was introduced
by Amir et al. [3] as an extension of the classical LCS problem on weighted sequences. Given
two weighted sequences, the goal is to find a longest string which has a high probability of
appearing in both sequences. Amir et al. initially solved an easier version of this problem
in polynomial time, but unfortunately its applications are limited. As far as the general
problem is concerned, they hinted its NP-Hardness by giving an NP-Hardness result on a
closely related problem, which they call the log-probability version of WLCS. In short, the
problem is the same, but all products in its definition are replaced with sums. Their proof is
based on a Turing reduction and only works for unbounded alphabets. Finally, Amir et al.
provide an 1

|Σ| -approximation algorithm for the WLCS problem.
Cygan et al. [19] strengthened the evidence that WLCS is NP-Hard by providing an NP-

Completeness result on the decision log-probability version of WLCS (informally introduced
in the previous paragraph), already for alphabets of size 2, using a Karp reduction; for
alphabets of size 1 the solution is trivial since there is no uncertainty. They also gave
an 1

2 -approximation algorithm and a PTAS, while also noticing that an FPTAS cannot
exist, assuming WLCS is indeed NP-Hard, as hinted by their evidence, and that P 6= NP.
Finally, they proved that every instance of the problem can be reduced to a more restricted
class of instances. However, for this to be achieved their algorithm needs to perform exact
computations of roots and logarithms that may make the algorithm to err.

Finally, it is worth noting that Charalampopoulos et al. [17], proved that unless P=NP,
WLCS cannot be solved in O(nf(a)) time, for any function f(a), where a is the cut-off
probability. We note that this result concerns exact computations rather than approximations.
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1.3 Our results
In this paper we essentially close the gap between upper and lower bounds for WLCS by
improving both; we prove that the problem is indeed NP-Hard even for alphabets of size 2.
Furthermore, we provide an EPTAS for bounded alphabets. These two results, along with
the FPTAS observation by Cygan et al. completely characterize the complexity of WLCS
for bounded alphabets. For unbounded alphabets, a PTAS was already known by Cygan et
al. [19]. We show matching lower bounds, both by ruling out the possibility of an EPTAS,
and by showing that, under the Exponential Time Hypothesis, no significantly better PTAS
can exist. We also prove that every instance of WLCS can be reduced to a restricted class
of instances without using roots and logarithms, thus being able to actually achieve exact
computations without rounding errors that can make the algorithm err.

As noted in the previous paragraph, apart from essentially closing the gap between
hardness results and faster algorithms we also circumvent the need to work with roots and
logarithms as the previous results did. In short, by taking advantage of the property that
(ab)c = acbc and setting c to be an appropriate logarithm, previous results transformed
any instance to a more manageable form. However, this transformation introduces an error
that may make the algorithm err as noted in Appendix A. Table 1 summarizes the above
discussion. Table 2 summarizes our results depending on the alphabet-size.

A short discussion is in order with respect to what new insights on weighted LCS enabled
us to achieve progress. Our most crucial observation is the fact that the problem behaves
differently in the natural case of a bounded alphabet, and in the case of an unbounded
alphabet. Without this distinction, closing the gap between upper and lower bounds was
unlikely. That’s because, on the one hand, no EPTAS for the general case could be found,
as none existed. On the other hand, proving that no EPTAS exists requires reductions that
work only on unbounded alphabets. The aforementioned distinction is what enabled us to
understand that modifying the existing reductions, which work for alphabets of size 2, would
be futile in proving W [1]-Hardness.

Furthermore, it was crucial to identify that working with products is the core difficulty
in proving NP-Hardness of weighted LCS. The introduction of the log-probability version of
the weighted LCS reflects the assumption that the difference between working with sums
and working with products is just a technicality. After [3] and [19] successfully proved
NP-Hardness for the log-probability version, it was natural to attempt reducing from it
for proving NP-Hardness of the weighted LCS problem. Despite the apparent similarities
between the two problems, their difference did not allow us to craft such a reduction. For
the same reason, Cygan et al. used a model that assumed infinite precision computations
with reals, while we are able to avoid such a strong assumption.

1.4 Organization of the paper
The rest of the paper is organized as follows. In Section 2, we provide necessary definitions
and discuss the model of computation. In Section 3, we show that WLCS is NP-Complete
while in Section 4, we provide the EPTAS algorithm for bounded alphabets, which is also
an improved PTAS for unbounded alphabets. In Section 5, we show that there can be
no EPTAS for unbounded alphabets by showing that this problem is W [1]-hard and in
Section 6, we describe the matching conditional lower bound. We conclude in Section 7.

For clarity purposes, some proofs and technical discussions are moved to the Appendix.
More specifically, in Appendix A we present an algorithm that transforms any instance of
our problem to an equivalent, but easier to handle, instance. We also show that the rounding
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errors introduced by working with reals (logarithms and roots) may cause a similar algorithm
by Cygan et al. [19] to err if standard rounding is used.

Table 1 Results on WLCS.

Amir et al. Cygan et al. Our results

NP-Hardness of WLCS

Hinted, by NP-Hardness of
Log-probability version
(Turing reduction -
only for unbounded alphabets)

Hinted, by NP-Hardness of
Log-probability version
(Karp reduction -
already from alphabets size 2)

Proved
(Karp Reduction -
already from alphabets of size 2)

Approximation Algorithms 1
Σ -Approximation P T AS

EP T AS for bounded
alphabets,
Improved P T AS for
unbounded

Proof that no EP T AS exists
for unbounded alphabets No No Yes

Lower bound on any P T AS No No
Matching the
upper bound,
under ET H

Reduction to a restricted
class of instances No Yes, by assuming exact

computations of logarithms
Yes, without any
extra assumptions

Table 2 Results depending on the Alphabet Size

Alphabet Size Previous Results Our results
1 Trivial Trivial
Constant Size No F P T AS possible Achieved EP T AS

Depending on the input Achieved P T AS

No EP T AS possible,
Improved P T AS,
Matching Lower Bound

2 Preliminaries

2.1 Basic Definitions
Let Σ = {σ1, σ2, . . . , σK} be a finite alphabet. We deal both with bounded (K = O(1)) and
unbounded alphabets. Σd denotes the set of all words of length d over Σ. Σ∗ denotes the set
of all words over Σ.

I Definition 1 (Weighted Sequence). A weighted sequence X is a sequence of functions
p

(X)
1 , . . . , p

(X)
|X| , where each function assigns a probability to each letter from Σ. We thus have

∑K
j=1 p

(X)
i (σj) = 1 for all i, and p(X)

i (σj) ≥ 0 for all i, j.

By WS(Σ) we denote the set of all weighted sequences over Σ. Let X ∈ WS(Σ). Let
Seq

|X|
d be the set of all increasing sequences of d positions in X. For a string s ∈ Σd and

π ∈ Seq|X|d , define PX(π, s) as the probability that the subsequence on positions corresponding
to π in X equals s. More formally, if π = (i1, i2, . . . , id) and sk denotes the k-th letter of s,
then

PX(π, s) =
d∏

k=1
p

(X)
ik

(sk)
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Denote

SUBS(X, a) = {s ∈ Σ∗|∃π ∈ Seq|X||s| such that PX(π, s) ≥ a}

That is, SUBS(X, a) is the set of deterministic strings which match a subsequence of X
with probability at least a. Every s ∈ SUBS(X, a) is called an a-subsequence of X.

Let us give a clarifying example. If Σ = {σ1, σ2} and X is a long weighted sequence,
where in each position the probability for each letter to appear is 0.5, then SUBS(X, 0.3)
does not contain s = σ1σ1, as, for any increasing subsequence of 2 positions, the probability
of s appearing is 0.25 < 0.3.

The decision problem we consider is the following:

I Definition 2 ((a1, a2)-WLCS decision problem). Given two weighted sequences X,Y , two cut-
off probabilities a1, a2 and a number k, find if the longest string s contained in SUBS(X, a1)∩
SUBS(Y, a2) has length at least k.

Naturally, the respective optimization problem is the following:

IDefinition 3 ((a1, a2)-WLCS optimization problem). Given two weighted sequences X,Y , and
two cut-off probabilities a1, a2, find the length of the longest string contained in SUBS(X, a1)∩
SUBS(Y, a2).

Both in the decision and the optimization version, the WLCS problem is the (a1, a2)-
WLCS problem, where a1 = a2. We denote these (equal) probabilities by a (a = a1 = a2) for
concreteness.

Let us note that the problem is only interesting if |Σ| ≥ 2. For |Σ| = 1 the problem is
trivial since there is no uncertainty at all. The same letter appears in every position in both
strings with probability 1, and thus the answer is simply the length of the shorter weighted
sequence.

Finally, let us also state that the Log-Probability version of the WLCS, studied in
previous papers, is the same as the original WLCS if we replace PX(π, s) =

∏d
k=1 p

(X)
ik

(sk)
by PX(π, s) =

∑d
k=1 p

(X)
ik

(sk).

2.2 Model of Computation
Our model of computation is the standard word RAM , introduced by Fredman and Willard
[20] to simulate programming languages like C. The word size is w = Ω(log I), where I is the
input size in bits, so as to allow random access indexing of the whole input. Thus, arithmetic
operations between words take constant time. However, due to the nature of our problem,
it is necessary to compute products of many numbers. This can produce numbers that are
much larger than the word size. We even allow numbers in the input to be larger than 2w
(these numbers just need to use more than one word to be represented). We generally assume
that each number in the input is represented by at most B bits, but we do not pose any
constraint on B other than the trivial one that B < I. Of course, in cases where we deal
with numbers that occupy many words, we no longer have unit-cost arithmetic operations;
we guarantee, however, that our results only use linear or near-linear time operations (like
comparisons and multiplications) on numbers polynomial in the input size. Thus, although
we do not enjoy the unit-cost assumption for arbitrary numbers, we always stay within the
polynomial-time regime.
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2.3 Basic Operations
In this subsection we discuss the multiplication of two B-bit input numbers in (poly-
nomial) Mulw(B) time, where w is the word-size. For example, for integers there ex-
ists a multiplication algorithm by Harvey and van der Hoeven [24] with time complexity
Mulw(B) = O (B logB) (generally the running time can also depend on w, although in this
case it does not). Let us notice that although the result is unpublished yet, we use it due to
its easy to read time complexity; it is trivial to use other algorithms instead, like the one
from Fürer [21], or the more practical one by Schönhage and Strassen [34]. We establish the
complexity of multiplying x B-bit numbers. Our divide and conquer algorithm splits the
numbers into two (equal sized) groups, recursively multiplies each, and multiplies the results
in Mulw

(
xB
2
)
time. By a direct application of the Master Theorem by Bentley et al. [12]

we prove the following lemma.

I Lemma 4. Multiplying x B-bit numbers costs
O(Mulw(xB) log(xB)) time if Mulw(xB) = Θ(xB logk(xB)) for some constant k,
O((xB)c) else if Mulw(xB) = O((xB)c) for some constant c ≥ 1,

assuming that Mulw(N) is a polynomial time algorithm that multiplies two N -bit numbers.

Proof. The algorithm simply splits the numbers in two equal-sized groups, recursively
multiplies each, and then multiplies the results. Let N = xB. We have that the running time
for multiplying x B-bit numbers is T (N) = 2T (N2 ) + Mulw(N). Since ccrit = log2 2 = 1,
and Mulw(N) = Ω(N), the Master Theorem [12] gives two cases. Either Mulw(N) =
Θ(N logk(N)) for some constant k, in which case T (N) = O(Mulw(N) logN), or else
Mulw(N) = O(N c) for some constant c ≥ 1 (such a constant exists since we assume
polynomial time multiplications). In this case, since it holds that 2Mulw(N2 ) ≤ 2Mulw(N),
we get that T (N) = Mulw(N) if c > ccrit = 1. Notice that we handled all cases, since
Mulw(N) = N is handled by the first case with k = 0, and whatever does not fit in the first
case, definitely fits in the second, since we assumed that Mulw(N) is polynomial in N . J

I Corollary 5. Multiplying x B-bit numbers costs polynomial time by using any polynomial
time algorithm for multiplying two B-bit numbers as a black box. Especially if we use Harvey
and Van Der Hoeven’s algorithm, the time cost is O

(
xB log2 (xB)

)
.

Let us also notice that the way to divide two B-bit numbers is simply storing both the
numerator and the denominator. Comparing two numbers x1 = num1

den1
and x2 = num2

den2
can

be done by comparing num1 × den2 and num2 × den1. The only other operation we need
when working with such fractions is subtracting a B-bit number x = num

den from 1. This is
simply den−num

den .

3 NP-Completeness

An NP-Completeness proof for the integer log-probability version of the WLCS problem
has been given in [19]. This is a closely related problem, with the main difference being
that products are replaced with sums. We do not know of any way to reduce from this
log-probability version to WLCS other than exponentiating. As stated in the explanation
of our model of computation in Section 2, there is no limit on the number of bits needed
to represent a single number (it just occupies a lot of words). This means that, if the
input consisted of I bits, and there was a number (probability) represented with I

100 bits,
exponentiating would result in a number with 2 I

100 bits, meaning the reduction would not



E. Kipouridis and K. Tsichlas 7

be a polynomial-time one. For this reason, we believe that although it is easier to prove
NP-Completeness for the integer log-probability version of the problem, there is no easy way
to use it for proving NP-Completeness for the general version. We, thus, give a reduction
from the NP-Complete problem Subset Product [22] which proves NP-Completeness directly
for the general problem.

Notice that for alphabets consisting of one letter, the problem is trivial since there is
no uncertainty at all. In the following, we prove that even for alphabets consisting of two
letters, the problem is NP-Complete.

I Definition 6 (Subset Product). Given a set L of n integers and an integer P , find if there
exists a subset of the numbers in L with product P .

I Lemma 7. WLCS is NP-Complete, even for alphabets of size 2.

Proof. Obviously WLCS ∈ NP since the increasing subsequences π1, π2 and the string s
for which PX(π1, s) ≥ a, PY (π2, s) ≥ a are a certificate which, along with the input, can be
used to verify in polynomial time that the problem has a solution.

Let (L,P ) be an instance of Subset Product and let n = |L|. By Li we denote the
i-th number of the set L, assuming any fixed ordering of the n numbers of L. We give a
polynomial-time reduction to a (X,Y, a, k) instance of WLCS, with alphabet size 2 (we call
the letters ′A′ and ′B′).

The core idea is the following: The weighted sequences have n positions (plus 2 more
for technical reasons related to the threshold a). The number k is equal to the length of
the sequences, meaning that we pick every position, and the only question is whether we
picked letter ′A′ or letter ′B′. Letter ′A′ in position i corresponds to picking the i-th number
in the original Subset Product, while letter ′B′ corresponds to not picking it. Finally, the
letters ′A′ picked in X form an inequality of the form: "some product is ≥ P ", while the
same letters in Y form the inequality: "the same product is ≤ P ". For these two to hold
simultaneously, it must be the case that we found some product equal to P , which is the
goal of the original Subset Product.

More formally, the weighted sequences have size n+ 2. Let ci = 1
1+Li and di = 1

1+ 1
Li

.

p
(X)
i (′A′) = ciLi, 1 ≤ i ≤ n p

(Y )
i (′A′) = di

Li
, 1 ≤ i ≤ n

p
(X)
n+1(′A′) = 1 p

(Y )
n+1(′A′) =

n∏

j=1

1
Li

=
∏n
j=1 ci∏n
j=1 di

p
(X)
n+2(′A′) = 1

P 2 p
(Y )
n+2(′A′) = 1

where p(X)
i (′B′) = 1 − p(X)

i (′A′) for all i, and similarly for Y . Notice that, in particular,
p

(X)
i (′B′) = ci, 1 ≤ i ≤ n and p

(Y )
i (′B′) = di, 1 ≤ i ≤ n. Finally, we set k = n + 2 and

a =
∏n

j=1
ci

P .
First of all, notice that since we must find a string of length n + 2, we must choose a

letter from every position. Thus, a choice of letter at some position on X corresponds to the
same choice of letter at that position on Y . The choice of letter on positions n+ 1 and n+ 2
is ′A′ in both cases since

p
(X)
n+1(′B′) = p

(Y )
n+2(′B′) = 0
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Suppose that the numbers at positions {i1, . . . , i`} give product P :

∏̀

j=1
Lij = P

Then, we form the string s by picking ′A′ at positions {i1, . . . , i`, n+ 1, n+ 2} and ′B′ at all
other positions. Thus

PX({1, 2, . . . , n+ 2}, s) =
∏`
j=1 Lij

∏n
j=1 ci

P 2 =
∏n
j=1 ci

P
= a

PY ({1, 2, . . . , n+ 2}, s) =
∏n
j=1 di

∏n
j=1 ci∏`

j=1 Lij
∏n
j=1 di

=
∏n
j=1 ci

P
= a

Conversely, suppose a solution for the WLCS problem, where the string s is formed by
picking ′A′ at positions {i1, . . . , i`, n+ 1, n+ 2} and ′B′ at all other positions. It holds that:

PX({1, 2, . . . , n+ 2}, s) =
∏`
j=1 Lij

∏n
j=1 ci

P 2 ≥ a =⇒
∏̀

j=1
Lij ≥ P

PY ({1, 2, . . . , n+ 2}, s) =
∏n
j=1 di

∏n
j=1 ci∏`

j=1 Lij
∏n
j=1 di

≥ a =⇒
∏̀

j=1
Lij ≤ P

The above imply that
∏`
j=1 Lij = P . Finally, notice that all computations are done in

polynomial time, due to Corollary 5. J

4 EPTAS for Bounded Alphabets, Improved PTAS for Unbounded
Alphabets

We now give an Efficient Polynomial Time Approximation Scheme (EPTAS) for the case
where our alphabet size is bounded (|Σ| = O(1)). Let us notice that this is the case when
working with DNA sequences (|Σ| = 4), the most usual application of weighted sequences.
The same algorithm is an improved (when compared to [19]) PTAS in the case of unbounded
alphabets. This means that the WLCS problem is Fixed-Parameter Tractable for constant
size alphabets and thus belongs to the corresponding complexity class FPT as shown in
Corollary 11.

The authors in [19] first noted that there is no FPTAS unless P = NP , and so we can
only hope for an EPTAS. Our result relies on their following result:

I Lemma 8 (Lemma 4.6 of [19]). It is possible to find, in polynomial time, a solution of size
d to the WLCS optimization problem such that the optimal value OPT is guaranteed to be
either d or d+ 1 (however we do not know which one holds).

Their PTAS uses the above result and in case the approximation is guaranteed to be
good enough (d > (1 − ε)(d + 1), which implies that d > (1 − ε)OPT ), it stops. Else, it
holds that 1

ε ≥ d+ 1 ≥ OPT , and the PTAS exhaustively searches all subsequences of X,
all subsequences of Y , and all possible strings of length d+ 1, for a total complexity of

O
(
Mulw

(
B

ε

)
log
(
B

ε

)
|Σ| 1ε

(
n
1
ε

)2
)
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Mulw(Bε ) log(Bε ) is the time needed to multiply d + 1 numbers with at most B-bits each,
by Lemma 4, and is insignificant compared to the other terms. Our EPTAS improves the
exhaustive search part to

O
(
Mulw

(
B

ε

)
n

ε
|Σ| 1ε

)

which is polynomial in the input size, in case of bounded alphabets. The following lemma is
needed.

I Lemma 9. Given a weighted sequence X of length n, and a string s of length d, it is
possible to find the maximum number a such that there exists an increasing subsequence π
of length d for which PX(π, s) = a. The running time of the algorithm is O(Mulw(dB)nd),
where B is the maximum number of bits needed to represent each probability in X.

Proof. We use dynamic programming. Let sj be the string formed by the first j letters of
s, cj be the j-th letter of s and optX(i, j) be the maximum number such that there exists
an increasing subsequence π′ of length j whose last term π′j is at most i and for which
PX(π′, sj) = optX(i, j). Since we choose whether cj is picked from the i-th position of X, it
holds that:

optX(i, j) = max{optX(i− 1, j), optX(i− 1, j − 1)p(X)
i (cj)}

For the base cases, optX(i, 0) = 1 for all i (we can always form the empty string with certainty,
by not picking anything), and optX(0, j) = 0 for j > 0 (not picking anything never gives us a
non-empty string). We are interested in the value optX(|X|, |s|). J

Now we are ready to give our EPTAS.

I Theorem 10. For any value ε ∈ (0, 1] there exists an (1− ε)-approximation algorithm for
the WLCS problem which runs in O

(
poly(I) + n

εMulw
(
B
ε

)
|Σ| 1ε

)
time and uses O (poly(I))

space, where I is the input size, n = |X|+ |Y | and B is the maximum number of bits needed
to represent a probability in X and Y . Consequently, the WLCS problem admits an EPTAS
for bounded alphabets.

Proof. We begin by using Lemma 8 to find an a-subsequence of length d, such that the
optimal solution is at most d+ 1. If d+ 1 ≥ 1

ε , we are done, since in that case we have a
d
d+1 = 1− 1

d+1 ≥ (1− ε) approximation. Otherwise, we try all possible strings s ∈ |Σ|d+1,
and use Lemma 9 to check if any one of them can appear in both weighted sequences with
probability at least a. J

I Corollary 11. WLCS ∈ FPT for bounded alphabets, parameterized by the solution length.

Proof. Follows directly from [30], Proposition 2. J

5 No EPTAS for Unbounded Alphabets

We have already seen that there is no FPTAS for WLCS, even for alphabets of size 2,
unless P = NP . We have also shown an EPTAS for bounded alphabets and a PTAS for
unbounded alphabets. The natural question that arises is: Is it possible to give an EPTAS
for unbounded alphabets?

We answer this question negatively, by proving that WLCS is W [1]-hard, meaning
that it does not admit an EPTAS (and is in fact not even in FPT ) unless FPT = W [1]
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([30], Corollary 1). To show this, we give a 2-step FPT -reduction from Perfect Code, which
was shown to be W [1]-Complete in [15], to k-sized Subset Product and then to WLCS. The
k-sized Subset Product problem is the Subset Product problem with the additional constraint
that the target subset must be of size k.

I Definition 12 (Perfect Code). A perfect code is a set of vertices V ′ ⊆ V with the property
that for each vertex u ∈ V there is precisely one vertex in NG(u) ∩ V ′, where NG(u) is the
set of adjacent nodes of u in G.

In the perfect code problem, we are given an undirected graph G and a positive integer k,
and we need to decide whether G has a k-element perfect code. Notice that the definition
of a perfect code implies that there is a perfect code iff there is a set V ′ ⊆ V for which⋃
u∈V ′ NG(u) = V and NG(u) ∩ NG(v) = ∅ for all u, v ∈ V ′, u 6= v. First we show that

k-sized Subset Product is W [1]-hard.

I Lemma 13. k-sized Subset Product is W [1]-hard.

Proof. Let (G = (V,E), k) be an instance of Perfect Code. Suppose that the vertices
are V = {1, . . . , n}. First of all, we compute the first n prime numbers using the Sieve
of Eratosthenes. We denote the i-th prime number as pi. The set of positive integers
L = {L1, L2, . . . , Ln} as well as the positive integer P are defined as follows:

Lv =
∏

u∈NG(v)

pu, P =
n∏

v=1
pv

Notice that due to the unique prime factorization theorem, a subset of k numbers from the
set L have product P iff G has a k-element Perfect Code.

The size of our primes is O(n logn) due to the prime number theorem. Thus, they
require O(logn) bits to be represented. Each integer in L, as well as in P , is computed using
Corollary 5 in O(n log3 n) time, for an overall O(n2 log3 n) complexity for our reduction.
Since the new parameter k is the same as the old one (no dependence on n), our reduction is
in fact an FPT -reduction. J

Our result for this section is the following.

I Theorem 14. WLCS, parameterized by the length of the solution, is W [1]-hard.

Proof. To prove the theorem we create diagonal weighted sequences. That is, we require
each letter to appear only in one position and vice-versa. In this way, the subsequences
picked for X and Y are the same. The above rule is broken by the addition of two auxiliary
letters that are there to make the probabilities add up to 1 in each position. This creates
no problem because we make sure that these letters are never picked. Finally, we force the
product to be equal to our target, by forcing it to be at most our target and at least our
target at the same time.

More formally, let (L = {L1, L2, . . . , Ln}, k, P ) be an instance of the k-sized Subset
Product problem and let M = mk+1, where m is the maximum number in set L. Notice
that if mk ≤ P then we only need to check the product of the highest k numbers of L, which
means the problem is solvable in polynomial time. Thus we can assume that M ≥ mk > P .
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The alphabet of X,Y is Σ = {1, 2, . . . , n, n+ 1, n+ 2, n+ 3} and we set a = 1
PMk .

p
(X)
i (i) = Li

M
, 1 ≤ i ≤ n p

(Y )
i (i) = 1

MLi
, 1 ≤ i ≤ n

p
(X)
n+1(n+ 1) = 1

P 2 p
(Y )
n+1(n+ 1) = 1

p
(X)
i (n+ 2) = 1− p(X)

i (i), 1 ≤ i ≤ n+ 1 p
(Y )
i (n+ 3) = 1− p(Y )

i (i), 1 ≤ i ≤ n+ 1

All non-specified probabilities are equal to 0. Notice that symbols n+ 2 and n+ 3 are used
to guarantee that probabilities sum up to 1.

We show that the instance (X,Y, a, k + 1) has a solution iff (L, k, P ) has a solution.
Suppose there exists a solution to (L, k, P ). Then, there exists an increasing subsequence
π = (i1, . . . , ik) such that

∏k
j=1 Lij = P . Let π′ be π extended by the number ik+1 = n+ 1

and s be the string i1i2 . . . ik+1. It holds that PX(π′, s) = PY (π′, s) = a.
Conversely, suppose there exists a solution to (X,Y, a, k+ 1). Then there exist increasing

subsequences π = (i1, . . . , ik+1), π′ = (j1, . . . , jk+1) and a string s such that PX(π, s) ≥
a, PY (π′, s) ≥ a. First of all, notice that, due to p(X)

i (n+ 3) = p
(Y )
i (n+ 2) = 0 for all i, s

does not contain letters n + 2 and n + 3, which leaves only one choice for every position.
Also each letter appears only once in each sequence, and in the same position. Thus, π = π′,
and due to our construction the i-th letter of s is the i-th member of π. Finally, not picking
position n+ 1 would result in PY (π, s) < a due to the fact that P < M . Thus, the last letter
of s is n+ 1. It holds that:

PX({i1, . . . , ik+1}, s) ≥ a =⇒
∏k
i=1 Lπi
P 2Mk

≥ 1
PMk

=⇒
k∏

i=1
Lπi ≥ P

PY ({i1, . . . , ik+1}, s) ≥ a =⇒ 1
Mk

∏k
i=1 Lπi

≥ 1
PMk

=⇒
k∏

i=1
Lπi ≤ P

The above two inequalities imply a k-sized subset of L with product equal to P .
The reduction is a polynomial-time one, due to Corollary 5. More than that, it is an

FPT -reduction since the new parameter k is equal to the old parameter incremented by one,
and thus has no dependence on n. J

6 Matching Conditional Lower Bound on any PTAS

In the d-SUM problem, we are given N numbers and need to decide whether there exists a
d-tuple that sums to zero. Patrascu and Williams [32] proved that any algorithm for solving
the d-SUM problem requires nΩ(d) time, unless the Exponential Time Hypothesis (ETH)
fails. To show this, they first proved a hardness result for a variant of 3-SAT, the sparse
1-in-3 SAT.

I Definition 15 (Sparse 1-in-3 SAT). Given a boolean formula with n variables and O(n)
clauses in 3 CNF form, where each variable appears in a constant number of clauses, determine
whether there exists an assignment of the variables such that each clause is satisfied by exactly
one variable.

They first prove the following hardness result under ETH.

I Proposition 16. Under ETH, there is an (unknown) constant s3 such that there exists
no algorithm to solve sparse 1-in-3 SAT in O(2δn) time for δ < s3.



12 Longest Common Subsequence on Weighted Sequences

By assuming an nO(d) time algorithm for d-SUM they disproved the above fact, which
cannot happen under ETH. We use the same technique for proving an nΩ(k) lower bound
for k-sized Subset Product.

I Lemma 17. Assuming the ETH, the problem of k-sized Subset Product cannot be solved
in O(n

s3k
101 ) time on instances satisfying k < n0.99 and each number in the input set L has

O (logn(log k + log logn)) bits, where n is the size of L, and P is the target which can be
arbitrarily big.

Proof. Let f be a sparse 1-in-3 SAT instance with N variables and M = O(N) clauses, and
k > 1

s3
. Conceptually, we split the variables of f into k blocks of equal size - apart from

the last block that may have smaller size. Each block contains at most dNk e variables, and
thus there are at most 2dNk e different assignments of values to the group-of-variables within
a block. For each block and for each one of these assignments we generate a number which
serves as an identifier of the corresponding block and assignment. Thus, there are n = k2dNk e
different identifiers.

Let pi be the i-th prime number. In order to compute an identifier, we initialize it to
pb, where b is the index of the identifier’s corresponding block. Then, we run through all
of the M = O(N) clauses and do the following: suppose we process the i-th clause and let
0 ≤ j ≤ 3 be the number of variables of the identifier’s corresponding assignment that satisfy
the clause. We update the identifier by multiplying it with pjk+i.

Since each variable appears only in a constant number of clauses, each identifier is a
product of O(Nk ) numbers. The prime number theorem guarantees O(logN) bits to represent
each factor, which means the identifiers have O(Nk logN) bits. Using the fact that n = k2dNk e,
each identifier is represented by O (logn(log k + log logn)) bits.

These n identifiers, along with the target P =
∏k+M
i=1 pi (recall that pi is the i-th prime

number), form a k-sized Subset Product instance. This preprocessing step costs O(2Nk ) time,
ignoring polynomial terms, which is more efficient than O(2s3N ).

Due to the unique prime factorization, a solution to the k-sized Subset Product corresponds
to a solution in f and vice-versa. If the running time of the k-sized Subset Product was
O(n

s3k
101 ) then we could solve the above instance in O((k2Nk )

s3k
101 ) time.

Since k = n

2dN
k

e and k < n0.99, it follows that n

2dN
k

e < n0.99 =⇒ n0.99 < 299dNk e. But

k < n0.99, which means k < 299dNk e.
Thus the previous running time becomes O(2 100

101 s3N ). Both the preprocessing step and
the solution of the k-sized Subset Product can be achieved in time O(2δN ), where δ < s3.
However, this would violate Proposition 16. J

Using the above, we are ready to prove our (matching) lower bound, conditional on ETH .

I Theorem 18. Under ETH, there is no PTAS for WLCS with running time |I|o( 1
ε ), where

|I| is the input size in bits.

Proof. Suppose that such an algorithm A(I, ε) existed. Let R() be the polynomial time
reduction from k-sized Subset Product to WLCS given in the proof of Theorem 14. Then,
there is a solution to k-sized Subset Product iff there is a solution to WLCS of size k + 1, or,
equivalently, iff the optimal solution to WLCS is at least k + 1.

Using the hypothetical A(I, ε) with an appropriate value of ε, we solve k-sized Subset
Product more efficiently than possible, thus reaching a contradiction.

Consider the following algorithm for k-sized Subset Product, where there are |L| numbers
in the input, each having O (log |L|(log k + log log |L|)) bits and k < |L|0.99. Given an
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instance (L, k, P ), we define the instance for the WLCS to be I = R(L, k, P ). We run
A(I, 1

2(k+1) ) and if the output is at least k + 1 we return that (L, k, P ) is satisfied, otherwise
we return that it cannot be satisfied.

Note that if k-sized Subset Product is solvable, then OPT (I) ≥ k + 1, and the value
output by A is at least (1− 1

2(k+1) )(k+1) = k+ 1
2 > k. Thus, the value output by A is at least

k + 1. On the other hand, if k-sized Subset Product is not solvable, then OPT (I) < k + 1,
and obviously the value output by A is at most k.

Thus we found an algorithm for k-sized Subset Product whose running time is |I|o(k).
Since I is obtained by a polynomial time reduction, its size is bounded by a polynomial in
|(L, k, P )|. Therefore, the above running time becomes |(L, k, P )|o(k). Under our assumptions,
this becomes |L|o(k), which is not feasible under ETH, due to Lemma 17. J

7 Conclusion

In this paper we prove NP-Completeness for the WLCS decision problem, and give a PTAS
along with a matching conditional lower bound for the optimization problem. In the most
usual setting, where the alphabet size is constant, the above PTAS is in fact an EPTAS,
and it is known that no FPTAS can exist unless P = NP . In the Appendix we give a
transformation such that algorithms for the WLCS problem can also be applied for the
(a1, a2)-WLCS problem.

In proving that WLCS does not admit any EPTAS, we proved that it is W [1]− hard.
It may be interesting to determine the exact complexity of WLCS in the W − hierarchy.
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A One Threshold is Enough

For clarity purposes, some proofs and technical discussions are moved in this appendix. In
particular, in this section we show that (a1, a2)-WLCS and WLCS are equivalent, thus one
threshold is enough. Furthermore, we show that the rounding errors introduced by working
with reals (logarithms and roots) may cause a similar algorithm from a paper by Cygan et
al. [19] to err if standard rounding is used.

In the following, B corresponds to the maximum number of bits to represent a number
in the input (a probability or a symbol of the alphabet). B is not to be confused with the
word-size w since an input number may need many words to be represented.

I Lemma 19. Given an instance (X,Y, a1, a2, k) of (a1, a2)-WLCS (a1 < a2), it is possible
to reduce it to an instance (X ′, Y ′, a, k + 1) of WLCS. The construction of X ′ and Y ′

requires O(n|Σ|Mulw(B)) time, while parameter a is computed in O(Mulw(nB) log (nB))
time, where n = |X|+ |Y | is the total length of the weighted sequences X and Y , while B is
the maximum number of bits needed to represent an input number.

Proof. We first provide a sketch of the proof. Our goal is to use the same weighted sequences
with one additional position at the end. We introduce a new letter (′%′) which only appears in
this position, and we make sure that any correct algorithm picks it, by making its probability
very appealing (high). Since we cannot assign a probability higher than one, increasing it is
simulated by reducing all other probabilities, in all positions. Knowing that this specific letter
is picked at this specific position allows us to choose the two corresponding probabilities in a
way that completes the proof. In order for the probabilities to sum to 1 in every position, we
introduce two auxiliary letters (′#′ and ′$′) that are never picked (′$′ never appears on the
first weighted sequence, ′#′ never appears on the second).

The alphabet Σ′ of X ′, Y ′ is the alphabet Σ of X,Y extended by three new letters,
Σ′ = Σ ∪ {′#′,′ $′,′%′}. Let m = a1

2 and a = mka1. Notice that since k ≤ n, the size of a in
bits is only polynomial compared to the input size, not exponential. The new sequences X ′
and Y ′ are constructed as follows:

p
(X′)
i (σ) = mp

(X)
i (σ), 1 ≤ i ≤ |X|, σ ∈ Σ p

(Y ′)
i (σ) = mp

(Y )
i (σ), 1 ≤ i ≤ |Y |, σ ∈ Σ

p
(X′)
i (′#′) = 1−

∑

σ∈Σ′\{′#′}
p

(X′)
i (σ),∀i p

(Y ′)
i (′$′) = 1−

∑

σ∈Σ′\{′$′}
p

(Y ′)
i (σ),∀i

p
(X′)
|X|+1(′%′) = 1 p

(Y ′)
|Y |+1(′%′) = a1

a2

All non-specified probabilities are equal to 0.
If there exists a solution to (X,Y, a1, a2, k), then there exist two increasing subsequences

π1 = (i1, . . . , ik), π2 = (j1, . . . , jk) and a string s such that PX(π1, s) ≥ a1, PY (π2, s) ≥ a2.
Define π′1 = (i1, . . . , ik, |X|+ 1), π′2 = (j1, . . . , jk, |Y |+ 1) and s′ to be equal to s extended
with the letter ′%′. It holds that:

PX′(π′1, s′) = mkPX(π1, s) ≥ mka1 = a, PY ′(π′2, s′) = mkPY (π2, s)a1
a2
≥ mka2

a1
a2

= a

Conversely, suppose there exists a solution to (X ′, Y ′, a, k + 1). Then, there exist
increasing subsequences π1 = (i1, . . . , ik+1), π2 = (j1, . . . , jk+1) and a string s such that
PX′(π1, s) ≥ a, PY ′(π2, s) ≥ a. First of all, notice that, due to p(X′)

i (′$′) = p
(Y ′)
i (′#′) = 0 for

all i, s does not contain letters ′$′ and ′#′. In addition, the letter ′%′ only appears at the
last position, and it is the only possible option for this position. Finally, the last position
shall be used on both subsequences, because otherwise PX′(π1, s), PY ′(π2, s) ≤ mk+1 < a.
Thus, the last letter of s is ′%′. If we denote by s′ the string s without its last letter, it holds
that PX({i1, . . . , ik}, s′) ≥ a1, PY ({j1, . . . , jk}, s′) ≥ a2.
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The computation of a requires O(Mulw(nB) log (nB)) time due to Corollary 5, and the
n|Σ|-multiplications of two numbers with at most B bits each cost O(n|Σ|Mulw(B)). All
other computations take linear time. J

We note that [19] proved the same result, but their reduction required computations with
real numbers (raising to the loga2 a1 power). To the best of our knowledge, there is no way
to modify that reduction so that it tolerates the rounding error in the word RAM introduced
by working with roots and logarithms.

In what follows, we show that the rounding errors may cause the algorithm by Cygan et
al. [19], which reduces any instance of WLCS to a more restricted class of instances, to err.
This does not rule out the possibility that more clever rounding algorithms (depending on
the input size) may indeed be used so that the algorithm does not err; however we are not
aware of any such rounding technique, and even if it exists, the algorithm would probably
become too complicated compared to ours.

I Lemma 20. The reduction from (a1, a2)-WLCS to WLCS with only one threshold given
by Cygan et al. in [19] may err, if exact computations with logarithms and roots are not
assumed (assuming the rounding technique does not depend on the input, for example it only
keeps a constant number of decimal digits).

Proof. We prove the above with an example that demonstrates that the rounding error,
introduced by not assuming exact computations with logarithms and roots, may cause the
reduction to err.

Let a1 = 1
8 , a2 = 1

4 and the two weighted sequences X and Y on alphabet Σ = {a, b} be:

X 1 2 3 4
a 1 1 1 1

8
b 0 0 0 7

8

Y 1 2 3 4
a x 1

2
1
2 1

b 1− x 1
2

1
2 0

where 0 ≤ x ≤ 1 is a constant to be specified later. For x = 1, the weighted LCS is aaaa
and for x < 1 the weighted LCS is aaa. The transformation described in [19] would give
a = 1

8 , γ = 3
2 and the new sequences would be:

X ′ 1 2 3 4
a 1 1 1 1

8
b 0 0 0 7

8
# 0 0 0 0

Y ′ 1 2 3 4
a xγ 1

2
γ 1

2
γ 1

b (1− x)γ 1
2

γ 1
2

γ 0
# 1− xγ − (1− x)γ 1− 2 ∗ 1

2
γ 1− 2 ∗ 1

2
γ 0

Since 1
2
γ is an irrational number, it is rounded to some number r =

⌊ 1
2
γ⌉. Suppose r < 1

2
γ .

In this case, when x = 1, while the weighted LCS is aaaa the algorithm returns aaa due to
the rounding errors. On the other hand, if r > 1

2
γ , we can always find an appropriate x < 1

such that the weighted LCS should have been aaa but the algorithm returns aaaa due to
the rounding errors. To show this, let x =

(
k−1
k

)2 for some integer k. Then xγ =
(
k−1
k

)3.
It holds that

(
k−1
k

)3
r2 is an increasing function of k which converges to r2 > 1

8 . Thus, we
can find a big enough k such that xγr2 ≥ 1

8 and err on this particular example, as long as
the rounding technique does not depend on the input (for example it only keeps a constant
number of decimal digits). J

Once again, the above is not a proof that the algorithm given by Cygan et al. can never be
correct, despite of the rounding algorithm used. It just shows that it is necessary to explicitly
specify such a rounding algorithm in order to construct a correct algorithm.
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