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Abstract

Stem cell therapy presents new and exciting opportunities for health care. Its success
relies on having an in-depth understanding of the mechanisms which promote cells
to take on specialised tasks. With this knowledge, stem cells can be engineered into
desired target cells to replace damaged cells. One crucial cell type is the (3-cell in the
pancreas which produces insulin. Knowing which cues direct the pancreatic cells to
turn into 3-cells can help patients with type 1 diabetes.

Another function of the pancreas is the production of digestive enzymes which are
transported through its tubular network. During embryonic stage, these ductal tubes
remodel from a web-like structure to one resembling a tree. It has been hypothesized
that this structural change might be a cue which guides pancreatic cells to become
[3-cells.

This thesis provides the tools to investigate this hypothesis through computational
analysis. It is thus required to have segmentations of the tubular structure and extract
their topology from the live imaging 3D confocal microscopy. The low signal-to-noise
ratio in these images makes attaining large amounts of annotations difficult and costly.
On the other hand, deep learning models thrive when loads of labeled data are available.

Active learning is the setting where only the most informative samples are annotated
by an expert and added to the training set. However, current sampling strategies are
not warranted to perform better than random selection of samples in general. This
hinders the utility of active learning for practical applications. We adopt a Bayesian
framework and propose selecting samples that contain maximum mutual information
between model parameters and labels. We show that for logistic regression model, this
criterion is beneficial if the data is roughly linearly separable. For our application, we
need more complex models which often render entropy computation intractable.

For a reliable test of the biological hypothesis, we need an accurate measure of
segmentation uncertainty. We study established probabilistic segmentation models to
see if their estimated uncertainties capture segmentation error. We also investigate
the utility of these uncertainties for active learning.

Furthermore, segmentation models are trained for pixel-wise performance, while our
application puts an emphasis on topological accuracy. In particular, tubular loops
are of major significance. To that end, we derive a topological score function, which
decomposes into loop and component subscores, measuring the topological similarity
between a target graph and a predicted graph. This score function can be used to
encourage topological consistency through model selection. Lastly, loops are tracked
over time to not only study their morphological changes but also reduce the number
of false positive loops.
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Resumé

Stamcelleterapi giver nye og speendende muligheder for sundhedssystemet. Stam-

celleterapiens succes afhaenger af at have en indgaende forstaelse af de mekanismer,
der fremmer celler til at patage sig specialiserede opgaver. Med denne viden kan
stamceller manipuleres til gnskede celler som erstatning for beskadigede celler. En
vigtig celletype er -cellen i bugspytkirtlen, der producerer insulin. Viden om hvilke
tegn der transformerer bugspytkirtelcellerne om til -celler, kan hjeelpe patienter med
type 1-diabetes.

En anden funktion af bugspytkirtlen er produktionen af fordgjelsesenzymer, der trans-
porteres gennem dets rgrformede netveerk. Under embryonalt stadium ombygger disse
kanalrgr fra en banelignende struktur til en, der ligner et tree. Det er blevet postuleret,
at denne strukturelle szendring kan vaere et tegn, der guider bugspytkirtelceller til at
blive 3-celler.

Denne afhandling giver veerktgjer til at undersgge denne hypotese gennem beregnings-
analyse. Det er sdledes pakraevet at have segmenteringer af den rgrformede struktur og
udtrackke deres topologi fra realtids 3D -konfokalmikroskopi billeder. Pa grund af det
lave signal-til-stgj-forhold i disse billeder er det sveert og dyrt at opné store meengder
annotationer. Pa den anden side trives deep learning -modeller, nar der er masser af
annoterede data tilgaengelige.

Aktiv leering er hvor kun de mest informative prgver annoteres af en ekspert og tilfgjes
til treeningssaettet. Nuvaerende prgveudtagningsstrategier er imidlertid ikke sikret at
performe bedre end tilfeeldigt udvalg af prgver generelt. Dette forhindrer brugen af
aktiv leering til praktiske anvendelser. Vi adopterer en Bayesiansk ramme og foreslar at
veelge prover, der indeholder maksimal gensidig information mellem modelparametre og
etiketter. Vi viser, at dette kriterium er fordelagtigt for den logistiske regressionsmodel,
hvis dataene er nogenlunde linesert adskillelige. Til vores applikation har vi brug for
mere komplekse modeller, som ofte ggr entropi -beregning uhandterlig.

For en palidelig test af den biologiske hypotese har vi brug for et ngjagtigt mal for
segmenteringsusikkerhed. Vi studerer etablerede probabilistiske segmenteringsmodeller
for at se, om deres estimerede usikkerheder fanger segmenteringsfejl. Vi undersgger
ogsé nytten af disse usikkerheder for aktiv leering.

Endvidere er segmenteringsmodeller uddannet til pixelvis ydelse, mens vores applikation
leegger vaegt pa topologisk ngjagtighed. Iseer er rgrformede ringe af stor betydning.
Til dette formal udleder vi en topologisk score -funktion, som nedbrydes til ring-
og komponent delscore og maler den topologiske lighed mellem en gnsket graf og
en predikteret graf. Denne score -funktion kan bruges til at tilskynde topologisk
konsistens gennem modelvalg. Endelig spores loops over tid for ikke kun at studere
deres morfologiske sendringer, men ogsa reducere antallet af falsk-positive ringe.
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Chapter 1

Biological Motivation

The purpose of this chapter is to introduce the biological question which this
thesis is preparing to answer. For this reason, we first begin by introducing
some basic concepts in cell biology. The intention is for the biological notions
to be introduced in a way that is accessible to an audience coming from other
backgrounds. For a more thorough review, the reader is referred to [1].

1.1 Developmental Biology

An organism begins its development with a single fertilised cell, called zygote,
which is the result of the union between an egg and a sperm. That single cell
duplicates many times to make us who we are. However, our bodies consist of
cells that are made for specific tasks. The process by which a less specialized
cell becomes more specialized is known as cell differentiation. Red blood cells,
skin cells, and nerve cells are examples of specialized cell types. Cells can be
ranked according to how many cell types they can differentiate into. A totipotent
cell is one which can differentiate into all cell types. A zygote is an example
for a totipotent cell. A pluripotent cell can differentiate into many cell types.
Embryonic stem cells fall into this category. Then there are multipotent cells
which can differentiate into several cell types like adult stem cells.

What separates two cell types from one another is the kind of proteins molecules
they produce. Proteins not only give cells their shape and structure, but it is
also proteins which execute nearly all tasks a cell performs. For example, most
chemical reactions that cells perform would normally occur at temperatures
much higher than those in a cell. Enzymes are specialized proteins which catalyze
(speed up) a specific reaction among many possible ones. There are general-
purpose proteins which are common among several cell types: structural proteins
provide mechanical support to cells; transport proteins carry small molecules or
ions; motor molecules generate movement in cells. There are also specialized
proteins which are exclusive to a few cell types. For instance, hemoglobin protein
is made only in red blood cells.
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Thus, what a cell does depends on the kind of proteins it produces. But what
determines what proteins a cell must produce? All cells in our body contain
the same double-helix strand of DNA. Therefore, what causes two cell types
to produce different proteins cannot come from the DNA. Not all parts in our
DNA are used for making proteins. Only those segments in DNA which encode
the information to create particular proteins are referred to as genes. Each cell
expresses (turns on) a combination of genes to make the proteins it needs to
accomplish its myriad tasks.

A useful analogy is to compare DNA to a library, both containing information.
Just like all cells have the same DNA, every citizen also has access to the same
library. However, what makes a person an engineer and another a philosopher is
which books in the library they have read; likewise a cell’s fate is decided by
which genes it has expressed.

The process that maps DNA onto protein is executed in two steps: first from
DNA to RNA and then from RNA to protein. In other words, RNA acts as a
middleman between DNA and protein. In the first step, the double-helix part
in DNA which consists the target gene is unwound and one of the strands is
used as a template to copy the DNA information of that segment into RNA.
The RNA molecule is as a result much shorter than DNA and single-stranded.
Similar to DNA, an RNA sequence also consists of four nucleotide molecules.
Since both DNA and RNA sequences are in the language of nucleotides, this step
is named “transcription”. However, the second step, from RNA to protein, is
between two different languages. Hence this step is known as “translation”. The
letters that specify a protein and its 3D shape are the 20 types of amino acids.
Since there are 4 letters in RNA language, every triplet in an RNA sequence is
translated into one amino acid, with several RNA triplets leading to the same
amino acid. In summary, what is meant by gene expression — using more precise
vocabulary — is that the nucleotide sequence of that gene is transcribed into
the nucleotide sequence of an RNA molecule, which is then translated into the
amino acid sequence of a protein.

A cell can regulate the expression of its genes in response to the cues it receives.
These cues can be internal or external. For instance, the nonuniform distribution
of a protein in a cell at the time of duplication can act as a cue affecting the
fate of the daughter cells. External cues can be short distance signals secreted
from other cells or even through direct cell-cell contact, or long distance through
hormone proteins which are released by cells in the blood stream. External cues
could also originate in the physical environment such as pulling and pushing
forces (tension), the composition of the surrounding structural proteins (extra
cellular matrix), access to oxygen, temperature, etc. A certain cell fate needs
a unique combination of signals and mechanical input in order to differentiate.
This combination is available only in one specific place referred to as “the niche”.

With recent advancements in stem cell technology, a new window for therapeutic
applications has been opened. If we understand the mechanisms affecting the
differentiation of desired cell types, we can then push a pluripotent stem cell
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FIGURE 1.1: Image taken from [36]. Left: Pancreas location
relative to other organs. Right: A zoomed in slice showing the
enzyme-producing acinar cells situated at the tip of the tubular
system, and the islet of Langerhans positioned close to the tubes
while being connected to the blood stream to release the produced
hormones.

into taking the desired fate in vitro (in test-tube) and use that to regenerate
tissues or help patients who lack vital proteins.

1.2 Pancreas Development

With these introductory notes in place, we are now ready to move on to un-
derstand how pancreas develops during embryonic stage. For a more complete
discussion of pancreas development, we refer the reader to [31,36].

The pancreas is an organ in the body with exocrine and endocrine functions:
the exocrine pancreas secrets a digestive juice for nutrient metabolism, and the
endocrine pancreas releases various hormones into the blood stream to regulate
the glucose level. Each of these functions involve various cell types and their
specialized proteins. The exocrine function is carried out by acinar cells and
ductal cells. Acinar cells produce enzymes which catalyze the breakdown of
carbohydrates and proteins. The ductal cells in return form a tubular structure
that this juice passes through to reach the duodenum. Endocrine cells consist of
five cell types, each responsible for the production of a specific hormone. All
endocrine cell types live in a small cluster called islet of Langerhans which is
located near the tubular system (Figure 1.1). Out of endocrine cell types, only
the insulin-producing (-cells are of interest to us in this project.

The pancreas development during embryonic stage is governed by a complex
process of signaling and transcription regulation. A better understanding of these
events can lead to treatment of pancreatic diseases. Type I diabetes, for instance,
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FIGURE 1.2: Image taken from [48]. Mouse pancreas remodeling
over several embryonic days.

is a disease where the (-cells are dysfunctional or dead. Transplantation of
islets from donors can temporarily cure type I diabetes [35], thus replacement
therapy with new 3-cells are needed. This can be achieved through engineering
human embryonic stem cells to differentiate into the target cell type in vitro, or
by reprogramming of pancreatic cell types directly in the body [31].

In mice, pancreas takes its initial form around day E10.5 (embryonic day 10.5).
By E12.5, these cells coalesce to make a web-like structure. At E17.5 the
pancreas has taken its mature tree-like structure which is more optimal for the
transportation of enzymes. During this remodeling from E14 to E17.5, tubular
loops eliminate providing the pancreas with its final form [31,48] (Figure 1.2).

Concurrent to these remodeling events, pancreatic cells are making their cell
fate choices. First, they are divided into two groups, namely ‘tip’ and ‘trunk’.
Tip cells later become acinar cells. Trunk cells are bipotent meaning that they
can either become ductal cells or endocrine cells. Finally, those endocrine cells
differentiate into one of the five hormone-producing cell types [36].

It has been suggested in [3,19] that the remodeling of pancreatic tubes might
act as a cue to direct differentiation of trunk cells to either ductal or endocrine
cells.

The goal of this PhD project is to provide the tools necessary to investigate
this hypothesis computationally. In particular we are interested in extracting
topological features which are biologically plausible to affect 3-cell differentiation.
These topological features could be the opening and closing of loops, their
diameter, number of branches etc.

The data set that we analyze is recorded by live-imaging fluorescent 3D mi-
croscopy during embryonic stage of mouse pancreas. The pancreas is dissected
at £12.5 and grown in incubation chamber for 48 hours. Then they are recorded
from E14.5 for 48 hours (assuming the cells are alive) with a frame rate of
one every 10 minutes using a Zeiss LSM780 confocal microscope equipped for
live imaging. The image resolution is 0.346 x 0.346 x 1.0 um (x, y, z), and the
dimension size is 1024 x 1024 x D pixels, where D varies between 27 and 40.
The imaged mouse pancreas expresses a reporter gene leading to production of a
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FIGURE 1.3: Maximum intensity projection of a frame of a live
imaging movie. Tubular network is shown in red, and insulin-
producing (3-cells are shown in green. Manually identified loops
are given ID numbers (written in white font) to track them over
time.

red fluorescent protein (mCherry), which is localized to the that side of the cell
facing the tube’s inner surface. The green channel captures green fluorescent
protein (GFP) to reveal B-cells [29] (Figure 1.3).






Chapter 2

Problem Statement

During embryonic development, the tubular network in the pancreas remodels
from a web-like structure to a tree-like structure. Biologists have hypothesized
that this morphological change might have an influence on the appearance of
nearby {3-cells which produce insulin. As a result, careful study of the topological
changes that occur in the tubular network are needed to evaluate this hypothesis.

Verifying this biological hypothesis has inspired segmenting the tubular structure
from the live imaging data of mice pancreas during embryonic stage. In general,
live imaging is challenged by low signal-to-noise ratio (as compared to fixed
tissue imaging), due to the fact that cells need to be kept alive, which translates
into low laser power and fast scanning speed. This makes segmenting the tubular
structure a difficult task even for trained biologists. The challenges raised by
the data are discussed at more length in Appendices C and D. An example of
the segmentation task is shown in Figure 2.1.

Segmentation requirements. For a viable test of the biological hypothesis,
we would need reliable and efficient segmentations. While manual detection of
human experts are in general reliable, they are not efficient. It takes a long time
for a human to classify each voxel in the 3D volumetric data. A single 3D image
takes about 50 hours to annotate. This makes the manual approach unattainable
for a scalable study of several movies, which consist of more that a hundred
frames each. Moreover, conventional automated image segmentation methods
such as intensity thresholding does not suit this dataset since the fluorescent
protein lies only on the surface of the tubes, leading to a hollow segmentation.

On the other hand, deep learning models are very efficient: once the model is
trained, it usually takes a few minutes to make predictions for new input. Deep
learning models have seen a huge success in a variety of areas such as image
classification [44], artificial voice generation 30|, and protein folding [18] to name
a few. In fact, they have outperformed humans in a multitude of tasks |4, 14].
Thus it seems only natural to employ these successful models to replace the
manual detection of tubular structure as well. However, they pose two big
challenges:
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FIGURE 2.1: Left: A 2D slice of the input image Right: Ground
truth segmentation provided by an expert.

1. The high performance of these models is predicated on having large
amounts of labeled training data [43].

2. Their predictions are not always reliable [42].

Cost of annotations. Although deep learning models are the state-of-the-art
in segmentation tasks, they require large amounts of annotated data to reach
their full capacity. This is indeed a serious shortcoming for our application,
as not only is it cumbersome to annotate 3D images on a voxel level, but also
expert knowledge is costly to attain. We are thus forced to come up with a
strategy to overcome this restriction. We experiment with two methods to cope
with this problem:

1. Active learning (Section 3.3) which aims to make efficient use of the
annotation budget to solve the segmentation problem.

2. Semisupervised segmentation (Appendix D) which uses unannotated data
to help with the segmentation task.

Active learning. Rather selecting samples at random to be annotated, active
learning selects carefully selects a subset of samples to be labeled. There have
been several suggestions in the literature [33,49] on how to select the most useful
samples. One popular line of thought is based on selecting the most uncertain
samples [21]|. This approach can easily be applied to probabilistic models. In
our experiments, a common phenomenon was that models were mostly certain
about the inside of the tubes while having a high uncertainty near the boundary
of the tubular structure (Figure 2.2). These are also challenging for the human
annotator. While this might not be a problem in itself, it inspired us to delve
more into the topic of active learning. What hinders using an active learning
setting is that it is not clear ahead of time which sampling strategy is going to
be better than mere random selection of samples to be annotated [23]. This
poses a serious shortcoming to the practical use of active learning as one might
actually lose performance by selectively choosing samples to be labeled. This is
the inspiration behind the work presented in Appendix A, which investigates
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FIGURE 2.2: Left: A 2D slice of the input image Middle: The
corresponding prediction obtained from a deep learning model
Right: Entropy of the image which shows more uncertain pixel
as whiter.

whether we can come up with a data gathering strategy that is guaranteed to
outperform random sampling.

Semisupervised segmentation. As our labeled training set is necessarily
small, it is desirable to use the diverse unlabeled pool of images to learn more
generalizable latent space features compared to the case where only labeled
images are available. In Appendix D, we experiment with different ways of
incorporating unlabeled data into the training and compare them against a fully
supervised framework.

Segmentation uncertainty. Endowing segmentation models with uncertainty
estimates can be an effective way to bring a sense of reliability into the predictions.
In particular for our application, we would like to have an accurate sense of
which segmentations are trustworthy and can be reliably used for biological
hypothesis testing. There are several models which quantify segmentation
uncertainty [10,20, 32|, but it is not clear what these uncertainties represent.
In Appendix B, we study whether these uncertainty estimates correlate with
segmentation error. We also investigate whether these uncertainties are beneficial
for the purpose of active learning. In Appendix D, we show that for our data,
these uncertainty estimates correlate with segmentation difficulty which has
been assessed by a laboratory assistant annotating ground truth segmentations.

Topology of the tubular network. Segmentation tasks are usually trained
on metrics that ensure pixel-wise accuracy, whereas for our application what is
of crucial importance is to correctly predict the topology of the structure. There
could be several cases where a few incorrect pixel-wise predictions could disrupt
the topology of the tubular network. Moreover, tubular loops play a prominent
role in examining the biological hypothesis. This has motivated us to propose a
topological score function in Appendix D, which can be broken down to loop-
and component subscores. Since it is the changes over time which are important,
in Appendix D, loops are tracked over the duration of the movies and the results
are compared to annotations by a human expert.
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Chapter 3

Machine Learning Background

The purpose of this chapter is to prepare the reader for the theoretical aspects
presented in the appendices. Although we have attempted to make the material
comprehensible, basic familiarity with probability theory and machine learning
might be of use. The examples provided throughout this chapter are intended
to provide insight into machine learning problems in a new light. We begin
in Section 3.1 by introducing Bayesian inference which assigns probabilities to
hypotheses, taking into account the observed data and our prior belief. Section
3.2 uses the probability distributions provided by Bayesian inference to quantify
information. In Section 3.3, we discuss how to make use of these concepts to
draw samples which are expected to contain the most information about the
model parameters.

3.1 Bayesian Inference

It is worth spending some time on the Bayesian definition of probability, as it
is the foundation on which Bayesian framework is built upon. Those who are
interested in a comparison of schools of thought in probability are encouraged to
read [13,17,24]. For further reading on Bayesian inference, the reader is directed
to [6,27].

What is probability? The Bayesian definition of probability is the degree
of belief for propositions given the collected data. In this view, randomness is
not an inherent property of the world, but rather a consequence of our limited
knowledge. Even the outcome of a coin toss is deterministic in presence of full
knowledge [41]. Therefore, Bayesians reason about non-random unknowns under
imperfect knowledge.

The role of Bayesian inference in data modeling is to answer the following
two questions given the observed data [25]: 1. Assuming a model is true, which
values are more plausible for its parameters? 2. Given a set of models, how
plausible are each of them? We refer to the first question as model fitting and
the second as model comparison.
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3.1.1 Model Fitting

Bayes’ theorem provides a set of tools to update our belief in hypotheses given
data. Let us assume that the model 3;, which has parameter vector w € R¥, is
‘true’, meaning it has either generated the data D or it is useful to assume so.
Then our posterior belief about the values the parameters w can take can be
expressed as

P(D|w, H;) P(w|H;)

P(D[3G) ’
where P(w|D,H;) is the posterior belief of w, P(D|w,H;) is the likelihood,
P(w|H;) is the prior belief of w, and P(D|H;) is the normalizing constant
computed as

P(w|D,H;) = (3.1)

P(D|%,) = / P(D|w, ;) P(w|D)dw. (3.2)

The likelihood measures the probability of the data D if we knew w. The choice
of prior is subjective, and it quantifies our knowledge about w prior to seeing
the data. If our purpose is to only compare the probabilities of different values
for w, then it is not necessary to compute the normalizing constant. However,
as we will explain shortly, if we want to compare different models, we need to
compute it. This is why the normalizing constant has also been referred to as
the evidence of H;.

In Bayesian inference every statement is expressed in terms of probability and
there are no binary decisions about the truthfulness of a particular hypothesis.
A hypothesis can only be extremely likely or highly implausible, but not right
or wrong. We will now introduce two non-Bayesian procedures used in machine
learning to train models (i.e. infer model parameters). Our goal is to see how
they are related to Bayesian inference.

Maximum likelihood estimation (MLE). In this approach, we ignore the
prior distribution and ‘let the data speak for itself’. The parameter which
maximizes the likelihood is the selected as the estimated parameter i.e.

wyLe = arg max P(D|w, H;). (3.3)

weRk

Maximum a posteriori (MAP) estimate. In this approach, the prior
is included in making inference, but only the parameter that maximizes the
posterior is taken as the estimated parameter. In other words,

WMAP = arg max ]D(W|l)7 J’Cl) (34)

wcRk

Let us now get concrete and see how the introduced methods treat a simple
inference problem.

Inference example [27]: Assume a coin has a fixed probability f of coming
up heads. We observe n heads in IV tosses. What can we infer about the value
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FIGURE 3.1: Posterior distribution of coin bias f given fixed
values for the number of heads n and total tosses N. Note that

the peaks occur at n/N and when N is large, the posterior is
sharply peaked.

of f assuming total ignorance about its prior value?

We assume a uniform prior on f, i.e. P(f) = 1. We know the fact that
fol 1%(1—x)°dx = a!b!/(a + b+ 1)! and that P(n|N, f) is a binomial distribution.
Therefore, the posterior of f is

PN, HP(f) N+ - N
P(f|n,N) = PN, P = (N =) . (3.5)

The posterior distribution of f is shown for four values of n and N in Figure 3.1.

Now, let us review the MLE and MAP answers to this inference problem. Since
we have assumed a flat prior over the possible values for f, both MLE and MAP
lead to the same results. Both the likelihood and the posterior peak at f =n/N
and f is chosen as the estimated value for the probability of coming up heads
for this coin.

From inference to prediction. Now let us ask what is the probability the
next toss is a heads? To answer that question, we need to take in account the
uncertainty that we have about f, so we should compute Ep(fn n)[P(tn+1 =
heads|N, n, f)], in which E[-] denotes the expected value. Thus, we can write

1
P(tni1 = heads|n, N) = / P(f|n, N)P(tnt1 = heads|f,n, N)df. (3.6)
0
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If we know the probability of coming up heads f, then we do not need the
observations to predict the next toss, in other words P(tx1 = heads|f,n, N) =
P(tny1 = heads|f) = f. Using this and the posterior (3.5), we can compute

(3.6) as

Pltx11 = heads|n, N) — Zilz (3.7)
This is the correct and exact way to make predictions when using Bayesian
inference. The MLE and MAP have already inferred f =n/N, so their predic-
tion is P(ty41 = heads|f) = n/N, which is very different from the Bayesian
prediction when the number of observations are low. Having said that, when
data points are numerous the MAP estimate might be a good approximation
of the posterior, since in such cases the posterior is usually sharply peaked and
can be approximated by a single value at its maximum.

3.1.2 Model Comparison

In this level of inference, we would like to compute the posterior belief over
models (to within a normalising constant) i.e.

P(3|D) o< P(D[3H;)P(H;). (3.8)

If we set a flat prior over all models, i.e. if we do not have a reason to believe
one of the models is more plausible than the others, then model selection only
depends on the evidence P(D|H;).

Occam’s razor states that among models which fit the data, those which
are less complex (have fewer parameters) are preferred. A closer look at the
evidence Equation (3.2) reveals why Occam’s razor is embodied in Bayesian
model comparison [25]. Under sufficient data, the posterior distribution over the
parameters are usually strongly peaked (Figure 3.2). If so, we can approximate
the integral in Equation (3.2) by the height at its peak times the width as

P(D|H;) ~ P(D|wwuap, H;) P(Wyap | H;) AWposterior- (3.9)

If we assume a flat prior with width Awio,, i.e. P(W|H;) = 1/AWpyier, then
we can rewrite Equation (3.9) as

AWPOSteriOI‘

P(D|}H;) ~ P(D|wuap, H;) ; (3.10)

Avalrior

where AW posterior/ AWprior 1S named “Occam’s factor” [13]. A more complex
model would have a higher Awp,;,, and consequently a lower evidence meaning
it would be ranked lower compared to a simpler model.

Now that we have given an introduction to Bayesian inference, let us go back
the data modeling process shown in Figure 3.3. Other than model fitting and
model comparison, one can use the information obtained from the evidence to
decide if new models are needed to be considered. For instance, if the posterior
distribution over the hypotheses is not sharply peaked, then we might consider
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FIGURE 3.2: Image taken from [25]. The reason why Bayesian
model comparison includes Occam’s razor: The ratio between
the width of the posterior (AWposterior) to the width of the prior
(AWprior) is known as the Occam’s factor which punishes model
complexity.

rethinking our models and propose a new one and repeat the comparison. Be
that as it may, Bayesian inference does not inform us on how to come up with
new models, it can only compare their plausibility relative to other models given
the data and our assumptions.

Intractability of the integrals. We need to compute two integrals in Bayesian
inference:

1. When converting inference to prediction, we need to compute the expected
prediction over the posterior distribution of parameters, e.g. in Equation
(3.6).

2. When comparing models we need to compute the integral in Equation
(3.2) to calculate the evidence.

The reason for this intractability is that for many models the posterior would
be a complex distribution. There are three approaches to deal with complex
distributions:

1. Laplace’s method, explained in detail in Appendix A, approximates the
posterior by a Gaussian distribution

2. Monte Carlo methods [11,28,45] use random numbers to draw independent
samples from nasty distributions which can then be used to compute
expectations on those distributions and also calculate the normalizing
constant.
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Gather data Create models
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to the data

'

Assign preferences to

each model
Choose what data Decide whether
to gather next to create new models

FIGURE 3.3: Image adapted from [25]. Data modeling process:
Bayesian inference provides straightforward answers to model
fitting and model comparison. We can then use these answers to
decide if we need new models or what data to gather next.

3. Variational methods [5,12,15] approximate nasty distributions by well-
behaved parameterized distributions and then minimize the Kullback—Leibler
divergence to find the parameters.

Despite these estimations, it is still computationally expensive to use Bayesian
approach for model comparison. For this reason, we use a validation set to
compare models throughout this thesis.

3.2 Information Theory

Bayesian inference can tell us what data to gather next, also known as active
learning. To do this, we need to come up with a measure of information and
then select the data point that is maximally informative for either model fitting
or model comparison [26].

In this section, we begin by introducing how to measure information for discrete
random variables. These definitions are pooled in the ‘weighing problem’ to
give some profound insight into the active learning problem. We then introduce
what properties hold for continuous random variables. For further reading on
the topic of information theory, we highly recommend [27].

What is information? How can one measure it? In his seminal paper [34],
Shannon answered both questions.
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FIGURE 3.4: Left: Shannon information content of an outcome.
Rare outcomes contain more information than more frequent ones.
Right: Entropy of a Bernoulli random variable with bias b. The
entropy is highest when b = 0.5.

The Shannon information content of an outcome z is defined as

h(x) = log, P(la;)’ (3.11)

which is measured in bits since we are using log,, but other bases for the
logarithm are also possible. Figure 3.4 (Left) gives an the intuition behind
this definition, which is that rare outcomes are more informative than frequent
ones. Also if an outcome is certain (P(z) = 1), the information content for that
outcome is zero. The information content is non-negative. Since we do not know
the outcome of experiments before we conduct them, it is useful to define the
expected information content.

The entropy of a discrete random variable X is then defined as the
expected information content i.e.

ZP 1og2P St (3.12)

where if P(z) = 0 then P(z)log,[1/P(z)] = 0. Note that like information
content of an outcome, the entropy is also non-negative.

As an example, Figure 3.4 (Right) depicts the entropy of a Bernoulli random
variable X with bias b, i.e. P(X =1) =band P(X =0) =1 — b, which is

1 1
H(X)= blogQE—l— (1 —b)logzli

— (3.13)

We can see that if the outcome is already known, i.e. b =0 or b = 1, the entropy
is zero. Also, the entropy is highest when the outcome is most uncertain i.e.
b=0.5.

The number of possible outcomes in a Bernoulli random variable is two and
the entropy is highest when both of these outcomes are equally probable. The
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general rule is that given a set of all possible outcome A,

with equality if and only if P(x) = 1/|A,| for all z, in other words if P(x) is
uniform. Here, | - | when applied on sets denotes the number of elements in
that set. For this reason, the entropy measures how random or uncertain or
unpredictable a random variable is.

In many scenarios, we are studying more than one random variable. We will
now introduce the joint and conditional entropies.

The joint entropy of X, Y is
1
Y) = P(x,y)logy ——. (3.15
2Pl los B )

If two random variables are independent i.e. P(z,y) = P(z)P(y), then their
joint entropy is additive i.e. H(X,Y) = H(X)+ H(Y). This is in accordance
to the intuition we have about information.

The conditional entropy of X given y = yq is the entropy of the probability
distribution P(X|y = yo), i.e

1
H(X|y =) P(x o) logy —————. 3.16
w2 * Plaly = w) 10

The conditional entropy of X given Y is the average, over y, of the conditional
entropy of X given y.

HO) = S PO 3 Plet) oy s | = 2 Plany) o 57

(3.17)
The chain rule for entropy:

H(X,Y)=H(X)+ H(Y|X)=HY)+ HX|Y). (3.18)

If X and Y were independent then H(Y|X) = H(Y) and H(X|Y) = H(X),
and we would have the additive property of entropies of independent random
variables.

The mutual information between X and Y is
I(X;Y)=H(X)-HX|Y)=H(Y) - HY|X). (3.19)

The mutual information is symmetric, i.e. I(X;Y) = I(Y;X), and I(X;Y) > 0.
The mutual information between two independent random variables is zero.
Intuitively, the mutual information measures the average amount of information
that x conveys about y. In other terms, how much on average the uncertainty
of x is reduced once we learn y.
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FIGURE 3.5: Image taken from [27]. The relationship between
joint entropy, marginal entropy, conditional entropy, and mutual
information.

Figure 3.5 summarizes all the formulas about the entropies of two dependent
random variables.

The weighing problem. Imagine you are given 12 balls, all of which except
for one weigh the same. You are given a two-pan balance which can measure
whether the left side is heavier, the right side is heavier, or they weigh the same.
How would you use the scale to find out which of the 12 balls is the odd one and
whether it is heavier or lighter while using the scale as few times as possible?

We know we have 24 hypotheses (12 balls each being heavy or light). There are
three states the scale can be in, so it is impossible to distinguish the odd ball
after 2 uses of the scale since 3% < 24, but we might be able to do so in 3 uses
or more.

Let us denote the input of the experiment for the first usage by X, showing
which balls are weighed against which. The output of the scale for the first usage
is denoted by Y. The hypotheses about which ball is the odd one is shown by W.
There are 24 candidates and initially, without having used the scale at all, they are
all equally probable, i.e. P(w;) =1/24 and H(W) = log, 24. A greedy strategy
would be to conduct experiments which are maximally informative at every step!.
Such a strategy would choose x such that the expected uncertainty in w is reduced
the most. The reason for the word ‘expected’ in the last sentence is that we do
not know the outcome of the weighing. The mutual information I(W;Y]X) is
the quantity we would like to maximize. We can compute the mutual information
in two ways. We begin with I(W;Y|X) = H(W|X) — HW|Y, X). Knowing z
alone would not reveal anything about w, so H(W|X) = H(W) = log, 24. For
the first usage, there are 6 options. We can weigh 6 balls against 6 and leave
no ball on the ground, or we can weigh 5 balls against 5 and leave 2 balls on
the ground etc. We denote these experiments by 6v6, ..., 1vl. For example, if
we use 6v6, we know the scale will not balance, and by symmetry it is equally
likely that either side is heavier. In any case, this reveals that half of the balls
could not be heavy and the other half could not be light and the probability for

L This strategy could in principle give rise to solutions which are not globally optimal, but
that does not occur in this example.
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the remaining 12 hypotheses would be equally likely. As a result,
H(WIY, X =6v6) =

ZP(y|X = 6v06) Z P(w|y, X = 6v6) logz(P

yey weW

=1 12.
(wy, X = 6v)) ~ 18

Thus I(W;Y|X) = log,(24/12) = 1 bit. Intuitively, 1 bit of information is
the same as asking a yes/no question and it removes half of the hypotheses.
It is in general easier to compute I(W;Y|X) = H(Y|X) — H(Y|W, X). The
reason being that knowing which ball is the odd one and if it is heaver or lighter,
also tells us the outcome of the scale, so H(Y|W, X) = 0 regardless of what x
is. Consequently, I(W;Y|X) = H(Y|X). For instance when X = 5v5, it will
balance if the odd ball is one of the two balls on the ground (2/12 chance), and
the rest of the probability is split equally on either side, so H(Y|X = 5v5) =
(2/12)log,(12/2) 4 (5/12) log,(12/5) + (5/12) log,(12/5) = 1.48. The following
is the information gain of every possible weighing:

IW.Y|X=6v6) =1,  I(W;Y|X =3v3) = 1.5
I(W;Y|X = 5v5) = 148, I(W;Y|X = 2v2) = 1.25
IW;Y|X =4v4) =158, I(W;Y|X = 1vl) =0.82

Therefore, for the first usage X = 4v4 is optimal according to mutual information.
We will not go into the next steps as it might be harder to explain due to the
branching of outcomes without having a proper labeling of balls. However, a
full optimal solution with 3 uses of the scale can be found in [27].

The main goal of presenting this example here is to shed some light on how input
and output of an experiment can reduce the uncertainty about a hypothesis, and
why selecting an input which maximizes the mutual information between the
output and the hypotheses could be a profitable rule of thumb. Active learning
is also known as the optimal experimental design. The weighing problem is a
tangible example of active learning, where we want to infer the true hypothesis
using a minimum amount of data. In the next section, we will explore active
learning using the same language of inference and information in the context of
machine learning.

Since the parameters in machine learning models are continuous we will need to
introduce the continuous entropy.

The entropy of a continuous random variable X is defined as

S(X) = / " P()log, P(lx)dx. (3.20)

At first glance, continuous entropy seems like the natural extension of the
discrete entropy that Shannon suggested, replacing the sum with an integral.
However, let us take a closer look at the continuous entropy by partitioning the
continuous random variable X into infinitely many bins (each denoted by z;)
of width A. We now define the quantized random variable X2 by X2 = x;
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if iA <= X < (i + 1)A. Thus we have P(X? = x;) = P(z;)A. We can now
compute the entropy of the the discrete random variable X2 as A — 0 by

oo
HXY) = I 37 Pl og, A
— 1 — 1
= Einm 2 P(z;)Alog, o) + iigh 2 P(z;)Alog, X
By Riemann sum we have
= 1 oo 1
iiinmi_z:oo P(z;)Alog, Pl = /_oo P(z)log, %d:p = S5(X)

and

+o0 +00
ilinm ; P(z;)A = /OO P(z)dx = 1.

As a result, we can write the relation between continuous entropy and discrete
entropy as

H(X?) = S(X) 4+ log, %, as A — 0. (3.21)

The entropy of the discrete distribution diverges as the quantization width gets
smaller and smaller. Also, discrete entropy is dependent on quantization width
A and is increased by 1 bit for every halving of A. This makes the continuous
entropy to be scale dependent and not be of any use on its own [16].

For instance, the continuous entropy of the uniform random variable x ~ U(a, b)
is S(X) = logy(b— a). For U(0,1/2), S(X) = -1. The continuous entropy can be
negative, and thus cannot be a measure of information by itself. However, all is
not lost and the mutual information between two continuous random variables
is well-behaved.

The mutual information between two continuous random variables X and Y
18
I(X;Y)=5(X)-S(X|Y)=85(Y)-SY|X), (3.22)

The mutual information for continuous random variables has all the properties
of its discrete counterpart [9] since

[(X%Y2) = H(X®)-H(X*[Y?) = S(X)+log, %—S(XIY)—logz % = I(X;Y).
(3.23)

Now that we have defined the mutual information between two continuous
random variables, we are ready to move onto the active learning.
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3.3 Active Learning

There are numbers of applications in which obtaining large amounts of data is
straightforward. Supervised machine learning models, however, rely on having
labeled data to train their parameters. These annotations are costly and cum-
bersome to attain, as they require human knowledge. Active learning poses the
following question: If we had a fixed budget for annotation by a human, could
we spend them wisely and select samples to be annotated which improve model
performance more than a random selection? This careful selection of samples is
based on the machine learning model output. However, there have been quite a
few suggestions as to how to select the most useful samples. For an introduction
to various methods, the reader is directed to [33,49].

In this section, we will draw on the intuition introduced in the weighing problem
of Section 3.2 to select informative samples to fit model parameters. Our goal is
to make the connection between mutual information and the change in entropy
proposed in Appendix A . To keep our focus on the big picture, our formulation
in this section will be model agnostic. The derivation for a logistic regression
model has been presented in Appendix A. In Appendix B, we investigated
an active learning procedure where samples with the highest uncertainty were
selected. Active learning did not work in this setting and this section will also
shed some light on the potential reason behind it.

We adopt the mutual information framework introduced in Section 3.2 for
active learning. Assume we have gathered N pairs of input and output as
Dy = {&n, yn}Y_,. Just as the weighing problem, we denote the next input,
its corresponding output, and model parameters with Xy.1, Yyi1, and W
respectively. We would like to choose x 1 such that its expected corresponding
output yy 1 reveals the most information about the model parameters. In other
words, we want to maximize the mutual information between model parameters
W and the obtained label Yy 1 given the chosen input Xy, ; and observed data
®N; i.e.

TN+1 = argerglcax I(W7 YN+1’XN+1 =7, DN), (324)

x

where I(-;-) denotes the mutual information between two random variables and
X is the set of unlabeled data we can choose from. Using Equation (3.22) one
can write

I(W; YN | Xng1, Dy) = S(W|Xnp1, D) = S(W|Yny1, Xni1, Dy). (3.25)

Since knowing x 1 alone does not provide information about w and Dy, =
Dy U{xnNi1,Yn+1}, We can rewrite the above equation as

](W,YN+1‘XN+1,‘DN> = S(W’DN) —S(W|DN+1) (326)
We can now rewrite Equation (3.24) as

zny1 = argmax [S(W|Dy) — S(W|Dy1)], (3.27)

zeX



3.3. Active Learning 23

which is the criterion proposed in Appendix A. Since the goal of data gathering
is to find which parameters are more plausible, Equation (3.27) makes intuitive
sense to select the sample which reduces the uncertainty over parameters the
most, or in other words makes the posterior over parameters as sharply peaked
as possible.

We now need to compute the entropy

S(W|Dy) = / P(w|Dy) log, P(WI‘DN)dw, (3.28)

which could be intractable for complex posterior distributions.

Now let us take the alternative approach to computing mutual information—using
its symmetry property— to see if we end up in a better position. We have?

IW; YNy | Xns1, D) = H(YN41| Xvt1, D) — H YN[ W, Xnt1),  (3.29)

since H(YN+1’W XN+1, DN) = H(YN+1|W, XN+1).

If the model prediction is a deterministic function of input and parameters, i.e.
flz;w) = P(y = 1|z, w), then H(Yn41|W, Xn41) =0.

To compute H(Yni1|Xn11, Dy), we need to calculate the following integral:
P(y =1Jz,Dy) = /P(y = 1l|z,w)P(w|Dy)dw. (3.30)

This integral is also intractable for complex posterior distributions.

Common approaches to evaluating intractable integrals were discussed in Section
3.1.

We hypothesize that the failure of the active learning experiments conducted in
Appendix B might be due to the following reasons:

1. Use of the MAP estimation in some of the models
2. Presence of label uncertainty

MAP estimation in active learning. One might use the MAP estimate to
approximate the integral in Equation (3.30) as

P(y = 1|z,Dy) =~ P(y = 1|z, wnmap) = f(Z; Wamap)- (3.31)

However, active learning is especially useful when the number of observed samples
N is small, thus the posterior distribution would not be sharply peaked (see
Figure 3.1) and the MAP estimate is inaccurate. As a result, active learning
approaches such as [21,46] which maximise the entropy of the model prediction

2We are assuming we are dealing with a binary classification task, meaning Yy, is a
discrete random variable, hence the use of discrete entropy. Regression tasks are similar, only
the continuous entropy would be used.
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at wyap or equivalently take samples close to the decision boundary at wyap
are most likely not going to work.

Label uncertainty in active learning. Thus far in this thesis, we have
assumed that the label we receive from the human expert is absolutely correct,
while in practice the annotator is often uncertain about his/her annotation.
To account for this label uncertainty, we can modify Y to be a continuous
random variable between 0 and 1, which measures how certain the annotator
is that the input belongs to the positive class. As it might be difficult for
annotators to gauge their confidence, we can ask several annotators for their
binary opinions and average the outcomes (assuming they are equally capable).
Making the random variable Y continuous would mean the entropies in Equation
(3.29) should be replaced with continuous entropies, which might be difficult to
compute. Another aspect which would be affected by this change is the likelihood
function, which would be related to continuous cross-entropy rather than binary
cross-entropy. All these changes require careful study and reformulation, which
can be considered for future work.
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Chapter 4

Summary and Future Work

This chapter is devoted to summarizing the work presented in the appendices,
and to discussing possible future directions for the research carried out during
this PhD project. The summary is kept brief, as more detailed summaries will
be given in each appendix.

This thesis presents the problem of segmenting the tubular structure in the
pancreas from confocal microscopy live imaging data. In Chapter 1, we provided
the basic biological background necessary to understand the biological motivation
behind this thesis. Chapter 2 outlined the challenges that were encountered in
this project and how each appendix contributes to providing solutions to these
problems. A machine learning background to facilitate the understanding of
appendices is given in Chapter 3, consisting of Bayesian inference, information
theory, and active learning.

In Appendix A, we look into the active learning problem from an information
theory perspective. We propose a criterion which selects samples that provide
the most information gain on model parameters. For a logistic regression model,
we show that the criterion has a nice intuition. At the start when the number of
samples are low, it selects samples from the edge of the data space. When more
and more labels are acquired, samples which are close to the decision boundary
are preferred. Therefore, it provides an adaptive trade-off between exploration
and exploitation.

The work in Appendix A comes with two main drawbacks:
1. The derivation assumes that the model has given rise to the data.
2. It is difficult to compute the entropy for complicated models.

Unfortunately, Bayesian inference does not include ‘model criticism’ [6], and
all inferences are performed under the assumption the the hypothesis space is
correct. One solution could be to choose more complicated models and have
suitable priors to rectify overfitting. Adopting this approach, however, leads us
to the second weakness. The posterior distribution for complex models is usually
multimodal and it is intractable to compute the entropy. A future direction of
work would be to use Markov Chain Monte Carlo (MCMC) [28| methods to
compute the entropy. While traditional MCMC methods were not scalable for
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high dimensional problems, more recent work in nested sampling [37,40] and
Galilean Monte Carlo [38,39] look promising. Another line of thought would
be to apply the information gain criterion on Gaussian processes. Gaussian
processes are non-parametric models, so we can select informative samples for
the hyperparameters in the covariance function—which are not more than a
handful and thus do not pose the scalability challenge.

Appendix B compares four established probabilistic segmentation models for
their use case in segmentation error and active learning. We find that that
pixel-level uncertainty estimates are indicative of segmentation errors, but are
not sensitive to uncertainty modeling. As for the active learning, images with
the highest sum of pixel uncertainty were labeled which led to no consistent
benefit for any of the models. As discussed in Section 3.3, this approach assumes
the posterior is sharply peaked which seems implausible under limited data
regime. One interesting question is how one should measure uncertainty of an
image for a segmentation task, especially for models such as MC dropout [10]
and probabilistic U-net [20] which provide plausible segmentation images rather
than pixel-wise uncertainties.

In Appendix C, we delve into the problems we encountered in employing a U-net
architecture to the segmentation task. Since our training set is small, it does
not cover the diversity that exists among the large number of collected movies.
Several movies have intensity distributions which are far away from what is
present in the training movies. We tackle this issue in part by preprocessing
each image by its own statistics. This improves the predictions for the movies
with low signal-to-noise ratio which were prior to this preprocessing predicted
as mostly background class.

Two of the issues raised in Appendix C were addressed in Appendix D. One is to
use the large pool of unlabeled data to learn better features for the segmentation
task. We employed the joint optimization of an autoencoder and a U-net which
proved to have a positive impact on the segmentation performance compared to
a fully supervised U-net trained only on labeled data. The other issue was that
our application required accurate extraction of topology while most deep learning
models are trained for pixel-wise performance. Using the GEL skeletonization
algorithm [7], we convert the segmentations to graphs. We, then, derive a
topological score function, which measures the topological similarity (in terms
of loops and components) between a ground-truth graph and a predicted graph.
This score function was used for model selection and hyperparameter tuning.
Tubular loops are particularly interesting to the biologists. As a result, the
predicted loops were tracked over time to study their progression. We also made
use of this tracking to get rid of loop trajectories which appeared only briefly.

The project is at a stage where biologically interesting features can be readily
extracted and studied over time to have a better understanding of the morpho-
logical events that occur during the remodeling of the tubular network. This
also means that the tools required to analyse the biological hypothesis are ready
to be utilized.
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Appendix A

Bayesian Active Learning for
Maximal Information Gain on
Model Parameters

The following chapter presents (up to formatting) the article

Kasra Arnavaz, Aasa Feragen, Oswin Krause, and Marco Loog “Bayesian
Active Learning for Maximal Information Gain on Model Parameters”
International Conference on Pattern Recognition (ICPR) 2019.

This work investigates whether it is possible to find an active data gathering
strategy which is guaranteed to outperform random sampling, or find a set of
conditions under which this holds true. This work has been motivated by the
segmentation problem that is the main topic of this thesis. While there have
been sensible heuristics in the literature for active learning, we have no way of
foreseeing whether a particular sampling strategy would be helpful for a given
model and a data set. This hinders the usage of active learning for practical
applications such as this one in this project.

We take a Bayesian inference approach to fitting model parameters, and use
change in entropy to select data points that are expected to be most informative
for the posterior over model parameters. We derive our sampling strategy for a
logistic regression model, even though this line of thought could in principle be
applied to any model. Since the posterior distribution for a logistic regression
model is unimodal, it can be well approximated with a Gaussian distribution.

This makes it possible to compute the entropy which we need to select samples
by.

A drawback of the Bayesian approach is the assumption that the hypothesis
space is correct, while Bayesian hypothesis testing is only through comparing
different hypotheses [25]. Our derivation assumes that the model is correct, and
then looks for most informative data to learn its plausible parameters, but if
there were no set of parameters that could have given rise to the data, then
searching for data points to fit its parameters seems like a lost cause. Our
experiments fully reflect this issue.
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Abstract. The fact that machine learning models, despite their ad-
vancements, are still trained on randomly gathered data is proof that
a lasting solution to the problem of optimal data gathering has not yet
been found. In this paper, we investigate whether a Bayesian approach
to the classification problem can provide assumptions under which one
is guaranteed to perform at least as good as random sampling. For a
logistic regression model, we show that maximal expected information
gain on model parameters is a promising criterion for selecting samples,
assuming that our classification model is well-matched to the data. Our
derived criterion is closely related to the maximum model change. We ex-
periment with data sets which satisfy this assumption to varying degrees
to see how sensitive our performance is to the violation of our assumption
in practice.

1 Introduction

The default procedure to train a machine learning model is to learn from ran-
domly gathered data. Active learning investigates whether we could reach at
least the same performance as random sampling with fewer samples if we had
the control over which samples to gather. While it might seem intuitive that
the answer to the previous question should be positive, a consistent solution
has been elusive so far [8,25] . There have been several heuristics that propose
sampling strategies based on common sense [20], and while they do outperform
random sampling on occasion, it is not clear ahead of time if they will. What is
missing is the set of conditions under which one is guaranteed to perform at least
no worse than random sampling. This has been a hurdle which has prevented
active learning strategies from replacing random sampling altogether.

In this paper, we employ a Bayesian framework for both model fitting as
well as active learning to investigate the possibility of optimal data gathering—
at least under certain assumptions. Parameters of our classification model are
inferred through the approximation of the posterior distribution of parameters
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by a Gaussian distribution. We, in turn, look for data which maximally reduces
the expected entropy of this Gaussian posterior. Our derivation follows that
of MacKay [12] for regression problems. We show that in the case of logistic
regression, our sampling strategy has a nice, analytical form, which is closely
related to maximum model change [2]. Moreover, in the limit of infinite data our
sampling strategy behaves similarly to the “decision boundary sampling” [6]. We
illustrate the behavior of our sampling strategy on a number of data sets, and in
this context discuss how our derivations rely on our model being well-matched
to the data. Having said that, we have no Bayesian way of quantifying the extent
to which the model is well-matched to the data. Bayesian model testing is only
able to compare different proposed models, and is in principle unable to detect
if all those models are far from the truth. We conclude with a discussion of how
this problem might be alleviated by extending the logistic regression model to a
neural network.

The outline of this paper is as follows: Section 2 reviews how inference and
active learning fit into the data modeling process, which we derive in detail in
Section 3 and Section 4, respectively, following the analogous derivations of [9]
and [12] for regression models. Particularly, in Subsection 3.1 we apply Laplace’s
method to Bayesian inference of model parameters and in Subsection 3.2 we
address inference of a hyperparameter in an evidence maximization framework.
In Section 4, we briefly review measures of information gain and introduce an
active learning strategy to gain maximal information on model parameters. A
performance criterion that incorporates parameter uncertainty is given in Section
5. In Section 6, we experimentally validate our active learning scheme on a range
of data sets which satisfy our data set assumptions to varying degrees. Finally,
Section 7 draws on our findings to discuss if any guarantees can be given about
the optimality of our proposed method. We end by suggesting how the same line
of thought could potentially lead to a better solution.®

2 Data Modeling

Before we delve into details, we find it of great value to remind the reader of the
role of inference and data gathering in data modelling process [1]. We, as the
data scientist, typically have a few candidate models (hypotheses), one of which
we postulate underlies the data fairly well. These models might also include some
parameters which we would like to set. Bayesian inference is the tool that enables
us to reliably compare models and fit their parameters, taking into account the
information produced by the data and our prior knowledge about which model or
parameter is more likely. As a result, one could think of the following scenario for
optimal data gathering [9]: Firstly, we may look for data that gives us maximal
expected information on the plausibility of our candidate models. We may use
this information to come up with new models we now find likely. We may continue
this iteration until we have narrowed down our hypotheses to one. Once we have
decided on one particular model, we would then aim to gather data which gives

® The code is available at https://github.com/kasra-arnavaz/Bayesian-Active-Learning.
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us maximal expected information on the parameters of that particular model. A
criterion that maximizes the discrimination of two models has been given in [12].
In this paper, we assume we have identified the so-called ‘true model’, and
thus look for data that reduces the expected uncertainty of parameters the most.
This assumption will incur consequences which we will discuss in Section 7.

3 Bayesian inference

Active learning goes hand in hand with uncertainty quantification. Bayesian
inference provides a coherent basis for uncertainty quantification, where uncer-
tainties are expressed by probability distributions. We refer the reader to [9] for
an in-depth review of Bayesian inference for regression problems. Below, we will
specifically work with the logistic regression model. This choice is made in part
because it leads to analytical derivations, and in part because it is commonly
used as the final output of more flexible deep learning classification networks.

3.1 Inference of model parameters w

In discriminative modeling, we are interested in finding a mapping from the
input space to the target space which generalizes well to unseen data.

Suppose we have observed N input-target pairs as D = {xjp,t,}, where
x, € R* t, € {0,1}, and n = 1,..., N. A parametric model with parameters
w € R is specified by its functional form y(x;w), the likelihood distribution
P({t,}{xn}, w)®, and the prior distribution P(w)”. The functional form spec-
ifies a space of functions F through which one can wander by changing the
parameters. The likelihood determines which functions in F fit the observed
N samples better than the others. Prior establishes our prior belief about the
plausibility of functions in F. As our observed samples might also include out-
liers, prior usually takes a form which favors smooth functions to prevent the
model from fitting to outliers and facilitate generalization. Our posterior belief
of parameters would then be given by Bayes’ theorem as

_ P(Dw)P(w)

One common prior which gives a varying degree of smoothness is a zero-mean
Gaussian prior with variance 1/a written as

P(wla) = z% exp (~aB(w)), @)

6 For notational convenience, from here onwards, we will write P({t,}|{zn}, W) as

P(D|w), taking into account that in discriminative models we model targets given
inputs.

™ The prior could also depend on nuisance parameters, which we are momentarily
assuming to be already integrated out.
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where )

E(w) = §WTW (3)
and

Zg =/ (27 /a)k. (4)

For small «, the variance would be large, making the prior more like a uniform
distribution and thus prior takes a neutral position in the posterior belief of the
parameters in (1). In this case, parameters which fit the observed data better
would be more plausible. Conversely, large « leads to a small variance, leaving
the posterior to be dominated by the prior. In this case, over-smooth functions
would be more plausible which might not fit the observed data well. In Subsection
3.2, we will apply Bayes’ theorem to find which values of hyperparameter a are
more likely.

We let the output of our model to estimate the probability of the positive class
ie. P(t, = 1|xp, W) = y(x,; w). Consequently, we would get P (¢, = 0|x,,w) =
1 — y(xy; w). Therefore the probability of observed data would be given by

P(Dlw) = [T yn(w)"™ (1 = ya(w))' ™
— exp(—~G(w)),
where y,, (W) = y(x,; w) and

G(w) = =Y tulogya(w) + (1 t) log(1 — ya(w)), (6)

which is referred to as the binary-cross entropy loss.
By Bayes’ theorem®

P(D|w)P(w|a)

P(W|D7a) = P(D|Oz) s

the posterior distribution over w can be written as
1
P(w|D,a) = 7o exp(—M(w)), (8)
M

where
M(w) =G(w) + aE(w), (9)

and Zj; is the normalizing constant given by
Zy = /exp(—]b[(w))dkw. (10)

8 Data’s dependence on « is only through w i.e. P(D|w,a) = P(D|w).

37
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This integral is intractable and we need the value of Zj; to infer a. To get around
this problem, we can substitute M(w) by its quadratic Taylor approximation
around wyap = argminM (w) as

1
M(W) ~ M(WMAP) + i(AWTAAW), (11)
where
AW = W — WMAP, (12)
and
A = H);(wymap), (13)

which is the Hessian matrix of M (w) computed at wyap. Consequently, the
posterior distribution would be a Gaussian as

1 1
P(w|D,a) = T cxp(fiAwTAAw), (14)

Znp = e MWaar) J(9m)k / det(A). (15)

For a logistic regression model defined by

1
T Tt ep(-wix,)’

where

Yn(W) :
it can be verified that

A= Z yn(WMAP) [1 — yn(WMAP)} anz; + aly. (17)

n

In summary, we approximated our posterior distribution by a Gaussian dis-
tribution with mean wyap and covariance matrix A1,

3.2 Inference of hyperparameter o

The mean and the covariance matrix of the posterior distribution over w depend
on «. To address this issue, we must take the expectation of P(w|D, a) when o’s
are drawn from their own posterior distribution P(«|D), or simply marginalize
P(w,a|D) over « i.e.

P(w|D) /P(W\D, )P(a|D) da. (18)
The posterior over « is determined by
P(a|D) x P(D|a)P(a). (19)

Assuming a uniform prior over log a—since « appeared as an exponent in (2)—
posterior belief over « is completely determined by its likelihood function P(D|c)
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which is also known as the evidence for a. Evidence P(D|a) appeared as the
normalizing constant in (7) and is thus given by P(D|a) = Zar/Zg which using
(4) and (15) results in

1 k
log P(D|a) = —M (wWnap) — 3 logdet A + 3 log a. (20)

In the above equation, M(wyap) and A depend on « according to (9) and
(17). If we rewrite (17) as A = B + ol and plug that together with (9) into
(20), we get

log P(D]a) = — G(Wmap) — aE(Wniap)
1 k (21)
-3 log det(B + olj) + 3 log .

We apply the same Gaussian approximation technique in the previous sub-
section to P(«|D), with the difference that we replace the Gaussian distribution
by a delta function at its peak and keep track of the variance only as a measure
of how dominant the peak is.

If P(a|D) has a dominant peak? at ayap, we can approximate (18) by

P(WlD) ~ P(W|D,o¢MAp). (22)

If we take the derivative of (21) w.r.t log o and set it to zero, we find ayap
will satisfy

2a0ap E(wWyap) + aaap Trace((B + ayaply) ™) — &k = 0. (23)

We will solve this equation numerically to find apap. Taking the second deriva-
tive of (21) w.r.t (loga)? computed at ayap shows how dominant the peak is
and is given by [14]

2

~yf— 24
Tloga|D k — aTrace(A—1) (29)

With few labeled samples, aTrace(A~1) would be close to its maximum value
k, which in turn leads to a large 0154 op, S0 the peak would not be dominant
and approximation (22) would not hold.

To conclude this section, our posterior distribution over model parameters,
which also represents our uncertainty of parameters, is approximated to P(w|D, ayap)-
Details on how we actually compute the posterior will be given in Section 6.

4 Bayesian Active Learning

Having gathered N input-target pairs, we would like to select the next input
xn+1 such that we expect maximal information gain on model parameters once

9 Empirically, if the model is well-matched to the data, this distribution is unimodal
[9]-
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we receive target tyy1. We will introduce two measures of information gain,
both of which depend on entropy.

Entropy was originally introduced by Shannon [21] for discrete random vari-
ables. It measures how uncertain a discrete random variable is. For example, if
we have a bent coin with bias p, the entropy is zero when p =0 or p =1 and is
maximum when p = 0.5. For continuous random variables, entropy on its own is
incompetent of conveying anything meaningful [16], mainly due to the fact that
it is scale variant. However, change in entropy can be one measure of information
gain (or loss).

Let us denote the probability distributions of parameters before and after we
receive the target ty41 by Py(w) and Pyy1(w), respectively. Then information
gain would mean a positive AS = Sy — Syy1, where

SN:/PN w) log d*w 25
(W) o8 s (25)
is the entropy of the probability distribution of parameters before receiving ¢ty 41.
Since the value of ¢4 is unknown to us when selecting x 1, we will be working
with the expectation over P(t|x,D) of our selected information gain measure.
Another measure for information gain is the cross entropy between Py (w) and

Pni1(w) defined as

Pn(w)

k
Prea (W) d*w. (26)

C:/PNJrl(W) log

It is shown in [12] that change in entropy and cross entropy are equivalent
in expectation i.e. E[AS] = E[C]. Merely out of convenience, we will be working
with change in entropy moving forward.

If we denote our entire training set by @, from which N samples have been
labeled, then our next query to label would be

XNt1 = argHClgaX (Epx,p) [Sv — Sn11]) - (27)
xe€

We approximated our posterior distribution over w by a Gaussian in (14).
It can be shown that the entropy of a k-dimensional Gaussian distribution with
covariance matrix A~! is [12]

S = g(l +log2m) + %log(det AT (28)

Therefore change in entropy would equal to

. 1 det Anq
AS = 3 log “LtAy

Due to (17), the relationship between A1 and Ay is

Anii = Axy +yv+1(wmap) [1 — yn41(Whap)] XN+1X§+1~ (30)
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For a scalar 8 and a vector x, determinant has the property det [A + BXXT] =
(det A)(1+ BxTA~1x). Applying this property to (30), we can rewrite (29) as

AS = %log(l +m), (31)

where

m = yn11(Waar) [1 — yn+1(Wnap)] Xa 41 AN XNt (32)

Note that this expression is independent of ¢x41, and as a result E(AS) = AS.
This is a mere consequent of choosing a logistic regression model, and might not
hold for other models.

We refer to the criterion defined by (31) and (32), as maximal expected
information gain or just information gain for short. This criterion has a nice
property that yn+1(Wnmap) (1 — yn+1(Wanap)) favors the points close to the de-
cision boundary while X%+1A;V1XN+1 favors the points on the far end of data
space. In particular, for small N, where we have a high uncertainty over pa-
rameters, X% JrlA;,lx ~+1 would be the dominating term, so the criterion would
select points which have a larger norm and lie close to the decision boundary.
As we gather more data, eigenvalues of the covariance AJ_\,1 would get smaller,
and yy+1(Wamap) (1 — yv+1(Wamap)) would be the dominating term in the crite-
rion. At this point, maximal expected information gain behaves close to decision
boundary sampling in [6]. Figure 1 illustrates this intuition of the two sampling
strategies for N = 2,7,12,17 and 22.

Lastly, information gain criterion is closely related to maximum model change
criterion in [2] for a logistic regression model. Inspired by the gradient descent
update rule, which updates parameters in the opposite direction of the gradi-
ent of the loss function, the authors in [2] propose a sampling strategy which
maximizes the expected gradient length of the loss function.

5 Bayesian prediction

By the application of probability rules, Bayesian prediction takes the uncertainty
of parameters into account when predicting new targets. For an input x, our
prediction for its corresponding target ¢ to belong to the positive class is the
expected value of our model output when the parameters are drawn from the
posterior distribution i.e.

Pt = 1x,D) = /P(t — 1%, w)P(w|D) d*w. (33)

The term P(t = 1|x,D) is written in shorthand by y(x) and is referred to as
marginalized output.

Under our current assumptions P(w|D) is a Gaussian distribution according
to (14), and P(t = 1|x, w) is a sigmoidal function according to (16), which render

41
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Information gain

Decision boundary

Fig. 1: Here, we show the sampling procedure for maximal expected information
gain versus decision boundary sampling for a 2D version of the Digits data set
obtained by projecting it onto its first two principal components. We show the
points drawn at iteration 0, 5, 10, 15, and 20, respectively. The black dots are
unlabeled samples and the white ones are labeled samples. The color indicates
the value (pink=high, blue=low) of the property being maximized, i.e. the in-
formation gain (top) and the distance to decision boundary (bottom). Note how
samples are drawn near pink areas.

the above integral intractable. Maximum a Posteriori (MAP) method estimates
this integral by
P(t =1|x,D) ~ P(t = 1|x, Wwyap), (34)

which is equivalent of replacing the posterior P(w|D) by a delta function at
its peak wyrap (similar to what we did for the inference of «). A better ap-

proximation has been in suggested [11] resulting in a predictive distribution as
10
1
P(t=1|x,D) = . (35)
14 exp(—wij,px/,/1+ FxTA~1x)

This equation comes with a nice interpretation: When the uncertainty of
parameters are low i.e. the eigenvalues of the covariance A~! are small, we get
xTA=1x — 0, which implies P(t = 1|x,D) — P(t = 1|x, wymap), meaning MAP
estimation is valid. On the other hand, when the eigenvalues (uncertainties) are
large, giving xT A~!'x — oo, we see that P(t = 1|x, D) — 0.5, meaning that we
have low confidence in our predictions due to high uncertainty in parameters.
MAP estimation is no longer valid in this case. In conclusion, the term x7 A ~!x
prevents overconfident predictions when the model has been exposed to little
data and is uncertain about the parameters as a result.

Having settled our prediction, we would seek to define measures for out-
of-sample performance on a given test set {Xum,tm|m = 1,---, M}. Accuracy
defined by (37) is ignorant of prediction uncertainty and is not preferred as a

0 This approximation becomes inaccurate when wij px > xTA 7 1x > 1.
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result. 1
accuracy = -+ g L(tm = [Yml), (36)

where 1(-) outputs one if its argument is True and zero if False, |-] rounds its
argument to closest integer, and ¥, = y(Xm).

An alternative would be the binary cross entropy loss between the targets t,,
and marginalized outputs ¥,,, which we call marginalized loss, and is given by

. 1
marginalized loss = i ; tm log ym + (1 — t) log(1l — ym). (37)

Due to the intuition given for marginalized output, a model which makes a
mistake in the classification of a test point but is unsure about its prediction
incurs a lower marginalized loss, than the one which makes a mistake and is
confident about its prediction.

With marginalized loss as our preferred measure of performance on unseen
data, we head to experiment.

6 Experiments

We compare our maximal information gain strategy with two other sampling
strategies using logistic regression; namely random sampling and decision bound-
ary sampling [6], where the latter picks the closest possible sample to the de-
cision boundary under the assumption that these are maximally uncertain. We
perform experiments on the following 10 classification data sets: AB and ABA
are synthetic data sets sampled from 2 and 3 2-dimensional Gaussian distribu-
tions, respectively, to produce data sets which are linearly separable (AB) and
not linearly separable (ABA). The Breast Cancer Wisconsin (Diagnostic) [15],
Optical Recognition of Handwritten Digits [24], Statlog (Heart), Haberman’s
Survival [5], Parkinson’s [7], and Ionosphere [23] data sets come from the UCI
repository [4]; here, for Digits only the first two classes were used. DD [3,22] and
AIDS [19,26] are benchmark graph learning data sets [17], where each graph was
given a vector representation via its node degree histogram. The details of the
10 data sets are shown in Table 1.

When training logistic regression, we pick the initial value of log a according
to its prior, U4(1073,10) in our case, each time a new training point is drawn.
With this value of «, we minimize M (w), and then update « according to (23).
We plug in this new « into the equation for M(w) and repeat this process until
convergence, which is guaranteed if optimizations of M (w) at each stage are not
far off [14]. The final values for wyiap and A will be used for the prediction.

When using the maximal expected information gain sampling, we start the
experiments by randomly revealing one labeled data point from each class, and
add in one sample at a time that maximizes (31). We repeat this setup 20 times
changing the two revealed data points each time. A similar procedure is applied
to the decision boundary sampling and random sampling strategies; these are

43
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Fig. 2: For 5 roughly linearly separable data sets, we see (left) a visualization of
the data set via projection onto the first two principal components, as well as the
(middle) accuracy and (right) marginalized loss, both as a function of number
of training samples seen. The plots contain the mean and standard deviations
of 20 repeated runs of the sampling strategies. As the logistic regression model
is well-matched to these data sets, the information gain criterion for gathering
samples outperforms random sampling.
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Fig. 3: For 5 not linearly separable data sets, we see (left) a visualization of the
data set via projection onto the first two principal components, as well as the
(middle) accuracy and (right) marginalized loss, both as a function of number
of training samples seen. The plots contain the mean and standard deviations of
20 repeated runs of the sampling strategies. Since the assumption that our hy-
pothesis space is correct no longer holds, the information gain criterion performs
poorly.
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Table 1: Data set details
Name  AB Heart Digits AIDS Cancer

# Samples 1000 270 360 2000 569
# Features 2 13 64 10 30

Name  Parkinson’s DD Haberman Ion ABA

# Samples 195 1178 306 351 1000
# Features 22 19 3 34 2

initialized with the same two data points per run as the maximal information
gain sampling. Samples are selected with replacement among all strategies i.e.
relabeling of the same input is possible. Otherwise, all sampling strategies would
reach the same performance when all samples in @ are exhausted [8].

Figure 2 and Figure 3 show the mean and standard deviation of the accu-
racy and marginalized loss over the different data sets for the three sampling
strategies. The figures also show (left column) the projection of the data onto
the first two principal components of each data set, to give insight into data set
properties.

Data sets in Figure 2 compose of two clusters for each class which are roughly
separable by a line. Even Heart data set looks like two Gaussians whose means
are close to each other. Looking at their corresponding accuracies and marginal-
ized loss, we see that at least in the limit of high amount of data, information
gain outperforms random sampling consistently. When the number of training
samples is small, in the cases where we obtain inferior performance compared to
random sampling, we speculate the reason to be a large oiogp given in (24);
not to mention that approximation (35) breaks when wij,px > xTA x> 1.
It is visually visible that for data sets in Figure 3, however, the classes are
less linearly separable to the point that ABA clearly is not. In such scenarios,
information gain sampling does not perform satisfactorily in neither accuracy
nor marginalized loss. The reason is that the logistic regression model is not
well-matched to these data sets. Information gain criterion works by taking un-
certainty of parameters into account, but the input-target relationship in these
data sets cannot be modeled by a logistic regression, so the covariance matrix
A~! we compute in (17) is far from anything meaningful. This is verified by the
increasing marginalized loss in DD, Haberman, and ABA. We will resume this
discussion in the next section.

7 Discussion and Conclusion

We have derived an active learning sampling scheme for classification based on
maximizing information gain on model parameters. Additionally, we have shown
that in the case of logistic regression, this scheme takes a nice, interpretable
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form and, in particular, is closely related to the more ad hoc maximum model
change [2]. Via our experiments we also see how the performance of the method
depends whether our choice of classifier is well matched to the data set, an
assumption implicitly underlying our analysis.

In particular, in Section 2, we assumed that we have found the so-called true
model, and as a result the purpose of data gathering is to infer the plausibility of
model parameters with smallest possible amount of labeled data. Subsequently,
we derived a criterion under the Bayesian framework assuming that the model
is well-matched to the data. In Bayesian language, our assumption is that the
hypothesis space is correct. Our experiments confirmed that indeed, when the
hypothesis space is correct, the information gain criterion could be a promising
sampling strategy—perhaps with more accurate approximations using Monte
Carlo methods [18]. That is reassuring except the fact that we have no Bayesian
way of verifying that our hypothesis space actually is correct [10].

Hypothesis testing in the Bayesian framework is performed through model-
comparison. Let’s say we have several hypotheses H; whose validity we want to
investigate, and we have gathered data D. Thanks to Bayes’ theorem

P(H;|D) o< P(D|H:)P(Hi), (38)

we can sort alternative hypotheses in order of their plausibility. They could
all be completely far from the truth and we would get a ranking regardless.
Therefore, Bayesian model comparison is also only viable if we are within the
correct hypothesis space, where Bayes wouldn’t prefer other hypotheses to the
truth [9].

It seems inevitable that one must err on the side of a larger hypothesis space.
Logistic regression is essentially a classification neural network with no hidden
layer, which has the nice property that its posterior over parameters with a
Gaussian prior is unimodal. For a neural network with hidden layers, the pos-
terior could be multimodal, and even if we can find the global maximum of the
posterior, fitting a Gaussian around that point is not an acceptable substitute
for the entire posterior distribution. However, a solution has been given in [13]
which is to fit a Gaussian distribution around each local maximum of the pos-
terior and treat each maximum separately. One can then use Bayes’ theorem
to compare them to one another. Although this might not be a permanent so-
lution, since neural networks of a fixed width and depth are not still universal
approximators, they nevertheless specify a larger hypothesis space than logistic
regression. Extending our analysis to more flexible, modern classifiers remains
an important avenue for future research.
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Appendix B

Is segmentation uncertainty useful?

The following chapter presents the article

Steffen Czolbe*, Kasra Arnavaz*, Oswin Krause, and Aasa Feragen. “Is
segmentation uncertainty useful?” Information Processing in Medical
Imaging (IPMI) 2021. (*Authors contributed equally.)

This work studies established probabilistic segmentation models for two main
purposes: 1. Do uncertainty estimates of these models reflect segmentation error?
2. Are the uncertainties provided by these models useful for active learning?
Both of these questions are of major importance for many biomedical imaging
applications including the topic of this thesis.

In particular, endowing predicted segmentations with a well-adjusted measure
of reliability could help the biologists in determining which predictions are
trustworthy to test their biological hypothesis on. Furthermore, annotating 3D
images of such low signal-to-noise ratio is time-consuming. As a result, it would
be cost effective if uncertainties provided by the probabilistic segmentation
models could be used to carefully select a subset of samples to be annotated.

We compare four probabilistic segmentation models on two data sets: ISIC18
[22,47] with a single annotator, and LIDC [2,8] with four annotators. We find
that on the ISIC18 data set all four models have a low uncertainty when making
a true classification and a high uncertainty when making misclassification. For
LIDC, the uncertainty is low when annotators agree and high when they disagree.
As for the active learning, we select the samples which are closest to the decision
boundary [21] and add them to our training set and compare this against a
case where samples are added at random. On neither data set did we observe a
consistent benefit for any of the four models studied.

We could not use the criterion suggested in Appendix A for active learning,
because the posterior of such deep neural networks is a complex distribution,
making it intractable to compute its entropy. Moreover, the posterior is most
likely multimodal and approximating it with a single Gaussian is not possible
(unless it is sharply peaked which normally does not occur under limited data
regime of active learning).
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Steffen Czolbe'!, Kasra Arnavaz!!, Oswin Krause', and Aasa Feragen?
! University of Copenhagen, Department of Computer Science, Denmark,
per.sc,kasra,oswin.krause@di.ku.dk
2 Technical University of Denmark, DTU Compute, Denmark,
afhar@dtu.dk
1 Authors contributed equally

Abstract. Probabilistic image segmentation encodes varying prediction
confidence and inherent ambiguity in the segmentation problem. While
different probabilistic segmentation models are designed to capture dif-
ferent aspects of segmentation uncertainty and ambiguity, these mod-
elling differences are rarely discussed in the context of applications of
uncertainty. We consider two common use cases of segmentation uncer-
tainty, namely assessment of segmentation quality and active learning.
We consider four established strategies for probabilistic segmentation,
discuss their modelling capabilities, and investigate their performance in
these two tasks. We find that for all models and both tasks, returned
uncertainty correlates positively with segmentation error, but does not
prove to be useful for active learning.

Keywords: Image segmentation - Uncertainty quantification - Active
learning.

1 Introduction

Image segmentation — the task of delineating objects in images — is one of the
most crucial tasks in image analysis. As image acquisition methods can introduce
noise, and experts disagree on ground truth segmentations in ambiguous cases,
predicting a single segmentation mask can give a false impression of certainty.
Uncertainty estimates inferred from the segmentation model can give some in-
sight into the confidence of any particular segmentation mask, and highlight
areas of likely segmentation error to the practitioner. It adds transparency to
the segmentation algorithm and communicates this uncertainty to the user. This
is particularly important in medical imaging, where segmentation is often used
to understand and treat disease. Consequently, quantification of segmentation
uncertainty has become a popular topic in biomedical imaging [6,11].

Training segmentation networks requires large amounts of annotated data,
which are costly and cumbersome to attain. Active learning aims to save the
annotator’s time by employing an optimal data gathering strategy. Some active

Code available at github.com/SteffenCzolbe/probabilistic_segmentation
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Fig. 1: Segmentation uncertainty is often interpreted as probable segmentation
error, as seen near the lesion boundary in the first two examples. In the third
example, however, model bias leads to a very certain, yet incorrect segmentation.
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learning methods use uncertainty estimates to select the next sample to anno-
tate [7,9,10]. While several potential such data gathering strategies exist [13,16],
a consistent solution remains to be found [8].

While several methods have been proposed to quantify segmentation uncer-
tainty [4,6,11], it is rarely discussed what this uncertainty represents, whether
it matches the user’s interpretation, and if it can be used to formulate a data-
gathering strategy. We compare the performance of several well-known prob-
abilistic segmentation algorithms, assessing the quality and use cases of their
uncertainty estimates. We consider two segmentation scenarios: An unambigu-
ous one, where annotators agree on one underlying true segmentation, and an
ambiguous one, where a set of annotators provide potentially strongly different
segmentation maps, introducing variability in the ground truth annotation.

We investigate the degree to which the inferred uncertainty correlates with
segmentation error, as this is how reported segmentation uncertainty would typ-
ically be interpreted by practitioners. We find that uncertainty estimates of the
models coincide with likely segmentation errors and strongly correlate with the
uncertainty of a set of expert annotators. Surprisingly, the model architecture
used does not have a strong influence on the quality of estimates, with even a
deterministic U-Net [12] giving good pixel-level uncertainty estimates.

Second, we study the potential for uncertainty estimates to be used for se-
lecting samples for annotation in active learning. Reducing the cost of data
annotation is of utmost importance in biomedical imaging, where data availabil-
ity is fast-growing, while annotation availability is not. We find that there are
many pitfalls to an uncertainty-based data selection strategy. In our experiment
with multiple annotators, the images with the highest model uncertainty were
precisely those images where the annotators were also uncertain. Labeling these
ambiguous images by a group of expert annotators yielded conflicting ground
truth annotations, providing little certain evidence for the model to learn from.

2 Modelling segmentation uncertainty

Image segmentation seeks to estimate a well-defined binary® segmentation g: 2 —
{0, 1} for a discrete image domain 2. Typically, a predictive model h(x, w) with

3 For simplicity, we consider binary segmentation; the generalization to multi-class
segmentation is straightforward.
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parameters w, such as a neural network, is fitted to binary annotation data
a: 2 — {0,1} by minimizing a loss £L(a, h(x,w)). Here, x € R? is the image,
and y = h(x, w) defines an image of pixel-wise segmentation probabilities, such
as the un-thresholded softmax output of a segmentation network h.

Typically, the annotation is assumed to be error-free, that is a = g, and
predictors are typically trained on a single annotation per image. We assume
that the trained neural network h(x,w) satisfies

h(x,w) = g(x)+b+err ,

where b and err denote bias and segmentation error. Segmentation uncertainty is
often interpreted as correlating with this error, although this is primarily realistic
for small bias. Such segmentation tasks are called unambiguous; we consider a
running example of skin lesion segmentation from dermoscopic images [3,15],
where the lesion boundary is clearly visible in the image (Fig. 1).

Recent work has considered ambiguous segmentation tasks [6,11], where there
is no accessible “ground truth” segmentation, either because the data is not suf-
ficient to estimate the segmentation, or because there is subjective disagreement.
Examples include lesions in medical imaging, where the boundary can be fuzzy
due to gradual infiltration of tissue, or where experts disagree on whether a
tissue region is abnormal or not.

In such tasks, we make no assumption on the underlying segmentation g or
the errors err, but regard the observed annotations as samples from an unknown
“ground truth” distribution p(a|x) over annotations a conditioned on the image
x. The goal of segmentation is to estimate the distribution p(a|x), or its proxy
distribution p(y|x) over pixel-wise class probabilities y: 2 — [0, 1], as accurately
as possible for a given image x. If successful, such a model can sample coher-
ent, realistic segmentations from the distribution, and estimate their variance
and significance. As a running example of an ambiguous segmentation task, we
consider lung lesions [1,2,6]. For such tasks, predictors are typically trained on
multiple annotators, who may disagree both on the segmentation boundary and
on whether there is even an object to segment.

From the uncertainty modelling viewpoint, these two segmentation scenarios
are rather different. Below, we discuss differences in uncertainty modelling for
the two scenarios and four well-known uncertainty quantification methods.

3 Probabilistic Segmentation Networks

A probabilistic segmentation model seeks to model the distribution p(y|x) over

segmentations given an input image x. Here, our annotated dataset (X, A) con-

sists of the set X of N images {Xn | n = 1,...,N}, and L annotations are

available per image, so that A = {afp ~p(y|xn) | (n,0) = (1,1),...,(N,L)}.
Taking a Bayesian view, we seek the distribution

p(ylx. X, A) = / p(ylx, w)p(w|X, A, h) dw | (1)
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Fig. 2: Schematic overview (adapted from [6]) of the evaluated models. Blue:
residual blocks . Orange: Dropout layers essential to the networks’ functionality.

over segmentations y given image x and data (X, A), which can be obtained by
marginalization with respect to the weights w of the model h.

In most deep learning applications, our prior belief over the model h, denoted
p(h), is modelled by a Dirac delta distribution indicating a single architecture
with no uncertainty. In the context of uncertain segmentation models, however,
we would like to model uncertainty in the parameters w. Denoting our prior
belief over the parameters w by p(w|h), Bayes’ theorem gives

p(wlh)p(AX, w, h)
p(AIX,h) 7

p(W|X,A,h) = (2)

where the likelihood update function is given by

N L
p(A|X,w, h) = exp (Z > AW log (h(xn, w)) + (1 — AV)log (1 = h(xa, w))>

n=1[=1

and normalizing constant
DA ) = [ p(wlnp(AIX, w. ) dw

This integral is generally intractable, making it impossible to obtain the
proper posterior (2). Below, we discuss how empirical approximations p(y|x, X, A)
to the distribution p(y|x, X, A) found in (1) are performed in four common seg-
mentation models. Note that both p and p can be degenerate, depending on the
number of annotations available and models used.

U-Net with softmax output. The well established U-Net [12] architecture
with a softmax output layer yields class-likelihood estimates. As the model
is deterministic, p(h|X,A) is degenerate. Parameters are selected by a max-
imum a posteriori (MAP) estimate i.e. p(w|X,A,h) ~ d(w — W) in which
w = argmax p(w|X, A, h). The model output (1) is approximated by the degen-
erate distribution p(y|x, X, A) =~ p(y|x, w). The softmax output layer predicts
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a pixel-wise class probability distribution p(y; jy|x,X,A). As no co-variance
or dependencies between pixel-wise estimates are available, segmentation masks
sampled from the pixel-wise probability distributions are often noisy [11]. An
alternative approach followed by our implementation is the thresholding of pixel-
wise probability values, which leads to a single, coherent segmentation map.

Ensemble methods combine multiple models to obtain better predictive per-
formance than that obtained by the constituent models alone, while also allowing
the sampling of distinct segmentation maps from the ensemble. We combine M
U-Net models h(x, w(m)) where, if labels from multiple annotators are available,
each constituent model is trained on a disjoint label set A™). When trained on
datasets with a single label, all constituent models are trained on the same data
and their differences stem from randomized initialization and training. Treating
the models as samples, we obtain an empirical distribution approximating (1)
by drawing from the constituent models at random.

Monte-Carlo Dropout [4] is a Bayesian approximation technique based on
dropout, where samples from the posterior over dropout weights give a better
approximation of the true posterior than a MAP estimation. Given a selected
model h, one can approximate (1) as p(y|x, X, A) ~ 1/R Zle p(y|x, w() when
w() ~ p(w|X, A, h). Since p(w|X, A, h) is intractable, it is approximated [4] by
a variational distribution p(6) as 6; = w; - z;, z; ~ Bernoulli(p;), where p; is the
probability of keeping the weight w; in a standard dropout scheme.

The Probabilistic U-Net [6] fuses the output of a deterministic U-Net with
latent samples from a conditional variational auto-encoder modelling the varia-
tion over multiple annotators. Test-time segmentations are formed by sampling
a latent z, which is propagated with the image through the U-Net. Predictions
are made as p(y|x, X, A) ~ p(y|x, 2z, W), with 209 ~ pprio (2]x).

4 Experiments

4.1 Data

Practical applications of uncertainty in segmentation tasks differ both in the
type of ambiguity, and the availability of expert annotations. We select two
representative datasets for our evaluation.

The ISIC18 dataset consists of skin lesion images with a single annotation
available [3,15], and is used as an example of unambiguous image segmentation.
We rescale the images to 256 x 256 pixels and split the dataset into 1500 samples
for the train-set and 547 each for the validation and test sets.

The LIDC-IDRI lung cancer dataset [1,2] contains 1018 lung CT scans
from 1010 patients. For each scan, 4 radiologists (out of 12) annotated abnormal
lesions. Anonymized annotations were shown to the other annotators, who were
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Fig. 3: Segmentation Uncertainty. Samples from the test set of the two datasets.
Images in row one, model uncertainty (entropy) heat-maps in rows 2-5. Qutline
of mean ground truth annotations in Blue, mean model predictions in Orange.

allowed to adjust their own masks. Significant disagreement remains between the
annotators: Among the extracted patches where at least one annotator marked
a lesion, an average of 50% of the annotations are blank. We pre-processed the
images as in [6], resampled to 0.5mm resolution, and cropped the CT-slices with
lesions present to 128 x 128 pixels. The dataset is split patient-wise into three
groups, 722 for the training-set and 144 each for the validation and test sets.

4.2 Model tuning and training

To allow for a fair evaluation, we use the same U-Net backbone of four encoder
and decoder blocks for all models. Each block contains an up-/down-sampling
layer, three convolution layers, and a residual skip-connection. The ensemble
consists of four identical U-Nets. The latent-space encoders of the probabilistic
U-Net are similar to the encoding branch of the U-Nets, and we choose a six-
dimensional latent space size, following the original paper’s recommendation.
All models were trained with binary cross-entropy. The probabilistic U-Net
has an additional S-weighted KL-divergence loss to align the prior and posterior
distributions, as per [6]. The optimization algorithm was Adam, with a learning
rate of 10™4 for most models, except the probabilistic U-Net and MC-Dropout
models on the skin lesion dataset, where a lower learning rate of 107° gave
better results. We utilized early stopping to prevent over-fitting, and define the
stopping criteria as 10 epochs without improvement of the validation loss, 100
epochs for models trained with the reduced learning rate. For the MC-Dropout
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Fig. 4: Pixelwise uncertainty by prediction correctness (True Positive, False Pos-
itive, False Negative, True Negative). The scatter plot shows individual pixels,
with the median circled. For the lung cancer dataset, we discarded pixels with
annotator disagreement.

and probabilistic U-Net models we performed a hyper-parameter search over
the dropout probability p and the loss function weighting factor 3, selecting the
configuration with the lowest generalized energy distance on the validation set.
We arrived at p = 0.5, 8 = 0.0005.

4.3 Uncertainty Estimation

For all models, our uncertainty estimates are based on non-thresholded pixel-
wise predictions. For the U-Net, we take the final softmax predictions; for the
remaining models we average across 16 non-thresholded samples. We quantify
the pizel-wise uncertainty of the model by the entropy

1
(@) = clx, X, A)

H(p(y(l,j) |X7 X7 A)) = Z p(y(l,]) = C|X7 X7 A) 10g2
ceC

with p(y( ;) = c[x) as the pixel-wise probability to predict class ¢ € C'. We plot
the resulting uncertainty map for random images x from both datasets in Fig. 3.
For visual reference, we overlay the mean expert annotation in Blue, and the
mean model prediction in Orange. Darker shades indicate higher uncertainty.
We quantitatively assess the quality of uncertainty estimates by examining
their relation to segmentation error in Fig. 4. On both datasets, models are more
certain when they are correct (true positive, true negative) compared to when
they are incorrect (false positive, false negative). A repeated measure correlation
test finds a significant (o = 0.01) correlation between segmentation error and
model uncertainty on both datasets, for all methods. The relation holds, but is
less strong, for MC-dropout on the skin dataset, which retains high uncertainty
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Fig. 5: Pixel-wise model uncertainty on  Fig. 6: Generalized Energy Distance of
the lung cancer dataset, grouped by models on the lung cancer dataset, ap-
agreement of expert annotations. Ex-  proximation by 1 to 16 samples, me-
perts agree: H(p) = 0, somewhat agree  dian highlighted. Lower distances are
0 < H(p) < 1, disagree H(p) = 1. better.

even when it is correct. On the lung cancer dataset, all models have high uncer-
tainty on true positive predictions. This might be caused by the imbalance of the
dataset, where the positive class is strongly outweighed by the background and
annotators often disagree. We tried training the models with a class-occurrence
weighted loss function, which did produce true positive predictions with higher
certainty but suffered an overall higher segmentation error.

We assess the correlation of model uncertainty with the uncertainty of the
annotators on the lung cancer dataset in Fig. 5. For all models, this correlation is
significant (o = 0.01) . The median model uncertainty is very low (< 0.1) when
all annotators agree, but high (> 0.7) when they disagree. There is a minor
difference in model uncertainty between partial agreement (annotators split 3 —
1) and full disagreement (annotators split 2 — 2).

4.4 Sampling Segmentation Masks

Fig. 7 shows segmentation masks y sampled from the trained models p(y|x). The
U-Net model is fully deterministic and does not offer any variation in samples.
The sample diversity of the ensemble is limited by the number of constituent
models (four in our experiment). The MC-Dropout and probabilistic U-Net allow
fully random sampling and achieve a visually higher diversity. On the skin lesion
dataset, where only one export annotation per image is available, models still
produce diverse predictions. On the lung cancer dataset, samples from the MC-
Dropout and probabilistic U-Net represent the annotator distribution well.

We measure the distance between the model distribution p(y|x, X, A) and
the annotator distribution p(y|x) with the Generalized Energy Distance [6, 11,
14]. The distance measure is calculated as

Dgpp(p:5) = 2Bynp g [A(y, 9)) — Eyyp [d(y,y)] = Eg g [d(5, 5] - (3)
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Fig. 7: Samples from the probabilistic models. First row: Image and ground truth
annotations from the skin dataset (left) and lung nodule dataset (right). Follow-
ing rows: samples y ~ p(y|x,X,A) drawn from the various models. Sample
diversity over the entire dataset shown next to the model name.

We use 1 —IoU(+,-) as the distance d. A low D%, indicates similar distribu-
tions of segmentations. We approximate the metric by drawing up to 16 samples
from both distributions, and sample with replacement. The results are shown
in Fig. 6. We observe that the annotator distribution is best approximated by
the probabilistic U-Net, with MC-dropout and Ensemble closely behind; these
pairwise ranks are significant (o = 0.01) with left-tailed t-tests. A deterministic
U-Net architecture is not able to reproduce the output distribution. Our results
are consistent with [6], verifying our implementation. Following [11], we use the
last term of (3) to assess the diversity of samples drawn from the model and note
them in Fig. 7. They reinforce the qualitative observations of sample diversity.

4.5 TUncertainty estimates for active learning

Instead of training the models with all available data {X, A}, we now start with a
small random subset {Xo, Ag}. We train the model with this subset at iteration
t = 0, and then add a set of k images from {X,A} to form {X;i1,A¢11}.
Samples are selected based on the sum of pixel-wise entropies [7]. We repeat for
T iterations, benchmarking against a random sample selection strategy.

For both skin lesion and lung cancer datasets, we start with a training size
of 50 images, add k = 25 images at each iteration, and repeat 7" = 10 times.
The models are trained for 5000 gradient updates with a batch size of 16 and
32 for the respective datasets. Since annotations are costly and to speed up
computations, no validation-loss based early stopping is used. The experimental
setup has been picked to ensure meaningful model uncertainties for the data
selection policy and to ensure convergence within each active learning iteration.

The learning curves in Fig. 8 show that random-based sampling leads to a
faster reduction in test loss over the uncertainty-based sampling strategy for
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Fig. 8: Learning curves for the four algorithms on both datasets. Note that the
Probabilisitic U-net only applies to the ambiguous segmentation.
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Fig.9: An example of the ambiguous samples frequently selected for inclusion
into the training set under the uncertainty-based data gathering strategy. This
unseen sample was selected when 150 annotations were revealed. The group
of expert annotators provided disagreeing segmentation masks, confirming the
model uncertainty but providing little additional information to learn from.

both datasets. We further investigated the samples selected by the uncertainty-
based strategy by looking at the images which caused a large increase in the test
error. One such image is shown in Fig. 9.

5 Discussion & Conclusion

Our results in Fig. 4 show that there is a clear relation between uncertainty
estimates and segmentation error. The examples in Fig. 3 further highlight that
areas of high uncertainty are not merely distributed around class boundaries, but
also encompass areas with ambiguous labels. Fig. 5 shows that the uncertainty
estimates obtained from the model are a good representation of the uncertainty
of a group of expert annotators. We conclude that pixel-wise model uncertainty
estimates give the practitioner a good indication of possible errors in the pre-
sented segmentation mask, allowing those predictions to be examined with care.

The learning curves in Fig. 8 show that estimated uncertainty is not generally
useful for selecting active learning samples, for any model or dataset. Our results
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depend on using the sum of pixel-wise entropies as a per-image entropy, which is
correct for the softmax model, but only an approximation for the other models.
This might impact our results. For the Lung Cancer dataset, all models esti-
mate high uncertainty for the positive class, and the active learner thus selects
images with a large foreground, skewing the proportion of classes represented
in the training set. Furthermore, the selected images often have high annotator
disagreement, illustrated in Fig. 9. If the active learner prefers sampling am-
biguous images, it will be presented with inconsistent labels leading to harder
learning conditions and poor generalisation. This may stem from an incorrect
active learning assumption that annotations are noise-free and unambiguous,
which is often not true. In conclusion, for a fixed budget of annotated images,
we find no advantage in uncertainty-based active learning.

We observed similar behaviour of pixel-wise uncertainty estimates across all
four segmentation models. The models differ in their ability to generate a distri-
bution of distinct and coherent segmentation masks, with only the MC-dropout
and probabilistic U-Net offering near unlimited diversity (see Fig. 7). But these
models are harder to implement, more resource-intensive to train, and require
hyperparameter tuning. The choice of model is ultimately application dependent,
but our experiments show that even a simple U-net is competitive for the com-
mon task of assessing segmentation error. This agrees with [5], which compared
uncertainty quantification models for unambiguous segmentation.

Our division of segmentation tasks into ambiguous and unambiguous consid-
ers it as "unambiguous” when a fundamentally ambiguous segmentation task is
covered by a single annotator — or potentially several annotators, but with only
one annotator per image, as for the Skin Lesion dataset. Even if the underlying
task is ambiguous, the models considered in this paper inherently assume that it
is not, as there is no mechanism to detect annotator variance when every image
is only annotated once. More fundamental modelling of segmentation ambiguity
and uncertainty thus remains a highly relevant open problem.

To conclude — is segmentation uncertainty useful? We find that uncertainty,
even in the simplest models, reliably gives practitioners an indication of areas of
an image that might be ambiguous, or wrongly segmented. Using uncertainty es-
timates to reduce the annotation load has proven challenging, with no significant
advantage over a random strategy.

Acknowledgements. Our data was extracted from the “ISIC 2018: Skin Le-
sion Analysis Towards Melanoma Detection” grand challenge datasets [3, 15].
The authors acknowledge the National Cancer Institute and the Foundation for
the National Institutes of Health, and their critical role in the creation of the
free publicly available LIDC/IDRI Database used here. This work was funded
in part by the Novo Nordisk Foundation (grants no. NNF200C0062606 and
NNF170C0028360) and the Lundbeck Foundation (grant no. R218-2016-883).



Appendix B. Is segmentation uncertainty useful?

12 Steffen Czolbe, Kasra Arnavaz, Oswin Krause, and Aasa Feragen
References
1. Armato III, S.G., McLennan, G., Bidaut, L., McNitt-Gray, M.F., Meyer, C.R.,

10.

11.

12.

13.

14.

15.

16.

Reeves, A.P., Zhao, B., Aberle, D.R., Henschke, C.I., Hoffman, E.A., et al.: The
lung image database consortium (LIDC) and image database resource initiative
(IDRI): a completed reference database of lung nodules on CT scans. Medical
physics 38(2), 915-931 (2011)

. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a

public information repository. Journal of digital imaging 26(6), 1045-1057 (2013)

. Codella, N.C., Gutman, D., Celebi, M.E., Helba, B., Marchetti, M.A., Dusza, S.W.,

Kalloo, A., Liopyris, K., Mishra, N., Kittler, H., et al.: Skin lesion analysis toward
melanoma detection: A challenge at the 2017 international symposium on biomed-
ical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC).
In: 2018 IEEE 15th International Symposium on Biomedical Imaging. pp. 168-172

. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: Representing

model uncertainty in deep learning. In: international conference on machine learn-
ing. pp. 1050-1059 (2016)

. Jungo, A., Reyes, M.: Assessing reliability and challenges of uncertainty estimations

for medical image segmentation. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. pp. 48-56. Springer (2019)

. Kohl, S., Romera-Paredes, B., Meyer, C., De Fauw, J., Ledsam, J.R., Maier-Hein,

K., Eslami, S., Jimenez Rezende, D., Ronneberger, O.: A probabilistic u-net for
segmentation of ambiguous images. Advances in neural information processing sys-
tems 31, 6965-6975 (2018)

. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learn-

ing. In: Machine learning proceedings 1994, pp. 148-156. Elsevier (1994)

. Loog, M., Yang, Y.: An empirical investigation into the inconsistency of sequen-

tial active learning. In: 2016 23rd international conference on pattern recognition
(ICPR). pp. 210-215. IEEE (2016)

. MacKay, D.J.: The evidence framework applied to classification networks. Neural

computation 4(5), 720-736 (1992)

MacKay, D.J.: Information-based objective functions for active data selection. Neu-
ral computation 4(4), 590-604 (1992)

Monteiro, M., Le Folgoc, L., Coelho de Castro, D., Pawlowski, N., Marques, B.,
Kamnitsas, K., van der Wilk, M., Glocker, B.: Stochastic segmentation networks:
Modelling spatially correlated aleatoric uncertainty. In: Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Pro-
cessing Systems. vol. 33, pp. 12756-12767 (2020)

Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234-241. Springer (2015)

Settles, B.: Active learning literature survey. Tech. rep., University of Wisconsin-
Madison Department of Computer Sciences (2009)

Székely, G.J., Rizzo, M.L.: Energy statistics: A class of statistics based on distances.
Journal of statistical planning and inference 143(8), 1249-1272 (2013)

Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection
of multi-source dermatoscopic images of common pigmented skin lesions. Scientific
data 5, 180161 (2018)

Yang, Y., Loog, M.: A benchmark and comparison of active learning for logistic
regression. Pattern Recognition 83, 401-415 (2018)

63






65

Appendix C

U-net segmentation of tubular
structures from live imaging
confocal microscopy: Successes and
challenges

The following chapter presents the extended abstract

Kasra Arnavaz, Pia Nyeng, Jelena M. Krivokapic, Oswin Krause, Aasa Fer-
agen. “U-net segmentation of tubular structures from live imaging confocal
microscopy: Successes and challenges” Virtual Early Career European
Microscopy Congress (EMC) 2020.

This work presents the approach we took to segmenting the tubular structure
in pancreas using a U-net |32| architecture. It can be considered as a prelude
to the Appendix D. We make a case for why this data set is particularly
difficult to segment: Firstly, there is a low signal-to-noise ratio, which is an
inevitable property of live imaging data since laser power has to be kept low to
prevent Kkilling the cells. Moreover, due to biological variations between embryos,
movies are quite different in their signal strength and intensity distributions.
This challenge is further heightened by limited annotations, as our training set
consists of 6 3D images which are drawn from 3 movies, while we have recorded
more than 50 movies.

We then mention our solutions to the challenges posed above. Since the training
set is small compared to the huge diversity of movies we would like our model
to generalize to, we preprocess each image by its own mean and variance rather
those of the training set. This resulted in a significant boost in segmentation of
those movies with a low signal-to-noise ratio. To get a more accurate estimate of
our performance while keeping the annotation labor to a minimum, we evaluate
our performance on smaller patches which are drawn from several movies rather
than full-sized images drawn from a few movies. On a different note, our
evaluation metrics are pixel-wise while biologists are more interested in having
an accurate topology. We conclude that a semi-supervised approach which takes
topology into account could be a promising future work, which we pursued in
Appendix D.
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U-net segmentation of tubular structures
from live imaging confocal microscopy:
Successes and challenges

Kasra Arnavaz, Pia Nyeng, Jelena Miskovic Krivokapic, Oswin Krause, Aasa Feragen

Summary

We study the problem of segmenting tubular structures in the pancreas from live imaging via
confocal microscopy. The segmentation is difficult due to noise, making it challenging even for a
human expert to distinguish structure from background. We present the results of the
state-of-the-art U-Net and inspect its successes and failures. We discuss challenges in the
manual segmentation of the structure, the impact of these challenges on our choice of
experimental design, and future directions for improving the segmentation.

Introduction

During embryonic development, the pancreatic tubes (Figure 1) grow from a web-like network
with loops to a tree-like structure without loops. A thorough understanding of the mechanisms
governing this morphology has yet defied developmental biologists (Shih et al. 2013), but
observations indicate that the topological events happening during development of the tubular
structure may be related to differentiation of beta cells nearby. However, confirming this
quantitatively requires a binary segmentation of the tubes.
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While segmentation of other tubular structures such as airways or vessels is well studied, the
pancreatic tubes are different in the sense that we have no prior anatomical knowledge about
their structure. Moreover, the images are recorded with low signal to noise ratio, creating a
challenging segmentation task. We present results of the state-of-the-art U-net (Ronneberger et
al, 2015) and discuss its successes and failures. In particular, we discuss challenges in the
manual labeling of training data, as well as potential strategies for "optimally" labeling data.

Methods/Materials

We implement the U-net (Figure 2) in Keras, using 3 sets of down- and up-sampling layers and
binary cross entropy loss, and train it using the Adam Optimizer (beta_1 = 0.9, beta_2 = 0.999,
Ir = 10M{-5}) for 50 epochs.
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Our dataset consists of 2D image slices extracted from 3D image stacks obtained from live
imaging using confocal microscopy of the developing pancreas of mouse embryos imaged for
40-48 hours in vitro (see abstract submission from P Nyeng).

The 2D slices are aggregated as follows: A total of 6 3D movies with approximately 220
time-points each are split randomly into two sets with 3 movies each, to be used for training and
testing, respectively. As parts of the movies have very high noise levels with no discernible
structure, a smaller set of images is manually subselected by first randomly sampling, from each
movie, two 3D images at random. These images have a resolution of 1024 x 1024 x D, where D
varies between 27 and 40. Each of these images is divided into a 4 x 4 grid of patches in the x-y
plane, each of size 256 x 256 x D. From this set of patches, a trained laboratory assistant
manually removes all patches which are too dark and noisy to be reliably annotated. The
remaining patches typically form connected parts of the x-y plane, leading to 1024 x 1024 x D
images with “*forbidden regions" consisting of the removed patches.

Manual annotation: The training split consists of 6 3D images from 3 different movies with in
total 174 2D image slices, where the tubular structure is fully annotated in a semi-manial fashion
as follows: The 3D images were first processed in Imaris image processing software using
Z-normalization, smoothing, volume rendering and filtering of the Muc1-mcherry signal. The
resulting segmentations are manually edited by the laboratory assistant using the software
Slicer. To validate on as diverse a dataset as possible, we select from the test split 10 3D
patches at random, in which the tubular structure is annotated by the laboratory assistant, giving
annotations for around 13\% of the test split.
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Image preprocessing: While the mean intensity per movie is close to zero, the variance differs
noticeably. Thus, every time-point is stadardized by its own mean and standard deviation, and
intensities are clipped to be at most 3 standard deviations away from the mean (which is zero).

Training on patches: The U-net is trained on image patches from the fully annotated slices in
the training set, avoiding the forbidden regions.

Results and Discussion

On the test set, the U-net segmentation produces:

e a sensitivity, giving the proportion of true foreground segmented pixels out of ground
truth foreground pixels, of 0.648;

e a specificity/true negative rate giving the proportion of true background segmented pixels
out of ground truth background pixels, of 0.987
An accuracy, giving the proportion of correctly segmented pixels over all pixels, of 0.970
A dice score, giving a similarity between the predicted segmentation and the ground
truth segmentation, of 0.687 (optimal score is 1).

Note that the accuracy, which is often used to assess quality of segmentation, is high due to the
large imbalance between foreground and background, where much of the dominant background
class is easy to predict. As shown by the sensitivity and specificity, however, the U-net is
undersegmenting the foreground.

This is problematic for two reasons. First, the expert annotation is already likely an
undersegmentation, due to the fact that the expert annotator is unlikely to annotate foreground
unless she is fairly confident. Second, undersegmentation easily leads to disruptions in the
topology of the segmented tubular network, as a few missing pixels can be enough to cut a
connected tube into two or more pieces.
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Conclusion

We have demonstrated how a U-net trained on patches from a limited set of 2D slices from a
limited set of 4D microscopy live images obtains a qualitatively reasonable performance. In light
of the limited amount of training data, with limited amount of variation, the results are positive,
although they also present challenges: The U-net is shown quantitatively to undersegment the
tubular structure, which raises some concern regarding the correctness of segmented network
topology.

In theory, we expect that this could be handled by increasing the amount of hand-annotated
training data. In practice, however, manual labeling is expensive, difficult and time consuming.
This thus leads to multiple future research directions, including semisupervised learning to take
advantage of our large amounts of unlabeled data, and including spatial and time information
into the segmentation pipeline. Finally, we note that the segmentation problem is callenging,
also for a human, who is able (more so than a neural network) to take contextual information
into account. A final potential research problem is thus to specialize the network to search for
tubular structures.
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Appendix D

Quantifying Topology In
Pancreatic Tubular Networks From
Live Imaging 3D Microscopy

The following chapter presents the article

Kasra Arnavaz, Oswin Krause, Kilian Zepf, Jakob Andreas Beerentzen,
Jelena M. Krivokapic, Silja Heilmann, Pia Nyeng, and Aasa Feragen.
“Quantifying Topology In Pancreatic Tubular Networks From Live Imaging
3D Microscopy” under review at Machine Learning for Biomedical Imaging
(MELBA) 2021.

This work is a continuation of what was presented in Appendix C. It proposes
solutions to the problems that were encountered in using a U-net segmentation
model to segment pancreatic tubes.

In this paper, we derive a topological score function which measures topological
similarity between a ground truth- and a predicted segmentation. This score
function is well-suited for the purposes of the biological application we have
in this thesis, but it can in principle be used for any topological segmentation
problem. It is highly interpretable as it is composed of a component- and a
loop subscore, which can each be further broken down to analogues of recall
and precision. The proposed score function can be used for evaluation as well as
model selection.

A recurring challenge throughout this thesis has been the cost of annotations.
To this end, we compare the performance of three architectures: 1. a fully
supervised U-net, 2. AE+U-net: a U-net whose encoder has been pretrained
on an autoencoder, and 3. semisupervised U-net: a joint training of a U-net
and an autoencoder with a shared encoder. Our experiments indicate a better
generalization for the semisupervised U-net compared to the fully-supervised
U-net.

Lastly, accurate detection and tracking of loops in the tubular structure of
the pancreas is a key factor for testing the biological hypothesis. We use the
temporal information in recorded movies as a post-processing step to filter out
short-lived loops. Doing so increases the loop score significantly.
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Abstract

Motivated by the challenging segmentation task of pancreatic tubular networks, this paper
tackles two commonly encountered problems in biomedical imaging: Topological consis-
tency of the segmentation, and expensive or difficult annotation. We propose a topological
score which measures both topological and geometric consistency between the predicted
and ground truth segmentations, applied to model selection and validation. We use a
semisupervised U-net architecture, applicable to generic segmentation tasks, which jointly
trains an autoencoder and a segmentation network. This allows us to utilize unannotated
data to learn feature representations that generalize to test data with high variability, in
spite of our annotated training data having very limited variation. We then use tracking of
loops over time to further improve the predicted topology. Our contributions are validated
on a challenging segmentation task, locating tubular structures in the fetal pancreas from
noisy live imaging confocal microscopy.

Keywords: topology, semisupervised, segmentation, tubular, confocal microscopy

1. Introduction

Segmentation of tubular structures is a common task in medical imaging, encountered when
analyzing structures such as e.g. blood vessels (Zhang et al. (2019)), airways (Qin et al.
(2019)), ductal systems (Wang et al. (2020b)), neurons (Li et al. (2019)). Segmentation is

(©2020 Dalca and Sabuncu. License: CC-BY 4.0.
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Figure 1: Tubular remodeling in pancreas during embryonic development. Gray areas rep-
resent tubes, while red dots represent [3-cells.

often a first step towards analysing the topological network structure of the organ, and it
is therefore crucial that the segmented network structure is reliable.

Pancreatic tubes This paper aims to solve a challenging tubular segmentation task from
live fluorescence microscopy imaging. The pancreas produces enzymes and hormones, most
importantly insulin which is produced by the so-called (3-cells. Since insulin plays a crucial
role in regulating blood sugar, malfunction of (3-cells could lead to the development of
diabetes.

The mammalian pancreas contains a tubular ductal network which transports enzymes
into the intestines. Unlike superficially similar tubular structures such as the lung airways,
the pancreatic tubes do not form by stereotypic branching. Rather, during embryonic
development, the pancreatic tubes form by fusion of smaller lumens into a complex web-like
network with many loops, which remodel to a tree-like structure, as discussed by Pan and
Wright (2011) and Villasenor et al. (2010) and illustrated in Figure 1. As a result, the
pancreatic tubes are complex and the overall structure varies from individual to individual,
making segmentation and analysis of the network a hard task.

It has been suggested by Kesavan et al. (2009) and Bankaitis et al. (2015) that the
emergence of 3-cells depends on the remodeling of the tubular structure during embryonic
development. To quantitatively verify this hypothesis, we require topologically accurate
detection of the pancreatic tubes from noisy live imaging confocal 3D microscopy. In par-
ticular, we are interested in opening and closure of loops over time as the feature which
might affect the emergence of [3-cells. We tackle this problem for a dataset consisting of
time-lapse 3D images from mouse pancreatic organs, which were recorded as the organs
underwent the process of tubular re-organization and emergence of {3-cells.

As can be seen from Figure 2 (right), these images have a low signal-to-noise ratio,
which makes segmentation a difficult problem. Note that this is much lower than for other
common tubular segmentation tasks, such as vessel segmentation. This is challenging not
just because the images are noisy; also, the tubes appear at very different scales (compare
the two images in Figure 2), and the image contrast is highest at the tubular boundary,
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Original image

Original image U-net Annotation

Figure 2: 2D slices. Left: Small voxel error, large network error. Right: Effect of noise
and artifacts.

meaning that tubes appear very different depending on their thickness relative to the image
resolution as well as the depth in the image stack and local tissue depth.

Furthermore, most segmentation algorithms are trained to optimize voxel-based mea-
sures such as cross-entropy or accuracy. This, however, does not take into account how a
small segmentation error viewed from the pixel point of view might, in fact, lead to a crucial
error in the segmented network, see Figure 2 (left).

The challenge of annotation. While unlabeled data is abundant, manual segmentation
of 3D tubes is time-consuming and can only be performed by a trained expert. This growing
divide between availability of data and availability of annotations is generic in biomedical
imaging: While the cost of image acquisition and storage has decreased significantly, the
cost of annotation remains the same, and learning useful representations from unlabeled
data is thus desirable.

As our application requires topologically accurate segmentations, it is also important to
have examples of fully annotated 3D volumes in order to carefully assess the alignment of
segmentations with annotations. As our training data consists of a few fully annotated 3D
volumes, this means that the variation seen in the annotated training set is very limited.

Our contribution. We propose a segmentation- and processing pipeline that allows the
quantification of topological features (with an emphasis on network loops) of pancreatic
tubular networks from noisy live imaging 3D microscopy. This pipeline consists of i) a
semisupervised training strategy accompanied with a manual annotation strategy support-
ing it; ii) a novel and highly interpretable topological score function which quantifies the
topological similarity between the ground-truth tubular network and the predicted one; iii)
the use of multi-object tracking to postprocess detected loops with the help of temporal
data, filtering out those loops that do not remain present over time.

In particular, our topological score can be used both to rank the topological consistency
of different models, as well as to encourage topological consistency through hyperparameter
tuning. We validate its use in both aspects against standard voxel-based model selection, as
well as a topological loss function. We also compare with a segmentation network trained
specifically with a topology-preserving loss function.
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2. Related work

2.1 Topological consistency

This is not the first work to consider topological consistency of segmentation algorithms.
A series of previous works define segmentation loss functions that encourage topologically
consistent segmentations. Some of these are based on computational topology, such as Hu
et al. (2019), Clough et al. (2020), Hu et al. (2020) or Wang et al. (2020a). Such losses
compare the numbers of components and loops between ground truth and segmentation
throughout a parameterized “filtration”. While appealing, this approach suffers from two
problems: First, these algorithms come with a high computational burden, which limit their
application in typical biomedical segmentation problems: At the time when this paper was
developed, current versions Hu et al. (2019) applied to 2D (or 2.5D) images, where they
are forced to resort to enforcing topological consistency of small patches rather than glob-
ally. This is particularly problematic in our case, where the tubes appear on very different
scales, making it hard to capture coarser scales with a single patch. This problem appears
to persist with more recent work of Hu et al. (2020) utilizing discrete Morse theory. Sec-
ond, computational topology tends to focus on topological equivalence of structure without
taking its geometry into account. More precisely, such methods tend to compare numbers
of components and loops between prediction and ground truth without considering whether
they actually match. This is suboptimal if two patches contain non-matching components
or loops; a problem which does occur in our data.

Another direction of research in topologically consistent loss functions, initiated by Shit
et al. (2021), are based on soft skeletonizations which are compared between prediction and
ground truth. We find these losses more applicable to our type of data, and compare to
such a loss function in our experiments.

We empirically find that topological loss functions are not helpful for our segmentation
problem, and we hypothesize that this is caused by the challenging nature of our data.
We choose to take a step back and address these problems through model selection, for
models trained with voxel based loss functions. As we are not using our score function to
train the model, we can allow ourselves to incorporate non-differentiable components such
as geometric matching of loops and components. We thus introduce a topological score
that measures topology preservation which is also geometrically consistent, in the sense
that topology is represented by network skeletons, whose components and loops are soft
matched based on geometry. This ensures that our score function is really assessing each
topological feature on a global scale, and not just counting that their numbers match up.
This also leads to a highly decomposable and interpretable score, which both decomposes
into loop and component scores, and into precision and recall scores. The final topological
score is defined based on their agreement.

2.2 Semisupervised segmentation

The problem of attaining annotations is even more severe in biomedical segmentation. As a
result, there have been numerous attempts to make use of the information from unlabeled
images to improve the segmentation task.
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One line of thought is to enforce feature embeddings of neighboring labeled and unlabeled
images to be similar to one another. The work of Baur et al. (2019) defines an auxiliary
manifold embedding loss to cause labeled and unlabeled images which are close in input
space to be also close in latent space. The authors in Ouali et al. (2020) take a different
approach to incorporating unlabeled data to learn better hidden representation features.
They first train an encoder and a decoder on labeled data, and then add in auxiliary decoders
in addition to the original decoder for unlabeled data. The idea is to improve the shared
encoder by ensuring auxiliary decoder outputs to be consistent with the original decoder
output. Another approach by Zhang et al. (2017) uses adversarial networks. Along with a
segmentation network, they also train a discriminator to distinguish between segmentation
of labeled and unlabeled images. The authors in Cui et al. (2019) add noise to the same
unlabeled data as a regularization for a mean teacher model (Tarvainen and Valpola (2017)).

A different semi-supervised approach is self-training (Zoph et al. (2020)). In this ap-
proach, a segmentation model is trained on labeled images and then applied to unlabeled
images to get pseudo-labels which are then added to the labeled pool for retraining. Gener-
ative adversarial networks (GAN) are used by Hung et al. (2018) and Mittal et al. (2019) to
select better pseudo-labels by training a discriminator that distinguishes between pseudo-
labels and ground-truth labels. Inspired by curriculum learning of Bengio et al. (2009), the
work of Feng et al. (2020) selects pseudo-labels gradually from easy to more complex. More
recently, Chen et al. (2021) have combined the consistency regularization with self-training.
They train two networks with the same structure but different initializations, one for labeled
data and one for unlabeled. Then they enforce consistency between the two networks while
using the pseudo-labels from one network as supervisory signal for the other.

3. Methods

We start by discussing our semisupervised segmentation algorithm along with our baselines.
Next, we design a novel and interpretable score function for assessing topological correctness
of segmentation in a geometry-aware fashion. Finally, we introduce a topology-oriented
post-processing scheme which utilizes temporal data and multi-object tracking to filter
detected topological features depending on their presence over time.

3.1 Semisupervised training of U-net

Our application offers abundant unlabeled data and a small labeled subset of limited vari-
ation — a very common situation in biomedical imaging. By learning features also from
the unlabeled data, the increased diversity obtained by including unlabeled images might
improve generalization to the full distribution of data expected at test time. To this end, we
combine a 2D U-net (Ronneberger et al. (2015)) with an autoencoder, see Figure 3 (right).
We refer to this as a semisupervised U-net. This semisupervised U-net has a similar struc-
ture to the network used by Myronenko (2018). In this work, a variational autoencoder
(VAE) branch is added to their original encoder-decoder architecture with a purpose to
regularize the common encoder network. While they apply this approach to labeled data,
we make use of the unlabeled data as well as the labeled data to learn better latent space
representations.
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Autoencoder

Semisupervised U-net

Figure 3: We apply semisupervised training of a segmentation U-net by combining an au-
toencoder (left) with a U-net (middle) into a combined network (right) which is
simultaneously trained for segmentation and reconstruction. This allows us to
learn features on a large, unlabeled dataset with rich variation, although we only
have annotated segmentations for a small subset with little variation. In the ar-
chitectures, = denotes the input image, y its corresponding binary segmentation
map, and Z is the reconstruction of the input image.

The loss function for the semisupervised U-net is the weighted combination L = Lg +
aLg of the reconstruction loss Lr and the segmentation loss Lg where « is a hyperparame-
ter. In our experiments, L is the mean squared error, and Lg is binary cross-entropy. The
segmentation loss is set to zero for unlabeled images. Although the segmentation decoder
wy is trained only on the labeled images, it is implicitly affected by the unlabeled data
via its dependence on the encoder w which, along with w, is trained on both labeled and
unlabeled images.

We compare the semisupervised U-net framework to i) a U-net initialized randomly and
trained solely on labeled images and ii) a U-net trained on labeled images, whose encoding
weights w are initialized at the optima of an autoencoder trained on both labeled and
unlabeled images. What separates the semisupervised U-net architecture from the U-net
pre-trained on an autoencoder is the joint optimization of the two losses. We believe—as
backed up by our experiments—that this joint optimization tailors the representations we
learn from the unlabeled images to suit the segmentation task, and help them generalize to
more diverse images than those annotated for training.

3.2 Topological score function

In order to perform model selection that prioritizes topologically consistent segmentations,
as well as to evaluate our ability to correctly detect topological features such as loops and
components, we design a topological score function. While existing topological loss functions
often focus on getting the correct number of topological features such as components and
loops, it is extremely important for our application to detect not only the correct number of
loops, but the correct loops. In order to quantify this, our topological score therefore relies
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on first matching loops and components, and then measuring their correctness via overlap.
In this way, the score function is also geometry-aware.

The topology of a segmented tubular structure is represented via its skeleton. We utilize
a robust skeletonization algorithm recently proposed by Berentzen and Rotenberg (2020)
and then use NetworkX of Hagberg et al. (2008) to identify the loops and components, see
Figure 4 for an example. We design our topological score via the following steps: i) matching
skeletal nodes; ii) soft-matching components and loops using a point cloud Intersection-over-
Union (ToU) score; and iii) collecting these into a topological score. By matching topological
features based on geometric affinity, we ensure that our measured topological consistency
is also geometrically consistent, meaning that the IoU score considers overlap of geometric
features that appear near each other.

For the example shown in Figure 4, each step explained below is illustrated in Figure 6.

Step i) Matching individual nodes. We denote the skeleton graphs of ground truth and
prediction by Sy and S),, respectively. Due to noise, predicted segmentations are bumpier
than the ground truth, giving higher node density in S, than in Sy4. The topological score
needs to be robust to this. As a first step towards creating a density-agnostic score, we
therefore match skeletal components and loops by first matching their nodes as follows (see
also Figure 5):

For every loop in one of the skeletons Sy:/S),, each node is matched to its nearest node
in a loop from the opposite skeleton Sy, /S if such a node exists within a fixed radius r > 0;
otherwise the node is considered unmatched. Matching several nodes in one skeleton to the
same node in the other skeleton is allowed, as can be seen from Figure 5.

The same matching procedure is applied to components.

Step ii) Soft matching of loops and components via Point Cloud IoU. Next, we
perform partial matching of components and loops. With skeleton nodes matched, some
components or loops may overlap partly, as shown in Fig 5. We need to measure this, again
being robust to differences in skeleton node density.

Define TP, to be the number of nodes in the predicted loop that is matched to a point
in the ground truth (GT) loop; TP the number of nodes in the GT loop that is matched
to a point in the predicted loop, FP the number of nodes in the predicted loop that is not
matched to a point in the GT loop, and FN the number of loops in the GT loop that is
not matched to a point in the predicted loop. Similarly for components. Now, we might
naively define the loop’s IoU score as

TP, + TP,
TPy + TP, + 2FP + 2FN’
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Figure 4: Ground truth (left) and prediction (right): a) segmentation and their skeletons.
b) 2D projections of the skeletons onto the (x, y)-plane shown as nodes and edges.
Green lines in a) and green nodes in b) take part in loops. Note that the ground
truth segmentation has 2 loops and 7 components, while the prediction has 5
loops and 10 components. The loops are identified by numbers, for the sake of
the discussion below.

214 However, this is not robust to differences in node density, as a very dense, but incomplete,
215 prediction would get an inflated score. Instead, in analogy with samples from probability
a6 distributions, we define a point cloud IoU, which we use to measure loop-wise performance:

TP, TP,
TP, + FN | TP, 4 FP

TPy +2FN TP, + 2FP’
TP, +FN ' TP, +FP

IoU =

8
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Figure 5: An example of point matching for two loops (edges not drawn).

Threshold

— > Loop score = 1(4 + 1)

0 | O scores
00010

Column scores

00 01 0]1Row
00 00
Mean row score ~ Mean column score

Figure 6: Example computation of the loop score for the prediction shown in Figure 4. The
ground truth segmentation has 2 loops while the prediction has 5. Here, loop #1
in Sy has overlap with loops #4 and #5 in S),, where the first is thresholded as a
perfect match and the second is thresholded as no match. The row score = [1, 0]
means loop #1 from the ground truth is very confidently matched to a predicted
loop; the column score = [0, 0, 0, 1, 0] means that the loop #4 from prediction
is very confidently matched to a loop in ground-truth.

where TPy and FN have been normalized by the number of nodes in the ground truth
loop (TP, + FN), and TP, and FP have been normalized by the number of nodes in the
predicted loop (TP, + FP).

Step iii) A topological score for comparison of segmentations. Given skeletons
Sgt and Sp, we separate our measure of topological consistency into performance for loops
and performance for components. To this end, we define two topological scoring matrices;
one for components and one for loops. As in the example of Figure 6, the loop score matrix
has size Ly X Ly, where Ly and Ly, is the number of loops in Sg; and Sp, respectively. For
each pair of GT and prediction loops, their matrix entry is given by their point cloud IoU of
Eq. (1); this completes the matrix on the left side of Figure 6. Any IoU below a threshold
tiow is set to 0, indicating no match, and any IoU over 5,4 is set to 1, indicating perfect
match. If an ToU is between #;,, and tp;gp,, then it is left unchanged in the matrix. (Figure
6 middle matrix)

By adding horizontally we obtain a row score indicating the degree to which a ground
truth loop is matched to a loop in predicted topology. Similarly, summing vertically, the
column score indicates the degree to which a predicted loop is matched to a loop in ground
truth topology. The elements in these row and column scores can, in principle, add up to
more than one when nodes appear in multiple loops; they are clipped to be at most 1.

We can now take the mean of row scores and column scores to draw an analogy to
confusion matrix terminology. The mean row score is similar to recall, rewarding fewer false
negatives; the mean column score is similar to precision, rewarding fewer false positives; and
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the mean of the two mean scores is similar to the F1 score; we refer to this as the loop score
(Figure 6 right side). Note that in this way, the topological score is decomposable into a
series of highly interpretable sub-scores, which makes it both interpretable and adaptable
to a wide range of applications.

A component score is defined in the same manner as the loop score. The final topology
score is given by the mean of the loop and component scores.

The above does not handle cases where either Sg; or S}, have no loops (or components).
If neither skeleton has loops, the loop score is 1. If Sy has no loops, then the loop score is
1/(1 + #err), where #err is the number of loops found in S,. If the S, has no loops, then
the final score is 1/(1 4 #err), where #err is the number of loops found in Sy;. Components
are handled similarly.

3.3 Postprocessing of loops using temporal information

In this section, we use the temporal structure of our data, which consists of consecutive 3D
images taken over time, to filter out spurious loops as a postprocessing step. To do so, we
first need to track loops, and then remove those trajectories which last a very short time.

We track loops by tracking their centers, and treat this as a multi-object tracking prob-
lem, whose validation can be broken into two questions: 1. Are predicted loop centers
matched to a loop center in the ground-truth? 2. Do loop centers in different frames belong
to the same loop? The first question is known as detection and the second as association. It
is important to emphasize that the association of loops is implicitly affected by the detection
of loops, which has been one of the topological features we have been interested in.

HOTA (Luiten et al. (2021)) is a multi-object tracking metric capturing both the de-
tection accuracy (DetA) and the association accuracy (AssA). The final HOTA metric is
defined as the geometric mean of DetA and AssA. The detection accuracy is based on a
bijective matching between predicted- and ground-truth loop centers, where the distance
between a matched pair cannot exceed a fixed threshold . To quantify association accuracy
given predicted- and ground-truth trajectories of loop centers, Luiten et al. (2021) propose
a measure which captures how accurate the alignment of predicted- and ground-truth tra-
jectories is for every matched center. Finally, both detection- and association accuracies can
be further broken down to recall (Re) and precision (Pr) constituents, i.e. DetRe, DetPr,
AssRe, AssPr, which are useful for interpreting the results.

We use Trackpy (Allan et al. (2021)) to first track predicted loop centers,and next
remove trajectories which last a short time. In order to do that, Trackpy includes a few
hyperparameters: search range (the maximum distance loop centers can move between
frames), adaptive stop (the value used to progressively reduce search range until solvable),
adaptive step (the multiplier used to reduce search range by), memory (the maximum
number of frames during which a loop can vanish, then reappear nearby, and be considered
the same loop), and threshold (the minimum number of frames a feature has to be present
in order not to be removed). These hyperparameters are tuned using the HOTA metric by
grid-search on movies for which we have target trajectories annotated.

10
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4. Data and preprocessing

The data used in this paper is extracted from 3D images obtained by live imaging of
embryonic mouse pancreas (E14.0) explants. An image is recorded every 10 minutes during a
period of 48 hours using a Zeiss LSM780 confocal microscope equipped for live imaging. The
image resolution is 0.346 x 0.346 x 1.0 um (x, y, z), and the dimension size is 1024 x 1024 x D
pixels, where D varies between 27 and 40.

The imaged mouse pancreas expresses a reporter gene leading to production of a red
fluorescent protein (mCherry), which is localized to the cell’s apical side facing the tube’s
inner surface. In the images, we see the fluorescence as a bright tubular boundary sur-
rounding a dark inner lumen, see Figure 7. Due to biological variation between individual
samples, the fluorescence intensity is lower in some data sets, leading to a lower intensity
boundary. In addition, low fluorescence is seen at the furthest end of the z-dimension due to
intensity decay through the z-dimension. An additional segmentation problem is presented
by the fact that the tubes have very varying diameters: Some tubes are so wide that the
inner dark space can be mistaken for space between tubes. In other cases, segmentation
is hard because the tube is so narrow that the dark inner space is hard to detect. These
effects lead to a challenging tubular segmentation problem.

The problem is further complicated by several common artifacts (Figure 7 bottom row):
First, we see imaging artifacts in the form of big clusters of very bright pixels in some
images. These are caused by red blood cells and dead cells which fluoresce in the same
wavelength as the reporter. There are also small clusters of bright pixels, caused by the
production of reporter protein inside the cells, that are being transported to the tubular
surface. These are mainly located at the end of the z-dimension where the cells attach to
the dish and move significantly over time, which is helpful in ignoring them.

Intensity normalization The mean intensity is close to zero, as the foreground volume
is relatively small. The intensity variance, however, differs considerably across images, in
particular due to the bright spot artifacts mentioned above. As preprocessing, every image
is standardized to have zero mean and standard deviation 1, and image intensities are
clipped to take values within 3 standard deviations.

Annotation strategy As the image content can vary a great deal within a single image,
each 3D image which was later fully or partially annotated, was first divided into a 4 x 4
grid of patches in the z-y plane, each of size 256 x 256 x D. Those patches that had no
discernible tubular structures were labeled as such and left out from the manual annotation
and downstream analysis. We refer to these patches as “low information patches” below.

For the training set, 6 full 3D images from 3 different movies were manually segmented
(2 3D images from each movie). We chose to annotate a small number of full 3D images
in order to have some manually segmented examples in which a complete tubular network
was visible.

For the validation- and test sets, we chose to annotate patches rather than full images
to obtain maximal data variation. This was prioritized both to select robust models and
to obtain a robust assessment of performance. The validation- and test sets, each compose
of 17 different movies. The patches to be segmented were drawn randomly from those that
were not labeled as low information patch. Following this, our validation- and test sets

11
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Figure 7: 2D slices from different movies extracted to show different image artifacts. Top
left: a case where the boundary of tube has a high intensity. Top right: a
case where the intensity of boundaries are no higher than the rest of the tube.
Bottom left: large bright spots due to red blood cells and other dead cells.
Bottom right: small bright spots due to the reporter protein in cells being
transported to the tubular surface.

consisted of 35 and 68 manually segmented 3D image patches, respectively. Each test set
patch was also given a labeling difficulty score, from 0 = easy to 3 = difficult.

12
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Training on patches All our models are trained on image patches. Labeled training
patches were obtained by drawing them at random from the 6 fully annotated 3D images;
these patches were restricted not to overlap with those patches labeled as low information
patch. The training set for the autoencoder and semisupervised U-net further includes
patches from 20 unannotated images from 10 movies, also referred to as unlabeled training
set.

To avoid artifacts and degradation of performance near patch boundaries, we pad the
image patches with a 32 pixel wide border, making boundary effects negligible. We thus
use 320 x 320 patches, extracting predictions for the inner 256 x 256 region.

Annotated loops Our ultimate goal is to robustly detect loops in the tubular structure.
To assess our ability to do so, loops were manually tracked and annotated over time for
a small number of movies. More precisely, the z- and y- coordinates of loop centers were
recorded in 5/1/3 movies from the unlabeled training set/validation set/test set, respec-
tively. Moreover, the loops detected by our proposed pipeline (postprocessed output of
semisupervised U-net) were assessed by a trained expert on 4 test movies.

5. Experiments and results

In Table 1, we compare three objectives for hyperparameter selection, i.e. voxel IoU, clDice
measure, and the proposed topology score in this paper, and apply them to three models,
namely a fully supervised 2D U-net, a U-net pre-trained on an autoencoder (AE+U-net),
and the semisupervised U-net. Moreover, we take the same fully supervised U-net architec-
ture and compare it to the case where the topology-preserving loss of Shit et al. (2021) has
been used during training (clDice U-net).

Training setting All models are optimized using Adam with $; = 0.9 and (2 = 0.999.
The learning rate for all architectures is 1075, except for clDice U-net which is set to 1072
for better training. Random weight initializations are done by Xavier uniform initializer,
and biases are set to zero initially. The U-net and clDice U-net are trained for 200 epochs.
For the AE+U-net, the autoencoder was trained for 20 epochs, which resulted in satisfac-
tory reconstructions (Figure 8), and its U-net part was trained for 200 epochs. For the
semisupervised U-net, the number of epochs was set to a 40, as it contains both labeled and
unlabeled data. The hyperparameter in the combined loss of the semisupervised U-net was
set to @ = 10. The weighting between soft-Dice and clDice in the loss function of clDice
U-net is set to be equal.

5.1 Segmentation performance

The hyperparameter that we tuned in our experiments was the cutoff threshold applied
to the outputs of the sigmoid function to make a binary segmentation. The thresholds of
interest ranged from 0.1 to 0.9 with a 0.1 increment. The thresholds performing best on
the validation set were applied to the test set, and then skeletons were computed using the
robust GEL skeletonization algorithm (Baerentzen and et al. (2020)). Skeleton components
of size < 5 nodes were ignored; the radius » = 10 pixels was used for node matching; and the
thresholds jo,, = 0.3 and Zp;g, = 0.7 were used for the component and loop score matrices.
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AE+U-net Semisupervised U-net
Reconstruction Reconstruction

Figure 8: Two 2-dimensional slices from the test set (left column) and their correspond-
ing reconstruction at the final epochs of AE+U-Net (middle column), and semi-
supervised U-net (right column).

In Table 1, we report mean and standard deviation of patch-wise scores on the test set.
Note that this standard deviation indicates variation in performance over different patches,
not robustness over multiple training runs. It is worth noting that, given a fixed model, all
performance measures are only dependant on the threshold value. As a result if multiple
tuning criteria reach the same threshold value for a model, all performance measures for
those tuning criterion would be identical. For visual comparison, Figure 9 shows four
randomly selected patches from the test set to compare the ground truth annotation with
different model predictions at their best-performing thresholds according to the topological
score. As we believe the difficulty of the segmentation problem varies greatly among different
patches, in Figure 10 we have plotted topology score against entropy (left) and distribution
of topology-, component- and loop scores for each level of difficulty, evaluated by an expert.
Both plots use the test set predictions of the semisupervised U-net.
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Table 1: Segmentation performance assessed via voxel IoU, clDice measure, the topological

score, and its sub-components, the loop score and the component score. (Sec. 3.2).
For each of the 3 models, the best-performing threshold (Thr) was selected ac-
cording to Voxel IoU, clDice measure, and Topological Score on the validation set.
Numbers in bold indicate the highest mean across both architectures and tuning
criteria. Note that the three rows for ”Semisupervised U-net” are identical because
all tuning criteria chose the same segmentation threshold.
The last row shows the performance of “clDice U-net”, a U-net model trained
with the topology-preserving loss “clDice” of Shit et al. (2021). As the pixel-wise
probability values of this model clustered as either less than 0.1 or more than 0.9
on the validation set, we chose 0.5 as the threshold to apply on the test set.

Architecture Tuning Criterion Thr Voxel IoU clDice Topological Score | Loop Score Component Score
Voxel ToU 0.8 | 0.474+0.208 0.535+0.192 0.395+0.263 0.312+0.297 0.477+0.285
U-net clDice 0.8 | 0.47440.208 0.535+0.192 0.395+0.263 0.312+0.297 0.477+0.285

Topology Score 0.9 | 0.449+0.214 0.529+0.212 0.424+0.265 0.390+0.339 0.458+0.297

Voxel ToU 0.5 | 0.447+0.210 0.504+0.196 0.356+0.243 0.308+0.299 0.404+0.264

AE+U-net clDice 0.6 | 0.447+0.207 0.504+0.206 0.382+0.264 0.333+0.320 0.430£0.279
Topology Score 0.7 | 0.418+0.214 0.488+0.219 0.375+0.222 0.3254+0.311 0.425+0.271

Voxel ToU 0.7 | 0.4904+0.226 0.55540.213 0.436+0.253 0.386+0.352 0.486+0.271

Semisupervised U-net clDice 0.7 | 0.490+0.226 0.555+0.213 0.436+0.253 0.3860.352 0.486+0.271

Topology Score 0.7 | 0.490+0.226 0.55510.213 0.436+0.253 0.386+0.352 0.486+0.271

clDice U-net ‘ 0.449+0.193 0.443+0.187 0.337+0.263 0.314+0.346 0.360+0.275

5.2 Loop filtering and tracking

We use the temporal data to remove false positives from the detected loops. Due to compu-
tational constraints, we only apply this to the best performing model, namely the semisu-
pervised U-net at its best-performing threshold of 0.7.

The hyperparameters of Trackpy, used to track loops as well as filter them, were tuned
on 6 movies with annotated loops. Of these, 5 came from the unlabeled training set and 1
came from the validation set. The resulting optimal hyperparameters are (search range =
15), (adaptive stop = 5), (adaptive step = 0.9), (memory = 1), and (threshold = 15). We
have used Euclidean distance to match loop centers, and the upperbound for the distance
in HOTA measure is v = 50 pixels.

After filtering, the loop scores on the test set patches were improved from 0.386+0.352
to 0.808+0.281.

These final results were also evaluated by a trained expert, who annotated true positive
(TP), false positive (FP), and missing (false negative, or FN) loops. This was carried out
for 4 full movies from the test set; see Figure 11. As can be seen from the results, there is
a strong correlation between predicted and true loops. In the bottom right movie, we see a
large number of false positives; this movie was also annotated as challenging by the trained
expert due to the high number of loops and increase in noise towards the end of the movie.

Table 2 shows the HOTA scores and sub-scores for the 3 movies in the test set for which
we have had manual tracking of loop centers.
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Figure 10: Left: Patch-wise topology score versus segmentation entropy. Right: Distri-

6. Discussion and Conclusion

bution of topology, component and loop scores divided over difficulty of manual

We have tackled the challenging problem of segmenting pancreatic tubes from live-imaging
microscopy, in order to track loops in the complex and dynamic tubular network that
they form. This came with three important challenges: 1) Having a topologically accurate
segmentation in order to correctly track the loops of the tubular network; 2) Utilizing
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Figure 11: Each plot is a movie from the test set showing the performance of loop detection
evaluated by an expert. The y-axis measures the number of false positives (FP),
false negatives (FN), predicted loops, and true loops.

Table 2: Performance of tracking loop centers for the semisupervised U-net architecture.
HOTA | DetA DetRe DetPr | AssA AssRe AssPr
0.337 | 0.256 0.361 0.649 | 0.469 0.478 0.956

temporal data to postprocess the segmentation results; and 3) Utilizing unlabeled data to
aid the segmentation in generalizing to diverse test data, as our annotated training data
has very limited variation.

To obtain topologically accurate segmentations, we derive a topological score, which
splits into loop- and component scores, to quantify the topological correctness of the seg-
mentations. To aid generalization, we train a segmentation U-net in a semisupervised fash-
ion, combining an autoencoder reconstruction loss applied to a large set of un-annotated
images, with a segmentation loss applied to the annotated images. Finally, we make use
of large amounts of unannotated temporal data to enhance temporal consistency in our
detected loops.

A topological score function We have derived a topological score function from highly
interpretable constituents for both loops and components, which split into subscores anal-
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ogous to precision and recall. These are joined into F1-like scores, again for loops and
components individually, before merging them to a final topological score.

While from a biological point of view, we are primarily interested in the loops, the topo-
logical consistency of components is likely to be highly related to the topological consistency
of loops, and we thus find it valuable to include both for model selection in order to base
our selections on more data. This compositionality of the score makes it highly versatile
and interpretable.

Topological model selection We seek to select those model hyperparameters that pro-
duce the best segmentations from a topological point of view. The topological score provides
one way to quantify which segmentations are “best”, but alternative scores may produce
different “best” models. Indeed, in the context of hyperparameter tuning (Section 5.1), we
see, comparing the performance measures in Table 1, that a given model typically performs
best on the particular metric on which its hyperparameter has been tuned. This emphasizes
the importance of selecting a topological score function that fits the application well.

Topological loss functions In our paper, the enforcement of topological consistency
from the network’s point of view was restricted to tuning the thresholding hyperparameter,
while the neural network training used a standard voxel-wise cross-entropy loss. This differs
from recent works deriving topological loss functions that encourage topological consistency
also in the training of the segmentation network (Shit et al. (2021); Hu et al. (2019); Clough
et al. (2020); Hu et al. (2020)). We consider having a topological-preserving loss to be a
very promising strategy, as it has been demonstrated to work well on a number of simpler
segmentation problems. In our experiments, however, we find that topology-preserving loss
functions were not sufficiently powerful: the U-net trained with the pixel-wise loss and
hyper-parameters tuned on our topology score outperforms the U-net trained using the
clDice loss across all measures (see Table 1 and Figure 9).

We believe that this is caused in part by the challenging nature of our segmentation
problem. The signal-to-noise ratio in our dataset is low and we have a number of artifacts.
Moreover, our tubular structures appear at very different scales, meaning that training
with small patches, which is e.g. performed by Hu et al. (2019) to obtain scalability, would
likely have trouble capturing all scales. These issues are also likely the reason behind the
suboptimal results obtained using the soft-skeletonization algorithm of Shit et al. (2021) on
our data (see Figure 9).

Note that both the signal-to-noise-ratio and the scale challenge are different from what
we typically see in e.g. vessel- or road segmentation. We believe this is also part of the
explanation why methods developed for such tasks are challenged on our dataset.

Segmentation models and data Out of the three architectures we experimented with,
the semisupervised U-net has proven to outperform the other two, regardless of which
performance measure is used (see Table 1). The joint optimization of the autoencoder and
the U-net seems to have driven latent space representations to be more suitable for the
segmentation task, compared to the pretrained AE+U-net which acts as an initialization
for the U-net. Slightly more surprising is the fact that AE+U-net is outperformed by
a randomly initialized U-net. However, this was observed over multiple training runs,
indicating that pretraining actually led to a worse initialization. Similar effects have also

18



455

456

457

458

459

461

462

463

464

465

467

468

469

470

471

472

473

474

475

476

478

479

480

481

482

483

484

486

487

488

489

490

491

492

493

494

495

496

92 Appendix D. Quantifying Topology In Pancreatic

QUANTIFYING TOPOLOGY IN PANCREATIC TUBULAR NETWORKS

been observed for natural images in He et al. (2019). We speculate that this is due to the
artifacts present in our data: The autoencoder may emphasize reconstruction of artifacts,
which does not behave as conventional noise.

The convolutions in all our architectures were in 2D. While the 3D U-net of Cigek et al.
(2016) utilizes useful spatial structure, it also has more parameters, which with our limited
labeled data led to poorer performance than the 2D counterpart.

Our annotation strategy assumed that a few, detailed annotations of full 3D images
would be sufficient to train a good segmentation model, and we chose to focus on having
more variance in the validation and test images. To verify that this was a sound assumption,
we experimented with swapping the role of the validation and training sets, i.e. training the
2D U-net on the validation set, and using the training set to tune its hyperparameters. The
results were again evaluated on the test set. However, the performance did not improve
compared to the U-net reported in Table 1.

Although the semisupervised U-net utilized the diversity of unlabeled data to improve
segmentation, its predictions are not perfect. As shown in Figure 10, our performance
correlates negatively with segmentation entropy as well as with segmentation difficulty as
assessed by the trained expert. Thus, endowing the extracted tubular network with a notion
of uncertainty could ensure safe interpretation.

Loop tracking Using temporal information to filter out loops which were present only a
short time, helped increase loop score drastically (see Sec. 5.2). This postprocessing step
has proved useful in coping with artifacts and noise in our data.

As mentioned before, having accurate detection and tracking of tubular loops is biolog-
ically important. Thus, we evaluated our model performance against expert opinion. Table
2 provides us with both detection and tracking performances. One can observe that the
detection precision is higher than detection recall, meaning there are comparably more FN
than FP. This is also partially supported by the results in Fig. 11.

Conclusion and Outlook In this paper, we tackled segmenting pancreatic tubular net-
works, which are dissimilar to other anatomical networks in several aspects. In doing so,
we proposed a novel and highly interpretable topological score function, which we used for
evaluation as well as model selection. We also compared various training schemes, showing
that it is advantageous to incorporate unlabeled data to learn more generalizable latent fea-
tures. Finally, we showed that postprocessing the detected loops by applying multi-object
tracking over time to greatly reduced false positive loops.

Our segmentation problem is challenging, and in solving it, we have experienced that
simple, established methods are more robust than complex ones. By remaining in the
realm of established methods, we are able to define a topological score which is also faithful
to geometry, which we believe adds robustness. Going forwards, we hope that utilizing
geometry to strengthen the matching of topological features, may form a starting point for
more robust loss functions that can also be used to train topologically consistent models.
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