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Abstract

Over the past two decades, simulation of conditioned diffusion processes has been
investigated actively, while the field of geometric statistics has emerged due to the
growing need for handling non-linear data within the fields like robotics, biology,
and medical image analysis, among others. Simulation of conditioned diffusions
is a challenging statistical problem as analytically closed-form expressions for the
transition densities of the desired distribution are often unavailable. Much of the
existing literature provides methods to simulate conditioned diffusion processes in
a non-geometric setting, and the intersection between these two fields is relatively
unexplored. This dissertation is devoted to studying the simulation of guided bridge
processes on Riemannian manifolds, Lie groups, and homogeneous spaces and their
applications.

We propose a simple method for simulating conditioned processes on various non-
linear spaces and show its application to likelihood inference for diffusion processes
in different geometric settings.

In the first paper of the thesis, we present a bridge simulation scheme on the
orthonormal frame bundle of Riemannian manifolds. We derive an expression for
the transition densities analytically, and we obtain approximations of the transition
densities on specific manifolds using Monte Carlo techniques. In particular, for the
two-dimensional sphere, we compare the approximation with the truncated exact
heat kernel and show how an iterative maximum likelihood approach yields an
approximation of the mean value.

In the second paper, we utilize the simulation scheme developed in the first paper
to derive a simulation scheme on Lie groups and homogeneous spaces. An iterative
maximum likelihood procedure applied to the approximated transition density yields
an estimate of the unknown underlying metric on the Lie group and homogeneous
space. Moreover, we obtain anisotropic distributions on homogeneous spaces, arising
from non-invariant metrics on the total space.

In the third and last paper of the thesis, we consider bridge simulations on Rie-
mannian product manifolds. Given a set of data points on a manifold, we estimate
the diffusion mean by simulating a single diffusion bridge on the product manifold
conditioned on the diagonal. We verify experimentally the computational efficiency
of the forward sampled diffusion mean estimate compared to the Fréchet mean on
the space of Landmarks.
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Resumé

I løbet af de sidste to årtier er simulering af betingede diffusionsprocesser blevet
undersøgt aktivt, mens området for geometrisk statistik er opstået på grund af det
voksende behov for håndtering af ikke-lineære data inden for områder som robotik,
biologi og medicinsk billedanalyse. Simulering af betinget diffusionsprocesser er et
udfordrende statistisk problem, da analytisk kendte udtryk for overgangstæthederne
for den ønskede fordeling ofte er utilgængelige. Meget af den eksisterende litteratur
giver metoder til at simulere betingede diffusionsprocesser i et ikke-geometrisk
miljø, og skæringspunktet mellem disse to felter er relativt uudforsket. Denne
afhandling er viet til at studere simuleringen af guidede broprocesser på Riemannske-
mangfoldigheder, Lie-grupper og homogene rum og deres anvendelser.

Vi foreslår en simpel metode til simulering af betingede processer på forskellige ikke-
lineære rum og viser dens anvendelse på sandsynlighedsinferens for diffusionsprocesser
i forskellige geometriske kontekster.

I afhandlingens første papir præsenterer vi et brosimuleringsskema på rummet
bestående af ortonormale basisvektorer over Riemannske-mangfoldigheder. Vi
udleder et udtryk for overgangstæthederne analytisk, og vi opnår tilnærmelser
af overgangstæthederne på specifikke mangfoldigheder ved hjælp af Monte Carlo-
teknikker. Især for den todimensionelle sfære sammenligner vi tilnærmelsen med den
trunkerede eksakte varmekerne og viser, hvordan en iterativ maksimum likelihood
tilgang giver en tilnærmelse af middelværdien.

I det andet papir bruger vi simuleringsskemaet udviklet i det første papir til at
udlede et simuleringsskema på Lie-grupper og homogene rum. En iterativ procedure
for maksimum likelihood anvendt på den approksimerede overgangstæthed giver
et estimat af den ukendte underliggende metrik på Lie-gruppen og det homogene
rum. Desuden opnår vi anisotrope fordelinger på homogene rum, der stammer fra
ikke-invariante metrikker på det samlede rum.

I specialets tredje og sidste artikel behandler vi brosimuleringer på Riemannske
produktmangfoldigheder. Givet et sæt datapunkter på en mangfoldighed estimerer
vi diffusionsgennemsnittet ved at simulere en enkelt diffusionsbro på produktmang-
foldigheden betinget på diagonalen. Vi verificerer eksperimentelt den beregningsmæs-
sige effektivitet af det fremadsamplede diffusionsmiddelestimat sammenlignet med
Fréchet-gennemsnittet på landmark rummet.





v

Acknowledgements

This Ph.D. would not have been possible had it not been for CSGB, the Centre
for Stochastic Geometry and Advanced Bioimaging, funded by a grant from
the Villum foundation. Many colleagues from CSGB I am proud to call my
friends today. I want to especially thank Mads for his constant encouragement.
Thank you, Anton, Aasa, and Tom. I would not have known of the existence
of the image section without you guys.

I want to thank all my colleagues in the Image section. It has always been a
pleasure to come to work. A special thanks go to my office mates Line, Pernille,
and Lennard. I always enjoyed discussing ideas with you guys. Mainly, I want
to thank Line for welcoming me to the group. Unfortunately, we only shared
a few months together, but those months were some of the best. Lennard,
thank you for always being available.

At last, I would like to thank all of my friends, family, and my girlfriend, for
their understanding and support. I am looking forward to seeing you a lot
more in the future. And by that, I mean outside of the office, Faezeh.





vii

List of Publications

The following list of publications and manuscripts presents the work conducted

over the last three years during my enrollment as a PhD. student.

Chapter 2 Mathias Højgaard Jensen, Stefan Sommer. “Simulation of Conditioned
Semimartingales on Riemannian Manifolds” arXiv:2105.13190, (2022).

Chapter 3 Mathias Højgaard Jensen, Lennard Hilgendorf, Sarang Joshi, Stefan
Sommer. “Bridge Simulation and Metric Estimation on Lie Groups and
Homogeneous Spaces” arXiv:2106.03431, (2022).

Chapter 4 Mathias Højgaard Jensen, Stefan Sommer. “Diffusion Mean Estimation
on the Diagonal of Product Manifolds” Algorithms, 2022, Vol.15 (3),
p.92.

Appendix A Mathias Højgaard Jensen, Anton Mallasto, Stefan Sommer. “Simulation
of Conditioned Diffusions on the Flat Torus” Geometric Science of
Information (GSI) (2019).

Appendix B Mathias Højgaard Jensen, Sarang Joshi, Stefan Sommer. “Bridge Sim-
ulation and Metric Estimation on Lie Groups” Geometric Science of
Information (GSI) (2021).





ix

Contents

Abstract i

Resumé iii

Acknowledgements v

List of Publications vi

1 Introduction and Background 1
1.1 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Why Bridge Processes? . . . . . . . . . . . . . . . . . . 3
1.2.2 The Geometric Challenges . . . . . . . . . . . . . . . . 3
1.2.3 Recent Advances in Geometric Bridge Simulation . . . 5

1.3 Geometric Statistics . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Riemannian Geometry . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Riemannian Manifolds . . . . . . . . . . . . . . . . . . 7
1.4.2 Connection . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3 Exponential Map . . . . . . . . . . . . . . . . . . . . . 8
1.4.4 Riemannian Distance Function . . . . . . . . . . . . . 9
1.4.5 Lie Groups and Homogeneous Spaces . . . . . . . . . . 9
1.4.6 Frame Bundle Geometry and Horizontal Lift . . . . . . 10

1.5 Stochastic Differential Equations . . . . . . . . . . . . . . . . 11
1.5.1 Filtered Probability Space . . . . . . . . . . . . . . . . 11
1.5.2 Semimartingales . . . . . . . . . . . . . . . . . . . . . . 12
1.5.3 Stochastic Integrals and Differential Equations . . . . . 12

1.6 Stochastic Development . . . . . . . . . . . . . . . . . . . . . 13
1.6.1 Brownian Motion on Manifolds . . . . . . . . . . . . . 13
1.6.2 Horizontal Semimartingales . . . . . . . . . . . . . . . 15

1.7 Diffusion Bridges . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7.1 Guiding in Euclidean Spaces . . . . . . . . . . . . . . . 16
1.7.2 Guiding on Manifolds . . . . . . . . . . . . . . . . . . . 17

2 Simulation of Conditioned Semimartingales on Riemannian
Manifolds 19

3 Bridge Simulation and Metric Estimation on Lie Groups and
Homogeneous Spaces 49

4 Mean Estimation on the Diagonal of Product Manifolds 73

5 Summary and Future Work 91



x

A Simulation of Conditioned Diffusions on the Flat Torus 95

B Bridge Simulation and Metric Estimation on Lie Groups 107

Bibliography 117



1

Chapter 1

Introduction and Background

This dissertation comprises the work conducted over the last three years
during the author’s enrollment as a Ph.D. student at the Department of
Computer Science at the University of Copenhagen. The dissertation contains
the following manuscripts

• Mathias Højgaard Jensen, Stefan Sommer. “Simulation of Conditioned
Semimartingales on Riemannian Manifolds” arXiv:2105.13190, (2022).

• Mathias Højgaard Jensen, Lennard Hilgendorf, Sarang Joshi, Stefan
Sommer. “Bridge Simulation and Metric Estimation on Lie Groups and
Homogeneous Spaces” arXiv:2106.03431, (2022).

• Mathias Højgaard Jensen, Stefan Sommer. “Diffusion Mean Estimation
on the Diagonal of Product Manifolds” Algorithms, 2022, Vol.15 (3),
p.92.

presented in Chapters 2-4. The two former manuscripts are available as
preprints on ArXiv, while the latter article has been published in the special
issue Stochastic Algorithms and Their Applications of the open access journal
Algorithms. Besides the manuscripts appearing in Chapters 2-4, the author
authored two papers accepted at the international conference on Geometric
Science of Information (GSI) and published in the conference proceedings of
GSI’19 and GSI’21, respectively.

• Mathias Højgaard Jensen, Anton Mallasto, and Stefan Sommer, “Simu-
lation of Conditioned Diffusions on the Flat Torus”, Geometric Science
of Information (GSI), 2019,

• Mathias Højgaard Jensen, Sarang Joshi, and Stefan Sommer, “Bridge
Simulation and Metric Estimation on Lie Groups”, Geometric Science
of Information (GSI), 2021,
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The two published conference articles were presented at the GSI’19 and
GSI’21 conferences, respectively. The content of “Simulation of Conditioned
Diffusions on the Flat Torus” appears implicit in the manuscript of Chapter 2.
In contrast, the content of “Bridge Simulation and Metric Estimation on Lie
Groups” explicitly features in the manuscript of Chapter 3. For these reasons,
the dissertation omits the two articles, however, the articles can be found in
Appendix A and B.

The Ph.D. project aims to develop statistical methodologies to infer the distri-
butional properties of observations in geometrical spaces such as Riemannian
manifolds, Lie groups, and quotient spaces. The following sections review the
mathematical background theory and methodology used in the manuscripts.

1.1 Structure of Thesis
This thesis is structured as follows.

Chapter 1 briefly introduces the different fields appearing throughout the
thesis. Section 1.2 describes the problem formulation and recent advances
within bridge simulation on non-linear spaces. In Section 1.3, we briefly
introduce geometric statistics and establish the role of bridge simulation
within this field. Section 1.4 gives a preliminary introduction to the theory of
Riemannian geometry. In Section 1.5, we briefly introduce stochastic processes
and the theory of stochastic calculus, including definitions of semimartingales,
Itô integrals, stochastic differential equations, and Stratonovich integrals.
Section 1.6 presents stochastic differential equations on manifolds by using
the stochastic development approach. Lastly, we introduce bridge processes
through guiding in Euclidean spaces and on manifolds in Section 1.7.

Chapter 2-4 contains the central part of the thesis. Each chapter is a separate
paper and can therefore be read independently of one another. As the topics
in each chapter are very related, it makes the chapters very repetitive.

The last chapter summarizes the thesis and provides an overview of further
investigations in future works.

1.2 Problem Formulation
This thesis is devoted to studying conditioned diffusion processes in the
context of statistical inference for continuous-time stochastic processes in the
presence of curvature. While the statistical inference for diffusion processes has
attracted much attention over the last two decades, the presence of curvature
is a new and relatively unexplored area in this field.
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1.2.1 Why Bridge Processes?

Diffusion bridge simulation lies at the heart of statistical inference for discretely
observed diffusion processes. It plays a fundamental role in likelihood and
Bayesian inference for diffusion processes. As the name suggests, diffusion
bridges link points together, thereby creating a bridge between them. The
diffusion bridges serve as the missing observations of continuous diffusion
processes. Given discrete observations of a continuous diffusion process, the
statistical inference problem can be regarded as a missing data problem. The
missing data are the continuous paths between the observations. Had the
entire paths of the diffusion process been observed, Girsanov’s formula would
have provided the likelihood functions. Therefore, the theory of conditioned
diffusion processes naturally appears in the context of statistical inference.

Simulating conditioned diffusion processes is a challenging task, even in
Euclidean spaces. Conditioning the continuous diffusion process on arriving
at a pre-specified point at a pre-determined time means conditioning the
process on a set of probability zero. Hence, giving a precise mathematical
definition to this problem is challenging, as the usual definition of conditioned
probabilities, Bayes’ formula, does not apply. To emphasize the challenges
in simulating conditioned diffusion processes, the transition density related
to a diffusion process, which describes the probability mass and its change in
time and space, is often intractable. The intractable transition densities make
simulation from the desired conditioned diffusion troublesome. Proposing
methods for simulating conditioned diffusion processes has been one of the
main concerns in the field during the last two decades and is still an active
field. Not only does the proposed method need to converge to the desired
point, but the method also needs to converge at the right speed and have a
likelihood that is easy to handle.

1.2.2 The Geometric Challenges

The presence of curvature introduces various new challenges. For one, nu-
merical approximations of stochastic differential equations need to take the
curvature into account. Simulating stochastic differential equations on smooth
non-linear spaces like smooth manifolds can be done in various ways. For any
smooth curve on a smooth manifold, we expect that its derivative is tangential
to the manifold along its path. If this is not the case, the curve will escape to
the ambient space. The same holds for a manifold valued diffusion. Integrating
vector fields along the path with respect to Euclidean valued diffusion pro-
cesses should produce a manifold-valued diffusion process. That is indeed true.
However, the classical formulation describes stochastic differential equations
in terms of Itô integrals. Itô integrals are integrals where the integrator are
stochastic processes. Such integrals do not obey the fundamental theorem
of calculus. This fact follows from the limiting sum approximation of the
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integrals, where the integrand evaluates at the left-most endpoint. As such,
Itô integrals are not well suited to handle stochastic differential equations in a
manifold setting.

The Stratonovich integral is a variation of the Itô integral, designed such
that it follows the fundamental theorem of calculus. The advantage of the
Stratonovich integral is that it transforms consistently with respect to diffeo-
morphisms. Smooth manifolds can be parameterized using local coordinate
charts, which map local neighborhoods of the manifold to open subsets of
Euclidean space. Since diffeomorphisms patch together such local coordinate
charts, the Stratonovich integral is the natural candidate for introducing
stochastic differential equations on smooth manifolds. If a single chart can
cover the manifold, the Itô integrals can be used as no local patching is
required. However, this is rarely the case. In the classical Euclidean sense,
describing stochastic differential equations in coordinate charts would require
extensive use of local patching between charts.

Embedding the manifold in a high-dimensional Euclidean space offers an
alternative approach to simulating stochastic processes on manifolds. Whit-
ney’s embedding theorem ensures that embedding smooth manifolds is always
possible. Simulating a stochastic process in the Euclidean embedding space
and projecting the infinitesimal increments of the Euclidean process orthogo-
nally onto the tangent space results in a stochastic process on the manifold.
This method depends on the embedding, and different embeddings result in
different projections.

A third option exists, which depends only on the chosen starting frame for
the tangent space. A frame at a point on the manifold is an ordered basis for
the tangent space at that point. The method is known as the Eells-Elworthy-
Malliavin construction, or in colloquial terms as "rolling without slipping,"
and introduces stochastic differential equations in the frame bundle. The
Eells-Elworthy-Malliavin construction provides a stochastic process in the
frame bundle, which carries a frame along its path in the manifold. The
construction is intrinsic and gives a one-to-one map between Euclidean and
manifold-valued processes.

Under suitable conditions on the drift and diffusion coefficient, e.g., Lipschitz
continuity and bounded growth, Euclidean valued process has long-term
existence. Introducing curvature does not ensure the long-term existence of
even simple processes like the Brownian motion. In particular, the Brownian
motion on a manifold may explode in finite time, which means that the process
will escape all compact subsets of the manifold.

Compact manifolds ensure the non-explosion of a Brownian motion. However,
compact manifolds fail to be diffeomorphic to non-compact manifolds, as a
topological consequence of the diffeomorphism. They will only be locally
diffeomorphic to a subset of the tangent space. The maximal subset of the
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manifold diffeomorphic to a subset of the tangent space covers the entire
manifold except for a closed subset. This subset is called the cut locus. Any
point of a compact manifold has a cut locus. The distance function, measuring
the distance from a fixed point, is smooth on the subset away from the fixed
point and its cut locus. Thus, one can apply Itô’s fundamental theorem of
stochastic calculus to this function, thereby obtaining the radial process’s
one-dimensional stochastic differential equation. It is possible to extend the
stochastic differential equation for the radial process to the entire manifold
for relatively general stochastic processes on a manifold [5,12,31,32,48,49].
However, by doing so on a compact manifold, one introduces two new processes:
the local time at zero and the geometric local time, with support at the fixed
point and on its cut locus, respectively.

A characteristic property of bridge processes is that they converge almost
surely to the endpoint. Showing the convergence typically requires a stochastic
differential equation for the radial process of the proposed bridge. Therefore,
the two local time processes need to be dealt with on any compact manifold.

1.2.3 Recent Advances in Geometric Bridge Simulation

From the viewpoint of statistical inference for diffusion processes, conditioned
diffusion processes on manifolds are a little-studied field. In the context of
landmark manifolds, diffusion bridge simulation were studied by Arnaudon et
al. [1, 2, 4] and Sommer et al. [44], while Bui et al. [9] studied diffusion bridge
simulation on the space of symmetric positive definite matrices. The methods
in [1, 2, 9, 44] build on the guiding terms introduced by Delyon and Hu [13],
while [4] use guided proposal as introduced by Schauer, van der Meulen, and
Zanten [42] for inexact matching.

1.3 Geometric Statistics
Geometric statistics is the sub-field of statistics concerning the analyzes of
geometric data. Any data residing in a space without a vector space structure
but with a geometric structure are classified as geometric data. Commonly,
geometric data have no vector space structure, and thus traditional statistical
methodologies do not apply. Examples of geometric data such as diffusion
tensor images or shapes of organs are common within the medical image
community. The reader can find a detailed introduction to the field of geometric
statistics in Pennec et al. [37].

The lack of vector space structure entails that operations such as addition
and multiplication are not defined. In geometric statistics, these operations
are generalized to non-linear spaces, for example, by exploiting the vector
space structure of tangent spaces related to smooth manifolds. The addition
operation in Euclidean space y = x+v has the manifold equivalent y = Expx(v),
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and subtraction v = x − y becomes y = Logx(y), where Expx and Logx are
maps between a manifold and its tangent space at a point x (more details are
presented in Section 1.4).

The most fundamental statistic is arguably the mean. In Euclidean space,
the mean point has various defining properties: it is the unique point where
the sum of the residuals equals zero. It is the unique point that minimizes
the variance. Moreover, it is the maximum likelihood estimate of the mean
given i.i.d. observations. In contrast, on manifolds, these defining properties
generally lead to different points.

Fréchet generalized the Euclidean mean to metric space, exploiting the Eu-
clidean mean’s defining property as the unique point that minimizes the sum
of squared distances [19]. For any random variable X on a metric space (E, d),
the mean set defined by

µ = argmin
p∈E

E
[
d(p,X)2

]
, (1.1)

is called the Fréchet mean or Fréchet mean set. The estimator of the Fréchet
mean is then naturally given by

µ̂ = argmin
p∈E

1

n

n∑

i=1

d(p, xi)
2, (1.2)

for observations x1, . . . , xn. In general, the Fréchet mean is not unique. A
simple example of a non-unique Fréchet mean is the case of the sphere S2

when the anti-podal point of the mean Cut(µ) has positive point mass. In
such cases, the Fréchet mean is a circle.

The diffusion-t-mean (diffusion mean for short) [22,24] offers an alternative to
the Fréchet mean. The diffusion mean is defined as the maximum likelihood
estimate

µt = argmin
y∈M

E [− log pt(X, y)] , (1.3)

for t > 0, where p denotes the transition density of a diffusion process. The
additional time parameter has the interpretation as the variance of the diffusion
mean, and the diffusion-t-mean is the most likely origin of a Brownian motion
at time t. The relation between the Fréchet mean and the diffusion mean is
clear from the asymptotic relation limt↓0 2t log pt(x, y) = −d(x, y)2, whenever
x and y are not in each other’s cut locus [25].

The maximum likelihood definition of the diffusion mean requires likelihood
inference, unlike the Fréchet mean. Given discrete observations, the likelihood
inference problem can be regarded as a missing data problem. Therefore, a
natural assumption throughout the thesis is that the geometric data considered
arises as missing observations of observed diffusion process endpoints. Given
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their fundamental role in likelihood and Bayesian inference for missing data
of diffusion processes, it seems natural that simulation of diffusion bridge pro-
cesses should play a significant role when inferring properties of the underlying
probability distribution.

1.4 Riemannian Geometry
This section is primarily based on [10,33, 37], but the material presented here
can be found in most textbooks on differential geometry.

1.4.1 Riemannian Manifolds

A Riemannian manifold (M, g) is a pair consisting of a d-dimensional smooth
manifold M endowed with a Riemannian metric gp : TpM × TpM → R, pro-
viding an inner product on each tangent space TpM that varies smoothly over
points p ∈M . A chart (U, ϕ) around p ∈M is a local neighborhood around
p where ϕ : U ⊆M → Rd defines a homeomorphism. A countable collection
of charts {(Uα, ϕα)}α, such that the neighborhoods provides a cover of M ,
∪αUα =M , and the compositions ϕα ◦ϕ−1

β on non-empty overlaps Uα∩Uβ ̸= ∅
are diffeomorphisms, is called an atlas. The atlas parametrizes the manifold
and thus M is said to be locally Euclidean. In particular, any point x ∈M
in a coordinate chart (U, ϕ) can be described in Euclidean coordinates, i.e.,
ϕ(x) = (x1, . . . , xd) ∈ Rd. Throughout, there will be made no distinction
between between (U, ψ), U , and ψ when referring to a chart and the distinction
will be clear from the context.

1.4.2 Connection

Let Γ(TM) denote the set of smooth vector fields on M . A manifold can be
endowed with an affine connection ∇ : Γ(TM) × Γ(TM) → Γ(TM) which,
loosely speaking, provides a way to differentiate vector fields along curves, see
e.g. do Carmo [10, Chapter 2]. If X and Y are two smooth vector fields on
M , then (X, Y )

∇→ ∇XY , and the connection moreover satisfies

a) ∇fX+gYZ = f∇XZ + g∇YZ.

b) ∇X(Y + Z) = ∇XY +∇XZ.

c) ∇X(fY ) = f∇XY +X(f)Y ,

where X, Y, Z ∈ Γ(TM) and f, g ∈ C∞(M). In a local coordinate chart
(x1, . . . , xd), we can write a vector field, using Einstein summation, as X =
xi∂i :=

∑
i x

i∂i, where the ∂i = ∂/∂xi constitute a basis for the tangent space
at x. If Y = yi∂i is another vector field, then

∇XY = Xbj∂j + aibj∇∂i∂j =
(
Xbk + aibjΓk

ij

)
∂k,
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where Γk
ij∂k := ∇∂i∂j are the Christoffel symbols of the connection ∇, with

respect to the chosen chart. Let γ : (−ε, ε) → M be a smooth curve on M ,
and let Y = Y (γ(t)) be a vector field along γ. The covariant derivative of Y
along γ(t) is

DY

dt
= ∇γ̇(t)Y =

(
∂γ̇y

k + yiγ̇jΓij

)
∂k,

where γ̇(t) = dγ/dt is the time derivative of the curve. The vector field Y is
said to be parallel along γ if ∇γ̇(t)Y = 0. A geodesic is a curve whose tangent
vector remains parellel to itself, i.e., ∇γ̇(t)γ̇(t) = 0. From the above, we then
see that a curve γ is a geodesic if it satisfies the second order equation

γ̈k + γ̇iγ̇jΓk
ij = 0. (1.4)

Geodesic curves are locally length minimizing curves. They are the manifold
equivalent of straight lines. Indeed, any curve satisfying the equation above
have zero acceleration.

In any chart around x ∈ M , we obtain coordinate basis vectors for the
tangent space given by ∂1, . . . , ∂d. With these basis vectors at hand, the
matrix coefficients of the Riemannian metric can be evaluated by considering
gij(x) = gx(∂i, ∂j) = ⟨∂i, ∂j⟩. More generally, the Riemannian metric tensor
Gx can be defined as gx(v, w) = vTGxw, for every v, w ∈ TxM , and we can
define a norm at each tangent space TxM by

∥v∥2x = vTGxv, (1.5)

identifying each tangent space with a Euclidean space. For any manifold, there
are many connections, but when endowing the manifold with a specific metric,
one choice of connection seems more natural. The Levi-Civita connection
is the unique connection that preserves the metric and is torsion-free. The
Levi-Civita connection is the natural choice in many aspects of Riemannian
geometry. Note that there is a whole family of natural connections in the
particular case of Lie groups [38].

1.4.3 Exponential Map

One particular choice of chart typically used within geometric statistics is the
exponential normal chart related to the exponential map Expp : TpM →M ,
defined by Expp(v) = γ1(v), where γ is a geodesic. Therefore, the exponential
map is intimately related to the geodesic equation (1.4). Locally the exponen-
tial map is a diffeomorphism onto its image. For every p ∈M , there exists a
neighborhood U ⊆M of p such that Expp defines a diffeomorphism between
A ⊂ TpM and U = Expp(A). The largest such U is the open set M\Cut(p),
where the cut locus of p Cut(p) consists of points where either geodesics from
p are no longer unique or points where the first point where the derivative
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of the exponential map fails to be invertible. The latter points are called
the conjugate part of the cut locus. The invertibility of the exponential map
implies the existence of an inverse map often referred to as the logarithmic map
Logp : M\Cut(p) → TpM . The logarithmic map sends points in M\Cut(p)
to unique tangent vectors.

1.4.4 Riemannian Distance Function

As the Riemannian metric gives a notion of distances of tangent vectors, the
logarithm map allows for a definition of the Riemannian distance function
given as the norm (with respect to g) of the logarithmic map, i.e.,

d(p, q)2 = ∥Logp(q)∥2p. (1.6)

The defintion given is symmetric, i.e., d(p, q) = d(q, p), but the definition in
(1.6) depends on the logarithm map at p and the Riemannian metric at p.
The Riemannian distance in (1.6) fixes the point p. To compute the distance
between two new points requires computing the logarithm map at one of
those points and using the inner product at that tangent space. It is therefore
natural to think of (1.6) as the distance from p. This is called the radial
distance from p.

In the exponential normal chart centered at p, the point q ∈M\Cut(p) can
be described using normal coordinates (x1, . . . , xd) ∈ Rd as q = Expp(x

iei),
where (e1, . . . , ed) is an orthonormal basis of TpM . The radial distance function
rp(q) := d(p, q) in normal coordinates then have the simple form

rp(q) =

(
d∑

i=1

(
xi
)2
)1/2

. (1.7)

The corresponding unit radial vector field is given as ∇rp(q) =
(

∂
∂rp

)
q
=

xi

rp(q)
(∂i)q. Here we use the Einstein summation convention - a convention that

will appear throughout the dissertation.

The negative radial vector field −(∂/∂rp)q at q is the unit length vector
pointing in the direction of p. A stochastic process with the negative radial
vector field as its drift will be pushed in the direction of p. It will therefore
serve as the manifold equivalent of the guiding term used in Delyon and
Hu [13] (see Section1.7). The radial process and its derivative will be the focal
term in our guided bridges on manifolds.

1.4.5 Lie Groups and Homogeneous Spaces

In Chapter 2, we study bridge processes on Lie groups and homogeneous
spaces. This section briefly reviews some elementary facts about Lie groups.



10 Chapter 1. Introduction and Background

A more extensive, but compact, introduction is present in Chapter 2. Lie
groups are a class of manifolds endowed with a group structure. For a Lie
group G, the multiplication operations G × G → G, (x, y) µ7→ xy and the
inverse operation G → G, x 7→ x−1 are smooth maps. For any x ∈ G, the
left-multiplication map Lxy defined by y 7→ µ(x, y) is a diffeomorphism from
G to itself. The pushforward map of Lx is a map between tangent bundles TG.
In particular, the pushforward map of Lx at some point y ∈ G determines a
map (dLx)y : TyG → TxyG. The pushforward of the left-multiplication map
determines a class of vector fields on G called left-invariant vector fields. A
vector field V is left-invariant if (dLx)yV (y) = V (xy). The set of left-invariant
vector fields are fundamental in Lie group theory. Obviously, a Lie group is a
group. Hence there exists an identity element e ∈ G. The tangent space at
the identity TeG equipped with the operation (x, y) 7→ [x, y] = xy − yx, for
x, y ∈ TeG (Lie bracket) is called the Lie algebra of G. The set of left-invariant
vector fields is isomorphic to the tangent space at the identity. As such,
every Lie group is parallelizable, i.e., for any basis (v1, . . . , vd) of TeG the set
(d(Lx)v1, . . . , d(Lx)vd) is a basis for the tangent space TxG, for any x ∈ G.
Therefore, a vector field on G can be specified from a tangent vector in the
Lie algebra using the left-pushforward map.

We denote by ⟨·, ·⟩ a Riemannian metric on G. A Riemannian metric on
a Lie group is said to be left-invariant (resp. right-invariant) if ⟨u, v⟩y =
⟨(dLx)yu, (dLx)yv⟩Lx(y)

(resp. ⟨u, v⟩y = ⟨(dLx)yu, (dLx)yv⟩Lx(y)
), for every

u, v ∈ TyG, i.e., the left-(resp. right-)multiplication maps are isometries, for
every x ∈ G. If the metric is both right- and left-invariant, then the metric is
called bi-invariant.

A one-parameter subgroup of G is a continuous homomorphism γ : (R,+) → G.
The Lie group exponential map exp: g → G is defined as exp(v) = γv(1), for
v ∈ G, where γv is the unique one-parameter subgroup of G whose tangent
vector at e is v.

A homogeneous space is a specific type of quotient space where the Lie group
acts transitively on the homogeneous space. The homogeneous space is also
referred to as the base or bottom space and the Lie group as the top or
total space. All homogeneous spaces can be described as a quotient space
G/H, where H is a closed subgroup of the Lie group G. Familiar Riemannian
manifolds arise as homogeneous space. For example, the sphere S2 can be
regarded as the quotient manifold SO(3)/SO(2), where SO(n) denotes the
set of orthogonal rotations in Rn. Moreover, the torus arises as the quotient
space T2 = R2/Z2.

1.4.6 Frame Bundle Geometry and Horizontal Lift

Let M be a d-dimensional manifold and p ∈ M . A frame at p is an R-
linear isomorphism u : Rn → TpM mapping basis vectors to basis vectors.
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By FMp we shall denote the space of all frames at p. The disjoint union
FM :=

⋃
p∈M FMp is called the frame bundle of which elements are pairs

(p, u). The frame bundle is a manifold of dimension d(d+ 1) and it associates
a natural projection map π : FM →M defined by π(p, u) = p. Throughout,
we simply refer to elements of FM as u. A connection on FM corresponds to
a smooth choice of horizontal subspace HuFM of the tangent space TuFM ,
for each u ∈ FM , such that TuFM = HuFM ⊕ VuFM . The projection π
induces an isomorphism π∗ : HuFM → TπuM from which it follows for any
tangent vector X ∈ TpM and frame u at p there exists a unique horizontal
vector X∗ ∈ HuFM such that π∗X∗ = p. The horizontal tangent vector X∗ is
called the horizontal lift of X at u. A curve ut in FM is said to be horizontal
if the vector field ute, for some e ∈ Rd, is parallel along the curve π(ut). For
any u ∈ FM any basis (e1, . . . , ed) of R, the vectors u(ei), i = 1, . . . , d define a
basis of Tπ(u)M resulting in basis for HuFM given by Hi(u) := (π∗(u(ei)))

−1.
The collection H1, . . . , Hd provides fundamental horizontal vector fields on the
horizontal part of the frame bundle. Endowing M with a Riemannian metric,
we may restrict attention to the set of frames which are orthonormal. Hence,
there exists a sub-bundle of the frame bundle consisting of orthonormal frames
called the orthonormal frame bundle OM . In this case, elements in the fiber
of π : OM →M , π−1(p), differs only by a rotation.

1.5 Stochastic Differential Equations
In probability theory, one always consider a probility space (Ω,F, P ), which
consists of a sample space Ω, a sigma-algebra F defined on Ω, and a probability
measure P : Ω → [0, 1]. A real-valued random variable defined on (Ω,F, P ) is
a measurable map X : Ω → R. A countable collection of random variables,
(Xn)n∈N, is called a sequence of random variables. If we change the indexation
from at countable set, say N, to an uncountable set, say R≥0, the resulting
family, X := (Xt)t≥0, is called a stochastic process. We will often simply refer
to Xt as the stochastic process.

1.5.1 Filtered Probability Space

Throughout this dissertation, we assume that the filtered probability space
(Ω,F, (Ft)t≥0, P ) satisfies the usual conditions, i.e., the probability space
(Ω,F, P ) is equipped with a filtration, consisting of a sequence of increasing
sub-σ-fields contained in F, where

(a) The probability space (Ω,F, P ) is a complete measure space;

(b) The filtration is right-continuous, Ft = Ft+ := ∩s>tFs, for all t ≥ 0;

(c) For t ≥ 0, Ft contains all the P -null sets of F.
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The stochastic process X is said to be adapted to the filtration (Ft)t≥0 if the
map Xt : Ω → R is Ft measurable for every t ≥ 0. The process is said to be
continuous if each of its sample paths Xt(ω) = ωt are continuous. We will
only be considering continuous processes throughout this dissertation.

1.5.2 Semimartingales

A martingale is an adapted stochastic process, X, which is integrable, for
each t ≥ 0, and satisfies the martingale property Xs = E[Xt|Fs]. The class of
martingales can be generalized to the class of local-martingales. A process
X is a local-martingale if there exists a sequence of non-decreasing stopping
times, i.e., a sequence of random times τn : Ω → R≥0 such that {τ ≤ t} is
Ft-measurable, for which the stopped process Xτn = (Xt∧τn)t≥0 is a martingale,
for each n. Here t ∧ τ = min(t, τ). The total variation of f on [0, t] is defined
as

|ft| = sup
n∑

k=1

∣∣ftk − ftk−1

∣∣,

where the supremum is taken over all finite partitions 0 = t0 < t1 < ... < tn = t
of the interval [0, t]. f has bounded variation on [0, t] if |ft| <∞. A stochastic
process A has finite variation if every path ω 7→ At(ω) has bounded variation
almost surely on all compact subintervals of [0,∞). A semimartingale is a
stochastic process that can be decomposed into a sum X = X0+N +A, where
X0 is an F0 measurable random variable, N a local martingale with N0 = 0
and A a finite variation process with A0 = 0.

1.5.3 Stochastic Integrals and Differential Equations

Semimartingales typically arise as solutions to stochastic differential equations
of the form

dXj
t = bj(t,Xt)dt+ σj

i (t,Xt)dB
i
t, X0 = x0, (1.8)

where b and σ are suitably integrable maps. Under suitable integrability
conditions, the first term on the right-hand side (rhs) is a finite variation
process, while the latter term is a local-martingale. The second term on the
rhs of (1.8) is an Itô integral. For a semimartingale B, the Itô integral is
defined as

Y j
t =

∫ t

0

σj
i (t,Xt)dB

i
t,

where σ is an adapted process such that
∫ t

0
a(s,Xs)d[B]s <∞, almost surely,

for all t ≥ 0, where a = σσT and [B]t is a finite variation process. The Itô
integral may be expressed in terms of convergence in probability of Riemann
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sums
Kn∑

k=1

σj
i (tk−1, Xtk−1

)(X i
tk
−X i

tk−1
)

P→ Y j
t ,

where 0 = t0 < t1 < · · · < tKn = t (see e.g. [30] or [39]). Since the Itô
integral does not satisfy the fundamental theorem of calculus, it makes the Itô
integral inappropriate to use in non-linear spaces. The Stratonovich integral
is a stochastic integral that satisfies the fundamental theorem of calculus. Let
X and Y be two semimartingales. The Stratonovich integral is defined as

∫ t

0

Xs ◦ dYs =
∫ t

0

XsdYs +
1

2
[X, Y ]t, t ≥ 0,

where [X, Y ]t is the quadratic co-variation defined as the limit in probability

Kn∑

i=0

(Xti+1
−Xti)(Yti+1

− Yti)
P→ [X, Y ]t.

The Stratonovich integral satisfies the fundamental theorem of calculus, which
makes the Stratonovich integral the preferred choice when performing stochas-
tic integration on non-linear spaces.

1.6 Stochastic Development
The material presented in this section can be found in textbooks such as [18,26].

1.6.1 Brownian Motion on Manifolds

The Brownian motion is the most well-known and studied stochastic process.
The Brownian motion relates to the heat equation in a fundamental way

(
∂

∂t
−∆

)
f = 0, (1.9)

where ∆ denotes the usual Laplace operator. The solution f to the heat
equation (1.9) is the transition density of a Brownian motion. A natural
generalization of a Brownian motion to smooth manifolds then arises as to
the process with transition density solving the heat equation on M

(
∂

∂t
−∆M

)
f = 0, (1.10)

where ∆M denotes the Laplace-Beltrami operator - the generalization of the
Laplace operator to M . It turns out that a natural geometric definition of
the Laplace-Beltrami is as the divergence of the gradient ∆M = div∇f . From
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this definition, one can deduce that the Laplace-Beltrami operator coincides
with the trace of the Hessian tensor, which is the case for the usual Laplace
operator. In a local coordinate chart, the Laplace-Beltrami can be expressed
as

∆Mf = det(g)−1/2(∂jg
ji det(g)1/2∂i)f, (1.11)

where det(g) denotes the determinant of the Riemannian metric tensor and
g−1 = {gij}ij denotes the inverse metric tensor. A simple derivation shows
that (1.11) becomes

∆Mf = gij
∂2

∂xi∂xj
f + gikΓj

ik

∂

∂xj
f, (1.12)

where Γk
ij denotes the Christoffel symbols of the connection. The Brownian

motion on M is a diffusion process with generator 1
2
∆M . Locally, the Brownian

motion satisfies the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt, (1.13)

where σ is the metric square root of g−1, bk = −1
2
gijΓk

ij, and W is a d-
dimensional Euclidean Brownian motion. The dependency on the chosen chart
is clear from the drift and diffusion coefficient in (1.13). From (1.12), we see
that locally ∆M is a Hörmander type second order elliptic operator of the
form

L =
d∑

i=1

V 2
i + V0, (1.14)

for smooth vector fields Vi, i = 0, . . . , d. However, (1.12) is not intrinsically
defined, and in general, it is not possible to define ∆M intrinsically in Hör-
mander form. Indeed, a global definition of a Brownian motion on M in this
way is only possible if a single chart can cover M .
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1.6.2 Horizontal Semimartingales

M
U0

Ut

Rd

Z0

φ

Zt

M

X0

Xt
XT

π

OM

Figure 1.1: The stochastic development con-
struction is defined by equation (1.15). The
construction takes an Rd-valued semimartin-
gale Zt which is mapped to a horizontal semi-
martingale Ut := φ(Zt). The horizontal semi-
martingale canonically maps to an M -valued
semimartingale. After fixing the initial frame
U0, the construction is one-to-one.

An equivalent definition of a
Brownian motion on M is a so-
lution to a stochastic differential
equation independent of charts.
This construction, due to Eells-
Elworthy-Malliavin [17], is known
as stochastic development. The
construction provides a one-to-
one correspondence between Eu-
clidean valued semimartingales
and M -valued semimartingales.
Given the horizontal vector fields
H1, . . . , Hd on FM and an Rd-
valued Brownian motion Z, the
solution U to the stochastic dif-
ferential equation

dUt = Hi(Ut) ◦ dZi
t , (1.15)

is a horizontal Brownian motion
in FM , where ◦ denotes integra-
tion in the Stratonovich sense. The construction is illustrated in Figure 1.1.
More generally, if Z is any Euclidean valued semimartingale, then U deter-
mines a horizontal semimartingale in FM . Using the canonical projection π,
the process Xt := π(Ut) defines an M -valued semimartingale. The solution to
(1.15) provides a stochastic parallel transport on M .

On the orthonormal frame bundle OM , there is a horizontal lift of the Laplace-
Beltrami operator to OM . This is sometimes denoted Bochner’s horizontal
Laplacian defined using the horizontal vector fields Hi, i = 1, . . . , Hd by

∆OM =
d∑

i=1

H2
i . (1.16)

From (1.16), the horizontal Laplacian is a Hörmander typer second-order
elliptic operator defined intrinsically. The horizontal Laplacian defines the
Brownian motion globally (up to its explosion time) on OM and hence on M .

1.7 Diffusion Bridges
In this section, we give a short introduction to the theory of diffusion bridge
processes. We start by introducing diffusion bridges in the Euclidean setting
before we describe certain bridges on manifolds.
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1.7.1 Guiding in Euclidean Spaces

A stochastic bridge process is designed to go from point a to point b at time
T > 0. The simplest bridge process is the standard Brownian bridge starting
at zero conditioned to return at time T > 0. Let W denote a Brownian motion.
The solution to the stochastic differential equation

dYt = − Yt
T − t

dt+ dWt, Y0 = 0, Yt =

∫ t

0

1− t

1− s
dWs, (1.17)

defines a standard Brownian bridge. The standard Brownian bridge can be
generalized to a Brownian bridge from a to b, by instead inserting Yt − b into
the numerator of the drift term above. The transition density of a Brownian
motion in R is given by

pt(x, y) =
1√
2πt

exp

{
−∥x− y∥2

2t

}
. (1.18)

From the transition density of a Brownian motion (1.18), equation (1.17) can
equivalently be written (as a Brownian bridge from a to b)

dYt = ∇y log pT−t(y, b)
∣∣
y=Yt

dt+ dWt, Y0 = a. (1.19)

We refer to the drift term in the equation above as the pulling or guiding term.
The added drift term pulls the process in the direction of the pinning point.
By Doob’s h-transform, (1.19) holds more generally for any diffusion process
Xt, which admit a transition density, in the sense that

dXt = bt(Xt)dt+ σt(Xt)dWt, X0 = a (1.20)
dYt = bt(Yt)dt+

(
σσT

)
t
(Yt)∇y log p(t, y;T, b)

∣∣
y=Yt

dt+ σt(Yt)dWt, Y0 = a,

(1.21)

where p(t, y;T, b) denotes the transition density of the underlying diffusion
process Xt. Simulation of diffusion bridges satisfying (1.20) becomes compli-
cated when the transition density is not explicitly available. The problem
of simulating diffusion bridges has created an active research field over the
last 15-20 years. More specifically, diffusion bridge simulation is the sub-field
of statistics concerned with statistical inference for diffusion processes. As
mentioned in [8], diffusion bridge simulation plays a fundamental role within
simulation-based likelihood inference, including Bayesian inference for, e.g.,
discretely sampled diffusion processes.

The missing data problem dates back to Pedersen [36]. Since then, various
methods have been developed to simulate diffusion bridges where the transition
density is intractable [7, 8, 15,20,35,40,42,50]. The seminal paper by Delyon
and Hu [13], a generalization of the method proposed by Clark [11], suggested
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exchanging the drift term containing the intractable transition density with
the tractable drift term in (1.19). The guiding term is easy to interpret and
implement. Using a coupling method, the authors in [8] proposed a simple
method to simulate conditioned diffusions going from point a to point b in
time T > 0. Instead of introducing a guided drift term, as described above,
the method relied on a forward process that started from a and backward
processes that started from b to intersect at a random time in [0, T ]. The
idea of coupling using forward and backward processes was further instigated
in [41, Section 4.5]. Here the transition density of the conditioned diffusion is
considered as a three-point

p(s, y, t, x; τ, z) =
p(s, y; τ, z)p(τ, z; t, x)

p(s, y; t, x)
. (1.22)

It was conjectured that a guiding term for this coupling method should be a
Delyon and Hu type guiding term, where the forward and backward processes
had guiding drift terms pulling them towards each other. The idea of backward
guiding was further developed in the context of geometric deep learning [43],
building on the idea of [48]. In Chapter 4 in this thesis, we explore in more
detail this backward guiding in the context of product manifolds and use the
method to obtain estimates of the diffusion mean.

1.7.2 Guiding on Manifolds

The Brownian bridge on a manifold can be defined straightforwardly using
Doob’s transform. If pt denotes the transition density of a Brownian motion on
M , then the Brownian bridge on M is the stochastic process with infinitesimal
generator 1

2
∆M+∇ log pT−t(·, v). Various properties of the Brownian bridge on

manifolds have been studied by Bismut [6], Hsu [27], Driver [14], Güneysu [21],
and many others. Similar to the Euclidean context, transition densities
on manifolds are often intractable. Known closed-form expressions of the
heat kernel on manifolds are, e.g., on hyperspheres, hyperbolic spaces, and
Euclidean space. In general, approximations of the heat kernel must be made
using numerical simulations.

Elworthy and Truman [16] introduced the semi-classical Riemannian bridge
on manifolds with a pole, i.e., a point p ∈ M such that the exponential
map Expp : TpM →M is a global diffeomorphism. The semi-classical is the
time-inhomogeneous Markov process whose infinitesimal generator is of the
form 1

2
∆M +∇ log kT−t(·, v), with

kt(x, v) = (2πt)−d/2e−
d(x,v)2

2t J−1/2(x), (1.23)

where J(y) = | detDExp−1
v (y) Expv | denotes the Jacobian determinant of the
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exponential map at v. The semi-classical Riemannian bridge exhibits prop-
erties similar to the Euclidean Brownian bridge. In fact, the radial part
of the semi-classical bridge is identical to the radial part of a Euclidean
Brownian bridge (see, e.g. [47] and references therein). In particular, the
semi-classical Riemannian bridge is identical to the Brownian bridge on H3

κ,
the three-dimensional hyperbolic space with constant sectional curvature κ.

The existence of a pole is a rather restrictive condition. The generalized
bridge [34] is an alternative to the semi-classical bridge. The generalized
bridge process is a time-inhomogeneous Markov process with infinitesimal
generator 1

2
∆M +∇ log qT−t(·, v), where

qt(x, v) = (2πt)−d/2e−
d(x,v)2

2t , (1.24)

defined for any M . When M = Rd, the generalized bridge coincides with
the Brownian bridge. It is clear from the infinitesimal generators that the
semi-classical Riemannian bridge and the generalized bridge differ by a single
term. The resulting process from this type of conditioning is also known as
the Fermi bridge [47,48]. Indeed, the conditioning point v can generally be
any closed embedded submanifold N ⊆M .

More recently, simulation of guided bridges on non-linear spaces has been done
by Sommer et al. [45], Arnaudon et al. [3], and Bui et al. [9]. These papers
present convincing numerical arguments for the absolute continuity to hold up
until time T . The guiding terms introduced in both [45] and [9] fall in the class
of generalized Brownian bridges. The validity of the scheme presented in [9]
on the space of symmetric definite matrices was only presented numerically.
In this thesis, we present a proof of the equivalence of the measures which
holds on [0, T ]. In fact, we show the equivalence of the measures hold on a
much broader class of manifolds.
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Chapter 2

Simulation of Conditioned
Semimartingales on Riemannian

Manifolds

The following chapter present a manuscript currently under review. The
manuscript is a joint work made in collaboration with Stefan Sommer and
posted to ArXiv as submission

Mathias Højgaard Jensen, Stefan Sommer. “Simulation of Conditioned
Semimartingales on Riemannian Manifolds” arXiv:2105.13190, (2021).

The paper presented in this chapter introduce a simulation scheme of guided
bridge processes on Riemannian manifolds. The type of guiding term con-
sidered in the article generalizes the guiding term considered by Clark [11]
and Delyon & Hu [13]. The paper appears to be the first paper to derive
a bridge simulation scheme for likelihood inference on rather general man-
ifolds. Recently, other papers have derived simulation schemes on specific
manifolds [3, 9, 45].



Simulation of Conditioned Semimartingales on
Riemannian Manifolds

Mathias Højgaard Jensen and Stefan Sommer∗
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Universitetsparken 1, 2100 Copenhagen, Denmark

Abstract

We present a scheme for simulating conditioned semimartingales taking values in
Riemannian manifolds. The guided bridge scheme replaces the drift of the con-
ditioned process with an approximation in terms of a scaled radial vector field,
extending the guided bridge approach used for simulating Euclidean bridges.
The approximation handles the fact that transition densities are generally in-
tractable in geometric spaces, even for well-known processes. We prove the
scheme’s validity by a change of measure argument and show how the resulting
guided processes can be used in importance sampling and approximating the
unconditioned process’s density. The guided bridge scheme is experimentally
illustrated on two- and three-dimensional manifolds. Here, we compare den-
sity estimates using the sampling scheme to approximations using heat kernel
expansions, and we use the scheme to estimate the diffusion mean of sampled
data.

Keywords: bridge simulation, conditioned diffusions, diffusion mean,
geometric statistics, Riemannian manifolds

1. Introduction

Techniques for simulating Euclidean diffusion bridge processes, or bridge
sampling, have been studied in several cases over the last two decades, for in-
stance, [8, 9, 25, 30]. Delyon and Hu [9] introduced a scheme to simulate con-
ditioned diffusions using a stochastic differential equation (SDE) that is easy
to simulate and absolutely continuous with respect to the desired distribution.
The SDE proposed by Delyon and Hu interchanged a drift term in the original
conditioned diffusion, depending on the possibly intractable transition density,
with a drift arising from a Brownian bridge going.

We here propose a scheme for simulating conditioned semimartingales on
manifolds, which generalizes the result of Delyon and Hu [9] to the setting of

∗Corresponding author. E-mail addresses: matje@di.ku.dk, sommer@di.ku.dk

Preprint submitted to Elsevier May 22, 2022
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smooth connected Riemannian manifolds. More precisely, we show that by
adding a drift term to the semimartingale, the manifold equivalent to the drift
term introduced in [9], we obtain a process that converges to the desired end-
point. The process is absolutely continuous with respect to the targeted diffusion
bridge distribution.

Bridge sampling is an essential part of likelihood and Bayesian inference for
discretely observed stochastic processes. For example, bridge sampling finds ap-
plications in geometric statistics, medical imaging, and shape analysis. Recent
papers have introduced algorithms to simulate stochastic bridges on specific
manifolds [3, 19, 32], which indicates the necessity for bridge sampling algo-
rithms on general Riemannian manifolds. In particular, estimating the transi-
tion density of a stochastic process enables likelihood-based and Bayesian ap-
proaches to geometric statistics.

Figure 1(a) shows sample paths generated by the sampling scheme set up
to approximate a conditioned Brownian motion on the sphere S2 starting at
the north pole and conditioned to hit the south pole at T = 1. The scaled
squared radial vector field, ∇r2

2(T−t) Figure 1(b) acts as the guiding term forcing
the process towards the target point.

(a) Four simulated paths of a diffusion bridge
process from the north pole (red point) to the
south pole (black point).

(b) Gradient vector field of the squared distance
function on the 2-sphere centered at the south
pole.

Figure 1: Figure 1a illustrates the simulation scheme’s realizations to simulate conditioned
diffusions, where the two bridging points are in each other’s cut locus. Figure 1b shows the
underlying radial vector field structure. It acts as a pulling term towards the point on which
the process is conditioned.

1.1. Guided Bridges
Doob’s h-transform is a classical way to show that the SDE for the condi-

tioned process has a drift term that depends on the gradient of the logarithmic
transition density, ∇x log p(t, x, v). Due to the generally intractable transition
density, various methods to simulate conditioned processes have been introduced
(e.g., [8, 9, 30, 25]).

Delyon & Hu [9] presented an algorithm to simulate the distribution of cer-
tain types of diffusions in Rd conditioned to hit a terminal point at some fixed
time T > 0. Their main idea was to substitute the drift term ∇x log p(t, x, v),
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∇d(Xt,v)
2

2

Cut(v)

XT =
v

Xt

X0 = x

(a) Illustration of one sample path of the ra-
dial bridge, Xt, from x to v, with correspond-
ing guiding drift indicated by arrows. The drift
changes sign when crossing cut locus (vertical
line).

(b) A radial vector field on the cylinder, related
to the radial bridge, Xt, centered at the point
XT = v.

Figure 2: Illustration of the effect of the cut locus on the radial bridge process. The guiding
drift term, indicated by the tangent vectors along the sample path in (a) and the radial vector
field (b), changes directions when crossing the cut locus.

which depends on the transition density, with the drift term appearing in the
SDE for the generalized Brownian bridge. More precisely, they showed that the
law of the process

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = a,

conditioned on XT = v (under suitable conditions on b and σ) is absolutely
continuous with respect to the law of the process

dYt = b(t, Yt)dt−
Yt − v

T − t
dt+ σ(t, Yt)dWt, Y0 = a. (1)

Moreover, the conditional expectation given XT = v satisfies

E [f(X)|XT = v] = CE [f(Y )φT ] , (2)

for a constant C > 0, which depend on a, v, and T ., where φT denotes the
likelihood ratio (see [9] for more details). We present a result that generalizes
the SDE in (1) and essentially also equation (2) to Riemannian manifolds, with
an explicit expression for the likelihood ratio φT .

Switching from vector space to Riemannian manifolds, curvature removes
the closed-form solution of the Brownian bridge drift. Inspired by Delyon and
Hu’s construction and the notion of Fermi bridges [35, 36], we instead propose to
use the gradient ∇xd(·, v)2/2 in the drift term in a non-Euclidean generalization
of (1). However, the existence of a non-trivial cut locus implies that this radial
vector field is not continuous. Moreover, the t → 0 convergence of the term to
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the gradient of the log-density is more intricate than the Euclidean situation.
As shown by Malliavin, Stroock [24], and Turetsky [33],

lim
t→0

t∇m
x log pM(t, x, v) = −∇m

x d(x, v)
2/2, for all m ≥ 0, (3)

uniformly on compact subsets of M\Cut(v), where ∇m is the mth covariant
derivative and pM the heat kernel or the transition density of a Brownian motion
on M. The behaviour of the right hand side of (3), for m = 1, is illustrated
in Figure 2. The cut locus adds extra difficulty because the squared distance is
not differentiable on the cut locus, and the convergence in (3) is only uniform
away from the cut locus.

1.2. Bridge Sampling: Parameter, Density, and Metric Estimation
Bridge processes are useful in a range of statistical and applied mathematical

problems. We here list a few examples: Bridge sampling is essential for building
data augmentation algorithms [25]. Treating sample points as if coming from
incomplete observations, bridge sampling algorithms provides a better under-
standing of the underlying distribution, thereby offering a method for parameter
estimation. Delyon and Hu [9] present a rather specific example of parameter
estimation using bridge sampling. Furthermore, bridge sampling techniques
produce accurate estimates of normalizing constants (see, e.g., [14]).

Statistical models based on diffusion processes find applications in geometric
statistics, see, e.g., the book [28]. In particular, bridge sampling on manifolds
yields estimates of the diffusion mean [15, 16]. The diffusion mean relies on the
transition density of a Brownian motion and is a generalization of the Fréchet
mean, defined as the argument that minimizes the average of distances. In this
case, bridge sampling approximates the transition density or data likelihood. We
demonstrate in the numerical examples below (Section 7) how bridge sampling
can be used to approximate the transition density and to find diffusion means.

Estimation of transition densities by bridge sampling finds uses in the context
of shape analysis [1, 2, 32]. Sommer et al. [32] show how to approximate the
density and the metric structure on landmark configuration space. The latter
is of particular interest since second-order elliptic diffusions describe Brownian
motion with drift under a suitable change of (Riemannian) metric.

1.3. Structure of Paper
The paper is structured as follows. In Section 2, we review the background

material of the frame bundle theory used to describe stochastic integration on
manifolds and relevant existing work on manifold bridge processes. Section 3
describes the Radon-Nikodym derivative related to the change of measure, and
we obtain a Cameron-Martin-Girsanov change of measure result. In Section 4,
we present our two main results, that generalize [9, Theorem 5] to manifold-
valued semimartingales. Section 5 is devoted to treating the radial process. We
apply Barden and Le’s result [21, Theorem 3] to the radial process and show the
almost sure convergence of our guided process. We go on to rigorously prove
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the two propositions in Section ?? before ending with numerical examples in
Section 7. We visualize the result of the simulation scheme on two- and three-
dimensional manifolds, and we use the approach to approximate the heat kernel
on different surfaces. Furthermore, we provide examples of how iterative bridge
sampling can be used to estimate diffusion means.

1.4. Notation and Conventions
In this section, we establish the notation and conventions used in the paper.

Throughout, we make the following assumptions:

• M is a d-dimensional smooth manifold

• Wt a d-dimensional Euclidean Brownian motion

• Zt an d-dimensional Euclidean semimartingale, a solution to the SDE
dZt = b(t, Zt)dt+ σ(t, Zt)dWt, for suitably integrable b and σ

• Ut a horizontal semimartingale in the frame bundle FM

• Xt a M-valued semimartingale defined as the projection Xt := π(Ut)

• rv(Xt) := d(Xt, v) is the Riemannian distance between Xt and v ∈ M

• Both σt(z) := σ(t, z) and its inverse σ−1
t (z) are bounded and differentiable

• The bracket process [Z] is absolutely continuous as a random measure on
[0,∞)

• The set {t : Xt ∈ Cut(v)} is a Lebesgue null-set

• All SDEs admits strong solutions

• (Ω,F ,Ft,P) is a filtered probability space satisfying the usual conditions

We will repeatedly use the Einstein summation convention of taking the sum
over the index that is repeated as both a sub- and superscript, i.e., aiei =∑

i a
iei. The transpose of a matrix A will be denoted AT . As the gradient of

the distance function d(·, y) is non-smooth on the cut locus, we take ∇xd(x, y)
to be the usual gradient away from the cut locus and which vanishes on the cut
locus. We will use ˜ to denote lifts of functions on M to fiber bundles, i.e., with
projection π, f̃ := f ◦ π.

2. Background

2.1. Manifold Valued Processes
In this section, we review the theory of manifolds and manifold-valued dif-

fusion processes. In particular, we describe the main concepts of differential
geometry, which are needed to define the Eells-Elworthy-Malliavin construction
of manifold-valued stochastic processes through horizontal lifts. Two standard
references for stochastic calculus on manifolds are Emery [13], and Hsu [17].
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2.1.1. Riemannian Geometry
The frame bundle FM of a d-dimensional smooth manifold is a d2 + d di-

mensional manifold, where each point u ∈ FM correspond to a point x ∈ M
together with an ordered basis (frame) of the tangent space TxM. It is conve-
nient to think of u as a linear bijection u : Rd → Tπ(u)M, where π : FM → M
denotes the canonical projection. In this sense we obtain an ordered basis
(u(e1), ..., u(ed)) of Tπ(u)M from the canonical basis (e1, ..., ed) of Rd. A con-
nection in FM is a smooth choice of subspaces HuFM ⊆ TuFM, for each
u ∈ FM, such that the tangent space at u ∈ FM splits into TuFM =
VuFM⊕HuFM, where VuFM denotes the tangent vectors that are tangent
to the fibers. The space HuFM is called the horizontal tangent space. If we
endow M with a Riemannian structure, that is, a smoothly varying inner prod-
uct on the tangent spaces, the set of frames can be restricted to orthonormal
frames, i.e., the map u being a linear isometry. The resulting subbundle is de-
noted the orthonormal frame bundle, OM. We will throughout primarily work
with OM. There is a one-to-one correspondence between the horizontal tan-
gent space at u and the tangent space at π(u). This correspondence is described
through the restriction of the pushforward map π∗|HuOM : TuOM → Tπ(u)M.
Furthermore, on the horizontal part of the frame bundle, there exists a set of
fundamental horizontal vector fields, H1, ...,Hd, defined by Hi(u) = hu (u(ei)),
where hu = (π∗|HuOM)

−1 is the horizontal lift.
It is sometimes convenient to linearize the manifold in the following sense.

Let E : Rd → TpM be an isometric isomorphism from d-dimensional Euclidean
space to the tangent space at p ∈ M and let Expp : TpM → M denote the
exponential map at p. Define ϕ : D → Rd by ϕ := E−1 ◦ Exp−1

p , where D ⊆ M
is the largest subset such that Logp := Exp−1

p is well-defined, then the pair
(D,ϕ) is a normal neighborhood centered at p ∈ M.

2.1.2. Horizontal Semimartingales - Stochastic Development
If Z is a continuous Euclidean-valued semimartingale, i.e., a process which

decomposes into a sum of a local martingale and an adapted process of locally
bounded variation, the horizontal vector fields give rise to an SDE on the frame
bundle, driven by the Stratonovich SDE,

dUt = Hi(Ut) ◦ dZi
t , U0 = u ∈ FM, (4)

where U is a horizontal semimartingale on OM. The canonical projection,
X := π(U), defines a process on M. The process U is called the stochastic de-
velopment of Z in OM and X the stochastic development of Z in M. Similarly,
Z is called the anti-development of X and U . This way of constructing stochas-
tic processes on manifolds is contributed to Eells, Elworthy, and Malliavin, and
is often referred to as the Eells-Elworthy-Malliavin construction. In colloquial
terms, the construction is called "rolling without slipping." The intuition be-
hind this terminology originates from rolling a ball along a path drawn with
wet ink on a piece of paper. For a detailed description of this construction, one
may consult [17]. When the starting frame U0 = u is fixed, the the construction
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gives a one-to-one map h̃u(Zt) = Ut. The inverse h̃−1
u (Ut) = Zt is called the

anti-development of U .

2.1.3. Geometric Itô Formula
The fundamental theorem of stochastic calculus is Itô’s formula. The formula

generalizes to manifold-valued semimartingales. If X is a continuous manifold-
valued semimartingale, U its horizontal lift, and Z its anti-development, then for
any smooth function f ∈ C∞(M) the geometric Itô formula can be expressed
as

df(Xt) = Ut(ei)f(Xt)dZ
i
t +

1
2Ut(ej)Ut(ek)f(Xt)d[Z

j , Zk]t.

The formula can equivalently be expressed in terms of the gradient and Hessian
as

df(Xt) = ⟨∇f(Xt), UtdZt⟩+ 1
2 HessXt f(Ut, Ut)d[Z]t.

2.1.4. Riemannian Brownian Bridges
Brownian bridges on manifolds also have an SDE representation. When-

ever the semimartingale Z is a Brownian motion, the resulting process X on
M (resp. U on the horizontal part of OM) is a Brownian motion. With
p(t, x, v) denoting the transition density of the M-valued Brownian motion and
p̃(t, u, v) = p(t, π(u), v) its lift, the corresponding Brownian bridge is the solu-
tion of the SDE

dUt = Hi(Ut) ◦
(
dBi

t +
(
U−1
t

(
∇H

u|u=Ut
log p̃(t, u, v)

))i
dt

)
, U0 = u0,

where ∇H f̃ = {H1f̃ , . . . , Hdf̃} is the horizontal gradient. As was the case in the
Euclidean setting, the SDE includes the Brownian motion’s transition density.
However, unlike the Euclidean case for Brownian motion, the transition density
is not always tractable.

Writing the transition density for the Brownian motion as p(t, x, v) = pt(x, v),
a natural representation of the Brownian bridge is as a time-inhomogeneous
Markov process with an infinitesimal generator

1
2∆M +∇ log pT−t(·, v),

where ∆M is the generalized Laplacian (Laplace-Beltrami) operator on M.
We will drop the M in the sequel whenever referring to the Laplace-Beltrami
operator.

2.1.5. Related Constructions
As the Brownian motion’s transition density is only known in a closed-form

on a handful of manifolds, other types of bridge processes have been considered
(see e.g. [18]). A semi-classical Brownian bridge on a Riemannian, also known as
Brownian Riemannian bridge, is a time inhomogeneous strong Markov process
with infinitesimal generator

1
2∆+∇ log kT−t(·, v),
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where kt is the function defined by

kt(x, v) := (2πt)−n/2e−
r2(x,v)

2t J−1/2(x),

and J(x) = |detDexp−1
v (x) expv | is the Jacobian determinant of the exponential

map at v (See any of [10, 11, 12] for more details on semi-classical bridges.). This
description typically relies on the existence of a pole, i.e. a point in M where
the exponential map maps diffeomorphically to M. This assumption avoids the
nuissance of the cut locus. The radial part of the semi-classical bridge has the
distribution of a Euclidean valued Brownian bridge.

A generalization beyond the cut locus of the heat kernel formula described by
Elworthy and Truman [11] is due to Thompson [35]. LetN be a closed embedded
submanifold on M and define the distance function to N by rN (·) := d(·, N),
then introduce the diffusion on M with time-dependent infinitesimal generator

1

2
∆M − ∇r2N

2(T − t)
=

1

2
∆M − rN

T − t

∂

∂rN
,

where ∂
∂rN

denotes differentiation in the radial direction and ∆ denotes the
Laplace-Beltrami operator. This diffusion process is called a Fermi bridge (see
[35, 36]). More generally, [22] defined generalised Brownian bridge processes,
between x0 and xT = v with terminal time T , as a Markov process (xt)t≥0 with
infinitesimal generator

1
2∆M − f(t)∇ r2v

2 ,

where f is a suitably smooth real valued function defined on [0, 1) satisfying
limt↑T f(t) = ∞ and limt↑T xt = xT almost surely. We also refer the reader to
[23] for a description of hypoelliptic bridges on manifolds.

3. A Girsanov Change of Measure

Intractable transition densities complicate the exact simulation of the desired
conditioned processes. Various methods exist to approximate these processes
[6, 5, 8, 9, 30, 25]. Similar to all the methods, they rely on a change of measure
argument and that the changed measure respects the original measure in the
sense of absolute continuity.

In this section, we recall a Cameron-Martin-Girsanov result for manifold
valued processes, see [10], that we will need later on. We assume throughout
that Xt = π(Ut) is non-explosive. This is for example the case if M is compact.
Let dMt = σt(Zt)dWt be the Euclidean martingale part of Z, where we have
assumed that σ is invertible. Define the local martingale Lt by the equation

Lt := −
∫ t

0

〈
∇H

u|u=Us
r̃2v(u)

2(T − s)
, U(ei)

〉
dM i

s.
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Using that U is an isometry, the local martingale is identical to the process

Lt := −
∫ t

0

〈
σ−1
s (h̃−1

u (Us))U
−1
s

(
∇H

u|u=Us
r̃2v(u)

2(T − s)

)
, ej

〉
dW j

s .

The corresponding Radon-Nikodym derivative is given by

Dt = exp

[
Lt −

1

2

∫ t

0

∥∥∥∥σ−1
s (h̃−1

u (Us))U
−1
s

(
∇H

u|u=Us
r̃2v(u)

2(T − s)

)∥∥∥∥
2

ds

]
. (5)

The Novikov condition ensures that the measure Qt, defined as dQt = DtdP,
is equivalent to the measure P on the time interval [0, T ). As a consequence
of Girsanov’s theorem, we have that the Pt-Brownian motion, Wt, satisfies the
equation

dWt = dŴt − σ−1
t (h̃−1

u (Ut))U
−1
t

(
∇H

u|u=Us
r̃2v(u)

2(T − t)

)
dt,

and we have that Ŵt is a Qt-Brownian motion. Plugging the expression for Wt

into equation (4) yields the expression in (10) below.

Example 1. Consider the case where the driving semimartingale is a standard
Brownian motion. The Radon-Nikodym derivative (5) simplifies to

Dt := exp

[
−
∫ t

0

rv(Ys)

T − s

〈
∂

∂rv
, UsdBs

〉
− 1

2

∫ t

0

r2v(Ys)

(T − s)2
ds

]
, (6)

almost surely, since the norm of the radial derivative is constantly one away from
the cut locus and its starting point, Cut(x0)∪{x0}. In particular, as mentioned
in [36], the integral ∫ t

0

〈
∂

∂rN
, UsdBs

〉
= βt

is a one-dimensional standard Brownian motion, which follows from Levy’s char-
acterization theorem of Brownian motions and that U consists of isometries.

4. Bridge Simulation on Manifolds

4.1. Guided Semimartingales
This section initiates horizontal semimartingales from Euclidean-valued semi-

martingales and describes the guided semimartingales considered in this paper.
Throughout, we assume that Z = (Z1, Z2, ..., Zd) is a Euclidean-valued semi-
martingale given by

dZk
t = ak(t, Zt)dt+ σk

m(t, Zt)dW
m
t , (7)

where W is a Euclidean-Brownian motion and a and σ are suitably integrable
maps. Horizontal semimartingales are then obtained as solutions to (4) which
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evidentally happens if and only if for all smooth functions f̃ on OM it holds
that

df̃(Ut) = Hif̃(Ut) ◦ dZi
t .

By the Itô-Stratonovich conversion, we obtain the corresponding Itô equation

df̃(Ut) = L̃uf̃(Ut)dt+ σk
m(t, h̃−1

u (Ut))Hkf̃(Ut)dW
m
t ,

where L̃u is an operator in OM defined by

L̃uf̃(Ut) := ak(t, h̃−1
u (Ut))Hkf̃(Ut) +

1
2C

ij(t, h̃−1
u (Ut))HiHj f̃(Ut), (8)

with initial frame u ∈ OM, and where Cij :=
(
σσT

)
ij

denotes the ij’th entrance
of σσT . By definition of Bochner’s horizontal Laplacian, ∆OM, whenever σ is
orthogonal (8) simplifies to L̃ = Ṽ + 1

2∆OM, where Ṽ is the horizontal lift of
a vector field on M. Adding a drift term pointing in the radial direction gives
rise to a new operator on OM

L̃u − ∇H r̃2v
2(T − t)

. (9)

We further define Lu as the operator in M that satisfies L̃uf̃(u) = Luf(x), for
all f ∈ C∞(M), where f̃ = f ◦ π. As we shall see below, this added drift term
acts as a guiding term that forces the process towards its target.

Example 2. Whenever C is the identity matrix and a vanishes, i.e., when Z
is a standard Brownian motion, L̃u becomes the horizontal Laplacian, ∆OM,
identified by

∆OMf̃(u) = ∆Mf(x),

for all f ∈ C∞(M), where f̃ = f ◦ π is the lift of f to C∞(OM).

The operator (9) on OM can equivalently be expressed as the SDE with the
following expression

dVt = Hi(Vt) ◦
(
dZi

t −
(
V −1
t

(∇H r̃2v(Vt)

2(T − t)

))i

dt

)
, V0 = u. (10)

We will be considering solutions to this SDE and its projection to M throughout
the paper.

4.2. The Main Results
We here establish a method to simulate conditioned semimartingales on a

Riemannian manifold M, starting from some fixed initial point x0 ∈ M and
conditioned to be at v ∈ M at time T , for T > 0. Utilizing stochastic de-
velopment, we obtain manifold valued semimartingales from Euclidean valued
ones by solving SDEs on the orthonormal frame bundle, OM. Throughout, we
assume a strong and non-explosive solution to (4).
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We recall from Girsanov’s theorem that any P-local martingale Mt becomes
a Q-local martingale M̃t under a suitable change of measure (see e.g. [29]).
Consequently, approximating the measure of a conditioned process relates nat-
urally to Girsanov’s theorem. The necessity for approximating the conditioned
measure originates from likelihood inference for diffusion processes. Therefore,
the typical intractable transition density and the importance of bridge sampling
in likelihood and Bayesian inference motivate the necessity for approximation
schemes to sample from the desired distribution.

We can now state the main result of the paper, which is a generalization of
Delyon and Hu [9] to Riemannian manifolds.

Theorem 3. Let Z be a solution of (7), where σ is invertible and bounded with
bounded inverse. Let U be the stochastic development of Z defined by (4), with
X = π(U). Let V be the solution to (10) and let Y = π(V ) denote the canonical
projection onto M. The law of the process (Xt|XT = v)0≤t<T is absolutely
continuous with respect to the law of (Yt)0≤t<T and we have that

E[f(X)|XT = v] = lim
t↑T

E[f(Y )φt]

E[φt]
,

for any non-negative measurable funtion f , where the likelihood φt has the form

−2d logφt =
r2v(Yt)

T − t
ξTt d (A(t, Zt)) ξt + F (t)drv(Yt) + Ji(t)dξ

i
t

+Hi(t)d[rv(Y ), Zi]t + Ij(t)d[rv(Y ), ξj ]t +Kij(t)d[ξ
i, Zj ]t (11)

+
1

2

(
G(t)d[rv(Y ), rv(Y )]t + Jij(t)d[ξ

i, ξj ]t
)
. (12)

Proof. Here, we present the main structure of the proof. The constituent parts
will be made rigorous in the sections that follow. By a proper change of measure,
through Girsanov’s theorem (Section 3), it is possible to obtain the SDE in
equation (10) from equation (4). The solution of (10) we term the radial bridge
process. The change of measure is valid on the interval [0, t], for every t ∈ [0, T )
(Section 3). A decomposition of the Radon-Nikodym derivative leads to a term
only involving the radial process and the time to the termination. By invoking
an L2 bound on the radial bridge process, we show the radial bridge process is
almost sure convergence to the desired point (5.1.2). The result is concluded
by an argument (Section ??) similar to an argument made in Delyon & Hu [9,
Lemma 7]

Remark 4. The guiding drift term in (10) clearly depends on the squared radial
vector field. Another way to represent the SDE (10) is by

dVt =
d∑

i=1

Hi(Vt) ◦
(
dZi

t − 1
2(T−t)Hir̃

2
v(Vt)dt

)
, V0 = u.

In order to see this, we simply note that
(
V −1
t

(∇H r̃2v(Vt)

2

))i

= 1
2

〈
∇r2v(Xt), Ut(ei)

〉
= 1

2Hir̃
2
v(Vt).
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4.2.1. The Case of Brownian Motion
A special case of the above result is when the X is a Brownian motion.

We state the result below as it has an independent interest. Let θx(y) =
|detDy expx | be the Jacobian determinant at y of the Jacobi field along the
geodesic from x to y.

Theorem 5. Let U be the solution of (4), with Z a standard Brownian motion
in Rd, and let X be the canonical projection onto M, Then X is a Brownian
motion on M. Furthermore, if M is a simply connected manifold and V is
the solution of (10), then the conditioned law of X given XT = v is absolutely
continuous with respect to the law of Y on [0, T ].

E[f(X)|XT = v] = CE [f(Y )φT ] , (13)

where the constant depends on the initial value y0, the conditioning point v, the
arrival time T , the curvature in the radial direction, and in certain cases the
geometric local time. In particular, the likelihood φt in (11) simplifies to

d logφt =
r(Yt)

T − t

(
dηt + dLC̊

t

)
,

where
dηt =

∂

∂rv
log θ

− 1
2

v (Yt)dt

is supported on M\Cut(v) and LC̊
t is the geometric local time defined in (15),

with support at the cut locus Cut(v).

Example 6. In the situation where M = Rd, for the Brownian motion case,
we obtain the result of Theorem 5 in Delyon and Hu [9] from our result. No
curvature or cut locus exists in the Euclidean setting and, therefore, E[φT ] ≡ 1.

The theorem above can be used to prove analytically the results conjectured
in [7], where M is the space of symmetric positive definite matrices SPD. The
space of SPD matrices is convex and hence simply connected. The extra drift
term can then be handled in a manner similar to Theorem 6 in [9].

We go on in the rest of the text to prove Theorem 3 and Theorem 5. In
particular, we shall derive the expression of φt in (11) as well as review the
behavior of the radial process of a continuous semimartingale on M.

5. Radial Part of Semimartingale on a Manifold

To analyze the guided process behavior, we need to control the radial part
of the guided process. Recall here that the radial process is defined by rv(x) :=
d(x, v), where d is the Riemannian distance function. Barden and Le described
the behavior of the radial process for semimartingales on manifolds [4, 21],
generalizing a result by Kendall [20], which describes the radial behavior of a
Brownian motion. To take full advantage of Barden and Le’s result, we describe
the geometry of the cut locus and present their result.
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Let x0 be a given reference point on a complete Riemannian manifold M.
We let Q(x0) denote the set of points in Tx0M where the exponential map is
singular, that is, points v ∈ Tx0

M such that D(expx0
)(v) has rank k < d (for a

d dimensional manifold M). Define Q(x0) := expx0
(Q(x0)) as the image under

expx0
. We say that Q(x0) and Q(x0) are the conjugate loci of Tx0

M and M,
respectively. Let Cut(x0) denote the cut locus of x0 in M. Then Cut(x0)∩Q(x0)
denote the conjugate part of the cut locus of x0.

A (d− 1)-dimensional submanifold S ⊂ M is called two-sided if its normal
bundle is trivial. By Barden and Le [21, Theorem 2] the cut locus, except
for a subset of Hausdorff (d − 1)-measure zero, is described as a countable
disjoint union, L , of open two-sided (d− 1)-dimensional submanifolds. Define
E to be the union of points consisting of Cut(x0) ∩ Q(x0) and the points in
Cut(x0)\Q(x0) where at least 3 minimal geodesics to x0 exists. The set E has
Hausdorff (d − 1)-measure zero. A set A is said to be a polar set for X if the
first hitting time of A by X is almost surely infinite.

Suppose that the process U is the solution of (4), that E is a polar set of
X, and that P(Xt = x, 0 < t ≤ ∞) = 0. Furthermore, let C̊ be a disjoint
union of Cut(v), which consists of countably many smooth connected two-sided
(d−1)-dimensional submanifolds, where C̊i denote the connected components of
C̊, and let D ⊆ M be a regular domain. We denote by D±fx(±ν) the one-sided
Gâteaux derivatives of f , defined by

D+fx(ν) := lim
ε↓0

1
ε (f (expx(εν))− f(x)) , D−fx(ν) := −D+fx(−ν),

for all x ∈ M and ν ∈ TxM. By virtue of Barden and Le [21, Theorem 3], we
get a formula for the radial process of X = π(U) as (see also [35] for a more
general formula)

rv (Xt∧τD ) = rv(x) +

∫ t∧τD

0

1{Xs /∈C̊} ⟨∇rv(Xs), UsdZs⟩

+

∫ t∧τD

0

1{Xs∈C̊i}
〈
∇
(
rv ◦ P i

)
(Xs), UsdZs

〉

+
1

2

∫ t∧τD

0

1{Xs /∈C̊} HessXs
rv(Us, Us)d[Z,Z]t

+
1

2

∫ t∧τD

0

1{Xs∈C̊i} HessXs

(
rv ◦ P i

)
(Us, Us)d[Z,Z]t

+
1

2

∫ t∧τD

0

(
D+rXs

(ν)dL+ν,C̊
s (X) +D+rXs

(−ν)dL−ν,C̊
s (X)

)

+ L0
t∧τD (rv(X)) ,

for all t ≥ 0, almost surely, where τD is the first exit time of D by X, P i

the orthogonal projection onto the connected component C̊i of C̊, L0 the local
time at 0 of rv(X), dL±ν,C̊ the associated random measures of the geometric
local times at C̊ as defined in [35], and D±rXt

(±ν) are the one-sided Gâteaux
derivatives of r along ±ν, the unit normal vector-field of Cut(x0)\E.
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Under the assumptions made in Section 1.4, the terms which depend on
the projections vanish in the equation above. In this case, the formula for the
squared radial process becomes

r2v (Xt∧τD ) = r2v(x) +

∫ t∧τD

0

〈
∇r2v(Xs), UsdZs

〉

+
1

2

∫ t∧τD

0

HessXs
r2v(Us, Us)d[Z,Z]t (14)

+
1

2

∫ t∧τD

0

rv(Xs) (D+rXs
(ν) +D+rXs

(−ν)) dL̃C̊
s (X),

where dL̃C̊ is the random measure carried by C̊, associated to the continuous
predictable non-decreasing functional process. Furthermore, as defined in [4],
we have D+rXs(ν) +D+rXs(−ν) ≤ 0 and so we define the random measure

dLC̊
t = − (D+rXs

(ν) +D+rXs
(−ν)) dL̃C̊

s (X). (15)

Example 7. The radial part of a Brownian motion, which is due to Kendall
[20], has the following representation:

drv(Xt) =
1
2∆Mrv(Xt)dt+ dβt − dLC̊

s , (16)

where Xt is a M-Brownian motion, LC̊
t is the local time at the cut locus, and

βt is a one-dimensional real valued standard Brownian motion.

5.1. Properties of the Radial Bridge
One of the most fundamental properties of any bridge proposal process is

that it converges to the correct point almost surely. The radial bridge process
with an infinitesimal generator given by (9) has a drift term that always points
in the radial direction. This drift acts as a pulling term in the radial direction,
and it ensures that the radial bridge process converges to the desired endpoint.

From (16) and its more general representation, we see that the behavior of
the radial process depends on the growth of Lurv relative to rv. By imposing
growth conditions on the sectional and Ricci curvatures, the growth of Lurb can
be controlled. For example, an upper bound on the sectional curvature yields
a lower bound on ∆Mrv, and a lower bound on the Ricci curvature yields an
upper bound on ∆Mrb [17, Chapter 3]. We make the following assumption; Let
D ⊆ M be a regular domain, and assume there exist constants ν ≥ 1 and λ ∈ R
such that

Lur
2
v ≤ ν + λr2v (17)

on D\Cut(p). When Lu = 1
2∆M + b, for some locally bounded and measurable

drift b that grows linearly in rv, geometric conditions to ensure (17) where given
in Theorem 1.4.5 [35]. In particular, if M is compact (17) holds. The operator
in defined in [7] is an example of an operator of the form 1

2∆M+b, where b grows
linearly in rv. The space of symmetric positive definite matrices equipped with
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the affine invariant metric has sectional curvatures bounded in (−1/4, 0) [27],
and when equipped with the log-Euclidean metric, the Ricci curvature vanished
everywhere, hence the operator defined in [7] is bounded by (17) [35].

5.1.1. Bound For the Radial Bridge
Throughout this section, let U be the process generated by (9) and let X =

π(U) be the projection of U on M. Then by Barden and Le’s formula (14)
together with the geometric Itô formula for semimartingales, we have

r2v(Yt∧τD ) = r2v(x0) + 2

∫ t∧τD

0

rv(Ys)dNs

−
∫ t∧τD

0

rv(Ys)dL
C̊
s +

∫ t∧τD

0

(
Lur

2
v(Ys)− 2

r2v(Ys)

T − s

)
ds,

where Nt is an R-valued martingale and Lu is defined in (8). As the second
term above is a local martingale we get

E
[
r2v
(
Yt∧τDi

)]
= r2v(x0)− E

[∫ t∧τD

0

rv(Ys)dL
C̊
s

]
(18)

+ E
[∫ t∧τD

0

Lur
2
v(Ys)ds

]
− 2E

[∫ t∧τD

0

r2v(Ys)

T − s
ds

]
,

almost surely, for all t ∈ [0, T ). In particular, under the assumption of (17) (see
below) the two last terms can be rewritten by Lebesgue’s dominated convergence
and Fubini’s theorem such that

E
[
r2v
(
Yt∧τDi

)]
= r2v(x0)− E

[∫ t∧τD

0

rv(Ys)dL
C̊
s

]
(19)

+

∫ t

0

E
[
1(s<τD)Lur

2
v(Ys)

]
ds− 2

∫ t

0

E
[
1(s<τD)

r2v(Ys)

T − s

]
ds,

(20)

almost surely, for all t ∈ [0, T ).

Theorem 8. (Adapted from theorem 3.1 in [36]) Let D be a regular domain
(smooth boundary and compact closure) in M, and τD be the first exit time of
Y from D. Assume (17) holds on D\Cut(v). Then the radial bridge process
satisfies

E[1{t<τD}r
2
v(Yt)] ≤

(
r2v(x0) + νt

(
t

T − t

))(
T − t

t

)2

eλt, (21)

for all t ∈ [0, T ).

Proof. Define
f(t) := E

[
1(t<τDi)

r2v(Yt)
]

34 Chapter 2. Bridges in Riemannian Manifolds



and note that

f(t) := E
[
1(t<τDi)

r2v(Yt)
]
= E

[
r2v
(
Yt∧τDi

)]
− E

[
1(t≥τDi)

r2v(YτDi
)
]
.

Since the maps

t 7→ E
[∫ t∧τD

0

rv(Ys)dL
◦
C
s

]
, t 7→ E

[
1(t≥τDi)

r2v(YτDi
)
]
,

are non-decreasing their derivatives are non-negative. Differentiating the func-
tion f(t) it follows that

d

dt
f(t) ≤ d

dt
E
[
r2v
(
Yt∧τDi

)]

≤E
[
1(t<τDi

)Lzr
2
v(Yt)

]
− 2E

[
1(s<τDi

)
r2v(Ys)

T − s
ds

]

≤ν +
(
λ− 2

T − t

)
f(t),

where the second inequality follows by (19) and the third inequality follows from
(17) and Leibniz’ rule. An application of Gronwall’s inequality yields the claim

f(t) ≤
(
r2v(x0) + ν

∫ t

0

(
T

T − s

)2

e−λsds

)(
T − t

t

)2

eλt

≤
(
r2v(x0) + νt

(
t

T − t

))(
T − t

t

)2

eλt.

5.1.2. Almost Sure Convergence
We show here that the bridge property is satisfied.

Proposition 9. Let V be the solution of (10) and Yt = π(Vt). Assume (17)
holds. The radial bridge process Y satisfies the bridge property

lim
t↑T

rv(Yt) = 0,

Q-almost surely, where Q is the extension of Qt.

Proof. Let {Dn}∞n=1 be an exhaustion of M, that is, the sequence consists
of open, relatively compact subsets of M such that D̄n ⊆ Dn+1 and M =⋃∞

n=1Dn. Furthermore, let τDn denote the first exit time of X from Dn,
then from Theorem 8 (more precisely from (21)) we have that the sequence(
E[1{t<τDn}r2v(Yt)]

)∞
n=1

is non-decreasing and bounded; hence from the mono-
tone convergence theorem, it has a limit which is bounded by the right-hand
side of (21). Applying Jensen’s inequality to the left-hand side of (21)

E[rv(Yt)] ≤
(
r2v(x0) + νt

(
t

T − t

)) 1
2
(
T − t

t

)
e

λt
2 .
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Since obviously E[rv(YT )] = rv(YT )Q(rv(YT ) ̸= 0), by Fatou’s lemma

E[rv(YT )] ≤ lim inf
t→T

E[r(Yt)] = 0,

we conclude that rv(Yt) → 0, Q-almost surely.

6. Proof of Theorem 3 and Theorem 5

To establish the two propositions, we need a few technical lemmas. The first
result provides an SDE expression for the pullback of the radial vector field.

6.1. Pullback Process of Radial Field
In this section, we follow the theory and notation in [31, Section 2.4] and

[34, Section 11.5]. If s denotes a local vector field on M, we can define a
map sFM : FM → Rd by sFM(u) = u−1s(π(u)). Now, if xt is a curve on
M and wt is the horizontal lift of xt from w, we can let st = wt,is

i
t. Then

sFM (wt) = (s1t , . . . , s
d
t )

T and

(sFM )∗(hwt
(ẋt)) = w−1

t ∇ẋt
s =

d

dt
(s1t , . . . , s

d
t )

T , (22)

where hw is the horizontal lift operator. In other words, the covariant derivative
takes the form of the standard derivative applied to the frame coordinates sit.

Lemma 10. Let s be a local vector field on M, ξt = U−1
t (s (π (Ut))), and

dUt = Hi(Ut) ◦ dZi
t . Then on M\Cut(p)

dξt = U−1
t (∇Uteis (π (Ut))) ◦ dZi

t .

The corresponding Itô equation is given by

dξt = U−1
t (∇Uteis (π (Ut))) dZ

i
t +

1
2U

−1
t

(
∇Utej∇Uteis (π (Ut))

)
d[Zj , Zi]t.

Proof. We can use the first equality in (22), with ẋ0 = ue, for some u ∈ π−1(x0),
and e ∈ Rd, and w0 = u, to get

(sFM )∗(hu(ue)) = u−1∇ues = u−1∇ue
∇d(v, ·)2

2
.

Now, dUt = Hi(Ut) ◦ dZi
t and therefore

d
(
u−1s(π(Ut))

)
= d
(
sFM (Ut)

)
= (sFM )∗

(
Hi(Ut)

)
◦ dZi

t = U−1
t ∇Uteis ◦ dZi

t ,

since sFM is a local diffeomorphism.
The second claim follows by an application of the first claim on the local

vector field ∇Uteis to get an sde for U−1
t (∇Uteis (π(Ut))).
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Let (D,ϕ) be a normal neighborhood centered at v ∈ M. Define the function
g : R+ × R+ × Rd × Rd → R by

g(t, rv, Z, ξ) :=
r2v(Xt)

T − t
∥σ−1

t (Zt)ξt∥2, (23)

assuming invertibility of σ. On the set ϕ(D) the function g is smooth. The
following lemma provides an Itô expansion of g.

Lemma 11. Let ξt = U−1
t (∇Xtrv(Xt)). On the set ϕ(D), g as defined in (23)

has the Itô SDE expression

dg(t, rv, Z, ξ) = E(t)dt+
r2v(Xt)

T − t
ξTt d (A(t, Zt)) ξt + F (t)drv(Xt) + Ji(t)dξ

i
t

+Hi(t)d[rv(Xt), Z
i]t + Ij(t)d[rv(Xt), ξ

j ]t +Kij(t)d[ξ
i, Zj ]t

+
1

2

(
G(t)d[rv(Xt), rv(Xt)]t + Jij(t)d[ξ

i, ξj ]t
)
,

where

E(t) :=
r2v(Xt)

(T − t)2
∥σ−1

t (Zt)ξt∥2; F (t) := 2
rv(Xt)

T − t

∥∥σ−1
t (Zt)ξt

∥∥2;

G(t) := 2
1

T − t

∥∥σ−1
t (Zt)ξt

∥∥2; Hj(t) := 2
rv(Xt)

T − t
ξTt

∂

∂zj
(A(t, Zt)) ξt;

Ij(t) := 4
rv(Xt)

T − t
ξTt A(t, Zt)ej ; Jj(t) := 2

r2v(Xt)

T − t
ξTt A(t, Zt)ei;

Jij(t) := 2
r2v(Xt)

T − t
ejA(t, Zt)ej ; Kij(t) := 2

r2v(Xt)

T − t
ξT

∂

∂zj
(A(t, Zt)) ei.

Proof. A basic consequence of the multidimensional Itô’s formula on open sets.

Remark 12. In the case where the diffusion parameter σ is the identity matrix,
(23) simplifies to g(t, rv(Xt)) = r2v(Xt)/(T − t). In this case, the Itô expression
for g, by stochastic integration by parts, is simply

dg(t, rv(Xt)) =
r2v(Xt)

(T − t)2
dt+ 2

rv(Xt)

(T − t)
drv(Xt) +

1

(T − t)
dt

=
r2v(Xt)

(T − t)2
dt+

1

(T − t)
dr2v(Xt).

Let (D,ϕ) be the exponential normal chart centered at v, where ϕ : D ⊆
M → Rd is one-to-one. Define the process

ψt := exp

[
−1

2

∥∥∥∥σ
−1
t (ϕ(y))u−1

( ∇yrv(y)
2

2(T − t)1/2

)∥∥∥∥
2
]
, (24)

for y ∈ D. The following result is an adaptation of Lemma 7 in [9] to Riemannian
manifolds.
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Lemma 13. Let (D,ϕ) be a normal neighborhood centered at v and 0 < t1 <
t2 < ... < tN < T and g ∈ C∞

b (M) (smooth bounded function with compact
support in M), then with ψt as defined in (24) we have

lim
t→T

E[g(xt1 , ..., xtN )ψt]

E[ψt]
= E[g(xt1 , ..., xtN )|XT = v].

Proof. First, since the cut locus of any complete connected manifold has (vol-
ume) measure zero, we can integrate indifferently in any exponential chart. For
any t ∈ (tN , T ), we have

E[g(xt1 , ..., xtN )ψt]

E[ψt]
=

∫
M Φg(t, z)e

− 1
2

∥∥σ−1(t,ϕ(z))u−1

(
∇rv(z)2

2(T−t)1/2

)∥∥2

dVol(z)

∫
M Φ1(t, z)e

− 1
2

∥∥σ−1(t,ϕ(z))u−1

(
∇rv(z)2

2(T−t)1/2

)∥∥2

dVol(z)

,

where dVol(z) denotes the volume measure,

Φg(t, z) =

∫

MN

g(z1, . . . , zN )pt1(u, z1) · · · pt−tN (zN , z)dVol(z1) · · · dVol(zN ),

with pt−s(x, y) := p(s, x; t, y), and of course Φ1(t, z) = pt(x0, z). We can write
the expectation above as
∫

M
Φg(t, z)e

− 1
2

∥∥σ−1(t,ϕ(z))u−1

(
∇rv(z)2

2(T−t)1/2

)∥∥2

dVol(z) =

∫

ϕ(M)

Φg(t, ϕ
−1(x))e

− 1
2

∥∥σ−1(t,x)u−1

(
∇rv(ϕ−1(x))2

2(T−t)1/2

)∥∥2√
det(G(ϕ−1(x)))dx,

where G is the matrix representation of the Riemannian metric. As we are in a
normal neighborhood, and {ei} is an orthonormal basis of TvM , we have in par-
ticular rv(ϕ−1(x)) := d(ϕ−1(x), v) = ∥Logv(ϕ−1(x))∥ = ∥Logv ◦Expv ◦E(x)∥ =
∥E(x)∥ = ∥x∥. Thus, if we apply the change of variable x = (T − t)1/2y we get

Ct

∫

ϕ(M)

Φg(t, ϕ
−1(x))e

− 1
2

∥∥σ−1(t,x)u−1

(
∇rv(ϕ−1(x))2

2(T−t)1/2

)∥∥2√
det(G(ϕ−1(x)))dx

=

∫

ϕ(M)

Φg(t, ϕ
−1((T − t)

1
2 y))H (t, y)

√
det(G(ϕ−1((T − t)

1
2 y)))dy

t→T→
∫

ϕ(M)

Φg(T, ϕ
−1(0))H(T, y)

√
det(G(ϕ−1(0)))dy

=Φg(T, v)
√
det(G(v))

∫

ϕ(M)

e
− 1

2

∥∥σ−1(T,0)u−1

(
∇rv(ϕ−1(y))2

2

)∥∥2

dy,

where Ct = (T − t)−d/2 and

H(t, y) = exp

[
−1

2

∥∥σ−1
(
t, (T − t)

1
2 y
)
u−1

(∇rv(ϕ−1(y))2

2

)∥∥2
]
.
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Therefore, we see that from Bayes formula that

lim
t→T

E[g(xt1 , ..., xtN )ψt]

E[ψt]
=

Φg(T, v)

Φ1(T, v)
= E[g(xt1 , ..., xtN )|XT = v].

6.2. The General Case - Driving Semimartingale
We here provide the remaining arguments to make the proof of Theorem 3

rigorous.

Proof of Theorem 3. The Radon-Nikodym derivative (5) together with Novikov’s
condition ensures the equivalence of the measures of X|XT = v and Y on [0, t],
for every t < T . By Lemma 10 and Lemma 11, we obtain the expressions for
{φt : t ∈ [0, T )} and {ψt : t ∈ [0, T )}. The proof is concluded by Lemma 13.

6.3. The Case of Driving Brownian Motion
Recall that in the case of L̃z = 1

2∆M , the term φt has the particular form

φt = exp
[∫ t

0
r(Ys)
T−s (dηs + dLs)

]
, with dηs = ∂

∂r log θ
− 1

2
v ds.

Proof of Theorem 5. When the driving semimartingale is a standard Brownian
motion, we recall that the Radon-Nikodym derivative is given by (6). In this
context the function g, defined by (23), for a Brownian motion Xt, reduces to
the expression

g(t,X) =
rv(Xt)

2

T − t
.

Recall that βt is a one-dimensional Brownian motion. The geometric Itô’s for-
mula applied to this function then yields, coming from (16), the SDE

−1

2

∫ t

0

r2v(Xs)

(T − s)2
ds = −1

2

r2v(Xs)

T − t
+

∫ t

0

rv(Xs)

T − s
dβs

+
1

2

∫ t

0

rv(Xs)∆Mrv(Xs) + 1

T − s
ds−

∫ t

0

rv(Xs)

T − s
dLC̊

s . (25)

We see that (25) substituted into (6) yields, for any bounded non-negative
Bt(W (M))-measurable f ,

EQ[f(Y )]

=CtEP
[
f(X) exp

[
− r2v(Xt)

2(T − t)
+

1

2

∫ t

0

rv(Xs)∆rv(Xs)

T − s
ds−

∫ t

0

rv(Xs)

T − s
dLC̊

s

]]
,

Qt - a.s., t < T , where we have used that Ct = (T/(T − t))
1/2. We can equiva-

lently write the above as

EQ[f(Y )φt] = C̃tEP[f(X)ψt], (26)
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where

φt = exp

[ ∫ t

0

rv(Ys)

T − s

(
dηs + dLC̊

s

)]
, ψt = exp

[
− rv(Xt)

2

2(T − t)

]
,

and where C̃t = (T/(T − t))
d/2. In order to see this, we mention the following

expression, (see, e.g., [35])

∆rv =
d− 1

rt
+

∂

∂rv
log θv, (27)

which hold on M\Cut(v), where θv is the Jacobian determinant of the expo-
nential map. Therefore we can rewrite Dt as

Dt = exp

[
− rv(Xt)

2

2(T − t)
+

(d− 1)

2

∫ t

0

1

T − s
ds+

∫ t

0

rv(Xs)

T − s
(dηs + dLs)

]
,

where dηt = ∂
∂rv

log θ
− 1

2
v ds. Letting f ≡ 1 in equation (26) we obtain

EQ[f(Y )φt]

EQ[φt]
=

EP[f(X)ψt]

EP[ψt]
.

By virtue of Lemma 13 we have, as t ↑ T ,

EP[F (X)ψt]

EP[ψt]
→ EP[F (X)|XT = v].

What remains to be proven in Theorem 5 follows from Lemma 14.

Lemma 14. Assume that M is simply connected. With φt as defined above
then φt

L1→ φT .

Proof. Note that for each t ∈ [0, T ) we have EQ[φt] < ∞ as well as φt →
φT almost surely by Proposition 9. The result then follows from the uniform
integrability of {φt : t ∈ [0, T )}, which can be found in Appendix C.2 in [35].

7. Numerical Experiments

We devote this section to illustrating our simulation scheme on certain types
of manifolds, including examples of two- and three-dimensional manifolds. The
simulation scheme presents the behavior of the radial bridge process, which is
represented in Figure 3-5. Furthermore, the radial bridge’s simulation scheme is
exploited for maximum likelihood estimation of diffusion mean values [15]. The
code used to generate the illustrations is available at https://bitbucket.org/
stefansommer/theanogeometry.
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7.1. Simulation of Bridge Process on 2- and 3-Dimensional Manifolds
In the first example, we take our manifold M to be the 2-torus, i.e. M =

T2 := S1 × S1. Our goal is to simulate a conditioned process on T2, where we
condition a point in the cut locus of the initial point. The illustration can be
found in Figure 3. Figure 3a shows four sample paths of the radial (Brownian)
bridge with the initial starting value depicted by the red point. The process
is conditioned to arrive at the black point - which is in the initial point’s cut
locus - at T = 1. Figure 3b presents the underlying squared radial vector field.
The radial bridge’s drift term follows the radial vector field multiplied by an
increasing time-dependent scalar.

(a) Four sample paths from the simulation
scheme of the radial bridge, Xt, from x (red
point) to v (black point).

(b) Radial vector field on the torus, related to
the radial bridge, Xt, centered at the point
XT = v.

Figure 3: Figure 3a Show four realizations of the radial bridge process, Xt, where the red
point illustrates the start value, X0 = x, and the black point the conditioned value, XT = v.
Figure 3bshows the underlying radial vector field structure.

In the second example, we consider another two-dimensional manifold, namely
the cylinder M = S1 ×R. We show how our simulation scheme can be adapted
to this framework. On the cylinder the cut locus of a point v = (p, x) ∈ S1 ×R
is the set Cut(v) = {q} × R, where q ∈ S1 is antipodal to p. This is illustrated
in Figure 2.

Figure 4: An example of four sample paths of the radial bridge conditioned to arrive at a
point in the cut locus, Cut(x), of the initial point x.

Any winding around the cylinder trivially makes the process cross the cut
locus. In Figure 4, we illustrate the radial bridge’s sample paths to end up at
the cut locus at the terminal time.
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In the third example, we show how our simulation scheme works on a three-
dimensional manifold. We consider the special orthogonal group, also known
as the rotation group, which consists of all orthogonal matrices of determinant
1, i.e., M = SO(3). Figure 5 shows a sample path of the radial bridge from
x ∈ SO(3) to v ∈ SO(3), where x = Id3 (columns: red, blue, green vectors) and
v (black) is the terminal value XT = v.

Figure 5: The figure illustrates sample paths from the radial bridge on SO(3), by showing its
left action on a basis of R3. The black arrows indicate the conditioned point.

7.2. Bridge Simulation for Density Estimation on 2-Sphere
As mentioned in [26], bridge sampling can estimate the transition density

of a stochastic process. Assume that the family {φt : t ∈ [0, T )} is uniformly
integrable. As is seen from Lemma 13

E[Ctψt]
t→T−→ p(0, x0;T, v)

√
det(G(v))

∫

ϕ(M)

e
− 1

2

∥∥σ−1(T,0)u−1

(
∇d(ϕ−1(y),v)2

2

)∥∥2

dy,

which in the case of the d-sphere can be expressed as

E[Ctψt]
t→T−→p(0, x0;T, v)

√
det(G(v))

∫

Rd

e−
1
2y

TA(T,0)ydy

=
p(0, x0;T, v)

√
(2π)2

√
det (G(v))√

det (A(T, 0))
,

From the identity linking φt to ψt, this leads to the following expression for the
transition density with respect to the Riemannian volume form

p(0, x0;T, v) =

√
det (A(T, 0))√

(2πT )d
e
− 1

2

∥∥σ−1(T,x0)u
−1

(
∇d(x0,v)2

2

)∥∥2

lim
t↑T

E[φt].

In the Brownian motion setting, the above simplifies to

p(0, x0;T, v) =
1√

(2πT )d
e−

r2v(x0)

2T E[φT ]. (28)

Thus, we obtain an expression for the transition density of the Brownian motion.
Zhao and Song [37] provided an expression for the heat kernel on the hyper-

sphere expanded as a uniformly and absolute convergent power series

p(0, x; t, y) =
∞∑

l=0

e−l(l+d−1)t 2l + d− 1

d− 1

1

ASd
C

d
2−1

l (⟨x, y⟩Rd+1), (29)
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for x, y ∈ Sd, where Cα
l are the Gegenbauer polynomials and ASd = 2π(d+1)/2

Γ((d+1)/2)

the surface area of Sd. In Figure 6, we have plotted the transition density
estimated from (28) using sampling to approximate E[φT ] against a truncated
version (l = 0, . . . , 16) of (29) as well as the density for the two-dimensional
Euclidean Brownian motion. We have plotted the estimated densities along a
geodesic running from the north pole to the south pole for three time points,
T = 0.5, 1, 1.5.
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Figure 6: The figure shows estimated transition densities of a Brownian motion (red) on S2
using (28), run for different time length T = 0.5, 1, 2. The densities are computed along a
geodesic from the north pole to the south pole. The estimated transition densities are com-
pared to an approximation using (29) (blue) on S2 and densities of a 2-dimensional Euclidean
Brownian motion (green).

When applying heat to the north pole, the heat diffuses symmetrically from
the north pole (in the Riemannian sense) and the density converges to the
uniform distribution on S2 as the time increases. The resulting estimated heat
kernel on S2, using the sampling scheme above, is displayed in Figure 7.
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Figure 7: Estimated transition density on the 2-sphere at times T = t, for t = 1/3, 2/3, 1,
respectively. We sampled 256 points as endpoints of a Brownian motion. For each observation,
we sampled 50 bridges.

Figure 8 shows the estimated heat kernel on an ellipsoid where no closed-
form solution is directly available.

Figure 8: Estimated transition density on ellipsoid at times T = t, for t = 1/3, 2/3, 1, respec-
tively. We sampled 256 points as endpoints of a Brownian motion. For each observation, we
sampled 50 bridges.

7.3. Bridge Simulation for Diffusion Mean Estimation
The Fréchet mean is the set of points that minimizes the sum of distances,

hence the Fréchet mean satisfies the geometric property of the Euclidean mean.
The diffusion mean is an extension of and an alternative to the Fréchet mean
(see Hansen et al. [15, 16] for an exposition on diffusion means). In contrast to
the Fréchet mean, the diffusion mean satisfies the probabilistic property of the
Euclidean mean, being the statistic that maximizes the likelihood of a Brownian
motion. The diffusion mean-value relies explicitly on the transition density of a
Brownian motion and thus contains a time parameter, which has the interpre-
tation as the variance of the Brownian motion.

We now demonstrate how the bridge sampling scheme can be used to esti-
mate diffusion means on the two-sphere. As described in the previous section,
bridge sampling yields estimates of the underlying unknown transition density.
Using (28), we approximate the transition density by bridges to each data point
to obtain an approximation of the expectation over φT . We show how to obtain
estimates of the mean of data resting on a manifold.
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(a) 256 sampled data points
on S2.

(b) Convergence to the dif-
fusion mean (red dot) on S2
from initial guess (black dot).
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Figure 9: Our bridge sampling scheme estimates the diffusion mean on S2. We sampled 256
points on S2 as endpoints of a Brownian motion started at the north pole. Using an initial
guess of the mean, we sampled one bridge per observation to estimate the likelihood and
performed an iterative optimization to maximize the likelihood.

In figure 9a, we sampled 256 points on S2, as endpoints of a Brownian motion
run until T = 1/2. Using our proposed bridge sampling scheme, we obtained
approximations of the transition density function. Using an iterative maximum
likelihood method, we obtained in each iteration an estimate of the mean as
the point maximizing the log-likelihood. Figure 9b illustrates how the initial
guess of the mean (black dot) converges to the true mean (red dot) using the
iterative maximum likelihood optimization. The corresponding log-likelihood is
illustrated in figure 9c, where we see how the iterated log-likelihood reaches an
equilibrium state.
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Chapter 3

Bridge Simulation and Metric
Estimation on Lie Groups and

Homogeneous Spaces

The following manuscript has been made in collaboration with Lennard Hilgen-
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submission
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Sommer. “Bridge Simulation and Metric Estimation on Lie Groups and
Homogeneous Spaces” arXiv:2106.03431, (2022).

The manuscript is an extension of Jensen et al. [28], which was accepted and
published in the conference proceedings at the international conference of
Geometric Science of Information. We derive a bridge simulation scheme on
Lie groups and homogeneous spaces. The guiding term used in the previous
paper applies in the context of Lie groups as well. Conditioning on a fiber in
the total space (Lie group) over the base space (homogeneous space), leads
to a bridge simulation scheme in the base space. This is a consequence of
the idea by Thompson [48] when conditioning on a submanifold. The current
paper moreover generalizes the paper by Jensen and Sommer [29]. We use the
simulation scheme on the total and base space to obtain metric estimation on
both these spaces.
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Abstract: We present schemes for simulating Brownian bridges on complete and connected Lie
groups and homogeneous spaces. We use this to construct an estimation scheme for recovering an
unknown left- or right-invariant Riemannian metric on the Lie group from samples. We subsequently
show how pushing forward the distributions generated by Brownian motions on the group results in
distributions on homogeneous spaces that exhibit non-trivial covariance structure. The pushforward
measure gives rise to new parametric families of distributions on commonly occurring spaces
such as spheres and symmetric positive tensors. We extend the estimation scheme to fit these
distributions to homogeneous space-valued data. We demonstrate both the simulation schemes and
estimation procedures on Lie groups and homogenous spaces, including SPD(3) = GL+(3)/SO(3)
and S2 = SO(3)/SO(2).

Keywords: bridge simulation, Brownian motion, Lie groups, homogeneous spaces, metric estimation,
directional statistics

1. Introduction

Bridge simulation is a data augmentation technique for generating missing trajectories
of continuous diffusion processes. We consider bridge simulation on Lie groups and
homogeneous spaces. As an important example, we investigate the case of i.i.d. Lie group
or homogeneous space valued samples that are considered discrete-time observations of a
continuous diffusion process. Assuming the stochastic dynamics to be Brownian motion,
we wish to estimate the underlying Riemannian metric of the Lie group or homogeneous
space from the samples. To evaluate and maximize the likelihood of the data, we need
to account for the diffusion process being unobserved at most time points. This requires
bridge sampling, and the sampling techniques are thus the key enabler for metric estimation
in this setting.

Simulation of conditioned diffusion processes is a highly non-trivial problem, even
in Euclidean spaces. Because transition densities of diffusion process are only available
in closed form for a narrow range of processes, simulating directly from the true bridge
distribution is generally infeasible. The data augmentation used in inference for diffusion
processes dates back to the seminal paper by Pedersen [1] almost three decades ago. Since
then, several papers have described diffusion bridge simulation methods; see, e.g., [2–11].
The method by Delyon and Hu [5] exchanged the intractable drift term in the conditioned
diffusion with a tractable drift originating from the drift of a Brownian bridge. Several
papers have built on the ideas of Delyon and Hu. In particular, a manifold equivalent
drift term analogous to the drift term of a Brownian bridge in Euclidean space was used
in the paper [6] to describe the simulation of Brownian bridges on the flat torus, while [7]
generalized this method to Riemannian manifolds. [11] used the drift to model Brownian
bridges on the space of landmarks, and Bui et al. [4] used a similar drift term on the space of
symmetric positive definite (covariance) matrices. The authors of the latter paper exploits
the exponential map, which in the space of covariance matrices is a global diffeomorphism
avoiding the cumbersome geometric local time. The details are further described in [12].
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Figure 1. The two leftmost plots visualize the transition densities of a Fisher-Bingham-Kent distribu-
tion (left) and the pushforward density of a Brownian motion to S2 (right) with a bi-invariant metric.
The Fisher-Bingham-Kent distribution has been fitted to samples from a Brownian motion using MLE.
The pushforward measure of a Brownian motion on SO(3) to the sphere S2 results in anisotropic
distributions on S2 when the metric on SO(3) is not bi-invariant, here displayed in the two rightmost
plots, for T = 0.5 and T = 1.0, respectively. The coloring indicate the density of the pushforward at
different times (different color scheme for each subfigure).

The idea of the present paper is based on the method presented in the paper by Delyon
and Hu [5], and, in the geometric setting, the paper [7]. When conditioning a diffusion
with transition density pt to hit a point v at time T > 0, the intractable guiding drift
term ∇x=Xt log pT−t(x, v) in the stochastic differential equation (SDE) for the conditioned
diffusion can be exchanged with the guiding drift term in the SDE for a Brownian bridge.
This paper extends this idea to Lie groups and homogeneous spaces.

As an application, we consider discrete-time observations in Lie groups and homoge-
neous spaces regarded as incomplete observations of sample paths of Brownian motions
arising from left- (or right-) invariant Riemannian metrics. The bridge simulation schemes
allow to interpolate between the discrete-time observations. Furthermore, we observe
how varying the metric on Lie groups affects pushforwards of the Brownian motion to
homogeneous spaces being quotients of the group. These distributions encode covariance
of the data resulting from the metric structure of the Lie group. We define this family of
distributions and derive estimation schemes for recovering the metric structure of the group
both in the case of Lie group samples and in the case of homogeneous space samples. One
particular example is the two-sphere, S2 ∼= SO(3)\SO(2). Changing the metric structure
on SO(3) results in anisotropic distributions on S2, arising as the pushforward measure
from SO(3). Figure 1 illustrates the isotropic and anisotropic distributions on S2 induced
by a bi-invariant and left-invariant (non-invariant) metric on SO(3), respectively. The
resulting distributions are analogous to the Von Mises-Fisher and Fisher-Bingham distri-
butions [13,14]. However, unlike the Von Mises-Fisher and Fisher-Bingham distributions,
the approach is independent of the chosen embedding instead resulting from the quotient
structure.

For simulation on homogeneous spaces, we present three schemes. The first builds on
the idea of Thompson [15] by conditioning on a submanifold in the Lie group G obtained
as a fiber over the point v ∈ M = G/K, for some closed subgroup K ⊆ G. The second
scheme assumes the homogeneous space has a discrete fiber Γ and therefore, the fiber over
v ∈ M, π−1(v), is discrete. Using the k-nearest-points from the fiber π−1(v) to the initial
point x0, we obtain a truncated guiding drift term convergence to a subset of π−1(v). The
last scheme assumes that the fiber is connected. By sampling a finite number of points in
the fiber over v, a similar conditioning is obtained.

Statistics on Lie groups and homogeneous spaces finds applications in many diverse
fields including bioinformatics, medical imaging, shape analysis, computer vision, and
information geometry, see, e.g., [16–20]. Statistics in Euclidean spaces often relies on the
distributional properties of the normal distribution. Here we use Brownian motions and the
heat equation to generalize the normal distribution to Lie groups and homogeneous spaces
as introduced by Grenander [21]. The solution to the heat equation is the transition density

Chapter 3. Bridges in Lie Groups and Homogeneous Spaces 51



3 of 22

of a Brownian motion. Through Monte Carlo simulations of bridges, we can estimate the
transition density and maximize the likelihood with respect to the Riemannian metric.

1.1. Contribution and Overview

We present simulation schemes on Lie groups and homogeneous spaces with ap-
plication to parameter estimation. We outline the necessary theoretical background for
the construction of bridge simulation on Lie groups and homogeneous spaces before
demonstrating how the simulation scheme leads to estimates of means and underlying
metric structure using maximum likelihood estimation on certain Lie groups and homoge-
neous spaces. The paper builds on and significantly extends the conference paper [7] that
introduced bridge simulation in the Lie group setting.

The paper is organized as follows. In Section 2, we describe the relevant background
theory of Lie groups, Brownian motions, and Brownian bridges in Riemannian manifolds.
Section 3 presents the theory and results of bridge sampling in Lie groups, while Section 4
introduces bridge sampling on various homogeneous spaces. Numerical experiments on
certain Lie groups and homogeneous spaces are presented in 6.

2. Notation and background

We here briefly describe simulating conditioned diffusions in Rn as developed in [5]
before reviewing the theory on conditioned diffusion on Riemannian manifolds.

2.1. Euclidean diffusion bridges and simulation

Suppose a strong solution to an SDE of the form

dxt = b(t, xt)dt + σ(t, xt)dwt,

where b and σ satisfies certain regularity conditions and where w denote a Rn-valued
Brownian motion. In this case, x is Markov, and its transition density exists. Suppose we
define the function

h(t, x) =
pT−t(xt, v)
pT(x0, v)

,

for some x0, v ∈ Rn. Then it is easily derived that h is a martingale on [0, T) with h(0, x0) = 1
and Doob’s h-transform implies that the SDE of the conditioned diffusion x|xT = v is given
by

dyt = b̃(t, yt)dt + σ(t, yt)dwt

where b̃(t, y) = b(t, y) + (σσT)(t, y)∇y log pT−t(y, v). In case that the transition density
is intractable, simulation from the exact distribution is in-feasible. Delyon and Hu [5]
suggested substituting the latter term in b̃ with a drift term of the form −(yt − v)/(T − t),
which equals the drift term in a Brownian bridge. The guided process obtained by making
the above substitution yields a conditioning and one obtain

E[ f (x)|xT = v] = CE[ f (y)φT(y)], (1)

where φT is a likelihood function that is tractable and easy to compute, y is the guided
process, and the constant C > 0 depends on x0, v, and T.

2.2. Riemannian manifolds and Lie groups

Let M be a finite dimensional smooth manifold of dimension d. M can be endowed
with a Riemannian metric tensor, i.e., a family of inner products {⟨·, ·⟩x}x∈M defined on
each tangent space Tx M. The Riemannian metric tensor gives rise to a distance function
between points in M. The tangent space is locally diffeomorphic with an open subset of M.
The Riemannian exponential map Expx : Tx M → M provides this local diffeomorphism. On
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the subset of M where Expx is a diffeomorphism the inverse Riemannian exponential map,
also called the Riemannian logarithm map, Logx : M → Tx M is defined. The Riemannian
distance function can then be defined in terms of the Riemannian inner product as d(x, y) =
∥Logx(y)∥x. The Riemannian logarithm map plays an important role when defining guided
bridges on manifolds.

Let X be a vector field on M assigning to each point X ∈ M a tangent vector X(x) ∈
Tx M. A connection ∇ on a manifold is an operation that allows us to compare neighboring
tangent spaces and define derivatives of vector fields along other vector fields, that is, if Y is
another vector field, then ∇XY is the derivative of Y along X (also known as the covariant
derivative of Y along X). A connection also gives a notion of "straight lines" in manifolds,
also known as geodesics. A curve γ is a geodesic if the vector field along γ is parallel to
itself, i.e, if ∇γ̇t γ̇t = 0. The geodesic curves are locally length minimizing.

Generalizing the Euclidean Laplacian operator, the Laplace-Beltrami operator is de-
fined as the divergence of the gradient, ∆M f = div grad f . In terms of local coordinates
(x1, . . . , xd) the expression for the Laplace-Beltrami operator becomes

∆M f = det(g)−1/2

(
∂

∂xj
gji det(g)1/2 ∂

∂xi

)
f , (2)

where det(g) denotes the determinant of the Riemannian metric g and gij are the coefficients
of the inverse of g. (2) can be written as

∆M f = aij ∂

∂xi

∂

∂xj
f + bj ∂

∂xj
f , (3)

where aij = gij, bk = −gijΓk
ij, and Γ denote the Christoffel symbols of the Riemannian

metric.

2.3. Lie groups

Let G denote a connected Lie group of dimension d, i.e., a smooth manifold with

a group structure such that the group operations G × G ∋ (x, y)
µ7→ xy ∈ G and G ∋

x ι7→ x−1 ∈ G are smooth maps. If x ∈ G, the left-multiplication map, Lxy, defined by
y 7→ µ(x, y), is a diffeomorphism from G to itself. Similarly, the right-multiplication map
Rxy defines a diffeomorphism from G to itself by y 7→ µ(y, x). Let dLx : TG → TG denote
the pushforward map given by (dLx)y : TyG → TxyG. A vector field V on G is said to be
left-invariant if (dLx)yV(y) = V(xy). The space of left-invariant vector fields is linearly
isomorphic to TeG, the tangent space at the identity element e ∈ G. By equipping the
tangent space TeG with the Lie bracket we can identify the Lie algebra g with TeG. The group
structure of G makes it possible to define an action of G on its Lie algebra g. The conjugation
map Cx := Lx ◦ R−1

x : y 7→ xyx−1, for x ∈ G, fixes the identity e. Its pushforward map at e,
(dCx)e, is then a linear automorphism of g. Define Ad(x) := (dCx)e, then Ad: x 7→ Ad(x)
is the adjoint representation of G in g. The map G × g ∋ (x, v) 7→ Ad(x)v ∈ g is the
adjoint action of G on g. We denote by ⟨·, ·⟩ a Riemannian metric on G. The metric is
said to be left-invariant if ⟨u, v⟩y =

〈
(dLx)yu, (dLx)yv

〉
Lx(y)

, for every u, v ∈ TyG, i.e., the
left-multiplication maps are isometries, for every x ∈ G. The metric is Ad(G)-invariant if
⟨u, v⟩e = ⟨Ad(x)u, Ad(x)v⟩e, for every u, v ∈ g. Note that an Ad(G)-invariant metric on G
is equivalent to a bi-invariant (left- and right-invariant) inner product on g. The differential
of the Ad map at the identity yields a linear map ad(x) = d

dt Ad(exp(tx))|0. This linear
map is equal to the Lie bracket [v, w] = ad(v)w, v, w ∈ g.

A one-parameter subgroup of G is a continuous homomorphism γ : (R,+) → G. The
Lie group exponential map exp : g → G is defined as exp(v) = γv(1), for v ∈ g, where γv
is the unique one-parameter subgroup of G whose tangent vector at e is v. For matrix Lie
groups the exponential map has the particular form: exp(A) = ∑∞

k=0 Ak/k!, for a square
matrix A. The resulting matrix exp(A) is an invertible matrix. Given an invertible matrix B,
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if there exists a square matrix A such that B = exp(A), then A is said to be the logarithm of
B. In general, the logarithm might not exist and if it does it may fail to be unique. However,
the matrix exponential and logarithms can be computed numerically efficient (see [22,
Chapter 5] and references therein). In a neighborhood sufficiently close to the identity the
Lie group logarithm exist and is unique. By means of left-translation (or right-translation),
the Lie group exponential map can be extended to a map expg : TgG → G, for all g ∈ G,
defined by expg(v) = g exp(dLg−1 v). Similarly, the Lie group logarithm at g becomes
logg(v) = dLg log(g−1v).

Example 1. A few examples of Lie groups include the Euclidean space (Rn,+) with the additive
group structure, (R+, ·) the positive real line with a multiplicative group structure, the space of
invertible real matrices GL(n) equipped with a multiplication of matrices forms a Lie group, and
the rotation group O(n), consisting of real orthogonal matrices with determinant one or minus 1
forms a subgroup of GL(n).

The identification of the space of left-invariant vector fields with the Lie algebra g

allows for a global description of ∆G. Indeed, let {v1, . . . vd} be an orthonormal basis of TeG.
Then Vi(g) = (dLg)evi defines left-invariant vector fields on G and the Laplace-Beltrami
operator can be written as (cf. [23, Proposition 2.5])

∆G f (e) =
d

∑
i=1

V2
i f (e)− V0 f (e),

where V0 = ∑d
i,j=1 Cj

ijVj and Ck
ij denote the structure coefficients given by

[Vi, Vj] = Ck
ijVk. (4)

By the left-invariance, the formula for the Laplace-Beltrami operator holds globally, i.e.,
∆G f (g) = ∆G f ◦ Lg(e) =

(
dLg

)
e∆G f (e).

2.4. Homogeneous spaces

A homogeneous space is a particular type of quotient manifold that arises as a smooth
manifold endowed with a transitive smooth action by a Lie group G. The homogeneous
space is called a G-homogeneous space to indicate the Lie group action. All G-homogeneous
spaces arise as a quotient manifold G/H, for some closed subgroup H ⊆ G. H is a closed
subgroup of the Lie group G which makes H into a Lie group. Any homogeneous space
is diffeomorphic to the quotient space G/Gx, where Gx is the stabilizer for the point x.
The dimension of the G-homogeneous space is equal to dim G − dim H the quotient map
π : G → G/H is a smooth submersion, i.e., the differential of π is surjective at every point.
This implies that the fibers π−1(x), x ∈ M are embedded submanifolds of G. We assume
throughout that G acts on itself by left-multiplication.

Example 2. The rotation group SO(n) acts transitively on Sn−1, therefore Sn−1 is a SO(n)-
homogeneous space. Consider a point in S−1 as a vector in Rn. Rotations that fix the point occur
precisely in the subspace orthogonal to the vector. Thus, the stabilizer or isotropy group is the
rotation group SO(n − 1) and Sn−1 = SO(n)/SO(n − 1).

The set of invertible matrices with positive determinant GL+(n) acts on symmetric positive
definite matrices SPD(n). The isotropy group is the rotation group SO(n) and thus SPD(n) =
GL+(n)/SO(n).

A particular type of homogeneous space arises when the subgroup is a discrete subgroup of G.
For example, the space Tn = Rn/Zn defines the n-torus as a homogeneous space.
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2.5. Brownian motion on Riemannian manifolds

The Laplacian defines Brownian motion on M as a 1
2 ∆M-diffusion process up to its

explosion time τ. The stochastic differential equation (SDE) for a Brownian motion Xt in
local coordinates is

dXk
t = −1

2
gij(Xt)Γk

ij(Xt)dt + σk
j (Xt)dBj

t, (5)

where σ =
√

g−1 is the matrix square root of g−1.
On Lie groups, an SDE for a Brownian motion on G in terms of left-invariant vector

fields takes the form

dgt = −1
2

V0(gt)dt + Vi(gt) ◦ dBi
t, g0 = e, (6)

where ◦ denotes integration in the Stratonovich sense. By [23, Proposition 2.6], if the
inner product is Ad(G) invariant, then V0 = 0. The solution of (6) is conservative or
non-explosive and is called the left-Brownian motion on G (see [24] and references therein).

2.6. Brownian bridges

In this section, we briefly review some facts on Brownian bridges on Riemannian
manifolds, including Lie groups. On Lie groups, the existence of left-invariant (resp. right-
invariant) vector fields allows identification of the Lie algebra with the vector space of
left-invariant vector fields making the Lie group parallelizable. This allows constructing
general semimartingales directly on the Lie groups.

Let Pt
x = Px|Ft be the measure of a Riemannian Brownian motion, Xt, at some time t

started at point x. Let pt denote the transition density of Xt so that dPt
x = pt(x, y)d Vol(y)

with d Vol(y) the Riemannian volume measure. Conditioning the Riemannian Brownian
motion to hit some point v ∈ M at time T > 0 defines a Riemannian Brownian bridge. We
let PT

x,v denote the corresponding probability measure. The two measures are absolutely
continuous (equivalent) over the time interval [0, T), however mutually singular at time
t = T. This is an obvious consequence of the fact that Px(XT = v) = 0, whereas PT

x,v(XT =
v) = 1. The corresponding Radon-Nikodym derivative is

dPT
x,v

dPx

∣∣
Fs

=
pT−s(Xs, v)

pT(x, v)
for 0 ≤ s < T, (7)

which is a martingale for s < T. The Radon-Nikodym derivative defines the density for the
change of measure, and it provides the conditional expectation

E[F(Xt)|XT = v] =
E[pT−t(Xt, v)F(Xt)]

pT(x, v)
, (8)

for any bounded and Fs-measurable random variable F(Xs). The Brownian bridge is a
non-homogeneous diffusion on M with infinitesimal generator

Ls f (z) =
t
2

∆M f (z) + t∇z log pt(1−s)(z, v) · ∇ f (z).

The bridge can be described by an SDE in the frame bundle FM of M. Let Ut be a lift of
Xt = πFM(Ut) and, using the horizontal vector fields Hi, . . . , Hd, we have

dUt = Hi(Ut) ◦
(

dBi
t +
(

U−1
t

(
π∗
(
∇H

u|u=Ut
log p̃T−t(u, v)

)))i
dt
)

, U0 = u0, (9)

where p̃t(u, v) = pt(π(u), v) denotes the lift of the transition density, B is an Rd-valued
Brownian motion, and (πFM)∗ : TFM → TM is the pushforward of the projection
πFM : FM → M. Her u0 ∈ FM is an orthonormal frame such that πFM(u0) = x0.
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It is possible to simulate from the conditioned process directly for specific homo-
geneous spaces. As an example, we mention the case of the flat torus T2 considered a
homogeneous space of R2 with fibers the set of integers Z2. In this case, a Brownian motion
in T2 conditioned at a point in T2 lifts to a bridge in R2 conditioned on a set of points
isomorphic to Z2.

A generalization of Riemannian Brownian bridges can be found in Thompson [15].
Brownian bridges to submanifolds are here introduced by considering the transition density
on a Riemannian manifold M defined by

pt(x, N) :=
∫

N
pt(x, y)d VolN(y), (10)

where N ⊂ M is a submanifold of M and VolN denotes the volume measure on N. These
processes are denoted Fermi bridges. They have infinitesimal generator

1
2 ∆ − rN

T−t
∂

∂rN
, (11)

where rN(·) := d(·, N) = infy∈N d(·, y) and ∂
∂rN

= ∇d(·, N). The resulting conditional
expectation becomes

E[ f (Xt)|XT ∈ N] =
E[pT−t(Xt, N) f (Xt)]

pT(x, N)
, (12)

which holds for all bounded Ft-measurable random variables f (Xt). [25] exploited the
above idea to estimate diffusion means on manifolds by conditioning on the diagonal of a
product manifold. In the current paper, the fibers of homogeneous spaces are embedded
submanifolds of a Lie group and a simulation scheme on homogeneous spaces are obtained
by conditioning on the fibers.

2.7. One-point motions

Consider the homogeneous space M = G/H, where H is a Lie subgroup of the Lie
group G and let π : G → M denote the canonical projection. Suppose that G acts on M
on the left and that gt is a process in G. As described in Liao [23], we obtain an induced
process in M induced by the process gt in G. For any x ∈ M, the induced process xt = gtx
defines the one-point motion of gt in M, with initial value x.

The one-point motion, Xt = gtx, of a Brownian motion gt in G, started at g0 = e, is
only a Brownian motion in M under certain regularity conditions (see [23, Proposition 2.7]).
In the case of a bi-invariant metric, a Brownian motion on G maps to a Brownian motion in
M through its one-point motion. One-point processes might not even preserve the Markov
property in the general case.

2.8. Pushforward measures

Let π : G → M be the projection to the homogeneous space M = G/H. Then π is
a measurable map, and, if µ is a measure on G, the pushforward of µ by π, defined by
π∗µ(B) = µ

(
π−1(B)

)
, for all measurable subsets B ⊆ M, is a measure on M. A numerical

example is provided in Figure 1 showing anisotropic distributions on the homogeneous
space S2 obtained from pushing forward Brownian motions of a non-invariant metric on
the top space SO(3).

The Riemannian volume measure VolG on G decomposes into a product measure
consisting of the volume measure on fibers in G, e.g. π−1(z), and the volume measure
on its horizontal complement, i.e., d VolG = d Volπ−1(z) d Vol|H(z), where d Vol|H is the
horizontal restriction of the volume measure in G. The measure of a process gt on G pushes
forward to M, and we denote the corresponding density wrt. the volume measure on M
for pM

t . Then pM
t (x) =

∫
π−1(x) pG

t (g0, y)d Volπ−1(z)(y).
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Lemma 1. Let gt be a Markov process on G, started at g0 ∈ G, with density pG
t (g0, ·), and let

Xt = π(gt). The conditional expectation on M satisfies

E[ f (X)|XT = v] = E
[

f (X)
pM

T−t(Xt, v)

pM
T (x0, v)

]
,

for all bounded, continuous, and non-negative Ft-measurable f on M. Furthermore,

E[ f̃ (g)|gT ∈ N] = E[ f (X)|XT = v],

where f̃ = f ◦ π.

Proof. Let f be a bounded, continuous, and non-negative measurable function on M, and
let f̃ = f ◦ π. Then it follows directly from (7) and (12) that

E[ f̃ (g)|gT ∈ N] =E
[

f (π(g))
pG

T−t(gt, N)

pG
T (g0, N)

]
= E

[
f (π(gt))

pG
T−t(gt, π−1(v))

pG
T (g0, π−1(v))

]

=E
[

f (π(gt))
π∗pG

T−t(gt, v)

π∗pG
T (g0, v)

]
= E

[
f (Xt)

pM
T−t(Xt, v)

pM
T (x0, v)

]
.

3. Simulation of bridges on Lie groups

In this section, we consider the task of simulating (6) conditioned to hit v ∈ G, at
time T > 0. The potentially intractable transition density for the solution of (6) inhibits
simulation directly from (9). Instead, we propose to add a guiding term mimicking that of
Delyon and Hu [5], i.e., the guiding term becomes the gradient of the distance to v divided
by the time to arrival. The SDE for the guided diffusion becomes

dYt = −1
2

V0(Yt)dt + Vi(Yt) ◦


dBi

t −

(
∇y|y=Yt

d(y, v)2
)i

2(T − t)
dt


, Y0 = e, (13)

where d(·, v) denotes the Riemannian distance to v. Note that we can always, for conve-
nience, take the initial value to be the identity e. Equation (13) can equivalently be written
as

dYt = −1
2

V0(Yt)dt + Vi(Yt) ◦
(

dBi
t −

LogYt
(v)i

T − t
dt

)
, Y0 = e,

where Logp is the inverse of the Riemannian exponential map Expp. Figure 2 illustrates one
sample path of the simulation scheme in (13) on the Lie group SO(3) and the corresponding
axis-angle representation is visualized in Figure 3.

The guiding term in (13) is identical to the guiding term described in [7]. However, in
that case, the guided processes used the frame bundle of M. In the Lie group setting, since
Lie groups are parallelizable, the use of the frame bundle is not needed.

Numerical computations of the Lie group exponential map are often computationally
efficient due to existence of certain algorithms (see [26] and references therein). Therefore,
by a change of measures argument, the equation above can be expressed in terms of the
inverse of the Lie group exponential (this process is denoted Y as well)

dYt = −1
2

V0(Yt)dt + Vi(Yt) ◦
(

dB̄i
t −

logYt
(v)i

T − t
dt

)
(14)
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Figure 2. One sample path of the guided bridge process defined by (13) visualized by its action on
basis vectors (red, blue, green) of R3. The bridge is conditioned on the rotation indicated by the black
arrows.
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Figure 3. Angle-axis representation of the guided bridge defined by (13). (Left) The projection of the
path in SO(3) to S2. The trajectory on S2 correspond to the motion of the tip of the blue vector as seen
in Figure 2. (Right) The angle representation of the guided bridge in SO(3).

Y0 = e, where B̄ is a Brownian motion under a new measure, say P̄. The measure P̄ can
explicitly be expressed as

dP̄
dP |Ft = exp

[
−
∫ t

0
Hv(s, Ys)−

1
2

∫ t

0

∥logYs
(v)− LogYs

(v)∥2
Ys

(T − s)2 ds
]

,

where P denotes the law of the SDE in (13) and

Hv(t, Yt) =

〈(logYt
(v)− LogYt

(v)
)

T − t
, V(Yt)dBt

〉

Yt

.

The Radon-Nikodym derivative above is a martingale, whenever the group logarithm
and the Riemannian logarithm coincide. This is for example the case when the metric is
bi-invariant.
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3.1. Radial process

We now aim to investigate the relation between the bridge measure and the above
simulation schemes. Let rv(·) := d(·, v) be the distance to v such that rv(gt) is the the
radial process. Due to the singularities of the radial process on Cut(v) ∪ {v}, the usual
Itô’s formula only applies on subsets away from the cut-locus. The extension beyond
the cut-locus of a Brownian motion’s radial process was due to Kendall [27]. Barden and
Le [28,29] generalized the result to M-valued semimartingales. The radial process of the
Brownian motion (6) is given by

rv(gt) = rv(g0)
2 +

∫ t

0

〈
∇gs rv(gs), V(gs)dBs

〉
gs
+

1
2

∫ t

0
∆Grv(gs)ds − Lv

s (g), (15)

where Lv is the geometric local time of the cut-locus Cut(v), which is non-decreasing
continuous random functional increasing only when g is in Cut(v) (see [27–29]). Let
Wt :=

∫ t
0

〈
∂
∂r , Vi(gs)

〉
dBi

s, which is the local-martingale part in the above equation. The
quadratic variation of Wt satisfies d[W, W]t = dt, by the orthonormality of {V1, . . . , Vd},
thus Wt is a Brownian motion by Levy’s characterization theorem. From the stochastic
integration by parts formula and (15), the squared radial process of g satisfies

rv(gt)
2 = rv(g0)

2 + 2
∫ t

0
rv(gs)dWs +

∫ t

0
rv(gs)∆Grv(gs)ds − 2

∫ t

0
r(gs)dLv

s , (16)

where dLv
s is the random measure associated to Lv

s (X).
Similarly, we obtain an expression for the squared radial process of Y. The radial

process becomes

r2
v(gt) = rv(g0)

2 + 2
∫ t

0
rv(gs)dWs +

∫ t

0

1
2

∆Grv(gs)
2ds −

∫ t

0

rv(gs)2

T − s
ds − 2

∫ t

0
rv(gs)dLv

s .

(17)
Imposing a growth condition on the radial process yields an L2-bound on the radial process
of the guided diffusion, [15]. So assume there exist constants ν ≥ 1 and λ ∈ R such that
1
2 ∆Gr2

v ≤ ν + λr2
v on D\Cut(v), for every regular domain D ⊆ G. Then (17) satisfies

E[1t<τD rv(Yt)
2] ≤

(
r2

v(e) + νt
(

t
T − t

))(
T − t

t

)2
eλt, (18)

where τD is the first exit time of Y from the domain D.

3.2. Girsanov change of measure

Let Bt be a d-dimensional Brownian motion defined on a filtered probability space

(Ω,F , (Fs)s≥0,P) and let gt be a solution of (6). The process ∇rv(gt)
2

2(T−t) is an adapted process.
As gt is non-explosive, we see that

∫ t

0

∥∥∥∥
∇rv(gs)2

2(T − s)

∥∥∥∥
2

ds =
∫ t

0

rv(gs)2

(T − s)2 ds ≤ C, (19)

for every 0 ≤ t < T, almost surely, and for some fixed constant C > 0. Define a new
measure Q by

Zt :=
dQ
dP

∣∣∣∣
Ft

(g) = exp
[
−
∫ t

0

〈∇rv(gs)2

2(T − s)
, V(gt)dBs

〉
− 1

2

∫ t

0

rv(gs)2

(T − s)2 ds
]

. (20)

From (19), the process Zt is a martingale, for t ∈ [0, T), and Qt defines a probability measure
on each Ft absolutely continuous with respect to P. By Girsanov’s theorem (see e.g. [30,
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Theorem 8.1.2]), we get a new process bs which is a Brownian motion under the probability
measure Q. Moreover, under the probability Q, equation (6) becomes

dYt = −1
2

V0(Yt)dt + Vi(Yt) ◦
(

dbi
t −

rv(Yt)

T − t

(
∂

∂rv

)i
dt

)
, (21)

where
(

∂
∂r

)i
is the i’th component of the unit radial vector field in the direction of v. The

squared radial vector field is smooth away from Cut(v) and thus we set it to zero on Cut(v).
Away from Cut(v), the squared radial vector field is 2 Logv. The added drift term acts as a
guiding term, which pulls the process towards v at time T > 0.

From (20), we see that E[ f (Yt)] = E[ f (gt)Zt]. Using (16) and the identity ∆Grv =
d−1
rv

+ ∂
∂rv

log Θv, θv being the Jacobian determinant of Expv (see e.g. [31]), we equivalently
write E[ f (Yt)φt] = E[ f (Xt)ψt], with

ψt,v := exp
[ −r2

v(gt)

2(T − t)

]
φt,v := exp

[∫ t

0

rv(Ys)

T − s
(dAv

s + dLv
s )

]
, (22)

where dAv
s = ∂

∂rv
log θ−1/2

v (Ys)ds is a random measure supported on G\Cut(v), and dLv
s

the geometric local time at Cut(v).

3.3. Delyon and Hu in Lie groups

We can now generalize the result of Delyon and Hu [5, Theorem 5] to the Lie group
setting. The result here for Lie groups is analogous to the Riemmanian setting as covered
in [7].

Theorem 1. Let gt be a solution of (6). The SDE (13) yields a strong solution on [0, T) and satisfies
limt↑T Yt = v almost surely. Moreover, the conditional expectation of g given gT = v is

E[ f (g)|gT = v] = lim
t↑T

E[ f (Y)φt,v]

E[φt,v]
, (23)

for every Ft-measurable non-negative function f on G, for t ∈ [0, T) where φt is given in (22).

When the geometry of G is particularly simple the equivalence of measures hold on
[0, T], see [7], and the above result reduces to the following.

Corollary 1. When G is simply connected, (23) becomes

E[ f (g)|gT = v] = CE[ f (Y)φT,v], (24)

where C > 0 is a constant, which depends on the initial point, the time T > 0, and the curvature in
the radial direction.

4. Simulation of bridges in homogeneous spaces

We now turn to bridge simulation in homogeneous spaces by sampling bridges in G
conditioned on the fiber over v ∈ M = G/H. We simulate in the top space, that is, bridge
simulation schemes on the Lie group G, and subsequently project to the homogeneous
space M. We will be considering two schemes. Let v ∈ M.

1. Find closest point v̄ in the fiber π−1(v)v and iteratively update v̄ at each time step.
2. Sample k-points {v̄1, . . . , v̄k} in fiber above v ∈ M and consider the bridge Y in G

conditioned on YT ∈ {v̄1, . . . , v̄k}.

The motivation for considering the two schemes above derives from [6]. Here, the
simulation of Brownian bridges on the flat torus T2 = R2/Z2 was the focal point. In this
particular geometrical context of T2, the lift of a T2-valued Brownian bridge results in a
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R2-valued Brownian bridge conditioned on a set N ∼= Z2. The first scheme was considered
in [6], where Brownian bridges on the flat torus T2 = R2/Z2 were lifted to bridges in R2.
The second scheme provided a truncated version of the true bridge, for a suitable choice of
k. Such a choice of k is dependent on the time to arrival T > 0 and the diffusivity σ.

We can sample the k points in the fiber N = π−1(v). However, we need to specify
from which distribution in N we sample. One approach to defining a distribution on N uses
the transition density of a Brownian motion. Thus, if there exists a point v ∈ N closest to
g0 ∈ G, i.e., d(v, g0) ≤ d(y, g0), for all y ∈ N, then recording the endpoint BT of a Brownian
motion Bt in N, started at B0 = v corresponds to sampling from a normal distribution in N.
As the time T increases, the distribution tends to be uniform, and the initial starting point
becomes irrelevant. Therefore, if no unique point v ∈ N closest to g0 exists, sampling from
a uniform distribution seems more appropriate.

4.1. Guiding to closest point

Recall that the projection π : G → G/H is a submersion, hence the manifold M = G/H
is an embedded submanifold of G. From Lemma 1, we obtain a conditional expectation
in M by conditioning on the fiber in the Lie group. The corresponding SDE for the Fermi
bridge in the Lie group setting is given by

dYt = −1
2

V0(Yt)dt + Vi(Yt) ◦


dBi

t −

(
∇y|y=Yt

d(y, N)2
)i

2(T − t)
dt


, Y0 = e, (25)

where d(x, N) := infz∈N d(x, z) and N := π−1(v), for some v ∈ M.
The one-point motion conditioned on v ∈ M corresponds to conditioning gt on the

fiber N := π−1(v), and we can use Fermi bridges directly. Because N is an embedded
submanifold of G, we get from Thompson [15] that φt,N is of the form

φt,N := exp
[∫ t

0

rN(Ys)

T − s

(
dAN

s + dLN
s

)]
, (26)

where dAN
s = ∂

∂rN
log Θ−1/2

N (Ys)ds and ΘN = θN ◦
(

Exp |Log(M\Cut(N))

)−1
. Similar to the

single point case, we obtain

E[ f (X)|XT ∈ N] = lim
t↑T

E[ f (Y)φt,N ]

E[φt,N ]
,

for any bounded measurable function f . There are various occasions where it can be
justified to take the limit inside. See the discussion in [32, Appendix C].

4.2. Guiding to k-points in fiber

The guiding scheme presented in (25) requires an optimization step in each time step,
and for practical purposes, this might be computationally inefficient. This section suggests
guiding to a subset of the fiber N, reducing the guided bridge scheme in (25) to a case of
guiding to a finite set of points.

For certain homogeneous spaces, e.g., T2 = R2/Z2, the fiber N = π−1(v) is a discrete
subgroup in G. In this case, the volume measure VolN in (10) is the counting measure and
we can write the density as

pG
t (g, N) = ∑

v∈N
pG

t (g, v).

From a numerical perspective, when the discrete subgroup is large restricting to a smaller
finite subgroup Nk ⊆ N of k-nearest-points of the initial starting point may speed up
computation-time.
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Example 3. To exemplify this, let pt denote the transition density of a standard Brownian motion
in R2. The transition density of the Brownian motion started at the origin is then given as

pt(0, v) = (2πt)−1 exp
(
− ∥v∥2

2t

)
. Let Nk = {(−2,−2), . . . , (2, 2)} ⊆ Z2 be the subset of

five-by-five grid points and let T = 1, then we see

pG
T (0, N) ≈ ∑

v∈Nk

pT(0, v) = (2π)−1
(

1 + 4
(

e−1/2 + e−1 + e−2 + e−4 + 2e−8
))

≈ 0.98.

We recover more than 98% of the total mass when restricting to a finite set of points. If we restricted
the subset to the set of three-by-three grid points Nk = {(−1,−1), . . . , (1, 1)}, the density will
only describe roughly 78% of the total mass. However, if we restricted the time to arrival T = 1/2,
then we would recover 95% of the mass. Thus, we see that both the initial point and the terminal
time will affect the choice of k.

The tractable transition density on the flat torus T2 = R2/Z2 is given by pRT (0, N) =

∑vi∈N pRT (0, vi), where N is a set isomorphic to Z2. The corresponding SDE for the condi-
tioned process is given by [6]

dYt = ∑
vi∈N

fi(t, Yt)
vi − Yt

T − t
dt + dWt, where fi(t, Yt) =

exp
(
− ∥vi−Yt∥2

2t

)

∑vj∈N exp
(
− ∥vj−Yt∥2

2t

) . (27)

By the example above, good numerical approximations can be obtained by restricting to a
finite set of points. We conjecture that a similar type of guided drift can be used, where
the transition density above is exchanged with the transition density of the Riemannian
normal distribution (see e.g. [32]). We do not pursue this approach any further in this
paper. Instead, we propose to sample a point from N from a given distribution on N.

The following result is inspired by the type of conditioning found in van der Meulen
and Schauer [33], Mider, Schauer, and van der Meulen [34], and Arnaudon et al. [35]. We
adopt this type of inexact matching by imposing noise on the conditioning point. The
proposed method alleviates the optimization procedure in each time step to finding the
closest point in the fiber. One immediate application of the result below will be in the
situation where we sample Brownian motions in the fiber, starting at the closest point in
the fiber. Recording the endpoints after some fixed time, we obtain samples from a normal
distribution in the fiber. Therefore, the simulation scheme reduces to conditioning at a
point as described in Section 3, the caveat being that the endpoint is tilted to a specific
distribution. The result below is a theoretical one. We note from the guided bridge scheme
that dPT

x,v/dPx(y) = φT,v/E[φT,v].

Theorem 2. Let g be a Markov process defined on (Ω,F ,P) with values in G, and let pG
t (·, ·) be

its transition density defined by P(gT ∈ du|gt = g) = pG
T−t(g, u)d VolG(u). Assume 0 ≤ t < T

and gT ∼ fu0 · VolN (e.g., normal/uniform distribution on fiber over v) under the probability
measure Pg0 started at g0. The conditional law of gt given gT = v, PT

g0,v, has density wrt. the
reference measure d VolG given by

pG
T−t(z, v)pG

t (z, g0)

pG
T (g0, v)

, (28)

and the simultaneous distribution of (Xt, XT) has density given by

P(gt ∈ dg, gT ∈ du)
d VolN(u)d VolG(g)

= fu0(u)
pG

T−t(z, u)pG
t (z, g)

pG
T (g0, u)

. (29)
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Furthermore, if we define the h-function as

h(t, gt) =

∫
fu0(u)

pG
T−t(gt ,u)
pG

T (g0,u)
d VolN(u)

∫
N fu0(x)d VolN(x)

, (30)

then for any non-negative measurable functional F we have

EQ[F(g)] = EP[h(t, gt)F(g)] =
∫

EP[F(g)|gT = u]
fu0(u)∫

N fu0(x)d VolN(x)
d VolN(u).

The conditional distribution of Xt given XT has density

kt(g, u) =
fu0(u)∫

N fu0(x)d VolN(x)
pG

T−t(z, u)pG
t (z, g)

pG
T (g0, u)

, (31)

with respect to the volume measure VolN . If the distribution gT(P) has full mass in the fiber N, i.e.,
gT(P)(N) =

∫
N f dVol = 1 the term above simplifies.

Proof. The fact that (28) is the conditional density wrt. d VolG, the volume measure on G,
follows from (7), since dPt

g = pt(g, z)d VolG(z) and therefore

dPT
g0,v(gt) =

pG
T−t(z, v)pG

t (g0, z)

pG
T (g0, v)

d VolG(z).

Hence (29) follows.
For the second part take h as defined in (30). Without loss of generality assume that

gT(P)(N) = 1. Note that h is a martingale with h(0, g0) = 1, since g is a Markov process
and

E[h(t, gt)|gs] =
∫

pG
t−s(gs, z)h(t, z)d VolG(z)

=
∫

pG
t−s(gs, z)

∫
fu0(x)

pG
T−t(z, x)

pG
T (g0, x)

d VolN(x)d VolG(z)

=
∫

fu0(x)
pG

T−s(gs, x)

pG
T (g0, x)

d VolN(x) = h(s, gs)

together with

E[h(t, gt)] =
∫

fu0(x)
pG

T (g0, x)
pG

T (g0, x)
d VolN(x) = 1.

Since limt↓0
∫

pG
t (g0, z) f (z)d VolG(z) = f (g0), for any bounded continuous function f ,

Fatou’s lemma ensures that E[h(T, gT)] = 1

1 = lim sup
t↑T

E[h(t, gt)] ≤ E
[

lim sup
t↑T

h(t, gt)

]

=
∫

G
lim sup

t↑T

∫
fu0(x)

pG
T−t(z, x)

pG
T (g0, x)

d VolN(x)d VolG(z)

=
∫

G

fu0(z)
pG

T (g0, z)
d VolG(z) =

∫

G
lim inf

t↑T

∫
fu0(x)

pG
T−t(z, x)

pG
T (g0, x)

d VolN(x)d VolG(z)

≤ lim inf
t↑T

E[h(t, gt)] = 1.
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Hence h is a true martingale on [0, T] and thus defines a new probability measure Q on F
by dQ

dP |Ft(g) = h(t, gt).
For the second part of the proof, assume, temporarily, that F is a measurable function

such that

EP[h(t, gt)F(gt)] =
∫

pG
t (g0, z)h(t, z)F(z)d VolG(z)

=
∫ ∫ pG

T−t(z, x)pG
t (g0, z)

pG
T (g0, x)

F(z)d VolG(z) f (x)d VolN(x)

=
∫ ∫

F(z)dPT
g0,x(z) fu0(x)d VolN(x) =

∫
EP[F(gt)|gT = x] fu0(x)d VolN(x).

In order to conclude, we need to show that for any finite distribution (Xt1 , . . . , Xtn)

EP[h(t, Xt)F(Xt1 , . . . , Xtn)] =
∫

EP[F(Xt1 , . . . , Xtn)|XT = u] fu0(u)d VolN(u).

Therefore, let 0 < t1 < · · · < tn < T and t ∈ (tn, T). Define ΦF similar to how it was
defined in [7]. Then

EP[h(t, Xt)F(Xt1 , . . . , Xtn)] =
∫

G
h(t, x)ΦF(t, x)d VolG(x)

=
∫

fu0(u)
∫

F(z)P(z, x, u)d Vol(z)d Vol(x)d Vol(u)

=
∫

EP[F(Xt1 , . . . , Xtn)|XT = u] fu0(u)d VolN(u),

where z = (z1, . . . , zn) and d Vol(z) = d Vol(z1) . . . d Vol(zn) and where

P(z, x, u) =
pG

t1
(x0, z1) . . . pG

t−tn
(zn, x)pG

T−t(x, u)

pG
T (x0, u)

.

Assume that the constants ci exist. We can obtain estimates of the constants ci via
simulation of sample paths of the guided process. Let yi

t = Yt(ωi) be realizations of the
guided bridge process. We can then use the estimator

φ̄T,vi (y) =
1
m

m

∑
n=1

exp
[∫ T

0

rvi (y
n
s )

T − s
(
dAvi

s + dLvi
s
)]

(32)

to approximate the constants ci = E[φT,vi ]. Algorithm 1 provides a method for obtaining
k-points in the fiber N, together with the normalizing constants, when N is connected and
compact.

5. Maximum Likelihood Estimation

For a manifold-valued Brownian motion recall (5), which describes the Brownian
motion locally in a chart. The diffusion coefficient is the matrix square root of the cometric
tensor, i.e., the inverse metric tensor. As seen in Figure 1, the pushforward measure of a
Brownian motion generated by a non-invariant metric induces anistotropic distributions
on the quotient space. We aim to estimate the underlying metric by an MLE approach.

Consider observations y1, . . . , yn on G or G/H obtained from distributions Pt
θ or π∗Pt

θ ,
with parameters θ = (g, A), and corresponding densities pt(·|θ) and π∗pt(·|θ). Here
A−1 = Σ is the inverse covariance matrix and Σ = σσT . We can define the likelihood
function as

L(θ|y1, . . . , yn; T) =
n

∏
i=1

pT(yi|θ), (33)
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Algorithm 1: Stochastic Metropolis-Hastings Algorithm

// Initialization
Choose initial point e ∈ G and v1 ∈ N closest to e. Simulate a guided bridge
process to v1 and obtain an estimate of E[φT,v1 ].
// Main loop
while k points not reached do

// Step 1:
Propose u from the proposal density fvi (u) (e.g. uniform density in N centered
at vi or normal density in N centered at vi) and sample estimator for E[φT,u]

// Step 2:

Calculate the acceptance ratio g(u, vi) = min
{

1, fu(vi)qT(x0,u)φ̄T,u
fvi (u)qT(x0,vi)φ̄T,vi

}
(Note that

if f is symmetric it cancels out in the acceptance probability)
// Step 3
Accept with probability g(u, vi) and set vi+1 = u as well as ci+1 = φ̄T,vi+1

otherwise do nothing.
end
// Output:
{(v1, c1), . . . , (vk, ck)}

and similarly π∗L = ∏ π∗p. The bridge sampling scheme introduced above yields ap-
proximations of the intractable transition densities in 33. Algorithm 2 provides a detailed
description for the iterative MLE approach. Visual examples of the iterative MLE can be
found in Figure 4 and 6.

Algorithm 2: Parameter Estimation: Iterative MLE.

// Initialization
Given n data points {v1, . . . , vn}.
// Specify initial parameters θ0 = (g0, A0) and a learning rate η.

for k = 1 to K do
for j = 1 to n do

Sample m bridges from (13) conditioned on vj to get estimate for
E[φT,vj ] ≈ 1

m ∑m
i=1 φi

T,vj

end

ℓθk−1
(v1, . . . , vn) = ∏n

j=1

(
det Ak−1(T,vj)

2πT

)3/2
e−

∥Logvj
(gk−1)∥2

Ak−1
2T 1

m ∑m
i=1 φi

T,vj

// Compute the gradient
ξk = ∇θk−1

log ℓθk−1
(v1, . . . , vn)

// Update the parameters

θk = θk−1 − ηξk
end
// Return final parameters θK = (gK, AK)

6. Experiments

In this section, we present numerical results of bridge sampling on specific Lie groups
and homogeneous spaces. The specific Lie groups in question are the three-dimensional
rotation group SO(3) and the general linear group of invertible matrices with positive
determinant GL+(3). Exploiting the bridge sampling scheme described above, we show
below how to estimate the true underlying metric on SO(3) with iterative maximum
likelihood estimation.
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The space of the symmetric positive definite matrices SPD(n) is an example of a non-
linear space in which geometric data appear in many applications. The space SPD(3) can be
obtained as the homogeneous space GL+(3)/SO(3), where GL+ is the space of invertible
matrices with a positive determinant.

Lastly, considering the two-sphere S2 as the homogeneous space SO(3)/SO(2), we
verify that the bridge sampling scheme on this homogeneous space yields admissible heat
kernel estimates on S2.

6.1. Numerical simulations

The Euler-Heun scheme leads to approximation of the Stratonovich integral. With a
time discretization t1, . . . , tk, tk − tk−1 = ∆t and corresponding noise ∆Bti ∼ N(0, ∆t), the
numerical approximation of the Brownian motion (6) takes the form

xtk+1 = xtk −
1
2 ∑

j,i
Cj

ijVi(xtk )∆t +
vtk+1 + Vi(vtk+1 + xtk )∆Bi

tk

2
(34)

where vtk+1 = Vi(xtk )∆Bi
tk

is only used as an intermediate value in integration. Adding the
logarithmic term in (21) to (34) we obtain a numerical approximation of a guided diffusion
(13).

6.2. Importance sampling and metric estimation on SO(3)

This section takes G as the special orthogonal group SO(3), the space of three-
dimensional rotation matrices. The special orthogonal group is a compact connected
matrix Lie group. In the context of matrix Lie groups, computing left-invariant vector fields
is straightforward. The Lie algebra of the rotation group SO(3) is the space of three-by-three
skew symmetric matrices, so(3). The exponential map exp : so(3) → SO(3) coincides with
the usual matrix exponential eA. With a ∈ R3, we can express any element A ∈ so(3) in
terms of the standard basis {e1, e2, e3} of R3 as

A =




0 −a3 a2
a3 0 −a1
−a2 a1 0


.

Let θ = ∥a∥2 and assume that θ ̸= 0. By Rodrigues’ formula the matrix Lie group exponen-
tial map exp : so(3) → SO(3) is given by

R := eA = I +
sin(θ)

θ
A +

(1 − cos(θ))
θ2 A2

and the corresponding inverse matrix Lie group exponential map log : SO(3) → so(3)

log(R) =
sin−1(θ)

2θ
(R − RT).

The rotation group SO(3) is a semi-simple Lie group; hence, a bi-invariant inner product ex-
ists. In the case of a bi-invariant metric, the Riemannian exponential map Exp coincides with
the Lie group exponential map exp and thus the Riemannian distance function d(R, I)2 =
∥LogI(R)∥2, from the rotation R to the identity I, satisfies ∇Rd(R, I)2 = 2 log(R).

The structure coefficients of so(3) are particularly simple. Let Ai = A with aj = 1 if
i = j and zero otherwise. In this case, {A1, A2, A3} defines a basis of so(3). The structure
coefficients satisfy the relation [Ai, Aj] = Ck

ij Ak = ϵijk Ak, where ϵijk denotes the Levi-Civita
symbols. The Levi-Civita symbols are defined as +1, for (i, j, k) an even permutation of
(1, 2, 3), −1 for every odd permutation, and zero otherwise.

66 Chapter 3. Bridges in Lie Groups and Homogeneous Spaces



18 of 22

6.3. Numerical bridge sampling algorithm on SO(3)

Utilizing the simple expressions for the structure coefficients and the Lie group loga-
rithmic map, we can explicitly write up the numerical approximation of the guided bridge
processes (Brownian bridge) on SO(3) as

xtk+1 = xtk −
1
2 ∑

j,i
ϵijjVi(xtk )∆t +

vtk+1 + Vi(vtk+1 + xtk )
(

∆Bi
tk
− log(xk)

T−tk
∆t
)

2
, (35)

where in this case we have vtk+1 = Vi(xtk )
(

∆Bi
tk
− log(xk)

T−tk
∆t
)

. Figure 2 illustrates the
numerical approximation by showcasing three different sample paths from the guided
diffusion conditioned to hit the rotation represented by the black vectors.

Another way of visualizing the guided bridge on the rotation group SO(3) is through
the angle-axis representation. Figure 3 represents a guided process on SO(3) by presenting
the axis representation on S2 and its corresponding angle of rotation.

6.4. Metric estimation on the three-dimensional rotation group

In the d-dimensional Euclidean case, importance sampling yields the estimate [9]

pT(u, v) =
(

det(A(T, v))
2πT

) d
2

e−
∥u−v∥2

A
2T E[φT,v],

where ∥x∥A = xT A(0, u)x. Thus, from the output of the importance sampling, we get an
estimate of the transition density. Similar to the Euclidean case, we obtain an expression
for the heat kernel pT(e, v) as pT(e, v) = q(T, e)E[φT,v], where

q(T, g) =
(

det A(v)
2πT

) 3
2

exp
(
−d(g, v)2

2T

)
=

(
det A(T, v)

2πT

) 3
2

exp

(
−
∥Logg(v)∥2

A

2T

)
,

(36)
where the equality holds almost everywhere, and A ∈ Sym+(g) denotes the metric A(e) :=
A(0, e). The Logg map in (36) is the Riemannian inverse exponential map (Expg)

−1.
Figure 4 illustrates how importance sampling on SO(3) leads to a metric estimation of

the underlying unknown metric, which generated the Brownian motion. We sampled 128
points as endpoints of a Brownian motion from the metric diag(0.2, 0.2, 0.8), and used 20
time steps to sample 4 bridges per observation. An iterative MLE method using gradient
descent with a learning rate of 0.2 and an initial guess of the metric being diag(1, 1, 1)
yielded a convergence to the true metric. Note that in each iteration, the logarithmic map
changes as can be seen from Algorithm 2.

6.5. Diffusion-mean estimation on the space of symmetric positive definite matrices

The space of symmetric positive definite (SPD) matrices is used in in a range of applied
fields, one example being diffusion tensor imaging where element of SPD(3) models
anisotropic diffusion of water molecules in each position of the imaged domain. The SPD
matrices constitute a smooth incomplete manifold when endowed with the Euclidean
metric of matrices [26]. However, endowing the space of SPD matrices with either the
Log Euclidean or the Affine invariant metric makes the space geodesically complete, i.e.,
the exponential map is a global diffeomorphism. The space of SPD(3) matrices can be
regarded as the homogeneous space GL+(3)/SO(3) of invertible matrices with positive
determinants being rotationally invariant to three-dimensional rotations. Figure 5 illustrates
the discrete time observations from three different sample paths in SPD(3) arising from the
pushforward of a Fermi bridge in GL+(3).

In Figure 6, the bridge sampling scheme derived above is used to obtain an estimate
of the diffusion-mean [36,37] on SPD(3), by sampling guided bridge processes in the space
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Figure 4. The importance sampling technique applies to estimate the metric on the Lie group SO(3).
Sampling a Brownian motion from an underlying unknown metric, we obtain convergence to the
true underlying metric using an iterative MLE method. Here we sampled 4 guided bridges per
observation, providing a relatively smooth iterative likelihood. (Top left) Estimation of the unknown
underlying metric using bridge sampling, starting from the metric diag(1, 1, 1). Here the true metric
is the diagonal matrix diag(0.2, 0.2, 0.8) represented by the red lines. The diagonal is represented by
the colors diag(purple,blue,yellow). (Top right) The correspondong iterative log-likelihood. (Bottom
left) Estimation of the unknown underlying metric using bridge sampling, starting from the metric
diag(0.5, 0.5, 0.5). (Bottom right) The corresponding iterative log-likelihood.

of invertible matrices with positive determinants GL+(3). This sampling method provides
an estimate of the density on GL+(3), which projects to a density in SPD(3). Exploiting
the resulting density in SPD(3), an iterative MLE method then yields convergence to the
diffusion mean.

6.6. Density estimation on the two-sphere

As explained in Section 4.1, we introduced a simulation scheme on specific homoge-
neous spaces by using guided bridges in the top space conditioned to arrive in the fiber
at time T. The two-sphere S2 can be considered the homogeneous space SO(3)/SO(2) of
three-dimensional rotations, identifying the subgroup of two-dimensional rotations as a
single point. Conditioning on the fiber SO(2) in SO(3), we obtain guided bridges on S2.
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Figure 5. Discrete time observations from three sample paths on SPD(3). The sample paths are
obtained as the pushforward of the Fermi bridge in GL+(3). The start and endpoint are the left- and
rightmost figures, where the SPD matrices are indicated by the bold face arrows.

Code

The code used for the experiments is available in the Theano Geometry software
package 1. The implementation uses automatic differentiation libraries extensively for the
geometry computations as is further described in [38].
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Chapter 4

Mean Estimation on the Diagonal
of Product Manifolds

The paper presented in this chapter was made in collaboration with Stefan
Sommer. The chapter contains the paper

Mathias Højgaard Jensen, Stefan Sommer. “Mean Estimation on the
Diagonal of Product Manifolds”, Algorithms, 2022, Vol.15 (3), p.92.

which was published in the special issue Stochastic Algorithms and their
Applications of the journal Algorithms. The paper introduce a bridge sampling
scheme on an n-fold product manifold conditioned on the diagonal. The paper
is build on the ideas and concepts introduced by Sommer and Bronstein [46]
and Thompson [48]. The Fréchet mean generalizes the Euclidean mean to
non-linear metric spaces using the geometric properties. Computing the
Fréchet mean is often computationally costly when closed-form expressions
for geodesics are unavailable, as it leads to a nested optimization problem.
The diffusion mean is an alternative to the Fréchet mean, defined using a
probabilistic interpretation of the mean [23]. The aim of the paper is to derive
a bridge simulation scheme on product manifolds conditioned on hitting the
diagonal. A single forward simulation yields an estimate of the diffusion mean
which is computationally efficient. We verify the computational efficiency on
a specific data set with annotated landmarks by computing rough running
times and compare them with the computation time for the Fréchet mean.
In contrast, the diffusion mean estimation performed in [45] using direct
optimization of the likelihood approximation with bridge sampling from the
mean candidate to each data point is comparable in complexity to the Fréchet
mean computation.
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Abstract: Computing sample means on Riemannian manifolds is typically computationally costly, as
exemplified by computation of the Fréchet mean, which often requires finding minimizing geodesics
to each data point for each step of an iterative optimization scheme. When closed-form expressions
for geodesics are not available, this leads to a nested optimization problem that is costly to solve.
The implied computational cost impacts applications in both geometric statistics and in geometric
deep learning. The weighted diffusion mean offers an alternative to the weighted Fréchet mean. We
show how the diffusion mean and the weighted diffusion mean can be estimated with a stochastic
simulation scheme that does not require nested optimization. We achieve this by conditioning a
Brownian motion in a product manifold to hit the diagonal at a predetermined time. We develop
the theoretical foundation for the sampling-based mean estimation, we develop two simulation
schemes, and we demonstrate the applicability of the method with examples of sampled means on
two manifolds.

Keywords: diffusion mean; Fréchet mean; bridge simulation; geometric statistics; geometric deep
learning

1. Introduction

The Euclidean expected value can be generalized to geometric spaces in several ways.
Fréchet [1] generalized the notion of mean values to arbitrary metric spaces as minimizers
of the sum of squared distances. Fréchet’s notion of mean values therefore naturally
includes means on Riemannian manifolds. On manifolds without metric, for example,
affine connection spaces, a notion of the mean can be defined by exponential barycenters,
see, e.g., [2,3]. Recently, Hansen et al. [4,5] introduced a probabilistic notion of a mean,
the diffusion mean. The diffusion mean is defined as the most likely starting point of a
Brownian motion given the observed data. The variance of the data is here modelled in
the evaluation time T > 0 of the Brownian motion, and Varadhan’s asymptotic formula
relating the heat kernel with the Riemannian distance relates the diffusion mean and the
Fréchet mean in the T → 0 limit.

Computing sample estimators of geometric means is often difficult in practice. For
example, estimating the Fréchet mean often requires evaluating the distance to each sample
point at each step of an iterative optimization to find the optimal value. When closed-
form solutions of geodesics are not available, the distances are themselves evaluated by
minimizing over curves ending at the data points, thus leading to a nested optimization
problem. This is generally a challenge in geometric statistics, the statistical analysis of
geometric data. However, it can pose an even greater challenge in geometric deep learning,
where a weighted version of the Fréchet mean is used to define a generalization of the
Euclidean convolution taking values in a manifold [6]. As the mean appears in each
layer of the network, closed-form geodesics is in practice required for its evaluation to be
sufficiently efficient.
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As an alternative to the weighted Fréchet mean, Ref. [7] introduced a corresponding
weighted version of the diffusion mean. Estimating the diffusion mean usually requires
ability to evaluate the heat kernel making it often similarly computational difficult to
estimate. However, Ref. [7] also sketched a simulation-based approach for estimating
the (weighted) diffusion mean that avoids numerical optimization and estimation of the
heat kernel. Here, a mean candidate is generated by simulating a single forward pass of
a Brownian motion on a product manifold conditioned to hit the diagonal of the product
space. The idea is sketched for samples in R2 in Figure 1.

µ̂

M

M N

Figure 1. (left) The mean estimator viewed as a projection onto the diagonal of a product mani-
fold. Given a set x1, . . . , xn ∈ M, the tuple (x1, . . . , xn) (blue dot) belongs to the product manifold
M× · · · ×M. The mean estimator µ̂ can be identified with the projection of (x1, . . . , xn) onto the
diagonal N (red dot). (right) Diffusion mean estimator in R2 using Brownian bridges conditioned
on the diagonal. Here a Brownian bridge Xt = (X1,t, . . . , X4,t) in R8 is conditioned on hitting the
diagonal N ⊆ R8 at time T > 0. The components Xj each being two-dimensional processes are
shown in the plot.

Contribution

In this paper, we present a comprehensive investigation of the simulation-based mean
sampling approach. We provide the necessary theoretical background and results for the
construction, we present two separate simulation schemes, and we demonstrate how the
schemes can be used to compute means on high-dimensional manifolds.

2. Background

We here outline the necessary concepts from Riemannian geometry, geometric statistics,
stochastic analysis, and bridge sampling necessary for the sampling schemes presented
later in the paper.

2.1. Riemannian Geometry

A Riemannian metric g on a d-dimensional differentiable manifold M is a family of
inner products (gp)p∈M on each tangent space Tp M varying smoothly in p. The Riemannian
metric allows for geometric definitions of, e.g., length of curves, angles of intersections,
and volumes on manifolds. A differentiable curve on M is a map γ : [0, 1] → M for
which the time derivative γ′(t) belongs to Tγt M, for each t ∈ (0, 1). The length of the
differentiable curve can then be determined from the Riemannian metric by L(γ) :=∫ 1

0

√
gγt(γ

′(t), γ′(t))dt =
∫ 1

0 ‖γ′(t)‖γt dt. Let p, q ∈ M and let Γ be the set of differentiable
curves joining p and q, i.e., Γ = {γ : [0, 1]→ M|γ(0) = p and γ(1) = q}. The (Riemannian)
distance between p and q is defined as d(p, q) = minγ∈Γ L(γ). Minimizing curves are
called geodesics.

A manifold can be parameterized using coordinate charts. The charts consist of open
subsets of M providing a global cover of M such that each subset is diffeomorphic to
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an open subset of Rd, or, equivalently, Rd itself. The exponential normal chart is often a
convenient choice to parameterize a manifold for computational purposes. The exponential
chart is related to the exponential map expp : Tp M → M that for each p ∈ M is given by
expp(v) = γv(1), where γv is the unique geodesic satisfying γv(0) = p and γ′v(0) = v.
For each p ∈ M, the exponential map is a diffeomorphism from a star-shaped subset
V centered at the origin of Tp M to its image expp(V) ⊆ M, covering all M except for a
subset of (Riemannian) volume measure zero, Cut(p), the cut-locus of p. The inverse map
logp : M\Cut(p)→ Tp M provides a local parameterization of M due to the isomorphism

between Tp M and Rd. For submanifolds N ⊆ M, the cut-locus Cut(N) is defined in a
fashion similar to Cut(p), see e.g., [8].

Stochastic differential equations on manifolds are often conveniently expressed using
the frame bundle FM, the fiber bundle which for each point p ∈ M assigns a frame or
basis for the tangent space Tp M, i.e., FM consists of a collection of pairs (p, u), where
u : Rd → Tp M is a linear isomorphism. We let π denote the projection π : FM→ M. There
exist a subbundle of FM consisting of orthonormal frames called the orthonormal frame
bundle OM. In this case, the map u : Rd → Tp M is a linear isometry.

2.2. Weighted Fréchet Mean

The Euclidean mean has three defining properties: The algebraic property states the
uniqueness of the arithmetic mean as the mean with residuals summing to zero, the
geometric property defines the mean as the point that minimizes the variance, and the
probabilistic property adheres to a maximum likelihood principle given an i.i.d. assumption
on the observations (see also [9] Chapter 2). Direct generalization of the arithmetic mean to
non-linear spaces is not possible due to the lack of vector space structure. However, the
properties above allow giving candidate definitions of mean values in non-linear spaces.

The Fréchet mean [1] uses the geometric property by generalizing the mean-squared
distance minimization property to general metric spaces. Given a random variable X on a
metric space (E, d), the Fréchet mean is defined by

µ = arg min
p∈E

E
[
d(p, X)2

]
. (1)

In the present context, the metric space is a Riemannian manifold M with Riemannian
distance function d. Given realizations x1, . . . , xn ∈ M from a distribution on M, the
estimator of the weighted Fréchet mean is defined as

µ̂ = arg min
p∈M

n

∑
i=1

wid(p, xi)
2, (2)

where w1, . . . , wn are the corresponding weights satisfying wi > 0 and ∑i wi = 1. When the
weights are identical, (2) is an estimator of the Fréchet mean. Throughout, we shall make
no distinction between the estimator and the Fréchet mean and will refer to both as the
Fréchet mean.

In [6,10], the weighted Fréchet mean was used to define a generalization of the Eu-
clidean convolution to manifold-valued inputs. When closed-form solutions of geodesics
are available, the weighted Fréchet mean can be estimated efficiently with a recursive
algorithm, also denoted an inductive estimator [6].

2.3. Weighted Diffusion Mean

The diffusion mean [4,5] was introduced as a geometric mean satisfying the prob-
abilistic property of the Euclidean expected value, specifically as the starting point of a
Brownian motion that is most likely given observed data. This results in the diffusion
t-mean definition

µt = arg min
p∈M

E[− log pt(p, X)], (3)
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where pt(·, ·) denotes the transition density of a Brownian motion on M. Equivalently,
pt denotes the solution to the heat equation ∂u/∂t = 1

2 ∆u, where ∆ denotes the Laplace-
Beltrami operator associated with the Riemannian metric. The definition allows for an
interpretation of the mean as an extension of the Fréchet mean due to Varadhan’s result
stating that limt→0−2t log pt(x, y) = d(x, y)2 uniformly on compact sets disjoint from the
cut-locus of either x or y [11].

Just as the Fréchet mean, the diffusion mean has a weighted version, and the corre-
sponding estimator of the weighted diffusion t-mean is given as

µ̂t = arg min
p∈M

n

∑
i=1
− log pt/wi

(p, xi). (4)

Please note that the evaluation time is here scaled by the weights. This is equivalent to
scaling the variance of the steps of the Brownian motion [12].

As closed-form expressions for the heat kernel are only available on specific manifolds,
evaluating the diffusion t-mean often rely on numerical methods. One example of this
is using bridge sampling to numerically estimate the transition density [9,13]. If a global
coordinate chart is available, the transition density can be written in the form (see [14,15])

pT(z, v) =

√
det g(v)
(2πT)2 e−

‖a(z)(z−v)‖2
2T E[ϕ], (5)

where g is the metric matrix, a a square root of g, and ϕ denotes the correction factor
between the law of the true diffusion bridge and the law of the simulation scheme. The
expectation over the correction factor can be numerically approximated using Monte
Carlo sampling. The correction factor will appear again when we discuss guided bridge
proposals below.

2.4. Diffusion Bridges

The proposed sampling scheme for the (weighted) diffusion mean builds on simu-
lation methods for conditioned diffusion processes, diffusion bridges. Here, we outline
ways to simulate conditioned diffusion processes numerically in both the Euclidean and
manifold context.

Euclidean Diffusion Bridges

Let (Ω,F ,Ft,P) be a filtered probability space, and X a d-dimensional Euclidean
diffusion [0, T] satisfying the stochastic differential equation (SDE)

dXt = bt(Xt)dt + σt(Xt)dWt, X0 = x, (6)

where W is a d-dimensional Brownian motion. Let v ∈ Rd be a fixed point. Conditioning
X on reaching v at a fixed time T > 0 gives the bridge process X|XT = v. Denoting this
process Y, Doob’s h-transform shows that Y is a solution of the SDE (see e.g., [16])

dYt = b̃t(Yt)dt + σt(Yt)dW̃t, Y0 = x

b̃t(y) = bt(y) + at(y)∇y log pT−t(y, v),
(7)

where pt(·, ·) denotes the transition density of the diffusion X, a = σσT , and where W̃ is
a d-dimensional Brownian motion under a changed probability law. From a numerical
viewpoint, in most cases, the transition density is intractable and therefore direct simulation
of (7) is not possible.
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If we instead consider a Girsanov transformation of measures to obtain the system
(see, e.g., [17] Theorem 1)

dYt = b̃t(Yt)dt + σt(Yt)dW̃t, Y0 = x

b̃t(y) = bt(y) + σt(y)h(t, y),
(8)

the corresponding change of measure is given by

dPh

dP

∣∣∣∣
Ft

= e
∫ t

0 h(s,Xs)TdWs− 1
2
∫ t

0 ‖h(s,Xs)‖2ds. (9)

From (7), it is evident that h(t, x) = σT∇x log pT−t(x, v) gives the diffusion bridge.
However, different choices of the function h can yield processes which are absolutely
continuous regarding the actual bridges, but which can be simulated directly.

Delyon and Hu [17] suggested to use h(t, x) = σ−1
t (x)∇x log qT−t(x, v), where q

denotes the transition density of a standard Brownian motion with mean v, i.e., qt(x, v) =
(2πt)−d/2 exp(−‖x− v‖2/2t). They furthermore proposed a method that would disregard
the drift term b, i.e., h(t, x)) = σ−1

t (x)∇x log qT−t(x, v) − σ−1
t (x)bt(x). Under certain

regularity assumptions on b and σ, the resulting processes converge to the target in the sense
that limt→T Yt = v a.s. In addition, for bounded continuous functions f , the conditional
expectation is given by

E[ f (X)|XT = v] = CE[ f (Y)ϕ(y)], (10)

where ϕ is a functional of the whole path Y on [0, T] that can be computed directly. From
the construction of the h-function, it can be seen that the missing drift term is accounted for
in the correction factor ϕ.

The simulation approach of [17] can be improved by the simulation scheme introduced
by Schauer et al. [18]. Here, an h-function defined by h(t, x) = ∇x log p̂T−t(x, v) is sug-
gested, where p̂ denotes the transition density of an auxiliary diffusion process with known
transition densities. The auxiliary process can for example be linear because closed-form
solutions of transition densities for linear processes are available. Under the appropriate
measure Ph, the guided proposal process is a solution to

dYt = bt(Yt)dt + at(Yt)∇x log p̂T−t(x, v)|x=Yt dt + σt(Yt)dWt. (11)

Note the factor a(t, y) in the drift in (7) which is also present in (11) but not with the
scheme proposed by [17]. Moreover, the choice of a linear process grants freedom to model.
For other choices of an h-functions see e.g., [19,20].

Marchand [19] extended the ideas of Delyon and Hu by conditioning a diffusion
process on partial observations at a finite collection of deterministic times. Where Delyon
and Hu considered the guided diffusion processes satisfying the SDE

dYt = bt(Yt)dt− Yt − v
T − t

dt + σt(Yt)dwt, (12)

for v ∈ Rd over the time interval [0, T], Marchand proposed the guided diffusion process
conditioned on partial observations v1, . . . , vN solving the SDE

dYt = bt(Yt)dt−
n

∑
k=1

Pk
t (Yt)

Yt − uk
Tk − t

1(Tk−εk ,Tk)
dt + σt(Yt)dwt, (13)

where uk is be any vector satisfying Lk(x)uk = vk, Lk a deterministic matrix in Mmk ,n(R)
whose mk rows form a orthonormal family, Pk

t are projections to the range of Lk, and
Tk − εk < Tk. The εk only allow the application of the guiding term on a part of the time
intervals [Tk−1, Tk]. We will only consider the case k = 1. The scheme allows the sampling
of bridges conditioned on LYT = v.
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2.5. Manifold Diffusion Processes

To work with diffusion bridges and guided proposals on manifolds, we will first
need to consider the Eells–Elworthy–Malliavin construction of Brownian motion and the
connected characterization of semimartingales [21]. Endowing the frame bundle FM with
a connection allows splitting the tangent bundle TFM into a horizontal and vertical part. If
the connection on FM is a lift of a connection on M, e.g., the Levi–Civita connection of a
metric on M, the horizontal part of the frame bundle is in one-to-one correspondence with
M. In addition, there exist fundamental horizontal vector fields Hi : FM→ HFM such that
for any continuous Rd-valued semimartingale Z the process U defined by

dUt = Hi(Ut) ◦ dZi
t, (14)

is a horizontal frame bundle semimartingale, where ◦ denotes integration in the Stratonovich
sense. The process Xt := π(Ut) is then a semimartingale on M. Any semimartingale Xt on
M has this relation to a Euclidean semimartingale Zt. Xt is denoted the development of Zt,
and Zt the antidevelopment of Xt. We will use this relation when working with bridges on
manifolds below.

When Zt is a Euclidean Brownian motion, the development Xt is a Brownian motion.
We can in this case also consider coordinate representations of the process. With an
atlas {(Dα, φα)}α of M, there exists an increasing sequence of predictable stopping times
0 ≤ Tk ≤ Tk+1 such that on each stochastic interval JTk, Tk+1K = {(ω, t) ∈ Ω×R+|Tk(ω) ≤
t ≤ Tk+1(ω)} the process xt ∈ Dα, for some α (see [22] Lemma 3.5). Thus, the Brownian
motion x on M can be described locally in a chart Dα ⊂ M as the solution to the system of
SDEs, for (ω, t) ∈ JTk, Tk+1K∩ {Tk < Tk+1}

dxi
t(ω) = bi(xt(ω))dt + σi

j (xt(ω))dW j
t (ω), (15)

where σ denotes the matrix square root of the inverse of the Riemannian metric tensor (gij)
and bk(x) = − 1

2 gij(x)Γk
ij(x) is the contraction over the Christoffel symbols (see, e.g., [11]

Chapter 3). Strictly speaking, the solution of Equation (15) is defined by xi
t = φα(xt)i.

We thus have two concrete SDEs for the Brownian motion in play: The FM SDE (14)
and the coordinate SDE (15).

Throughout the paper, we assume that M is stochastically complete, i.e., the Brownian
motions does not explode in finite time and, consequently,

∫
M pt(x, y)d VolM(y) = 1, for all

t > 0 and all x ∈ M.

2.6. Manifold Bridges

The Brownian bridge process Y on M conditioned at YT = v is a Markov process
with generator 1

2 ∆ +∇ log pT−t(·, v). Closed-form expressions of the transition density
of a Brownian motion are available on selected manifolds including Euclidean spaces,
hyperbolic spaces, and hyperspheres. Direct simulation of Brownian bridges is therefore
possible in these cases. However, generally, transition densities are intractable and auxiliary
processes are needed to sample from the desired conditional distributions.

To this extent, various types of bridge processes on Riemannian manifolds have been
described in the literature. In the case of manifolds with a pole, i.e., the existence of a
point p ∈ M such that the exponential map expp : Tp M → M is a diffeomorphism, the
semi-classical (Riemannian Brownian) bridge was introduced by Elworthy and Truman [23]
as the process with generator 1

2 ∆ +∇ log kT−t(·, v), where

kt(x, v) = (2πt)−n/2e−
d(x,v)2

2t J−1/2(x),

and J(x) = |det Dexp(v)−1 expv | denotes the Jacobian determinant of the exponential map
at v. Elworthy and Truman used the semi-classical bridge to obtain heat-kernel estimates,
and the semi-classical bridge has been studied by various others [24,25].
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By Varadhan’s result (see [11] Theorem 5.2.1), as t→ T, we have the asymptotic rela-
tion ((T − t) log pT−t(x, y) ∼ − 1

2 d(x, y)2. In particular, the following asymptotic relation
was shown to hold by Malliavin, Stroock, and Turetsky [26,27] : (T − t)∇ log pT−t(x, y) ∼
− 1

2∇d(x, y)2. From these results, the generators of the Brownian bridge and the semi-
classical bridge differ in the limit by a factor of − 1

2∇ log J(x). However, under a certain
boundedness condition, the two processes can be shown to be identical under a changed
probability measure [8] Theorem 4.3.1.

To generalize the heat-kernel estimates of Elworthy and Truman, Thompson [8,28]
considered the Fermi bridge process conditioned to arrive in a submanifold N ⊆ M
at time T > 0. The Fermi bridge is defined as the diffusion process with generator
1
2 ∆ +∇ log qT−t(·, N), where

qt(x, N) = (2πt)−n/2e−
d(x,N)2

2t .

For both bridge processes, when M = Rd and N is a point, both the semi-classical
bridge and the Fermi bridge agree with the Euclidean Brownian bridge.

Ref [15] introduce a numerical simulation scheme for conditioned diffusions on Rie-
mannian manifolds, which generalize the method by Delyon and Hu [17]. The guiding
term used is identical to the guiding term of the Fermi bridge when the submanifold is a
single point v.

3. Diffusion Mean Estimation

The standard setup for diffusion mean estimation described in the literature (e.g., [13])
is as follows: Given a set of observations x1, . . . , xn ∈ M, for each observation xi, sample
a guided bridge process approximating the bridge Xi,t|Xi,T = xi with starting point x0.
The expectation over the correction factors can be computed from the samples, and the
transition density can be evaluated using (5). An iterative maximum likelihood approach
using gradient descent to update x0 yielding an approximation of the diffusion mean in
the final value of x0. The computation of the diffusion mean, in the sense just described, is,
similarly to the Fréchet mean, computationally expensive.

We here explore the idea first put forth in [7]: We turn the situation around to simulate
n independent Brownian motions starting at each of x1, . . . , xn, and we condition the
n processes to coincide at time T. We will show that the value x1,T = · · · = xn,T is
an estimator of the diffusion mean. By introducing weights in the conditioning, we can
similarly estimate the weighted diffusion mean. The construction can concisely be described
as a single Brownian motion on the n-times product manifold Mn conditioned to hit the
diagonal diag(Mn) = {(x, . . . , x)|x ∈ M} ⊂ Mn. To shorten notation, we denote the
diagonal submanifold N below. We start with examples with M Euclidean to motivate the
construction.

Example 1. Consider the two-dimensional Euclidean multivariate normal distribution
(

X
Y

)
∼ N

((
µ1
µ2

)
,
(

σ11 σ12
σ21 σ22

))
.

The conditional distribution of X given Y = y follows a univariate normal distribution

X|Y = y ∼ N
(

µ1 + σ12σ−1
22 (y− µ2), σ11 − σ12σ−1

22 σ21

)
.

This can be seen from the fact that if X ∼ N(µ, Σ) then for any linear transformation
AX + b ∼ N

(
b + Aµ, AΣAT). Defining the random variable Z = X − σ12σ−1

22 Y, the result

applied to (Z, X) gives Z ∼ N
(

µ1 − σ12σ−1
22 µ2, σ11 − σ12σ−1

22 σ21

)
. The conclusion then follows

from X = Z + σ12σ−1
22 Y. Please note that X and Y are independent if and only if σ12 = σ21 = 0

and the conditioned random variable is in this case identical in law to X.
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Let now x1, . . . , xn ∈ M be observations and let x = (x1, . . . , xn) ∈ Mn be an element
of the n-product manifold M× · · · ×M with the product Riemannian metric. We again
first consider the case M = Rd:

Example 2. Let Yi ∼ N
(

xi, T
wi

Id

)
be independent random variables. The conditional distribution

Y1|Y1 = · · · = Yn is normal N
(

∑i wixi
∑i wi

, T
∑i wi

)
. This can be seen inductively: The conditioned

random variable Y1|Y1 = Y2 is identical to Y1|Y1 − Y2 = 0. Now let X = Y1 and Y = Y1 − Y2
and refer to Example 1. To conclude, assume Zn := Y1|Y1 = · · · ,= Yn−1 follows the desired
normal distribution. Then Zn|Zn = Yn is normally distributed with the desired parameters and
Zn|Zn = Yn is identical to Y1|Y1 = · · · = Yn.

The following example establishes the weighted average as a projection onto the
diagonal.

Example 3. Let x be a point in (Rd)n and let P be the orthogonal projection to the diagonal of

(Rd)n such that Px =
(

1
nd ∑nd

i=1 xi . . . 1
nd ∑nd

i=1 xi

)T
. We see that the projection yields n copies of

the arithmetic mean of the coordinates. This is illustrated in Figure 2.

µ̂

M

M N

Figure 2. The mean estimator viewed as a projection onto the diagonal of a product manifold.
Conditioning on the closest point in the diagonal yields a density on the diagonal depending on the
time to arrival T > 0. As T tends to zero the density convergence to the Dirac-delta distribution
(grey), whereas as T increases the variance of the distribution increases (rouge).

The idea of conditioning diffusion bridge processes on the diagonal of a product
manifold originates from the facts established in Examples 1–3. We sample the mean by
sampling from the conditional distribution Y1|Y1 = · · · = Yn from Example 2 using a
guided proposal scheme on the product manifolds Mn and on each step of the sampling
projecting to the diagonal as in Example 3.

Turning now to the manifold situation, we replace the normal distributions with mean
xi ∈ Rd and variance T/wi with Brownian motions started at xi ∈ M and evaluated at
time T/wi. Please note that the Brownian motion density, the heat kernel, is symmetric in
its coordinates: pt(x, y) = pt(y, x). We will work with multiple process and indicate with
superscript the density with respect to a particular process, e.g., pX

T . Note also that change
of the evaluation time T is equal to scaling the variance, i.e., pX

αT(x, y) = pXα

T (x, y) where
Xα is a Brownian motion with variance of the increments scaled by α > 0. This gives the
following theorem, first stated in [7] with sketch proof:

Theorem 1. Let Xt = (X
w−1

1
1,t , . . . , Xw−1

n
n,t ) consist of n independent Brownian motions on M with

variance w−1
i and Xi,0 = xi, and let P∗ the law of the conditioned process Yt = Xt|XT ∈ N,

N = diag(Mn). Let v be the random variable Y1,T . Then v has density pY
v (y) ∝ ∏n

i=1 pT/wi
(xi; y)

and v = Yi,T for all i a.s. (almost surely).
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Proof. pX
T ((x1, . . . , xn), (y, . . . , y)) = ∏n

i=1 pXw−1
i

T (xi, y) because the processes Xi,t are inde-

pendent. By symmetry of the Brownian motion and the time rescaling property, p
X

w−1
i

i
T (xi, y)

= pT/wi (y, xi). For elements (y, . . . , y) ∈ diag(Mn) and x ∈ Mn, pv(y) = pY
T(x, y) ∝

pX
T (x, y). As a result of the conditioning, v = Y1,T = · · · = Yn,T . In combination, this

establishes the result.

Consequently, the set of modes of pv equal the set of the maximizers for the likelihood
L(y; x1, . . . , xn) = ∏n

i=1 pT/wi
(xi; y) and thus the weighted diffusion mean. This result is

the basis for the sampling scheme. Intuitively, if the distribution of v is relatively well
behaved (e.g., close to normal), a sample from v will be close to a weighted diffusion mean
with high probability.

In practice, however, we cannot sample Yt directly. Instead, we will below use guided
proposal schemes resulting in processes Ỹt with law P̃ that we can actually sample and that
under certain assumptions, will be absolutely continuous with respect to Yt with explicitly

computable likelihood ratio so that P∗ = ϕ(ỸT)

EP̃[ϕ(ỸT)]
P̃.

Corollary 1. Let P̃ be the law of Ỹt and ϕ be the corresponding correction factor of the guiding

scheme. Let ṽ be the random variable Ỹ1,T with law ϕ(ỸT)

EP̃[ϕ(ỸT)]
P̃. Then ṽ has density pṽ(y) ∝

∏n
i=1 pT/wi

(xi; y).

We now proceed to actually construct the guided sampling schemes.

3.1. Fermi Bridges to the Diagonal

Consider a Brownian motion Xt = (X1,t, . . . Xn,t) in the product manifold Mn con-
ditioned on X1,T = · · · = Xn,T or, equivalently, XT ∈ N, N = diag(Mn). Since N is a
submanifold of Mn, the conditioned diffusion defined above is absolutely continuous with
respect to the Fermi bridge on [0, T) [8,28]. Define the FM-valued horizontal guided process

dUt = Hi(Ut) ◦
(

dWi
t −

Hi r̃2
N(Ut)

2(T − t)
dt

)
, (16)

where r̃ denotes the lift of the radial distance to N defined by r̃N(u) := rN(π(u)) =
d(π(u), N). The Fermi bridge YF is the projection of U to M, i.e., YF

t := π(Ut). Let PF

denotes its law.

Theorem 2. For all continuous bounded functions f on Mn, we have

E[ f (X)|X1,T = · · · = Xn,T ] = lim
t↑T

CEPF
[ f (Y)ϕ(Y)], (17)

with a constant C > 0, where

d log ϕ(YF
s ) =

rN(YF
s )

T − s
(dηs + dLs) with dηs =

∂

∂rN
log Θ−

1
2

N ds,

dLs := dLs(YF) with L being the geometric local time at Cut(N), and ΘN the determinant of the
derivative of the exponential map normal to N with support on Mn\Cut(N) [8].
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Proof. From [15] Theorem 8 and [28],

E[ f (X)|XT ∈ N] = lim
t↑T

CEPF
[

f (YF)ϕ(YF
t )
]
.

Since N is a totally geodesic submanifold of dimension d, the results of [8] can be used
to give sufficient conditions to extend the equivalence in (17) to the entire interval [0, T]. A
set A is said to be polar for a process Xt if the first hitting time of A by X is infinity a.s.

Corollary 2. If either of the following conditions are satisfied

(i) the sectional curvature of planes containing the radial direction is non-negative or the Ricci
curvature in the radial direction is non-negative;

(ii) Cut(N) is polar for the Fermi bridge YF and either the sectional curvature of planes containing
the radial direction is non-positive or the Ricci curvature in the radial direction is non-positive;

then
E[ f (X)|X1,T = · · · = Xn,T ] = CEPF

[
f (YF)ϕ(YF

T )
]
.

In particular, ϕ(YF
T )

EPF [ϕ(YF
T )]

dPF ∝ dP∗.

Proof. See [8] (Appendix C.2).

For numerical purposes, the equivalence (17) in Theorem 2 is sufficient as the interval
[0, T] is finitely discretized. To obtain the result on the full interval, the conditions in
Corollary 2 may at first seem quite restrictive. A sufficient condition for a subset of a
manifold to be polar for a Brownian motion is its Hausdorff dimension being two less than
the dimension of the manifold. Thus, Cut(N) is polar if dim(Cut(N)) ≤ nd− 2. Verifying
whether this is true requires specific investigation of the geometry of Mn.

The SDE (16) together with (17) and the correction ϕ gives a concrete simulation
scheme that can be implemented numerically. Implementation of the geometric constructs
is discussed in Section 4. The main complication of using Fermi bridges for simulation is that
it involves evaluation of the radial distance rN at each time-step of the integration. Since the
radial distance finds the closest point on N to x1, . . . , xn, it is essentially a computation of the
Fréchet mean and thus hardly more computationally efficient than computing the Fréchet
mean itself. For this reason, we present a coordinate-based simulation scheme below.

3.2. Simulation in Coordinates

We here develop a more efficient simulation scheme focusing on manifolds that
can be covered by a single chart. The scheme follows the partial observation scheme
developed [19]. Representing the product process in coordinates and using a transformation
L, whose kernel is the diagonal diag(Mn), gives a guided bridge process converging to the
diagonal. An explicit expression for the likelihood is given.

In the following, we assume that M can be covered by a chart in which the square root
of the cometric tensor, denoted by σ, is C2. Furthermore, σ and its derivatives are bounded;
σ is invertible with bounded inverse. The drift b is locally Lipschitz and locally bounded.

Let x1, . . . , xn ∈ M be observations and let X1,t, . . . , Xn,t be independent Brownian
motions with X1,0 = x1, . . . , Xn,0 = xn. Using the coordinate SDE (15) for each Xi,t, we can
write the entire system on Mn as
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d




X1
1,t
...

Xd
1,t
...

X1
n,t
...

Xd
n,t




=




b1(X1,t)
...

bd(X1,t)
...

b1(Xn,t)
...

bd(Xn,t)




dt +




Σ1(X1,t, . . . , Xn,t)
...

Σd(X1,t, . . . , Xn,t)


dWt. (18)

In the product chart, Σ and b satisfy the same assumptions as the metric and cometric
tensor and drift listed above.

The conditioning XT ∈ N is equivalent to the requiring XT ∈ diag((Rd)n) in coor-
dinates. diag((Rd)n) is a linear subspace of (Rd)n, we let L ∈ Md×nd be a matrix with
orthonormal rows and ker L = diag((Rd)n) so that the desired conditioning reads LXT = 0.
Define the following oblique projection, similar to [19],

Pt(x) = a(x)LT A(x)L (19)

where
a(x) = Σ(x)Σ(x)T and At(x) = (La(x)LT)−1.

Set β(x) = Σ(x)T LT A(x). The guiding scheme (13) then becomes

dYt = b(Yt)dt + Σ(Yt)dWt − Σ(Yt)β(Yt)
LYt

T − t
1(T−ε,T)(t)dt, Y0 = u. (20)

We have the following result.

Lemma 1. Equation (20) admits a unique solution on [0, T). Moreover, ‖LYt‖2 ≤ C(ω)(T −
t) log log[(T − t)−1 + e] a.s., where C is a positive random variable.

Proof. Since LP = L, the proof is similar to the proof of [19] Lemma 6.

With the same assumptions, we also obtain the following result similar to [19] Theorem 3.

Theorem 3. Let Yt be a solution of (20), and assume the drift b is bounded. For any bounded
function f ,

E[ f (X)|XT ∈ N] = CE[ f (y)ϕ(Y)], (21)

where C is a positive constant and

ϕ(Yt) =
√

det(A(YT)) exp
{
− ‖βT−ε(YT−ε)LYT−ε‖2

2ε

−
∫ T

T−ε

2(LYs)T Lb(Ys)ds− (LYs)Td(A(Ys))LYs + d[A(Ys)ij, (LYs)i(LYs)j]

2(T − s)

}

Proof. A direct consequence of [19] Theorem 3, for k = 1, and Lemma 1.

The theorem can also be applied for unbounded drift by replacing b with a bounded
approximation and performing a Girsanov change of measure.

3.3. Accounting for ϕ

The sampling schemes (16) and (20) above provides samples on the diagonal and
thus candidates for the diffusion mean estimates. However, the schemes sample from
a distribution which is only equivalent to the bridge process distribution: We still need
to handle the correction factor in the sampling to sample from the correct distribution,
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i.e., the rescaling ϕ
E[ϕ] of the guided law in Theorem 1. A simple way to achieve this is

to do sampling importance resampling (SIR) as described in Algorithm 1. This yields an
approximation of the weighted diffusion mean. For each sample yi of the guided bridge
process, we compute the corresponding correction factor ϕ(yi). The resampling step then
consists of picking yj

T with a probability determined by the correction terms, i.e., with J the

number of samples we pick sample j with probability Pj =
ϕ(yj

T)

∑J
i=1 ϕ(yi

T)
.

Algorithm 1: weighted Diffusion Mean
Input: Points x1, . . . , xn ∈ M Output: (weighted) diffusion mean sampling
for j = 1 to J do

Sample path from guided process Yt

Record Y j
T and compute correction factor ϕ(Y j

T)

end

Sample j from 1, . . . , J with probability Pj =
ϕ(Y j

T)

∑J
k=1 ϕ(Yk

T)
.

// Return Y j
T

It depends on the practical application if the resampling is necessary, or if direct
samples from the guided process (corresponding to J = 1) are sufficient.

4. Experiments

We here exemplify the mean sampling scheme on the two-sphere S2 and on finite sets
of landmark configurations endowed with the LDDMM metric [29,30]. With the experiment
on S2, we aim to give a visual intuition of the sampling scheme and the variation in the
diffusion mean estimates caused by the sampling approach. In the higher-dimensional
landmark example where closed-form solutions of geodesics are not available, we compare
to the Fréchet mean and include rough running times of the algorithms to give a sense of the
reduced time complexity. Note, however, that the actual running times are very dependent
on the details of the numerical implementation, stopping criteria for the optimization
algorithm for the Fréchet mean, etc.

The code used for the experiments is available in the software package Jax Geome-
try http://bitbucket.org/stefansommer/jaxgeometry (accessed on 4 February 2022). The
implementation uses automatic differentiation libraries extensively for the geometry com-
putations as is further described [31].

4.1. Mean Estimation on S2

To illustrate the diagonal sampling scheme, Figure 3 displays a sample from a diago-
nally conditioned Brownian motion on (S2)n, n = 3. The figure shows both the diagonal
sample (red point) and the product process starting at the three data points and ending at
the diagonal. In Figure 4, we increase the number of samples to n = 256 and sample 32
mean samples (T = 0.2). The population mean is the north pole, and the samples can be
seen to cluster closely around the population mean with little variation in the mean samples.
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Figure 3. 3 points on S2 together with a sample mean (red) and the diagonal process in (S2)n, n = 3
with T = 0.2 conditioned on the diagonal.

Figure 4. (left) 256 sampled data points on S2 (north pole being population mean). (right) 32 samples
of the diffusion mean conditioned on the diagonal of (S2)n, n = 256, T = 0.2. As can be seen, the
variation in the mean samples is limited.

4.2. LDDMM Landmarks

We here use the same setup as in [13], where the diffusion mean is estimated by itera-
tive optimization, to exemplify the mean estimation on a high-dimensional manifold. The
data consists of annotations of left ventricles cardiac MR images [32] with 17 tlandmarks
selected from the annotation set from a total of 14 images. Each configuration of 17 land-
marks in R2 gives a point in a 34-dimensional shape manifold. We equip this manifold
with the LDDMM Riemannian metric [29,30]. Please note that the configurations can be
represented as points in R34, and the entire shape manifold is the subset of R34 where
no two landmarks coincide. This provides a convenient Euclidean representation of the
landmarks. The cometric tensor is not bounded in this representation, and we therefore
cannot directly apply the results of the previous sections. We can nevertheless explore the
mean simulation scheme experimentally.

Figure 5 shows one landmark configuration overlayed the MR image from which the
configuration was annotated, and all 14 landmark configurations plotted together. Figure 6
displays samples from the diagonal process for two values of the Brownian motion end
time T. Please note that each landmark configuration is one point on the 34-dimensional
shape manifold, and each of the paths displayed is therefore a visualization of a Brownian
path on this manifold. This figure and Figure 3 both show diagonal processes, but on two
different manifolds.
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In Figure 7, an estimated diffusion mean and Fréchet mean for the landmark configu-
rations are plotted together. On a standard laptop, generation of one sample diffusion mean
takes approximately 1 s. For comparison, estimation of the Fréchet mean with the stan-
dard nested optimization approach using the Riemannian logarithm map as implemented
in Jax Geometry takes approximately 4 min. The diffusion mean estimation performed
in [13] using direct optimization of the likelihood approximation with bridge sampling
from the mean candidate to each data point is comparable in complexity to the Fréchet
mean computation.

Figure 5. (left) One configuration of 17 landmarks overlayed the MR image from which the config-
uration was annotated. (right) All 14 landmark configurations plotted together (one color for each
configuration of 17 landmarks).

Figure 6. Samples from the diagonal process with T = 0.2 (left) and T = 1 (right). The effect of
varying the Brownian motion end time T is clearly visible.
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Figure 7. One sampled diffusion mean with the sampling scheme (blue configuration) together
with estimated Fréchet mean (green configuration). The forward sampling scheme is significantly
faster than the iterative optimization needed for the Fréchet mean on the landmark manifold where
closed-form solutions of the geodesic equations are not available.

5. Conclusions

In [7], the idea of sampling means by conditioning on the diagonal of product mani-
folds was first described and the bridge sampling construction sketched. In the present
paper, we have provided a comprehensive account of the background for the idea, includ-
ing the relation between the (weighted) Fréchet and diffusion means, and the foundations
in both geometry and stochastic analysis. We have constructed two simulation schemes
and demonstrated the method on both low and a high-dimensional manifolds, the sphere
S2 and the LDDMM landmark manifold, respectively. The experiments show the feasibility
of the method and indicate the potential high reduction in computation time compared to
computing means with iterative optimization.
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Chapter 5

Summary and Future Work

Throughout this dissertation, the aim has been to generalize guided bridge
simulation schemes to various non-linear spaces and present numerical exper-
iments showcasing statistical inference on these non-linear spaces. Chapter
1 introduced the background material needed throughout Chapters 2-4 to
simulate guided bridge processes in various non-linear spaces.

Riemannian Bridges In chapter 2, we considered the case of guided processes
on general Riemannian manifolds through stochastic development. Using
similar techniques as in [13], we showed the absolute convergence between the
law of the guided process and the target law on the interval [0, T ) and obtained
an explicit expression for the correction factor φ. The expression was shown
to depend on the geometric local time at the cut locus. From a numerical
perspective, automatic differentiation approximates the correction factors,
and thus the geometric local does not enter explicitly. From a mathematical
perspective, the geometric local is more of a nuisance that needs to be handled.
We showed that the guided bridge’s law and the target bridge’s law, and the
target bridge’s law were absolutely continuous for simply connected manifolds,
e.g., spheres, ellipsoids, and the space of symmetric positive definite matrices.
We showed that the guided bridge’s law and the target bridge’s law were
absolutely continuous on [0, T ]. This is followed by the fact of uniform
integrability of the correction factor. It remains an open question to prove the
absolute continuity over [0, T ] for more general spaces, e.g., compact manifolds.
Investigating the conditions needed to ensure uniform integrability of φ is a
natural extension. Several approaches seem natural to explore:

1. Using an Aronson’s type estimate of the heat kernel on compact manifolds
as in [26, Theorem 5.3.4].

2. Simulation of geometric local times

3. Propose a guided SDE in the embedding space.
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Addressing the first approach, we note that Delyon & Hu [13] used the
Aronson’s estimate of the transition density of a Markov process to show the
uniform integrability of φ. They then concluded by using the convergence rate
of the guided process to its pinning point. The convergence rate of the guided
processes in Chapter 2 are in general weaker than the one in [13]. However,
in the case of a Brownian motion with drift b on a compact manifolds the
convergence can be improved. On a compact manifold, we have the following
bound on the Laplace-Beltrami operator;

(
1
2
∆M + b

)
r2N ≤ ν + λr2N . By the

geometric Itô formula for the radial process

r2N(Yt(y))

T − t
=
r2N(y)

T
+

∫ t

0

r2N(Ys(y))

(T − s)2
ds+ 2

∫ t

0

rN(Ys(y))

T − s
dβs

+ 2

∫ t

0

(
1

2
∆M + b

)
r2N(Ys(y))

T − s
ds

− 2

∫ t

0

r2N(Ys(y))

(T − s)2
ds− 2

∫ t

0

rN(Ys(y))

T − s
dLC

t (Y (x)).

As the radial process is bounded above by a constant C > 0 and below by
zero on any compact manifold, we obtain the following bound

r2N(Yt(y))

T − t
≤ C

T
+ 2

∫ t

0

C

T − s
dβs + 2

∫ t

0

ν + λC

T − s
ds,

if λ > 0, otherwise we set λ = 0. Since β is a one-dimensional Brownian
motion, it follows by Dubins-Dambin-Schwartz and the law of the iterated
logarithm of Brownian motion that

d(Yt(y), N) = rN(Yt(y)) ≤ K
√

(T − t) log log ((T − t)−1 + e).

One could then proceed as in Delyon and Hu [13]. However, numerical
experiments, for example in the case of the flat torus R2/Z2, suggests that a
constant needs to be added to the guiding term.

Any compact manifold contains a cut locus. Therefore, for the guided bridge
to be an efficient method to simulate diffusion bridges on compact manifolds,
one needs to simulate geometric local times. The simulation of geometric local
times is still an open research problem. We note, however, that in specific
cases, the geometric local time can be avoided. For example, the geometric
local times vanish if the cut locus is polar for the guided process.

This thesis has not touched upon the possibility of embedding the manifold
into a higher-dimensional Euclidean space. Defining guided bridges in the
embedding space and projecting them onto the manifold could be an exciting
approach. One of the potential difficulties with this approach is how to choose
the embedding. There are different ways to embed a manifold and dimension-
ality if the embedding space increases dramatically when the dimension of the
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manifold increases.

Bridges in Lie Groups and Homogeneous Spaces

In Chapter 3, we utilized the simulation scheme developed in Chapter 2. We
obtained a modified guided bridge process by exploiting the added structure
given by the Lie group. In particular, since Lie groups are parallelizable,
the stochastic development approach used in Chapter 2 became redundant.
Simulations could be made using the left-invariant vector fields. For matrix
Lie groups, the action of left-invariant vector fields is nothing but matrix
multiplication. The matrix multiplication yielded a practical algorithm for
bridge simulation in Lie groups. Conditioning the guided bridges on fibers
over the base space resulted in a simulation scheme on the homogeneous
spaces. As homogeneous spaces themselves are manifolds, the simulation
scheme in Chapter 2 applies directly to these spaces. It could be interesting
to investigate the numerical advantages/disadvantages of the two simulation
schemes in Chapters 2 and 3.

Moreover, we obtained estimates of the underlying unknown metric structure
through the bridge sampling scheme. One possible application of our simulation
scheme arises in diffusion tensor imaging (DTI). Here, each voxel is a symmetric
positive definite matrix. Through a bridge simulation scheme, we can estimate
the underlying metric structure on DTI manifolds. This should be of interest
within the field of diffusion tensor imaging.

Bridges in Product Manifolds

In the last chapter of the dissertation, we introduced a bridge sampling scheme
on product manifolds. The idea was to replace n bridges on a manifold
M conditioned on observations with a single bridge process in the product
manifold conditioned on the diagonal. The resulting pinning point in the
product manifold corresponds to the initial value of the n bridges in M . This
results in the pinning point being the most probable point of the origin and
hence provides a sample estimate of the weighted diffusion mean. Since the
diffusion mean is a probabilistic alternative to the Fréchet mean, the bridge
sampling scheme in the product manifold conditioned on the diagonal becomes
an alternative to the Fréchet estimator. A numerical example of a data set
with annotated landmarks illustrated the numerical efficiency of the proposed
method compared to the running times of the Fréchet mean. It seems natural
to investigate the convergence properties of the proposed method and if the
method provides an consistent estimator for the diffusion mean.
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Appendix A

Simulation of Conditioned
Diffusions on the Flat Torus

The following manuscript has been made in collaboration with Anton Mallasto
and Stefan Sommer and was published in the conference proceedings at the
international conference of Geometric Science of Information (GSI).

Mathias Højgaard Jensen, Anton Mallasto, Stefan Sommer. “Simulation
of Conditioned Diffusions on the Flat Torus” (GSI).

The manuscript was built on the idea of Delyon and Hu [13] by introducing a
manifold equivalent guiding term to that of Delyon and Hu on the flat torus.
To the best of our knowledge, this paper is the first paper to introduce a
guiding scheme on; a compact manifold, a homogeneous space, and its lift to
the Lie group. In contrast to most literature on bridge simulation, this paper
does not provide a closed-form expression for the likelihood.



Simulation of Conditioned Diffusions
on the Flat Torus

Mathias Højgaard Jensen(B), Anton Mallasto, and Stefan Sommer

Department of Computer Science, Copenhagen University, Copenhagen, Denmark
{matje,mallasto,sommer}@di.ku.dk

Abstract. Diffusion processes are fundamental in modelling stochas-
tic dynamics in natural sciences. Recently, simulating such processes on
complicated geometries has found applications for example in biology,
where toroidal data arises naturally when studying the backbone of pro-
tein sequences, creating a demand for efficient sampling methods. In this
paper, we propose a method for simulating diffusions on the flat torus,
conditioned on hitting a terminal point after a fixed time, by considering
a diffusion process in R2 which we project onto the torus. We contribute
a convergence result for this diffusion process, translating into conver-
gence of the projected process to the terminal point on the torus. We also
show that under a suitable change of measure, the Euclidean diffusion is
locally a Brownian motion.

Keywords: Simulation · Conditioned diffusion · Manifold diffusion ·
Flat Torus

1 Introduction

Stochastic differential equations are ubiquitous in models describing evolution
of dynamical systems with, e.g. in modelling the evolution of DNA or protein
structure, in pricing financial derivatives, or for modelling changes in landmark
configurations which are essential in shape analysis and computational anatomy.
In settings where the beginning and end values are known on some fixed time
interval, the use of Brownian bridges becomes natural to evaluate the uncertainty
on the intermediate time interval.

When the data elements are elements of non-linear spaces, here differentiable
manifolds, methodology for simulating bridge processes is lacking. In particular,
in cases where the transition probability densities are intractable, it is of interest
to use simulation schemes that can numerically approximate the true densities.
In this paper we propose a method for simulating diffusion bridges on the flat
torus, T2 = R2/Z2, i.e. we propose a process that can easily be simulated and
satisfies that the distribution of the true bridge of interest is absolutely con-
tinuous with respect to the distribution of this proposal process. This specific

MHJ, AM, and SS are supported by the CSGB Centre for Stochastic Geometry and
Advanced Bioimaging funded by a grant from the Villum Foundation.

c© Springer Nature Switzerland AG 2019
F. Nielsen and F. Barbaresco (Eds.): GSI 2019, LNCS 11712, pp. 685–694, 2019.
https://doi.org/10.1007/978-3-030-26980-7_71

96 Appendix A. Simulation of Conditioned Diffusions on the Flat Torus



686 M. H. Jensen et al.

case will serve as an example of the more general setting of simulating diffusion
bridge processes on Riemannian manifolds. Because of the non-trivial topology
of the torus T2, the conditioned process will be equivalent to a process in R2

that is conditioned on ending up in a set of points. Therefore, we will address
the question of conditioning a process on infinitely many points. Secondly, we
will handle the case when the process crosses the cut locus of the target point,
i.e. the set of points with no unique distance minimizing geodesic.

It is a basic consequence of Doob’s h-transform that the distribution of a
conditioned diffusion process is the same as another diffusion process with the
drift depending on the transition density. However, as mentioned in [1], using
this transform directly is undesirable for simulation purposes as the transition
density is often intractable. Instead, the authors introduce a diffusion process
which can easily be simulated and with the property that the distribution of the
true conditioned diffusion is absolutely continuous wrt. the diffusion used for
simulation. We here use this approach that in [1] covers the Euclidean case as
the starting point for developing a simulation scheme on the torus.

Recent papers have considered diffusion processes on the torus, for example,
Langevin diffusions on the torus were studied in [3] and [4], in the latter to
describe protein evolution. In this paper, we introduce a diffusion process in
R2 which can easily be simulated and projects onto a bridge process on the
torus. More generally, Brownian bridges on manifolds have been studied for
example in the context of landmark manifolds [9] and used for approximating
the transition density of the Brownian motion. The present paper uses bridges
on the flat torus to exemplify how some of the challenges of bridge simulation on
Riemannian manifolds can be addressed, here in particular non-trivial topology
of the manifold.

We begin in Sect. 2 with a short introduction to Brownian bridge processes
in the standard Eucliden case and how it relates to the definition of a Brow-
nian bridge process on the flat torus. At the end we introduce the stochastic
differential equation (SDE) which will be used for simulating the bridge process.
In Sect. 3 we argue that a strong solution of our proposed SDE exist. We show
results about convergence and absolute continuity in Sect. 4. Numerical examples
are presented in Sect. 5.

2 Theoretical Setup

This section will briefly review some Brownian bridges theory and discuss the
torus case. A more general theory of diffusion bridges can be found in [1], consti-
tuting the main reference for this work. At the end, we introduce our proposal
process.

Consider a Brownian motion W = (Wt)t≥0 in Rn. By conditioning, it can
be shown that W will end up at a given point at a given time. For example,
the process given by Bt = Wt − t

T WT defines a Brownian bridge conditioned to
return to 0 at time T . It can be shown that the diffusion process given by

dXt =
b − Xt

T − t
dt + dWt; 0 ≤ t < T and X0 = a, (1)
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for given a, b ∈ Rd and W a d-dimensional standard Brownian motion, is a d-
dimensional Brownian bridge from a to b on [0, T ] (see e.g. [6, sec. 5.6]). More
generally, diffusion bridges can be defined through Doob’s h-transform, that is,
the distribution of a diffusion

dXt = b(t,Xt)dt + σ(t,Xt)dWt, X0 = a,

conditioned on XT = b is the same as that of

dYt = b̃(t, Yt)dt + σ(t, Yt)dWt,

b̃(t, x) = b(t, x) + σ(t, x)σT (t, x)∇x log(p(t, x;T, b)),

where p(t, x;T, b) denotes the transition density of the process X. In the usual
setting where p is the transition density of a Brownian motion it has the form

p(s, x; t, y) =
1√

2π(t − s)
exp

(
− ||x − y||2

2(t − s)

)
, s < t,

which yields (1).
We propose a method similar to the Euclidean scheme [1] for simulating

Brownian bridges on the flat torus, which is of the form

dXt = b(t,Xt)dt + σdWt; 0 ≤ t < T and X0 = a a.s., (2)

where σ > 0, a ∈ T2 is given, and W is a two-dimensional standard Brownian
motion. The exact form of b(t, x) will become apparent below. It is important
here to note that in the particular case of the flat torus the transition density
for the Brownian motion is known and therefore it is possible to simulate from
the distribution of the true Brownian bridge on T2, however, it requires the
calculation of the distance to infinitely many points which the proposed model
does not. In Fig. 4 is shown paths of the proposed model and the corresponding
paths of the true bridge process.

Let π : R2 → T2 = R2/Z2 denote the canonical projection onto the torus. The
standard two-dimensional Brownian motion W = (W 1,W 2), for two indepen-
dent one-dimensional Brownian motions W 1 and W 2, is mapped to a Brownian
motion B = (Bt)t≥0 on the flat torus T2 by the projection map π. Indeed, we can
identify the torus T2 with the unit cube Q = {x ∈ R2 : − 1

2 ≤ xk < 1
2 , k = 1, 2}.

Then for g ∈ C∞(T2) the Laplace-Beltrami operator, ΔT2 , on T2 corresponds to
the restriction to Q of the usual Euclidean Laplacian, ΔR2 g̃, where g̃ denotes the
periodic extension of g, i.e. g̃ = g ◦ π (see [8, Sec. 3.5]). Since W is a Brownian
motion in R2 if and only if it satisfies the diffusion equation

h(Wt)
m
= h(W0) − 1

2

∫ t

0

ΔR2h(Ws)ds,

for all smooth functions h, where X
m
= Y means that the difference X − Y is a

local martingale (see e.g. [2, Sec. 1.5]), it follows that, for h = g̃,

g̃(Wt)
m
= g̃(W0) − 1

2

∫ t

0

ΔR2 g̃(Ws)ds = g(B0) − 1

2

∫ t

0

ΔT2g(Bs)ds
m
= g(Bt).
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As this holds for all smooth functions g on T2, we get that B is a Brownian
motion on T2 in agreement with the definition of a manifold-valued Brownian
motion given in [5, Sec. 3.2].

By conditioning B on T2 to hit a given point a ∈ T2, at some fixed time
0 ≤ T < ∞, it is seen that

{ω ∈ Ω : BT (ω) = a} = {ω ∈ Ω : WT (ω) ∈ π−1(a)},

and so simulating a Brownian bridge on the flat torus T2 is equivalent to sim-
ulating a two-dimensional standard Brownian motion conditioned to end up in
the set π−1(a) at time T . The diffusion given by (1) will not suffice as it is con-
structed to hit exactly one point. It will, however, provide one subset of sample
paths of the Brownian bridge on T2, corresponding to subset of paths that will
“unwrap” the same number of times that it “wraps” around the cut locus. This
is illustrated in Fig. 1. To give a precise meaning to this statement we consider
the h-transform

h(t, z) =
∑

y∈π−1(a)

p(t, z;T, y)

p(0, z0;T, y)
,

with p denoting the transition density of the two-dimensional Brownian motion,
which by Doob’s h-transform implies that the distribution of W conditioned on
WT ∈ π−1(a) is the same as the distribution of the diffusion

dZt = σ2∇z log

( ∑

y∈π−1(a)

p(t, z;T, y)

)∣∣∣∣
x=Zt

dt + σdWt

=
∑

y∈π−1(a)

gy(t, Zt)
y − Zt

T − t
dt + σdWt, Z0 = z0,

(3)

where gy(t, x) =
exp

(
− ‖y−z‖2

2σ2(T −t)

)
∑

y∈π−1(a) exp
(
− ‖y−z‖2

2σ2(T −t)

) .

Instead, we propose to consider the diffusion process on [0, T ), for some fixed
positive T , defined by

dXt = 1Gc(Xt)
α(Xt) − Xt

T − t
dt + σdWt, X0 = x0 (4)

where σ > 0 and α is defined by

α(Xt) = arg min
y∈π−1(a)

‖y − Xt‖ ,

with a ∈ T2, and where G is the set of “straigt lines” of the form R × {x} (resp.
{x} × R) in R2 where α(Xt) is not unique (see Fig. 1). The indicator function
removes the drift when the process does not have a natural attraction point.
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πR2

Xt(ω)

Bt(ω)

T2

G

Fig. 1. The figure illustrates the possibility of the diffusion path going an arbitrary
number of times around the torus, starting at the black dot and ending in the red.
This is illustrated by the red path. The conditioning on single point in T2 therefore
leads to conditioning on multiple points in R2. Left: Two paths from the same two-
dimensional process with multiple endpoints. Right: The projection of the two paths
onto the torus. (Color figure online)

3 Existence of Strong Solution

The drift term in Eq. (4) is discontinuous. However, we below show that it posses
certain regularity conditions and use this to show that a strong solution to the
SDE exist.

In order to ensure the existence of a solution to the diffusion in (4), we need
some regularity of the drift term. The drift coefficient is given by

1Gc(Xt)
α(Xt) − Xt

T − t
=

{
α(Xt)−Xt

T−t , if Xt ∈ Gc

0, otherwise,
(5)

for every 0 ≤ t < T , where the superscript c denotes the complement. It is a
discontinuous process with the set of discontinuities being the set G consisting
of the set of straight lines in R2 where the argmin process is non-unique. It is
not even clear that the drift term is suitably measurable as the argmin map in
general is not.

Lemma 1. Let b : [0, T )×R2 → R2 be the map given by (5). Then b is B([0, T ))⊗
B

(
R2

)
− B

(
R2

)
measurable. Furthermore, the map (s, ω) 
→ b(s,Xs(ω)) is

B([0, t]) ⊗ F0
t measurable, for every 0 ≤ t < T , where (F0

t ) denotes the nat-
ural filtration generated by X. This is called progressive measurability.

Proof. First note that Gc is a Borel measurable set as we can write it as a
countable union of open sets, i.e., for y = (y1, y2) we have

Gc =
⋃

y∈π−1(a)

(
y1 − 1

2
, y1 +

1

2

)
×

(
y2 − 1

2
, y2 +

1

2

)
=:

⋃

y∈π−1(a)

Vy.

Now, we need to show that for all A ∈ B
(
R2

)
, the set b−1(A) is an element of

B([0, T ))⊗B
(
R2

)
. It is enough to consider all open subsets U ⊆ R2 as these sets
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generate the Borel algebra on R2. So let U be an arbitrary open subset, then we
have that

b−1(U) = b−1(U) ∩
(
[0, T ) × Gc

)
∪ b−1(U) ∩

(
[0, T ) × G

)
.

As b is continuous on each of the sets [0, T )×Vy we have that b−1(U)∩
(
[0, T )×Gc

)

is a countable union of open sets and therefore an element of B([0, T )) ⊗ B
(
R2

)
.

For the second part we see that

b−1(U) ∩ ([0, T ) × G) =

{
[0, T ) × G, if (0, 0) ∈ U

∅, otherwise,

where both are elements of B([0, T )) ⊗ B
(
R2

)
. This shows that b is Borel

measurable.
Progressive measurability follows by a very similar argument. ��

Usually, global or local Lipschitz conditions are imposed on the drift and diffusion
coefficients in order to secure global (resp. local) strong solutions to an SDE. This
is a too strong condition for the drift term in this case, however, it is bounded
in the following sense.

Lemma 2. The drift coefficient in (5) is uniformly bounded in x and in t on
[0, S], for any 0 ≤ S < T .

Proof. The first assertion is clear. Let S ∈ [0, T ) be arbitrary and 0 ≤ t ≤ S.
For every x ∈ Gc there exist a y ∈ π−1(a) such that we have

∥∥∥∥1Gc(x)
α(x) − x

T − t

∥∥∥∥
2

=

∥∥∥∥
y − x

T − t

∥∥∥∥
2

≤ C

(T − S)2
= CS ,

for some positive constants C > 0. ��

We now come to the main result of this section.

Proposition 1. There exist a strong solution of (4) on [0, T ), which is strongly
unique.

Proof. The drift term is Borel measurable and bounded on [0, S] by Lemmas 1
and 2. As indicated in [10, Thm. 2] and [11, Thm. 1] (4) has a strong solution
which is strongly unique. ��

Remark 1. The assumption in [10, Thm. 2] can be verified by using smooth
bump functions.
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4 Convergence and Absolute Continuity

The considerations above make the solution of (4) into a continuous semimartin-
gale. If a semimartingale X takes its values in an open set U of R2 then Itô’s
formula holds true for any C1,2([0, T ) × U) functions as well.

Proposition 2. Let X be a solution to (4) on the filtered probability space
(Ω,F , (Ft), P ). For every ω ∈ Ω for which there exist an S < T such that Xt(ω)
stays in Gc on [S, T ), then X converges pointwise almost surely to π−1(a).

Proof. Assume that for some ω ∈ Ω there exist some S < T such that on [S, T )
the process Xt(ω) takes its values in Gc. By continuity of the process it will take
it its values in some open neighborhood Vy of the point y ∈ π−1. The proof is
then identical to the proof in [1, Lemma 4]. ��

Remark 2. It is of course of interest to show that for almost every path the
process will converge. This can be obtained by showing that the process will not
intersect G infinitely many times close to T .

Consider the stochastic process E on 0 ≤ t ≤ S defined by

E(L)t = exp

(
−

∫ t

0

b(s,Xs)dWs − 1

2

∫ t

0

‖b(s,Xs)‖2
ds

)
, (6)

where L is the local martingale in the exponential. This is known as the Doléans-
Dade exponential. From Lemma2 it follows that, for all t ≤ S,

E
[

exp

( ∫ t

0

‖b(s,Xs)‖2
ds

)]
≤ exp

(
tCS

)
< ∞

The above is known as the Novikov condition (cf. [7]) which ensures that (6) is a
martingale on [0, T ). Girsanov’s theorem ([6, Thm. 5.1 Chap. 3]) then provides
that the process defined by

W̃t = Wt +

∫ t

0

b(s,Xs)ds

is a Brownian motion under the new measure Q introduced below.

Theorem 1. Let X defined on (Ω,F , (Ft), P ) be a solution of (4) on [0, S] for
S < T . The process in (6) defined on 0 ≤ t ≤ S (S < T ) is a true martingale
and so there exists a measure Q which is absolutely continuous wrt. P such that
X is Q-Brownian motion.

Proof. The martingale property of (6) on [0, S] is a consequence of the Novikov
condition. Then Girsanov’s theorem gives us that X is a Q-Brownian motion on
[0, S]. ��
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(a) Paths visualized on an embed-
ded torus.

(b) The two Euclidean paths that
are mapped onto the torus.

Fig. 2. Two different paths visualized both on the torus and in Eucliden space. The
blue dot represents the starting point and the red represents the end point. (Color
figure online)

From the (perhaps obvious) fact that the distribution of the true Brownian
bridge is locally equivalent to the distribution of the Brownian motion up to
time t < T , it follows that the distribution of the Brownian bridge is absolutely
continuous wrt. The proposed process up to time t < T .

Remark 3. A bit of extra work is needed to obtain the correction term as in [1].
There are indications that it is possible to simulate from the true distribution
of the Brownian bridge on the torus, however, Theorem1 shows that (4) can
approximate it.

5 Numerical Experiments

For the numerical implementation of the proposed SDE in Eq. (4) we imple-
mented the Euler-Maruyama scheme, i.e. taking n equidistant discretization
points of the time interval t1, ..., tn, with ti+1 − ti = Δt, the numerical equation
becomes

xti+1
= xti

+
arg miny∈π−1(a)(‖y − xti

‖) − xti

T − ti
Δt + σΔWti

,

where ΔWti+1
= Wti+1

−Wti
is equal in distribution to a normal random variable

with mean zero and variance Δt.
Figure 2a shows the implementation of the numerical scheme on an embedded

torus and Fig. 2b its Euclidean counterpart. Figure 3a shows the behaviour of the
drift term along a given path, illustrating that the attraction becomes stronger
as time approaches the terminal time. The vector fields in Fig. 3b shows the
constant attraction to the center of the open subsets.
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(a) Drift term (b) Vector field

Fig. 3. Figure a depicts the evolution of the drift term. It shows how the pull from the
drift becomes stronger near the end. Figure b shows the underlying vector field.

Fig. 4. Figure shows 9 paths from the proposed model (4) on the left and the cor-
responding paths from the true bridge (3) on the right. It is seen that the first and
the last paths disagree on the limiting point, whereas the rest looks fairly similar. The
picture agree with the fact that roughly four in five have the same limiting point. Here
σ = 0.8 and the conditioning points being the integers in [−2, 2] × [−2, 2].

Acknowledgements. We acknowledge F. van der Meulen for discussions and insights
on conditioned diffusions.
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Appendix B

Bridge Simulation and Metric
Estimation on Lie Groups

The following manuscript has been made in collaboration with Sarang Joshi
and Stefan Sommer and was published in the conference proceedings at the
international conference of Geometric Science of Information (GSI).

Mathias Højgaard Jensen, Sarang Joshi, Stefan Sommer. “Bridge Simu-
lation and Metric Estimation on Lie Groups” (GSI).

The paper introduces a simulation scheme on the space of Lie groups. We
exploit the simulation scheme using Monte-Carlo methods to obtain approxi-
mations of the transition density. An iterative maximum likelihood approach
yields an estimation of the underlying unknown metric. The paper is an
extension of Sommer et al. [45]. The content of the current paper can be
found in the manuscript presented in Chapter 3.
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Abstract. We present a simulation scheme for simulating Brownian
bridges on complete and connected Lie groups. We show how this simula-
tion scheme leads to absolute continuity of the Brownian bridge measure
with respect to the guided process measure. This result generalizes the
Euclidean result of Delyon and Hu to Lie groups. We present numerical
results of the guided process in the Lie group SO(3). In particular, we
apply importance sampling to estimate the metric on SO(3) using an
iterative maximum likelihood method.

Keywords: Brownian motion · Brownian bridge simulation ·
Importance sampling · Lie groups · Metric estimation

1 Introduction

Bridge simulation techniques are known to play a fundamental role in statistical
inference for diffusion processes. Diffusion bridges in manifolds have mainly been
used to provide gradient and hessian estimates. To the best of our knowledge,
this paper is the first to describe a simulation technique for diffusion bridges in
the context of Lie groups.

The paper is organized as follows. In Sect. 2, we describe some background
theory of Lie groups, Brownian motions, and Brownian bridges in Riemannian
manifolds. Section 3 presents the theory and results. Section 4 shows in practice
the simulation scheme in the Lie group SO(3). Using importance sampling, we
obtain an estimate of the underlying unknown metric.

2 Notation and Background

Lie Groups. Throughout, we let G denote a connected Lie Group of dimension
d, i.e., a smooth manifold with a group structure such that the group operations

G×G � (x, y)
μ�→ xy ∈ G and G � x

ι�→ x−1 ∈ G are smooth maps. If x ∈ G, the

c© Springer Nature Switzerland AG 2021
F. Nielsen and F. Barbaresco (Eds.): GSI 2021, LNCS 12829, pp. 430–438, 2021.
https://doi.org/10.1007/978-3-030-80209-7_47
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left-multiplication map, Lxy, defined by y �→ μ(x, y), is a diffeomorphism from
G to itself. Similarly, the right-multiplication map Rxy defines a diffeomorphism
from G to itself by y �→ μ(y, x). We assume throughout that G acts on itself
by left-multiplication. Let dLx : TG → TG denote the pushforward map given
by (dLx)y : TyG → TxyG. A vector field V on G is said to be left-invariant if
(dLx)yV (y) = V (xy). The space of left-invariant vector fields is linearly isomor-
phic to TeG, the tangent space at the identity element e ∈ G. By equipping the
tangent space TeG with the Lie bracket we can identify the Lie algebra G with
TeG. The group structure of G makes it possible to define an action of G on its
Lie algebra G. The conjugation map Cx := Lx◦R−1

x : y �→ xyx−1, for x ∈ G, fixes
the identity e. Its pushforward map at e, (dCx)e, is then a linear automorphism
of G. Define Ad(x) := (dCx)e, then Ad: x �→ Ad(x) is the adjoint representation
of G in G. The map G × G � (x, v) �→ Ad(x)v ∈ G is the adjoint action of
G on G. We denote by 〈·, ·〉 a Riemannian metric on G. The metric is said to
be left-invariant if 〈u, v〉y = 〈(dLx)yu, (dLx)yv〉Lx(y), for every u, v ∈ TyG, i.e.,

the left-multiplication maps are isometries, for every x ∈ G. In particular, we
say that the metric is Ad(G)-invariant if 〈u, v〉e = 〈Ad(x)u,Ad(x)v〉e, for every
u, v ∈ G. Note that an Ad(G)-invariant inner on G induces a bi-invariant (left-
and right-invariant) metric on G.

Brownian Motion. Endowing a smooth manifold M with a Riemannian met-
ric, g, allows us to define the Laplace-Beltrami operator, ΔMf = div grad f .
This operator is the generalization of the Euclidean Laplacian operator to man-
ifolds. In terms of local coordinates (x1, . . . , xd) the expression for the Laplace-

Beltrami operator becomes ΔMf = det(g)−1/2
(

∂
∂xj

gji det(g)1/2 ∂
∂xi

)
f , where

det(g) denotes the determinant of the Riemannian metric g and gij are the coef-
ficients of the inverse of g. An application of the product rule implies that ΔM

can be rewritten as ΔMf = aij ∂
∂xi

∂
∂xj

f + bj ∂
∂xj

f, where aij = gij , bk = −gijΓ k
ij ,

and Γ denote the Christoffel symbols related to the Riemannian metric. This
diffusion operator defines a Brownian motion on the M , valid up to its first exit
time of the local coordinate chart.

In the case of the Lie group G, the identification of the space of left-invariant
vector fields with the Lie algebra G allows for a global description of ΔG.
Indeed, let {v1, . . . vd} be an orthonormal basis of TeG. Then Vi(x) = (dLx)evi

defines left-invariant vector fields on G and the Laplace-Beltrami operator can
be written as (cf. [6, Proposition 2.5]) ΔGf(x) =

∑d
i=1 V 2

i f(x) − V0f(x),

where V0 =
∑d

i,j=1 Cj
ijVj and Ck

ij denote the structure coefficients given by

[Vi, Vj ] = Ck
ijVk. The corresponding stochastic differential equation (SDE) for

the Brownian motion on G, in terms of left-invariant vector fields, then becomes

dXt = −1

2
V0(Xt)dt + Vi(Xt) ◦ dBi

t, X0 = e, (1)

where ◦ denotes integration in the Stratonovich sense. By [6, Proposition 2.6],
if the inner product is Ad(G) invariant, then V0 = 0. The solution of (1) is
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conservative or non-explosive and is called the left-Brownian motion on G (see [8]
and references therein).

Riemannian Brownian Bridges. In this section, we briefly review some clas-
sical facts on Brownian bridges on Riemannian manifolds. As Lie groups them-
selves are manifolds, the theory carries over mutatis mutandis. However, Lie
groups’ group structure allows the notion of left-invariant vector fields. The iden-
tification of the Lie algebra with the vector space of left-invariant vector fields
makes Lie groups parallelizable. Thus, the frame bundle construction for devel-
oping stochastic processes on manifolds becomes superfluous since left-invariant
vector fields ensure stochastic parallel displacement.

Let Pt
x be the measure of a Riemannian Brownian motion, Xt, at some time

t started at point x. Suppose p denotes the transition density of the Riemannian
Brownian motion. In that case, dPt

x = p(t, x, y)d Vol(y) describes the measure
of the Riemannian Brownian motion, where d Vol(y) is the Riemannian volume
measure. Conditioning the Riemannian Brownian motion to hit some point v
at time T > 0 results in a Riemannian Brownian bridge. Here, PT

x,v denotes
the corresponding probability measure. The two measures are equivalent over
the time interval [0, T ), however mutually singular at time t = T . The initial
enlargement of the filtration remedies the singularity. The corresponding Radon-
Nikodym derivative is given by

dPT
x,v

dPT
x

∣∣
Fs

=
p(T − s,Xs, v)

p(T, x, v)
for 0 ≤ s < T,

which is a martingale for s < T . The Radon-Nikodym derivative defines the
density for the change of measure and provides the basis for the description
of Brownian bridges. In particular, it provides the conditional expectation
defined by

E[F (Xt)|XT = v] =
E[p(T − t,Xt, v)F (Xt)]

p(T, x, v)
,

for any bounded and Fs-measurable random variable F (Xs). As described in [3],
the Brownian bridge yields an SDE in the frame bundle, FM, given by

dUt = Hi(Ut) ◦
(
dBi

t + Hi log p̃(T − t, Ut, v)dt
)
, U0 = u0, (2)

in terms of the horizontal vector fields (Hi), which is the lifted M -valued Brow-
nian bridge, Xt := π(Ut), where π : FM → M .

3 Simulation of Bridges on Lie Groups

In this section, we consider the task of simulating (1) conditioned to hit v ∈ G,
at time T > 0. The potentially intractable transition density for the solution of
(1) inhibits simulation directly from (2). Instead, we propose to add a guiding
term mimicking that of Delyon and Hu [2], i.e., the guiding term becomes the
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gradient of the distance to v divided by the time to arrival. The SDE for the
guided diffusion becomes

dYt = −1

2
V0(Yt)dt + Vi(Yt) ◦

(
dBi

t −
(
∇yd(Yt, v)2

)i

2(T − t)
dt

)
, Y0 = e, (3)

where d denotes the Riemannian distance function. Note that we can always, for
convenience, take the initial value to be the identity e.

Radial Process. We denote by rv(·) := d(·, v) the radial process. Due to the
radial process’s singularities on Cut(v) ∪ {v}, the usual Itô’s formula only applies
on subsets away from the cut-locus. The extension beyond the cut-locus of a
Brownian motion’s radial process was due to Kendall [4]. Barden and Le [1,5]
generalized the result to M -semimartingales. The radial process of the Brownian
motion (1) is given by

r(Xt) = r(X0)
2 +

∫ t

0

〈∇r(Xs), V (Xs)dBs〉 +
1

2

∫ t

0

ΔGr(Xs)ds − Ls(X), (4)

where L is the geometric local time of the cut-locus Cut(v), which is non-
decreasing continuous random functional increasing only when X is in Cut(v)

(see [1,4,5]). Let Wt :=
∫ t

0

〈
∂
∂r , Vi(Xs)

〉
dBi

s, which is the local-martingale part
in the above equation. The quadratic variation of Wt satisfies d[W,W ]t = dt,
by the orthonormality of {V1, . . . , Vd}, thus Wt is a Brownian motion by Levy’s
characterization theorem. From the stochastic integration by parts formula and
(4) the squared radial process of X satisfies

r(Xt)
2 = r(X0)

2 +2

∫ t

0

r(Xs)dWs +

∫ t

0

r(Xs)ΔGr(Xs)ds−2

∫ t

0

r(Xs)dLs, (5)

where dLs is the random measure associated to Ls(X).
Similarly, we obtain an expression for the squared radial process of Y . Using

the shorthand notation rt := rv(Yt) the radial process then becomes

r2
t = r2

0 + 2

∫ t

0

rsdWs +

∫ t

0

1

2
ΔGr2

sds −
∫ t

0

r2
s

T − s
ds − 2

∫ t

0

rsdLs. (6)

Imposing a growth condition on the radial process yields an L2-bound on the
radial process of the guided diffusion, [10]. So assume there exist constants ν ≥ 1
and λ ∈ R such that 1

2ΔGr2
v ≤ ν + λr2

v on D\Cut(v), for every regular domain
D ⊆ G. Then (6) satisfies

E[1t<τD
rv(Yt)

2] ≤
(

r2
v(e) + νt

(
t

T − t

))(
T − t

t

)2

eλt, (7)

where τD is the first exit time of Y from the domain D.
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Girsanov Change of Measure. Let B be the Brownian motion in Rd defined
on the filtered probability space (Ω,F , (Fs), P) and X the solution of (1). The

process ∇rv(Xt)
2

2(T−t) is an adapted process. As X is non-explosive, we see that

∫ t

0

∥∥∥∥
∇r(Xs)

2

2(T − s)

∥∥∥∥
2

ds =

∫ t

0

r(Xs)
2

(T − s)2
ds ≤ C, (8)

for every 0 ≤ t < T , almost surely, and for some fixed constant C > 0. Define a
new measure Q by

Zt :=
dQ
dP

∣∣∣∣
Ft

(X) = exp

{
−

∫ t

0

〈∇r(Xs)
2

2(T − s)
, V (Xt)dBs

〉
− 1

2

∫ t

0

r(Xs)
2

(T − s)2
ds

}
.

(9)
From (8), the process Zt is a martingale, for t ∈ [0, T ), and Qt defines a probabil-
ity measure on each Ft absolutely continuous with respect to P. By Girsanov’s
theorem (see e.g. [3, Theorem 8.1.2]) we get a new process bs which is a Brow-
nian motion under the probability measure Q. Moreover, under the probability
Q, Eq. (1) becomes

dYt = −1

2
V0(Yt)dt + Vi(Yt) ◦

(
dbi

t − r(Yt)

T − t

(
∂

∂r

)i

dt

)
, (10)

where
(

∂
∂r

)i
is the i’th component of the unit radial vector field in the direction

of v. The squared radial vector field is smooth away from Cut(v) and thus we
set it to zero on Cut(v). Away from Cut(v), the squared radial vector field is
2 Logv, which is the inverse exponential at v. The added drift term acts as a
guiding term, which pulls the process towards v at time T > 0.

From (9), we see that E[f(Yt)] = E[f(Xt)Zt]. Using (5) and the iden-
tity ΔGrv = d−1

rv
+ ∂

∂rv
log Θv (see [9]), we equivalently write E[f(Yt)ϕt] =

E[f(Xt)ψt], with

ψt := exp

{−r(Xt)
2

2(T − t)

}
ϕt := exp

{∫ t

0

rv(Ys)
2

T − s
(dAs + dLs)

}
, (11)

where dAs = ∂
∂rv

log Θv is a random measure supported on G\Cut(v) and Θv is
the Jacobian determinant of Expv.

Delyon and Hu in Lie Groups. This section generalizes the result of Delyon
and Hu [2, Theorem 5] to the Lie group setting. The result can be modified to
incorporate a generalization of [2, Theorem 6].

Theorem 1. Let X be the solution of (1). The SDE (3) yields a strong solution
on [0, T ) and satisfies limt↑T Yt = v almost surely. Moreover, the conditional
expectation of X given XT = v is

E[f(X)|XT = v] = CE [f(Y )ϕT ] , (12)

for every Ft-measurable non-negative function f on G, t < T , where ϕt is given
in (11).
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Proof. The result is a consequence of the change of measure together with
Lemma 1, Lemma 2, and Lemma 3.

Lemma 1. The solution of SDE (3) satisfies limt→T Yt = v almost surely.

Proof. Let {Dn}∞
n=1 be an exhaustion of G, that is, the sequence consists of

open, relatively compact subsets of M such that D̄n ⊆ Dn+1 and G =
⋃∞

n=1 Dn.
Furthermore, let τDn

denote the first exit time of Y from Dn, then from (7) we
have that the sequence

(
E[1{t<τDn }r2

v(Yt)]
)∞
n=1

is non-decreasing and bounded,
hence from the monotone convergence theorem, it has a limit which is bounded
by the right-hand side of (7). Applying Jensen’s inequality to the left-hand side
of (7)

E[rv(Yt)] ≤
(

r2
v(e) + νt

(
t

T − t

)) 1
2

(
T − t

t

)
e

λt
2 .

Since obviously E[rv(YT )] = rv(YT )Q(rv(YT ) �= 0), by Fatou’s lemma
E[rv(YT )] ≤ lim inft→T E[r(Yt)] = 0, we conclude that r(Yt) → 0, Q-almost
surely.

Lemma 2. Let 0 < t1 < t2 < · · · < tN < T and h be a continuous bounded
function on GN . With ψt as in (11), then

lim
t→T

E [h (Xt1 ,Xt2 , . . . , XtN
) ψt]

E[ψt]
= E [h (Xt1 ,Xt2 , . . . , XtN

) |XT = v] . (13)

Proof. The proof is similar to that of [2, Lemma 7]. Let (U, φ) be a normal chart
centered at v ∈ G. First, since the cut locus of any complete connected manifold
has (volume) measure zero, we can integrate indifferently in any normal chart.
For any t ∈ (tN , T ) we have

E[h(xt1 , ..., xtN
)ψt] =

∫

G

Φh(t, z)e− rv(z)2

2(T −t) d Vol(z) (14)

where d Vol(z) =
√

det(A(z))dz denotes the volume measure on G, dz the
Lebesgue measure, and A the metric tensor. Moreover,

Φh(t, z) =

∫

GN

h(z1, ..., zN )p(t1, u, z1) · · · p(t − tN , zN , z)d Vol(z1) · · · d Vol(zN ),

and of course Φ1(t, z) = p(t, e, z). Using the normal chart and applying the
change of variable x = (T − t)1/2y we get

(T − t)− d
2 E[h(xt1 , ..., xtN

)ψt]
t→T→ Φh(T, v) det(A(v))

d
2

∫

φ(G)

e− rv(φ−1(y))2

2 dy.

The conclusion follows from Bayes’ formula.

Lemma 3. With ϕt as defined above then ϕt
L1→ ϕT .

Proof. Note that for each t ∈ [0, T ) we have EQ[ϕt] < ∞ as well as ϕt → ϕT

almost surely by Lemma 1. The result then follows from the uniform integrability
of {ϕt : t ∈ [0, T )}, which can be found in Appendix C.2 in [9].
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4 Importance Sampling and Metric Estimation on SO(3)

This section takes G to be the special orthogonal group of rotation matrices,
SO(3), a compact connected matrix Lie group. In the context of matrix Lie
groups, computing left-invariant vector fields is straightforward.

(a) (b) (c)

Fig. 1. Three sample paths (a)–(c) of the guided diffusion process on SO(3) visualized
by its action on the basis vectors {e1, e2, e3} (red, green, blue) of R3. The sample paths
are conditioned to hit the rotation represented by the black vectors. (Color figure
online)

Numerical Simulations. The Euler-Heun scheme leads to approximation of
the Stratonovich integral. With a time discretization t1, . . . , tk, tk − tk−1 = Δt
and corresponding noise ΔBti

∼ N(0,Δt), the numerical approximation of the
Brownian motion (1) takes the form

xtk+1
= xtk

− 1

2

∑

j,i

Cj
ij Vi(xtk

)Δt +
vtk+1

+ Vi(vtk+1
+ xtk+1

)ΔBi
tk

2
(15)

where vtk+1
= Vi(xtk

)ΔBi
tk

is only used as an intermediate value in integration.
Adding the logarithmic term in (10) to (15) we obtain a numerical approximation
of a guided diffusion (3). Figure 1 shows three different sample paths from the
guided diffusion conditioned to hit the rotation represented by the black vectors.

Metric Estimation on SO(3). In the d-dimensional Euclidean case, impor-
tance sampling yields the estimate [7]

p(T, u, v) =

(
det (A(T, v))

2πT

)d
2

e− ‖u−v‖2
A

2T E[ϕT ],

where ‖x‖A = xT A(0, u)x. Thus, from the output of the importance sampling
we get an estimate of the transition density. Similar to the Euclidean case, we
obtain an expression for the heat kernel p(T, e, v) as p(T, e, v) = q(T, e)E [ϕT ],
where
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q(T, e) =

(
det A(v)

2πT

) 3
2

exp

(
−d(e, v)2

2T

)
=

(
det A(v)

2πT

) 3
2

exp

(
−‖Logv(e)‖2

A

2T

)
,

(16)
where the equality holds almost everywhere and A ∈ Sym+(G) denotes the metric
A(e). The Logv map in (16) is the Riemannian inverse exponential map.

Figure 2 illustrate how importance sampling on SO(3) leads to metric esti-
mation of the underlying true metric, from which the Brownian motion was
generated. We sampled 128 points as endpoints of a Brownian motion from the
metric diag(0.2, 0.2, 0.8). We used 20 time steps and sampled 4 bridges per obser-
vation. An iterative maximum likelihood method using gradient descent with a
learning rate of 0.2, and initial guess of the metric being diag(1, 1, 1) yielded
a convergence to the true metric. Note that in iteration the logarithmic map
changes.

(a) Estimation of the unknown underly-
ing metric using bridge sampling. Here
the true metric is the diagonal matrix
diag(0.2, 0.2, 0.8).

(b) The iterative log-likelihood.

Fig. 2. The importance sampling technique applies to metric estimation on the Lie
group SO(3). Sampling a Brownian motion from an unknown underlying metric we
obtain a convergence to the true underlying metric using an iterative maximum-
likelihood method. Here we sampled 4 bridge processes per observation, starting from
the metric diag(1, 1, 1), providing a relatively smooth iterative likelihood in 2b.
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