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A B S T R A C T

Modern artificial neural networks (ANNs) are loosely inspired by the
human brain. This begs the question: can they help us model aspects
of (human) language understanding by serving as plausible hypothe-
ses for its underlying representations and mechanisms? Although the
way modern ANN language models (LMs) learn — via training on
immense amounts of text to predict either future or masked tokens —
is manifestly not human-like, they have demonstrated a remarkable
ability to simulate human understanding on a wide range of tasks. In
addition, they have recently been shown to predict or align to a va-
riety of cognitive measurements. This dissertation presents research
that investigates ANN LMs, examining the linguistic properties of the
representations they acquire and exploring parallels and disparities
between their language processing capacities and those of humans.
This is done based on three classes of analytical comparisons, viz. (i)
behavioural data, (ii) linguistic theory, and (iii) neural response mea-
surements.

For the first class, we (a) analyse the representational similarity
between ANN language model activation patterns and eye-tracking
data and (b) evaluate the structural alignment of humans’ percep-
tual color space with LM-derived color name representations. In both
cases, we find interesting correspondences.

For the second, we show that ANN LMs (a) when finetuned on task-
specific data, are robust to linguistic perturbations that minimally af-
fect human understanding, (b) can learn attention patterns that reflect
linguistic structure, and (c) trained on sentences with scrambled word
order, still retain a notion of word order derived from statistical cues
that persist in the scrambled data, offering an explanation for why
they still perform well on language understanding tasks.

For the final class of comparisons, we present a literature review
of research linking computational models of language with human
neural response measurements and conclude by introducing a frame-
work for leveraging ANN LMs to enable the evaluation of targeted
hypotheses about the composition of meaning in the human brain.

Overall, this dissertation works towards furthering our understand-
ing of ANN LMs through comparisons to what we already know
about how humans process language and, reciprocally, towards devel-
oping frameworks where LMs can help provide insights into human
language.
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A B S T R A C T I N D A N I S H

Moderne kunstige neurale netværk (KNN) er løst inspireret af den
menneskelige hjerne. Dette rejser spørgsmålet: Kan de hjælpe os med
at modellere aspekter af (menneskelig) sprogforståelse ved at fungere
som plausible hypoteser for dets underliggende repræsentationer og
mekanismer? Selvom den måde, moderne KNN-baserede sprogmo-
deller lærer — via træning på enorme mængder tekst ved at forud-
sige enten fremtidige eller maskerede sproglige enheder — åbenlyst
ikke er menneskelignende, har de vist en bemærkelsesværdig evne
til at simulere menneskelig forståelse på en bred vifte af opgaver. De-
rudover har de for nylig vist sig at forudsige eller tilpasse sig en
række kognitive målinger. Denne afhandling præsenterer forskning,
der undersøger KNN-baserede sprogmodeller, de sproglige egenska-
ber ved de lærte repræsentationer og udforsker ligheder og forskelle
mellem deres sprogbehandlingskapacitet og menneskers. Dette gøres
ud fra tre klasser af analytiske sammenligninger: (i) Adfærdsdata,
(ii) lingvistisk teori og (iii) neurale responsmålinger. For den førs-
te klasse analyserer vi (a) den repræsentative lighed mellem KNN-
baserede sprogmodellers aktiveringsmønstre og eye-tracking data og
(b) evaluerer den strukturelle tilpasning af menneskers perceptuelle
farverum med repræsentation af farvenavne afledt fra sprogmodeller.
I begge tilfælde finder vi interessante paralleller. For det andet viser
vi, at KNN-baserede sprogmodeller (a) er robuste over for sproglige
forstyrrelser, der påvirker den menneskelige forståelse minimalt, når
de er finjusteret på opgavespecifik data, (b) kan lære opmærksomhe-
dsmønstre, der afspejler sproglig struktur og (c) trænet på sætninger
med permuteret ordrækkefølge bevarer information om ordrækkeføl-
ge, der er afledt af statistiske afhængigheder og signaler, der fortsæt-
ter i det permuterede data, hvilket forklarer hvorfor de stadig klarer
sig godt på opgaver, der kræver menneskelig sprogforståelse. I den
sidste klasse af sammenligninger præsenterer vi en litteraturgennem-
gang af forskning, der forbinder sprogmodeller med neurale respons-
målinger på mennesker og afslutter med at introducere en ramme for
udnyttelse af KNN-baserede sprogmodeller for at muliggøre evalue-
ring af mere målrettede hypoteser om sammensætningen af mening i
den menneskelige hjerne. Overordnet arbejder denne afhandling mod
at fremme vores forståelse af KNN-baserede sprogmodeller gennem
sammenligninger med det vi allerede ved om menneskers sprogfor-
ståelse og, gensidigt, mod at udvikle rammer, hvor sprogmodeller
kan hjælpe med at give indsigt i menneskeligt sprog.
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Part I

I N T R O D U C T I O N A N D B A C K G R O U N D





1
I N T R O D U C T I O N

The systematic study of language dates back to some time around the
6th century BC, from which time we have records of the grammarian
Panini’s formal description of Sanskrit, and of documents describing
Sumerian, various Chinese languages, and somewhat later, Arabic,
Hebrew, and Greek.

Modern linguistics can be traced back to the 19th century, and
was marked by a shift in focus towards the structural features of
language, putting emphasis on identifying, isolating, and analysing
the different units which carry linguistic significance, e.g. phonemes,
morphemes, syntactic constituents, etc. These “mechanistic” analyti-
cal procedures (Bloomfield, 1926) used for the description of language
structures were followed by Chomsky (1957)’s “generative grammar”
which consisted of a precisely formulated set of rules whose output
is all (and only) the sentences of a language. These sets of rules can be
seen as models of language in some sense, making predictions about
what can be considered a grammatical utterance. Such models, and
much of the work that followed, was primarily concerned with the
careful description linguistic structure and syntax, and did not take
the meaning of an utterance into consideration.1

Leaping forward to the present day, we find that the field of Natural
Language Processing (NLP) has developed models of language which
are able to simulate (aspects of) human understanding in a variety of
settings. Unlike the models of syntax mentioned above, these models
incorporate no explicit rules. Instead, they rely on distributional infor-
mation: the statistical patterns and dependencies present in a corpus
of text (Brown et al., 1990; Mikolov et al., 2013; Schütze, 1993). This
class of model, loosely inspired by biological brains, is known as Ar-
tificial Neural Networks (ANNs).2 The way they encode information
involves the optimization of millions (or billions) of weights over a
large number of observed examples. To optimize these weights, the
model is “trained” to perform a certain task, such as predicting the
upcoming words in a paragraph, or labelling the part of speech cat-
egory of a word in a sentence. An objective function is defined that,
when applied to a set of observations and the corresponding predic-
tions a model makes, defines a trajectory towards a minimum in the

1 Chomsky argues, for instance, that it is “relatively useless” to use meaning “as a
basis for grammatical description”(Chomsky, 1957).

2 Note that there are other classes of NLP models which also rely on distributional
information, but we focus on ANN-based models as they are the most relevant to the
work carried out in this dissertation.

3
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high-dimensional vector space parametrized by the model’s weights,
minimizing the error in in its predictions.

The grounding of such ANN language models (LMs) in linguistic
theory is tenuous.3 Indeed, they hardcode very little to nothing in
terms of linguistic rules, definitions, or formal structures. Neverthe-
less, they have (a) demonstrated an impressive ability to simulate
understanding (Wang et al., 2019b, 2018a); (b) been found to encode
a breadth of linguistic information (Belinkov and Glass, 2019a; Man-
ning et al., 2020); and (c) been shown to show representational align-
ment to cognitive measurements, such as the brain activation record-
ings of human subjects processing linguistic stimuli (Caucheteux and
King, 2020; Schrimpf et al., 2020c). Although the way these models
learn is clearly unlike the way in which humans do — through text-
only data, optimizing for a small number of fixed objectives, and
requiring many more observations — the solutions to which they
converge do, overall, provide the most accurate predictions (among
existing models) for various aspects of language. This naturally leads
to the question of whether and where there is potential for their em-
ployment as plausible models of the linguistic phenomena studied
in theoretical, psycho-, and neuro- linguistics. For this to happen, an
in-depth understanding of ANN LM’s linguistic capacities, and where
or how they might correspond to or diverge from humans, must first
be established.

1.1 scope

Accordingly, the work carried out in this dissertation has two broad
aims: (a) furthering our understanding of of ANN LMs through com-
parisons to what we already know about how humans process and
understand language and (b) developing an understanding of where
LMs might help provide insights into the human language faculty.

To this end, this dissertation presents an investigation along three
related lines of questioning:

• How well do ANN LMs align to behavioural data (e.g. eye-tracking
data, language understanding tasks, etc.)?

• How well do ANN LMs agree with insights from linguistic theory
about language processing and understanding in humans?

• Can LMs, through comparisons to measurements of neural re-
sponse, be used for the study of meaning composition in the
human brain?

3 There are, of course, exceptions to this, such as models which incorporate tree-like,
linguistic structure as part of models’ inductive biases (Dyer et al., 2016; Tai et al.,
2015).
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1.2 key questions

For each of the threads of inquiry listed above, this thesis examines
several specific questions, which are enumerated below:

• Behavioural Data:

– Are there structural correspondences between eye-tracking
fixation patterns and LM representations?

– Can language models encode perceptual structure without
grounding?

• Linguistic Theory:

– How sensitive are humans and LMs to linguistic perturba-
tions of Winograd Schema Challenge4 examples?

– Can the attention patterns learned by LMs reflect linguistic
structure (in the form of dependency trees)?

– Why do LMs trained on sentences with shuffled words still
perform well on Natural Language Understanding (NLU)
tasks? Do they still encode some word order information?
Are there NLU tasks where degrading word order informa-
tion has a stronger effect on performance?

• Neural Response Measurements:

– Can LMs be used to enable the evaluation of targeted hy-
potheses about the composition of meaning in the brain?

– Does injecting linguistic structure into LM representations
lead to better alignment with brain activation measure-
ments?

1.3 overview and contributions

Addressing the questions listed above, the contribution of this dis-
sertation is to analyse numerous specific parallels and divergences
between LM and human language comprehension, aiming to estab-
lish where they might be utilised for linguistic theorizing or a plau-
sible cognitive models of language. Figure 1.1 shows an illustrative
overview of the work to be presented.

This thesis is divided into four parts. Part i is made up of the cur-
rent introduction followed by a background chapter, which contextu-
alizes the work which is to be presented in the rest of the thesis. Part
ii is made up of Chapters 3 & 4, which present studies that make of
use behavioural data to study ANN LMs. Part iii includes Chapters 6

4 A widely-employed test of commonsense reasoning ability, proposed by Levesque
et al. (2012)
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ANN Language Model

                             Language Stimuli:      “I am the Walrus.”
                                  “Lucy in the Sky with Diamonds.”

                                                                             “...”

Figure 1.1: Research carried out in this dissertation worked towards link-
ing ANN LM representations to (a) behavioural data such as eye-
tracking data or similarity judgements, (b) linguistic theory, e.g.
dependency tree structure, and (c) neural response measure-
ments, e.g. fMRI.

& 7, which detail analyses of LMs that are based on various aspects
of linguistic theory. In Part iv, Chapter 8 presents a survey of work
linking computational models of language with neural response mea-
surements, and Chapter 9 introduces a framework for the use of LMs
to study linguistic composition in the human brain. Finally, in Part v,
a discussion and conclusion are presented.

Note that the division of studies along the lines of behavioural data,
linguistic theory, and neural response measurements is done primar-
ily for organizational purposes, as there is, in any case, significant
inherent interdependence and overlap between research done on the
three topics.

A brief description of the work to be presented in each of the chap-
ters is shown below:

• The work presented in Chapter 3 links gaze features (from read-
ing) with LM representations, revealing a previously unknown
correspondence between LM representation divergence and hu-
man processing difficulty.

• In Chapter 4, we show that even though they are trained on
textual data only, LM representations can (partially) reflect the
topology of humans’ perceptual color space. In analysis, we find
that this topological alignment is, in part, mediated by colloca-
tionality and differences in syntactic usage. We also establish a
connection to findings from recent work on efficient communi-
cation in color naming.
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• Chapter 5 analyses the robustness of both LMs and humans
to linguistic perturbations of Winograd Schema Challenge ex-
amples. The findings presented show that the latter are more
robust than the former, but that through finetuning on task-
specific data LMs become more robust.

• Chapter 6 presents experiments on decoding dependency trees
from the attention heads of a multilingual LM. The results pre-
sented span 18 languages and show that: (a) full trees can be
decoded above baseline accuracy from single attention heads,
and that that particular relations are often tracked by the same
heads across languages and (b) steering the representations to-
wards explicit linguistic structure by finetuning with a super-
vised parsing objective leads to the same structure being re-
flected in the resulting attention patterns.

• Chapter 7 presents an examination of recent results showing
that LMs pretrained and/or finetuned on sentences with shuf-
fled words still exhibit competitive performance on NLU bench-
marks. In this work, we demonstrate that: (a) shuffled models
retain information pertaining to the original natural word order
due to statistical cues present in the data they are trained on
and (b) there are more rigorous NLU tasks where degradation
of word order information has a stronger effect on performance.

• Chapter 8 presents a survey of research that has worked to link
computational models of language with neural response mea-
surements. The survey traces a line from early research combin-
ing Event Related Potentials with complexity measures derived
from simple LMs, to contemporary studies employing ANN LMs
in combination with neural response recordings from multiple
modalities and using naturalistic stimuli.

• Finally, Chapter 9 proposes a framework where LMs are em-
ployed for the evaluation of targeted hypotheses about the com-
position of meaning in the brain. Using this, we show that,
across two fMRI datasets, LM representations align better with
brain recordings, when their attention is biased to match lin-
guistic annotations from three syntaco-semantic formalisms.





2
B A C K G R O U N D

This chapter presents a brief background that is designed to contex-
tualise the work to be presented in this dissertation. As outlined in
the previous chapter, this dissertation studies ANN language models,
comparing their linguistic processing and comprehension capacities
to those of humans, through the lens of (i) behavioural data, (ii) lin-
guistic theory, and, (iii) neural response measurements.

This chapter is divided into in four sections. The first offers a brief
history and description of ANN LMs. The following three sections each
presents a survey of work that connects ANN LMs to one of the three
types of resources listed above.

2.1 artificial neural network language models

2.1.1 A brief history

The Modern ANN LM which has become so predominant in NLP can
be seen as the heir to the legacy of multiple research traditions.

From statistical language modelling, it inherits the probabilistic
and information theoretic frameworks which formally define what
we have come to think of as a language model — a probability distri-
bution over sequences of words P(w1, . . . ,wn) = P(w1)×P(w2|w1)×
· · · × P(wn|w1 . . . wn − 1), where probabilities are computed using
smoothed counts from a corpus of text — and how we might evalu-
ate the fitness of one (e.g. perplexity) (Brown et al., 1990). Statistical
language models from this tradition are often called n-gram models,
due to their incorporation of a limited number n of previous units
of context (e.g. words). Models of this kind have been employed to
good effect in a variety of NLP applications since the late 1980s (Barzi-
lay and Lee, 2004; Brown et al., 1990; Church, 1989; Jelinek et al., 1991;
Kemighan et al., 1990; Roark, 2001). Among the main distinctions be-
tween this class of models and ANN LMs is the treatment of words
or other linguistic units as discrete rather than continuous entities
and because of this, the practical impossibility of including previous
contexts longer than five or six sequence units due to data sparsity.

From the distributional semantics and the information retrieval lit-
erature, ANN LMs inherit the idea of representing linguistic units via
their distributional properties. Even before the advent of ANN LMs,
modern NLP was heavily reliant on this approach where a word is
typically represented by a high-dimensional vector capturing its co-
occurrence statistics in a corpus, through a variety of context-counting

9
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and matrix factorisation models (Bullinaria and Levy, 2007; Schütze,
1993; Turney and Pantel, 2010).

Finally, from the connectionist paradigm, current day LMs inherit
the basic principles of and the motivation for the ANN architecture.
This paradigm takes loose inspiration from the manner in which infor-
mation is processed by the biological brain. Its core idea is that infor-
mation should be processed via the propagation of activation among
simple units linked to each other through weighted connections repre-
senting synapses or groups thereof (McClelland, 1988). Connectionist
models date back at least to work such as McCulloch and Pitts (1943)
and Rosenblatt (1958), which showed that simple models like the Per-
ceptron could implement (some) logical operations. Rumelhart and
McClelland (1985) presented one of the first applications of connec-
tionist models to language. Training simple ANN models to learn the
morphological inflection patterns of past-tense English verbs, they
found them to reflect (to some extent) the patterns of children learn-
ing. In the early 2000s, seminal work like Schwenk and Gauvain
(2002) and Bengio et al. (2003) presented the first continuous space lan-
guage models, which can be seen as the direct precursors to today’s
language models. By representing words using distributed feature
vectors and training neural network models to maximize training cor-
pus log-likelihood, they could fight the curse of dimensionality problem
caused by data sparsity in statistical language models, enabling gen-
eralization to unseen sequences of words.

2.1.2 Where things stand

It took a decade or so of software and hardware advances till these
models became widely adopted and deployed by the NLP commu-
nity where they have recently been described as “foundation models”
which are “critically central yet of incomplete character” (Bommasani
et al., 2021). Most current-day LMs are based either on gated rec-
curent neural network architectures like the Long Short Term Memory
(Hochreiter and Schmidhuber, 1997) or on Transformer (Vaswani et
al., 2017) architectures. The latter, in particular, has become the archi-
tecture of choice for the pretraining and transfer learning paradigm.

This paradigm involves the self-supervised training of a large (bil-
lions of parameters) ANN LM on huge amounts of data (billions of
tokens). These models are trained to predict future tokens (Brown et
al., 2020; Radford et al., 2018, 2019), randomly masked tokens (Devlin
et al., 2019a; Liu et al., 2019b), or via a variety of other denoising ob-
jectives (Lewis et al., 2020; Raffel et al., 2019). After this pretraining
stage, the information acquired by these LMs can then be “transfered”
to virtually any NLP task either by finetunig them with a supervised
learning objective on small or medium-sized task-specific datasets or
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in a zero-shot fashion. This dissertation focuses on this class of mod-
els.

2.2 linking artificial and human comprehension of lan-
guage

Besides measures like perplexity which evaluate the fitness of an LM

on the language modelling task itself, a significant amount of research
has gone into understanding what types of information might be en-
coded in LMs’ internal representations and what tasks they might be
useful for. Below, we survey approaches of doing this via comparisons
to human behaviour, linguistic theory, and neural response. Since this
dissertation is not only concerned with the evaluation of LMs but also
with the enabling of cross-pollination between NLP and (psycho, cog-
nitive, and neuro-) linguistics, we also highlight work that has gone
in the other direction, leveraging LMs in the study of the human lan-
guage faculty.

2.2.1 Behavioural Data

One major approach towards evaluating LMs has relied on the con-
struction of benchmarks that measure their capacity to emulate hu-
man behaviour on a broad range of NLU tasks. Examples of this in-
clude tasks such as: judging the grammatical acceptability of a sen-
tence (Warstadt et al., 2019); Reading Comprehension, where the task
is to read a passage and answer questions based on it (Lai et al.,
2017; Rajpurkar et al., 2018, 2016); the WSC (see Chapter 5), which in-
volves the identification of an ambiguous pronoun’s correct referent
(Levesque et al., 2012); and Natural Language Inference, where given
a premise statement and a hypothesis statement, an answerer must clas-
sify the relationship between them as one of entailment, contradic-
tion, or neutrality (Bowman et al., 2015; Dagan et al., 2005). Beyond
linguistic capacity, these tasks are often considered to require other
competencies, such as “reasoning ability” or “world knowledge”.

In an effort to standardize evaluation, the community developed
suites which consolidate together numerous NLU tasks and present
the results in the form of overall rankings or leaderboards, such as
GLUE, SuperGLUE, and decaNLP (McCann et al., 2018a; Wang et al.,
2019b, 2018b). Performance on these suites, it was thought, would
guide the development of models, providing a reliable indication
of where progress was being made. And indeed, through various
schemes involving the pretraining and finetuning of LMs, rapid progress
was made on the benchmarks, with the best performing LMs reaching
near-human scores on most tasks.

Although the ability of LMs to closely match human answers for
these tasks is remarkable, caution is due when interpreting what this



12 background

might mean with regards to their linguistic (or reasoning) capacities.
Indeed, a significant body of work has aimed to understand the ex-
tent to which LMs are solving these tasks by using what we expect
them to as opposed to leveraging statistical artifacts and biases. This
thread of work has to date revealed significant problems with read-
ing comprehension datasets (Chen et al., 2016a; Kaushik and Lipton,
2018), Natural Language Inference datasets (Gururangan et al., 2018a;
McCoy et al., 2019; Poliak et al., 2018a; Tsuchiya, 2018), and tasks like
the WSC (Trichelair et al., 2018), among others. In connection to this,
Chapter 5, presents a new diagnostic dataset, testing how sensitive
(compared to humans) LMs are to minimal linguistic perturbations of
WSC examples.

More recently, researchers found that the performance of LMs on
most tasks which make up benchmarks like GLUE, is not significantly
impacted by applying permutations of word order (and other various
perturbations such as sorting, duplicating, and dropping tokens) to
pretraining, finetuning, or test-time data (Gupta, 2003; Pham et al.,
2020; Sinha et al., 2021, 2020), casting doubt on the extent to which
deeper linguistic knowledge is actually required for these tasks. This
thread of research is addressed in Chapter 7 of this dissertation.

Other types of behavioural data that have been used to evaluate
LMs include lexical similarity or relatedness judgements (Chronis and
Erk, 2020) and eye-tracking measurements, as is presented in Hollen-
stein et al. (2021) and Wilcox et al. (2020) and in in Chapter 3 of this
thesis. In relation to the latter, several studies have also used eye-
tracking fixation patterns as a signal to improve LM performance on
NLP tasks (Barrett et al., 2018; Gonzalez-Garduno and Søgaard, 2017;
Hollenstein et al., 2019; Hollenstein and Zhang, 2019; Malmaud et al.,
2020).

Examples of work employing ANN LMs towards linguistic or psy-
cholinguistic research that is based on behavioural data are less com-
mon, but do exist. Indeed, recent investigations of various aspects of
syntactic processing in humans based on eye-tracking measurements
have used word surprisal scores derived from LMs (Van Schijndel and
Linzen, 2018, 2021). Boyce et al. (2020), employs LM predictions to au-
tomate the generation of probable and improbable sentence continu-
ations in the Maze task (Forster et al., 2009), a standard task used in
sentence processing research where a subject reads a sentence word
by word, and at each word position is presented with a forced choice
between a word that correctly continues the sentence and a distractor.
The subject’s reaction time is recorded as they choose the continua-
tion.
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2.2.2 Linguistic Theory

ANN LMs are opaque, complex, monolithic models. In order to inter-
pret and analyse the information encoded by their representations
and the human-like generalizations they make, researchers have re-
lied on aspects of linguistic theory, in what has become known as the
probing paradigm. Broadly speaking, this involves using parametrized
or parameter-free probing tasks to answer questions about the types
of (linguistic) information encoded in a model’s internal representa-
tion and which component of a model’s architecture or what part of
its training objective and inductive biases lead to it acquiring certain
properties or making certain decisions (Belinkov and Glass, 2019a;
Kulmizev and Nivre, 2021).

Parametrized probing relies on a fairly straightforward procedure:
a LM is used to induce representations for a set of examples anno-
tated for a given class of linguistic information (e.g. part-of-speech),
then a classifier is trained to map from the representations to the la-
bels. If the classifier does well at predicting the labels of an unseen
test set, the LM-dervied representations are said to encode for this
linguistic property. Using this framework, research has shown that
LMs encode for morphosyntactic information (Belinkov et al., 2017a;
Shi et al., 2016), hierarchical linguistic structure (Conneau et al., 2018;
Hewitt and Manning, 2019; Hupkes et al., 2017), and common sense
or factual knowledge (Feldman et al., 2019; Petroni et al., 2019), with
some research even suggesting that pretrained LMs “rediscover the
classic NLP pipeline”, with lower layers encoding for local syntax and
higher layers capturing more complex semantic information (Tenney
et al., 2019). Soon however, it became recognized that parametrized-
probe performance could be affected by factors which are not directly
related to how well a class of information is encoded for or is read-
able from a given representation, such as probe expressivity (Hewitt
and Liang, 2019b).

To address this, several approaches have been proposed, such as:
comparing probe performance to a control task, encouraging selec-
tive probes that simultaneously achieve high linguistic task and low
control task accuracies (Hewitt and Liang, 2019b; Ravichander et al.,
2020); controlling for or quantifying probe expressivity (Pimentel et
al., 2020a; Voita and Titov, 2020), and various other information-theoretic
operationalizations of parametrized probing (Hewitt et al., 2021; Hou
and Sachan, 2021; Pimentel et al., 2020c). Many of the methods de-
scribed above are utilised in this dissertation (Chapters 4, 5, 6, 7 & 9).
The reader is referred to Belinkov (2021) for a detailed treatment of
the topic.

Parameter-free probing, on the other hand, circumvents many of
the issues described above, relying instead on carefully curated sets
of stimuli that are based on phenomena described in the syntax lit-
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erature. A prominent example of this is the Targeted Syntactic Evalu-
ation framework or variants of thereof (Chowdhury and Zamparelli,
2019; Futrell and Levy, 2019; Linzen et al., 2016) where minimal pairs
of examples — one grammatical and one not — are designed to test if
the probability distribution defined by an LM conforms to the gram-
mar of the language. An example of this, taken from Marvin and
Linzen (2018) is:

1. The bankers knew the officer smiles.

2. *The bankers knew the officer smile.

Here, a model that is able to correctly analyse the syntactic struc-
ture of the sentence would be expected to assign a higher probability
to (1) than to (2), based on the need for the verb smiles to agree with
the embedded subject officer rather than the subject of the main clause
(bankers).

Recently, Warstadt et al. (2020) and Hu et al. (2020a) presented eval-
uation suites which follow this framework. Grouping over different
classes of syntactic phenomena that occur in the English language
(Agreement, Licensing, Ellipsis, etc.), these suites enable a systematic
evaluation of the syntactic knowledge in LMs. We refer the reader to
Linzen and Baroni (2021) for a detailed survey of this line of research
and to Kulmizev and Nivre (2021) for a discussion of its pitfalls.

Targeted syntactic evaluation is applied to measure the syntactic
capacities of structurally-biased models in Chapter 9 of this disserta-
tion. Other approaches for parameter-free probing include methods
that rely on similarity structure like Representational Similarity Anal-
ysis, which this thesis discusses in detail in Chapter 3.

While the influence of linguistic theory on ANN LM research is un-
deniable, the opposite has so far not been true. Baroni (2021) argues
that ANN LMs should be treated as linguistic theories, and that the
lack of interest in these models within theoretical linguistics research
can be attributed to two main obstacles: (a) the lack of methodical
consistency and theoretically grounding with regards to how archi-
tecture, hyperparameters, training data, etc. are chosen, which makes
it difficult to “take this work seriously from the perspective of lin-
guistic theorizing” and (b) the lack of interesting predictions about
previously unexplored linguistic patterns, since the the field (i.e. NLP)
has so far been conducting an “extensive sanity check”, testing how
well LMs can capture already recognized patterns and phenomena.

2.2.3 Neural Response Measurements

Finally, the reader is referred to Chapter 8 for a comprehensive sur-
vey of work linking ANN LMs with Neural Response measurements.
Here, we find a reversal of the trend from the previous two categories,
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where the use of LMs in neurolinguistic research has been more com-
mon than the converse.





Part II

B E H AV I O U R A L D ATA





3
H I G H E R - O R D E R C O M PA R I S O N S O F S E N T E N C E
E N C O D E R R E P R E S E N TAT I O N S

3.1 abstract

Representational Similarity Analysis is a technique developed by neu-
roscientists for comparing activity patterns of different measurement
modalities (e.g., fMRI, electrophysiology, behavior). As a framework,
RSA has several advantages over existing approaches to interpretation
of language encoders based on probing or diagnostic classification:
namely, it does not require large training samples, is not prone to
overfitting, and it enables a more transparent comparison between the
representational geometries of different models and modalities. We
demonstrate the utility of RSA by establishing a previously unknown
correspondence between widely-employed pretrained language en-
coders and human processing difficulty via eye-tracking data, show-
casing its potential in the interpretability toolbox for neural models.

3.2 introduction

Examining the parallels between human and machine learning is a
natural way for us to better understand the former and track our
progress in the latter. The “black box” aspect of neural networks has
recently inspired a large body of work related to interpretability, i.e.
understanding of representations that such models learn. In NLP, this
push has been largely motivated by linguistic questions, such as: what
linguistic properties are captured by neural networks? and to what extent
do decisions made by neural models reflect established linguistic theories?
Given the relative recency of such questions, much work in the do-
main so far has been focused on the context of models in isolation
(e.g. what does model X learn about linguistic phenomenon Y?) In order to
more broadly understand models’ representational tendencies, how-
ever, it is vital that such questions be formed not only with other
models in mind, but also other representational methods and modal-
ities (e.g. behavioral data, fMRI measurements, etc.). In context of the
latter concern, the present-day interpretability toolkit has not yet been
able to afford a practical way of reconciling this.

In this work, we employ Representational Similarity Analysis as a
simple method of interpreting neural models’ representational spaces
as they relate to other models and modalities. In particular, we con-
duct an experiment wherein we investigate the correspondence be-
tween human processing difficulty (as reflected by gaze fixation mea-

19



20 higher-order comparisons of sentence encoder representations

Figure 3.1: An example of first- and second-order analyses, where N = # of
experimental conditions, M = # of models, and H = # of activity
patterns observed for a given model (i.e. dimensionality). The
right-most side of the figure depicts a representational similairty
matrix (RSM) of correlations between RDMs.

surements) and the representations induced by popular pretrained
language models. In our experiments, we hypothesize that there ex-
ists an overlap between the sentences which are difficult for humans
to process and those for which per-layer encoder representations are
least correlated.

Our intuition is that such sentences may exhibit factors such as
low-frequency vocabulary, lexical ambiguity, and syntactic complex-
ity (e.g. multiple embedded clauses), etc. that are uncommon in both
standard language and, relatedly, the corpora employed in training
large-scale language models. In the case of a human reader, encoun-
tering such a sentence may result in a number of processing delays,
e.g. longer aggregate gaze duration. In the case of a sentence en-
coder, an uncommon sentence may lead to a degradation of repre-
sentations in the encoder’s layers, wherein a lower layer might learn
to encode vastly different information than a higher one. Similarly,
different models’ representations may emphasize different aspects of
these more complex sentences and therefore diverge from each other.
With this in mind, our hypothesis is that sentences which are difficult
for humans to process are likely to have divergent representations
within models’ internal layers and between different models’ layers.

understanding and analysing language encoders In re-
cent years, some prominent efforts towards interpreting neural net-
works for NLP have included: developing suites that evaluate network
representations through performance on downstream tasks (Conneau
et al., 2017a; McCann et al., 2018b; Wang et al., 2018a); analyzing net-
work predictions on carefully curated datasets (Dasgupta et al., 2018;
Gulordava et al., 2018; Linzen et al., 2016; Loula et al., 2018; Marvin
and Linzen, 2018; Tenney et al., 2018); and employing diagnostic clas-
sifiers to assess whether certain classes of information are encoded
in a model’s (intermediate) representations (Adi et al., 2016; Belinkov
et al., 2017a; Chrupała et al., 2017; Hupkes et al., 2017).
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While these approaches provide valuable insights into how neural
networks process a large variety of phenomena, they rely on decoding
accuracy as a probe for encoded linguistic information. If properly bi-
ased, this means that they can detect whether information is encoded
in a representation or not. However, they do not allow for a direct
comparison of representational structure between models. Consider
a toy dataset of five sentences of interest and three encodings derived
from quite different processing models; a hidden state of a trained
neural language model, a tf-idf weighted bag-of-words representa-
tion, and measurements of fixation duration from an eye-tracking de-
vice. Probing methods do not allow us to quantify or visualise, for
each of these encoding strategies, how the encoder’s responses to the
five sentences relate to each other. Moreover, probing methods would
not directly reveal whether the fixations from the eye-tracking device
aligned more closely with the tf-idf representation or the states of
the neural language model. In short, while probing classifier meth-
ods can establish if phenomena are separable based on the provided
representations, they do not tell us about the overall geometry of the
representational spaces. RSA, on the other hand, provides a basis for
higher-order comparisons between spaces of representations, and a
way to visualise and quantify the extent to which they are isomor-
phic.

Indeed, RSA has seen a modest introduction within interpretable
NLP in recent years. For example, Chrupała et al. (2017) employed
RSA as a means of correlating encoder representations of speech, text,
and images in a post-hoc analysis of a multi-task neural pipeline. Sim-
ilarly, Bouchacourt and Baroni (2018) used the framework to measure
the similarity between input image embeddings and the represen-
tations of the same image by an agent in an language game setting.
More recently, Chrupała and Alishahi (2019) correlated activation pat-
terns of sentence encoders with symbolic representations, such as
syntax trees. Lastly, similar to our work here, Abnar et al. (2019a)
proposed an extension to RSA that enables the comparison of a single
model in the face of isolated, changing parameters, and employed this
metric along with RSA to correlate NLP models’ and human brains’ re-
spective representations of language. We hope to position our work
among this brief survey and further demonstrate the flexibility of RSA

across several levels of abstraction.

3.3 representational similarity analysis

RSA was proposed by Kriegeskorte et al. (2008) as a method of relat-
ing the different representational modalities employed in neuroscien-
tific studies. Due to the lack of correspondence between the activity
patterns of disparate measurement modalities (e.g. brain activity via
fMRI, behavioural responses), RSA aims to abstract away from the ac-
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tivity patterns themselves and instead compute representational dis-
similarity matrices (RDMs), which characterize the information car-
ried by a given representation method through dissimilarity struc-
ture.

Given a set of representational methods (e.g., pretrained encoders)
M and a set of experimental conditions (sentences) N, we can con-
struct RDMs for each method in M. Each cell in an RDM corresponds
to the dissimilarity between the activity patterns associated with pairs
of experimental conditions ni,nj ∈ N, say, a pair of sentences. When
ni = nj, the dissimilarity between an experimental condition and it-
self is intuitively 0, thus making the N×N RDM symmetric along a
diagonal of zeros (Kriegeskorte et al., 2008).

The RDMs of the different representational methods in M can then
be directly compared in a Representational Similarity Matrix (RSM).
This comparison of RDMs is known as second-order analysis, which
is broadly based on the idea of a second-order isomorphism (Shepard
and Chipman, 1970). In such an analysis, the principal point of com-
parison is the match between the dissimilarity structure of the dif-
ferent representational methods. Intuitively, this can be expressed
through the notion of distance between distances, and is thus related
to Earth Mover’s Distance (Rubner et al., 2000).1 Figure 3.1 shows
an illustration of the first and second order analyses for pretrained
language encoders.

Note that RSA is meaningfully different from, and complementary
to, methods that employ saturating functions of representation dis-
tances (e.g. decoding accuracy, mutual information), which suffer
from (a) a ceiling effect: being able to distinguish experimental phe-
nomenon A from B with with an accuracy of 100% and experimental
phenomenon C from D with an accuracy of 100% does not mean that
the distance between A and B is the same as that between C and D;
and (b) discretization (Nili et al., 2014).

We follow Kriegeskorte et al. (2008) in using the correlation dis-
tance of experimental condition pairs ni,nj ∈ N as a dissimilarity
measure, where n̄i is the mean of ni’s elements, · is the dot product,
and ‖ is the l2 norm: corr(x) = 1 −

(ni−n̄i)·(nj−n̄j)
‖(ni−n̄i‖2‖(nj−n̄j‖2

. Compared
to other measures, correlation distance is preferable as it normalizes
both the mean and variance of activity patterns over experimental
conditions. Other popular measures include the Euclidean distance
and the Malahanobis distance (Kriegeskorte et al., 2006).

3.4 fixation duration and encoder disagreement

Gaze fixation patterns have been shown to strongly reflect the online
cognitive processing demands of human readers (Ashby et al., 2005;

1 More precisely, our measure of dissimilarity between experimental conditions is anal-
ogous to ground distance and dissimilarity between RDMs to earth mover’s distance.
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Raney et al., 2014) and to be dependent upon a number of linguistic
factors (Van Gompel, 2007). Specifically, it has been demonstrated that
word frequency, syntactic complexity, and lexical ambiguity play a
strong part in determining which sentences are difficult for humans
to process (Duffy et al., 1988; Levy, 2008; Rayner and Duffy, 1986).

Using the RSA framework, we aim to explore how gaze fixation pat-
terns and the linguistic factors associated with sentence processing
difficulty relate to the representational spaces of popular language
encoders. Namely, we hypothesize that, for a given sentence, disagree-
ment between hidden layers corresponds to processing difficulty. Be-
cause layer disagreement for a sentence measures the extent to which
two layers (e.g. within BERT) disagree with each other about the pair-
wise similarity of the sentence (with other sentences in the corpus),
a sentence with high layer disagreement will have unstable similar-
ity relationships to other sentences in the corpus. This indicates that
it has a degraded encoder representation. Going further, we also hy-
pothesize that models’ representations of said sentences may be con-
founded, in part, by factors that are known to influence humans.

eye-tracking data For our experiments, we make use of the
Dundee eye-tracking corpus (Kennedy et al., 2003), the English part
of which consists of eye-movement data recorded as 10 native partic-
ipants read 2,368 sentences from 20 newspaper articles. We consider
the following fixation features: Total fixation duration and First

Pass duration. For each of the features, we first take the average of
the measurements recorded for all 10 participants per word, then ob-
tain sentence-level annotations by summing the measurements of all
words in a sentence and dividing by its length. The result of this is
two vectors Vtotfix and Vfirstpass of length 2, 368, where each cell
in the vector corresponds to a sentence’s average total fixation and
average first pass duration, respectively.

syntactic complexity, word frequency, and lexical am-
biguity We also consider the three following linguistic features
which affect processing difficulty. For each of the following the re-
sult is also a vector of length 2, 368 where each cell corresponds to a
sentence:

a. the average word log frequency per sentence extracted from the
British National Corpus (Leech, 1992), VlogFreq..

b. the average number of senses per word per sentence extracted
from WordNet (Miller, 1995), VwordSense.

c. Yngve scores, a standard measure of syntactic complexity based
on cognitive load (Yngve, 1960) , VYngve.
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pretrained encoders We conduct our analysis on pretrained
BERT-large (Devlin et al., 2019b) and ELMo (Peters et al., 2018b), two
widely employed contextual sentence encoders. To obtain a represen-
tation of a sentence from a given layer L, we perform mean-pooling
over the time-steps which correspond to the words of a sentence, ob-
taining a vector representation of the sentence. Mean-pooling is a
common approach for obtaining vector representations of sentences
for downstream tasks (Conneau et al., 2017b; Peters et al., 2018b). We
refer to ELMo’s lowest layer as E1, BERT’s 11th layer as B11, etc.

Figure 3.2: RSMs showing (Spearman’s ρ) correlation between disagreement
among layers i and j (VCorrLi−Lj ) and Vtotfix (left) and VYngve
(Right). BERT layers are denoted with numbers from 1 (topmost)
to 24 (lowest).

rdms We construct an RDM (see §3.3) for each contextual encoder’s
layers. Each RDM is a 2, 368 × 2, 368 matrix which represents the dis-
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similarity structure of the layer, (i.e., each row vector in the matrix
contains the dissimilarity of a given sentence to every other sentence).
We then compute the correlations between the two different RDMs.
For our evaluation of how well the representational geometry of a
layer correlates to another, we employ Kendall’s τA as suggested in
Nili et al. (2014), computing the pairwise correlation for each two cor-
responding rows in two RDMs. This second-order analysis gives us a
pairwise relational similarity vector VCorrLi−Lj of length 2, 368, which
has the correlations between two layers Li and Lj’s RDMs for each of
the sentences.

third-order analysis The final part of our analysis involves
computing correlations of {VCorrLi−Lj ,VlogFreq,VYngve,VwordSense}
with each of Vtotfix and Vfirstpass. The results from this are shown
in Table 3.1. The top section of the table shows correlations when Li
and Lj are the three final adjacent layers in BERT and ELMo. The mid-
dle section shows the results for top three BERT layer pairs Li and Lj
which maximize the correlation scores. The final section shows corre-
lation with the linguistic features. Finally, Figure 3.2 shows Spear-
man’s ρ correlations between VCorrLi−Lj and each of Vtotfix, and
VYngve for all combinations of the 24 BERT layers.

3.5 discussion

Our results show highly significant negative correlations between
VCorrLi−Lj and sentence gaze fixation times. These findings confirm
the hypothesis that the sentences that are most challenging for hu-
mans to process, are the sentences (a) the layers of BERT disagree
most on among themselves; and (b) that ELMo and BERT disagree
most on, indicating that there may be common factors which affect
human processing difficulty and result in disagreement between lay-
ers. By Layer disagreement we refer to the expression 1− VCorrLi−Lj .
It is important to note that these encoders are trained with a lan-
guage modelling objective, unlike models where reading behaviour
is explicitly modelled (Hahn and Keller, 2016) or predicted (Matthies
and Søgaard, 2013). Indeed, the similarities here emerge naturally as
a function of the task being performed. This can be seen as analogous
to the case of similarities observed between neural networks trained
to perform object recognition and spatio-temporal cortical dynamics
(Cichy et al., 2016).

syntactic complexity Figure 3.2 shows that, for all combina-
tions of BERT layers, total fixation time and Yngve scores have strong
negative and positive correlations (respectively) with layer disagree-
ment. Furthermore, we observe that disagreement between middle
layers seems to show the strongest correlation with Yngve scores.
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Layer Disagreement Total Fixation First Pass Duration

E1-B22 -0.46 -0.46

E2-B23 -0.66 -0.67

E3-B24 -0.22 -0.23

B11-B12 -0.88 -0.87

B12-B13 -0.87 -0.85

B10-B21 -0.87 -0.86

Linguistic Features

Log Freq. -0.20 -0.19

Avg. Senses per Word -0.007* -0.004*

Yngve Score 0.66 0.66

Table 3.1: Spearman’s ρ between VCorrLi−Lj
, VlogFreq., VwordSense,

VYngve and each of Vtotfix and Vfirstpass. All correlations sig-
nificant with p < 0.0001 after Bonferroni correction unless marked
with *.

To confirm this, we split the correlations into four groups: “low”
(i, j ∈ [1, 8]), “middle” (i, j ∈ [9, 16]), “high” (i, j ∈ [17, 24]), and “out”
(|i− j| > 7), with the latter representing out-of-group correlations (e.g.
CorrL1−L24). To account for correlations between disagreeing adjacent
layers (e.g. |i− j| = 1) and Yngve scores being higher (as a possible
confounding factor), we also distinguish layers as either “adjacent”
or “non-adjacent”. Considering these two factors as three- and two-
leveled independent variables respectively, we conduct a two-way
analysis of variance. The analysis reveals that the effect of group is
significant at F(3, 275) = 78.47,p < 0.0001, with “low” (µ = 0.65, σ
= 0.08), “middle” (µ = 0.84, σ = 0.03), “high” (µ = 0.80, σ = 0.05),
and “out” (µ = 0.80, σ = 0.05). Neither the effect of adjacency nor its
interaction with group proved to be significant.

This can be seen as (modest) support for the findings of previous
work (Blevins et al., 2018; Tenney et al., 2019): namely, that the inter-
mediate layers of neural language models encode the most syntax,
and are therefore possibly more sensitive towards syntactic complex-
ity. A very similar pattern is observed for total fixation time. When
considered together with the correlation between VYngve and fixation
times, this indicates a tripartite affinity between layer disagreement,
syntactic complexity, and fixation.

lexical ambiguity and word frequency Finally, we observe
that VlogFreq. has a moderate correlation with both fixation time and
layer disagreement and that VwordSense is nearly uncorrelated to
both. Detailed plots of the latter can be found in Appendix A.1.1.
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3.6 conclusion

We presented a framework for analyzing neural network representa-
tions that allowed us to relate human sentence processing data with
language encoder representations. In experiments conducted on two
widely used encoders, our findings show that sentences which are
difficult for humans to process have more divergent representations
both intra-encoder and between different encoders. Furthermore, we
lend modest support to the intuition that a model’s middle layers en-
code comparatively more syntax. Our framework offers insight that
is complimentary to decoding or probing approaches, and is particu-
larly useful to compare representations from across modalities.
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C A N L A N G U A G E M O D E L S E N C O D E P E R C E P T U A L
S T R U C T U R E W I T H O U T G R O U N D I N G ? A C A S E
S T U D Y I N C O L O R

4.1 abstract

Pretrained language models have been shown to encode relational
information, such as the relations between entities or concepts in
knowledge-bases — (Paris, Capital, France). However, simple rela-
tions of this type can often be recovered heuristically and the extent to
which models implicitly reflect topological structure that is grounded
in world, such as perceptual structure, is unknown. To explore this
question, we conduct a thorough case study on color. Namely, we
employ a dataset of monolexemic color terms and color chips rep-
resented in CIELAB, a color space with a perceptually meaningful
distance metric. Using two methods of evaluating the structural align-
ment of colors in this space with text-derived color term representa-
tions, we find significant correspondence. Analyzing the differences
in alignment across the color spectrum, we find that warmer colors
are, on average, better aligned to the perceptual color space than
cooler ones, suggesting an intriguing connection to findings from re-
cent work on efficient communication in color naming. Further anal-
ysis suggests that differences in alignment are, in part, mediated by
collocationality and differences in syntactic usage, posing questions
as to the relationship between color perception and usage and con-
text.

4.2 introduction

Without grounding or interaction with the world, language models
learn representations that encode various aspects of formal linguistic
structure (e.g., morphosyntax (Tenney et al., 2019)) and semantic in-
formation (e.g., lexical similarity (Reif et al., 2019a)). Beyond this, it
has been suggested that text-only training data is enough for LMs to
also acquire factual and relational information about the world (Feld-
man et al., 2019; Petroni et al., 2019). This includes, for instance, some
features of concrete and abstract concepts, such as objects’ attributes
and affordances (Forbes et al., 2019; Weir et al., 2020). Furthermore,
the representational geometry of LMs has been found to naturally re-
flect human lexical similarity and relatedness judgements, as well as
analogy relationships (Chronis and Erk, 2020). However, the extent to
which these models reflect the structures that exist in humans’ percep-

29
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Figure 4.1: Right: Color orientation in 3d CIELAB space. Left: linear map-
ping from BERT (CC, see §4.3) color term embeddings to the
CIELAB space.

tual world—such as the topology of visual perception (Chen, 1982),
the structure of the color spectrum (Ennis and Zaidi, 2019; Provenzi,
2020), or of odour spaces (Chastrette, 1997; Rossiter, 1996)—is not
well-understood. If LMs are indeed able to capture such topologies—
in some domains, at least—it would mean that these structures are a)
somehow reflected in language and, thereby, encoded in the textual
training data on which models are trained, and b) learnable using
models’ current training objectives and architectural inductive biases.
To the extent they are not, the question becomes whether the informa-
tion is not there in the data, or whether model and training objective
limitations are to blame. Certainly, this latter point relates to an ongo-
ing debate regarding what exactly language models can be expected
to learn from ungrounded form alone (Bender and Koller, 2020b; Bisk
et al., 2020a; Merrill et al., 2021).

Figure 4.2: Our experimental setup. In the center is a Munsell color chart.
Each chip in the chart is represented in the CIELAB space (right)
and has 51 color term annotations. Color term embeddings are
extracted through various methods. In the Representation Simi-
larity Analysis experiments, a corresponding color chip centroid
is computed in the CIELAB space. In the Linear Mapping exper-
iments, a color term embedding centroid is computed per chip.

In this paper, we conduct a case study on color. Indeed, color per-
ception in humans and its relation to speakers’ use of color terms has
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long been the subject of studies in cognitive science (Berlin and Kay,
1991; Kay et al., 2009; Kay and McDaniel, 1978; Regier et al., 2007).
To this end, spaces have been defined in which Euclidean distances
between related colors are correlated with reported perceptual dif-
ferences.1 In addition, the semantics of color terms have long been
understood to hold particular linguistic significance, as they are the-
orised to be subject to universal constraints that arise directly from
the neurophysiological mechanisms and properties underlying visual
perception and cognition (Berlin and Kay, 1991; Kay et al., 1991; Kay
and McDaniel, 1978).2 Due to these factors, color offers a useful test-
bed for investigating whether or not structural information about the
topology of the perceptual world might be encoded in linguistic rep-
resentations.

To explore this in detail, we employ a dataset of English color terms
and their corresponding color chips3, the latter of which are repre-
sented in CIELAB — a perceptually uniform color space. In addition
to the color chip CIELAB coordinates, we extract linguistic represen-
tations for the corresponding color terms. With these two represen-
tations in mind (see Figure 4.1 for a demonstrative plot from our
experiments), we employ two methods of measuring structural corre-
spondence, with which we evaluate the alignment between the two
spaces. Figure 4.2 shows an illustration of the experimental setup. We
find that the structures of various language model representations
show alignment with the structure of the CIELAB space, demonstrat-
ing that some approximation of perceptual color space topology can
indeed be learned from text alone. We also show that part of this
distributional signal is learnable by simple models — e.g. models
based on pointwise mutual information statistics — although large-
scale language model pretraining (e.g., BERT) encodes the topology
markedly better.

Analysis shows that larger language models align better than smaller
ones and that much of the variance in CIELAB space can be explained
by low-dimensional subspaces of LM-induced color term representa-
tions. To better understand the results, we also analyse the differences
in alignment across the color spectrum, observing that that warm
colors are generally better aligned than cool ones. Further investiga-
tion reveals a connection to findings reported in work on commu-
nication efficiency in color naming, which posits that warmer colors

1 The differences between color stimuli which are perceived by human observers.
2 These theories have been contested by work arguing for linguistic relativism (cf. the

Sapir–Whorf Hypothesis), which emphasizes the arbitrariness of language and the rel-
ativity of semantic structures and minimizes the role of universals. Such critiques
have, however, been accommodated for in the Berlin & Kay paradigm (Berlin and
Kay, 1991), the basic assumptions of which, such as the existence of at least some
perceptually-determined universal constraints on color naming, remain widely ac-
cepted.

3 Each chip is a unique color sample from the Munsell chart, which is made up of 330
such samples which cover the space of colors perceived by humans. See §4.3.
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are communicated more efficiently. Finally, we investigate various cor-
pus statistics which could influence alignment, finding that a measure
of color term collocationality based on PMI statistics corresponds to
lower alignment, while the entropy of a color term’s dependency rela-
tion distribution (i.e. terms occurring as adjectival modifiers, nominal
subjects, etc.) and how often it occurs as an adjectival modifier corre-
spond to a stronger one.

4.3 methodology

color data We employ the Color Lexicon of American English,
which provides extensive data on color naming. The lexicon consists
of 51 monolexemic color name judgements for each of the 330 Mun-
sell Chart color chips4 (Lindsey and Brown, 2014). The color terms
are solicited through a free-naming task, resulting in 122 terms.

perceptual color space Following previous work (Chaabouni
et al., 2021; Regier et al., 2007; Zaslavsky et al., 2018), we map colors
to their corresponding points in the 3D CIELAB space, where the first
dimension L expresses lightness, the second A expresses position be-
tween red and green, and the third B expresses the position between
blue and yellow. Distances between colors in the space correspond to
their perceptual difference.

language models Our analysis is conducted on three widely
used language models: BERT (Devlin et al., 2019a) and RoBERTa (Liu
et al., 2019b), both of which employ a masked language modelling
objective, and ELECTRA (Clark et al., 2020), which is trained instead
with a discriminative token replacement detection objective.5

baselines In addition to the aforementioned language models,
we consider two different baselines:

• PMI statistics, which are computed6 for the color terms in com-
mon crawl, using window sizes of 1 (pmi-1), 2 (pmi-2), and 3
(pmi-3). The result is a vocabulary length vector quantifying the
likelihood of co-occurrence of the color term with every other
vocabulary item in within that window.

• Word-type FastText embeddings trained on Common Crawl (Bo-
janowski et al., 2017).

representation extraction We follow Bommasani et al. (2020a)
and Vulić et al. (2020) in defining configurations for the extraction of

4 http://www1.icsi.berkeley.edu/wcs/images/jrus-20100531/
wcs-chart-4x.png

5 bert-large-uncased; roberta-large; electra-large-discriminator

6 Using Hyperwords: https://bitbucket.org/omerlevy/hyperwords

http://www1.icsi.berkeley.edu/wcs/images/jrus-20100531/wcs-chart-4x.png
http://www1.icsi.berkeley.edu/wcs/images/jrus-20100531/wcs-chart-4x.png
https://bitbucket.org/omerlevy/hyperwords
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word-type representations from LM hidden states. In the first config-
uration (NC), a color term is encoded without context, with the ap-
propriate delimiter tokens attached (e.g. [CLS] red [SEP] for BERT).
In the second, S sentential contexts that include the color term are
encoded and the hidden states representing these contexts are mean
pooled. These S contexts are either randomly sampled from common
crawl (RC), or deterministically generated to allow for control over
contextual variation (CC). If a color term is split by an LM’s tokenizer
into more than one token, subword token encodings are averaged
over. For each color term and configuration, an embedding vector of
hidden state dimension dLM is extracted per layer, per model.

controlled context To control for the effect of variation in the
sentence contexts used to construct color term representations, we
employ a templative approach to generate a set of identical contexts
for all color terms. When generating controlled contexts, we create
three frames in which the terms can appear:

• Copula: the <obj> is <col>

• Possession: i have a <col> <obj>

• Spatial: the <col> <obj> is there

We use these frames in order to limit the contextual variation across
colors (<col>) and to isolate their representations amidst as little
semantic interference as possible, all while retaining a naturalistic
quality to the input. We also aggregate over numerous object nouns
(<obj>), which the color terms are used to describe. We select objects
from the McRae et al. (2005) data which are labelled in the latter as
plausibly occurring in many colors and which are stratified across 13
category sets, e.g. fan ∈ APPLIANCES, skirt ∈ CLOTHING, etc. Collapsing
over categories, we generate sentences combinatorially across frames,
objects and color terms, resulting in 3× 122× 18 = 6588 sentences,
366 per term.

4.4 evaluation

We employ two complimentary evaluation methods to gauge the cor-
respondence of the color term text-derived representations to the per-
ceptual color space. The first, Representation Similarity Analysis, is
non-parametric and uses pairwise comparisons of stimuli to provide
a measure of the global topological alignment between two spaces.
The second employs a learned linear mapping, evaluating the extent
to which two spaces can be aligned via transformation (rotation, scal-
ing, etc.).

rsa (Kriegeskorte et al., 2008) is a method of relating different rep-
resentational modalities, which was first employed in neuroscientific
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studies. RSA abstracts away from activity patterns themselves (e.g.
neuron values in representational vectors) and instead computes rep-
resentational (dis)-similarity matrices (RSMs), which characterize the
information carried by a given representation method through global
(dis)-similarity structure. Kendall’s rank correlation coefficient (τ) is
computed between RSMs derived from the two spaces, providing
a summary statistic indicative of the overall representational align-
ment between them. RSA is non-parametric and therefore circumvents
many of the various methodological weaknesses associated with the
probing paradigm (Belinkov, 2021).

For each color term, we compute a centroid in the CIELAB space
following the approach described in Lindsey and Brown (2014). Each
centroid is defined as the average CIELAB coordinate of the sam-
ples (i.e. color chips) that were named with the corresponding term
(across the 51 subjects). This results in N parallel points in the color
term embedding and perceptual color spaces, where N is the number
of color terms considered. For our analysis, we exclude color terms
used less frequently than a cutoff f = 100 in the color lexicon, leav-
ing us with the 18 most commonly used color terms.7 We then sep-
arately construct an N×N RSM for each of the LM spaces and for
CIELAB . Each cell in the RSM corresponds to the similarity between
the activity patterns associated with pairs of experimental conditions
ni,nj ∈ N.

For the color term embedding space, we employ Pearson’s corre-
lation coefficient (r) as a similarity measure between each pair of
embeddings ni,nj ∈ N. For the CIELAB space, we elect to use the
following method, per Regier et al. (2007) suggestion: sim(ni,nj) =

exp(−c× [dist(ni,nj)]2), where c is a scaling factor (set to 0.001 in
all experiments reported here) and dist(ni,nj) is the CIELAB dis-
tance (∆ E∗CMC)8 between chips ni and nj. This similarity measure
is derived from the psychological literature on categorization and is
meant to model the assumption that beyond a certain distance colors
appear entirely different, so that increasing the distance has no fur-
ther effect on dissimilarity. Finally, we report the mean Kendall’s τ
between the color term embedding and color space RSMs. We also
report τ per color term (i.e. per row in the RSM), which corresponds
to how well-aligned each individual color term is.

linear mapping We train regularised linear regression models
to map from color term embedding space X ∈ Rn×dLM to CIELAB
space Y ∈ Rn×3, minimising L(W;α) = ‖XW − Y‖22 +α ‖W‖1, where

7 This includes all color terms which are considered "basic" (red, blue, etc.), and com-
monly used "derived" terms (pink, gray, turquoise, maroon, etc.), but excludes the rest
which are only infrequently used as color terms (forest, puke, dew, seafoam, etc.). See
appendix A.2.1 for full list of colors included.

8 We use the colormath Python package, setting illuminant to C, and assuming 2

degree standard observer.
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W ∈ R3×dLM is a linear map and α is the lasso regularization hyper
parameter. We vary α across a wide range of settings to examine the
effect of probe complexity, which we measure using the nuclear norm
of the linear projection matrix W ∈ Rφ×ι; ||W||∗ =

∑min(φ,ι)
i=1 σi(W),

where σi(W) is the ith singular value of W (Pimentel et al., 2020b).
The fitness of the regressors, evaluated using n-fold cross-validation
(n = 6) indicates the alignability of the two spaces, given a linear
transformation. Centroids corresponding to each Munsell color chip
are computed in the color term embedding space via the weighted
mean of the embeddings of the 51 terms used to label it. As in the
RSA experiments, terms occurring less frequently than the cutoff (f =
100) are excluded. For evaluation, we compute the average (across
splits and datapoints) proportion of explained variance as well as
the ranking of a predicted color term embedding according to the
Pearson distance (1− r) to gold.

NC RC CC

Model
RSA lin. map RSA lin. map RSA lin. map

max mean max mean max mean max mean max mean max mean

BERT 0.16
∗

0.01±0.09 0.75 0.73±0.01 0.26
†

0.20±0.03 0.74 0.73±0.08 0.24
†

0.19±0.03 0.76 0.75±0.05

RoBERTa 0.33
§

0.02±0.11 0.75 0.73±0.01 0.20
∗

0.14±0.04 0.74 0.73±0.01 0.19
∗

0.14±0.04 0.77 0.76±0.09

ELECTRA 0.13 0.01±0.08 0.75 0.64±0.13 0.25
†

0.19±0.05 0.75 0.73±0.01 0.23
†

0.16±0.04 0.78 0.76±0.01

Table 4.1: Results for the RSA experiments show max and mean (across lay-
ers) Kendall’s τ; correlations that are significantly non-zero are
marked with *, † and § for p < 0.05, < 0.01 and < 0.001 respec-
tively. Results for the linear mapping experiments show max and
mean selectivity.

control task As proposed by Hewitt and Liang (2019b), we con-
struct a random control task for the linear mapping experiments,
wherein we randomly swap each color chip’s CIELAB code for an-
other. This is meant to break the mapping between the color chips
and their corresponding terms. Control task results are reported as
the mean of 10 different random re-mappings. We report probe se-
lectivity, which is defined as the difference between proportion of ex-
plained variance in the standard experimental condition and in the
control task (Hewitt and Liang, 2019b). We run similar control for the
RSA experiments, where the CIELAB space centroids are randomly
shuffled.

4.5 results

Table 4.1 shows the max, mean, and standard deviation (across lay-
ers) of alignment scores for each of the LMs, per alignment method
and setting. For RSA, we observe significant correlations across all con-
figurations: most LM layers show a topological alignment with color
space. Notably, this is also true for the static embeddings and for one
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Figure 4.3: RSA results (Kendal’s τ) broken down by color term for each of
the LMs under the CC configuration and for the fastText baseline.

of the PMI baselines (Table 4.2). Although some variance is observed,9

the presence of significant correlations is telling, given the small sam-
ple size (18). Furthermore, randomly permuting the color space cen-
troids leads to RSA correlations that are non-significant for all setups
(p > 0.05), which lends further credence to models’ alignment with
CIELAB structure.

Figure 4.3 shows the breakdown of correlations per color term for
the three LMs under CC, as well as for fastText. We find that this rank-
ing of color terms is largely stable across models and layer. Full RSMs
for all models and CIELAB are in Appendix A.2.3. The RSMs show
evidence of the higher correlations for colors like violet, orange, and
purple, being driven by general clusterings of similarity/dissimilar-
ity. For instance, for both the CIELAB and CC BERT RSMs, violet’s
top nearest neighbors include purple, lavender, pink, and orange, and
its furthest neighbors include aqua, olive, black, and gray. Correla-
tions do not, however, appear to be driven by consistently aligned
partial orderings within the clusters. In addition, we compute RSA

correlations between the different models. Results show that NC em-
beddings have low alignment to all others (details in appendix A.2.2).

For the linear mapping experiments, we observe the highest selec-
tivity scores for CC (Table 4.1, right) compared to NC and RC (Table
4.1, left, middle) and baselines (Table 4.2). This validates our intu-
ition that controlling for variation in sentence context would reveal in-
creased alignment to color space. Furthermore, we observe that, over
the full range of probe complexities for the experimental condition
and the control task (described as in §4.4), all models demonstrate
high selectivity (see A.2.7 for full results). It is, therefore, safe to at-
tribute the fitness of the probes to information encoded in the color
term representations, rather than to memorization. In terms of indi-
vidual colors, Figure 4.4a depicts the ranking of predicted CIELAB
codes per Munsell color chip for BERT (CC). We find that these re-
sults are largely stable across models and layers (see appendix A.2.6
for full set of results and for reference chart). Also, we observe that

9 In particular, results for NC show large variances across layers. The mean correlation
across layers in this setup is near zero, even though max correlations for BERT and
RoBERTa are significant; this is unsurprising, however, as the LM has likely never
encountered single color term tokens in isolation (cf. Bommasani et al. (2020b))
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Model RSA lin. map

pmi-1 0.14 0.72

pmi-2 0.11 0.70

pmi-3 0.17
∗

0.71

fastText 0.23
∗

0.72

Table 4.2: Baseline results. RSA results show Kendall’s τ; results with * are
significantly non-zero (p < 0.05). Linear mapping results show
selectivity.

clusterings of chips with certain modal color terms (green, blue) show
worse rankings than the rest.

4.6 analysis and discussion

Having demonstrated the existence of models’ alignment to CIELAB
across various configurations, we now present an analysis and discus-
sion of these results.

dimensionality of color subspace Previous work has shown
that linguistic information such as part-of-speech category, depen-
dency relation type, and word sense, is expressed in low-dimensional
subspaces of language model representations (Durrani et al., 2020;
Hernandez and Andreas, 2021; Reif et al., 2019b). We investigate the
dimensionality of the subspace required to predict the CIELAB chip
codes from the term embeddings, following the methodology of Dur-
rani et al. (2020). Averaging over the three predicted CIELAB dimen-
sions, we rank the linear mapping coefficients (from the experiments
described in §4.3), sorting the weights by their absolute values in de-
scending order. Results (appendix A.2.8) show that across models and
layers, ∼0.4 of the variance in the CIELAB chip codes can be explained
by assigning 95% of the weights to ∼10 dimensions. 3040 dimensions
are sufficient to explain ∼0.7 of the variance, nearly the proportion of
variance explained by the full representations (Table 4.1).

effect of model size We also evaluate the effect of model size
on alignment by testing four smaller BERT (CC) models using the
same setup described above. The results (see appendix A.2.9 for de-
tails) show that alignment as measured by both RSA and linear map-
ping progressively increases with model size, meaning that that with
growing complexity, model representational geometry of color terms
moves towards isomorphism to CIELAB.

color temperature In Figures 4.3 & 4.4a we observe that on
average, warmer colors (yellow, orange, red, etc.) show a closer align-
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ment than cooler ones (blue, green, etc.). In recent work, Gibson et al.
(2017) reported that the former are on average communicated more
efficiently (see next paragraph) than the latter, across languages. This
is attributed to warmer colors being more prevalent as colors of be-
haviorally relevant items in the environment — salient objects — com-
pared to cooler ones, which occur more often as background colors.
To verify this observation, we partition the space of chips into two (see
appendix A.2.4 for details) and compute the average explained vari-
ance across warm and cool colors. The results (see appendix A.2.4 for
plots) show that, term embeddings of warm colors are better aligned
to CIELAB than those of cool ones, across models and configurations.
This is consistent with the bias described in Gibson et al. (2017), which
we conjecture might be filtering through into the distributional statis-
tics of (color terms in) textual corpora, influencing the representations
learned by various methods which leverage these statistics.

connection to listener surprisal Gibson et al. (2017)’s find-
ings are based on the application of an information theoretic anal-
ysis to color naming, framing it as a communication game where
a speaker has a particular color chip c in mind and uses a word
w to indicate it then a listener has to correctly guess c, given w.
Communication efficiency is measured through surprisal, S, which
in this setting corresponds to the average number of guesses an op-
timal listener takes to arrive at the correct color chip. We calculate
S(c) for each chip in the color lexicon. Surprisal is defined as S(c) =∑
w P(w|c) · log

(
1

P(c|w)

)
, where P(w|c) is the probability that a color

c gets labeled as w and P(c|w) is computed using Bayes Theorem.
Here, P(w) represents how often a particular word gets used across
the color space (and participants), and P(c) is a uniform prior. Figure
4.4b shows surprisal per chip. High surprisal chips correspond to a
lower color naming consensus among speakers, meaning that a more
variable range of terms is used for these (color) contexts. We hypoth-
esize that this could be reflected in the representations of color terms
corresponding to high surprisal chips. To test this, we compute Spear-
man’s correlation (ρ) between a chip’s regression score (predicted
color chip code ranking) and its surprisal. We find significant Spear-
man’s rank correlation between lower ranking and higher surprisal
for all LMs under all configurations (0.12 6 ρ 6 0.17, p < 0.05).

what factors predict color space alignment? Given that
LMs are trained exclusively on text corpora, we hypothesize that align-
ment between their embeddings and CIELAB is influenced by cor-
pus usage statistics. To determine exactly which factors could pre-
dict alignment score, we extract color term log frequency, part-of-
speech tag (POS), dependency relation (DREL), and dependency tree
head (HEAD) statistics for all color terms from a dependency-parsed
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(Straka et al., 2016) common crawl corpus. In addition to this, we
compute, per color term, the entropy of its normalised PMI distribu-
tion (pmi-col, see §4.3) as a measure of collocation. 10

We then fit a Linear Mixed Effects Model (Gałecki and Burzykowski,
2013) to the features enumerated above, with RSA score (Table 4.1)
as the response variable, and model type as a random effect. Here,
we follow a multi-level step-wise model building sequence, where
a baseline model is first fit with color term log frequency as a sin-
gle fixed effect. A model which includes pmi-col as an additional
fixed effect is then fit following this, where these two terms are in-
cluded as control predictors in all later models. Following this, we
compute POS, DREL, and HEAD lemma distribution entropies per
color term (pos-ent, deprel-ent, head-ent). Higher entropies indi-
cate that the term is employed in more diverse contexts with respect
to those categories. Following entropy computation, we separately fit
models to each of the three entropy statistics. Finally, we calculate the
proportion of: POS tags that are adjectives adj-prop, DRELs that are
adjectival modifiers amod-prop, and those that are copulas cop-prop.
The first two evaluate the effect a color term occurring more or less of-
ten as an adjectival modifier, while the latter tests the hypothesis that
assertions such as The banana is yellow could provide indirect ground-
ing (Merrill et al., 2021), thereby leading to higher alignment. Includ-
ing the entropy term which led to the best fit (deprel-ent) in the
previous level, models are fit including terms for each of the propor-
tion statistics. Model comparison is carried out by computing the log
likelihood ratio between models that differ in a single term. Results
show: (a) pmi-col significantly improves fit above log frequency and
has a negative coefficient, meaning that terms that occur in more fixed
collocations are less aligned to the perceptual space, (b) deprel-ent
and head-ent but not pos-ent lead to a significantly improved fit
compared to the control predictors; we observe positive coefficients
for both, indicating RSA score is higher for terms that occur in more
varied syntactic dependency relations and modify a more diverse set
of heads, (c) out of the proportion statistics, only the amod-prop term
improves fit; it has a positive coefficient, thus, color terms occurring
more frequently as adjectival modifiers show higher scores. See ap-
pendix A.2.10 for model details.

vision-and-language models In a preliminary set of experi-
ments, we evaluated multi-modal Vision-and-Language models (Vi-
sualBERT (Li et al., 2019) and VideoBERT (Sun et al., 2019)), finding
no major differences in results from the text-only models presented
in this study.

10 Low entropy reflects frequent co-occurrence with a small subset of the vocabulary
and high entropy the converse.
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4.7 related work

Distributional word representations have long been theorized to cap-
ture various types of information about the world (Schütze, 1992).
Early work in this regard employed semantic similarity and related-
ness datasets to measure alignment to human judgements (Agirre et
al., 2009; Bruni et al., 2012; Hill et al., 2015). Rubinstein et al. (2015),
however, question whether the distributional hypothesis is equally ap-
plicable to all types of semantic information, finding that taxonomic
properties (such as animacy) are better modelled than attributive ones
(color, size, etc.). To a similar end, Lucy and Gauthier (2017) ana-
lyze how well distributional representations encode various aspects
of grounded meaning.

They investigate whether language models would “be worse off for
not having physically bumped into walls before they hold discussions on
wall-collisions?”, finding that perceptual features are poorly modelled
compared to encyclopedic and taxonomic ones.

More recently, several studies have asked related questions in the
context of language models. For example, Feldman et al. (2019) and
Petroni et al. (2019) mine LMs for factual and commonsense knowl-
edge by converting knowledge base triplets into cloze statements that
are used to query the models. In a similar vein, Forbes et al. (2019)
investigate LM representations’ encoding of object properties (e.g., or-
anges are round), and affordances (e.g. oranges can be eaten), as well
as the interplay between the two. Weir et al. (2020) demonstrate that
LMs can capture stereotypic tacit assumptions about generic concepts,
showing that they are adept at retrieving concepts given their asso-
ciated properties (e.g., bear given A ___ has fur, is big, and has claws.).
Similar to other work, they find that LMs better model encyclopedic
and functional properties than they do perceptual ones. In an inves-
tigation of whether or not LMs are able to overcome reporting bias,
Schwartz et al. (2017) extract all sentences in Wikipedia where one of
11 color terms modifies a noun and test how well predicted the color
term is when it is masked. They find that LMs are able to model this
relationship between concepts and associated colors to a certain ex-
tent, but are prone to over-generalization. Finally, Ilharco et al. (2020)
train a probe to map LM representations of textual captions to paired
visual representations of image patches, in order to evaluate how use-
ful the former are for discerning between different visual representa-
tions. They find that many recent LMs yield representations that are
effective at retrieving semantically-aligned image patches, but still far
under-perform humans.
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4.8 outlook

It is commonly held that the learning of phenomena which rely on
sensory perception is only possible through direct experience. Indeed,
the view that people born blind could not be expected to acquire co-
herent knowledge about colors has been prevalent since at least the
empiricist philosophers (Hume, 1938; Locke, 1847) and still holds cur-
rency (Jackson, 1982). Nevertheless, recent research highlighting the
contribution of language and of semantic associations between con-
cepts towards learning has demonstrated that the congenitally blind
do in fact show a striking understanding of both color similarity
(Saysani et al., 2018) and object colors (Kim et al., 2020).

This paper investigated whether representations of color terms that
are derived from text only express a degree of isomorphism to the
structure of humans’ perceptual color space.11 Results from our ex-
periments evidenced that such a topological correspondence exists.
Notably, color term representations based on simple co-occurance
statistics already demonstrated correspondence; those extracted from
language models aligned more closely. We observed that warm col-
ors, on average, show more alignment than cooler ones, linking to
recent findings on communication efficiency in color naming (Gibson
et al., 2017). Further analysis based on surprisal — an information
theoretic measure, used to evaluate how efficiently a color is commu-
nicated between a speaker and a listener — revealed a correlation
between lower topological alignment and higher color chip surprisal,
suggesting that the kind of contexts a color occurs in play a role in
determining alignment. Exploring this, we tested a set of color term
corpus-derived statistics for how well they predict alignment, find-
ing that a measure of a color term’s collocationality corresponds to
lower alignment, while the entropy of its dependency relation distri-
bution and it occurring more frequently as and adjectival modifier
correspond to closer alignment.

Our results and analyses provide motivation for future work on
understanding the types of information we expect language models
to learn with and without grounded or embodied language learning
approaches.

11 Clearly, complete isomorphism is rather unlikely: language in general, and color
terms by extension, are far from being simply denotational, and language interacts
with and is influenced by a myriad of factors besides perception.
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(a) Each circle on the chart represents the ranking of the pre-
dicted color chip when ranked according to Pearson dis-
tance from gold (larger circle ∼= higher/better ranking).

(b) Each circle on the chart represents a color chip’s suprisal
score (larger circle ∼= higher score).

Figure 4.4: (a) shows linear mapping results for BERT, under the CC config-
uration, broken down by Munsell color chip; (b) shows suprisal
per chip. Circle colors reflect the modal color term assigned to
the chips.
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5
T H E S E N S I T I V I T Y O F L A N G U A G E M O D E L S A N D
H U M A N S T O P E RT U R B AT I O N S

5.1 abstract

Large-scale pretrained language models are the major driving force
behind recent improvements in performance on the Winograd Schema
Challenge, a widely employed test of commonsense reasoning ability.
We show, however, with a new diagnostic dataset, that these models
are sensitive to linguistic perturbations of the Winograd examples
that minimally affect human understanding. Our results highlight
interesting differences between humans and language models: lan-
guage models are more sensitive to number or gender alternations
and synonym replacements than humans, and humans are more sta-
ble and consistent in their predictions, maintain a much higher ab-
solute performance, and perform better on non-associative instances
than associative ones. Overall, humans are correct more often than
out-of-the-box models, and the models are sometimes right for the
wrong reasons. Finally, we show that fine-tuning on a large, task-
specific dataset can offer a solution to these issues.

5.2 introduction

Large-scale pre-trained language models have recently led to improve-
ments across a range of natural language understanding tasks (Devlin
et al., 2019b; Radford et al., 2019; Yang et al., 2019), but there is some
scepticism that benchmark leaderboards do not represent the full pic-
ture (Jumelet and Hupkes, 2018; Kaushik and Lipton, 2018; Poliak
et al., 2018b). An open question is whether these models generalize
beyond their training data samples.

In this paper, we examine how pre-trained language models gener-
alize on the Winograd Schema Challenge .

Named after Terry Winograd, the WSC, in its current form, was
proposed by Levesque et al. (2012) as an alternative to the Turing
Test. The task takes the form of a binary reading comprehension test
where a statement with two referents and a pronoun (or a possessive
adjective) is given, and the correct antecedent of the pronoun must
be chosen. Examples are chosen carefully to have a preferred read-
ing, based on semantic plausibility rather than co-occurrence statis-
tics. WSC examples come in pairs that are distinguished only by a
discriminatory segment that flips the correct referent, as shown in
Figure 1a. Levesque et al. (2012) define a set of qualifying criteria

45
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The	man	couldn't	lift	his	son	because	he	was	so	heavy.

The	man	couldn't	lift	his	son	because	he	was	so	weak.

The	men	couldn't	lift	their	sons	because	they	were	so	heavy.

The	men	couldn't	lift	their	sons	because	they	were	so	weak.

(a)

(b)

Figure 5.1: An example pair from the Winograd Schema Challange (a) and
its perturbation (b). The pronoun resolves to one of the two ref-
erents, depending on the choice of the discriminatory segment.
The perturbation in (b) pluralizes the referents and the an-
tecedents.

for instances and the pitfalls to be avoided when constructing exam-
ples (see §5.4.2). These combine to ensure an instance functions as a
test of what they refer to as ‘thinking’ (or common sense reasoning).

Recent work has reported significant improvements on the WSC

(Kocijan et al., 2019; Sakaguchi et al., 2019). As with many other
NLU tasks, this improvement is primarily due to large-scale language
model pre-training, followed by fine-tuning for the target task. We
believe that further examination is warranted to determine whether
these impressive results reflect a fundamental advance in reasoning
ability, or whether our models have learned to simulate this ability
in ways that do not generalize. In other words, do models learn ac-
cidental correlations in our datasets, or do they extract patterns that
generalize in robust ways beyond the dataset samples?

In this paper, we conduct experiments to investigate this question.
We define a set of lexical and syntactic variations and perturbations
for the WSC examples and use altered examples (Figure 1b) to test
models that have recently reported improved results. These variations
and perturbations are designed to highlight the robustness of human
linguistic and reasoning abilities and to test models under these con-
ditions.

contributions We introduce a new Winograd Schema dataset
for evaluating generalization across seven controlled linguistic per-
turbations.1 We use this dataset to compare human and language
model sensitivity to those perturbations, finding marked differences
in model performance. We present a detailed analysis of the behaviour
of the language models and how they are affected by the perturba-

1 Code and dataset can be found at: https://github.com/mhany90/enhanced_
wsc/

https://github.com/mhany90/enhanced_wsc/
https://github.com/mhany90/enhanced_wsc/
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tions. Finally, we investigate the effect of fine-tuning with large task-
specific datasets, and present an error analysis for all models.

5.3 related work

probing datasets Previous studies have explored the robust-
ness of ML models towards different linguistic phenomena (Belinkov
and Glass, 2019b), e.g., by creating challenge datasets such as the one
introduced here. When predicting subject-verb agreement, Linzen et
al. (2016) found that inserting a relative clause hurt the performance
of recurrent networks.2

A large body of research has since emerged on probing pre-trained
(masked) language models for linguistic structure (Clark et al., 2019b;
Goldberg, 2019; Hewitt and Manning, 2019; Lin et al., 2019) and
analysing them via comparison to psycholinguistic and brain imag-
ing data (Abdou et al., 2019; Abnar et al., 2019b; Ettinger, 2019; Gau-
thier and Levy, 2019). Other recent work has attempted to probe
these models for what is referred to as common sense or factual knowl-
edge (Feldman et al., 2019; Petroni et al., 2019). Their findings show
that these models do indeed encode such knowledge and can be
used for knowledge base completion or common sense mining from
Wikipedia.

clever hans A considerable amount of work has also been de-
voted to what might be described as the Clever Hans effect. This
work has aimed to quantify the extent to which models are learn-
ing what we expect them to as opposed to leveraging statistical arti-
facts. This line of work has to date revealed significant problems (and
some possible solutions to those problem) with reading comprehen-
sion datasets (Chen et al., 2016b; Kaushik and Lipton, 2018), natural
language inference datasets (Belinkov et al., 2019b; Gururangan et al.,
2018b; McCoy et al., 2019; Poliak et al., 2018b; Tsuchiya, 2018), and
the story cloze challenge (Schwartz et al., 2017), among others.

winograd schema challenge Trinh and Le (2018) first pro-
posed using neural language models for the WSC, achieving an ac-
curacy of 63.7% using an ensemble of 14 language models. Ruan
et al. (2019) and Kocijan et al. (2019) fine-tune BERT (Devlin et al.,
2019b) on the PDP (Rahman and Ng, 2012) and an automatically
generated MaskedWiki dataset, reaching an accuracy of 71.1% and
72.5% respectively. Meanwhile, Radford et al. (2019) report an accu-
racy of 70.7% without fine-tuning using the GPT-2 language model.

2 This contrasts with our results with Transformer-based architecture and is probably
explained by memory loss in recurrent networks trained on short sequences. Simi-
larly, Gulordava et al. (2018) tested whether a Recurrent Neural Network can predict
long-distance number agreement in various constructions comparing natural and
nonsensical sentences where RNNs cannot rely on semantic or lexical cues.
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Instance / Perturbed Instance Count

Original Sid explained his theory to Mark but he couldn’t convince him. 285

Tense Sid is explaining his theory to Mark but he can’t convince him. 281

Number Sid and Johnny explained their theory to Mark and Andrew but they
couldn’t convince them.

253

Gender Lucy explained her theory to Emma but she couldn’t convince her. 155

Voice The theory was explained by Sid to Mark but he couldn’t convince him. 220

Relative clause Sid, which we had seen on the discussion panel with Chris, explained his
theory to Mark but he couldn’t convince him.

283

Adverb Sid diligently explained his theory to Mark but he couldn’t convince him. 283

Synonyms/Names John explained his theory to Jad but he couldn’t convince him. 285

Table 5.1: Examples from our dataset of the different perturbations applied
to a WSC instance.

Most recently, Sakaguchi et al. (2019) present an adversarial filtering
algorithm which they use for crowd-sourcing a large corpus of WSC-
like examples. Fine-tuning RoBERTa (Liu et al., 2019b) on this, they
achieve an accuracy of 90.1%.

In an orthogonal direction, Trichelair et al. (2018) presented a timely
critical treatment of the WSC. They classified the dataset examples
into associative and non-associative subsets, showing that the suc-
cess of the LM ensemble of Trinh and Le (2018) mainly resulted from
improvements on the associative subset. Moreover, they suggested
switching the candidate referents (where possible) to test whether sys-
tems make predictions by reasoning about the “entirety of a schema”
or by exploiting “statistical quirks of individual entities”.

In a similar spirit, our work is a controlled study of robustness
along different axes of linguistic variation. This type of study is rarely
possible in NLP due to the large size of datasets used and the focus
on obtaining improved results on said datasets. Like a carefully con-
structed dataset which is thought to require true natural language
understanding, the WSC presents an ideal testbed for this investiga-
tion.

5.4 perturbations

We define a suite of seven perturbations that can be applied to the
285 WSC examples, which we refer to as the original examples. These
perturbations are designed to test the robustness of an answer to se-
mantic, syntactic, and lexical variation. Each of the perturbations is
applied to every example in the WSC (where possible), resulting in a
dataset of 2330 examples, an example of each type is shown in Table
5.1. Crucially, the correct referent in each of the perturbed examples is
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not altered by the perturbation. The perturbations are manually con-
structed, except for the sampling of names and synonyms. Further
details can be found in Appendix A.3.5.

tense switch (ten) Most WSC instances are written in the past
tense and thus are changed to the present continuous tense (247 ex-
amples). The remaining 34 examples are changed from the present to
the past tense.

number switch (num) Referents have their numbers altered:
singular referents (and the relevant pronouns) are pluralised (223

examples), and plural referents are modified to the singular (30 ex-
amples). Sentences with names have an extra name added via con-
junction; eg. “Carol” is replaced with “Carol and Susan”. Possessives
only mark possession on the second conjunct (“John and Steve’s un-
cle” rather than “John’s and Steve’s uncle”).

gender switch (gen) Each of the referents in the sentence has
their gender switched by replacing their names with other randomly
drawn frequent English names of the opposite gender.3 92% of the
generated data involved a gender switch for a name. Though hu-
mans may be biased towards gender (Collins, 2011; Desmond and
Danilewicz, 2010; Hoyle et al., 2019), the perturbations do not in-
troduce ambiguity concerning gender, only the entity. 101 examples
were switched from male to female, and 55 examples the other way
around.

voice switch (vc) All WSC examples, except for 210 and 211,
are originally in the active voice and are therefore passivized. 210

and 211 are changed to the active voice. 65 examples could not be
changed. Passive voice is known to be more difficult to process for
humans (Feng et al., 2015; Olson and Filby, 1972).

relative clause insertion (rc) A relative clause is inserted
after the first referent. For each example, an appropriate clause was
constructed by first choosing a template such as “who we had dis-
cussed” or “that is known for” from a pre-selected set of 19 such
templates. An appropriate ending, such as “who we had discussed
with the politicians” is then appended to the template depending on
the semantics of the particular instance. Relative clauses impose an
increased demand on working memory capacity, thereby making pro-
cessing more difficult for humans (Gibson, 1998; Just and Carpenter,
1992).

3 Names sourced from https://github.com/AlessandroMinoccheri/
human-names/tree/master/data

https://github.com/AlessandroMinoccheri/human-names/tree/master/data
https://github.com/AlessandroMinoccheri/human-names/tree/master/data
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adverbial qualification (adv) An adverb is inserted to qual-
ify the main verb of each instance. When a conjunction is present both
verbs are modified. For instances with multiple sentences, all main
verbs are modified.

synonym/name substitution (syn/na) Each of the two ref-
erents in an example is substituted with an appropriate synonym, or
if it is a name, is replaced with a random name of the same gender
from the same list of names used for the gender perturbation.

5.4.1 Human Judgments

We expect that humans are robust to these perturbations because they
represent naturally occurring phenomena in language; we test this hy-
pothesis by collecting human judgements for the perturbed examples.
We collect the judgments for the perturbed examples using Amazon
Mechanical Turk. The annotators are presented with each instance
where the pronoun of interest is boldfaced and in red font. They are
also presented with two options, one for each of the possible referents.
They are then instructed to choose the most likely option, in exchange
for $0.12. Following Sakaguchi et al. (2019), each instance is annotated
by three annotators and majority vote results are reported. Results are
reported later in §5.6. All three annotators agreed on the most likely
option in 82-83% of the instances, except for gender, where a full
agreement was obtained for only 78% of the instances. See Appendix
A.3.2 for further annotation statistics, a sample of the template pre-
sented to annotators, and restrictions applied to pool of annotators.
We did not require an initial qualification task to select participants.

5.4.2 Confounds and Pitfalls

Constructing WSC problems is known to be difficult. Indeed, the orig-
inal dataset was carefully crafted by domain experts and subsequent
attempts at creating WSC-like datasets by non-experts such as in Rah-
man and Ng (2012) have produced examples which were found to be
less challenging than the original dataset. Two likely pitfalls listed in
Levesque et al. (2012) concern A) statistical preferences which make
one answer more readily associated with the special discriminatory
segment or other components of an example4 (this is termed as Asso-
ciativity, and it is described as non-Google-proofness in Levesque et al.
(2012)); and B) inherent ambiguity which makes the examples open
to other plausible interpretations. In what follows, we discuss these
pitfalls, demonstrating that the perturbed examples remain resilient
to both.

4 Trichelair et al. (2018) find that 13.5% of examples from the original WSC might still
be considered to be associative.
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Figure 5.2: PMI divergence from the original WSC examples in average ∆ for
each perturbation. Values below 0 indicate that the difference
in PMI between the correct candidate and the incorrect one de-
creased.

quantifying associativity To verify that the perturbations have
not affected the correctness of the original problems with regards to
pitfall A, we employ pointwise mutual information to test the asso-
ciativity of both the original and perturbed examples. PMI is known
to be a reasonable measure of associativity (Church and Hanks, 1990)
and, among a variety of measures, has been shown to correlate best
with association scores from human judgements of contextual word
association (Frassinelli, 2015). We compute unigram PMI on the two
corpora used to train BERT (see Appendix A.3.3 for details). Figure
5.2 shows the divergence of the perturbed examples from the origi-
nal WSC dataset. We estimate divergence as the average difference
in PMI between the correct (C) and incorrect (I) candidates: ∆ =

pmi(cj, xj) − pmi(ij, xj) where X is either: i) the discriminatory seg-
ments or ii) the full text of the example, and pmi(·, ·) is average un-
igram PMI. ∆ can be seen as a measure of whether the correct or
incorrect candidate is a better ‘associative fit’ for either the discrim-
inatory segment or the full context, making the examples trivial to
resolve. Observe that this difference in PMI declines for the perturbed
examples, showing that these the perturbed example do not increase
in associativity.

confirming solvability Three expert annotators5 are asked to
solve the small subset of examples (99 in total across perturbations)
which were annotated incorrectly by the majority vote of Mechanical
Turk workers. To address pitfall B, the expert annotators are asked to
both attempt to solve the instances and indicate if they believe them
to be too ambiguous to be solved. The majority vote of the annotators

5 Graduate students of linguistics.
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determines the preferred referent or whether an instance is ambigu-
ous. Out of a total of 99 examples, 10 were found to be ambiguous.
Of the remaining 89 examples, 67 were answered correctly by the
majority vote. See Appendix A.3.4 for more details.

5.5 experimental protocol

Our experiments are designed to test the robustness of language mod-
els to the Winograd Schema perturbations described in the previous
section.

evaluation Models are evaluated using two types of measures.
The first is accuracy. For each of the perturbations, we report (a) the
accuracy on the perturbed set (Perturbation accuracy), (b) the differ-
ence in accuracy on the perturbed set and on the equivalent subset of
original dataset:6

∆Acc. = Perturbation accuracy − Original subset accuracy

and (c) Pair accuracy, defined as the number of pairs for which both
examples in the pair are correctly answered divided by the total num-
ber of pairs.

The second measure is stability, S. This is the proportion of per-
turbed examples P ′ for which the predicted referent is the same as
the original prediction P:

S =
| {(p ′i,pi) | p

′
i ∈ P ′ ∧ pi ∈ P∧ p ′i = pi} |

| P |

Since the perturbations do not alter the correct referent, this pro-
vides a strong indication of robustness towards them.

baseline We take the unigram PMI between candidates and dis-
criminatory segments (see §5.4.2) as a baseline. We expect that this
simple baseline will perform well for instances with a high level of
associativity but not otherwise.

language models Our analysis is applied to three out-of-the-
box language models (LMs): BERT (Devlin et al., 2019b), RoBERTa

(Liu et al., 2019b), and XLNet (Yang et al., 2019). These models are
considered to be the state-of-the-art for the wide variety of natural
language understanding tasks found in the GLUE (Wang et al., 2018a)
and SuperGLUE (Wang et al., 2019a) benchmarks. We use the large
pre-trained publicly available models (Wolf et al., 2019).7

6 Recall that is was not possible to perturb all examples.
7 https://github.com/huggingface/pytorch-transformers

https://github.com/huggingface/pytorch-transformers
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orig ten num gen vc rc adv syn/na Avg Avg ∆Acc.

PMI 54.38 54.09 52.96 57.42 54.09 54.41 54.41 51.92 54.24 −2.13

Bert 61.75 61.92 57.31 57.42 63.64 62.19 61.48 58.59 60.41 −1.26

XLNet 64.56 60.14 62.45 62.58 57.73 62.9 64.31 61.05 61.59 −2.78

RoBerta 69.82 69.40 64.43 53.55 66.82 68.55 69.61 57.54 64.27 −5.16

Bert+WW 72.28 70.46 71.15 74.84 65.91 64.31 72.44 70.88 70.00 −2.82

RoBERTa+WG 88.42 89.32 88.53 86.45 83.63 86.93 88.7 89.05 87.62 −1.06

Humans 97.89 96.79 94.46 92.25 92.27 91.16 95.40 96.14 94.41 −3.83

Table 5.2: Original dataset accuracy (orig) and Perturbation accuracy re-
sults for all models and humans. The penultimate column shows
the average Perturbation accuracy results. The rightmost column
shows the ∆Acc. results, averaged over all perturbations.

fine-tuned language models We also examine the effect of
fine-tuning language models. BERT+WW uses BERT fine-tuned on
the MaskedWiki and WscR datasets which consist of 2.4M and 1322

examples (Kocijan et al., 2019), and RoBERTa+WG is fine-tuned on
WinoGrande XL, which consists of 40,938 adversarially filtered ex-
amples (Sakaguchi et al., 2019). Both fine-tuned models have been
reported by recent work to achieve significant improvements on the
WSC.

scoring To score the two candidate referents in each WSC instance
we employ one of two mechanisms. The first, proposed in Trinh and
Le (2018) and adapted to masked LMs by Kocijan et al. (2019) involves
computing the probability of the two candidates c1 and c2, given the
rest of the text in the instance s. To accomplish this, the pronoun of in-
terest is replaced with a number of MASK tokens corresponding to the
number of tokens in each of c1 and c2. The probability of a candidate,
p(c|s) is then computed as the average of the probabilities assigned
by the model to the candidate’s tokens and the maximum probability
candidate is taken as the answer. This scoring method is used for all
models, except RoBERTa+WG. For that, we follow the scoring strat-
egy employed in Sakaguchi et al. (2019) where an instance is split into
context and option using the candidate answer as a delimiter.8

5.6 results and analysis

Following the experimental protocol, we evaluate the three out-of-the-
box language models and the two fine-tuned models on the original
WSC and each of the perturbed sets. Table 5.2 shows Perturbation ac-

8 [CLS] context [SEP] option [SEP], e.g. [CLS] The sculpture rolled off the shelf because
____ [SEP] wasn’t anchored [SEP]. The blank is filled with either option 1 (the sculpture)
or 2 (the trophy).
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curacy results for all models9 and contrasts them with human judge-
ments and the PMI baseline.

5.6.1 Language Models

Humans maintain a much higher performance compared to out-of-
the-box LMs across perturbations. The difference in accuracy between
the perturbed and original examples, ∆Acc., as defined in Section 5.5
is shown in Figure 5.4. A general trend of decrease can be observed
for both models and humans across the perturbations. This decline
in accuracy is on average comparable between models and humans
— with a handful of exceptions. Taking the large gap in absolute ac-
curacy into account, this result might be interpreted in two ways. If
a comparison is made relative to the upper bound of performance,
human performance has suffered from a larger error increase. Alter-
nately, if we compare relative to the lower bound of performance,
then the decline in the already low performance of language models
is more meaningful, since ’there is not much more to lose’.

A more transparent view can be gleaned from the stability results
shown in Table 5.3. Here it can be seen that the three out-of-the-box
LMs are substantially more likely to switch predictions due to the per-
turbations than humans. Furthermore, we observe that the LMs are
least stable for word-level perturbations like gender (gen), number
(num), and synonym or name replacement (syn/na), while humans
appear to be most affected by sentence-level ones, such as relative
clause insertion (rc) and voice perturbation (vc).

Understanding Language Model Performance

To better understand the biases acquired through pre-training which
are pertinent to this task, we consider a) a case of essential feature
omission and b) the marginal cases where LMs answer very correctly
or incorrectly, in both the original and perturbed datasets. We present
analysis for BERT, but similar findings hold for the other LMs.

masking discriminatory segments result in identical sentence
pairs because these segments are the only part of a sentence that sets
WSC pairs apart (see Figure 1a). To determine whether there is a bias
in the selectional preference for one of the candidates over the other,
we test BERT on examples where these discriminatory segments have
been replaced with the MASK token. An unbiased model should be
close to random selection but BERT consistently prefers (by a margin
of ∼25-30%) the candidate which appears second in the text to the one
appearing first, for all perturbations except voice, where it prefers the

9 It is interesting to note that XLNet is trained on CommonCrawl which indexes an
online version of the original WSC found here: https://cs.nyu.edu/faculty/
davise/papers/WinogradSchemas/WS.html.

https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html.
https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html.
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first. This observation holds even when the two referents are inverted,
which is possible for the ’switchable’ subset of the examples as shown
in Trichelair et al. (2018). This indicates that the selections are not
purely semantic but also syntactic or structural and it points towards
BERT having a preference referents in the object role. Detailed results
are presented in Appendix A.3.6.

ten num gen vc rc adv syn/na Avg

PMI 100 100 73.91 100 100 100 100 96.27

Bert 89.32 69.17 88.39 79.55 83.75 91.87 68.42 81.40

XLNet 82.21 69.17 66.45 69.55 78.45 84.81 70.53 75.02

RoBERTa 91.46 77.47 61.29 79.09 83.75 89.75 68.77 79.26

Bert+WW 90.04 83.00 89.68 80.45 81.98 92.93 85.96 85.14

RoBERTa+WG 96.08 94.07 97.41 91.36 92.22 94.69 96.11 95.24

Humans 96.70 94.9 92.9 91.18 91.11 96.11 96.1 94.31

Table 5.3: Stability results for all models and humans.

marginal examples are found where the model assigns a much
higher probability to one referent over the other. We extract the top
15% examples where the correct candidate is preferred by the largest
margin (Pcorrect � Pincorrect) and the bottom 15% where the incorrect
one is preferred (Pincorrect � Pcorrect). Surprisingly, we find that there
is a large overlap (50%–60%) between these two sets of examples, both
in the original and the perturbed datasets.10 For the examples which
are both the most correct and incorrect, BERT strongly prefers one of
the candidates without considering the special discriminatory segment
which flips the correct referent. Indeed we find that the correlation be-
tween the probability assigned by BERT to a referent when it is the
correct referent and when it is not is very strong and significant, with
Spearman’s ρ ≈ 0.75 across perturbations (see Appendix A.3.8 for
details).

10 To clarify, consider the following original WSC pair:

(i) Alice looked for her friend Jade in the crowd. Since she always has good luck,
Alice spotted her quickly.

(ii) Alice looked for her friend Jade in the crowd. Since she always
wears a red turban, Alice spotted her quickly.

The first example gives Pcorrect � Pincorrect by the largest margin, and its counter-
part gives Pincorrect � Pcorrect by the largest margin. In other words, the model
assigns a much higher probability for Alice in both cases.
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5.6.2 The effect of fine-tuning

The accuracy and stability results (Tables 5.2 and 5.3) indicate that
fine-tuning makes language models more robust to the perturbations.
RoBERTa+WG, in particular, is the most accurate and most stable
model. While impressive, this is not entirely surprising: fine-tuning
on task-specific datasets is a well-tested recipe for bias correction (Be-
linkov et al., 2019a). Indeed, these results provide evidence that it is
possible to construct larger fine-tuning datasets whose distribution
is correct for the WSC. We note that both fine-tuned models perform
worst on the VC and RC perturbations, which may not frequently
occur in the crowd-sourced datasets used for fine-tuning. To test this
intuition, we apply a dependency parser (UDPipe (Straka et al., 2016))
to the WinoGrande XL examples, finding that only ∼ 5% of the exam-
ples are in the passive voice and ∼ 6.5% contain relative clauses.

how much fine-tuning data is needed? To quantify the
amount of fine-tuning data needed to achieve robustness, we fine-
tune RoBERTA on the five WinoGrande training set splits defined
by Sakaguchi et al. (2019): XS (160)11, S (640), M (2558), L (10234),
and XL (40398). Figure 5.3 shows the average accuracy and stabil-
ity scores for the models fine-tuned on each of the training splits12.
We observe that the two smallest splits do not have a sufficient num-
ber of examples to adequately bias the classification head, leading
to near-random performance. The model fine-tuned on the M split—
with just 2558 examples—is, however, already able to vastly outper-
form the non-fine-tuned RoBERTA. Increasing the number of exam-
ples five-fold and twenty-fold leads to significant but fast diminishing
improvements.

how do perturbations affect token probability distri-
butions? To obtain a holistic view of the effect the perturbations
have on LMs and fine-tuned LMs, we analyze of the shift in the proba-
bility distribution (over the entire vocabulary) which a model assigns
to a MASK token inserted in place of the pronoun of interest. We apply
probability distribution truncation with a threshold of p = 0.9 as pro-
posed in Holtzman et al. (2019) to filter out the uninformative tail of
the distribution. Following this, we compute the Jensen–Shannon dis-
tance between this dynamically truncated distribution for an original
example and each of its perturbed counterparts. Figure 5.5 shows the

11 No. of examples in set.
12 Note that the stability score for the model fine-tuned on XL in Figure 5.3 is different

from that reported in Table 5.3. In the latter we reported results from the model
provided by Sakaguchi et al. (2019), rather than the model we fine-tuned ourselves.
Since we utilise identical hyperparameters to theirs for fine-tuning, this anomalous
difference in score may perhaps be explained by a difference in initialization as
suggested in Dodge et al. (2020).
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Figure 5.3: Accuracy and stability scores (averaged across perturbations) for
RoBERTA when fine-tuned on five increasing training split sizes.

average of this measure over the subset of the 128 examples which are
common to all perturbations. Overall, we observe that large shifts in
the distribution correspond to lower stability and accuracy scores and
that fine-tuned models exhibit lower shifts than their non-fine-tuned
counterparts. The difference in shifts between out-of-the-box models
and their fine-tuned counterparts is lower for the VC, RC and ADV
perturbations, meaning that when fine-tuned, the models’ probability
distributions are roughly just as divergent for these perturbations as
they were before fine-tuning. We hypothesize the same reasons we
did in 5.6.2, which is that these examples are just under-represented
in our fine-tuning corpus; indeed, these results roughly correspond
to the differences in ∆Acc. from Figure 5.4.

Further details about the number of examples excluded via the
probability distribution truncation and other measures of the pertur-
bations’ effect can be found in Appendix A.3.7.

5.6.3 Error Analysis

pair accuracy Here we consider a more challenging evaluation
setting where each WSC pair is treated as a single instance. Since the
WSC examples are constructed as minimally contrastive pairs (Levesque
et al., 2012), we argue that this is an appropriate standard of evalu-
ation. Consider again the example in Figure 1a. It is reasonable to
suppose that for an answerer which truly ‘understands’ (Levesque
et al., 2012), being able to link the concepts heavy and son in one of
the resolutions is closely related and complementary to linking the
concepts weak and man in the other.13

13 As a sanity check, consider random pairings of WSC examples. There is no such
complement.
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Figure 5.4: ∆Acc. results for all models across perturbations. Values below
the x-axis indicate a decline in accuracy compared to the original
dataset.
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Figure 5.5: Jensen-Shannon distance between the original and perturbed ex-
amples when masking the pronoun of interest.

The results for this evaluation are shown in Figure 5.6. They show
that human resolution of the problems exhibits greater complemen-
tarity compared to the language models; human pair accuracy (pair)
is closer to perturbation accuracy (single) than is the case for the LMs.
Furthermore, human performance on pair accuracy is more robust to
perturbations when compared to the models. Indeed, the large gap
between pair accuracy and perturbation accuracy raises some doubts
about the performance of these models. However, RoBERTa-WG is
a notable exception, showing near-human robustness to pair comple-
mentarity.

associativity Next, we examine the effect of associativity on
performance. Figure 5.7 shows accuracy results14 for all perturbations

14 Note that the large variance in results on the associative subset of gender is due to
it consisting of only two examples.
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Figure 5.6: Pair accuracy and Perturbation accuracy results. The latter are
labeled as single.
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Figure 5.7: Perturbation accuracy on the Associative (A) and Non-
Associative (N) subsets of the data.

on the associative and non-associative subsets of the WSC as labelled
by Trichelair et al. (2018). We observe that the difference between as-
sociative and non-associative is much smaller for humans and that
unlike all language models, humans do better on the former than
the latter. As expected, the PMI baseline does almost as well as the
LMs on the associative subset but it performs at chance level for the
non-associative subset.

5.7 conclusion

We presented a detailed investigation of the effect of linguistic pertur-
bations on how language models and humans perform on the Wino-
grad Schema Challenge. We found that compared to out-of-the-box
models, humans are significantly more stable to the perturbations
and that they answer non-associative examples with higher accuracy
than associative ones, show sensitivity to WSC pair complementarity,
and are more sensitive to sentence-level (as opposed to word-level)
perturbations. In an analysis of the behaviour of language models, we
observe that there is a preference for referents in the object role and
that the models do not always consider the discriminatory segments
of examples. Finally, we find that fine-tuning language models can
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lead to much-improved accuracy and stability. It remains an open
question whether this task-specific approach to generalisation consti-
tutes a true advancement in “reasoning”. Fine-tuning a model on a
rather large number of examples similar to the WSC leads to increased
robustness, but this stands in stark contrast to humans, who are ro-
bust to the perturbations without having been exposed to similar ex-
amples in the past.



6
AT T E N T I O N C A N R E F L E C T S Y N TA C T I C
S T R U C T U R E ( I F Y O U L E T I T )

6.1 abstract

Since the popularization of the Transformer as a general-purpose fea-
ture encoder for NLP, many studies have attempted to decode linguis-
tic structure from its novel multi-head attention mechanism. However,
much of such work focused almost exclusively on English — a lan-
guage with rigid word order and a lack of inflectional morphology.
In this study, we present decoding experiments for multilingual BERT
across 18 languages in order to test the generalizability of the claim
that dependency syntax is reflected in attention patterns. We show
that full trees can be decoded above baseline accuracy from single
attention heads, and that individual relations are often tracked by
the same heads across languages. Furthermore, in an attempt to ad-
dress recent debates about the status of attention as an explanatory
mechanism, we experiment with fine-tuning mBERT on a supervised
parsing objective while freezing different series of parameters. Inter-
estingly, in steering the objective to learn explicit linguistic structure,
we find much of the same structure represented in the resulting at-
tention patterns, with interesting differences with respect to which
parameters are frozen.

6.2 introduction

In recent years, the attention mechanism proposed by Bahdanau et al.
(2014) has become an indispensable component of many NLP systems.
Its widespread adoption was, in part, heralded by the introduction of
the Transformer architecture (Vaswani et al., 2017), which constrains
a soft alignment to be learned across discrete states in the input (self-
attention), rather than across input and output (e.g., Rocktäschel et al.,
2015; Xu et al., 2015). The Transformer has, by now, supplanted the
popular LSTM (Hochreiter and Schmidhuber, 1997) as NLP’s feature-
encoder-of-choice, largely due to its compatibility with parallelized
training regimes and ability to handle long-distance dependencies.

Certainly, the nature of attention as a distribution over tokens lends
itself to a straightforward interpretation of a model’s inner work-
ings. Bahdanau et al. (2014) illustrate this nicely in the context of
seq2seq machine translation, showing that the attention learned by
their models reflects expected cross-lingual idiosyncrasies between
English and French, e.g., concerning word order. With self-attentive
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Transformers, interpretation becomes slightly more difficult, as atten-
tion is distributed across words within the input itself. This is further
compounded by the use of multiple layers and heads, each combi-
nation of which yields its own alignment, representing a different
(possibly redundant) view of the data. Given the similarity of such
attention matrices to the score matrices employed in arc-factored de-
pendency parsing (McDonald et al., 2005a,b), a salient question con-
cerning interpretability becomes: Can we expect some combination
of these parameters to capture linguistic structure in the form of a
dependency tree, especially if the model performs well on NLP tasks?
If not, can we relax the expectation and examine the extent to which
subcomponents of the linguistic structure, such as subject-verb rela-
tions, are represented? This prospect was first posed by Raganato,
Tiedemann, et al. (2018) for MT encoders, and later explored by Clark
et al. (2019c) for BERT. Ultimately, the consensus of these and other
studies (Htut et al., 2019; Limisiewicz et al., 2020; Voita et al., 2019b)
was that, while there appears to exist no “generalist” head responsi-
ble for extracting full dependency structures, standalone heads often
specialize in capturing individual grammatical relations.

Unfortunately, most of such studies focused their experiments en-
tirely on English, which is typologically favored to succeed in such
scenarios due to its rigid word order and lack of inflectional mor-
phology. It remains to be seen whether the attention patterns of such
models can capture structural features across typologically diverse
languages, or if the reported experiments on English are a misrepre-
sentation of local positional heuristics as such. Furthermore, though
previous work has investigated how attention patterns might change
after fine-tuning on different tasks (Htut et al., 2019), a recent debate
about attention as an explanatory mechanism (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019) has cast the entire enterprise in doubt. In-
deed, it remains to be seen whether fine-tuning on an explicit struc-
tured prediction task, e.g. dependency parsing, can force attention to
represent the structure being learned, or if the patterns observed in
pretrained models are not altered in any meaningful way.

To address these issues, we investigate the prospect of extracting
linguistic structure from the attention weights of multilingual Transformer-
based language models. In light of the surveyed literature, our re-
search questions are as follows:

1. Can we decode dependency trees for some languages better
than others?

2. Do the same layer–head combinations track the same relations
across languages?

3. How do attention patterns change after fine-tuning with explicit
syntactic annotation?
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4. Which components of the model are involved in these changes?

In answering these questions, we believe we can shed further light on
the (cross-)linguistic properties of Transformer-based language mod-
els, as well as address the question of attention patterns being a reli-
able representation of linguistic structure.

6.3 attention as structure

transformers The focus of the present study is mBERT, a multi-
lingual variant of the exceedingly popular language model (Devlin et
al., 2019b). BERT is built upon the Transformer architecture (Vaswani
et al., 2017), which is a self-attention-based encoder-decoder model
(though only the encoder is relevant to our purposes). A Transformer
takes a sequence of vectors x = [x1, x2, ...xn] as input and applies a po-
sitional encoding to them, in order to retain the order of words in a
sentence. These inputs are then transformed into query (Q), key (K),
and value (V) vectors via three separate linear transformations and
passed to an attention mechanism. A single attention head computes
scaled dot-product attention between K andQ, outputting a weighted
sum of V :

Attention(Q,K,V) = softmax
(
QK>√
dk

)
V (6.1)

For multihead attention (MHA), the same process is repeated for k
heads, allowing the model to jointly attend to information from dif-
ferent representation subspaces at different positions (Vaswani et al.,
2017). Ultimately, the output of all heads is concatenated and passed
through a linear projection WO:

Hi = Attention
(
QW

Q
i ,KWK

i ,VWV
i

)
(6.2)

MHA(Q,K,V) = concat(H1,H2, ...,Hk)WO (6.3)

Every layer also consists of a feed-forward network (FFN), consisting
of two Dense layers with ReLU activation functions. For each layer,
therefore, the output of MHA is passed through a LayerNorm with
residual connections, passed through FFN, and then through another
LayerNorm with residual connections.

searching for structure Often, the line of inquiry regarding
interpretability in NLP has been concerned with extracting and an-
alyzing linguistic information from neural network models of lan-
guage (Belinkov and Glass, 2019b). Recently, such investigations have
targeted Transformer models (Hewitt and Manning, 2019; Rosa and
Mareček, 2019; Tenney et al., 2019), at least in part because the self-
attention mechanism employed by these models offers a possible win-
dow into their inner workings. With large-scale machine translation
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and language models being openly distributed for experimentation,
several researchers have wondered if self-attention is capable of rep-
resenting syntactic structure, despite not being trained with any overt
parsing objective.

In pursuit of this question, Raganato, Tiedemann, et al. (2018) ap-
plied a maximum-spanning-tree algorithm over the attention weights
of several trained MT models, comparing them with gold trees from
Universal Dependencies (Nivre et al., 2020b, 2016). They found that,
while the accuracy was not comparable to that of a supervised parser,
it was nonetheless higher than several strong baselines, implying that
some structure was consistently represented. Clark et al. (2019c) cor-
roborated the same findings for BERT when decoding full trees, but
observed that individual dependency relations were often tracked by
specialized heads and were decodable with much higher accuracy
than some fixed-offset baselines. Concurrently, Voita et al. (2019b)
made a similar observation about heads specializing in specific de-
pendency relations, proposing a coarse taxonomy of head attention
functions: positional, where heads attend to adjacent tokens; syntac-
tic, where heads attend to specific syntactic relations; and rare words,
where heads point to the least frequent tokens in the sentence. Htut et
al. (2019) followed Raganato, Tiedemann, et al. (2018) in decoding de-
pendency trees from BERT-based models, finding that fine-tuning on
two classification tasks did not produce syntactically plausible atten-
tion patterns. Lastly, Limisiewicz et al. (2020) modified UD annotation
to better represent attention patterns and introduced a supervised
head-ensembling method for consolidating shared syntactic informa-
tion across heads.

does attention have explanatory value? Though many stud-
ies have yielded insight about how attention behaves in a variety of
models, the question of whether it can be seen as a “faithful” expla-
nation of model predictions has been subject to much recent debate.
For example, Jain and Wallace (2019) present compelling arguments
that attention does not offer a faithful explanation of predictions. Pri-
marily, they demonstrate that there is little correlation between stan-
dard feature importance measures and attention weights. Further-
more, they contend that there exist counterfactual attention distribu-
tions, which are substantially different from learned attention weights
but that do not alter a model’s predictions. Using a similar method-
ology, Serrano and Smith (2019) corroborate that attention does not
provide an adequate account of an input component’s importance.

In response to these findings, Wiegreffe and Pinter (2019) question
the assumptions underlying such claims. Attention, they argue, is
not a primitive, i.e., it cannot be detached from the rest of a model’s
components as is done in the experiments of Jain and Wallace (2019).
They propose a set of four analyses to test whether a given model’s at-
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tention mechanism can provide meaningful explanation and demon-
strate that the alternative attention distributions found via adversarial
training methods do, in fact, perform poorly compared to standard at-
tention mechanisms. On a theoretical level, they argue that, although
attention weights do not give an exclusive “faithful” explanation, they
do provide a meaningful plausible explanation.

This discussion is relevant to our study because it remains unclear
whether or not attending to syntactic structure serves, in practice,
as plausible explanation for model behavior, or whether or not it
is even capable of serving as such. Indeed, the studies of Raganato,
Tiedemann, et al. (2018) and Clark et al. (2019c) relate a convincing
but incomplete picture — tree decoding accuracy just marginally ex-
ceeds baselines and various relations tend to be tracked across vary-
ing heads and layers. Thus, our fine-tuning experiments (detailed in
the following section) serve to enable an “easy” setting wherein we
explicitly inform our models of the same structure that we are try-
ing to extract. We posit that, if, after fine-tuning, syntactic structures
were still not decodable from the attention weights, one could safely
conclude that these structures are being stored via a non-transparent
mechanism that may not even involve attention weights. Such an in-
sight would allow us to conclude that attention weights cannot pro-
vide even a plausible explanation for models relying on syntax.

6.4 experimental design

To examine the extent to which we can decode dependency trees from
attention patterns, we run a tree decoding algorithm over mBERT’s
attention heads — before and after fine-tuning via a parsing objective.
We surmise that doing so will enable us to determine if attention
can be interpreted as a reliable mechanism for capturing linguistic
structure.

6.4.1 Model

We employ mBERT1 in our experiments, which has been shown to
perform well across a variety of NLP tasks (Hu et al., 2020b; Kon-
dratyuk and Straka, 2019a) and capture aspects of syntactic struc-
ture cross-lingually (Chi et al., 2020; Pires et al., 2019). mBERT fea-
tures 12 layers with 768 hidden units and 12 attention heads, with
a joint WordPiece sub-word vocabulary across languages. The model
was trained on the concatenation of WikiDumps for the top 104 lan-
guages with the largest Wikipedias,where principled sampling was
employed to enforce a balance between high- and low-resource lan-
guages.

1 https://github.com/google-research/bert

https://github.com/google-research/bert
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6.4.2 Decoding Algorithm

For decoding dependency trees, we follow Raganato, Tiedemann, et
al. (2018) in applying the Chu-Liu-Edmonds maximum spanning tree
algorithm (Chu, 1965) to every layer/head combination available in
mBERT (12× 12 = 144 in total). In order for the matrices to corre-
spond to gold treebank tokenization, we remove the cells correspond-
ing to the BERT delimiter tokens ([CLS] and [SEP]). In addition to
this, we sum the columns and average the rows corresponding to the
constituent subwords of gold tokens, respectively (Clark et al., 2019c).
Lastly, since attention patterns across heads may differ in whether
they represent heads attending to their dependents or vice versa, we
take our input to be the element-wise product of a given attention
matrix and its transpose (A ◦A>). We liken this to the joint proba-
bility of a head attending to its dependent and a dependent attend-
ing to its head, similarly to Limisiewicz et al. (2020). Per this point,
we also follow Htut et al. (2019) in evaluating the decoded trees via
Undirected Unlabeled Attachment Score (UUAS) — the percentage
of undirected edges recovered correctly. Since we discount direction-
ality, this is effectively a less strict measure than UAS, but one that
has a long tradition in unsupervised dependency parsing since Klein
and Manning (2004).

6.4.3 Data

For our data, we employ the Parallel Universal Dependencies (PUD)
treebanks, as collected in UD v2.4 (Nivre et al., 2019). PUD was first
released as part of the CONLL 2017 shared task (Zeman et al., 2018),
containing 1000 parallel sentences, which were (professionally) trans-
lated from English, German, French, Italian, and Spanish to 14 other
languages. The sentences are taken from two domains, news and
wikipedia, the latter implying some overlap with mBERT’s training
data (though we did not investigate this). We include all PUD tree-
banks except Thai.2

6.4.4 Fine-Tuning Details

In addition to exploring pretrained mBERT’s attention weights, we
are also interested in how attention might be guided by a training
objective that learns the exact tree structure we aim to decode. To this
end, we employ the graph-based decoding algorithm of the biaffine
parser introduced by Dozat and Manning (2016). We replace the stan-
dard BiLSTM encoder for this parser with the entire mBERT network,
which we fine-tune with the parsing loss. The full parser decoder

2 Thai is the only treebank that does not have a non-PUD treebank available in UD,
which we need for our fine-tuning experiments.
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ar cs de en es fi fr hi id it ja ko pl pt ru sv tr zh

Baseline 50 40 36 36 40 42 40 46 47 40 43 55 45 41 42 39 52 41

Pre
53 53 49 47 50 48 41 48 50 41 45 64 52 50 51 51 55 42

7-6 10-8 10-8 10-8 9-5 10-8 2-3 2-3 9-5 6-4 2-3 9-2 10-8 9-5 10-8 10-8 3-8 2-3

None
76 78 76 71 77 66 45 72 75 58 42 64 75 76 75 74 55 38

11-10 11-10 11-10 10-11 10-11 10-11 11-10 11-10 11-10 11-10 11-10 11-10 11-10 11-10 10-8 10-8 3-8 2-3

Key
62 64 58 53 59 56 41 54 59 47 44 62 64 58 61 59 55 41

10-8 10-8 11-12 10-8 11-12 10-8 7-12 10-8 10-8 9-2 2-3 10-8 10-8 11-12 10-8 12-10 3-12 2-3

Query
69 74 70 66 73 63 42 62 67 54 45 65 72 70 70 68 56 42

11-4 10-8 11-4 11-4 11-4 10-8 11-4 11-4 11-4 11-4 2-3 10-8 11-4 11-4 10-8 11-4 10-8 2-3

KQ 71 76 70 65 74 62 43 64 69 55 44 64 73 73 69 69 55 41

11-4 11-4 11-4 11-4 11-4 11-4 10-11 11-4 11-4 11-4 2-3 11-4 11-4 11-4 11-4 11-4 11-4 2-3

Value
75 72 72 64 76 59 45 63 73 55 45 66 73 74 69 65 57 42

12-5 12-5 12-5 12-5 12-5 12-5 12-5 12-5 12-5 12-5 2-3 10-8 12-5 12-5 12-5 12-5 12-5 3-8

Dense
68 71 65 60 67 61 42 65 66 49 44 64 70 64 67 64 55 40

11-10 11-10 11-10 10-8 12-10 11-10 10-8 11-10 11-10 9-5 3-12 11-10 11-10 12-5 11-10 11-10 11-10 3-12

Table 6.1: Adjacent-branching baseline and maximum UUAS decoding ac-
curacy per PUD treebank, expressed as best score and best layer/-
head combination for UUAS decoding. Pre refers to basic mBERT
model before fine-tuning, while all cells below correspond differ-
ent fine-tuned models described in Section 3.4. Best score indi-
cated in bold.

consists of four dense layers, two for head/child representations for
dependency arcs (dim. 500) and two for head/child representations
for dependency labels (dim. 100). These are transformed into the label
space via a bilinear transform.

After training the parser, we can decode the fine-tuned mBERT pa-
rameters in the same fashion as described in Section 6.4.2. We sur-
mise that, if attention heads are capable of tracking hierarchical re-
lations between words in any capacity, it is precisely in this setting
that this ability would be attested. In addition to this, we are inter-
ested in what individual components of the mBERT network are ca-
pable of steering attention patterns towards syntactic structure. We
believe that addressing this question will help us not only in inter-
preting decisions made by BERT-based neural parsers, but also in
aiding us developing syntax-aware models in general (Strubell et al.,
2018a; Swayamdipta et al., 2018). As such — beyond fine-tuning all
parameters of the mBERT network (our basic setting) — we perform
a series of ablation experiments wherein we update only one set of
parameters per training cycle, e.g. the Query weights WQ

i , and leave
everything else frozen. This gives us a set of 6 models, which are de-
scribed below. For each model, all non-BERT parser components are
always left unfrozen.

• Key: only the K components of the transformer are unfrozen;
these are the representations of tokens that are paying attention
to other tokens.

• Query: only the Q components are unfrozen; these, conversely,
are the representations of tokens being paid attention to.

• KQ: both keys and queries are unfrozen.
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• Value: semantic value vectors per token (V) are unfrozen; they
are composed after being weighted with attention scores ob-
tained from the K/Q matrices.

• Dense: the dense feed-forward networks in the attention mech-
anism; all three per layer are unfrozen.

• None: The basic setting with nothing frozen; all parameters are
updated with the parsing loss.

We fine-tune each of these models on a concatentation of all PUD tree-
banks for 20 epochs, which effectively makes our model multilingual.
We do so in order to 1) control for domain and annotation confounds,
since all PUD sentences are parallel and are natively annotated (un-
like converted UD treebanks, for instance); 2) increase the number of
training samples for fine-tuning, as each PUD treebank features only
1000 sentences; and 3) induce a better parser through multilinguality,
as in Kondratyuk and Straka (2019b). Furthermore, in order to gauge
the overall performance of our parser across all ablated settings, we
evaluate on the test set of the largest non-PUD treebank available for
each language, since PUD only features test partitions. When training,
we employ a combined dense/sparse Adam optimiser, at a learning
rate of 3 ∗ 10−5. We rescale gradients to have a maximum norm of 5.

6.5 decoding mbert attention

The second row of Table 6.1 (Pre) depicts the UUAS after running
our decoding algorithm over mBERT attention matrices, per language.
We see a familiar pattern to that in Clark et al. (2019c) among others
— namely that attention patterns extracted directly from mBERT ap-
pear to be incapable of decoding dependency trees beyond a thresh-
old of 50–60% UUAS accuracy. However, we also note that, in all
languages, the attention-decoding algorithm outperforms a Baseline

(row 1) that draws an (undirected) edge between any two adjacent
words in linear order, which implies that some non-linear structures
are captured with regularity. Indeed, head 8 in layer 10 appears to be
particularly strong in this regard, returning the highest UUAS for 7

languages. Interestingly, the accuracy patterns across layers depicted
in Figure 6.1 tend to follow an identical trend for all languages, with
nearly all heads in layer 7 returning high within-language accuracies.

It appears that attention for some languages (Arabic, Czech, Ko-
rean, Turkish) is comparatively easier to decode than others (French,
Italian, Japanese, Chinese). A possible explanation for this result is
that dependency relations between content words, which are favored
by the UD annotation, are more likely to be adjacent in the mor-
phologically rich languages of the first group (without intervening
function words). This assumption seems to be corroborated by the
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Figure 6.1: UUAS of MST decoding per layer and head, across languages.
Heads (y-axis) are sorted by accuracy for easier visualization.

high baseline scores for Arabic, Korean and Turkish (but not Czech).
Conversely, the low baselines scores and the likewise low decoding
accuracies for the latter four languages are difficult to characterize.
Indeed, we could not identify what factors — typological, annota-
tion, tokenization or otherwise — would set French and Italian apart
from the remaining languages in terms of score. However, we hy-
pothesize that the tokenization and our treatment of subword tokens
plays a part in attempting to decode attention from Chinese and
Japanese representations. Per the mBERT documentation,3 Chinese
and Japanese Kanji character spans within the CJK Unicode range are
character-tokenized. This lies in contrast with all other languages (Ko-
rean Hangul and Japanese Hiragana and Katakana included), which

3 https://github.com/google-research/bert/blob/master/multilingual.
md

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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Figure 6.2: Left: UUAS per relation across languages (best layer/head com-
bination indicated in cell). Right: Best UUAS as a function of
best positional baseline (derived from the treebank), selected re-
lations.

rely on whitespace and WordPiece (Wu et al., 2016). It is thus possi-
ble that the attention distributions for these two languages (at least
where CJK characters are relevant) are devoted to composing words,
rather than structural relations, which will distort the attention ma-
trices that we compute to correspond with gold tokenization (e.g. by
maxing rows and averaging columns).

relation analysis We can disambiguate what sort of structures
are captured with regularity by looking at the UUAS returned per
dependency relation. Figure 6.2 (left) shows that adjectival modifiers
(amod, mean UUAS = 85±12) and determiners (det, 88±6) are among
the easiest relations to decode across languages. Indeed, words that
are connected by these relations are often adjacent to each other and
may be simple to decode if a head is primarily concerned with track-
ing linear order. To verify the extent to which this might be happen-
ing, we plot the aforementioned decoding accuracy as a function of
select relations’ positional baselines in Figure 6.2 (right). The posi-
tional baselines, in this case, are calculated by picking the most fre-
quent offset at which a dependent occurs with respect to its head,
e.g., −1 for det in English, meaning one position to the left of the
head. Interestingly, while we observe significant variation across the
positional baselines for amod and det, the decoding accuracy remains
quite high.

In slight contrast to this, the core subject (nsubj, 58± 16 SD) and
object (obj, 64 ± 13) relations prove to be more difficult to decode.
Unlike the aforementioned relations, nsubj and obj are much more
sensitive to the word order properties of the language at hand. For ex-
ample, while a language like English, with Subject-Verb-Object (SVO)
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order, might have the subject frequently appear to the left of the verb,
an SOV language like Hindi might have it several positions further
away, with an object and its potential modifiers intervening. Indeed,
the best positional baseline for English nsubj is 39 UUAS, while it
is only 10 for Hindi. Despite this variation, the relation seems to
be tracked with some regularity by the same head (layer 3, head
9), returning 60 UUAS for English and 52 for Hindi. The same can
largely be said for obj, where the positional baselines return 51± 18.
In this latter case, however, the heads tend to be much differently
distributed across languages. Finally, he results for the obj relation
provides some support for our earlier explanation concerning mor-
phologically rich languages, as Arabic, Czech, Korean and Turkish all
have among the highest accuracies (as well as positional baselines).

6.6 fine-tuning experiments

Figure 6.3: (Top) best scores across all heads, per language; (bottom) mean
scores across all heads, per language. The languages (hidden
from the X-axis for brevity) are, in order, ar, cs, de, en, es, fi, fr,
hi, id, it, ja, ko, pl, pt, ru, sv, tr, zh

Next, we investigate the effect fine-tuning has on UUAS decoding.
Row 3 in Table 6.1 (None) indicates that fine-tuning does result in
large improvements to UUAS decoding across most languages, of-
ten by margins as high as ∼ 30%. This shows that with an explicit
parsing objective, attention heads are capable of serving as explana-
tory mechanisms for syntax; syntactic structure can be made to be
transparently stored in the heads, in a manner that does not require
additional probe fitting or parameterized transformation to extract.

Given that we do manage to decode reasonable syntactic trees, we
can then refine our question — what components are capable of learn-
ing these trees? One obvious candidate is the key/query component
pair, given that attention weights are a scaled softmax of a compo-
sition of the two. Figure 6.3 (top) shows the difference between pre-
trained UUAS and fine-tuned UUAS per layer, across models and
languages. Interestingly, the best parsing accuracies do not appear to
vary much depending on what component is frozen. We do see a clear
trend, however, in that decoding the attention patterns of the fine-
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Figure 6.4: Mean UAS and LAS when evaluating different models on
language-specific treebanks (Korean excluded due to annotation
differences). mBERT refers to models where the entire mBERT
network is frozen as input to the parser.

tuned model typically yields better UUAS than the pretrained model,
particularly in the highest layers. Indeed, the lowest layer at which
fine-tuning appears to improve decoding is layer 7. This implies that,
regardless of which component remains frozen, the parameters facing
any sort of significant and positive update tend to be those appearing
towards the higher-end of the network, closer to the output.

For the frozen components, the best improvements in UUAS are
seen at the final layer in Value, which is also the only model that
shows consistent improvement, as well as the highest average im-
provement in mean scores4 for the last few layers. Perhaps most in-
terestingly, the mean UUAS (Figure 6.3 (bottom)) for our “attentive”
components – keys, queries, and their combination – does not appear
to have improved by much after fine-tuning. In contrast, the maxi-
mum does show considerable improvement; this seems to imply that
although all components appear to be more or less equally capable of
learning decodable heads, the attentive components, when fine-tuned,
appear to sharpen fewer heads.

Note that the only difference between keys and queries in an atten-
tion mechanism is that keys are transposed to index attention from/to

4 The inner average is over all heads; the outer is over all languages.
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appropriately. Surprisingly, Key and Query appear to act somewhat
differently, with Query being almost uniformly better than Key with
the best heads, whilst Key is slightly better with averages, implying
distinctions in how both store information. Furthermore, allowing
both keys and queries seems to result in an interesting contradiction
– the ultimate layer, which has reasonable maximums and averages
for both Key and Query, now seems to show a UUAS drop almost
uniformly. This is also true for the completely unfrozen encoder.

supervised parsing In addition to decoding trees from atten-
tion matrices, we also measure supervised UAS/LAS on a held-out
test set.5 Based on Figure 6.4, it is apparent that all settings result in
generally the same UAS. This is somewhat expected; Lauscher et al.
(2020) see better results on parsing with the entire encoder frozen,
implying that the task is easy enough for a biaffine parser to learn,
given frozen mBERT representations.6 The LAS distinction is, how-
ever, rather interesting: there is a marked difference between how im-
portant the dense layers are, as opposed to the attentive components.
This is likely not reflected in our UUAS probe as, strictly speaking,
labelling arcs is not equivalent to searching for structure in sentences,
but more akin to classifying pre-identified structures. We also note
that Dense appears to be better than None on average, implying that
non-dense components might actually be hurting labelling capacity.

In brief, consolidating the two sets of results above, we can draw
three interesting conclusions about the components:

1. Value vectors are best aligned with syntactic dependencies; this
is reflected both in the best head at the upper layers, and the
average score across all heads.

2. Dense layers appear to have moderate informative capacity, but
appear to have the best learning capacity for the task of arc
labelling.

3. Perhaps most surprisingly, Key and Query vectors do not ap-
pear to make any outstanding contributions, save for sharpen-
ing a smaller subset of heads.

Our last result is especially surprising for UUAS decoding. Keys and
queries, fundamentally, combine to form the attention weight matrix,
which is precisely what we use to decode trees. One would expect
that allowing these components to learn from labelled syntax would
result in the best improvements to decoding, but all three have sur-
prisingly negligible mean improvements. This indicates that we need
to further improve our understanding of how attentive structure and
weighting really works.

5 Note that the test set in our scenario is from the actual, non-parallel language tree-
bank; as such, we left Korean out of this comparison due to annotation differences.

6 Due to training on concatenated PUD sets, however, our results are not directly
comparable/
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cross-linguistic observations We notice no clear cross-linguistic
trends here across different component sets; however, certain lan-
guages do stand out as being particularly hard to decode from the
fine-tuned parser. These include Japanese, Korean, Chinese, French
and Turkish. For the first three, we hypothesise that tokenization
clashes with mBERT’s internal representations may play a role. In-
deed, as we hypothesized in Section 6.4.2, it could be the case that
the composition of CJK characters into gold tokens for Chinese and
Japanese may degrade the representations (and their corresponding
attention) therein. Furthermore, for Japanese and Korean specifically,
it has been observed that tokenization strategies employed by dif-
ferent treebanks could drastically influence the conclusions one may
draw about their inherent hierarchical structure (Kulmizev et al., 2020).
Turkish and French are admittedly more difficult to diagnose. Note,
however, that we fine-tuned our model on a concatenation of all PUD
treebanks. As such, any deviation from PUD’s annotation norms is
therefore likely to be heavily penalised, by virtue of signal from other
languages drowning out these differences.

6.7 conclusion

In this study, we revisited the prospect of decoding dependency trees
from the self-attention patterns of Transformer-based language mod-
els. We elected to extend our experiments to 18 languages in order
to gain better insight about how tree decoding accuracy might be
affected in the face of (modest) typological diversity. Surprisingly,
across all languages, we were able to decode dependency trees from
attention patterns more accurately than an adjacent-linking baseline,
implying that some structure was indeed being tracked by the mech-
anism. In looking at specific relation types, we corroborated previous
studies in showing that particular layer-head combinations tracked
the same relation with regularity across languages, despite typologi-
cal differences concerning word order, etc.

In investigating the extent to which attention can be guided to prop-
erly capture structural relations between input words, we fine-tuned
mBERT as input to a dependency parser. This, we found, yielded
large improvements over the pretrained attention patterns in terms
of decoding accuracy, demonstrating that the attention mechanism
was learning to represent the structural objective of the parser. In
addition to fine-tuning the entire mBERT network, we conducted a
series of experiments, wherein we updated only select components
of model and left the remainder frozen. Most surprisingly, we ob-
served that the Transformer parameters designed for composing the
attention matrix, K and Q, were only modestly capable of guiding the
attention towards resembling the dependency structure. In contrast,
it was the Value (V) parameters, which are used for computing a
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weighted sum over the KQ-produced attention, that yielded the most
faithful representations of the linguistic structure via attention.

Though prior work (Kovaleva et al., 2019; Zhao and Bethard, 2020)
seems to indicate that there is a lack of a substantial change in at-
tention patterns after fine-tuning on syntax- and semantics-oriented
classification tasks, the opposite effect has been observed with fine-
tuning on negation scope resolution, where a more explanatory at-
tention mechanism can be induced (Htut et al., 2019). Our results are
similar to the latter, and we demonstrate that given explicit syntactic
annotation, attention weights do end up storing more transparently
decodable structure. It is, however, still unclear which sets of trans-
former parameters are best suited for learning this information and
storing it in the form of attention.





7
W O R D O R D E R D O E S M AT T E R A N D S H U F F L E D
L A N G U A G E M O D E L S K N O W I T

7.1 abstract

Recent studies have shown that language models pretrained and/or
fine-tuned on randomly permuted sentences exhibit competitive per-
formance on GLUE, putting into question the importance of word or-
der information. Somewhat counter-intuitively, some of these studies
also report that position embeddings appear to be crucial for models’
good performance with shuffled text. We probe these language mod-
els for word order information and investigate what position embed-
dings learnt from shuffled text encode, showing that these models
retain considerable information about the original token order. We
show this is due to a subtlety in how shuffling is implemented in
previous work – before rather than after subword segmentation. Lan-
guage models trained on text shuffled after subword segmentation ex-
hibit much lower performance, but even these models retain some in-
formation about word order because of the statistical dependencies
between sentence length and unigram probabilities. Finally, we show
that beyond GLUE, a variety of language understanding tasks do re-
quire word order information, often to an extent that cannot be learnt
through fine-tuning.

7.2 introduction

Transformers (Vaswani et al., 2017), when used in the context of masked
language modelling (Devlin et al., 2019b), consume their inputs con-
currently. There is no notion of inherent order, unlike in autoregres-
sive setups, where the input is consumed token by token. To compen-
sate for this absence of linear order, the transformer architecture origi-
nally proposed in Vaswani et al. (2017) includes a fixed, sinusoidal po-
sition embedding added to each token embedding; each token carries
a different position embedding, corresponding to its position in the
sentence. The transformer-based BERT (Devlin et al., 2019b) replaces
these fixed sinusoidal embeddings with unique, learned embeddings
per position; RoBERTa (Liu et al., 2019c), the model investigated in
this work, does the same.

Position embeddings are the only source of order information in
these models; in their absence, contextual representations generated
for tokens are independent of the actual position of the tokens in a
sentence, and the models thus resemble heavily overparameterised

77
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Figure 7.1: Pearson correlations between position embeddings for full-scale
models; the patterns are similar to fully learnable absolute em-
beddings (Wang et al., 2021) and can be said to have learned
something about position. We later demonstrate that this is not
the case with post-BPE scrambling.

Figure 7.2: Correlations between position embeddings when shuffling train-
ing data before segmentation (left), i.e, at the word level, and af-
ter segmentation (middle), i.e., at the subword level, as well as
when replacing all subwords with random subwords based on
their corpus-level frequencies (right). The latter removes any de-
pendency between subword probability and sentence length. The
plots show that shuffling before segmentation retains more order
information than shuffling after, and that even when shuffling af-
ter segmentation, position embeddings are meaningful because
of the dependence between subword probability and sentence
length.
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bags-of-words. Sinha et al. (2021) pre-trained RoBERTa models on
shuffled corpora to demonstrate that the performance gap between
these ‘shuffled’ language models and models trained on unshuffled
corpora is minor (when fine-tuned and evaluated downstream on the
GLUE (Wang et al., 2018b) benchmark). They further show that this
gap is considerably wider when a model is pre-trained without po-
sition embeddings. In this paper, we attempt to shed some light on
why these models behave the way they do, and in doing so, seek to
answer a set of pertinent questions:

• Do shuffled language models still have traces of word order
information?

• Why is there a gap in performance between models without po-
sition embeddings and models trained on shuffled tokens, with
the latter performing better?

• Are there NLU benchmarks, other than GLUE, on which shuffled
language models perform poorly?

contributions We first demonstrate, in Section 7.4, that shuf-
fled language models do contain word order information, and are
quite responsive to simple tests for word order information, partic-
ularly when compared to models trained without position represen-
tations. In Section 7.5, we demonstrate that pre-training is sufficient
to learn this: position embeddings provide the appropriate inductive
bias, and performing BPE segmentation after shuffling results in sen-
sible n-grams appearing in the pre-training corpus; this gives models
the capacity to learn word order within smaller local windows. Other
minor cues - like correlations between sentence lengths and token dis-
tributions - also play a role. We further corroborate our analysis by
examining attention patterns across models in Sec. 7.6. In Section 7.7,
we show that, while shuffled models might be almost as good as their
un-shuffled counterparts on GLUE tasks, there exist NLU benchmarks
that do require word order information to an extent that cannot be
learned through fine-tuning alone. Finally, in Section 7.8, we describe
miscellaneous experiments addressing the utility of positional embed-
dings when added just prior to fine-tuning.

7.3 models

Sinha et al. (2021) train several full-scale RoBERTa language models
on the Toronto Book Corpus (Zhu et al., 2015) and English Wikipedia.1

Four of their models are trained on shuffled text, i.e., sentences in
which n-grams are reordered at random.2 We dub the original, un-

1 Training reportedly takes 72 hours on 64 GPUs.
2 The shuffling procedure does not reorder tokens completely at random, but moves a

token in position i to a new position selected at random among positions j 6= i.
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perturbed model Orig, and the scrambled models Shuf.n1, Shuf.n2,
Shuf.n3 and Shuf.n4 depending on the size of the shuffled n-grams:
Shuf.n1 reorders the unigrams in a sentence, Shuf.n2 reorders it bi-
grams, etc. See Sinha et al. (2021) for more details. For comparison,
Sinha et al. (2021) also train a RoBERTa language model entirely with-
out position embeddings (Nopos), as well as a RoBERTa language
model trained on a corpus drawn solely from unigram distributions
of the original Book Corpus, i.e., a reshuffling of the entire corpus
(Shuf.Corpus). We experiment with their models, as well as with
smaller models that we can train with a smaller carbon footprint. To
this end, we downscale the RoBERTa architecture used in Sinha et al.
(2021). Concretely, we train single-headed RoBERTa models, dividing
the embedding and feed-forward dimensionality by 12, for 24 hours
on a single GPU, on 100k sentences sampled from the Toronto Book
Corpus; we trained a custom vocabulary of size 5,000 that we use
for indexing in all our subsequent experiments. While these smaller
models are in no way meant to be fine-tuned and used downstream,
they are useful proofs-of-concept that we later analyse.

7.4 probing for word order

We begin by attempting to ascertain the extent to which shuffled lan-
guage models are actually capable of encoding word order informa-
tion. We perform two simple tests on the full-scale models, in line
with Wang and Chen (2020): the first of these is a classification task
where a logistic regressor is trained to predict whether a randomly
sampled token precedes another in a sentence, and the second in-
volves predicting the position of a word in a sentence. The fact that
we do not fine-tune any of the model parameters is noteworthy; the
linear models can only learn word order information if it reflects in
the representations the models generate somehow.

pairwise classification For this experiment, we train a logis-
tic regression classification model given word representations at the
final layer of the Transformer encoder, mean pooling over sub-tokens
when required. For each word pair x and y, the classifier is given a
concatenation of our modelm’s induced representationsm(x)⊕m(y)

and trained to predict a label indicating whether x precedes y or not.
Holding out two randomly sampled positions, we use a training sets
sized 2k , 5k and 10k, from the Universal Dependencies English-GUM
corpus (excluding sentences with more than 30 tokens to increase
learnability) and a test set of size 2, 000. We report the mean accuracy
from three runs.

regression Using the same data, we also train a ridge-regularised
linear regression model to predict the position of a word p(x) in a
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Model
Classification (acc.) Regression (R2)

2k 5k 10k -

Orig 81.50 81.74 80.40 0.68

Shuf.n1 65.96 64.98 71.82 0.60

Nopos 50.41 53.35 50.22 0.03

Table 7.1: Pairwise classification and regression results.

sentence, given that word’s model-induced representation m(x). R2

score is reported per model. To prevent the regressors from memoris-
ing word to position mappings, we perform 6-fold cross-validation,
where the heldout part of the data contains no vocabulary overlap
with the corresponding train set.

results For both tasks (see Table 7.1), our results indicate that po-
sition encodings are particularly important for encoding word order:
Classifiers and regressors trained on representations from Orig and
Shuf.n1 achieve high accuracies and R2 scores, while those for No-
pos are close to random. Both Orig and Shuf.n1 appear to be better
than random given only 2k examples. These results imply that, given
positional encodings and a modest training set of 10k examples, a sim-
ple linear model is capable of extracting word order information, en-
abling almost perfect extrapolation to unseen positions. Whether the
position encodings come from a model trained on natural or shuffled
text does not appear to matter, emphasizing that shuffled language
models do indeed contain substantial information about the original
word order.

7.5 hidden word-order signals

In §3, we saw that the shuffled language models of Sinha et al. (2021)
surprisingly exhibit information about pre-shuffling word order. That
these models contain positional information can also be seen by vi-
sualizing position embedding similarity. Figure 7.1 displays Pearson
correlations3 for position embeddings with themselves, across posi-
tions; the shuffled models satisfy the idealised criteria for position
embeddings described by Wang et al. (2021), in that they appear to be
a) monotonous within smaller context windows, and b) invariant to
translation. If position embedding correlations are consistent across
offsets over the entire space of embeddings, the model has ‘learnt’
distances between tokens. Since transformers process all positions in
parallel, and since language models without position embeddings do
not exhibit such information, position embeddings have to be the

3 We see similar patterns with dot products for all our plots; we use Pearson correla-
tions to constrain our range to [−1, 1].
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source of this information. In this section, we discuss this apparent
paradox.

subword vs . word shuffling An important detail when run-
ning experiments on shuffled text, is when the shuffling operation
takes place. When tokens are shuffled before BPE segmentation, this
leads to word-level shuffling, in which sequences of subwords that
form words remain contiguous. Such sequences become a consistent,
meaningful signal for language modelling, allowing models to effi-
ciently utilise the inductive bias provided by position embeddings.
Thus, even though our pretrained models have, in theory, not seen
consecutive tokens in their pre-training data, they have learnt to utilise
position to pay attention to adjacent tokens. The influence of this is
already somewhat visible in Figure 7.2; while both models trained on
text shuffled before segmentation, and models trained on text shuf-
fled after segmentation, have shifts in the polarity of their position
correlations, only the plots for models trained with word-level shuf-
fling (before segmentation) have bands of varying magnitude, similar
to the full-scale models. Such bands enable position-invariant compo-
sitionality (Ravishankar and Søgaard, 2021).

In Section 7.6, we analyse the effect of shuffling the pre-training
data on the models’ attention mechanisms.

accidental overlap In addition to the n-gram information which
results from shuffling before segmentation, we also note that short
sentences tend to include original bigrams with high probability, lead-
ing to stronger associations for words that are adjacent in the original
texts. This effect is obviously much stronger when shuffling before
segmentation than after segmentation.

Figure 7.3 shows how frequent overlapping bigrams (of any sort)
are, comparing word and subword shuffling over 50k sentences.

sentence length Finally, we observe some preserved informa-
tion about the original word order even when shuffling is performed
after segmentation. We hypothesize that this is a side-effect of the
non-random relationship between sentence length and unigram prob-
abilities. That unigram probabilities correlate with sentence length
follows from the fact that different genres exhibit different sentence
length distributions (Jin and Liu, 2017; Sigurd et al., 2004). Also, some
words occur very frequently in formulaic contexts, e.g., thank in thank
you. This potentially means that there is an approximately learnable
relationship between the distribution of words and sentence bound-
ary symbols.

To test for this, we train two smaller language models on unigram-
sampled corpora: for the first, we use the first 100k BookCorpus sen-
tences as our corpus, shuffling tokens at a corpus level (yet keeping
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Figure 7.3: (Cumulative) plot showing bigram overlap after shuffling either
words or subwords, as a percentage of the total number of seen
bigrams. We see the overlap is significant, especially when per-
forming shuffling before segmentation.

the original sentence lengths). The stark difference in position em-
bedding correlations between that and shuffling is seen in Figure 7.2.
For the second, we sample from two different unigram distributions:
one for short sentences and one for longer sentences (details in Ap-
pendix A.5.2). While the first model induces no correlations at all, the
second does, as shown in Figure 7.4, implying that sentence length
and unigram occurrences is enough to learn some order information.

7.6 attention analysis

Transformer-based language models commonly have attention heads
that attend to neighboring positions (Ravishankar et al., 2021; Voita
et al., 2019a). Such attention heads are positional and can only be
learnt in the presence of order information. We attempt to visualise
the attention mechanism for pre-trained models by calculating, for
each head and layer, the offset between a token, and the token that it
pays maximimum attention to4. We then plot how frequent each off-
set is, as a percentage, over 100 Book Corpus sentences, in Figure 7.5,
where we present results for two full-scale models, and two smaller
models (see §2). When compared to Nopos, Shuf.n1 has a less uni-
form pattern to its attention mechanism: it is likely, even at layer 0,
to prefer to pay attention to adjacent tokens, somewhat mimicking a
convolutional window (Cordonnier et al., 2020). We see very similar
differences in distribution between our smaller models: Shuffling af-

4 This method of visualisation is somewhat limited, in that it examines only the max-
imum attention paid by each token. We provide more detailed plots over attention
distributions in the Appendix.
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Figure 7.4: Similarity matrix between models with sentences sampled based
on unigram corpus statistics; disjoint vocab implies a correlation
between token choice and sentence length.

ter segmentation, i.e., at the subword level, influences early attention
patterns.

7.7 evaluation beyond glue

superglue and winogrande Sinha et al. (2021)’s investigation
is conducted on GLUE and on the Paraphrase Adversaries from Word
shuffling (PAWS) dataset (Zhang et al., 2019b). For these datasets,
they find that models pretrained on shuffled text perform only marginally
worse than those pretrained on normal text. This result, they argue
can be explained in two ways: either a) these tasks do not need word
order information to be solved, or b) the required word order infor-
mation can be acquired during finetuning. While GLUE has been a
useful benchmark, several of the tasks which constitute it have been
shown to be solvable using various spurious artefacts and heuristics
(Gururangan et al., 2018a; Poliak et al., 2018a). If, for instance, through
finetuning, models are learning to rely on such heuristics as lexical
overlap for MNLI (McCoy et al., 2019), then it is unsurprising that
their performance is not greatly impacted by the lack of word order
information.

Evaluating on the more rigorous set of SuperGLUE tasks5 (Wang et
al., 2019b) and on the adversarially-filtered Winograd Schema exam-
ples (Levesque et al., 2012) of the WinoGrande dataset (Sakaguchi et
al., 2020) produces results which paint a more nuanced picture com-

5 Results are reported for an average of 3 runs per task. For SuperGLUE, the jiant

framework is used for finetuning and evaluation (Wang et al., 2019c). For Wino-
Grande, the Fairseq implementation (Ott et al., 2019) is used. Default hyperparam-
eters are used for both. The Recognizing Textual Entailment task is excluded from
our results as it is also part of GLUE. Results for that can be found in Sinha et al.
(2021).
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Figure 7.5: Relative frequency of offsets between token pairs in an attention
relation; the y-axis denotes the percentage of total attention re-
lations that occur at the offset indicated on the x-axis. We plot
layers l ∈ {1, 2, 7, 8, 11, 12} with increasing line darkness.

pared to those of Sinha et al. (2021). The results, presented in Table
7.2, show accuracy or F1 scores for all models. For two of the tasks
(MultiRC (Khashabi et al., 2018), COPA (Roemmele et al., 2011)), we
observe a pattern in line with that seen in Sinha et al. (2021)’s GLUE
and PAWS results: the drop in performance from Orig to Shuf.n1

is minimal (mean: 1.75 points; mean across GLUE tasks: 3.3 points)6,
while that to Nopos is more substantial (mean: 10.5 points; mean
across GLUE tasks: 18.6 points).

This pattern becomes stronger for the BoolQ Yes/No question an-
swering dataset (Clark et al., 2019a), the CommitmentBank (De Marn-
effe et al., 2019), the ReCoRD reading comprehension dataset (Zhang
et al., 2018), both the Winograd Schema tasks, and to some extent
the Words in Context dataset (Pilehvar and Camacho-Collados, 2018).
Here we observe a larger gap between Orig and Shuf.n1 (mean: 8.1
points), and an even larger one between Orig and Nopos (mean:
19.78). We note that this latter set of tasks requires inferences which
are more context-sensitive, in comparison to the two other tasks or to
the GLUE tasks.

Consider the Winograd schema tasks, for example. Each instance
takes the form of a binary test with a statement comprising of two

6 CoLA results are excluded from the GLUE calculations here due to the very high
variance across random seeds reported by Sinha et al. (2021) which makes the results
unreliable.
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possible referents (blue) and a pronoun (red) such as: Sid explained

his theory to Mark but he couldn’t convince him. The correct ref-
erent of the pronoun must be inferred based on a special discrimina-
tory segment (underlined). In the above example, this depends on a)
the identification of “Sid” as the subject of “explained” and b) infer-
ring that the pronoun serving as the subject of “convinced” should
refer to the same entity. Since the Winograd schema examples are de-
signed so that the referents are equally associated with their context7,
word order is crucial 8 for establishing the roles of “Sid” and “Mark”
as subject and object of “explained” and “he” and “him” as those of
“convinced”. If these roles cannot be established, making the correct
inference becomes impossible.

A similar reasoning can be applied to the the Words in Context
dataset and the CommitmentBank. The former task tests the ability
of a model to distinguish the senses of a polysemous word based on
context. While this might often be feasible via a notion of contextual
association that higher-order distributional statistics are sufficient for,
some instances will require awareness of the word’s role as an ar-
gument in the sentence. The latter task investigates the projectivity
of finite clausal complements under entailment cancelling operators.
This is sensitive to both the scope of the entailment operator and to
the identity of the subject of the matrix predicate (De Marneffe et al.,
2019), meaning.

A final consideration to take into account is dataset filtering. Two
of the tasks where we observe the largest difference between Orig,
Shuf.n1, and Nopos — WinoGrande and ReCoRD — apply filtering
algorithms to remove cues or biases which would enable models to
heuristically solve the tasks. This indicates that by filtering out exam-
ples containing cues that make them solvable via higher order statis-
tics, such filtering strategies do succeed at compelling models to (at
least partially) rely on word order information.

dependency tree probing Beyond GLUE and PAWS, Sinha et
al. (2021)’s analysis also includes several probing experiments, wherein
they attempt to decode dependency tree structure from model repre-
sentations. They show, interestingly, that the Shuf.N4, Shuf.N3 and
Shuf.N2 models perform only marginally worse than Orig, with
Shuf.N1 producing the lowest scores (lower, in fact, than Shuf.Corpus).
Given the findings of Section 7.4, we are interested in taking a closer
look at this phenomenon. Here, we surmise that dependency length
plays a crucial role in the probing setup, where permuted models
may succeed on par with Orig in capturing local, adjacent dependen-

7 e.g. Sid and Mark are both equally likely subjects/objects here. Not all Winograd
schema examples are perfect in this regard, however, which could explain why
scrambled models still perform above random. See Trichelair et al. (2018) for a dis-
cussion of the latter point.

8 Particularly in a language with limited morphological role marking such as English.
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Model BoolQ CB COPA MultiRC ReCoRD WiC WSC WinoGrande

Orig 77.6 88.2 / 87.4 61.6 67.8 / 21.9 73.5 / 72.8 67.4 73.5 62.9

Shuf.n1 72.4 79.7 / 82.5 59.7 66.2 / 15.0 61.1 / 60.4 63.0 62.9 55.7

Shuf.n2 73.1 86.6 / 85.5 60.3 64.8 / 16.1 63.1 / 62.4 63.0 65.3 57.6

Shuf.n4 73.5 87.9 / 87.1 60.8 66.2 / 18.2 64.6 / 63.9 62.4 65.3 59.53

Nopos 66.0 63.5 / 75.0 55.6 52.8 / 3.8 23.8 / 23.5 55.4 63.09 52.73

Shuf.Corpus 66.7 65.6 / 73.8 56.1 52.6 / 6.4 31.0 / 30.3 57.3 65.14 51.68

Table 7.2: SuperGLUE and WinoGrande results for all models. Scores dis-
played are: Avg. F1 / Accuracy for CB; F1a / Exact Match for
MultiRC; F1 / Accuracy for ReCoRD ; accuracy for the remaining
tasks.

Figure 7.6: ∆, dependency arcs probing accuracy across lengths 1-5+, w.r.t.
Orig.

cies, but increasingly struggle to decode longer ones. To evaluate the
extent to which this is true, we train a bilinear probe (used in Hewitt
and Liang (2019a)) on top of all model representations and evaluate
its accuracy across dependencies binned by length, where length be-
tween words wi and wj is defined as |i − j|. We opt for using the
bilinear probe over the Pareto probing framework (Pimentel et al.,
2020a), as the former learns a transformation directly over model rep-
resentations, while the latter adds the parent and child MLP units
from Dozat et al. (2017) – acting more like a parser. We train probes
on the English Web Treebank (Silveira et al., 2014) and evaluate using
UAS, the standard parsing metric.

Figure 7.6 shows ∆ probing accuracy across various dependency
lengths for Nopos and Shuf.N1, with respect to Orig

9; we include
detailed ∆s for all models in Appendix A.5.3. For Nopos, parsing

9 Note that Layer 13 refers to a linear mix of all model layers, as is done for ELMo
(Peters et al., 2018a).
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difficulty increases almost linearly with distance, often mimicking the
actual frequency distribution of dependencies at these distances in
the original treebank (Appendix A.5.3); for Shuf.n1, the picture is a
lot more nuanced, with dependencies at a distance of 1 consistently
being closer in terms of parseability to Orig, which, we hypothesise,
is due to its adjacency bias.

7.8 other findings

random position embeddings are difficult to add post–
training We tried to quantify the degree to which the inductive
bias imparted by positional embeddings can be utilised, solely via
fine-tuning. To do so, for a subset of GLUE tasks (MNLI, QNLI, RTE,
SST-2, CoLA), we evaluate Nopos, and a variant where we randomly
initialised learnable position embeddings and add them to the model,
with the rest of the model equivalent to Nopos. We see no improve-
ment in results, except for MNLI, that we hypothesise stems from
position embeddings acting as some sort of regularisation parameter.
To test this, we repeat the above set of experiments, this time adding
random learnable Gaussian noise instead: this led to a slight increase
in score for just MNLI, backing up this hypothesis.

models learn to expect specific embeddings Replacing
the positional embeddings in Orig with fixed, sinusoidal embeddings
before fine-tuning significantly hurts scores on the same subset of
GLUE tasks, implying that the models expect embeddings that re-
semble the inductive bias imparted by random embeddings, and that
fine-tuning tasks do not have sufficient data to overcome this. The
addition of fixed, sinusoidal to Nopos also does not improve model
performance on a similar subset of tasks; this implies, given that sinu-
soidal embeddings are already meaningful, that model weights also
need to learn to fit the embeddings they are given, and that they need
a substantial amount of data to do so.

7.9 on word order

in humans It is generally accepted that a majority of languages
have “canonical” or “base’ word orderings (Comrie, 1989) (e.g. Subject-
Verb-Object in English, and Subject-Object-Verb in Hindi). Linguists
consider word order to be a coding property. Along with other coding
properties such such as morphological inflection, function words, etc.,
word order is used as the surface realisation of the underlying syntac-
tic structure. In English, it is the the most prominent coding property,
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playing a crucial role in disambiguating the roles of a sentence’s con-
stituents.10

Evidence for the role of word order information comes from a vari-
ety of studies using acceptability judgements, eye-tracking data, and
neural response measurements (Bahlmann et al., 2007; Bever, 1970;
Danks and Glucksberg, 1971; Ding et al., 2016; Fedorenko et al., 2016;
Friederici et al., 2001, 2000; Just and Carpenter, 1980; Lerner et al.,
2011; Pallier et al., 2011). Psycholinguistic research has, however, also
highlighted the robustness of our sentence processing mechanisms to
a variety of perturbations, including those which violate word order
restrictions (Ferreira et al., 2002; Gibson et al., 2013; Traxler, 2014). In
recent work, Mollica et al. (2020) tested the hypothesis that composi-
tion is the core function of the brain’s language-selective network and
that it can take place even when grammatical word order constrains
are violated. Their findings confirmed this, showing that stimuli with
shuffled word order where local dependencies were preserved — as
is, roughly speaking, the case for many dependencies in the sentences
Shuf.n4 is trained on — elicited a neural response in the language
network that is comparable that elicited by normal sentences. When
interword dependencies were disrupted so combinable words were
so far apart that composition among nearby words was highly un-
likely — as in Shuf.n1, neural response fell to a level compared to
unconnected word lists.

in machines A fair deal of recent research has gone into investi-
gating the role of word order information in language models. Using
diagnostic classifiers and an attention analyses, Lin et al. (2019) find
that earlier, but not later layers of BERT encode order information.
Papadimitriou et al. (2021) find that Multilingual BERT is sensitive to
morphosyntactic alignment (how each language defines what classi-
fies as a “subject”) across 24 languages, many of which — like En-
glish — use word order to mark this feature. Alleman et al. (2021) im-
plement a input perturbation framework (n-gram shuffling, phrase
swaps, etc.), and use it to test the sensitivity of BERT’s representa-
tions to several kinds of structure in sentences, finding that there is
sensitivity to larger parts of an sentence in deeper layers, and that
this is influenced by hierarchical phrase structure. O’Connor and An-
dreas (2021) examine the contribution of various contextual features
to the ability of GPT-2 (Radford et al., 2019) to predict future tokens.
Their findings show that several destructive manipulations, including
in-sentence word shuffling, applied to mid- and long range contexts
lead only to a modest increase in usable information as defined accord-
ing to the V-information framework of Xu et al. (2020).

10 For more morphologically complex languages, on the other hand, (e.g. Finnish and
Turkish), word order is primarily used to convey pragmatic information such as
topicalisation or focus rather than grammatical information which is conveyed via
morphological inflection.
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Similarly, word order information has been found not to be es-
sential for various NLU tasks and datasets. Early work showed that
Natural Language Inference tasks are largely insensitive to permu-
tations of word order (Parikh et al., 2016; Sinha et al., 2020). Pham
et al. (2020) and Gupta (2003) expanded on this, demonstrating that
test-time word order perturbations applied to GLUE benchmark tasks
have little impact on LM performance. Going a step further, Sinha et
al. (2021), which our work builds on, found that even pretraining on
scrambled text appears to only marginally affect model performance.
Most related to this study, Clouatre et al. (2021) introduce two metrics
for gauging the local and global ordering of tokens in scrambled texts,
observing that only the latter is altered by the perturbation functions
found in prior literature. In experiments with GLUE, they find that
local (sub-word) perturbations show a substantially stronger perfor-
mance decay compared to global ones.

7.10 conclusion

Much discussion has resulted from recent work showing that scram-
bling text at different stages of testing or training does not drasti-
cally alter the performance of language models on NLU tasks. In this
work, we presented analyses painting a more nuanced picture of such
findings; we demonstrate that a) as far as altered pre-training is con-
cerned, models still do retain a semblance of word order knowledge;
b) this knowledge stems from cues in the altered data, such as adja-
cent BPE symbols and correlations between sentence length and con-
tent; and c) that there exist NLU tasks that are far more sensitive to
sentence structure as expressed by word order (as a coding property).
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C O N N E C T I N G N E U R A L R E S P O N S E
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8.1 abstract

Understanding the neural basis of language comprehension in the
brain has been a long-standing goal of various scientific research pro-
grams. Recent advances in language modelling and in neuroimaging
methedology promise potential improvements in both the investiga-
tion of language’s neurobiology and in the building of better and
more human-like language models. This survey traces a line from
early research linking Event Related Potentials and complexity mea-
sures derived from simple language models to contemporary studies
employing Artificial Neural Network models trained on large cor-
pora in combination with neural response recordings from multiple
modalities using naturalistic stimuli.

8.2 introduction

The mechanisms which underlie language comprehension in humans
have been the object of study of a broad range of scientific research
programs. Early work in theoretical and psycho- linguistics hypoth-
esized certain mechanisms and structures underlying language pro-
cessing, often employing behavioural data to confirm or refute them
(Chomsky, 1957, 2014a,b; Fodor, 1983; Fodor and Garrett, 1966; Geschwind,
1970; Greenberg, 1963; Katz and Fodor, 1963; Lakoff and Johnson,
2008; Lenneberg, 1967; Luce and Pisoni, 1998; McClelland et al., 1986;
Prince and Smolensky, 2008; Rayner, 1998; Taylor, 1953), inter alia.
With the advancement of neuroimaging technologies, it became pos-
sible to begin to localise some of the computations responsible for
language in the brain — both in time and space — investigating a)
the timeline of such computations and b) the brain regions (or net-
works) which carry them out.

Orthogonally, advances in the field of artificial intelligence have en-
abled the training and deployment of large artificial neural network
models (ANNs). These models, which are loosely-based on upon the
structure of biological brains (Haykin, 1994), have demonstrated re-
markable adeptness at a wide variety of tasks (Bengio, 2009; Goodfel-
low et al., 2016; Graves et al., 2013; Krizhevsky et al., 2012; Schmid-
huber, 2015; Silver et al., 2016). In the field of natural language pro-
cessing, ANNs have all but replaced other types of statistical methods

93
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previously employed, showing far superior performance on an as-
sortment of natural language understanding tasks (Brown et al., 2020;
Devlin et al., 2019b; Radford et al., 2019).

Although they fundamentally differ from the neural architecture of
the human brain, the success of these models in approximating hu-
man behaviour on tasks such as object recognition and speech recog-
nition and in various language understanding tasks led to the sugges-
tion that they could be adopted as potential models of the represen-
tations and structures which underpin human cognition. In seminal
work, researchers found that convolutional neural networks (LeCun,
Bengio, et al., 1995) trained on large image classification datasets
could predict image-evoked neural activations in the ventral visual
stream with a higher accuracy than all previous models — even those
directly optimised to fit neural activations (Yamins and DiCarlo, 2016;
Yamins et al., 2014). Similar research followed for a variety of percep-
tual domains, showing that ANNs exhibit similarities to both human
behaviour and neural responses and that those similarities arise sim-
ply as a consequence of learning to perform a task such as image clas-
sification (Eickenberg et al., 2017; Kell et al., 2018; Kriegeskorte, 2015).
Analogously, for language, ANN models trained to predict future or
masked words from context have recently been found to show con-
siderable representational alignment to neural response the human
brain (Caucheteux and King, 2020; Goldstein et al., 2021; Schrimpf
et al., 2020c).

scope This paper makes a survey of research which links compu-
tational models of and neural responses to language. Particular atten-
tion is given to more recent work which makes use of ANNs, with the
goal of tracing a line between this trend and previous work leverag-
ing simpler computational models such as syntactic parsing models
or context-free grammars. Studies which combine those, or any type
of computational model, with neuroimaging data are considered to
be within the scope of the survey, while those e.g. primarily focusing
on the stimuli themselves are not. For other relevant surveys with dif-
ferent foci, readers are referred to Murphy et al. (2018) and Hale et al.
(2021).

overview The rest of this paper is structured as follows: Section
8.3 outlines a set of preliminaries, establishing terminology that will
be used throughout the paper; Section 8.4 offers historical context;
Section 8.5 describes early work which focused on representations
of and neural responses to words, treated as isolated units; Section
8.6 surveys research that employs computational models in investiga-
tions of syntactic structure in the brain; Section 8.7 moves forward to
studies which apply more complex analyses that account for multi-
ple levels of perceptual and linguistic abstraction; Section 8.8 looks at
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work that applies large-scale “integrative benchmarking” to establish
patterns of performance across many language models and neural re-
sponse datasets; Section 8.9 presents recent work on using language
models to apply controls at the computational level rather than at the
level of stimuli; Section 8.10 shifts to work that aims to evaluate and
improve language models using insights and data from neurolinguis-
tics, and finally, Section 8.11 presents a discussion and outlook.

8.3 preliminaries

language models We take “language model” to mean any com-
putational model that aims to explain and make predictions about
some aspect of language. This includes early models of syntactic
structure (Bresnan et al., 2015; Chomsky, 1956; Pollard and Sag, 1988),
lexical distributional models (Mikolov et al., 2013; Pennington et al.,
2014; Schütze, 1993), and more recent ANN models (Hochreiter and
Schmidhuber, 1997; Vaswani et al., 2017).

neuroimaging methods Work surveyed in this paper makes
use of the following neuroimaging modalities:

• Electroencephalogram (EEG) involves recording the electrical
activity occurring in the cortex over a period of time using mul-
tiple electrodes placed on the scalp (Henry, 2006). EEG is gen-
erally considered to have a high temporal but a relatively poor
spatial resolution (centimeters) and is often used for deriving
event-related potentials (ERPs) which average over the EEG sig-
nals resulting from of a specific event, e.g. reading a word (Luck,
2014).

• Magnetoencephalography (MEG) involves measurement of the
magnetic field generated by the electrical activity of neurons in
the cortex. Like EEG, MEG offers an accurate resolution of the
timing of neuronal activity. Unlike EEG, it also offers a relatively
good spatial resolution (millimeters) (Baars and Gage, 2013).

• Functional Magnetic Resonance Imaging measures neuronal
activity in the brain via blood oxygenation level-dependent (BOLD)
contrast. fMRI offers high spatial resolution and signal reliabil-
ity, but poor temporal resolution (3 to 6 seconds) due to slow
nature of the hemodynamic response (Soares et al., 2016).

• Electrocorticography (ECoG) records electrical activity in the
brain through electrodes placed in direct contact with the sur-
face of the brain (Baars and Gage, 2013). ECoG data has a fine
spatial and temporal resolution and a high signal-to-noise ratio.
As the procedure is invasive, however, ECoG data can only be
gathered as part of a clinical procedure.
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Figure 8.1: Major language relevant gyri and Brodmann areas in the Left
Hemisphere. Figure from Friederici (2011).

the language network A range of brain regions — often ref-
ered to as regions of interest (ROIs) — in the left and right hemi-
sphere have been implicated in facilitating language. Although there
is no consensus on the exact functional neuroanatomy, the network
is known to, broadly speaking, include parts of the inferior frontal,
the superior temporal, and the middle temporal gyra in the frontal
and temporal lobes as well as the inferior parietal and angular gyrus
in the parietal lobe (Friederici, 2011) — see Figure 8.1. For more
details see Blank et al. (2016), Fedorenko et al. (2020), Fedorenko
and Thompson-Schill (2014), Friederici and Gierhan (2013), Poeppel
(2014), and Pylkkänen (2019, 2020).

linking hypotheses To relate the computational and neural record-
ing paradigms, a linking hypothesis is assumed — a commonly em-
ployed hypothesis, for instance, is that brain activation magnitude
should correspond to measures of processing difficulty or complex-
ity derived from the stimuli. Another common linking hypothesis is
that of linear mapping, where a linear model is trained to map be-
tween e.g. features extracted from a computational model and neural
recordings of a set of stimuli, under the assumption that a linear trans-
formation should suffice to model the relationship between the two
spaces. Goodness of fit or predictive accuracy are used to evaluate
correspondence between the two.

8.4 background

Investigations into the neural basis of language processing aim to
characterize the processes which occur once an utterance is perceived
that enable a listener to arrive at a contextualised meaning from the
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sensory input she perceives. Such investigations date back at least to
Broca et al. (1861) and Wernicke (1874)’s description of two brain re-
gions linked to the language faculty1. In the 1970s, the introduction of
non-invasive brain-monitoring techniques allowed scientists to char-
acterize activity in the brain using methods such as EEG and MEG.
Using these methods, researchers initially identified Event-related po-
tential components such as N400, P600, and ELAN2 which corre-
sponded to levels of syntactic or semantic processing (Friederici et
al., 1993; Hagoort et al., 1993; Kutas and Hillyard, 1980, 1984).

While these early studies were successful at identifying particular
patterns of activation which occurred during linguistic processing,
they did not offer computational models which could make directly
testable predictions of activation patterns. Mitchell et al. (2008) did
this, demonstrating that word representations based on co-occurrence
statistics could in fact be used to predict the activations associated
with concrete nouns as measured via fMRI recordings. To accomplish
this, they encode each stimulus word as a vector of semantic features
computed from the its occurrences in a large text corpus. An linear
encoding model is then trained to predicts fMRI activation per voxel
in the brain, as a weighted sum of the semantic features. Evaluation
was carried out through “leave-two-out” cross-validation, in which a
model is repeatedly trained while holding out two word stimuli from
the full set, then tested on whether its predicted fMRI image for these
two stimuli can select the correct one via cosine similarity.

8.5 the meanings of words and phrases

Following a setup similar to Mitchell et al. (2008): Murphy et al. (2009)
applied the same methodology using EEG instead of fMRI; Devereux
et al. (2010) used four automatic feature extraction methods leverag-
ing different sources of information from corpora; Pereira et al. (2013)
employed low-dimensional representations constructed by applying
topic modelling to a small wikipedia corpus, showing that this fea-
ture space can outperform the one used by Mitchell et al. (2008) in a
classification task based on decoding the values of semantic features
present in concepts from the fMRI data; Palatucci et al. (2009) also
reversed the original task, decoding word representations based on
both co-occurance statistics and human annotations from their corre-

1 Although the term is still commonly employed, it is now understood that Broca’s
area ’is not a natural kind’ and instead consists of consists of multiple functionally
distinct components (Fedorenko and Blank, 2020) only part of which are directly
linked to language.

2 N400, related to semantic processing, is a negative-going potential, which peaks
around 400ms after stimulus onset; P600, associated with syntactic processing, is
positive-going potential peaking around 600ms after stimulus onset. ELAN is an
early left anterior negativity, characterized by a negative-going wave that peaks
around 200 ms or less after onset.
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sponding fMRI recordings in a zero-shot setting; Sudre et al. (2012)
studied the temporal sequence of language processing, showing that
perceptual and semantic features could be decoded at different times
from MEG data; Anderson et al. (2013) used image-based distribu-
tional semantic representations of concepts instead of text-based ones;
Anderson et al. (2017a) built on this, showing that although both
perform equally well for concrete concepts, text-based word repre-
sentations better predict the brain activations of abstract concepts
compared to visually-grounded ones; Bulat et al. (2017) employed
multiple evaluation methods to carry out a systematic appraisal of
how well a wide range of text-based and grounded semantic models
— including more recent skip-gram and bag-of-words word embed-
dings (Mikolov et al., 2013) — can predict fMRI measuremets; Pereira
et al. (2018) presented a new fMRI dataset of subjects reading words
and passages, showing that a decoder trained to predict word embed-
dings from imaging data for individual concepts that were selected
using a novel sampling procedure designed to cover the entire seman-
tic space, can generalize to new concepts and can, further, decode
sentence stimuli represented as a simple average of (content) word
embeddings; finally, Abnar et al. (2017) evaluate eight types of word
embeddings on how well they predict the fMRI activation recordings
from Mitchell et al. (2008), finding that a word embedding method
which incorporates syntactic information fares best compared to mul-
tiple other word representations base on the skip-gram approach, ma-
trix factorization, or crowd-sourced association features.

In a notable critique, Bullinaria and Levy (2013) present evidence
that it is the lack of representational distinctiveness of the fMRI voxel
activation vectors that is the major limiting factor in the kind of work
described above. Gauthier and Ivanova (2018) take aim at the evalu-
ation methods employed in decoding studies where ’semantic repre-
sentations’ derived from stimuli are decoded from brain activations.
They show that the evaluation techniques used in these studies are
underspecified and are therefore not able to distinguish between sen-
tence representations drawn from models optimized for very differ-
ent tasks. For using these models to make meaningful conclusions
about the way linguistic processing is realized in brain activity, they
recommend: a) clear specification of the task and mechanisms in the
brain hypothesized to be generating or consuming a given represen-
tation, b) breaking down the feature space into interpretable sub-
spaces (see Section 8.9 for examples of work where this is applied),
and c) using encoding models to ablate the extent to which different
model components can explain variance in neural response. Finally,
Beinborn et al. (2019) presented a standardized framework for brain-
encoding studies, demonstrating the effect which choice of evaluation
measure has on the interpretation of model predictive power. Based
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on this, they offered a set of recommendations regarding choice of
metrics and reporting of results.

8.6 searching for syntax

Concurrently, researchers have also sought to understand how the
brain computes and represents syntactic structure during language
comprehension. By varying the type of stimuli presented to subjects
and carrying out comparisons between e.g. a) sentences of different
complexities or b) sentences and lists of words, such studies were able
to make conclusions about the brain regions which show sensitivity
to sentence structure and about the temporal profile of brain activity
(Brennan and Pylkkänen, 2012; Dapretto and Bookheimer, 1999; Fe-
dorenko et al., 2012; Hagoort, 2005; Humphries et al., 2006; Just et al.,
1996; Pallier et al., 2011).

The use of computational models in such work can be traced back
to pyscholinguistic studies of syntactic processing difficulty where
probablistic language models (such as probabilistic context-free gram-
mars (PCFG)) were used to provide predictions about human reading
times or grammaticality judgements (Christiansen and Chater, 1999;
Hale, 2001; Levy, 2008; Reitter et al., 2011; Tabor and Tanenhaus, 1999).
Parviz et al. (2011) found that measures derived from an incremental
syntactic parser and a 4-gram markov chain language model were
predictive of the N400 ERP component.

Frank et al. (2013) expanded on these findings, showing that word
surprisal estimates from a Recurrent Neural Network language (RNN)
model provided better predictions compared to n-gram models and
phrase structure grammars. Frank et al. (2015) went a step further,
extracting four different word information (word and part-of-speech
surprisal and entropy reduction) measures and evaluating their pre-
dictivity of six different ERP components which are known to be sen-
sitive to violations. Their results indicated that readers’ expectations
about upcoming words do not necessarily rely on hierarchical sen-
tence structure (see Frank and Christiansen (2018) for further relevant
discussion).

Hale et al. (2015) apply the same approach to neural time courses
obtained using fMRI. In contrast with Frank et al. (2015), their find-
ings showed that grammatical predictors were predictive of BOLD
(see Section 8.3) over n-gram baselines, indicating the sensitivity of
human sentence processing to hierarchical structure, at least in the
anterior temporal lobe. They posited that this discrepancy might be
due the difficulty of measuring nuanced syntactic processing activity
with behavioral and ERP measures. Brennan et al. (2016) collected
fMRI recordings of subjects listening to naturalistic storytelling data.
Using this, they showed findings similar to those of Hale et al. (2015):
abstract syntactic structures (context-free phrase structure grammars
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and and mildly context-sensitive X-bar structural descriptions) were
predictive of brain activity in the temporal lobes, but not in other
areas, whereas predictors derived from n-gram models showed cor-
relations across a broad network of areas. Brennan and Pylkkänen
(2017) built on this, using MEG data, they found that anterior tem-
poral lobe (ATL) activity is well-predicted by a parse-step measure
derived from a predictive left-corner parser, which is consistent with
the hypothesis that the ATL is sensitive to basic combinatoric opera-
tions. Henderson et al. (2016) also arrived at similar findings. Using
fixation-related fMRI3 and syntactic surprisal statistic derived from a
PFCG, they found that this surprisal measure modulates activity in
the left ATL and the left inferior frontal gyrus. Brennan and Hale
(2019) further addressed the extent to which hierarchical structure is
needed for language comprehension, using a naturalistic EEG dataset
of participants listening to a chapter of Alice in Wonderland. They
corroborate that, for left-anterior and right-anterior electrodes after
around 200 ms from onset, syntactic surprisal measures derived from
models which condition on hierarchical structure capture variance
beyond models that condition on word sequences alone.

Zooming in on the algorithmic level, Stanojević et al. (2021) em-
ployed Combined Categorical Grammar (CCG) (Steedman and Baldridge,
2011), a mildly context-sensitive grammar, to extract node count based
complexity metrics. They found that these metrics could better pre-
dict fMRI activation time courses in language ROIs compared to Penn
Treebank-style context-free phrase structure grammars, confirming
Brennan et al. (2016)’s finding that mildly context-sensitive gram-
mars can better capture aspects of human sentence processing. They
attribute this to an operation designed to make CCG handle “move-
ment” constructions in a more plausible manner compared to CFGs.

Hale et al. (2018) pioneered the use of Recurrent neural network
grammars (Dyer et al., 2016) (RNNGs) as models of human syntactic
processing. RNNGs are generative models of both trees and strings
(jointly) where neural networks are parametrized to choose parsing
transitions. Using the same linking hypotheses described above and
a beam search procedure (over derivations), they found that the mea-
sures estimated from the RNNG’s intermediate states predicted sev-
eral ERP components including P600. These same components were
not significantly predicted using an LSTM (Hochreiter and Schmid-
huber, 1997) language language model which operates sequentially,
having no access to structural information. Brennan et al. (2020) build
on this, using RNNGs in conjunction with fMRI data recorded for the
same Alice in Wonderland chapter to localise the information used for
predictive processing across six ROIs associated with language pro-

3 A method that combines eyetracking with BOLD to locate brain activity as a function
of the currently fixated item.
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cessing. Their findings, confirm earlier ones: word-by-word surprisal4

derived from a sequential LSTM language model correlates with ac-
tivity in a range of temporal and frontal brain regions; when surprisal
is conditioned by explicit hierarchy as in the RNNG language model,
fit is improved above the LSTM model in the left posterior tempo-
ral lobe and the left inferior parietal lobule. In addition, a measure
based on the number of parsing steps explored by the RNNG model
between words — which is hypothesized to reflect compositional pro-
cessing — is found to be predictive of activation in most ROIs, partic-
ularly when the RNNG is setup to directly compose phrases, and not
only encode hierarchy.

Most recently, Reddy and Wehbe (2021) proposed a shift from effort-
based metrics (node count, surprisal, etc.) that allow for the locali-
sation in the brain of a general notion of syntax to a methodology
which allows for the studying of specific syntactic features. To ac-
complish this, they presented a subgraph embeddings-based method
that models the constituency tree based structure of sentences. They
showed that this method was more predictive of brain activity than
a commonly used effort-based metric (node count), and used it to
demonstrate that the brain encodes complex, phrase-level syntactic
information.

8.7 modelling multiple levels of abstraction

Language comprehension from speech or text involves many percep-
tual and cognitive subprocesses, from perceiving individual words,
to parsing sentences, to building semantic representations that are
contextualised by world-knowledge and previous utterances in a dis-
course, etc. In this section, we survey work which has performed
simultaneous analyses at multiple levels of perceptual and linguistic
abstraction.

In one of the first studies to use fMRI recordings from subjects read-
ing naturalistic data (a chapter from Harry Potter and the Sorcerer’s
stone), Wehbe et al. (2014a) presented one such integrated analysis.
Employing a model consisting of a diverse set of visual, orthographic,
lexical, syntactic, semantic, and discourse properties, they predicted
neural activity per voxel as a linear combination of the features. Us-
ing this encoding (linear regression) model, they were able to examine
the brain areas which were sensitive to the different types of features,
enabling them to distinguish between areas on the basis of the type of
information they represent. Using MEG data gathered for the same
chapter of Harry Potter, Wehbe et al. (2014b) was one of the earli-
est works to investigate the alignment between the representations

4 Note that surprisal here and in Hale et al. (2018) is not the same as the syntactic
surprisal measure based on part-of-speach category which is used in most previous
studies, but is based on the lexical item itself.
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used by RNN language models and brain activity as subjects read
a story. They train auto-regressive neural language models (Mikolov
et al., 2011) on a corpus of Harry potter fan fiction and extract three
classes of features per time-step: the embeddings, the hidden state
vectors (previous and current), and the predicted output probabilities.
In a series of classification experiments involving prediction of the
MEG signal from each of these feature classes, they analyse how well
each predicts MEG activity along the temporal and spatial dimen-
sions, finding: a) brain activity is well predicted by the hidden state
representation of (past) context, b) the embedding features are good
predictors of the current word, and c) the activity in different brain re-
gions is predicted with a delay that corresponds with the processing
pathway that starts in the visual cortex and moves up. Lopopolo et
al. (2017) followed a similar approach with the goal of disentangling
phonological, lexical, and syntactic information present in the fMRI

recordings of subjects listening to a set of naturalistic (Dutch) liter-
ary texts. Instead of a neural network language model, however, they
estimate perplexity statistics from trigram markov models (based on
lexical forms, part-of-speech tags, and transcribed phonemes). Their
results evidence a set of cortical networks that are separately acti-
vated for each of the three types of information, with no significant
overlap between them.

Huth et al. (2016) also made use of a naturalistic dataset of spoken
stories. They represented each word in the stories as a 985-dimensional
vector built from co-occurrence statistics, intended to encode seman-
tic information. A linear regression model was estimated per voxel,
from the word representations. Controlling for lower-level features,
they evaluated correlation between predicted and actual BOLD signal,
finding significant predictiveness in various areas associated with the
brain’s semantic network. They propose a Bayesian algorithm that
constructs a generative model of areas tiling the cortex across sub-
jects, resulting in single atlas that describes the distribution of se-
mantically selective functional areas in human cerebral cortex. Jain
and Huth (2018) follow Wehbe et al. (2014b) in using an RNN lan-
guage model to incorporate context into encoding models that predict
the neural response (fMRI in this case) of subjects listening to natural
speech. They find that the representations from LM hidden states out-
perform previously used non-contextual word embedding models in
predicting brain response and that context length and choice of layer
differentially predict the activation across cortical regions. LeBel et
al. (2021) followed a similar approach, focusing on the Cerebellum.
Using features that span the hierarchy of language processing, they
showed that neural response to language in the Cerebellum is best
explained by high-level conceptual features — especially those as-
sociated with social semantic categories — rather than lower-level
acoustic or phonemic ones. Finally, Li et al. (2020) formalised several
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linguistic theories about pronoun resolution as symbolic computa-
tional models, evaluating them as well as an ANN conference resolu-
tion model according to their ability to predict brain activity patterns
(both MEG and fMRI) time-locked at each third person pronoun in
’The Little Prince’ dataset as English and Chinese subjects listened
to an audiobook recording (Stehwien et al., 2020). They find that the
memory-based ACT-R model (Van Rij et al., 2013), which chooses
the entity in working memory with the highest activation as the an-
tecedent of a pronoun, best explains the neural response associated
with pronoun resolution.

In seminal work adjacent to that described above because it studies
neural oscillation patterns, Martin and Doumas (2017) showed that
a computational model (Doumas et al., 2008), which uses time to en-
code hierarchy and was originally designed for relational reasoning,
can be applied to sentence processing, exhibiting oscillatory patterns
of activation closely resembling the human cortical response to the
same stimuli. From this model which learns and generates structured,
symbolic representations using time-based binding in a layered neu-
ral network, they are able to derive an explicit computational mecha-
nism5) for how the human brain might convert perceptual features
into hierarchical representations, offering a linking hypothesis be-
tween linguistic and cortical computations. Martin (2020) built on this,
proposing an integrated model of language comprehension across
multiple timescales starting from perception and lexicalisation to syn-
tactic composition and comprehension. Drawing on ideas from mod-
els of entertainment to speech, structure building mechanisms from
systems neuroscience (coordinate transforms via gain modulation),
and the neurosymbolic relation learning model referenced above, the
proposed model is able to unify the neurphysiological, cognitive, and
linguistic computational levels.

8.8 integrative benchmarking and computational con-
vergence

While the shift from using several separate models which operate at
different levels of abstraction to synergistic neural models has led to
both better prediction of neural response and better performance on a
range of linguistics tasks, Schrimpf et al. (2020b) posited that in order
to understand the relationship between these computational models,
neural response, and behaviour, large-scale integrative benchmark-
ing is needed wherein patterns of performance are established across
many models and datasets. Using measurements from three datasets6

of neural response recordings (fMRI and ECoG) as well self-paced

5 See discussion of Gauthier and Ivanova (2018) in Sec. 8.5.
6 With stimuli that varied in length and domain and was either presented to subjects

as audio or read.
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reading data, they tested a wide range of computational models, from
simple word embeddings to larger, recurrent and self-attention based
ones, evaluating them based on how well they predicted the neural
response recordings and the self-paced reading patterns, with refer-
ence to how well they perform tasks such as next word prediction.
Their results demonstrated that: a) there is a variance across models
in ability to predict neural response and self-paced reading patterns
(e.g. GPT-2 (Radford et al., 2019) almost completely explains the vari-
ance in neural response, while GloVe performs poorly), b) there is
a consistency in how models score across datasets and experiments,
c) models that perform better at next word prediction (but not the
GLUE suite of natural language understanding tasks (Wang et al.,
2018a)) better predict neural response measurements and self-paced
reading times, d) models that better predict neural response better
predict reading times, and e) for some models , architecture alone,
randomly initialised, can reliably predict brain activity and reading
times.

Also aiming to establish a systematic ontology of whether and
when ANN models representations align with brain activations, Caucheteux
and King (2020) trained 7, 400 different ANN models with different ar-
chitectures and objectives. They evaluated the models according to
how well a ridge-regularised linear could be trained to map from
their internal representations to MEG recordings of 104 subjects read-
ing words sequentially presented randomly word or as sentences.
Aiming to arrive at a spatio-temporal decomposition of the read-
ing network, they found: a) as previously shown, the final-layer ac-
tivations a deep convolutional neural network trained on character
recognition are predictive of activation in the early visual cortex, b)
word-type embeddings (Word2Vec (Mikolov et al., 2013)) predicted
brain response above and beyond the visual representations starting
from ≈ 200 ms after onset, in the left-lateralized temporal and pre-
frontal cortices, especially, c) After ≈ 1 second from word onset, con-
textualised word representations from LMs led to significantly better
prediction than the previous two feature sets, particularly in the re-
gions associated with high-level sentence processing. Subsequently,
Caucheteux et al. (2021b) found that GPT-2’s predictiveness of fMRI

activation for a subject-story pair in the Narratives dataset correlated
to subjects’ comprehension scores assessed per story.

Most recently, Antonello et al. (2021) adapted a encoder-decoder
method from computer vision that measures transferability between
different models to construct a language representation embedding
space. Using this, they could describe and visualise the relationships
between representations derived from a 100 diverse types of language
models, ranging from static word-embeddings (GloVe, etc.) and inter-
pretable tagging models (part-of-speech, named entity recognition,
chunking etc.) to machine translation models and autoregressive LMs
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Figure 8.2: An example of the application of computational control. A base-
line BERT model and an ’altered’ one are used to generate lin-
guistic representation of stimuli. The intervention to alter the LM

can be evaluated based on how well the resulting representations
can be decoded from brain activation data compared to the base-
line, controlling for other factors.

(GPT-2, etc.) or masked LMs (BERT, etc.). They show that this space
has a low-dimensional structure and that it intuitively models how
different representations relate to one another. Moreover, fitting en-
coding models to predict fMRI data from each of the 100 language rep-
resentations, they find the embedding space’s structure, when mapped
to the brain, reflects well-known language processing hierarchies and
predicts which representations map well to which areas in the brain.

8.9 computational controls

To establish a relationship between linguistic function and neurobiol-
ogy, it is necessary to decompose the various facets of linguistic pro-
cessing and map them onto the units of neurobiology (Poeppel, 2012).
Traditionally, this has been attempted through careful manipulation
of stimuli e.g. scrambled sentences vs. natural sentences. Instead of
applying strict controls at the level of the stimuli, recent work has
explored the possibility of applying computational controls (see Fig-
ure 8.2 for a demonstrative example). When successful, this allows
for a) testing a wider range of more specific questions concerning
conditions which would be significantly more difficult or expensive
to control for at the level of the stimuli and b) the use of naturalistic
stimuli which more closely resemble real-world contexts.

For instance, by varying the length of context which is fed to a LM

or providing it with distorted context, Jain and Huth (2018) were able
to ablate and the effect contextual information on alignment to neural
response. Abnar et al. (2019a) followed a similar protocol, employing
an extension of the commonly used Representation Similarity Anal-
ysis paradigm (Kriegeskorte et al., 2008) where different instances
of the same model are compared as a single parameter is altered.
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Varying the parameter of context length for four classes of language
models, they find that increased context length not lead to increased
representational alignment to brain recordings.

Gauthier and Levy (2019) took a pretrained masked language model
(BERT (Devlin et al., 2019b)) as a baseline sentence representation
model, finetuning it on a suite of tasks which are commonly used to
evaluate ’Natural Language Understanding’. Training a regularised
linear decoder to map from the fMRI sentence-level data of Pereira
et al. (2018) to representations extracted using the finetuned mod-
els, they find decreased brain decoding performance across all tested
NLU tasks, but find improved decoding performance for scrambled
language modelling tasks where fine-grained syntactic information is
removed. This result might be seen as disagreeing with an emerging
consensus in the literature regarding the role of hierarchical structure
in sentence processing 7 and once again raised questions regarding
the fine-grained-ness of the information which can be expected to
be found in fMRI data using linear mapping as a linking hypoth-
esis. Abdou et al. (2021) followed a similar methodology, propos-
ing an approach which enables the evaluation of more targeted hy-
potheses about linguistic composition and structure by finetuning
LMs with an auxilliary attention constraint to inject structural bias de-
rived from three linguistic formalisms into LM representations. They
showed that, across the three formalisms, this improves brain decod-
ing performance for the Harry Potter data, while for the Pereira et al.
(2018) data the effect is less clear.

The methods outlined so far apply controls by manipulation of ei-
ther the input or the training objective and task. Toneva et al. (2020)
devised an approach for studying the neural substrates associated
with the ’supra-word meaning’ of a phrase with a computational
control that disentangles composed-from individual-word meaning.
Using regularised linear regression models, they learn mappings be-
tween word embeddings and context representations, which they then
subtract from the representations of items in the target space to obtain
’residual’ representations for a word (sans contextual information) or
for a phrase beyond its individual words. For an fMRI dataset, they find
that this supra-word representation predicts activity in the anterior
and posterior temporal cortices. In MEG recordings, however, they
find no clear signal for supra-word meaning. Similarly, Caucheteux
et al. (2021a) proposed a method to factorise distributed LM represen-
tations according to a taxonomy of: syntax vs. semantics and lexical vs.
compositional. They constructed syntactic representations by averaging
over the LM activations for a set of sentences with the same syntactic
structure. A LM’s word embedding is taken as a lexical representa-
tion, and the contextualised representation of higher layers as the

7 e.g. Brennan et al. (2016), Hale et al. (2015), and Henderson et al. (2016), etc. but
perhaps agreeing with Frank et al. (2013) and Frank et al. (2015). Refer to Section 8.6.
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compositional one. A semantic representation is taken to be the resid-
ual of subtracting the syntactic representation, which can be done at
the lexical or the compositional level. Extracting each of these repre-
sentations from the relevant stimuli text, they learn ridge-regularised
mappings to fMRI recordings of subjects listening to the stories from
the Narratives dataset (Nastase et al., 2021). Their results showed: a)
compositional representations recruit a broader cortical network than
lexical ones and b) syntax and semantics appear to share a common
neural basis, in line with recent findings from the neuroscience litera-
ture (Fedorenko et al., 2020).

Examining the question of predictive coding (Rao and Ballard, 1999)
in language processing, Goldstein et al. (2021) investigated whether
(and how) humans and LMs engage in spontaneous prediction when
processing language. To accomplish this, they: a) used a sliding-window
method to show humans could effectively predict the next word in
a transcribed story across sentence positions and part-of-speech; b)
extracted word-by-word prediction probabilities from GPT-2 for the
same story, finding them to be correlated to the human predictabil-
ity scores, with better correlations as the amount of previous context
fed to the model increased; c) showed, in a set of experiments with
ECoG data recorded while subjects listened to a spoken story, that
static word embeddings (GloVe) as well as an arbitrary embeddings
baseline designed to ablate the effect of correlations between adja-
cent word embeddings of bigrams, could predict neural activation
(across electrodes in the left hemisphere) starting from 800 ms be-
fore word onset; d) at earlier time from word onset, neural responses
were better predicted for predictable words than for unpredictable
words, e) neural response before onset was better modelled for the
words subjects predicted even when they did not match the correct
words which they subsequently perceived; f) employing representa-
tions which incorporate previous context from GPT-2’s activations
led to both better and earlier (i.e. pre-onset) prediction of neural ac-
tivity, particularly in high-order language areas; g) ablated this result,
showing that it was due to both better representation of previous con-
text (compared e.g. to a baseline of mean-pooled GloVe embeddings)
and to improved next-word prediction. Finally, Jain et al. (2021) pre-
sented a novel multi-timescale encoding model for predicting fMRI

responses to natural speech. Using a) an LSTM where the memory
timescale of each individual unit is fixed according to a power law
distribution and b) a Gaussian radial basis function kernel to down-
sample the stimuli representations, they are able directly estimate the
timescale of information represented in a voxel of fMRI data from the
encoding model’s weights. They find that this method which relies on
’computational control’ leads to a more fine-grained map of timescale
selectivity compared to previous work which relied on stimulus ma-
nipulation (Lerner et al., 2011).
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8.10 using brain activation measurements to improve/e-
valuate nlp models

The work described in this survey so far has employed computational
language models towards the study of human language processing.
Working in the other direction, researchers have also attempted to
leverage data and insights from neurolinguistics to evaluate and im-
prove language models. To that end, Fyshe et al. (2014) presented
an algorithm that integrates brain activations into the construction
of word-type vector space models. Their approach, based on Non-
Negative Sparse Embeddings (Murphy et al., 2012), constrains the
embedding space so that words close in brain activation space also
have similar representations in the embedding space. They find the
resulting embeddings to better match a behavioral measure of seman-
tics and to better predict corpus data for unseen words. In an opin-
ion paper on word embedding evaluation, Søgaard (2016) presented
some preliminary experiments and argued that because evaluation
on downstream tasks is expensive and impractical and evaluation on
corpus statistics is circular, alignment to human word processing mea-
surements should be used as a an evaluation approach. On that ac-
count, Hollenstein et al. (2020a) presented CogniVal, a framework for
the evaluation of word embeddings based on their ability to predict
data from 15 datasets of eyetracking, EEG, and fMRI signals recorded
during language processing.

Testing the possibility of using EEG data to improve NLP models,
Hollenstein et al. (2019) extract word-level EEG features from dif-
ferent frequency ranges, using the ZUCO dataset (Hollenstein et al.,
2020b) which contains simultaneous eye-tracking and EEG measure-
ments of natural sentence reading. Combining these features with
standard word-level and character-level information employed by NLP

models, they find (modest) improvements over baselines which do
not include the EEG features across three tasks (named entity recog-
nition, relation classification and sentiment analysis).

Pioneering the use of LMs for in silico modelling8, Schwartz et al.
(2019) finetuned BERT models to predict (fMRI and MEG) brain activ-
ity measurements, biasing them to learn generalizable relationships
between text and brain activity. They find that the the fine-tuned mod-
els are better at predicting brain activity across subjects and record-
ing modalities than non-finetuned models. Finally, Toneva and We-
hbe (2019a) used brain response data to interpret the information
encoded in the internal representations of different layers of LMs for
various context lengths, based on how well they predicted activation
in different groupings of language ROIs. Ablating the role of atten-
tion, they found that replacing the learned attention function with a
uniform distribution in early BERT layers led to better prediction of

8 Where a computational model is used to simulate (some facet of) brain function.
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brain activation. Applying these altered models to a task which evalu-
ates the syntactic capabilities of LMs (Marvin and Linzen, 2018), they
found significant improvements compared to the vanilla pretrained
model, demonstrating that altering models so that they align better
with brain recordings can lead to better performance on NLP bench-
marks.

8.11 outlook

Present-day advances in machine learning have enabled the build-
ing of language models which through training on immense volumes
of data are capable of simulating human behaviour on various lin-
guistic tasks better than ever before. Concurrently, datasets of neu-
ral response recordings that both include more subjects and utilise
a larger amount of naturalistic stimuli than previously possible have
been made openly accessible to the research community (Bhattasali
et al., 2020; Nastase et al., 2021; Stehwien et al., 2020). Exploiting these
advances, recent studies a) found evidence that autoregressive ANN

language models converge to solutions that reliably align to brain
activations (Caucheteux and King, 2020; Schrimpf et al., 2020c) and
b) worked towards furthering our understanding of fundamental as-
pects of naturalistic language comprehension, e.g. the role of hier-
archical structure (Brennan and Hale, 2019; Stanojević et al., 2021),
the function of predictive coding (Goldstein et al., 2021), and the
neural substrates responsible for lexical and combinatorial semantics
(Toneva et al., 2020).

While the manner in which current ANN language models learn
is manifestly inefficient and un-human-like — leveraging text-only
information and requiring orders of magnitude more data than a hu-
man child — the solutions to which they converge have been shown
to both remarkably simulate aspects of linguistic understanding and
align to cognitive measurements. This offers reasonable grounds for
optimism that the time is ripe for these models to both contribute
to and benefit from work on the Mapping Problem (Poeppel, 2012):
the problem of mapping the elementary units of linguistic process-
ing to their neurobiological counterparts. As Hale et al. (2021) argues,
linguistically-interpretable models are likely to be key for this sym-
biosis, allowing for a principled decomposition of a model’s com-
ponents into smaller linguistically meaningful units. In view of the
approaches to computational control described in Section 8.9, I posit
that even models that are not intrinsically interpretable will be use-
ful, given the plethora of interpretability methods recently developed
(Belinkov et al., 2020).

By serving as a plausible simulation of human learning, future
work that explores more human-like training setups (e.g. multi-modal
or embodied learning), objectives, and model architectures can also
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help empirically answer long-standing questions in neuro- and cog-
nitive linguistics.



9
D O E S I N J E C T I N G L I N G U I S T I C S T R U C T U R E I N T O
L A N G U A G E M O D E L S L E A D T O B E T T E R
A L I G N M E N T W I T H B R A I N R E C O R D I N G S ?

9.1 abstract

Neuroscientists evaluate deep neural networks for natural language
processing as possible candidate models for how language is pro-
cessed in the brain. These models are often trained without explicit
linguistic supervision, but have been shown to learn some linguis-
tic structure in the absence of such supervision, potentially question-
ing the relevance of symbolic linguistic theories in modeling such
cognitive processes. We evaluate whether biasing the attention of
language models using annotations from syntactic or semantic for-
malisms leads to better alignment with fMRI brain recordings. Using
structure from dependency or minimal recursion semantic annota-
tions, we find alignments improve significantly for a dataset with
complex, naturalistic stimuli; another dataset shows mixed results.
We present an extensive analysis of the results. Our proposed ap-
proach enables the evaluation of more targeted hypotheses about the
composition of meaning in the brain, expanding the range of possi-
ble scientific inferences a neuroscientist could make, and opens up
new opportunities for cross-pollination between computational neu-
roscience and linguistics.

9.2 introduction

Recent advances in deep neural networks for natural language pro-
cessing have generated excitement among computational neuroscien-
tists, who aim to model how the brain processes language. These
models are argued to better capture the complexity of natural lan-
guage semantics than previous computational models, and are thought
to represent meaning in a more similar way to how it is hypothesized
to be represented in the human brain. For neuroscientists, these mod-
els provide possible hypotheses for how word meanings compose in
the brain. Previous work has evaluated the plausibility of such can-
didate models by testing how well representations of text extracted
from these models align with brain recordings of humans during
language comprehension tasks (Abnar et al., 2019a; Caucheteux and
King, 2020; Gauthier and Ivanova, 2018; Gauthier and Levy, 2019;
Goldstein et al., 2021; Jain and Huth, 2018; Schrimpf et al., 2020a;
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Figure 9.1: Overview of our approach. We use BERT as a baseline and fine-
tune to inject structural bias. Through a brain decoding task, we
then compare the alignment of the representations of the base-
line and the altered models with brain activations.

Toneva et al., 2020; Toneva and Wehbe, 2019b; Wehbe et al., 2014b),
and found some correspondences.

However, modern NLP models are often trained without explicit
linguistic supervision (Devlin et al., 2019a; Radford et al., 2019), and
the observation that they nevertheless learn some linguistic structure
(Manning et al., 2020) has been used to question the relevance of
symbolic linguistic theories. Whether injecting such symbolic struc-
tures into language models would lead to even better alignment with
cognitive measurements, however, has not been studied. If this were
the case, it would suggest that these theories represent aspects of lin-
guistic structure relevant to human language comprehension which
are not currently captured by language models via their pretrain-
ing objectives. To investigate this, we train a widely used language
model (BERT, see §9.4.1) with an additional structural bias, and eval-
uate its alignment with brain recordings (§9.4.2). Structure is derived
from three formalisms—Univeral Dependencies, Delph-in MRS Bi-
Lexical Dependencies, and Universal Cognitive Conceptual Annota-
tion (§9.4.3)—which come from different linguistic traditions, and
capture different aspects of syntax and semantics.

Our approach, illustrated in Figure 9.1, allows for quantifying the
brain alignment of the structurally-biased NLP models in comparison
to the base models, as related to new information about linguistic
structure learned by the models that is also potentially relevant to
language comprehension in the brain. More specifically, in this paper,
we:



9.3 background : brain activity and nlp 113

(a) Propose a finetuning method utilising structurally guided atten-
tion for injecting structural bias into language model represen-
tations.

(b) Assess the representational alignment to brain activity measure-
ments of the finetuned and non-finetuned LMs.

(c) Further evaluate the LMs on a range of targeted syntactic prob-
ing tasks and a semantic tagging task, which allow us to un-
cover fine-grained information about their structure-sensitive
linguistic capabilities.

(d) Present an analysis of various linguistic factors that may lead to
improved or deteriorated brain alignment.

9.3 background : brain activity and nlp

Mitchell et al. (2008) first showed that there is a relationship between
the co-occurrence patterns of words in text and brain activation for
processing the semantics of words. Specifically, they showed that a
computational model trained on co-occurrence patterns for a few
verbs was able to predict fMRI activations for novel nouns. Since then,
researchers have attempted to isolate other features that enable pre-
diction and interpretation of brain activity (Anderson et al., 2017b;
Brennan et al., 2016; Frank et al., 2015; Lopopolo et al., 2017; Pereira
et al., 2018; Wang et al., 2020). Gauthier and Ivanova (2018) however,
emphasize that directly optimizing for the decoding of neural repre-
sentation is limiting, as it does not allow for the uncovering of the
mechanisms that underlie these representations. The authors suggest
that in order for us to better understand linguistic processing in the
brain, we should also aim to train models that optimize for a specific
linguistic task and explicitly test these against brain activity.

Following this line of work, Toneva and Wehbe (2019b) present
experiments both predicting brain activity and evaluating representa-
tions on a set of linguistic tasks. They first show that using uniform
attention in early layers of BERT (Devlin et al., 2019a) instead of pre-
trained attention leads to better prediction of brain activity. They then
use the representations of this altered model to make predictions on
a range of syntactic probe tasks, which isolate different syntactic phe-
nomena (Marvin and Linzen, 2019), finding improvements against
the pretrained BERT attention.

Gauthier and Levy (2019) present a series of experiments in which
they finetune BERT on a variety of tasks including language modeling
as well as some custom tasks such as scrambled language modeling
and part-of-speech-language modeling. They then perform brain de-
coding, where a linear mapping is learnt from fMRI recordings to the
finetuned BERT model activations. They find that the best mapping is
obtained with scrambled language modelling finetuning, which they
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confirm leads to poor performance when reconstructing Universal
Dependencies (UD; Nivre et al., 2020a) parse trees with a structural
probe. Building on this, in this work we propose a framework for in-
vestigating how incorporating particular structural biases — such as
those derived from linguistic theory — into language model repre-
sentations can affect their alignment to cognitive measurements. Un-
like previous work, our approach allows for the evaluation of more
targeted hypotheses about the structures which underlie the compo-
sition of meaning in the brain.

9.4 approach

Figure 9.1 shows a high-level outline of our experimental design,
which aims to establish whether injecting structure derived from a
variety of syntacto-semantic formalisms into language model repre-
sentations can lead to better correspondence with human brain activa-
tion data. We utilize fMRI recordings of human subjects reading a set
of texts. Representations of these texts are then derived from the acti-
vations of the language models. Following Gauthier and Levy (2019),
we obtain LM representations from BERT1 for all our experiments. We
apply masked language model finetuning with attention guided by
the formalisms to incorporate structural bias into BERT’s hidden-state
representations. Finally, to compute alignment between the BERT-
derived representations—with and without structural bias—and the
fMRI recordings, we employ the brain decoding framework, where a
linear decoder is trained to predict the LM derived representation of
a word or a sentence from the corresponding fMRI recordings.

9.4.1 LM-derived Representations

BERT uses wordpiece tokenization, dividing the text to sub-word
units. For a sentence S made up of P wordpieces , we perform mean-
pooling over BERT’s final layer hidden-states [h1, ...,hP], obtaining
a vector representation of the sentence Smean = 1

P

∑
p hp (Wu et

al., 2016). In initial experiments, we found that this leads to a closer
match with brain activity measurements compared to both max-pooling
and the special [CLS] token, which is used by Gauthier and Levy
(2019). Similarly, for a word W made up of P wordpieces, to de-
rive word representations, we apply mean-pooling over hidden-states
[h1, ...,hP], which correspond to the wordpieces that make up W:
Wmean = 1

P

∑
p hp. For each dataset, DLM ∈ Rn×dH denotes a ma-

1 Specifically: bert-large-uncased trained with whole-word masking. Note, however,
that the choice of model is not very consequential as the approach to inducing struc-
tural bias and overal methodology are general and can be applied to any class of
models which employs attention mechanisms.
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trix of n LM-derived word or sentence representations where dH is
BERT’s hidden layer dimensionality (dH = 1024 in our experiments).

9.4.2 Neuroimaging Datasets

We utilize two fMRI datasets, which differ in the granularity of lin-
guistic cues to which human responses were recorded. The first, col-
lected in Pereira et al. (2018)’s experiment 2, comprises a single brain
image per entire sentence. In the second, more fine-grained dataset,
recorded by Wehbe et al. (2014b), each brain image corresponds to
4 words. We conduct a sentence-level analysis for the former and a
word-level one for the latter.2 Stimuli set complexity also varies be-
tween the two datasets; the former comprising of simple wikipedia-
style sentences, and the latter more complex, naturalistic ones (see
Appendix A.6.7 for examples).

pereira2018 consists of fMRI recordings from 8 subjects. The sub-
jects were presented with stimuli consisting of 96 Wikipedia-style
passages written by the authors, consisting of 4 sentences each. The
subjects read the sentences one by one and were instructed to think
about their meaning. The resulting data for each subject consists of
384 vectors of dimension 200,000; a vector per sentence. These were
reduced to 256 dimensions using PCA by Gauthier and Levy (2019).
These PCA projections explain more than 95% of the variance among
sentence responses within each subject. We use this reduced version
in our experiments.

wehbe2014 consists of fMRI recordings from 8 subjects as they
read chapter 9 from Harry Potter and the Sorcerer’s Stone. For the 5000

word chapter, subjects were presented with words one by one for 0.5
seconds each. An fMRI image was taken every 2 seconds, as a result,
each image corresponds to 4 words. The data was further prepro-
cessed (i.e. detrended, smoothed, trimmed) and released by Toneva
and Wehbe (2019b). We use this preprocessed version to conduct
word-level analysis, for which we use PCA to reduce the dimensions
of the fMRI images from 25,000 to 750, explaining at least 95% vari-
ance for each participant.

9.4.3 Formalisms and Data

To inject linguistic structure into language models, we experiment
with three distinct formalisms for representation of syntactic/seman-
tic structure, coming from different linguistic traditions and captur-
ing different aspects of linguistic signal: UD, DM and UCCA. An

2 Even though the images are recorded at the 4-gram level of granularity, a word-level
analysis is applied, as in (Schwartz et al., 2019).
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He had been looking forward to learning to fly more than anything else .
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Figure 9.2: Manually annotated example graphs for a sentence from the We-
hbe2014 dataset. While UCCA and UD attach all words, DM
only connects content words. However, all formalisms capture
basic predicate-argument structure, for example, denoting that
“more than anything else” modifies “looking forward” rather
than “fly”.
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example graph for each formalism is shown in Figure 9.2. Although
there are other important linguistic structured representation frame-
works, including meaning representations such as AMR (Banarescu
et al., 2013), DRS (Bos et al., 2017; Kamp and Reyle, 1993) and FGD
(Hajic et al., 2012; Sgall et al., 1986), we select three relatively differ-
ent formalisms as a somewhat representative sample. All three have
manually annotated datasets, which we use for our experiments.

UD (Universal Dependencies; Nivre et al., 2020a) is a syntactic bi-
lexical dependency framework (dependencies are denoted as arcs be-
tween words, with one word being the head and another the depen-
dent), which represents grammatical relations according to a coarse
cross-lingual scheme. We use UD 2.0 data for the English Web Tree-
bank corpus (EWT; Silveira et al., 2014), which contains 254,830 words
and 16,622 sentences, taken from five genres of web media: weblogs,
newsgroups, emails, reviews, and Yahoo! answers.

DM (DELPH-IN MRS Bi-Lexical Dependencies; Ivanova et al., 2012)
is derived from the underspecified logical forms computed by the
English Resource Grammar (Copestake et al., 2005; Flickinger et al.,
2017). We use the English SDP (Semantic Dependency Parsing) data
for DM (Oepen et al., 2016), annotated on newspaper text from the
Wall Street Journal (WSJ), containing 802,717 words and 35,656 sen-
tences.

UCCA (Universal Cognitive Conceptual Annotation; Abend and
Rappoport, 2013) is based on cognitive linguistic and typological the-
ories, primarily Basic Linguistic Theory (Dixon, 2010/2012). We use
UCCA annotations over web reviews from the English Web Tree-
bank (Hershcovich et al., 2019), and from English Wikipedia articles
on celebrities. In total, they contain 138,268 words and 6,572 sen-
tences. For uniformity with the other formalisms, we use bi-lexical
approximation to convert UCCA graphs, which have a hierarchical
constituency-like structure, to bi-lexical graphs with edges between
words. This conversion keeps about 91% of the information (Hersh-
covich et al., 2017).

9.4.4 Injecting Structural Bias into LMs

Recent work has explored ways of modifying attention in order to
incorporate structure into neural models (Bugliarello and Okazaki,
2020; Chen et al., 2016c; Strubell and McCallum, 2018; Strubell et al.,
2018b; Zhang et al., 2019a). For instance, Strubell et al. (2018b) incor-
porate syntactic information by training one attention head to attend
to syntactic heads, and find that this leads to improvements in Seman-
tic Role Labeling (SRL). Drawing on these approaches, we modify the
BERT Masked Language Model (MLM) objective with an additional
structural attention constraint. BERTLARGE consists of 24 layers and
16 attention heads. Each attention head headi takes in as input a
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sequence of representations h = [h1, ...,hP] corresponding to the P
wordpieces in the input sequence. Each representation in hp is trans-
formed into query, key, and value vectors. The scaled dot product
is computed between the query and all keys and a softmax function
is applied to obtain the attention weights. The output of headi is a
matrix Oi, corresponding to the weighted sum of the value vectors.

For each formalism and its corresponding corpus, we extract an
adjacency matrix from each sentence’s parse. For the sequence S, the
adjacency matrix AS is a matrix of size P× P, where the columns cor-
respond to the heads in the parse tree and the rows correspond to the
dependents. The matrix elements denote which tokens are connected
in the parse tree, taking into account BERT’s wordpiece tokenization.
All edges are modeled as bi-directional.3. We modify BERT to accept
as input a matrix AS as well as S; maintaining the original MLM ob-
jective. For each attention head headi, we compute the binary cross-
entropy loss between Oi and AS and add that to our total loss, po-
tentially down-weighted by a factor of α (a hyperparameter). BERT’s
default MLM finetuning hyperparameters are employed and α is set
to 0.1 based on validation set perplexity scores in initial experiments.

Structural information can be injected into BERT in many ways, in
many heads, across many layers. Because the appropriate level and
extent of supervision is unknown a priori, we run various finetuninig
settings with respect to combinations of number of layers (1, . . . , 24)
and attention heads (1, 3, 5, 7, 9, 11, 12) supervised via attention guid-
ance. Layers are excluded from the bottom up (e.g.: when 10 layers
are supervised, it is the topmost 10); heads are chosen according to
their indices (which are arbitrary).

This results in a total of 168 finetuning settings per formalism. For
each finetuning setting, we perform two finetuning runs.4 For each
run r of each finetuning setting f, we derive a set of sentence or word
representations Dfr ∈ Rn×dH from each finetuned model using the
approach described in §9.4.1 for obtaining DLM, the baseline set of
representations from BERT before finetuning. We then use develop-
ment set5 embedding space hubness—an indicator of the degree of
difficulty of indexing and analysing data (Houle, 2015) which has
been used to evaluate embedding space quality (Dinu et al., 2014)—as
an unsupervised selection criterion for the finetuned models, select-
ing the model with the lowest degree of hubness (per formalism) ac-

3 By modelling edges as bi-directional we bias both dependents’ attention weights to
have higher values for heads, as well as those of heads to have higher values for
dependents. Although edges are directed in the linguistic formalisms, when framed
in the context of attention, it is not clear than either direction is preferable.

4 We find that the mean difference in brain decoding score (Pearson’s r) between two
runs of the same setting (across all settings) is low (0.003), indicating that random
initialization does not play a major part in our results. We, therefore, do not carry
out more runs.

5 For Wehbe2014: second chapter of Harry Potter. For Pereira2018: first 500 sentences
of English Wikipedia.
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Figure 9.3: Brain decoding score (mean Pearson’s r; with 95% confidence
intervals shown for subject scores) for models finetuned by MLM
with guided attention on each of the formalisms, as well the
baseline models: pretrained BERT (dotted) and domain-finetuned
BERT (solid).

cording to the Robin Hood Index (Feldbauer et al., 2018). This yields
three models for each of the two datasets—one per formalism—for
which we present results below.

In addition to the approach described above, we also experiment
with directly optimizing for the prediction of the formalism graphs
(i.e., parsing) as a way of encoding structural information in LM repre-
sentations. We find that this leads to a consistent decline in alignment
of the LMs’ representations to brain recordings.

9.4.5 Brain Decoding

To measure the alignment of the different LM-derived representations
to the brain activity measurements, brain decoding is performed, fol-
lowing the setup described in Gauthier and Levy (2019).6 For each
subject i’s fMRI images corresponding to a set of n sentences or words,
a ridge regression model is trained to linearly map from brain activ-
ity Bi ∈ Rn×dB (n = 384; dB = 256 for Pereira2018 and n = 4369;
dB = 750 for Wehbe2014) to a LM-derived representation (Dfr or
DLM), minimizing the following loss:

L(W;α) = ‖XW − Y‖22 + λ ‖W‖
2
2

where W : RdH×dB is a linear map, and λ is a hyperparameter for
ridge regularization. Nested 12-fold cross-validation (Cawley and Tal-
bot, 2010) is used for selection of λ, training and evaluation.

evaluation To evaluate the regression models, Pearson’s correla-
tion coefficient between the predicted and the corresponding heldout

6 Other methods for evaluating representational correspondence such as Representa-
tional Similarity Analysis (Kriegeskorte et al., 2008) and the Centered Kernel Align-
ment similarity index (Kornblith et al., 2019) were also explored but were found to
be either less powerful or less consistent across subjects and datasets.
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true sentence or word representations is computed. We find that this
metric7 is consistent across subjects and across the two datasets. We
run 5000 bootstrap resampling iterations and a) report the mean8 cor-
relation coefficient (referred to as brain decoding score/performance), b)
use a paired bootstrap test to establish whether two models’ mean
(across stimuli) scores were drawn from populations having the same
distribution9, c) apply the Wilcoxon signed rank test (Wilcoxon, 1992)
to the by-subject scores to test for evidence of strength of generaliza-
tion over subjects. Bonferroni correction (for 3 multiple comparisons)
is used to adjust for multiple hypothesis testing. See Appendix A.6.2
for details.

9.5 results

To evaluate the effect of the structurally-guided attention, we com-
pute the brain decoding scores for the guided attention models cor-
responding to each formalism and fMRI dataset and compare these
scores against the brain decoding scores from two baseline models: 1)
a domain-finetuned BERT (DF), which finetunes BERT using the regu-
lar MLM objective on the text of each formalism’s training data, and
a pretrained BERT. We introduce the domain-finetuned baseline in order
to control for any effect that finetuning using a specific text domain
may have on the model representations.

Comparing against this baseline allows us to better isolate the ef-
fect of injecting the structural bias from the possible effect of simply
finetuning on the text domain. We further compare to a pretrained
baseline in order to evaluate how the structurally-guided attention
approach performs against an off-the-shelf model that is commonly
used in brain-alignment experiments.

9.5.1 Pereira2018

Figure 9.3 shows the sentence-level decoding performance on the
Pereira2018 dataset, for the guided attention finetuned models (GA)
and both baseline models (domain-finetuned and pretrained).

We find that the DF baseline (shown in Figure 9.3 as solid lines)
leads to brain decoding scores that are either lower than or not

significantly different from the pretrained baseline.

7 Appendix A.6.1 shows results for the rank-based metric reported in (Gauthier and
Levy, 2019), which we find to strongly correspond to Pearson’s correlation. This
metric evaluates representations based on their support for contrasts between sen-
tences/words which are relevant to the brain recordings. Other metrics for the eval-
uation of goodness of fit were found to be less consistent.

8 Across finetuning runs, cross-validation splits, and bootstrap iterations.
9 This is applied per subject to test for strength of evidence of generalization over

sentence stimuli.
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Specifically, for DM and UCCA, it performs below the pretrained
baseline, which suggests that simply finetuning on these corpora re-
sults in BERT’s representations becoming less aligned with the brain
activation measurements from Pereira2018.

We find that all GA models outperform their respective DF base-
lines (for all subjects, p < 0.05). We further find that compared to the
pretrained baselines, with p < 0.05: a) the UD GA model shows sig-
nificantly better brain decoding scores for 7 out of 8 subjects, b) the
DM GA model for 4 out of 8 subjects, c) UCCA GA shows scores not
significantly different from or lower, for all subjects. For details see
Appendix A.6.2.

9.5.2 Wehbe2014

For Wehbe2014, where analysis is conducted on the word level, we
again find that DF baselines—especially the one finetuned on the
UCCA domain text—achieve considerably lower brain decoding scores
than the pretrained model, as shown in Figure 9.3.

Furthermore, the guided attention models for all three formalisms
outperform both baselines by a large, significant margin (after Bon-
ferroni correction, p < 0.0001).

9.6 discussion and analysis

Overall, our results show that structural bias from syntacto-semantic
formalisms can improve the ability of a linear decoder to map the
BERT representations of stimuli sentences to their brain recordings.
This improvement is especially clear for wehbe2014, where token
representations and not aggregated sentence representations (as in
Pereira2018) are decoded, indicating that finer-grain recordings and
analyses might be necessary for modelling the correlates of linguistic
structure in brain imaging data. To arrive at a better understanding of
the effect of the structural bias and its relationship to brain alignment,
in what follows, we present an analysis of various factors which affect
and interact with this relationship.

the effect of domain Our results suggest that the domain of
finetuning data and of stimuli might play a significant role, despite
having been previously overlooked: simply finetuning on data from
different domains leads to varying degrees of alignment to brain data.
To quantify this effect, we compute the average word perplexity of the
stimuli from both fMRI datasets for the pretrained and DF baselines
on each of the three domain datasets.10 If the domain of the corpora

10 Note that this is not equivalent to the commonly utilised sequence perplexity (which
can not be calculated for non-auto-regressive models) but suffices for quantifying the
effect of domain shift.
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Figure 9.4: Accuracy per subject-verb agreement category of (Marvin and
Linzen, 2019) for the three Wehbe2014 models and each of the
four baselines.

used for finetuning influences our results as hypothesized, we ex-
pect this score to be higher for the DF baselines. We find that this is
indeed the case and that for those baselines (DF), increase in perplex-
ity roughly corresponds to lower brain decoding scores—see details
in Appendix A.6.3. This finding calls to attention the necessity of ac-
counting for domain match in work utilizing cognitive measurements
and emphasizes the importance of the DF baseline in this study.

targeted syntactic evaluation We evaluate all models on
a range of syntactic probing tasks proposed by Marvin and Linzen
(2019).11 This dataset tests the ability of models to distinguish mini-
mal pairs of grammatical and ungrammatical sentences across a range
of syntactic phenomena. Figure 9.4 shows the results for the three We-
hbe2014 models across all subject-verb agreement (SVA) tasks.12

We observe that after GA finetuning: a) the DM guided-attention
model, and to a lesser extent the UD guided-attention model have a
higher score than the pretrained baseline and the domain-finetuned
baselines for most SVA tasks and b) the ranking of the models cor-
responds to their ranking on the brain decoding task (DM > UD >

UCCA).13 Although all three formalisms annotate the subject-verb-
object or predicate-argument structure necessary for solving SVA tasks,
it appears that some of them do so more effectively, at least when en-
coded into a LM by GA.

effect on semantics To evaluate the impact of structural bias
on encoding of semantic information, we consider Semantic Tagging

11 Using the evaluation script from Goldberg (2019).
12 Results for Pereira2018 show similar patterns and are included in Appendix A.6.6.
13 For reflexive anaphora tasks, these trends are reversed: the models underperform the

pretrained baseline and their ranking is the converse of their brain decoding scores.
Reflexive Anaphora, are not explicitly annotated for in any of the three formalisms.
We find, however, that they occur in a larger proportion of the sentences comprising
the UCCA corpus (1.4%) than those the UD (0.67%) or DM (0.64%) ones, indicating
that domain might play a role here too.
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Figure 9.5: Change in F1-score per coarse-grained semantic class compared
to the pretrained baseline for the three guided attention We-
hbe2014 models.

(Abzianidze and Bos, 2017), commonly used to analyse the seman-
tics encoded in LM representations (Belinkov et al., 2017b; Liu et al.,
2019a): tokens are labeled to reflect their semantic role in context. For
each of the three guided attention Wehbe2014 models and the pre-
trained model, a linear probe is trained to predict a word’s semantic
tag, given the contextual representation induced by the model (see
Appendix A.6.4 for details). For each of the three GA models, Figure
9.5 shows the change in test set classification F1-score,14 relative to
the pretrained baseline, per coarse-grained grouping of tags.15

We find that the structural bias improves the ability to correctly rec-
ognize almost all of the semantic phenomena considered, indicating
that our method for injecting linguistic structure leads to better en-
coding of a broad range of semantic distinctions. Furthermore, the im-
provements are largest for phenomena that have a special treatment
in the linguistic formalisms, namely discourse markers and tempo-
ral entities. Identifying named entities is negatively impacted by GA
with DM, where they are indiscriminately labeled as compounds.

content words and function words are treated differently
by each of the formalisms: UD and UCCA encode all words, where
function words have special labels, and DM only attaches content
words. Our guided attention ignores edge labels (dependency rela-
tions), and so it considers UD and UCCA’s attachment of function
words just as meaningful as that of content words. Figure A.24 in Ap-
pendix A.6.5 shows a breakdown of decoding performance on con-
tent and function words for Wehbe2014. We find that: a) all GA mod-
els and the pretrained model show a higher function than content
word decoding score, b) a large part of the decrease in score of two of

14 Note that the test set consists of 263,516 instances, therefore, the margin of change
in number of instances here is considerable, e.g. 5652 ∗ 0.6 ≈ 40 instances for the DM
and UCCA models on the temporal category, which is the least frequent in the test
set. See test set category frequencies in the Appendix.

15 The eight most frequent coarse-grained categories from an original set of ten are
included—ordered by frequency from left to right; we exclude the UNKNOWN category
because it is uninformative and the ANAPHORIC category because it shows no change
from the baseline for all three models.
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the three domain-finetuned baselines (UD and DM) compared to the
pretrained model is due to content words.

disparity between datasets While the models finetuned with
GA show considerable improvement in brain decoding for Wehbe2014
(word level analysis), the improvements are much more modest for
Pereira2018 (sentence level analysis). A possible reason for this is the
loss of structural information that occurs when aggregating over to-
ken representations to construct sentence-level ones. For a more direct
comparison, we conduct a sentence-level analysis for the Wehbe2014
dataset, mean pooling over token hidden-states and their correspond-
ing fMRI time slices16. If the advantage of the guided attention models
over the baseline drops, this would indicate that mean pooling is at
least partially responsible for the lower improvements observed for
Pereira2018. We find that this is indeed the case: in this setting, de-
coding scores for the GA models are not significantly different from
or lower than the pretrained baseline. Another possible reason for
the difference between the two datasets is that the structural bias
induced through GA finetuning is more useful when encoding the
more diverse naturalistic stimuli used in Wehbe2014, compared to
Pereira2018 where the stimuli are short, simple wikipedia-style sen-
tences (see Appendix A.6.7 for examples). Stimuli set perplexity re-
sults (Appendix A.6.3) support this hypothesis: compared to the base-
lines, perplexity after GA finetuning is lower for Wehbe2014 than is
it for Pereira2018.

limitations When dealing with brain activity, there are many
potential confounds, such as the size of fMRI data, the temporal reso-
lution of fMRI, the low signal-to-noise ratio, as well as how the tasks
were presented to the subjects, among many other factors. It is, there-
fore, essential to take sound measures for reporting results, such as
cross-validating models, evaluating on unseen test sets, and conduct-
ing a thorough statistical analysis. The fMRI data used for both the
sentence and word level analyses was recorded while participants
read text without performing a specific task.

Although we observe some correlates of linguistic structure, it is
possible that uncovering more fine-grained patterns would necessi-
tate brain data recorded while participants perform a targeted task.
For future work it would be interesting to investigate if an analysis
based on a continuous, naturalistic listening fMRI dataset (Nastase et
al., 2020) matches up to the results we have obtained. Regarding the
different linguistic formalisms, there are potential confounds such

16 Note that since the Pereira2018 fMRI recordings are taken and the sentence level and
Wehbe2014 at the 4-gram level, the comparison is still approximate. A possible con-
found is that averaging over fMRI time slices could also lead to loss of information.
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as domain, corpus size17, and dependency length, (i.e. the distance
between words attached by a relation), which depend both on the for-
malism and on the underlying training set text. Controlling for these
confounds using a single corpus annotated for all three formalisms to
enable a direct comparison of cognitive plausibility is an avenue for
future investigation which could leverage the framework proposed in
this work.

conclusions We propose a framework to investigate the effect of
incorporating specific structural biases in language models for brain
decoding.

Using this framework, we present evidence that inducing linguis-
tic structural bias through finetuning using attention guided accord-
ing to syntacto-semantic formalisms improves brain decoding perfor-
mance, particularly on a dataset with more complex stimuli. We ob-
serve that the models which align most with the brain perform best
at a range of syntactic (subject-verb agreement) and semantic tagging
tasks, suggesting that language comprehension in the brain, as cap-
tured by fMRI recordings, and the tested tasks may rely on common
linguistic structure which is partly induced by the added attention
constraints. Our results corroborate recent findings on language mod-
els not surfacing aspects of semantic structure that are relevant to lan-
guage comprehension (Hou and Sachan, 2021; Wu et al., 2021), moti-
vating further work on both linguistically-informed training methods
and general-purpose training objectives that better capture semantic
structure.

Overall, our proposed approach enables the evaluation of more tar-
geted hypotheses about the composition of meaning in the brain, and
opens up new opportunities for cross-pollination between computa-
tional neuroscience and linguistics.

17 It is interesting to note that decoding score rank for Wehbe2014 corresponds to
finetuning corpus size for the GA models (DM > UD > UCCA), but not the domain-
finetuned models. A reasonable conclusion to draw from this is that dataset size
might play a role in the effective learning of a structural bias.
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C O N C L U S I O N S A N D O U T L O O K

10.1 conclusions

In this dissertation, we present eight studies that each work to further
the field’s understanding of where ANN language models correspond
to or diverge from humans and how they might be used in the study
of different aspects of language.

The studies are grouped into three related parts: (i) those that make
use of behavioural data, (ii) those that address questions based on
linguistic theory, and (iii) those concerned with neural response mea-
surements. Below, we revisit each of the key research questions posed
in Chapter 1 and review how the chapters which comprise this thesis
contribute to answering them.

behavioural data

In Part ii, we describe two studies where representational align-
ment between LMs and behavioural data was evaluated. Overall, our
results indicate that LM representations can reflect some of the pat-
terns of linguistic behaviour.

Are there structural correspondences between eye-tracking fixation pat-
terns and LM representations?

To relate human eye-tracking data patterns with LM representa-
tions, in Chapter 3, we leverage the framework of Representational
Similarity Analysis, which was developed by neuroscientists for com-
paring activity patterns from across modalities. In this study, we high-
light the utility of RSA for analysing NLP models. Our results show
that sentences which are difficult for humans to process have more
divergent representations both between the layers of an LM, and be-
tween different LMs.

Can language models encode perceptual structure without grounding?

This question relates to an ongoing debate in the field regarding
whether it is possible for LMs which are trained on text only to really
capture “meaning” (Bender and Koller, 2020a). In Chapter 4, we ad-
dress it through a case study on color and color terms. The semantics
of color terms have long been understood to hold particular linguis-
tic significance, as they are theorised to be subject to universal con-
straints that arise directly from the neurophysiological mechanisms
and properties underlying visual perception. Our results demonstrate

129
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that, even though LMs are trained on textual data only, their represen-
tations for color terms do, to a certain extent, show isomorphism to
the topology of humans’ perceptual color space. Analyzing the dif-
ferences in alignment across the color spectrum, we also show that
warmer colors are, on average, better aligned to the perceptual color
space than cooler ones, linking to findings from recent work on effi-
cient communication in color naming. Further analysis based on how
efficiently a color is communicated between a speaker and a listener
reveals a correlation between lower topological alignment and higher
color chip surprisal, suggesting that the kind of contexts a color oc-
curs in play a role in determining alignment.

linguistic theory

Part iii contains three studies that examine LMs through the lens
of linguistic theory. Overall, the results presented in this part of the
thesis show that LMs conform to some (but not all) of the prognoses
made by linguistic theory regarding the syntactic structure, word or-
der, and robustness to perturbations.

How sensitive are humans and LMs to linguistic perturbations of Wino-
grad Schema Challenge examples?

The sentence processing mechanisms of humans are known to be
robust towards a variety of perturbations (Ferreira et al., 2002; Gibson
et al., 2013). Chapter 5 presents a comparison of the robustness of
several LMs to that of humans. A dataset is constructed by applying
perturbations that span various linguistic dimensions (tense, gender,
voice, etc.) to Winograd Schema Challenge examples. Testing LMs and
human annotators using this dataset shows that the latter are overall
more robust than the former, but that when finetuned on task-specific
data LMs become more robust.

Can the attention patterns learned by LMs reflect linguistic structure (in
the form of dependency trees)?

In Chapter 6, we investigate the attention patterns learned by a
multilingual LM for whether they encode linguistic structure. The re-
sults of experiments carried out across 18 languages show that full
dependency trees can indeed be decoded with above baseline accu-
racy from single attention heads, and that individual relations are of-
ten tracked by the same heads across languages. Further experiments
show that finetuning the multilingual LM with a supervised depen-
dency parsing objective leads to its attention mechanism resembling
dependency tree structure to a considerably larger extent.

Why do LMs trained on sentences with shuffled words still perform well
on Natural Language Understanding tasks? Do they still encode some word
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order information? Are there tasks where degrading word order information
has a stronger effect on performance?

Chapter 7 examines recent findings showing that LM performance
on NLU benchmarks (like GLUE) is only marginally affected by shuf-
fling the order of words within their training or finetuning data. Our
analysis reveals that these models, through their position encodings,
retain a modicum of word order information when trained on shuf-
fled data. We find this to be due to (a) word segmentation being car-
ried out after rather than before shuffling, leading to a locality bias
being learned by the position encodings and (b) various other statis-
tical cues like correlations between sentence lengths and token dis-
tributions. In experiments with more rigorous benchmarks, we show
that there exist NLU tasks that are more sensitive to the degradation
of word order information.

neural response measurments

In two Chapters, Part iv presents an overview of work connecting
LMs with neurobiology via recordings of neural response, and then in-
troduces a use-case for them in the study how meaning is composed
in the brain.

In Chapter 8, we conduct a literature review of work linking com-
putational models of language and neural response measurements.
In this review, we trace a line from early research using simple lan-
guage models (context-free grammars, etc.) to contemporary studies
employing ANN models and neural response recordings from multi-
ple modalities. Overall, the review showcases ANN models’ potential
to both contribute to and benefit from work investigating the neuro-
biological underpinnings of language.

Can LMs be used to enable the evaluation of targeted hypotheses about the
composition of meaning in the brain?

Finally, in Chapter 9, we introduce a framework where LMs can be
used for the evaluation of targeted hypotheses about the composition
of meaning in the brain. Leveraging this framework, we demonstrate
that when the attention mechanisms of LMs are biased to match struc-
tures from three syntaco-semantic formalisms, their representations
align better with brain recordings.

10.2 outlook

The research presented in this dissertation has contributed to fur-
thering our knowledge of where artificial neural network language
models agree with or diverge from what we know about language
processing in humans. Subsequently, we presented work where these
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models are employed in the evaluation of possible hypotheses about
how word meanings are composed in the brain.

As the field gradually improves its understanding of ANN LMs,
they are likely to feature more prominently within core research in
theoretical, psycho-, and neuro- linguistics, functioning as tools for
theory-building and hypothesis formulation or testing (Baroni, 2021;
Futrell et al., 2019; Marblestone et al., 2016). We argued in Chapter 8

that the prospering domains of interpretability and explainability (Be-
linkov and Glass, 2019a; Danilevsky et al., 2020) are likely to play an
important role in facilitating this, enabling a fine-grained dissection
and analysis of network components and behaviour. Additionally, we
believe that research pushing towards more human-like training set-
tings and objectives, such as the work on developing multi-modal
or embodied models, also has an important part to play in making
ANN LMs into more plausible models of language (Bisk et al., 2020b;
McClelland et al., 2020).

By enabling the modelling of complex, naturalistic linguistic tasks
and providing a framework for the simultaneous linking of compu-
tation, behaviour, and brain function (Schrimpf et al., 2020c), we are
ultimately optimistic that this class of models can meaningfully con-
tribute to the study of language.
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a.1 chapter 3

a.1.1 Correlation Heatmaps

Figure A.1 shows correlation heatmaps between disagreement among
layers i and j VCorrLi−Lj and each of Vfirstpass, VwordSense and
VlogFreq.

a.2 chapter 4

a.2.1 List of included color terms

Red, green, maroon, brown, black, blue, purple, orange, pink, yellow,
peach, white, gray, olive, turquoise, violet, lavender, and aqua.

a.2.2 RSA between models

Figure A.2 shows a the result of representation similarity analysis
between the representations derived from all models (and configura-
tions) as well as CIELAB, showing Kendall’s correlation coefficient
between flattened RSMs.

a.2.3 Representation Similarity Matrices

Figures A.3 to A.6 show the representation similarity matrices em-
ployed for the RSA analyses, for the layer with the highest RSA score
from each of the controlled-context (CC) models.

a.2.4 Warm vs. Cool colors

Figures A.7 and A.8 show Linear Mapping and RSA results broken
down by color temperature. The color space is split according to tem-
perature measured according to the Hue dimension in the Hue-Value-
Saturation space1.

1 https://psychology.wikia.org/wiki/HSV_color_space
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(a)

(b)

(c)

Figure A.1: RSM heatmaps showing (Spearman’s ρ) correlation between dis-
agreement among layers i and j (VCorrLi−Lj ) and (a) Vfirstpass
(top), (b) VwordSense (middle) and, (c) VlogFreq (bottom).
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Figure A.2: Result of representation similarity analysis between all models
(and configurations), showing Kendall’s correlation coefficient
between flattened RSMs. Results are shown for layers which are
maximally correlated with CIELAB, per model. -rc indicates
random-context, -cc indicates controlled-context, and -nc indi-
cates non-context.

a.2.5 Corpus statistics

Figures A.9 and A.10 show log frequency and entropy of distributions
over part-of-speech categories, dependency relations, and lemmas of
dependency tree heads of color terms in common crawl.

a.2.6 Linear mapping results by munsell color chip

Figure A.11 shows linear mapping results broken down by Munsell
chip for all models and configurations.

a.2.7 Linear mapping control task and probe complexity

Figure A.12 shows the full results over a range of probe complexities
for the standard experimental condition as well the random control
task.
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Figure A.3: CIELAB RSM

a.2.8 Dimensionality of color subspace

Figure A.13 shows the proportion of explained variance with respect
to the number of dimensions which are assigned 95% of the linear
regression coefficient weights.

a.2.9 Effect of model size

Table A.1 shows the RSA and linear mapping (selectivity) results for
four BERT models: BERT-mini (4 layers, hidden size: 256), BERT-small
(4 layers, hidden size: 512), BERT-medium (8 layers, hidden size: 512),
and BERT-base (12 layers, hidden size: 768). Model specification and
training details for the first three can be found in Turc et al. (2019)
and for last in Devlin et al. (2019a).

a.2.10 Linear Mixed Effects Model

To fit Linear Mixed Effects Models, we use the LME4 package. With
model type (BERT-CC, RoBERTa-NC, etc.) as a random effect, we fol-
low a step-wise model construction sequence which proceeds along
four levels of nesting: (i) in the first level color log-frequency is the
only fixed effect, (ii) in the second pmi-colloc is added to that, (iii)
in the third, each of pos-ent, deprel-ent, head-ent is added sep-
arately to the a model with log frequency and pmi-colloc, (iv) the
term that leads to the best fit from the previous level deprel-ent is
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Figure A.4: BERT(CC) RSM

Model RSA max RSA mean lin. map.. max lin. map. mean

BERT-mini 0.077 0.043 ± 0.340 0.729 0.582 ± 0.291

BERT-small 0.106 0.070 ± 0.191 0.734 0.598 ± 0.294

BERT-medium 0.097 0.057 ± 0.035 0.739 0.654 ± 0.221

BERT-base 0.162
∗

0.092 ± 0.058 0.740 0.677 ± 0.182

Table A.1: Results for the four smaller BERT models. RSA results (left) show
max and mean (across layers) Kendall’s correlation coefficient (τ).
Correlations that are significantly non-zero are indicated with: *
: p < 0.05. Results for the Linear Mapping experiments (right)
show max and mean selectivity. Standard deviation across layers
is included with the mean results.

included, then each of the proportion terms adj-prop, amod-prop,

cop-prop is added. The reported regression coefficients are extracted
from the minimal model containing each term.

a.3 chapter 5

a.3.1 Observations on original dataset

1. A few of the original examples were of unorthodox design: for
instance, consider the pair:

(1) a. Look! There is a minnow swimming right below that
duck! It had better get away to safety fast!
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Figure A.5: RoBERTa(CC) RSM

b. Look! There is a shark swimming right below that duck!
It had better get away to safety fast!

Here, instead of having a discriminatory segment select which
of the two nouns could be the antecedent, one of the nouns is
switched out with another.

2. Example 90 has a typo in the question where Kamchatka is
spelled as ‘Kamtchatka’.

a.3.2 Human Judgements

Table A.2 shows the proportion of instances for which all three anno-
tators agreed and the average time required by annotators for the orig-
inal examples and each of the perturbed datasets. Figure A.14 shows
the Amazon Mechanical Turk template used. The annotator pool was
restricted to native speakers of English located in the United States
who were classified by Mturk as ‘masters’ and had a HITs approval
rate above 99%.

a.3.3 Pointwise Mutual Information

We compute unigram Pointwise Mutual Information statistics using
the Hyperwords2 package (Levy et al., 2015). If a corpus is split into
a collection D of words W and their contexts C, we can compute co-

2 https://bitbucket.org/omerlevy/hyperwords/
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Figure A.6: ELECTRA(CC) RSM

occurrence counts for each pair of w ∈ W and c ∈ C. PMI is then
defined as the log-ratio between the joint probability of w with c and
the product of their marginal probabilities. Refer to Levy et al. (2015)
for further details. For generating a collectionD of word-context pairs,
we use the following hyperparameter settings: a minimal word count
of 200 for being in the vocabulary, a context window size of 6, dy-
namic context windows, positional contexts (where each context is a
conjunction of a word and its relative position to the target word).

a.3.4 Confirming Solvability

Table A.3 shows the breakdown by perturbation type of the expert
annotations which were gathered for examples that were annotated
incorrectly by the Mechanical Turk workers.

a.3.5 Notes on construction of perturbed dataset

tense switch (ten) Examples 168–172 could not be changed
while maintaining the semantics of the instance intact.

relative clause insertion (rc) The pre-selected set of 19

templates is shown below:

• “who we had discussed __"

• “who he had discussed __"



142 appendix

Figure A.7: Linear mapping results (proportion of explained variance) bro-
ken down by color chip temperature for each of the baselines
and the LMs.

• “who she had discussed __"

• “who you had discussed __"

• “which we had seen __"

• “which he had seen __"

• “which she had seen __"

• “which you had seen __"

• “who we know from __"

• “who he knows from __"

• “who she knows from __"

• “who you know from __"

• “that is mentioned in __"

• “that is located at __"

• “that is close to __"

• “that is known for __"
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Figure A.8: RSA results (Kendall’s τ ) broken down by color temperature for
each for each of the baselines and the LMs.

• “which had been __",

• “who you met __"

• “that is __"

• “which was put there __"

synonym/name substitution (syn/na) No appropriate syn-
onyms were found for tide and wind in examples 130 and 131.

adverbial qualification (adv) Two instances (95 and 96) in
which the main verb was already modified were excluded.

a.3.6 Referent preferences

Table A.4 shows the percentage of examples in the switchable subset
of the datasets where the second referent in the text was assigned a
higher probability than the first, for both the original and reversed
referent order.

a.3.7 Effect of perturbations

nucleus sampling Table A.5 shows the average number of vo-
cabulary items kept after Nucleus sampling with p = 0.9 is applied.
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Figure A.9: Log frequency of color terms in common crawl.

Figure A.10: Entropy of distributions over part-of-speech categories, depen-
dency relations, and lemmas of dependency tree heads of color
terms in common crawl.

probability shift is defined as the difference in the probability
of a candidate before and after a perturbation is applied. Figure A.15

shows the difference in average probability shift between the correct
candidates and the incorrect candidates for each of the models per
perturbation type. This provides a view that is meaningfully different
from accuracy, as the probability of a candidate can shift without
exceeding the threshold required to change a model’s prediction. We
find that there is a general trend of the incorrect candidates becoming
more likely relative to the correct ones. This can be seen as confirming
that, on average, nearly all perturbations make the problems more
difficult for all models.

hidden state representation distance is used to provide a
more holistic view of the correspondence between the representations
derived for the different perturbations. The analysis is conducted on
the 128 examples which are common between all datasets. A rep-
resentation is derived for each example by taking the max-pool of
hidden-state representations of a model’s final layer. For each of the
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Pert. Full Agreement Avg. Time

org 82.45 15.32

ten 82.91 16.39

num 83.00 19.56

gen 78.06 19.24

vc 82.72 17.02

rc 82.68 17.83

adv 82.68 17.69

syn/na 82.45 15.26

Table A.2: Annotation statistics: Proportion of examples with full agreement
and average time required for answering in seconds.

Counts All Ambig. Non-Ambig. Correct

ten 9 0 9 8

num 14 2 12 9

gen 12 2 10 10

vc 17 3 14 12

rc 25 1 24 13

adv 13 0 13 11

syn/na 9 2 7 4

Table A.3: Breakdown of solvability annotation counts by perturbation. Am-
big. indicates the count of examples labeled as Ambiguous, Non-
Ambig. is the number of remaining examples. Correct indicates
the number of those which is solved correctly.

seven perturbations p, we compute pairwise correlation distance3 be-
tween each pair of original and perturbed example representations
yielding a vector ~Dp ∈ R128. The mean of ~Dp is then computed as
an aggregate measure of the distance between the representations de-
rived from a perturbation p and the original o. Figure A.16 shows a
plot of this for all perturbations for each of the models.

a.3.8 Candidate probability correlations

Figure A.17 shows the average correlation between a candidate’s prob-
ability when it is the correct referent and when it is not.

3 This is preferable to other distance measures as it normalizes both the mean and
variance of activity patterns over experimental conditions.
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Pert. Original Reversed

org 66.90 70.42

ten 62.38 65.14

num 60.16 56.10

gen 72.17 75.65

vc 38.14 39.83

rc 63.57 68.57

adv 68.08 70.92

syn/na 59.12 64.23

Table A.4: Percentage of examples in switchable subset with probabilities
assigned to the second referent in the text rather than the first,
for both the original and reversed referent order.

a.4 chapter 6

a.4.1 Positional Scores Per Offset

a.4.2 Decoding UUAS Across Relations

a.4.3 Full Parsing Scores

a.5 chapter 7

a.5.1 Subword vs. word scrambling

a.5.2 On biased sampling

We first split our vocab of size 5,000 into two halves, both of size
2500, such that the sum total of unigram frequencies of tokens in each
half is roughly equivalent. Next, iterating over 100k BookCorpus sen-
tences, we determine the sentence length l, for which there are an
equivalent number of tokens in sentences with length < l and sen-
tences with length >= l. We then sample tokens from the first vocab
half for sentences < l, and from the second vocab half for sentences
with length >= l, 80% of the time; for the other 20%, we sample from
the opposite half to introduce some overlap.
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Perturbation BERT RoBERTa XLNet BERT+WW RoBERTa+WG

org 19.81 203 1.26 1.07 1021.44

ten 23.88 165.84 1.26 1.09 947.53

num 90.35 341.05 1.57 1.30 1087.78

gen 18.11 128.37 1.44 1.19 1039.84

vc 41.88 154.21 1.28 1.09 961.04

rc 21.02 97.35 1.35 1.14 952.09

adv 17.01 145.35 1.23 1.10 1004.14

syn/na 31.50 199.26 1.39 1.11 1055.71

vocab. size 30522 50265 32000 30522 50265

Table A.5: Average number of vocabulary items left after probability distri-
bution truncation with p = 0.9 is applied.

a.5.3 Full UD results

a.6 chapter 8

a.6.1 Mean/median rank results

Table A.6 shows results for the Pearson’s r metric reported in the
main paper, alongside the mean/median rank metrics reported in
gauthier2019linking, which give the rank of a ground-truth sentence
or word representation in the list of nearest neighbors of a predicted
representation, ordered by increasing cosine distance. This metric
evaluates representations based on their support for contrasts be-
tween sentences/words which are relevant to the brain recordings.
The table shows that models with higher Pearson r scores, also have
a lower average ground truth word/sentence nearest neighbour rank
i.e. induce representations that better support contrasts between sen-
tences/words which are relevant to the brain recordings.

a.6.2 Significance testing

bootstrapping The bootstrapping procedure is described below.
For each of m subjects:

1. There are n stimuli sentences/words, corresponding to n fMRI
images. A linear decoder is trained to map a recording to its
corresponding LM-extracted representation. This is done using
12-fold cross-validation and yields a ‘predicted representation’
per stimulus.
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Table A.6: Brain decoding scores as measured via three metrics — Pear-
son’s r, Mean rank, and Median Rank — for each of the domain-
finetuned baseline (DF-B) models, the guided attention models
(GA), and the pretrained (PRE) model.

Model Pearson’s r Mean rank Median rank

Wehbe2014

DF-B DM 0.204 493.11 89.32

DF-B UD 0.206 497.24 81.69

DF-B UCCA 0.164 689.89 227.30

GA DM 0.343 172.45 10.96

GA UD 0.280 255.127 18.28

GA UCCA 0.261 315.73 25.78

PRE 0.225 436.70 53.13

2. To compensate for the small size of the dataset which might
lead to a noisy estimate of the linear decoder’s performance, we
now randomly resample n datapoints (with replacement) from
the full n datapoints.

3. For each resampling, our evaluation metrics (pearson’s r, mean
rank, etc.) are computed between the sampled predictions and
their corresponding ‘gold representations’, for all sets of LM
reps. We store the mean metric value (e.g. pearson r score) across
the n ‘sampled’ datapoints. We run 5000 such iterations. This
gives us 5000 such paired mean scores (across the n samples,
that is) for all models.

4. When comparing two models, e.g. GA DM vs. PRE, to test
our results for strength of evidence of generalization over stim-
uli, we compute the proportion of these 5000 paired samples
where e.g. GA DM’s mean sample score is greater than PRE.
After Bonferroni correction (bc) for multiple hypothesis testing,
this is the p-value we report. For Wehbe 2014, comparisons be-
tween each of the GA models and the pretrained baseline lead
to p = 0.000 (i.e. The GA model mean score is greater than
the pretrained baseline’s mean score for all 5000 sets of paired
samples), for all subjects. We, therefore, do not include a similar
table.

5. We average over the 5000 samples per subject, and use these
m subject means for the across-subject significance testing, de-
scribed below.

strength of generalization across subjects To test our
results for strength of generalization across subjects, we apply the
Wilcoxon signed rank test (Wilcoxon, 1992) to the m by-subject mean
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scores (see above), comparing the GA models to the pretrained base-
lines. Since m = 8 for both datasets, the lowest p-value is 0.0078 (if
every subject’s difference score consistently favors the GA model over
the baseline or vice versa). In the case of Wehbe 2014: all comparisons
yield a p-value of 0.0078 (0.045 after bc), where the GA model > the
pretrained baseline.

a.6.3 The Domain effect

Table A.7 shows average word perplexity scores for the pretrained
model and the domain-finetuned models for each of the three text
domains on the stimuli from Wehbe2014. Scores are averaged over
the words in a sentence and the sentences (stimuli) in the datasets.

Table A.7: Average word perplexity for the domain-finetuned baseline (DF-
B) models, the guided attention models (GA), and the pretrained
(PRE) model.

Model Wehbe2014

PRE 34.79

DF-B DM 36.11

DF-B UD 38.41

DF-B UCCA 40.45

GA DM 33.24

GA UD 37.16

GA UCCA 33.60

a.6.4 Semantic Tagging

probing details Representations for the probing task are de-
rived for each sentence in the dev and test sets from Abzianidze
and Bos (2017). The dev set is employed as a training set, because
it is mostly manually annotated/corrected (as opposed to the much
noisier training set) and because it is already possible to train rather
accurate semantic taggers which suffice for our analysis with a train-
ing set of that size (131337 instances). We report results for the official
test set. Table A.8 shows the frequency of each semantic tag we report
scores for in the test set. An L2 regularised logistic regression model
is used.
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discussion We observe the largest improvements for the DISCOURSE
and TEMPORAL categories. The former involves identifying subordi-
nate, coordinate, appositional, and contrast relations. These relations
are highly influenced by context, and correctly classifying them can
often be contingent on longer dependencies, which the structural bias
increases ’awareness’ of. The TEMPORAL category, on the other hand,
consists of tags such as clocktime or time of day which are applied
to multi-word expressions, e.g 27th December. Highlighting these de-
pendencies by assigning more attention weight between their sub-
parts is likely helpful for their accurate identification.

Table A.8: Semantic tag frequency in the test set.

Category / Frequency

Attribute 63763

Unamed Entity 48654

Logical 32973

Named Entity 29271

Event 25338

Tense and Aspect 15208

Discourse 9948

Temporal 5652

a.6.5 Content words and function words analysis

Figure A.24 shows the breakdown of brain decoding score by content
and function words for Wehbe2014. We consider content words as
words whose universal POS according to spaCy is one of the follow-
ing: {ADJ, ADV, NOUN, PROPN, VERB, X, NUM}. Out of a total of
4369, 2804 are considered as content and 1835 as function words.

a.6.6 Targeted Syntactic Evaluation Scores

.

a.6.7 Stimuli examples

The Wehbe2014 stimuli set consists of 384 sentences from chapter
9 of Harry Potter and the Sorcerer’s Stone. As would be expected from
naturalistic text, the sentences show a range of variance in complexity
with both simples sentences such as the following:

• Blood was pounding in his ears.

• Harry grabbed his broom.

• Harry ignored her.
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• The same thought seemed to have struck Malfoy.

• It was dinnertime.

And longer, substantially more complex ones such as:

• He didn’t have a clue what was going on, but he didn’t seem to be
being expelled, and some of the feeling started coming back to his legs.

• He leaned forward and pointed his broom handle down — next second
he was gathering speed in a steep dive, racing the ball — wind whis-
tled in his ears, mingled with the screams of people watching — he
stretched out his hand — a foot from the ground he caught it, just in
time to pull his broom straight, and he toppled gently onto the grass
with the Remembrall clutched safely in his fist.

• Perhaps brooms, like horses, could tell when you were afraid, thought
Harry; there was a quaver in Neville’s voice that said only too clearly
that he wanted to keep his feet on the ground.

• Harry had heard Fred and George Weasley complain about the school
brooms, saying that some of them started to vibrate if you flew too
high, or always flew slightly to the left.

• Harry hadn’t had a single letter since Hagrid’s note, something that
Malfoy had been quick to notice, of course.
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Figure A.11: Linear mapping results for each of the baselines and language
models, under all extraction configurations, broken down by
Munsell color chip. Each circle on the chart represents the rank-
ing of the predicted color chip when ranked according to Pear-
son distance (1− Pearson’s r) from gold – the larger the circle,
the higher (better) the ranking. Circle colors reflect the modal
color term assigned to the chips in the lexicon. Reference plot
showing modal color of all chips also included.
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Figure A.12: Explained variance for the linear probes trained on the normal
experimental condition (blue) and the control task (red) where
color terms are randomly permuted. The means are indicated
by the lines and standard deviation across layers is indicated
by the bands.

Figure A.13: The y-axis shows explained variance for the linear probes. The
means are indicated by the lines and standard deviation across
layers is indicated by the bands. The x-axis shows the number
of regression matrix coefficients assigned 95% of the weight.
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Figure A.14: Sample of Mturk template shown to annotators.
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Figure A.15: The difference between average probability shift for the cor-
rect and the incorrect referents per perturbation. Y-axis values
above zero mean the correct referent became more likely on
average after a perturbation and vice versa.
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Figure A.16: The correlation of pronoun hidden state representation dis-
tance from the original for each perturbation.
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Figure A.17: Correlation (Spearman’s ρ) between the probability of a candi-
date when it is the correct candidate and when it is the incor-
rect one. Candidates A and B are the first and second candi-
dates in a WSC instance.
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Figure A.18: Positional scores across relations for all languages.
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Figure A.19: Decoding UUAS as a function of best positional baselines.

Figure A.20: Parsing scores across components and languages.

Figure A.21: Pearson correlations, when scrambling by subword/word,
with/without disjoint vocabularies. Disjoint vocabularies ap-
pear to induce patterns in position-position correlations, while
scrambling at a word level induces ‘stripes’ of oscillating mag-
nitude; this is likely due to position embeddings learning con-
nections to adjacent tokens.
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Figure A.22: ∆ UAS, all models and layers across dependency lengths 1-5+,
w.r.t. Orig. Layer 13 represents a linear mix of all model layers.
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Figure A.23: Relative frequencies of dependency relations in
UDEnglish−EWT , at a dependency lengths indicated by
the x-axis

Figure A.24: Content word and function word brain decoding score (mean
Pearson’s r) for models fine-tuned by MLM with guided atten-
tion on each of the formalisms, as well the baseline models:
pretrained BERT (dotted) and domain-finetuned BERT (solid).





B I B L I O G R A P H Y

Abdou, Mostafa, Ana Valeria González, Mariya Toneva, Daniel Her-
shcovich, and Anders Søgaard (2021). “Does injecting linguistic
structure into language models lead to better alignment with
brain recordings?” In: arXiv preprint arXiv:2101.12608.

Abdou, Mostafa, Artur Kulmizev, Felix Hill, Daniel M Low, and An-
ders Søgaard (2019). “Higher-order Comparisons of Sentence En-
coder Representations.” In: arXiv preprint arXiv:1909.00303.

Abend, Omri and Ari Rappoport (Aug. 2013). “Universal Conceptual
Cognitive Annotation (UCCA).” In: Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Sofia, Bulgaria: Association for Computational Lin-
guistics, pp. 228–238. url: https://www.aclweb.org/anthology/P13-
1023.

Abnar, Samira, Rasyan Ahmed, Max Mijnheer, and Willem Zuidema
(2017). “Experiential, distributional and dependency-based word
embeddings have complementary roles in decoding brain activ-
ity.” In: arXiv preprint arXiv:1711.09285.

Abnar, Samira, Lisa Beinborn, Rochelle Choenni, and Willem Zuidema
(Aug. 2019a). “Blackbox Meets Blackbox: Representational Simi-
larity & Stability Analysis of Neural Language Models and Brains.”
In: Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP. Florence, Italy: Associ-
ation for Computational Linguistics, pp. 191–203. url: https://
www.aclweb.org/anthology/W19-4820.

— (2019b). “Blackbox meets blackbox: Representational Similarity
and Stability Analysis of Neural Language Models and Brains.”
In: arXiv preprint arXiv:1906.01539.

Abzianidze, Lasha and Johan Bos (2017). “Towards Universal Seman-
tic Tagging.” In: IWCS 2017 — 12th International Conference on Com-
putational Semantics — Short papers. url: https://www.aclweb.org/
anthology/W17-6901.

Adi, Yossi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav
Goldberg (2016). “Fine-grained analysis of sentence embeddings
using auxiliary prediction tasks.” In: arXiv preprint arXiv:1608.04207.

Agirre, Eneko, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius
Pasca, and Aitor Soroa (2009). “A study on similarity and relat-
edness using distributional and wordnet-based approaches.” In:

Alleman, Matteo, Jonathan Mamou, Miguel A Del Rio, Hanlin Tang,
Yoon Kim, and SueYeon Chung (2021). “Syntactic Perturbations
Reveal Representational Correlates of Hierarchical Phrase Struc-
ture in Pretrained Language Models.” In: arXiv preprint arXiv:2104.07578.

161

https://www.aclweb.org/anthology/P13-1023
https://www.aclweb.org/anthology/P13-1023
https://www.aclweb.org/anthology/W19-4820
https://www.aclweb.org/anthology/W19-4820
https://www.aclweb.org/anthology/W17-6901
https://www.aclweb.org/anthology/W17-6901


162 bibliography

Anderson, Andrew J, Elia Bruni, Ulisse Bordignon, Massimo Poesio,
and Marco Baroni (2013). “Of words, eyes and brains: Correlat-
ing image-based distributional semantic models with neural rep-
resentations of concepts.” In: Proceedings of the 2013 conference on
empirical methods in natural language processing, pp. 1960–1970.

Anderson, Andrew J, Douwe Kiela, Stephen Clark, and Massimo Poe-
sio (2017a). “Visually grounded and textual semantic models dif-
ferentially decode brain activity associated with concrete and ab-
stract nouns.” In: Transactions of the Association of Computational
Linguistics 5.1, pp. 17–30.

Anderson, Andrew James, Jeffrey R Binder, Leonardo Fernandino,
Colin J Humphries, Lisa L Conant, Mario Aguilar, Xixi Wang,
Donias Doko, and Rajeev DS Raizada (2017b). “Predicting neural
activity patterns associated with sentences using a neurobiolog-
ically motivated model of semantic representation.” In: Cerebral
Cortex 27.9, pp. 4379–4395.

Antonello, Richard, Javier Turek, Vy Vo, and Alexander Huth (2021).
“Low-Dimensional Structure in the Space of Language Represen-
tations is Reflected in Brain Responses.” In: arXiv preprint arXiv:2106.05426.

Ashby, Jane, Keith Rayner, and Charles Clifton (2005). “Eye move-
ments of highly skilled and average readers: Differential effects
of frequency and predictability.” In: The Quarterly Journal of Exper-
imental Psychology Section A 58.6, pp. 1065–1086.

Baars, Bernard and Nicole M Gage (2013). Fundamentals of cognitive
neuroscience: a beginner’s guide. Academic Press.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). “Neu-
ral machine translation by jointly learning to align and translate.”
In: arXiv preprint arXiv:1409.0473.

Bahlmann, Jörg, Antoni Rodriguez-Fornells, Michael Rotte, and Thomas
F Münte (2007). “An fMRI study of canonical and noncanonical
word order in German.” In: Human brain mapping 28.10, pp. 940–
949.

Banarescu, Laura, Claire Bonial, Shu Cai, Madalina Georgescu, Kira
Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha
Palmer, and Nathan Schneider (Aug. 2013). “Abstract Meaning
Representation for Sembanking.” In: Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with Discourse. Sofia,
Bulgaria: Association for Computational Linguistics, pp. 178–186.
url: https://www.aclweb.org/anthology/W13-2322.

Baroni, Marco (2021). “On the proper role of linguistically-oriented
deep net analysis in linguistic theorizing.” In: arXiv preprint arXiv:2106.08694.

Barrett, Maria, Joachim Bingel, Nora Hollenstein, Marek Rei, and An-
ders Søgaard (2018). “Sequence classification with human atten-
tion.” In: Proceedings of the 22nd Conference on Computational Natu-
ral Language Learning, pp. 302–312.

https://www.aclweb.org/anthology/W13-2322


bibliography 163

Barzilay, Regina and Lillian Lee (2004). “Catching the drift: Probabilis-
tic content models, with applications to generation and summa-
rization.” In: arXiv preprint cs/0405039.

Beinborn, Lisa, Samira Abnar, and Rochelle Choenni (2019). “Robust
evaluation of language-brain encoding experiments.” In: arXiv
preprint arXiv:1904.02547.

Belinkov, Yonatan (2021). “Probing classifiers: Promises, shortcom-
ings, and alternatives.” In: arXiv preprint arXiv:2102.12452.

Belinkov, Yonatan, Sebastian Gehrmann, and Ellie Pavlick (July 2020).
“Interpretability and Analysis in Neural NLP.” In: Proceedings of
the 58th Annual Meeting of the Association for Computational Lin-
guistics: Tutorial Abstracts. Online: Association for Computational
Linguistics, pp. 1–5. doi: 10.18653/v1/2020.acl-tutorials.1. url:
https://www.aclweb.org/anthology/2020.acl-tutorials.1.

Belinkov, Yonatan and James Glass (Mar. 2019a). “Analysis Methods
in Neural Language Processing: A Survey.” In: Transactions of the
Association for Computational Linguistics 7, pp. 49–72. doi: 10.1162/
tacl_a_00254. url: https://www.aclweb.org/anthology/Q19-1004.

— (Mar. 2019b). “Analysis Methods in Neural Language Processing:
A Survey.” In: Transactions of the Association for Computational Lin-
guistics 7, pp. 49–72. doi: 10.1162/tacl_a_00254.

Belinkov, Yonatan, Lluís Màrquez, Hassan Sajjad, Nadir Durrani, Fahim
Dalvi, and James Glass (Nov. 2017b). “Evaluating Layers of Rep-
resentation in Neural Machine Translation on Part-of-Speech and
Semantic Tagging Tasks.” In: Proceedings of the Eighth International
Joint Conference on Natural Language Processing (Volume 1: Long Pa-
pers). Taipei, Taiwan: Asian Federation of Natural Language Pro-
cessing, pp. 1–10. url: https://www.aclweb.org/anthology/I17-
1001.

— (2017a). “Evaluating Layers of Representation in Neural Machine
Translation on Part-of-Speech and Semantic Tagging Tasks.” In:
Proceedings of the Eighth International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Vol. 1, pp. 1–10.

Belinkov, Yonatan, Adam Poliak, Stuart M Shieber, Benjamin Van
Durme, and Alexander M Rush (2019a). “Don’t Take the Premise
for Granted: Mitigating Artifacts in Natural Language Inference.”
In: arXiv preprint arXiv:1907.04380.

Belinkov, Yonatan, Adam Poliak, Stuart Shieber, Benjamin Van Durme,
and Alexander Rush (June 2019b). “On Adversarial Removal of
Hypothesis-only Bias in Natural Language Inference.” In: Pro-
ceedings of the Eighth Joint Conference on Lexical and Computational
Semantics (*SEM 2019). Minneapolis, Minnesota: Association for
Computational Linguistics, pp. 256–262. doi: 10.18653/v1/S19-

1028.
Bender, Emily M. and Alexander Koller (July 2020a). “Climbing to-

wards NLU: On Meaning, Form, and Understanding in the Age

https://doi.org/10.18653/v1/2020.acl-tutorials.1
https://www.aclweb.org/anthology/2020.acl-tutorials.1
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://www.aclweb.org/anthology/Q19-1004
https://doi.org/10.1162/tacl_a_00254
https://www.aclweb.org/anthology/I17-1001
https://www.aclweb.org/anthology/I17-1001
https://doi.org/10.18653/v1/S19-1028
https://doi.org/10.18653/v1/S19-1028


164 bibliography

of Data.” In: Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics. Online: Association for Compu-
tational Linguistics, pp. 5185–5198. doi: 10.18653/v1/2020.acl-
main . 463. url: https : / / www . aclweb . org / anthology / 2020 . acl -

main.463.
Bender, Emily M and Alexander Koller (2020b). “Climbing towards

NLU: On meaning, form, and understanding in the age of data.”
In: Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, pp. 5185–5198.

Bengio, Yoshua (2009). Learning deep architectures for AI. Now Publish-
ers Inc.

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Jan-
vin (Mar. 2003). “A Neural Probabilistic Language Model.” In:
J. Mach. Learn. Res. 3, pp. 1137–1155. issn: 1532-4435. url: http:
//dl.acm.org/citation.cfm?id=944919.944966.

Berlin, Brent and Paul Kay (1991). Basic color terms: Their universality
and evolution. Univ of California Press.

Bever, Thomas G (1970). “The cognitive basis for linguistic structures.”
In: Cognition and the development of language.

Bhattasali, Shohini, Jonathan Brennan, Wen-Ming Luh, Berta Fran-
zluebbers, and John Hale (May 2020). “The Alice Datasets: fMRI
& EEG Observations of Natural Language Comprehension.” En-
glish. In: Proceedings of the 12th Language Resources and Evaluation
Conference. Marseille, France: European Language Resources As-
sociation, pp. 120–125. isbn: 979-10-95546-34-4. url: https://www.
aclweb.org/anthology/2020.lrec-1.15.

Bisk, Yonatan, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua
Bengio, Joyce Chai, Mirella Lapata, Angeliki Lazaridou, Jonathan
May, Aleksandr Nisnevich, et al. (2020a). “Experience grounds
language.” In: arXiv preprint arXiv:2004.10151.

Bisk, Yonatan et al. (Nov. 2020b). “Experience Grounds Language.” In:
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Online: Association for Computa-
tional Linguistics, pp. 8718–8735. doi: 10.18653/v1/2020.emnlp-
main.703. url: https://www.aclweb.org/anthology/2020.emnlp-

main.703.
Blank, Idan, Zuzanna Balewski, Kyle Mahowald, and Evelina Fedorenko

(2016). “Syntactic processing is distributed across the language
system.” In: Neuroimage 127, pp. 307–323.

Blevins, Terra, Omer Levy, and Luke Zettlemoyer (2018). “Deep rnns
encode soft hierarchical syntax.” In: arXiv preprint arXiv:1805.04218.

Bloomfield, Leonard (1926). “A set of postulates for the science of
language.” In: Language 2.3, pp. 153–164.

Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov
(2017). “Enriching word vectors with subword information.” In:

https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://www.aclweb.org/anthology/2020.acl-main.463
https://www.aclweb.org/anthology/2020.acl-main.463
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=944919.944966
https://www.aclweb.org/anthology/2020.lrec-1.15
https://www.aclweb.org/anthology/2020.lrec-1.15
https://doi.org/10.18653/v1/2020.emnlp-main.703
https://doi.org/10.18653/v1/2020.emnlp-main.703
https://www.aclweb.org/anthology/2020.emnlp-main.703
https://www.aclweb.org/anthology/2020.emnlp-main.703


bibliography 165

Transactions of the Association for Computational Linguistics 5, pp. 135–
146.

Bommasani, Rishi, Kelly Davis, and Claire Cardie (July 2020a). “In-
terpreting Pretrained Contextualized Representations via Reduc-
tions to Static Embeddings.” In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online: As-
sociation for Computational Linguistics, pp. 4758–4781. doi: 10.
18653 / v1 / 2020 . acl - main . 431. url: https : / / www . aclweb . org /

anthology/2020.acl-main.431.
— (2020b). “Interpreting Pretrained Contextualized Representations

via Reductions to Static Embeddings.” In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 4758–
4781.

Bommasani, Rishi, Drew A Hudson, Ehsan Adeli, Russ Altman, Sim-
ran Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg,
Antoine Bosselut, Emma Brunskill, et al. (2021). “On the opportu-
nities and risks of foundation models.” In: arXiv preprint arXiv:2108.07258.

Bos, Johan, Valerio Basile, Kilian Evang, Noortje J Venhuizen, and Jo-
hannes Bjerva (2017). “The Groningen meaning bank.” In: Hand-
book of linguistic annotation. Springer, pp. 463–496.

Bouchacourt, Diane and Marco Baroni (2018). “How agents see things:
On visual representations in an emergent language game.” In:
Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing. Brussels, Belgium: Association for Computa-
tional Linguistics, pp. 981–985. doi: 10.18653/v1/D18-1119. url:
https://www.aclweb.org/anthology/D18-1119.

Bowman, Samuel R, Gabor Angeli, Christopher Potts, and Christo-
pher D Manning (2015). “A large annotated corpus for learning
natural language inference.” In: arXiv preprint arXiv:1508.05326.

Boyce, Veronica, Richard Futrell, and Roger P Levy (2020). “Maze
Made Easy: Better and easier measurement of incremental pro-
cessing difficulty.” In: Journal of Memory and Language 111, p. 104082.

Brennan, Jonathan R, Chris Dyer, Adhiguna Kuncoro, and John T
Hale (2020). “Localizing syntactic predictions using recurrent neu-
ral network grammars.” In: Neuropsychologia 146, p. 107479.

Brennan, Jonathan R and John T Hale (2019). “Hierarchical structure
guides rapid linguistic predictions during naturalistic listening.”
In: PloS one 14.1, e0207741.

Brennan, Jonathan R and Liina Pylkkänen (2017). “MEG evidence for
incremental sentence composition in the anterior temporal lobe.”
In: Cognitive science 41, pp. 1515–1531.

Brennan, Jonathan R, Edward P Stabler, Sarah E Van Wagenen, Wen-
Ming Luh, and John T Hale (2016). “Abstract linguistic structure
correlates with temporal activity during naturalistic comprehen-
sion.” In: Brain and language 157, pp. 81–94.

https://doi.org/10.18653/v1/2020.acl-main.431
https://doi.org/10.18653/v1/2020.acl-main.431
https://www.aclweb.org/anthology/2020.acl-main.431
https://www.aclweb.org/anthology/2020.acl-main.431
https://doi.org/10.18653/v1/D18-1119
https://www.aclweb.org/anthology/D18-1119


166 bibliography

Brennan, Jonathan and Liina Pylkkänen (2012). “The time-course and
spatial distribution of brain activity associated with sentence pro-
cessing.” In: Neuroimage 60.2, pp. 1139–1148.

Bresnan, Joan, Ash Asudeh, Ida Toivonen, and Stephen Wechsler (2015).
Lexical-functional syntax. John Wiley & Sons.

Broca, Paul et al. (1861). “Perte de la parole, ramollissement chronique
et destruction partielle du lobe antérieur gauche du cerveau.” In:
Bull Soc Anthropol 2.1, pp. 235–238.

Brown, Peter F, John Cocke, Stephen A Della Pietra, Vincent J Della
Pietra, Frederick Jelinek, John Lafferty, Robert L Mercer, and Paul
S Roossin (1990). “A statistical approach to machine translation.”
In: Computational linguistics 16.2, pp. 79–85.

Brown, Tom B, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, et al. (2020). “Language models
are few-shot learners.” In: arXiv preprint arXiv:2005.14165.

Bruni, Elia, Gemma Boleda, Marco Baroni, and Nam-Khanh Tran
(2012). “Distributional semantics in technicolor.” In: Proceedings
of the 50th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 136–145.

Bugliarello, Emanuele and Naoaki Okazaki (July 2020). “Enhancing
Machine Translation with Dependency-Aware Self-Attention.” In:
Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics. Online: Association for Computational Linguis-
tics, pp. 1618–1627. doi: 10.18653/v1/2020.acl- main.147. url:
https://www.aclweb.org/anthology/2020.acl-main.147.

Bulat, Luana, Stephen Clark, and Ekaterina Shutova (2017). “Speak-
ing, seeing, understanding: Correlating semantic models with
conceptual representation in the brain.” In: Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pp. 1081–
1091.

Bullinaria, John A and Joseph P Levy (2007). “Extracting semantic rep-
resentations from word co-occurrence statistics: A computational
study.” In: Behavior research methods 39.3, pp. 510–526.

— (2013). “Limiting factors for mapping corpus-based semantic rep-
resentations to brain activity.” In: PloS one 8.3, e57191.

Caucheteux, Charlotte, Alexandre Gramfort, and Jean-Remi King (2021a).
“Disentangling syntax and semantics in the brain with deep net-
works.” In: International Conference on Machine Learning. PMLR,
pp. 1336–1348.

Caucheteux, Charlotte, Alexandre Gramfort, and Jean-Rémi King (2021b).
“GPT-2’s activations predict the degree of semantic comprehen-
sion in the human brain.” In: bioRxiv.

Caucheteux, Charlotte and Jean-Rémi King (2020). “Language pro-
cessing in brains and deep neural networks: computational con-
vergence and its limits.” In: BioRxiv.

https://doi.org/10.18653/v1/2020.acl-main.147
https://www.aclweb.org/anthology/2020.acl-main.147


bibliography 167

Cawley, Gavin C and Nicola LC Talbot (2010). “On over-fitting in
model selection and subsequent selection bias in performance
evaluation.” In: The Journal of Machine Learning Research 11, pp. 2079–
2107.

Chaabouni, Rahma, Eugene Kharitonov, Emmanuel Dupoux, and Marco
Baroni (2021). “Communicating artificial neural networks develop
efficient color-naming systems.” In: Proceedings of the National Academy
of Sciences 118.12.

Chastrette, M (1997). “Trends in structure-odor relationship.” In: SAR
and QSAR in Environmental Research 6.3-4, pp. 215–254.

Chen, Danqi, Jason Bolton, and Christopher D. Manning (Aug. 2016a).
“A Thorough Examination of the CNN/Daily Mail Reading Com-
prehension Task.” In: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Pa-
pers). Berlin, Germany: Association for Computational Linguis-
tics, pp. 2358–2367. doi: 10.18653/v1/P16-1223. url: https://www.
aclweb.org/anthology/P16-1223.

— (Aug. 2016b). “A Thorough Examination of the CNN/Daily Mail
Reading Comprehension Task.” In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Berlin, Germany: Association for Computational Lin-
guistics, pp. 2358–2367. doi: 10.18653/v1/P16-1223.

Chen, Lin (1982). “Topological structure in visual perception.” In: Sci-
ence 218.4573, pp. 699–700.

Chen, Yun-Nung, Dilek Hakkani-Tur, Gokhan Tur, Asli Celikyilmaz,
Jianfeng Gao, and Li Deng (2016c). “Knowledge as a teacher:
Knowledge-guided structural attention networks.” In: arXiv preprint
arXiv:1609.03286.

Chi, Ethan A., John Hewitt, and Christopher D. Manning (July 2020).
“Finding Universal Grammatical Relations in Multilingual BERT.”
In: Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics. Online: Association for Computational Lin-
guistics, pp. 5564–5577. doi: 10.18653/v1/2020.acl-main.493. url:
https://www.aclweb.org/anthology/2020.acl-main.493.

Chomsky, Noam (1956). “Three models for the description of lan-
guage.” In: IRE Transactions on information theory 2.3, pp. 113–124.

— (1957). Syntactic Structures. The Hague: Mouton and Co.
— (2014a). Aspects of the Theory of Syntax. Vol. 11. MIT press.
— (2014b). The minimalist program. MIT press.
Chowdhury, Shammur Absar and Roberto Zamparelli (Aug. 2019).

“An LSTM Adaptation Study of (Un)grammaticality.” In: Proceed-
ings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Inter-
preting Neural Networks for NLP. Florence, Italy: Association for
Computational Linguistics, pp. 204–212. doi: 10.18653/v1/W19-

4821. url: https://www.aclweb.org/anthology/W19-4821.

https://doi.org/10.18653/v1/P16-1223
https://www.aclweb.org/anthology/P16-1223
https://www.aclweb.org/anthology/P16-1223
https://doi.org/10.18653/v1/P16-1223
https://doi.org/10.18653/v1/2020.acl-main.493
https://www.aclweb.org/anthology/2020.acl-main.493
https://doi.org/10.18653/v1/W19-4821
https://doi.org/10.18653/v1/W19-4821
https://www.aclweb.org/anthology/W19-4821


168 bibliography

Christiansen, Morten H and Nick Chater (1999). “Toward a connec-
tionist model of recursion in human linguistic performance.” In:
Cognitive Science 23.2, pp. 157–205.

Chronis, Gabriella and Katrin Erk (2020). “When is a bishop not like a
rook? When it’s like a rabbi! Multi-prototype BERT embeddings
for estimating semantic relationships.” In: Proceedings of the 24th
Conference on Computational Natural Language Learning, pp. 227–
244.

Chrupała, Grzegorz and Afra Alishahi (2019). “Correlating neural
and symbolic representations of language.” In: arXiv preprint arXiv:1905.06401.

Chrupała, Grzegorz, Lieke Gelderloos, and Afra Alishahi (2017). “Rep-
resentations of language in a model of visually grounded speech
signal.” In: arXiv preprint arXiv:1702.01991.

Chu, Yoeng-Jin (1965). “On the shortest arborescence of a directed
graph.” In: Scientia Sinica 14, pp. 1396–1400.

Church, Kenneth Ward (1989). “A stochastic parts program and noun
phrase parser for unrestricted text.” In: International Conference on
Acoustics, Speech, and Signal Processing, IEEE, pp. 695–698.

Church, Kenneth Ward and Patrick Hanks (1990). “Word association
norms, mutual information, and lexicography.” In: Computational
linguistics 16.1, pp. 22–29.

Cichy, Radoslaw Martin, Aditya Khosla, Dimitrios Pantazis, Antonio
Torralba, and Aude Oliva (2016). “Comparison of deep neural
networks to spatio-temporal cortical dynamics of human visual
object recognition reveals hierarchical correspondence.” In: Scien-
tific reports 6, p. 27755.

Clark, Christopher, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski,
Michael Collins, and Kristina Toutanova (2019a). “BoolQ: Explor-
ing the surprising difficulty of natural yes/no questions.” In: arXiv
preprint arXiv:1905.10044.

Clark, Kevin, Urvashi Khandelwal, Omer Levy, and Christopher D
Manning (2019b). “What Does BERT Look At? An Analysis of
BERT’s Attention.” In: arXiv preprint arXiv:1906.04341.

Clark, Kevin, Urvashi Khandelwal, Omer Levy, and Christopher D.
Manning (Aug. 2019c). “What Does BERT Look at? An Analy-
sis of BERT’s Attention.” In: Proceedings of the 2019 ACL Work-
shop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP. Florence, Italy: Association for Computational Linguistics,
pp. 276–286. doi: 10.18653/v1/W19-4828. url: https://www.aclweb.
org/anthology/W19-4828.

Clark, Kevin, Minh-Thang Luong, Quoc V Le, and Christopher D
Manning (2020). “Electra: Pre-training text encoders as discrimi-
nators rather than generators.” In: arXiv preprint arXiv:2003.10555.

Clouatre, Louis, Prasanna Parthasarathi, Amal Zouaq, and Sarath
Chandar (2021). “Demystifying Neural Language Models’ Insen-
sitivity to Word-Order.” In: arXiv preprint arXiv:2107.13955.

https://doi.org/10.18653/v1/W19-4828
https://www.aclweb.org/anthology/W19-4828
https://www.aclweb.org/anthology/W19-4828


bibliography 169

Collins, Rebecca L (2011). “Content analysis of gender roles in media:
Where are we now and where should we go?” In: Sex roles 64.3-4,
pp. 290–298.

Comrie, Bernard (1989). Language universals and linguistic typology: Syn-
tax and morphology. University of Chicago press.

Conneau, Alexis, Douwe Kiela, Holger Schwenk, Loïc Barrault, and
Antoine Bordes (2017a). “Supervised Learning of Universal Sen-
tence Representations from Natural Language Inference Data.”
In: CoRR abs/1705.02364. arXiv: 1705.02364. url: http://arxiv.
org/abs/1705.02364.

Conneau, Alexis, Douwe Kiela, Holger Schwenk, Loic Barrault, and
Antoine Bordes (2017b). “Supervised learning of universal sen-
tence representations from natural language inference data.” In:
arXiv preprint arXiv:1705.02364.

Conneau, Alexis, German Kruszewski, Guillaume Lample, Loïc Bar-
rault, and Marco Baroni (2018). “What you can cram into a single
vector: Probing sentence embeddings for linguistic properties.”
In: arXiv preprint arXiv:1805.01070.

Copestake, Ann, Dan Flickinger, Carl Pollard, and Ivan A Sag (2005).
“Minimal recursion semantics: An introduction.” In: Research on
language and computation 3.2-3, pp. 281–332.

Cordonnier, Jean-Baptiste, Andreas Loukas, and Martin Jaggi (Jan.
2020). “On the Relationship between Self-Attention and Convo-
lutional Layers.” In: arXiv:1911.03584 [cs, stat].

Dagan, Ido, Oren Glickman, and Bernardo Magnini (2005). “The pas-
cal recognising textual entailment challenge.” In: Machine Learn-
ing Challenges Workshop. Springer, pp. 177–190.

Danilevsky, Marina, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban
Kawas, and Prithviraj Sen (Dec. 2020). “A Survey of the State of
Explainable AI for Natural Language Processing.” In: Proceedings
of the 1st Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics and the 10th International Joint Conference
on Natural Language Processing. Suzhou, China: Association for
Computational Linguistics, pp. 447–459. url: https://www.aclweb.
org/anthology/2020.aacl-main.46.

Danks, Joseph H and Sam Glucksberg (1971). “Psychological scaling
of adjective orders.” In: Journal of Memory and Language 10.1, p. 63.

Dapretto, Mirella and Susan Y Bookheimer (1999). “Form and content:
dissociating syntax and semantics in sentence comprehension.”
In: Neuron 24.2, pp. 427–432.

Dasgupta, Ishita, Demi Guo, Andreas Stuhlmüller, Samuel J Gersh-
man, and Noah D Goodman (2018). “Evaluating compositionality
in sentence embeddings.” In: arXiv preprint arXiv:1802.04302.

De Marneffe, Marie-Catherine, Mandy Simons, and Judith Tonhauser
(2019). “The CommitmentBank: Investigating projection in natu-

https://arxiv.org/abs/1705.02364
http://arxiv.org/abs/1705.02364
http://arxiv.org/abs/1705.02364
https://www.aclweb.org/anthology/2020.aacl-main.46
https://www.aclweb.org/anthology/2020.aacl-main.46


170 bibliography

rally occurring discourse.” In: proceedings of Sinn und Bedeutung.
Vol. 23. 2, pp. 107–124.

Desmond, Roger and Anna Danilewicz (2010). “Women are on, but
not in, the news: Gender roles in local television news.” In: Sex
Roles 62.11-12, pp. 822–829.

Devereux, Barry, Colin Kelly, and Anna Korhonen (2010). “Using
fMRI activation to conceptual stimuli to evaluate methods for ex-
tracting conceptual representations from corpora.” In: Proceedings
of the NAACL HLT 2010 First Workshop on Computational Neurolin-
guistics, pp. 70–78.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova
(June 2019a). “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding.” In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for Com-
putational Linguistics, pp. 4171–4186. doi: 10.18653/v1/N19-1423.
url: https://www.aclweb.org/anthology/N19-1423.

— (June 2019b). “BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding.” In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for Com-
putational Linguistics, pp. 4171–4186. doi: 10.18653/v1/N19-1423.

Ding, Nai, Lucia Melloni, Hang Zhang, Xing Tian, and David Poeppel
(2016). “Cortical tracking of hierarchical linguistic structures in
connected speech.” In: Nature neuroscience 19.1, pp. 158–164.

Dinu, Georgiana, Angeliki Lazaridou, and Marco Baroni (2014). “Im-
proving zero-shot learning by mitigating the hubness problem.”
In: arXiv preprint arXiv:1412.6568.

Dixon, Robert M. W. (2010/2012). Basic Linguistic Theory. 3 vols. Ox-
ford University Press.

Dodge, Jesse, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh
Hajishirzi, and Noah Smith (2020). “Fine-tuning pretrained lan-
guage models: Weight initializations, data orders, and early stop-
ping.” In: arXiv preprint arXiv:2002.06305.

Doumas, Leonidas AA, John E Hummel, and Catherine M Sandhofer
(2008). “A theory of the discovery and predication of relational
concepts.” In: Psychological review 115.1, p. 1.

Dozat, Timothy and Christopher D Manning (2016). “Deep biaffine at-
tention for neural dependency parsing.” In: arXiv preprint arXiv:1611.01734.

Dozat, Timothy, Peng Qi, and Christopher D. Manning (Aug. 2017).
“Stanford’s Graph-based Neural Dependency Parser at the CoNLL
2017 Shared Task.” In: Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies. Van-
couver, Canada: Association for Computational Linguistics, pp. 20–

https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.18653/v1/N19-1423


bibliography 171

30. doi: 10.18653/v1/K17- 3002. url: https://www.aclweb.org/

anthology/K17-3002.
Duffy, Susan A, Robin K Morris, and Keith Rayner (1988). “Lexical

ambiguity and fixation times in reading.” In: Journal of memory
and language 27.4, pp. 429–446.

Durrani, Nadir, Hassan Sajjad, Fahim Dalvi, and Yonatan Belinkov
(Nov. 2020). “Analyzing Individual Neurons in Pre-trained Lan-
guage Models.” In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Online: Associa-
tion for Computational Linguistics, pp. 4865–4880. doi: 10.18653/
v1/2020.emnlp-main.395. url: https://www.aclweb.org/anthology/
2020.emnlp-main.395.

Dyer, Chris, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A
Smith (2016). “Recurrent neural network grammars.” In: arXiv
preprint arXiv:1602.07776.

Eickenberg, Michael, Alexandre Gramfort, Gaël Varoquaux, and Bertrand
Thirion (2017). “Seeing it all: Convolutional network layers map
the function of the human visual system.” In: NeuroImage 152,
pp. 184–194.

Ennis, Robert J and Qasim Zaidi (2019). “Geometrical structure of
perceptual color space: mental representations and adaptation in-
variance.” In: Journal of vision 19.12, pp. 1–1.

Ettinger, Allyson (2019). “What BERT is not: Lessons from a new suite
of psycholinguistic diagnostics for language models.” In: arXiv
preprint arXiv:1907.13528.

Fedorenko, Evelina and Idan A Blank (2020). “Broca’s area is not a
natural kind.” In: Trends in cognitive sciences 24.4, pp. 270–284.

Fedorenko, Evelina, Idan Asher Blank, Matthew Siegelman, and Zachary
Mineroff (2020). “Lack of selectivity for syntax relative to word
meanings throughout the language network.” In: Cognition 203,
p. 104348.

Fedorenko, Evelina, Alfonso Nieto-Castanon, and Nancy Kanwisher
(2012). “Lexical and syntactic representations in the brain: an
fMRI investigation with multi-voxel pattern analyses.” In: Neu-
ropsychologia 50.4, pp. 499–513.

Fedorenko, Evelina, Terri L Scott, Peter Brunner, William G Coon,
Brianna Pritchett, Gerwin Schalk, and Nancy Kanwisher (2016).
“Neural correlate of the construction of sentence meaning.” In:
Proceedings of the National Academy of Sciences 113.41, E6256–E6262.

Fedorenko, Evelina and Sharon L Thompson-Schill (2014). “Rework-
ing the language network.” In: Trends in cognitive sciences 18.3,
pp. 120–126.

Feldbauer, Roman, Maximilian Leodolter, Claudia Plant, and Arthur
Flexer (2018). “Fast approximate hubness reduction for large high-
dimensional data.” In: 2018 IEEE International Conference on Big
Knowledge (ICBK). IEEE, pp. 358–367.

https://doi.org/10.18653/v1/K17-3002
https://www.aclweb.org/anthology/K17-3002
https://www.aclweb.org/anthology/K17-3002
https://doi.org/10.18653/v1/2020.emnlp-main.395
https://doi.org/10.18653/v1/2020.emnlp-main.395
https://www.aclweb.org/anthology/2020.emnlp-main.395
https://www.aclweb.org/anthology/2020.emnlp-main.395


172 bibliography

Feldman, Joshua, Joe Davison, and Alexander M. Rush (2019). Com-
monsense Knowledge Mining from Pretrained Models. arXiv: 1909 .

00505 [cs.CL].
Feng, Shiwen, Jennifer Legault, Long Yang, Junwei Zhu, Keqing Shao,

and Yiming Yang (2015). “Differences in grammatical processing
strategies for active and passive sentences: An fMRI study.” In:
Journal of Neurolinguistics 33, pp. 104–117.

Ferreira, Fernanda, Karl GD Bailey, and Vittoria Ferraro (2002). “Good-
enough representations in language comprehension.” In: Current
directions in psychological science 11.1, pp. 11–15.

Flickinger, Dan, Stephan Oepen, and Emily M Bender (2017). “Sus-
tainable development and refinement of complex linguistic anno-
tations at scale.” In: Handbook of Linguistic Annotation. Springer,
pp. 353–377.

Fodor, Jerry A (1983). The modularity of mind. MIT press.
Fodor, Jerry and Merrill Garrett (1966). “Some reflections on compe-

tence and performance.” In: Psycholinguistic papers, pp. 135–179.
Forbes, Maxwell, Ari Holtzman, and Yejin Choi (2019). “Do Neu-

ral Language Representations Learn Physical Commonsense?” In:
arXiv preprint arXiv:1908.02899.

Forster, Kenneth I, Christine Guerrera, and Lisa Elliot (2009). “The
maze task: Measuring forced incremental sentence processing time.”
In: Behavior research methods 41.1, pp. 163–171.

Frank, Stefan L and Morten H Christiansen (2018). “Hierarchical and
sequential processing of language: A response to: Ding, Melloni,
Tian, and Poeppel (2017). Rule-based and word-level statistics-
based processing of language: insights from neuroscience. Lan-
guage, Cognition and Neuroscience.” In: Language, Cognition and
Neuroscience 33.9, pp. 1213–1218.

Frank, Stefan L, Leun J Otten, Giulia Galli, and Gabriella Vigliocco
(2013). “Word surprisal predicts N400 amplitude during read-
ing.” In:

— (2015). “The ERP response to the amount of information con-
veyed by words in sentences.” In: Brain and language 140, pp. 1–
11.

Frassinelli, Diego (2015). “The effect of context on the activation and
processing of word meaning over time.” In:

Friederici, Angela D (2011). “The brain basis of language processing:
from structure to function.” In: Physiological reviews 91.4, pp. 1357–
1392.

Friederici, Angela D and Sarah ME Gierhan (2013). “The language
network.” In: Current opinion in neurobiology 23.2, pp. 250–254.

Friederici, Angela D, Axel Mecklinger, Kevin M Spencer, Karsten
Steinhauer, and Emanuel Donchin (2001). “Syntactic parsing pref-
erences and their on-line revisions: A spatio-temporal analysis of

https://arxiv.org/abs/1909.00505
https://arxiv.org/abs/1909.00505


bibliography 173

event-related brain potentials.” In: Cognitive Brain Research 11.2,
pp. 305–323.

Friederici, Angela D, Martin Meyer, and D Yves Von Cramon (2000).
“Auditory language comprehension: an event-related fMRI study
on the processing of syntactic and lexical information.” In: Brain
and language 74.2, pp. 289–300.

Friederici, Angela D, Erdmut Pfeifer, and Anja Hahne (1993). “Event-
related brain potentials during natural speech processing: Effects
of semantic, morphological and syntactic violations.” In: Cogni-
tive brain research 1.3, pp. 183–192.

Futrell, Richard and Roger P. Levy (2019). “Do RNNs learn human-
like abstract word order preferences?” In: Proceedings of the Society
for Computation in Linguistics (SCiL) 2019, pp. 50–59. doi: 10.7275/
jb34-9986. url: https://www.aclweb.org/anthology/W19-0106.

Futrell, Richard, Ethan Wilcox, Takashi Morita, Peng Qian, Miguel
Ballesteros, and Roger Levy (June 2019). “Neural language mod-
els as psycholinguistic subjects: Representations of syntactic state.”
In: Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis, Min-
nesota: Association for Computational Linguistics, pp. 32–42. doi:
10.18653/v1/N19-1004. url: https://aclanthology.org/N19-1004.

Fyshe, Alona, Partha P Talukdar, Brian Murphy, and Tom M Mitchell
(2014). “Interpretable semantic vectors from a joint model of brain-
and text-based meaning.” In: Proceedings of the conference. Associ-
ation for Computational Linguistics. Meeting. Vol. 2014. NIH Public
Access, p. 489.

Gałecki, Andrzej and Tomasz Burzykowski (2013). “Linear mixed-
effects model.” In: Linear Mixed-Effects Models Using R. Springer,
pp. 245–273.

Gauthier, Jon and Anna Ivanova (2018). “Does the brain represent
words? An evaluation of brain decoding studies of language un-
derstanding.” In: arXiv preprint arXiv:1806.00591.

Gauthier, Jon and Roger Levy (2019). “Linking artificial and human
neural representations of language.” In: arXiv preprint arXiv:1910.01244.

Geschwind, Norman (1970). “The organization of language and the
brain.” In: Science 170.3961, pp. 940–944.

Gibson, Edward (1998). “Linguistic complexity: Locality of syntactic
dependencies.” In: Cognition 68.1, pp. 1–76.

Gibson, Edward, Leon Bergen, and Steven T Piantadosi (2013). “Ratio-
nal integration of noisy evidence and prior semantic expectations
in sentence interpretation.” In: Proceedings of the National Academy
of Sciences 110.20, pp. 8051–8056.

Gibson, Edward, Richard Futrell, Julian Jara-Ettinger, Kyle Mahowald,
Leon Bergen, Sivalogeswaran Ratnasingam, Mitchell Gibson, Steven
T Piantadosi, and Bevil R Conway (2017). “Color naming across

https://doi.org/10.7275/jb34-9986
https://doi.org/10.7275/jb34-9986
https://www.aclweb.org/anthology/W19-0106
https://doi.org/10.18653/v1/N19-1004
https://aclanthology.org/N19-1004


174 bibliography

languages reflects color use.” In: Proceedings of the National Academy
of Sciences 114.40, pp. 10785–10790.

Goldberg, Yoav (2019). “Assessing BERT’s Syntactic Abilities.” In: arXiv
preprint arXiv:1901.05287.

Goldstein, Ariel, Zaid Zada, Eliav Buchnik, Mariano Schain, Amy
Price, Bobbi Aubrey, Samuel A Nastase, Amir Feder, Dotan Emanuel,
Alon Cohen, et al. (2021). “Thinking ahead: prediction in context
as a keystone of language in humans and machines.” In: bioRxiv,
pp. 2020–12.

Gonzalez-Garduno, Ana Valeria and Anders Søgaard (2017). “Using
gaze to predict text readability.” In: Proceedings of the 12th Work-
shop on Innovative Use of NLP for Building Educational Applications,
pp. 438–443.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep
learning. MIT press.

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton (2013).
“Speech recognition with deep recurrent neural networks.” In:
2013 IEEE international conference on acoustics, speech and signal pro-
cessing. Ieee, pp. 6645–6649.

Greenberg, Joseph (1963). “Some universals of grammar with particu-
lar reference to the order of meaningful elements.” In: In J. Green-
berg, ed., Universals of Language. 73-113. Cambridge, MA.

Gulordava, Kristina, Piotr Bojanowski, Edouard Grave, Tal Linzen,
and Marco Baroni (June 2018). “Colorless Green Recurrent Net-
works Dream Hierarchically.” In: Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers).
New Orleans, Louisiana: Association for Computational Linguis-
tics, pp. 1195–1205. doi: 10.18653/v1/N18-1108.

Gupta, Anurag (July 2003). “An Adaptive Approach to Collecting
Multimodal Input.” In: The Companion Volume to the Proceedings
of 41st Annual Meeting of the Association for Computational Linguis-
tics. Sapporo, Japan: Association for Computational Linguistics,
pp. 31–36. doi: 10.3115/1075178.1075182. url: https://www.aclweb.
org/anthology/P03-2005.

Gururangan, Suchin, Swabha Swayamdipta, Omer Levy, Roy Schwartz,
Samuel Bowman, and Noah A. Smith (June 2018a). “Annotation
Artifacts in Natural Language Inference Data.” In: Proceedings of
the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume
2 (Short Papers). New Orleans, Louisiana: Association for Compu-
tational Linguistics, pp. 107–112. doi: 10.18653/v1/N18-2017. url:
https://aclanthology.org/N18-2017.

— (June 2018b). “Annotation Artifacts in Natural Language Infer-
ence Data.” In: Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Hu-

https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.3115/1075178.1075182
https://www.aclweb.org/anthology/P03-2005
https://www.aclweb.org/anthology/P03-2005
https://doi.org/10.18653/v1/N18-2017
https://aclanthology.org/N18-2017


bibliography 175

man Language Technologies, Volume 2 (Short Papers). New Orleans,
Louisiana: Association for Computational Linguistics, pp. 107–
112. doi: 10.18653/v1/N18-2017.

Hagoort, Peter (2005). “On Broca, brain, and binding: a new frame-
work.” In: Trends in cognitive sciences 9.9, pp. 416–423.

Hagoort, Peter, Colin Brown, and Jolanda Groothusen (1993). “The
syntactic positive shift (SPS) as an ERP measure of syntactic pro-
cessing.” In: Language and cognitive processes 8.4, pp. 439–483.

Hahn, Michael and Frank Keller (2016). “Modeling human reading
with neural attention.” In: arXiv preprint arXiv:1608.05604.

Hajic, Jan, Eva Hajicová, Jarmila Panevová, Petr Sgall, Ondrej Bojar,
Silvie Cinková, Eva Fucíková, Marie Mikulová, Petr Pajas, Jan
Popelka, et al. (2012). “Announcing Prague Czech-English Depen-
dency Treebank 2.0.” In: LREC, pp. 3153–3160.

Hale, John (2001). “A probabilistic Earley parser as a psycholinguis-
tic model.” In: Second meeting of the north American chapter of the
association for computational linguistics.

Hale, John, Luca Campanelli, Jixing Li, Shohini Bhattasali, Christophe
Pallier, and Jonathan Brennan (2021). “Neuro-computational mod-
els of language processing.” In: Annual Review of Linguistics.

Hale, John, Chris Dyer, Adhiguna Kuncoro, and Jonathan R Brennan
(2018). “Finding syntax in human encephalography with beam
search.” In: arXiv preprint arXiv:1806.04127.

Hale, John, David Lutz, Wen-Ming Luh, and Jonathan Brennan (2015).
“Modeling fMRI time courses with linguistic structure at various
grain sizes.” In: Proceedings of the 6th workshop on cognitive modeling
and computational linguistics, pp. 89–97.

Henderson, John M, Wonil Choi, Matthew W Lowder, and Fernanda
Ferreira (2016). “Language structure in the brain: A fixation-related
fMRI study of syntactic surprisal in reading.” In: Neuroimage 132,
pp. 293–300.

Henry, J Craig (2006). “Electroencephalography: basic principles, clin-
ical applications, and related fields.” In: Neurology 67.11, pp. 2092–
2092.

Hernandez, Evan and Jacob Andreas (2021). “The Low-Dimensional
Linear Geometry of Contextualized Word Representations.” In:
arXiv preprint arXiv:2105.07109.

Hershcovich, Daniel, Omri Abend, and Ari Rappoport (July 2017).
“A Transition-Based Directed Acyclic Graph Parser for UCCA.”
In: Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Vancouver, Canada:
Association for Computational Linguistics, pp. 1127–1138. doi:
10.18653/v1/P17-1104. url: https://www.aclweb.org/anthology/
P17-1104.

— (June 2019). “Content Differences in Syntactic and Semantic Rep-
resentation.” In: Proceedings of the 2019 Conference of the North

https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/P17-1104
https://www.aclweb.org/anthology/P17-1104
https://www.aclweb.org/anthology/P17-1104


176 bibliography

American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers).
Minneapolis, Minnesota: Association for Computational Linguis-
tics, pp. 478–488. doi: 10.18653/v1/N19-1047. url: https://www.
aclweb.org/anthology/N19-1047.

Hewitt, John, Kawin Ethayarajh, Percy Liang, and Christopher D Man-
ning (2021). “Conditional probing: measuring usable information
beyond a baseline.” In: arXiv preprint arXiv:2109.09234.

Hewitt, John and Percy Liang (Nov. 2019a). “Designing and Inter-
preting Probes with Control Tasks.” In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). Hong Kong, China: Association for Computa-
tional Linguistics, pp. 2733–2743. doi: 10.18653/v1/D19-1275. url:
https://aclanthology.org/D19-1275.

— (2019b). “Designing and interpreting probes with control tasks.”
In: arXiv preprint arXiv:1909.03368.

Hewitt, John and Christopher D Manning (2019). “A structural probe
for finding syntax in word representations.” In: Proceedings of the
2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 4129–4138.

Hill, Felix, Roi Reichart, and Anna Korhonen (2015). “Simlex-999:
Evaluating semantic models with (genuine) similarity estimation.”
In: Computational Linguistics 41.4, pp. 665–695.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term
memory.” In: Neural computation 9.8, pp. 1735–1780.

Hollenstein, Nora, Maria Barrett, Marius Troendle, Francesco Bigiolli,
Nicolas Langer, and Ce Zhang (2019). “Advancing NLP with cog-
nitive language processing signals.” In: arXiv preprint arXiv:1904.02682.

Hollenstein, Nora, Adrian van der Lek, and Ce Zhang (Dec. 2020a).
“CogniVal in Action: An Interface for Customizable Cognitive
Word Embedding Evaluation.” In: Proceedings of the 28th Interna-
tional Conference on Computational Linguistics: System Demonstra-
tions. Barcelona, Spain (Online): International Committee on Com-
putational Linguistics (ICCL), pp. 34–40. doi: 10.18653/v1/2020.
coling- demos.7. url: https://www.aclweb.org/anthology/2020.

coling-demos.7.
Hollenstein, Nora, Federico Pirovano, Ce Zhang, Lena Jäger, and Lisa

Beinborn (2021). “Multilingual language models predict human
reading behavior.” In: arXiv preprint arXiv:2104.05433.

Hollenstein, Nora, Marius Troendle, Ce Zhang, and Nicolas Langer
(May 2020b). “ZuCo 2.0: A Dataset of Physiological Recordings
During Natural Reading and Annotation.” English. In: Proceed-
ings of the 12th Language Resources and Evaluation Conference. Mar-
seille, France: European Language Resources Association, pp. 138–

https://doi.org/10.18653/v1/N19-1047
https://www.aclweb.org/anthology/N19-1047
https://www.aclweb.org/anthology/N19-1047
https://doi.org/10.18653/v1/D19-1275
https://aclanthology.org/D19-1275
https://doi.org/10.18653/v1/2020.coling-demos.7
https://doi.org/10.18653/v1/2020.coling-demos.7
https://www.aclweb.org/anthology/2020.coling-demos.7
https://www.aclweb.org/anthology/2020.coling-demos.7


bibliography 177

146. isbn: 979-10-95546-34-4. url: https://www.aclweb.org/anthology/
2020.lrec-1.18.

Hollenstein, Nora and Ce Zhang (2019). “Entity recognition at first
sight: Improving NER with eye movement information.” In: arXiv
preprint arXiv:1902.10068.

Holtzman, Ari, Jan Buys, Maxwell Forbes, and Yejin Choi (2019). “The
curious case of neural text degeneration.” In: arXiv preprint arXiv:1904.09751.

Hou, Yifan and Mrinmaya Sachan (2021). “Bird’s Eye: Probing for
Linguistic Graph Structures with a Simple Information-Theoretic
Approach.” In: arXiv preprint arXiv:2105.02629.

Houle, Michael E (2015). “Inlierness, outlierness, hubness and dis-
criminability: an extreme-value-theoretic foundation.” In: National
Institute of Informatics Technical Report NII-2015-002E, Tokyo, Japan.

Hoyle, Alexander Miserlis, Lawrence Wolf-Sonkin, Hanna Wallach, Is-
abelle Augenstein, and Ryan Cotterell (July 2019). “Unsupervised
Discovery of Gendered Language through Latent-Variable Mod-
eling.” In: Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. Florence, Italy: Association for Com-
putational Linguistics, pp. 1706–1716. url: https://www.aclweb.
org/anthology/P19-1167.

Htut, Phu Mon, Jason Phang, Shikha Bordia, and Samuel R Bowman
(2019). “Do Attention Heads in BERT Track Syntactic Dependen-
cies?” In: arXiv preprint arXiv:1911.12246.

Hu, Jennifer, Jon Gauthier, Peng Qian, Ethan Wilcox, and Roger P
Levy (2020a). “A systematic assessment of syntactic generaliza-
tion in neural language models.” In: arXiv preprint arXiv:2005.03692.

Hu, Junjie, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan
Firat, and Melvin Johnson (Sept. 2020b). “XTREME: A Massively
Multilingual Multi-task Benchmark for Evaluating Cross-lingual
Generalization.” In: arXiv:2003.11080 [cs]. arXiv: 2003.11080. url:
http://arxiv.org/abs/2003.11080 (visited on 10/02/2020).

Hume, David (1938). An Abstract of a Treatise of Human Nature, 1740.
CUP Archive.

Humphries, Colin, Jeffrey R Binder, David A Medler, and Einat Lieben-
thal (2006). “Syntactic and semantic modulation of neural activity
during auditory sentence comprehension.” In: Journal of cognitive
neuroscience 18.4, pp. 665–679.

Hupkes, Dieuwke, Sara Veldhoen, and Willem Zuidema (2017). “Visu-
alisation and’diagnostic classifiers’ reveal how recurrent and re-
cursive neural networks process hierarchical structure.” In: arXiv
preprint arXiv:1711.10203.

Huth, Alexander G, Wendy A De Heer, Thomas L Griffiths, Frédéric
E Theunissen, and Jack L Gallant (2016). “Natural speech reveals
the semantic maps that tile human cerebral cortex.” In: Nature
532.7600, pp. 453–458.

https://www.aclweb.org/anthology/2020.lrec-1.18
https://www.aclweb.org/anthology/2020.lrec-1.18
https://www.aclweb.org/anthology/P19-1167
https://www.aclweb.org/anthology/P19-1167
http://arxiv.org/abs/2003.11080


178 bibliography

Ilharco, Gabriel, Rowan Zellers, Ali Farhadi, and Hannaneh Hajishirzi
(2020). “Probing text models for common ground with visual rep-
resentations.” In: arXiv preprint arXiv:2005.00619.

Ivanova, Angelina, Stephan Oepen, Lilja Øvrelid, and Dan Flickinger
(July 2012). “Who Did What to Whom? A Contrastive Study of
Syntacto-Semantic Dependencies.” In: Proceedings of the Sixth Lin-
guistic Annotation Workshop. Jeju, Republic of Korea: Association
for Computational Linguistics, pp. 2–11. url: https://www.aclweb.
org/anthology/W12-3602.

Jackson, Frank (1982). “Epiphenomenal qualia.” In: The Philosophical
Quarterly (1950-) 32.127, pp. 127–136.

Jain, Sarthak and Byron C Wallace (2019). “Attention is not Explana-
tion.” In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 3543–3556.

Jain, Shailee and Alexander Huth (2018). “Incorporating Context into
Language Encoding Models for fMRI.” In: Advances in Neural
Information Processing Systems. Ed. by S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Vol. 31.
Curran Associates, Inc. url: https://proceedings.neurips.cc/

paper/2018/file/f471223d1a1614b58a7dc45c9d01df19-Paper.pdf.
Jain, Shailee, Shivangi Mahto, Javier S Turek, Vy A Vo, Amanda LeBel,

and Alexander G Huth (2021). “Interpretable multi-timescale mod-
els for predicting fMRI responses to continuous natural speech.”
In: bioRxiv, pp. 2020–10.

Jelinek, Frederick, Bernard Merialdo, Salim Roukos, and Martin Strauss
(1991). “A dynamic language model for speech recognition.” In:
Speech and Natural Language: Proceedings of a Workshop Held at Pa-
cific Grove, California, February 19-22, 1991.

Jin, Huiyuan and Haitao Liu (June 2017). “How will text size influ-
ence the length of its linguistic constituents?” In: Poznan Studies
in Contemporary Linguistics 53. doi: 10.1515/psicl-2017-0008.

Jumelet, Jaap and Dieuwke Hupkes (Nov. 2018). “Do Language Mod-
els Understand Anything? On the Ability of LSTMs to Under-
stand Negative Polarity Items.” In: Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP. Brussels, Belgium: Association for Computational Lin-
guistics, pp. 222–231. doi: 10.18653/v1/W18-5424.

Just, Marcel A and Patricia A Carpenter (1980). “A theory of read-
ing: From eye fixations to comprehension.” In: Psychological review
87.4, p. 329.

— (1992). “A capacity theory of comprehension: individual differ-
ences in working memory.” In: Psychological review 99.1, p. 122.

Just, Marcel Adam, Patricia A Carpenter, Timothy A Keller, William F
Eddy, and Keith R Thulborn (1996). “Brain activation modulated
by sentence comprehension.” In: Science 274.5284, pp. 114–116.

https://www.aclweb.org/anthology/W12-3602
https://www.aclweb.org/anthology/W12-3602
https://proceedings.neurips.cc/paper/2018/file/f471223d1a1614b58a7dc45c9d01df19-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f471223d1a1614b58a7dc45c9d01df19-Paper.pdf
https://doi.org/10.1515/psicl-2017-0008
https://doi.org/10.18653/v1/W18-5424


bibliography 179

Kamp, Hans and Uwe Reyle (1993). “From discourse to logic: intro-
duction to modeltheoretic semantics of natural language, formal
logic and discourse representation theory.” In: Studies in linguis-
tics and philosophy.

Katz, Jerrold J and Jerry A Fodor (1963). “The structure of a semantic
theory.” In: language 39.2, pp. 170–210.

Kaushik, Divyansh and Zachary C Lipton (2018). “How Much Read-
ing Does Reading Comprehension Require? A Critical Investiga-
tion of Popular Benchmarks.” In: Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 5010–
5015.

Kay, Paul, Brent Berlin, Luisa Maffi, William R Merrifield, and Richard
Cook (2009). The world color survey. CSLI Publications Stanford,
CA.

Kay, Paul, Brent Berlin, and William Merrifield (1991). “Biocultural
implications of systems of color naming.” In: Journal of Linguistic
Anthropology 1.1, pp. 12–25.

Kay, Paul and Chad K McDaniel (1978). “The linguistic significance
of the meanings of basic color terms.” In: Language, pp. 610–646.

Kell, Alexander JE, Daniel LK Yamins, Erica N Shook, Sam V Norman-
Haignere, and Josh H McDermott (2018). “A task-optimized neu-
ral network replicates human auditory behavior, predicts brain
responses, and reveals a cortical processing hierarchy.” In: Neu-
ron 98.3, pp. 630–644.

Kemighan, Mark D, Kenneth Church, and William A Gale (1990). “A
spelling correction program based on a noisy channel model.” In:
COLING 1990 Volume 2: Papers presented to the 13th International
Conference on Computational Linguistics.

Kennedy, Alan, Robin Hill, and Joël Pynte (2003). “The dundee cor-
pus.” In: Proceedings of the 12th European conference on eye move-
ment.

Khashabi, Daniel, Snigdha Chaturvedi, Michael Roth, Shyam Upad-
hyay, and Dan Roth (2018). “Looking Beyond the Surface:A Chal-
lenge Set for Reading Comprehension over Multiple Sentences.”
In: NAACL.

Kim, Judy Sein, Brianna Aheimer, Verónica Montané Manrara, and
Marina Bedny (2020). “Shared understanding of color among con-
genitally blind and sighted adults.” In:

Klein, Dan and Christopher D. Manning (2004). “Corpus-Based In-
duction of Syntactic Structure: Models of Dependency and Con-
stituency.” In: Proceedings of the 42nd Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), pp. 479–486.

Kocijan, Vid, Ana-Maria Cretu, Oana-Maria Camburu, Yordan Yor-
danov, and Thomas Lukasiewicz (2019). “A Surprisingly Robust
Trick for Winograd Schema Challenge.” In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics.



180 bibliography

Kondratyuk, Dan and Milan Straka (2019a). “75 Languages, 1 Model:
Parsing Universal Dependencies Universally.” In: Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 2779–2795.

— (Nov. 2019b). “75 Languages, 1 Model: Parsing Universal Depen-
dencies Universally.” In: Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Hong Kong, China: Association for Computational Lin-
guistics, pp. 2779–2795. doi: 10.18653/v1/D19-1279. url: https:
//www.aclweb.org/anthology/D19-1279.

Kornblith, Simon, Mohammad Norouzi, Honglak Lee, and Geoffrey
Hinton (2019). “Similarity of Neural Network Representations Re-
visited.” In: Proceedings of the 36th International Conference on Ma-
chine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhut-
dinov. Vol. 97. Proceedings of Machine Learning Research. PMLR,
pp. 3519–3529. url: http://proceedings.mlr.press/v97/kornblith19a.
html.

Kovaleva, Olga, Alexey Romanov, Anna Rogers, and Anna Rumshisky
(2019). “Revealing the Dark Secrets of BERT.” en. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics, pp. 4364–4373. doi: 10.18653/v1/D19-
1445. url: https://www.aclweb.org/anthology/D19-1445 (visited on
01/22/2021).

Kriegeskorte, Nikolaus (2015). “Deep neural networks: a new frame-
work for modeling biological vision and brain information pro-
cessing.” In: Annual review of vision science 1, pp. 417–446.

Kriegeskorte, Nikolaus, Rainer Goebel, and Peter Bandettini (2006).
“Information-based functional brain mapping.” In: Proceedings of
the National Academy of Sciences 103.10, pp. 3863–3868.

Kriegeskorte, Nikolaus, Marieke Mur, and Peter A Bandettini (2008).
“Representational similarity analysis-connecting the branches of
systems neuroscience.” In: Frontiers in systems neuroscience 2, p. 4.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Ima-
genet classification with deep convolutional neural networks.” In:
Advances in neural information processing systems 25, pp. 1097–1105.

Kulmizev, Artur and Joakim Nivre (2021). “Schr\" odinger’s Tree–On
Syntax and Neural Language Models.” In: arXiv preprint arXiv:2110.08887.

Kulmizev, Artur, Vinit Ravishankar, Mostafa Abdou, and Joakim Nivre
(July 2020). “Do Neural Language Models Show Preferences for
Syntactic Formalisms?” In: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. Online: Association
for Computational Linguistics, pp. 4077–4091. doi: 10.18653/v1/

https://doi.org/10.18653/v1/D19-1279
https://www.aclweb.org/anthology/D19-1279
https://www.aclweb.org/anthology/D19-1279
http://proceedings.mlr.press/v97/kornblith19a.html
http://proceedings.mlr.press/v97/kornblith19a.html
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D19-1445
https://www.aclweb.org/anthology/D19-1445
https://doi.org/10.18653/v1/2020.acl-main.375
https://doi.org/10.18653/v1/2020.acl-main.375


bibliography 181

2020.acl-main.375. url: https://www.aclweb.org/anthology/2020.
acl-main.375.

Kutas, Marta and Steven A Hillyard (1980). “Reading senseless sen-
tences: Brain potentials reflect semantic incongruity.” In: Science
207.4427, pp. 203–205.

— (1984). “Brain potentials during reading reflect word expectancy
and semantic association.” In: Nature 307.5947, pp. 161–163.

Lai, Guokun, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard
Hovy (2017). “Race: Large-scale reading comprehension dataset
from examinations.” In: arXiv preprint arXiv:1704.04683.

Lakoff, George and Mark Johnson (2008). Metaphors we live by. Uni-
versity of Chicago press.

Lauscher, Anne, Vinit Ravishankar, Ivan Vulić, and Goran Glavaš
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