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Preface

The work presented in this thesis was carried out by Pengfei Diao at the
Department of Computer Science at the University of Copenhagen, Biomediq
A/S, Rigshospitalet, and Cerebriu A/S between October 2013 and June 2022
in partial ful llment of the requirements for the degree of doctor of philosophy.

The studies were supervised by professor Christian Igel at the University of
Copenhagen and professor Mads Nielsen at the University of Copenhagen and
Biomediq A/S, and PhD Akshay Pai at Cerebriu A/S. This thesis presents
summed work which was conducted under two research projects.

The breast project was a joint project between three parties:

1. Department of Computer Science, University of Copenhagen, Denmark,
2. Biomedig A/S, Denmark,
3. Rigshospitalet, Denmark.

with the goal of developing an automated mammography analysis system that
makes quanti cation of the individual’s breast cancer risk and expected can-
cer sensitivity of mammography available for future personalization of the
screening regime.

The lung project was a joint project between two parties:

1. Department of Computer Science, University of Copenhagen, Denmark,
2. Cerebriu A/S, Denmark.

with the goal of developing an automated system that detects lung infection
of COVID based on chest X-ray images.
This work is partly funded by following parties:

1. Department of Computer Science, University of Copenhagen, Denmark,

2. European Commission, AKMI under project no. 303655,

w

. Biomedig A/S, Denmark,

N

. Cerebriu A/S, Denmark,

This thesis is based on four research papers published in or accepted by
international journals and conferences in the elds of radiology or medical
imaging.



Summary

Breast cancer is the most common cancer in women and the leading cause
of cancer death in women worldwide. Many European countries have intro-
duced national mammography screening programme in order to detect and
treat breast cancer at an early stage and hence reduce breast cancer mortal-
ity. However, not only does periodic breast screening increase the burden on
public spending but also, potentially, the cancer risk of women due to exposure
to unnecessary radiation. Introducing the automated breast cancer risk scor-
ing assessment, which supports the personalized breast screening plan, could
potentially help to reduce public spending and also incite women to receive
breast screening.

In recent years, automated disease diagnosis and prognosis based on med-
ical images has been quickly shifting from devising traditionally handcrafted
features to deep learning methods that learn features directly from the image
data. Convolutional neural networks (CNNs) have been successfully applied
to solve various medical image classi cation tasks and achieve state-of-the-art
performance for the majority of the applications. Training CNNs, however,
requires vast amounts of computational power as well as abundant labeled
image data, which makes its application prohibitive in places where both com-
putational resources and medical image annotators are limited. Furthermore,
despite the outstanding generalization performance on unseen data from the
same source that they were built on, CNNs still su er from domain shift prob-
lems where they underperform on new data acquired from di erent sources.

The work presented in this thesis is two-fold. First, we developed a deep
learning method, in the context of limited computational resources and la-
beled data, for automated breast cancer risk scoring based on mammograms.
Our proposed learning method incorporates the auto-encoder to train convolu-
tional neural networks in a layer-wise fashion. Our models were trained for two
di erent tasks, namely, breast dense tissue segmentation and mammographic
texture risk scoring. We compared our automated breast tissue segmenta-
tion with manual Cumulus-like segmentation from a trained radiologist and
the texture risk model with two state-of-the-art handcrafted feature-based
scoring methods. Our results showed that the proposed method was able to
learn meaningful features directly from the data for both breast density seg-
mentation and texture scoring. When compared to the radiologist’s manual
scores and other existing automated scores, our method achieved competitive
performance.

Second, we analyzed Generative Adversarial Networks (GAN) methods
for solving single-source unsupervised domain adaptation problems under the
assumption that images from the target domain are unlabeled and only avail-
able at test time. We evaluated the cross-source generalization performance
of CNNs for the lung disease classi cation task based on chest X-ray images.
We proposed two novel histogram-based GANSs to transform images from the



target domain to the source domain. The trained generator is used as a pre-
processor to transform the input image from the target domain to the source
domain. We compared the performance of the proposed method to that of
existing standard methods and showed that current pixel-level local transfor-
mations are not good enough to be used in such medical image classi cation
tasks. Intensity-level global transformation methods are more promising and
reliable for such kinds of tasks.



Resune

Brystkr ft er den mest almindelige kr ftsygdom hos kvinder og den hyp-
pigste d darsag blandt kvinder p verdensplan. Mange europ iske lande
har indf rt nationale mammogra screeningsprogrammer for at opdage og be-
handle brystkr ft p et tidligt tidspunkt og dermed reducere d deligheden

af brystkr ft. Periodisk brystscreening ger imidlertid ikke blot byrden p

de o entlige udgifter, men potentielt oga kvindernes kr ftrisiko som flge

af undig stling. Indfrelsen af den automatiserede vurdering af brys-
tkr ftrisikoen, som underst tter den personlige plan for brystscreening, kan
potentielt bidrage til at reducere de o entlige udgifter og tilskynde kvinder til
atd foretaget brystscreening.

Automatiseret sygdomsdiagnose baseret p medicinske billeder, har i de
senestear skiftet fra traditionelle landlavede attributer, til deep learning
metoder som | rer direkte fra billede data. Konvolutionelle neurale netv rk
(CNN'er) er blevet brugt til at | se forskellige opgaver inden for medicinsk
billede klassi ceringer med stor succes, og har opaet state-of-the-art kvalitet
inden for strstedelen af opgaverne. Det kr ver dog en uradelig comput-
erkraft og store m ngder mrket data, hvilket gr det umuligt at bruge
i situationer hvor computerkraft og data er begr nset. Ydermere, selvom
CNN'er har udvist storartet generaliseringsresultater p uset data fra samme
kilde, som CNN'en var bygget ud fra, underpr sterer de p ny data fra en
forskellig kilde.

Det arbejde, der pr senteres i denne afhandling, er todelt. For det f rste
udviklede vi en deep learning metode i forbindelse med begr nsede comput-
erressourcer og mrkede data til automatiseret scoring af brystkr ftrisiko
baseret p mammogra er. Vores foreslede deep learning metode inkorpor-
erer auto-encoder til at tr ne konvolutionelle neurale netv rk p lagvis rade.
Vores modeller blev tr net til to forskellige opgaver. Segmentering af tt
brystv v og mammogra sk teksturrisikoscoring. Vi sammenlignede vores au-
tomatiserede brystv vssegmentering, med en manuel Cumulus-lignende seg-
mentering fra en uddannet radiolog, og vores teksturscoringsmodel med to
hndlavede state-of-the-art attributbaserede scoringsmetoder. Vores resul-
tater viste, at vores brugte metoder kunne | re signi kante attributer direkte
fra dataen, for Bde brystv vssegmenteringen og teksturscoringen. Ydermere,
opaede vi konkurrencedygtighed i forhold til den manuelle scoring af radi-
ologen og andre eksisterende automatiserede scoringer.

For det andet analyserede vi Generative Adversarial Networks (GAN)
metoder til at | se enkelt-kilde unsupervised dom netilpasningsproblemer,
under den antagelse, at billeder fra mldom net er um rkede og kun tilg n-
gelige p testtidspunktet. Vi evaluerede krydskilde generaliseringpr stationen
af CNN'er til lungesygdomsklassi ceringsopgaven baseret p r ntgenbilleder
af brystet. Vi foreslog to nye histogrambaserede GAN'er til transformering
af billeder fra raldom net til kildedom net. Det tr nede generator bruges



som pr processor til at transformere inputbilledet fra raldom net til kilde-

dom net. Vi sammenlignede resultaterne fra vores metode med eksisterende
standardmetoder, og viste at nuv rende lokale transformationer p pixel-
niveau ikke er gode nok, til at blive brugt i adanne medicinske billedklas-
si ceringsopgaver. Globale transformationsmetoder p intesity-level er mere
lovende og plidelige til denne slags opgaver.



Acknowledgement

To begin with, 1 would like to express my deepest gratitude to my PhD super-
visors, Christian Igel at the University of Copenhagen and Mads Nielsen at
the University of Copenhagen and Biomediq A/S, who have been tremendous
resources for me in terms of supervision, guidance, assistance, and inspiration
throughout the entirety of my studies. | have gratitude in my heart for every-
thing that they have done for me. They have always had my back and o ered
me support during an interruption in my PhD study. They have never let me
down in any way. The fact that they are a part of my life is something that

| regard as a very fortunate circumstance, and | count it among my blessings
that they are.

| would like to thank my former PhD colleague and forever best friend,
Akshay Pai, for his unending encouragement. He has been an enormous source
of support and encouragement for me, both academically and personally. Fur-
thermore, | would also like to thank my former colleague at Biomediq A/S,
Kersten Petersen, for his academic assistance during the rst two years of my
studies. Also, I'd like to thank my former colleague at Biomediq A/S, Michiel
Kallenberg, for the time we spent working together, talking about problems
and coming up with solutions. Also, | would like to thank Rikke Rass Winkel
from Rigshospitalet for collaborating with me on the breast study as a pre-
vious research fellow. To Rikke Rass Winkel's credit, he's been patient and
helpful as I've worked to establish a solid foundation in breast imaging. |
appreciate the time we spent working together on the collaborative project.

To my former colleagues at Biomediq A/S: Erik Bjrnager Dam and Mar-
tin Lillholm, thank you for making my experience at Biomediq unforgettable.
Thanks to Anders Buskjr Nielsen, Joselene Marques, Dan Jrgensen, and Mar-
cho Markov for a great time working together.

My indebtedness to the administrative personnel at the University of
Copenhagen, particularly Camilla Holm Jrgensen and Hanne Grand, who
were of the utmost assistance in enabling me to continue my PhD studies, is
immeasurable. | would not be able to make it so far without their adminis-
trative aid.

Finally, those who worked with me at the Image Group DIKU, Biomediq
A/S, Rigshospitalet, and the Cerebriu A/S are all people | would like to thank.



Publications

Included

Inter-observer agreement according to three methods of evaluating mammo-
graphic density and parenchymal pattern in a case control study: impact on
relative risk of breast cancer Winkel, R. R., von Euler-Chelpin, My Catarina,
Nielsen, Mads, Diao, Pengfei, Nielsen, Michael Bachmann, Uldall, W. Y. &
Vejborg, I. M. M., 2015, In: BMC Cancer. 15, 14 p., 274.

The co-author (Pengfei Diao) has contributed to the image data collection
and consolidation, the implementation of the interactive breast segmentation
and scoring tool, the calculation of manual PMD scores, experiment data ac-
quisition, consolidation, and imputation, and revising the technical part ("in-
teractive threshold technique") of the manuscript.

Unsupervised deep learning applied to breast density segmentation and mam-
mographic risk scoring Kallenberg, M. G. J., Petersen, P. K., Nielsen, Mads,
Ng, A. Y., Diao, Pengfei, Igel, Christian, Vachon, C. M., Holland, K., Winkel,
R. R., Karssemeijer, N. & Lillholm, Martin, 2016, In: IEEE Transactions on
Medical Imaging. 35, 5, p. 1322-1331 10 p.

The co-author (Pengfei Diao) has contributed to the image data collection and
consolidation, image data annotation and segmentation ground truth building,
calculation of manual PMD scores, methods selection, method implementa-
tion, planning and running experiments, performance evaluation, results re-
porting, and writing the "Experiments and datasets" and "Results" parts of
the manuscript.

Risk strati cation of women with false-positive test results in mammogra-
phy screening based on mammographic morphology and density: a case con-
trol study Winkel, R. R., von Euler-Chelpin, My Catarina, Lynge, Elsebeth,
Diao, Pengfei, Lillholm, Martin, Kallenberg, M., Forman, Julie Lyng, Nielsen,
Michael Bachmann, Uldall, W. Y., Nielsen, Mads & Vejborg, I. M. M., Aug
2017, In: Cancer Epidemiology. 49, p. 53-60 8 p.

The co-author (Pengfei Diao) has contributed to the image data collection and
consolidation, image data annotation and segmentation ground truth building,
method implementation, planning and running experiments, performance eval-
uation, experiment data acquisition, consolidation, and imputation, and writ-

ing the "Mammaographic Texture Resemblance marker" part of the manuscript.

Histogram-based unsupervised domain adaptation for medical image classi-
cation Diao, Pengfei,Pai, Akshay ,lgel, Christian, Krag, Christian Hedeager



Submitted to MICCAI 2022

The co-author (Pengfei Diao) has contributed to the image data collection and
consolidation, method selection and design, designing, planning, and running
experiments; performance evaluation; experiment data acquisition, consolida-
tion, and reporting; and manuscript drafting.

Not included

Breast tissue segmentation and mammographic risk scoring using deep learn-
ing Petersen, P. K., Nielsen, Mads, Diao, Pengfei, Karssemeijer, N. & Lill-
holm, Martin, 2014, Breast imaging: 12th International Workshop, IWDM
2014, Gifu City, Japan, June 29 { July 2, 2014. Proceedings. Fujita, H.,
Hara, T. & Muramatsu, C. (eds.). Springer Science+Business Media, p. 88-
94 7 p. (Lecture notes in computer science, Vol. 8539).

Automated texture scoring for assessing breast cancer masking risk in full
eld digital mammography Kallenberg, M. G. J., Petersen, P. K., Lillholm,
Martin, J rgensen, D. R., Diao, Pengfei, Holland, K., Karssemeijer, N., lgel,
Christian & Nielsen, Mads, 2015, In: Insights into Imaging. 6, 1, Supplement,
1 p., B-0212.

Assessing breast cancer masking risk with automated texture analysis in full
eld digital mammography Kallenberg, M. G. J., Lillholm, Martin, Diao,
Pengfei, Petersen, K., Holland, K., Karssemeijer, N., Igel, Christian & Nielsen,
Mads, 2015, Breast Imaging and Interventional. Radiological Society of North
America, Inc, p. 218 1 p.

Assessing breast cancer masking risk in full eld digital mammography with
automated texture analysis Kallenberg, M. G. J., Lillholm, Martin, Diao,
Pengfei, Holland, K., Karssemeijer, N., Igel, Christian & Nielsen, Mads, 2015,
7th International Workshop on Breast Densitometry and Cancer Risk Assess-
ment (Non-CME). University of California, p. 109 1 p.



Contents

Contents 10
|  Synopsis 15
1 Introduction 17
Unsupervised deep learning for breast cancer risk scoring . . . . . . 17
Histogram-based unsupervised domain adaptation for medical image
classication. . . . . . . ... 20
2 Aims 23
Unsupervised deep learning for breast cancer risk scoring . . . . .. 23
Histogram-based unsupervised domain adaptation for medical image
classication. . . . . . .. ... 24
3 Datasets 25
Unsupervised deep learning for breast cancer risk scoring . . . . . . 25
Dutch breast cancer screening dataset 1 (Dutchl) . . . . . ... 25
Dutch breast cancer screening dataset 2 (Dutch2) . . . . .. .. 25
Mayo mammography health study dataset (Mayo) . .. .. .. 25
Danish breast cancer screening dataset 1 (RH06) . . . ... .. 26
Danish breast cancer screening dataset 2 (RHO7) . ... .. .. 26
Danish breast cancer screening dataset 3 (FP1) . . .. ... .. 27
Danish breast cancer screening dataset 4 (FP2) . . .. ... .. 27
Histogram-based unsupervised domain adaptation for medical image
classication. . . . . . . ... 27
4 Methods 29
Unsupervised deep learning for breast cancer risk scoring . . . . .. 29
Breast and dense tissue segmentation ground truth . . . . . . . 29
Convolutional sparse auto-encoder (CSAE) . .. .. ... ... 31
Score imputation for missing views . . . .. .. ... ... ... 34
Analysisof study 1 . . . .. .. ... ... ... .. .. ..... 34
Analysisof study 2 . . . . . ... ... . L 34



CONTENTS 11

Analysisof study 3 . . . . ... .. .. ... .. ... ... 35
Histogram-based unsupervised domain adaptation for medical image
classication. . . . . . .. . ... 35
Baselinemodels . . . . ... ... ... oo 35
Histogram layer . . . . . . . . . . . . . ... . .. 36
Domain adaptation . . . . . . ... ... L 37
5 Results, discussion and future works 41
Unsupervised deep learning for breast cancer risk scoring . . . . .. 41
Study 1 . . . . e 41
Study 2 . . . e e 42
Study 3 . . e 43
Future works . . . . . . . .. 43
Histogram-based unsupervised domain adaptation for medical image
classication. . . . . . ... ... 44
Future works . . . . . . . . ... 45
6 Conclusion 49
Unsupervised deep learning for breast cancer risk scoring . . . . .. 49
Study Lsummary . . . . . . . .. 49
Study 2summary . . . . . ... 49
Study 3summary . . . . . . ... 49
Histogram-based unsupervised domain adaptation for medical image
classication. . . . . . ... ... 50
7 Appendix 51
Background knowledge . . . . . . .. ... o 51
Convolutional Neural Networks . . . . . ... ... ....... 51
ResNet. . . . . . . . . . 53
DenseNet . . . . . . . . . . . . e 53
CycleGAN . . . . . . e 54
ColorMapGAN . . . . . . 58
Interactive dense tissue segmentationtool . . . ... ... ... ... 59
Il Papers 63
8 Inter-observer agreement according to three methods of

evaluating mammographic density and parenchymal pat-
tern in a case control study: impact on relative risk of breast

cancer 65
AbStract . . . . . .. e e e e e 65
Background . . . . ... 66

Methods . . . . . . . . . 68



12 CONTENTS

Population and mammograms . . . . . . .. ... ... ... .. 68
Mammographic density measurements . . . . ... ... . ... 69
The BI-RADS density classication. . . . ... ......... 69
The Talar classi cation on parenchymal patterns . . . . . . .. 69
The interactive threshold technique (percentage mammographic
density, PMD) . .. ... ... ... .. .. ... ..., 69
Statistical analysis . . . . . .. .. ... .. .. oo 71
Inter-observer agreement . . . . . ... ... L .. 71
Relative risk of breastcancer . . . ... ... ... ....... 72
Results . . . . . . . . e 72
Characteristics of cases and controls . . . . ... ... ..... 72
Inter-observer agreement . . . . . ... ... L. 73
The Talar classication . . ... ... .............. 77
The interactive threshold technique . . . . . .. ... ... ... 79
Relative risk of breast cancer . . . . . ... ... ... ..... 79
DisCcussion . . . . . . . e e 81
BI-RADS . . . . . . e 81
Takar . . ... 82
PMD . . . . e e 82
Relative risk of breast cancer . . . . . ... ... ... ..... 83
Strengths and limitations . . . . .. ... ... ......... 85
Conclusions . . . . . . . . 86

9 Unsupervised Deep Learning Applied to Breast Density

Segmentation and Mammographic Risk Scoring 87
Abstract . . . . . . . 87
Introduction. . . . . . . . .. 88
Methods and Materials . . . . . . . ... . ... ... ... . ..... 92
A. Overall Approach . . . . ... ... ... ... ... .. ... 92
B. Multiscale Input Data . . . ... ... ... ......... 95
C. Sparse Autoencoder . . . . . . . . ... 95
D. Experiments and Datasets . . . . ... ... ......... 96
E. Parameter Settings and Model Selection . . . ... ... .. 97
Results . . . . . . . . . e 98
A. Mammographic Density Scoring . . . . . . ... ... .... 98
B. Mammographic Texture Scoring . . . . . . ... ... .... 100
Conclusion . . . . . .. 102
AppendiX . ... e e 104
A. Autoencoder . . . ... 104
B. Sparse autoencoder . . .. .. ... ... o0 105

10 Risk strati cation of women with false-positive test results
in mammography screening based on mammographic mor-
phology and density: A case control study 107



CONTENTS 13

Abstract . . . . . . . e e 107
Introduction. . . . . . ... 108
Material and methods . . . . . . .. ... ... L. 109
Study population and mammograms . . . ... ... ... ... 109
Mammographic classication . .. ... ... .......... 110
Statistical analysis . . . . . ... ... ... .. oL 112
Results . . . . . . . . e 113
Discussion . . . . . . . 114
Conclusions . . . . . . . . e e e e e 120
AppendiX . ... e e e e e 120
Supplementary material A . . . . .. .. .. . . 0L, 120
Supplementary material B . . . .. ... ... ... .. ... 120
11 Histogram-based unsupervised domain adaptation for med-
ical image classi cation 123
Abstruct . . . . . . 123
Introduction. . . . . . .. 123
Literature review . . . . . . . . . . e e e e 124
Methods . . . . . . . . . 124
OVEIVIEW . . . o o e e e e e e e e 124
Histogram layer . . . . . . . . . . . ... .. .. . . .. ... 126
Histogram discriminator . . . . . ... .. ... ... ...... 126
Graymap GAN . . . . . . . . 127
Gamma-adjustment GAN . . . . . ... ... ... .. ... .. 128
Experiments. . . . . . . . . 128
Datasets . . . . . . . . . 128
Training . . . . . . e 129
Results, Discussion, and Conclusions . . . . . ... .. ... ..... 129
Appendix A . . . e 132
Moreresults . . . . . . . .. 132
Histogram with di erent bin widths . . . . . . .. .. ... .. 135
Histogram dierentiation . . .. ... ... ... ........ 135

Training Graymap GAN and Gamma Adjustment GAN . . . . 135
1D CNN architecture

Bibliography 137






Part |

Synopsis

15






Chapter 1

Introduction

Unsupervised deep learning for breast cancer risk
scoring

Breast cancer is the most frequent cancer developed among women and the
major cause of female cancer death globally [3]. Statistical study [65] based
on public data from year 2012 showed that breast cancer accounted for 1%

of newly diagnosed cancer cases (464,000 cases out of 3.45 million new cases
excluding non-melanoma skin cancer), and caused 131,000 death in Europe in
2012.

Since early diagnosis of breast cancer is vital to the patient's survival [10,
176], many European states have introduced national mammography screen-
ing programme [19] in order to detect and treat breast cancer at an early
stage and hence reduce breast cancer mortality. However, state-wide breast
screening programme also increased burden on the public spending let alone
its e ectiveness remains controversial [119, 9, 117, 83], the cost-e ectiveness of
screening programme [84, 171, 171, 55, 14, 39, 28] plays important role in po-
litical decision making. Moreover, false-positive results, which cause stress and
anxiety as well as unnecessary biopsy [142], overdiagnosis and overtreatment
of benign tumors, which increase the risk of cancer in other organs [142], and
discomfort experienced during the screening can all discourage women from
attending the screening.

Having a breast cancer risk assessment that supports the personalized
breast screening plan could incite women to receive breast screening. But the
risk assessment itself adds another layer of cost, let alone that the mammogram
sometimes needs to be read by more than one radiologist in order to mitigate
the subjectivity in reading. Therefore, a computer-based fully automated
breast risk assessment system could potentially help to reduce the overall cost
of public spending on and increase the screening e ciency of the screening
programme.

The mammographic density, following gender, age, gene mutations, and

17



18 CHAPTER 1. INTRODUCTION

family history, is considered one of the most important risk factors and is
commonly reported in breast cancer risk assessment [208]. A number of stud-
ies [29, 24, 30, 215, 31, 177, 52, 36] have demonstrated the breast density
being a strong risk factor for breast cancer development. According to a
meta-analysis [150] by V. A. McCormack et al., women with higher mammo-
graphic density (> 75%) had a four to six-fold increased risk of developing
breast cancer compared to women with low breast density< 5%).

Mammographic density measurements can generally be divided into two
groups: 1) the qualitative measurements based on parenchymal patterns, and
2) the quantitative measurements based on the percentage area of dense tis-
sue occupying the breast. The Talar score [78, 190] proposed by laszb Talar
in 1997, as a modi cation to Wolfe's classi cation [214] introduced in 1976,
categorizes the mammographic density into 5 groups based on ve di erent
parenchymal patterns. Although Talar classi cation was widely used in the
early years, gquantitative measurements have become more popular recently.
In the studies [29, 24, 30, 215, 31, 177], the breast density was coarsely cate-
gorized into groups according to the dense degree by visually and subjectively
estimating the percentage of projected breast area occupied by the area of
dense tissue. For instance, a six-category classi cation scheme classi es the
breast density with six percentage intervals - 0%,< 10%, 10 25%, 25 50%,
50 75% and> 75%. The BI-RADS [4, 1] density classi cation (4th edition
2003), being one of these quantitative methods, is most commonly used in
clinical settings worldwide.

The major concerns of those categorical quantitative breast density classi-
cation strategies are the observer's subjectivity and the insensitivity of small
changes in the mammographic density [18, 164, 44, 127, 77, 74]. To relieve
these problems, J. W. Byng et al. [33] proposed an interactive thresholding
method (based on which a commercialized program Cumulus [36] was later
developed) to provide continuous measurements of percentage breast density
(PMD). The Cumulus-like methods have since become an alternative to BI-
RADS in many clinic settings.

For fully automated breast risk scoring, a number of methods [186, 199,
67, 126, 122] were formerly proposed to automate the PMD measurement.
The methods [90, 186, 199, 67, 126] segregate between dense tissue pixels and
breast pixels based on the global image appearance or intensity distribution.
In contrast, the method [122] employs textural information from the local
neighborhood to classify individual dense tissue pixels from the breast. While
the method [122] proposd by Kallenberg et al. achieves state-of-the-art per-
formance by combining location, intensity, and global contextual information,
it relies on handcrafted features and plethoric hyper-parameter tuning.

Another path towards automated breast cancer risk scoring focuses on
capturing mammographic texture associated with breast cancer. Most of the
existing methods [35, 102, 92, 145, 82, 199, 220, 156] employ single or multiple
of handcrafted features such as the central moments [35, 102], the entropy of
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the histogram [35, 102], the gray-level co-occurrence matrix (GLCM) [145, 82],
the run-length measures [145, 82], the Laws features [145], Fourier coe -
cients [145], Wavelet features [145, 82], fractal dimension [35, 199], lacunar-
ity [199] and multi-scale local jet [156]. Although the multi-scale local jet
feature with KNN classi er proposed by Nielsen et al. [156] reported the best
results, it still requires handpicking heuristic texture features and does not
generalize well to di erent datasets according to our experiments.

Covolutional neural network (CNN) originally proposed by LeCun et al.
in 1998 [136] to solve the handwritten zip code recognition problem in images
did not draw too much attention until the 2010s due to the computational
limitations of hardware in the old days. In 2012, C. Dan et al. implemented
DanNet (a variant of CNN) [47] on GPU and won the brain image segmenta-
tion contest (ISBI Challenge 2012), whose task was to label each pixel of elec-
tron microscopy images of stacks of thin slices of animal brains as membrane
or non-membrane. DanNet was the rst feed-forward deep neural network
that purely relied on features learned directly from the data, having won rst
place in a public competition in the eld of medical imaging. DanNet has
since then won two more public contests (ICPR 2012 Contest on Mitosis De-
tection, and MICCAI 2013 Grand Challenge on Mitosis Detection) on mitosis
detection in breast cancer histological images [50, 49]. The large performance
gap between DanNet and the second place model in these contests has drawn
much attention from researchers and triggered a huge shift in methodology
from traditionally hand crafting features to learning features directly from
data for solving classi cation tasks in medical imaging. Various variants of
CNN were proposed thereafter and achieved extraordinary performance in
di erent medical image classi cation tasks and showed their superiority in al-
most every public natural image classi cation contest (such as the ImageNet
Classi cation Contest) since 2012.

Compared to the traditional fully connected neural network (MLP), the
success of CNN can be attributed to three characteristics:

" Parameter Sharing: The MLP represents each pixel of an image with an
individual perceptron, leading to a tremendous number of parameters
to learn. However, the convolutional neural network only connects a
local region of pixels from a previous layer to the next layer, reducing
parameters substantially.

Translation Invariant: If an object changes its locations in an image,
MLP can not generalize all the shifted objects to be the same one, while
the convolutional neural network can tackle this kind of translation in-
variant issue.

Local correlation: The MLP treats each pixel in an image the same
and omits spatial relations among neighboring pixels, while CNN can
capture the structural layout of an object in the image.
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These three characteristics empower CNN to combat the transnational invari-
ant issue, which is considered as one of the most common issues appearing in
the vast majority of image data.

Although CNN can be trained through the classical back-propagation
method, it requires vast amounts of computational power as well as abun-
dant labeled image data. This has made its application in medical imaging
prohibitive in places where both computational resources and medical image
annotators are limited. Deep learning models with convolutional architecture
that can be trained without top-to-bottom back-propagation are desirable in
settings with limited computation power.

The overall goal of this project was to develop a unied deep learning
method that automatically learns features from mammographic data for both
breast density estimation and texture scoring, and verify its performance on
both internal and external data. We conducted three studies, which are de-
scribed in Chapter 2. The datasets being used and the method being proposed
are presented in Chapter 3 and Chapter 4 respectively. We summarize and
discuss the results in Chapter 5. We conclude our work in Chapter 6.

Histogram-based unsupervised domain adaptation
for medical image classi cation

In medical imaging, domain adaptation is the problem of adapting a model
that has been trained in one domain (e.g., Im-based mammograms) to an-
other domain (e.g., digital mammograms). This is often di cult because the
two domains may have di erent distributions of data. For example, dier-
ent hospitals may use di erent imaging modalities (e.g. X-ray versus CT),
or the medical images may be taken with di erent scanners (e.g. GE versus
Siemens), or even the acquisition protocol may be di erent. The domain shift
problem naturally arises in medical imaging due to heterogeneity from various
aspects.

The domain shift problem is one of the major challenges exposed to the
development of deep learning-based medical imaging products. Unlike natural
images that can be obtained at a relatively low cost, the acquisition of medical
images from various domains, especially ones with labels, is di cult. A deep
learning model being trained on one source domain or a limited amount of data
usually needs to be ne-tuned to adapt to the target domain at the deployment
site. Otherwise, it can su er from signi cant performance degradation.

The unsupervised domain adaptation solves the problem of domain shift
for data from the target domain without labels. The domain-invariant fea-
ture generation method is one of the most commonly used for deep neural
networks. Figure 1.1 illustrates a minimalist version of adapting a trained
neural network from the source domain to a new domain. The classi er con-
sists of a head and a backbone (sometimes also called a feature extracting
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Figure 1.1: Unsupervised domain adaptation pipeline.

network). The idea is to ne-tune the classi er with two simultaneous tasks.
The classi er takes images from both domains as input. The backbone ex-
tracts features from the input. The extracted source domain features are fed
to both the head and the auxiliary network, whereas the extracted target do-
main features are only fed to the auxiliary network. Once the head receives
input from the backbone, it performs main tasks (e.g. disease classi cation)
and back-propagates errors to the backbone. On the other hand, the auxiliary
network performs the auxiliary task on both source and target domain fea-
tures and back-propagates errors to the backbone. The auxiliary task could
be any unsupervised task such as auto-encoding or self-contrasting, but the
most popular is a GAN that brings the target and source domain together.
This way, the backbone is forced to extract domain-invariant features; other-
wise, it receives a large penalty from the auxiliary task. On the ip side, the
backbone is still regularized by the main task because if the backbone com-
pletely throws away features that are relevant to the main task, the backbone
also gets penalized by the main task. Former works [124, 144, 41] used this
GAN-based strategy for unsupervised domain adaptation and demonstrated
promising results. One problem with this domain-invariant feature learning
is that it requires the main network to be ne-tuned or even retrained upon
deployment. This is sometimes unpractical when the network is huge or there
is a need for approval from authorities. In this study, we tested GAN-based
methods for unsupervised domain adaptation under the condition that the
main network must remain intact. We conducted the study on chest X-ray
images. The goal of this study is described in Chapter 2. The datasets being
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used and the method being proposed are presented in Chapter 3 and Chap-
ter 4 respectively. We summarize and discuss the results in Chapter 5. We
conclude our work in Chapter 6.



Chapter 2

Aims

Unsupervised deep learning for breast cancer risk
scoring

In order to develop a uni ed deep learning method for automated breast den-
sity estimation and texture scoring and verify its performance, we broke the
whole project into three studies:

1. Breast dense tissue manual segmentation and reliability veri cation,

2. Deep learning method for automated breast density estimation and tex-
ture scoring,

3. Breast cancer risk strati cation with false positive results.

In the rst study, we aimed to validate the reliability of breast dense tissue
segmentation made through our own interactive threshold tool as well as to
build the dense tissue segmentation ground truth for one external dataset
and three internal datasets, which are used for training and testing our deep
learning model.

In the second study, we aimed at designing and verifying a layer-wise semi-
supervised training strategy for a convolutional architecture that could be run
on a normal CPU. We would like to examine if our model being trained on
images of cancer-free mammograms (prior image) could explore relevant tex-
tural information associated with breast cancer. We would also like to verify
our assumption that our method of learning features directly from the data is
less dataset dependent than methods relying on carefully selected handcrafted
features.

In the third study, we aimed to apply our deep learning model to a breast
cancer false-positive dataset acquired from the breast screening program in
Denmark, and test if our model is able to stratify the breast cancer risk of
women who have formerly received at least one false positive breast screening
result, but some of them have later developed breast cancer.
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Histogram-based unsupervised domain adaptation
for medical image classi cation

The goal of this work is to conduct a proof-of-concept study on employing
GAN-based learning methods to transform data from a target domain to a
source domain. Our assumption is that our deep learning model needs to
remain intact at the deployment, and only unlabeled data from the deployment
site is available to us. We hypothesize that global pixel intensity change may
play a big role in the domain shift problem for single-source medical images
(images acquired using the same modality).

To conduct this study, we acquired two large public Im-based chest X-ray
image datasets [105, 209] and one small internal Im-based chest X-ray image
dataset. We chose two standard unpaired image-to-image GAN methods as
well as proposed two modi cations. We aimed to test the performance of each
method for the unsupervised domain adaptation problem and also verify our
hypothesis.



Chapter 3

Datasets

Unsupervised deep learning for breast cancer risk
scoring

Dutch breast cancer screening dataset 1 (Dutchl)

We collected one digital mammogram in raw format from each of 493 cancer-
free women through the Dutch breast cancer screening programme, which took
place from 2003 to 2012 under standard clinical settings on a Hologic Selenia
FFDM system. Women included in this dataset have an average age of 685
7:83 years. The dataset consists of 125 images in right mediolateral oblique
view (RMLO), 125 images in left mediolateral oblique view (LMLO), 122
images in right craniocaudal view (RCC), and 121 images in left craniocaudal
view (LCC).

Dutch breast cancer screening dataset 2 (Dutch?2)

We collected two digital mammograms (in RMLO and LMLO) in raw format
from each of 1576 women through the Dutch breast cancer screening pro-
gramme, which took place from 2003 to 2012 under standard clinical settings
on a Hologic Selenia FFDM system. Women included in this dataset have an
average age of 6@ 7.7 years. Out of 1576 women, 394 were cancer cases
and 1182 were healthy controls. Healthy controls were matched on age and
acquisition date.

Mayo mammography health study dataset (Mayo)

The Mayo dataset consists of 668 Im-based mammograms (543 in LMLO and
125 in RMLO) from 226 cancer cases and 442 healthy controls, with a mean
age of 552 10:5 years. Itis a subset of the Mayo mammography Health Study
(MMHS) cohort (19,924 mammograms in total) [163] at the Mayo Clinic in
Rochester, Minnesota. The MMHS cohort was originally gathered to study
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the association of breast cancer with breast density. In the subset, both cancer
cases and healthy controls were matched on age and time from the earliest
available mammogram to the study enroliment/diagnosis date. These images
were recorded between October 2003 and September 2006, 6 months to 15
years prior to the diagnosis of breast cancer. The analogue mammograms
were digitized into 12-bit grayscale images with a pixel spacing of 50 microns
using an Array 2905 laser digitizer (Array Corporation, the Netherlands).

Danish breast cancer screening dataset 1 (RHO6)

We collected Im-based mammograms from the Danish breast cancer screening
programme. These mammograms were recorded in 2006 from 179 cancer-free
women who attended biennial routine breast screening at Bispebjerg Hospital,
Denmark. These women were followed after the screening took place in 2006
until the end of 2010. During this period, 93 women had been found to have
developed breast cancer, leaving us 93 cancer cases and 86 healthy controls.
Each cancer case was matched with roughly one control on age. The mammo-
grams were originally queried in four views (LMLO, RMLO, LCC, and RCC)
from each woman. For various reasons, such as missing from the hospital's
Im archive, extremely bad image quality, or only digital mammograms were
available for speci c views, we ended up having 354 images (90 in LMLO, 91
in RMLO, 86 in LCC, and 87 in RCC) for cancer cases and 324 images (85 in
LMLO, 83 in RMLO, 79 in LCC, and 77 in RCC) for controls. The Im-based
mammograms were digitized into 8-bit gray-scale images at a resolution of 75
DPI or 150 DPI using a Vidar Diagnostic PRO Advantage digitizer (Vidar
Systems Corporation, Herdon, VA, USA).

Danish breast cancer screening dataset 2 (RHO7)

We collected Im-based mammograms from the Danish breast cancer screening
programme. These mammograms were recorded in 2007 from 384 cancer-free
women who attended biennial routine breast screening at Bispebjerg Hospital,
Denmark. These women were followed after the screening took place in 2007
until the end of 2010. During this period, 122 women were found to have
developed breast cancer, leaving us 122 cancer cases and 262 healthy controls.
Each cancer case was matched with roughly two controls on age. The mammo-
grams were originally queried in four views (LMLO, RMLO, LCC, and RCC)
from each woman. For various reasons, such as missing from the hospital's
Im archive, extremely bad image quality, or only digital mammograms were
available for specic views, we ended up having 484 images (122 in LMLO,
120 in RMLO, 121 in LCC, and 119 in RCC) for cancer cases (mean age 57.8)
and 1040 images (260 in LMLO, 261 in RMLO, 259 in LCC, and 260 in RCC)
for controls (mean age 58.1). The Im-based mammograms were digitized into
8-bit gray-scale images at a resolution of 75 DPI or 150 DPI using a Vidar Di-



HISTOGRAM-BASED UNSUPERVISED DOMAIN ADAPTATION FOR
MEDICAL IMAGE CLASSIFICATION 27

agnostic PRO Advantage digitizer (Vidar Systems Corporation, Herdon, VA,
USA).

Danish breast cancer screening dataset 3 (FP1)

We collected Im-based mammograms from the Danish breast cancer screening
programme. These mammograms were recorded between 1991 and 2005 from
a cohort of 576 women who attended biennial routine breast screening in
the Copenhagen region, Denmark. The women included in the cohort were
selected from the entire screened population in Copenhagen from 1991 to
2005 who had received at least one false positive screening test result. The
false positive test result means that a woman who had been found to develop
breast cancer in the screening was declared to be negative upon the follow-up
recall. At rst, 288 women were chosen because they had been diagnosed with
breast cancer between the time they received the false-positive test result and
April 17, 2008. Then 288 healthy controls were selected to match each cancer
case by age. The mammograms we used were ones from the rst time false
positive results were reported. Since the screening procedure changed over
time from 1991 to 2005, the mammograms of each woman were not acquired
in all views. We ended up having 1068 images (284 in LMLO, 283 in RMLO,
249 in LCC, and 252 in RCC) for cancer cases and 1044 images (283 in LMLO,
286 in RMLO, 238 in LCC, and 237 in RCC) for controls. The Im-based
mammograms were digitized into 12-bit gray-scale images at a resolution of
570 DPI using a Vidar Diagnostic PRO Advantage digitizer (Vidar Systems
Corporation, Herdon, VA, USA).

Danish breast cancer screening dataset 4 (FP2)

The FP2 dataset is a subset of the FP1 dataset. This dataset has excluded 70
cancer cases as well as their matched controls because these 70 cancer cases
were potentially misclassi ed as false-positive cases according to a retrospec-
tive study [206] done previously.

Histogram-based unsupervised domain adaptation
for medical image classi cation

Chexpert dataset

The Chexpert [105] is a large public Im-based chest X-ray image dataset
which includes 223,414 images, out of which 191,027 were acquired in the
frontal view and 32,387 were acquired laterally. All images were provided
with 14 labels corresponding to 14 categories of observations. Aside from this
large dataset, a separate test dataset with 202 frontal views and 32 lateral
views is also provided. All images, provided in 8-bit gray-scale JPG format,
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were postprocessed with histogram equalization before being released to the
public.

NIH dataset

The NIH [209] dataset is another large Im-based chest X-ray image dataset
available to the public. It contains 112,120 images in frontal view only, and
out of which 25,596 images are held out for testing. All images are provided in
8-bit gray-scale PNG format without any known postprocessing. Each image
is provided with 15 labels corresponding to 15 categories of observations.

RH dataset

The RH dataset is an internal Im-based chest X-ray image dataset which
consists of 884 images in frontal view. A separate dataset which includes 231
frontal view images is provided for testing. The 7 labels that are assigned to
each image correspond to 7 categories of observations. All images are provided
in 8-bit gray-scale PNG format without any known postprocessing.



Chapter 4

Methods

Unsupervised deep learning for breast cancer risk
scoring

Breast and dense tissue segmentation ground truth

For obtaining breast and dense tissue segmentation ground truth, we re ned
an interactive annotation and density thresholding tool in Matlab [148] based
on the source code made by J. Raundahl et al. in their earlier study [174].
The original segmentation tool was implemented based on the method [33]
proposed by J. W. Byng, which employs a single threshold inside the breast
region to segregate dense tissue pixels from fatty tissue. Our radiologists
found the original tool dicult to use for generating accurate breast dense
tissue segmentation for our RHO6 and RHO7 datasets due to the noise and
luminance distortion introduced during digitizing the analogue mammograms
(details of the problem and modi cation are described in the Appendix 7).
We improved the tool by allowing the user to de ne multiple local regions and
assign an individual threshold for each of these local regions inside the breast.
Our improved implementation (see Figure 4.1) avoids generating large chunks
of artifacts that occur near the edges of images and allows the radiologist to
make more accurate dense tissue segmentation.

Two trained radiologists (referred to asradiologist A and radiologist B )
and an annotator (namely the author of this thesis, referred to asannotator
A) were involved in building the segmentation ground truth. The radiolo-
gist A is a resident in radiology, and the radiologist B is a senior radiologist
specializing in breast-imaging and mammography screening. The annotator
A had no experience in radiology before this project and has practiced on
roughly 200 images under the supervision of radiologist A to get familiar with
annotation.

For dataset Dutchl , annotator A and radiologist A have together an-
notated the breast skin-air boundary and pectoral muscle of all images. The
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Figure 4.1: Screenshot of our improved percentage density tool. Image on
the left shows the original mammogram. Image on the right shows the seg-
mentation. Red area represents the segmentation of dense tissue. Outer blue
contour represents manual annotation of breast. Inner blue and green con-
tours represent manually de ned local regions.

dense tissue segmentation was solely made by radiologist A.

For dataset Dutch2 , the automated segmentation of the breast area and
pectoral muscle of each image was obtained using commercial software (Vol-
para, Matakina Technology Limited, New Zealand).

For dataset Mayo , annotator A and radiologist A have together annotated
the breast skin-air boundary and pectoral muscle of all images.

For dataset RHO6 , the annotation of the breast skin-air boundary and
pectoral muscle, and dense tissue segmentation were solely done by radiologist
A.

For dataset RHO7 , radiologists A and B have annotated the breast skin-
air boundary and pectoral muscle of all images. The radiologists A and B have
also independently performed the dense tissue segmentation and cancer risk
assessment according to BI-RADS and Tabar classi cation for each image.
Therefore, we ended up having two copies of dense tissue segmentation for
each image.

For dataset FP1, the annotation of breast skin-air boundary and pectoral
muscle was all done by annotator A. The radiologists A and B independently
assessed cancer risk according to BI-RADS and Tabar classi cation for each
image, and then made a consensus for images that they disagreed with.
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Convolutional sparse auto-encoder (CSAE)

The Convolutional Sparse Auto-encoder (CSAE) we proposed serves as a uni-
ed deep learning method for breast dense tissue segmentation and texture
scoring tasks. It can be viewed as combining multiple independent neural
networks, as illustrated in Figure 4.3, through another network on top. The
architecture of these independent neural networks resembles that of the CNN
(see Appendix 7 for familiarization with CNN). It consists of a convolution
layer and a pooling layer followed by yet another convolution layer. Each in-
dependent network takes the image patch as the input, which is sampled from
the breast image at a particular scale level, and outputs a set of feature maps.
These individual networks are then combined by concatenating their output
feature maps (along the axis of feature channel) and fed to another convolu-
tion layer followed by a softmax layer on top to form the CSAE. The CSAE

is a pixel classier that classi es each pixel independently. For each breast
image, a Gaussian pyramid was made according to prede ned scale levels. For
each pixel to be classi ed, multiple patches of the same size centered at the
same position are extracted from the pyramid (see Figure 4.2). For dense
tissue segmentation tasks, all pixels inside the breast were classi ed as dense
or none dense. For texture scoring tasks, patches randomly sampled at 500
di erent positions from the breast area were classi ed as cancer or non-cancer.
The nal texture score is obtained by averaging these 500 predictions.

Unlike CNN, which is trained in a top-to-bottom, fully supervised fashion.
Our CSAE is trained in a layer-wise semi-supervised fashion. The strategy
is to treat all the Iters of each convolution layer together as the generator
of an auto-encoder [131] (see Appendix A. of Chapter 9 for familiarization
with the auto-encoder). The input to the generator is the sub-patch extracted
from the input (image patch or the preceding feature maps) of the same size
as the lIters. The output of generator contains N features corresponding to
N lters. These output features are then fed to a decoder in order to recon-
struct the input sub-patch. Due to the dimensionality reduction nature of the
auto-encoder, training an anto-encoder with over-complete intermediate rep-
resentation (in other words, when the generator's output size is greater than
the geneartor's input size) can easily end up with a trivial solution (e.g. an
identity function being learned). We proposed a novel sparse regularizer to
regularize the generator's output during training, and force it to learn mean-
ingful representation from the data. After the auto-encoder is trained, the
decoder is thrown away, and we proceed to train the consecutive convolu-
tion layers in turn until the last softmax layer. Once every convolution layer
is trained, we include the labels to train the softmax layer on top and ne
tune the last convolution layer through back-propagation. As mentioned ear-
lier, our CSAE consists of multiple parallel networks before being merged in
the second last layer. Training of these independent networks can be eas-
ily distributed to multiple cluster nodes without implementing a complicated
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Figure 4.2: Multi-scale image patch sampling. The Yellow, brown and read
grids present e ective regions centered at the same position being sampled

through Gaussian pyramid.

inter-communication mechanism or the need for powerful GPUs.
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Score imputation for missing views

In our studies, where the scores of missing views are needed for analysis, we
used linear regression for imputation. We rst gathered scores, which are
available in all four views (LMLO, RMLO, LCC and RCC). For each combi-
nation of missing views, such as LCC missing, RCC missing, or LMLO and
RCC both missing, we build a linear regression model based on the complete
scores. Then we used the corresponding linear model for imputation of missing
scores of particular view(s) in the same dataset.

Analysis of study 1

We performed our dense tissue segmentation reliability analysis on the RHO7
dataset. Radiologists A and B were asked to manually segment the dense tis-
sue and assess the breast risk according to BI-RADS and Tabar independently.
For each breast, we calculated the percentage breast density (manual PMD)
by dividing the number of dense pixels by the number of total pixels inside the
breast. We evaluated the reliability by studying the inter-observer agreement
between two radiologists on the manual PMD averaged over the MLO and
CC view. The scores of missing views were imputed based on images avail-
able from the same women. We calculated the absolute Intraclass Correlation
Coe cient (ICC) (two-way random, single measure), Pearson's linear corre-
lation coe cient (R) and limits-of-agreement analysis for our analysis (based
on quartiles within the range of the PMD measures).

Analysis of study 2

In this study, we evaluated the performance of our CSAE method. We per-
formed 5-fold cross-validation to train and test our CSAE on the Dutchl and
Mayo datasets, respectively, for dense tissue segmentation and texture risk
scoring. We used an ensemble of ve models trained on the Dutchl dataset
to segment dense tissue in the Dutch2 dataset. We obtained automated PMD
for Dutchl and Dutch2 by calculating the percentage of pixels classied as
dense tissue inside the breast.

To evaluate the quality of our automated dense tissue segmentation, we
calculated Pearson's correlation coe cient between automated PMD and ra-
diologist A's manual PMD on the Dutchl dataset. We also calculated the
Dice coe cient between automated dense tissue segmentation and radiologist
A's manual manual segmentation.

To test how well our automated PMD is able to predict the risk of breast
cancer, we computed the area under the ROC curve (AUC) for separating
between cancer cases and controls on the Dutch2 dataset. The scores we used
for the evaluation were obtained by averaging PMDs of the left and right
breasts.
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To assess the performance of our texture score in predicting breast cancer,
we computed AUC for separating between cancer cases and controls on the
Mayo and Dutch2 datasets. Since cancer case images in the Dutch2 dataset are
not prior images, we took images of the contralateral breast for all cancer cases.
For controls, we averaged the texture scores of the left and right breasts. The
texture scores for the Mayo dataset were only available for one view (LMLO
or RMLO) per woman. We compared the performance of our texture model
on the Mayo dataset with two state-of-the-art methods [82, 156] which rely
on handcrafted features.

Analysis of study 3

In this study, we evaluated the performance, in comparison to radiologists, of
our CSAE density model and texture model in stratifying breast cancer risk
on FP1 and FP2 datasets. We trained a CSAE density model on the RHO6
and RHO7 (based on the manual segmentation of radiologist A) datasets, and
a CSAE texture model on the Mayo and RHO7 datasets. We assessed the
performance of our density and texture models in predicting breast cancer
by computing the AUC for separating cancer cases and controls on FP1 and
FP2 datasets. The AUCs based on radiologists' scores were also computed for
comparison. For all kinds of scores (automated scores and radiologist scores),
only the highest score of each woman (left or right breast) was used as the nal
score for performance evaluation. The scores of missing views were imputed
based on images available from the same women.

Histogram-based unsupervised domain adaptation
for medical image classi cation

Baseline models

To build our baselines for comparison, we rst trained an ensemble of 5
Densenet-121 (see the Appendix 7 for familiarization with Densenet) on the
Chexpert dataset. In order to prevent under-training and obtaining misleading
results in follow-up studies, we tuned each hyper-parameter (e.g. batch size,
data augmentation, optimizer constants, and so on) until we could reproduce
the results presented in the Chexpert [105] article. We refer to this ensem-
ble asChexpert-net . We used the same hyper-parameters to train another
ensemble on the NIH dataset, and we refer to this ensemble afNIH-net .
In training and testing, we used ve labels, namely atelectasis, cardiomegaly,
consolidation, edema, and pleural e usion. The labelcardiomegaly is not
available for the RH dataset. Also, labels for consolidation and edema are
merged into a single label in the RH dataset. Therefore, we ended up having
only 3 labels for the RH dataset in our following experiments. Figure 4.4
illustrates the procedure by which our baselines are produced. We tested the
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Figure 4.4: Baseline workow. Green box represents baseline model
(Densenet-121) trained on corresponding dataset. Blue box represents test
dataset. Each baseline model is tested against two dataset from another do-
main.

Chexpert-net against NIH and RH datasets to get two AUCs (area under
the ROC curve), presenting the generalization performance of Chexpert-net
on NIH and RH datasets without domain adaptation. In the same way, we
tested the NIH-net against Chexpert and RH datasets to obtain two AUCs,
presenting the plain generalization performance of the NIH-net on Chexpert
and RH datasets. Each AUC is calculated by averaging the AUCs of all the
classes available. This means the AUCs on the Chexpert and NIH datasets
are averaged over 5 classes and 3 classes on the RH dataset.

Histogram layer

We proposed a histogram layer based on the earlier work of Sedighi et al. [183].
This histogram layer is constructed by summing up a set of di erentiable
Gaussian functions (formulation 11.1 in Chapterl1l). Feeding an image to this
histogram layer outputs a normalized 1-D histogram. The dimension of its
output corresponds to the number of bins. This histogram layer is not train-
able but has a hyper-parameter which needs to be manually pre-determined.
The hyper-parameter controls the spread of each Gaussian function and can
be determined through visual inspection. Figure 4.5 illustrates the histogram
layer output with two di erent hyper-parameters. The histogram layer is
the building block for our proposed gamma-adjustment GAN and Graymap
GAN (see Chapter 11 for details). The discriminator takes the histograms
of the images as input and discriminates between real and fake images. In
this way, our GAN methods capture the global changes in intensity between
two domains rather than exploring the structural di erences of pixels in local
neighborhoods.
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Figure 4.5: Comparison of histogram layer output with two dierent bin
widths. Green bar represents the actual histogram computed by numpy and
red bar represents histogram computed by histogram layer. Chart on the left
shows the histogram layer with = 0:5 and chart on the right shows the
histogram layer with = 0:1.

Domain adaptation

Figure 4.6 illustrates our domain adaptation strategy. Unlike the traditional
work ow in which the main classi er (namely, our baseline model) is trained
together with GAN with the hope of learning domain-invariant features from
source and target data, our work ow leaves the classi er intact. What we ob-
tain is a generator which transforms data from the target domain to the source
domain so that the classi er does not need to be ne-tuned against the target
domain. Inside the GAN, images from the source domain directly proceed to
the discriminator, whereas images from the target domain are transformed by
the generator. While the generator learns to fool the discriminator by feed-
ing it with fake source images, the discriminator gets penalized every time it
classi es the fake source image as a true source image. Our hope is that the
generator learns how to translate images from the target domain to the source
domain, and then it can be used as a preprocessor to the classi er when it is
deployed to a site.

Since we train a generator to transform target images into source images,
as opposed to common practice, the generator cannot be regularized by the
classi er due to a lack of labels. We had to choose GANs that ultimately
preserved semantic consistency. GANs that can be used for unpaired image-
to-image translation become the rst choice. The CycleGAN [221] which was
proposed for style transfer of natural images, has recently been successfully
applied in the medical imaging eld for tasks like segmentation [72, 115], data
augmentation [85, 11], and image synthesis [217]. We decided to examine its
performance under our use case. Moreover, for comparison, we also included
the ColorMap GAN [198] in our experiments. The ColorMap GAN was orig-
inally proposed to tackle the discrepancy in spectral band between training
and test images of satellites. The discrepancy is caused for various reasons,
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such as images acquired with di erent atmospheric e ects, di erent times of
the day, and di erent locations. Since the ColorMap GAN transforms the im-
age at the intensity level rather than the pixel level, the semantic consistency
is guaranteed by its very nature.

We de ned 4 domain shift settings as illustrated in Figure 4.4:

1. Let the Chexpert dataset be the source domain and the RH dataset be
the target domain,

2. Let the Chexpert dataset be the source domain and the NIH dataset be
the target domain,

3. Let the NIH dataset be the source domain and the RH dataset be the
target domain,

4. Let the NIH dataset be the source domain and the Chexpert dataset be
the target domain.

We then trained four GANs for each of the settings. They are a CycleGAN
(see Appendix 7 for familiarization with CycleGAN), a ColormapGAN (see
Appendix 7 for familiarization with Colormap GAN), a Graymap GAN (de-
tails found in Chapter 11), and a Gamma-adjustment GAN (details found

in Chapter 11) in each of the domain shift settings. We used the generator
trained by each GAN to translate the image from the target domain to the
source domain. Then, we used the corresponding baseline model (Chexpert-
net or NIH-net) to classify the transformed images from the target domain to
see how well each generator performed (AUC).
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