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Preface

The work presented in this thesis was carried out by Pengfei Diao at the
Department of Computer Science at the University of Copenhagen, Biomediq
A/S, Rigshospitalet, and Cerebriu A/S between October 2013 and June 2022
in partial fulfillment of the requirements for the degree of doctor of philosophy.

The studies were supervised by professor Christian Igel at the University of
Copenhagen and professor Mads Nielsen at the University of Copenhagen and
Biomediq A/S, and PhD Akshay Pai at Cerebriu A/S. This thesis presents
summed work which was conducted under two research projects.

The breast project was a joint project between three parties:

1. Department of Computer Science, University of Copenhagen, Denmark,

2. Biomediq A/S, Denmark,

3. Rigshospitalet, Denmark.

with the goal of developing an automated mammography analysis system that
makes quantification of the individual’s breast cancer risk and expected can-
cer sensitivity of mammography available for future personalization of the
screening regime.

The lung project was a joint project between two parties:

1. Department of Computer Science, University of Copenhagen, Denmark,

2. Cerebriu A/S, Denmark.

with the goal of developing an automated system that detects lung infection
of COVID based on chest X-ray images.

This work is partly funded by following parties:

1. Department of Computer Science, University of Copenhagen, Denmark,

2. European Commission, AKMI under project no. 303655,

3. Biomediq A/S, Denmark,

4. Cerebriu A/S, Denmark,

This thesis is based on four research papers published in or accepted by
international journals and conferences in the fields of radiology or medical
imaging.
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Summary

Breast cancer is the most common cancer in women and the leading cause
of cancer death in women worldwide. Many European countries have intro-
duced national mammography screening programme in order to detect and
treat breast cancer at an early stage and hence reduce breast cancer mortal-
ity. However, not only does periodic breast screening increase the burden on
public spending but also, potentially, the cancer risk of women due to exposure
to unnecessary radiation. Introducing the automated breast cancer risk scor-
ing assessment, which supports the personalized breast screening plan, could
potentially help to reduce public spending and also incite women to receive
breast screening.

In recent years, automated disease diagnosis and prognosis based on med-
ical images has been quickly shifting from devising traditionally handcrafted
features to deep learning methods that learn features directly from the image
data. Convolutional neural networks (CNNs) have been successfully applied
to solve various medical image classification tasks and achieve state-of-the-art
performance for the majority of the applications. Training CNNs, however,
requires vast amounts of computational power as well as abundant labeled
image data, which makes its application prohibitive in places where both com-
putational resources and medical image annotators are limited. Furthermore,
despite the outstanding generalization performance on unseen data from the
same source that they were built on, CNNs still suffer from domain shift prob-
lems where they underperform on new data acquired from different sources.

The work presented in this thesis is two-fold. First, we developed a deep
learning method, in the context of limited computational resources and la-
beled data, for automated breast cancer risk scoring based on mammograms.
Our proposed learning method incorporates the auto-encoder to train convolu-
tional neural networks in a layer-wise fashion. Our models were trained for two
different tasks, namely, breast dense tissue segmentation and mammographic
texture risk scoring. We compared our automated breast tissue segmenta-
tion with manual Cumulus-like segmentation from a trained radiologist and
the texture risk model with two state-of-the-art handcrafted feature-based
scoring methods. Our results showed that the proposed method was able to
learn meaningful features directly from the data for both breast density seg-
mentation and texture scoring. When compared to the radiologist’s manual
scores and other existing automated scores, our method achieved competitive
performance.

Second, we analyzed Generative Adversarial Networks (GAN) methods
for solving single-source unsupervised domain adaptation problems under the
assumption that images from the target domain are unlabeled and only avail-
able at test time. We evaluated the cross-source generalization performance
of CNNs for the lung disease classification task based on chest X-ray images.
We proposed two novel histogram-based GANs to transform images from the
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target domain to the source domain. The trained generator is used as a pre-
processor to transform the input image from the target domain to the source
domain. We compared the performance of the proposed method to that of
existing standard methods and showed that current pixel-level local transfor-
mations are not good enough to be used in such medical image classification
tasks. Intensity-level global transformation methods are more promising and
reliable for such kinds of tasks.
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Resumé

Brystkræft er den mest almindelige kræftsygdom hos kvinder og den hyp-
pigste døds̊arsag blandt kvinder p̊a verdensplan. Mange europæiske lande
har indført nationale mammografiscreeningsprogrammer for at opdage og be-
handle brystkræft p̊a et tidligt tidspunkt og dermed reducere dødeligheden
af brystkræft. Periodisk brystscreening øger imidlertid ikke blot byrden p̊a
de offentlige udgifter, men potentielt ogs̊a kvindernes kræftrisiko som følge
af unødig str̊aling. Indførelsen af den automatiserede vurdering af brys-
tkræftrisikoen, som understøtter den personlige plan for brystscreening, kan
potentielt bidrage til at reducere de offentlige udgifter og tilskynde kvinder til
at f̊a foretaget brystscreening.

Automatiseret sygdomsdiagnose baseret p̊a medicinske billeder, har i de
seneste år skiftet fra traditionelle h̊andlavede attributer, til deep learning
metoder som lærer direkte fra billede data. Konvolutionelle neurale netværk
(CNN’er) er blevet brugt til at løse forskellige opgaver inden for medicinsk
billede klassificeringer med stor succes, og har opn̊aet state-of-the-art kvalitet
inden for størstedelen af opgaverne. Det kræver dog en um̊adelig comput-
erkraft og store mængder mærket data, hvilket gør det umuligt at bruge
i situationer hvor computerkraft og data er begrænset. Ydermere, selvom
CNN’er har udvist storartet generaliseringsresultater p̊a uset data fra samme
kilde, som CNN’en var bygget ud fra, underpræsterer de p̊a ny data fra en
forskellig kilde.

Det arbejde, der præsenteres i denne afhandling, er todelt. For det første
udviklede vi en deep learning metode i forbindelse med begrænsede comput-
erressourcer og mærkede data til automatiseret scoring af brystkræftrisiko
baseret p̊a mammografier. Vores foresl̊aede deep learning metode inkorpor-
erer auto-encoder til at træne konvolutionelle neurale netværk p̊a lagvis m̊ade.
Vores modeller blev trænet til to forskellige opgaver: Segmentering af tæt
brystvæv og mammografisk teksturrisikoscoring. Vi sammenlignede vores au-
tomatiserede brystvævssegmentering, med en manuel Cumulus-lignende seg-
mentering fra en uddannet radiolog, og vores teksturscoringsmodel med to
h̊andlavede state-of-the-art attributbaserede scoringsmetoder. Vores resul-
tater viste, at vores brugte metoder kunne lære signifikante attributer direkte
fra dataen, for b̊ade brystvævssegmenteringen og teksturscoringen. Ydermere,
opn̊aede vi konkurrencedygtighed i forhold til den manuelle scoring af radi-
ologen og andre eksisterende automatiserede scoringer.

For det andet analyserede vi Generative Adversarial Networks (GAN)
metoder til at løse enkelt-kilde unsupervised domænetilpasningsproblemer,
under den antagelse, at billeder fra m̊aldomænet er umærkede og kun tilgæn-
gelige p̊a testtidspunktet. Vi evaluerede krydskilde generaliseringpræstationen
af CNN’er til lungesygdomsklassificeringsopgaven baseret p̊a røntgenbilleder
af brystet. Vi foreslog to nye histogrambaserede GAN’er til transformering
af billeder fra m̊aldomænet til kildedomænet. Det trænede generator bruges
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som præprocessor til at transformere inputbilledet fra m̊aldomænet til kilde-
domænet. Vi sammenlignede resultaterne fra vores metode med eksisterende
standardmetoder, og viste at nuværende lokale transformationer p̊a pixel-
niveau ikke er gode nok, til at blive brugt i s̊adanne medicinske billedklas-
sificeringsopgaver. Globale transformationsmetoder p̊a intesity-level er mere
lovende og p̊alidelige til denne slags opgaver.
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Chapter 1

Introduction

Unsupervised deep learning for breast cancer risk
scoring

Breast cancer is the most frequent cancer developed among women and the
major cause of female cancer death globally [3]. Statistical study [65] based
on public data from year 2012 showed that breast cancer accounted for 13.5%
of newly diagnosed cancer cases (464,000 cases out of 3.45 million new cases
excluding non-melanoma skin cancer), and caused 131,000 death in Europe in
2012.

Since early diagnosis of breast cancer is vital to the patient’s survival [10,
176], many European states have introduced national mammography screen-
ing programme [19] in order to detect and treat breast cancer at an early
stage and hence reduce breast cancer mortality. However, state-wide breast
screening programme also increased burden on the public spending let alone
its effectiveness remains controversial [119, 9, 117, 83], the cost-effectiveness of
screening programme [84, 171, 171, 55, 14, 39, 28] plays important role in po-
litical decision making. Moreover, false-positive results, which cause stress and
anxiety as well as unnecessary biopsy [142], overdiagnosis and overtreatment
of benign tumors, which increase the risk of cancer in other organs [142], and
discomfort experienced during the screening can all discourage women from
attending the screening.

Having a breast cancer risk assessment that supports the personalized
breast screening plan could incite women to receive breast screening. But the
risk assessment itself adds another layer of cost, let alone that the mammogram
sometimes needs to be read by more than one radiologist in order to mitigate
the subjectivity in reading. Therefore, a computer-based fully automated
breast risk assessment system could potentially help to reduce the overall cost
of public spending on and increase the screening efficiency of the screening
programme.

The mammographic density, following gender, age, gene mutations, and

17
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family history, is considered one of the most important risk factors and is
commonly reported in breast cancer risk assessment [208]. A number of stud-
ies [29, 24, 30, 215, 31, 177, 52, 36] have demonstrated the breast density
being a strong risk factor for breast cancer development. According to a
meta-analysis [150] by V. A. McCormack et al., women with higher mammo-
graphic density (> 75%) had a four to six-fold increased risk of developing
breast cancer compared to women with low breast density (< 5%).

Mammographic density measurements can generally be divided into two
groups: 1) the qualitative measurements based on parenchymal patterns, and
2) the quantitative measurements based on the percentage area of dense tis-
sue occupying the breast. The Tabár score [78, 190] proposed by László Tabár
in 1997, as a modification to Wolfe’s classification [214] introduced in 1976,
categorizes the mammographic density into 5 groups based on five different
parenchymal patterns. Although Tabár classification was widely used in the
early years, quantitative measurements have become more popular recently.
In the studies [29, 24, 30, 215, 31, 177], the breast density was coarsely cate-
gorized into groups according to the dense degree by visually and subjectively
estimating the percentage of projected breast area occupied by the area of
dense tissue. For instance, a six-category classification scheme classifies the
breast density with six percentage intervals - 0%, < 10%, 10−25%, 25−50%,
50 − 75% and > 75%. The BI-RADS [4, 1] density classification (4th edition
2003), being one of these quantitative methods, is most commonly used in
clinical settings worldwide.

The major concerns of those categorical quantitative breast density classi-
fication strategies are the observer’s subjectivity and the insensitivity of small
changes in the mammographic density [18, 164, 44, 127, 77, 74]. To relieve
these problems, J. W. Byng et al. [33] proposed an interactive thresholding
method (based on which a commercialized program Cumulus [36] was later
developed) to provide continuous measurements of percentage breast density
(PMD). The Cumulus-like methods have since become an alternative to BI-
RADS in many clinic settings.

For fully automated breast risk scoring, a number of methods [186, 199,
67, 126, 122] were formerly proposed to automate the PMD measurement.
The methods [90, 186, 199, 67, 126] segregate between dense tissue pixels and
breast pixels based on the global image appearance or intensity distribution.
In contrast, the method [122] employs textural information from the local
neighborhood to classify individual dense tissue pixels from the breast. While
the method [122] proposd by Kallenberg et al. achieves state-of-the-art per-
formance by combining location, intensity, and global contextual information,
it relies on handcrafted features and plethoric hyper-parameter tuning.

Another path towards automated breast cancer risk scoring focuses on
capturing mammographic texture associated with breast cancer. Most of the
existing methods [35, 102, 92, 145, 82, 199, 220, 156] employ single or multiple
of handcrafted features such as the central moments [35, 102], the entropy of
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the histogram [35, 102], the gray-level co-occurrence matrix (GLCM) [145, 82],
the run-length measures [145, 82], the Laws features [145], Fourier coeffi-
cients [145], Wavelet features [145, 82], fractal dimension [35, 199], lacunar-
ity [199] and multi-scale local jet [156]. Although the multi-scale local jet
feature with KNN classifier proposed by Nielsen et al. [156] reported the best
results, it still requires handpicking heuristic texture features and does not
generalize well to different datasets according to our experiments.

Covolutional neural network (CNN) originally proposed by LeCun et al.
in 1998 [136] to solve the handwritten zip code recognition problem in images
did not draw too much attention until the 2010s due to the computational
limitations of hardware in the old days. In 2012, C. Dan et al. implemented
DanNet (a variant of CNN) [47] on GPU and won the brain image segmenta-
tion contest (ISBI Challenge 2012), whose task was to label each pixel of elec-
tron microscopy images of stacks of thin slices of animal brains as membrane
or non-membrane. DanNet was the first feed-forward deep neural network
that purely relied on features learned directly from the data, having won first
place in a public competition in the field of medical imaging. DanNet has
since then won two more public contests (ICPR 2012 Contest on Mitosis De-
tection, and MICCAI 2013 Grand Challenge on Mitosis Detection) on mitosis
detection in breast cancer histological images [50, 49]. The large performance
gap between DanNet and the second place model in these contests has drawn
much attention from researchers and triggered a huge shift in methodology
from traditionally hand crafting features to learning features directly from
data for solving classification tasks in medical imaging. Various variants of
CNN were proposed thereafter and achieved extraordinary performance in
different medical image classification tasks and showed their superiority in al-
most every public natural image classification contest (such as the ImageNet
Classification Contest) since 2012.

Compared to the traditional fully connected neural network (MLP), the
success of CNN can be attributed to three characteristics:

• Parameter Sharing: The MLP represents each pixel of an image with an
individual perceptron, leading to a tremendous number of parameters
to learn. However, the convolutional neural network only connects a
local region of pixels from a previous layer to the next layer, reducing
parameters substantially.

• Translation Invariant: If an object changes its locations in an image,
MLP can not generalize all the shifted objects to be the same one, while
the convolutional neural network can tackle this kind of translation in-
variant issue.

• Local correlation: The MLP treats each pixel in an image the same
and omits spatial relations among neighboring pixels, while CNN can
capture the structural layout of an object in the image.
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These three characteristics empower CNN to combat the transnational invari-
ant issue, which is considered as one of the most common issues appearing in
the vast majority of image data.

Although CNN can be trained through the classical back-propagation
method, it requires vast amounts of computational power as well as abun-
dant labeled image data. This has made its application in medical imaging
prohibitive in places where both computational resources and medical image
annotators are limited. Deep learning models with convolutional architecture
that can be trained without top-to-bottom back-propagation are desirable in
settings with limited computation power.

The overall goal of this project was to develop a unified deep learning
method that automatically learns features from mammographic data for both
breast density estimation and texture scoring, and verify its performance on
both internal and external data. We conducted three studies, which are de-
scribed in Chapter 2. The datasets being used and the method being proposed
are presented in Chapter 3 and Chapter 4 respectively. We summarize and
discuss the results in Chapter 5. We conclude our work in Chapter 6.

Histogram-based unsupervised domain adaptation
for medical image classification

In medical imaging, domain adaptation is the problem of adapting a model
that has been trained in one domain (e.g., film-based mammograms) to an-
other domain (e.g., digital mammograms). This is often difficult because the
two domains may have different distributions of data. For example, differ-
ent hospitals may use different imaging modalities (e.g. X-ray versus CT),
or the medical images may be taken with different scanners (e.g. GE versus
Siemens), or even the acquisition protocol may be different. The domain shift
problem naturally arises in medical imaging due to heterogeneity from various
aspects.

The domain shift problem is one of the major challenges exposed to the
development of deep learning-based medical imaging products. Unlike natural
images that can be obtained at a relatively low cost, the acquisition of medical
images from various domains, especially ones with labels, is difficult. A deep
learning model being trained on one source domain or a limited amount of data
usually needs to be fine-tuned to adapt to the target domain at the deployment
site. Otherwise, it can suffer from significant performance degradation.

The unsupervised domain adaptation solves the problem of domain shift
for data from the target domain without labels. The domain-invariant fea-
ture generation method is one of the most commonly used for deep neural
networks. Figure 1.1 illustrates a minimalist version of adapting a trained
neural network from the source domain to a new domain. The classifier con-
sists of a head and a backbone (sometimes also called a feature extracting
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Figure 1.1: Unsupervised domain adaptation pipeline.

network). The idea is to fine-tune the classifier with two simultaneous tasks.
The classifier takes images from both domains as input. The backbone ex-
tracts features from the input. The extracted source domain features are fed
to both the head and the auxiliary network, whereas the extracted target do-
main features are only fed to the auxiliary network. Once the head receives
input from the backbone, it performs main tasks (e.g. disease classification)
and back-propagates errors to the backbone. On the other hand, the auxiliary
network performs the auxiliary task on both source and target domain fea-
tures and back-propagates errors to the backbone. The auxiliary task could
be any unsupervised task such as auto-encoding or self-contrasting, but the
most popular is a GAN that brings the target and source domain together.
This way, the backbone is forced to extract domain-invariant features; other-
wise, it receives a large penalty from the auxiliary task. On the flip side, the
backbone is still regularized by the main task because if the backbone com-
pletely throws away features that are relevant to the main task, the backbone
also gets penalized by the main task. Former works [124, 144, 41] used this
GAN-based strategy for unsupervised domain adaptation and demonstrated
promising results. One problem with this domain-invariant feature learning
is that it requires the main network to be fine-tuned or even retrained upon
deployment. This is sometimes unpractical when the network is huge or there
is a need for approval from authorities. In this study, we tested GAN-based
methods for unsupervised domain adaptation under the condition that the
main network must remain intact. We conducted the study on chest X-ray
images. The goal of this study is described in Chapter 2. The datasets being



22 CHAPTER 1. INTRODUCTION

used and the method being proposed are presented in Chapter 3 and Chap-
ter 4 respectively. We summarize and discuss the results in Chapter 5. We
conclude our work in Chapter 6.



Chapter 2

Aims

Unsupervised deep learning for breast cancer risk
scoring

In order to develop a unified deep learning method for automated breast den-
sity estimation and texture scoring and verify its performance, we broke the
whole project into three studies:

1. Breast dense tissue manual segmentation and reliability verification,

2. Deep learning method for automated breast density estimation and tex-
ture scoring,

3. Breast cancer risk stratification with false positive results.

In the first study, we aimed to validate the reliability of breast dense tissue
segmentation made through our own interactive threshold tool as well as to
build the dense tissue segmentation ground truth for one external dataset
and three internal datasets, which are used for training and testing our deep
learning model.

In the second study, we aimed at designing and verifying a layer-wise semi-
supervised training strategy for a convolutional architecture that could be run
on a normal CPU. We would like to examine if our model being trained on
images of cancer-free mammograms (prior image) could explore relevant tex-
tural information associated with breast cancer. We would also like to verify
our assumption that our method of learning features directly from the data is
less dataset dependent than methods relying on carefully selected handcrafted
features.

In the third study, we aimed to apply our deep learning model to a breast
cancer false-positive dataset acquired from the breast screening program in
Denmark, and test if our model is able to stratify the breast cancer risk of
women who have formerly received at least one false positive breast screening
result, but some of them have later developed breast cancer.
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Histogram-based unsupervised domain adaptation
for medical image classification

The goal of this work is to conduct a proof-of-concept study on employing
GAN-based learning methods to transform data from a target domain to a
source domain. Our assumption is that our deep learning model needs to
remain intact at the deployment, and only unlabeled data from the deployment
site is available to us. We hypothesize that global pixel intensity change may
play a big role in the domain shift problem for single-source medical images
(images acquired using the same modality).

To conduct this study, we acquired two large public film-based chest X-ray
image datasets [105, 209] and one small internal film-based chest X-ray image
dataset. We chose two standard unpaired image-to-image GAN methods as
well as proposed two modifications. We aimed to test the performance of each
method for the unsupervised domain adaptation problem and also verify our
hypothesis.



Chapter 3

Datasets

Unsupervised deep learning for breast cancer risk
scoring

Dutch breast cancer screening dataset 1 (Dutch1)

We collected one digital mammogram in raw format from each of 493 cancer-
free women through the Dutch breast cancer screening programme, which took
place from 2003 to 2012 under standard clinical settings on a Hologic Selenia
FFDM system. Women included in this dataset have an average age of 60.25±
7.83 years. The dataset consists of 125 images in right mediolateral oblique
view (RMLO), 125 images in left mediolateral oblique view (LMLO), 122
images in right craniocaudal view (RCC), and 121 images in left craniocaudal
view (LCC).

Dutch breast cancer screening dataset 2 (Dutch2)

We collected two digital mammograms (in RMLO and LMLO) in raw format
from each of 1576 women through the Dutch breast cancer screening pro-
gramme, which took place from 2003 to 2012 under standard clinical settings
on a Hologic Selenia FFDM system. Women included in this dataset have an
average age of 60.6 ± 7.7 years. Out of 1576 women, 394 were cancer cases
and 1182 were healthy controls. Healthy controls were matched on age and
acquisition date.

Mayo mammography health study dataset (Mayo)

The Mayo dataset consists of 668 film-based mammograms (543 in LMLO and
125 in RMLO) from 226 cancer cases and 442 healthy controls, with a mean
age of 55.2±10.5 years. It is a subset of the Mayo mammography Health Study
(MMHS) cohort (19,924 mammograms in total) [163] at the Mayo Clinic in
Rochester, Minnesota. The MMHS cohort was originally gathered to study
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the association of breast cancer with breast density. In the subset, both cancer
cases and healthy controls were matched on age and time from the earliest
available mammogram to the study enrollment/diagnosis date. These images
were recorded between October 2003 and September 2006, 6 months to 15
years prior to the diagnosis of breast cancer. The analogue mammograms
were digitized into 12-bit grayscale images with a pixel spacing of 50 microns
using an Array 2905 laser digitizer (Array Corporation, the Netherlands).

Danish breast cancer screening dataset 1 (RH06)

We collected film-based mammograms from the Danish breast cancer screening
programme. These mammograms were recorded in 2006 from 179 cancer-free
women who attended biennial routine breast screening at Bispebjerg Hospital,
Denmark. These women were followed after the screening took place in 2006
until the end of 2010. During this period, 93 women had been found to have
developed breast cancer, leaving us 93 cancer cases and 86 healthy controls.
Each cancer case was matched with roughly one control on age. The mammo-
grams were originally queried in four views (LMLO, RMLO, LCC, and RCC)
from each woman. For various reasons, such as missing from the hospital’s
film archive, extremely bad image quality, or only digital mammograms were
available for specific views, we ended up having 354 images (90 in LMLO, 91
in RMLO, 86 in LCC, and 87 in RCC) for cancer cases and 324 images (85 in
LMLO, 83 in RMLO, 79 in LCC, and 77 in RCC) for controls. The film-based
mammograms were digitized into 8-bit gray-scale images at a resolution of 75
DPI or 150 DPI using a Vidar Diagnostic PRO Advantage digitizer (Vidar
Systems Corporation, Herdon, VA, USA).

Danish breast cancer screening dataset 2 (RH07)

We collected film-based mammograms from the Danish breast cancer screening
programme. These mammograms were recorded in 2007 from 384 cancer-free
women who attended biennial routine breast screening at Bispebjerg Hospital,
Denmark. These women were followed after the screening took place in 2007
until the end of 2010. During this period, 122 women were found to have
developed breast cancer, leaving us 122 cancer cases and 262 healthy controls.
Each cancer case was matched with roughly two controls on age. The mammo-
grams were originally queried in four views (LMLO, RMLO, LCC, and RCC)
from each woman. For various reasons, such as missing from the hospital’s
film archive, extremely bad image quality, or only digital mammograms were
available for specific views, we ended up having 484 images (122 in LMLO,
120 in RMLO, 121 in LCC, and 119 in RCC) for cancer cases (mean age 57.8)
and 1040 images (260 in LMLO, 261 in RMLO, 259 in LCC, and 260 in RCC)
for controls (mean age 58.1). The film-based mammograms were digitized into
8-bit gray-scale images at a resolution of 75 DPI or 150 DPI using a Vidar Di-
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agnostic PRO Advantage digitizer (Vidar Systems Corporation, Herdon, VA,
USA).

Danish breast cancer screening dataset 3 (FP1)

We collected film-based mammograms from the Danish breast cancer screening
programme. These mammograms were recorded between 1991 and 2005 from
a cohort of 576 women who attended biennial routine breast screening in
the Copenhagen region, Denmark. The women included in the cohort were
selected from the entire screened population in Copenhagen from 1991 to
2005 who had received at least one false positive screening test result. The
false positive test result means that a woman who had been found to develop
breast cancer in the screening was declared to be negative upon the follow-up
recall. At first, 288 women were chosen because they had been diagnosed with
breast cancer between the time they received the false-positive test result and
April 17, 2008. Then 288 healthy controls were selected to match each cancer
case by age. The mammograms we used were ones from the first time false
positive results were reported. Since the screening procedure changed over
time from 1991 to 2005, the mammograms of each woman were not acquired
in all views. We ended up having 1068 images (284 in LMLO, 283 in RMLO,
249 in LCC, and 252 in RCC) for cancer cases and 1044 images (283 in LMLO,
286 in RMLO, 238 in LCC, and 237 in RCC) for controls. The film-based
mammograms were digitized into 12-bit gray-scale images at a resolution of
570 DPI using a Vidar Diagnostic PRO Advantage digitizer (Vidar Systems
Corporation, Herdon, VA, USA).

Danish breast cancer screening dataset 4 (FP2)

The FP2 dataset is a subset of the FP1 dataset. This dataset has excluded 70
cancer cases as well as their matched controls because these 70 cancer cases
were potentially misclassified as false-positive cases according to a retrospec-
tive study [206] done previously.

Histogram-based unsupervised domain adaptation
for medical image classification

Chexpert dataset

The Chexpert [105] is a large public film-based chest X-ray image dataset
which includes 223,414 images, out of which 191,027 were acquired in the
frontal view and 32,387 were acquired laterally. All images were provided
with 14 labels corresponding to 14 categories of observations. Aside from this
large dataset, a separate test dataset with 202 frontal views and 32 lateral
views is also provided. All images, provided in 8-bit gray-scale JPG format,
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were postprocessed with histogram equalization before being released to the
public.

NIH dataset

The NIH [209] dataset is another large film-based chest X-ray image dataset
available to the public. It contains 112,120 images in frontal view only, and
out of which 25,596 images are held out for testing. All images are provided in
8-bit gray-scale PNG format without any known postprocessing. Each image
is provided with 15 labels corresponding to 15 categories of observations.

RH dataset

The RH dataset is an internal film-based chest X-ray image dataset which
consists of 884 images in frontal view. A separate dataset which includes 231
frontal view images is provided for testing. The 7 labels that are assigned to
each image correspond to 7 categories of observations. All images are provided
in 8-bit gray-scale PNG format without any known postprocessing.



Chapter 4

Methods

Unsupervised deep learning for breast cancer risk
scoring

Breast and dense tissue segmentation ground truth

For obtaining breast and dense tissue segmentation ground truth, we refined
an interactive annotation and density thresholding tool in Matlab [148] based
on the source code made by J. Raundahl et al. in their earlier study [174].
The original segmentation tool was implemented based on the method [33]
proposed by J. W. Byng, which employs a single threshold inside the breast
region to segregate dense tissue pixels from fatty tissue. Our radiologists
found the original tool difficult to use for generating accurate breast dense
tissue segmentation for our RH06 and RH07 datasets due to the noise and
luminance distortion introduced during digitizing the analogue mammograms
(details of the problem and modification are described in the Appendix 7).
We improved the tool by allowing the user to define multiple local regions and
assign an individual threshold for each of these local regions inside the breast.
Our improved implementation (see Figure 4.1) avoids generating large chunks
of artifacts that occur near the edges of images and allows the radiologist to
make more accurate dense tissue segmentation.

Two trained radiologists (referred to as radiologist A and radiologist B)
and an annotator (namely the author of this thesis, referred to as annotator
A) were involved in building the segmentation ground truth. The radiolo-
gist A is a resident in radiology, and the radiologist B is a senior radiologist
specializing in breast-imaging and mammography screening. The annotator
A had no experience in radiology before this project and has practiced on
roughly 200 images under the supervision of radiologist A to get familiar with
annotation.

For dataset Dutch1, annotator A and radiologist A have together an-
notated the breast skin-air boundary and pectoral muscle of all images. The
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Figure 4.1: Screenshot of our improved percentage density tool. Image on
the left shows the original mammogram. Image on the right shows the seg-
mentation. Red area represents the segmentation of dense tissue. Outer blue
contour represents manual annotation of breast. Inner blue and green con-
tours represent manually defined local regions.

dense tissue segmentation was solely made by radiologist A.

For dataset Dutch2, the automated segmentation of the breast area and
pectoral muscle of each image was obtained using commercial software (Vol-
para, Matakina Technology Limited, New Zealand).

For dataset Mayo, annotator A and radiologist A have together annotated
the breast skin-air boundary and pectoral muscle of all images.

For dataset RH06, the annotation of the breast skin-air boundary and
pectoral muscle, and dense tissue segmentation were solely done by radiologist
A.

For dataset RH07, radiologists A and B have annotated the breast skin-
air boundary and pectoral muscle of all images. The radiologists A and B have
also independently performed the dense tissue segmentation and cancer risk
assessment according to BI-RADS and Tabar classification for each image.
Therefore, we ended up having two copies of dense tissue segmentation for
each image.

For dataset FP1, the annotation of breast skin-air boundary and pectoral
muscle was all done by annotator A. The radiologists A and B independently
assessed cancer risk according to BI-RADS and Tabar classification for each
image, and then made a consensus for images that they disagreed with.
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Convolutional sparse auto-encoder (CSAE)

The Convolutional Sparse Auto-encoder (CSAE) we proposed serves as a uni-
fied deep learning method for breast dense tissue segmentation and texture
scoring tasks. It can be viewed as combining multiple independent neural
networks, as illustrated in Figure 4.3, through another network on top. The
architecture of these independent neural networks resembles that of the CNN
(see Appendix 7 for familiarization with CNN). It consists of a convolution
layer and a pooling layer followed by yet another convolution layer. Each in-
dependent network takes the image patch as the input, which is sampled from
the breast image at a particular scale level, and outputs a set of feature maps.
These individual networks are then combined by concatenating their output
feature maps (along the axis of feature channel) and fed to another convolu-
tion layer followed by a softmax layer on top to form the CSAE. The CSAE
is a pixel classifier that classifies each pixel independently. For each breast
image, a Gaussian pyramid was made according to predefined scale levels. For
each pixel to be classified, multiple patches of the same size centered at the
same position are extracted from the pyramid (see Figure 4.2). For dense
tissue segmentation tasks, all pixels inside the breast were classified as dense
or none dense. For texture scoring tasks, patches randomly sampled at 500
different positions from the breast area were classified as cancer or non-cancer.
The final texture score is obtained by averaging these 500 predictions.

Unlike CNN, which is trained in a top-to-bottom, fully supervised fashion.
Our CSAE is trained in a layer-wise semi-supervised fashion. The strategy
is to treat all the filters of each convolution layer together as the generator
of an auto-encoder [131] (see Appendix A. of Chapter 9 for familiarization
with the auto-encoder). The input to the generator is the sub-patch extracted
from the input (image patch or the preceding feature maps) of the same size
as the filters. The output of generator contains N features corresponding to
N filters. These output features are then fed to a decoder in order to recon-
struct the input sub-patch. Due to the dimensionality reduction nature of the
auto-encoder, training an anto-encoder with over-complete intermediate rep-
resentation (in other words, when the generator’s output size is greater than
the geneartor’s input size) can easily end up with a trivial solution (e.g. an
identity function being learned). We proposed a novel sparse regularizer to
regularize the generator’s output during training, and force it to learn mean-
ingful representation from the data. After the auto-encoder is trained, the
decoder is thrown away, and we proceed to train the consecutive convolu-
tion layers in turn until the last softmax layer. Once every convolution layer
is trained, we include the labels to train the softmax layer on top and fine
tune the last convolution layer through back-propagation. As mentioned ear-
lier, our CSAE consists of multiple parallel networks before being merged in
the second last layer. Training of these independent networks can be eas-
ily distributed to multiple cluster nodes without implementing a complicated
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Figure 4.2: Multi-scale image patch sampling. The Yellow, brown and read
grids present effective regions centered at the same position being sampled
through Gaussian pyramid.

inter-communication mechanism or the need for powerful GPUs.
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Score imputation for missing views

In our studies, where the scores of missing views are needed for analysis, we
used linear regression for imputation. We first gathered scores, which are
available in all four views (LMLO, RMLO, LCC and RCC). For each combi-
nation of missing views, such as LCC missing, RCC missing, or LMLO and
RCC both missing, we build a linear regression model based on the complete
scores. Then we used the corresponding linear model for imputation of missing
scores of particular view(s) in the same dataset.

Analysis of study 1

We performed our dense tissue segmentation reliability analysis on the RH07
dataset. Radiologists A and B were asked to manually segment the dense tis-
sue and assess the breast risk according to BI-RADS and Tabar independently.
For each breast, we calculated the percentage breast density (manual PMD)
by dividing the number of dense pixels by the number of total pixels inside the
breast. We evaluated the reliability by studying the inter-observer agreement
between two radiologists on the manual PMD averaged over the MLO and
CC view. The scores of missing views were imputed based on images avail-
able from the same women. We calculated the absolute Intraclass Correlation
Coefficient (ICC) (two-way random, single measure), Pearson’s linear corre-
lation coefficient (R) and limits-of-agreement analysis for our analysis (based
on quartiles within the range of the PMD measures).

Analysis of study 2

In this study, we evaluated the performance of our CSAE method. We per-
formed 5-fold cross-validation to train and test our CSAE on the Dutch1 and
Mayo datasets, respectively, for dense tissue segmentation and texture risk
scoring. We used an ensemble of five models trained on the Dutch1 dataset
to segment dense tissue in the Dutch2 dataset. We obtained automated PMD
for Dutch1 and Dutch2 by calculating the percentage of pixels classified as
dense tissue inside the breast.

To evaluate the quality of our automated dense tissue segmentation, we
calculated Pearson’s correlation coefficient between automated PMD and ra-
diologist A’s manual PMD on the Dutch1 dataset. We also calculated the
Dice coefficient between automated dense tissue segmentation and radiologist
A’s manual manual segmentation.

To test how well our automated PMD is able to predict the risk of breast
cancer, we computed the area under the ROC curve (AUC) for separating
between cancer cases and controls on the Dutch2 dataset. The scores we used
for the evaluation were obtained by averaging PMDs of the left and right
breasts.
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To assess the performance of our texture score in predicting breast cancer,
we computed AUC for separating between cancer cases and controls on the
Mayo and Dutch2 datasets. Since cancer case images in the Dutch2 dataset are
not prior images, we took images of the contralateral breast for all cancer cases.
For controls, we averaged the texture scores of the left and right breasts. The
texture scores for the Mayo dataset were only available for one view (LMLO
or RMLO) per woman. We compared the performance of our texture model
on the Mayo dataset with two state-of-the-art methods [82, 156] which rely
on handcrafted features.

Analysis of study 3

In this study, we evaluated the performance, in comparison to radiologists, of
our CSAE density model and texture model in stratifying breast cancer risk
on FP1 and FP2 datasets. We trained a CSAE density model on the RH06
and RH07 (based on the manual segmentation of radiologist A) datasets, and
a CSAE texture model on the Mayo and RH07 datasets. We assessed the
performance of our density and texture models in predicting breast cancer
by computing the AUC for separating cancer cases and controls on FP1 and
FP2 datasets. The AUCs based on radiologists’ scores were also computed for
comparison. For all kinds of scores (automated scores and radiologist scores),
only the highest score of each woman (left or right breast) was used as the final
score for performance evaluation. The scores of missing views were imputed
based on images available from the same women.

Histogram-based unsupervised domain adaptation
for medical image classification

Baseline models

To build our baselines for comparison, we first trained an ensemble of 5
Densenet-121 (see the Appendix 7 for familiarization with Densenet) on the
Chexpert dataset. In order to prevent under-training and obtaining misleading
results in follow-up studies, we tuned each hyper-parameter (e.g. batch size,
data augmentation, optimizer constants, and so on) until we could reproduce
the results presented in the Chexpert [105] article. We refer to this ensem-
ble as Chexpert-net. We used the same hyper-parameters to train another
ensemble on the NIH dataset, and we refer to this ensemble as NIH-net.
In training and testing, we used five labels, namely atelectasis, cardiomegaly,
consolidation, edema, and pleural effusion. The label cardiomegaly is not
available for the RH dataset. Also, labels for consolidation and edema are
merged into a single label in the RH dataset. Therefore, we ended up having
only 3 labels for the RH dataset in our following experiments. Figure 4.4
illustrates the procedure by which our baselines are produced. We tested the
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Figure 4.4: Baseline workflow. Green box represents baseline model
(Densenet-121) trained on corresponding dataset. Blue box represents test
dataset. Each baseline model is tested against two dataset from another do-
main.

Chexpert-net against NIH and RH datasets to get two AUCs (area under
the ROC curve), presenting the generalization performance of Chexpert-net
on NIH and RH datasets without domain adaptation. In the same way, we
tested the NIH-net against Chexpert and RH datasets to obtain two AUCs,
presenting the plain generalization performance of the NIH-net on Chexpert
and RH datasets. Each AUC is calculated by averaging the AUCs of all the
classes available. This means the AUCs on the Chexpert and NIH datasets
are averaged over 5 classes and 3 classes on the RH dataset.

Histogram layer

We proposed a histogram layer based on the earlier work of Sedighi et al. [183].
This histogram layer is constructed by summing up a set of differentiable
Gaussian functions (formulation 11.1 in Chapter11). Feeding an image to this
histogram layer outputs a normalized 1-D histogram. The dimension of its
output corresponds to the number of bins. This histogram layer is not train-
able but has a hyper-parameter which needs to be manually pre-determined.
The hyper-parameter controls the spread of each Gaussian function and can
be determined through visual inspection. Figure 4.5 illustrates the histogram
layer output with two different hyper-parameters. The histogram layer is
the building block for our proposed gamma-adjustment GAN and Graymap
GAN (see Chapter 11 for details). The discriminator takes the histograms
of the images as input and discriminates between real and fake images. In
this way, our GAN methods capture the global changes in intensity between
two domains rather than exploring the structural differences of pixels in local
neighborhoods.
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Figure 4.5: Comparison of histogram layer output with two different bin
widths. Green bar represents the actual histogram computed by numpy and
red bar represents histogram computed by histogram layer. Chart on the left
shows the histogram layer with σ = 0.5 and chart on the right shows the
histogram layer with σ = 0.1.

Domain adaptation

Figure 4.6 illustrates our domain adaptation strategy. Unlike the traditional
workflow in which the main classifier (namely, our baseline model) is trained
together with GAN with the hope of learning domain-invariant features from
source and target data, our workflow leaves the classifier intact. What we ob-
tain is a generator which transforms data from the target domain to the source
domain so that the classifier does not need to be fine-tuned against the target
domain. Inside the GAN, images from the source domain directly proceed to
the discriminator, whereas images from the target domain are transformed by
the generator. While the generator learns to fool the discriminator by feed-
ing it with fake source images, the discriminator gets penalized every time it
classifies the fake source image as a true source image. Our hope is that the
generator learns how to translate images from the target domain to the source
domain, and then it can be used as a preprocessor to the classifier when it is
deployed to a site.

Since we train a generator to transform target images into source images,
as opposed to common practice, the generator cannot be regularized by the
classifier due to a lack of labels. We had to choose GANs that ultimately
preserved semantic consistency. GANs that can be used for unpaired image-
to-image translation become the first choice. The CycleGAN [221] which was
proposed for style transfer of natural images, has recently been successfully
applied in the medical imaging field for tasks like segmentation [72, 115], data
augmentation [85, 11], and image synthesis [217]. We decided to examine its
performance under our use case. Moreover, for comparison, we also included
the ColorMap GAN [198] in our experiments. The ColorMap GAN was orig-
inally proposed to tackle the discrepancy in spectral band between training
and test images of satellites. The discrepancy is caused for various reasons,
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such as images acquired with different atmospheric effects, different times of
the day, and different locations. Since the ColorMap GAN transforms the im-
age at the intensity level rather than the pixel level, the semantic consistency
is guaranteed by its very nature.

We defined 4 domain shift settings as illustrated in Figure 4.4:

1. Let the Chexpert dataset be the source domain and the RH dataset be
the target domain,

2. Let the Chexpert dataset be the source domain and the NIH dataset be
the target domain,

3. Let the NIH dataset be the source domain and the RH dataset be the
target domain,

4. Let the NIH dataset be the source domain and the Chexpert dataset be
the target domain.

We then trained four GANs for each of the settings. They are a CycleGAN
(see Appendix 7 for familiarization with CycleGAN), a ColormapGAN (see
Appendix 7 for familiarization with Colormap GAN), a Graymap GAN (de-
tails found in Chapter 11), and a Gamma-adjustment GAN (details found
in Chapter 11) in each of the domain shift settings. We used the generator
trained by each GAN to translate the image from the target domain to the
source domain. Then, we used the corresponding baseline model (Chexpert-
net or NIH-net) to classify the transformed images from the target domain to
see how well each generator performed (AUC).
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Figure 4.6: Basic workflow of GAN based domain adaptation. The classifier
(C) is trained on source image data for disease classification. The GAN is
trained to translate images from target domain to source domain. The GAN
is comprised of a generator (G), and a discriminator (D). The input to the
GAN is a batch of unpaired images from source and target domains. The
discriminator is discarded after generator is trained.





Chapter 5

Results, discussion and future
works

Unsupervised deep learning for breast cancer risk
scoring

Study 1

Compared with manual PMD scores obtained from two radiologists’ dense
tissue segmentation on the RH07 dataset, the Pearson’s correlation coeffi-
cient of 0.94 (CI 0.93-0.95) indicated a significant linear dependency. With
an absolute ICC of 0.93 (0.92-0.94), two radiologists exhibited nearly perfect
agreement [68] which is in line with results reported by Boyd et al. in their
study [25] using the commercial Cumulus software. Limits-of-agreement anal-
ysis with 95% limits found a non-zero mean difference (0.009) between two
sets of PMD (radiologist B’s PMD minus radiologist A’s PMD) with variance
ranging from −11.% to 12.9% which indicates the existence of mild subjectiv-
ity. The discrepancy (most differences within the range of one PMD quartile)
may be attributed to three factors. First, two radiologists’ judgment of what
represents a dense area may be slightly different as one radiologist is a senior
radiologist specializing in mammography screening and the other one is a radi-
ology resident. Second, outlining the breast could be very subjective for those
mammograms whose skin-air boundaries of the breast are hard to distinguish,
as demonstrated in Figure 5.1. Third, although our local thresholding ap-
proach gives the radiologist the possibility to label dense tissue at a fine scale,
for the sake of fair workload, both radiologists use the local threshold only if
the global threshold yields segmentation that is very far from reality. Both
radiologists chose to ignore small artifacts and subjectively tune the global
threshold to compensate for the discrepancy in overall density.

Overall, no significant difference in inter-observer agreement was found for
both cancer cases and healthy controls (ICC = 0.93 versus 0.92). Moreover,

41
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Figure 5.1: Illustration of digitalized analogue mammograms whose skin-air
boundaries of breast are not perfectly distinguishable from the backgrounds.

in comparison to the absolute ICC of 0.88 calculated for two radiologists’
BI-RADS scores, we may argue that the manual PMD measured with our
segmentation tool is more reliable than the categorical density score.

Study 2

In testing our CSAE density model on the Dutch1 dataset, a strong linear
correlation was found between our automated PMD and radiologist’s manual
PMD with a Pearson’s correlation coefficient of 0.85 (CI 0.83 - 0.88). The
correlation coefficient is competitive with ones reported in former studies such
as 0.63 [155], 0.70 [91], 0.85 [126] and slightly lower than ones reported in
the studies like 0.88 [140] and 0.91 [122]. The average Dice coefficients for
dense and fatty tissues are respectively 0.63 (±0.19) and 0.95 (±0.05). The
discrepancy of Dice coefficients between fatty and dense tissues observed is due
to the fact that for most of the breast, the fatty tissue accounts for much more
area inside the breast than the dense tissue. A small amount of mislabeling
has a greater impact on the Dice coefficient of dense tissue than fatty tissue.

In testing our CSAE density model on the Dutch2 dataset, our automated
PMD achieved an AUC of 0.59 in predicting cancer cases and controls. The
result is in line with AUCs reported in the literature on similar populations
(e.g. 0.57 [155], 0.59 [140], and 0.60 [125]), which suggests that data-oriented
deep learning methods can serve as an alternative to methods that rely on
handcrafted features.

In testing our CSAE texture model on the Mayo dataset, an AUC of 0.61
was yielded, which beats our reproduced results with AUCs of 0.56 (Häberle
et al. [82]) and 0.60 (Nielsen et al. [156]) of two state-of-the-art methods on
the same dataset. It is worth mentioning that the KNN method [156] which
achieved an AUC of 0.60 in our reproduction, had a higher reported AUC of
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0.63 in the original article. This discrepancy in performance on two different
datasets potentially verifies our assumption that handcrafted features could
be over-crafted towards a particular dataset.

In testing our CSAE texture model on the Dutch2 dataset, our model
achieved an AUC of 0.57, which is lower than the AUC of 0.59 achieved by
our density model. The performance drop is most likely attributed to domain
shift since our texture model was trained on the film-based Mayo dataset
whereas the Dutch2 dataset was built from digital mammograms.

Study 3

On the FP1 test dataset, the AUCs achieved by our CSAE density model,
our CSAE texture model, the BI-RADS scores, and the Tabar scores are 0.62,
0.61, 0.65, and 0.63, respectively. On the FP2 test dataset, the AUCs achieved
by our CSAE density model, our CSAE texture model, the BI-RADS scores,
and the Tabar scores are 0.65, 0.63, 0.67, and 0.65, respectively. The results
suggested that all kinds of scores were weaker at predicting the cancer risk
on the FP1 dataset than on the FP2 dataset. We attribute the performance
drop to the special characteristics of 70 misclassified false-positive cases that
were included in the FP1 dataset. The automated PMD, automated texture,
and BI-RADS scores were all on average lower in these 70 cases compared to
those true false-positive cases.

On comparison between automated scores and radiologist’s scores, our au-
tomated PMD and texture scores both showed less association with cancer
risk compared to BI-RADS and Tabar scores on both dataset. We hypothe-
sized that poor image quality contributed to the majority of the performance
gap because some fading, blurring, and noisy images were observed with the
naked eye. Furthermore, because these mammograms were acquired in a peri-
orid at least ten years ahead of our training data, the presence of heterogeneity
in the population, scanners, acquisition protocols, and so on that introduces
potential domain shift is not negligible.

Future works

As discussed earlier, our deep learning method could have suffered from a
domain shift problem in both studies. We will be looking into the domain
adaptation problem. Most existing frameworks for domain adaptation re-
quire data (with or without labels) from the target domain to be available at
training/fine-tuning time. It is sometimes unpractical to re-train or fine-tune
a large neural network for each site of deployment. Therefore, we will con-
duct a preliminary study on potential methods for domain adaptation without
altering the trained weights of our network.

Another problem that still needs to be handled is the correct segmentation
of the breast and pectoral muscles. We originally proposed our method for
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fully automated segmentation. However, in the test phase of all our experi-
ments, we used manual segmentation for the breast. This is due to the fact
that our network can not properly discriminate between the breast tissue and
superfluous tissue folds below and above the breast area or pectoral muscle.
We believe this is an intrinsic limitation of the pixel classifier, which lacks
information about the shape of breasts on a global scale.

Since percentage breast density is a well established risk factor, it is clear
that by improving the accuracy of segmentation, we are also improving the
CSAE density model’s performance in predicting cancer risk. However, it is
unclear to us from which direction the texture model can be optimized. It was
observed that the texture model picks dense structure as its feature during
training. But how to encourage the texture model to learn patterns other
than dense structures remains an open question.

Histogram-based unsupervised domain adaptation
for medical image classification

Table 5.1 demonstrates the AUCs (averaged over all available classes) of our
baseline model for classifying images translated from the target domain in
each of our settings. The individual P value (compared against the baseline
based on Deong tests [56]) computed for each class is presented in Table 5.2. It
can be observed in Table 5.1 that for each setting, the CycleGAN performed
the worst, followed by the Colormap GAN. Although both Graymap GAN
and Gamma-adjustment GAN beat the baselines when transforming images
from the RH to Chexpert or NIH, the P values for individual classes suggest
that their performances are not significantly different from the baseline. For
images transformed from NIH to Chexpert, both of our proposed GANs beat
the baseline and are statistically significant according to the P values. In the
setting of translating images from Chexpert to NIH, the Gamma-adjustment
GAN beat the baseline and was statistically significant in individual classes.
However, the overall performance of Graymap GAN was not encouraging,
despite the fact that it performed significantly better in two individual classes.

Figure 5.2 illustrated two sets of images transformed by 4 generators. It
can be seen that out of these 4 GANs, the CycleGAN generated images are
the most blurry and also carry some artifacts. This could explain its poor
performance in our experiments. Although the cycle consistency loss was
proposed to preserve the semantic consistency of the image, it was only tested
on natural images where loss of details or small amount of artifacts might not
destroy the whole content. In an earlier study [11] by Asaf Bar-El et. al., the
CycleGan was used to augment chest image data and has helped to improve
the classification accuracy of their model. But the CycleGAN was trained
together with the classifier, which acted as a regularizor so that the generator
does not only have to respect the cycle consistency loss but also the loss of
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Original 
Gamma 

Adjustment

GAN

Graymap GAN CycleGAN Colormap GAN

Figure 5.2: Example of generated images. First row shows transformation
from RH to NIH. Second row shows transformation from Chexpert to NIH.
From left to right are, respectively, original, gamma adjustment GAN gen-
erated, Graymap gan generated, CycleGAN generated, and Colormap GAN
generated. Red-boxes highlight where the artifacts are added or local details
are lost.

the classifier. Since the CycleGAN in our case was trained completely in an
unsupervised manner, it might be hard to prevent CycleGAN from throwing
away information that is important to disease classification.

Although ColorMap GAN transforms images at the intensity level and
preserves semantic consistency by its very nature, we can still observe detail
loss from Figure 5.2 which also explains its poor performance in our experi-
ments. The loss of details could be the result of unstable training and some
degree of model collapse since it is not regularized like CycleGAN. However,
because Graymap GAN used the same generator as that of ColorMap GAN
and showed better performance most of the time, we can argue that ColorMap
GAN’s pixel-based patch discriminator (designed for natural images) might
not be suitable for medical images.

Future works

Although our histogram-based GAN have improved the AUCs comparing to
plain input and other two domain adaptation methods, there is still room for
improvement. During training our GANs, the instability was observed. In
the work [210] Zhe Wang et al. used the linear kernel instead of the Gaussian
kernel, which might help a smoother gradient flow. Another problem was
that although our GANs were trained without labels, the generator was still
selected through a small validation set. This is due to the fact that the losses
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do not really guide us in selecting the model. We will look into this problem
in the future.

Having shown that domain shift due to global intensity changes can be
relieved by our histogram-based methods, other more sophisticated changes,
e.g. deformation, are yet to be addressed. Keeping semantic consistency,
avoiding loss of details, and introducing artifacts are important factors that
need to be considered in developing new methods.
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Table 5.1: AUCs (area under the receiving operator curve) for different meth-
ods evaluated on the test data specified in the leftmost column. The AUC is
the macro average over 5 classes. The dataset name refers to the dataset on
which the classifier was trained (e.g., NIH-net was trained on NIH). The num-
bers of test images were 231, 25596, and 25523 for RH, NIH, and Chexpert,
respectively, except for Chexpert234 and Chexpert6886, where 234 (standard
Chexpert test set) and 6886 images were used. HE indicates whether the test
images were histogram equalized.

Test on HE Methods Mean
AUC

Chexpert234 Yes Chexpert-net + plain input 0.8850
Chexpert6886Yes Chexpert-net + plain input 0.8409

RH No Chexpert-net + plain input 0.7210

RH Yes Chexpert-net + plain input(RH baseline) 0.7376
RH Yes Chexpert-net + γ-adjustment GAN 0.7541
RH Yes Chexpert-net + CycleGAN 0.7263
RH Yes Chexpert-net + Colormap GAN 0.7253
RH Yes Chexpert-net + Graymap GAN 0.7434

NIH No Chexpert-net + plain input 0.7737

NIH Yes Chexpert-net + plain input(NIH baseline) 0.7870
NIH Yes Chexpert-net + γ-adjustment GAN 0.7993
NIH Yes Chexpert-net + CycleGAN 0.7379
NIH Yes Chexpert-net + Colormap GAN 0.7671
NIH Yes Chexpert-net + Graymap GAN 0.7986

NIH No NIH-net + plain input 0.8022

RH No NIH-net + plain input(RH baseline) 0.6513
RH No NIH-net + γ-adjustment GAN 0.6741
RH No NIH-net + CycleGAN 0.6385
RH No NIH-net + Colormap GAN 0.6460
RH No NIH-net + Graymap GAN 0.6619

Chexpert Yes NIH-net + plain input(Chexpert baseline) 0.7458
Chexpert Yes NIH-net + γ-adjustment GAN 0.7501
Chexpert Yes NIH-net + CycleGAN 0.7274
Chexpert Yes NIH-net + Colormap GAN 0.7402
Chexpert Yes NIH-net + Graymap GAN 0.7458
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Chapter 6

Conclusion

Unsupervised deep learning for breast cancer risk
scoring

Study 1 summary

We have conducted preliminary work towards the development of a fully au-
tomated breast cancer risk scoring system. We have built breast and dense
tissue segmentation ground truth for five image datasets. We conducted a
study to show our segmentation ground truth is reliable for subsequent re-
search. The fact that there was still some mild disagreement between the two
radiologists in the study encourages us to make a fully automated breast risk
assessment to get rid of all subjectivity.

Study 2 summary

We have proposed a unified deep learning method (namely CSAE) for auto-
mated breast dense tissue segmentation and texture risk scoring. Our method
trains a CNN-like neural network in a layer-wise fashion. The novelty of our
method is that it does not rely on handcrafted features and does not require
a massive amount of computation like CNN during training. We tested our
method for breast dense tissue segmentation and texture risk scoring based
on three independent datasets. The performance of our deep learning method
is on par with the state-of-the-art methods, which rely on handcrafted fea-
tures. Future work will focus on improving the breast and pectoral muscle
segmentation as well as domain adaptation.

Study 3 summary

We have trained a CSAE density model and a CSAE texture model. We
applied these two models to a false-positive dataset to examine their perfor-
mance in stratifying breast cancer risk. Despite the association between our
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automated scores and breast cancer being found, the association is weaker
than that between the radiologist’s scores and breast cancer. We conclude
that our current automated breast risk scoring system is not good enough to
serve as a replacement for the radiologist. More work needs to be devoted to
improving our machinery.

Histogram-based unsupervised domain adaptation
for medical image classification

In this study, we have tested the performance of four unsupervised GAN meth-
ods. Our proposed GAN methods have outperformed two other methods for
unsupervised domain adaptation tasks. We have also verified our hypothesis
that the global intensity changes are one of the root causes of the domain
shift problem for X-ray images and can be partly relieved by GANs of simple
architecture. More experimentation needs to be done to further improve the
performance of our methods.



Chapter 7

Appendix

Background knowledge

Convolutional Neural Networks

LeCun first used the term ”convolution” in his LeNet-5 [136] design for doc-
ument recognition application. The network includes convolutional and fully-
connected (FC) layers, together with a pooling operation. LeNet-5 is the
rudiment of a series of following modern convolutional neural networks. The
pioneering ideas about local receptive fields, shared weights, and spatial invari-
ants, inspire numerous researchers to explore the core essence and theoretical
foundations of the convolutional operator.

”Convolution” means convolutional operator, which is a linear operator
applied on the two-dimensional (2D) input with learned filters. The network
explores translation-invariant pattern and spacial relations among pixels that
contain the indispensable information in a local neighborhood. Compared to a
fully connected neural network, which requires much fewer model parameters
and training data (with respect to translational variation) to achieve the same
or even better performance.

The convolution operator is applied to the input data via a filter. The input
data and the filter can be represented as multidimensional tensors in modern
programming languages. The filters can be in any shape with an arbitrary size
(usually 3*3 or 5*5). The filters are used to capture local patterns in the input
images, such as textures in the shallow layers and object components in the
deep ones. In the network forward stage, the filter slides across the input image
to do the convolution in each position, calculating the dot product between
the input image and the filter in a specific sliding step. An illustration of the
operation is shown in Figure 7.1.

There are three important properties that make convolutional neural net-
works effective. The first property is called spatial locality, which can exploit
the topological structure of image pixels and learn this spatial layout infor-
mation as an effective cue for identifying meaningful contents. The second
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Figure 7.1: Convolution operation between a two-dimensional input and a
filter. The output shows the result from applying convolution with the specific
filter [75].

property is called translational invariance, which can identify an object re-
gardless of where the subject is located in an image. The last property is
called sparse connectivity or parameter sharing, which reduces the number of
parameters by reusing the filters at different positions of the input.

There are some other matters in the implementation which should be ad-
dressed. First, padding by extending the edges of an image can make the
convolution work when the filter is skidding outside the input image. Padding
can also adjust the output’s shape to be desirable for subsequent layers. Sec-
ond, stride can skip over some sliding steps in the convolution operation when
a filter is applied to the input data, so the output’s resolution and dimen-
sionality can be reduced. Third, a pooling operation can change the output’s
shape by using a down sampling operation (normally a max or average opera-
tion), further reducing the dimensionality of the output for a compact feature
representation.

The output of the convolution layer is called a ”feature map”. For a 2D
input I and a filter K, the output value at row i and column j is calculated
as

O(i, j) = (I ◦K)(i, j) =
∑
x

∑
y

K(x, y)I(i− x, j − y) (7.1)

where x and y are respectively the row and column index of filter K. The con-
volution is computed by dot production over the filter and the specific region
in the image, and the produced value are in the feature map indexed by i and
j. The exact operation is served as the base computation in the convolutional
stages, highlighting and identifying the meaningful patterns in the original
image to facilitate object detection and classification. The final CNN is built
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by stacking multiple convolutional layers, possibly with some down-sampling
layers in the middle and a fully connected multilayer perceptron on top.

The one-dimensional CNN is very similar to the 2D CNN. It can be con-
ceptually viewed as a 2D CNN with the input’s height equaling one.

ResNet

The ResNet [88] was the first ”very deep” (more than 100 layers) neural net-
work whose working mechanism is relatively clear both in theory and in prac-
tice. Since its introduction, it has demonstrated remarkable performance in
a variety of image classification tasks, and it has had a significant impact on
many deep models that have been developed since.

The basic building block of ResNet is a so-called ”residual block” as shown
in Figure 7.2. It is constructed by introducing a skip connection which con-
nects the input and the output of the block, with several stacked layers in the
middle, through an addition operation. The idea behind this design is that if
these stacked layers are not producing useful representation, they should at
least not cause the representation ability of the input to degrade. During back-
propagation, the gradients flowed through two paths, namely, those stacked
layers and the shortcut. This shortcut can therefore relieve information loss
and also facilitate gradient flow during back-propagation, expecting that the
network performance with more stacked layers will be at least as good as the
one with fewer layers. The residual block can be mathematically formulated
as

y = F(x, {W}) + x (7.2)

where x is the input, F (x, {W}) represents the stacked layers. As an exmaple,
for a two-layers residual block, F is formulated as F = W2∗σ(W1∗x) in which
σ denotes an activation operation.

The ResNet is constructed by stacking multiple residual blocks with op-
tionally an linear classifier on top. Notably, the skip connections in equa-
tion 7.2 will not introduce additional parameters or computation burden.
Based on an arbitrary non-residual network, shortcut connections can also
be inserted into it and turn the original network into its counterpart residual
one. This has facilitated the development of many new deep models. Our 1D
CNN was also designed based on this residual block structure.

DenseNet

The DenseNet [100] has a similar design to ResNet but has taken a different
approach to combining the input and output of stacked layers inside a ”Dense
block”. Figure 7.3 illustrates the structure of this Dense block. In contrast
to a residual block in ResNet, which merges the input and the output of the
residual block via an addition operation, the input and output of a Dense
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Figure 7.2: The residual block.

block are merged through a concatenation operation. This is topologically,
as illustrated in Figure 7.4, equivalent to connecting every dense block in the
network to all its subsequent layers through multiple shortcut connections.
This mass-connection structure is called dense connectivity, and is formulated
as

xℓ = Bℓ([x0, x1, x2, . . . , xℓ−1]), (7.3)

where xl is the output of dense block Bl, and Bl takes the concatenation of out-
puts from all its preceding dense blocks as input. The DenseNet is constructed
by stacking these dense blocks with, optionally, a linear classifier on top. In
our experiments, we used DenseNet-121 for Chexpert-net and NIH-net. Ta-
ble 7.1 gives the exact configuration of DenseNet-121. In the Table 7.1 ”n×n
conv, stride m” refers to a composite of three consecutive operations: a batch
normalization [104] operation, a rectified linear activation, and convolution
operation with filter size of n × n and stride of 2. The transition layer be-
tween two blocks serves the purpose of dimensionality reduction through max
pooling or average pooling operations. Inside the dense block, the ”[· · · ]× n”
means operations inside the bracket are repeated n times. The numbers of
filters used for the first convolution layer, dense block 1, dense block 2, dense
block 3, and dense block 4, are respectively 32, 32, 64, 96, and 128.

CycleGAN

The CycleGAN [221] was proposed to solve the unpaired image-to-image trans-
lation problem for image style transfer. Traditionally, training Generative
Adversarial Networks (GANs) [76] for domain adaptation requires paired in-
stances from the source and target domain. In practice, getting paired images
from both domains could be difficult, especially in the field of medical imag-
ing. The CycleGAN employs a new architecture and learning objectives to
train a model in an unsupervised fashion to transform data from one domain
to another without the need for paired instances.
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Figure 7.3: The Dense block structure.

Figure 7.4: Inter-connection of dense blocks inside DenseNet.

The CycleGAN extends the GAN architecture by simultaneously training
a source generator and discriminator, together with a target generator and
discriminator. The source generator takes data from the source domain and
its outputs are discriminated against by the target discriminator. The target
generator takes data from the target domain and it is discriminated against
by the source discriminator. The two generators produce fake instances for
the source and target domains respectively. The two discriminators serve the
purpose of discriminating between the fake instances of the source and target
domains, respectively.

The CycleGAN employs an additional learning objective called ”cycle con-
sistency”. The design philosophy behind it is that the source generator’s out-
put can be further transformed by the target generator, and the final result
should match its original data in the source domain. The reverse is also true.
The idea of cycle consistency is borrowed from the machine translation field,
where a sentence translated from one language to another and the one inter-
preted back from the second language to its original form in the first language
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Layers DenseNet-121

Convolution 7 × 7 conv, stride 2

Pooling 3 × 3 max pool, stride 2

Dense Block 1

[
1 × 1 conv, stride 1

3 × 3 conv, stride 1

]
× 6

Transition Layer 1
1 × 1 conv
2 × 2 average pool, stride 2

Dense Block 2

[
1 × 1 conv, stride 1

3 × 3 conv, stride 1

]
× 12

Transition Layer 2
1 × 1 conv
2 × 2 average pool, stride 2

Dense Block 3

[
1 × 1 conv, stride 1

3 × 3 conv, stride 1

]
× 24

Transition Layer 3
1 × 1 conv
2 × 2 average pool, stride 2

Dense Block 4

[
1 × 1 conv, stride 1

3 × 3 conv, stride 1

]
× 16

Classification
Layer

7 × 7 global average pool
1000D fully-connected, softmax

Table 7.1: Densenet 121 configuration proposed in original article [100]

should be identical. The CycleGAN achieves reciprocal consistency by adopt-
ing a loss to measure the discrepancy between the original data and the one
after the two generators’ transformations. This serves as model regulariza-
tion in training, allowing the data to be generated in a consistent manner
and overcoming the mode collapse issue in standard generative adversarial
networks.

As illustrated in 7.5, given two datasets A and B the CycleGAN learns two
generators G : A → B and F : B → A. In addition, two discriminators, DA

and DB are trained to discriminate between real and fake data in the source
and target domains, respectively. The loss function consists of two parts:
adversarial losses [76] and cycle consistency losses. The cycle consistency
losses were proposed to make G and F generating images that are semantically
congruent with each other in both forward and backward paths. An instance
a, for example, should be as close to its reconstruction F (G(a)) as possible.

The adversarial losses [76]

LGAN(G,DB, A,B) = Eb∼pdata(b)[logDB(b)]

+ Ea∼pdata(a)[log(1 −DB(Ga))], (7.4)
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Figure 7.5: Cycle consistency workflow.
∼
A is generated data of B, and

∼
B is

generated data of A. DB discriminates fake B whereas DA discriminates fake
A.

LGAN(F,DA, B,A) = Ea∼pdata(a)[logDA(a)]

+ Eb∼pdata(b)[log(1 −DA(G(B))], (7.5)

are used to learn the transformation functions G : A → B and F : A → B.
The discriminator DB distinguishes between the fake instance G(a) and real
instances b. While G minimizes this overall learning loss, the D tries to
maximize it. Therefore, the learning objective becomes

min
G

max
DB

LGAN(G,DB, A,B) . (7.6)

Similarly for the reverse procedure F : B → A the learning objective is

min
F

max
DA

LGAN(F,DA, B,A) . (7.7)

The consistency loss formulated as

Lcyc(G,F ) = Ea∼pdata(a)[F (G(a)) − a]

+ Eb∼pdata(b)[G(F (b)) − b]. (7.8)

ensures that the generated data can be restored back to its original domain
with minimal information loss. And the final learning loss is summed over the
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above three individual losses.

L(G,F,DA, DB) =Lgan(G,DB, A,B)

+ Lgan(F,DA, B,A)

+ λLcyc(G,F ), (7.9)

where the constant λ controls the importance of cycle consistency.
The generator of CycleGAN is a CNN with residual blocks, which was

adopted from the neural style transfer network proposed by Johnson et al.
[116]. The discriminator is also a CNN, which was borrowed from Patch-
GAN [106]. One key feature of this discriminator is that instead of discrim-
inating the whole image, it discriminates regions (image patch) at different
locations in the image. The final prediction is an average of all predictions
over these regions. By breaking the image into patches, the discriminator is
forced to explore differences between two domains at a global level instead of
a local level. In our medical imaging context, it prevents the discriminator
from learning trivial differences between two domains, such as small artifacts
associated with a specific type of scanner.

ColorMapGAN

The ColorMapGAN [198] is yet another Generative Adversarial Network that
requires no paired images from the source domain and target domain for do-
main adaptation. It was originally proposed to tackle the discrepancy in spec-
tral band between training and test images of satellites. The discrepancy is
caused for various reasons, such as images acquired with different atmospheric
effects, different times of the day, and different locations.

The construction of ColorMapGAN is very simple. It consists of a genera-
tor and a discriminator like classical GAN. Instead of employing sophisticated
architecture, e.g. CNN, that operates at the pixel level, the generator oper-
ates in the RGB color space, which ensures pixels with the same values are
transformed the same way. Therefore, semantic consistency is enforced.

Let RGB denote the color space of source domain and R′G′B′ denote the
color space of target domain, the mapping from RGB to R′G′B′ is defined as
7.10.

R′G′B′ = RGB ◦W +K, (7.10)

where W and K are weights and biases, respectively. The ◦ operator does
the element-wise production between RGB elements and weights. Since only
a small fraction of all the possible colors occur in the training data, partially
updating W and K could vastly reduce the computational complexity in prac-
tice. Assume each dimension of RGB space ranges between 0 and 255. The
index of each distinct color is calculated as

I = r × 256 × 256 + g × 256 + b , (7.11)
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where r, g, b are intensity values for red, green, and blue colors, respectively.
The RGB transformation can be partially updated as

R′G′B′[I] = RGB[I] ◦W [I] +K[I], (7.12)

where [·] denotes a row retrieving operation on a matrix given an index vector
I.

The architecture of the discriminator of ColorMapGAN is similar to that
of [221]. It classifies image patches instead of whole images. In our experi-
ments, we used the same discriminator for CycleGAN and ColorMapGAN.

Given source data X and target data Y , the losses for discriminator and
generator are respectively

L(D) = Ex∈X [(D(x) − 1)2] + Ey∈Y [(D(G(y)))2] (7.13)

and
L(G) = Ey∈Y [(D(G(y)) − 1)2] . (7.14)

Interactive dense tissue segmentation tool

Cumulus [36] and similar interactive thresholding programs are widely used
for breast density measurements. The core method [33] is straight forward.
Looking at the digital or digitized mammogram displayed on the computer
screen, the observer interactively chooses two intensity thresholds θbreast and
θdense. While θbreast is used for segmenting out the breast from background,
θdense is used for segregating the dense and non-dense tissue pixels within the
breast. The sets of pixels belonging to breast and dense tissue are respectively
defined as

Pbreast = {u ∈ I|u ≥ θbreast} (7.15)

and
Pdense = {u ∈ Pbreast|u ≥ θdense} (7.16)

where I is the set of all pixels. The area of breast is then calculated as

Abreast =
∑

i∈Pbreast

1 (7.17)

; and the area of dense tissue is calculated as

Adense =
∑

i∈Pdense

1 (7.18)

Having these two areas, the percentage breast density (PMD) is calculated as

PMD =
Adense

Abreast
× 100% (7.19)
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Figure 7.6: Breast segmentation based on intensity threshold. Depicted are
(a) original mammogram in right mediolateral oblique view, (b) breast seg-
mentation with smaller threshold, and (c) breast segmentation with larger
threshold.

A naive implementation of J. W. Byng’s method [33] does not work well
with film-based mammograms due to the fact that the scanner (digitizer) usu-
ally introduces noise and luminance distortion during the digitization process.
Figure 7.6 illustrated an example of a digitized analogue mammogram and two
versions of its breast segmentation according to two different intensity thresh-
olds, θbreast. It can be seen from the image (a) that apart from white noise,
the regions on the left and right parts are, in general, brighter than those in
the middle. While choosing a smaller threshold θbreast results segments (see
image (b)) that covers the entire breast region, a large chunk of background
is also labeled as breast (e.g. the lower left part). Since these wrong segments
are connected to the breast segment, it is impossible to extract the true breast
by finding the largest connected component in the image. On the other hand,
although a larger threshold θbreast filters out more background pixels (see im-
age (c)) and produces more disconnected segments, the segmented breast is
also shrunken compared to the true breast.

To overcome this problem, J. Raundahl et al. [174] alternatively employed a
simple contour-line-annotation approach as a replacement for the thresholding
method for breast segmentation. In their work, they implemented a tool
(illustrated in Figure 7.7) in Matlab [148] which lets an observer manually
outline the pectoral muscle and breast by placing vertices along the contour
of each object. These vertices form polygons that overlap the breast and
pectoral muscle. Instead of solving equation 7.15, the breast segmentation is
done by solving the point-in-polygon problem using algorithms such as the
even-odd rule [184]. In the end, the observer only determines the dense tissue
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Figure 7.7: Screenshot of the percentage density tool implemented by J. Raun-
dahl et al. [174]. Image on the left shows the original mammogram. Image
on the right shows the segmentation. Red area represents the segmentation
of dense tissue. Blue contour represents manual annotation of breast.

threshold θdense in order to label dense tissue pixels within the breast using
equation 7.16.

It can be seen from Figure 7.7 that manual annotation of the breast pro-
duces much better breast segmentation than the thresholding method. The
dense tissue segmentation, however, still suffers from the luminance distortion
originating from the edges of the image. To obtain more accurate dense tis-
sue segmentation, we proposed a local thresholding scheme which allows the
observer to choose multiple thresholds θdense within the breast. The modifi-
cation we have made on top of J. Raundahl’ tool is to add the functionality,
as illustrated in Figure 7.8, allowing the observer to define local regions inside
the breast by drawing multiple polygons and choosing a threshold for each
local region. The labeling of dense tissue pixels consists of two parts. Let
Nlocal be the total number of local regions; the dense tissue pixels outside of
local regions are given as

Pdense global = {u ∈ Pbreast global|u ≥ θdense global} (7.20)

where
Pbreast global = Pbreast \ Plocal 1 \ Plocal 2 . . . \ Plocal N (7.21)

is the set of all pixels Pbreast inside the breast but excluding pixels Plocal 1 to
Plocal N inside local regions. The dense tissue pixels inside local region i are
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Figure 7.8: Screenshot of our improved percentage density tool. Image on
the left shows the original mammogram. Image on the right shows the seg-
mentation. Red area represents the segmentation of dense tissue. Outer blue
contour represents manual annotation of breast. Inner blue and green con-
tours represent manually defined local regions.

defined as
Pdense local i = {u ∈ Plocal i|u ≥ θdense local i} (7.22)

and the union of these dense tissue pixels inside local regions is given as

Pdense local = Pdense local 1 ∪ Pdense local 2 . . . ∪ Pdense local N (7.23)

The area of breast is calculated the same way as equation 7.17; and the area
of dense tissue is calculated as

Adense =

 ∑
i∈Pdense global

1

 +

 ∑
i∈Pdense local

1

 (7.24)

Having the area of dense tissue, the final PMD is calculated using the equa-
tion 7.17. Figure 7.8 illustrates the dense tissue segmentation with local
thresholding. Comparing it with Figure 7.7, it can be seen that the wrong
dense tissue labels near the edges were removed with the help of adopting
two local regions. As a result, more accurate dense tissue segmentation was
obtained.



Part II

Papers

63





Chapter 8

Inter-observer agreement
according to three methods of
evaluating mammographic
density and parenchymal
pattern in a case control
study: impact on relative risk
of breast cancer

Rikke Rass Winkel1, My von Euler-Chelpin, Mads Nielsen, Pengfei Diao,
Michael Bachmann Nielsen1, Wei Yao Uldall1 and Ilse Vejborg

Abbreviations

ACR: The American College of Radiology; BI-RADS: Breast imaging report-
ing and data system; CC: Craniocaudal; CI: Confidence interval; DBT: Digital
breast tomosynthesis; DCIS: Ductal carcinoma in situ; ICC: Intraclass correla-
tion coefficient; LAL: Lower agreement limit; MLO: Mediolateral oblique; NS:
Non-significant; OR: Odds ratio; PMD: Percentage mammographic density;
R1: Reader 1; R2: Reader 2; UAL: Upper agreement limit.

Abstract

Background:Mammographic breast density and parenchymal patterns are
well-established risk factors for breast cancer. We aimed to report inter-
observer agreement on three different subjective ways of assessing mammo-
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CHAPTER 8. INTER-OBSERVER AGREEMENT ACCORDING TO
THREE METHODS OF EVALUATING MAMMOGRAPHIC DENSITY

AND PARENCHYMAL PATTERN IN A CASE CONTROL STUDY:
IMPACT ON RELATIVE RISK OF BREAST CANCER

graphic density and parenchymal pattern, and secondarily to examine what
potential impact reproducibility has on relative risk estimates of breast cancer.

Methods:This retrospective case–control study included 122 cases and
262 age- and time matched controls (765 breasts) based on a 2007 screen-
ing cohort of 14,736 women with negative screening mammograms from Bis-
pebjerg Hospital, Copenhagen. Digitised randomized film-based mammo-
grams were classified independently by two readers according to two radio-
logical visual classifications (BI-RADS and Tabár) and a computerized in-
teractive threshold technique measuring area-based percent mammographic
density (denoted PMD). Kappa statistics, Intraclass Correlation Coefficient
(ICC) (equivalent to weighted kappa), Pearson’s linear correlation coefficient
and limits-of-agreement analysis were used to evaluate inter-observer agree-
ment. High/low-risk agreement was also determined by defining the following
categories as high-risk: BI-RADS’s D3 and D4, Tabar’s PIV and PV and
the upper two quartiles (within density range) of PMD. The relative risk of
breast cancer was estimated using logistic regression to calculate odds ratios
(ORs) adjusted for age, which were compared between the two readers. Re-
sults:Substantial inter-observer agreement was seen for BI-RADS and Tabar
(k=0.68 and 0.64) and agreement was almost perfect when ICC was calcu-
lated for the ordinal BI-RADS scale (ICC=0.88) and the continuous PMD
measure (ICC=0.93). The two readers judged 5% (PMD), 10% (Tabar) and
13% (BI-RADS) of the women to different high/low-risk categories, respec-
tively. Inter-reader variability showed different impact on the relative risk
of breast cancer estimated by the two readers on a multiple-category scale,
however, not on a high/low-risk scale. Tabar’s pattern IV demonstrated the
highest ORs of all density patterns investigated.

Conclusions:Our study shows the Tabar classification has comparable
inter-observer reproducibility with well tested density methods, and confirms
the association between Tabar’s PIV and breast cancer. In spite of compa-
rable high inter-observer agreement for all three methods, impact on ORs
for breast cancer seems to differ according to the density scale used. Auto-
mated computerized techniques are needed to fully overcome the impact of
subjectivity

Background

Breast cancer is the most common cancer among women worldwide and a
leading cause of cancer death [3]. Breast density has been demonstrated to be
one of the strongest risk factors for breast cancer [25, 52]. A meta-analysis by
V. A. McCormack et al. showed that women with increased mammographic
density (> 75%) have a four to six-fold increased risk of breast cancer com-
pared with women with low breast density (< 5%) [150]. Besides being an
independent marker of breast cancer risk, density affects mammographic sensi-
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tivity by the “masking effect” and is associated with increased risk of interval
cancers [25, 129, 45]. Moreover, breast density is known to be affected by
hormonal status and has the potential of being modulated [128, 53, 20, 219].
Integration into existing risk models like the Gail model [73] has been dis-
cussed [52, 42, 12] as well as density patterns forming the basis of individual-
ized screening [25, 45, 57, 181, 178]. Thus, mammographic breast density is
considered an important variable in cancer diagnostics, risk estimation, and
possible risk modelling.

One of the key questions has been how to measure mammographic den-
sity most accurately, reliably, and simply. Basically, there are two different
approaches: 1) the qualitative morphological approach based on structural in-
formation and 2) the quantitative approach which considers the amount of fi-
broglandular (radio dense) tissue in the breast, often expressed as a percentage
area of dense tissue [172]. In 1976 Wolfe proposed a classification based on four
different parenchymal patterns [214] which was modified into five categories
by László Tabár in 1997 [78, 190]. Today, the BI-RADS density classifica-
tion (with a quantitative percentage graduation in the 4th edition from 2003)
is globally the most commonly used density classification in clinical settings,
and is covered by legislation in several U.S. states [4, 1]. However, inter-
and intra-observer reproducibility are of great concern regarding the visual
classifications [18, 164, 44, 127, 77, 74]. Hence, partially and fully-automated
computerized techniques are an area of active research. Several computer-
aided techniques exist where the interactive area-based commercialized Cu-
mulus software is most commonly used [36]. However, subjectivity is still not
completely eliminated by the partially-automated techniques. Thus, research
has in recent years focused more intensively on a fully automated objective as-
sessment of breast density, including volumetric measures, in line with breast
imaging moving from analogue to digital mammography [94, 46, 196, 60]. In
addition, density assessment carried out using other imaging modalities as dig-
ital breast tomosynthesis (DBT) or MRI are also being investigated [193, 194].

As part of an ongoing research project validating a new automated com-
puterised density score and a new auto-mated texture risk score for digitized
film-based mammograms, we wanted to validate the corresponding subjec-
tive visual methods of categorising density and paranchymal pattern in terms
of the BI-RADS density classification, the Tabár classification on parenchy-
mal patterns and a new partially-computerized interactive threshold tech-
nique (Cumulus-like). The reproducibility of BI-RADS has in previous papers
demonstrated moderate to substantial agreement [18, 164, 44, 74]. However,
the reproducibility of the Tabár classification is less well described and inter-
observer differences have to our knowledge not been reported previously. The
objectives of this study were to report inter-observer agreement regarding
three subjective ways of assessing density and parenchymal pattern of the
female breast and to investigate where disagreement primarily occurs. Sec-
ondarily, we wanted to examine what potential impact reproducibility has on
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relative risk estimates of breast cancer in terms of odds ratios.

Methods

Population and mammograms

This retrospective case–control study is based on all 14,736 women with neg-
ative film-based screening mammograms attending biennial routine breast
screening in 2007 at one specific hospital (Bispebjerg Hospital) in Capital
Region, Denmark. The women were followed until death, emigration and/or
occurrence of histologically verified breast cancer or ductal carcinoma in situ
(DCIS) in the period between the screening dates until the end of the study
on 31 December 2010. Information on death and emigration was retrieved
from the Danish Civil Registration System (CRS) and information on breast
cancer/DCIS was retrieved from the Danish Cancer Registry and the Danish
Breast Cancer Cooperative Group (DBCG). Linkage between registers was
based on the unique personal identification numbers allocated to all persons
with a permanent address in Denmark.

A total of 132 women were diagnosed with breast cancer (invasive cancer
and/or DCIS) in the study period. Each case was age-matched (by year of
birth) with two controls from the screening cohort using incidence density
sampling, i.e. the controls for each case were chosen from women who had not
developed a breast cancer at the specific time when the case was diagnosed
(264 controls). Film-based mammograms were not accessible for 12 women (10
cases and 2 controls) either because images were missing from the hospital’s
film archive (nine women) or because only digital mammograms were available
(three women). No women were additionally excluded leaving a total of 384
women for the final analyses.

Analogue mammograms of each breast were acquired in both the cranio-
caudal (CC) and the mediolateral oblique (MLO) projection in all but 4 cases.
We ended up with 757 CC and 765 MLO views corresponding to 382 right
and 383 left mammograms all together. The film-based Winkel et al. BMC
Cancer (2015) 15:274 Page 2 of 14 mammograms were digitised using a Vidar
Diagnostic PRO Advantage scanner (Vidar systems corporation, Herdon, VA,
USA) providing an 8-bit (256 grey scales) output at a resolution of 75 DPI or
150 DPI. Images were displayed on a regular PC monitor. For tumour diag-
nostics these settings would be inadequate. They were, however, sufficient for
our readings of breast density and parenchymal pattern.

The use of screening data and tumour-related information was approved
by the Danish Data Inspection Agency (2013-41-1604). This is an entirely
register based study and hence neither written consent nor approval from an
ethics committee was required under Danish Law.



METHODS 69

Mammographic density measurements

The digitised mammograms were randomized according to case/control-status
and reviewed independently by two medical doctors: a senior radiologist spe-
cialized in breast-imaging and mammography screening (Reader 1) and a res-
ident in radiology (Reader 2). All images were analysed without knowledge of
the original mammographic reading, the date of examination, the woman’s age
or case/control status. The following three subjective density and parenchy-
mal pattern classifications were investigated:

The BI-RADS density classification

Mammograms were classified after the Breast Imaging Reporting and Data
System (BI-RADS) categorization on density (4th edition, 2003) as defined
by The American College of Radiology (ACR) [4]. The classification com-
prises four descriptive categories with corresponding quantitative percentage
quartiles of the amount of fibro-glandular tissue: D1: Fatty (< 25% fibro-
glandular tissue), D2: Scattered fibro-glandular densities (25 − 50%), D3:
Heterogeneously dense (51 − 75%), D4: Extremely dense (> 75%).

The Tabár classification on parenchymal patterns

The Tabár classification is based on an anatomic-mammographic correla-
tion [190]. In brief, Tabár concentrates on four basic structures: Nodular
densities, linear densities, homogeneous structure-less densities, and radiolu-
cent (dark) areas. The parenchymal pattern is categorized into the following
five patterns (figure 8.1) based on the relative proportion and appearance of
these basic structures: PI: All four structures are almost equally represented
with evenly scattered terminal ductal lobular units (1–2 mm nodular densi-
ties), scalloped contours and oval-shaped lucent areas. PII: Almost complete
fatty replacement dominated by radiolucent adipose tissue and linear densities.
PIII: Similar in composition to PII except from a retroareolar prominent duct
pattern. PIV: Predominance of enlarged nodular densities and prominent lin-
ear densities (represent proliferating glandular structures that are considerably
larger than the normal lobules and periductal fibrosis). PV: Homogeneous,
ground glass like, structureless fibrosis with convex contours [78, 190].

The interactive threshold technique (percentage
mammographic density, PMD)

Percentage density measurements were retrieved by a computer-aided inter-
active threshold technique. At first the reader distinguished the breast from
the background by outlining the breast skin-air boundary and the pectoral
muscle. Secondly, the reader chose the most optimal threshold separating the
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Figure 8.1: Examples of the five different parenchymal patterns (PI-PV) based
on the definition by Tabár. PI-PV are shown from left to right; MLO views
in the top row and CC views in the lower row. (A) PI: Scalloped contours
with oval-shaped lucent areas and evenly scattered 1–2 mm nodular densities.
(B) PII: Almost complete fatty replacement. (C) PIII: Like PII but with a
retroareolar prominent duct pattern. (D) PIV: Dominated by extensive nodu-
lar and linear densities with nodular densities larger than normal lobules. (E)
PV: Dominated by homogeneous, ground glass like and structure-less densi-
ties.

dense tissue from the non-dense tissue. The brightness of each pixel is rep-
resented by a grey-level (intensity) value, and pixels with intensity above or
below the chosen threshold are identified accordingly as dense or non-dense
tissue. PMD was computed by dividing the total number of dense pixels by
the total number of pixels within the breast area, then multiplied by 100 [175].

The experienced senior radiologist had long-term experience in the use of
BI-RADS but none of the other classifications had been used before by any
of the readers. ACR recommendations on breast density (4th edition) with
the accompanying reference images as well as the classification criteria and
reference images from László Tabár et al’s textbook on the Tabár patterns
from 2005 were provided [190, 4]. Moreover, the readers did consensus scores
on a series of 66 training mammograms from 2005 regarding the Tabár classi-
fication.

In visual assessment of breast density the fibroglandular tissue should be
regarded more as a volume rather than an area [44]. Thus, the CC and
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MLO projection were evaluated together to be able to estimate the volume
of dense tissue. Readings of one breast-side of all the women were completed
before scoring the opposite breasts (never evaluating a woman’s right and
left breast together). Accordingly, the right and the left breasts were scored
separately and can thus be considered independent measurements. Readings
by the three different methodologies were completed separately at different
times over a period of six months in a MatLab scoring-database. In order
to further reduce artificial agreement between the methods, the readers were
blinded from evaluations by the other classifications.

Statistical analysis

An average of the MLO and CC view was used as an approximation of the
most accurate measure of PMD [59]. Correlations between MLO and CC views
were high (absolute agreement ICC: 0.89 and 0.93 and Pearson Correlation:
0.92 and 0.96 for each reader, respectively). Estimated CC measures were
calculated from linear regression analysis for the four women where only MLO
projections were available. Regarding the visual scores categorization was
based on the MLO image alone for these four women as would be the case in
a clinical setting.

Inter-observer agreement

Inter-observer consistency was investigated on both a multiple-category scale
and on a high/low-risk scale. Dichotomous re-classification was done by defin-
ing the following categories as high-risk density: BI-RADS: D3 and D4, Tabár:
PIV and PV and the upper two quartiles of PMD (four groups with equal per-
centage density ranges within density range, corresponding to the BI-RADS
classification). Concordance was investigated based on all 765 independently
scored right and left breast mammograms as well as on the overall scores of
the 384 women (mimicking clinical praxis). In line with the BI-RADS recom-
mendations the highest category was chosen if a woman had different density
on the left and right side [2]. The Tabár patterns PIV and PV are catego-
rized as high-risk patterns by Tabár himself but no further detailed ranking
is reported [78, 190, 77]. One study has demonstrated increased risk of breast
cancer only for pattern IV in an Asian population [110]. Based on risk evalua-
tion from these previous studies we ranked the Tabár classification as follows:
PII, PIII, PI, PV, PIV where the low-risk patterns PI-PIII were ranked based
on increasing density. Equal to BI-RADS we also used the denser breast to
assess the woman’s final score with respect to the PMD measurements.

Absolute agreement, agreement within each category and disagreement
between pair wise categories were calculated. Kappa statistic was used to
evaluate inter-observer agreement on BI-RADS and Tabár for multiple and
dichotomized ratings, where Cohen’s kappa indicates the proportion of agree-
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ment beyond that expected by chance. The absolute Intraclass Correlation
Coefficient (ICC; two-way random, single measure), which is equivalent to the
weighted kappa, was also used to measure agreement where the degree of dis-
agreement is taken into account regarding the ordinal BI-RADS scale [68]. As
suggested by Landis and Koch the strength of agreement beyond chance for
different k values is Poor (< 0), Slight (0–0.20), Fair (0.21 − 0.40), Moderate
(0.41− 0.60), Substantial (0.61− 0.80) and Almost perfect (0.81− 1.00) [132].
Bootstrapping was used to calculate 95% confidence intervals (Cl) for kappa
values using 1000 replications. Absolute ICC (two-way random, single mea-
sure), Pearson’s linear correlation coefficient (R) and limits-of-agreement anal-
ysis were calculated to analyze inter-observer reliability for the continuous
PMD measures.

Relative risk of breast cancer

The association between mammographic density/parenchymal pattern and
breast cancer risk was estimated using logistic regression to calculate odds
ratios (OR) adjusted for the woman’s age at screening. Due to the retrospec-
tive design of this study, information on body mass index (BMI) and other
breast cancer risk variables Winkel et al. BMC Cancer (2015) 15:274 Page
4 of 14 could not be obtained and controlled for. PMD measured by the
threshold technique was divided into four equal percentage ranges—quartiles
within range of the PMD measures—corresponding to the BI-RADS catego-
rization into density quartiles. For all methods the higher density groups were
compared individually with the lowest density group (baseline). Accordingly,
D1 was used as reference category for BI-RADS, PII for Tabár and the low-
est quartile for PMD. Exact two-sided P-values and 95% confidence intervals
(95% CI) have been listed and results were considered statistically significant
with P-values ≤ 0.05. IBM SPSS Statistics 20, Copyright © IBM Corporation
1989–2011, was used for statistical analysis.

Results

Characteristics of cases and controls

The women were aged between 50 and 69 years (mean age of cases 57.8 (stan-
dard error of the mean 0.49) and controls 58.1 (standard error of the mean
0.34), respectively). In total 110 women were diagnosed with invasive cancer
and 12 with ductal carcinoma in situ (DCIS). Breast cancer was diagnosed
< 12 months after the negative screening in 2007 in 15 women, between 12-24
months in 22 women, and > 24 months in 85 women, respectively.
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Figure 8.2: Percentage distribution of BI-RADS categories reported by Reader
1 and 2. Data are shown based on score of the women* (n = 384) and of each
breast** (n = 765). *Highest category if different categories were assessed
on the left and the right breast. **Left and right mammograms were scored
independently and CC and MLO views evaluated together.

Inter-observer agreement

The BI-RADS density classification

The percentage distribution on BI-RADS categories reported by the two read-
ers is shown in Figure 8.2. Reader 1 (R1) regarded significantly more as having
a high-risk density pattern (D3 and D4) compared with Reader 2 (R2) (155
(40%) versus 109 (28%) women). The proportion of women consistently clas-
sified with a high-risk pattern among the two readers was 28%.

Table 8.1 demonstrates the agreement between the two readers in a cross
table. Consistency was highest for low risk patterns with the following agree-
ment within each D1-D4 BI-RADS category: 94%, 72%, 62% and 69%, re-
spectively. Two-grade disagreement was only seen in one case (D2/D4) cor-
responding to 0.1% (breast based). R1 judged systematically one category
higher regarding 157 of the 765 disagreed breast mammograms (21%), and
only 2% were judged in a lower category compared with R2.
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Kappa statistics on inter-observer agreement are shown in Table 8.2. Agree-
ment was substantial for side based assessment (k = 0.68) and almost perfect
when calculating the weighted kappa measured by ICC (0.88). High/low-risk
categorization showed some increase in agreement (k = 0.74). Inter-observer
agreement tended to be highest for controls and for left-side mammograms
(NS).
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Figure 8.3: Percentage distribution of Tabár categories reported by Reader
1 and 2. Data are shown based on score of the women* (n = 384) and of
each breast** (n = 765). *Highest category was selected if different categories
were reported on the left and the right side (ranking: PII, PIII, PI, PV, PIV).
**Left and right mammograms were scored independently and CC and MLO
views evaluated together.

The Tabár classification

In Figure 8.3 the percentage distribution on Tabár patterns is shown. No
statistically significant difference between readers on overall distribution was
found (high-risk R1: 139 (36%) vs high-risk R2: 125 (33%) women). However,
only 29% of the women would consistently be classified with a high-risk Tabár
pattern by both readers.

Agreement between the two readers is shown in Table 8.3 including pair
wise disagreement among all five categories. The concordance within each
Tabár category (PI-PV) on women based evaluations was 75%, 85%, 36%,
75% and 60%, respectively. Disagreement was in most cases associated with
Pattern I, where 98 breasts classified as PI by R2 were assessed as primarily
PII (47) or PIV (42) by R1. Additionally, R1 classified 61 breasts as PI which
were classified primarily as PV (24) or PIV (22) by R2.
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Tabár’s 5-category scale also showed substantial agreement for breast based
scoring with k = 0.64 increasing to 0.70 using high/low-risk categorization
(Table 8.2). Corresponding kappa values for woman based scoring were even
higher, but agreement remained substantial (5-category: 0.65, 2-category:
0.77). On a multiple category scale substantial agreement was seen among
controls (0.67), while only moderate agreement was seen among cases (0.56;
NS). On the contrary, the opposite tendency was seen using only two cate-
gories. Resembling assessment by BI-RADS inter-observer agreement tended
to be highest on left side mammograms (left: 0.69 versus right: 0.59; NS).

The interactive threshold technique

Figure 8.4 shows a scatter plot of the relationship between the PMD scores by
the two readers and a Bland-Altman plot illustrating the level of agreement
based on 765 breasts. A high linear dependence were found with a Pearson’s
correlation coefficient of 0.94 (0.93-0.95) and the readers demonstrated almost
perfect agreement with an absolute ICC = 0.93 (0.92-0.94). Only a minor
mean difference was seen between the readers with a negligible positive bias
of 0.9% (0.4% − 1.3%) for R2. Limits-of-agreement analysis with 95% limits
found that the readers scored from 11.1% lower till 12.9% higher of each other.
Thus, at least 95% of the PMD differences were within the range of one PMD
quartile (≈ 16%). Both plots illustrate that R1 tended to score a little lower
than R2 in fatty breasts but, on the other hand, a little higher in breasts with
more glandular tissue.

Overall no statistical significant difference on distribution was found on a
quartile based high/low-risk categorization (high-risk R1: 110 (29%) versus
high-risk R2: 117 (30%) women), and 27% of the women were consistently
classified with a high-risk pattern by the two readers.

No significant difference in inter-observer agreement was seen for cases and
controls (ICC = 0.93 versus 0.92). Again consistency tended to be highest on
the left side (left ICC = 0.94 versus right 0.91; NS).

Relative risk of breast cancer

Table 8.4 summarizes the age-adjusted breast cancer odds ratios associated
with the Tabár patterns as well as increasing mammographic density (BI-
RADS and PMD) assessed by each of the two readers. A stepwise increase
in relative risk with increasing density characterized by BI-RADS was seen
for both readers. Likewise, a general increase in ORs with increasing density
by the interactive threshold technique was seen. However, the Q4 OR of 2.17
(95% CI 0.98 − 4.81) was non-significant for Reader 1.

According to the Tabár patterns both readers demonstrated a high OR
associated with PIV of 4.14 (2.26-7.61) and 7.69 (3.49-16.91) by Reader 1 and
2, respectively. R1 found no other Tabár patterns to be significantly associated
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Table 8.4: Association between breast density/parenchymal pattern and breast cancer. Relative
risk estimates in terms of ORs from assessment by three subjective scoring methods by Reader 1
and 2. *Adjusted for age. **PMD grouped in quartiles with cut offs within density range: R1 (%):
Q1) 0.99−17.89, Q2) 17.90−34.80, Q3) 34.81−51.71, Q4) 51.72−68.62; R2 (%): Q1) 1.51−17.66,
Q2) 17.67− 33.81, Q3) 33.82− 49.96, Q4) 49.97− 66.12.
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with breast cancer, whereas, R2 demonstrated increased odds ratios for all
other patterns. When high-risk density patterns were combined odds ratios
became more uniform among the readers but also among all three methods.

Discussion

Even though inter-observer differences exist when assessing density or parenchy-
mal pattern manually, the question is how much impact this has on relative
risk estimates for breast cancer? Overall, this study showed a rather high
(substantial to almost perfect) inter-observer agreement for all three methods
investigated, which all seemed to capture the association with breast cancer
assessed by both readers. However, the number of women classified with a
high-risk density pattern did vary between the readers, and a different trend
in disagreement for the three methods was seen leading to differences in OR-
estimates by the two readers.

BI-RADS

We found inter-observer agreement on BIRADS to be comparable with previ-
ous studies reporting k-statistics ranging from the extremes of 0.02-0.87 [18,
164, 44, 127, 17]. Observer differences rely primarily on various training as well
as the reader’s experience as a breast radiologist and with the classification
method, and in general moderate to substantial agreement is found (high-
est values for the weighted kappa/ICC). As one would expect concordance
increased to some extent (NS) on a two-scale basis (from k = 0.68 − 0.74).
Likewise, Ciatto et al. and Bernadi et al. found substantial agreement on a
two-category basis of k = 0.71 (average of 12 readers) and k = 0.72 − 0.76
(range of six readers), respectively [18, 44].

The differentiation into high/low-risk categories is central as it has been
suggested to form the basis of personalized screening with particular atten-
tion to the masking effect [45, 18]. Mammographic sensitivity decreases in
line with increasing breast density due to superposition of overlapping nor-
mal breast tissue and potential breast lesions. This masking effect on two-
dimensional images leads to increased risk of interval cancers. Accordingly,
women with high density may benefit from supplementary exams with e.g. dig-
ital breast tomosynthesis in which the breast is viewed in “slices” or “slabs”.
Although, our results indicate a relatively high concordance, disagreement was
seen to be most pronounced for the borderline D2/D3 categories and consis-
tency was lowest within the D3 category (62%). This finding is supported by
other studies on reproducibility showing that agreement is lowest in the BI-
RADS density 3 category [164, 17] and most evident for D2-D3 categorization
[18, 44]. If the women of this study were to be offered differentiated follow-
up based on high-low risk from density estimates on their negative screening
mammogram, 13% of the women would have been allocated differently by the



82

CHAPTER 8. INTER-OBSERVER AGREEMENT ACCORDING TO
THREE METHODS OF EVALUATING MAMMOGRAPHIC DENSITY

AND PARENCHYMAL PATTERN IN A CASE CONTROL STUDY:
IMPACT ON RELATIVE RISK OF BREAST CANCER

two readers. In our case Reader 1 systematically judged one category higher
than Reader 2 when disagreeing. An extended set of reference images or a
proficiency test (as suggested by Ciatto et al. [44]) or joint training could
have increased uniformity in how to perceive density, and may have improved
consistency.

Tabár

This is to our knowledge the first study to report inter-observer agreement
on the Tabár classification. However, substantial to almost perfect intra-
observer agreement has been reported previously [77, 74]. In spite of the
more intuitive approach, we found the overall inter-observer consistency to be
highly comparable with the use of the BI-RADS scale. On the contrary, no
obvious systematic disagreement was demonstrated. Consistency was highest
for Pattern II which can be explained by the fact that fatty breasts are easier
to assess and PII is a more frequent pattern. Still, a systematically PI/PII
disagreement was seen which can be due to different perceptions of the amount
of fibroglandular tissue (< 20%) dense tissue for Pattern II). Discrepancy was
most evident for the borderline PI/PIV patterns, and 10% of the women would
have been allocated differently (on a high/low-risk scale) by the two readers
primarily because of this. Inconsistency between readers can, besides inherent
variance, be explained by inconsistency in definition of the classification (when
are nodular densities enlarged and how many are required to be classified
as Pattern IV, when are structures judged visible in a very dense breast,
perception of percentage density limits etc). Again, this is largely a matter
of perception of the mammographic structures which is also influenced by the
reader’s experience as a breast radiologist.

Zulfiqar et al divided the broad Pattern I into three sub-patterns based
on density in a study exploring density among Malaysian women [222]. Sub-
division of patterns or more extensive definitions could improve preciseness,
on the other hand, the classification would be more difficult to adopt and it
is doubtful if reproducibility would increase.

PMD

Reliability between readers is reported to be stronger for computer-assisted
interactive techniques than by visual assessment of density [150, 27]. Boyd et
al demonstrated an agreement between readers of ICC = 0.94 measured by
the Cumulus software on CC views [25] and, likewise, Stone et al showed an
ICC of 0.91 on MLO views [189]. We found a similar inter-observer agree-
ment of ICC = 0.93 based on an average of both views. Despite the high
inter-observer correlation the computer-assisted method still has a consider-
able subjective component. This is best illustrated graphically in Figure 8.4
where a non-systematic variance ranging from −11.1% till +12.9% is seen.
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Figure 8.4: Inter-observer agreement on the interactive threshold technique.
(A) Scatter plot illustrating the inter-observer correlation (Reader 1 x-axis,
Reader 2 y-axis) of the percentage mammographic density measures (PMD) by
the interactive threshold technique based on 765 breasts*. The black diagonal
line indicates perfect agreement between the two readers. The red dashed
line is the line of best fit. (B) Bland-Altman plot illustrating inter-observer
agreement. Difference in PMD measures (Reader 2 minus Reader 1) is plotted
against the mean PMD. The blue line shows a bias of 0.009 (≈ 1%) indicating
only slightly higher PMD measures by reader 2 on average. The upper (UAL)
and lower (LAL) 95% agreement limits are illustrated by the red dashed lines.
*Each PMD measure is an average of the CC and MLO value. Only the MLO
view was available in 8 breasts. These have been included with a corrected
value after linear regression analysis.

The discrepancy (most differences within the range of one PMD quartile) is
probably mainly explained by the two readers’ judgment of what represents
dense area, but outlining the breast may also contribute to the variance (see
also the limitations section). On a high/low-risk basis only 5% of the women
would have been allocated differently by the two readers.

Generally, concordance tended to be lower for the right breast mammo-
grams for all three density methods. We do not have a plausible explanation
for this as left and right mammograms from each woman were acquired and
processed in the same way by the same radiographer.

Relative risk of breast cancer

Our study supports prior evidence that density patterns are associated with
breast cancer risk [150]. On a multiple-category scale the three methods
seemed to be influenced differently by the otherwise comparable level of inter-
observer agreement. Especially, the categorical Tabár scale showed quite vary-
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ing odds ratios for the two readers. On the other hand, disagreement regarding
the BI-RADS classification didn’t show any impact on OR estimates, which
were consistent among the readers and comparable with ORs found by oth-
ers [150, 12]. McCormack et al reported combined relative risks (RRs) of 2.04
for BI-RADS D2, 2.81 for D3 and 4.08 for D4 from two studies [150]. Ac-
cording to the quantitative PMD measure the same authors reported pooled
RRs of 1.79, 2.11, 2.92 and 4.64 for percentage density 5 − 24%, 25 − 49%,
50 − 74% and 75 − 100% (compared with the reference category of < 5%),
respectively [150]. These RRs are also comparable with our results, but it
should be noted that the cut offs between categories and the reference cat-
egories are not the same between studies (we use quartiles based on equal
percentage ranges with a reference category of <≈ 18%).

An interesting finding is that pattern IV by Tabár demonstrated the high-
est ORs (including the highest number of cases categorized to the high-risk
group) of all the patterns investigated, even in spite of the inter-observer vari-
ance. The specific association with PIV was also found by Jakes and colleagues
in an Asian population [110]. They demonstrated an unadjusted OR of 2.59
when PIV was compared with the combined group of Tabar’s pattern I, II,
III and V, which was also seen consistently (and significantly) after adjust-
ing individually for other breast cancer risk variables and confounders. They
found the pattern to be associated with nulliparity, high educational status
and grade 3 cancers. For comparison we found ORs of 2.85 by Reader1 and
3.15 by Reader2 when the low-risk category was changed to include Pattern
V as well.

We saw that divergence in relative risk estimates between readers dimin-
ished almost completely after categorising into only two risk-groups. Grove
et al investigated the effect of “misclassification” of Wolfe’s mammographic
classification and argued that the overall concordance is not as important as
the specific type of misclassification in estimating risk. Moreover, they stated
that risk ratios are very sensitive to misclassification and risk ratios of 2 or 3
can be expected on a high/low-risk categorization even though “true” risk ra-
tios may be quite high, which is in agreement with our findings [81]. We also
found that even though the proportion of cases in the high-risk groups was
similar for both readers, the actual number of women categorized to each risk-
group did differ, which was most pronounced for the BI-RADS scale. Likewise,
the number of women categorized with a high-risk density pattern differed be-
tween methods of assessment. It is important to be aware of this in a potential
personalized screening set up. In total only 23% of the women would consis-
tently have been classified in the high-risk group by all three methods by R1
and 22% by R2. It is beyond the scope of this article to draw conclusions on,
if this can partly be explained by the fact that the three methods may catch
different risk parameters.
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Strengths and limitations

We consider the use of two-view screening mammograms a strength of our
study. As argued by others density of the breast should be perceived as a
volume rather than an area [18, 164, 44, 59], which has been well illustrated by
Ciatto and co-workers [44]. On the other hand, studies have shown that there
appears to be no difference in using an average of two or more mammograms
compared with either of the two single views (CC or MLO) using the computer-
assisted technique [188, 203]. A study on visual assessment of PMD, found
that the magnitude of breast cancer risk association was significantly increased
using both views compared with only MLO alone, though [59]. Our CC and
MLO views correlated well and we decided to use an average of both views
in this study. Our multifaceted statistical evaluation of the quantitatively
measured PMD, using the Pearson correlation coefficient, ICC, Bland-Altman
and scatter plot, is also considered a strength. The frequent use of the Pearson
correlation coefficient alone only provides a one-dimensional picture of the
degree of agreement as discussed in detail by Abdolell et al [6]. Moreover,
we find it a strength of this study to have included the qualitative Tabár
classification and demonstrated its reproducibility. With ACR’s new definition
on the BI-RADS density classification (5th edition) returning from a more
quantitative to a qualitative classification, it seems as if the more qualitative
classifications also have a role to play in the future.

We recognise our study also has some limitations to be addressed: In this
retrospective study on a screening cohort we have not been able to control
for other breast cancer risk variables other than age. However, from a clinical
point of view the question is what we can do with the information available
to us, if we were to do risk-based stratification of screening women. In many
screening programmes-like ours—the only information available to us is the
woman’s age and her mammogram. Therefore, ORs have not been adjusted
for other risk factors such as BMI, history of breast cancer, menopausal status,
and other reproductive variables in this study. The ORs should obviously be
interpreted with precaution when compared with other studies, and are in the
present study primarily to be compared between readers. BMI is known to be
one of the most important confounders; however, the lack of adjustment for
BMI has probably led to some underestimation of risk [150, 22]. Moreover,
we did not differentiate between interval cancers (defined as cancers diagnosed
between two screenings) and screen-detected cancers. We might have included
some “excess” cancers which may have been initially un-detected (masked at
the negative screening in 2007), leading to an overestimation of risk [150].

In addition, readings were done on analogue digitized mammograms re-
ducing the quality of the images. Mammograms were rather dark and, ac-
cordingly, the breast skin-air boundary was not easy to delimit and might
have influenced PMD estimation. The readers also had to compensate for
colouring artefacts (e.g. from the pectoral muscle) when setting the thresh-
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old. Accuracy and reliability of methods for density assessment on digital
mammograms (including automatic techniques) may be superior. However,
important information from film-based mammograms still exists. We believe
this will be of interest for epidemiological long term follow-up studies for many
years to come.

Finally, it would have strengthened our study methodologically to have
had more readers. Keeping the above limitations in mind we did find our
results to be comparable to others, though.

Conclusions

Our study shows that the qualitative Tabár classification has comparable inter-
observer reproducibility with well tested density methods, and confirms the
association between Tabár’s PIV and breast cancer.

Regardless of substantial to almost perfect interobserver reproducibility
for all three methods investigated, different impact on relative risk estimation
in terms of ORs for breast cancer is seen on a multiple-category scale. Even
though, risk estimates become more uniform on a high/low-risk scale, the
consistency of women with a high risk pattern differs between both readers
and methods.

A more detailed definition on classification criteria, an expanded set of
reference images or a proficiency test may improve inter-observer agreement
to some degree using these manual methods. However, it is doubtful if it
is possible to ensure and maintain this high standardization within different
breast imaging units and in the screening setting.

Thus, an automated, objective and reproducible method to estimate den-
sity or texture (or both) from the mammogram are needed to fully overcome
the impact of subjectivity. Our study is based on analogue images. However,
many breast imaging units have in recent years switched to digital mam-
mography. This has encouraged the development and improvement of fully
automated techniques, which has been shown to be valid alternatives on dig-
ital mammography [196, 60]. In addition, the applicability of other imaging
modalities for density assessment is being investigated including DBT and
MRI [193, 194, 195]. The numerous methodologies existing today may capture
different aspects of density, and it remains unresolved which particular meth-
ods to use. This will necessarily depend on the aim (research/clinic/tailored
screening). However, it is evident that different methods are not interchange-
able.

In conclusion, our study confirms that improvement of fully automated
methods should be continued to overcome subjectivity (as well as time con-
sumption) in measuring density for research and clinical risk assessment.
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Abstract

Mammographic risk scoring has commonly been automated by extracting a
set of handcrafted features from mammograms, and relating the responses
directly or indirectly to breast cancer risk. We present a method that learns
a feature hierarchy from unlabeled data. When the learned features are used
as the input to a simple classifier, two different tasks can be addressed: i)
breast density segmentation, and ii) scoring of mammographic texture. The
proposed model learns features at multiple scales. To control the models ca-
pacity a novel sparsity regularizer is introduced that incorporates both lifetime
and population sparsity. We evaluated our method on three different clinical
datasets. Our state-of-the-art results show that the learned breast density
scores have a very strong positive relationship with manual ones, and that the
learned texture risk scores are predictive of breast cancer. The model is easy
to apply and generalizes to many other segmentation and scoring problems.
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Introduction

Breast cancer is the most frequently diagnosed cancer among women, world-
wide [114]. In 2012, 464,000 new cases (13.5% of all cancers) were diagnosed
in Europe and 131,000 died from the disease [65]. Breast cancer mortality
can be reduced by identifying high risk patients early and treating them ad-
equately [80]. One of the strongest known risk factors for breast cancer after
gender, age, gene mutations, and family history is the relative amount of
radio-dense tissue in the breast, expressed as mammographic density (MD).
According to several studies, women with high MD have a two to six-fold
increased breast cancer risk compared to women with low MD [152, 26]. Fur-
ther, breast density is modifiable and density changes relate to breast cancer
risk. Tamoxifen, for example, reduces breast density and decreases the risk,
whereas hormone replacement therapy causes the opposite [54].

Many MD scores have been proposed, ranging from manual categorical
(e.g. BI-RADS [4]) to automated continuous scores. In early years, radiolo-
gists characterized the mammographic appearance by a set of intuitive, but
loosely defined breast tissue patterns that were shown to relate to the risk of
breast cancer [216, 192]. The current gold standard are semi-automated con-
tinuous scores, as obtained by Cumulus-like thresholding [34]. In Cumulus, the
radiologist sets an intensity threshold to separate radiodense (white appearing)
from fatty (dark appearing) tissue. The computer then measures the propor-
tion of dense to total breast area, known as percentage mammographic density
(PMD). However, user-assisted thresholding is subjective and time-consuming,
and hence not suited for large epidemiological studies. There has been a
trend towards fully automating PMD scoring [122, 170, 91, 161, 140, 126], but
most of these approaches rely on handcrafted features with several parameters
that need to be controlled. Generalizing these methods beyond the reported
datasets could be challenging.

Finding features that capture the relevant information in the mammogram
is a difficult task. This becomes even more apparent when looking at work on
mammographic texture (MT) scoring. MT scoring methods aim to find breast
tissue patterns (or textures) that are predictive of breast cancer [139, 145, 82,
156, 92, 158, 220]. Intuitively, their goal is to characterize breast heterogeneity
instead of breast density. MT scoring is even harder than MD scoring, since
the label of interest (healthy vs. diseased) is defined per image and not per
pixel (e.g. fatty vs. dense). Previous work on MT scoring has focused on
manually designing and selecting features, similar to automatic MD scoring
methods [145, 82, 156, 92]. However, these studies reach different conclusions
on which texture features discriminate best. Furthermore, it is unclear if the
published methods generalize to multiple datasets.

The goal of this paper is to present a method that automatically learns
features for images, which in our case are mammograms. The model is called
a convolutional sparse autoencoder (CSAE), as its core consists of a sparse au-
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toencoder within a convolutional architecture. The method extends previous
work on CSAEs [182, 173], to the problem of pixelwise labeling and to large
images (instead of small patches). The proposed CSAE is generic, easy to
apply, and requires barely any prior knowledge about the problem. The main
idea of the model is to learn a deep hierarchy of increasingly more abstract
features from unlabeled data. Once the features have been learned, a classifier
is trained to map the features to the labels of interest.

We evaluate the method on two breast-cancer tasks that have previously
been addressed in very different ways: The first task is the automated seg-
mentation of breast density (MD). The second task is to characterize mammo-
graphic textural (MT) patterns with the goal of predicting whether a woman
will develop breast cancer. As in our previous work on multiscale denoising
autoencoders [167, 168], we analyze features at multiple scales. On top of that,
the CSAE employs a convolutional architecture that models the topology of
images, and integrates a novel sparsity term to control the model capacity.
We continue with a literature review for each of the two concerned tasks and
summarize related work on feature learning.

A. Mammographic Density Scoring (MD)

Various approaches have been suggested to automate percentage mammo-
graphic density (PMD), which is widely considered as the gold standard in
mammographic density scoring. A recent overview of methods can be found
in He et al. [90]. A first class of methods takes the global image appearance
into account. Sivaramakrishna et al. [186] mimicked PMD by measuring Kit-
tler’s optimal threshold, whereas Torrent et al. [199] determined the threshold
based on excess entropy. Ferrari et al. [67] fitted a Gaussian Mixture Model
to regions of different density. Keller et al. [126] utilized adaptive multiclass
fuzzy c-means clustering on the gray-level intensity followed by support vector
machine classification.

None of the aforementioned methods takes neighborhood information into
account. To capture structural information, several authors assessed breast
density using texture features from the computer vision literature. An ap-
proach that integrates many of these features with location, intensity, and
global contextual information has been proposed by Kallenberg et al. [122].
The approach achieves state-of-the-art performance, but introduces a plethora
of parameters that need to be controlled. To overcome this problem, we have
recently proposed a feature learning method called multiscale denoising au-
toencoder [167, 168]. The method is more generic, yet achieves comparable
results in automating MD.

Instead of assessing PMD in the breast area, it has also been suggested
to estimate PMD in the breast volume [93, 62]. Highnam and Brady [93]
suggested the standard mammographic form, a model of the imaging process,
to automate volumetric PMD.
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In this paper, we use a similar framework as in [167, 168], but introduce
a convolutional learning architecture that preserves the spatial layout of the
image and regularizes the learning algorithm with a novel sparsity term.

B. Mammographic Texture Scoring (MT)

Mammographic texture (MT) scores consider structural information of breast
tissue and can be grouped into manual and automated MT scores. Manual
MT scores characterize breast tissue by a small number of intuitive, but rather
imprecise patterns. Popular examples include the Wolfe patterns [216] or the
Tabar score [192]. In contrast, existing automated MT scores select a set
of generic statistical features and employ a statistical learning algorithm to
separate healthy from diseased patients. Consequently, automated MT scores
may consider textural patterns that are predictive, but weakly correlated with
manual density patterns.

The literature contains various approaches for automated MT scores. Byng
et al. [35], Huo et al. [102], and Heine et al. [92] estimated texture by com-
puting histogram statistics, such as the central moments or the entropy of
the histogram. Also features that capture spatial relationships among pixels
have been considered, such as statistics of the gray-level cooccurrence matrix
(GLCM) [145, 82], run-length measures [145, 82], Laws features [145], Fourier
techniques [145], Wavelet features [145, 82], fractal dimension [199, 35] or la-
cunarity [199]. Manduca et al. [145], Häberle et al. [82] and Zheng et al. [220]
summarized and combined most of the common heuristic texture features for
breast cancer risk assessment. The approaches resemble each other with re-
spect to the examined features. However, they differ in the evaluated dataset,
feature selection schemes, classifiers, and the region of interest for computing
the MT score. Manduca et al. found that a set of Fourier and Wavelet fea-
tures at coarse scales performs best, whereas Häberle et al. concluded that
certain GLCM and histogram features from fine and coarse scales are most
predictive. Zheng et al. found that extracting features from multiple locations
in the breast outperforms a single-ROI approach.

Nielsen et al. [156] investigated another method to determine the texture
features. They selected a combination of multiscale 3-jet and 2D location
features, employed a sequential forward selection using bootstrapping, and
predicted pixel-wise labels which were afterwards averaged over the breast
region.

In contrast to previous work, we do not handpick heuristic texture fea-
tures, but instead aim to learn meaningful texture features directly from the
unlabeled mammograms. The hope is that an uncommitted method is better
suited to generalize to different datasets.
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C. Feature Learning

A lot of research has been devoted to selecting and handcrafting features that
encode the important factors of variation in the input data. However, it can be
time-consuming and tedious to mathematically describe human intuition and
domain-specific knowledge. Furthermore, human heuristics are not guaranteed
to capture the salient information of the data, and features that perform well
on a related computer vision problem may not transfer to the application at
hand.

An increasing number of papers demonstrate that comparable or even bet-
ter results are achieved by learning features directly from the data. Especially
deep nonlinear models have been proven to generate descriptors that are ex-
tremely effective in object recognition and localization in natural images. A
recent overview of feature learning with deep models is given in [16] and [180].
Inspired by the human brain, these architectures first learn simple concepts
(or features) and then compose them to more complex ones in deeper layers.
In addition, features share components from lower layers which allow them
to compactly express the idiosyncrasies of the data and fight the curse of di-
mensionality [15]. Most of these models are trained by iteratively encoding
features (forward propagation) and updating the learned weights to improve
the optimization (backward propagation).

One approach is to jointly optimize the features of the deep model, in
order to minimize the loss between the predictions of the top most layer and
the target values. Traditional neural networks fall into this category, and
also variants like convolutional neural networks (CNNs) by Lecun et al. [136],
which are tailored towards images. Deep neural networks, such as CNNs,
have been successfully applied to challenging image analysis problems, e.g.,
object recognition, scene parsing [64], cell segmentation [160], neural circuit
segmentation [48, 201], analysis of images the breast [211, 71, 112, 113]. They
were found to be faster and more expressive than other graphical models like
Markov or Conditional Random Fields [109].

The features can also be learned in an unsupervised way, e.g. using Re-
stricted Boltzmann Machines [95, 96] or autoencoders [182, 205, 147]. The
features are typically learned in a greedy, layer-wise fashion, before a classifier
is trained to predict the labels from the feature responses of the top most
layer. The division into multiple optimization problems has several advan-
tages. First, large amounts of unlabeled data can be exploited for training the
features. Second, the features are learned faster and more stable, as each layer
is optimized by a small encoder-decoder architecture instead of a complex deep
network. And third, these deep models can incorporate transformations and
classifiers that are optimized independently from the features.

In this paper, we employ a sparse autoencoder for learning the features
in an unsupervised way. Previous work has suggested sparse autoencoders
for object recognition from small image patches [182, 173, 135]. In contrast,
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we propose a feature learning method for images that exploits information at
multiple scales and incorporates a different sparsity regularizer.

Methods and Materials

We explain the overall approach consisting of three parts: generating input
data, model representation, and parameter learning. The input data is com-
posed of multiscale image patches that capture both detail and large con-
textual regions. The patches are processed by a multilayer convolutional ar-
chitecture. The parameters of this representation are learned using a sparse
autoencoder, which enhances the standard autoencoder with a novel sparsity
regularizer.

A. Overall Approach

Assume we are given a set of training images with associated label masks
and our goal is to predict the label mask for an unseen image. It would be
computationally prohibitive to map entire images to label masks. Downsam-
pling the image is also infeasible, as many structures of interest occur at a fine
scale. However, we can learn a compact representation for local neighbors (or
patches) from the image.

Let us represent the labels in a 1-of-C coding scheme. Then formally, we
aim to map a multi-channel image patch x ∈ X = Rc×m×m of size m × m
with c channels to a label posterior patch y ∈ Y = RC×M×M of size M ×M
with one channel per label, where we assume quadratic input sizes for ease
of notation. The image and label posterior patch are centered at the same
location, but can have different sizes. The channels of the image patch may
include color channels, preprocessed image patches, or feature responses.

For training our model, n labeled training examples D = {
(
xi, yi

)
}ni=1

are extracted at randomly chosen locations across the set of training images.
Given the training data D, our model learns a hypothesis function h : X 7→ Y
which is parameterized by θ.

In this paper, the hypothesis function h is defined as a latent variable
model that consists of multiple layers. Instead of mapping x to y directly,
we learn a series of increasingly more abstract feature representations zl for
layers l ∈ 1, . . . , L, where z1 = x and zL ∈ Y . The feature representations are
gained by encoding the input through a cascade of transformations, of which
some are trainable. We learn the parameters of these transformations in a
greedy layer-wise fashion without using the labels. While an individual layer
is not deep, the stacked architecture is (e.g, the second layer receives as input
the output from the first layer). Thus, the individual unsupervised training
of (“shallow”) layers results in an unsupervised deep learning procedure.

Three steps are necessary to move from one feature representation, zl, to
the next one, zl+1:



METHODS AND MATERIALS 93

(1.) Extract sub-patches (called local receptive fields) from random loca-
tions in zl+1 and optionally preprocess them.

(2.) Feature learning: Learn transformation parameters (or features) by
autoencoding the local receptive fields.

(3.) Feature encoding: Transform all local receptive fields in z(l) using the
learned features from step 2. The result of the transformation is referred to
as the feature representation z(l+1).

A classifier maps the last feature representation into label space Y . An
unseen image is tested by applying the trained hypothesis function hθ (x) to
all possible patches in a sliding window approach. Thus, every patch within
the tested image is sent through the trained encoders and classifier to create
a prediction. If the size of the predicted output region is bigger than a single
pixel, i.e., M > 1, predictions at neighboring image locations might overlap
with each other. These predictions can be fused by computing the average
probability per class.

An overview of the pipeline is shown in Figure 9.1. Our architecture con-
sists of four hidden layers: a convolutional layer, a maximum pooling layer,
and two further convolutional layers. We chose one pooling layer to be in-
variant towards small distortions, but sensitive to fine-scaled structures. The
specifics will be presented in the following sections.
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B. Multiscale Input Data

We capture long range interactions in the mammograms by extracting input
examples x from multiple scales. As introduced in our previous work[167, 168],
a given mammogram I is embedded into a Gaussian scale space I (u;σt) =
[I ∗Gσt ] (u). Here the ∗ operator denotes convolution. Multi-scale mam-
mographic analysis is realized using the well established discrete scale space
theory (see, e.g., [141]); specifically we use a Fourier implementation where
the Gaussian kernel is discretized in the Fourier domain and spatial convolu-
tion obtained through multiplication (in the Fourier domain) with the discrete
Fourier transform of the mammogram [69]. The parameter s ∈ R2 denotes the
position (or site) and σt determines the standard deviation of the Gaussian at
the t-th scale. More specifically, the standard deviation

σt =

√√√√ t−1∑
i=0

δ2i (9.1)

is given as the square root of the summed Gaussian variances from the first t
scale levels of the Gaussian pyramid. In this paper, we chose downsampling
factor σ = 2.

An input example xt at location u from scale t is constructed by sampling
a patch with pixel distance (or stride) σt−1 around location u in the Gaussian
scale space. For example, an input patch at scale level t = 1 is a coherent
m ×m region, whereas the patch at scale t = 4 considers only every eighth
pixel around u from a heavily smoothed mammogram.

The underlying representation of our model, a convolutional architecture,
processes inputs from multiple scales (figure 9.1). For computational reasons,
features are first learned for each scale in isolation, before they are merged in
deeper layers.

C. Sparse Autoencoder

It would be possible to learn the weights (or features) using forward and back-
ward propagation through the entire architecture [136]. However, as argued in
our review of feature learning, we aim to learn features in an unsupervised way
using autoencoders. We propose a variant of the autoencoder that enables to
learn a sparse overcomplete representation. A feature representation is called
overcomplete if it is larger than the input. Sparsity forces most of the entries
to be zero, leaving only a small number of non-zero entries to represent the
input signal. Thus, in the case of extreme sparsity, each input example would
be encoded by a single hidden unit, the one whose input weights (or feature)
are the most similar to the input example.

Sparse overcomplete representations provide simple interpretations, are
cost-efficient, and robust to noise. They are suited to disentangle the under-
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lying factors of variation because each input example needs to be represented
by the combination of a few (specialized) features.

In previous work, feature representations have been made sparse by limit-
ing the number of active (non-zero) units per example (population sparsity) or
by limiting the number of examples for which a specific unit is active (lifetime
sparsity). Population sparsity underlies methods like sparse coding [162], or
K-means, where each cluster centroid can be interpreted as a feature and each
example is encoded by the most similar centroid. Lifetime-sparsity is incor-
porated in the sparsifying logistic by Ranzato et al. [182] or the sparse RBM
by Lee et al. [137], where the average activation per unit is supposed to equal
a user-specified sparsity threshold.

In this paper, we formulate a sparsity regularizer that incorporates both
population sparsity and lifetime sparsity. While population sparsity enforces
a compact encoding per example, lifetime sparsity leads to example-specific
features. Our proposed sparsity prior can be combined with any activation
function including the rectified linear function, which was shown to produce
better features than the sigmoid or the hyperbolic tangent in [154]. The
formalization of the sparse autoencoder is given in the appendix.

D. Experiments and Datasets

We evaluated the performance of the CSAE for two different tasks (MD, MT)
on three different mammographic datasets. For each task we first segmented
mammograms into background, pectoral muscle, and breast tissue region. The
breast tissue region was then used as a region of interest for the mammographic
scoring tasks (MD and MT). We continue with a description of the datasets,
the parameter settings, and the results for each of the two tasks.

(1.) Density Dataset: From the Dutch breast cancer screening program
we collected 493 mammograms of healthy women. Mean age of the women
was 60.25 ± 7.83 years. The images were recorded between 2003 and 2012 on
a Hologic Selenia FFDM system, using standard clinical settings. We used
the raw image data. The set contained a mixture of mediolateral oblique
(MLO) and craniocaudal (CC) views from the left and right breast. For each
woman however only one view was available. A trained radiologist annotated
the skin-air boundary and the pectoral muscle by a polygon tool. In a second
step, the breast tissue area was delineated by cropping superfluous tissue folds
below and above the breast area. The radiologist estimated percent density
and BI-RADS [4] using a Cumulus like approach.

(2.) Texture Dataset: The texture dataset comprises 668 mediolateral
mammograms from the Mayo mammography Health Study (MMHS) cohort
at the Mayo Clinic in Rochester, Minnesota. The purpose of the MMHS study
was to examine the association of breast density with breast cancer[163]. The
chosen subset included 226 cases and 442 controls that were matched on age
and time from earliest available mammogram to study enrollment/diagnosis
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date. The images were recorded between October 2003 and September 2006,
between 6 months and 15 years prior to the detection of the cancer. The mean
age was 55.2±10.5 years. All mammograms were digitized with an Array 2905
laser digitizer (Array Corporation, the Netherlands) that provided a pixel
spacing of 50 microns on a 12-bit gray scale. A trained observer annotated
the skin-air boundary and the pectoral muscle by a polygon tool.

(3.) Dutch Breast Cancer Screening Dataset: From the Dutch breast
cancer screening program we collected 394 cancers, and 1182 healthy controls.
Controls were matched on age and acquisition date. The images were recorded
between 2003 and 2012 on a Hologic Selenia FFDM system, using standard
clinical settings. For each woman MLO views from both the right and left
breast were available. However, to exclude signs of cancerous tissue, we took
the contralateral mammograms for our analyses on breast cancer risk predic-
tion. We used the raw image data. Mean age of the women was 60.6 ± 7.70
years. The images were segmented into the breast area, pectoral muscle and
background using automated software (Volpara, Matakina Technology Lim-
ited, New Zealand).

E. Parameter Settings and Model Selection

If not stated otherwise, the same parameter settings have been applied to each
task and each dataset.

(1.) Patch Creation: Before extracting the patches, the mammograms were
resized to an image resolution of roughly 50 pixels per mm. The model was
trained on n = 48,000 patches. The patch size in terms of number of pixels
was restricted to 24 × 24 in order to keep the number of trainable weights
and bias terms limited. The training patches were sampled across the whole
dataset as follows: For density scoring 10% of the patches were sampled from
the background and the pectoral muscle, 45% from the fatty breast tissue, and
45% from the dense breast tissue. For texture scoring 50% of the patches were
sampled from the breast tissue of controls, and 50% from the breast tissue of
cancer cases. In pilot experiments we experimented with different breast tissue
masks to sample patches from. Best results were obtained if we restricted the
sampling of the patches to the inner breast zone, which is the breast area that
is fully compressed during image acquisition, and in which the fibroglandular
tissue is most prominent. For both tasks M = 1 was chosen. We set scales t
to 1 to 4 for both density and texture scoring. The smallest patch was thus
4.8mm×4.8mm, whereas the biggest patch was 3.7cm×3.7cm. As such several
structures of interest could be captured in different detail. On a validation set
we experimented with different setups of the input channels. Best results were
obtained by having one input channel consisting of the unprocessed image.

(2.) Convolutional Architecture: For each tasks the number of feature map
were set to K = {50, (50) , 50, 100}; the associated kernel sizes were fixed to
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{7, 2, 5, 5}. These values were motivated from previous work on convolutional
architectures[153].

(3.) Sparse Autoencoder: To learn the weights of the convolutional layers,
a sparse autoencoder was trained on N = 48, 000 extracted local receptive
fields from the activations of the previous layer. For the first layer each local
receptive field was preprocessed by removing its DC components. The spar-
sity parameter was set to σ = 0.01 and the weighting term of the sparsity
regularizer to λ = 1. We applied the backpropagation algorithm to compute
the gradient of the objective function in equation 9.6 (in appendix). The pa-
rameters were optimized with L-BFGS using 25 mini-batches of size 2,000.
Each mini-batch was used for 20 iterations, such that the entire optimization
ran for 500 iterations. In pilot experiments we determined the settings of the
hyperparameters. In these pilot experiments we put most emphasis on the
sparsity regularizer λ and the length of the training for both the unsupervised
and the supervised part of our network. We found that the performance was
robust for a broad range of values of the mentioned parameters.

(4.) Classifier: We trained a two layer neural network, consisting of a
pretrained convolutional layer (i.e., layer L − 1) and multinomial logistic re-
gression (or softmax classifier) layer. That is, that the weights and bias terms
of the pretrained convolutional layer (i.e., layer L − 1) are fine-tuned with a
supervised signal. For MD scoring we utilized three class labels: (i) pectoral
muscle and background, (ii) fatty tissue, and (iii) dense tissue. For MT scor-
ing we had two class labels: (i) cancer, and (ii) control. The optimization was
performed for 500 iterations using L-BFGS on the n encoded patches. Unless
stated otherwise for each task and dataset results were obtained by performing
5-fold cross-validation by image to estimate the generalization ability of our
machinery.

Results

A. Mammographic Density Scoring

(1.) Density Dataset: The initial output of the MD scoring is a score that
represents the posterior probability that a given pixel belongs to the dense
tissue class. By thresholding the posteriors with threshold Tdense we obtain a
segmentation of the dense tissue. Percent density (PMD) is then computed
as the percentage of breast pixels that is segmented as dense. To speed up
training we oversampled the dense class during training. As such our machin-
ery tends to overestimate the density if we set the threshold Tdense to 0.50.
By raising Tdense this effect is compensated for. Figure 9.2 shows the effect
of Tdense on two performance measures, namely (i) the image-wise average of
the Dice coefficient, defined as 2|A ∩ B|/ (|A| + |B|) between the automated
segmentation A and the segmentation of the radiologist B, and (ii) the root
mean squared error between the percent density (PMD) as measured by our
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R (PMD vs. PMDmanual) 0.85(0.83 − 0.88) 95% CI
Dicedense 0.63 ± 0.19 std.
Dicefat 0.95 ± 0.05 std.
PMD 0.16 ± 0.11 std.
AUCPMD 0.57(0.52 − 0.62) 95% CI
AUCPMDmanual

0.56(0.51 − 0.61) 95% CI
AUCBI−RADS 0.55(0.50 − 0.60) 95% CI

Table 9.1: Comparison of automated with radiologist’s MD scores for the
density dataset. First row to forth row are respectively: Pearson correlation
coefficient (and 95% CI) between our automated PMD and radiologist’s man-
ual PMD, average Dice coefficient (and standard deviation) of dense tissue,
average Dice coefficient (and standard deviation) of fatty tissue, average PMD
(and standard deviation). Fifth row to seventh row are respectively area un-
der the ROC curve (AUC) of automated PMD, manual PMD, and BI-RADS
for separating between cancers and controls

machinery and the radiologist. Best results are obtained with Tdense in the
interval 0.70 − 0.80. In the remainder of the paper results are therefore re-
ported with Tdense set to 0.75. Table 9.1 summarizes the results on the density
dataset. Reported are (i) the Pearson correlation coefficient (and 95% con-
fidence interval(CI)) between PMD as measured by our machinery and the
radiologist, (ii-iii) the image-wise average (± standard deviation) of the Dice
coefficient for both dense and fatty tissue, (iv) the average percent density
(± standard deviation), and (v-vii) the area under the ROC curve (AUC) of
automated PMD, radiologist’s manual PMD and radiologist’s BI-RADS for
separating between cancers and controls. Despite of having high correlation
R = 0.85 between automated PMD and manual PMD, the Dice coefficient be-
tween automated dense segmentation and manual segmentation is relatively
low. One possible explanation is that when making the manual segmenta-
tion through shresholding method, the radiologist had to always balance the
accuracy of segmentation and overall percentage density. Thus the manual
segmentation could itself be off from the reality from image to image. On the
other hand, our neural networks were trained on image patches and noises
in the ground truth got canceled each other out during training, resulting a
more consistent segmentation. Figure 9.3 shows an example of a mammogram,
the corresponding Cumulus-like segmentation and the segmentation obtained
with the CSAE that incorporates the novel sparsity term. In regard to the
cancer and control separation, the automated PMD achieved the highest AUC
compared to the radiologist’s manual PMD and BI-RADS score.

(2.) Dutch Breast Cancer Screening Dataset: We used the networks that
were trained on the density dataset to score PMD on all images of the Dutch
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Figure 9.2: Effect of varying the threshold on the posteriors Tdense on two
performance measures of MD scoring, namely (i) the image-wise average of
the Dice coefficient, and (ii) the root mean squared error between the percent
density (PMD) as measured by our machinery and the radiologist.

Breast Cancer Screening dataset. Subsequently we assessed how well our esti-
mation of PMD is able to discriminate between cancers and controls. Table 9.2
presents (i) left-right correlation for the automated PMD scores (ii-iii) mean
and standard deviation of the PMD scores for cancers and controls, and (iv)
the area under the ROC curve (AUC) for separating between cancers and
controls.

B. Mammographic Texture Scoring

1) Texture dataset: The initial output of the MT scoring is a score that repre-
sents the posterior probability that a given pixel belongs to the cancer class.
To obtain one MT score per image we averaged the posteriors of 500 patches
randomly sampled from the breast area. We have evaluated the MT scoring
performance on the texture dataset (see Table 9.3). Our model improved on
two state-of-the-art methods in MT scoring: (i) the KNN method by Nielsen
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(a) (b) (c)

Figure 9.3: Automated PMD thresholding. Depicted are (a) original image,
(b) dense tissue according to expert Cumulus-like threshold, and (c) dense
tissue according to CSAE.

R (PMDleft vs. PMDright) 0.93(0.92 − 0.94) 95% CI
PMDcase 0.19 ± 0.11 std.
PMDcontrol 0.15 ± 0.11 std.
AUCPMD 0.59(0.56 − 0.62) 95% CI

Table 9.2: Statistics of MD scores on the Dutch Breast Cancer Screening
dataset. From first to last row are respectively: Pearson correlation coefficient
(and 95% CI) between left and right PMDs, average PMD (and standard
deviation) of cancer cases, average PMD (and standard deviation) of controls,
and area under the ROC curve (AUC) for separating between cancers and
controls.

et al. [156] using multiscale local jet features [70], which so far had reported
the best results on the texture dataset (results were communicated); (ii) a soft-
max classifier on static histogram features inspired by the method of Häberle
et al. [82]. A precise reimplementation of the original method by Häberle et
al. was not possible, since we could not get access to important hyperparam-
eters like the orientation of the chosen features. The static histogram features
represent 16 of the 45 final selected features, but accounted for 15 of the 18
highest coefficients in their final softmax classifier.

We also checked the robustness of our results with respect to different
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Method AUC

Static histogram [82] 0.56(0.51 − 0.61)
Multiscale local jet [156] 0.60(N/A)
CSAE-MT 0.61(0.57 − 0.66)

Table 9.3: AUC values for separating between cancers and controls for various
automated MT scores on the texture dataset.

R (MTleft vs. MTright) 0.91(0.90 − 0.92)
AUCMT 0.57(0.54 − 0.61)

Table 9.4: Statistics of MT scores on the Dutch Breast Cancer Screening
dataset. First row is Pearson correlation coefficient (and 95% CI) between
left and right MT scores. Second row is AUC for separating between cancers
and controls.

randomizer seed points. We found that the CSAE model was able to produce
similar scores in different runs. The AUC varied less than 0.01 across multiple
runs.

(2.) Dutch Breast Cancer Screening Dataset: Table 9.4 presents perfor-
mance indicators for our MT scoring on the Dutch Breast Cancer Screening
dataset. Shown are i) left-right correlation of the MT scores ii) the area under
the ROC curve (AUC) for separating between cancers and controls.

Conclusion

We have presented an unsupervised feature learning method for breast den-
sity segmentation and automatic texture scoring. The model learns features
across multiple scales. Once the features are learned, they are fed to a simple
classifier that is specific to the task of interest. After adapting a small set
of hyperparameters (feature scales, output size, and label classes), the CSAE
model achieved state-of-the-art results on each of the tasks.

The results suggest that the proposed method was able to learn useful
features for each of the considered applications. The automated PMD scores
have a very strong positive relationship with the manual PMD scores (R =
0.85) and are competitive with reported correlation coefficients from the lit-
erature, e.g., 0.63 [155], 0.70 [91], 0.85 [126], 0.88 [140] and 0.91 [122]. We
also evaluated how well the automated PMD scores separated out cases from
controls. We found that the automated PMD scores yielded an AUC of 0.59,
which is competitive to reported AUCs in the literature on similar popula-
tions (e.g. 0.57 [155], 0.59 [140], and 0.60 [125]). Thus, our automatic MD
scoring method could be an alternative to subjective and expensive manual
MD scoring.
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The automated MT scores separated cancers and controls better than two
state-of-the-art MT scoring methods. In the texture dataset the CSAE model
improved on the KNN method by Nielsen et al. [156] and a simplified version
of the model of Häberle et al. [82]. The full model of Häberle et al. could not
be tested, as necessary parameter settings were missing.

Based on our results we conclude that useful discriminative features can be
attained by “letting the data speak” instead of modeling prior assumptions.

We proposed a novel sparsity regularizer that incorporates both population
sparsity and lifetime sparsity. We compared the performance of the machinery
with the novel sparsity term with a control setup that used an alternative
sparsity term [137], which measured the KL-divergence between the mean
activation and the desired activation. For each experiment the novel sparsity
term performed at least equally well as the control setup.

The stack of convolutional (sparse) autoencoders (CSAE) presented in this
work forms a convolutional neural network (CNN). The major difference be-
tween a CSAE and a classic CNN is the usage of unsupervised pre-training. In
our previous work [167] we found that unsupervised pre-training with autoen-
coders led to an increase in performance on similar tasks as presented here.
This is in line with several works (e.g., [173, 207, 197, 165]) that demon-
strated the merits of employing unsupervised pre-training with autoencoders
in convolutional architectures.

We have focused on presenting a principled and generic framework for
learning image features. The MT features were learned on image patches and
mapped to individual locations in the image. In a second step, the classifier
predictions were merged to assign a disease label for the mammogram. How-
ever, the labels in the texture scoring task are provided per mammogram. We
assumed that texture changes are systemic and occur at many locations in
the tissue. One may also hypothesize the opposite. Texture changes could be
restricted to the vicinity of future cancers. We plan to extend the framework
to learn from multiple instances. The idea would be to train a classifier that
maps the feature responses from multiple locations to one label. This is a
difficult task and probably requires many more disease labels than considered
in this paper. However, with the advent of large screening datasets, it may
become possible to learn a relationship from images to labels, and investigate
the locality of texture changes.

The model could be easily adjusted to support 3D data. Features could
be learned for different mammographic projections (e.g., craniocaudal views)
or images from complementary modalities (e.g., ultrasound, magnetic reso-
nance imaging, tomosynthesis, or computed tomography). There are several
applications for automatically derived MD and MT scores. As part of a risk
prediction model, they stimulate research on breast cancer epidemiology. For
instance, large databases of historical mammograms could be scored to inves-
tigate change of breast cancer risk. Moreover, mammographic risk scores may
affect decision making for the individual patient, e.g., the selection of screen-
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Figure 9.4: (a) An autoencoder for learning the features of the convolutional
layer. The input is vectorized and reconstructed by an encoder-decoder archi-
tecture. (b) Inference in a convolutional layer using a 3D convolution. The
encoded units correspond to the highlighted units in output zl + 1 of the con-
volutional layer. The weights wj between input feature maps zl and the j-th
output feature map are marked in red and initialized with the learned weights
from the autoencoder. We refer to the text for details.

ing interval, imaging modalities, or treatment options. Thus, they could help
organize mammographic screening programs more efficiently and effectively,
which may ultimately lead to a reduction in breast cancer mortality.

Appendix

In the unsupervised part of our machinery features are learned using autoen-
coders. We propose a variant of the autoencoder that enables to learn a sparse
overcomplete representation. We introduce a novel sparsity regularizer that
combines population sparsity and lifetime sparsity. We summarize the idea
of the standard autoencoder (figure 9.4), before introducing an autoencoder
that exploits sparsity.

A. Autoencoder

Consider learning the weights wj ∈ Rc×d×d in for j = 1, . . . ,K, where we
omit the layer index for brevity. We rewrite the K 3D weight arrays as a
weight matrix W ∈ RK×cd2 , where the j-th row corresponds to wj . Similarly,
the bias vector b ∈ RK concatenates the K bias terms bj . Assume further
that we have sampled one local receptive field at a random location per input
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feature map example z[i] ∈ Rc×m×m with i = 1, . . . , n. The local receptive
fields have a size of c × d × d, but are arranged as vectors r[i] ∈ Rcd2 , where
i = 1, . . . , n and d ≤ m. Then, we can learn W and b in an unsupervised way
by “autoencoding” the local receptive fields.

The autoencoder reconstructs an input r ∈ Rcd2 by a composition f(g(r))
of an encoder g(·) and a decoder f(·). The encoder defined as

a ≡ g(r) = ϕ(Wr + b) (9.2)

connects the input layer with the hidden layer and uses the activation function
ϕ(·), which is commonly one of the following: the sigmoid, the hyperbolic
tangent, or the recently introduced rectified linear function ϕ(x) = max(0, x)
that is used in this paper due to its reported superior performance [154]. The
decoder defined as

f(a) = ψ(V a+ b̂) (9.3)

is an affine mapping between the hidden layer and the output layer. The
activation function of the decoder ψ(·) is usually set to the identity function,
and the weight matrix V = W T is defined as the transpose of the encoder
weight matrix (i.e., we use tied weights[7]). The bias of the decoder b̂ ∈ Rcd2

has the same dimension as the input. Tying the weights of the encoder and
decoder encourages V and W to be at the same scale and orthogonal to each
other[51]. It also decreases the number of trainable parameters and thereby
improves the numerical stability of the algorithm. The specialized decoder is
thus given by f(a) = W Ta+ b̂

Let us denote the set of training examples as Drec = {r[i]}Ni=1 and the
trainable parameters as θrec = {W, b, b̂}. Then the objective function to be
minimized is given as

JAE(Drec, θrec) =
1

n

n∑
i=1

Lrec

[
r[i], f(g(r[i]))

]
(9.4)

where the reconstruction error Lrec

Lrec

[
r[i], f(g(r[i]))

]
= ∥r[i] − f(g(r[i]))∥2 (9.5)

is the squared loss. To avoid that the autoencoder learns the identity function,
the hidden layer is constrained to be undercomplete, i.e., the number of hidden
units is smaller than the number of input units (K < cd2).

B. Sparse autoencoder

We define a sparse autoencoder that minimizes the objective function

JSAE(Drec, θrec) =
1

n

n∑
i=1

Lrec

[
r[i], f(g(r[i]))

]
+ λωsp(A) (9.6)
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using the novel sparsity term

ωsp(A) = ωpsp(A) + ωlsp(A) . (9.7)

This regularizer combines population sparsity ωpsp(A) and lifetime sparsity

ωlsp(A) with respect to the activation matrix A ∈ Rk×n,Aji = a
[i]
j = g(r

[i]
j ).

To define the population sparsity term, let us compute the average absolute
activation for the j-th activation unit (averaged across the n examples)

ρ̂j =
1

n

n∑
i=1

|Aji|

= n−1∥Aj·∥1

(9.8)

where ∥Aj·∥1 is the L1-norm of the j-th row in A. We compare this unit-wise
population sparsity to a pre-specified sparsity parameter ρ

ωpsp(A) =
1

K

K∑
j=1

τ(ρ̂j ; ρ)2 (9.9)

and average the squared thresholded difference over the K units. Here, the
threshold function

τ(ρ̂j ; ρ) = max(ρ̂− ρ, 0) (9.10)

penalizes sparsity values above ρ to avoid non-specific features. Values below
ρ are not punished because selective features shall be permitted. A typical
value for the sparsity level is ρ = 0.01 (see section Method-E).

Similarly, we specify the lifetime sparsity for the ith example as its average
absolute activation averaged across the K activation units

ρ̂i =
1

K

K∑
j=1

|Aji|

= K−1∥Ai·∥1

(9.11)

where ∥Ai·∥1 is the L1-norm of the i-th row in A. The total lifetime sparsity
is then given by

ωpsp(A) =
1

n

n∑
i=1

τ(ρ̂i; ρ)2 . (9.12)
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Abstract

Background: The long-term risk of breast cancer is increased in women
with false-positive (FP) mammography screening results. We investigated
whether mammographic morphology and/or density can be used to stratify
these women according to their risk of future breast cancer.

Methods: We undertook a case-control study nested in the population-
based screening programme in Copenhagen, Denmark. We included 288 cases
and 288 controls based on a cohort of 4743 women with at least one FP-test
result in 1991–2005 who were followed up until 17 April 2008. Film-based
mammograms were assessed using the Breast Imaging-Reporting and Data
System (BI-RADS) density classification, the Tabar classification, and two
automated techniques quantifying percentage mammographic density (PMD)
and mammographic texture (MTR), respectively. The association with breast
cancer was estimated using binary logistic regression calculating Odds Ratios
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(ORs) and the area under the receiver operating characteristic (ROC) curves
(AUCs) adjusted for birth year and age and invitation round at the FP-screen.

Results: Significantly increased ORs were seen for BI-RADS D(density)2-
D4 (OR 1.94; 1.30-2.91, 2.36; 1.51-3.70 and 4.01; 1.67-9.62, respectively),
Tabar’s P(pattern)IV (OR 1.83; 1.16-2.89), PMD Q(quartile)2-Q4(OR 1.71;
1.02-2.88, 1.97; 1.16-3.35 and 2.43; 1.41-4.19, respectively) and MTR Q4 (1.97;
1.12-3.46) using the lowest/fattiest category as reference.

Conclusion: All four methods, capturing either mammographic morphol-
ogy or density, could segregate women with FP-screening results according to
their risk of future breast cancer using already available screening mammo-
grams. Our findings need validation on digital mammograms, but may inform
potential future risk stratification and tailored screening strategies.

Introduction

False-positive (FP) test results represent a major concern in breast cancer
screening. A false-positive test refers to women who are recalled for fur-
ther assessment after a positive screening mammogram, and then found to
be free of breast cancer using the triple test (clinical examination, imaging
and typically needle biopsy). Experiencing a FP-screening result may have
negative psychosocial consequences for the women [32] and future participa-
tion in screening may also be influenced [149, 200, 130, 179, 8]. Nevertheless,
it is inevitable that some breast cancer free women will experience to be re-
called for further work-up, in order to maintain high programme sensitivity.
In the Copenhagen screening programme an empirical cumulative FP-risk of
16% after eight completed screens has been demonstrated [107]. However,
cumulative FP-risk estimates vary considerably between different screening
programmes being much higher in the USA than in Europe, which directly
relates to the differences in recall rates influenced by e.g. age at first screen,
screening interval, reading mode and screening organization [107, 101, 98, 108].

Noteworthy, several studies have found an excess risk of breast cancer
among women who have received a FP-screening result compared with women
who have never experienced a FP-exam [149, 166, 63, 40]. It has been sug-
gested that this might be attributed to misclassification; indicating that a
woman with an abnormal finding at screening has wrongly been declared dis-
ease free at work-up [166]. On the other hand, the excess risk in FP-women
might also, theoretically, be related to a biological susceptibility for breast
cancer such as benign breast disease [103, 87, 118], high breast density [151]
or high mammographic texture [157]. Both explanations were supported by a
recently published study, which concluded that the excess risk cannot be ex-
plained by mis-classification alone [206]. After reassessing mammograms from
295 women with at least one previous FP-screening test who had subsequently
developed breast cancer, von Euler-Chelpin et al.(2014) found a sustained sig-
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nificant excess risk of breast cancer of 27% (11%−46%) compared with women
with only negative tests, when cases of potential misclassification had been
excluded (67% including the misclassified women) [206].

Entering an era of personalized screening, further characterization of women
with FP-screening examinations is highly valuable with respect to potential
future risk stratification and tailored screening.

The main objective of this study was to investigate if women with a FP-
screening test can be stratified in respect to the risk of future breast cancer ac-
cording to their mammographic morphology and/or density. We hypothesized
that density (applying the widely used Breast Imaging-Reporting and Data
System (BI-RADS) density classification [4], and an automated technique
measuring area-based percentage mammographic density (PMD) [169, 212])
as well as measurements of mammographic morphology (applying the Tabar
classification [79, 191] and an automated technique for textural quantifica-
tion [120]) can all be used for risk segregation.

Material and methods

Study population and mammograms

We used data from the entire screened population in Copenhagen 1991 to the
end of 2005 (58,003 women aged 50– 69 invited for biennial screening) detailed
in [63]. Our study design and population are summarized in Figure 10.1. A
total of 4,743 women entered the FP-cohort from the first day they received
a FP-screening test. In the screening programme, a positive screening test
result is defined as false-positive (FP), if neither DCIS nor invasive cancer is
demonstrated upon recall (detailed in [206]). The FP-cohort was followed until
April 17, 2008 with censoring at breast cancer diagnosis, death, emigration,
or the end of follow-up which ever came first. During follow-up, 295 women
were diagnosed with breast cancer (DCIS and/or invasive cancer) [63, 206].
For each case, a control was selected from the FP-cohort, who had to: 1)
have the same year of birth and 2) be free of breast cancer, alive and living in
Denmark at the time when the case was diagnosed with breast cancer. Film-
based mammograms were not accessible in seven cases and, subsequently, the
matched controls of these cases were excluded, leaving 576 women for the final
analyses.

Screening- and tumour related data were retrieved by coupling the Copen-
hagen Mammography Register, the Danish Cancer Registry, the Danish Pathol-
ogy Register and the Danish Breast Cancer Cooperative Group using the
unique Danish Civil Registration System Number. Permission on data analy-
sis was approved by the Danish Data Inspection Agency (2008-41-21). Neither
written consent nor approval from an ethics committee was required under
Danish Law, due to the entirely register based design.
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From 1991–2001 screening included 2 projections of each breast (cran-
iocaudal, CC and mediolateral oblique, MLO) at the woman’s first screen
(prevalence screen). At subsequent screens (incidence screens), two projec-
tions were only made for women with mixed/dense breast tissue, whereas
women with fatty breasts exclusively had the MLO view done [97]. This
procedure changed gradually, and from 2004 and onward all women had both
projections done [63]. Film-based mammograms from each breast from the
FP-screening date were digitized using a Vidar Diagnostic PRO Advantage
scanner providing a 12-bit (4096 grey scales) output at a resolution of 570
DPI (eFilm Scan 2.0.1 Build 586). Both CC and MLO views were digitized
when accessible (figure 10.1).

Mammographic classification

The mammograms (cancer diagnosis-free) from the FP-screening events were
evaluated independently by two MDs—a senior breast radiologist and a res-
ident in radiology—according to the 4th edition of the American College of
Radiology (ACR)’s BI-RADS density classification [4] and the Tabar classi-
fication on parenchymal patterns [79, 191]. The radiological classifications
and reader experience have been detailed in [212]. In brief, the BI-RADS
density classification assigns mammograms into four proportional density cat-
egories in the 4th edition (denoted D1-D4 in this article): D1:fatty (< 25%
fibro-glandular tissue), D2: scattered densities (25–50%), D3: heterogeneously
dense (51–75%) and D4: extremely dense (> 75%) [4]. On the other hand,
the Tabar classification assigns mammograms into five more qualitative cate-
gories based on the parenchymal composition and distribution: PI: Scalloped
contours with oval-shaped lucencies and evenly scattered 1–2 mm nodular den-
sities, PII: Almost complete fatty replacement, PIII: Like PII with a retroareo-
lar prominent duct pattern, PIV: Prominent nodular and linear densities with
nodular densities larger than normal lobules and PV: Dominated by homo-
geneous, ground glass like and nearly structure-less densities [79, 191]. Eval-
uations by the two radiological methods were done blinded from each other
(separated in time) and blinded as to the original mammographic reading,
the woman’s age and case/control-status. CC and MLO views were evaluated
together equal to clinical practice. If only one projection was available, this
was used to estimate the density pattern. As recommended by the ACR the
highest risk score was used if the breasts differed in scores [185]. The categor-
ical Tabar classification was ranked: PII, PIII, PI, PV, PIV (with increasing
risk) [212, 79, 191, 111]. For data analyses, consensus scores between the two
readers (on each breast) were obtained if they had disagreed. Inter-observer
agreement was substantial for BI-RADS (kappa = 0.66;0.61-0.71) and mod-
erate for Tabar (0.50; 0.45-0.56) according to Landis and Koch evaluation of
strength of agreement [133].

Furthermore, all mammograms were assessed applying two automated
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Figure 10.1: Flowchart of study design and population. The bottom row
specifies the projections available for each included woman. FP: false-positive,
DCIS: ductal carcinoma in situ, C: cases; NC: non-cases (controls), MLO:
Mediolateral Oblique, CC: cranio-caudal.

techniques 1) an automated Cumulus-like [37] threshold technique for area-
based PMD assessment [169, 212] and 2) a Mammographic Texture Resem-
blance marker (denoted MTR) for textural quantification [121]. In brief, the
MTR scores were calculated using a deep learning convolutional neural net-
work pipeline by Biomediq [121]. First, the MTR classifier had been trained
to recognize specific mammographic texture building blocks in an unsuper-
vised manor; without cancer information. Next, it was further trained using
patches from a large database (consisting of three independent datasets) of
diagnosis-free mammograms with known cancer outcome. Finally, texture
scores were conducted on the present dataset, analysing typically 500 patches
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from the complete breast region per mammogram. The aggregate risk of a
scored mammogram was the average MTR score across the extracted patches
(a number close to 0.5). Technical details on the MTR technique has been re-
ported previously by Kallenberg et al. (2016) [121] and the Mammiq research
prototype has previously been validated in [157, 159, 213].

We used the average score of the CC and MLO projection to denote the
automated PMD and MTR breast scores. In 98 women (17%), one or more
out of four projections had not been performed at screening or were missing.
For these women imputation of missing data was done using standard linear
regression. The highest score (left or right breast) was used as the woman’s
final score in line with assessment of the radiological visual scores.

Statistical analysis

Characteristics of cases and controls were summarized as mean (standard
deviation, SD) for continuous data, median (inter-quartile range; IQR) for
ordinal data and number (%) for categorical data. Characteristics were com-
pared using the paired t-test for continuous data, the Wilcoxon signed rank
test for ordinal data, and McNemar’s test for categorical data. The Copen-
hagen screening programme was organized in approximately biennial invita-
tion rounds from 1991 to 2005 which has been specified in [63]. Accordingly,
“invitation round at the FP-screen” represents the time of the index mammo-
gram. As age at FP screen and FP invitation round were considered potential
confounders in the analyses of cancer risk, additional comparisons of PMD,
MTR, and BI-RADS scores were made with adjustment for age at FP screen
and FP invitation round. A linear mixed model was applied to the continu-
ous outcomes PMD and MTR and a robust proportional odds model to the
ordinal BI-RADS scores. Unfortunately, it was not possible to compare Tabar
scores with any adjustment due to lack of statistical regression models for re-
peated nominal outcomes. For the two continuous measures (PMD and MTR)
categorization was done using cut-offs from the quartiles of control subjects.

Logistic regression was used to calculate Odds Ratios (ORs) for each in-
dividual method, adjusting for year of birth, age at FP-screen and invitation
round at FP-screen. Each density/texture category was compared individu-
ally with the reference category (most fatty/lowest quartile): D1 for BI-RADS,
PII for Tabar, and the lowest quartile for PMD and MTR. To enable com-
parison between the different methods (independent of reference category)
area under the receiver operating characteristic (ROC) curves (AUCs) were
also performed. AUCs were calculated using the estimated linear predictors
from the multiple logistic regression models including year of birth, age at
FP-screen and invitation round at FP-screen.

In a retrospective study undertaken previously[206], we reassessed the FP-
mammograms for the cases included in the present study. We found that
almost 25% of the 295 FP-cases were potentially misclassified at work-up:
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When retrospectively comparing the diagnostic mammography with the FP-
examination, the cancers were in the same location as the original finding
leading to the FP-recall. That is, a number of women with actual breast
cancer were potentially wrongly—in retrospect—declared FP at work-up. Ac-
cordingly, the 288 cases included in our study can be divided into 218 (75.7%)
true FP-cases and 70 (24.3%) (potentially) misclassified FP-cases (figure 10.1).
ORs and AUCs were recalculated for only true FP-cases and their matched
controls. True and misclassified FP-cases were compared using either the
independent t-test (normally distributed data) or the non-parametric Mann-
Whitney U Test. After visual inspection we found a positive linear corre-
lation between point of screening (date) and MTR measures and a negative
linear correlation with PMD (Supplementary A Figure 10.2). Therefore, linear
adjustments according to screening date based on the FP-controls were per-
formed, to remove effects of changes in film and x-ray technology and conduct
the best-approximated comparison.

IBM© SPSS© Statistics 23.0, was used for statistical analysis and results
were considered statistically significant with two-sided P-values < 0.05.

Results

Overall, 320 women (55.6%) entered the FP-cohort following their first screen-
ing visit while the remainder were included following subsequent screens (non-
significant difference between cases and controls; p = 0.314). Out of the 288
included cases 21 (7.3%) were diagnosed with ductal carcinoma in situ (DCIS)
and the remaining with invasive breast cancer (non-significant for true versus
misclassified FP-cases; p = 0.126). Time from screening to diagnosis was 5
to 192 months with an average of 82.0 months (median = 75.5). Accordingly,
2.8% were diagnosed within < 12 months, 6.9% between 12 and 24 months and
90.3% 24 months. Regarding misclassified FP-cases the distribution was 5.7%,
15.7% and 78.6%, respectively (with significantly more misclassified FP-cases
being diagnosed within 24 months (p = 0.001).

Characteristics of cases and their matched controls are compared in Ta-
ble 10.1. There was no significant difference in follow-up period from the
FP-screen (index mammogram) to study-end between cases and controls (158
and 157 months, respectively; p = 0.626). On average cases were 0.39 years
younger (95% CI: 0.01-0.77, P = 0.043) than their matched controls. The
standard deviation of the age differences was 3.27 years. FP screening round
did not differ systematically between cases and controls (median difference 0
rounds, IQR-1 to 0 rounds, P = 0.21). Cases had a significantly higher PMD
(mean difference 0.028, 95% CI 0.010–0.046, P = 0.003), significantly higher
texture scores (mean difference 0.018, 95% CI: 0.001-0.018, P = 0.023), and
significantly higher BI-RADS scores (Odds ratio = 2.09, 95% CI: 1.55-2.82,
P < 0.001). Tabar categorisation also differed between cases and controls (P
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= 0.031). Differences in PMD remained significant after adjustment for age
at FP screen and FP invitation round (adjusted mean difference 0.023, 95%
CI 0.003-0.041, P = 0.021), likewise for MTR (adjusted mean difference 0.013,
95% CI: 0.004-0.020, P = 0.001), and for BI-RADS (odds ratio 2.08, 95% CI:
1.53-2.84, P < 0.001).

In Table 10.2 adjusted ORs and AUCs are shown for all four methods.
We found gradually increasing ORs with increasing density category for both
density methods and significantly increased ORs for Tabar’s PIV and the up-
per quartile of the MTR-score. Sub-analysis showed that the association with
breast cancer remained after removing women with misclassified FP results
from the analyses regarding all four methods (see Table 10.3). The difference
in mean age between true and misclassified FP-cases (58.63 versus 58.65) was
non-significant. Both density and texture scores were significantly lower in the
group of misclassified FP-women (BI-RADS p = 0.036, linear adjusted PMD
p = 0.036 and linear adjusted MTR p = 0.026).

To test the hypothesis of higher mammographic density and/or texture
in FP-women compared to never-FP-women, we performed an approximated
comparison of FP-women and never-FP-women (all cancer diagnosis-free), lin-
early adjusted to account for time of acquisition (Supplementary A and B Fig-
ure 10.2 and Table 10.4). We found BI-RADS and PMD scores (density) to
be significantly lower in FP-women compared to never-FP-women (BI-RADS
p = 0.007, PMD p < 0.001). However, the FP-women revealed significantly
higher average MTR scores (p < 0.001).

Discussion

Previous studies have demonstrated that women who have experienced a FP-
screening examination are at a higher risk of developing breast cancer [149,
166, 200]. In this nested case-control study, we addressed whether this specific
sub-group of women can be further risk stratified according to mammographic
features. We found that both mammographic morphology (parenchymal pat-
tern or texture) and density can be used as predictors for breast cancer; den-
sity (in terms of the most widely used BI-RADS classification) with OR esti-
mates comparable with what has previously been demonstrated for the general
screening population [213, 202, 13]. Furthermore, we demonstrated that risk
estimates (ORs and AUCs) were not reduced but rather became stronger after
excluding misclassified FP-cases.

Among women with a FP-screening result, the risk of later becoming a
breast cancer patient increased gradually with increasing density, demonstrat-
ing an adjusted OR of 4.01 (1.67-9.62) for women with > 75% fibroglandular
tissue compared with women with < 25% (BI-RADS D4 versus D1). This is
comparable with earlier findings based on the general population using the BI-
RADS classification [213, 202, 13]. Quite consistently, women with extensive
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Table 10.1: Characteristics of cases and controls (n = 288 matched pairs). CI:
confidence interval, FP: false-positive, BI-RADS: Breast Imaging-Reporting
and Data System (density classification), PMD: percentage mammographic
density, MTR: Mammographic Texture Resemblance marker (textural quan-
tification), n: number, D: density, P: pattern, Q: quartile.
a Statistics: Continuous data are summarized with mean (standard devia-
tion) and compared with the paired t-test. Ordinal data are summarized with
median (inter quartile range) and compared with the Wilcoxon signed rank
test. Categorical data are summarized with number (%) and compared with
McNemar’s test for paired nominal data, except from categorized PMD and
MTR which is compared to a known distribution using the chi-square test.
b Cut-offs from the quatiles of control subjects.



116

CHAPTER 10. RISK STRATIFICATION OF WOMEN WITH
FALSE-POSITIVE TEST RESULTS IN MAMMOGRAPHY SCREENING

BASED ON MAMMOGRAPHIC MORPHOLOGY AND DENSITY: A
CASE CONTROL STUDY

Table 10.2: Association between mammographic morphology/density and
breast cancer (n = 576).
a Odds ratios and area under the ROC-curves adjusted for birth year, age at
FP-screen and invitation round at FP-screen.
b Cut-offs from the quartiles of control subjects.

mammographic density have been shown to have a 4–6-fold increased risk of
developing breast cancer compared with women with little or no breast den-
sity using computer-assisted methods [21]. However, relative risk estimates
are dependent on which density assessment method is being used and how
categorisation is being done (among others), which complicates comparison
across studies [218, 61]. The association between automated PMD and breast
cancer in our study was weaker than for BI-RADS and earlier reporting on
PMD [21, 204]. This may to a large extent be due to a relatively poor image
quality in the older images and the fact that automated methods may be more
influenced by image quality than human observers.

Apparently, the Tabar classification and MTR—capturing mammographic
morphology—also demonstrated a somewhat weaker association with breast
cancer than earlier reported (looking at the OR estimates), when based on
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Table 10.3: Association between mammographic morphology/density and
breast cancer (women with true false-positive test results; n = 436).
a Odds ratios and Area under the ROC-curves adjusted for age at FP-screen,
invitation round at FP-screen and birth year.
b The same cut-off values as for the total dataset have been used (based on
the quartiles of controls from the total dataset; n = 288).

the general population [111, 157, 213]. Accordingly, we found an OR of
4.40(2.31 − 8.38) for Tabar’s nodular pattern IV versus the fatty pattern II
in a previous study including 380 women with negative screening mammo-
grams [213]. The same study demonstrated an OR of 3.04(1.63 − 5.67) for
the highest versus the lowest quartile of the MTR score. Regarding the au-
tomated texture technique, image quality may again partly explain this. On
the other hand, it could be hypothesised that women, who have experienced
a FP-screening test, may have a more “busy” or disorganized mammogram
in general (higher MTR), explaining why MTR shows a weaker correlation
with breast cancer in this sub-population. This could also explain the weaker
association with the Tabar classification (more women categorized with PIV).
In addition, we found inter-observer agreement to be somewhat lower for the
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Tabar classification than previously established, when the same readers as-
sessed another (newer) dataset (moderate agreement (kappa 0.50; 0.45−0.56)
versus substantial agreement (0.65; 0.59−0.71)) [212]. This indicates a higher
uncertainty about how to categorise according to the qualitative Tabar clas-
sification in the present study. Thus, two potential hypotheses, which may
explain our data, are: 1) that false-positives in general have more “busy”
mammograms and/or 2) that radiological morphological assessment (MTR
and Tabar assessment) is more complicated on older images than assessment
using the semi-quantitative BI-RADS density classification.

Hypothetically, a less transparent or a more “busy” breast tissue (high
density or texture) may alter the radiologist’s threshold of recall leading to a
different number of FP-examinations. In accordance, Lehman et al. (1999)
found that women with extremely dense breast tissue are almost twice as likely
to have a FP-test as women with fatty breasts after controlling for age [138].
In contrast to this, we found density to be significantly lower in FP-women
on average. On the other hand, the FP-women revealed significantly higher
average MTR scores. This indicates that radiologists are more sensitive to
business of mammograms than density, when adjusting their recall threshold.
This relation should be tested in future studies properly designed to investigate
this issue.

The association with breast cancer risk became stronger when only includ-
ing true FP-cases (excluding women who in retrospect had a cancer at recall).
In fact, the small sub-population of misclassified-FP cases seems to have some
special characteristics. Accordingly, a significantly lower mammographic den-
sity (BI-RADS and PMD) and MTR on average (adjusted measures) compared
with true FP-cases were seen. Von Euler-Chelpin et al. (2014) also found de-
creased risk of misclassification for women with dense breasts (BI-RADS D3
+ D4) based on the same population, but assessed according to BI-RADS
density by another breast radiologist (moderate agreement between studies
k = 0.59; 0.50 − 0.68) [206]. As suggested by the authors, supplementary ul-
trasound at work-up may have helped to give women with dense breast tissue
a more reliable diagnosis. Another explanation could be that it is probably
easier—in retrospect—to detect missed cancers in fatty breasts. Ciatto et
al. (2007) compared women with a false-negative-assessment after recall for a
suspicious finding at screening with women in whom cancer was diagnosed at
recall [43]. For the women wrongly declared diagnosis-free at work-up (corre-
sponding the misclassified-FP cases in our study), abnormalities as mass with
regular boarders and asymmetrical density were significantly more frequent.
Thus, the authors found less suspicious lesion types to be more likely missed
at assessment. In accordance, these women had significantly fewer diagnostic
tests performed, and significantly more had only mammography done at work-
up [43]. This is in agreement with our results revealing lower mammographic
density and texture in misclassified-FP women and stronger effect sizes for
only true FP-cases.
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Limitations

Even though, this study is based on all women screened in the Copenhagen
screening programme in the period 1991–2005, the sub-population of FP-
women developing cancer is not very large. This results in relatively wide
confidence intervals when estimating ORs and impairs stratification into sub-
groups. Moreover, we did not adjust for other risk factors for breast cancer
such as body mass index (BMI), history of breast cancer or reproductive vari-
ables in this retrospective study, as this information is not collected routinely
in the Danish screening programme. In particular, BMI has been reported
to be an important confounder; especially among postmenopausal women.
Adjusting for BMI would expectably have led to some increase in OR esti-
mates [151, 202, 23]. On the other hand, from a clinical point of view, our
results are more easily applicable in present similar screening programmes
where the mammogram in addition to the woman’s age is the only available
information to the radiologist. Further more, our study is based on film-based
mammograms and we observed that mammographic features, overall, changed
linearly over time. The study period ranges from 1991 to 2005, and it can only
be speculated what may have influenced density and texture measures (e.g.
technological development, decay of analogue mammograms over time, demo-
graphic factors such as the use of HRT etc.). We also saw a marginal difference
between cases and controls regarding their average age at the time of the index
mammogram and a minor skewing when age was categorized, which is due to
our study design. However, we adjusted for both age at the FP-screen and
invitation round at the FP-screen, so these factors should largely be accounted
for when estimating ORs and AUCs.

We chose to include all women deemed as false positive as this, from a clin-
ical point of view, represents “real life”. Sub-analysis showed that all methods
were able to segregate the FP-women, even when potentially misclassified FP-
cases were excluded. Potential masked cancers may have been an attributing
factor to the potentially misclassified FP-cases and could have been excluded
from primary analysis by defining a negative 2-year follow-up - even though
this subgroup in fact showed lower density on average. We did not account
for repeated false-positive exams as only 19 (6.4%) women had more than one
FP-test and a separate analysis of this group would end up with small num-
bers. Comparison of average measures of mammographic features between
true and misclassified-FP-cases as well as FP-controls and never-FP-controls
were approximated by linear adjustment. AUCs where reported relative to
this design.

Lastly, FP-rates are greatly influenced by differences in screening organi-
zation [107]. It is therefore important to keep in mind that our results may not
be directly transferable to other FP-cohorts from other screening programmes.
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Conclusions

In conclusion, we found that women with FP-screening results, having an ex-
cess risk of developing breast cancer, can be further risk stratified according
to their mammographic morphological features and mammographic density.
This is a valuable input with respect to potential future tailored screening
strategies; however, our findings need validation on digital mammograms. Ac-
cordingly, intensified screening, as for instance supplementary imaging with
tomosynthesis (which has also proved to increase sensitivity in fatty breasts),
ultrasound or other technologies might be beneficial [187, 134, 58] and is an
important area of future research. Our results also indicate that increased
mammographic texture in women with FP-screens in general, may contribute
to explaining their increased risk of breast cancer. However, this should be
validated in future studies designed to answer this hypothesis. Lastly, women
with FP-screening results should be encouraged to continue participation in
the screening programme, even though Danish women with a FP-screening ex-
perience have been found to attend subsequent screenings to the same extent
as other screening women [8].

Appendix

Supplementary material A

Scatter plot 10.2 showing the correlation between the screening date of the
false-positive screening exam and MTR (A) and PMD (B) scores, respectively.
Data are based on false-positive controls (no cancer diagnosis up-until 17 April
2008).

Supplementary material B

In Table 10.4 the FP-controls from the present study are compared with never
FP-controls from another Copenhagen screening study [121]. In the latter
study, the mammograms originated from the year 2007 and the controls had
not developed breast cancer for a follow-up period of 3-4 years. All women
with a FP-examination were excluded from the 2007 dataset. To reduce effects
related to changes in film and technology over time, we conducted linearly
corrected measurements (cf. Supplementary A Figure 10.2) which were used
for the comparison analyses.
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FP-controlsa

n=288
never FP-controlsb

n=248
P-value

Average (mean, 95% CI)
Age 59.03 (58.34-59.72) 58.56 (57.85-59.26) 0.361
BI-RADS 1.72 (1.62-1.82) 1.97 (1.84-2.09) 0.007
PMD corrected (%)c 0.00 (-1.24-1.24) 5.49 (3.43-7.56) <0.001
MTR correctedc 0.0000 (-0.0053-0.0053) -0.0647 (-0.0686 - -0.0607) <0.001

Distribution (n, percent)
BI-RADS 0.006
1 146 (50.7%) 106 (42.1%)
2 84 (29.2%) 66 (26.6%)
3 50 (17.4%) 54 (21.8%)
4 8 (2.8%) 22 (8.9%)

Tabar 0.027
PI 88 (30.6%) 89 (35.9%)
PII 80 (27.8%) 83 (33.5%)
PIII 32 (11.1%) 12 (4.8%)
PIV 73 (25.3%) 49 (19.8%)
PV 15 (5.2%) 15 (6.0%)

Table 10.4: Comparison of mammographic features between women with and
without previous false-positive screening results in breast cancer free women
(controls).
Statistics: Mann-Whitney U test and Chi-Squared Test.
a Baseline mammogram from the period 1991-2005, follow-up until 17 April
2008.
b Baseline mammogram from the year 2007, follow-up until 31 December 2010.
Women with previous FP-examinations has been excluded.
c Linear adjustments according to screening date based on FP-controls.
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Figure 10.2: Correlation between screening date and MTR and PMD scores,
respectively.
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Histogram-based
unsupervised domain
adaptation for medical image
classification

Pengfei Diao, Akshay Pai, Christian Igel, and Christian Hedeager Krag

Abstruct

Domain shift is a common problem in machine learning and medical imag-
ing. Currently one of the most popular domain adaptation approaches is
the domain-invariant mapping method using generative adversarial networks
(GANs). These methods deploy some variation of a GAN to learn target
domain distributions which work on pixel level. However, they often pro-
duce too complicated or unnecessary transformations. This paper is based on
the hypothesis that most domain shifts in medical images are variations of
global intensity changes which can be captured by transforming histograms
along with individual pixel intensities. We propose a histogram-based GAN
methodology for domain adaptation that outperforms standard pixel-based
GAN methods in classifying chest x-rays from various heterogeneous target
domains.

Introduction

One of the most ubiquitous application of deep learning has been in the classi-
fication of medical images to aid triage, diagnosis, and resource management.
Even though several products have been developed, large scale deployment
has been somewhat limited due to the sensitivity of large over-parameterized
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neural networks (NN) to domain shift. Domain shift is a commonly seen
problem where the data distribution on which the NN has been trained has
different statistics compared to the test data distribution. Most often domain
shift manifest as covariate shifts where the marginal label distributions remain
the same.

In this study, we show that, as opposed to the existing domain-adaptation
approaches, addition of the pixel intensity histogram as a feature for discrim-
ination (on top of raw intensities) and simplifying the generator to produce
global intensity transformations have a positive effect on domain adaptation
regardless of the site. Through experiments on a mix of publicly available
datasets, namely Chexpert [105] and NIH [209], and an internal dataset re-
ferred to as RH, we show that orderless features along with a generator that
allows global intensity transformations provided a better domain invariant
mapping and thereby more stable generalization compared to the standard
approaches using generative adversarial networks (GANs) at the level of com-
plete images.

Literature review

Several methods have been proposed to address domain shifts. A few of them
are: out-of-distribution detection (OOD), subspace mapping [66], domain-
invariant mapping [123, 41, 144], feature/data augmentation [143], or more
expensively just supervised fine-tuning on new domains. For unsupervised do-
main adaptation, one of the most commonly used method is domain-invariant
feature generation (or some modification of it). Previous works [123, 41, 144]
employ GANs to train a classifier with domain-invariant features. These meth-
ods however require the primary training of the NN to happen with both tar-
get and source domain data available, and fine-tuning of the whole network
when deploying to new domain. Here we set out with the assumption that
the classifier remains unchanged and that the data for learning or fine-tuning
any mapping is only possible at a deployment site. Unpaired image-to-image
translation GAN methods [85, 11, 72, 217, 115] have been successfully applied
in medical image tasks such as segmentation, data augmentation and image
synthesis. Few work has employed these methods for unsupervised domain
adaptation in disease classification tasks.

Methods

Overview

An overview of the workflow is illustrated Figure 11.1. Our model has two
components: the classifier and the domain-transforming generator. The classi-
fier is trained to classify five lung diseases and is an ensemble of five Densenet-
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Figure 11.1: Overview of our GAN based domain adaptation. The classifier
(C) is trained on source image data for disease classification. The GAN is
trained to translate images from target domain to source domain. The GAN
is comprised of a generator (G), a histogram layer (H), and a discriminator
(D). The input to the GAN is a batch of unpaired images from source and
target domains. While images from source domain will directly proceed to the
histogram layer, images from target domain will be passed through generator
first.

121 [99] models. As explained earlier, one of the novelties of the methods is
that the classifier remains fixed. What gets trained is a domain-transforming
generator on both source and target domains. The domain-transforming gen-
erator essentially acts as a pre-processing step to the classifier. Similar to ex-
isting GAN-based approaches, the domain-transforming generator is trained
in the standard adversarial fashion. However, the difference to existing ap-
proaches is that we feed histograms as the primary feature to the discriminator
and not full images. This simple approach allows us to focus on global domain
changes which we believe is the most common domain change in chest x-ray
classification problems [38].

We propose two kinds of GAN methods – graymap GAN and gamma- ad-
justment GAN. The graymap GAN (similar to Colormap GAN [198]) learns a
global intensity transformation from target domain to source domain. In con-
trast, the gamma-adjustment generator learns instance based intensity trans-
formations formulated as gamma transformations. Both of these generators
transform the image at a global intensity level and therefore maintain semantic
consistency between the original and the generated image.
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Histogram layer

Inspired by the work of Sedighi et al. [183], our histogram layer is constructed
with a set of Gaussian functions. Our histogram layer differs from the origi-
nally proposed one in two ways. First, the tails of the Gaussian-shaped kernels
on the side are not replaced by a constant value of 1. So when the input in-
tensity is outside of pre-defined range, its contribution to the bin will be close
to zero. Second, the histogram is normalized by the sum of all bins instead of
the total number of pixels. For a histogram with K, the frequency of intensity
occurrences within the bin k ∈ {1, . . . ,K} is approximated by

B (k) =

W∑
i=0

H∑
j=0

e
−
(

Iij−µk
σ

)2

, (11.1)

where W and H are the width and height of input image I, respectively, Iij
is the intensity of pixel (i, j), µk is the center of k-th bin, and σ plays the
role of the bin width which controls the spread of each bin. The normalized
histogram is given by

Bnorm (k) =
B (k)∑K

k̂=1
B
(
k̂
) . (11.2)

This histogram layer does not have learnable weights. The bin centers µk
are pre-computed. For a histogram with K bins, the k-th bin center µk is
calculated as

µk =
(2k − 1) (max (L) − min (L))

2K
+ min (L) , (11.3)

where L is the intensity range, min (L) and max (L) are the minimum and
maximum intensity levels accordingly. The bin width µ is determined by vi-
sually comparing the the output of histogram layer with the actual histogram.
With a larger σ the bins overlap more, resulting in a smoother histogram.
With smaller σ the histogram is closer to the actual histogram. However as
σ → 1

∞ the Gaussian function will eventually become Dirac delta function
and the gradient can hardly flow across bins. In practice, we start with an
relatively large σ and gradually decrease it until the layer output is visually
close enough to the actual histogram. An illustration of two histogram layers
with different bin widths can be found in Figure 11.3 from Appendix 11.

For back-propagation, we use auto differentiation of Tensorflow [5]. The
derivatives of histogram and normalization functions are given in Eq. (11.11)
and Eq. (11.12) in Appendix 11.

Histogram discriminator

The histogram discriminator consists of a histogram layer and a 1D CNN of
ResNet type [89], see Appendix 11 for the exact architecture. The discrimina-
tor takes the image as an input, computes the histogram through histogram
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layer and then discriminates between true source image and fake source image
using the 1D CNN. This discriminator is used in both graymap GAN and
gamma-adjustment GAN.

Graymap GAN

The first generator we propose is a graymap generator, which is based on the
generator in the Colormap GAN [198]. In Colormap GAN, the generator
has together over 100 millions of weights (256 × 256 × 256 × 3) and biases
(256×256×256×3) to translate RGB image from one domain to another. Our
graymap generator has only 256 weights and 256 biases since we are dealing
with 8-bit single channel gray-scale input. For an image I with intensity value
normalized into the range (0, 1) the graymap transformation is defined as

G (Ii,j) = (2Ii,j − 1)W(L(Ii,j)) +B(L(Ii,j)) , (11.4)

where W and B are the weight and bias vectors of length 256, respectively.
Assuming the element index of weight and bias vectors ranges between 0 and
255, L (Ii,j) is defined as

L (Ii,j) = ⌊Ii,j ∗ 255⌋ (11.5)

that computes the index of corresponding weight and bias to pixel Ii,j . We
further clip the intensity value of generated images and re-scale the intensity
level back to range (0, 1) by

Ĝ (Ii,j) =


1 if G (Ii,j) > 1

0 if G (Ii,j) < −1

0.5 ·G (Ii,j) + 0.5 otherwise.

(11.6)

Combining this graymap generator with the histogram discriminator gives the
proposed graymap GAN. Because the generator has 256 degrees of freedom
to transform each distinct intensity level, in the experiments we used 256
bins with σ = 0.03 for the histogram layer to capture the differences across
intensity levels. For the generator, we initialize the weights with ones and
the biases with zeros. For the discriminator, we used 256 convolutional filters
in all convolutional layers including ones inside the residual blocks. Similar
to Colormap GAN, we use the least square loss proposed by Mao et al. [146]
for optimizing the generation of an image. The losses for the generator and
discriminator are defined as

LG = Et∈T

[
(D (G (t)) − 1)2

]
(11.7)

and
LD = 0.5

(
Es∈S

[
(D (s) − 1)2

]
+ Et∈T

[
D (G (t))2

])
. (11.8)

Here S and T are the sets of source and target images, respectively. The
constant scalar 0.5 in Eq. (11.8) is used to balance the losses for generator
and discriminator at each training step.
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Gamma-adjustment GAN

The second generator we propose does instance-based gamma adjustment to
the image. For an image I with intensity value normalized into the range
(0, 1), the gamma adjustment is given as

G (Ii,j) = (Ii,j + ϵ)γ(z) , (11.9)

where γ is a scalar regressed by a 1D CNN and ϵ is a small constant used for
preventing undefined gradient during back-propagation. The construction of
the γ regression is similar to the histogram discriminator. We first compute
the histogram of input image using a histogram layer which is then fed to the
1D CNN (see Appendix 11). The CNN outputs a scalar z which is scaled by
activation function given as

γ (z) = (α− β)
1

1 + e−z
+ β , (11.10)

where α and β are two positive constants restricting γ in the range (β, α).
The purpose of restricting the range of γ is to stabilize the training of GAN.
Equation (11.9) has the property that for γ less than 1 the histogram will shift
towards the right, resulting in a brighter image, and for γ greater than 1 the
histogram will shift towards the left resulting in a darker image. Combining
the gamma adjustment generator with the histogram discriminator we get the
gamma-adjustment GAN. Unlike graymap GAN that adjusts each intensity
level independently, the gamma adjustment has only 1 degree of freedom. In
our experiments we therefore used only 32 bins with σ = 0.1 for histogram
layers in both generator and discriminator. The losses for generator and dis-
criminator are the same as Eq. (11.7) and Eq. (11.8).

Experiments

Datasets

We conducted studies on two publicly available large x-ray chest image datasets
Chexpert [105] and NIH [209] as well as on a small internal dataset RH col-
lected from Rigshospitalet, Denmark.

The Chexpert dataset consists of 223,414 images with 14 categories of
observations with 191,027 acquired in the frontal view and 32,387 acquired
laterally. The separate test dataset comprises 202 frontal views and 32 lateral
views. All images are provided in 8-bit JPG format and were originally post-
processed with histogram equalization. The NIH dataset consists of 112,120
frontal view images with 15 categories of observations, from which 25,596 im-
ages are hold out for test. The images are provided in 8-bit PNG format
without histogram equalization. The RH dataset consists of 884 frontal view
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images with 7 categories of observations. A separate test dataset which con-
sists of 231 frontal view images is given. The images are provided in 8-bit
PNG format without histogram equalization. For simplicity, we evaluated our
methods on the classes atelectasis, cardiomegaly, consolidation, edema, and
pleural effusion.

Training

For a fair comparison, we first reproduced the results presented in the Chex-
pert article [105]. The model’s input size is 320 × 320 pixels. We used the
Adam optimizer with β1 = 0.9, β2 = 0.999 and learning rate 10−4. Random
rotation (±5 degrees) and random zoom-in/zoom-out (0.95, 1.05) were used
for data augmentation. We held 6,886 (for Chexpert) images out for test. We
trained the network for 10 epochs on 216,528 images with a batch size of 16
and 1% holdout for validation. We saved the checkpoint with best validation
AUC. We shuffled the training data and repeated the experiment to get 5
checkpoints in total. The classifier combined these five networks by averaging
their predictions. Following the same procedure, we trained another ensem-
ble of 5 networks on the NIH dataset. We refer to these two classifiers as
Chexpert-net and NIH-net accordingly.

In the plain input setting, we tested Chexpert-net and NIH-net on the
test set of Chexpert, NIH and RH without translating the input. In Cy-
cleGAN [221] baseline experiments, we trained CycleGAN for translating
images from NIH to Chexpert, from RH to Chexpert, from Chexpert to NIH,
and from RH to NIH. For Chexpert and NIH, we used 5,000 unlabelled images
from each dataset to train the GAN. For RH we used 800 images to train the
GAN. We prepended the corresponding CycleGAN generator to Chexpert-net
and NIH-net, and tested them on the corresponding datasets. In the Col-
ormap GAN [198] setting, we replaced the generator of Colormap GAN
with our graymap generator (Eq. (11.4)) for dealing with grayscale images.
The discriminator and losses remained unchanged. We trained and tested
Colormap GAN with the same dataset setup as CycleGAN. Our Graymap
GAN and Gamma Adjustment GAN were also trained and tested with this
dataset setup, see Appendix 11 for details.

Results, Discussion, and Conclusions

Table 11.1 illustrates the AUCs generated by each methodology, the statisti-
cal evaluation based on DeLong tests [56] is summarized in Table 11.3. While
the newly proposed methods gave the highest average AUC values on the RH
data, the individual differences in the AUC for the different classes are mostly
not statistically significant, most likely due to the small test sample size. On
NIH, the newly proposed methods gave the highest average AUC values and
the individial differences on all five classes are highly significant (p < 0.001).
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Original 
Gamma 

Adjustment

GAN

Graymap GAN CycleGAN Colormap GAN

Figure 11.2: Example of generated images. First row shows transformation
from RH to NIH. Second row shows transformation from Chexpert to NIH.
From left to right are, respectively, original, gamma adjustment GAN gen-
erated, Graymap gan generated, CycleGAN generated, and Colormap GAN
generated. Red-boxes highlight where the artifacts are added or local details
are lost.

On Chexpert, the new methods gave the highest average AUC values. For
NIH-net + Gamma adjustment GAN the AUCs for Consolidation and Edema
are highly significantly better than the baselines (p < 0.001) and significantly
better for the other classes (p < 0.05). For NIH-net + Graymap GAN, only
the AUCs for Cardiomegaly and Edema were statistically significantly better
(p < 0.05). Overall, the proposed histogram based methods gave considerably
better AUCs when compared to either no domain adaptation or to domain
adaptation using CycleGAN. For more ablation studies, we refer the reader to
Appendix 11. If the source and domain distributions are close by, like Chex-
pert and NIH, the performances without domain-adaptation were reasonably
closer to our proposed method but still inferior. However, the performances of
domain adaptation methods with discriminators based on the raw images (il-
lustrated in Figure 11.2) produced worse results compared to networks that do
not have any in-built domain adaptation. We intend to look at this anomaly
in the future and to explore various hyper-parameters.

In this paper, we have shown that in situations where the domain shift
is due to global intensity changes (for instance different exposures on x-
rays), over-parameterized pixel-level transformation/discrimination methods
like CycleGAN or Colormap-GAN are unnecessary. This is consistent with a
recent observation [38] that simple binary classifiers discriminating domains
yield better results compared to more sophisticated distribution discrimina-
tors. Having said this, we would like to point out that in cases where domain
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Table 11.1: AUCs (area under the receiving operator curve) for different meth-
ods evaluated on the test data specified in the leftmost column. The AUC is
the macro average over 5 classes. The dataset name refers to the dataset on
which the classifier was trained (e.g., NIH-net was trained on NIH). The num-
bers of test images were 231, 25596, and 25523 for RH, NIH, and Chexpert,
respectively, except for Chexpert234 and Chexpert6886, where 234 (standard
Chexpert test set) and 6886 images were used. The results of DeLong sig-
nificance tests comparing the AUC values against baselines can be found in
Table 11.3 in the Appendix.

Test on Histogram Methods Mean
Equalized AUC

Chexpert234 Yes Chexpert-net + plain input 0.8850
Chexpert6886 Yes Chexpert-net + plain input 0.8409
RH No Chexpert-net + plain input 0.7210

RH Yes Chexpert-net + plain input(RH baseline) 0.7376
RH Yes Chexpert-net + γ-adjustment GAN 0.7541
RH Yes Chexpert-net + CycleGAN 0.7263
RH Yes Chexpert-net + Colormap GAN 0.7253
RH Yes Chexpert-net + Graymap GAN 0.7434
NIH No Chexpert-net + plain input 0.7737

NIH Yes Chexpert-net + plain input(NIH baseline) 0.7870
NIH Yes Chexpert-net + γ-adjustment GAN 0.7993
NIH Yes Chexpert-net + CycleGAN 0.7379
NIH Yes Chexpert-net + Colormap GAN 0.7671
NIH Yes Chexpert-net + Graymap GAN 0.7986

NIH No NIH-net + plain input 0.8022

RH No NIH-net + plain input(RH baseline) 0.6513
RH No NIH-net + γ-adjustment GAN 0.6741
RH No NIH-net + CycleGAN 0.6385
RH No NIH-net + Colormap GAN 0.6460
RH No NIH-net + Graymap GAN 0.6619

Chexpert Yes NIH-net + plain input(Chexpert baseline) 0.7458
Chexpert Yes NIH-net + γ-adjustment GAN 0.7501
Chexpert Yes NIH-net + CycleGAN 0.7274
Chexpert Yes NIH-net + Colormap GAN 0.7402
Chexpert Yes NIH-net + Graymap GAN 0.7458

shifts are characterized by more local changes (for instance, in brain mag-
netic resonance images), a combination of our proposed methodology and
pixel/voxel-level transformations/discrimination may be the desired solution
to account for domain shifts.
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Appendix A

More results

Table 11.2 shows individual AUC values of each class for different methods.
Here Supervised-finetuning means the baseline model is fine-tuned with 5,000
labelled images from the target domain. Histogram match TTA means the test
image is augmented 5 times with histogram matching to 5 random images from
source domain. The final prediction is then averaged over the predictions on
these 5 augmented images.
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Figure 11.3: Comparison of histogram layer output with two different bin
widths. Green bar represents the actual histogram computed by numpy and
red bar represents histogram computed by histogram layer. Chart on the left
shows the histogram layer with σ = 0.5 and chart on the right shows the
histogram layer with σ = 0.1.

Histogram with different bin widths

Histogram differentiation

Partial derivative of histogram function Eq. (11.1) and normalization function
Eq. (11.2) will be computed as

∂B

∂Ii,j
=

K∑
k=1

−2 (Iij − µk)

σ2
e
−
(

Iij−µk
σ

)2

(11.11)

and

∂Bnorm

∂B(k)
=

∑K
k̂=1

B
(
k̂
)
−B (k)(∑K

k̂=1
B
(
k̂
))2 . (11.12)

Training Graymap GAN and Gamma Adjustment GAN

Image cropping

Since random rotation (±5 degrees) and random zoom-in/zoom-out (0.95,
1.05) were used for data augmentation during training, the augmented im-
age may contain black artifacts on the corners and borderlines. To prevent
our GAN learning these black artifacts, we cropped the image by 10% from
each side before feeding it to histogram layer. This cropping was used for all
histogram layers in both Graymap GAN and Gamma adjustment GAN. How-
ever the graymap and gamma transformations were still done on uncropped
images.
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Figure 11.4: 1D CNN architecture. The network starts with an 1D convolu-
tion layer followed by batch normalization and Relu activation. After that two
consecutive residual blocks are added. The residual block consists of two 1D
convolution layers with batch normalization and Relu activation. The input
to the residual block is added to the output of the second batch normaliza-
tion before last activation is applied. After the residual blocks, an 1D global
pooling layer is added and a linear layer is put in the end.

Graymap GAN

We used 256 bins for the histogram layer with σ = 0.03. The σ was determined
by visually comparing the histogram generated by the histogram layer with
one computed by the corresponding numpy [86] function. For the generator
we used the Adam optimizer with β1 = 0.5, β2 = 0.999 and learning rate 20−4.
For the discriminator the learning rate was set to 50−4. We used an hold-out
set of 100 labelled images for validation. We trained for 100 epochs and saved
the network with best mean AUC on validation set.

Gamma Adjustment GAN

We used 32 bins for the histogram layer with σ = 0.1. The σ was determined
by visually comparing the histogram generated by the histogram layer with
one computed by the corresponding numpy function. For both generator
and discriminator we used the Adam optimizer with β1 = 0.5, β2 = 0.999
and learning rate 20−4. We used an hold-out set of 100 labelled images for
validation. We trained for 100 epochs and saved the network with best mean
AUC on validation set.

1D CNN architecture
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Moreno, Jose A Váquez-Carrete, Francisca Collado-Garćıa, Francisco
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