Deep probabilistic programming applied protein superposition,
protein structure prediction and ancestral sequence resurrection.

Lys Sanz Moreta

UNIVERSITY OF
COPENHAGEN .




1 ACKNOWLEDGEMENTS

1 Acknowledgements

I would like to thank my supervisor Professor Thomas Hamelryck for his supervision and tutelage
during the course of my Ph.D. degree. My gratitude extends to the Independent Research Fund of
Denmark for the funding opportunity to undertake my studies at the Department of Computer Science,
University of Copenhagen. Additionally, I would like to express gratitude to my research group co-
workers for their mentorship and patience. My appreciation also goes out to my family and friends for
their encouragement, patience, and support all through my studies.



2 PREFACE

2 Preface
Here, I present my thesis compendium of three years and 3 months of work, from 1st November 2018
until 31st January 2022, at the Department of Computer Science, at the University of Copenhagen, in

Copenhagen, Denmark, under the supervision of Professor Hamelryck.

Lys Sanz Moreta



CONTENTS CONTENTS
Contents

1 Acknowledgements 1

2 Preface 2

3 Abstract 5

3.1 English . . . . . 5

32 Dansk . . ... e e 5

4 Introduction 7

5 Protein folding problem 8

5.1 What is the protein folding problem? . . . . . . . . .. ... ... ... ....... 8

5.2 Theprotein StruCture . . . . . . . . . o v vt v it e e e e e 8

5.3 Predicting protein StruCtures . . . . . . . . . . .o et e e e e e e 9

5.4 The progression in protein structure prediction . . . . . . .. ... 10

6 Ancestral Sequence Reconstruction (ASR) 12

6.1 The nature of protein evolution . . . . . . . ... ..o Lo 12

6.2 Evolution through a phylogenetictree . . . . . . . . ... ... ... ... ..... 12

6.3 Methods in Phylogeneticsand ASR . . . . ... . ... ... ... . ... ... 13

6.3.1 Maximum Parsimony methods . . . . . ... ... ... . oL 13

6.3.2 Distance-basedmethods . . . . ... ... .. .. .. .. .. .. ... ... 14

6.3.3 Maximum-Likelihood methods . . . . .. ... ... ... ......... 15

6.3.4 Bayesianmethods . . . . ... ... ... ... oo 15

6.3.5 Ancestral sequence reconstruction . . . . . . . .. ... ... ... 16

7 Introduction to Bayesian Inference 17

7.1 Essential concepts in probability theory . . . . . . .. ... 0oL 17

7.2 Bayes’ Theorem . . . . . . . . . . . . . . e 17

7.3 Graphicalmodels . . . . . . . ... 19

7.3.1 Directed Graphical Models: Bayesian Networks . . . . . ... ... .. .. 19

7.3.2 Temporal Graphical Models: Dynamic Bayesian Networks . . . . . . .. .. 20

8 Bayesian exact inference 23

9 Bayesian approximate inference 24

9.1 Monte Carlo samplingmethods . . . . . . . .. ... ... ... ... ... ... 24

9.1.1 Markov Chain Monte Carlo MCMC) . . . . . .. . ... ... ....... 25

9.12 Metropolis-Hastings (MH) . . . . . .. ... ... . ... .. ... ... 25

9.1.3 Hamiltonian Monte Carlo HMC) . . . . . . . .. ... . ... . ...... 26

9.1.4 No U-Turn Sampler (NUTS) . . . . . . .. .. .. . ... ... 29

9.2 Variational Calculus . . . . . . . . . . . .. 31

9.3 Variational Inference (VI) . . . . . . . . . . . . . . o 32



CONTENTS CONTENTS
9.3.1 Kullback-Leibler divergence . . . . . . . .. .. ... ... ... ... 32
9.3.2 Evidence Lower Bound (ELBO) . . . . ... ... ... ... ........ 33
9.3.3 Mean-Field Approximation (MFA) assumptiontosolve VI . . . . . . . . .. 34
9.3.4 Solving Variational Inference via Coordinate Ascent (CAVI) . . . . ... .. 35
9.4 Stochastic Variational Inference . . . . . . . . . . .. ... . ... 37
94.1 GradientDescent . . . . . . . . . .. 37
9.4.2 Forward-propagation . . . . . . .. . ... ... e 37
9.4.3 Backpropagation . . . . . . . ... ... 38
9.4.4 Variations of Gradient Descent . . . . . . . . . ... ... ... ... ... 39
9.4.5 Black Box Variational Inference (BBVI): Optimizing the ELBO by Gradient

ASCENt . . . L e e 41
9.4.6 Stochastic Variational Inference . . . . . . . . . . ... .. ... ... ... 43
10 Neural Networks architectures 44
10.1 Autoencoders (AEs). . . . . . . . . . e 44
10.2 Variational Autoencoders (VAES) . . . . . . . . . . . . . .. ... ... . ... 46
10.2.1 The error loss functionfor VAEs . . . . . . . . . . . .. ... ........ 48
10.2.2 The reparameterization trick for VAEs . . . . . . ... .. ..o 50
10.2.3 Amortized inferencein VAEs . . . . . . . ... ... oo o 50
11 Kabsch-Umeyama algorithm applied to protein superposition 51
12 Stochastic Processes: An intuition 52
12.1 Brownian Motion . . . . . . . . . ... e e e e 52
12.2 Gaussian Processes (GP) . . . . . . . . . . . . .. 52
12.2.1 Multivariate Normal distribution . . . . . . . . . . . ... ... ... .... 52
12.2.2 Gaussian Process prior . . . . . . . . .. ..o 56
12.2.3 Marginalizingthe GP . . . . . . . . . . ... o 56
13 Paper 1: A probabilistic programming approach to protein superposition 58
14 Paper 2: Bayesian protein superposition using Hamiltonian Monte Carlo 71

15 Paper 3: Efficient Generative Modelling of Protein Structure Fragments using a Deep
Markov Model 83

16 Paper 4: Ancestral protein sequence reconstruction using a tree-structured Ornstein-
Uhlenbeck variational autoencoder 94
17 Conclusions 116
18 Appendix 130
19 Glossary 132



3 ABSTRACT

3 Abstract

3.1 English

The content of this thesis covers several concepts associated with structural bioinformatics, molecular
evolution, and probabilistic programming. It includes new methods for performing protein superposi-
tion, protein structure prediction, and ancestral sequence resurrection.

The first manuscript embarks into protein superposition by presenting Theseus-PP [1]. This new
method uses a Bayesian approach, instead of the Maximum Likelihood method implemented in the
original Theseus [2], which allows introducing relevant priors over the model’s parameters. The su-
perposition model is contemplated as a new type of error loss function that will assist during protein
structure inference.

The second manuscript extends the previous Theseus-PP into Theseus-HMC [3], this method uses
Hamiltonian Monte Carlo inference, concretely the No-U turns sampler [4], to allow the computation
of uncertainty over the parameters needed for the superposition problem.

The third manuscript implements an adaptation of the generative Deep Markov Model [5] for
the prediction of protein fragments libraries [6]. Deep Markov Models are an extension of classical
Hidden Markov Models that instead use both amortized inference and gated neural networks (such as
recurrent neural networks [7] ) over the emission and transition probabilities to preserve long-range
dependencies across the sequences. This new variation of the DMM benefits from Bayesian inference
to compute uncertainty over the fragment’s predictions.

The last manuscript proposes a unique approach to Ancestral Protein Resurrection that overcomes
factorized evolution and encodes sequence evolution using a tree-structured Ornstein—Uhlenbeck la-
tent process [8].

3.2 Dansk

Denne afhandling daekker koncepter fra strukturel bioinformatik, molekyler evolution og probabilis-
tisk programmering. Den omfatter nye metoder til at udfgre proteinsuperposition, forudsigelse af
proteinstruktur og gendannelse af forfaedres gensekvenser.

Det fgrste manuskript gar i gang med protein superposition ved at praesentere Theseus-PP [1].
Denne nye metode anvender en Bayesiansk tilgang i stedet for Maximum Likelihood-metoden, der er
implementeret i den oprindelige Theseus [2], hvilket ggr det muligt at indfgre relevante priors over
modellens parametre. Superpositionsmodellen er tenkt som en ny type tabsfunktion, der vil vere til
hjelp i forbindelse med proteinstrukturinferens.

Det andet manuskript udvider den tidligere Theseus-PP til Theseus-HMC [?], denne metode an-
vender Hamiltonian Monte Carlo-inferens, konkret No-U turns sampler [4], til at muligg@re beregning
af usikkerhed over de parametre, der er ngdvendige for superpositionsproblemet.

Det tredje manuskript implementerer en tilpasning af den generative Deep Markov Model [5] til
forudsigelse af biblioteker af proteinfragmenter [6]. Deep Markov Models er en udvidelse af klassiske
Hidden Markov Models, der i stedet anvender bade amortiseret inferens og gated neurale netvaerk
(sasom recurrent neural networks [7] ) over emissions- og overgangssandsynlighederne for at bevare
langtraekkende afh@ngigheder pa tvers af sekvenserne. Denne nye variant af DMM drager fordel af
Bayesian-inferens til beregning af usikkerheden over fragmentets forudsigelser.
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Det sidste manuskript foreslar en unik tilgang til Ancestral Protein Resurrection, der overvinder
faktoriseret evolution og koder sekvensudvikling ved hjelp af en treestruktureret Ornstein-Uhlenbeck
latent proces [8].



4 INTRODUCTION

4 Introduction

Here I introduce the guideline theoretical concepts that have directed the development of this thesis.
The statistical models implemented in the papers have been developed under the probabilistic pro-
gramming libraries of Pyro [9] and Numpyro [10] that offer optimized automatic Bayesian inference.
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S Protein folding problem

5.1 What is the protein folding problem?

Resolving the 3D structure of proteins brings us a step closer to defining their functional role. Inves-
tigating the protein structure leads to their potential usage, on the early stages of research, as drug
targets or templates for biotechnological tools. For example, synthesis of antibodies or peptides which
yield multiple therapeutic applications [11].

The protein folding mechanism encountered a major breakthrough in 1950-1962 thanks to Christian
Anfinsen and his Thermodynamic Hypothesis [12]. His hypothesis postulated that the native or natural
conformation of the protein is that one which generates the most thermodynamically stable structure
in the intracellular aqueous medium. Leading to the conclusion that the folding of the structure does
not depend on the action of the ribosome or the chaperones during the protein synthesis. Most of them
can be simply refolded in a test tube, with the exception of insulin, the a-lytic protease and the serpin.
This meant that the folding process is a result over the spatial constraints of the peptide bonds de-
termined by the chemical and physical properties of the amino acids. The hypothesis was tested by
denaturalizing the RNase enzyme and observing that the enzyme’s amino acid structure refolded spon-
taneously back into its original form when it was returned to a medium with similar conditions to the
intracellular medium. In 1972, Anfinsen summarized the phenomena as “The native conformation
is determined by the totality of inter-atomic interactions and hence by the amino acid sequence, in a
given environment"[12].

5.2 The protein structure

The protein sequence is delineated by the covalent union of amino acids via the peptide bond, see
Figure 1. The peptide bond is formed by the union of the carboxyl group of the first amino acid with
the amino group of the second. Meaning that the protein sequence starts at the C-terminal (carboxyl)
and ends at the N-terminal. The nature of the protein sequence is dependent on the combination of the
20 different types of existing amino acids (See Figure 18). The differences among them rely on the
composition of the side chains, which confer different chemico-physical properties to the molecule.
The type of amino acid is essential to configure the disposition of the amino acids in an aqueous
medium. Hydrophobic chains will be located in the inside of the structure, minimizing the contact
with water, and the hydrophillic elements will be oriented towards the exterior [13, 14].

The 2D protein sequence is turn into a 3D structure were the backbone is folded according to the
dihedral or torsion angles. The dihedral angles are designated as w, ¢ and ¥. The ¢ and v angles are
formed between the hyperplanes originates among the 2 different sets of 4 atoms marked in light blue
in Figure 1. The w angle is restricted to values 0 or 180 and it’s prediction is trivial compared to the ¢
and ¢ angles, therefore, often ignored [15, 16, 17].
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Figure 1: Peptide Bond. The picture represents 3 amino acids connected by 2 peptide bonds
(highlighted in red). It shows how the ¢ and v angles, correspondent to the center amino acid
(orange), are formed by 2 different hyperplanes. The ¢ angle hyperplane is formed by atoms
Ca—1(2),0(3),H(4) and C,(5). The 9 hyperplane is formed by atoms C,,+1(8),0(6), H(7)
and C,,(5). The 3 side chains are indicated with R.

5.3 Predicting protein structures

The human proteome is composed of a large number of proteins, proposed to range between 10,000
and several billion different types [18]. The experimental determination of their 3D structure is carried
out via different crystallographic techniques which, despite their recent amelioration and automatiza-
tion, they still consist of lengthy, uncertain and costly procedures. The cost of generating the structure
can range from 140.000 up to 2.5 million dollars [19, 14].

These drawbacks motivated the community to pursue solving protein folding and protein structure
prediction using statistical models. Hence, the CASP (Critical Assessment of Techniques for Protein
Structure Prediction) competition was established in 1994 (University of Maryland) in order to offer
fair assessment and guarantee generalization and reproducibility of the protein structure methods pre-
sented by different research groups [20].

The CASP competition relies on measuring accuracy of the predictions via the Global distance test
total score (GDT-TS). Using this measurement overcomes the issues given by the Root Mean Squared
Error (RMSD) which is not able to capture partially correct fragments achieved by the predictions.
GDT-TS superimposes the C,, atoms within four distance cutoffs 1A, 2A, 4A, and 8A. The GDT-TS
1) counts the number of residues falling within each of those distances cutoffs ii) reports the average of
the residues within each cutoff, iii) adds the averages iv) divides them by four. This sustains that scores
~ 20 are considered random predictions, ~ 50 present an overall correct topology, ~ 70, present an
accurate global and local topology, > 80 have high structural detail and > 95 is equal to the accuracy
obtained from experimental data [21, 20].
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5.4 The progression in protein structure prediction

The community has evolved from solving protein folding using mainly template-based modelling,
meaning that homologous structures are used as a reference to make a prediction, to tackle more
challenging protein targets and performing a more generalized free modelling (ab initio) without the
use of templates [22]. The most re-known protein prediction framework is Rosetta, a computational
method that relies on Monte Carlo simulated annealing search to find the proteins with the most stable
energy score function [23, 24, 25].

The first breakthrough that improved predictions was modelling inter-residues contact maps. Con-
tact maps model how mutations throughout the Multiple Sequence Alignment (MSA) are correlated
and therefore how residues co-variate. This meant that they could capture if two residues were in phys-
ical contact in the structure (even though they were not close in the sequence) and could, consequently,
influence each others mutations.

Contact maps research evolved into Direct coupling analysis (DCA) [26, 27, 28], a technique that
measures the strength of the correlation between 2 amino acid sites in the sequence, even if there is not
a direct correlation between them. DCA developed a covariance analysis calculated simultaneously
between all residues in a protein sequence.

In 2017 [29] the first deep learning method to be able to learn high quality distance contact maps
from a MSA was developed. This new methodology was able to make predictions even with the
smallest datasets of structure homologs and allowed to generate a high quality geometric fingerprint
of the underlying fold.

In 2018, during CASP13, AlphaFold, a branch from the research group DeepMind, highly refined
the mapping of the sequence to a 3-dimensional structure. They developed a framework consisting
of Convolutional Neural Networks for prediction of the C,, residue contact map from the MSA and
the corresponding torsion angles. First, they estimated a statistical scoring potential from the negative
log likelihoods of the distances. Secondly, they calculated a scoring potential for the sampled torsion
angles. Finally, they introduced an already existing term utilized within Rosetta for measuring Van
der Waals forces to prevent steric clashes. Their optimization problem reduced to minimizing those
potentials, which can be considered as pseudo-energies, to improve their prediction accuracy score
[30].

Lastly, during CASP14, in 2020, once more AlphaFold2 remarkably achieved the highest GDT-
TS scores for the mapping of the sequence to the structure of the protein, particularly in the case of
monomers [20]. Due to their success, currently they are ambitiously predicting all the available pro-
tein sequences across all protein databases and aiming to change the research field with their protein
structure predictions [31]. Their new model network inputs a residue pairwise distance matrix and a
MSA divided by clusters of similar proteins whose PDB structure is not necessarily know to enhance
the evolutionary information that the model intakes. These inputs are given to the Evoformer, a new
neural network structure that benefits from attention and the transformer [32] mechanisms to deal
with large blocks of sequences inputs. The Evoformer transforms the input into a MSA and pairwise
distance matrix embedded representations. The embedded pairwise distance map is interpreted as a
directed graph whose edges represent the distances between the nodes (residues). In order to interpret
the estimated pairwise distances as 3D coordinates, they need to be corrected using attention mech-
anisms and the so called “multiplicative triangle update”. Combining these techniques with multiple
updates and corrections the model reaches unforeseen prediction accuracies [33].

10
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Alphafold2 has undoubtedly achieved a milestone within the protein folding field, however many
aspects still remain unsolved, specially the underlying physico-chemical phenomena that allows such
precise folding in nature, protein stability [11], intrinsically disordered proteins [34], the extension
to higher protein complexes [35], the exact modelling of interactions with binding agents (which
typically requires ultra low resolution to guarantee exact binding) and overall the required flexibility
of the protein conformations that allow interactions with the medium, which are currently absent
within their static prediction approach [20, 34].

11
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6 Ancestral Sequence Reconstruction (ASR)

Ancestral sequence reconstruction tackles the process of inferring ancestral sequences relying on the
current observed ones. These procedures require the usage of evolutionary trees in order to resurrect
the desired protein sequence at a given point in the evolutionary tree [36].

6.1 The nature of protein evolution

Protein sequences are composed by amino acids susceptible to change throughout time. Those changes
are mutations which are responsible for changes in the functionality and stability of a protein. Muta-
tions take place in the DNA sequence and are translated to the protein, following the semantics of the
codon to amino acid table, see Figure 18. The codon to amino acid table establishes that each amino
acid (there are 20 most representative amino acids) is represented by at least 1 codon (referred as the
degeneracy of the codon table), a three letter code composed by any of the 4 nucleotide types (A, T,
G, C). There are different types of mutations that can occur and affect the protein differently [37].

Substitutions are a type of mutation where the DNA sequence suffers a replacement of one nu-
cleotide by another. This change can result in a) neutral/synonymous substitution where the amino
acid does not change b) missense substitution where the amino acid changes c) nonsense, where the
mutation translates to a stop codon and disrupts the sequence by truncating it [38].

Deletions are a type of mutations where a) 1 or more nucleotides are lost from the DNA sequence,
this causes a frameshift that leads into a complete dysfunctional protein b) 3 contiguous nucleotides
(codon) are lost, therefore only 1 amino acid is deleted from the sequence but the protein may still
remain functional. Insertions are the opposite of deletions but the repercussions are similar, meaning
that they can also result in frameshifts or the addition of amino acids that might appear deleterious or
not [38].

6.2 Evolution through a phylogenetic tree

The phylogenetic tree embodies the occurrence of mutations and the correlations among the leaves
through them. It reflects the evolutionary time passed from the most recent common ancestor until the
currently observed sequences. Branch lengths or patristic distances are numerical representations of
those evolutionary times and therefore capture the accumulation of mutations in a sequence. [36].

Current evolutionary models use mostly binary trees, where each node is only allowed to have 2
children. This assumption is not limiting since any other type of tree distribution, with more children,
can be approximated by a binary tree where some of the tree branches are very short [39].

The currently observed sequences are placed in the leaves nodes (faxa), whilst the unseen ancestral
sequences are located at the internal nodes, see Figure 6.2. True trees are rooted, they place a global
most recent common ancestor (the root) in the phylogeny. Unrooted trees lack a concrete most recent
ancestor and the internal nodes are shared across all the leaves. Consequently, we cannot know which
2 leaves share the same ancestor. The latter ones are more commonly used in phylogeny inference,
due to their lower amount of tree topology combinations, in comparison to rooted trees. A rooted tree
with n leaves there are (2n — 3)!! number of trees and (2n — 5)!! for the unrooted case [39, 40].

12
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Figure 2: Evolution of a sequence through a binary phylogenetic tree. Leaves are labelled as [,
ancestors as a and the root as r. The phylogenetic or evolutionary distance among the nodes
(branch lengths or patristic distances) is labelled as ¢.

6.3 Methods in Phylogenetics and ASR

Phylogenetics optimizes the topology of the phylogeny under certain objective functions. Those ob-
jective functions or criteria set a series of assumptions that attempt to approach the true phylogeny as
the number of data increases.

6.3.1 Maximum Parsimony methods

The first criterion to be explored was the parsimony criterion. Maximum Parsimony (weighted [41] or
traditional [42]) attempts to construct a tree that minimizes the tree length. The tree length is described
as the minimum number of mutations over all sites achieved when comparing between different taxa
arrangements. The optimization problem is described as follows,

B np
len(tree) = Z Z wjcost(nst j, Ns2,5) (1)

b=1 j=1
where B is the number of branches, ny, is the number of sites (nucleotide or amino acid positions
in the alignment), ns and n,o are the 2 nodes connected by branch b and n1 ; and nso ; are their
corresponding sites [36]. The cost function specifies the cost of a mutation and it’s assigned a weight
w; per site. Solving for the most parsimonious phylogeny is an NP-hard problem [43] and the cri-
terion might be statistically inconsistent [44], therefore alternative objective functions were proposed

subsequently [45].

13
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6.3.2 Distance-based methods

The second criterion is the distance-based objective. This approach finds the best phylogeny that fits a
given n X n matrix of evolutionary distances D among the observed sequences X . This evolutionary
distance matrix must follow certain characteristics in order to be feasible within phylogenetic infer-
ence. These characteristics say that it must be a: i) dissimilarity matrix ii) metric matrix: follows the
triangle inequality iii) additive matrix: follows the Buneman’s four point condition [46]. Alternatively,
it can also be constructed as an ultrametric additive matrix if the distances are ultrametric (all leaves
have the same distance to the most common recent ancestor) [45].

One of the most relevant distance-based criteria is the “minimum evolution". The methods that
follow this criteria find a phylogeny whose sum of branch lengths is minimal. They are found to be
generally statistically consistent and the computation of the distance matrix is fairly cheap [45]. It is
important to note that these methods tend to perform their computations in unrooted trees, however
this issue can be overcome with an added “dummy vertex" as a root. The general minimimun evolution
problem (MEP) can be written as,

min(T7t)L(T, t)
st f(D,T,t)=0
T eT,teRE3

2

where T' is the topology, ¢ are the branch lengths, D is the evolutionary distance matrix and
f(D, X,t) is the function that translates D into a phylogeny. The function f(D, X,t) can be subdi-
vided into 2 subproblems : i) The determination of the optimal phylogeny 7 ii) The determination of
the optimal branch lengths ¢. The latter ones and referred as edge weight estimation models and can
be subdivided into the Least-Squares Models and the Linear programming models [45].

The first Least-Squares method proposed was the Ordinary Least-Squares (OLS) method [47].
This model assumed that the evolutionary distances d;; (entries of D) were uniformly distributed ac-
cumulated mutations. This assumption was thought to be unrealistic and the model was revised to
the Weighted Least-Squares (WLS) [48] which introduces some weights or variances w, over the
distances d;;. Later, in the Generalised Least-Squares (GLS) algorithm, the weights were replaced
by co-variances, modelled by a Poisson process, to account for sites dependencies [49, 50]. These
algorithms were demonstrated to be computationally infeasible and lack of means to deal with non-
additive distance matrices generated by Markov Processes [51]. The field approached this challenge
by building methods that enforced a positive constraint over the distance matrix D. These algorithms
transformed the distance matrix D to achieve additivity or ultrametricity. Among the most successful
ones we can find the Balanced Least-Squares (BLS) edge-weight estimation model [52, 53], an algo-
rithm that proved to be more biologically plausible and hold lower computational complexity [52, 53].

Solving MEP has been approached both with exact algorithms [54], those that guarantee to reach
the correct solution by exhaustive enumeration of all phylogenies, and non-exact (approximation)
algorithms, which use heuristics to provide reasonably good solutions in a quick fashion. There are
3 main types of heuristics, i) clustering: they exploit the star decomposition algorithm to iteratively
merge the edges of a star formed by n leaves ii) constructive: iteratively insert nodes to a partial
phylogeny iii) clustering/constructive: a combination of the previous ones [45].

14
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Unweighted Pair Group Method using arithmetic Averages or UPGMA [55] is a well-known and
practical heuristic clustering method based on the OLS method. The method relies on progressive
clustering of the sequences based on the distance dij. The distance dij is set to the average distance
between the pairs of sequences allocated in each of the clusters to be compared. In the first iteration,
each sequence forms its own cluster. Each cluster is merged successively and compared in a paired
form. The method requires an ultrametric additive matrix, meaning that the resulting branch lengths
from the UPGMA trees are ultrametric. This transcribes to stating that distances from all the leaves
to the root are identical (see Molecular Clock Theory [56]). This translates to establishing a constant
rate of mutation at every point in the tree, meaning that it does not take into account that different
types of proteins might mutate at different rates or that within the same protein, some parts might
evolve faster than others [57]. Despite those disadvantages, this algorithm reaches a beneficially lower
computational complexity of O (n?) [45, 55].

Lastly, the Neighbour-Joining (NJ) algorithm, which is the most notable algorithm in phyloge-
netics, is also based in a clustering heuristic and the BLS model. The algorithm starts computing an
initial evolutionary additive distance matrix which is pruned and updated as the clusters among nodes
are formed [58].

6.3.3 Maximum-Likelihood methods

Alternatively, we can find the algorithms that maximize the likelihood criterion. The ML objective is
to maximize the joint probability of the sequence alignment across independent sites P(x T', ¢, Q) [59].
Maximum likelihood algorithms require an evolutionary model, in this case, a substitution model. The
substitution model is a stationary Markov process whose substitution probability matrix is defined as
P(t). The substitution model assumes that the equilibrium frequencies and the transition probabilities
remain constant through time.

The joint probability is the product of transition probabilities or probability of substitution from
character ¢ to character j in time ¢. The individual site probabilities are calculated from the transition
rate matrix (Q and the branch lengths ¢, see Equation 3. At the same time, the rate matrix () is the
adjusted product of the relative rate matrix 12 (usually computed using distance-based methods) and
the equilibrium frequencies II. The aforementioned matrices have dimensionality n x n, where n is
the number of available characters (4 in the case of nucleotides and 20 in the case of amino acids)
[60]. The transition probability for an individual site can be expressed as,

P(t)ij = €Qt (3)

The joint probability across sites is calculated using the log-likelihood summation for computation
ease. The likelihood of the sequences is maximized by optimizing the branch lengths and the topology.

There are different types of substitution models based on the types of substitution matrices utilized.
From the most simple uniform mutation rates and equal equilibrium frequencies [61] to the more
flexible schemes that offer more biologically plausible solutions [62, 63, 64, 65].

6.3.4 Bayesian methods

Bayesian Inference methods enforced a Bayesian approach over the traditional Maximum Likelihood
methods [66]. They included priors distribution over the tree topologies, the branch lengths and the

15
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parameter of the substitution model. This allowed computing the posterior probability of the possible
sets of model parameters 6 given the sequence alignment x [67],

P(x|0) x P(60)
p(x)
where the likelihood of the data given the tree is calculated using the traditional ML substitution
models with incorporated priors over the model parameters. These algorithms use a Markov Chain
Monte Carlo (MCMC) sampling method to estimate the posterior probability. The method starts
by 1) initializing the topology of the tree using NJ ii) sampling the model parameters iii) accepting
or rejecting the model parameters according to Metropolis-Hastings criteria [68] iv) modifying the
current tree. The sampling scheme is stopped when the convergence and chain mixing criteria are

met.

P|z) = )

6.3.5 Ancestral sequence reconstruction

The reconstruction of the ancestral sequences follows similar principles applied by ML methods [36].
They seek to maximize the likelihood or conditional probability of the set of ancestral sequences
given the current sequences and a phylogeny. There are two main types of reconstruction methods
a) joint reconstruction, which determines the most likely set of amino acids per site for all internal
nodes b) marginal reconstruction estimation, which involves maximizing the marginal probability per
individual ancestor node (not sites) by summing over the likelihoods of each of the nodes except the
one of interest [69, 36, 70].

16
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7 Introduction to Bayesian Inference

7.1 Essential concepts in probability theory

Probability theory is based on a handfull of probability concepts that are easier to illustrate using
Figure 3. The figure represents the joint probability distribution of 2 random variables, individual
marginal probabilities and conditional probabilities. The complete definitions of the probability con-
cepts can be found in the Glossary section 19.

\a

Joint PDF
Marginal PDF

0.4

0.2

Figure 3: Illustration of the essentials concepts in probability theory applied to a bivariate
Normal distribution of 2 random variables x; and xs.

7.2 Bayes’ Theorem

Bayes’ Theorem has been part of the mathematical repertoire for over 200 years. The theorem was
firstly drafted by a minister of a Presbyterian church, named Thomas Bayes, around the 1740s, who
was advocated to deduce how to quantify the chance of something happening in the future given
that another condition took place [71]. Unfortunately, his deduction was not discovered until the
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ideologist’s death in 1762. Despite him being the pioneer, the full theory on Bayesian probability
was developed shortly after by Pierre-Simon Laplace, unaware of Bayes’ proposition. Laplace was
a french mathematician, an overall largely scientific achiever, who released a complete proof and
postulate of the theorem around 1810-1814. Regardless of this fact, Bayes was still the designated
name for the theorem due to a series of historical reasons [72, 73].

The Bayes theorem states that the conditional probability of a variable A given a variable B is the ratio
between their joint probability and the marginal probability of B. The Bayes theorem can be used in
statistical modelling to calculate the exact inference of the posterior probability of the parameters of
the model © given the observed data X as the following,

Joint Likelihood Prior
L P(x.0) PX|0)P(0) P(X|0)p(O)
) p
OR="5x) = 7= P(x|o)(©)d0 Z ®
——
Evidence

As can be seen in equation 5, the exact inference of the posterior probability is problematic due to
the intractability of the integral of the marginal probability of the data. The intractability is due to the
absence of close-forms solutions to solve the integral or infeasibility of the computations [74]. For
simplification, the evidence can be assigned as the normalization constant Z. The marginal likelihood
of the data P(X) is usually omitted during inference, however, it is often used during model com-
parison or evaluation post-inference via the Bayes factor [75]. The marginal likelihood evaluates the
probability of the observations at every possible value of ©®. This can be calculated by marginaliz-
ing the parameters © over the joint distribution p(X, ©). Equation 6 reflects how we can omit the
estimation of the normalization constant.

argénax(p(@]X)) x argénax(p(X, ©)) x argénax(p(X|®)p(@)) (©6)
C) : Parameters of the model
X : Collection of n observations , X € {z1,...,z,}
P(©]X) : Posterior probability, conditional probability of the parameters given the observations.
P(©) : Prior probability, prior belief over the values of the model’s parameters without taking

into account the observations

P(X]O) : Likelihood, conditional probability of the observations being generated by the model’s
parameters.

P(X) : Evidence, marginal probability density of the data (observations) or marginal likelihood.

Within statistical modelling it is important to note that generative algorithms (Naive Bayes [76],
...) will be those that would learn the posterior probability distribution P(0 | X = x). Meanwhile,
discriminative algorithms (Support Vector Machines [77], Linear regression ...) simply learn the like-
lihood or conditional probability distribution p(X | © = 6) to learn decision boundaries.
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7.3 Graphical models

Graphical models (GM) are visual representations of the structure of the joint probability distribu-
tion that describe the interactions among the random variables in our model. Graphical models are
designed to capture the most significant relationships among random variables in a simplistic and
tractable manner. Therefore, it is important to note that graphical models capture reality with a certain
degree of error due to those simplifications [78, 79, 80].

In a graphical model G(V, E'), the random variables are represented as nodes or vertices (V) whilst
the interactions are described by the absence or presence of edges (£) among the nodes. The absence
or presence of edges is directly correlated to the independence or dependence among the random
variables. Graphical models allows statisticians to define general message-passing algorithms that
implement probabilistic inference efficiently [78, 79, 80].

7.3.1 Directed Graphical Models: Bayesian Networks

Bayesian Networks are a type of Factor Graph [81] that contains directed edges (Directed Acyclic
Graphs or DAG) which represent causality relationships between random variables in the form of
conditional probability density functions. Bayesian Networks have received several names throughout
history, such as probabilistic networks, causal networks, belief networks, or even knowledge maps.
Bayesian Networks can capture the uncertainty over the probabilities of the random variables com-
pensating for the simplifying nature of the graphical models [79, 82].

In order to understand the over-simplification that graphical models suffer when assuming full
independence among the random variables recall that if,

a) The marginal probability of B is P(B),

b) The joint probability of A and B is P(AN B) = P(A, B),

¢) The conditional probability P(A | B) is set as the ratio: P(A | B) = PI(;?;;?) = Plg’?]’a?).

d) The chain rule in probability theory : P(A,B) = P(A | B)P(B)
We can conclude that the independency among random variables will factorize the joint probability
into the product of their marginal probabilities and will eliminate the dependency among them as
shown in the following equation,

P(A|B) = 22 2) _ pa)

This declaration will over-simplify the chain rule in probability theory by introducing indepen-
dence among the variables in the model as P(A, B) = P(A | B)P(B) = P(A)P(B). Although this
assumption is very computationally efficient, complete independence among variables is not realistic,
therefore conditional independence was introduced later to re-introduce some dependencies [82]. This
states that if

a) Aand C are independent, P(A | B,C) = P(A | B)

b ) A and B are conditionally independent given another variable C,

P(A,B|C)=PA|C)P(B|C)
This new perspective allows to express the joint probability function of a Bayesian Network as the
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product among the conditional probabilities in the graph.

Number of nodes
=~
N
P(Xo,... Xn) = [] p(Xn | Xp,) (7
n=1 Y

Set of parent
nodes of node n

Random variable

/ (node)
(&) (3

Figure 4: Bayesian Network example. Variables A and B are independent; C' is dependent on A
and B; F is dependent on B; D is dependent on C'; F' is dependent on F; D and F’ are the
observations and the rest of the variables are hidden. The joint probability is expressed as
P(A,B,C,D,E,F)=P(A)P(B)(C | A,B)P(D | C)P(E | B)P(F | E)

7.3.2 Temporal Graphical Models: Dynamic Bayesian Networks

During the research presented here, I collaborated on the implementation of a Deep Markov Model
(see 15), an advanced version of the classical Temporal Graphical models that I will now introduce.
Temporal graphical models are a type of Bayesian Network that deal with uncertainty and change
of the random variables through time. In this case, time is usually discretized, meaning that the
model captures snapshots of the changes in the states of the model at specific times. The sequence of
observations is considered as the collection of events that occurs at each time step [83].

Markov Chain (MC): Markov chains are a type of simple generative sequential models that de-
scribe a sequence of events (observations) throughout time. Contrary to the simplest sequential mod-
els that assume that the elements in the chain are independent and identically distributed, the MC
introduces conditional dependencies to be able to model more realistic phenomena [51, 84].
First-order Markov Chains are sequences of random variables elements (H, Hs, ... H,,) whose condi-
tional probability distribution (transition probability distribution), for any element in the chain (H,,),
depends only on the previous element (H,,_1), this is known as the Markov property. The conditional
dependency can be extended to n previous states, for example, second-order MC or third-order MC.
However, first-order MC has been shown to be enough to represent the desired relationships among
the random variables and we can benefit from its computational simplicity [85].
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In order to represent that the conditional dependency relies only on the previous element of the chain,
we can see that the transition probability to the last element of the sequence reduces to p(H,, |
Hy,Hy,...,H,_1,Hy,) = p(Hy, | Hy,—1). Therefore, the joint probability of the Markov chain is
equal to

N N
p(Ho, ..Hn) = [ [ p(Hy | Ho, Hy, ..., Hy 1, Hy) = p(Ho) [ [ p(Hn | Ho) ®)
n=0 n=1

Markov process : @@ . 415"_75‘@

Figure 5: State machine representation of a Markov Chain. The transition probabilities between
elements or states are represented as .

Hidden Markov Model: Hidden Markov models are a type of sequential generative models in
which we combine a sequential transition model for the hidden variables (Markov Chain) and inde-
pendent sequential model for the observations. Both models intersect because each of the independent
observations is conditionally dependent on a hidden state. This signifies that we can model the transi-
tion probability distribution between the hidden states and the conditional distribution of the observa-
tions given the hidden states (the emission probabilities) using the Markov property. HMM deals with
discrete or continuous variables (hidden states and observations) and discretized time. Both HMM
and MC assume a stationary process, implying that the transitions between states are static in time,
meaning that they do not change or are deteriorated through time [86, 83, 87]. The joint probability
of the chains expressed through the chain rule of probability is stated as,

N
p(HOa"'aanXov"'aX’n) = p(HO) H p(Hn ‘ anl) p(Xn | Hn) (9)
Hidden Observations Init hidden state = Transition probabilities Emission probabilities
states

where the initial hidden state of the chain is generally set to be equiprobable [83].

Hidden Markov process :

e e e e e
Independent observations : @ @ @ . @ @

Figure 6: State machine of a Hidden Markov model. The hidden variables (Hy, ...H,,) follow a
Markov Chain and the observations (X, ...X,,) are conditionally independent given the Markov
Chain.
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HMMs are a type of model on which we can perform Exact Bayesian Inference due to their typical
small amount of hidden states. Inference over HMMs can be performed in several ways [86, 83]:

e Transition and emission probability matrices are known:

1) Evaluation methods: Estimate the probability of the sequence of observations given by the
model parameters and sequence of hidden states. Typically they are dynamic programming-based
methods, such as the Forward algorithm and the Backward algorithm. These procedures segment the
calculation of the joint probability to take advantage of recursion. They reduce the complexity of the
calculations from O(NTT) to O(N?T), where T is the number of observations [88].

ii) Decoding methods: Estimate the most likely sequence of hidden states given the sequence
of observations and the model parameters (arg max P(Hy., | Xo.,)). This algorithm is referred as
the Viterbi decoding method [89].

e Transition and emission probability matrices are not known:

i) Training methods: They estimate the model parameters 6 given a model structure and sequences

of observations.

= Expectation-Maximization for HMM: Baum-Welch algorithm or Forward-Backward algo-
rithm [90, 91, 92, 93, 94].

= Viterbi extraction or training (unsupervised training), also named as the Baum-Viterbi al-
gorithm [95, 96].

= Maximum Likelihood Estimation (supervised training) [94].

= Others : Markov Chain Monte Carlo methods (see Section 9.1.1), Stochastic Variational
Inference (see Section 9.4).
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8 Bayesian exact inference

Bayesian inference over graphical models seeks to estimate the posterior probability of the parameters
P(O | X) to, for example, perform prediction. Bayesian prediction is used to compute several types
of probabilities or beliefs:

1) Marginal probabilities: The marginal probability of an event calculates the probability of that event
(random variable) occurring. We can calculate the marginal distribution of finite discrete events (ran-
dom variables) by simply summing over every possible value of the parameter © and how it affects
the observed data X. This is referred as the marginal probability mass and can be written as follows,

P(X)=E[X,0] =Y P(X,0)=> P(X |0)P(0) (10)
C) o

In the case that the random variables X and © are continuous, meaning that they can take an infinite
amount of values within some bounds, we marginalise by integration. This is referred as the marginal
probability density and can be expressed as,

P(X) = E[X, 0] E/

P(X,0)d0 = / P(X | 0)P(0) df (11)
o o

ii) Posterior predictive distribution: Estimates the probability distribution of a new data point X*
marginalized over the inferred posterior P(© | X'). These are the new predicted data points generated
by the trained model.

P(X* | X) = /@P(X* 19)P(6 | X)do (12)

iii) Prior predictive distribution: Estimates the expected probability distribution of the data without
conditioning on the observations. That is, the expected distribution of the data according solely to the
model

P(X*) = / P(X*|0)P(0)deo (13)
iv) Expectations over parameters: Inference ot? parameter values, for example,
0= /eep(e | X)do (14)
v) Maximum a Posteriori (MAP): Most likely value assignment of a variable.

argmax P(X,0%) (15)
0*€cO

Exact Bayesian inference can be attained in several manners, from the most rudimentary brute
force or enumeration algorithm, via the slightly optimized variable elimination algorithm or the more
advanced and efficient belief propagation methods [82]. The latter include well-known methods such
us the Forward-backward algorithm (sum-product) [90, 91] or the Viterbi decoding algorithm (max-
product) [89]. These methods allow for the exact computation of the joint probability for smaller
models, with reduced amount of random variables and fewer dimensions. However, they quickly

become infeasible for more complex and therefore realistic models [83, 97, 98].
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9 Bayesian approximate inference

Performing Bayesian exact inference (analytical computations) quickly becomes intractable, espe-
cially due to the challenging computation of the normalization constant Z [99]. This requires sim-
plifying the calculations to Equation 6 and approximating the posterior distribution by estimating it
from the joint probability described by the model. The most well-known methods are the stochastic
simulations or Monte Carlo sampling methods and Variational Inference based methods. However,
there are other types of algorithms, such as Expectation-Maximization [100], that approximate these
probabilities for smaller models. Here, I describe the timeline of the predecessors of the No-U-Turns
algorithm (NUTS) [4] and the Stochastic Variational Inference (SVI) [101] algorithms that have been
used as the inference engines for the statistical models presented in this thesis. Concretely, NUTS is
utilized in manuscript 14 and SVI in manuscripts 13, 15 and 16.

9.1 Monte Carlo sampling methods

Monte Carlo sampling methods are a series of techniques used to approximate certain characteristics
of the entire population by taking a subset or sample. They were originated from ordinary card games
and further developed for applications within the Physics field [102]. This approach allows to approx-
imate an intractable sum or integral (i.e present in the joint, marginal or conditional probabilities),
speed up the computation of tractable sums or integrals or approximate the probability density of the
model and then impute missing data. There are several types of Monte Carlo sampling methods, for
example, Forward sampling, Rejection sampling, Importance sampling or Markov Chain Monte Carlo
methods (see Section 9.1.1) [103, 68].

Forward or ancestral sampling uses pre-defined probability tables for the statistical model and a prob-
ability density function g(z) of choice to generate random values from (i.e Uniform distribution). The
probability tables establish the joint and conditional probabilities between random variables in the
model. Those tables also set the intervals that the random values from g(x) will follow to be assigned
to a category. The algorithm first samples a random number u from g(x) and then assigns it a value or
category according to the probability intervals indicated in the tables [104].

In the case of Rejection sampling [105] we fix the values of one or more variables in the model (which
are set as the evidence or observations). As we sample, if the sample is not consistent with the ob-
servations, we reject it. This method is more efficient than Forward sampling but might lead to high
rejection of samples and computational waste. In addition to that, the sample probabilities are biased
and do not add up to 1.

Lastly, Importance or likelihood weighting sampling [106]. This method ameliorates Rejection sam-
pling by assigning probability weights to each of the samples aiming to correct their bias. The weights
are given by the product among the probability values for the pre-fixed random variables of choice and
the sampled probability values for the non-fixed variables [104].

Monte Carlo estimate Monte Carlo estimates allow the estimation of the expected values of the
parameter © that describe the posterior probability distributions P(© | X) by simple summation
instead of integration. The Monte Carlo estimate I,, of a random variable ©, which is a collection of
samples of 6y, ..., 0, is equivalent to the true expectation of the random variable,
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Monte Carlo estimate True expected value
B o riinoroylnl = o 0] = / 0P(0 | X)do (16)

The N i.i.d samples from P(© | X)) are generated to calculate an empirical estimate O of the expected
value of the parameter [107] as follows,

N
1 a
Eg,...0n~sstp(z,0) [In] = - > 0;=6 (17)
=0

In probability theory, the distribution of the samples follows the Central Limit Theorem (CLT). It
states that the distribution of a sample approximates a normal distribution as the sample size becomes
larger, assuming that all samples are identical in size, regardless of the population’s actual posterior
distribution shape. This entails that the mean of the samples is normally distributed with a value
equal to the expected value of the mean from the actual unknown posterior distribution of the random
variable © [108]. The standard deviation calculated from the samples indicates the certainty that the
mean of the samples (empirical estimate) is close to the actual expected value. The standard deviation

A~

of the samples is given by o = \/Var[©] = 4/ UT\?’ where N is the number of samples. Therefore as
N tends to infinite the uncertainty o decreases towards 0.

(6 —E[6])%]

N (18)

Vargowqgn,\/i.i.dp(a:’@)[In] = Var[é)] =

9.1.1 Markov Chain Monte Carlo (MCMC)

MCMC is a type of Sequential Monte Carlo method (also known as Particle filters) where the target
posterior distribution corresponds to the stationary distribution from the samples of a Markov Chain
(see Section 7.3.2). The stationary distribution is unique if the Markov Chain is positive (the transi-
tion probabilities are positive), recurrent (the chain can always return to any state in a finite amount
of time) and irreducible (we can continuously travel along the sequence of states, every state can be
accessed from every other state). The posterior distribution over the optimizationoptimized parame-
ters 6, is calculated by using a prior distribution over the parameters P(6) and a set of observations X
to calculate the likelihood given those parameters P(X | #). The samples are taken by performing a
random walk over the parameter space. This sampling procedure is “memoryless" since the next step
in the sampling space is only performed based on the previous sample [103].

Metropolis Hastings [109, 110, 104], the Gibbs sampler [111] or the Bayesian Inference Using Gibbs
Sampling (BUGS) [112] approaches are some of the most basic implementations of the MCMC sam-
pler. Thereafter, to increase the computational efficiency of those methods, in terms of speed, automa-
tization and accuracy, Hamiltonian Monte Carlo and shortly after No U-Turns Sampler (NUTS) were
introduced [103].

9.1.2 Metropolis-Hastings (MH)

Metropolis-Hastings is a MCMC sampling method that counts with an acceptance/rejection criteria
for the parameter’s sample proposal [109, 110]. The algorithm requires the pre-selection of the pro-
posal prior and likelihood’s probability density function that will suit the observations. We select the
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likelihood under which we assume our data (X) is distributed, meaning that we assume that each data
point (x;) is originated from a distribution function f (PDF) with parameters §. For example, we can
choose the univariate Normal distribution with parameters § = {y € R,0 € R"};

1 (i)

e 202 (19)
V2ro?

The prior will set the constraints over the values of the parameters that we will optimize. Consid-
ering this simple example, if we are optimizing the standard deviation o we have to reject the values

f('rl,e) = f(‘rl|u70') = N(M,O’) =

lower or equal to 0. We can simply do so by assigning likelihood O for invalid values (log(0) = —o0)
(which stands for a highly negative contribution, therefore rejected) and likelihood 1 for valid values
(log(1) = 0).

We can compute the likelihood (L) of the data under a selected probability density function by
calculating the product of the likelihood of the proposed sampled parameters (#) under each data point
(x;) as follows,

L(X]0) = Hf ) (20)

However, for numerical stabilization, we will compute the log-likelihood instead and therefore
rely on summation of the individual log-likelihoods instead,

log £L(X160) = Zlog (:]6)) 1)

In order to decide if we accept the parameter(s) sample proposals, we need to establish a ac-
ceptance/rejection criterion. This criterion says that, the sample will be accepted if the sum of the
log-likelihood of the observations plus the log-likelihood of the prior(s) PDF(s) under the new param-
eter(s) proposal(s) (fnew) is higher than the one from the previously sampled parameter(s) (Ocurrent)-
For example, we can define the acceptance criterion for a unique parameter 6 as,

Z IOg xz|0new ) + IOg new > Z IOg $z|9current)) + 1Og(ﬂ—(ecurrent)) (22)

where 7(6) stands for the prior distribution function over the parameter ¢. Finally, to avoid massive
rejection of samples and large computational time increase, we define a new acceptance criterion for
the rejected samples from the first criterion. This second acceptance/rejection criterion says that we
will also accept those samples whose difference in likelihood (not log-likelihood) between the Ocyrrent
and Opey, is higher than a random number sampled from a uniform distribution ¢/(0, 1). The latter
avoids massive rejection of samples [109, 110].

9.1.3 Hamiltonian Monte Carlo (HMC)

HMC [113] is an improved MCMC sampler that uses Newtonian principles to update the values of the
sampled parameters by replacing the random Gaussian walk with a system of Hamiltonian equations.
This approach avoids the issue of sampling highly correlated parameters and not exploring correctly
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the probability space. The sampled parameters are encapsulated as a particle and assigned an energy
value according to the Hamiltonian (H (x,v)). In the Hamiltonian system, x is the position of the
particle, used here as a synonym of the value of x in the parameter space, and v represents the velocity
of the particle, which basically stands for the update of the values of x. The total energy of the particle
can be represented as the sum of the kinetic (K(v)) and the potential (£(v)) energies, see Equation 23.
The system seeks to minimize the potential energy of the particle and by doing so reach the regions
with the highest probabilities. The kinetic energy allows us to explore different areas of the probability
density without wandering around in local minima [113].

H(z,v) = K(v) + E(x) (23)

The potential energy of the particle can be interpreted as the negative log probability of the target
proposal distribution. This inversion of the probability space sets the regions with high probabilities
at the valleys in the new HMC probability space, see Figure 7.

Target distribution p(x)

Potential energy £(x) = — log p(x)

Figure 7: Visualization of the probability density landscape inversion applied to the target
distribution by assuming Hamiltonian dynamics. A simple trajectory between time stamps ¢1
and ¢2 is marked. In each trajectory we propose a new sample every sub-step of size €. The
trajectory shown in the plot contains only 2 step sizes, therefore we only integrate twice for this
trajectory.

The kinetic energy of the particle represents the particle’s change in velocity, also named momen-
tum, this parameter establishes the range of change in the parameter values. The change in position
with respect to the time is referred as the velocity of the system, it guarantees that the particle will
also travel to low probability density regions, avoiding early convergence in the valleys of the HMC
space. In the simplest case, to ease computations, we assume the mass of the particle to be equal to 1
(this value can be customized) and a friction-less system. The velocity of the system is initialized for
every new particle trajectory to a value sampled from the normal distribution v = N (0, 1).
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dr x(t2) — x(t1)

v = E = T (243)
dv  v(t2) — v(tl)

- v vlee) el 24b

Tt At (24b)

The Leapfrog integrator

For every trajectory of the particle in the HMC probability space, we require to calculate the new
position and velocity of the particle. Unfortunately, we cannot calculate it exactly. We require an
approximation method. Specifically, we require a method to integrate ordinary second-order differ-
ential equations, such as Newton’s laws of motion that govern the energy of the particle. The motion
equation of a particle is defined as follows,

a

=~ F
d2$ ——

where m is the mass, « is the position, a is the acceleration, v the is velocity and F'is the force applied
to the particle, which in HMC is equal to the gradient of the potential energy.

The Leapfrog integrator is a type of symplectic integrator designed for this task. Due to its sym-
plectomorphism, it preserves the energy of the system at any given point in time, in this case the energy
of the particle defined by the Hamiltonian equations. The leapfrog integrator is capable of achieving a
second-order accuracy since we approximate values of the motion properties of the particle (velocity,
position and acceleration) using Taylor expansions that we truncate after the second-order summation
term, assuming an error of OAt3 at each step. This method is also attractive due to its time reversibil-
ity property that allows to calculate the integration backward in time for k steps and allows to arrive
back to the start of the trajectory [114].

For a given trajectory of the particle, between positions xg and z, with total length or number
of steps/samples L, we have to update the position and velocity of the particle for L /e times. We
need to discretize the time steps along the trajectory length in intervals of At or € size. Subdividing
the integration allows us to be able to calculate the total amount of particle position and velocity
change. The Leapfrog integrator uses the mid-point method to reduce the error when approximating
the integral, which simply states that the velocity is initialized half a step ahead of the position [114].

Algorithm 1 The Leapfrog integrator

x0 € R > Initialize the position of the particle
vo ~ N(0,1) > Add momentum to the particle
Uy = vo%AtF (xn) = —vo%AtVE (xn) > Integrate the velocity of the particle half a step ahead
for step € L — 1do > For each step

Tp = Ty + Alvy )0 > Update the position

Up = Up + AtF(x,) = vy, — AtVe(xy,) > Update the velocity
rp = xp + Atv, > Position at the end of the trajectory
vy, = vy, + %AtF(:vn) =, — %Ath(xn) > Velocity at the end of the trajectory

28



9.1 Monte Carlo sampling methods 9 BAYESIAN APPROXIMATE INFERENCE

After each trajectory, the particle’s positions (or sampled parameters values) are accepted or re-
jected following a similar approach to the Metropolis-Hastings criteria. In this case, we accept the
new positions of the particles if their energy, computed using Equation 23, is lower than the one in
the previous position. In order to avoid massive rejection of particle positions, we will also accept
particles that have slightly higher energy if it’s not above certain sampled random number.

9.1.4 No U-Turn Sampler (NUTS)

HMC is a great MCMC sampler, however, it is highly sensitive to the choice of the step size € and the
trajectory length L. NUTS is a type of HMC sampler where the choice of € and L is made automat-
ically [4]. NUTS defines a stop criterion to cease the trajectory length to keep growing (adding step
sizes). The algorithm detects when the position of the particle at the beginning of the trajectory (initial
parameters), xg, and the current estimated position of the particle (current new sampled parameters),
Ty are getting close, meaning that the trajectory is looping onto itself and sampling around the same
probability region where it started.

The algorithm takes advantage of the aforementioned time reversibility of the Leapfrog integrator to
be able to extend the trajectory of the sampling chain not only forward but also backward. As the
chain of samples grows in both directions, it keeps track of the order of the samples via a balanced
binary tree. A balanced binary tree is one where right and left sub-trees always have the same number
of child nodes, therefore they have to be filled up in a doubling manner (the next step will have twice
the amount of samples (child nodes)). The tree is filled either from the right (forward in time) or from
the left (backward in time) according to a uniform distribution that selects the direction at each step
[4].

The growth of the trajectory, aka the binary tree, stops when the trajectory is looping onto itself.
This can be detected by performing the vector dot product between 2 vectors, the distance travelled
by the particle (amount of change in the parameters), and the current momentum of the particle (how
fast the parameter values are changing), see Figure 8.

(26)

s < 05 stop chain (angle is equal or less than 90°)
stop == . : .
s > 1; continue sampling (angle is more than 90°)

Xp — xn_k).vg

Ty — Ty

Figure 8: Example of stopping criteria in NUTS. Representation of a sampling sub-trajectory
where the algorithm encounters a U-turn, entailing that the angle o between the dot product of
the vector |x,, — x,—| and v,, is smaller than 90°. k indicates the number steps (samples)
behind the current one.
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The algorithm is refined by applying the stop criterion along sub-trajectories (x,, — Z,—_g) of the
main trajectory (where k is the number of backward steps that we perform in the chain), therefore
performing an early detection of the loops. The evaluation of the sub-trajectories is only performed
on the children of the same sub-tree not across sub-trees [4].
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9.2 Variational Calculus

Before we proceed to explain the next group of methods to approximate Bayesian inference we need
an overview of Variational Calculus which will help us solve the upcoming variational problems
through Variational Inference. The calculus of variations or variational calculus implies studying how
infinitesimal variations of a path (or function) change an integral. This is used for solving optimization
problems by finding the minimum or the maximum of such integral [115].

The Euler-Lagrange equation is frequently used to solve those variational problems and find the pa-
rameters that minimize the integral. The Lagrangian equation relates to classical mechanics as the
equation that characterizes the state of motion of a system (i.e a particle) at any particular point
in time, which is described by the potential and kinetic energies. In Lagrangian mechanics, unlike
Hamiltonian’s the total energy of the system is portrayed as the difference in energies, whilst in the
Hamiltonian is the sum of energies (see Section 9.1.3). This means that within Lagrangian mechanics
the energy changes with time (the potential energy is converted into kinetic energy and vice versa)
instead of remaining constant [115].

Kinetic Potential
energy  energy

L2 27)

The rate of change of the potential energy into the kinetic energy (or vice versa) is given by the
Lagrangian equation. Lagrangian mechanics also state the principle of stationary action where the
Lagrangian equation is set to 0, see Equation 27. This is the case because the optimal path through
space and time from point A to point B is that one where the variance in the path is close to 0. The
derivative of the function of the path is close to 0 and therefore it is a straight path with no changes in
the slope [115].
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9.3 Variational Inference (VI)

MCMC sampling-based methods quickly become computationally expensive as the number of obser-
vations increased, it was hard to assess their convergence and struggled with complex distributions.
Variational Inference (V1) arose as an alternative algorithm for approximating the posterior probability
distributions.

The concept behind Variational Inference methods is to propose a family of densities (). (i.e a Nor-
mal distribution that can take any values for j, and og4) and find a member ¢4(z | z) (i.e a Normal
distribution with specific values for p, and o) of that family which is close to the target posterior
distribution p(z|z), which minimizes the KL divergence [99, 116] (see Section 9.3.1).

q5(2 | ) = argmin KL(q(z | z)||p(z | z)) (28)
qeQ

A single member of () is referred as a variational distribution ¢(z | =) from which we sample the
latent random variable 2z (i.e u,). The variational distribution is parameterized by the variational fac-
tors ¢, represented as g, (2 | ). The variational factors ¢ (referred also as variational or optimizable
parameters) allow g to acquire different densities shapes, see Figure 11.

Variational parameters ¢ (optimizable), ¢ = {p14 € R, 04 € RT}

Variational distribution over z = {u2, ..., u™} : p(2) = N (g, 04) — 11 ~ N (1, 0)

@ Likelihood : py(z | 2) = N(z; pzyo = 1) = 2 ~ N (pz,0 = 1)

Figure 9: Example of variational inference over a simple graphical model. The observations x
are dependent on a single latent variable z sampled from a variational distribution p(z)
parameterized by the variational factors ¢.

9.3.1 Kullback-Leibler divergence

Kullback-Leibler KL divergence [117, 118], also referred as relative entropy, is the measurement of
the difference between two distributions at any point of the x-axis in the log-scale. The KL divergence
has several fundamental properties, among them:

e KL is positive ()L > 0) and zero-prone, the distance tends to 0 as ¢ and p are more similar.
e Strictly convex in p for a fixed q.

e Non symmetrical. The non symmetrical property signifies that K L(q(2)||p(z | z))! =
KL(p(z | 2)||lq(z | x)), which in this case translates to K L(q(z | z)||po(z|z)) = —K L(p(z|z)||q(z))
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Table 1: Comparison of Forward and Reverse KL divergences. Reverse KL is the preferred
option for optimization problems.

Forward KL Reverse KL

KL(p(z | 2)lla(z | =) KL(q(z | 2)llp(z | 2))

e Mode seeking or exclusive,

finds a ¢ that best fits a mode (peak) of
the p distribution shape,

which is not ideal for multi-modal p

e Mean seeking or inclusive,
finds a q that captures all modes in p by
averaging the modes in p

e Requires normalization w.r.t p,
which is often not computationally
convenient.

e Does not require normalization w.r.t p ,
which is computationally convenient.

Figure 10: (Left) Forward KL: Mean seeking or inclusive (Right) Reverse KL: Mode seeking or
exclusive.

The general formula for the Reverse KL can be stated as the expectation of the log-ratio between
the variational distribution and the posterior distribution,

Kot | 2)lpelo) = & log 25153 29)

The expected value of KL divergence can be solved both for discrete probability distributions (via
summation, see equation 9.3.1) and continuous probability distributions (via integration, see equation
9.3.1)

oo

KL(g(z | 2)llp(z]z)) = 3 q(z | 2)logf45  KL(g(= | 2)llp(= | 2) = [ a(z | 2)log %)
(30) €2))

9.3.2 Evidence Lower Bound (ELBO)

The KL divergence, however, is not an appropriate optimization objective, since in order to calculate it
we require p(z|x) which is actually what we are trying to estimate. However, we can rearrange the KL
divergence equation in order to figure out a lower bound on the log marginal probability p(x) so that
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it is maximized. The approach to find such lower bound, namely the Evidence Lower Bound (ELBO)
[119, 120, 121], is as follows:

KL(a(= ] 2)lp(=I2)) =
e, 4] 9)
= [ a1 oios L2 ate)

—o0 (z ] )
o
= / q(z | x)log a(z | 2)p(@) d(z) Multiply and divide by p(z),
o p(z | z)p(x)
o . -
q(z | x)p(x) Using Bayes’s theorem 5 substitute
[ ote o e Pz [ )p() by pla, 2),

Transform to log probabilities and ex-
tract the log probability of the data
from the integral, since logp(z) is a
constant with respect to z.

— togpa) + [ al | o) tog 21 ace

= logp(z) + / a(z | 2)log q(z | ©) dz - / a(z | 2) log p(z, z) dz
= logp(x) - / o(= | ©)[logp(z, 2) — log (= | )] dz

Re-write it in the form of an expecta-

= logp(x) - ]Ezwq(z|w) [logp(x, Z) - IOg Q(Z | I)] tion
= logp(a:) - (EZNq(le) [logp(x, Z)] - Ezwq(z\z) [IOg Q(z | JZ‘)])

ELBO(£(Q))

(32)

Maximizing the ELBO can be turned into our new optimization objective since as we can see in
equation 32 when the ELBO is higher the KL divergence becomes smaller and we are converging
towards a better approximation of the posterior. It is important to note that this is one popular way
of calculating the KL divergence and the ELBO, however, there are several different options to do so
and, that gives place to a wide range of optimization objectives.

q5(z | ) = argmax L(gy(2 | 7)) (33)
q*€Q

9.3.3 Mean-Field Approximation (MFA) assumption to solve VI

In order to solve the variational distribution ¢(z | ) we have to make use of the mean-field as-
sumption. The mean-field assumption states that the family of distributions () can be stated as the
factorization or product of the ¢ family members, where each of the members is characterized with a
different functional form due to being associated with a different set of ¢ parameter values (variational
factors). Given this assumption, we establish independence among the possible functional forms of ¢
and therefore we can apply the chain rule of probability shown in Equation 34 and factorize () into
the product of their marginal distributions [122, 123].
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0.5

0.4
0.3

Q=qy(z|2)= Hq¢zz|x G4

0.1

0 5 10 15 20

Figure 11: Subset of ¢,, distribution
functions from the Gamma family (Q) of
distributions

9.3.4 Solving Variational Inference via Coordinate Ascent (CAVI)

Optimizing the variational approximation requires maximizing the ELBO, by doing so we require to
find the optimal variational factors for the chosen variational distribution. We can use the simile of the
Lagrangian mechanics, see section 9.2, and treat the ELBO equation as the expression of the energy
of our system.

i) The ELBO formula from equation 32 can be expressed as the following (for n data points and m
variational factors) [123],

a b c

L(Q) = Eqllog p(z1:n, 21:m)] — Eq[log ¢(21:m | z1:n)] = Eq [logp(z, 2) Zlog qi(zj | x)

(35)

where a, b and c stand for:
a : Evidence Lower Bound or Negative Variational free energy

b : Expected complete log joint probability of the model for m variable parameters. Sets higher
probability to the 2 that best explains the observed data, converges towards a MAP estimate of
z.

¢ : Log probability of the variational distribution. ‘“Negative Entropy” or regularization factor
that diffuses the MAP estimate.

ii) The maximization of the ELBO occurs at each training step over a single ¢; and not over the rest of
distributions ¢;;, therefore we can split the expectation.

L£(Q)=E, |E, . |logp(z,z) Zlog qi(z | x) (36)
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ii1) We can now extract the log probability of the fixed ¢; from the summatory. Re-arrange the expec-
tations to isolate the terms that do not depend on ¢;.

i m
L(Q) =Ty, |E,y, |logp(x,2)—logqi(z | 2)— ) logg;(z | z)
I j#i
i m
=Ey, | By, llogp(z,2)—logqi(zi | x)] = Y By, [logg;(z | )] (37
I i
m
=E, []Eq#? [log p(z,z)—logqi(z; | x)] — ZE,,]# [log q;(z; | z)]
J#i

iv) The left term can be re-arranged as a negative KL divergence. The right term is a constant since
we only update ¢; while keeping the rest fixed.

L(Q) = —Eq[log ¢i(zi | #)] — Eqzillog p(, 2)] — cte

[log p(z,2)]

By llog iz | )] — log €% — cte

qlzmle) ]
Eq, {log Far [10gp(;1:,z)]:| cte

KL (%(Zi | z)||e i Ung(“”) — cte

(38)

v) Therefore in order to maximize the ELBO with respect to ¢;, we need to minimize the KL term.
We can solve the optimization of the ELBO by making use of Euler-Lagrange equation, see Equation
27 and set the partial derivative to 0.

dL(Q)
dq(zi | )

vi) The above equation resolves and the KL divergence is minimized and converges when ¢; is equal
to,

= —E, [log q;(z | z)] — log eEazillosP@2)] _ e — @ (39)

g (2 | 7) a2 108 P(zilzj2i,2)]
(2

o Bajzillogp(zi,2j5,2)]

o eBaiz;llogp(z,2)]

(40)

CAVI displays several disadvantages, i) it assumes complete independence across the random
variables in the model and their components ii) the parameter update (variational factors) requires a
manual derivation of the computation of the expected value and variation iii) data mini-batching is not
achievable, requires observing the entire dataset to perform a parameter update [99].
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9.4 Stochastic Variational Inference

The work presented in this manuscript has primarily employed Stochastic Variational Inference (SVI)
[101] as the inference engine, see papers 13, 15 and 16. To introduce the concept of SVI, first, we
need to define Stochastic Gradient descent [124] as the method that turns Variational Inference (VI)
into a practical and generalized approach.

94.1 Gradient Descent

Gradient descent is an optimization algorithm that seeks to determine the set of parameter values
(i.e weights and biases values in a Neural Network) that minimize the target function (i.e error loss
function, such as Mean Squared Error, ELBO, cross-entropy ...). This method is a combination of the
forward and backward propagation algorithms. The 2 steps are illustrated in Sections 9.4.2 and 9.4.3
with a small example [125, 126].

9.4.2 Forward-propagation

Forward-propagation consists of a series of functional transformations (linear or non-linear) that the
input data (i.e matrix or vector or scalar of features) goes through when given to a Feed-forward
Network. As a result, the input data is then transformed into a prediction (i.e class type, continuous
representation of an angle ...) whose validity can be evaluated through an error loss function. Recall
that linear functions in Machine Learning are simply the classical linear regression architecture y =
ma + b but instead, we have replaced the coefficient m with a weight matrix W and we also use a bias
vector B [127].

The following formulations are the equivalent representation of the functions shown in Figure 12.
We have a 4 dimensional input vector and scalar output. The cost function is computed within the
predicted output ¢ and the target y (i.e labels). Vectors and matrices are symbolized in capital letters,
y refers to the true value of the prediction.

X =R?
H'=W'X + B!
H? =W?H' + B?

h3 — W3H2 + b3 (41)
1
. . T R 3\ _
Sigmoid activation: — g = h* = o(h”) = [
1
Mean-squared error — £ = §(y —9)?
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Input layer: H1ddl:;11 lazer 1; HlddleL:In2 lazer 2; Hlddzr; lzgrer 3; Activation layer:
= _ - . tion |
X wlx + Bl W2H! + B2 W3H2 4 b3 Sigmoid(h-)

1 —» X1 -
T2 —» X2 -
I3 —» | L3
Ty —»[ T4 -

hi
YA
wj
B e
e f
5 Output/Prediction
/ h3

Figure 12: 4-Layer Feed-forward network with a series of 3 linear transformations and 1
activation or non-linear function. There are 4 input data points or feature vectors that are
transformed into 1 output scalar that will be evaluated with an error loss function.

9.4.3 Backpropagation

Backpropagation [128, 129] computes the gradient of the network and then adjusts the parameters of
the model to decrease the loss of the network between the resulting predictions and real values, which
we denote as the backpropagate and parameter update steps, respectively. This process continues
iteratively until the loss is less than given bound [128, 129].
1) Backpropagate: The gradient of the network is computed by computing partial derivatives for each
layer of the network and composing them via the chain rule; we illustrate this process for w?; parameter
in the the 4-layer network illustrated in Figure 12.

a) Calculate the partial derivative of the loss function, in this case, the mean-squared error,
with respect to the predicted outputs ¢ and the real values y:

oL
=q— 42
oy YV (42)
b) Calculate the partial derivative of the prediction ¢ with respect to activation h*:
Y . .
= o) (1= () =+ (1-) 43)
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c) Calculate the partial derivative of the hidden layer y3 with respect to the weights of in-
terest w3
oy*  9(hiw} + h3ws + hiw3)

= h? 44
wi)’ 8wi” ! 44

d) Combine the above partial derivatives to estimate the gradient of the loss function with

respect to the optimized parameter ws3.

L oL 9y dy®
owd 0y Oh* w? )

ii) Parameter update: Update each of the parameters 6 in the network 6 € {Wy, By, Wy, By, W3, Bs}.
The general equation for parameter update, where V6 is the gradient and 7 is the learning rate is stated
as,
V6 = 0; Stationary/Saddle point
0 =0 —nVO< VO < 0; Move forward in the gradient (negative/downhill slope)

V6O > 0; Move backwards in the gradient (positive/uphill slope)

Example of parameter update:

oL

3 _ 13
We=Ww n8W3

9.4.4 Variations of Gradient Descent

The are several methods of Gradient Descent that differ on how the data is divided and when the
backpropagation computations occur [124, 130].

1) Batch Gradient Descent (BGD): The training set is divided into batches. First, the forward
algorithm is run through every single batch in the data set, without calculating the gradients. After
all the batches have been through the forward-network, then we can compute the backpropagation
algorithm over an average prediction across all batches in the data set. This approach means that if we
have very larger datasets we will not be able to update the parameters until all the gradients across all
batches have been updated. Consequently this design is not very efficient [124, 130].

2) Stochastic Gradient Descent (SGD): SGD scales up to larger datasets by taking as input one
training data point at the time. We supply the training data point to the feed forward network, calculate
its gradient and then update it. This approach produces a fluctuating gradient descent and tends not
to completely converge due to its unstable character. However, SGD can be used for larger datasets
since it can converge faster due to the more frequent updates of the parameters. Unfortunately, the
sequential nature of this approach makes it impossible to parallelize the computations, slowing down
the method [124].
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3) Mini batch Gradient Descent (SGD): The training data set is also split into what is called "mini-
batches". The change in name from batch to mini-batch relies solely on that now we will input the
mini-batch to the network, calculate its gradient, and then update the parameter. On this occasion, we
do not hold the gradient computation until all batches have run through the feed-forward network. This
approach also generates a fluctuating gradient descent, nonetheless, we can benefit from vectorization
and scalability to larger datasets [124, 130].

4) Optimizers: Upgrading Vanilla Gradient Descent Optimizers are different versions of the clas-
sical or Vanilla Gradient Descent described above. They seek to boost the exploration of the gradient
landscape by making smarter decisions on how to update the parameters and consequently avoiding
local minima. Among the most well-known methods we find the first-order gradient-based optimizer
Adam [131] which benefits from combining the AdaGrad [132] and RMSProp [133] optimizers. Dur-
ing the presented research I have used Adam its different deviations as my optimizers of choice.
AdaGrad uses a momentum vector my, the exponentially weighted average of the gradients, to correct
the learning rate and the parameter update (i.e W) as follows,

Momentum vector 1 oL
my = frmy—1 + (1 - B1) [WJ

(46)

Weight parameter update in AdaGrad

W41 = Wt — QMg

where (31 is a constant representing the exponetial decay or moving average parameters. RMSProp
uses a second momentum vector, the exponential moving average, to correct the paramater update as,

Momentum vector 2 2
A oL
v = Bovg1 + (1 — Bo) [6Wt]

Weight parameter update in RMSProp (47)

Wil = Wy — — 2 [35}
t+1 t (Ut n 6)% aUJt

where € is a small positive constant and (3 is another constant representing the moving average pa-
rameter. Adam combines both momentum vectors using a biased corrected version,

A My
my =
1-p
) s (48)
V¢ = —
t 1— 55

Finally, the weight parameter in Adam is updated using a combination of both unbiased momentum
vectors,

R o
W41 = W — My (\/M) (49)
t
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9.4.5 Black Box Variational Inference (BBVI): Optimizing the ELBO by Gradient Ascent

We can make use of Gradient Descent to maximize the ELBO, by setting the optimization objective to
- ELBO. On this occasion, the variational parameter update, instead of being given by the Coordinate
Ascent function, will be performed via gradient estimation. We have discarded CAVI, see Section
9.3.4, since determining the closed-form expressions of the density functions can become a complex
error-prone problem to solve depending on the chosen variational distribution for the parameters.
Furthermore, we seek to automatize inference to deal with any type of model, to handle large datasets,
and reduce the possibilities of errors during inference [123, 134]. To do so, we then request to fulfill
the following points [101],

1. Re-write the gradient of the ELBO as an expectation with respect to the (log) probability of the
variational distribution g . See Equations 51 or 52.

2. Sample z from the variational distribution ¢ to calculate a Monte Carlo unbiased estimator of the
ELBOQ’s gradient (weighted sum among the samples). This estimate is regarded as the expected
value of the gradient.

3. Use the Monte Carlo unbiased ELBO’s gradient estimator of the sample z to update the varia-
tional parameters ¢. This update of the variational parameter is stochastic due to the noisiness
of ELBO’s gradient. The general rule for variational parameter update is the following,

¢new = ¢old + nv¢£(¢old) (50)

Solving BBVI via the ‘“score gradient” The “score gradient" or likelihood ratio or reinforce gradi-
ent [135, 136, 134] fulfils our first requirement by rewriting the gradient of the ELBO as the following,

Score gradient Score function Instantaneous ELBO
= -
Vol = Eq,(l2) [Vylogqe(z | x) logp(z, z) — log ge(z | ))] 5D
The score function can be calculated as the partial derivative of the log-likelihood of the variational

distribution with respect to each of its variational parameters ¢, as %Zf’(z)

Solving BBVI via the “reparametrization of the gradient' or ‘“‘reparameterization trick'' The
“Score gradient" has a problem of high variance on the estimation of the gradient, which might update
the variational parameters to a non-optimal region. To control this issue, several approaches have
been formulated, for example, the Rao-Blackwellization (computes the conditional expectation with
respect to one of the variables) [137] or the use of control-variates (penalization technique over the
expectation of the gradient via a function and scalar of choice)[138]. However, the formulation of the
“reparametrization trick" [139, 140, 141, 142] approached the issue differently and it has become the
most generalized method.

The trick is to express the variational distribution gy, (z) using a transformed variational distribu-
tion T(GZ‘, (ﬁj)

Gradient of the
Gradient of Instantaneous ELBO transformed parameter
——
VgL =Eg(o)[Vollog po(, 2) —log qg(z | )] VyTe(¢)] (52)
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Algorithm 2 Optimization via the “score gradient" [135, 136, 134] of a single variational parameter

?.
¢o = —10 > Initialize randomly the variational parameter to optimize ¢
n=1e—-3 > Set a learning rate
while ELBO not converged do
g; =0 > For this current epoch initialize the gradient to 0
foriec Sdo > Take S samples from the variational distribution g4, (2)

zi ~ q; (2 | @)
gj += Vglogqy, (2 | ©)(logp(x, z;) —log qg, (2 | ) > Accumulate the gradients
for every sample of z

gji =% > Normalize the gradient by the number of samples taken
of z from gy (2 | x) for the current ¢

Gjr1 = ¢j +17; > Update the variational parameter

j+=1 > Add one epoch

We cannot optimize over a sampled random variable z. Instead, now we sample an auxiliary
variable € from the distribution d(¢€) that helps “sampling” indirectly the parameter z given € and ¢.
For the normal distribution the transformation is linear, z = T'(¢, ¢) = €0 + p; where z is now equal
to a mean p plus a weighted variance o. Recall that ;1 and o are the variational parameters ¢ that
become updated every epoch. Using this trick, we now control the variance over the parameters of the
model and the gradient with an auxiliary variable € [139, 140, 141, 142].

Algorithm 3 Optimization via the “reparameterization trick" [139, 140, 141, 142] of a single varia-
tional parameter ¢.

¢ = —10 > Initialize randomly the variational parameter to optimize ¢
n=1e—-3 > Set a learning rate
while ELBO not converged do
g; =0 > For this current epoch initialize the gradient to O
foric Sdo
€; ~ d(e) > Take S samples from the auxiliary variable e from its distribution d
zi =T (&, ¢5) > z is NOT sampled, is the product of

a transformation of the auxiliary vari-

able ¢ and the current ¢
gj += Vgllog p(z, z;) —log gy, (i | )]V, 2i > Accumulate the gradients for every

R value of z
g; = % > Normalize the gradient by the number of samples taken
of € for T'(e, ¢) for the current ¢
Djr1 = @; +19; > Update the variational parameter
j+=1 > Add one epoch

42



9.4 Stochastic Variational Inference 9 BAYESIAN APPROXIMATE INFERENCE

Table 2 Comparison of the BBVI methods

“Score gradient"

“Reparameterization trick"

Valid for discrete and continuous models. Requires differentiable (non-discrete) variables.
Works with a large class of variational approximations. | Requires the variational approximation to be transformable.
The variance of the noisy gradient can be large. The variance of the gradient is well behaved.

Requires differentiable models with respect to the parameters z.

9.4.6 Stochastic Variational Inference

Stochastic Variational Inference or Stochastic Gradient Variational Bayes [101] is a generalizable
inference framework to perform approximated Bayesian inference. It benefits from the combination
of Automated Variational Inference [134], Black Box Variational inference [123], mini-batching and
Stochastic Gradient Descent [124].
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10 Neural Networks architectures

10.1 Autoencoders (AEs)

Autoencoders [143] are a type of unsupervised representation learning methodology that forces an
information bottleneck in the neural network architecture, see Figure 13. The bottleneck effect reduces
the dimensionality of the network parameters to achieve a compression of the input data features to
capture its most representative form without information loss (lossless encoding).

. Recons- . Recons-
Input Hidden truction Input Hllad(:;n truction
layer layer layer layer Y layer

Figure 13: (Left): Ordinary feedforward linear network , (Right) Autoencoder linear network
with a bottleneck (dimensionality reduction) effect

Autoencoders are a combination of an encoder and a decoder. The encoder g, comprises a series
of hidden layers (more layers, deeper networks) between the input and the bottleneck. Similarly,
the decoder fy is defined as the series of hidden layers between the bottleneck and the output. The
structure is shown in Figure 14. The encoder network can learn the most important features that
describe the data z and the decoder uses them to reconstruct the original data. This means that the
autoencoder learns the function that summarizes the data [143].
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10 NEURAL NETWORKS ARCHITECTURES

ENCODER
9o

—> Z —>

DECODER

Jo

Figure 14: Autoencoder structure for data reconstruction. First, the encoder network compresses
the input data z into the bottleneck latent representation z. The decoder network decompresses z
into a representation of the data . The encoder network parameters (weights and biases) are
labelled as ¢, whilst the decoder network parameters (weights and biases) are labelled as 6.

Training a purely linear autoencoder is almost equivalent to the Principal Component Analysis
(PCA) dimensionality reduction [144]. PCA finds the eigenvalue(s) that capture the highest variance
in the dataset, which is equivalent to the representation of the data that reflects the highest amount
of information. It is important to note that the linear projections given by the PCA are orthonormal
to each other, independent, and maintain the same coordinate basis, however, this is not the case for
the autoencoder. See Figure 15 for a visual explanation. Nonetheless, unlike PCA, autoencoders can

lOTy .

PCAprojection

I ) P o Eficoding
5
Ao X P P A
J T
-10 -5 A 5 10 o
o =
/) -5 eigen
y Covariance eigen eigen  values
~10 of features vectors vectors

Figure 15: PCA dimensionality reduction. Left The first 3 PCA are shown in orange, solid line
indicates the best fit. Right The encoder-decoder error loss is minimal when ¥ = PAPT

benefit from non-linearities to go beyond simply stating a linear description (hyper-plane) of the data.
Autoencoders can learn manifolds, defined as continuous non-intersecting surfaces. See Figure 16 for
a visual representation that defines the data as the output of a linear function composing a hyper-plane
versus the flexibility of capturing the data as the result of a non-linear function given by a manifold.
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Hyperplane Manifold

e

Figure 16: Differences between the flexibility of learning a linear function (hyperplane) vs a
non-linear function (manifold). The manifold improves the capture of the data points structure.

The quality of the encoder and decoder functions is evaluated by computing an error loss function
L between the input data = and the reconstruction &,

LO0) = S m—d) = > folgela)) 53
=1 =1

Reconstruction error loss (MSE)

Autoencoders without a proper regularization term suffer from overfitting since they are persis-
tently minimizing the reconstruction loss. This might lead to a latent space where some of its points
are “meaningless" once decoded. For this reason, there are several types of latent space regularizers
for Autoencoders, such as the L1 or L2 regularization terms.

10.2 Variational Autoencoders (VAEs)

Variational Autoencoders are a type of Autoencoder that maps the input data to a distribution instead
of a simple matrix or vector. This is achieved by compressing the data into the parameters of the
bottleneck “latent" distribution, which for many reasons (i.e easiness of being reparameterized) is
usually set to the Normal distribution (or it’s higher dimensional counterpart, the Multivariate Nor-
mal). Therefore, the input data will be described (“encoded") in the form of a mean vector and a
standard deviation. This adds a fundamental property and advantage to VAEs over AEs, which is that
the latent representation or bottleneck must be continuous and regular and therefore we can use VAEs
as generative models by sampling from the latent distribution [119, 145].
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PROBABILISTIC PROBABILISTIC
ENCODER DECODER

qe(z | )  Sampled po(z | 2)

latent vector
from p(z
H \ )
* < / 7 —E
o
e~ N(0,1)
Z=pu+o0e

Figure 17: Variational Autoencoder structure. First, the probabilistic encoder network
compresses the input data x into the mean p and variance o vectors that parameterize the
distribution from which the latent representation of the data is sampled p(z). The decoder
network samples and decompresses z into a reconstruction of the data Z. The reconstruction
error is computed and backpropagated through the network.
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The error loss function from the VAE needs to be upgraded to improve the generative process such
that i) it’s continuous, this grants that points close to each other in the latent space are decoded into
similar outputs ii) it’s complete, all the sampled points from the latent space when decoded, should be
meaningful [146].

10.2.1 The error loss function for VAEs

The objective is to find the probability distribution of the latent space given the input data g4(z | x)
that can encode the input data into its best feature representation. Simultaneously, we seek to find the
best probability distribution py(x | z) that decodes the latent space into it’s native form.

p(x ’ z)p(z) approximated

p(z) by

We proceed then to set the error loss function as the KL divergence between ¢4 (z | ) and pg(z | x)
which should be minimized to optimize the parameters. This minimization will find the best g* and
h* functions, which are usually a combination of linear and non linear functions, by optimizing the
best set of parameters ¢ and 6 (i.e Neural Network’s weights and biases) that parameterize them. The
optimal g* and h* functions generate the parameters of the p(z) distribution. For example, in the case
of z being set to a univariate Normal distribution, g and h will find the best values for y, and o.

p(z|x) = q(2 | ) (54)

(9", h*) = argmin KL(q4(z | z)||lp(z | z)) =
(9,h)eG,H
po (7 | Z)p(Z)D

= argmin (EZN%(ZM) loggs(z | x)] — E.ngs(zlo) [log (@)

(g,h)eG,H

= argmin IEz~q¢(z|z) [IOg Q¢(Z ’ x)} - Ez~q¢(z\x) Dogp(xa Z)] +]Ez~q¢(z\$) [logp(x)}
(9,h)€G,H

-ELBO
(55)

As we can recognize, we cannot compute the above equation due to the intractability of p(x),
however, if we re-call from the ELBO derivation in Equation 32, we can see that we confront exactly
the same issue. Therefore, if we want to simultaneously minimize the the KL divergence and maximize
the probability of the observations, we can just simply maximize the ELBO. The transformation of the
ELBO into an error loss function is as follows,
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log p(z) > ELBO

logp(z) > E.y, (210 [log po(z, 2) —log gg(z | z)]

log p(2) > E.ng, (21 [log M]

log p(2) > Eong, (21) [W}
p(z) } (56)

qs(2 | @)

1082(0) > Eua a9z | 2]+ [ au(z ] 2) 10w P

~ag(zlz) [Po(@ | 2)] + KL [p(2)|lgy(2 | z)]

~ap(zlryPo(2 | 2)] = KL [gy(2 | 2)[|p(2)]

-~

Reconstruction error Regularization term

10gp(33) > Ez~q¢(z|m) [pg(fL’ ‘ Z)} + Ez~q¢(z|x) |:
dz

log p(z)

>E,
logp(z) > E,

We have arrived at the “typical” form of the error loss function. In this case, the ELBO is a special
kind of loss function, since we seek to maximize it while ordinary losses are usually minimized. In
practice we compute the negative ELBO, which is optimized as it increases [119, 146].

-ELBO = —L(0,¢) = KL(qs(z | 2)[p(2)) — Ezngy (212 [log po(z | 2)] (57)

To clarify the above defined syntax, we will take a simple example with univariate Normal distri-
butions for our distributions such as,

ap(2 | ©) = N(g1(2), 92(2)),
where g7 and g are encoding functions (defined with parameters ¢) of the input data x into the
parameters ji, and o,. They belong to the family of distribution functions g; € G; and go € G2

p(z) = N(0,1),

is the prior distribution over the latent space z set in the decoder (model)

px | 2) = N(h(2), c.d)

where h is the decoding function of the latent space z. It belongs to the family of distribution functions

h € H. I is the identity matrix and c is a positive constant.
(58)

In this example case, the KL divergence between 2 univariate Normal distributions, where one of
them is a standard Normal, is as follows,
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K L{gg(z | 2)p(2)) = — / 4s(z | 2)log p(z) dz + / p(z)log go(z | 2) d

o} + (u1 — p2)?

1 1
=3 log(2mo3) + — 5(1 + log 2mo?)

203

o o? + —u2)? 1 59
g %2 1 O (m2 pe)® 1 (59)

o1 202 2
The components indexed with 2 correspond to p(z) = N (0, 1)

2,2
1

= —logoi + gitEs 2

2 2

And the computation of the log-likelihood of the univariate Normal function is

n
Bergo(zle) [po(z | 2)] = (27”’2)_% exp <_2},2 (zi — N)) (60)

i=1
The univariate Normal distribution is very simple use-case and the Multivariate Normal case is
usually a better approach. This situation is described in the VAE paper [119], where the encoder
approximates the Multivariate latent space by making some independence assumptions. This allows
to set the covariance of the Multivariate Normal as a diagonal matrix, which can be easily vectorized,
and simplifies the calculation KL divergence between 2 Multivariate distributions. We use the same

procedure in our variational evolutionary model presented in the manuscript 16.

10.2.2 The reparameterization trick for VAEs

Lastly, it is not possible to propagate the error loss through the random variable py(z), therefore we
again need to use the “reparameterization trick" (seen in Section 9.4.5) [139, 140, 141, 142] in order to
transform py(2) into a differentiable term. For example, if the prior over the latent space is a univariate
Normal distribution, we simply will take the mean ., which is obtained from g(z), plus the variance
0, which is obtained from h(x), multiplied by a variance regulator e ~ N (0, 1). This means that the
“sample" z from the latent space is now a transformed version of the mean, z = u, + €o.. Note that
we do not backpropagate over ¢, it remains as a random variable without dependencies on ¢.

10.2.3 Amortized inference in VAEs

It is important to note that VAEs can benefit from amortized inference, meaning that we introduce
correlations among the model’s parameters [147]. This is the case if the statistical model counts with
the appropriate feed-forward network that maps the observations to the latent space g4(z | x) and
an additional feed-forward network that maps the latent space to the observations py(z | z). This
opposes the Mean Field Assumption utilised by ordinary CAVI (see Section 9.3.4), where each of
the variational and latent parameters (and the dimensions within the latent parameters) is independent
(uncorrelated) from each other. VAEs can also become factorized models by building independent
networks for each of the parameters. The amortization character of VAEs has been a key contribution
of the Draupnir evolutionary model for performing Ancestral Sequence Reconstruction [8].
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11 Kabsch-Umeyama algorithm applied to protein superposition

The Theseus-PP and Theseus-HMC papers present a new method to confront the classical approaches
in the field of protein superposition. The most commonly used method is the Kabsch-Umeyama al-
gorithm [148, 149, 150]. This method is the 3D implementation of the Ordinary Partial Procrustes
[151, 152] algorithm for performing superposition over a set of 3D coordinates. The method esti-
mates the optimal rotation and translation via Singular Value Decomposition (SVD) that minimizes
the Root Mean Squared Error (RMSD) [153]. The Kabsch-Umeyama algorithm for superimposing a
protein B onto a protein A can be described as follows [154],

i) Perform translation by centering the protein coordinates A and B, of dimensions nz3, by sub-
tracting the average of each coordinate from its respective column.

i1) Build the covariance matrix C by multiplying the sets of coordinates of the proteins to super-
impose.

ann = Anxi’)ngn or ann = Ag;anmB

iii) Compute the SVD of the covariance matrix C. This procedure decomposes C into the 3 trans-
formations over the vectors of the coordinate basis that resulted in C : an initial rotation V, a scaling
matrix D along the coordinate axes, and a final rotation U.

SVD(C) =UDVT

iv) Define S, a correction matrix to scale V that detects and prevents reflection of the structure.
Calculate the sign of the multiplication of the determinants of U and V:

sign = det U det VT

Identity matrix (I) of size nxn if sign > 0
1 .-~ 0
: . otherwise
0 --- —1
v) Compute the rotation matrix (R):

Rsp3 =USVT

vi) Rotate B:
B =BR

vii) Compute RMSD between the x,y,z coordinates of the C, atoms from fixed protein A and
the newly rotated B:

RMSD(A4, B) = \/% Zz]'\il((aix = biz)?) + (aiy — biy)?) + (@i — biz)?)
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12 Stochastic Processes: An intuition

The last paper presented in this Ph.D. thesis makes use of a variant of the Gaussian process, the
Ornstein—Uhlenbeck process, to encode the evolutionary process. This is a brief and illustrated guide
to the concept of stochastic processes.

12.1 Brownian Motion

To introduce Gaussian processes, first, we need to define Brownian motion, also referred as Wiener
processes. Brownian motion describes the random motion of particles caused by molecular interac-
tions. It was first observed by the botanist Robert Brown in 1827, nonetheless, it was not mathemat-
ically described until 1905-1906 by Albert Einstein [155] and Marian Smoluchowski [156]. It was
finally proved experimentally by Jean Perrin in 1908 [157]. Brownian motions can be either deter-
mined mechanically or enclosed in a probability model defined as a stochastic process. The stochastic
process represents the random trajectory of a particle during an interval of time, see Figure 18 for a
visual example. Brownian motions are type of Gaussian Process [158].

=]

W
PRy Y|
Wil vy TR L
T

e

Figure 18: Brownian Motion: Visualization of the stochastic trajectory of 3 particles.

12.2 Gaussian Processes (GP)
12.2.1 Multivariate Normal distribution

The Multivariate Normal distribution is a generalization of the univariate normal distribution to higher
dimensionalities. The univariate Normal samples 1 dimensional random variables (see Equation 61),
whereas the multivariate counterpart samples n-dimensional random variables (see Equation 62). The
Multivariate normal expresses the joint probability of correlated Gaussian distributions.

z ~ N (07 (61) #~ N (ji, %) (62)

Since we cannot visualize a Multivariate Normal, we appeal to the simpler Bivariate Normal distri-
bution. The latter contemplates the correlations among a bivariate random variable, which is a vector
with form & = [z, z2]. Those correlations are defined by the covariance matrix 3. When the dimen-
sions are independent, the covariance matrix is equal to the identity matrix, see Figure 19. The joint
probability distribution of variable Z given the covariance matrix is given by,

P(X) = P(X1,X2) =N ([Zj , [COUZf{)gl))(Q)T CO%E();;)XQ)D

= 273 |73 e 3X-ATETH(E-A)

(63)
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where n 1s the number of dimensions.

X Xo

107 10
Z_[OV 1] | Z_[O 1]

- X1 ' t t t . ¢

Figure 19: Illustration of the effect of the covariance matrix between the components of the
random variable & that define a bivariate Gaussian. (Left) There is a correlation among the
dimensions of 0.7. (Right) The dimensions are independent, the covariance matrix is the Identity
matrix, the correlation is 0.

In Figures 20 and 21 we sample several data points from the joint distribution P(X1, X2). Then
we represent their correlations using the vectors between the coordinates of the sample and the base
axis [159]. The new representations co-vary equivalently as the samples in the process do, see Figures
21 and 22. We can extend this methodology to illustrate the covariance between high dimensional
variables, without needing to directly visualize a Multivariate Normal, see figure 23.

If we wish to calculate the conditional probability of the variable X5 given a fixed value of Y;
and 3J, we can observe that it also follows a Gaussian distribution from which we can sample several
values of X5 (see Figure 24). The ability to calculate the conditional probability has been crucial
property to perform ancestral sequence reconstruction in paper 16.

Conditional mean
P(Xs | X1 = z1) = N (1 + Covar (X1, X2)Var(Xa) ™! (x1 — p2),
Var(X;) — Covar(X1, Xo)Var(Xa) " *Covar(X1, X2)7)

Conditional covariance

(64)
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Xo

Figure 20: Sampling from the joint
bivariate distribution P(X1, X5)

| |
\ \
X 1 4\73

Figure 22: Conditionally sampling X5
given a fixed value of X;.

}Xl

Figure 21: Re-intrepretation of the
sampling from the joint bivariate
probability P(X, X2) in Figure 20 to
visualize the correlations among the
samples.

54

Figure 23: Visualization of the
correlations among the samples from a
Multivariate distribution

P(Xl, XQ, X3, X4, X5) witha 5
dimensional random variable.
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Xo,

z1 X1
Figure 24: Representation of P(X5 | X1, X, i1+ ), the conditional probability of X5 given a

fixed value of X7, a mean p, and a covariance matrix X,.This conditional probability gets closer
to the standard normal as X; and X5 become uncorrelated.
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12.2.2 Gaussian Process prior

Gaussian Processes determine a joint Gaussian probability distribution over smooth (continuous) func-
tions f(z). Smooth functions can be understood as infinite vectors, which in this case are Gaussian
density functions that are defined in all R. Gaussian Processes are known as infinite (non-parametric)
models which are characterized by a mean function p(x) and a kernel function KC(x, ') [158]. They
can be observed as a tool to solve non-linear regression with uncertainty over the predictions. One of
the desired properties of a Gaussian Process is that the uncertainty over the predictions increases as
the number of observations decreases [160]

Smooth function

f(@) ~ GP(u(x), S(w,2")) (65)

p(x) : Average function, indicates the average at any point in the space.
K(z,z') : R x R — R : Function that takes as an input 2 points from the domain R (x and x’) and
models their covariance.

12.2.3 Marginalizing the GP

In reality we cannot deal with infinite dimensions, rather we have a finite set of train data points
z € {x1,...,x,} and test data points z* € {z7,...,x}} . Instead, we need to find the joint Gaussian
distribution that is defined only at those points. We require to marginalize the Gaussian Process, thus,
we arrive at a finite-dimensional Multivariate Normal distribution. Marginalization implies discarding
the remaining data points in R that are not 2 or 2*, which are indicated as z° in Equation 66.

/(@) wa)] [ K(wo) K@) K
Fan) | ~ A (| a6 || Kan)T K(aa?) K(a®

0 o [AVA *

(66)

P([7E]) = wta s 7

X, GP samples

Figure 25: Gaussian Process (see Equation 67). The training points (pink dots) have reduced
uncertainty, whereas the rest of the points have larger variances (blue regions).
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The covariance of a Gaussian Process is defined by a kernel of choice. A kernel is a function
that can generate a positive definite symmetric matrix. The shapes (smooth, periodic, noisy...) of the
functions that capture how the data was originated are characterized by the choice of the kernel. For
example, the squared exponential kernel for a Gaussian process is determined as follows,

Noise
E(IL’, LE,) = ’C(LE,IE,) + IO'?L (68)

g _ta=ah? 2
=o,e 22 + o,

where x and z’ are the points at which the function is evaluated, [ is the characteristic length scale
or horizontal noise, which defines the smoothness in the curve (higher values form a more wiggly
function) and o, is the vertical scale which determines the vertical noise.

Gaussian processes optimize the parameters of the kernel by observing the entire data set simul-
taneously. This means that their computation is expensive and escalates cubically with the number
of observations O3, due to the need of calculating the inverse of the covariance matrix for sampling
from the Multivariate Normal distribution (see Equation 12.2.1). However, recent advances in the field
of escalating Gaussian Processes with the number of observations have been developed. For exam-
ple, sparse Gaussian Processes [161] with their use of pseudo-points, a small subset of observations
that shifts with every update of the kernel, can now account to perform inference on large Gaussian
Processes.
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13 Paper 1: A probabilistic programming approach to protein super-
position

Authors: Lys Sanz Moreta, Ahmad Salim Al-Sibahi, Douglas Theobald, William Bullock, Basile
Nicolas Rommes, Andreas Manoukian, and Thomas Hamelryck.

Motivation: Within the probabilistic programming framework Pyro [9], we implement a new prob-
abilistic version of Theseus [2] with the additional use of quality priors over the superposition param-
eters. This new version of the original model was envisioned to serve as an improved scoring function
during training methods for protein structure prediction.
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Abstract—Optimal superposition of protein structures is cru-
cial for understanding their structure, function, dynamics and
evolution. We investigate the use of probabilistic programming
to superimpose protein structures guided by a Bayesian model.
Our model THESEUS-PP is based on the THESEUS model, a
probabilistic model of protein superposition based on rotation,
translation and perturbation of an underlying, latent mean
structure. The model was implemented in the deep probabilistic
programming language Pyro. Unlike conventional methods that
minimize the sum of the squared distances, THESEUS takes
into account correlated atom positions and heteroscedasticity (i.e.,
atom positions can feature different variances). THESEUS per-
forms maximum likelihood estimation using iterative expectation-
maximization. In contrast, THESEUS-PP allows automated max-
imum a-posteriori (MAP) estimation using suitable priors over
rotation, translation, variances and latent mean structure. The
results indicate that probabilistic programming is a powerful new
paradigm for the formulation of Bayesian probabilistic models
concerning biomolecular structure. Specifically, we envision the
use of the THESEUS-PP model as a suitable error model or
likelihood in Bayesian protein structure prediction using deep
probabilistic programming.

Index Terms—protein superposition, Bayesian modelling, deep
probabilistic programming, protein structure prediction

I. INTRODUCTION

In order to compare biomolecular structures, it is necessary
to superimpose them onto each other in an optimal way. The
standard method minimizes the sum of the squared distances
(root mean square deviation, RMSD) between the matching
atom pairs. This can be easily accomplished by shifting the
centre of mass of the two proteins to the origin and obtaining
the optimal rotation using singular value decomposition [1] or
quaternion algebra [2], [3]. These methods however typically

978-1-7281-1462-0/19/$31.00 2019 IEEE

assume that all atoms have equal variance (homoscedastic-
ity) and are uncorrelated. This is problematic in the case
of proteins with flexible loops or flexible terminal regions,
where the atoms can posit high variance. Here we present
a Bayesian model that is based on the previously reported
THESEUS model [4]-[6]. THESEUS is a probabilistic model
of protein superposition that allows for regions with low and
high variance (heteroscedasticity), corresponding respectively
to conserved and variable regions [4], [S]. THESEUS assumes
that the structures which are to be superimposed are translated,
rotated and perturbed observations of an underlying latent,
mean structure M.

In contrast to the THESEUS model which features max-
imum likelihood parameter estimation using iterative ex-
pectation maximization, we formulate a Bayesian model
(THESEUS-PP) and perform maximum a-posteriori (MAP)
parameter estimation. We provide suitable prior distributions
over the rotation, the translations, the variances and the la-
tent, mean model. We implemented the entire model in the
deep probabilistic programming language Pyro [7], using its
automatic inference features. The results indicate that deep
probabilistic programming readily allows the implementation,
estimation and deployment of advanced non-Euclidean models
relevant to structural bioinformatics. Specifically, we envision
that THESEUS-PP can be used as a likelihood function in
Bayesian protein structure prediction using deep probabilistic
programming.

II. METHODS

A. Overall model

According to the THESEUS model [4], each observed
protein structure X,, is a noisy observation of a rotated and
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T

&)

Fig. 1: The THESEUS-PP model as a Bayesian graphical
model. M is the latent, mean structure, which is an V-
by-3 coordinate matrix, where N is the number of atoms.
T is the translation. q is a unit quaternion calculated from
three random variables u sampled from the unit interval. R
is the corresponding rotation matrix. U is the among-row
variance matrix of a matrix-normal distribution. X; and X,
are N-by-3 coordinate matrices representing the proteins to
be superimposed. Circles denote random variables. A lozenge
denotes a deterministic transformation of a random variable.
Shaded circles denote observed variables. Bold capital and
bold small letters represent matrices and vectors, respectively.

translated latent, mean structure M with noise E,,,
X, =(M+E,)R, — 15T, QY]

where n is an index that identifies the protein, R is a rotation
matrix, T is a three-dimensional translation, E is the error
and M and X are matrices with the atomic coordinate vectors
along the rows,

mo
M= , X, = e . 2)
mpy-—1 Xn,N—1
Another way of representing the model is seeing X,, as
distributed according to a matrix-normal distribution with
mean M and covariance matrices U and V - one concerning
the rows and the other the columns.

The matrix-normal distribution can be considered as an
extension of the standard multivariate normal distribution from
vector-valued to matrix-valued random variables. Consider a
random variable X distributed according to a matrix-normal
distribution with mean IM, which in our case is an /N x 3 matrix
where N is the number of atoms. In this case, the matrix-
normal distribution is further characterized by an N x N row
covariance matrix U and a 3 x 3 column covariance V. Then,
X ~ MN(M, U, V) will be equal to

X =M +/UQVV, (3)

where Q is an N X 3 matrix with elements distributed
according to the standard normal distribution.

To ensure identifiability, one (arbitrary) protein X, is as-
sumed to be a fixed noisy observation of the structure M:

Xy ~ MN'(M, U, V). “

The other protein X is assumed to be a noisy observation of
the rotated as well as translated mean structure M:

Xy ~ MN(MR — 15T, U, V). (5)

Thus, the model uses the same covariance matrices U and V
for the matrix-normal distributions of both X; and Xs.

B. Bayesian posterior

The graphical model of THESEUS-PP is shown in Figure
1. The corresponding Bayesian posterior distribution is

p(R, T, M, U[X;,X,) x
p(X1,X2|M, R, T, U)p(M)p(T)p(R)p(U) =
p(X1|M, U)p(X2[MR — 15T, U)
p(M)p(T)p(R)p(U). (6)

Below, we specify how each of the priors and the likelihood
function is formulated and implemented.

C. Prior for the mean structure

Recall that according to the THESEUS-PP model, the atoms
of the structures to be superimposed are noisy observations of
a mean structure M. Typically, only C, atoms are considered
and in that case, IV corresponds to the number of amino acids.
Hence, we need to formulate a prior distribution over the
latent, mean structure M.

We use an uninformative prior for M. Each element of
M is sampled from a Student’s t-distribution with degrees
of freedom (v = 1), mean (x = 0) and a uniform diagonal
variance (o2 = 3). The Student’s t-distribution is chosen
over the normal distribution for reasons of numerical stability:
the fatter tails of the Student’s t-distribution avoid numerical
problems associated with highly variable regions.

D. Prior over the rotation

In the general case, we have no a priori information on
the optimal rotation. Hence, we use a uniform prior over the
space of rotations. There are several ways to construct such
a uniform prior. We have chosen a method that makes use of
quaternions [8]. Quaternions are the 4-dimensional extensions
of the better known 2-dimensional complex numbers. Unit
quaternions form a convenient way to represent rotation matri-
ces. For our goal, the overall idea is to sample uniformly from
the space of unit quaternions. Subsequently, the sampled unit
quaternions are transformed into the corresponding rotation
matrices, which establishes a uniform prior over rotations.

A unit quaternion q = (w,z,y,2) is sampled in the
following way. First, three independent random variables are
sampled from the unit interval,

ug, u1,ug ~ U(0,1). 7
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Then, four auxiliary deterministic variables (61, 62,71, 12) are
calculated from uy, usg, us,

6, = 27uq, (8a)
0y = 2mus (8b)
r1 =1 — ug, (8¢c)
ry = /. 8d)

The unit quaternion q is then obtained in the following way,
q=(w,z,y,2)
= (ro cos b, 71 sin by, 71 cos Oy, rosinfa).  (9)

Finally, the unit quaternion q is transformed into its corre-
sponding rotation matrix R as follows,

wida?—y?—22  2(zy—wz) 2(zz4wy)
R = 2(ay+wz)  wi-zty?-z?  2(yz—wz) (10)
2(zz—wy) 2(yztwz)  wi—z?—y? 422

E. Prior over the translation

For the translation, we use a standard trivariate normal
distribution,
T ~ N(0,Ty) an

where I3 is the three-dimensional identity matrix.

E Prior over U

The Student’s t-distribution variance over the rows is sam-
pled from the half-normal distribution with standard deviation
set to 1.

o1 ~ N (L), 12)

G. Likelihood

In our case, the matrix-normal likelihood of THESEUS
reduces to a product of univariate Student’s t-distributions.
Again, we use the Student’s t-distribution rather than the
normal distribution (as in THESEUS) for reasons of nu-
merical stability. Below, we have used trivariate Student’s t-
distributions with diagonal covariance matrices for ease of
notation. The likelihood can thus be written as

p(X1, X | M, T,R,U)
=p(X1 | M, U)p(Xz | M, T,R, U)
N
= Htl(x].L | m;, 0;13)
i=1

X t1(x2, | MR — 15T);,0:13), (13)

where the product runs over the matrix rows that contain the
x,y, z coordinates of Xy, X, and the rotated and translated
latent, mean structure M.

H. Algorithm

Algorithm 1 The Theseus-PP model.
> Prior over the elements of M
m; ~ t1(0,0/I3), where i indicates the atom position
> Prior over the translation
T ~ N(0,13)
> Prior over rotation
u; ~ UJ0,1], for j from 0 to 2
q + Quaternion(u)
R + RotationMatrix(q)
> Prior over diagonal covariance matrix U
a; ~ NJr(l)
> Likelihood over the N atom coordinates
X1,i ~ t1(mg, 0;13))
X2, ~ t1([RM — 1xT);, 0:15)

~

Initialization

Convergence of the MAP estimation can be greatly im-
proved by selecting suitable starting values for certain vari-
ables and by transforming the two structures X; and X in
a suitable way. First, we pre-superimpose the two structures
using conventional least-squares superposition. Therefore, the
starting rotation can be initialized close to the identity matrix
(ie., no rotation). This is done by setting the vector u to
(0.9,0.1,0.9).

We further improve performance by initializing the mean
structure M to the average of the two pre-superimposed
structures X; and Xo.

J. Maximum a-posteriori optimization

We performed MAP estimation using Pyro’s AutoDelta
guide. For optimization, we used AdagradRMSProp [9], [10]
with the default parameters for the learning rate (1.0), momen-
tum (0.1) and step size modulator (1.0 x 10716). A fragment
of the model implementation in Pyro can be seen in Figure 3
in the Appendix.

Convergence was detected using Earlystop from Pytorch’s
Ignite library (version 0.2.0) [11]. This method evaluates
the stabilization of the error loss and stops the optimization
according to the value of the patience parameter. The patience
value was set to 25.

III. MATERIALS
Proteins

The algorithm was tested on several proteins from the
RCSB protein database [12] that were obtained from Nuclear
Magnetic Resonance (NMR) experiments. Such structures
typically contain several models of the same protein. These
models represent the structural dynamics of the protein in an
aqueous medium and thus typically contain both conserved
and variable regions. This makes them challenging targets
for conventional RMSD superposition. We used the following
structures: 1ADZ, 1AHL, 1AK7, 2CPD, 2KHI, 2LKL and
2YS9.
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IV. RESULTS
The algorithm was executed 15 times on each protein (see TABLE I) with different seeds. The computations where carried
on a Intel Core i7-8750H CPU 2.20GHz processor.

TABLE I: Results of applying THESEUS-PP to the test structures. First column: PDB identifier. Second column: the number of
C,, atoms used in the superposition. Third column: the model identifiers. Fourth column: mean convergence time and standard
deviation. Last column: Number of epochs.

. Average
PBD ID ( AmIi‘::g:;i ds) K/[rg:l‘:l: Computational Time Epochs
(seconds)
1ADZ 71 0 and 1 0.64=+ 0.15 210445
1AHL 49 0 and 2 0.53+ 0.119 16636
1AK7 174 0and 1 0.74+ 0.23 222467
2CPD 99 0 and 2 0.51=+ 0.0.093 161+30
2KHI 95 0 and 1 0.47£0.11 149+39
2LKL 81 0 and 8 0.59+0.092 187+30
2YS9 70 0 and 3 0.47+£0.11 144433

An example of a pair of superimposed structures is shown in Figure 2. For comparison, the superposition resulting from
the conventional RMSD method, as calculated using Biopython [13], is shown on the left (Figure 2a). The THESEUS-
PP superposition is shown on the right (Figure 2b). Note how the former fails to adequately distinguish regions with high
from regions with low variance, resulting in poor matching of conserved regions. Additional, similar figures of superimposed
structures can be found in the Appendix.

¢

(a) Kabsch-RMSD (b) Theseus-PP

2YS9

2Y59
—— AMSD
—— Theseus-PF

Pairwise distances

Amina acid position
(©

Fig. 2: Protein superposition for two conformations of protein 2YS9 obtained from (a) conventional RMSD superimposition

and (b) THESEUS-PP. The protein in green is rotated (X5). The images are generated with PYMOL [14]. Graph (c) shows

the pairwise distances (in A) between the C,, coordinates of the structure pairs. The blue and orange lines represent RMSD

and THESEUS-PP superposition, respectively.
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V. CONCLUSION

Probabilistic programming is a powerful, emerging
paradigm for probabilistic protein structure analysis, prediction
and design. Here, we present a Bayesian model for protein
structure superposition implemented in the deep probabilistic
programming language Pyro and building on the previously re-
ported THESEUS maximum likelihood model. MAP estimates
of its parameters are readily obtained using Pyro’s automated
inference engine.

The original THESEUS algorithm, which makes use of
maximum likelihood estimation using iterative expectation
maximization, is considerably faster with an average execution
time under 0.1 s. Although some of the longer execution time
in THESEUS-PP is due to the use of variational inference
and priors, it is clear that the flexibility and productivity of
a probabilistic programming language can come with a speed
penalty.

Recently, end-to-end protein protein structure prediction
using deep learning methods has become possible [15]. We
envision that Bayesian protein structure prediction will soon
be possible using a deep probabilistic programming approach,
which will lead to protein structure predictions with asso-
ciated statistical uncertainties. In order to achieve this goal,
suitable error models and likelihood functions need to be
developed and incorporated in these models. The THESEUS-
PP model can potentially serve as such an error model,
by interpreting M as the predicted structure and a single
rotated and translated X as the observed protein structure.
During training of the probabilistic model, regions in M that
are wrongly predicted can be assigned high variance, while
correctly predicted regions can be assigned low variance. Thus,
it can be expected that an error model based on THESEUS-
PP will make estimation of these models easier, as the error
function can more readily distinguish between partly correct
and entirely wrong predictions, which is notoriously difficult
for RMSD-based methods [16].
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VI. APPENDIX

Prior over mean M, with N=number of atoms
= pyro.sample ("M", dist.StudentT(1,0,3) .expand_by ([N,3]).to_event (2))
Prior over variances U
= pyro.sample ("U", dist.HalfNormal (1) .expand_by ([N]).to_event (1)
= U.reshape (N, 1) .repeat (1,3) .view(])
Prior over translation T
= pyro.sample ("T", dist.Normal(0,1).expand_by ([3]).to_event (1)
Prior over rotation R
= pyro.sample ("u",dist.Uniform(0,1) .expand_by ([3]).to_event (1)
Transformation: turn u via a unit quaternion into a rotation R
= u_to_quat_to_R(u)
Transformation: rotate and translate M for X2
RT =M @R + T
# Likelihood
with pyro.plate("plate_students", N%3,dim=-1):
pyro.sample ("X1", dist.StudentT(l, M.view(¢1), U),obs=X1l)
pyro.sample ("X2", dist.StudentT(l, M_RT.view¢1), U), obs=X2)

[ VT R S o B e S

Fig. 3: Code fragment from the THESEUS-PP implementation in Pyro. pyro.sample calls a primitive stochastic function from
which a named sample is drawn. expand_by specifies the shape of the batch that is to be drawn from the distribution. pyro.plate
declares the variables within a tensor dimension as conditionally independent, while to_event declares them as dependent.
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1ADZ

(a) Kabsch-RMSD (b) Theseus-PP

1ADZ

\ — RMSD
1a = Theseus-PP

Pairwise distances
2 =

>

o 10 20 0 40 s

Amino acid position
©)

Fig. 4: Protein superposition for two conformations of protein 1ADZ obtained from (a) conventional RMSD superimposition

and (b) THESEUS-PP. The protein in green is rotated (X»). The images are generated with PyMOL [14]. Graph (c) shows

the pairwise distances (in A) between the C,, coordinates of the structure pairs. The blue and orange lines represent RMSD
and THESEUS-PP superposition, respectively.
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1AHL

(a) Kabsch-RMSD (b) Theseus-PP

1AHL

— RMSD
15.0 w Theseus-PP

S0
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Amino acid position
(©)
Fig. 5: Protein superposition for two conformations of protein 1AHL obtained from (a) conventional RMSD superimposition
and (b) THESEUS-PP. The protein in green is rotated (X»). The images are generated with PyMOL [14]. Graph (c) shows
the pairwise distances (in A) between the C,, coordinates of the structure pairs. The blue and orange lines represent RMSD
and THESEUS-PP superposition, respectively.
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(a) Kabsch-RMSD (b) Theseus-PP
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Fig. 6: Protein superposition for two conformations of protein 1AK7 obtained from (a) conventional RMSD superimposition
and (b) THESEUS-PP. The protein in green is rotated (X5). The images are generated with PYMOL [14]. Graph (c) shows
the pairwise distances (in A) between the C,, coordinates of the structure pairs. The blue and orange lines represent RMSD
and THESEUS-PP superposition, respectively.
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(a) Kabsch-RMSD (b) Theseus-PP
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Fig. 7: Protein superposition for two conformations of protein 2CPD obtained from (a) conventional RMSD superimposition
and (b) THESEUS-PP. The protein in green is rotated (X2). The images are generated with PyMOL [14]. Graph (c) shows
the pairwise distances (in A) between the C,, coordinates of the structure pairs. The blue and orange lines represent RMSD
and THESEUS-PP superposition, respectively.
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Fig. 8: Protein superposition for two conformations of protein 2KHI obtained from (a) conventional RMSD superimposition
and (b) THESEUS-PP. The protein in green is rotated (X5,). The images are generated with PYMOL [14]. Graph (c) shows
the pairwise distances (in A) between the C,, coordinates of the structure pairs. The blue and orange lines represent RMSD
and THESEUS-PP superposition, respectively.
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2LKL
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Fig. 9: Protein superposition for two conformations of protein 2LKL obtained from (a) conventional RMSD superimposition
and (b) THESEUS-PP. The protein in green is rotated (Xs). The images are generated with PyMOL [14]. Graph (c) shows
the pairwise distances (in A) between the C,, coordinates of the structure pairs. The blue and orange lines represent RMSD
and THESEUS-PP superposition, respectively.

70



14 PAPER 2: BAYESIAN PROTEIN SUPERPOSITION USING HAMILTONIAN MONTE
CARLO

14 Paper 2: Bayesian protein superposition using Hamiltonian Monte
Carlo

Authors: Lys Sanz Moreta, Ahmad Salim Al-Sibahi and Thomas Hamelryck

Motivation: Computing the uncertainty over the superposition parameters and testing the versatility
of the rotation matrix to capture ambiguous protein superpositions had not been tested. Therefore we
proposed a new version of Theseus-PP named Theseus-HMC where we were able to see the complete
potential of the model under Hamiltonian Monte Carlo inference methodology.
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Bayesian protein superposition using Hamiltonian
Monte Carlo
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Abstract—Optimally superimposing protein structures is essen-
tial to study their structure, function, dynamics and evolution.
We present THESEUS NUTS (No U-Turn Sampler), a Bayesian
version of the THESEUS model [1]-[3] which relies on maximum
likelihood estimation. The probabilistic model interprets each
protein as a rotated and translated noisy observation of a latent
mean structure. Unlike conventional methods [4], THESEUS
takes into account the differences in correlations between the
atoms in the structure. This paper extends the previous THE-
SEUS MAP (Maximum A Posteriori) model, [5] to full Bayesian
inference by making use of the iterative NUTS [6], a Hamiltonian
Monte Carlo method. The model delivers consistent results and
is computationally efficient thanks to its implementation in the
probabilistic programming language NumpPyro [7], [8] which in
turn relies upon JAX [9], a system for high-performance machine
learning.

Index Terms—protein superposition, Bayesian modelling, prob-
abilistic progr ing, NUTS, Hamil Monte Carlo, protein
structure superposition

1. INTRODUCTION

Superimposing proteins optimally is crucial to compare their
structures. The standard method minimizes the root mean
squared deviation (RMSD) of the distances between paired
atoms. This approach centers the proteins to the origin and
calculates the rotation matrix by singular value decomposition
[4] or quaternion algebra [10], [11]. These methods presume
that all atoms positions share equal variance (homoscedastic-
ity). This becomes problematic in the case of proteins with
flexible loops or flexible terminal regions, where some of the
atoms can exhibit high variance. The THESEUS model [1],
[2] solved this issue by allowing identification of atoms with
higher or lower variance (heteroscedasticity), corresponding to
variable and conserved regions.

Previously we implemented the THESEUS model in the
probabilistic programming language Pyro [8] (THESEUS
MAP). This made it possible to calculate a maximum a pos-

teriori (MAP) estimate using automated stochastic variational
inference (SVI) and suitable priors [5].

Here, we present a fully Bayesian version of THESEUS
based on iterative NUTS sampling. The model is implemented
in the deep probabilistic programming language NumPyro
which facilitates high-performance machine learning research
thanks to its JAX backend [9]. JAX is an extensible system for
composable function transformations which allows the imple-
mentation of sophisticated algorithms with high performance
in Python.

II. METHODS
A. Algorithm summary

THESEUS considers the observed structures, X; and X,
as distributed according to a multivariate matrix normal dis-
tribution with latent mean structure M, with Nx3 size, and
covariance matrices U and V. X is rotated (R) and translated
(T) to achieve the optimal superposition 2. The rotation matrix
is represented by quaternions in order to formulate a uniform
prior over the space of rotations.

X, ~ MN(M, U, V). )

Xy ~ MN(MR — 15T, U, V). o))

In practice, the matrix-normal distributions of X; and X
reduce to a product of multivariate normal distributions. For
details on the model and its prior distribution we refer to [5].

B. Hamiltonian Monte Carlo methods

Hamiltonian Monte Carlo (HMC) is a Markov chain Monte
Carlo (MCMC) algorithm that replaces random walk dynamics
with Hamiltonian dynamics which rely on gradient infor-
mation to perform the sampling. The No-U-Turn Sampler
(NUTS) [12] is an HMC extension that allows automatically
tuning the required hyperparameters (the step size and the
number of steps).
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For our model, we rely on the iterative NUTS implementa-
tion in Numpyro to perform the sampling. Iterative NUTS [6]
improves on conventional NUTS [12] by replacing recursion
with iteration in the construction of the binary tree used
in the proposal. The iterative approach can be implemented
efficiently in JAX [9]. JAX can in turn construct a graph
representing the computation, and compile it for efficient
execution on modern hardware using optimizations based on
linear algebra. These optimizations were critical in making
NUTS sampling scale to high-dimensional protein systems
with hundreds of atoms, and allow us to retrieve a large
number of samples for the posterior distribution in seconds.

C. Inference details

The posterior distribution was approximated by 1000 sam-
ples after a burn-in period of 500 samples. The parameters
of the inference method were chosen in order to optimize
speed: the tree depth was restricted to 10 nodes, the acceptance
probability of the samples was set to 0.8 or higher and the
chain was initialized by a prior based on the median of 15
samples. We ran a single Markov chain.

III. MATERIALS

The algorithm was tested on several proteins from the
RCSB protein database [13] whose structures were determined
by Nuclear Magnetic Resonance (NMR). Such files typically
contain several models of the same protein. These models
represent the structural dynamics of the protein in an aqueous
medium, and thus provide structural snapshots that reveal both
conserved and variable regions. This makes them challenging
targets for conventional RMSD superposition. We used the fol-
lowing structures: 1AB2, 1AHL, 1JE3, 1RLP, 1ZWG, 2HF5,
2KHI and 2LMP, which vary from sizes of 35 to 576 residues.

IV. RESULTS

The computations where carried out on an Intel® Xeon
© Gold 6136 CPU @ 3.00GHz and an Nvidia graphic card
(Quadro RTX 6000). The model was implemented both in
Pyro and Numpyro, re-running them for comparison. The latter
implementation was on average approximately 1000 times
faster due to the implementation of iterative NUTS within the
JAX environment. As the computational speed of the Numpyro
implementation was much higher on the CPU than on the
GPU, we focus here on the former . The computational times
register in I are an average compilation of 10 runs for the
Numpyro model. The Pyro version was only run once due to
its low computational speed.

An example of a pair of superimposed structures is shown
in 1. For comparison, the superposition resulting from the
conventional RMSD method [4], calculated using Biopython
[14], is shown on la. The THESEUS MAP superposition
is shown in 1b. Finally, the THESEUS NUTS superposition
is displayed in lc. These images illustrate the differences
between these different methods and their abilities to handle
regions with high and low variability. Supplementary figures
of superimposed structures exhibiting different degrees of
variability can be found in the Appendix.

TABLE 1
RESULTS OF APPLYING THESEUS NUTS TO THE TEST STRUCTURES.
FIRST COLUMN: PDB IDENTIFIER. SECOND COLUMN: THE NUMBER OF
C, ATOMS USED IN THE SUPERPOSITION. THIRD COLUMN: THE MODEL
IDENTIFIERS. FOURTH COLUMN: CPU RUNNING TIME FOR THE NUMPYRO
MODEL. FIFTH COLUMN: GPU RUNNING TIME FOR PYRO MODEL.

. CPU GPU

PBD ID %;“g“‘ g,l';’:fe'l's' Time Time
° (Numpyro) | (Pyro)

1AB2 109 0 and 3 24.3s 1h07m35s
IAHL 49 0 and 2 19.1s 1h05md4s
1JE3 97 0 and 1 22s 1h05m35s
IRLP 65 0 and 5 26s 58m48s
1ZWG 35 0 and 3 20s 52m30s
2HF5 68 0 and 3 30.9s 1h04m37s
2KHI 95 0 and [ 25.1s 1h05m24s
2LMP 576 0 and 3 154.5s 57m25s

V. CONCLUSION

Here, we present a Bayesian model for protein structure
superposition implemented in the deep probabilistic program-
ming language Numpyro [7], [8] with JAX [9] as its back-end
. This is the first time that the full Bayesian posterior over the
parameters of protein superposition is inferred.

The results achieved using Bayesian inference suggest that
THESEUS could be potentially used as a suitable error model
for probabilistic protein structure prediction. The THESEUS
model has the potential to distinguish among partially correct
and utterly incorrect predictions when used as a potential like-
lihood model. Our results show that it is capable of delivering a
rich posterior with multiple or unique superposition solutions,
as seen for example in Fig. 1 or Fig. 4 in the Supplementary
section, respectively.
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Fig. 1. Protein superposition for two conformations of protein 1ZWG obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and
(c) THESEUS NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in A) between the C, coordinates of the structure pairs.
The blue and orange lines represent RMSD and THESEUS-PP superposition, respectively.
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Fig. 2. Superposition of two conformations of protein 1AB2 obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and (c)
THESEUS NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in A) between the C, coordinates of the structure pairs.
The blue and orange lines represent RMSD and THESEUS-PP superposition, respectively.
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Fig. 3. Protein superposition of two conformations of protein IAHL obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and
(c) THESEUS NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in A) between the C, coordinates of the structure pairs.
The blue and orange lines represent RMSD and THESEUS-PP superposition, respectively.
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Fig. 4. Superposition of two conformations of protein 1JE3 obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and (c) THESEUS

NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in A) between the C\,, coordinates of the structure pairs. The blue and
orange lines represent RMSD and THESEUS-PP superposition, respectively.
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Fig. 5. Superposition of two conformations of protein IRLP obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and (c)
THESEUS NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in A) between the Co coordinates of the structure pairs.

The blue and orange lines represent RMSD and THESEUS-PP superposition, respectively.
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Fig. 6. Superposition of two conformations of protein 2HFS5 obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and (¢) THESEUS
NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in A) between the C¢, coordinates of the structure pairs. The blue and
orange lines represent RMSD and THESEUS-PP superposition, respectively.
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Fig. 7. Superposition of two conformations of protein 2KHI obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and (¢) THESEUS
NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in A) between the C¢, coordinates of the structure pairs. The blue and
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Fig. 8. Superposition of two conformations of protein 2KHI obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and (c) THESEUS
NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in A) between the Co, coordinates of the structure pairs. The blue and
orange lines represent RMSD and THESEUS-PP superposition, respectively.
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Motivation: Generation of ab-initio protein fragment libraries is a challenging task due to the in-
sufficient ability of the state-of-the-art methods to capture uncertainty over the generated predictions.
Achieving a stage of substantial variability over the predictions is needed to account for the noisiness
within the experimental data used for training and the intrinsic dynamism of the protein structure.
We developed a new probabilistic model, BIFROST, based on the continuous Deep Markov Model
[5, 162] that solely relies on learning the distribution of the dihedral angles from the protein back-
bone. BIFROST offers on par accuracy results with ROSETTA [24, 24] with better computational
performance. This model is designed to be extended with the Theseus-PP error likelihood function in
means of improving its global structure prediction capabilities.
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Abstract

Fragment libraries are often used in protein struc-
ture prediction, simulation and design as a means
to significantly reduce the vast conformational
search space. Current state-of-the-art methods
for fragment library generation do not properly
account for aleatory and epistemic uncertainty,
respectively due to the dynamic nature of pro-
teins and experimental errors in protein structures.
Additionally, they typically rely on information
that is not generally or readily available, such as
homologous sequences, related protein structures
and other complementary information. To address
these issues, we developed BIFROST, a novel take
on the fragment library problem based on a Deep
Markov Model architecture combined with direc-
tional statistics for angular degrees of freedom,
implemented in the deep probabilistic program-
ming language Pyro. BIFROST is a probabilistic,
generative model of the protein backbone dihe-
dral angles conditioned solely on the amino acid
sequence. BIFROST generates fragment libraries
with a quality on par with current state-of-the-art
methods at a fraction of the run-time, while requir-
ing considerably less information and allowing
efficient evaluation of probabilities.

1. Introduction

Fragment libraries (Jones & Thirup, 1986) find wide appli-
cation in protein structure prediction, simulation, design and
experimental determination (Trevizani et al., 2017; Chikenji
et al., 2006; Boomsma et al., 2012). Predicting the fold of

"Equal contribution 'Department of Computer Science, Uni-
versity of Copenhagen, Copenhagen, Denmark *Evaxion Biotech,
Copenhagen, Denmark *Department of Biology, University of
Copenhagen, Copenhagen, Denmark. Correspondence to: Chris-
tian B. Thygesen <christiank.thygesen@di.ku.dk>, Thomas
Hamelryck <thamelry @bio.ku.dk>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

a protein requires evaluating a conformational space that is
too vast for brute-force sampling to be feasible (Levinthal,
1969). Fragment libraries are used in a divide-and-conquer
approach, whereby a full length protein is divided into a
manageable sub-set of shorter stretches of amino acids for
which backbone conformations are sampled. Typically, sam-
pling is done using a finite set of fragments derived from
experimentally determined protein structures. Fragment
libraries are used in state-of-the-art protein structure pre-
diction frameworks such as Rosetta (Rohl et al., 2004), I-
TASSER (Roy et al., 2010), and AlphaFold (Senior et al.,
2019).

Generally, knowledge-based methods for protein struc-
ture prediction follow two main strategies: homology (or
template-based) modelling (Eswar et al., 2006; Sali & Blun-
dell, 1993; Song et al., 2013) and de novo modelling (Rohl
et al., 2004). Both approaches assume that the native fold of
a protein corresponds to the minimum of a physical energy
function and make use of statistics derived from a database
of known proteins structures (Alford et al., 2017; Leaver-
Fay et al., 2013). Whereas homology modelling relies on
the availability of similar structures to limit the search space,
knowledge-based de novo protocols require extensive sam-
pling of the conformational space of backbone angles (figure

. Residue 1

Figure 1. Schematic of the three dihedral angles (¢, v, and w) that
parameterise the protein backbone. R represents the side chain.

To overcome the shortcomings of either strategy, modelling
tools like Rosetta (Rohl et al., 2004) use a combined ap-
proach of extensive sampling and prior information. Rosetta
employs simulated annealing of backbone conformations
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according to an energy function (Alford et al., 2017), while
reducing the conformational space by sampling fragments
of typically 3 or 9 amino acids at a time (Simons et al.,
1997).

Fragments are typically extracted from experimentally deter-
mined protein structures in the Protein Data Bank (Berman
et al., 2000) and used in prediction based on similarities in
sequence and sequence-derived features (Gront et al., 2011;
Kalev & Habeck, 2011; Santos et al., 2015; De Oliveira et al.,
2015; Trevizani et al., 2017; Wang et al., 2019). Generative
probabilistic models of protein backbone angles (Hamel-
ryck et al., 2006; Boomsma et al., 2008; Bhattacharya et al.,
2016; Edgoose et al., 1998; Li et al., 2008; Lennox et al.,
2010) offer an alternative way to construct fragment libraries
and aim to represent the associated epistemic and aleatory
uncertainty. In this case, epistemic uncertainty is due to
experimental errors from the determination of protein struc-
tures, while aleatory or inherent uncertainty is due to the
dynamic nature, or flexibility, of proteins (Best, 2017).

Here, we present BIFROST - Bayesian Inference for FRag-
ments Of protein STructures - a deep, generative, proba-
bilistic model of protein backbone angles that solely uses
the amino acid sequence as input. BIFROST is based on
an adaptation of the Deep Markov Model (DMM) archi-
tecture (Krishnan et al., 2017) and represents the angular
variables (¢ and 1)) in a principled way using directional
statistics (Mardia & Jupp, 2008). Finally, BIFROST makes
it possible to evaluate the probability of a backbone confor-
mation given an amino acid sequence, which is important
for applications such as sampling the conformational space
of proteins with correct statistical weights in equilibrium
simulations (Boomsma et al., 2014).

2. Background and related work

Probabilistic, generative models of local protein struc-
ture Most generative, probabilistic models of local protein
structure are Hidden Markov Models (HMMs) that repre-
sent structure and sequence based on the assumption of a
Markovian structure (Hamelryck et al., 2012). The first such
models did not include the amino acid sequence (Edgoose
et al., 1998), discretised the angular variables (Bystroff
et al., 2000), or used continuous, but lossy representations
(Camproux et al., 1999; Hamelryck et al., 2006), making
sampling of conformations with atomic detail problematic.
These early models are thus probabilistic but only approx-
imately “generative” at best. TorusDBN (Boomsma et al.,
2008) was the first joint model of backbone angles and
sequence that properly accounted for the continuous and
angular nature of the data. Others introduced richer proba-
bilistic models of local protein structure including Dirichlet
Process mixtures of HMMs (DPM-HMMs) Lennox et al.
(2010) and Conditional Random Fields (CRFs) (Zhao et al.,

2010; 2008). As far as we know, BIFROST is the first deep
generative model of local protein structure that aims to quan-
tify the associated aleatory and epistemic uncertainty using
an (approximate) Bayesian posterior.

Deep Markov Models The DMM, introduced in (Krishnan
et al., 2017), is a generalisation of the variational autoen-
coder (VAE) (Kingma & Welling, 2014) for sequence or
time series data. Related stochastic sequential neural mod-
els were reported by Fraccaro et al. (2016) and Chung et al.
(2015). Published applications of DMMs include natural
language processing tasks (Khurana et al., 2020), inference
of time series data (Zhi-Xuan et al., 2020), and human pose
forecasting (Toyer et al., 2017). Our application of the
DMM and the modifications made to the standard model
will be described in section 3.3.

3. Methods
3.1. Data set

BIFROST was trained on a data set of fragments derived
from a set of 3733 proteins from the cullpdb data set (Wang
& Dunbrack, 2005). Quality thresholds were (i) resolution
< 1.6A, (ii) R-factor < 0.25, and (iii) a sequence iden-
tity cutoff of 20%. For the purpose of reliable evaluation,
sequences with > 20% identity to CASP13 targets were
removed from the dataset.

Fragments containing angle-pairs in disallowed regions of
the Ramachandran plot (Ramachandran et al., 1963) were
removed using the Ramalyze function of the crystallography
software PHENIX (Liebschner et al., 2019). The resulting
data set consisted of ~ 186000 9-mer fragments. Prior to
training, the data was randomly split into train, test, and
validation sets with a 60/20/20% ratio.

3.2. Framework

The presented model was implemented in the deep proba-
bilistic programming language Pyro, version 1.3.0 (Bing-
ham et al., 2019) and Pytorch version 1.4.0 (Paszke et al.,
2019). Training and testing were carried out on a machine
equipped with an Intel Xeon CPU E5-2630 and Tesla M10
GPU. The model trains on a single GPU and converges after
150 epochs for a total training time of approximately 34
hours.

3.3. Model

BIFROST consists of a DMM (Krishnan et al., 2017) with
an architecture similar to an Input-Output HMM (10-HMM)
(Bengio & Frasconi, 1995). The model employs the Marko-
vian structure of an HMM, but with continuous, as opposed
to discrete, latent states (z) and with transition and emission
neural networks instead of transition and emission matrices.
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Consequently, the latent states are iteratively transformed
using the transition neural network, such that the value of
the current latent state depends on the previous state and the
(processed) amino acid information at that position (figure
2).

Observed angles (¢ and 1)) are generated from the latent
state sequence by applying an emitter neural network at
each position (figure 2). Since the backbone angle w is
most often narrowly distributed around 180°, this degree of
freedom is not included in the current version of BIFROST.

Figure 2. The BIFROST model. Grey nodes are latent random
variables, white circular nodes are observed variables, white rectan-
gular nodes represent hidden states from a bidirectional Recurrent
Neural Network (RNN) H, and black squares represent neural
networks. F and T denote the emitter and the transition network,
respectively.

The structure of the model is shown in figure 2. For no-
tational simplicity, the sequence of ¢ and v pairs will be
denoted by x. The joint distribution of the latent variable z
and the angles x conditioned on the amino acid sequence a
with length NV of the graphical model in figure 2 factorises
as

N
p(z,x|a) = [ [ p(zalzn—1, hn())p(x0]2)

n=1

(O]

where h,(a) is the deterministic hidden state generated at
position n by a bidirectional RNN H with parameters 0 g
running across the amino acid sequence. The bidirectional
RNN incorporates information from amino acids upstream
and downstream of position n. The initial latent state z is
treated as a trainable parameter and is thus shared for all
sequences.

The transition densities are given by a multivariate Gaussian
distribution,

P(zn|2n—1,hn(a)) =

N(pr(zn-1,Bn(@)), Sr(@n 1, (@) O

where the mean vector (1) and the (diagonal) covariance
matrix () are given by a neural network 7" parameterised
by 07‘.

The emission densities are given by a bivariate periodic
student-T distribution (Pewsey et al., 2007) (section 3.5)
such that

]J(X,Z‘Z,l) = 3)
T (xn|ve(zn), bE(Zn), Be(24))
where the single, shared degree of freedom (vg), the vector
of two means (f¢;), and the 2 x 2 diagonal covariance matrix
(X g) of the distribution are given by a neural network F
parameterised by 0.

Figure 3. Variational distribution for approximating the posterior.
Grey nodes are latent random variables, white circular nodes are
observed variables, white rectangular nodes represent hidden states
from a bidirectional RNN G, while black squares represent neural
networks. C' denotes the combiner network.

3.4. Estimation

In order to perform inference of the intractable posterior, we
introduce a variational distribution or guide q (Kingma &
Welling, 2019) (figure 3), which makes use of a combiner
neural network C parameterised by ¢,

4(2a|zn-1,8,%) =

N (@1, 8n(2.3)), S (@n,ga(ax))

where g,, (a, ) is the deterministic hidden state generated
at position n by a bidirectional RNN G with parameters
running across the amino acid sequence a and the angles .

For the parameters of the neural networks
€€, 07,0E,05), point estimates are obtained
using Stochastic Variational Inference (SVI), which
optimises the Evidence Lower Bound (ELBO) using
stochastic gradient descent (SGD) (Kingma & Welling,
2014; 2019). The ELBO variational objective is given by

Loc(x) =

)
Eg (z|2,a) [log pe (2, z|a) — log g¢ (z|x, a)]

where ¢ = ((¢,¢q) and 0 = (z0,0r,05,05) are the
parameters of the guide and the model, respectively.
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3.5. Periodic student T distribution

As angle-pairs are periodic values, i.e. distributed on a torus
(Boomsma et al., 2008), they need to be modelled by an
appropriate periodic distribution. Traditionally, angles are
assumed distributed according to the von Mises distribution,
which is defined by a mean that can be any real number and a
concentration parameter, which can be any positive number.
SVI showed poor performance when the von Mises distribu-
tion was used. Here, we circumvent this by representing the
likelihood of the angles by a student T distribution that is
wrapped around a circle (Pewsey et al., 2007). This allows
for appropriate modelling of the periodicity of the angles,
while being more robust with regards to outlier issues than
the von Mises distribution due to the wider tails of the T
distribution. It should be noted as well that Pewsey et al.
(2007) showed that the wrapped student T distribution can
approximate the von Mises distribution closely.

3.6. Neural network architecture overview

The overall architecture is based on the originally proposed
DMM (Krishnan et al., 2017) with modifications. The main
difference is the addition of an RNN H in the model that
processes the amino acid sequence a, thus providing explicit
conditioning on the amino acid sequence. A similar archi-
tecture was used by Fraccaro et al. (2016) for time series. In
the guide, a second RNN G is used that processes the angles
and the amino acid sequence during training. The initial
values for both RNNs are treated as trainable parameters.
In addition to the RNNSs, the model contains an emitter net-
work E and a transition network 7', while the guide relies
on a combiner network C'.

Emitter architecture The emitter network £ parameterises
the emission probabilities as stated in equation 3. E'is a feed-
forward neural network containing two initial layers that
branch into three. One output branch is a single layer that
outputs the degree of freedom of the Student T distribution,
which is shared between the two angles. The other two
branches output a mean p and a standard deviation o for ¢
and 1, respectively. Each hidden layer of the neural network
contained 200 neurons with rectified linear unit (ReLU)
activation. Output layers for 4 values had no activation, as
the periodic distribution automatically transforms values to
arange between — and 7. Output layers for o and degrees
of freedom v used softplus activation to ensure positive, real
numbered values. The architecture of £ is depicted in figure
4.

Transition and combiner architecture The transition net-
work 7" and the combiner network C' specify the transition
densities from the previous to the current latent state of the
model (equation 2) and the guide (equation 4), respectively.
In the original DMM (Krishnan et al., 2017), C was inspired
by the Gated Recurrent Unit (GRU) architecture (Cho et al.,

T

Zn Vn

Figure 4. Architecture of the emitter neural network, E. Black
rectangles represent ReLU-activated fully connected layers.

2014), while T was a simple feed forward network. Here,
both C' and T" were based on GRU cells to allow for better
horizontal information flow (figure 5).

.

hn/g,

Figure 5. Architecture of the transition 7" and combiner C' neural
networks. Black squares represent single neural network layers
activated by a ReLU (R), sigmoid (S), tanh (T), softplus (SP) or
no activation. White squares represent element-wise mathematical
operations. Gray squares represent tensor concatenation. Note that
the network takes as input either h., or g,, obtained from the RNN
in the model or the guide, respectively.

The total number of parameters in BIFROST are shown in
table 1.

3.7. Hyperparameter optimization

A simple hyperparameter search was performed with the
test ELBO as the selection criterion (data not shown). The
final model was trained with a learning rate of 0.0003 with
a scheduler reducing the learning rate by 90% when no im-
provement was seen for 10 epochs. Minibatch size was 200.
The Adam optimiser was used with a 5, and (2 of 0.96 and
0.999 respectively. The latent space dimensionality was 40.
All hidden activations (if not specified above) were ReLU
activations. We employed norm scaling of the gradient to a
norm of 10.0. Finally, early stopping was employed with a
patience of 50 epochs.
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Neural networks Zy

E T C H G P q
24805 142280 142280 89200 90000 40 40

Total parameters: 488 645

Table 1. Number of parameters in BIFROST. E: Emitter, T: Transi-
tion, C: Combiner, H: model RNN, G: guide RNN, p: model, q:
guide

3.8. Sampling from the model

The BIFROST model (figure 2) is designed with explicit
conditioning on amino acid sequences allowing a simple
and efficient ancestral sampling approach that eliminates
the need for using the guide for predictions. Thus, the guide
is used solely for the purpose of model estimation and is
discarded upon sampling.

3.9. Fragment library generation and benchmarking

Fragment libraries are a collection of fragments, consisting
of typically 3 or 9 amino acids with known backbone angles.
Here, we focus on fragments of nine amino acids. For each
fragment in a protein, 200 possible backbone conformations
are sampled from BIFROST resulting in a set of (L — 8) x
200 fragment candidates, where L is the number of amino
acids in the protein. These candidates are compared to
the observed fragment by calculating the angular root mean
square deviation (RMSD) between the corresponding angles
as proposed in Boomsma et al. (2008). The choice of 9-mer
fragments and the 200 samples per fragment were made to
emulate the default behavior of the Rosetta fragment picker
(see below), for fair comparison.

The aggregated quality of fragment libraries are generally
represented by two metrics; precision and coverage. Preci-
sion is defined as the fraction of candidates with an RMSD
to the observed below a certain threshold, whereas coverage
is the fraction of positions covered by at least one candidate
with an RMSD below a certain threshold. Evaluating the
precision and coverage at increasing thresholds yields two
curves, and the quality of the fragment library is quantified
by the area under these two curves.

BIFROST was benchmarked against Rosetta’s fragment
picker (Gront et al., 2011) using the precision and coverage
metrics. The fragment picker was run using default parame-
ters, picking 200 fragments per position. Secondary struc-
ture predictions were performed using SAM-T08 (Karplus,
2009), PSIPRED (Jones, 1999) and Jufo (Leman et al.,
2013). Sequences that were homologous to the targets were
excluded (—nohoms flag).

Fragment libraries were generated for all available regu-
lar (denoted “’T”) targets from the latest installment of the

bi-annual protein structure prediction competition Critical
Assessment of Techniques for Protein Structure Prediction
(CASP13).

3.10. Runtime comparison

In order to compare the runtime of BIFROST to that of
the fragment picker, nine proteins of varying lengths were
selected. Both tools generated 200 samples per fragment.
The experiment was run on the same 32-core machine for
both the fragment picker and BIFROST.

4. Results

To show that the model is able to capture general protein
backbone behavior, angles were generated conditioned on
the sequences of 5000 previously unseen fragments and
compared to the observed angles. The model was able to
recreate the observed Ramachandran plots with minimal
added noise (figure 6).

Observed Modelled

Figure 6. Observed and modelled aggregated Ramachandran plots

While most amino acids show angle distributions similar to
the background in figure 6, glycine and proline are excep-
tions due to the nature of their side chains. The side chain
of glycine is a single hydrogen atom, allowing the backbone
to be exceptionally flexible, while the side chain of proline
is covalently linked to the backbone restraining the confor-
mational space. The modelled distribution of angles for
these two unique cases, along with leucine to represent the
general case, show that the model is able to capture specific
amino acid properties (figure 7).

The left side of figure 8 shows a thin, smoothed coil rep-
resentation of 100 samples from BIFROST conditioned on
example 9-mer fragments that were observed to be either
a-helix, [-strand, or coiled. The right side shows distri-
butions of backbone RMSDs of 5000 sampled fragments
to the observed structure from BIFROST and as picked by
Rosetta’s fragment picker.

The RMSDs were generally distributed towards 0A for the
a-helix case, showcasing BIFROSTS ability to predict this

88



15 PAPER 3: EFFICIENT GENERATIVE MODELLING OF PROTEIN STRUCTURE
FRAGMENTS USING A DEEP MARKOV MODEL

Efficient Generative Modelling of Protein Structure Fragments using a Deep Markov Model

Leucine Glycine Proline

o
g "
PR v ¥ A
]

g %
o
3
Ts " %
3 LY % A
=

[
¢ @

Figure 7. Amino acid specific Ramachandran plots

well defined secondary structure element. The model has
more difficulty modelling (-strands and coils. However,
the distributions of the RMSDs are nearly identical to those
produced by the fragment picker. For coil fragments, the
RMSDs were distributed around 3A reflecting the inherent
variability of those fragments.

Alpha

AMSD

Figure 8. Left: 100 samples of backbone dihedral angles (blue)
superimposed on the observed structures (yellow). For clarity,
the backbones are represented as thin, smoothed coils instead of
traditional cartoon representations. Right: Aggregated RMSDs
of BIFROST-sampled conformations and conformations picked
by Rosetta’s fragment picker for sequences observed as a-helix,
[3-strand, and coil respectively.

BIFROST was benchmarked against Rosetta’s fragment
picker (Gront et al., 2011) on all publicly available CASP13
regular targets. BIFROST generated fragment libraries with
comparable precision and coverage to the fragment picker
(figure 9).

Precision AUC

— Bifrost
W Rosetta

Coverage AUC

0.4 0.4

Figure 9. Comparison of fragment libraries generated by
BIFROST, relying on just the amino acid sequences, against
Rosetta’s fragment picker, which uses external information and
relies on ensemble predictions of secondary structure.

Finally, BIFROST enables efficient sampling of fragment
libraries. The runtime of BIFROST and the fragment picker
are compared in figure 10 on a set of nine proteins of varying
lengths. Both runtimes roughly scale linearly with protein
length, but BIFROST has a smaller constant term than the
fragment picker.
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Figure 10. Runtime comparison between Rosetta’s fragment picker
and BIFROST on a set of nine proteins of varying lengths.

5. Discussion

BIFROST is a deep, generative model of local protein struc-
ture conditioned on sequence that provides a probabilistic
approach to generating fragment libraries.

The quality of the generated fragment libraries is on par
with Rosetta’s fragment picker, despite using much less
information, such as an ensemble of secondary structure
predictors. Due to the probabilistic nature of BIFROST,
distributions tend to be slightly wider than those resulting
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from picking structural fragments from the PDB based on
sequence similarity. This wider distribution plausibly re-
flects the dynamic nature of protein structure, which is not
captured in the experimental data provided by static X-ray
structures.

The model was estimated using SVI, relying on the ELBO
variational objective. As the ELBO provides a lower bound
on the log evidence (Kingma & Welling, 2014), we can
evaluate the probability of a specific local structure given
the sequence, simply by evaluating the ELBO. Evaluating
the probability of fragments is crucial for correct sampling
of the conformational space, for example in the case of
equilibrium simulations of protein dynamics (Boomsma
et al., 2014). The probabilities assigned by BIFROST can
be used to decide how often a fragment should be sampled
in the folding process. In contrast, existing methods do not
provide an explicit measure of fragment confidence.

In this paper the focus was kept on fragments of nine
residues for ease of comparison to the fragment picker. How-
ever, the DMM architecture of BIFROST allows generation
of fragments of arbitrary length but with an observed drop-
off in performance as the length of fragments are increased
(data not shown).

Existing methods rely heavily on the availability of multiple
sequence alignments (MSA) and other information, such as
secondary structure predictors. As MSAs are not available
for orphan proteins or synthetic proteins, the need for pure
sequence based models is evident.

6. Acknowledgements

We acknowledge funding from the Innovation Fund Den-
mark under the grant “Accelerating vaccine development
through a deep learning and probabilistic programming ap-
proach to protein structure prediction”. We thank Wouter
Boomsma for help with the wrapped student T distribution

References

Alford, R. F.,, Leaver-Fay, A., Jeliazkov, J. R., O’Meara,
M. J., DiMaio, F. P, Park, H., Shapovalov, M. V., Ren-
frew, P. D., Mulligan, V. K., Kappel, K., Labonte, J. W.,
Pacella, M. S., Bonneau, R., Bradley, P., Dunbrack, R. L.,
Das, R., Baker, D., Kuhlman, B., Kortemme, T., and
Gray, J. J. The Rosetta all-atom energy function for
macromolecular modeling and design. Journal of Chemi-
cal Theory and Computation, 13(6):3031-3048, jun 2017.
ISSN 15499626. doi: 10.1021/acs.jctc.7b00125.

Bengio, Y. and Frasconi, P. An input output HMM ar-
chitecture. Neural Information Processing Systems, pp.
427434, 1995. ISSN 15322092. doi: 10.1093/europace/
euq350.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat,
T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E.
The Protein Data Bank, jan 2000. ISSN 03051048.

Best, R. B. Computational and theoretical advances in
studies of intrinsically disordered proteins. Current Opin-
ion in Structural Biology, 42:147-154, feb 2017. ISSN
0959440X. doi: 10.1016/j.sbi.2017.01.006.

Bhattacharya, D., Adhikari, B., Li, J., and Cheng, J. FRAG-
SION: Ultra-fast protein fragment library generation by
IOHMM sampling. Bioinformatics, 32(13):2059-2061,
2016. ISSN 14602059. doi: 10.1093/bioinformatics/
btw067.

Bingham, E., Chen, J. P, Jankowiak, M., Obermeyer, F.,
Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P. A.,
Horsfall, P., and Goodman, N. D. Pyro: Deep Universal
Probabilistic Programming. J. Mach. Learn. Res., 20:
28:1—-28:6, 2019.

Boomsma, W., Mardia, K. V., Taylor, C. C., Ferkinghoff-
Borg, J., Krogh, A., and Hamelryck, T. A generative,
probabilistic model of local protein structure. Proceed-
ings of the National Academy of Sciences of the United
States of America, 105(26):8932-8937, 2008. ISSN
00278424. doi: 10.1073/pnas.0801715105.

Boomsma, W., Frellsen, J., and Hamelryck, T. Prob-
abilistic models of local biomolecular structure and
their applications. Springer, 2012. doi: 10.1007/
978-3-642-27225-7_10.

Boomsma, W., Tian, P., Frellsen, J., Ferkinghoff-Borg, J.,
Hamelryck, T., Lindorff-Larsen, K., and Vendruscolo,
M. Equilibrium simulations of proteins using molecular
fragment replacement and NMR chemical shifts. Proceed-
ings of the National Academy of Sciences of the United
States of America, 111(38):13852-13857, 2014. ISSN
10916490. doi: 10.1073/pnas.1404948111.

Bystroff, C., Thorsson, V., and Baker, D. HMMSTR:
A hidden Markov model for local sequence-structure
correlations in proteins. Journal of Molecular Biol-
ogy, 301(1):173-190, 2000. ISSN 00222836. doi:
10.1006/jmbi.2000.3837.

Camproux, A. C., Tuffery, P., Chevrolat, J. P., Boisvieux,
J. E., and Hazout, S. Hidden Markov model approach
for identifying the modular framework of the protein
backbone. Protein Engineering, 12(12):1063-1073, 1999.
ISSN 02692139. doi: 10.1093/protein/12.12.1063.

Chikenji, G., Fujitsuka, Y., and Takada, S. Shaping up the
protein folding funnel by local interaction: Lesson from
a structure prediction study. Proceedings of the National
Academy of Sciences, 103(9):3141-3146, feb 2006. ISSN
0027-8424. doi: 10.1073/pnas.0508195103.

90



15 PAPER 3: EFFICIENT GENERATIVE MODELLING OF PROTEIN STRUCTURE
FRAGMENTS USING A DEEP MARKOV MODEL

Efficient Generative Modelling of Protein Structure Fragments using a Deep Markov Model

Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using RNN encoder-decoder
for statistical machine translation. In EMNLP 2014
- 2014 Conference on Empirical Methods in Natural
Language Processing, Proceedings of the Conference,
pp. 1724-1734. Association for Computational Linguis-
tics (ACL), jun 2014. ISBN 9781937284961. doi:
10.3115/v1/d14-1179.

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., and
Bengio, Y. A recurrent latent variable model for sequen-
tial data. In Advances in Neural Information Processing
Systems, volume 2015-Janua, pp. 2980-2988, 2015.

De Oliveira, S. H., Shi, J., and Deane, C. M. Building
a better fragment library for de novo protein structure
prediction. PLoS ONE, 10(4), 2015. ISSN 19326203.
doi: 10.1371/journal.pone.0123998.

Edgoose, T., Allison, L., and Dowe, D. L. An MML classi-
fication of protein structure that knows about angles and
sequence. Pacific Symposium on Biocomputing. Pacific
Symposium on Biocomputing, pp. 585-596, 1998. ISSN
2335-6928.

Eswar, N., Webb, B., Marti-Renom, M. A., Madhusudhan,
M., Eramian, D., Shen, M.-y., Pieper, U., and Sali, A.
Comparative protein structure modeling using modeller.
Current Protocols in Bioinformatics, 15(1):5.6.1-5.6.30,
sep 2006. ISSN 1934-340X. doi: 10.1002/0471250953.
bi0506s15.

Fraccaro, M., Sgnderby, S. K., Paquet, U., and Winther,
0. Sequential neural models with stochastic layers. In
Advances in Neural Information Processing Systems, pp.
2207-2215, 2016.

Gront, D., Kulp, D. W., Vernon, R. M., Strauss, C. E.,
and Baker, D. Generalized fragment picking in rosetta:
Design, protocols and applications. PLoS ONE, 6(8):
23294, 2011. ISSN 19326203. doi: 10.1371/journal.
pone.0023294.

Hamelryck, T., Kent, J. T., and Krogh, A. Sampling realistic
protein conformations using local structural bias. PLoS
Computational Biology, 2(9):e131, sep 2006. ISSN 1553-
7358. doi: 10.1371/journal.pcbi.0020131.

Hamelryck, T., Mardia, K., and Ferkinghoff-Borg, J. (eds.).
Bayesian Methods in Structural Bioinformatics. Statis-
tics for Biology and Health. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012. ISBN 978-3-642-27224-0. doi:
10.1007/978-3-642-27225-7.

Jones, D. T. Protein secondary structure prediction based on
position-specific scoring matrices. Journal of Molecular

Biology, 292(2):195-202, 1999. ISSN 00222836. doi:
10.1006/jmbi.1999.3091.

Jones, T. A. and Thirup, S. Using known substructures in
protein model building and crystallography. The EMBO
Journal, 5(4):819-22, apr 1986. ISSN 0261-4189.

Kalev, I. and Habeck, M. HHfrag: HMM-based frag-
ment detection using HHpred. Bioinformatics, 27(22):
3110-3116, 2011. ISSN 13674803. doi: 10.1093/
bioinformatics/btr541.

Karplus, K. SAM-T08, HMM-based protein structure pre-
diction. Nucleic Acids Research, 37(SUPPL. 2):492-497,
2009. ISSN 03051048. doi: 10.1093/nar/gkp403.

Khurana, S., Laurent, A., Hsu, W.-N., Chorowski, J., Lan-
cucki, A., Marxer, R., and Glass, J. A Convolutional Deep
Markov Model for Unsupervised Speech Representation
Learning. In Proceedings of Interspeech, jun 2020.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In 2nd International Conference on Learning Rep-
resentations, ICLR 2014 - Conference Track Proceedings,
2014.

Kingma, D. P. and Welling, M. An introduction to varia-
tional autoencoders. Foundations and Trends in Machine
Learning, 12(4):307-392, 2019. ISSN 1935-8237. doi:
10.1561/2200000056.

Krishnan, R. G., Shalit, U., and Sontag, D. Structured
inference networks for nonlinear state space models. In
31st AAAI Conference on Artificial Intelligence, AAAI
2017, pp. 2101-2109, sep 2017.

Leaver-Fay, A., O’Meara, M. J., Tyka, M., Jacak, R.,
Song, Y., Kellogg, E. H., Thompson, J., Davis, I. W,
Pache, R. A., Lyskov, S., Gray, J. J., Kortemme, T.,
Richardson, J. S., Havranek, J. J., Snoeyink, J., Baker,
D., and Kuhlman, B. Scientific benchmarks for guid-
ing macromolecular energy function improvement. In
Methods in Enzymology, volume 523, pp. 109-143. Aca-
demic Press Inc., 2013. ISBN 9780123942920. doi:
10.1016/B978-0-12-394292-0.00006-0.

Leman, J. K., Mueller, R., Karakas, M., Woetzel, N., and
Meiler, J. Simultaneous prediction of protein secondary
structure and transmembrane spans. Proteins: Structure,
Function and Bioinformatics, 81(7):1127-1140, jul 2013.
ISSN 08873585. doi: 10.1002/prot.24258.

Lennox, K. P,, Dahl, D. B., Vannucci, M., Day, R., and
Tsai, J. W. A Dirichlet process mixture of hidden Markov
models for protein structure prediction. Annals of Applied
Statistics, 4(2):916-942, 2010. ISSN 19326157. doi:
10.1214/09-A0OAS296.

91



15 PAPER 3: EFFICIENT GENERATIVE MODELLING OF PROTEIN STRUCTURE
FRAGMENTS USING A DEEP MARKOV MODEL

Efficient Generative Modelling of Protein Structure Fragments using a Deep Markov Model

Levinthal, C. How to fold graciously. Mdssbauer Spec-
troscopy in Biological Systems Proceedings, 24(41):22—
24, 1969. ISSN 1041-1135. doi: citeulike-article-id:
380320.

Li, S. C, Bu, D, Xu, J., and Li, M. Fragment-HMM: A
new approach to protein structure prediction. Protein
Science, 17(11):1925-1934, 2008. ISSN 09618368. doi:
10.1110/ps.036442.108.

Liebschner, D., Afonine, P. V., Baker, M. L., Bunkdczi,
G., Chen, V. B., Croll, T. L, Hintze, B., Hung, L.-w.,
Jain, S., McCoy, A. J., Moriarty, N. W., Oeffner, R. D.,
Poon, B. K., Prisant, M. G., Read, R. J., Richardson,
J. S., Richardson, D. C., Sammito, M. D., Sobolev,
0. V., Stockwell, D. H., Terwilliger, T. C., Urzhumt-
sev, A. G., Videau, L. L., Williams, C. J., and Adams,
P. D. Macromolecular structure determination using X-
rays, neutrons and electrons: recent developments in
Phenix. Acta Crystallographica Section D Structural
Biology, 75(10):861-877, oct 2019. ISSN 2059-7983.
doi: 10.1107/S2059798319011471.

Mardia, K. V. and Jupp, P. E. Directional Statistics.
Wiley Series in Probability and Statistics. John Wiley
and Sons, Inc., Hoboken, NJ, USA, jan 2008. ISBN
9780470316979. doi: 10.1002/9780470316979.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An imperative style,
high-performance deep learning library, 2019. ISSN
23318422.

Pewsey, A., Lewis, T., and Jones, M. C. The wrapped
t family of circular distributions. Australian and New
Zealand Journal of Statistics, 49(1):79-91, 2007. ISSN
1467842X. doi: 10.1111/j.1467-842X.2006.00465.x.

Ramachandran, G. N., Ramakrishnan, C., and Sasisekharan,
V. Stereochemistry of polypeptide chain configurations,
1963. ISSN 00222836.

Rohl, C. A., Strauss, C. E., Misura, K. M., and Baker, D.
Protein structure prediction using rosetta. Methods in
Enzymology, 383:66-93, 2004. ISSN 00766879. doi:
10.1016/S0076-6879(04)83004-0.

Roy, A., Kucukural, A., and Zhang, Y. I-TASSER: A unified
platform for automated protein structure and function
prediction. Nature Protocols, 5(4):725-738, 2010. ISSN
17502799. doi: 10.1038/nprot.2010.5.

Sali, A. and Blundell, T. L. Comparative protein modelling
by satisfaction of spatial restraints. Journal of Molecular

Biology, 234(3):779-815, dec 1993. ISSN 00222836. doi:
10.1006/jmbi.1993.1626.

Santos, K. B., Trevizani, R., Custodio, F. L., and Dardenne,
L. E. Profrager Web Server: Fragment libraries gener-
ation for protein structure prediction. In Proceedings
of the International Conference on Bioinformatics and
Computational Biology (BIOCOMP), pp. 38, 2015.

Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J.,
Sifre, L., Green, T., Qin, C., Zidek, A., Nelson, A. W.,
Bridgland, A., Penedones, H., Petersen, S., Simonyan,
K., Crossan, S., Kohli, P, Jones, D. T., Silver, D.,
Kavukcuoglu, K., and Hassabis, D. Protein structure
prediction using multiple deep neural networks in the
13th Critical Assessment of Protein Structure Prediction
(CASP13). Proteins: Structure, Function and Bioinfor-
matics, 87(12):1141-1148, 2019. ISSN 10970134. doi:
10.1002/prot.25834.

Simons, K. T., Kooperberg, C., Huang, E., and Baker, D.
Assembly of protein tertiary structures from fragments
with similar local sequences using simulated annealing
and Bayesian scoring functions. Journal of Molecular
Biology, 268(1):209-225, 1997. ISSN 00222836. doi:
10.1006/jmbi.1997.0959.

Song, Y., Dimaio, F., Wang, R. Y. R., Kim, D., Miles, C.,
Brunette, T., Thompson, J., and Baker, D. High-resolution
comparative modeling with RosettaCM. Structure, 21
(10):1735-1742, 2013. ISSN 09692126. doi: 10.1016/j.
str.2013.08.005.

Toyer, S., Cherian, A., Han, T., and Gould, S. Human
pose forecasting via deep Markov models. In DICTA
2017 - 2017 International Conference on Digital Image
Computing: Techniques and Applications, volume 2017-
Decem, pp. 1-8. Institute of Electrical and Electronics
Engineers Inc., jul 2017. ISBN 9781538628393. doi:
10.1109/DICTA.2017.8227441.

Trevizani, R., Dio, F. L. C., Santos, K. B. D., and Dardenne,
L. E. Critical features of fragment libraries for protein
structure prediction. PLoS ONE, 12(1), 2017. ISSN
19326203. doi: 10.1371/journal.pone.0170131.

Wang, G. and Dunbrack, R. L. PISCES: Recent improve-
ments to a PDB sequence culling server. Nucleic Acids
Research, 33(SUPPL. 2), 2005. ISSN 03051048. doi:
10.1093/nar/gki402.

Wang, T., Qiao, Y., Ding, W., Mao, W., Zhou, Y., and Gong,
H. Improved fragment sampling for ab initio protein
structure prediction using deep neural networks. Nature
Machine Intelligence, 1(8):347-355, aug 2019. ISSN
2522-5839. doi: 10.1038/s42256-019-0075-7.

92



15 PAPER 3: EFFICIENT GENERATIVE MODELLING OF PROTEIN STRUCTURE
FRAGMENTS USING A DEEP MARKOV MODEL

Efficient Generative Modelling of Protein Structure Fragments using a Deep Markov Model

Zhao, F,, Li, S., Sterner, B. W., and Xu, J. Discriminative
learning for protein conformation sampling. Proteins:
Structure, Function and Genetics, 73(1):228-240, oct
2008. ISSN 08873585. doi: 10.1002/prot.22057.

Zhao, F., Peng, J., Debartolo, J., Freed, K. F., Sosnick,
T.R., and Xu, J. A probabilistic and continuous model of
protein conformational space for template-free modeling.
Journal of Computational Biology, 17(6):783-798, 2010.
ISSN 10665277. doi: 10.1089/cmb.2009.0235.

Zhi-Xuan, T., Soh, H., and Ong, D. Factorized inference
in deep Markov models for incomplete multimodal time
series. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(06):10334-10341, apr 2020. ISSN 2374-
3468. doi: 10.1609/aaai.v34i06.6597.

93



16 PAPER 4: ANCESTRAL PROTEIN SEQUENCE RECONSTRUCTION USING A
TREE-STRUCTURED ORNSTEIN-UHLENBECK VARIATIONAL AUTOENCODER

16 Paper 4: Ancestral protein sequence reconstruction using a tree-
structured Ornstein-Uhlenbeck variational autoencoder

Authors: Lys Sanz Moreta, Ola Rgnning, Ahmad Salim Al-Sibahi, Jotun Hein, Douglas Theobald,
and Thomas Hamelryck.

Motivation: This work presents a new model (Draupnir) for Ancestral protein reconstruction along
a given phylogenetic tree. Draupnir explicitly represents the evolutionary process by embedding a tree-
structured Ornstein—Uhlenbeck process [163] in the latent space of a Variational Autoencoder [119].
Current models of evolution are factorized, treating protein sites as independent. This assumption im-
pedes modelling the coevolution of protein residues necessary for capturing amino acids interactions
in the protein 3D structure. This work presents the first implementation of a non-factorized model that
allows for simultaneously modelling of substitutions, insertions and deletions [39, 36] and allows to
account for co-evolving sites in the ancestor’s predictions.
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ABSTRACT

We introduce a deep generative model for representation learning of
biological sequences that, unlike existing models, explicitly represents
the evolutionary process. The model makes use of a tree-structured
Ornstein-Uhlenbeck process, obtained from a given phylogenetic tree, as
an informative prior for a variational autoencoder. We show the model
performs well on the task of ancestral sequence reconstruction of single
protein families. Our results and ablation studies indicate that the
explicit representation of evolution using a suitable tree-structured prior
has the potential to improve representation learning of biological sequences
considerably. Finally, we briefly discuss extensions of the model to genomic-
scale data sets and the case of a latent phylogenetic tree.

1 INTRODUCTION

Representation learning of biological sequences is important for data exploration and
downstream tasks such as protein design (Detlefsen et al., 2020; Alley et al., 2019). Deep
generative models such as variational autoencoders (VAEs) (Kingma & Welling, 2013;
2019) have been especially useful for this purpose (Riesselman et al., 2018; Greener et al.,
2018). However, current models do not take evolutionary information fully into account,
ie., by relating the sequences belonging to a protein family in a phylogenetic tree and
incorporating parameterized evolutionary models (Durbin et al., 1998). To address this
problem, we replace the standard multivariate Gaussian prior of a conventional VAE with
a tree-structured prior that takes into account a given evolutionary tree. We propose a
prior based on the Ornstein-Uhlenbeck Gaussian process on a tree (Hansen, 1997; Jones &
Moriarty, 2013). We apply the model to a classic problem in phylogenetics, namely the
inference of ancestral sequences.

Ancestral sequence reconstruction (ASR), i.e., the inference of ancestral sequences given
their descendants or leaf sequences (Pauling et al., 1963; Yang et al., 1995; Koshi &
Goldstein, 1996; Joy et al., 2016; Hochberg & Thornton, 2017; Selberg et al., 2021), has
important applications including protein engineering (Cole & Gaucher, 2011; Spence et al.,
2021), modeling tumour evolution (El-Kebir et al., 2015), evaluating virus diversity and
vaccine design (Gaschen et al., 2002), understanding drug mechanisms (Wilson et al.,
2015) and reconstructing ancient proteins in vitro (Chang et al., 2002; Wilson et al., 2015;
Hochberg & Thornton, 2017).

As input, we assume a set of ng known, aligned leaf sequences and their phylogenetic tree.
The task we want to address is the inference of the ny < ng—1 unknown, ancestral sequences
(Joy et al., 2016). We show that our probabilistic model, called Draupnir, is about on par
with or better than the accuracy of established ASR methods for a standard experimentally-
derived data set (Alieva et al., 2008; Randall et al., 2016) and several simulated data sets.
In addition, we show that Draupnir is capable of capturing coevolution among sequence
positions, unlike conventional ASR methods.

The paper is organised as follows. In Background, we briefly discuss evolution of biological
sequences, ancestral sequence reconstruction and the tree-structured Ornstein-Uhlenbeck
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process. In Related Work, we discuss deep generative models of biological sequences.
In Methods, we describe the Draupnir model, the inference of ancestral sequences and
the setup of the benchmarking experiments. In Results, we discuss the quality of the
latent representations, compare the accuracy of Draupnir with state-of-the-art phylogenetic
methods for ASR, and present the results of ablation experiments. We end with a brief
discussion of future work, including extending the method to genomic-scale data sets and
the case of a latent phylogenetic tree.

2 BACKGROUND

2.1 PROTEIN SEQUENCES AND EVOLUTION

Biological molecules such as proteins and nucleic acids (DNA, RNA) can be characterised
by sequences of characters from an alphabet of size n¢, where typically nc = 21 for proteins
and n¢ = 5 for nucleic acids (Durbin et al., 1998). These alphabets include one character
that represents a gap, which is useful in aligning related sequences in a multiple sequence
alignment (MSA). In the course of evolution, mutations arise that cause changes in these
sequences, including character substitutions, deletions and insertions. A set of ng known,
homologous, extant sequences and their evolutionary relationships are naturally represented
as ng leaf nodes in a binary tree or phylogeny, where the n, internal or ancestral nodes
represent unknown, ancestral sequences (Joy et al., 2016). Among the internal nodes, the
root node is the most ancient node.

Edges between two nodes in the tree are labelled by positive real numbers that represent
the time difference or the amount of change between them. Such a labelled binary tree
naturally defines a (ng +mna) x (ns +n4) matrix containing the pairwise distances between
all nodes, called the patristic distance matriz, T. In the context of biological sequences, the
field of phylogenetics is concerned with the inference of the tree topology, the labels of the
tree’s edges and the composition of the ancestral sequences, making use of methods based on
heuristics (such as maximum parsimony) or probabilistic, evolutionary models (Joy et al.,
2016).

2.2 ANCESTRAL PROTEIN RECONSTRUCTION

The ASR problem amounts to inferring the composition of the n4 ancestral sequences from
the ng extant sequences, making use of a tractable model of evolution (Joy et al., 2016).
Typically, the phylogenetic tree that relates the sequences is assumed known. Standard
methods to do this typically assume independent (factorized) evolution of the characters
in the sequence, which is a computationally convenient but unrealistic assumption. For
example, in proteins, amino acids are involved in an intricate 3-dimensional network of
interactions that can lead to strong dependencies between amino acids far part in the
sequence. This phenomenon is called epistasis (Hochberg & Thornton, 2017), which requires
coevolutionary models that go beyond the factorized assumption. Nonetheless, it has been
possible to infer ancestral sequences and subsequently resurrect functional ancient, ancestral
proteins in vitro (Hochberg & Thornton, 2017). The aim of this work is to go beyond
the assumption of independent, factorized evolution by using a model of evolution that
features continuous, latent vector representations of the protein sequences. This allows us
to formulate the ASR problem in the context of a deep generative model.

2.3 THE ORNSTEIN-UHLENBECK PROCESS ON A PHYLOGENETIC TREE

Typically, ASR of biological sequences is done using factorised evolutionary models that
represent substitutions, insertions and deletions of the discrete characters in the sequences
(Joy et al., 2016). In contrast, Draupnir aims to model the evolution of latent, continuous
representations or underlying traits of the sequences. A simple diffusive process allowing for
an equilibrium distribution is the Ornstein-Uhlenbeck (OU) process (Hansen, 1997; Jones
& Moriarty, 2013). As the OU process is a Gaussian process, it has a Gaussian equilibrium
distribution, as well as Gaussian marginal distributions.
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We use an OU process on a phylogenetic tree (TOU process) (Hansen, 1997; Jones &
Moriarty, 2013) to put the latent representations under the control of a parameterized
evolutionary model. Apart from the mean, which for our purposes can be assumed to be
zero, the TOU process has three parameters: the variation unattributable to the phylogeny
or the intensity of specific variation o, the characteristic length scale of the evolutionary
dynamics A, and the intensity of inherited variation oy. The covariance function for the
corresponding multivariate Gaussian distribution is then given by (Hadjipantelis et al., 2012;
Jones & Moriarty, 2013),

=T
Spi= (7?- exp ( /\k'l> + 0260 (1)

where T} ; is the patristic distance between nodes k and [ in the tree, and the Kronecker
delta 6;; = 1 if kK =, and 0 otherwise.

The TOU process and related diffusive processes on trees are well-established evolutionary
models that have been used to model the evolution of continuous traits, such as body mass or
length (Joy et al., 2016). For example, Lartillot (2014) proposes a phylogenetic Kalman filter
for ancestral trait reconstruction of low-dimensional, continuous traits; Tolkoff et al. (2018)
propose phylogenetic factor analysis, in which a latent variable under the control of a small
number independent univariate Brownian diffusion processes is related to observed traits
through a loading matrix; Horta et al. (2021) use a multivariate TOU process and Markov
chain Monte Carlo to model both continuous traits and sequences of discrete characters. To
represent the latter, they make use of a pairwise Potts model.

3  RELATED WORK

3.1 REPRESENTATION LEARNING OF BIOLOGICAL SEQUENCES

A VAE (Kingma & Welling, 2013; 2019) is a probabilistic, generative model featuring latent
vectors or representations, {z}?_;, that are independently sampled from a prior distribution,
z,, ~ 7(zy). The latent vectors are passed to a neural network (the decoder) with parameters
0, leading to a likelihood, %, ~ pg(x, | NNg(z,)), for the data, {x}*_,. The prior is
typically a standard multivariate Gaussian distribution, but other priors have been used,
such as distributions on the Poincaré ball to recover hierarchical structures (Mathieu et al.,
2019). The posterior distribution p(z, | x,) is intractable, but can be approximated with
a variational distribution or guide, gy(2z, | NNg(x,)), involving a second neural network
(the encoder). Point estimates of the parameters 6 and ¢ are obtained by maximizing the
evidence lower bound (ELBO),

oot =5y e (252)]

(2 | x)
using stochastic gradient ascent (Hoffman et al., 2013).

VAEs are increasingly used for representation learning of biological sequences (Detlefsen
et al.,, 2020). Riesselman et al. (2018) use a VAE with biologically motivated priors to
evaluate the stability of mutants and to explore new regions of sequence space. Greener et al.
(2018) use autoencoders to design metal-binding proteins and novel protein folds. Ding et al.
(2019) show that the latent representations obtained with a VAE can capture evolutionary
relationships between sequences. The above models do not represent the phylogenetic tree
explicitly, but typically aim to condition on some evolutionary information by training
on pre-computed MSAs - an approach that has been called evo-tuning (Rao et al., 2019;
Detlefsen et al., 2020). Hawkins-Hooker et al. (2021) use a VAE with a convolutional encoder
and decoder, combining upsampling and autoregression, without relying on a MSA.

The above models assume that the latent vectors factor independently, which is
computationally convenient but unrealistic if the sequences are related to each other in a
phylogeny. A more realistic approach thus uses a prior 7({z}\_; | 7, x)7(k) that conditions
the latent vectors on a given phylogenetic tree, 7, and an evolutionary model with latent
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parameters, . Because the latent vectors do not factor independently anymore, mini-batch
training can include the sequences but not the latent vectors, which limits the possible size
of the data sets. Nonetheless, we show here that such a model is both computationally
tractable and practically useful for realistic data sets concerning single protein families.

4 METHODS

4.1 THE DRAUPNIR MODEL

The pseudocode of the Draupnir model is given in Algorithm 1; Figure 1 shows the
corresponding graphical model. A summary of the variables, their dimensions and the
notation is given in Tables 1 and 2 in Appendix A.1.

As inputs, we assume (a) a set of ng aligned sequences, each with length ny, organized in
the ng x ny, matrix, S, and (b) information on their phylogenetic tree in the form of their
(ns +mna) X (ns +na) patristic distance matrix, T.

The latent matrix Z of the model is a matrix with ng rows (one for each leaf sequence)
and nyz columns, where ny is the size of the latent representation of the sequences. In all
experiments, nz = 30. Each column of Z (with ng elements) is sampled from a univariate
OU process on the phylogenetic tree, representing the evolution of a hidden trait underlying
the sequences along the tree. Each row of Z corresponds to the latent vector of a standard
VAE. However, unlike a standard VAE, the latent vectors do not factorize independently.

For each of the ny TOU processes, the parameters of the TOU process, corresponding to &
in Section 3.1, are sampled from a suitable prior distribution. The TOU process has three
parameters: oy, A and o,. As we use ny tree OU processes (one for each column of Z), we
need to sample ny sets of these three parameters.

For each of the three parameters, o¢, A, 0,,, we sample a hyperparameter (aq,az,as) from
a half-normal distribution with scale parameter equal to one. These hyperparameters serve
as scale parameter for the half-normal priors over oy, A and o,. Given the parameters of
the TOU process obtained from the prior described above, an ng x ng covariance matrix
can be calculated based on the patristic distance matrix of the leaves, T(>5). We need one
such covariance matrix for each of the nyz columns of the matrix of latent representations,
Z. The element k,l, with k,l € 1,...,ng, of covariance matrix h, with h € 1,...,nz, is given
by (Hadjipantelis et al., 2012; Jones & Moriarty, 2013),

Chg = U;Zf,h, exp(=Tii/n) + 02 1,051 (2)

As decoder, we use a bidirectional gated recurrent unit (GRU, Cho et al. (2014)) with length
equal to the alignment length, nr. The input at each position i of the GRU for sequence Sy,
is a concatenated vector, consisting of the latent vector Zy, . representing sequence k, and the
BLOSUM embedding E; ., which is the result of applying a fully connected neural network,

NN§1>, to the BLOSUM vector V; . describing the amino acid preferences at position i in
the MSA (see Section 4.2). For each of the ng sequences and for each position i, the GRU
states are mapped to a logit vector that specifies the probabilities of the n¢c characters using
another fully connected neural network, NNéZ). The architecture of the networks is given in
Appendix A.2.

4.2 BLOSUM EMBEDDINGS

A BLOSUM matrix B is an ne X ne substitution matrix used for sequence alignment, where
each row contains the log-odds scores of replacing a given character with any of the other
characters (Henikoff & Henikoff, 1992). Each position (column) in the MSA is represented
by the weighted average of the BLOSUM vectors of the characters in that column (see
Algorithm 2). The averaged BLOSUM vectors only need to be precomputed once. In the
model, the BLOSUM vectors are processed into BLOSUM embeddings by a neural network
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h € {1,..nz7}

K € (1,..ns}

i€ (1.}
GRU/NN .

Yy.i,: —cat(Zg, ., NN(Vj,

Figure 1: Draupnir as a graphical model. For notation and information on variables and
their dimensions see Tables 1 and 2 in Appendix A.1 and A.2. Random variables are shown
as ellipses, while deterministic quantities are shown as rounded boxes and observed random
variables are shown as shaded ellipses. Parameters of priors and other given quantities are
shown without boxes. The model contains three plates, respectively corresponding to the
number of dimensions of the leaf sequence-specific latent vector Zy . (nz=30), the number
of leaf sequences (ng) and the alignment length (nz). “cat” indicates the concatenation
of two vectors. « are the hyperparameters and o,,0p, A are the parameters of the TOU
processes. X .. is the covariance matrix that is used to sample component h of the ng
latent vectors from a multivariate Gaussian distribution (with mean 0("s)). T is the
patristic distance matrix containing the distances between the leaf sequences. Yy, . is the
input vector for the GRU that produces the likelihood parameters for leaf sequence k, Sy ..
V represents the MSA as an ny, X nc matrix of averaged BLOSUM vectors. NN denotes a
fully connected neural network.

to provide position-specific information on the MSA, while the latent variables provide
sequence-specific information (see Algorithm 2).

4.3 MODEL IMPLEMENTATION AND TRAINING

Draupnir was implemented in the deep probabilistic programming language Pyro (Bingham
et al., 2019) and trained using stochastic variational inference with Pyro’s AutoDelta guide
by optimizing the ELBO (Kingma & Welling, 2019), resulting in maximum a posteriori
(MAP) estimates for all parameters. We use Adam (Kingma & Ba, 2014) as the optimizer
using the default values. From the MAP estimates, we can sample the latent representations
of the ancestral nodes (see Section 4.4 and equation 5 in the Appendix). These latent
representations are then subsequently decoded to their respective ancestral sequences. We
also use a custom guide to calculate a variational posterior (Draupnir-variational, see
Appendix A.6). Training details can be found in Appendix A.4. All programs were executed
on an Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz machine with a Quadro RTX 6000 GPU.

4.4 INFERENCE OF THE ANCESTRAL SEQUENCES

In this section, for ease of notation, let z = Z:(_;‘L’S> denote one of the h € {1,...,n.}
columns of the latent representation matrix for both ancestral and leaf sequences, Z(4-5),
First, note that z can be partitioned as z = (Z(S),Z(A)), where z(5) and z(Y) denote the
latent representations of the leaf and ancestral sequences, respectively. The prior p(z) is a

multivariate Gaussian distribution with parameters,

) 0(nz) »(S.8)  »n(8.4) A8 A(S.4)
p=l@ )= Lomn ) E= gus gaa A= qas qas )
where 4 = X~!.  The covariance matrices X(5:5) n(AA4) 5(4.5) = (2<S’A))T are
respectively obtained from the distance matrices concerning distances within the leaves,
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Algorithm 1 The Draupnir model
Require: Multiple sequence alignment S, patristic distance matrix T

for j € [1,2,3] do > Hyperpriors over the TOU process parameters
a; ~HN(1)

for he€[l,...,nz] do > Priors over the parameters of the ny TOU processes
arn ~HN (ag)
On,h ™~ W(“l)
)\h, ~ HN(LYQ)

for h € [1,...,nz] do > Kernels for the ny TOU processes
for k,l € {1,....,ng} do
Ch kol (T%h exp(fT,g'S)//\h) + 02,h5k,l

for h € [1,...,nz] do > Prior over tree-strucured latent matrix Z
Z:,h ~ MVN(O(HS)7 Ch,:.:)

forie(l,...,ny] do > BLOSUM embeddings
Ei. « NN(V,)

for k €[1,...,ng] do > Input vector Y for GRU
foric(l,...,n] do
Yii: < cat(Zy,., E; ;) > Concatenate sequence- and position-specific vectors
for ke [1,...,ng] do > Likelihood parameters (logits) L from GRU
Hj.. < GRUy(Yy,.,) > Bidirectional GRU states
forie([l,...,n;] do
L. < NNQQ)(HIM:)
S,i ~ Categorical(Lg; .) > Likelihood at position i in sequence k

Algorithm 2 Pre-computation of weighted averaged BLOSUM vectors

Require: Multiple sequence alignment S

V oz xne) > Initialize BLOSUM weighted average V
foriell,...,n;] do > Position in sequence alignment
for k€ [1,...,ng] do > Index of leaf sequence

7 Sk > Character at position 4 in leaf sequence k
V.« V. +B,, > Add BLOSUM vector corresponding to the amino acid

Vi, + Vi, > Average

ns

within the ancestors and between the ancestors and the leaves, T(5:5) T(4A) apd TS5,

and the TOU process parameters (see Eq. 2).

As p(z) is a multivariate Gaussian distribution, we can easily obtain the conditional
distribution of z(4) given z(%) as follows (see Bishop (2006), page 689),

pE) = MYN (2] %) = p (ZM) ‘z(a) = MVN <z<‘“ | s, (A<A~A))7l>,

with
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Jals = Jia (A<A,A>)‘l A4 <Z<S> _ u(s’) __ (A<A.,A>>‘l AA.9)5(5)

As 141 corresponds to the MAP of z(4) for any given values of z(*) and the TOU process
parameters when the ancestral sequences are not observed, the MAP estimate of the latent
representation of the ancestral sequences is given by,

Z(ANMAP _ (A(A,A))_l A(AS) 5 (8),MAP

In addition, a Gaussian approximation of the posterior of z(4) based on the MAP estimates
is given by,

2D MYN (Z(A) | Z(AMAP (A(A.A))’1> ] 3)

The reconstructed ancestral sequences are subsequently obtained by applying the GRU
decoder to the MAP estimates of their latent representations, as explained in Section 4.1.

4.5 BENCHMARKING

In order to assess the accuracy of the ASR we benchmark Draupnir (MAP and Marginal)
against state-of-the-art phylogenetic methods. We selected methods that perform ASR
using a given tree topology and given patristic distances, including one Bayesian method
(PhyloBayes, Lartillot et al. (2013)) and three maximum likelihood based methods (PAML,
Yang (2007); FastML, Ashkenazy et al. (2012); and IQTree, Nguyen et al. (2015)). We
apply the ASR methods to both protein sequences, and to their corresponding DNA
sequences followed by subsequent translation to protein sequences. For Draupnir, we use
the protein sequences, which is the harder problem. We use eleven data sets with different
numbers of leaves (from 19 to 800), different alignment lengths (from 63 to 558) and with
or without gaps (10 and 1 data set respectively). The data sets include eight simulated
data sets generated using the software EvolveAGene (Hall, 2016) and three data sets with
experimentally determined ancestral sequences. Note that the simulated data sets were
obtained from factored evolution models. We included a large data set with 800 leaves. For
prediction with Draupnir, we either use i) the most likely sequence (Draupnir-MAP in Fig.
3), using Equation 4, ii) samples from the marginal distribution (Draupnir-Marginal in Fig.
3; we report the average identity of 50 samples), using Equation 5 or iii) samples from the
variational posterior using an amortised guide (Draupnir-Variational, see Appendix A.6),
using Equation 6. Details on the data sets and training can be found in Appendix A.3 and
A4, respectively.

5 RESULTS

5.1 LATENT REPRESENTATIONS AND COEVOLUTION

In order to inspect the quality of the latent representations of the sequences, we use the
B-lactamase family with 32 leaf sequences. We visualize t-SNE projections (Van der Maaten
& Hinton, 2008) of the latent representations and compare the results with the structure
of the phylogenetic tree (see Figure 2). The result indicates that the latent representations
represent the structure of the tree and its different clades (subtrees) well, indicating that
the TOU process performs well as an informative prior on evolutionary relationships. In
Appendix A.6, we show how marginalizing over the latent representations allows Draupnir
(marginal and variational) to model coevolution among sites.

5.2 BENCHMARKING RESULTS

In Figure 3, we compare the accuracy of Draupnir (MAP and marginal) with state-of-the-art
ASR methods by plotting the average percent identity between the ancestral sequences as
reconstructed by Draupnir and the true sequences. The true ancestral sequences were either
experimentally determined or simulated. The description and origin of the data sets can be
found in Appendix A.3. Tables with benchmark results are shown in Appendix A.5.
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Figure 2: Results for the S-lactamase family with 32 leaves. Left: t-SNE projection of the
latent representations of the ancestral and leaf nodes. Right: The phylogenetic tree. Both
plots are coloured according to clade membership.
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Figure 3: Comparison of the average percentage identity (y-axis) between predicted and true
ancestral sequences for Draupnir (MAP and marginal) and ASR methods for data sets with
different number of leaves (x-axis; experimental data sets are indicated with an asterisk).
Missing points indicate that the ASR method failed to produce results on the given hardware.
The alignment size is shown on the dotted lines. We compare with ASR methods using the
DNA sequences (left) and the corresponding Protein sequences, subsequently translated to
protein sequences (right). Tables with detailed results for Draupnir-marginal and Draupnir-
MAP can be found in Appendix A.5. For the benchmarking settings see Appendix A.8.

5.3  ABLATION STUDIES

In the first ablation study, we investigate the influence of the BLOSUM embeddings by
removing them as input to the GRU. Overall, the absence of the BLOSUM embeddings
slows down convergence and sometimes make the learning process unstable, but ultimately
does not strongly affect accuracy (see Figure 5).

In the second ablation study, we investigate the influence of the tree-structured prior by
comparing with a standard VAE with a Gaussian prior. We do this by using diagonal unit
covariance matrices for each of the nz columns of the latent matrix Z. The rest of the model
was identical. We then compare the latent representations obtained for the leaf nodes. The
results (see Figure 7) indicate that the standard VAE is not capable of reconstructing the
evolutionary relationships well: sequences belonging to the same clade often end up far apart
in latent space. This indicates that the influence of the tree-structures prior is substantial.
A quantitative analysis of this ablation study can be found in Appendix A.7.
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Figure 5: BLOSUM embedding ablation study for the 800 leaves data set. For every 100
training epochs, the average percent identity and standard deviation are plotted for all leaves
(training set) or ancestors (test set), respectively. The results obtained with the BLOSUM
embedding are shown in dark green (MAP) and light green (marginal, see Equation 3). The
results without the BLOSUM embeddings are shown in pink (MAP) and purple (marginal).
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Figure 7: Bottom: t-SNE projections of the latent representations for the SRC-Kinase SH3
domain with 100 leaves, obtained from a standard VAE (left) and Draupnir-marginal ( center
and right), colored by clade. Note that only the latter model can be used to infer the latent
representations of the ancestral sequences. Top: the corresponding tree.

6 DISCUSSION AND FUTURE WORK

Draupnir demonstrates the potential value of incorporating evolutionary information and
evolutionary models explicitly in deep generative models for representation learning of
biological sequences. We point out that it is possible to extend the model with additional
information beyond sequences, for example backbone angles describing protein structure
(Golden et al., 2017) or measurements of protein stability. In future work, extending the
model to genomic-size data can be done using inducing points for Gaussian processes, as
explored in Jazbec et al. (2021) and Vikram et al. (2019). The case of a latent phylogenetic
tree can be addressed using a coalescent point process prior (Lambert & Stadler, 2013;
Vikram et al., 2019). Finally, in the large data case, the current simple network architectures
can be improved with more expressive compositions such as an MSA transformer (Rao et al.,
2021) or a deconvolutional model for sequences (Hawkins-Hooker et al., 2021). Finally,
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we point out that the learned parameters of the TOU processes might offer interpretable
information on the evolutionary process.
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A APPENDIX
A.1 NOTATION AND VARIABLES

Name Description

ny Number of TOU processes, length of latent vector (30)
ny, Alignment length

ng Number of leaf sequences

na Number of ancestral sequences (ng =ng — 1)

ne Number of character types

S Sequence alignment matrix of leaf sequences

Z(%) = 7Z Matrix of latent representations of the leaf sequences
Note: We use Z for notational convenience where possible.

VA Matrix of latent representations of the ancestral sequences

Z(A.S) Matrix of latent representations of the leaf and ancestral
sequences

T Patristic distance matrix (given)

T(5.5) Patristic distance submatrix of distances between leaf
sequences (given)

T(A.4) Patristic distance submatrix of distances between ancestral
sequences (given)

T(A.S) Patristic distance submatrix of distances between leaf and

ancestral sequences (given)

BLOSUM matrix (given)

Vector of OU hyperprior parameters

Vector of intensities of inherited variation (TOU process)
Vector of intensities of specific variation (TOU process)
Vector of characteristic lenght-scales (TOU process)
Tensor of ny TOU process covariance matrices

Matrix of weighted BLOSUM vectors

Matrix of BLOSUM embeddings in the model

Tensor of BLOSUM embeddings in the guide

Input tensor to GRU

State tensor of GRU

Tensor of logits of the nc sequence characters
Parameters of the neural networks and the GRU
d-dimensional vector of zeros

Q(mxn) (m x n)-dimensional matrix of zeros

oeHI<EE<A>S S O W
QU

GRU Gated recurrent unit

NN Fully connected neural network
HN Half-normal distribution

MVN Multivariate Gaussian distribution
cat Concatenation of two vectors.

Table 1: Variables and notation used for the Draupnir model.

13

107



16 PAPER 4: ANCESTRAL PROTEIN SEQUENCE RECONSTRUCTION USING A
TREE-STRUCTURED ORNSTEIN-UHLENBECK VARIATIONAL AUTOENCODER

Under review as a conference paper at ICLR 2022

Name Dimensions

« 3

Of, On, A ng

T (ng +na) X (ns+mna)
qﬂA‘A) naA Xna
T(5:5) ng X ng
T(A,S) naA Xng

C Nz XNg Xng
7 =17 ng X nz

Z(A) na Xng
Z(4:9) (ns+mna) Xng
Y ng X ng X (nz +ne)
E ng X ne

F ng X np X ne

H ng X ng X 60

L ng X ng X ne

B ne X ne

S ns X nr

\'2 nr X ne

Table 2: Dimensions of variables

A.2 DRAUPNIR SETTINGS

Neural network architecture = The Draupnir model contains three neural networks (see

Algorithm 1, Figure 1 and Figure 8): a fully connected network, NNéI), that maps the pre-
computed BLOSUM vectors, V, to BLOSUM embeddings, E; a bidirectional GRUy (Cho
et al., 2014) with a single layer that takes as input the BLOSUM embeddings and the latent

vector of the k—th leaf sequence, Zy, ., and a second fully connected network, NNE,Q)7 that
maps the GRUy states to the logit vectors of the sequence characters. The dimensionality
of the state of the bidirectional GRUy is 2 x 60.

In the guide, we re-use the neural network architectures described above: NN ((f) and GRU

are identical to NN(GZ) and GRUy, respectively, except that the output size of Nfo) is (2xnz)
instead of n¢, corresponding to the length of the mean vector and standard deviation vector
of the latent representation. NN((;) is identical to NN(SI).

2x60 C

120x60 -

I 50x21 fed

— 1

21x50 fc3

60x21

fc2
LogSoftmax @

Figure 8: Architectures and dimensions of the neural networks used in Draupnir. Left:

Architecture of the bidirectional GRUj (red) and NNE,Z). Right: Architecture of NNél). “fe”
indicates a fully connected layer.
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Additional Draupnir settings We chose BLOSUMG62 as the base substitution matrix,
except for the CFP datasets (71 and 35 leaves) where we use PAM70 due to the presence
of special amino acids.

A.3 DATA SETS

Table 3: Descriptions of the eleven data sets used for benchmarking and the leaves-only
data set used in the co-evolutionary analysis. All data sets contain insertions and deletions
(gaps), except the one in italic (top), which only contains substitutions. Data sets labelled

with an asterisk only contain the sequence of the root node.

Number of  Alignment

Dataset s longth Source
Datasets with experi

Randall’s Coral fluorescent proteins (CFP) benchmark 19 225 Randall et al. (2016)

*Coral fluorescent proteins (CFP) Faviina subclade 35 261 allfav root node sequence from Alieva et al. (2008)

*Cloral fluorescent proteins (CFP) subclade 71 272 allcor oot node sequence from Alieva et al. (2008)

EvolveAGene4 (Hall, 2005) simulations

Simulation 3-Lactamase 32 314 GenBank accession no. AF309824
Simulation Calcitonin 50 s NBCI CCDS' .1

Simulation SRC-Kinase SH; 100 63 GenBank BC011566.1

Simulation Sirtuin 150 ATT NBCI CCDS44412.1

S! on SRC-Kinase SH3 domain 200 128 GenBank BC011566.1

S on PIGBOS 300 7 NBCI CCDS81884.1

Simulation Insulin 400 558 NCBI BC011566.1

Simulation SRC-Kinase SH3 domain 800 99 GenBank BC011566.1

Leaves only data set

PF00400 125 138 PFAM family no. PF00400
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A.4 TRAINING

Table 4: Training settings and running times (Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz,
Quadro RTX 6000 GPU).On the largest dataset (800 leaves), we make use of a Reduce on
plateau learning scheduler combined with plating to further improve the accuracy results.

Learning
Dataset Epochs  Llate rate Model Running times
size parameters
scheduler
Datasets with experimentally determined ancestral

Randall’s Coral fluorescent proteins (CFP) benchmark, 19 leaves 16600 19 No 5205 53 min 39 s
Joral fluorescent proteins (CFP) Faviina subclade, 35 leaves 23000 35 No 55181 1h36minls
Coral fluorescent proteins (CFP) clade, 71 leaves 23000 7 No 52535 1 4 min

EvolveAGened4 (Hall, 2005) simulations

Simulation 3-Lactamase, 32 leaves 15000 32 No 1 h 41 min 39 s
Simulation Calcitonin, 50 leaves 18700 50 No 5 2h 10 min1s
Simulation SRC-Kinase SH3 domain, 100 leaves 21600 100 No 54485 2h 42 min 10 s
Simulation Sirtuin, 150 leaves 20000 150 No 55985 4 h 6 min 23 s
Simulation SRC-Kinase SH3 domain, 200 leaves 22000 200 No 57485 49 min 21 s

Simulation PIGBOS, 300 leaves 18000 300 No 60485 44 min 1 s

Simulation Insulin, 400 leaves 18400 400 No 63485 3h32min9s
Simulation SRC-Kinase SH3 domain, 800 leaves 25000 50 Yes 141005 3 h 39 min 29 s

Leaves only data set

PF00400, 125 le
PF00400, 125 lea:

23000 125 No 55235 52 min 48 s
23000 125 No 137487 1h 21 min 39 s
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A.5 BENCHMARKING TABLES

Table 5: Benchmarking results using protein sequences. The table shows the means and
the standard deviation of the percent identity for all the predicted ancestral sequences and
their corresponding true sequences. In the case of Draupnir-MAP, the means and standard
deviations are calculated using the most likely sequence of each ancestral node. In the case
of Draupnir-marginal samples, they are calculated using 50 samples per ancestral node.
“Not available” indicates the ASR method failed to produce results for that data set on the
given hardware. The results for the standard ASR methods were obtained using the amino
acid sequences.

Draupnir marginal

Number of leaves — Alignment length  Draupnir MAP ot PAML-CodeML ~ PhyloBayes  FastML 1QTrec
Randall's Coral fluorescent proteins (CFF) 19 225 95.0341.20 93672085 0811513 0500£105 8174131
Coral fluorescent. pro FP) clade 1 212 74492107 74782109 61174085
Coral fluorescent proteins (CFP) Faviina subclade 35 261 86492098 8646111 4334086
Simulat L e 32 314 81924797 TIITETO08 83.12:06.13
50 71 29 7 3 69,458 88
100 63 67275892 66.789.35 1
150 477 8650519 77784398 1736115 Not available
200 128 86.9245.81 82.6544.85 9104161 91094451
300 ™ 92602408 86.3423.43 55206612 Not available 5
100 558 86.48+4.06 7381316 23304174 Not available 161
Simulation SRC-Kinase SH3 domain, 800 800 9 9L5TEA3 90.2153.63 Not available Not available  49.6343.6

Table 6: Benchmarking results using DNA sequences. The table is similar to Table 5 but the
reconstructions for the standard ASR methods were obtained using DNA instead of amino
acid sequences. The DNA sequences were subsequently translated into protein sequences
before comparison.

Draupnir marginal

Number of leaves  Alignment length  Draupnir MAP Samples PAML-CodeML ~ PhyloBayes  FastML 1QTree
Randall's Coral fluorescent proteins (CFF) 19 225 95034129 9367085 OSGOL082  OSS2E0S3  9S50L077  O8600.T6
' (CFP) clade 71 272 74494107 74782109 $8+085  5A.65+0.71 61.100.79
ns (CFP) Faviina subclade 35 261 86.49:0.98 8646111 76.67+1.13 76.01+1.16
32 314 83.61£6.15 83.6526.13
50 71 70.0148.92 9
100 63
150 a7
200 128 86.92:45.84 8 5 17 17604253
300 L 92.60+1.08 86.31%3.43 33641035 5579
mulation Insulin Factor like 100 558 86.45:64.06 73814316 1623481 26.02£2.22

Simulation SRC-Kinase SH3 domain, 800 800 9 9157443 90.213.63 Not available  Not available  Not available

A.6 COEVOLUTION ANALYSIS

Conventional ASR methods use models that assume factorized evolution (Horta et al., 2021),
that is, they assume that each site evolves independently of all other sites in the sequence.
In reality, some sites are coupled in evolution, resulting in dependencies between sites. This
phenomenon is called epistasis (Hochberg & Thornton, 2017). Draupnir is a model that
goes beyond factorized evolution, and thus potentially models coevolving sites. Here, we
analyze to what extend this is indeed the case.

In order to evaluate modelling of coevolution, we make use of direct coupling analysis (DCA)
(Morcos et al., 2011). DCA identifies coevolving pairs of residues that directly influence each
other by calculating a quantity called Direct Information (DI), which is obtained by fitting
a Markov random field. We calculated the DI using ProDy ((Bakan et al., 2014)). As data
set, we used 125 sequences from the WB40 domain of the PF00400 family from the PFAM
data base Mistry et al. (2021).

The DIs of the leaf sequences serve as ground truth and are compared with sequences
sampled from Draupnir at the root node in three different ways (see below). If coevolution
is at least partially modelled, the DIs of the leaf sequences will be similar (but not completely
identical) to the DIs of the sampled sequences at the root node. We sample sequences from
Draupnir using three different methods.

The first method (MAP) simply uses the MAP estimates of the probability vectors at each
position:
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ar [To (w1007, @
i=1

where a is an ancestral sequence and 0,§MAP) is the MAP estimate of the amino acid

probability vector at position ¢ for that sequence. This baseline results in independent
sites. Picking the most likely amino acid at each position according to the above expression
corresponds to Draupnir -MAP in Section 5.2.

The second method (Draupnir-marginal) makes use of the MAP estimates of the leaf
representations but marginalizes over the ancestral representations (see Section 4.4):

an~ / (ﬁp (Eli | [0 <z<a))]i)> p(2@ | ZOAP)) gz (@) 5)

where the probability vectors 6; are obtained from a GRU applied to the latent
representation z(®) of the ancestral sequence a (see Algorithm 1). The last factor involves
conditional Gaussian distributions (see Equation 3 and Section 4.4). Integrating over z(®)
introduces correlations along the sequence. Therefore, this method is in principle capable
to model some coevolution as we integrate over the latent representations of the ancestors
(while using a point estimate for the latent representations of the leaves). This corresponds
to the “Draupnir marginal samples” in Section 5.2.

In the third method (Variational), we make use of a guide ¢,(Z | S) to obtain a variational
posterior over the latent representations Z (see Algorithm 3):

an~ / <ijp (fh | [0 (Z(a))]z)> p(z@ | Z)qy(Z | S)dzWdzZ. ©)

In this case, we marginalize over the latent representations of both leaves and ancestors.
This method should capture the coevolutionary signal to a greater extent than the second
method.

The results are shown in Figure 9. As expected the third method, (Variational) does best,
while the first method (MAP) does worst. The Variational method improves considerably
upon the Marginal method, indicating that replacing the MAP estimate with a variational
distribution for the latent representations of the leaves has significant impact. The results
indicate that Draupnir indeed to a significant extent can capture coevolutionary information.
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Algorithm 3 Architecture of the variational guide, g4(Z | S). We use point estimates
for the hyperparameters and parameters of the TOU processes, and multivariate diagonal
Gaussian distributions for the latent representations. An asterisk indicates the value of a
point estimate. §(.) is the Dirac delta function.

Require: Multiple sequence alignment S

for j € {1,2,3} do > Point estimates of TOU hyperprior parameters
a; ~6(aj)

for h € {1,...,nz} do > Point estimates of the parameters of the nz TOU processes
Tfh ™~ 6((7?,;)
Tn,h ™~ ‘5(‘7:‘}1)
An ~ 6(N;)

for ke [1,...,ng] do
forie(l,...,n.] do

74— Sk > Amino acid at position ¢ in leaf sequence k
Fp.i. ¢ NNY(B,,) > BLOSUM embedding

for k€ [1,...,ng] do
Hj.. < GRU4(Fy,..) > Bidirectional GRU states
m,c NN;Q)(Hk,,ly:) > Mean and standard deviations of Zj, .

Zy,. ~ MVN (m, diag(c))

Leaves

Marginal Variational iz

Figure 9: DI values for all position pairs of the WB40 data set obtained from the leaf
sequences (upper left) and sequences sampled at the root node (other plots) using the
MAP, Marginal and Variational methods. We sampled 125 root sequences, which is equal
to the number of leaves. The correlation coefficients between the DIs of the leaves and the
sampled sequences are 0.05 (MAP), 0.66 (Marginal) and 0.79 (Variational).

19

113



16 PAPER 4: ANCESTRAL PROTEIN SEQUENCE RECONSTRUCTION USING A
TREE-STRUCTURED ORNSTEIN-UHLENBECK VARIATIONAL AUTOENCODER

Under review as a conference paper at ICLR 2022

AT QUANTITATIVE ANALYSIS OF THE LATENT SPACE REPRESENTATIONS

In order to compare the standard VAE with Draupnir in a quantitative way (see Figure
7), we analyze the correlation between (a) the Euclidean distances between the latent
representations of the leaves and (b) the corresponding branch lengths in the phylogenetic
tree for both models. The results are shown in Figure 10.

Standard VAE Draupnir marginal

Euclidean distance
Euclidean distance

P

Branch length Branch length

Figure 10: Comparison of the Euclidean distances between the latent representations of the
leaves (y-axis) and the corresponding branch lengths in the phylogenetic tree (x-axis). We
use the same color scheme as in Figure 2. We traverse the tree in level order and assign the
colour of the clade of the first leaf. (Left) The standard VAE. The correlation coefficient
is 0.79; the Spearman correlation coefficient is 0.85. (Right) Draupnir. The correlation
coefficient is 0.91; the Spearman correlation coefficient is 0.94.
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A.8 BENCHMARK SETTINGS

PAML-CodeML settings PAML-CodeML (provided by Biopython 1.78) was used with
the following settings:

verbose 2 (includes detailed information of the posterior probabilities per node)
runmode 0 (utilize given tree)

seqtype 2 (amino acids)

clock 0 (no molecular clock, genes are evolving at different rates)
aaDist 0

getSE 0

RateAncestor | 1

aaRateFile WAG

method 1

model 2 (more dn/ds (selection coefficient) ratios per branch)
fix_alpha 0 (estimate gamma)

alpha 0.5 (initial alpha value for gamma distribution)

fix_blength 0 (keep given branch lengths)

PhyloBayes 4.1 settings

pd -s -f -T treefile -cat -gtr -d alignmentfile chainname
In the case of PhyloBayes, as recommended, we run 2 Markov chains until the convergence
criteria are met. The recommended convergence criteria are minimum effective sample size

above 300 and maz diff among the chains below 0.1. Both for evaluation of the convergence
of the chains and for sampling the ancestral sequences we use 100 samples.

FastML v3.11 settings

perl fastml -MSA-file alignmentfile -seqType aa or nuc —~SubMatrix WAG or GTR
indelReconstruction ML —Tree treefile

IQ-Tree v2.0.3 settings
For IQ-Tree (multicore version 2.0.3), model choice and settings are automatically

optimized by using the options “-m TEST” and “-nt AUTO”.

iqtree -s alignmentfile -m TEST -asr -te treefile -nt AUTO
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17 Conclusions

During the development of this thesis, I have combined Bayesian statistics and machine learning tech-
niques to design statistical models that improve the existing solutions over several biological issues.
I have implemented a new Bayesian approach to protein superposition that can be used as an opti-
mizable error function for protein structure prediction (Theseus-PP) [1, 3]. I have collaborated on
the implementation of a new model (BIFROST) for sampling protein fragments that provide accurate
local structure reconstruction and uncertainty over the predictions [6]. I have developed an alterna-
tive method for performing Ancestral Sequence Reconstruction, Draupnir, which for the first time is
performed using a non-factorized evolution model [8].

Theseus-PP [1, 3] conveys a new solution for protein superposition that accounts for differences
among regions with high variability versus conserved ones. The design of the algorithm allows to
recognize partially correct protein predictions during the model training process. This approach chal-
lenges the conventional Kabsch-RMSD solution (see Section 11) that assumes invariability across the
positions in the protein. Theseus-PP is expected to perform as an error likelihood function within
models for protein structure prediction such as BIFROST [6] to boost their prediction results.

BIFROST [6] is a deep probabilistic model of local structure designed to generate protein fragment
libraries. The probabilistic nature of the model offers a confidence score that allows selecting which
fragments will be considered for the final protein prediction. The model functions relying solely on the
information gathered from the dihedral angles, without the need for Multiple Sequence Alignments or
additional information that might not be available for training. The model offers quality predictions
on par with ROSETTA [24, 24] at a fraction of the time.

Draupnir [8] approaches Ancestral Protein Reconstruction (ASR) by explicitly modelling the evo-
lutionary process that takes place in a given phylogeny. This new approach relies on the usage of an
informative prior over the latent space of an ordinary VAE [119] (see Section 10.2). The Ornstein-
Uhlenbeck process is a type of stochastic process (see Section 12) that has been shown to capture the
evolutionary process along a tree [163]. We show how Draupnir is on par with state-of-the-art ASR
methods and can account for epistasis [164] by modelling co-evolving sites.

The next steps within the Phylogeny inference department could continue to challenge the cur-
rent algorithms to capture more realistic and accurately the evolutionary information available from
the large on-growing genomics field. Recently, new methods for non-discretized and non-Euclidean
representations of the tree [165] have been developed. These new techniques are based on hyperbolic
geometry and hierarchical clustering [166, 167, 168] and are designed to learn the hyperbolic manifold
that describes the phylogenetic tree. Hierarchical clustering is the algorithm employed by UPGMA
(see Section 6.3) to perform a heuristic approach to phylogeny reconstruction, which is based on aver-
age linkage. Hyperbolic geometry [169] is utilized as a continuous representation of the tree in pursuit
of achieving an exponential growth in the number of nodes as the tree depth increases [170]. These
new proposed methods open a new paradigm of solutions within Phylogenetics.

On the other hand, is important to note that UPGMA [55] based methods give an unreliable so-
lution over the phylogeny, whereas Neighbour Joining (NJ) [58] (see Section 6.3) offers more trust-
worthy predictions. The Neighbour Joining method offers non-ultrametric predictions over the branch
lengths, which allows for a diversity of evolutionary rates across taxa without cutting back on com-
puter performance. I suggest investigating an alternative model that utilizes this approach will offer a
superior solution.
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Furthermore, combining these new technologies with Gaussian processes would achieve simulta-
neous inference of the phylogenetic tree, in a fully continuous and differentiable fashion, and accurate
ancestral sequence reconstruction. This approach will allow performing inference over the ancestor’s
sequences without relying on a fixed phylogeny. Regarding the problem of the scalability of the Gaus-
sian process, there are new advances in the field. Recently it has been proposed to sub-divide the
stochastic process by partitioning the input data in a sequential manner [171]. This method reduces
the computational complexity of the process from quadratic O(n?) down to linear O(n), opening a
new realm for stochastic processes.
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‘Special cases
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Figure 26: Overview of the most relevant existing aminoacids
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Figure 27: Codon-Amino acid equivalence table
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Activation functions Functions utilized the machine learning field perform an input transformation
and are characterized by been easily differentiable.

* Linear activation functions: Functions that separate the data points using a linear hyper
plane.

* Non-linear activation functions: Functions that separate the data points using a complex
manifold. The also benefit from re-defining their inputs into a specific range of values.
For example, sigmoid, RelLU, softplus etc.

. 37,132
Acyclic graph Graphical model whose nodes never form a closed loop. 132

AE Autoencoder. 132

CAVI Coordinate Ascent Variational Inference. 132

Closed-form expression A closed-form solution or expression is a formula that can be expressed as
a finite number of operations. Closed-form expressions offer closed-form solutions, which are
regarded as exact solutions. 40, 132

Conditional probability Probability of a random variable X occurring under some condition or ran-
dom variable Y, P(X | Y = y). The sum of the all the possible conditional probabilities,
depending on the value of the conditional variable Y, adds up to 1. Meaning that,

P(X,Y)

P(X|Y)= P

(69)

* Discrete distributions : The conditional probability is a Probability Mass Function (PMF)

ZP(X;Y):W:l (70)

* Continuous : The conditional probability is a Probability Density Function (PDF)

/OO P(X|Y)ds =1 (71)

—0o0

. 17,132
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Cumulative distribution function (CDF) Probability that a number would take a value less or equal
to t.

Fx(t)=P(X <t)
The CDF of a continuous random variable gives the PDF from —oo to x.

P(l—00 < X < f] = /Oo £(X)dt

T

. 132

Cyclic graph Graphical model whose nodes formed a closed loop. The number of vertices (nodes)
equals the number of edges. Every node has 2 edges.. 132

Derivative Computes the change in slope or curvature of a target function (that maps 1D number to
1D number) with respect to the change in the inputs to the function. It can also be seen as,
o The rate of differentials that expresses the change of a function with respect to the change of
a variable.
o The ratio of the differential of a function (dy) by the differential of a variable (dx). f'(z) = %.
e The limit of the function when the ratio of change of the variable (Ax) tends to 0.

flz + Dx) — f(z)

N (72)

f/(x) = limaz—0

. 132

Differential Rate of change of a variable, dx or Az . 132

ELBO Evidence Lower Bound. 132

Euler-Lagrange equations Defines an equation for motion (energy) that can be interpreted for any
type of coordinate space (cartesian, polar ...). See Section 9.2 . 31, 132

Expectation-Maximization Expectation Maximization (EM) is an unsupervised learning technique
that iteratively calculates an expectation (conditional distribution or likelihood of the data under
the current model parameters) and maximizes it (updates the parameters of the model to fit the
data) [100] . 24, 132

Expected value The expected value of a random variable E[X] is the weighted average of a large
number of independent realizations of X. It can also be expressed as the mean of an infi-
nite population or the mean or location of our probability distribution. If the realizations are
equiprobable (uniform distribution) then, the weights are equal across all realizations p(z;) = 1
and the expected value is the arithmetic mean. If the realizations are not equiprobable the
weights are proportional to the frequency of the random variable p(X = x;) = p(z;). The
expected value of a sampled variable  from the distribution p is equal to:

N

* Discrete probability case: E;p = > z;p(x;)
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« Continuous probability case : By, = [* @ip(a;)da

. 25,132

Features In Machine Learning, a data feature consists of a vector or matrix of values that characterize
the data. For example, we can describe a book with the descriptor vector of values book =
(rectangular : 0.8, paper : 0.9, size : 10...) . 44, 132

Gradient Vector of first order partial derivatives of a target function/scalar field (that maps a n-
dimensions vector to 1D number) with respect to its input variables [172]. The euclidean
gradient points in the direction of the steepest ascent in Euclidean space, whilst the natural
gradient used in Stochastic Variational Inference points in the direction of the steepest ascent in
Riemannian space [101]. . 28, 38, 132

HMC Hamiltonian Monte Carlo. 132

HMM Hidden Markov Model. 132

Integral Approximation the Area Under the Curve (AUC) of function f(z) between 0 and z,,,. When
N, the number of histogram bins under the curve, goes to oo, or what is the same, Ax goes to 0.

N T,
AUC = Z fi)Ax = /O f(x).da

We can also see the integral as the reverse of the differential. If we want to recover the original
functional form f(x) after a derivative, we can integrate

df(x) _

“dr f(@) (73)
df (z) = f'(z) dz (74)
f(z) = / f(x)dx we can un-differentiate both sides (75)

. 23,132

Joint probability Statistical measure that is used to calculate the probability of two events occurring
simultaneously, in a bivariate case, when the variable X takes realization x and variable Y
realization y. The joint distribution is characterized by being non negative

P(X =2,Y =y) = P, y(X,Y) >0 (76)

and adds up to 1 when summing over all the possible values of the variables,

YD PXY)=1 (77)

¢ Discrete variables case:
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¢ Continuous variables case:

//P(X, Y)dedy =1 (78)

.17,19,132
KL Kullback-Leibler. 32, 33, 132

Marginal probability In the bivariate case, unconditional probability of a random variable X ex-
tracted from a joint distribution p(X,Y") of 2 variables (X and Y') where we consider that the
events X and Y are independent. It can also be thought as the probability of an event irrespec-
tive of the outcome of another variable, both events occur simultaneously but independently.
The marginal probability is calculated via the estimation of the expected value of a variable,
which can be expressed as the collection of values of a variable X as the variable Y changes.
In the discrete case, we can calculate the marginal probability mass function by summing over
all possible values of Y,

Y Y
P(X)=E[X]=> P(X,Y =y)=»_ P(X,Y) (79)
=0 1=0

whereas in the case of continous variables, we estimate the marginal probability density function
via integration,

P,(X)=E[X] == P(X,Y)dy (80)
—0o0
we can also restrict the range of values of the random variable X to lie between the interval
[a, ],
b poo
P.(X € [a,b]]) = E[X] == / P(X,Y)dydx 81)
a —00

The naming originates from marginalizing the probability values in a joint probability table, see
Table 3, where the marginal probabilities will be the marginals or basically the rows/columns
total sums (in the case of discrete variables).

Table 3: Joint and marginal probability table
XY Brown | Green | Blue | P,(Y)

Car 0.05 0.05 0.1 0.2
Eye color 0.3 0.1 0.1 0.5
Pencil color 0 0.1 0.2 0.3

Py (X) 035 | 025 | 04 1

. 17,19, 23, 132
MC Markov Chain. 132

MCMC Markov Chain Monte Carlo. 132
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NN Neural Network. 132

Optimization Identification of the value of the argument x that minimizes or maximizes a function
f(x). 132

Probability mass function (PMF), probability distribution function, distribution Function that de-
fines the probability of a discrete random variable being exactly equal to some value ¢. Describes
the likelihood of obtaining a particular value when we sample (generate random variables) from
it. It assigns positive probability to at most countably different values in the function’s range.

P(X =t)=p.(t)Y_p(t)=1

. 132

Probability distribution Generalization term for probability density function (PDF) and probability
mass function (PMF). 132

Probability density function (PDF), density function, density Function that defines the probability
of a continuous random variable falling within a particular range of values. This probability is
given by the integral of this variable’s PDF over that range of values. It is obtained by cal-
culating the area under the density function but above the x-axis and between the lowest and
greatest values of the range. The probability density function is non-negative everywhere, and
its integral over the entire value space is equal to 1. The function that complies with those char-
acteristics is a Lebesgue function. The probability that a random variable is exactly equal to a
value is technically O due to the infinitesimal nature of the integral.

p(X € A) = /Ap(w) dx (82)

pla< X <b] = /bafx(X)da:

. 25,126,132

Random element Deterministic function defined on an event space that, maps the outcome of a ran-
dom experiment (type of experiment that generates different outcomes under identical experi-
mental conditions) to either:

¢ a) a real number (“random variable") from .

¢ b) a vector of numbers (“random vector").

* ¢) a set of numbers indexed by a continous space time (‘‘stochastic process").

* d) a set of numbers indexed by 2 or more discrete spatial dimensions (‘“random field").

* ¢) trees or graphs.
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. 132

Random Variable Result of mapping of a random element from a random experiment to o-algebra
or space of real numbers . Random Variables induce a probability distributions on their range.
19, 132

Realization Instance (i.e sample) of a random variable. 132

Representation learning Also referred as feature learning, comprises a series of automatized tech-
niques used for learning the most relevant features from the raw data. This is necessary in order
reduce the computational cost of working with the full raw data . 44, 132

Reversibility A transition probability distribution is reversible if the probability of transition from
state X,,_1 to state X,, is the same one as the one from X,, to X,,_1 . 28, 132

SVI Stochastic Variational Inference. 132

Unbiased estimator The estimate of our parameter is as close as possible to the true value of that
parameter, otherwise is biased and deviates from the true value. Biased estimators for exam-
ple occur when our data sample is not representative of the population, it does not accurately
represent the average in the sample. A simple case is when we attempt to estimate the aver-
age amount of sports practiced and we only consider the people that attend the gym from our
population . 41, 132

VAE Variational Autoencoder. 132

Variational Calculus Calculus of the variation or change in a Functional’s value due to a small
change in the input of the Functional, in line with the differential concept. It deals for example
with derivatives, functional derivatives or integrals . 31, 132

VI Variational Inference. 132
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