
U N I V E R S I T Y  O F  C O P E N H A G E N
F A C U L T Y  O F  S C I E N C E

PhD Thesis
Faezeh Moshfeghifar

Hip Joint Finite Element Modeling
Department of Computer Science

Advisors: Kenny Erleben, Sune Darkner

Handed in: March 31, 2022



To my beloved brother, Amirhossein



University of Copenhagen
Faculty of Science

Department of Computer Science

Hip Joint
Finite Element Modeling

Faezeh Moshfeghifar

Supervisors: Kenny Erleben
Sune Darkner

This thesis has been submitted to the PhD School of The Faculty of Science,
University of Copenhagen, on March 31, 2021





i

Abstract

Population-based finite element analysis of hip joint models enables us to study the
effect of inter-subject variability on the simulation results. This approach is the dawn
of computerized clinical trials and offers various contributions to improving current
clinical treatment, the design of surgical simulators for virtual training, and optimizing
hip implants.

Despite the broad application of population-based analyses, developing large-scale
subject-specific models is a challenging task and requires extensive manual effort. Thus,
most state-of-the-art studies are limited in the number of subjects, and the anatomical
representations are often subjected to simplifications. For instance, the geometry of
the hip joint area is replaced with simple shapes, or the bilateral variation in this area
is ignored. Such assumptions may limit the reliability of the predicted results.

This thesis provides novel methods for developing finite element models that enable
large-scale population-based assessment of hip joint behavior. We benefit from the
power of computer science to improve the quality and automate the standard modeling
approaches. We further employ our new pipeline to generate multiple subject-specific
finite element models, including the bones and cartilages in the hip joint area. The
subject-specific finite element models are clinically validated and have high-quality
discretization with accurate geometries. These subject-specific models demonstrate
different mechanical behavior across subjects within the same simulation scenario.
Additionally, the simulation results vary between the left-hand and right-hand side of
the body in each subject.

Our work is one of the largest model repositories concerning the number of subjects
and regions of interest. We aim to empower researchers with free access to verified and
reproducible computational models. Thus, our detailed research data, including the
clinical images, the segmentation label maps, the finite element models, and software
tools, are openly accessible on https://diku-dk.github.io/libhip/. In future work,
we aim to add additional structures to our models and upscale the population size as
a direct benefit of our approach.

https://diku-dk.github.io/libhip/
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Resumé

Populationsbaseret finit element-analyse af hofteledsmodeller gør os i stand til at
studere effekten af subjekt-specifik variabilitet på simuleringsresultaterne. Denne
tilgang er begyndelsen til computeriserede kliniske forsøg og tilbyder forskellige bidrag
til at forbedre den nuværende kliniske behandling, design af kirurgiske simulatorer til
virtuel træning samt optimering af hofteimplantater.

På trods af den brede anvendelse af befolkningsbaserede analyser er udvikling af store
fagspecifikke modeller en udfordrende opgave og kræver en omfattende manuel indsats.
De fleste nye undersøgelser er således begrænset i antallet af emner, og de anatomiske
fremstillinger er ofte udsat for forenklinger. For eksempel erstattes hofteledsområdets
geometri med simple former, eller den bilaterale variation i dette område ignoreres.
Sådanne antagelser kan begrænse pålideligheden af de forudsagte resultater.

Denne afhandling giver nye metoder til at udvikle finit element-modeller, der mulig-
gør storstilet populationsbaseret vurdering af hofteledsadfærd. Vi drager fordel af
datalogiens kraft til at forbedre kvaliteten og automatisere processen for standard mod-
elleringen. Vi anvender yderligere vores nye pipeline til at generere flere emnespecifikke
finit element-modeller, herunder knogler og brusk i hofteleddet. De emnespecifikke finit
element-modeller er klinisk validerede og har diskretisering af høj kvalitet med nøjagtige
geometrier. Modellerne demonstrerer forskellig mekanisk adfærd på tværs af emner
inden for det samme simuleringsscenarie. Derudover varierer simuleringsresultaterne
mellem venstre og højre side af kroppen i hvert emne.

Vores arbejde er et af de største modeldepoter vedrørende antallet af emner og områder
af interesse. Vi sigter mod at give forskere fri adgang til verificerede og reproducerbare
beregningsmodeller. Således er vores detaljerede forskningsdata, herunder de kliniske
billeder, segmenteringsmærkekortene, finit element-modellerne og softwareværktøjer
åbent tilgængelige på https://diku-dk.github.io/libhip/. I det fremtidige ar-
bejde tilstræber vi at tilføje yderligere strukturer til vores modeller og opskalere
befolkningsstørrelsen som en direkte fordel ved vores tilgang.

https://diku-dk.github.io/libhip/
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Chapter 1

Background

This chapter aims to introduce the anatomical terminology in this thesis to make
sure they are accessible to an audience coming from different backgrounds. For
a more thorough review, the reader is referred to [24]. We further give a brief
introduction to computational models and their application in biomechanics.

1.1 Anatomy of the hip joint area
The hip joint forms an intricate organization of bones, muscles, cartilages, etc.
Figure 1.1 illustrates the bones and cartilages in this region. The skeletal
structure is made by the pelvic girdle and the two femurs. The pelvic girdle
provides strength, stability and transfers the body weight to the femoral bones.
This girdle is shaped by the two hip bones and the sacrum.

The sacrum reaches the hip bones in the sacroiliac joint, and the two hip bones
connect at the pubic symphysis. Additionally, the acetabular part of the hip
bone articulates within the femoral head to form the hip joint. The sacroiliac
joint and the pubic symphysis provide stability and strength in the pelvic girdle,
and the hip joint allows free rotation of the femur within the acetabulum cusp.

The connective cartilages cover the bones in these three joints to provide unhin-
dered motion and cushion the bone surface. Figure 1.1 demonstrates how the
lunate surface of the acetabulum and the entire femoral head, except the fovea
pit, are covered by articular cartilages. This area resides other soft tissue, such
as the ligaments, the hip joint capsule, and the muscles, which are out of the
scope of this thesis.

1.2 Prospective of computational models
Modeling biological systems allows us to simulate their mechanical behavior
without using the actual tissue. This method can simulate the load transfer
across the hip joint and estimate the stress distribution in this area [21, 29].
Such simulations aid researchers in understanding the underlying mechanism of
healthy hip joints and their mechanical alteration in complex disorders [19,26,29].

Computational modeling contributes to subject-specific applications in both
surgical and non-surgical platforms. These models have the potential to predict
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Figure 1.1: Overview of the anatomy around the hip joint; The
skeletal structure consists of the hip, the sacrum, and the femur
bones. The cartilage tissue in the sacroiliac joint, pubic symphysis
and hip joint are shown in blue. We assume the sacroiliac and
pubic symphysis as a single-piece cartilages, while the hip joint
cartilage consists of two articular cartilages.

the outcome of surgical interventions and optimize clinical treatments [30]. They
further contribute to the design of surgical simulators for virtual training [27] and
are critical elements in the design of subject-specific implants, such as prosthetic
hip components [3, 9, 28].

In a non-surgical setting, computational modeling is used to improve the per-
formance and cost-effectiveness of the products in contact with the body. For
example, the product designers of pelvic belts can benefit from analysis tools to
integrate consumers and market feedback into the design of their products [22].
Moreover, analysis studies can potentially assess how pelvic skewness can alter
the normal stress distribution on one side of the body and help reduce this
pressure using subject-specific foot orthoses designs.

The public benefits of computerized clinical trials have been recognized by
regulatory agencies and standard developing organizations. These institutions
believe that patient care can be improved using computational analyses. For
example, The Food and Drug Administration (FDA) and The American Society
of Mechanical Engineers (ASME) have added computational simulations in their
regulatory evaluation of medical devices (V&V40) and advise the industry to
employ such tools in the research and product development schemes.

Computational models are mainly developed based on two approaches: 1) The
musculoskeletal multibody modeling, and 2) Numerical modeling using the finite
element method.

Musculoskeletal models present the geometry of the hip joint area with a chain
of rigid body segments (bones) connected through points (joints). These models
offer valuable insights into the hip joint movements and the muscle actions
during daily activities and postures [5, 7]. However, the predicted results are
limited to the joint points and do not extend to the entire geometry.
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Numerical models are popular alternatives that utilize the principles of continuum
mechanics and solve some of the issues arising from musculoskeletal models.
The finite element method is a numerical approach to solve partial differential
equations by discretizing the hip joint domain into a finite mesh [2]. Assessing
the hip joint behavior through finite element analysis requires three main steps:

• The first step is to generate a proper approximation of the anatomical
structures;

• Second, this anatomical information is transformed into surface and volume
mesh representations to build a finite element model;

• Finally, the behavior of this model is studied under a chosen analysis
scenario;

This thesis uses the finite element modeling approach to study the behavior
of hip joint and introduces novel methods to improve the existing modeling
pipeline.
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Chapter 2

Introduction

This chapter introduces the difficulties of developing finite element models for
simulation and explains how we contribute to taking a step further towards
facilitating this procedure.

2.1 Problem statement
Developing hip joint finite element models starts with a proper approximation of
the anatomical structures; Second, this anatomical information is transformed
into a surface boundary and then filled with volume mesh elements; Finally, the
behavior of the discretized models are studied under a specific analysis scenario.

The hip joint area exhibits multiple structures in contact which the shape and
relative alignment of these structures vary among individuals. It is suggested
that there is a significant variation in the hip joint contact mechanics due to
the geometrical differences [8, 10]. Meanwhile, most studies assessing the hip
joint behavior through finite element analysis are based on models from a single
or a few subjects. This approach provides valuable information regarding that
specific subject but does not account for the effect of the inter-subject variability
and leaves uncertainties regarding the generality in the predicted results [25].

Adding multiple models in the simulations allows us to account for this vari-
ability [25] and observe its effect on the joint behavior. On the other hand,
population-based studies are limited by clinical resources and the significant
amount of time and manual effort to prepare large-scale hip joint models. In
most cases, the final models are not freely available for research.

2.2 Objectives
Our overall objective in this thesis is to empower clinical researchers to have
free access to multiple detailed and subject-specific finite element models of the
hip joint area. We further want to deliver reliable alternatives to conventional
techniques for developing such models. These tools mainly arise from looking at
computational modeling from a computer science point of view and employing
the potentials of geometry processing tools.
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We want to make our research data, including the clinical images, the segmen-
tation label maps, the finite element models, and software tools, accessible to
researchers. These models allow them to use the benefits of computational
modeling in research and investigate the importance of geometrical variance in
the body’s behavior.

Following, we will mention our contribution to each step of the finite element
modeling workflow. In each paragraph, we refer to the motivation behind our
related papers and explain why our geometry processing tools are superior to
methods used by other works.

Level of anatomical details The anatomical representation of the hip joint
area can be reconstructed at various levels of complexity, ranging from simplified
phenomenological geometries to highly detailed and subject-specific models.
Depending on the complexity of the problem, a few or all anatomical structures
are added to the analysis.

In this thesis, we want to create detailed bilateral, and subject-specific models
covering all the bones and cartilages explained in Chapter 1. The most challeng-
ing part of this method is that deriving large-scale subject-specific geometries
from clinical images is time-consuming. Due to the tight space in the hip joint
area, some structures, such as cartilages, are poorly visible in the clinical images.

Large-scale bone segmentation To reconstruct subject-specific bone ge-
ometries directly from images, we need reliable and efficient segmentation of
the region of interest. Manual or semi-automated delineation of anatomical
structures is generally reliable, but delineating large-scale datasets using these
approaches is inefficient. This approach takes a very long time, and the process
is highly limited by the image resolution and the annotator’s expertise.

On the other hand, deep learning models are efficient ways to generate large-
scale segmentations: These models are initially trained on a set of annotated
images. Once the model is trained, it usually takes a short time to make
predictions for new input. This method has been the motivation behind the
work presented in Appendix A, which investigates the potential of UNET neural
network architecture to segment the bony structures from a set of CT scans.

The result of this paper was an accurate approximation of the bone contours
in 2D label maps and 3D geometry in multiple subjects. Further, the bone
contours respect the inter-bone cavities, where cartilages reside. Thus, no two
bones are connecting in the joint area.

Large-scale soft tissue reconstruction Delineating soft tissue from clinical
images is challenging. This tissue, in general, is poorly visible in CT scan data,
and for better visualization, one needs other image modalities such as MRI
scans. Given the tight space in the hip joint, it is still challenging to identify
the opposing cartilage interfaces in such modalities [11]. CT arthrography and
manual traction are alternatives to increase the joint space, enhancing cartilage
visibility at the cost of being an invasive intervention [12,18].
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In Appendix B and Appendix C we aim to reconstruct cartilage tissue in a much
more efficient way. In these works, the main idea is that only the sufficiently
close parts of bones in the joint have cartilages attached to them. We employ
bone locality and geometry to create a fast geometry processing method that
can generate subject-specific cartilages without directly segmenting them from
clinical images.

The results from Appendix B generate subject-specific cartilages in the hip
joint with non-uniform thickness. These cartilages have conforming interfaces
with their underlying bones and form congruent interfaces between the articular
boundaries. The high congruence level prevents potential spikes and peak stresses
in the articulating surfaces, resulting in continuous stress distribution. We tend
to improve the quality of the hip joint cartilage models in Appendix C and
extend this work to creating cartilages for sacroiliac joint and pubic symphysis.
The simple idea behind this approach can be extended to other joints in the
body, such as the shoulder and knee joints (Appendix B) and the PDL layers
attached to the teeth (Appendix E).

Surface and volume discretization The 2D segmented masks from clinical
images are transferred to discretized 3D surface mesh. This surface boundary is
then filled with volumetric elements, such as tetrahedrons [13,14]. A common
requirement in generating a volumetric domain is an explicit definition of the
surface mesh. This surface should ideally be water-tight and without bad
quality meshes. Unfortunately, this is rarely the case for segmented data from
clinical images. The output geometries are dense and often self-intersecting.
Traditionally, these imperfections need to be cleaned up before volumetric
meshing, a laborious task, even when using state-of-the-art re-meshing tools [1].

A variety of approaches, such as delaunay meshing, advancing front, or grid
stuffing, exist for volume mesh generation [14]. Most of these tools mesh the
sub-domains of the hip joint complex separately, in a one-by-one approach. They
do guarantee that the final volume meshes will share faces on adjacent surfaces
and may introduce overlaps or gaps in the shared interfaces. Excessive overlaps
may cause additional problems in the contact formulation, leading to invalid
simulation results.

These issues motivated us to look for alternative discretization approaches to
remove this manual and time-consuming step. In Appendix C, we seek a robust
method to repair and preserve the mesh properties in the shared interfaces. To do
so, we use a radically different approach first introduced in computer graphics [13].
This method generates volume meshes decoupled from the surface mesh quality
and employs a multi-body volume mesh generation that simultaneously generates
the whole complex’s volume mesh, ensuring neither overlapping nor gaps in the
interfaces. As a result the interface nodes are weld together in the meshing step,
avoiding further contact definitions in the simulation setup.

Finite element method solvers Various research libraries, commercial codes,
and software are available to solve elastic problems with the finite element method.
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Most of these models are sensitive to user-defined solver settings unrelated to the
physical quantities of interest. For example, changing the contact parameters
and the time step size in these solvers can significantly affect the stability and
accuracy of the predicted results and even lead to inverted elements.

One of the most critical user-defined parameters is mainly the contact setting
between two geometries. The user must manually assign pre-defined contact
surfaces in some contact models, such as those used in Abaqus and FEBio [16,23].
These two surfaces must have specific and different mesh resolutions regarding
each other.

Calibrating the contact parameters for an optimal setting takes a long time
in complex systems. Additionally, we want to minimize the amount of user
interaction in this step so that the user does not need to manually define the
potential surfaces that might come into contact during the simulation. These
concerns motivated us in Appendix C to employ finite element solvers that
are free of such requirements. In this paper, we introduce a solver which
adopts the Incremental Potential Contact (IPC) formulation [6, 15], is robust to
large deformations, and ensures no inverted elements using explicit line-search
checks [15]. Our work is among the first works to employ this solver in the field
of biomechanics [20].
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Chapter 3

Summary and Future Work

This chapter summarizes the work presented in the appendices and discusses
the possible future directions for this project. We keep this chapter brief and
refer the reader to each appendix for more detail.

This thesis addressed the problems involved in the population-based finite element
analysis of hip joint models. It used the computer science foundation to scale up
the number of reconstructed models. In Chapter 1, we explained the importance
of computational models and provided the anatomical and technical background
to understand the terminologies used throughout the thesis. Chapter 2 outlined
the challenges that are generally encountered during the development of finite
element models and how each appendix contributed to providing solutions to
these problems.

Appendix D was the very first time we reconstructed an anatomical structure
from CT scans and tested this model in a simulation setup. This experience
allowed us to understand the shortcoming of conventional methods in creating
subject-specific computational models. One of the main bottlenecks was the
extensive time needed to reconstruct a proper 3D surface mesh from clinical
images. Even though the results of semi-automated segmentation were reliable,
extending this to many datasets was not a feasible solution.

We raised this issue in Appendix A and looked into the existing problems regard-
ing large-scale image-based bone reconstruction. We proposed an automated
approach for generating multiple bone segmentation using very few annotated
data for training the model. We show that the segmented models have accurate
geometries and are suitable for simulation studies. This approach accelerates the
process of image-based segmentation compared to manual or semi-automated
methods and allows large-scale segmentation in a minimum amount of time.

Even though this approach facilitates the segmentation step, we still need to
delineate the training dataset semi-automatically. Depending on the region of
interest, this procedure may still take several days. A future direction for this
work would be to scale up our test data and extract more anatomical components
using this method.

In Appendix B, C, and E we targeted the subject-specific reconstruction of soft
tissue. We combined multiple geometry processing tools to propose a novel
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method to generate a subject-specific cartilage model without directly segmenting
them from images. We only use the surface mesh of the bone models and create
connective cartilages based on the distance and the anatomical information of
the two involved bones at the joint. This novel approach enabled us to generate
large-scale cartilages quickly, where the cartilages are poorly visible in the clinical
images. The results were verified clinically and performed well in the simulation
setup.

One limitation to our approach is that the cartilage generation algorithms are
sensitive to the quality of the input bone models. Therefore any imperfection
in the bone segmentation can affect the geometry of the cartilages. Further,
even though this method is swift compared to direct cartilage segmentation, it
still relies on geometry-related parameters that must be calibrated for each new
subject. One future direction would be to decrease these parameters to speed
up the process. We further would like to extend this approach to other joints
and soft tissue. One example would be to adapt our expert system to generate
knee joint cartilages and meniscus.

Appendix C is our most important paper where we provide multiple subject-
specific finite element models of the hip joint area. We combine the outcome of
Appendix A and Apppendix B and feed new mesh generation and simulation
tools to close up the improvement of the computational modeling pipeline. This
work provides 11 subject-specific models of the hip joint area covering the
bones and the cartilages. We employ multi-body volumetric meshing tools that
mesh the whole complex simultaneously and generate high-quality discretization
with conforming shared interfaces. The finite element solver is independent
of unnecessary user-defined parameters, accelerating the simulations. These
models allow scientists to perform population-based studies regarding the hip
joint area and account for the inter-subject and bilateral variability in their
population studies. Our research data are open-access and publicly available
on https://diku-dk.github.io/libhip/.

The models in our repository are currently gender-biased and only belong to
male subjects. Further, these models lack other soft tissue. Further work may
be directed to add datasets from both genders and include more soft tissue in
the modeling pipeline. Our finite element models are also biased by the position
of the subjects during image acquisition. The subjects are in a supine position,
and thus the relative alignment of the hip joint structures vary compared to a
neutral unloaded joint. Future work can be extended to relocating these bones
to remove such ill-posed conditions. We also want to investigate the possibility
of removing surface mesh representation from the pipeline and going directly
from segmentation label maps to volume mesh representations.

Now that we have a set of stable finite element models, our future question can
be how to perform different simulations and use the results to understand the
crucial elements when developing hip joint models. Post-processing the analysis
results allow us to investigate the importance of age, geometrical differences in
the behavior of hip joints. These data can be exploited to design protective
orthoses for the older generation and optimize implants. Another exciting field

https://diku-dk.github.io/libhip/
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would be to investigate if our modeling approach could help clinicians diagnose
a disease in its early stages and if we can modify our pipeline to develop finite
element models for diseased datasets.

We want to apply our whole modeling pipeline to new anatomical structures in
future work. Based on our estimations, if we want to develop 100 finite element
models of a completely new location in the body, with all these improvements,
we would need six months. This time would be spent training the automated
segmentation model, modifying our cartilage generation pipeline, and setting up
simulation scenarios. This is while developing such a repository with conventional
models seems unfeasible.
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Appendix A

Auto-segmentation of Hip Joints
using MultiPlanar UNet with

transfer learning

The following chapter presents the article:

Peidi Xu, Faezeh Moshfeghifar, Torkan Gholamalizadeh, and Michaels
Bachmann Nielsen. “Auto-segmentation of Hip Joints using MultiPlanar
UNet with Transfer learning” Under review at Medical Image Computing
and Computer Assisted Intervention (MICCAI) 2022.

Automated segmentation is an efficient approach to generating large-scale seg-
mentations. Even though these models provide accurate 2D segmentation label
maps, there is still a lack of quality assessment of these results’ 3D surface mesh
representation. Typically, contouring methods convert a segmentation label map
into a surface mesh representation. The surface mesh will be slightly enlarged
during this procedure, often by half a voxel size. This implies that the resulting
segmentation of bones with shared interfaces may be penetrating each other or
have gaps. Further, the arrangement of two labeled pixels concerning each other
may result in self-intersection in the 3D geometry. All these imperfections can
bring challenges to the simulation scheme and result in erroneous predictions of
the hip joint.

This paper was our improvement in the first step of the modeling pipeline. In
this work, we investigated the potential of deep learning models in providing
large-scale accurate bone geometries suitable for finite element modeling. This
approach reduced the manual workload of segmentation to only a few annotated
data in the training dataset. The accurate approximation of the bone geometries
in this work details the shape and boundaries of bones, and further, the label
maps identify the inter-bone cavities in each joint. Thus, no two bones are
connecting in the joint space. The surface mesh representation of these label
maps is guaranteed to be manifold, without inverted elements, and without the
staircase effects.



Auto-segmentation of Hip Joints using
MultiPlanar UNet with Transfer learning

Peidi Xu1, Faezeh Moshfeghifar1, Torkan Gholamalizadeh1,3, Michael
Bachmann Nielsen2, Kenny Erleben1, and Sune Darkner1

1 Department of Computer Science, University of Copenhagen, DK
darkner@di.ku.dk

2 Department of Diagnostic Radiology, Copenhagen University Hospital, DK
3 3Shape A/S, Copenhagen, DK

Abstract. Accurate geometry representation is essential in developing
finite element models. Although generally good, deep-learning segmen-
tation approaches with only few data have difficulties in accurately seg-
menting fine features, e.g., gaps and thin structures. Subsequently, seg-
mented geometries need labor-intensive manual modifications to reach a
quality where they can be used for simulation purposes. We propose a
strategy that uses transfer learning to reuse datasets with poor segmenta-
tion combined with an active learning step where fine-tuning of the data
results in anatomically accurate segmentations suitable for simulations.
We use a modified MultiPlanar UNet that is pre-trained using inferior
hip joint segmentation combined with a dedicated loss function to learn
the gap regions and post-processing to correct some tiny inaccuracies on
symmetric classes due to rotational invariance. We demonstrate this ro-
bust yet conceptually simple approach applied with clinically validated
results on publicly available computed tomography scans of hip joints.

Keywords: Segmentation · Finite Element modeling · Transfer learning

1 Introduction

Precise segmentation of medical images, such as computed tomography (CT)
scans, is widely used for generating finite element (FE) models of humans used for
patient-specific implants [2]. A requirement in generating FE models is to have
a proper geometrical representation of the anatomical structures [9]. In our case,
an accurate segmentation of the hip joint (HJ) should essentially detail the shape
and boundaries of the femur and the pelvic bones and identify the inter-bone
cavities. The segmented geometries should be closed, non-intersecting, and with-
out spikes. As manual segmentation is labor-intensive and time-consuming [9],
there is a need for automated segmentation tools that can generate accurate FE
models.

Convolutional Neural Networks with encoder-decoder structures are widely
used for auto semantic segmentation, among which the most successful one is
the UNet structure [10]. The architecture uses skip connection on high-resolution
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feature maps in the encoding path to include more fine-grained information. Al-
though more recent models are proposed on segmenting natural images, e.g.,
DeepLabV3+, UNet still provides some of the best 3D medical image segmen-
tation results [1]. Therefore, the variation of UNet, e.g., 3D UNet, is a straight-
forward way to segment 3D medical data like CT scans and has shown its state-
of-the-art performance [3]. Applying 3D convolutions directly to large 3D im-
ages may overflow memory. Therefore, 3D models are usually trained on small
patches, which results in a limited field of view and subsequent loss of global in-
formation. As an alternative with far less memory usage, the MultiPlanar UNet
(MPUNet) model was proposed by Perslev et al. [8] which uses a 2D UNet to
learn representative semantic information.

Most studies on auto-segmentation of the HJs focus on designing more pow-
erful neural networks that separate anatomical structures with little manual
intervention [12, 13]. These studies focus primarily on the bone morphology and
not on the inter-bone gaps. The consequence is that although they reach fairly
high Dice scores, the segmentation results are anatomically inaccurate and are
unsuitable for generating HJ 3D models. This limits the usability of the existing
deep learning models for FE simulations [7].

We require the deep learning models to provide anatomically correct seg-
mentation of the bones and the existing gap in the HJ as shown in Fig. 1 [12,
13]. Due to the limited number of accurate training data, we propose a deep
learning-based strategy for enhancing publicly available poorly annotated scans
using only a few accurately segmented data to learn an accurate model and
in our case the gap regions in HJ. Besides using the idea of MultiPlanar, our
backbone model is a standard UNet with batch normalization. Therefore, the
proposed pipeline is both parameter and memory efficient.

Fig. 1: Illustration of gap generation: Inferior ground truth of a training image
from public dataset (A) and results by fine-tuned model (B). Results on a test
image with model trained only on public dataset (C) and fine-tuned (D)

To enforce the cartilage gap with few annotated data, we apply MPUNet
with a dedicated loss function penetrated more on the gap regions combined with
transfer learning and a post-processing step. Our framework uses an interactive
learning pipeline involving pre-training MPUNet on a public dataset with inferior
HJ segmentation to learn general semantic features of the bones [5]. The model
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is then fine-tuned using a few highly accurate segmentation to learn the correct
labeling of the gaps. We show that our proposed approach allows the model to
learn the gap and generate anatomically accurate segmentation, using the pre-
trained model and only four accurate segmentations for fine-tuning. Our work
is validated on a set of HJs from which we construct FE models and report the
Dice with the manually corrected segments used for biomechanical models.

2 Method

Our strategy for accurate HJ segmentation with very few accurate training im-
ages relies on the following: (i) we use the idea of MPUNet that segments 3D
medical images using 2D models while preserving as much spatial information
as possible by segmenting different views of the data. (ii) we use a relatively
simple yet powerful backbone model for performing the segmentation to avoid
overfitting and memory issues. (iii) we pre-train the model using publicly avail-
able datasets with poor labels, which are then fine-tuned with a very small set
of accurately annotated data. (iv) we use a dedicated weighted distance loss
to enforce the gap between the bones. (v) we introduce a post-processing step
that solves the internal problem of MPUNet on images with symmetric features
and can be generalized to other segmentation tasks involving symmetric and
disconnected groups.
Model : As a baseline model, we use the MPUNet proposed by Perslev et al. [8]
to segment the 3D HJs using 2D UNet while preserving as much 3D spatial
information as possible by generating views from different perspectives. During
training, the model f(x; θ) takes a set 2D image slices of size w×h, from different
views, and outputs a probabilistic segmentation map P ∈ w × h × K for K
classes for each slice. A standard pixel-wise loss function is then applied for
back-propagation. Our experiment uses a standard categorical cross-entropy loss
augmented by the weighted distance map. We found no improvement using a
class-wise weighted cross-entropy loss or the dice loss. In the inference phase, we
run 3D reconstruction in each view separately over the segmentation results on
all the parallel slices to get the volume back. This results in a volume probability
map of size P ∈ m×w×h×K for each view. Unlike original MPUNet [8] which
suggests training another fusion model using validation data, we simply use
majority voting by summing over results from different views and performing an
argmax. This strategy achieves good results on the validation data.
Transfer Learning : The accurate segmentation and fast convergence rely par-
tially on pre-training the model using publicly available datasets with poor la-
beling, which is subsequently fine-tuned with a small set of accurate training
data. We detail two modifications that differ from standard transfer learning
settings. First, we also transfer the weight in the last softmax layer because we
work on exactly the same classes as before. Our experiment has shown that this
results in a much faster convergence. Then, instead of freezing encoder and only
fine-tuning decoder, it is necessary to explicitly learn encoder to detect the gap,
as the gap must be encoded correctly first.
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Weighted Distance Map: For the model to be fined-tuned to learn the gap
between the bones, we enforce a voxel-wise weight-map w(x) to the loss function
based on the distances to the border of the foreground classes. This strategy was
initially suggested in the original UNet paper, which we employ in a modified
version for 3D data [10, 8]. We define w(x) as follows,

w(x) = wc(x) + w0 · e−
(d1(x)+d2(x))2

2σ2 (1)

where d1 and d2 denotes the distance to the border of the nearest foreground
class and the second nearest foreground class respectively. We follow original
UNet paper and set w0 = 10 and σ = 5. wc : Ω → R is used to balance the class
frequencies, which we do not enforce, thus we set wc = 1 for every c.

During fine-tuning, the corresponding slice of the 3D weight map is sampled
together with the images and labels. We apply an element-wise multiplication of
the weight map with the cross-entropy loss of predictions and labels on each pixel
before reduction. Fig. 2 (left & middle) shows an example training slice. Note
that we do not plot the prediction since it consists of multi-class probabilities.

1

2

3

3.7

Fig. 2: (left) A sample training slice of true labels overlaid on top of raw image.
(middle) Corresponding weight map computed with Eq. (1) overlaid on top of
label boundaries. (right) Results of training with weight map calculated over
eroded labels(orange contour), which shows a smoother and more complete con-
tour near the boundaries than the results trained without erosion (blue contour).

We have noticed that the model is prone to overfitting to the gap, producing
a broader gap than usual if we use higher weights only to the gap regions in
Eq. (1) because it only penalizes on the gap region. Instead, we would like to
assign more weight to the boundaries on the two sides of the gap to avoid false
negatives. Thus, we apply a mathematical erosion to the labels over a ball with a
radius of 3 voxels before calculating the weight map. This operation ensures that
both the gap and the boundaries near the borders get assigned higher weights,
as demonstrated in Fig. 2 (middle). To compensate for the increased value of
d1 + d2 introduced by the erosion, we double w0 to 20.
Sampling Strategies: Sampling and interpolation are necessary to retrieve cor-
responding 2D slices from a 3D medical image viewed from a random orientation
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other than the standard RAS axes. We follow the idea in [8] by sampling pixel
with dimension d ∈ Z+ on isotropic grids within a sphere of diameter m ∈ R+

centered at the origin of the scanner coordinate system in the physical scanner
space. We differ in that these two numbers are chosen as the 75 percentile across
all axes and images during training but as maximum value during inference.
Please refer to Supplementary material for the effect of doing so.

Post-Processing : Although MPUNet is both parameter and memory efficient,
the model is trained on 2D slices with a possibly limited field of view near the
boundaries. Furthermore, the model is trained to segment the input viewed from
different perspectives by sampling from planes of various orientations. This intro-
duces some rotational invariance to the training and makes it hard to distinguish
between symmetric classes with very similar semantic features. For example, it
is hard to be consistent with the left and right femurs when viewing the input
from various perspectives. Therefore, in the results, some part of the left femur
and pelvis near the boundaries is mis-classified as the right femur and pelvis
respectively, and vice versa, as shown in Fig. 3.

Fig. 3: Segmentation (left) with post-processing (right) where falsely predicted
symmetric groups are recovered.

In order to solve this problem automatically, we propose a symmetric con-
nected component decomposition. We only keep the largest connected compo-
nent for each symmetric class pair while assigning the corresponding symmetric
class value to all the other components. By doing this instead of just removing
small components, those parts predicted as the left femur on the right femur are
mapped correctly to the right femur, and vice versa. We then apply a standard
connected component decomposition while keeping only the largest connected
component for each foreground class to remove floating points of each class (false
positives). A final 3D closing is applied to remove holes inside each class.

We acknowledge that our post-processing is highly task-specific but could
also be generalized to other segmentation tasks with symmetric classes that
share similar semantic features and are disconnected from each other.
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3 Data and Experiments

We use 35 CT scans from The Cancer Imaging Archive [4]. The dataset consists
of subjects scanned in a supine position with no diagnosed diseases related to
the HJ. For the pre-training step, we use 10 scans and their associated inferior
segmentations from a publicly available dataset of segmented CT pelvis scans
with annotated anatomical landmarks (CTPEL) [5, 12]. We only use two scans
with accurate segmentation to fine-tune the model in the first place, In the next
step, two other unseen scans are used to get the segmentation results of the
model. Then, we manually correct these two results and fine-tune the model
again. The second fine-tuning process could be re-iterated, but a total of four
images is sufficient to obtain accurate results. We evaluate the segmentation re-
sults of our approach with minimal required accurate fine-tuning data. A clinical
expert evaluated the segmentation results of the 21 test cases.
Pre-processing : We pre-process the data by first filtering out all negative
values in the volume because both bones and cartilages should have positive
Hounsfield unit values. We then apply a standardization based on the equation
Xscale = (xi−xmean)/(x75−x25), where x25 and x75 are the 1st and 3rd quartiles
respectively. This removes the median and scales the intensity based on quartiles
and is more robust to outliers. No other pre-processing is applied to avoid any
manual errors that can easily propagate in a neural network.
Experimental Setup: The network is trained on NVIDIA GeForce RTX 3090
with a batch size of 10 using the Adam optimizer for 40 epochs with a learn-
ing rate of 1e-5 and reduced by 10% for every two consecutive epochs without
performance improvements. We apply early stopping if the performance of five
consecutive epochs does not improve. Pre-training takes approximately one day,
while fine-tuning takes about six hours to reach convergence.
Augmentations: We apply Random Elastic Deformations to generate images
with deformed strength and smoothness [11]. The augmentations are generated
on the fly during the training process, and following MPUNet we assign a weight
value of 1/3 for the deformed samples [8].

4 Results

To have suitable geometries for FE models, the auto-segmentation framework
must separate bones and generate accurate results near the boundaries, which
is essential for generating cartilage layers for HJ. Therefore, any standard eval-
uation metric such as the Dice score could be misleading. Hence, our results,
including the bone outlines and the existing gap in the joints, are first validated
by a senior consultant radiologist as our clinical expert.

The clinical expert initially scrolls through all the segmented slices for each
subject and verifies the bone contours and the gaps between the pelvic and
femoral bones. Then, he verifies the anatomical shape and smoothness of the
reconstructed 3D model. This procedure justifies the validation of our method
in obtaining precise HJ geometries.
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Fig. 3 illustrates the results of the fined-tuned model on the test set and
demonstrates the effect of post-processing mentioned above. Because of the lim-
ited field of view and being viewed from different perspectives, some symmetric
classes are misclassified near the boundaries and are successfully recovered by
the post-processing step. It can be seen that with the distance weight applied
to loss, the model can detail the gap accurately. The final result is accurate and
requires little or no human intervention for subsequent simulation experiments,
e.g., FE analysis. Results in 3D are available in the GitHub repo mentioned in
Supplementary material. As an example, we have generated the cartilage ge-
ometry on the segmented HJ with a method proposed by [6] to analyze the
stress distributions as shown in Fig. 4. The results show a smooth stress pattern
indicating that our method’s output is suitable for use in FE simulations.

Dice ↑ GapDice ↑ HD ↓
Ours 98.63 ± 0.56 96.47 ± 1.60 3.67 ± 1.13
NoPretrain 97.82 ± 0.59 95.13 ± 1.42 5.26 ± 2.10
NoWeight 98.12 ± 0.47 94.35 ± 2.19 4.58 ± 1.50
3DUNet 93.36 ± 1.84 87.48 ± 3.01 7.02 ± 1.09
NoFineTune 93.22 ± 1.33 84.16 ± 3.41 12.07 ± 6.82

Table 1: Test Results of our model compared with vari-
ous design choices. Note that HD is in the scale #voxels

Fig. 4: Smooth von
Mises stress pattern

4.1 Numerical Validation and Ablation Study

Although numerical results could be misleading regarding the final FE simula-
tions, we include them as a validation and ablation study of our several design
choices. Table 1 shows the numerical validations on the test set, including nine
images with manually corrected ground truth segmentations. We test the perfor-
mance by varying one of the design choices each time while keeping the others
fixed. (i) The strategy mentioned in Section 2 (ours), (ii) Training without using
ten inaccurate public data (NoPretrain), (iii) Training without enforcing dis-
tance weight map (NoWeight), (iv) Using 3D UNet as the backbone (3DUNet),
(v) Using only ten inaccurate public data without fine-tuning (NoFineTune).

Besides the standard Dice score, we are especially interested in the surface
and gap regions. Therefore, two more evaluation metrics are introduced here. We
use Hausdorff distance (HD) as surface measurement by computing the largest
distance between the result and the nearest point on the ground truth.

HD(P, Y ) = max(max
p∈P

min
y∈Y
∥p− y∥2, max

y∈Y
min
p∈P
∥p− y∥2) (2)

We also propose a GapDice in Eq. (3) to measure the average Dice score
between the segmentation result and the ground truth only around the gap
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regions. Given the segmentation results P and ground truth segmentation Y , we
compute the Euclidean distance transformation map Yd of Y , corresponding to
the d1+d2 term from Eq. (1). The gap region G is defined as the locations where
Yd < ϵ. The Dice score between P and Y is calculated in the standard way inside
G. Here we choose ϵ = 10 as we found it to be a good indicator of the gap region
and boundary locations. Fig. 2 (right) shows the region computed by eroded
labels, which is also an indication of such regions. Please refer to Supplementary
material for a detailed illustration of such regions.

GapDICE(P, Y ) =
2 ∗ |P ∩ Y ∩G|
|P ∩G|+ |Y ∩G| (3)

The results show that MPUNet (all the first three models) works significantly
better than 3D UNet for a data scarcity setting. Our pipeline outperforms in
all three metrics. Especially, although the difference of the Dice score is not
significant, pretraining on inaccurate data and enforcing the weight map shows
a significantly better GapDice score and HD, which is vital for further simulation.

5 Conclusion

We have presented an auto-segmentation framework for accurate segmentation
from CT scans considering the bone boundaries and the inter-bone cavities. Our
framework uses a modified version of MPUNet pre-trained on a public dataset
with coarse segmentation and fine-tunes with very few data with accurate seg-
mentations. In addition, we improve the performance of MPUNet on symmetric
classes by symmetric connected component decomposition. We demonstrate that
our simple yet robust model can detail crucial features, such as the gap where
the cartilage resides.

This work is tested out on HJ CT scans and provides anatomically accurate
segmentation, which has both been verified by a clinical expert and shown supe-
rior numerical results, reaching an overall Dice score above 98% and above 96%
around gap regions. Our method can be used to enhance anatomically incor-
rect and poorly annotated datasets with a few accurately annotated scans. The
FE analysis performance test shows that the generated models produce smooth
stress patterns without any geometry-related artifacts. Thereby, the segmenta-
tion result of this work can be used for generating FE models with little or no
manual modifications.
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Appendix B

A direct geometry processing
cartilage generation method for

datasets with poor cartilage
visibility

The following chapter presents the article:

Faezeh Moshfeghifar, Max Kragballe Nielsen, José D. Tascón-Vidarte,
Sune Darkner, and Kenny Erleben. “A direct geometry processing carti-
lage generation method using segmented bone models from datasets with
poor cartilage visibility” Computational Biomechanics for Medicine XVI
(MICCAI Workshop) 2021.

This work presents our approach to generating subject-specific hip joint cartilage
without directly segmenting them from clinical images. We introduce a spe-
cialized geometry processing pipeline that uses the bone geometry information
around the hip joint and generates the two articular cartilages in the hip joint.
These cartilages are subject-specific and have non-uniform thickness across their
geometry. Further, our modeling approach guarantees conforming interfaces with
their underlying bones and congruent interfaces between the articular interfaces.

These cartilage models were clinically verified, and their anatomical measure-
ments agree with the data reported in the literature. We tested these models
in a finite element simulation setup, and the results produced smooth stress
distribution with no convergence issues related to the discretized geometry.
The research data, including the modeling pipeline, is available on Github
( https://github.com/diku-dk/CarGen) for public use. The number of avail-
able datasets in this work limited our experiments, and we only managed to
test this pipeline on ten hip joints. We further tested the compatibility of this
approach on other joints, such as the shoulder and the knee joint, but we left
further investigation on such joints for future work.

https://github.com/diku-dk/CarGen
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Abstract. We present a method to generate subject-specific cartilage
for the hip joint. Given bone geometry, our approach is agnostic to im-
age modality, creates conforming interfaces, and is well suited for finite
element analysis. We demonstrate our method on ten hip joints show-
ing anatomical shape consistency and well-behaved stress patterns. Our
method is fast and may assist in large-scale biomechanical population
studies of the hip joint when manual segmentation or training data is
not feasible.
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1 Introduction

The femur and pelvic bones come together in the hip joint (HJ), where the
femoral head articulates within the acetabulum’s lunate surface. The lunate sur-
face and all of the femoral head, except the fovea pit, are covered by cartilage
tissue allowing unhindered motion in the HJ [27]. The stress distribution on
these articular surfaces is often analyzed either experimentally [11, 10], using fi-
nite element (FE) analysis [2, 24, 14], or discrete element analysis [28, 32, 30]. The
analysis results provide valuable information for studying both healthy and dys-
plastic hips [16, 28, 24, 32, 31]. The accuracy of these results is highly dependant
on the HJ geometries.

HJ morphology is segmented directly from computed tomography (CT) [9,
2, 28, 24, 31] and magnetic resonance imaging (MRI) images [6]. CT and MRI
scans contain high contrast images of the bones with clearly visible interfaces.
However, it is difficult to identify cartilage tissue due to the tight space in HJ [8]
or low image resolution [29]. CT arthrography and manual traction enhance the
cartilage visibility and increase the joint space at the cost of being an invasive
intervention [9, 24].

This work presents a method to generate subject-specific cartilage models
where cartilage segmentation is not feasible. Our method uses only the bone ge-
ometries coming together at the HJ and reconstructs the articulating cartilage
surfaces based on bone curvature measures and distance measures. Our solution
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is fast, is independent of image modality, and preserves anatomical properties
compared to previous methods. We validated our method by comparing the
anatomical properties to other works, as detailed in section 4 [1, 20, 15, 25]. Ad-
ditionally we tested their performance in a FE analysis setup. Our goal is to
obtain consistent and stable cartilage models for FE analyses. For now, patients
with HJ atypical geometries or pathology are out of the scope of this method.

2 Related work

The femur and pelvis can be segmented using manual [2, 24], semi-automatic [9,
28, 18], or fully automated approaches [17, 31, 6].

When cartilage is manually segmented, the thickness and interfaces are ei-
ther delineated from the images, assigned uniformly, or approximated by a radius
representing the smoothed joint space mid-line [2, 28, 24]. This manual process is
time-consuming and is limited by the users’ clinical expertise and image resolu-
tion. Our method ensures conforming surfaces and computes thickness directly
from bone locality without any need for clinical expertise.

In semi-automated segmentation approaches, the initial cartilage geometry
is delineated automatically, starting from user-defined landmarks. Additional
refinement is needed to eliminate rough surfaces, holes, and irrelevant connected
tissues [9, 28]. In contrast, our method only relies on bone surfaces and does not
need landmarks or refinement.

With the advancements in computational morphometrics, automated carti-
lage segmentation is possible by combining bone statistical shape models with
population-averaged cartilage thickness maps [30] or geometric constraints [6].
Automatic segmentation is a cost-effective approach and reduces the need for
pre-processing data [30]. However, segmented data and prior information is
needed to train such models. In contrast, our method does not require train-
ing data and is agnostic to data-shift problems.

Other approaches simplify the joint to a perfect ball in socket joint and
fit the bone-cartilage and cartilage-cartilage interfaces to spheres or rotational
conchoids [2, 21, 32]. These simplifications can have an effect on the cartilage
contact pressure and contact area [2]. Our work provides non-uniform cartilage
thickness while maintaining conforming interfaces.

3 Methodology

The proposed cartilage generation method is based only on bone geometry and
distance measures. Thus, the algorithm is sensitive towards the quality of the
segmented bone mesh, which we assume has been preprocessed to remove irreg-
ularities and segmentation artifacts. We will focus on the hip joint and generate
cartilage with respect to either the pelvis or femur, depending on which bone
the cartilage attaches to. We will need to generate cartilage twice: once for the
femur and once for the pelvis. We define the geometry of each bone as the ver-
tices and faces (V,F) of a triangle mesh, where V ∈ RN×3 and F ∈ ZK×30+ for
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a mesh consisting of N vertices and K faces. We refer to the bone where carti-
lage attaches as the primary bone, (VP ,FP ), and the other bone as the secondary
bone, (VS ,FS). The generated cartilage will be a triangle surface mesh (VC ,FC).
Our method can be summarized as the steps:

Distance Filtering: Select an initial subset of the primary bone as the bone-
attached cartilage region based on the distance to the secondary bone;

Curvature-Based Region Filling: Apply our curvature-based region filling
approach to ensure the bone-attached cartilage region extends to anatomical
lines;

Extrusion: Extrude a subset of the bone-attached region towards the secondary
bone;

Harmonic Boundary Blending: Interpolate between the boundary of the ex-
truded and bone-attached regions to create a soft blend.

3.1 Distance Filtering

For now, we will focus on the femoral side of the hip joint and describe the femur
as the primary bone and the pelvis as the secondary. We select faces on the
primary bone, which will serve as an initial guess of the bone-attached cartilage
region. We base our choice on the distance between the face barycenters of the
primary bone and the secondary bone vertices. That is, provided the distance
parameter, δ, we construct the set of faces,

{f ∈ FP : min
v∈VS

‖BC(f)− v‖ ≤ δ} (1)

where BC(f) is the barycenter of face f . We refer to this subset of faces and ver-
tices as FDC and its corresponding vertices as VDC . The distance filter parameter,
δ, should be based on the gap between the femur and pelvis, as it determines the
initial approximation quality. The femur’s initial estimate must be located above
the anatomical line of the femoral head (Fig. 1a). Otherwise, we do not enforce
any restrictions on δ. To provide additional robustness to the initial guess, we
trim the outer boundary by removing layers from its outer rim and discarding
faces with two boundary edges. The trimming helps ensure the initial estimate
does not become too large, and in particular, makes it simpler to avoid selecting
triangles crossing the natural ridges of the bone.

The pelvis is more sensitive to the distance filtering parameter than the
femur, as most of the cartilage exists in a plateau in the pelvic socket. This
implies the bone-attached region does not require any additional refining, as the
initial estimate accurately aligns with anatomical lines (Fig. 1d). The distance
filtering step typically results in fragmented bone-attached regions, and before
we proceed, we discard all but the largest of these regions (Fig. 1f). We can
safely discard the smaller regions, as we grow the cartilage during the next step
of our algorithm to incorporate all triangles within an area of similar curvature.
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(a) Initial. (b) Trimming. (c) Max. cluster.

(d) Initial. (e) Trimming. (f) Max. cluster.

Fig. 1: Computing initial bone-cartilage interface for femur ((a)-(c)) and pelvis
((d)-(f)). Initially, in (a) and (d), triangles on the surface of the femur and
pelvis are selected based on the distance to the opposite bone (Eq. (1)). After-
wards, in (b) and (e), the initial sets are trimmed to remove triangles that only
have one neighbour. The trimmed region can be seen in red on top of the initial
guess in yellow. Finally, we select the biggest cluster of triangles as our initial
estimate of the bone-attached region for both femur and pelvis ((c) and (f)).

3.2 Curvature-Based Region Filling

The initial estimate of the bone-side femoral cartilage does not yet fully cover
the cartilage zone on the femoral head (Fig. 1c). The femoral cartilage border is
observed as a change in the curvature between the femoral head and the neck. In
this work, the principal curvatures, κmin and κmax, are computed by fitting local
frames to a neighborhood around each vertex [23]. This method approximates
the Laplace-Beltrami operator in the immediate neighbourhood of each vertex to
save computation time. The neighborhood size,N , can be used as a scaling factor
to control how many smaller variations to include in the curvature estimation
(Fig 2), and when N is sufficiently large we will arrive at the same curvatures
as can be computed using the mesh laplacian.

Denoting the boundary of FDC 0 as ΓDC , we grow the cartilage such that,

FDC ← FDC ∪
{
f ∈ ΓDC : κ1 ≤ κf ≤ κ2

}
(2)

where κ1 and κ2 denote the minimal and maximal curvature of the region at the
femoral head and κf is the curvature of face f . We grow the cartilage iteratively
using Equation (2) until the region contains all faces in FDC (Fig. 2d).
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(a) N = 10. (b) N = 20. (c) 10 iterations. (d) End result.

Fig. 2: (a)-(b) The effect of changing the neighborhood size, N , in terms of
mean curvature. Red regions correspond to positive curvature directions, while
blue regions correspond to negative directions. Note that smaller variations in
the surface geometry influence the curvature measure less as the neighborhood
size increases. (c)-(d) Observe in Fig 1c the initial estimate of the bone-attached
region, in (c) the bone-attached region after 10 iterations of Equation (2), and
in (d) the final result, when no more faces satisfy Equation (2).

3.3 Extrusion

As this is a trait of healthy cartilage, we expect the generated geometry to
have a high degree of congruence. We extrude vertices based on the minimal
distances between the bones and choose the midpoint as the extrusion height
to guarantee congruence. This approach ensures the conformity of the cartilage-
cartilage interface. We want the shape to thin out as we get further away from
the contact center to mimic the real cartilage shape. The faces to extrude, are
chosen to be a copy of the bone-attached estimate, (VDC ,FDC ), and are denoted
by (VEC ,FEC ): the extruded geometry. We assign height to each vertex in the
extrusion region, v ∈ VEC , based on the smallest distance to the second bone as,

v← v +
1

2
n min

vS∈VS
‖v − vS‖2 (3)

where n is the unit outward normal direction of vertex v. For the pelvis, the
faces we extrude are a copy of the bone-attached region. As the pelvic bone-
attached region does not need growing, we shrink the set of faces to be extruded
by applying the same trimming approach as described in Section 3.1. We then
extrude the reduced set of faces (Equation (3)), using the distances from the
pelvis to the femur.

3.4 Harmonic Boundary Blending

The final step of the cartilage generation is to connect the bone-attached region,
(VDC ,FDC ), and the extruded surface, (VEC ,FEC ). Referring back to Section 3.3 we
know that FEC ⊂ FDC . We create a copy of the set FDC \ FEC and denote it as
FHC . This new set will connect the bone-attached region to the extruded surface
and consists of the faces from the bone-attached region not initially selected
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for extrusion. To create a smooth blend between the disjoint surfaces, we apply
a biharmonic weighting scheme. We compute the blended extrusion thickness
between the two regions by minimizing the Laplacian energy on the boundary
of the domain, Γ . The extrusion thickness is then the minimizers of,

arg min
w

∑

wj∈w

1

2

∫

Γ

‖∆wj‖2dV (4)

subject to constraints enforcing interpolation between the boundary of the bone-
attached region and the boundary of the extruded region. The Laplacian energy
is discretized using the FEM method and subsequently solved using an active
set method [22]. For more details, we refer the reader to [12]. The resulting
displacements w are then applied to the vertices of VHC as,

vj ← vj + njwj , ∀vj ∈ VHC . (5)

That is, we extrude each vertex vj in the direction of its normal by the dis-
placement wj . As a final step, we invert the bone-attached face normals before
collecting the three disjoint sets of faces and vertices into a single mesh, (VC ,FC).
Observe in Fig. 3 the cartilage sub-surfaces combined into a single mesh.

(a) Femoral cartilage. (b) Femoral cartilage. (c) Pelvic cartilage.

Fig. 3: The final cartilage generated by our method for a femur (a), (b) and a
pelvis (c). Notice how the cartilage aligns with the anatomical lines.

4 Results

We use five CT scans from the TCGA-BLCA collection publicly available at the
Cancer Imaging Archive [3]. These subjects are in a supine position and have no
diagnosed disease related to the HJ. Each dataset contains a left and right HJ
summing up to ten HJs. We generate pelvic and femoral cartilages for all ten
joints.

Our algorithm is implemented in Python using the Libigl library [13]. To
quantify the speed of our method, we timed the generation of femoral and pelvic
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cartilages for all ten joints. All cartilages are generated on a MacBook Pro 2018
with a 2.7 GHz quad-core Intel i7. The initial bone geometries for the ten HJs
consist of a similar number of triangles (65k triangles on average). We include
all steps described in Section 3 in the computation time and exclude the time
needed for segmentation and preprocessing of the bone models. We observe that,
on average, femoral cartilage reconstruction takes 39.90s and pelvic cartilage re-
construction takes 12.82s. These results show that the time needed to construct
the femoral cartilage is significantly higher than for the pelvic cartilages - a
factor of three times higher. The femoral cartilage is the only cartilage where
the initially trimmed layer (shown in Figure 1b) needs to be grown, explaining
the difference in time. It should be noted that while generating a single piece of
cartilage takes less than a minute, generating a good model of the cartilage takes
significantly longer. The time needed to generate such cartilage model includes
the time required to calibrate the free parameters of our model. In our expe-
rience, the parameters for one patient generally translate well to other models,
which means that only minimal tuning is required once a good set of parameter
values have been found for a single patient. See supplementary material for the
parameters used to generate the cartilage models.

We have qualitatively verified that the articulating surfaces in all the ten
HJs are detected correctly regardless of their anatomical variance using visual
inspection of overlays as shown in Fig. 4. As desired, we observe a high degree
of congruence between the opposing joint surfaces, meaning no gaps or overlaps
in the cartilage-cartilage interface. Moreover, we observe a smooth transition
towards the bone geometries as expected from the correct anatomy. The pa-
rameter values used to generate the cartilage from Fig. 5a. The free parameters
are the neighbourhood-size used to estimate the curvature of the bone (N ); the
minimum and maximum curvature in the cartilage region (κmin, κmax; Eq. (2));
the distance parameter in mm (δ; Eq. 1); and the number of times the outer
boundary should be trimmed (Ntrim). Here, the curvature based parameters
(N , κmin, κmax) are only used for the femur. See supplementary material for
more visual comparisons.

Further, we quantitatively compare values of our cartilage’s geometric mea-
sures to data obtained from the literature to assess that we agree with state-of-
the-art reported values. Results are in Table 1. We observe that our method
agrees with the range of values from both manual and semi-automated ap-
proaches [1, 20, 15, 25].

Next, we analyze the simulation quality of the generated models in an FE
analysis setup. We use the Tetgen package to generate a volumetric mesh with
tetrahedral elements for each geometry[26]. Using a displacement-controlled sim-
ulation in the FEBio software package [19], we push the pelvis on top of the
femur, representing a pseudo stance position. Considering the stance position,
the distal femur is fixed in the x,y, and z-directions. The pelvis is moved in the
z-direction by 1mm towards the femur. We simplified the mechanical behavior
of all the tissues to isotropic and linearly elastic. The material properties are
based on the review in [29]. The bone-cartilage interfaces are modeled as Tied
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Table 1: Geometric measure comparison between our method and literature

Measure Study # of hip joints Femur Pelvis

Mean thickness
(mm)

Our 10 0.81± 0.08 1.05± 0.06
[1] 1 1.5± 0.5 1.6± 0.4
[20] 26 1.18± 0.06 1.26± 0.04
[15] 11 1.0 1.8
[25] 23 - 3.5± 0.9
[2] - 1.28 1.28

Bone coverage
area(mm2)

Our 10 5349.41± 660.51 2848.98± 351.86
[25] 23 - 1634± 400

Bone coverage
percentage

Our 10 - 39%± 7
[7] 16 - 34%

Contact area (mm2) Our 10 1732.01± 281.06

contacts. An augmented surface contact algorithm with friction-less tangential
interaction is applied to the cartilage-cartilage interfaces allowing unhindered
motion in the HJ.

Fig. 4 visualizes the von Mises stress pattern on the pelvic cartilage for
one HJ. More are shown in the supplementary material. We have verified that
no spurious stress peaks appear and that stress values change gradually and
smoothly across the cartilage. Further, the high-stress areas are located in the
up-direction, as we expect from the applied displacements. The stress values and
patterns are not to be confused with those from a real stance. They only serve
as a verification test of simulation properties. For such a simulation, we require
ligaments and muscles to stabilize the girdle and a correction from sublime pose
bias.

(a) Von Mises stress. (b) CT scan overlay.

Fig. 4: The von Mises stress patterns ((a)) and the generated cartilage imposed
on the CT scan from which the bone was extracted ((b)). Notice the high level
of congruence in the cartilage-bone interfaces and cartilage-cartilage interface.
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5 Discussion and Conclusion

The results show our method produces similar cartilage to manual segmenta-
tion and adheres to our clinical assumptions about cartilage morphology [27].
The high congruence level prevents potential spikes and peak stresses in the
articulating surfaces, resulting in continuous stress distribution in the HJ.

Our subjects are in a supine position, which means the cartilage is under a
horizontal load. In this case, the bones are not in an unloaded position, causing
the generated cartilages to be in a pre-load state. The supine position explains
the difference between the cartilage thickness and contact area compared to other
studies. One solution is to relocate the bone geometries to the desired position
before generating the cartilages or optimizing the rest shape used in the FE anal-
ysis. Moreover, as we measure the contact area before running any simulations,
our results differ from other studies reporting this value as a simulation result
in different gait cycles.

As we rely on the bone curvatures for cartilage-bone interface definition,
accurate bone geometries are crucial for realistic results. If the segmented bones
are too smooth or coarse, the final product will not agree with real cartilage
anatomy. We want to investigate further detailed geometric validation of our
method; however, no public databases contain segmented cartilage for hip joints
to the best of our knowledge. We leave this for future work.

The FE analysis results show that the generated models produce smooth
stress patterns in a pseudo stance without any geometry-related convergence
issues. As mentioned in section 4, these results only serve as a verification test
of simulation properties. We need a more advanced simulation setting to model
a real stance position. We leave this for future work. Moreover, we believe that
minor modifications will estimate the shoulder joint cartilage since it has a sim-
ilar ball-in-socket structure. Fig. 5 shows early evidence of generalization. In
contrast, other joints, such as the knee joint, are challenging. We leave other
joint types for future work.

(a) (b) (c)

Fig. 5: a) All generated cartilages. Zoom boxes highlight the pubic and sacroiliac
joint cartilages. b) Shoulder joint cartilage c) Femoral and tibial cartilage in the
knee joint. Bone models are acquired from available datasets [3, 5, 4].
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In conclusion, we have created a method to automate the reconstruction
of healthy subject-specific HJ cartilages independent from clinical images. The
proposed method is fast and preserves the anatomical properties of the cartilage
tissue. The proposed method generates high-quality cartilage without the need
for any manual segmentation or training data. We have shown the cartilage
models can be used in FE analysis and believe our method will enable large-
scale population studies. Future work will extend the geometric principles to
abnormal HJs and other joints such as the shoulder and knee joint. Our code is
open-source and available from https://github.com/diku-dk/CarGen.
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articular surface during gait. Pflügers Archiv 431(6), R275–R276 (1996)

12. Jacobson, A., Baran, I., Popovic, J., Sorkine, O.: Bounded biharmonic weights for
real-time deformation. ACM Trans. Graph. 30(4), 78 (2011)

13. Jacobson, A., Panozzo, D., et al.: libigl: A simple C++ geometry processing library
(2018), https://libigl.github.io/

14. Jorge, J., Simões, F., Pires, E., Rego, P., Tavares, D., Lopes, D., Gaspar, A.: Finite
element simulations of a hip joint with femoroacetabular impingement. Computer
methods in biomechanics and biomedical engineering 17(11), 1275–1284 (2014)

15. Lazik, A., Theysohn, J.M., Geis, C., Johst, S., Ladd, M.E., Quick, H.H., Kraff, O.:
7 tesla quantitative hip mri: T1, t2 and t2* mapping of hip cartilage in healthy
volunteers. European radiology 26(5), 1245–1253 (2016)

16. Li, F., Chen, H., Mawatari, T., Iwamoto, Y., Jiang, F., Chen, X.: Influence of
modeling methods for cartilage layer on simulation of periacetabular osteotomy
using finite element contact analysis. Journal of Mechanics in Medicine and Biology
18(02), 1850018 (2018)

17. Lindner, C., Thiagarajah, S., Wilkinson, J.M., Wallis, G.A., Cootes, T.F., arcO-
GEN Consortium, et al.: Accurate bone segmentation in 2d radiographs using
fully automatic shape model matching based on regression-voting. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. pp.
181–189. Springer (2013)

18. Lopes, D.S., Pires, S.M., Barata, C.D., Mascarenhas, V.V., Jorge, J.A.: The hip
joint as an egg shape: a comprehensive study of femoral and acetabular morpholo-
gies. Computer Methods in Biomechanics and Biomedical Engineering: Imaging &
Visualization 8(4), 411–425 (2020)

19. Maas, S.A., Ellis, B.J., Ateshian, G.A., Weiss, J.A.: Febio: finite elements for biome-
chanics. Journal of biomechanical engineering 134(1), 011005 (2012)

20. Mechlenburg, I., Nyengaard, J.R., Gelineck, J., Soballe, K.: Cartilage thickness in
the hip joint measured by mri and stereology–a methodological study. Osteoarthri-
tis and cartilage 15(4), 366–371 (2007)

21. Menschik, F.: The hip joint as a conchoid shape. Journal of Biomechanics 30(9),
971–973 (1997)

22. Nocedal, J., Wright, S.: Numerical optimization. Springer Science & Business Me-
dia (2006)

23. Panozzo, D., Puppo, E., Rocca, L.: Efficient multi-scale curvature and crease es-
timation. Proceedings of Computer Graphics, Computer Vision and Mathematics
(Brno, Czech Rapubic 1(6) (2010)

24. Russell, M.E., Shivanna, K.H., Grosland, N.M., Pedersen, D.R.: Cartilage con-
tact pressure elevations in dysplastic hips: a chronic overload model. Journal of
orthopaedic surgery and research 1(1), 6 (2006)

25. Schmaranzer, F., Helfenstein, R., Zeng, G., Lerch, T.D., Novais, E.N., Wylie, J.D.,
Kim, Y.J., Siebenrock, K.A., Tannast, M., Zheng, G.: Automatic mri-based three-
dimensional models of hip cartilage provide improved morphologic and biochemical
analysis. Clinical orthopaedics and related research 477(5), 1036 (2019)

40 Appendix B. Cargen: A direct geometry processing cartilage generation
method



12 F. Moshfeghifar et al.

26. Si, H.: Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans.
Math. Softw. 41(2), 11:1–11:36 (feb 2015)

27. Standring, S.: Gray’s anatomy e-book: the anatomical basis of clinical practice.
Elsevier (2020)

28. Tsumura, H., Kaku, N., Ikeda, S., Torisu, T.: A computer simulation of rotational
acetabular osteotomy for dysplastic hip joint: does the optimal transposition of the
acetabular fragment exist? Journal of Orthopaedic Science 10(2), 145–151 (2005)

29. Vafaeian, B., Zonoobi, D., Mabee, M., Hareendranathan, A., El-Rich, M., Adeeb,
S., Jaremko, J.: Finite element analysis of mechanical behavior of human dysplastic
hip joints: a systematic review. Osteoarthritis and cartilage 25(4), 438–447 (2017)

30. Van Houcke, J., Audenaert, E.A., Atkins, P.R., Anderson, A.E.: A combined ge-
ometric morphometric and discrete element modeling approach for hip cartilage
contact mechanics. Frontiers in Bioengineering and Biotechnology 8 (2020)

31. Yokota, F., Okada, T., Takao, M., Sugano, N., Tada, Y., Tomiyama, N., Sato,
Y.: Automated ct segmentation of diseased hip using hierarchical and conditional
statistical shape models. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. pp. 190–197. Springer (2013)

32. Yoshida, H., Faust, A., Wilckens, J., Kitagawa, M., Fetto, J., Chao, E.Y.S.: Three-
dimensional dynamic hip contact area and pressure distribution during activities
of daily living. Journal of biomechanics 39(11), 1996–2004 (2006)

Appendix B. Cargen: A direct geometry processing cartilage generation
method 41



Cartilage generation method 1

Supplementary Material

(a) Subject 0 (b) Subject 1 (c) Subject 2

(d) Subject 3 (e) Subject 4

Fig. 1: Cartilage generated for the five subjects in our test set.

(a) S. 0 right (b) S. 1 left (c) S. 1 right

(d) S. 2 left (e) S. 2 right (f) S. 3 left

(g) S. 3 right (h) S. 4 left (i) S. 4 right

Fig. 2: CT scans overlaid with cartilage and bones for the remaining subjects.
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(a) Subject 0 right (b) Subject 1 left (c) Subject 1 right

(d) Subject 2 left (e) Subject 2 right (f) Subject 3 left

(g) Subject 3 right (h) Subject 4 left (i) Subject 4 right

Fig. 3: Von Mises stress patterns on the pelvic cartilage of the right side of the
subject shown in Fig. 4 (top left) and the remaining four subjects. We show
the left and right pelvic-side cartilage during a simulation identical to the one
described in Section 4 of the main paper for each subject.

Cartilage
Parameter N κmin κmax δ Ntrim

Femoral cartilage 20 0.026 Inf 4.2 7
Pelvic cartilage - - - 3 2
Sacroiliac - - - 4.6 0
Pubic - - - 6 1

Table 2: The parameter values used to generate the cartilage from Fig. 5a. The
free parameters are the neighbourhood-size used to estimate the curvature of
the bone (N ); the minimum and maximum curvature in the cartilage region
(κmin, κmax; Eq. (2)); the distance parameter in mm (δ; Eq. 1); and the number
of times the outer boundary should be trimmed (Ntrim). Here, the curvature
based parameters (N , κmin, κmax) are only used for the femur.
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Finite Element Analysis Details

The bone geometries are discretized using triangle meshes. The pelvic and femoral
cartilages inherit the same triangle size of their corresponding bones. These val-
ues are chosen for the “master” and “slave” domains in the HJ contacting zones
to ensure coarser meshes on the pelvis side. We generate 4-node tetrahedral
quality volume meshes using the Tetgen package [26]. The resulting files are ex-
ported as VTK-files to the FEBio solver package [19]. FEBio is an open-source
non-linear finite element solver which is widely used in biomechanical applica-
tions.

We care about observing smooth stress transitions in the cartilage-cartilage
interfaces. Hence, for our validation purpose it suffices that the mechanical be-
havior of all the tissues are set to be homogeneous isotropic linear-elastic ma-
terial. The material properties are based on the review in [29]. The Young’s
modulus and Poisson’s ratio is 17GPa and 0.3 for bones and 12MPa and 0.45 for
the cartilages. The bone-cartilage interfaces are modeled as Tied facet-on-facet
type of contact in FEBio. A Sliding facet-on-facet type of contact is applied
to the cartilage-cartilage interface. This is solved as an augmented Lagrangian
model with friction-less tangential interaction allowing unhindered motion in the
HJ.

The HJ behavior is analyzed under a quasi-static loading condition. There-
fore, the pelvis and the femur is expected to be in an equilibrium state. We use
a displacement-controlled simulation where we push the pelvis on top of the fe-
mur, representing a pseudo stance position. We prescribe the nodal displacement
field and the load will be given implicitly during the simulation. Considering the
stance position, the distal femur is fixed in the x, y, and z-directions. The pelvis
is moved in the z-direction towards the femur.
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LibHip: An Open-Access Hip Joint
Model Repository suitable for

Finite Element Method Simulation

The following chapter presents the article:

Faezeh Moshfeghifar, Torkan Gholamalizadeh, Zachary Ferguson, Teseo
Schneider, Michael Bachmann Nielsen, Daniele Panozzo, Sune Darkner,
Kenny Erleben. “LibHip: An Open-Access Hip Joint Model Repository
suitable for Finite Element Method Simulation” Under review at Journal
of Computer Methods and Programs in Biomedicine. 2022

This work aimed to provide a model repository of multiple subject-specific
hip joint finite element models. We further proposed a novel workflow to
generate these models with minimal user interaction, using cutting-edge geometry
processing tools from the field of computer science. Our work is one of the
largest model repositories concerning the number of subjects and regions of
interest in the hip joint area.

The anatomical representations in our work cover the bones and cartilages in
the hip joint area. The cartilage modeling pipeline is a continuation of our
work in Appendix B which is improved and extended to the pubic symphysis
and the sacroiliac joints. These clinically verified models have high-quality dis-
cretization, conforming and congruent shared interfaces, and accurate geometries.
The simulations produce smooth stress patterns, and the variance among the
subjects demonstrates the effect of inter-subject variability and asymmetry in
the predicted results.

Our detailed research data, including the clinical images, the segmentation
label maps, the finite element models, and software tools, are openly accessible
on https://diku-dk.github.io/libhip/. In future work, we aim to add
additional structures to our models.

This work highly benefited from the international collaboration with the New
York University and the clinical collaboration with the Copenhagen University
Hospital, Rigshospitalet.

https://diku-dk.github.io/libhip/
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Abstract

Background and Objective: Population-based finite element analysis of hip joints allows us
to understand the effect of inter-subject variability on simulation results. Developing large
subject-specific population models is challenging and requires extensive manual effort. Thus,
the anatomical representations are often subjected to simplification, and the bilateral variations
are often neglected. The discretized geometries do not guarantee conformity in shared interfaces,
leading to complications in setting up simulations. Additionally, these models are not openly ac-
cessible, challenging reproducibility. Our work provides multiple subject-specific hip joint finite
element models, and a novel semi-automated modeling workflow.
Methods: We reconstruct 11 healthy subject-specific models, including the sacrum, the paired
hip bones, the paired proximal femurs, the paired hip joints, the paired sacroiliac joints, and the
pubic symphysis. The bones are derived from CT scans, and the cartilages are generated from the
bone geometries. We generate the whole complex’s volume mesh with conforming interfaces.
Our models are evaluated using both mesh quality metrics and simulation experiments.
Results: All models are clinically validated and show high-quality discretization with accurate
geometries. The simulations produce smooth stress patterns, and the variance among the subjects
demonstrates the effect of inter-subject variability and asymmetry in the predicted results.
Conclusions: Our work is one of the largest model repositories with respect to number of sub-
jects and regions of interest in the hip joint area. Our detailed research data, including the clinical
images, the segmentation label maps, the finite element models, and software tools, are openly
accessible on GitHub. Our aim is empowering clinical researchers to have free access to verified
and reproducible models. As future work, we aim for adding additional structures to our models.
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1. Introduction

The Finite element (FE) method brings hip joint models to life by simulating their behavior under
given conditions. This method is a numerical approach to solve partial differential equations by
discretizing the hip joint domain into a finite mesh [1]. The approximated solutions can simulate
the load transfer across the hip joint, define sliding contact between the articular surfaces, and
estimate the stress distribution in this area [2, 3]. Such data help researchers understand the
underlying mechanism of healthy hip joints and their mechanical alteration in complex disorders,
such as hip dysplasia [3–5]. Hip joint FE models offer various contributions to improving current
clinical treatment [6], the design of surgical simulators for virtual training [7], and optimizing
hip implants [8–11].

1.1. Problem statement

Despite the advantages of FE analyses, most studies assessing the hip joint behavior are based
on models from a single or a few subjects. This approach does not account for the effect of
the inter-subject variability and leaves uncertainties regarding the generality in the predicted
results [12]. On the other hand, population-based studies are limited by clinical resources and
the significant amount of time and manual effort to prepare large-scale hip joint models. The hip
joint area exhibits multiple structures in contact, and each structure is typically segmented from
clinical images, transformed into surface meshes, and then filled with volume mesh elements:
this process is time consuming and usually requires extensive manual work by FE specialists.

A common requirement in generating a volume mesh is an explicit definition of the surface
mesh, meaning that the surface has to be closed, non-intersecting, and manifold. While these
requirements are necessary for identifying the interior part of the surface mesh, they are usu-
ally not satisfied by the quality of the segmentation results, and may require extensive manual
post-processing. Further, most FE formulation require volume meshes to share faces on adja-
cent surfaces in the hip joint area, a property which is challenging to enforce for many volume
meshing tools. If this property is not satisfied, additional, and often insurmountable, appear in
the contact formulation which might lead to invalid simulation results.

1.2. Contributions

We present a hip joint FE model repository designed for FE simulation studies. We are com-
bining cutting-edge geometry processing algorithms to reduce the amount of user interaction in
developing FE models and tackle the shortcomings of conventional methods. Figure 1 summa-
rizes our FE modeling workflow. The significant technical contributions and unique traits of
these models are outlined below and illustrated in Figure 2.

• Open-access data aligned with the FAIR guiding principles [13]: Our population study
includes 11 male subjects with no diagnosed disease related to the hip joint. All the models,
including the clinical images, the segmentation label maps, the FE models, together with
the algorithms to prepare them, are available to scientists [14]. The vision of this approach
is to empower clinical researchers to have easy access to verified and reproducible FE
models. A senior consultant radiologist has clinically validated the geometry of all the
models. The FE model’s simulation performance is verified by running FE analyses and
analyzing the estimated results.

2
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Input can handle low quality mesh
Reduce mesh size
Ensure high mesh quality
Define custom mesh resolution

Preserve mesh features
Accurate geometry

Subject-specific cartilage output
Conforming bone-cartilage interfaces
Congruent cartilage-cartilage interfaces

Geometry processing on bone models
3D bone

surface mesh

Bone surface
re-mesh

Cartilage
generation

Multi-body
surface mesh

Multi-body
volume mesh

generation
Volume mesh

Surface mesh

Figure 1: The LibHip modeling flowchart; The workflow is aimed at minimum user interaction and proper FE model
features. The blue box presents the shape-related process, and the green boxes indicate discretization-related processes.
Our approach starts from the 3D representation of bones and generates the volume and surface mesh of the hip joint area.

Figure 2: The overview of our modeling features; Middle: The regions of interest covers the sacrum, the paired hip bones,
the paired proximal femurs, and all the three joints connecting these bones together; Left: The bone-cartilage interfaces
have conforming interfaces. Observe the conforming interfaces between the sacroiliac cartilage and the neighbouring
bones; Right: Congruent interfaces between the articular cartilages in the hip joint.

• A full pelvic girdle with both the hip joints: All the bones in the hip area encompassing
the sacrum, the paired hip bones, and the paired proximal femurs are segmented directly
from CT scans. Having all the bone models from both sides of the body preserves bilateral
variations and considers the effect of the pelvic girdle in the hip joint behavior.

• Subject-specific cartilages: We reconstruct the sacroiliac joints, the pubic symphysis, and
the articulating hip joint cartilages semi-automatically and independent of the CT scan
data [15]. This approach provides fast, subject-specific cartilages with non-uniform thick-
ness. Modeling cartilage in the inter-bone cavities ensures inter-connectivity of the weight-
bearing path in the pelvic girdle. Our joint models maintain conforming boundaries in their
bone-attached interfaces. Further, we provide congruent interfaces between the two artic-
ular cartilages in the hip joint. The high congruence level prevents potential spikes and
peak stresses in the articulating surfaces, resulting in continuous stress distribution.

• Highly accurate discretization: We employ a multi-body volume mesh generation that
simultaneously generates the whole complex’s volume mesh, ensuring neither overlapping
nor gaps in the interfaces. This method welds the interface nodes together in the meshing
step, avoiding further contact definitions in the simulation setup. We use the Hausdorff
distance to measure the geometrical accuracy in our models.
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2. Background

Assessing the hip joint behavior through FE analysis requires three main steps: The first is
to generate a proper approximation of the anatomical structures; Second, this anatomical infor-
mation is transformed into surface and volume representations to build a FE model; And lastly,
the behavior of this model is studied under a chosen analysis scenario. To gain realistic predic-
tions, we need detailed representations of the hip joint area, including soft and hard tissue, and a
flawless discretization to reduce the prediction errors [16].

2.1. Anatomy of the hip joint area

The skeletal structure in the hip joint area is formed by the pelvic girdle reaching the femoral
bones in the hip joint. The pelvic girdle consists of the paired hip bones and the sacrum bone
in the middle [17]. It serves as a weight-bearing structure, transferring the body weight to the
femur through the sacrum bone, the sacroiliac joints, the hip bones, the pubic symphysis, and
finally, the hip joints [17]. Posteriorly, the sacrum reaches the hip bones in the sacroiliac joint,
and anteriorly, the two hip bones connect at the pubic symphysis. The acetabulum surface of the
hip bones articulates within the proximal femur to form the hip joint. The lunate surface of the
acetabulum and the femoral head, except the fovea pit, are covered by articular cartilages [17].

2.2. Overview of subject-specific hip joint modeling approaches

Computer-aided design models are simple solutions to capture the overall shape of the hip joint
area, e.g., represent the hip joint as a perfect ball-in-socket joint. Even though convenient, such
simplifications are shown to overestimate the stress predictions in the hip joint [18, 19]. Subject-
specific modeling is another popular choice that solves some of the issues arising from computer-
aided design models, thanks to having detailed anatomical information.

The anatomical structures in subject-specific modeling approaches are directly reconstructed
based on clinical image modalities such as computed tomography (CT) and magnetic resonance
imaging (MRI) [3, 20–22]. CT and MRI scans contain precise bone information; Thus, segmen-
tation using manual [18, 23], semi-automatic [24, 25], or fully automated approaches [26] results
in accurate bone geometries.

Further, the subject-specific modeling approach is to account for articulating cartilages. The
cartilage thickness and interfaces are often either delineated from the images, assigned uniformly,
or approximated by a radius representing the smoothed joint space mid-line [18, 23, 25]. Given
the tight space in the hip joint, it is difficult to identify the opposing cartilage interfaces [27]. CT
arthrography and manual traction increase the joint space, enhancing cartilage visibility at the
cost of being an invasive intervention [23, 24]. In this study, we semi-automatically segment the
bone geometries from CT scans and use a fast geometry processing method to create subject-
specific cartilages from bone geometries. This method is based on our previous work to create
cartilages where cartilage segmentation is not feasible [15].

FE analysis over a single hip joint provides valuable information regarding that specific
model [20, 22, 28]. However, the hip joint shape and the relative alignment of structures vary
among individuals and adding more models in the simulations allow us to account for this vari-
ability. It is suggested that there is a significant variation in the hip joint contact mechanics due
to the geometrical differences [19, 29]. Currently, a limited number of works use multiple hip
joint models to study the effect of inter-subject variability, and in most cases, the models are not
freely available. Table 1 compares the most related population-based studies to our work.

4
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Table 1: The comparison between some of the most related population-based studies and our work; Most of these works only cover one side of the body and
increase the subject numbers by manipulating the existing models. Our work is one of the largest model repositories regarding the number of subject-specific
data and the region of interest in the hip joint area.

Study Subject Data Modeling Body Region of interest Resource
Healthy Diseased style side HB PF SB HJ HJ-L HJ-C SIJ PJ availability

Harris [29] CTA/10 - SS one ✓ ✓ - ✓ ✓ - - - I
Henak [19] CTA/10 CTA/10 SS one ✓ ✓ - ✓ ✓ - - - I
Zhao [3] CT/1 3 SS+mirror both ✓ ✓ - ✓ ✓ - - - NA
Chegini [30] 4 4 CAD one ✓ ✓ - ✓ ✓ - - - NA
Russel [31] 1 CTA, X-ray/11 SS+AM one ✓ ✓ - ✓ - - - - NA
Liechti [32] X-ray/1 X-ray/2 CAD one ✓ ✓ - ✓ ✓ - - - NA

LibHip CT/11 - SS both ✓ ✓ ✓ ✓ - - ✓ ✓ I+FEM

CTA: CT arthrography; SS = Subject-specific geometry from images; CAD = Computer Aided Designed models; SS+mirror: half of the model is derived
from images and it is flipped to generate the other side; SS+AM: The diseased models are derived from images and the healthy model is generated by
deforming the Visible Human Project Model [33]; HB: Hip bone, PS: Proximal femur, Sb: Sacrum bone, HJ: Hip joint, HJ-L: Hip joint labrum, HJ-C: Hip
joint capsule, SIJ: Sacroiliac joint, PJ: Pubic joint; I: Availability of the images, FEM: Availability of the Finite Element Models.

Preparing population-based models are challenging: A limited number of models or clinical
images of healthy hip joints are available, and the ethical issues regarding radiation exposure
prevent custom image acquisition. Unlike Henak and Harris et al., who have performed custom
image acquisition on both healthy and pathological subjects [19], most studies only have access
to either healthy or diseased images. Thus, they generate more models by post-processing the
existing models. For instance, Zhao et al. made multiple diseased models by changing the
morphological parameters of a single healthy model [3]. Russel et al. used 11 diseased subjects
and built an age-matched healthy hip model by deforming the Visible Human Project model [31,
33]. These approaches fail to provide geometries arising directly from subject-specific images.
Our work uses 11 healthy images from The Cancer Imaging Archive. We have chosen open-
access images to ensure reproducibility and exterior validity in our method [34].

The region of interest is another challenging issue in population-based modeling. Most mod-
eling approaches do not necessarily include the whole anatomical structures in the hip area. For
example, Henak et al. and Harris et al. have chosen to model the hip joint from only one side of
the body. The geometry of the rest of the pelvic girdle is ignored, and their effect is presented by
boundary conditions [19, 29]. To make bilateral models, Zhao et al. assumed the hip area to be
symmetrical along the sagittal plane and flipped the model of one side to generate a symmetrical
model [3]. Although these studies provide fundamental predictions of the hip joint behavior,
their modeling assumptions are simplified with no consideration of the whole hip area and the
bilateral variation, both of which have effects on the hip joint overall behavior. In our work,
we show that the hip joint area is not symmetrical, and it is a very invasive assumption to use
half of the body in simulations. We quantify the anatomical variation in our models based on
well-known anatomical metrics and compare the simulation results of half and bilateral models.

2.3. Surface and volume discretization

The image segmentation label maps are transferred to surface meshes using the marching cube
algorithm, and ideally, they should be water-tight two manifold surfaces. Unfortunately, this is
rarely the case for clinical data: errors can occur in the segmentation due to insufficient input
data, presence of small features, or numerical issues in the contouring methods. Traditionally,
these imperfections need to be cleaned up before volumetric meshing, a laborious task, even
when using state-of-the-art re-meshing tools [35].

When all surfaces are clean, a volume mesh is created by filling the interior part of each
surface. Tetrahedral elements are the most commonly used types of finite elements due to their
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Figure 3: The comparison between multi-body and one-by-one meshing approaches in the sacroiliac joint; The mesh in
(a) is generated using the multi-body meshing approach. This method guarantees conforming interfaces with the hip and
sacrum bones. Figure (b) shows the result of the one-by-one mesh generation approach, resulting in overlapping (c) or
separated (d) interfaces.

good performance [36] and ease of generation [37, 38]. A variety of approaches, such as De-
launay meshing, advancing front, or grid stuffing are used for volumetric meshing. Due to the
high failure rate of these methods [37], the surface cleaning must be iteratively repeated until
the meshing algorithm succeeds on all the sub-volumes. Our work adopts a radically different
approach to remove this manual and time-consuming step: Using fTetWild [38], we create a
single discretization for all surfaces, including their imperfections, and we then extract a con-
sistent volumetric partitioning only after the volumetric meshing is performed. This approach is
robust against bad input surface triangles and automatically deals with holes, self-intersections,
or inconsistent inside/outside orientation.

Another important property of fTetWild [38] is that the output resolution is decoupled from
the input resolution, and it is controlled by an explicit parameter measuring the maximal tolerated
geometric error. This is ideal in our setting, as it allows us to generate coarse meshes starting
from the fine surface meshes extracted from clinical images. In contrast, traditional approaches
have limited control over mesh resolution, as they cannot easily coarsen the surface mesh [39].

Further, conventional volumetric meshing tools mesh the different sub-domains of the hip
joint multi-body separately in a one-by-one approach. In contrast, we process all the surfaces of
our multi-body model simultaneously, considering them as faces in a single, conforming tetrahe-
dral mesh, and thus allowing them to overlap, have gaps, or other imperfections. We then perform
inside/out tests and constructive solid geometry operations as a filtering operation on the resulting
tetrahedral mesh, using signed distance as a geometrically robust filter. This approach benefits
from naturally guaranteeing conformity between adjacent surfaces in a multi-body model. We
refer to [37, 38] for more details on the fTetWild meshing algorithm. Figure 3 compares the
one-by-one volume mesh generation versus simultaneous mesh generation.

By conforming interface, we mean that the bone-cartilage boundaries have the same dis-
cretization in the shared interfaces. If the discretization connectivity differs in the shared inter-
faces, but the interface shape is still the same, we have a congruent interface. Figure 4 illustrates
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the conforming and congruent interfaces in the hip joint. The bone-cartilage interfaces conform,
while the articular cartilages have congruent interfaces. Conforming interfaces allow us to merge
the discretization of the two sub-domains. This is preferred in simulation methods as it reduces
the number of variables and the need for adding extra constraints to keep vertices together during
simulation. Congruent interfaces in the hip joint allows a smooth load transition between the
articular cartilages. Joint congruency evaluates the encasing of the articular cartilages in the hip
joint and a way to compare healthy and pathological joints [19].

Figure 4: Conforming and congruent interfaces in the hip joint; The cartilages form conforming interfaces with the hip
and femoral bone. Notice how each cartilage is sharing the same node with its attached bone. The joint has congruency
between the yellow and orange interfaces. These interfaces do not share the same discretization but follow the same
curvature. The cross-section wireframe does not represent the true tetrahedrals and is only for visualization purpose.

2.3.1. Finite element method solvers
Various research libraries, commercial codes, and software are available to solve elastic problems
with the FE method. However, they are sensitive to user-defined solver settings, unrelated to
the physical quantities of interest. For example, contact parameters and the time step size can
significantly affect the stability and accuracy of the estimated solutions and even lead to inverted
elements. Additionally, in some contact models such as the ones used in Abaqus and FEBio,
the user must assign pre-defined contact surfaces. These two surfaces must have specific, and
distinct, mesh resolution [40, 41]. FEBio also requires an initial slight penetration between these
surfaces to be able to detect the contact surfaces [41].

PolyFEM, in contrast, adopts the Incremental Potential Contact (IPC) formulation [42, 43].
This algorithm requires no manual selection of the contact surfaces and no prescribed mesh res-
olution. This solver is robust to large deformations and ensures that no elements are inverted
using explicit line-search checks [42]. The downside is that it requires an initial configuration
free of penetrations (and it preserves this condition throughout the whole simulation [44]). Fur-
ther, PolyFEM allows adaptive p-refinement on Lagrangian tetrahedral elements, which we use
to increase accuracy by employing higher-order basis in thin cartilage layers [45].

In this work, we want to generate models compatible with both strategies. We thus generate
two sets of FE models for each subject: With and without a gap between the articular cartilages.
We show FE solutions computed using both approaches in Section 4.3.
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3. Material and methods

In this section, we explain our modeling workflow, illustrated in Figure 1. We start from the
data which we use to reconstruct the anatomical structures. Next, we describe the volume mesh
generation step and explain the steps taken to ensure high-quality meshes. Finally, we describe
the FE setup that we employ to test the quality of our models.

3.1. Image data

The input to our modeling workflow is the surface mesh of the bony structures. We have chosen
to create our input models based on CT scans as this modality is suitable for defining the location
and topography of the bones in the hip joint area [46]. We obtain the scans in DICOM format
from the open-access Cancer Imaging Archive (CIA) to ensure reproducibility [34].

We select our subjects from the CT Colonography, the Lymph Nodes, and the Cancer
Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA) collections [47–49]. The scanning
procedure in these collections covers the hip joint area explained in Section 2.1. The subjects
are in a supine position during the image acquisition, which is the closest to a unloaded joint
state. We chose 11 subjects with the same gender, age range, with no reported disease related
to the hip joint, the most little rotation in the body, high image resolution, and minimum image
noise. We further crop the CT scans to the hip joint area to minimize the computational load
during segmentation. Next, the cropped images are stored in NIFTI format to store each subject
as a single file in our repository while preserving all the essential metadata. Table 2 outlines the
image properties and traits for each subject.

Table 2: The specification of image data used to create the input models; All images are selected from the CIA. These images consists of adult
male subjects with no reported disease related to the hip joint area. These data are provided to ensure complete transparency in our work.

Model Sex Age CT Scanner In-plane pixel Matrix size (pixels) CIA
spacing (mm) Before crop After crop Subject ID

m1 M 65 GE LightSpeed VCT [0.85, 0.85, 1.25] 512x512x663 365x221x291 //-AA7M
m2 M 64 GE LightSpeed VCT [0.78, 0.78, 1.25] 512x512x613 394x215x257 //-AA7O
m3 M 65 Siemens Emotion 6 [0.82, 0.82, 2.5] 512x512x475 378x199x244 //-AA7S
m4 M 56 GE LightSpeed VCT [0.90, 0.90, 1.25] 512x512x455 362x184x236 //-AA7W
m5 M 73 GE LightSpeed VCT [0.87, 0.87, 1.25] 512x512x468 389x226x265 //-AA80
m6 M 62 Siemens Emotion 6 [0.69, 0.69, 2.5] 512x512x388 436x256x206 //-AA84
m7 M 51 Siemens Sensation 64 [0.78, 0.78, 1.00] 512x512x520 405x232x250 –.4.0004
m8 M 50 - [0.97, 0.97, -] 512x512x717 399x250x290 *_039
m9 M 60 Siemens Sensation 64 [0.78, 0.78, 1.00] 512x512x617 427x254x318 –.4.0002
m10 M 71 Siemens Sensation 16 [0.80, 0.80, 1.00] 512x512x524 400x285x289 –.4.0040
m11 M - Siemens Sensation 16 [0.82, 0.82, 1.00] 512x512x603 404x230x283 –.4.0051

M: male; //:TCGA-4Z; – = 1.3.6.1.4.1.9328.50.4; *:ABD_LYMPH;

3.2. Bone geometry reconstruction

We obtain an explicit surface representation of all the bones using a semi-automated approach
implemented in the 3D slicer software package [50, 51]. This method entails initial region la-
beling, contouring [52], followed by manual refinements to ensure accurate 3D approximations
with no rough surfaces, holes, and irrelevant connected tissues.

These bone segmentation are verified by a senior consultant radiologist. The clinical expert
initially scrolls through all the segmented slices in each subject and verifies the bone contours and
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Figure 5: The anatomical measurements of the hip joint area; These parameters quantify the geometry of our models and
measure the inter-subject and bilateral variability among subjects. (Left:) A red sphere is fitted to the femoral head. The
center of this sphere is the hip joint center (HJC) and the radius (SR) is defined as the simplified femoral head radius.
We define the distance between the HJC and the femoral head boundary as the actual femoral head radius (AR). The SR
and AR comparison shows the amount of lost subject-specific geometry after simplification. The visible femoral length
(VFL) is the most extended visible length in the femur bone. (Middle, Right:) Observe the width of the pelvis (PW), the
inter-hip separation (IHS), and the height and width of the ilium (IH, IW).

the existing gaps in the inter-bone cavities. Then, he verifies the anatomical shape and smooth-
ness of the reconstructed 3D surfaces. This procedure justifies the validation of our method in
obtaining precise geometries.

3.3. Anatomical measurement

The shape of the hip joint area varies among different subjects and between the two sides of
the body. We employ the anatomical measurements of the the bones and cartilages to quantify
this variation. Most of the anatomical measurements in literature are based on 2D assessment
of the location of measurement [53] or are based on cadaver skeletal measurements [54]. This
procedure may not be sufficient for subject-specific 3D geometry analysis [55]. Therefore, we
have chosen to obtain the subject-specific anatomical measurements from the 3D surface mesh.
These parameters are illustrated in Figure 5.

We fit a sphere to the femoral head and choose the center and radius of this sphere as the hip
joint center (HJC) and the simplified femoral head radius (SR), respectively. To minimize the
bias from manual fitting, we use a least-squares method for spherical fit [56]. We further measure
the distance from the HJC to the actual femoral head surface mesh (AR) to see how the geometry
of the femoral head deviates from a sphere. We define The visible femur length (VFL) as the
length of the line connecting the most proximal point of the femur to the mid-point of the most
distal part of the same bone; Width of the pelvis (PW) is explained as the distance between the
most lateral point of the hip bones to the femoral head center; The Inter-hip separation (IHS)
is assumed as the distance between the paired hip joint centers; The height of ilium (IH) is the
vertical distance between the most superior part of the hip bones and the hip joint center; The
width of ilium (IW) is defined by the horizontal distance between the hip joint center and the
most lateral point of the hip bones. We compare the left and right HJC, SR, AR, VFL, IH, and
IW to capture the bilateral variation w.r.t the saggital plane.
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Figure 6: The comparison between the surface mesh output from 3D Slicer and re-meshed surface mesh in fTetWild; The
fTetWild result shows a clean mesh with no dense or erroneous triangles. The coarser mesh on the hip side guarantees
robust contact definition in the FE analysis.

3.3.1. Bone surface mesh re-meshing
As explained in Section 2.3 and illustrated in Figure 6, the bone surface mesh extracted from the
CT scans are typically dense and may have poor quality, and other imperfections. We need to
improve the quality and resize the triangles for two particular reasons: 1) Our cartilage generation
algorithm in Section 3.4 uses the bone surface mesh to generate the base of the cartilages [15].
Thus, the cartilage’s surface mesh quality depends on the quality of its underlying bone mesh
quality; 2) Some FE solvers enforce specific requirements on the mesh resolution for robustly
detecting contact points [40, 41].

We use fTetWild to mesh the volume of the surface boundary and re-extract the surface of the
volume mesh as the resulting re-meshed surface [37]. This meshing method allows vertices of
the boundary of the volumetric mesh to move within an ε envelope of the winding number field
level-set that defines the surface geometry [37]. We tune the epsilon (ε) and the edge-length (l)
parameters in fTetWild to provide different mesh densities between the articular joints in the hip
joint. This guarantees coarser meshes on the acetabular cartilage.

3.4. Cartilage geometry reconstruction

We apply a specialized geometry processing method to generate subject-specific cartilages for
the paired hip joints, the paired sacroiliac joints, and the pubic symphysis. This method was
initially introduced by Moshfeghifar et al. to generate subject-specific hip joint cartilages in-
dependent of image modalities [15]. The cartilage results have conforming interfaces with the
underlying bones and have non-uniform thickness across the tissue. Our work adds new ideas to
this algorithm to improve the hip joint results and extends this method to the other two joints.

The sacroiliac joint and the pubic symphysis have a limited range of motion to provide stabil-
ity and strength in the pelvic girdle [17]. We model these joints as single-piece cartilages, filling
the inter-bone cavity. On the other hand, the hip joint has a higher degree of freedom, allowing
free rotation of the femur within the acetabulum cusp. Thus, we model this joint as double-piece
cartilages attached to the acetabulum and the femoral head.

Each cartilage is generated based on the shape and distance of the involved bones in the
joint. The geometry of each bone is defined as (V,F ), where V ∈ RN×3 is a set of mesh
vertices, and F ∈ ZK×3 is a set of mesh faces; N and K denote the number of vertices and
faces, respectively. The cartilage reconstruction starts from one of the bones, referred to as the
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primary bone (VP,FP), and grows toward the second bone, referred to as the the secondary bone
(VS ,FS ). The steps are summarized below and illustrated in Figure 7 and Figure 8.

Primary interface estimation: The main idea in this step is that only the sufficiently close parts
of each bone have cartilages attached to them. Hence, we select an initial subset of the primary
bone, as the base of the cartilage based on its distance to the secondary bone. Our choice is
based on the signed distance between the face barycenters of the primary bone and the sec-
ondary bone vertices. Provided the distance filter parameter, δ, we assign this set of faces as:

F D
C ≡ { f⃗ ∈ FP : min

v⃗∈VS

∥BC( f⃗ ) − v⃗∥ ≤ δ} (1)

where BC( f⃗ ) is the barycenter of face f⃗ . We select the value of δ from literature providing the
expected distance in the joint cavity [57]. The accuracy of the surface estimation highly depends
on this value. We denote this subset of faces as F D

C . We further trim the outer boundary and
discard the faces with two boundary edges to provide additional robustness to the initial guess.
The trimming helps ensure the primary interface does not cross the natural ridges on the bones.

Secondary interface definition: In the next step, we define the top surface of the cartilages and
denote the subset as F E

C . In single-piece cartilage joints this is a subset of the secondary bone,
while in the double-piece cartilages, we extrude the primary interface half-way towards the
secondary bone and assign it as the top surface.

Closed surface: We interpolate between the boundary of the primary and secondary interfaces
to create a single closed surface (VC ,FC).

3.4.1. Single-piece cartilage joints
Figure 7 illustrates the cartilage generation steps for the sacroiliac joint and pubic symphysis.
In the sacroiliac joint, we refer to the sacrum bone as the primary bone and the hip bone as the
secondary bone. In the pubic symphysis, the left hip is considered as the primary bone and the
right hip is the secondary bone.

Primary and Secondary interface estimation. The geometry of the primary and secondary bones
in the sacroiliac joint and pubic symphysis have well-defined ridges close to these two joint space.
Thanks to this structure, these bones are sensitive to the distance filtering parameter and allow
an accurate estimation of the primary and secondary interfaces. In Figure 7 the primary and
secondary interfaces for both the joints are shown with blue and green, respectively.

Closed surface. Next, we connect the primary and secondary interfaces with triangle meshes.
Denoting the border of F D

C as ΓD
C , and F E

C as ΓE
C , we construct a mesh layer between ΓD

C and
ΓE

C by applying a sweep-line technique [58]. Given the borders of the two interfaces, the sweep
line algorithm passes an imaginary line through the border nodes and builds a discretized plane
between them (F R

C ). Figure 7 illustrates this connecting ring in pink. As a final step, we invert
the triangles in the primary interface and merge the three disjoint subsets (F D

C ,F E
C , and F R

C ) into
a single mesh. Observe the closed surfaces in Figure 9.
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Figure 7: The cartilage generation procedure for the sacroiliac joint and the pubic symphysis; The primary and secondary
bones are shown withVP,FP andVS ,FS , respectively. The cartilage base starts from the primary bone and extrudes to
the secondary bone. The blue and green surfaces indicate the primary (F D

C ) and secondary interface estimations (F E
C ),

respectively. These subsets are selected based on the distance to the opposite bone (Eq. (1)). The pink ring indicates the
connecting mesh between the two interfaces (F R

C ).

3.4.2. Double-piece cartilage joints
Figure 8 illustrates the cartilage generation procedure in the hip joint cavity. We generate one
cartilage attached to the acetabulum bone and one attached to the femoral head bone. The ac-
etabular cartilage is in line with the lunate surface of the acetabulum, and the femoral cartilage
covers most of the femoral head, excluding the fovea pit [17]. These two cartilages follow the
same curvature and thin out as they get closer to their borders. Focusing on the femoral cartilage,
we describe the femur as the primary bone (VP,FP) and the hip as the secondary bone (VS ,FS ).
On the acetabular side, the primary and secondary bones are swapped, assuming the hip as the
primary and the proximal femur as the secondary bones.

Primary interface estimation. The lunate surface forms a plateau in the acetabulum bone;
Thanks to this structure, the hip side is sensitive to the distance filtering parameter (δ), allowing
an accurate estimation of the primary interface. The initial estimation on the femoral side does
not yet comprehensively cover the femoral head. We observe the femoral cartilage border as a
change in the curvature between the femoral head and the femoral neck. Thus, we further apply
a curvature-based region filling approach to grow the initial guess to the correct portion on the
femoral head. The details of this step can be found in [15]. Figure 8 illustrates the initial and the
final primary interfaces on the femur in yellow and blue color, respectively.

Secondary interface definition. We assign a thickness profile to the primary interfaces to create
the top surface of the cartilage. We make a copy of F D

C and denote it as the extruding surface
(F E

C ). Initially, we select a subset of F E
C and extrude it towards the secondary bone as:

v⃗← v⃗ +
1
2

n⃗ min
v⃗S ∈VS

∥⃗v − v⃗S ∥2 (2)
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Figure 8: The acetabular and femoral cartilage generation in the hip joint; The blue surface indicates the primary interface
estimation on the bones F D

C . This subset is selected based on the distance to the opposite bone. The initial primary
estimation in the femur bone (yellow) does not comprehensively cover the femoral head. Thus, we apply a curvature-
based region filling to grow the yellow cartilage to the correct portion on the femoral head (blue). We make a copy of the
primary interface to create the top surface of the cartilage F E

C . We initially extrude a part of this surface to a maximum
of half the distance to the second bone (green) and then connect the extruded subsets via a smooth blend (pink).

Where n⃗ is the unit outward normal direction of vertex v⃗ in F D
C . The number 1/2 describes

the extrusion height which is equal to the mid-distance between the two bone. This guarantees
congruency between the cartilage-cartilage interface. To ensure an excellent blending profile in
the corners, we extrude the border meshes based on a sin function. These two surfaces are shown
in green in Figure 8.

We connect the two extruded subsets via a smooth blend. We apply a biharmonic weighting
scheme to compute a blended extrusion on the remaining of F E

C which we did not initially select
for extrusion. This subset is shown in pink color in Figure 8. A detailed explanation of this
blending method is available at [59].

Closed surface. We invert the triangles in the primary interface and combine it with the sec-
ondary interface into a single mesh. Observe the closed surfaces in Figure 9. As explained in
Section 2.3.1, we provide two versions of hip joint models for each subject: with and without a
gap between the articular cartilages. This can be done by controlling the extrusion height when
defining the top surface. We found that reducing the extrusion height from the midpoint 0.5
to 0.45 leaves a small gap between the two articular cartilages. In this version, the cartilages
will come into contact after applying a load in the FE simulation. The joint congruency level is
measured using the distance between the acetabular and femoral cartilages.
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Figure 9: The reconstructed hip joint cartilages on the acetabular (orange) and femoral (yellow) sides; The acetabular
cartilage is in-line with the lunate surface of the acetabulum, and the femoral cartilage covers most of the femoral head,
excluding the fovea pit [17]. The cartilages have congruent interfaces and thin out as they get closer to their borders.

3.5. Volume mesh generation

We employ the same meshing tool introduced in Section 3.3.1 to generate volume meshes for
three reasons: 1) We want to have control over mesh size in our models and have the option to
generate coarser meshes than the input mesh size; 2) Even though all the shared interfaces in
our surface mesh models are conforming by design, we still need to ensure these properties are
preserved after the volume mesh generation; 3) We want high geometrical accuracy after volume
mesh generation.

Using fTetWild [37], we create volume mesh for all the sub-domains simultaneously rather
than building our discretized model one by one. fTetWild constructs volume meshes inside and
outside the model, filling a bounding box around the model. Figure 10 shows the raw output of
fTetWild. These tetrahedrons still have no inside/out classification. We apply a post-processing
step to extract the interior volume of each object and filter out the elements that do not belong to
any of the objects. This procedure is demonstrated in Figure 10. We calculate the signed distance
of the centroid of each tetrahedron toward the surface of each object. If the signed distance is
below zero, we consider that tetrahedron inside that particular object. The tetrahedrons, which
have no negative signed distance towards any of the objects in our model, are filtered out before
exporting the final mesh.

We deliver two mesh densities for each subject: Fine and coarse meshes. The reason is to
show that our pipeline can provide different mesh resolutions depending on the users’ compu-
tational resources. We calibrate the ideal edge length (l) parameter in fTetwild to have larger
elements in the coarse version [37] and smaller elements in the fine version. We further select
a small epsilon value (ϵ) value to preserve the anatomical details in both versions. The meshing
parameters and the number of elements in each model are provided in Section 4.2.

3.5.1. Mesh quality
We ensure that the final volume mesh elements are in good quality with no flat elements. The
most convenient approach involves the dihedral angles, which is the angle between adjacent
facets in a tetrahedral. We expect to see no dihedral angle close to 0◦ or 180◦ [60]. We employ a
method proposed by Freitag et al. to define the lower and upper bound of the dihedral angle as:

min{30◦, θmin + 10◦} < θ < max{150◦, θmax − 20◦} (3)
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Figure 10: Overview of the fTetWild volume mesh generation; The raw output is a tetrahedral mesh of the bounding box.
This volume yet has no inside/outside classification. We apply a post-processing step to filter out the exterior volume and
keep the interior elements in each sub-domain. The volume mesh is extracted using the signed distance measure w.r.t the
input surface. Negative and positive distances indicate interior and exterior elements, respectively.

where θmin and θmax denote the minimal and maximal dihedral angle in our models and θ is
the dihedral angle of each element. To give quantitative information about the number of poor
elements we provide the percentage of dihedral angles falling out of this range.

Further, we test the robustness of our discretization results by checking other quality metrics
suggested in literature. These include the volume-edge ratio (Qvl) [61], the radius ratio (Qrl) [62],
and the volume-area ratio (Qrr) [63].

3.6. Finite element simulation

We use the two FE solvers described in Section 2.3.1. We demonstrate the usability of our mod-
els with the off-the-shelves FEBio solver, and we study the importance of bilateral modeling in
the hip joint area using PolyFEM. A pseudo-stance scenario under dynamic structural mechanics
analysis is setup in both the solvers and the von Mises stress is calculated as the direct simulation
output. Since the deformation of the bone is negligible under a pseudo-stance position, we con-
sider the bone to be homogeneous. The bones and cartilages are presented by the Neo-Hookean
elastic material model. The material properties for both experiments are from literature [5]: The
Elastic modulus (E) for the bones and cartilages is 17GPa and 12MPa, respectively, and the
Poisson’s ratio (ν) is equal to 0.30 and 0.45, respectively.

Experiment A: Simulation performance of the FE models using FEBio
The purpose of this experiment is to test the mesh quality of all our models in FE simulation.
We model a pseudo-stance scenario by fixing the pelvic girdle in the x,y, and z-direction and
push the femur bones toward the pelvic girdle in the z-direction. The femur bones have restricted
displacement and rotation in the x and y-direction and we apply a load equal to the bodyweight
to the distal end of the femoral bones. This load starts from zero and increases linearly to 250N
on each femur. An augmented surface contact algorithm with friction-less tangential interaction
is applied between the articular interfaces allowing unhindered motion in the hip joint.
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Experiment B: Effect of bilateral modeling using PolyFEM
As explained in Section 2, most of the hip joint population-based studies use the geometry of
only one side of the body and apply the effect of the other side as boundary conditions [19, 29].
In this experiment, we investigate the importance of accounting for both sides of the body in
a FE analysis. We set the same pseudo-stance scenario as in the first experiment and apply a
prescribed displacement equal to 1mm to the distal end of the femoral bones towards the pelvic
girdle. Then, we remove the geometry of half of the body and replace their effect by fixing the
pubic symphysis and the sacroiliac attachment surfaces in the x,y, and z-direction. We assign
Tet4 elements for the bone geometries and Tet10 elements to the cartilage tissue.

4. Results and Discussion

In this section, we present and discuss our results, starting from the accuracy of the anatomical
approximations. Next, we show the mesh quality measurement results, and finally, we describe
our findings from the FE simulations.

4.1. Anatomical structures

The FE models of the 11 subjects are illustrated in Figure 11. The anatomical measurements for
the bones and cartilages are measured in Table 3 and Table 4, respectively. These measurements
agree with the range of values reported in literature, showing proper approximations of both bony
and cartilage structures.

Table 3: The Bone anatomical measurements; These measurements agree with the range of values reported in literature [53, 55, 64], showing proper approximations of
the bony structures. Comparing the anatomical measurements among the 11 models indicates a considerable inter-subject variability in our study group. This differences
emphasize the importance of subject-specific modeling and the role of population-based studies. The difference between the left and right side shows the bilateral
variation and asymmetry in this area which has been neglected in literature (Table 1)

Pelvic Girdle Femur Bones
Model IHS L-IH R-IH L-IW R-IW PW L-FHSR R-FHSR L-FHAR R-FHAR L-VFL R-VFL

m1 172.50 153.67 156.55 58.83 61.01 290.29 26.94 27.85 26.00 27.00 233.54 228.31
m2 165.14 143.00 146.14 52.07 46.15 263.16 24.99 24.87 24.00 24.00 191.11 195.21
m3 167.70 146.99 143.78 36.94 47.81 253.50 28.06 26.20 25.00 24.00 166.63 160.76
m4 171.46 143.74 140.53 49.67 37.35 258.64 25.49 26.19 25.00 25.00 167.73 184.26
m5 180.79 151.50 147.85 60.41 68.32 309.08 27.99 27.54 27.00 27.00 201.21 190.27
m6 169.86 142.01 138.38 40.84 53.77 264.45 25.31 26.49 24.00 25.00 129.86 122.29
m7 169.67 132.31 130.94 48.55 44.90 263.20 27.25 23.63 25.00 23.00 92.03 92.50
m8 192.73 161.85 155.12 54.29 58.78 305.96 26.50 27.78 25.00 27.00 153.37 157.99
m9 185.21 157.23 151.38 58.65 54.73 298.58 28.30 28.54 27.00 27.00 110.55 113.15
m10 174.39 153.46 151.75 50.77 54.87 278.11 25.82 25.62 25.00 25.00 90.75 100.11
m11 187.36 152.92 151.21 46.33 49.57 283.22 26.67 27.08 25.00 26.00 97.84 92.82
Mean 176.09 148.97 146.69 50.67 52.48 278.93 26.67 26.53 25.27 25.45 148.60 148.88
S D(±) 8.60 7.93 7.39 7.07 8.16 18.92 1.11 1.38 0.96 1.37 46.15 45.05

Comments: IHS: Inter-hip separation; L-, R-IH: height of the left and right ilium; L-, R-IW: width of the left and right ilium; PW:
the width of the pelvis (PW); L-, R-FHSR: the left and right femoral head sphere radius; L-, R-FHAR: the left and right femoral head
actual radius,; L-, R-VFL: the left and right visible femur length

For example, our models’ mean femoral and acetabular cartilage thickness is equal to 1.38mm
and 1.64mm, respectively. These numbers fall in the same range of 1.15-1.6mm for the acetabular
cartilage, and 1.18-1.78mm for the femoral cartilage [18, 65–67]. The mean inter-hip separation,
the ilium height and width is ≈ 176.09mm, 147.83mm, and 51.57mm, respectively. These values
are close to 202.20mm, 152.50mm, and 58.60mm from literature [53].

Comparing the overall shape and the anatomical measurements among these 11 models in-
dicates a considerable inter-subject variability in our study group. These differences emphasize
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Figure 11: Subject-specific Finite element models of 11 male subjects with no diagnosed diseases related to the hip joint.
Each model consists of the sacrum, the paired hip bones, the paired proximal femurs, the paired sacroiliac joints, the pubic
symphysis, and the paired hip joints. The bones are directly derived from the CT scans, and the cartilages are generated
subject-specifically independent of the CT scans. Comparing the overall shape and the anatomical measurements among
these 11 models indicates a considerable inter-subject variability in our study group. Besides, the difference between the
left and right sides of the body shows the bilateral variation and asymmetry in the hip joint area.

the importance of subject-specific modeling and geometrical variation in FE studies. Further, the
difference between the models’ left and right sides shows the bilateral variation and asymmetry
in this area which has been neglected in some studies [3]. In Figure 12, we compare a spherical
head shape with a subject-specific femoral head. The difference between the radius of these two
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Table 4: The joint anatomical measurements; These measurements agree with the range of values reported in literature [18, 65–68], showing proper approximations of the
cartilage structures. Comparing the anatomical measurements among the 11 models indicates a considerable inter-subject variability in our study group. These differences
emphasize the importance of subject-specific modeling and the role of population-based studies. The difference between the left and right sides shows the bilateral variation
and asymmetry in this area, often neglected in FE simulations.

HJ-Acetabulum HJ-Femur Sacroiliac Joint Pubic symphysis
Model Avg.T (w/wo gap) BCA Avg.T (w/wo gap) BCA Avg.T PB-CA SB-CA Avg.T PB-CA SB-CA

m1 1.11 / 1.23 2914.16 1.33 / 1.61 5753.90 5.13 2401.30 2381.49 2.05 475.53 492.63
m2 1.33 / 1.48 2515.68 1.58 / 1.83 4808.44 5.06 1930.80 2028.47 2.89 338.92 301.79
m3 0.95 / 1.06 2236.36 1.05 / 1.17 4849.46 3.58 1696.37 1808.11 1.46 268.58 268.96
m4 1.26 / 1.40 2758.58 1.43 / 1.61 5465.50 4.16 1864.25 1982.89 3.86 411.19 416.17
m5 1.23 / 1.37 2998.12 1.44 / 1.64 5866.13 4.60 2701.15 2831.03 2.23 517.00 538.50
m6 1.29 / 1.45 2208.21 1.36 / 1.54 4831.51 4.21 1310.26 1419.71 2.30 337.80 309.89
m7 1.40 / 1.56 2198.43 1.56 / 1.86 4608.98 5.88 2048.43 2136.46 3.04 352.19 369.18
m8 1.47 / 1.63 2941.67 1.54 / 1.75 5325.95 5.38 2484.03 2552.02 2.45 351.36 353.73
m9 1.59 / 1.77 2819.23 1.62 / 2.01 6111.12 4.71 2332.81 2447.49 1.77 461.99 494.80
m10 1.64 / 1.82 2266.76 1.41 / 1.56 4950.50 6.30 2451.53 2550.57 2.48 559.05 555.34
m11 1.17 / 1.30 2240.89 1.28 / 1.43 5051.55 4.96 2245.62 2396.42 2.21 365.42 340.60
Mean 1.31 / 1.46 2554.37 1.42 / 1.64 5238.46 4.91 2133.32 2230.42 2.43 403.55 403.78
S D(±) 0.20 / 0.22 318.85 0.16 / 0.22 476.38 0.75 388.46 382.65 0.62 84.87 96.55

Comments: Avg.T: average thickness; w/wo: with and without gap between the articular cartilages in the hip joint; BCA: bone coverage
area; PB-CA: the primary bone coverage area; SB-CA: the secondary bone coverage area;

demonstrates how the geometry of the femoral head deviates from a sphere, and the amount of
subject-specific data one loses when simplifying the femoral bone.
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Figure 12: The comparison between the spherical and detailed design of the femoral head; We fit a sphere to the femoral
head, and the sphere’s diameter is defined as the simplified femoral head radius (SR). We define the distance between
the sphere’s center (HJC) and the femoral head boundary as the actual femoral head radius (AR). The variation of AR
in subject m1 is shown as a probability density, and SR is shown with a red line. The red line and the beige distribution
indicate the amount of subject-specific data lost when simplifying the femoral head with a sphere.

Our modeling workflow is implemented in Python, mainly using the Libigl library [69]. To
quantify the speed of the cartilage generation for each subject, we time all the steps described
in Section 3.4 to generate the two hip joints, the two sacroiliac joints, and the pubic symphysis.
The geometry processing is done using a MacBook Pro 2018 with a 2.7 GHz quad-core Intel i7.
We observe that, on average, the cartilage reconstruction takes 4 minutes for each subject. While
this time is significantly short, generating good cartilages can take longer as we need to calibrate
the free parameters in the cartilage generation pipeline [15]. These parameters did not deviate
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significantly among our subjects, so minimal time was needed for parameter tuning.
It should be noted that our cartilage generation algorithm is sensitive to the geometry of

the input bone mesh. Any bone abnormalities or segmentation errors affect the cartilages’ final
shape. For example, even though there was no reported information regarding diseased hip joints,
we found that some subjects, such as m4 have a hip cam impingement which is a bump close to
the femoral head. As we generate the femoral cartilage based on the femur bone curvatures, this
bone abnormality affects the shape of the cartilage boundary.

4.2. Mesh quality

Table 5 summarizes the volume mesh properties of each subject in both the fine and coarse
versions. In the fine and coarse models, the Hausdorff distance between the surface boundary
before and after volume mesh generation is, on average, 0.16 and 0.17(mm), respectively. To
better understand the Hausdorff distance size, we additionally present it in percentage terms. We
divide this distance by the diagonal of the bounding box in the initial surface and denote it by
%∆. The average percentage of 0.04 indicates highly-accurate geometries.

The mean dihedral angle of 70.28◦ and 70.32◦ in Table 5 indicates high-quality elements.
On average, the percentage of the low-quality elements in fine and coarse models are 0.00%
and 0.04%, respectively. This number is less than 1%, which is negligible compared to the
total number of meshes in the model. The normalized quality histogram of the other metrics
is presented in Figure 13. The histograms are tilted towards one, with an insignificant number
of elements close to zero. The number of elements starts growing around 0.4, indicating high-
quality elements based on these measures.

Coarse model (m1) Fine model (m1)

N
um

be
ro

fe
le

m
en

ts

Figure 13: Normalized mesh quality histogram for model m1, in coarse and fine version. The quality metrics include the
volume-edge ratio (Qvl) in blue [61], the radius ratio (Qrl) in green [62], and the volume-area ratio (Qrr) in red [63]. The
closer the distribution to one, the higher the mesh quality we have.

4.3. FE simulation results

The von Mises stress results in Experiment A. is illustrated in Figure 14 for all the 11 hip joints.
We use a MacBook Pro 2018 with a 2.7 GHz quad-core Intel i7 to run the simulations. Each
simulation takes around 5 minutes in FEBio to converge. We experienced no convergence issues
related to the discretized geometries. Even though all the subjects have the same FE simula-
tion setup, we observe that the differences in the bone and cartilage geometries affect the stress

19

64 Appendix C. LibHip: finite element model repository



Table 5: The volume mesh properties of our models, in fine (F) and coarse (C) resolution; The fTetWild parameters
allow preserving the anatomical details and controlling the element size. We calibrate l to have larger and smaller
elements in the coarse and fine versions, respectively. We use the dihedral angle θ to quantify the quality of the
elements. To better understand the amount of low-quality elements in each model, we provide the percentage of
dihedral angles falling out of the accepted range. The Hausdorff distance (HD) shows how the geometry is changed
after the volume mesh generation. We also present it in percentage terms to better understand the Hausdorff distance
size; We divide this distance by the diagonal of the bounding box in the initial surface and denote it by %∆. The
average of the results is shown in Bold, indicating high-quality discretization with accurate geometries.

Models fTetWild parameters # of Mesh quality-Qθ Geometrical accuracy
ϵ l elements Mean θ SD %θ < %θ > HD (mm) (%∆)

m1, F 5e−4 0.007 / 0.006 2.0M 70.26 17.45 0.03 0.00 0.14 0.03
m1, C 5e−4 0.024 / 0.020 192K 70.36 21.41 0.84 0.08 0.14 0.03
m2, F 5e−4 0.007 / 0.006 2.2M 70.28 17.09 0.03 0.00 0.30 0.07
m2, C 5e−4 0.024 / 0.020 264K 70.35 19.61 0.44 0.00 0.17 0.04
m3, F 5e−4 0.007 / 0.006 2.6M 70.20 17.18 0.04 0.00 0.13 0.03
m3, C 5e−4 0.024 / 0.018 260K 70.34 21.08 0.40 0.17 0.26 0.06
m4, F 5e−4 0.007 / 0.006 2.6M 70.27 17.21 0.01 0.00 0.13 0.03
m4, C 5e−4 0.024 / 0.020 223K 70.36 20.97 0.44 0.10 0.14 0.03
m5, F 6e−4 0.007 / 0.006 2.5M 70.29 17.59 0.02 0.00 0.19 0.04
m5, C 6e−4 0.024 / 0.018 204K 70.32 20.55 0.62 0.11 0.28 0.06
m6, F 5e−4 0.007 / 0.006 3.6M 70.28 17.61 0.01 0.00 0.15 0.04
m6, C 5e−4 0.024 / 0.018 274K 70.30 20.16 0.46 0.08 0.14 0.03
m7, F 5e−4 0.007 / 0.006 5.2M 70.29 17.23 0.01 0.00 0.14 0.04
m7, C 5e−4 0.024 / 0.018 341K 70.26 19.14 0.44 0.05 0.14 0.04
m8, F 5e−4 0.007 / 0.006 3.2M 70.27 17.40 0.01 0.00 0.18 0.04
m8, C 5e−4 0.024 / 0.020 251K 70.35 20.71 0.47 0.12 0.16 0.03
m9, F 5e−4 0.007 / 0.006 4.6M 70.28 17.54 0.02 0.00 0.15 0.03
m9, C 5e−4 0.022 / 0.018 326K 70.28 19.58 0.63 0.09 0.17 0.04
m10, F 5e−4 0.007 / 0.006 5.3M 70.32 17.50 0.01 0.00 0.15 0.03
m10, C 5e−4 0.024 / 0.020 326K 70.32 19.88 0.36 0.06 0.15 0.03
m11, F 5e−4 0.007 / 0.006 4.8M 70.30 17.26 0.01 0.00 0.14 0.03
m11, C 5e−4 0.024 / 0.020 299K 70.29 19.95 0.63 0.08 0.16 0.04
Avg.F 5e−4 0.007 / 0.006 3.5M 70.28 17.37 0.02 0.00 0.16 0.04
Avg.C 5e−4 0.024 / 0.019 269K 70.32 20.28 0.52 0.04 0.17 0.04

ϵ: Envelop of size epsilon; l: Ideal edge length; Mean: Mean dihedral angle; SD: Standard daviation; Qθ: The
dihedral angle mesh quality metric; %θ < and %θ >: Percentage of elements which their dihedral angle falls below
or above the range of good quality tetrahedrals, respectively; HD: The Hausdorff Distance; %∆: The percentage of
the HD w.r.t. the bounding box.

distribution pattern and values across the subjects. The stress distribution pattern in these joints
shows no spurious stress peaks and gradual changes in the joint cartilages. The stress ranges
between 0− 0.62 (MPa) in the hip joint cartilages, which is lower than the reported values in the
literature [5]. The reason is that these models are in the supine position. To get similar results,
we need to first re-locate the femur and hip bones to the neutral position. However, the purpose
of our simulations is only to verify the simulation properties of our FE models.

The difference between the one-sided models and the bilateral models in Experiment B. is
presented in Figure 15. We use a workstation with an AMD Ryzen Threadripper PRO 3995WX
CPU. We use a max of 16 threads, which leads to a runtime of around 130 minutes for each
simulation. The significant difference in the von Mises stress values and pattern justifies that it
is an invasive approach to only include half of the body when studying the hip joint behavior.
These results suggest that such simplified studies as in [19, 29] may lead to under/overestimations
regarding the stress values.
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Figure 15: The comparison between simulation results of bilateral modeling and one-side hip joint models; The model
in the left image covers both sides of the body, while in the right image, we only have the geometry of the left side, and
the effect of the rest of the body is applied as boundary conditions on the hip bone. The significant difference in the von
Mises stress value and pattern justifies that it is an invasive approach to only include half of the body when studying
the hip joint behavior, which may lead to unrealistic estimations. Note that the stress values are to compare the output
differences and may not be realistic as the simulation setup is still a pseudo-stance.

5. Conclusion and Future work

Our work aimed to provide multiple subject-specific finite element models of the hip joint for
simulation purposes. We provide verified bilateral models covering the bones and cartilages in
the hip joint area. Our models allow scientists to account for the inter-subject and bilateral vari-
ability when studying the hip joint behavior. The FE analysis experiments in this work qualify
the usability of our models in FE simulations. We have made different versions of each subject
to ensure the models are compatible with different FE method solvers and scenarios. We sug-
gest that it is not suitable to only use a single subject in the FE analyses, and it is an invasive
assumption to replace geometries by their effects as boundary conditions.

Our modeling pipeline and geometry processing codes are available on GitHub [14]. The
codes cover the input bone re-meshing process, the cartilage generation process, the multi-body
volume generation process, the mesh quality assessment codes, and a sample FEBio model file
generator. Even though the FE models are the main output in our work, one can use each section’s
initial input and output separately for other purposes. For example, the CT scan segmentation
label maps can be used as training data to develop automated bone segmentation models.

Additionally, the pipeline is compatible with adding more data or replacing each section. For
example, additional bone segmentation can be added to the pipeline’s input to develop more FE
models. One can also directly segment the cartilages from image modalities, replace them with
the generated cartilages in our method, and still generate high-quality FE models. The concept
behind our pipeline is not limited to the hip joint only, and similar concepts can be applied to the
jaw dataset or dental applications [70].

The proposed cartilage generation method in our modeling workflow is fast and generates
proper cartilages. However, we must note that our cartilage generation method is sensitive to the
input bone geometries, and any abnormalities or segmentation errors may lead to less accurate
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results. The surface and volume discretizations have been proved to have high-quality elements
using several mesh quality metrics. An outstanding feature of these models is that we have
conforming interfaces in our multi-body models. Thus, one does not need to manually define
fixed contact definitions in the bone-cartilage interfaces when running simulations. Further, the
high congruency level between the articular cartilages in the hip joint allows a smooth transition
of force in the hip joint, leaving no stress peaks due to improper cartilage geometries.

The von Mises stress results reported in our work only serve as a quality test of simulation
properties. We need a more advanced simulation setting to model a real stance position, such
as proper material properties. This explains the difference in the stress values compared to the
literature. Moreover, all the subjects in our work are in the supine position during the image
acquisition. They are lying down on the scanning tray, and the relative location of the femur
and hip bones are affected by this position. One solution is to relocate the bone geometries
to a neutral position before setting up any custom simulations setup. We leave this for future
work. Future work could extend to using these FE models to estimate the stress distribution in
a complete gate cycle. Our models currently lack other soft tissues. Future work can add more
structures in the hip joint area, such as the hip joint labrum, capsule, and ligaments.
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Appendix D

Contact modeling from images
using cut finite element solvers

Susanne Claus, Pierre Kerfriden, Faezeh Moshfeghifar, Sune Darkner,
Kenny Erleben, Christian Wong. “Contact modeling from images using
cut finite element solvers” Journal of Advanced Modeling and Simulation
in Engineering Sciences. 2021

This paper presents a robust simulation pipeline, which starts from clinical
images and results in the simulation of contact between multiple bodies. The
input computational models in this approach are derived from CT scans and
encoded in 3D arrays of voxels. The contribution of this thesis was to provide
the input data for this pipeline, which included the hip and femur surface mesh
segmented from CT images.

This work was our initial attempt to use our segmented bone models for sim-
ulation purposes. The advantage of this collaboration was to pre-investigate
the conventional finite element modeling workflow and figure out the existing
bottlenecks in semi-automated bone segmentations. Throughout this work, we
gained insights into some of the critical and labor-intensive parts of finite element
modeling and identified how computer science could accelerate this approach.
We have decided to exclude the manuscript of this paper from this thesis to
keep the dissertation concise. We refer the reader to [4] for more details.
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Appendix E

Open-Full-Jaw: An open-access
dataset and pipeline for finite
element models of human jaw

Torkan Gholamalizadeh, Faezeh Moshfeghifar, Zachary Ferguson, Teseo
Schneider, Daniele Panozzo , Sune Darkner, Masrour Makaremi, François
Chan, Peter Lampel Søndergaard, Kenny Erleben. “Open-Full-Jaw: An
open-access dataset and pipeline for finite element models of human
jaw” Under review at Journal of Computer Methods and Programs in
Biomedicine. 2022

The contribution to this research paper is a continuation of Appendix B. We
investigate the possibility of using the hip joint cartilage generation pipeline
to generate discretized models of the Periodontal Ligament in the human jaw
modeling application. The output of this method is both implicit representations
of the PDL layer, which are suitable for simulation studies. The modeling
pipeline is available on Github ( https://github.com/diku-dk/CarGen) for
public use. Figure E.1 illustrates the output results of the PDL layer. We
decided to exclude the manuscript of this paper from this thesis as the rest of
the paper falls out of the scope of hip joint modeling.

Figure E.1: A sample subject-specific surface mesh and the top
ring of the Periodontal Ligament, residing between the teeth and
the jaw.

https://github.com/diku-dk/CarGen
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Appendix F

Velocity Skinning for Real-time
Stylized Skeletal Animation

Damien Rohmer, Marco Tarini, Niranjan Kalyanasundaram, Faezeh Mosh-
feghifar, Marie-Paule Cani, Victor Zordan “Velocity Skinning for Real-time
Stylized Skeletal Animation” EuroGraphics. 2021

This work was a side project in my Ph.D., where we collaborated with a network
of researchers from Biomechanical Modeling and Computer Graphics. This
research paper has received the Honorable Mention of the Gunter Enderle Award
of Eurographics 2021.

The collaboration introduced us to the essential aspects of large-scale computa-
tional modeling and was an initial attempt to apply our biomechanical point
of view in a non-medical setting. The contribution to this work was mainly
to feed the concepts of bone velocities to define closed-form, generic geometric
deformers in cartoon animation (Figure F.1). We have decided to exclude the
manuscript of this paper from this thesis as it falls out of the scope of hip joint
modeling. We refer the reader to [17] for more detail.

Figure F.1: Image taken form the paper; Left: Skeletal rig,
with a single bone in the head: When animated using velocity
skinning, secondary animation effects are automatically added to
the ear, and face, while the horn can be set as rigid. Right: The
native efficiency and simplicity of the method is compatible with
GPU implementation used to compute thousands of animated
cows in real-time.
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