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Abstract

ONVOLUTIONAL neural networks (CNN) have been shown to be efficient
C and effective in image analysis tasks due to their built-in locality and their
weight-sharing property. Since convolutions are translation equivariant - a
shift in the input results in the same shift in the output - the networks preserve
translation symmetry. In fact, for the most common image analysis tasks, the
space that the data live in - Euclidean space - is a principal homogeneous space
to the translation group, it is, consequently, generic and convenient to apply
CNNs to this type of data directly. For data modalities that are not measured
in spaces like the Euclidean space, nonetheless, the translation equivariance is
not immediately satisfied. For example, if we translate a signal on a 2D unit
sphere, based on the path that is taken, the resulting signal at the destination
will have different orientations. Hence, in this thesis, we focus on generalizing
CNNs to more general group actions other than simply translation. We take
inspiration from the classical path in literature for generalized CNNs. We first
lift the data to groups, and then convolutions are performed on the groups via
group actions, after which we project the functions back to the original space
to perform tasks. In this sense, the data should be modeled in a way such
that it is a function mapping from the homogeneous space of the group it is
being lifted to. On the other hand, the group that the data are lifted to is not
arbitrary. What kind of actions should be incorporated into the group? In
this thesis, we explore the group actions in the most natural way - the actions
should be associated with the possible motions that come with the data. In
other words, the group action should encode whatever motions the data might
have in reality such that the model can capture these motions and thus be
resistant to variations in real-world data.

In this thesis, we choose Diffusion Weighted Magnetic Resonance Imaging
(DWI) as the data and explore possible group actions that are natural to this
type of data. DWI is a technique that captures anisotropies in the movement
of molecules in tissues and is very useful in diagnoses of vascular strokes in the
brain, among other diagnoses of diseases. It has a structure that differs from
regular images - it provides 3-dimensional diffusion information at each voxel
that can be encoded as a function on a unit sphere. Therefore, it provides
a natural structure for generalized CNNs. The variations in the data - or
in other words, symmetries in the data - are 3D rigid motions, which can
be easily modeled mathematically, fully, or partly. Unlike existing methods
in the literature that use irreducible representations that predefine function
basis/filter banks for the spherical convolution, in this thesis, we do not impose
predefined functions for the CNN task, and we aim at performing lifting and
group convolution in a generic and lightweight way. Instead, the symmetries in
the data are reflected by group actions that are the most natural for this type of
data. We gradually incorporate more symmetries that are associated with the
data and perform a segmentation task. With more symmetries incorporated,
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we see a clear increase in the performance of the task. Furthermore, it is shown
that the more symmetries are reflected in the modeling, the more resistant the
model is to variations in data.
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Dansk Resumé

onvolutionelle neurale netveerk (CNN) har vist sig at veere effektive og ef-
K fektive til billedanalyseopgaver pa grund af deres indbyggede lokalitet og
deres vaegtdelingsegenskab. Da konvolutioner er translationseekvivariante - en
skifte i input resulterer i det samme skifte i output - bevarer nettene den trans-
lationssymmetri. For de mest almindelige billedanalyseopgaver er det faktisk
sadan, at rum, som dataene lever i - det euklidiske rum - er et principielt
homogent rum til translationsgruppen, og det er derfor generisk og praktisk
at anvende CNN’er pa denne type data direkte. For datamodaliteter, der ikke
er malt i rum som det euklidiske rum, er translationsekvivariansen ikke desto
mindre ikke umiddelbart opfyldt. Hvis vi f.eks. translaterer et signal pa en
2D-enhed kugle, baseret pa den sti, der tages, vil det resulterende signal pa
destinationen vil have forskellige orienteringer. I denne afhandling fokuserer
vi derfor pa at generalisere CNN’er til mere generelle gruppeaktioner end blot
translation. Vi tager inspiration fra den klassiske rute i litteraturen for gener-
aliserede CNN’er. Vi fgrst lgfter dataene til grupper, og derefter udfgres der
konvolutioner pa grupperne via gruppeaktioner, hvorefter vi projekterer funk-
tionerne tilbage til det oprindelige rum for at gennemfgre opgaver. I denne
forstand skal dataene modelleres pa en sadan made, at at det er en funktion-
safbildning fra det homogene rum i den gruppe, det er bliver lpftet til. Pa
den anden side er den gruppe, som dataene lgftes til ikke arbitreer. Hvilken
slags handlinger skal inkorporeres i gruppen? I denne afhandling undersgger
vi gruppens aktioner pa den mest naturlige made - de aktioner bgr veere for-
bundet med de mulige bevaegelser, der fglger med dataene. I andre ord bgr
gruppeaktionen indkode de bevagelser, som dataene matte have i virkelighe-
den, saledes at modellen kan indfange disse beveegelser og dermed veere re-
sistent over for variationer i data fra den virkelige verden. I denne afhandling
veelger vi Diffusion Weighted Magnetic Resonance Imaging (DWI) som data
og undersgger mulige gruppeaktioner, der er naturlige for denne type data.
DWI er en teknik, der indfanger anisotropier i bevaegelsen af molekyler i vaev,
og er meget nyttig i diagnoser af vaskulaere slagtilfaelde i hjernen, blandt andre
diagnoser af sygdomme. Den har en struktur, der adskiller sig fra almindelige
billeder - det giver en 3-dimensionel diffusionsinformation ved hver voxel, der
kan kodes som en funktion pa en enhedssfazere. Det giver derfor en naturlig
struktur for generaliserede CNN’er. Variationerne i dataene - eller med andre
ord symmetrier i dataene - er 3D-rigide bevaegelser, som kan let modelleres
matematisk, helt eller delvist. I modseetning til eksisterende metoder i litter-
aturen, der anvender irreducible repraesentationer, der pa forhand definerer
funktionsbasis/filterbanker til den sfeeriske konvolution, palsegger vi i denne
afhandling ikke foruddefinerede funktioner til CNN-opgaven, og vi sigter mod
at udfgre lgft og gruppefoldning pa en generisk og letvaegts made. I stedet an-
vendes symmetrierne i dataene afspejles af gruppehandlinger, der er de mest
naturlige for denne type data. Vi inkorporerer gradvist flere symmetrier, der

iii



CONTENTS

er forbundet med dataene og udfgrer en segmenteringsopgave. Med flere sym-
metrierer taget med, ser vi en klar stigning i opgavens ydeevne. Desuden, det
vist, at jo flere symmetrier, der afspejles i modelleringen, jo mere modstands-
dygtigere modellen er over for variationer i data.

iv
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Chapter 1

Introduction

In this chapter, we first introduce the motivation of this thesis, after which we
pinpoint the problem properly. Finally, we briefly present the data that are
used in this thesis.

1.1 Motivation and Problem Definition

For digital image processing, including medical image processing, machine
learning techniques have shown to be robust against variation and noise in
data, and convolutional neural networks (CNN) have been shown to be ex-
traordinarily efficient and effective [29, 36]. Convolutions are translation
equivariant, meaning that a shift of the input results in the same shift of
the output. Therefore, convolutions preserve the translation symmetry. How-
ever, for data modalities that do not measure signals in Euclidean spaces, it is
not immediately clear how to create equivariant convolutions for the situation.
For example, on an oriented manifold, a translation of the input does not gen-
erate the same shift in the output, since the path chosen for the translation
action is not unique, and different paths can generate different orientations of
the output in the destination.

Generally speaking, there are a few challenges in applying CNNs to data
in a general sense, since data can be measured in a wide range of spaces, e.g.
a non-flat manifold.

1.1.1 The underlying space may not have a group structure.

The space that the function lives in poses a challenge for applying CNN to it.
In order to define convolution, a criterion must be satisfied - the underlying
space must have a group structure or be a homogeneous space of a group. For
a Buclidean space R™ (e.g. R? or R3), this is not a problem since the space
is a homogeneous space of the translation group T". For data that live on
a manifold, e.g. S?, the translation group does not act on S?. Translating



1.1. MOTIVATION AND PROBLEM DEFINITION
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(a) Translation group on R? (b) Parallel transport on S?

Figure 1.1: Figure 1.1a shows that the Euclidean space R? comes with a trans-
lation group structure, thus defining convolution on it is generic and natural.
Figure 1.1b shows the path dependency of parallel transport. Moving the
black arrow to the opposite side of the sphere ends with different orientations
of the arrow due to different paths chosen.

a convolutional kernel on a manifold can be performed by parallel transport.
There may be no obvious group acting on the manifold, such that the trans-
lation of functions on a manifold can be path-dependent, as is illustrated in
Figure 1.1. Thus, convolution is not defined in this space. In order to utilize
the remarkable efficiency and robustness that CNN has on this type of data
structure, special kinds of kernels are required.

Therefore, to deal with this challenge, we must generalize traditional CNNs
to more complicated actions than simply translations that are provided by 2D
or 3D images. Many works have been done to generalize convolutions to other
groups than mere translation [5, 23, 13, 16, 7, 14, 32], either for Euclidean or
non-Fuclidean data. In this thesis, we take inspiration from the general path
of generalizing convolution to group actions provided by Cohen et al. [14],
with the classical lifting-convolution-projection recipe. In addition, we aim to
do this generalization in a direct and natural way, without seeking spectral
methods as what is usually done in the literature.

1.1.2 Motions that come with the data.

Given the modality of the data, there can be different possible movements that
the data can be associated with, e.g. translation, rotation, etc. In a traditional
CNN setup for 2D images, only translation motions are incorporated in the
convolution. Objects in 2D images can, however, have rotational motions as
well, which is usually not taken into account in a regular CNN model.

The most classical approach to deal with this is to use data augmentation,

2



1.2. DATA BACKGROUND: DIFFUSION WEIGHTED IMAGING (DWI)

reflecting the expected symmetries in the data, in the hope that the network
will be able to capture the symmetries during the training phase, learning
symmetry-aware kernels. This is, however, usually costly either in terms of
computation or storage. It was presented by Bekkers et al. in [5] that adding
this rotational action in the modeling boosts the performance of the CNN
without much cost of computation or storage. Therefore, it is, indeed, desir-
able to incorporate the actions that the data might produce in the modeling,
based on the modality of the data.

1.1.3 Problem statement

The problems we are trying to solve, consequently, wear down to 1) we want
to generalize convolution - thus kernels/filters - to more complex actions for
data in general in a direct and natural way; 2) we want to incorporate the
motion of the data in the modeling.

In this thesis, we choose Diffusion Weighted Imaging (DWT) to achieve this
generalization due to its special data structure and its potential in diagnoses
of diseases in general. In the next section, we briefly introduce some basic
concepts of DWIL.

1.2 Data Background: Diffusion Weighted
Imaging (DWI)

In this section, we first introduce some basic measurements of the DWI data,
after which we present our mathematical interpretation of this type of data
such that they can be modeled in a generic way that reflects the structure of
the data.

1.2.1 DWI Basics

In its original terms, diffusion is the microscopic movement of atoms and
molecules in solution and gas. In human bodies, molecules of water, salt, and
various kinds of chemicals flow freely among living tissues. Diffusion Weighted
Imaging (DWI) is a form of Magnetic Resonance Imaging (MRI) based on
measuring movements of molecules within a voxel of tissue, and the resulting
signals are anisotropic - it is not directionally uniform. It uses specific MRI
sequences to generate contrast in MR images. To measure the significance
of diffusion, the diffusion coefficient (D) is used. The diffusion coefficient
is the quantity of a substance that, in diffusing from one region to another,
passes through each unit of cross-section per unit of time when the volume-
concentration gradient is unity [33]. For tissues that are highly cellular or
tissues with cellular swelling, the diffusion coefficients are lower. DWI has an
essential role in diagnosing ischemia and vascular strokes in the brain as well
as characterizing tumors, such that there is a strong incentive to automate the

3



1.2. DATA BACKGROUND: DIFFUSION WEIGHTED IMAGING (DWI)

analysis of this type of data. Therefore, efficiently and informatively modeling
DWI data is crucial and inevitable for aiding the next steps of diagnosing
diseases.

To measure signals in terms of diffusion, several parameters are used. To
explain and show how these parameters affect the output, in the following
text of this section, we introduce the two most important concepts: b-value
and b-vector.

b-value: To generate MRI contrast, specific pulse sequences and intrinsic
tissue properties are used, in which the parameters are adjusted. The contrast
is based on weighted properties of tissues [17]. The factor to weigh diffusion-
sensitizing is called the b-value:

b:'yQ-GQ-éQ(A—g) (1.2.1)
where v is the gyromagnetic ratio, G is the strength of the diffusion-sensitizing
gradients, § is the duration of the gradient pulse, and A is the time interval
between these gradients. The unit of b is sec/mm?. In practice, b is increased
by increasing the amplitude (G) and duration (§) of the gradient.

The higher b is, the stronger the diffusion affects the signals. Suppose S
is the baseline MR signal, and D is the diffusion coefficient. Then the signal
S after applied with the diffusion gradients will be:

S =5 e P (1.2.2)

b-vector: Within a voxel of tissue, the b-vectors correspond to the direc-
tions of the diffusion sensitivity. Thus, a voxel contains signal intensities S in
the directions indicated by the b-vectors. For a given b-value, a set of b-vectors
is provided for the scan shared by all voxels.

An example of a diffusion image can be found in Figure 1.2. For a given
b-value, the signals are measured in different directions (b-vectors), each di-
rection corresponds to a volume image.

A DWI scan with a single b-value is named a single-shell image, and a scan
with multiple b-values is called multi-shell image. Furthermore, the signals
defined in these directions in a voxel have antipodal symmetry - the opposite
direction of a b-vector has the same signal value as the b-vector.

1.2.2 Mathematical Interpretation of DWI

As explained above, for a given b-value (parameterized by the magnitude,
duration, and interval of the gradients), there is a set of b-vectors associated
with the b-value indicating directions of diffusion sensitivity for each voxel in
a scan, and all voxels share the same set of b-vectors. A direction in the 3D
Euclidean space R3 can be seen as a point on the surface of a unit sphere,
thus a voxel of a DWI image consists of signal scalar values defined on some

4



1.2. DATA BACKGROUND: DIFFUSION WEIGHTED IMAGING (DWI)

Figure 1.2: Illustration of the same slice of a DWI scan from different direc-
tions.

Figure 1.3: Ilustration of a voxel in a DWI scan of a given b-value. A set
of directions (b-vectors) is provided, and signal values (scalars) are defined in
these directions.

points (b-vectors) on a unit sphere. An illustration of this interpretation can
be found in Figure 1.3.

Furthermore, for a given b-value, we can generalize each voxel in a DWI
scan image to a continuous function defined on a unit sphere surface S? with
some interpolation scheme that preserves the antipodal symmetry. For this
purpose, we use the Watson Kernel [26] in this thesis. Therefore, each voxel is
a function I : S> — R at voxel location . Taking all the voxels into account,
a single-shell DWI scan image is a function I : R? x S — R. Without loss of
generality, a multi-shell DWT image is a function I : R3 x §2 — R, where N
is the number of b-values used in the scan. In this thesis, we only look at the
single-shell case since it is the most common type of data.






Chapter 2

CNN Background: (Geometric
Deep Learning and
Equivariant Neural Networks

In this chapter, we showcase the most commonly used setup of CNNs in im-
age analysis and generalize it to a group action fashion. In literature, the
generalization of convolutions on spheres is usually done by irreducible repre-
sentations. We take a different path than that so that the lifting of functions
to groups and the generalized convolutions can be performed in a lightweight
and direct way. We build the generalized convolutions on homogeneous spaces
of groups to serve as a mathematical foundation of this thesis.

2.1 Generalizing Convolution to Group Actions

We follow the convention in the machine learning society of viewing correlation
as convolution. Here we showcase the 2D case for simplicity, and it can be
easily generalized to higher dimensions. A 2D convolution on a function A :
R? — R™ can be written as:

(15 b)) = / / k(@ (e — 'y — o )da'dy, (2.1.1)
zeR JyeR

where  : RZ — R” is a function to convolve with h, and is usually referred to
as a kernel. The 2D translation group T? does act on the space of images on
the left (see Section 2.1.1 for details of actions on functions):

msh(z,y) = h(z — 2",y —y), meT? o= y)" (2.1.2)

Therefore, Equation (2.1.1) can be rewritten in a group theoretical way as:

(k*h)(z,y) = /ER /ER k(2 y) (T5h) (2, y)d2'dy . (2.1.3)



2.1. GENERALIZING CONVOLUTION TO GROUP ACTIONS

Before continuing, we introduce some classical definitions in group theory
that are crucial to the later sections.

2.1.1 G-action, Homogeneous spaces

Given a space M and a group G with identity element e, a left-action of G
on M, denoted by -, is a function G x M — M that satisfies:

e Identity: e-m =m,Vm € M.
e Compatibility: ¢g- (¢ - m) = (9q’) - m, for g, ¢’ € G,m € M.

With the two axioms satisfied, it follows that for all ¢ € G, the mapping
g- M — M is a bijection. For an m € M, the orbit G(m) is the set {g-m,g €
G}. The stabilizer Gy, of m is the set of transformations that keep m fixed:
Gm ={g9 € G,g-m = m}, and it is a subgroup of G. There is a trivial but
important property of stabilizers: for all pairs mj, mo on the same orbit, i.e.,
there exists ¢ € G s.t. mo = g - mq, then their stabilizers are conjugated
Gy = 9Gm, g~ ' M is a homogeneous space of G if it consists of only one
orbit: for all mi, ms € M, there exists a g € G, s.t. ma = g-m;.

2.1.1.1 (G-action on functions

If M is endowed with a left G-action, then a vector space of functions f :
M — RY is endowed with the left G-action, often denoted by Lg: L, f(m) =
f(g~'-m) for all g € G and all m € M. In general, we consider the function
spaces L%(M,R") for a G-invariant measure on M.

2.1.2 Equivariant Map

Assume that M and N are sets, both endowed with a G-action. A map
f: M — N is equivariant if f(g-m) = g- f(m) for all g € G and all m € M.

2.1.3 Quotient space

The quotient of G by a subgroup H partitions G into translated copies of H:
G/H ={gH, g € G}. Here gH is called the coset of g. The map that sends g
to gH is called the projection onto G/H.



2.1. GENERALIZING CONVOLUTION TO GROUP ACTIONS

2.1.4 Orbit mapping, orbit map, and quotient map

Assume M is a homogeneous space of G. Take mg € M and H = Gy, its
stabilizer. There is a commutative diagram

Lmg="mo

G M

-
l” / (2.1.4)

G/H

The horizontal arrow is the orbit mapping, and m is the quotient map. The
diagonal arrow is the orbit map, and it is a diffeomorphism. Now E;%(m) =
{g € G,g-mg=m} = gH for any of these gs. Here gH is the fiber over m.
Changing mg will change the orbit map up to a unique diffeomorphism.

Here we give a simple but important example. Take the SO(3) group as G
and S? as M. S? is obviously a homogeneous space of SO(3). Choose z¢ € S?,
and H = SO(3),, its stabilizer, then the orbit map SO(3)/SO(3),, = S? is
a diffecomorphism. It is easily seen as well that SO(3),, is diffeomorphic to

SO(2).

2.1.5 Group convolution

Revisiting the convolution in Equation (2.1.3), it is clearly equivariant with
respect to translation:

(kx (5h)) (2, y) = (T5(k * h))(z, y). (2.1.5)

R? is, of course, a homogeneous space of T2, since for all p, ¢ € R?, there
exists 7, € T?, s.t. Tp-p = ¢. Additionally, R? is diffeomorphic to T?, R? = T?,
thus it is itself a translation group as well. In this case, R? is actually a
principal homogeneous space of T?. The general feature representation R™
(here we use R™ instead of RNe for simplicity and generalization purpose) is
a vector space.

Therefore, we write this recipe in a more generalized way - in the group
theoretical sense. We replace the translation group R? with a arbitrary group
G and the feature space with a vector space V, the feature map can be gen-
eralized to:

f:G=V, (2.1.6)

and Equation (2.1.3) can be rewritten as:

(k* f)(g) = /G k(g™ ') (h)dh, (2.1.7)

where dh is a left-invariant Haar measure on G [18].



2.2. EQUIVARIANT CNNS ON HOMOGENEOUS SPACES

The convolution by a generalized kernel f +— k x f is a function that is
G-equivariant: kx € Homg(L*(G,V), L*(G,W)). W is some vector space,
not necessarily the same dimension as V. For example, the dimensions of
V and W can be seen as different input and output channels of a layer in a
CNN. The feature map of the generalized convolution Equation (2.1.7) can be
written as:

(kxf):G—W. (2.1.8)

This equivariance generalizes Equation (2.1.5), this time with respect to
the left group action:

(kx (Lgf)) = Lo(k * f) (2.1.9)

We refer the readers to [23] for more detailed theoretical foundation.

2.2 Equivariant CNNs on Homogeneous Spaces

Many works have contributed to the generalization of CNNs to Group Equiv-
ariant CNNs (GCNNs) on Euclidean spaces and spheres [13, 16, 5, 28, 48,
15, 47].Few works are focusing on building equivariant networks for data with
a different modality, e.g. DWI. In Mueller et al. [34], they proposed a roto-
translational equivariant network for diffusion MRI using filter banks devel-
oped from spherical harmonics and radial basis. Yet there is no work in
literature that built equivariant CNNs for this type of data modality in the
most generic way without predefined basis. In fact, it is not clear how to do
so without a general theory of GCNNs on homogeneous spaces.

In Equation (2.1.7), the convolution is performed on a group G. For images
f :R? — R3 in the traditional CNN case, R? being a principal homogeneous
space of T2 gives us the privilege to rewrite the image function as f:G—R3,
and here G = R2.

This is not always the case for other types of data, e.g. non-flat data like
in DWI. For functions defined on an arbitrary space, e.g. a manifold, M, the
space itself does not necessarily have a group structure, so the condition for
defining convolution is not satisfied. To deal with this, the usual way is to
lift the function in a convolutional fashion from M to a specific group. The
convolutional lifting is defined as follow:

(kx*f)(g) = /M E(g~'m)f(m)dm,g € G. (2.2.1)

Here the group G is not arbitrary. The convolutional lifting is performed
on M, which does not have a group structure. Thus to do convolution on it,
it must be a homogeneous space of the group G it is lifted onto. In this way,
a function f: M — R" is lifted to a function f1: G — R"

f1(gH) = f(m) (2.22)

10



2.2. EQUIVARIANT CNNS ON HOMOGENEOUS SPACES

the lifting is constant on the cosets of G/H.

For more solid and general foundations of equivariant CNNs on homoge-
neous spaces, we refer the readers to [14].

After the lifting of data functions to group structures, group convolutions
are performed using Equation (2.1.7). At the end of a network, the functions
are usually projected back to the original space of the input data in order to
perform tasks for the model.

From a feature map F : G — R", a projection will provide an associated
map F : M — R™. Using the orbit map from (2.1.4), one integrates fiber-wise:
(nonlinear) averaging, min or max-pooling for instance. Here we demonstrate
the case for the nonlinear averaging, min and max pooling can be written as
limiting cases.

— 1
Vg,g-mo=m, F(m)= T /HF(gh) dh. (2.2.3)

When G is a finite dimensional Lie group, and with some properness on the
action, then H will be compact, thus with finite measure such that it can
be normalized to 1. So we can assume |H| = 1. The projection keeps the
equivariance property such that attaching it after the lifting and convolutional
layers does not break the equivariance.

Lemma 2.2.1 F is equivariant: Li,F = L,F.

Proof. Pick a g such that g-mg = m, Then for any h € H, k" 'gh-mg = k~'m.

TaF(m) = /H LuF(gh) dh

_ / F(k~'gh) dh = F(k~'m) = L,F(m)
H

Therefore, a generalized group convolutional neural network can be estab-
lished using the following recipe:

e Step 1: Lifting using Equation (2.2.1)
e Step 2: Group convolutions using Equation (2.1.7)
e Step 3: Projection (pooling) using Equation (2.2.3)

With the generalization of CNNs to groups and homogeneous spaces, we
can perform CNNs with more complicated group actions (e.g. rotation) than
just translation as in image analysis works that use traditional CNNs. Lifting
functions to groups enables a large range of interactions of local geometry in
data based on the actions of the group.
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2.3 Fiber lifting and fiber convolutions

In this thesis, before lifting the functions to the full group SO(3) of the mani-
fold S?, we first experimented with lifting the spherical functions locally to the
stabilizer of each point on the manifold, for a general manifold setup. Now,
we explain this kind of lifting and the convolutions that come with this kind
of lifting.

2.3.0.1 Lifting

Here let mg € M be our base point and ki, € L* (Ty,,M). Choose, for each
m € M, a transformation o,,, among these for which g -my = m (i.e. the
coset gH). With such a choice, G,, = 0,,Ho,,,!. Here we use the fact that
the action of g on M gives rise to a tangent action isomorphism L, = T :
TmM = Ty M, and it is still denoted by g-.

The mapping o : M — G is a section of the orbit mapping ¢,,,. Finding a
smooth global map o might not be possible. Our fundamental example is S? as
SO(3)-homogeneous space, and mg is in S?, the “north pole” e3 = (0,0,1)7,
for instance. In differential geometry, it is well-known that there is no smooth
global section ¢ : §2 — SO(3).

Remark 2.3.1 Still, one can define such a o on S*\{—myg} easily via the
cross product. Use the isomorphism

R3;>50(3), u— {t: v av=uxv}. (2.3.1)
For q € S$*\{mg, —mo}, set 1, = |ZE§Z\’ 0 = arccosmg q and R, = Ma. For

q = my, set Ry, =id. Then Rymo = q and q — Ry is clearly smooth.

Back to the general definition. Choose o a section M — G, then for each
q € M, one can lift f to G4 by defining, for g € G4,

(kx5 fg (9) = J(Expg v)0g - fimg (9 10) dv (2.32)
T,M

The transformation oy acts on kpm, as 0q - Kme : v € TyM = K, (07 '0).
Since g € Gy, g acts by isomorphism on 7, M such that g tve TyM.

In the case of interest, M = §%, G = SO(3), and G, = SO(T,S?). Equiv-
ariance of the lifting would require the kernel to be invariant under rotations,
otherwise o, = Ro, must be satisfied for R € SO(3). This, in general, does
not hold. Therefore, unless severe restrictions are imposed on the kernel, the
lifting does not have equivariance.

12
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2.3.0.2 Fiber-convolution.

In the sequel M = S?, one has a feature map F : SO(S?) — RN, At a given
point mg € 8%, let K, : SO(T),,S?) — R be a kernel on the fiber SO(T},,).
Such a kernel gives rise to a family of kernels on each fiber: at a ¢ € S?, find
R € SO(3) with Rmg = ¢ and set K, : S € SO(T,S) — K, (RTSR). This is
actually independent of the choice of a translation R : my — ¢, as opposed to
the lifting case, where we used a section ¢ of the orbit mapping.

Lemma 2.3.2 Let R and R’ be two rotations which translate mqg to q and
S € SO(T,S?). Then RTSR = RTSR'.

Proof. Two such rotations differ by an element Q € SO(T},,S?), R’ = RQ.
So if ¥ = RTSR € T,,,S?, RTSR = Q"¥Q € T,,,S? is conjugate to X.
SO(2) is Abelian, therefore, conjugation is trivial. O

Now we can defined the “Fiber-convolution” of F : SO(2) — RY with
Ky : L*(T,,,S?) by

-
(K% F)(q,8) = / Fq(T)Kmo(<RTTR> S)dT
SO(T,S2)
for any R translating mg to gq.

2.3.0.3 Projection - Fiber Collapse

A feature F : SO(S?) can be collapsed fiber-wise to a S>-function in many
ways, for instance

f(q) = (S
(@) SeS0(T,52) o(5),

f(g)= min  F,(S
(q) sl o 4(5),

£g) = / F,(S)ds
SO(T,S?)

(2.3.3)

13






Chapter 3

Summary

In this chapter, we summarize the contributions of all the publications that
we produced. This thesis is a compilation of the following works:

e Bundle Geodesic Convolutional Neural Network (BGCNN) for DWT Seg-
mentation from Single Scan Learning. This work was accepted in Com-
putational Diffusion MRI 2021, and it is presented in Chapter 4.

e Bundle Geodesic Convolutional Neural Network for DWI Segmentation.
This work was submitted to The Journal of Medical Imaging, and it is
under review. It is presented in Chapter 5.

e Group Convolutional Neural Network for DWI Segmentation. This work
was submitted to MICCAI 2022, and it is under review. It is presented
in Chapter 6.

e A Study on Group Convolutions and Equivariance for DWI Segmenta-
tion. This work was submitted to IEEE Transactions in Medical Imag-
ing, and it is under review. It is presented in Chapter 7.

Summary of Contributions

In Chapter 4, we present a Bundle Geodesic Convolutional Neural Network
(BGCNN) where the convolutional kernels are defined on the tangent spaces
of S2. To deal with the unusual space that DWI data are defined on: R? x S?,
in this work, we first discard the Euclidean part of the data structure and
only look at one voxel at a time. In this way, the problem wears down to
classifying spherical functions. As was introduced in Section 2.3, instead of
lifting a signal f : S> — R to SO(3), we lift it, above each point z of S?, to the
the stabilizer SO,(2) of z, via a set of localized spherical kernels transported
along predetermined paths above each point where we analyze our signal. The
lifted space is isomorphic to S? x SO(2). Then convolutions are performed on
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each fiber, independently of each other. A local rotation pooling is performed
to project the information back on S?, before being fed to a fully convolu-
tional network for classification. The use of these predetermined transports
breaks SO(3)-equivariance. We compare the proposed method with a multi-
layer perceptron using the human connectome project (HCP) DWI dataset
[46], and experiments show that our method produces promising results with
a very limited number of parameters and a very small set of training data.

In Chapter 5, we provide a detailed analysis of the BGCNN proposed in
Chapter 4. In this paper, we compare the proposed method with the state-
of-the-art [15] and a multi-layer perceptron using 3 datasets: a DWI scan
conducted on a spinal cord, a synthetic dataset that was generated by us, and
the HCP DWI dataset [46]. The experiments show that our method achieves
the same level of performance as [15] while using models with far lower ca-
pacity. In addition, a model sensitivity analysis is conducted for our method,
in which a proportion of the training set is used for learning, and the test set
remains the same. It is shown from the sensitivity analysis that the perfor-
mance of the model decreases mildly with the reduction of the training set,
but it provides a good trade-off for dealing with the class imbalance in the
dataset. Furthermore, it is shown from the analysis that the potential in aid-
ing manual data annotation using our method - a clinician only has to label
a part of a scan and provide the labels to our model, the rest of the labeling
can be automated by our model.

In Chapter 6, we take a step further from BGCNN, bringing back the R?
part of the DWI data, and we build convolutions for data in R3 x S2. Again,
the HCP DWI dataset [46] is used. For DWI data, a rigid transformation of
a sample, i.e. by the action of the group SE(3), should be reflected, up to
the limitations of acquisition protocol, in the signal. The space R3 x S? is a
homogeneous space under the action of SE(3): a point in R3 x S? can be trans-
formed in any other point by a rigid transformation. Therefore, we propose
a group convolutional neural network that incorporates this action, which is
a natural action for this type of data. The SE(3)-GCNN we propose encodes
the interplay between the spatial and directional parts of the data. It shows
robustness in performance and shows resistance to data variation compared
to methods that do not encode this type of interaction.

In Chapter 7, we provide a detailed ablation study of a series of equiv-
ariant networks built on DWI data I : R3 x S> — R using the HCP DWI
dataset [46]. We showcase the importance of the full equivariance we imposed
in the network, in which the rotation group actions in both parts (R? and S?)
of the product space (R3 x S?) are fully aligned - it is an SF(3)-GCNN. We
present cases where the rotation group actions in R and S? are 1) decoupled,
2) partly aligned, 3) fully aligned, along with extreme cases where there is no
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spatial information accounted - an SO(3)-GCNN, and no spherical informa-
tion accounted - a classical CNN in which we discard the geometric structure
in voxels completely. From the comparisons, tested with both original and
synthetically transformed data, it is shown that networks that have both spa-
tial (R?) and directional (S?) information taken into account show the most
robust performance. Moreover, the experiments show, however, that models
with fully aligned rotation actions encoded in R? and S? do not perform bet-
ter than models with decoupled rotation actions. They are, though, the most
resistant to variations in data. Therefore, the SE(3) — GCNN demonstrates
great potential in real-world situations.
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Chapter 4

Bundle Geodesic
Convolutional Neural
Network (BGCNN) for DWI
Segmentation from Single
Scan Learning

RENFEI L1U, FRANCOIS LAUZE, KENNY ERLEBEN, SUNE DARKNER

4.1 Abstract

We present a tissue classifier for Magnetic Resonance Diffusion Weighted
Imaging (DWT) data trained from a single subject with a single b-value. The
classifier is based on a Riemannian Deep Learning framework for extracting
features with rotational invariance, where we extend a G-CNN learning ar-
chitecture generically on a Riemannian manifold. We validate our framework
using single-shell DWI data with a very limited amount of training data -
only 1 scan. The proposed framework mainly consists of three layers: a lifting
layer that locally represents and convolves data on tangent spaces to produce
a family of functions defined on the rotation groups of the tangent spaces,
i.e., a section of a bundle of rotational functions on the manifold; a group
convolution layer that convolves this section with rotation kernels to produce
a new section; and a projection layer using maximisation to collapse this local
data to form new manifold based functions. We present an instantiation on
the 2-dimensional sphere where the DWI orientation data is in general rep-
resented, and we use it for voxel classification. We show that this allows us
to learn a classifier for cerebrospinal fluid (CSF) - subcortical - grey matter -
white matter classification from only one scan.
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4.2. INTRODUCTION

4.2 Introduction

Very little manually annotated DWI data exists, and DWI studies are, in
general, small in sample size. This poses a challenge for machine learning
techniques that for most parts require a significant amount of training data.
However, learning from only 1 single-shell scan is possible by constructing a
G-CNN architecture that takes advantage of the geometry of the data. This
work focuses on building a neural network (NN) for data on manifolds with
some form of orientation invariance, and here we take Diffusion Weighted
Imaging as the main application. Our goal is to be able to understand spher-
ical patterns up to rotations. There are series of proposals to generalise a R?
convolutional neural network to curved spaces. In general, to define convolu-
tion, the underlying space must have a group structure or be a homogeneous
space of a group. This is not always the case for curved space. But even
when it is, this often imposes a certain type of filters. In our case, rotational
invariance is a desirable property we want in the design. We propose a general
architecture for extracting and filtering local orientation information of data
defined on a manifold. The architecture allows us to learn similar orientation
structures which can appear at different locations on the manifold. Reasonable
manifolds have local orientation structures — rotations on tangent spaces. Our
architecture lifts data to these structures and performs local filtering on them,
before collapsing them back to obtained filtered features on the manifold. This
provides both rotational invariance and flexibility in design, without having
to resort to complex embeddings in Euclidean spaces. We provide an explicit
construction of the architecture for DWI data and show very promising results
for this case including single scan learning.

4.3 Related work

The importance of the extraction of rotationally invariant features beyond
Fractional Anisotropy [4] has been recognized in series of DWI works. [§]
developed invariant polynomials of spherical harmonic (SH) expansion coef-
ficients, and discussed their application in population studies. [38] proposed
a related construction using eigenvalue decomposition of SH operators. [35]
and [52] argued their usefulness for understanding microstructures in relation
to DWL

There is though a vast growth in literature on Deep Learning (DL) for non-
flat data or more complex group actions than just translations. [32] proposed
a NN on surfaces that extracts local rotationally invariant features. A non-
rotationally invariant modification was proposed in [7]. On the other hand,
convolution generalises to more group actions than just translation, and this
has led to group-convolution neural networks for structures where these oper-
ations are supported, especially Lie groups themselves and their homogeneous
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spaces [22, 16, 47, 50, 28, 5, 1]. Global equivariance is often sought but proved
complicated or even elusive in many cases when the underlying geometry is
non-trivial [44]. An elementary construction on a general manifold is proposed
in [37] via a fixed choice of geodesic paths used to transport filters between
points on the manifold, ignoring the effects of path dependency (holonomy).
Removing this dependency can be obtained by summarising local responses
over local orientations, this is what is done in [32]. To explicitly deal with
holonomy, [42] proposed a convolution construction on manifolds based on
stochastic processes via the frame bundle, but it is at this point still very
theoretical.

A few works have applied DL to DWI. [24] built multi-layer perceptrons in
g-space for kurtosis and NODDI mappings. Because of the spherical structure
of the DWI data and the homogeneous structure of the sphere, [9] proposed
an rotation equivariant construction inspired by [15] for disease classification.
[34] propose a sixth-D, 3D space and g-space NNs with roto-translation /
rotation equivalence properties.

In this work, we are interested in rotationally invariant features, so we
take a path closer to [37, 32], but we add an extra local group convolution
layer before summarising the data and eliminating path dependency. The
proposed construction thus applies to oriented Riemannian manifolds, and no
other structure (e.g. homogeneous or symmetric space) is used.

4.3.1 Organisation

We introduce the construction in the next section, first in a general setting,
then in our case of interest, the sphere S?. We present experiments and results
in section Section 4.5. Discussion and conclusion are presented in section
Section 4.6.

4.4 Bundle Geodesic Convolutional Neural
Network

Bekkers et al. [5] used the fact that SF(2) acts on R? to lift 2D (vector-values)
images to R? x S! via correlation kernels. This is not in general the case when
R? is replaced by an oriented Riemannian manifold M as there is no roto-
translation group defined on a general manifold. An alternative construction
is however possible by combining [5] and [32], to obtain a 3-component layer
architecture: i) the lifting layer, ii) the group correlation layer, and
iii) the projection layer. In practical applications, one or more of these
multilayers can be used and a fully connected layer is built upon the last one.
In this section, we focus only on the Riemannian part.

We refer the readers to [19] for the Riemannian geometric constructions.
In the sequel, a base point x( is chosen on M. A piecewise smooth path -y
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joining &g and © € M is a continuous curve that may fail to be smooth at
a finite number of points. With such a curve, there is a parallel transport P,
between T, M and T, M. This is an orientation preserving isometry between
tangent spaces. A tangent kernel at x¢ is a function k : T, M — RN, We
assume it has a “small support”. A rotational kernel at xy is a function
K : SO(xy) — RM | where, SO(z) denotes the rotation group of T M.

4.4.1 Layer definitions

As it is usually the case that correlation replaces convolution in convolutional
neural networks (CNN). The first two layers will be defined via correlation.
Lifting layer. The correlation fx,x of f € L*(M,RY) is defined as the
function on SO(x)

N
*o K = Ki _l_lvixmv v 4.
f3(S) Z/M (P1510) fi(Expg(v)) d (4.4.1)

We assume that x o P L the support of &, is sufficiently small so that the
exponential map is injective. For any other path § between xy and =z, it is
easy to show that there exists a rotation R € SO(TzM) that only depends
on P, and Ps with f¥sk(S) = f*,k(RS). For any point « and a path 7,
between xp and @, this filters/lifts f to functions Fy : SO(xz) — R. Using
an input ¢V . M — RNe-1 and N; xo-kernels k0 = (ﬁge),...,n%D ,

my) RNe-1_valued at layer ¢ — 1,
Vee M, FP= (f<f*1>;7m;<;1, - ,f“*”;%m) (4.4.2)

The output F® is not a function defined on M, but a section, in general non
smooth, of the function bundle L* (SO(M),RNt) = L, L?(SO(z), RNe).
Group correlation layer. if F' is a function SO(z) — RM, we define F *y K
as the classical group correlation

M
Fx, K(S) = Z/SO( )Fi(U)Ki(PglsflUPV)dU. (4.4.3)
=1 T

This construction provides a new family of functions Fy, : SO(z) — R. Dif-
fering from [5], translations are in general not defined in M and rotations
are only local. If F, = (fﬁwm)i]\il and F5 = (fixswi)X, then it can be
easily shown using the bi-invariance of the Haar measure on SO(n) that
©(F5) x5 K(S) = ¢(Fy) *y K(SR) where R depends only on paths v and
0, and ¢ is any real function (typically a rectified linear unit (ReLU)). With
input F(-D ¢ L2 (SO(M),]RM*) with Ny_; channels at layer ¢ — 1 and
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xg-rotation kernels KO = (Kfz), ... ,K%j), each with INy_q1 channels, one
obtains F(©) ¢ L2(SO(M),RN¢) as

FO — (F(f—l) sy KO PO K](\Q) (4.4.4)

Projection layer. A family F(‘~1) ¢ 12 (SO(M%RN(‘-’*U) is projected to a
function f: M — RN ag

FO ) = S FEDS), i=1...N_, (4.4.5)
This removes the path dependency thanks to the change of path property
which was described above. See Figure 4.1a for illustration.
Biases are added per kernel. Nonlinear transformations of ReLLU type are
applied after each of these layers. Note that without them, a lifting followed
by group correlation would actually factor in a new lifting transformation.

4.4.2 Discretisation and implementation in the case M = S?

In this work, the manifold of interest is S?. Spherical functions f : S> — RY
are typically given at a number of points and interpolated using a Watson ker-
nel [26], which also serves as our choice. We use a very simple discretisation
of S? via the vertices of a regular icosahedron. Tangent kernels are defined
over these vertices, sampled along with the rays of a polar coordinate system
respecting the vertices of the icosahedron. This is illustrated in Figure 4.1b.

4.5 Experiments & Results

We evaluate our method on DWI data from the human connectome project
[46]. We train a network using our framework on individual voxels containing
signals on S%. Our goal is a voxel-wise classification of 4 regions of the brain -
cerebrospinal fluid (CSF), subcortical, white matter, and grey matter regions.

We used the pre-processed DWT data [43] and normalised each DWT scan
for the b-1000, b-2000, and b-3000 images respectively with the voxel-wise
average of the by. The labels provided with the T1-image were transformed
to the DWI using nearest neighbour interpolation (Figure 4.2). Since the 4
brain regions we are classifying have imbalanced numbers of voxels, we use
Focal Loss [30] to counter the class imbalance of the dataset.

4.5.1 Experimental setup

After getting the responses from our proposed layers, we feed them into a small
feedforward neural network to perform our classification task. To validate our
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Figure 4.1: In Figure 4.1a, the top row shows the lifting kernel x(?) applied
at a point on the manifold, resulting in an image F?) defined on SO(2) as
in Equation (4.4.1). The function is first mapped onto the tangent space of
the point of interest via the exponential map, and 2 is convolved with the
mapped function to get F2. In the figure we rotate the tangent space instead
of the kernel as Equation (4.4.1) for convenience in illustration, but they are
equivalent constructions. We get rotationally invariant responses from the
projection layer. The bottom row shows the same process but with a different
kernel parallel transport, illustrating that the responses of the convolutional
layers are simply rotated. In Figure 4.1b, the bottom row shows S? with a
regular icosahedric tessellation and a tangent plane at one of the vertices and
5 sampled directions. The disk represents the kernel support. The middle row
shows the actual discrete kernel used, with the 27 /5 rotations and the top row
is represents the lifted function on the discrete rotation group.

method, we compare the proposed framework with a baseline setup - feed-
ing the smoothed signal values of each voxel directly into a feedforward neural
network without our 3-layer convolution. In addition, we design different layer
setups to evaluate both describability of our kernels and the nonlinearity of
the task.

Layer setup We use 2 kinds of feedforward neural network structures in
both the proposed method and the baseline experiments - single layer percep-
tron and multi layer perceptron. For the proposed method, connecting the re-
sponses from our 3-layer structure to a single layer perceptron without hidden
layers tests the describability of our kernels while connecting the responses to
a multi layer perceptron explores the full capacity of the method for the task.
For baseline, feeding the smoothed signals directly to a single layer perceptron
simply showcases the nonlinearity of the task, and the multi layer perceptron
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Experiment

Reduced model Full model

(90,4), DOF: 364
(60,4), DOF: 286

Layer setup
Baseline
Proposed method

(90,50,30,4), DOF: 6364
(60,30,4), DOF: 2056

Table 4.1: Illustration of the layer setups and degrees of freedom for our
experiments.

setup, with nonlinearity added to the model, provides a generic comparison to
the proposed method as a nonlinear model without dealing with the geometric
encoding of the data. The network structures for both experiment setups are
given in Table 4.1. For full models, each linear layer is followed by a ReLU ac-
tivation and batch normalisation. For all models, the output at the last layer is
followed by a softmax function to generate a probability map for the 4 classes.

In order to keep the model sim-
ple, we use the icosahedron structure
as kernel locations with relatively low
orientation resolution of the kernels
- 5 rays per kernel, and 2 sample
points per ray. The radius of the ker-
nels should guarantee that the kernel
coverage of 2 adjacent icosahedron
vertices will overlap with each other,
therefore we choose 0.6 as our radius.

Figure 4.2: (a)-(c): original diffusion
data, the ground-truth segmentation,
and the processed ground-truth that

We use 1 kernel for the lifting layer,
and 5 kernels for the group convolu-
tion layer to select 5 most essential
structures of the signals.

4.5.2 Results

we are going to learn from. The label
colors for CSF, subcortical, white mat-
ter and grey matter are red, blue, white
and grey respectively. The figures are
only for illustrations of the data, they
are not necessarily from the same slice

of the same scan.
We use 1 scan for training, 1 scan

for validation, and 50 scans for testing, all of which are with single-shell
setup. We have observed that the overall validation loss and accuracy for all
experiments converge after a few epochs. However, for the proposed method,
for inner-class accuracies of difficult minority classes such as the subcortical
region, the accuracy rises gradually towards convergence while not affecting
the overall accuracy at all. Therefore, we use the convergence of subcortical
region classification accuracy as a stopping criterion, which occurred after
around 30 epochs. We train each network presented in Table 4.1 for 25 epochs
with batch size 100 on an Ubuntu 20.04.2 LTS machine with an Intel Xeon(R)
Silver 4210 CPU @ 2.20GHz x 40 processor and a GEFORCE RTX 3090
graphics card. Our framework is implemented in Python 3.6 and Pytorch 1.7.
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For the proposed method, it takes around 4 min for an epoch and 1261MiB
GPU memories for both experiment setups. For baseline experiments, it takes
around 2 min and 3 min for an epoch, and 1261Mib and 1279Mib for the
reduced and full model experiments respectively. We use k = 10 for the
interpolation using Watson kernel, and v = 2, = (0.15,0.15,0.35,0.35) for
focal loss, where the a weights correspond to CSF, subcortical regions, white
matter, and grey matter respectively. Overall and inner-class accuracies and
Dice scores are shown in Table 4.2.

Results (Proposed/Baseline)
Reduced model Full model
Layer setup
b=1000
Overall accuracy 0.78/0.598 0.798/0.533
CSF accuracy, Dice 0.782/0.717, 0.782/0.768 | 0.769/0.827, 0.783/0.728
Subcortical accuracy, Dice 0.18/0.014, 0.21/0.026 0.353/0.689, 0.348/0.171
White matter accuracy, Dice 0.706/0.639, 0.777/0.601 | 0.767/0.632, 0.805/0.709
Grey matter accuracy, Dice 0.914/0.628, 0.833/0.627 | 0.877/0.419, 0.844/0.573
b=2000
Overall accuracy 0.791/0.71 0.779/0.562
CSF accuracy, Dice 0.706/0.68, 0.725/0.709 0.676/0.767, 0.699/0.634
Subcortical accuracy, Dice 0.027/0.034, 0.048/0.052 | 0.433/0.592, 0.353/0.163
White matter accuracy, Dice 0.778/0.628, 0.802/0.684 | 0.734/0.779, 0.791/0.796
Grey matter accuracy, Dice 0.895/0.861, 0.83/0.773 | 0.862/0.364, 0.831/0.518
b=3000
Overall accuracy 0.78/0.775 0.774/0.698
CSF accuracy, Dice 0.627/0.46, 0.62/0.554 0.314/0.262, 0.414/0.301
Subcortical accuracy, Dice 0.271/0.002, 0.28/0.004 0.363/0.407, 0.33/0.21
White matter accuracy, Dice 0.727/0.779, 0.791/0.779 | 0.717/0.822, 0.787/0.805
Grey matter accuracy, Dice 0.891/0.873, 0.831/0.822 | 0.887/0.638, 0.827/0.73

Table 4.2: Results of both baseline and proposed method.

Firstly, across different b values, we observe that with increased b, over all
experiments, it becomes harder to recognise CSF. Secondly, across different
experiment setups, we see from the single layer perceptron baseline experiment
that the model performance improves with increasing b, yet the most difficult
region to recognise - subcortical - was almost ignored by the model for all b.
Higher b provides more distinguishable signals for the majority classes, which
contributes to the overall accuracy. Counterintuitively, the addition of nonlin-
earity to the baseline experiment - using multi layer perceptron - even worsens
the performance. Adding nonlinearity does make the recognition of subcorti-
cal region more robust, but it is at a high cost of the misclassification of other
classes, which is also why the Dice score for subcortical is still low while the
accuracy is high for this experiment across all b values (see Figure 4.3b). On
the other hand, our proposed method shows robust performance generalising
to the test set with far fewer degrees of freedom, and is stable across different
b. Additionally, the full model of the proposed method - connecting our convo-
lution layers to a multi layer perceptron - does a better job in recognising the

26



4.6. DISCUSSION AND CONCLUSION

subcortical region than its reduced model counterpart without causing much
misclassification of other classes as in the baseline experiments. This shows
that recognising a difficult class requires geometric structure as well as higher
degrees of freedom of the model. See Figure 4.3 for distributions of accuracies
and Dice scores of the 4 classes across 50 test scans. We show statistics in
Figure 4.3 for b-1000 scans, which are the most common single-shell data.

Another fact that is worth mentioning is that for 5-3000, the validation
accuracy for CSF fluctuates drastically for all experiments except for the re-
duced baseline model. This, in our opinion, is due to the fact that with much
higher noise in the data, it becomes harder to recognise the diffusion in CSF
in general, and stepping into a local minimum in the nonlinear models that
disregards CSF will not cost much the overall loss since it is a minority class.

Moreover, we have also trained both the proposed method and the baseline
with 10 scans for -1000 to test how much the size of the dataset is influencing
the results. It has mildly improved the classification accuracies of our method
to around 0.8 and 0.81 for the reduced and full model respectively but shows
no significant improvement for the baseline experiments. Therefore, we can
conclude that our method can capture the most significant features with a
very limited amount of data while the standard neural networks suffer from
capturing geometric features even when the dataset is significantly increased.

See Figure 4.4 for examples of predictions from both proposed and baseline
models, with b-1000.

4.6 Discussion and Conclusion

The proposed method is a simple extension of CNN to Riemannian Manifolds
which learns rotationally invariant features. The Bundle G-CNN capability
has been demonstrated on a simple non-flat manifold, S?, and has been used to
build a voxel-wise classification of DWI data to recognise 4 brain regions, with
an accuracy of 79.8% for single-shell data with the most common parameter
setup b-1000. With a single-shell setup, our method, while taking the sub-
cortical region into account, compares well with existing methods that have
multi-shell input [51, 12], which do not classify the subcortical region. We
also achieved similar or better results compared to image registration based
methods [27]. Our method allows us to learn very general features from merely
a single-shell scan, and the results show very robust generalisation across 50
scans in the test set. This work has promising applications in understanding
patterns of pathology, structure, and connectivity. It is also desirable in the
future to test our model trained with the HCP dataset on scans with a differ-
ent number of diffusion gradients. We expect improvements by adding spatial
correlations through a classical convolutional layer, and the correlation of our
model to fractional anisotropy (FA) and NODDI is worth investigating as
well. Additionally, we have so far only tested it on S?, however, an extension
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Figure 4.3: Statistics of accuracy and Dice score across individual scans of the
4 regions in the test set for b-1000.
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(a) Prediction from proposed method (b) Prediction from baseline experiment
with full model. with full model.

Figure 4.4: Examples of predictions of the 4 regions in the test set. Predic-
tions in Figure 4.4a are from the full model of the proposed method, while
predictions of the same slices in Figure 4.4b are from the full model of the
baseline experiment. The label colors for CSF, subcortical, white matter and
grey matter are red, blue, white and grey respectively.

to other surfaces appears feasible, though the choice of a discrete representa-
tion is important. An extension to dimension 3 will require efficient SO(3)
convolutions, using, for instance, spectral theory for compact Lie groups.
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Chapter 5

Bundle Geodesic
Convolutional Neural
Network for DWI
Segmentation

RENFEI Liu, FRANGOIS LAUZE, KENNY ERLEBEN, RUNE W. BERG,
SUNE DARKNER

5.1 Abstract

Purpose Applying machine learning techniques to Magnetic Resonance Diffusion-
Weighted Imaging (DWT) data is challenging due to the size of individual data
samples and the lack of labeled data. It possible though to learn general pat-
terns from a very limited amount of training data if we take advantage of the
geometry of the DWI data. Therefore, we present a tissue classifier based on
a Riemannian Deep Learning framework for single-shell DWI data.
Approach The framework consists of three layers: a lifting layer that lo-
cally represents and convolves data on tangent spaces to produce a family of
functions defined on the rotation groups of the tangent spaces, i.e., a (not
necessarily continuous) function on a bundle of rotational functions on the
manifold; a group convolution layer that convolves this function with rotation
kernels to produce a new family of local functions over each of the rotation
groups; and a projection layer using maximization to collapse this local data
to form new manifold based functions.

Results Experiments show that our method achieves the performance of the
same level as state-of-the-art while using way fewer parameters in the model
(less than 10%). Meanwhile, we conducted a model sensitivity analysis for our
method. We ran experiments using a proportion (69.2%, 53.3%, and 29.4%)
of the original training set and analyzed how much data the model needs for
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the task. Results show that this does reduce the overall classification accuracy
mildly, but it also boosts the accuracy for minority classes.

Conclusions This work extended Convolutional Neural Networks (CNN) to
Riemannian manifolds, and it shows the potential in understanding structural
patterns in the brain, as well as in aiding manual data annotation.

5.2 Introduction

Studies for Magnetic Resonance Diffusion-Weighted Imaging (DWT) data have
small sample sizes in general due to the lack of manually annotated data. For
machine learning techniques, this poses a major challenge. However, learn-
ing general patterns from a limited amount of data while producing promising
results is possible by conducting a special Geodesic Convolutional Neural Net-
work (G-CNN) architecture that takes advantage of the geometry of the data.
In general, to define convolution, the underlying space must have a group
structure or be a homogeneous space of a group. This is not the case for
most curved spaces. But even when it is, like the spheres on which local DWI
signals are defined, this often imposes a certain type of filter. Instead, we
present a framework that focuses on building a neural network (NN) for data
on Riemannian manifolds with some simple form of orientation invariance,
and we take DWI as the main application. There are a series of proposals
trying to generalize a R? convolutional neural network to curved spaces, yet
in our case, rotational invariance is a desirable property we want in the design
and our goal is to be able to understand spherical patterns up to rotations.
We propose a general architecture for extracting and filtering local orienta-
tion information of data defined on a manifold that allows us to learn similar
orientation structures which can appear at different locations on the mani-
fold. Reasonable manifolds have local orientation structures — rotations on
tangent spaces. Our architecture lifts data to these structures and performs
local filtering on them, after which it collapses them back to obtain filtered
features on the manifold. This provides both rotational invariance and flexi-
bility in design, without having to resort to complex embeddings in Euclidean
spaces. We provide an explicit construction of the architecture for DWI data
and show very promising results for this case including learning and general-
izing patterns from only one scan. This work is an extension of our previous
publication [31].

5.3 Related work

The importance of the extraction of rotationally invariant features beyond
Fractional Anisotropy [4] has been recognized in series of DWI works. [§]
developed invariant polynomials of spherical harmonic (SH) expansion coef-
ficients, and discussed their application in population studies. [38] proposed
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a related construction using eigenvalue decomposition of SH operators. [35]
and [52] argued their usefulness for understanding microstructures in relation
to DWL

There is though a vast growth in literature on Deep Learning (DL) for non-
flat data or more complex group actions than just translations. [32] proposed
a NN on surfaces that extracts local rotationally invariant features. A non-
rotationally invariant modification was proposed in [7]. On the other hand,
convolution generalises to more group actions than just translation, and this
has led to group-convolution neural networks for structures where these oper-
ations are supported, especially Lie groups themselves and their homogeneous
spaces [22, 16, 47, 50, 28, 5, 1]. Global equivariance is often sought but proved
complicated or even elusive in many cases when the underlying geometry is
non-trivial [44]. An elementary construction on a general manifold is proposed
in [37] via a fixed choice of geodesic paths used to transport filters between
points on the manifold, ignoring the effects of path dependency (holonomy).
Removing this dependency can be obtained by summarising local responses
over local orientations, this is what is done in [32]. To explicitly deal with
holonomy, [42] proposed a convolution construction on manifolds based on
stochastic processes via the frame bundle, but it is at this point still very
theoretical.

A few works have applied DL to DWTI. [24] built multi-layer perceptrons in
g-space for kurtosis and NODDI mappings. Because of the spherical structure
of the DWI data and the homogeneous structure of the sphere, [9] proposed
an rotation equivariant construction inspired by [15] for disease classification.
[34] propose a sixth-D, 3D space and g-space NNs with roto-translation /
rotation equivalence properties.

In this work, we are interested in rotationally invariant features, so we
take a path closer to [37, 32], but we add an extra local group convolution
layer before summarising the data and eliminating path dependency. The
proposed construction thus applies to oriented Riemannian manifolds, and no
other structure (e.g. homogeneous or symmetric space) is used.

5.4 Method

All along this section our reference on Riemannian Geometry can be found in
the textbook Riemannian Geometry [19]. CNNs are generally described and
implemented in terms of correlation rather than convolution, and we follow
this convention as well in this section. Bekkers et al. [5] used the fact that
SE(2) acts on R? to lift 2D (vector-values) images to R? x S! via correlation
kernels. This is not in general the case when R? is replaced by a Riemannian
manifold, where there is no obvious way to define these operations. One can
however overcome this situation via a somewhat more complex construction.
Therefore, we assume in the sequel that we are given a complete orientable
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Riemannian manifold of dimension n, this will be the sphere S? in our case.
We assume that the injectivity radius i(M) of M is strictly positive. As
usual, the tangent space at a point x € M is Txy M. An image is a function
f=(f...,fn.) € L*(M,RN¢), where N, is the number of channels.

Operations will be performed via lifting the function to tangent spaces and
kernels are defined on tangent spaces. The exponential map Exp, : TxM —
M allows us to lift f to TxM by setting fx = (fix)i = f o Expy.

5.4.1 Layer definitions

Lifting Layer. We first define transportable filters on tangent spaces to
replace CNN’s kernels. These filters will also be called kernels. To start with,
a “pointed kernel” will be a function k = (ky,...,ky,) € L*(Tyx,M,RNe), at
a “base point xo”. We assume that supp(k) € Bx,(0,7), 0 < r < i(M), the
ball of center 0 and radius r in Ty, M. A piece-wise smooth path v : [0,1] —
M, joining xg to x defines, via the Levi-Civita connection of M, a parallel
transport Py : TyxyM — Tx M, and this is an isometry. We set ky = ko P L
In general, another smooth path ¢ : [0,1] — M joining x¢ and x defines
another parallel transport Ps : Tx,M — TxM and P, o Py Yis a rotation R
of Ty M, i.e., an element of SO(TxM). It follows that ks = k-, o R. The v-lift
of f by k is the the function

Ne
* = Kiy ) ix(v)dv, x . 4.
(k% 1) (5) Z/TM S5 fix(v)dv, S € SOTM).  (5.41)

Note that because supp(k) € Bx, (0, ), this integral is defined on Bx(0,r) and
Expy is a diffeormorphism from this domain to the geodesic ball B(x,r) C M.

Now we choose, for each x in M, a smooth path = that joins xg and x. As
M is complete, we can, for instance, choose a family I' = (7% )x of minimizing
geodesics. The mapping

Fro F=(kky fler, F(x):R€ESOTM) > (kxny f)(R) €R (5.4.2)

lifts a M-image to the bundle of rotations of M (we refer to Gallier et al.
[21] chap. 9 for a definition of bundles in differential geometry), denoted by
SO(TM) in the sequel (SO(TM)x = SO(TxM)) as in Figure 5.1b. This
lifting depends on the choice of the base point xy and the choice of paths from
xp to any point x of M. The lifting layer at level (¢ — 1) takes a function
f: M — RNe-1 and uses N; kernels ('), ... kNe®) to produce

FO = (k-Wf) sy FED L ENEO f(H)) : (5.4.3)
Ix

Group Correlation Layer. The object F defined in (5.4.2) is a function
on the total space of the bundle (SO(TM)) (Gallier et al. [21] chap. 9),
supposed square-integrable (F € £L2(SO(TM))).
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The situation is more complex than the one described in Bekkers et al.
[5], as there is actually no reason that one can find a “continuous family” of
paths xg ~ X, Vx € M. An important example to us: if M is the sphere S?,
one can take v to be a minimizing geodesic between x¢ and s. It is unique,
except when x = —xg, where there are infinitely many of them.

Let K be an element of L?(Tx,M). The parallel transport of K along the
path v is K,(R) = K(PW_IRPV), as Pﬂf_lRP7 € SO(Tx,M). The correlation
F(x) x K, is the group-theoretic one:

F(x) K. (S) = / FX)(RK,(SR)AR  (5.4.4)

SO(TxM)
with dR the bi-invariant Haar measure on SO(TxM). In general, we consider
objects that are a bit more complicated. Instead of F' being a section of
L2(SO(TM), it is taken as a section of L2(SO(TM))™ meaning we have N,
channels, F(x) = (F(x)1,..., F(x)n,) € L? (SO(TxM),RM), and K also has
N; channels, K = (K7,...,Ky,) € L*(SO(Tx,),R™) and we replace (5.4.4)
by

N,
X) % = X); iYx -1 S
F(x) « K, (S) ; /S g ORI K (57 R (5.4.5)

The group correlation layer at level £ takes a section F' of L2(SO(TM))M,
K(€+1) K(€+1)
1 .

, N ) to produce

and uses Nyiq kernels (

FED = (F“) ()« KD FO(x) % K}fﬂ%)xw

Projection Layer. The base point and path dependency in the lifting and
group correlation layer definitions appear problematic. We can, however, re-
project the results from these layers to standard functions on M, eliminating
this dependency. The only condition is that the same family of paths is used
both in the lifting and group correlation layers to parallel transport the kernels.

Indeed, from what precedes, two «- and ¢-lifts, though in general distinct,
obey the simple relation

(k*y f)(S) = (k*s f) (SR), R=P,0P;" (5.4.6)
A direct computation shows that Ks(S) = K,(R™'SR):
((rs 1)+ K5) (S) = [ (s ) (T)Ks(S7'T) T
SO(TxM)
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where we used the fact that the normalized Haar measure on SO(TxM) is
bi-invariant, thus in particular right-invariant.
Thus the following projection layer is well-defined and removes the base
point and path dependency:
420\ _ (£+1)
X) = max F x, R). 5.4.7
f ( ) ReSO(Tx M) ( ) ( )
Biases are added per kernel. Nonlinear transformations of ReLU type are
applied after each of these layers. Note that without them, a lifting followed
by group correlation would actually factor in a new lifting transformation.

Lifting layer Group correlation layer  Projection layer

=
f \’.H @®® O. ) .. 000000 Q

I_ =

lmaximum e e

o . =
f*)9=@®®@@ﬂ . cescesso N

Figure 5.1: In Figure 5.1a, the top row shows the lifting kernel 2 applied
at a point on the manifold, resulting in an image F®) defined on SO(2) as
in Equation (5.4.2). The function is first mapped onto the tangent space
of the point of interest via the exponential map, and x® is convolved with
the mapped function to get F2. Group correlation is then performed on the
resulting image, followed by the projection layer, from which we get rotation-
ally invariant responses. The bottom row shows the same process but with a
different kernel parallel transport, illustrating that the responses of the con-
volutional layers are simply rotated. In Figure 5.1b, the bottom row shows S?
with a regular icosahedric tessellation and a tangent plane at one of the ver-
tices and 5 sampled directions. The disk represents the kernel support. The
middle row shows the actual discrete kernel used, with the 27/5 rotations and
the top row is represents the lifted function on the discrete rotation group.

5.4.2 Discretization and implementation in the case M = S?

In this work, the manifold of interest is S?. Spherical functions f : S2 — RY
are typically given at a number of points and interpolated using a Watson ker-
nel [26], which also serves as our choice. We use a very simple discretization
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of S? via the vertices of a regular icosahedron. Tangent kernels are defined
over these vertices, sampled along with the rays of a polar coordinate system
respecting the vertices of the icosahedron. This is illustrated in Figure 5.1b.

5.5 Experiments and Results

We evaluate our method on 3 datasets: a DWI scan conducted on a spinal
cord that had been dissected out post mortem from a deceased human female,
a synthetic dataset that we generated, and the DWI brain scan dataset from
the human connectome project [46].

5.5.0.1 Experimental setup

After getting the responses from our proposed layers, we feed them into a small
feedforward neural network - a single layer perceptron - to perform our clas-
sification task. To validate our method, we compare the proposed framework
with 2 experimental setups: a) a baseline experiment that feeds the smoothed
signal values of each voxel directly into a feedforward neural network without
our 3-layer convolution; b) S2CNN [15] which performs convolution on spheres
by transforming the signals onto the spectral domain. For all the experiments,
we use the smallest model possible for both our method and S2CNN [15].

5.5.1 Spinal Scan
5.5.1.1 Data Description

The study was conducted on a deceased individual who had bequeathed her
body to science and education at the Department of Cellular and Molecular
Medicine (ICMM) of the University of Copenhagen according to Danish leg-
islation (Health Law No. 546, Section 188). The study was approved by the
head of the Body Donation Program at ICMM. Part of the data used here
has been published in a previous report [25]. Briefly, the spinal cord was dis-
sected out from a 91-year old Caucasian female without known diseases post
mortem within 24h after her death. The spinal cord was fixed by immersion
into paraformaldehyde (4%), where it was kept for 2 weeks, after which it was
transferred to and stored in phosphate-buffered saline until the MRI scanning
was conducted. The spinal cord was placed in a plexiglas tube and immersed
in fluorinert (FC-40, Sigma-Aldrich) to eliminate any background signal. The
scanning was accomplished using a 9.4T preclinical system (BioSpec 94/30;
Bruker Biospin, Ettlingen, Germany) equipped with a 1.5 T/m gradient coil.
The scanning was done in 29 sections of length 1.6 cm, thus covering the whole
length of the spinal cord of approximately 40 cm. Between each section scan,
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the tissue was advanced 1.4 cm by a custom-built stepping motor system, re-
sulting in a 0.2-cm section overlap. For each section, a T2-weighted 2D RARE
structural scan was performed. Scan parameters were repetition time (TR) =
7 s, echo time (TE) = 30 ms, 20 averages, field of view 1.92-1.92 - 1.6 cm?,
and a matrix size of 384 - 384 - 80, resulting in 50 - 50 um? in-plane resolution
and a slice thickness of 200 um, resulting in a voxel size of 500000 um? . The
scan time for the structural scan was 30h.

We take individual voxels containing signals defined on S? as the input
of the networks and achieve segmentation via voxel classification. Since the
numbers of samples of white matter and grey matter are not balanced, we use
Focal Loss[30] to counter the imbalance. We used 14 slices from the longest
dimension to test and the rest of the scan to train.

Architecture and Hyperparameters For our method, we use the icosa-
hedron structure as kernel locations, and a lift — ReLU — conv — ReLU —
projection — F'C' — softmax architecture for the network. We use k = 1,5,2
channels for lift, conv, and F'C, 0.6 as kernel radius, and 5 rays, 2 samples
per ray as kernel resolution. For S2CNN [15], we use the simple architec-
ture they provided S%conv — ReLU — SO(3)conv — ReLU — FC — softmaz,
bandwidth b = 30,10,6 and & = 4,8,2 channels. For baseline, we use
FC(80) — ReLU — FC(50) — ReLU — FC(30) — ReLU — F(C(2) as a multi
layer perceptron alternative. We use £ = 10 for the Watson kernel, 0.001
as learning rate, and trained each model for 20 epochs. We use v = 2, and
a = (0.25,0.75) for white and grey matter respectively for the Focal Loss[30].

5.5.1.2 Results

We can see from Table 5.1 that all methods perform quite well for this simple
task. Showcase of prediction from our model and the ground-truth can be
found in Figure 5.2. We observe that classifying white matter and grey matter
is not a challenging task considering the baseline model works well for this
task. This is because there is already a significant difference between white
matter and grey matter in terms of the scales of the intensity values of the two
tissues. However, our method and S2CNN[15] have a better balance between
the accuracies of the two classes compared to the baseline, which shows the
importance of geometric information for recognizing minority classes. To test
the rotational invariance and the independence to scaling of the signals of our
method, we experiment further on the synthetic dataset and the HCP dataset
[46].
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Results eriment (#Param) | O method (164) | Baseline (5802) | 820NN (6270)
b=4000
Overall Acc 0.902 0.897 0.887
White matter Acc 0.905 0.911 0.891
Grey matter Acc 0.883 0.833 0.872

Table 5.1: Results from the spinal scan. The numbers in the brackets are
numbers of parameters for each model. We see that overall, all methods
achieve similar performance, yet convolution involved methods - ours and
S2CNN[15] - perform better in recognizing the minority class - grey matter.

Figure 5.2: Examples of ground-truth and predictions from the test data.
From left to right are the same slices from the ground-truth, prediction from
our method, prediction from S2CNN, and prediction from baseline.

5.5.2 Synthetic Dataset
5.5.2.1 Dataset Generation

To validate the robustness of our method against rotations, we create and
classify spherical functions that are defined on a sphere. We first uniformly
sample 90 directions on a hemisphere, and spherical functions of different
classes are defined in the same 90 directions. For each class, we sample 90
values from a Gaussian distribution as function values of the 90 directions.
Thus the only difference among classes is the function values of the given 90
directions, and we sample the function values for each class from the same
Gaussian distribution to keep the scales of the values identical. In addition,
we rotate the sphere of each class and use these rotated spherical functions
as elements of each class. Therefore, each class of the dataset contains just
rotations of each spherical function. As explained above, we interpolate the
function values at the icosahedron vertices using a Watson kernel[26]. For
the baseline, we interpolate the function values at the same 90 directions that
were sampled on the sphere using the same scheme.

We generate synthetic datasets of different numbers (n € 2,4, 6) of classes
to test the robustness of the model, given different difficulties of the task. For
each class, we generate 50 samples for the training set and 1000 samples for
the test set.

Architecture and Hyperparameters As in the experiment above, we use
a lift — ReLU — conv — ReLU — projection — F'C — softmax architecture for
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the network. We use k = 1,5, n channels for lift, conv and FC layers, 0.6 as
kernel radius, and 5 rays, 2 samples per ray as kernel resolution. For S2CNN
[15], we use S?conv — ReLU — SO(3)conv — ReLU — FC — softmax as in
the experiments above, bandwidth b = 30,10,6 and k = 3,6, n channels. For
baseline, we use FC'(90) — ReLU — FC(50) — ReLU — FC(30) — ReLU — FC(n)
as the multi layer perceptron layer structure. We use x = 5 for the Watson
kernel, 0.005 as learning rate, and trained each model for 200 epochs.

5.5.2.2 Results

See Table 5.2 for comparison of results from different models. We can see
that the baseline model is barely learning anything from the data, while our
method and S2CNN [15] are capturing the differences from different classes
in the data. Moreover, our method achieves more robust performance while
having fewer degrees of freedom.

# Classes . Ours Baseline S2CNN
Experiment
2 1.0 (164) 0.515 (6302) | 0.985 (3551)
4 0.987 (286) | 0.256 (6364) | 0.966 (3565)
6 0.984 (408) | 0.168 (6426) | 0.972 (3579)

Table 5.2: Test accuracy for models evaluated on the generated datasets.
Numbers in the brackets are the numbers of parameters for each model. The
baseline model is producing prediction accuracies that are the same level as
random guessing, while ours and S2CNN[15] can recognize the rotations of
the same spherical functions quite accurately, and our method achieves higher
accuracy using fewer parameters than S2CNN/[15]

5.5.3 Human Connectome Brain Scans

As in the spinal data experiments, we train networks on individual voxels
containing signals on S?. Our goal is a voxel-wise classification of 4 regions
of the brain - cerebrospinal fluid (CSF), subcortical, white matter, and grey
matter regions.

We used the pre-processed DWI data [43] and normalized each DWI scan
for the b5-1000, b-2000, and b-3000 images respectively with the voxel-wise
average of the by.

The labels provided with the T1-image were transformed to the DWI us-
ing nearest neighbor interpolation (Figure 5.3). Since the 4 brain regions we
are classifying have imbalanced numbers of voxels, we use Focal Loss [30] to
counter the class imbalance of the dataset just as in the spine data experi-
ments.
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Architecture and Hyperpa-
rameters As in experiments above,
we use the icosahedron structure as
locations for kernels for our method,
and lift — ReLU — conv — ReLU —
projection — F'C' — softmax as net-
work architecture with £ = 1,5,4
channels, r = 0.6 as radius, and 5
rays with 2 samples per ray as kernel
resolution. For S2CNN[15], we again
use the same architecture provided
by the authors S%conv — ReLU —
SO(3)conv— ReLU —FC —softmazx,
bandwidth b = 30,10,6 and k& =

Figure 5.3: (a)-(c): original diffusion
data, the ground-truth segmentation,
and the processed ground-truth label
image. The label colors for CSF, sub-
cortical, white matter, and grey matter
are red, blue, white, and grey respec-
tively. The figures are only for illustra-
tions of the data, they are not neces-

3,6,4 channels. For baseline, we
again use FC(90)—ReLU—FC(50)—
ReLU — FC(30) — ReLU — FC(4) architecture. We use k = 10 for the Wat-
son kernel, and 0.001 as learning rate for all models. We use 7 = 2 and
a = (0.35,0.35,0.15,0.15) for the Focal Loss[30] for the 4 regions respectively.
Additionally, we have observed that the most difficult class to identify is the
subcortical region, and both our method and S2CNN [15] learn to recognize
it gradually. Therefore, we stop the training for all models when the subcor-
tical region validation accuracy stops rising. Thus we train all models for 50
epochs.

sarily from the same scan.

5.5.3.1 Results

We used 1 scan for training, 1 scan for validation, and 50 scans for test-
ing. Comparison of experimental results of different methods can be found
in Table 5.3. We can see that the baseline experiment does not generalize
well compared to our method and S2CNN [15]. Across different b values, we
observe that with increased b, over all experiments, it becomes harder to rec-
ognize CSF. Higher b does not reduce the accuracies for the majority classes
for our method and S2CNN[15], thus the overall accuracies from these meth-
ods do not drop much with increased b. On the other hand, while comparing
to S2CNN [15], we achieve very similar results yet our model has way lower
degrees of freedom while achieving the same level of performance as we can
see in Table 5.3.

5.5.3.2 Model Sensitivity Analysis

We reduce the amount of training data for our method in order to test how
sensitive our model is. As mentioned above, there is only 1 scan in the training
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Results
xperiment(DOF)

Our method (286)

Baseline (6364)

S2CNN (3565)

b=100(

)

Overall Acc

0.791 + 0.012

0.492 + 0.015

0.784 4+ 0.012

CSF Acc, Dice

0.785 4+ 0.074,0.747 £ 0.073

0.824 + 0.06,0.577 £ 0.106

0.783 4 0.075,0.744 £ 0.074

Subcortical Acc, Dice

0.201 £ 0.057,0.239 £ 0.052

0.495 +0.031,0.128 £ 0.011

0.299 £ 0.059,0.276 £ 0.039

‘White matter Ace, Dice

0.778 4+ 0.026,0.802 &+ 0.014

0.67 +0.016,0.691 + 0.012

0.816 +0.023,0.81 £+ 0.012

Grey matter Acc, Dice

0.872 + 0.017,0.835 + 0.011

0.327 4 0.026,0.483 + 0.028

0.814 + 0.02,0.827 £+ 0.012

b=2000

Overall Acc

0.787 +0.012

0.452 +0.017

0.794 £0.011

CSF Acc, Dice

0.552 +0.075,0.612 + 0.078

0.76 £ 0.07,0.605 + 0.098

0.753 £+ 0.079,0.684 + 0.088

Subcortical Acc, Dice

0.184 + 0.045,0.222 + 0.042

0.694 + 0.021,0.144 + 0.008

0.123 + 0.03,0.166 + 0.034

‘White matter Acc, Dice

0.804 + 0.032,0.806 £ 0.015

0.689 4 0.022,0.748 + 0.015

0.843 +0.025,0.817 & 0.012

Grey matter Acc, Dice

0.85 £ 0.023,0.827 £ 0.012

0.207 & 0.027,0.339 & 0.036

0.832 4 0.021,0.83 +0.011

b=300(

)

Overall Acc

0.786 4 0.012

0.686 + 0.016

0.788 +0.011

CSF Acc, Dice

0.203 4 0.029,0.284 + 0.04

0.188 4 0.014,0.222 + 0.028

0.303 £ 0.055,0.341 £ 0.069

Subcortical Acc, Dice

0.216 & 0.057,0.248 & 0.05

0.358 £+ 0.023,0.186 £ 0.015

0.228 & 0.064,0.256 £ 0.055

White matter Acc, Dice

0.767 £ 0.034,0.805 + 0.018

0.83 +0.021,0.797 + 0.011

0.783 £+ 0.033,0.812 + 0.016

Grey matter Acc, Dice

0.888 + 0.02,0.832 + 0.011

0.616 4 0.037,0.714 + 0.024

0.873 + 0.021,0.831 + 0.012

Table 5.3: Results from the HCP brain dataset. We can see that our method
has the same level of performance as S2CNNJ[15], but uses way fewer parame-
ters. The baseline model produces higher accuracy recognizing the subcortical
region, but it is at a high cost of the accuracies of other classes.

Figure 5.4: Examples of predictions of the 4 regions in the test set. From the
top to bottom row are predicted results of the same slices from the proposed
method, S2CNN][15], and baseline respectively. The label colors for CSF,
subcortical, white matter and grey matter are red, blue, white, and grey
respectively.
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Results
#Samples

5000,30000,200000,200000

5000,30000,150000,150000

5000,30000,75000,75000

b=1000

Overall accuracy

0.784 4+ 0.013

0.775 £ 0.014

0.718 £ 0.024

CSF accuracy, Dice

0.719 £ 0.086,0.747 £ 0.073

0.776 £ 0.076,0.752 £+ 0.073

0.853 £ 0.055,0.704 £ 0.082

Subcortical accura

0.271 £ 0.072,0.279 £ 0.051

0.289 + 0.056,0.247 + 0.032

0.643 £ 0.061,0.293 £ 0.025

‘White matter accuracy,

0.736 £ 0.026,0.791 £ 0.015

0.746 £ 0.029,0.789 & 0.016

0.635 £ 0.042,0.733 £ 0.026

Grey matter accuracy, Dice

0.887 £ 0.017,0.832 + 0.012

0.857 £ 0.018,0.834 + 0.012

0.794 £ 0.028,0.819 £ 0.017

b=2000

Overall accuracy

0.777 £ 0.014

0.771 4+ 0.017

0.729 £ 0.017

CSF accuracy, Dice

0.711 £ 0.089,0.695 £ 0.087

0.744 £ 0.079,0.682 £ 0.088

0.772 £ 0.074,0.676 £ 0.09

Subcortical accuracy, Dice

0.24 £ 0.039,0.235 & 0.028

0.362 £ 0.061,0.293 & 0.033

0.462 £ 0.043,0.24 £ 0.018

White matter accuracy, Dice

0.737 £ 0.033,0.789 £ 0.018

0.735 4 0.037,0.789 £ 0.02

0.716 £ 0.031,0.78 £ 0.018

Grey matter accuracy, Dice

0.876 £0.019,0.83 + 0.012

0.851 £ 0.022,0.826 = 0.013

0.769 £ 0.031,0.802 = 0.015

b=3000

Overall accuracy

0.785 £ 0.011

0.772 £ 0.013

0.662 £ 0.023

CSF accuracy, Dice

0.603 £ 0.106,0.584 + 0.112

0.525 + 0.082,0.528 + 0.102

0.701 £ 0.09,0.568 = 0.112

Subcortical accuracy, Dice

0.288 £ 0.068,0.277 £ 0.047

0.388 £ 0.068,0.295 & 0.037

0.63 £ 0.048,0.222 + 0.018

‘White matter accuracy, Dice

0.798 £ 0.028,0.809 £ 0.013

0.761 £ 0.028,0.801 £ 0.014

0.596 £ 0.038,0.719 £ 0.027

Grey matter accuracy, Dice

0.836 £ 0.026,0.829 + 0.012

0.833 £0.027,0.826 + 0.012

0.722 £0.042,0.78 + 0.02

Table 5.4: Results of sensitivity analysis. The numbers in the first row are the
numbers of samples in each experiment for CSF, subcortical, WM, and GM
respectively. We see that while reducing the size of the training set, the overall
accuracies decrease to some extent, but the accuracies of the subcortical region
are higher since the class imbalance is lower.

set. For that scan, there are 7227 CSF voxels, 35648 subcortical voxels, 276191
white matter voxels, and 309496 grey matter voxels. Therefore, we reduce the
number of samples from all classes by randomly sampling a fraction of voxels
from each class and test how that impacts the performance of the model.

We see that reducing the number of samples in each class reduces the
performance. On the other hand, it has also boosted the accuracy for the
subcortical region, since that the class imbalance was also eased after the
reduction. We can observe that the grey matter and white matter tissues are
overly represented in a scan that even when we discard most of the voxels
from these 2 classes in the training set, our test result remains a relatively
high level of accuracy. This offers us an important application in automating
DWI data annotation.

5.6 Discussion

This work shows how geometric information in DWI can be significantly use-
ful in understanding general patterns in image analysis. In the future, we
expect improvements in performance by adding spatial correlations through
a classical convolutional layer, and the correlation of our model to fractional
anisotropy (FA) and NODDI is worth investigating as well. Moreover, using
scans in the HCP dataset[46] with a different number of diffusion gradients to
test our model would also be desirable in later works. Additionally, we have
so far only tested our construction of the network on S?, yet an extension to
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other surfaces appears feasible, with a smart choice of a discrete representa-
tion. An extension to dimension 3 is worthwhile as well, which will require
efficient SO(3) convolutions, using, for instance, spectral theory for compact
Lie groups.

5.7 Conclusion

We proposed a simple extension of CNN to Riemannian Manifolds that learns
rotationally invariant features. Our method allows us to learn general pat-
terns from very limited data while having much lower degrees of freedom than
existing methods [15]. This is significant because we can now, in machine
learning-based DWI analysis, reduce the size of individual data samples to
a single voxel-level from a whole volumetric image-level, as well as reduce
the training dataset to a single scan - or a fraction of a scan. For the HCP
dataset[46] with a single-shell setup, our method, while taking the subcortical
region into account, compares well with existing methods that have multi-shell
input [51, 12], which do not classify the subcortical region. We also achieved
similar or better results compared to image registration-based methods [27].
The results of this simple task show great potential of this method in under-
standing structural patterns in brains. Moreover, the results from the model
sensitivity analysis show that our method has the potential in aiding manual
data annotation. For example, a doctor only has to label a fraction of a scan
and the rest can be automated by the model.
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Chapter 6

Group Convolutional Neural
Network for DWI
Segmentation

RENFEI L1u, FrRaNCOIS LAUZE, ERIK J. BEKKERS, KENNY ERLEBEN,
SUNE DARKNER

6.1 abstract

We present a Group Convolutional Network for Segmentation of Diffusion
Weighted Imaging data (DWI). The network incorporates group actions that
are natural for this type of data, in the form of convolutions which provide
equivariant transformations of the data. This knowledge provides a potentially
important inductive bias and may alleviate the need for data augmentation
strategies. We study its effect on the performances of the networks, by training
them and validating them on DWI scans from the Human Connectome project.
We show how this generally improves the performances of our segmentation,
while limiting the number of parameters that must be learned.

6.2 Introduction

In this work, we propose a group convolutional neural network (G-CNN) for
Diffusion Weighted Imaging (DWTI) data. CNNs rely on assumed translational
symmetries in data and have shown very robust performance in imaging tasks,
especially medical imaging ones, and they are highly memory-efficient thanks
to their weight-sharing property. When data offer more structure than transla-
tion, they can be used to build generalized CNNs. These Group and Geometric
CNNs (GCNN) have been studied intensively and applied in many situations
in the few past years, see e.g. [32, 16, 7, 5, 14]. This is especially the case for
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the task at hand, classification and segmentation of DWI data. A DWI scan
can be modeled as a function f : R3 x S — R providing at each (x,v), with
spatial position z and direction v, a response ([45]). A rigid transformation
of a sample (i.e. by the action of the group SE(3)), should be reflected, up
to the limitations of acquisition protocol, in the signal. The space R3 x S?
is a homogeneous space under the action of SE(3): a point in R? x §? can
be transformed in any other point by a rigid transformation. This notion of
homogeneous space is at the heart of the extension of CNNS to GCNNs [14, 6].

Our task at hand is the classification/segmentation of diffusion data. The
inductive bias provided by the knowledge of these transformations may prove
important for our task, especially when annotated data is limited. How to
incorporate this knowledge? This is classically done by data augmentation, in
the hope that the network will learn transformation-aware features during the
training phase. Incorporating, on the other hand, information about group
actions on the data has shown to boost performances of these networks [5].
To exploit the rigid motion action in the space of DWI - R? x §? — R, we
propose an SE(3)-GCNN.

Most CNNs approaches for processing of DWI signals discard its specific
structure. For instance, Golkov et al. [24] built multi-layer perceptrons in g-
space for kurtosis and NODDI mappings. On the other hand, the importance
of spherical equivariant or invariant structure has been acknowledged for some
years now. The importance of the extraction of rotationally invariant features
beyond Fractional Anisotropy [4] has been recognized in series of DWI works,
for their usefulness in understanding microstructures, see for instance [38, 8,
35, 52]. In [40], a spherical U-net based on [20] was used for neurite orientation.
Cohen et al. [15] lifted spherical functions to the 3D-rotation group SO(3)
an extension of Fourier transform on it to perform convolution. In [39], this
idea was used for microstructure parameter estimation. In [9, 3], it was used
for disease classification. In [34], a 6-D - 3D space and g-space - NNs with
roto-translation was proposed.

Several authors [22, 16, 47, 50, 28, 5, 1, 44, 14, 2] further explored the
group convolution path for Lie groups and their homogeneous spaces.

In the rest of this paper, we propose GCNNs with two types of group ac-
tion, with equivariant layers for these actions and nonlinear ones. We show
how incorporating these actions improve DWI segmentation performance com-
pared to classical CNNs and CNNS with limited notion of symmetry [31], by
evaluating them on scans from the Human Connectome Project (HCP) [46].

6.3 Method

The networks we present are built by extending standard CNNs to groups G
and homogeneous spaces M on which they act by extending convolution op-
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erations to them. We do not follow, however, the common path of irreducible
representations for implementing convolutions/correlations over S? or SO(3).

An action of a Lie group on a space M is, for our purpose a smooth
mapping G x M — M, (g,m) — g.m such that for each g, m — g.m is a
diffeomorphism of M and such that g.(¢’.m) = (g¢’).m. The neutral element
of G acts as the identity. The orbit of m € M is the set G.m = {g.m, g € G}.
The stabilizer G,,, of an element m is the set of transformations that lets m
fixed, Gy, = {g € G,g.m = m}. It is a subgroup of G. M is a G-homogeneous
space if it contains only one orbit. A point mg in the homogeneous space M
provides an isomorphism G/G,,, ~ M from the quotient space G/G,,, and
consists of the left cosets gGp, of Gpy,. The inverse of the point m by this
map is the coset Gy, with g.mo = m, also called the fibre above m. A group
G acting on a space M also acts on its functions on M by the left translation

(Lgf)(m) = f(g~"'m).

6.3.1 Standard convolution operations

Each group G we consider is endowed with a left-invariant Haar measure.
Each homogeneous space we consider is endowed with a G-invariant measure.
Functions are assumed to be square-integrable for these measures. The layers
L we define are all equivariant £(Lyf) = Lg(Lf), w.r.t. the regular represen-
tation L.

Lifting layer. A function f: M — RY can be lifted to the group G via a
kernel k : M — RN by

N
kx* f(g) = Z/M fi(m)ki (g~ m) dm (6.3.1)

Group convolution layer. A feature function F : G — R" can be trans-
formed by a convolution kernel K : G — RN by

N
K x F(g) = Z/GFi(h)Ki(h_lg)dh. (6.3.2)
=1

Projection layer. If needed, feature map F': G — R" can be projected to
a function f: M — R" by summarizing on the fibres

F(m) = max F(gh), for any g with g.mg =m, (6.3.3)
'V”.O

where the max is computed component-wise.
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Table 6.1: The groups and homogeneous spaces in this work. For each group
and each homogeneous space, typical elements are provided, as well as the
action of the group element on the space element.

G M R3, z | S%,7 | R® x §2, (z,7)
T3, ¢ r+t

SOB3), R R©

SE(3),(R,1) | Re +1 (Rz +t, RD)

Activation functions and separable kernels. A point-wise activation
function «, such as ReLU, is trivially equivariant. On manifolds with a prod-
uct structure, M = Mj; X Mas, both for homogeneous spaces and groups,
using separable kernels kK = kg, ® K, the layers can be split by sequential
application of convolutions on these sub-domains.

Spaces and groups. The spaces used in this work are R3, the sphere S?
and the product space R? x S?. The groups that we consider are: translations
of R - T3 ~ R3 3D rotations - SO(3), and the special Euclidean group
SE(3) = SO(3) x T3. Table (6.1) shows the different combinations of spaces
and groups. Entries left empty are not used or fail to be homogeneous spaces
for standard group actions on them.

6.3.2 Discretization of spherical signals

The way spherical signals are numerically handled have major implications
for our networks. A DWI signal is treated as a discretization of a signal
f:R3xS? = R. DWIs are acquired, for each voxel, at N fixed directions
p1,...,pn on S? (here N = 90) . They can be represented in two different
ways.

e Type 1. Ignoring the spherical structure, at each voxel z, we get a mea-
surement vector I(x) = (I(x,p1)...,I(z,px)) € RY. Thus an image is
a mapping I : R? — RV,

e Type 2. A signal at voxel x is interpolated as a regular spherical function

I:R3xS?— R via I(z,?) using a Watson kernel [26].

6.3.3 Generic Networks used in this work

T3 The S?-structure of the signal is ignored, using the Type 1 discretization.
The group being T2, we just obtain a standard CNN, ignoring rotational
information. An illustration can be found in Figure 6.1a.
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ClX73

(a) B ©

Figure 6.1: Figure 6.1a is an illustration of the classical CNN. In the illus-
tration, which assembles the true dimensions of the feature maps in the ex-
periment that is presented later, the striding eventually shrinks the grid to a
voxel, and features of the voxel are fed into a fully connected layer. Figure 6.1b
shows the SO(3) action on S2. A function (kernel) is moved on S? by rotation.
Figure 6.1c shows the roto-translational action on R?, with rotations aligned
with those that are part of the S? discretization as in Figure 6.1b.

6.3.3.1 SO(3)

This time the spatial structure is ignored, thus each voxel provides a spher-
ical data point. Type 2 discretization is used. The GCNN takes as input
a spherical function, and will classify it by performing SO(3)-lifting, SO(3)-
convolutions and summarization. The convolved function on SO(3) is then
projected back to S? by this summarization. It is illustrated in Figure 6.1b.

6.3.3.2 SE(3)

Type 2 discretization is used and the network uses the full interplay between
spatial roto-translations and corresponding rotations of the spherical signal,
and it is separated into a spherical part and a spatial part as explained above.
To perform the segmentation task, the projection layer collapses the function
on SE(3) back to R?® by summarizing over SO(3). The spherical part is
illustrated in Figure 6.1b, and the spatial part is illustrated in Figure 6.1c.
The rotations in Figure 6.1c are aligned with the rotations that moved the
spherical kernels in Figure 6.1b.

6.4 Experiments and Results

In this section, we first list all the detailed network setups, after which we
present the results of the experiments. We evaluate our method on the DWI
brain scan dataset from the human connectome project [46]. We classify the
human brains into 4 regions - cerebrospinal fluid (CSF), subcortical, white
matter, and grey matter. An illustration of the task can be found in Figure 6.2.

We used the pre-processed DWT data [46] and normalized each DWT scan
for the b-1000 images with the voxel-wise average of the by. The labels provided
with the T1-image were transformed to the DWI using nearest neighbor inter-
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polation (Figure 6.2). Since the 4 brain regions we are classifying have imbal-
anced numbers of voxels, we use Focal Loss [30] to counter the class imbalance
of the dataset. For Focal Loss, all experiments use o = (0.35,0.35,0.15,0.15)
for CSF, subcortical, WM, and GM respectively, and v = 2. For Watson Ker-
nel, all experiments that used this interpolation (Type 2 discretization) have
k = 10. Batch size for all experiments is 100.

6.4.1 Experiment setup

To reduce the computation burden, as inputting a full DWI volume is in-
tractable, we use spatial windows of N3 voxels, with N = 1 for SO(3)-action
network and N = 7 for the rest. In addition, due to the effect of striding
in spatial convolution, the 73 grid of voxels shrinks to 13. Therefore, a sep-
arable SE(3) convolution layer after this shrinking is equivalent to a single
SO(3) convolution layer, since the spatial convolution becomes trivial. S? is
discretized by a regular icosahedron. SO(3) is discretized as the icosahedral
rotation group with 60 elements. Each vertex of the icosahedron is fixed by
5 rotations, isomorphic to the subgroup of SO(2) consisting of rotations of
angle 2k /5, k=0...4.

6.4.1.1 T3: Classical CNN

We use a R3conv(ReLU)—R3conv(ReLU)—
R3conv(ReLU) — FC architecture,

with a small and a big network setup.

We label the small network (90 —
5—5—5—4) Classical” and the big
network (90 — 120 — 120 — 90 — 4)
Classical ™.

Figure 6.2: (a)-(c): original diffusion
data, the ground-truth segmentation, 6.4.1.2 SO(3): Baseline
and the processed ground-truth that
we are going to learn from. The la-
bel colors for CSF, subcortical, white
matter and grey matter are red, blue,
white and grey respectively. The fig-
ures only illustrate the data, they are
not necessarily from the same slice of
the same scan.

In the experiments, we use the
lift(ReLU)—gconv(ReLU)—project—
FC architecture as was used in [31],
but with true SO(3)-convolution.
The projection layer takes the maxi-
mum of the 5 rotations (fibers) to col-
lapse the function back to the sphere.
Two capacities are used - lift(1) —
gconv(5) — FC(4) and 17 ft(10) — gconv(20) — FC(4) - resp. named Baseline
and Baseline™.
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SO(3)Lifting on S? SO(3)Geonv on §? SO(3)Geonv on §? SO(3)Geonv on §? Proj.

| | |

y . ¢
SE(3)Lifting on R? SE(3)Gconv on R? SE(3)Gconv on R?

Figure 6.3: Architecture of our SE(3) network. Each block is a convolutional
layer split into 2 separable layers. The last block before the FC layer is
equivalent to a single S?-layer as explained in Section 6.4.1.

6.4.1.3 SE(3): Ours

We use the separable setup that was presented above. Thus a layer is again
split into 2 layers - an S2-layer (Figure 6.1b) and an R3-layer (Figure 6.1c),
both for lifting and group convolution. The rotational actions of the kernels
can be represented by 60 rotation matrices, and is equivalent to the discretiza-
tion of the SO(3) rotation group using the icosahedral symmetry group. We
use the li ft(ReLU)—gconv(ReLU)—gconv(ReLU)—gconv(ReLU)—project—
FC architecture. Using the separable convolution explained above, it can be
illustrated as in Figure 6.3. Weuse 5—5—5—5—5—5—5 — 4 for a small
network (Ours™) and 10 — 20 — 20 — 40 — 40 — 20 — 10 — 4 for a big network
(Ours™).

6.4.2 Results

As was done in [31], we trained all networks using 1 scan, validated using 1
scan, and tested using 50 scans.

We evaluate the accuracies and Dice scores of the classification of the
4 regions respectively, and the overall classification accuracy across all test

. #ClassCorrect
scans. For each class, the accuracy is calculated by YClassSamples® and the
2TP

Dice score by s7p7%pr7Nn for the class. The overall accuracy is calculated by

#Correct
#AllSamples

We trained all models until they converge and before overfitting, thus
models are stopped at different epochs. Classical” and Classical™ were trained
for 34 and 19 epochs, Baseline” and Baseline™ were both trained for 31 epochs,
and Ours™ and Ours™ were trained for 41 and 15 epochs.

The Dice scores and accuracies of all experiments can be found in Table 6.2.
It is easy to see that our method, with the smallest model capacity, has the
best performance. The Classical™ setup works well, but it is at the cost of
much bigger model capacity. Additionally, Classical is not significantly better
than Baseline™, even though it has a way larger capacity. Plots of the results
can be found in Figure 6.4. Demonstrations of predictions from all models
with high capacity can be found in Figure 6.5. Predictions from Ours™ are
much less noisy - especially for the subcortical region - than others.

In order to test the model resistance to variations, we rotated the test set
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Table 6.2: Statistics of Dice scores and Accuracies.

‘ G ‘ Model (#Param) ‘ CSF ‘ Subcortical ‘ WM ‘ GM Overall
Dice scores
IR TR
T ‘ Classical (13539) ‘ 0.756 £0.07 | 0.376 £0.043 | 0.834+0.011 ‘ 0.839 £ 0.02
Classical+(972694) 0.804 +0.053 | 0.583 +£0.036 | 0.856 +0.011 | 0.893 + 0.009
I'R*xST—=R
S0(3) Baseline (286) 0.75+£0.073 0.185 £ 0.04 0.801 £ 0.012 0.83 £0.011
Baseline™ (2104) 0.754 +0.069 | 0.334 +0.037 | 0.805+0.013 | 0.841 +0.012
SE@3) Ours (2514) 0.769 £0.06 | 0.621 £0.038 | 0.854+0.01 | 0.891 + 0.008
Ours*(59914) 0.788 £0.05 | 0.746 +=0.034 | 0.877 = 0.008 | 0.909 =+ 0.006
Accuracies
I:R> RV
3 Classical (13539) ‘ 0.792 £ 0.08 ‘ 0.415 £ 0.053 ‘ 0.879 £ 0.024 ‘ 0.789 £ 0.034 ‘ 0.806 £ 0.017
Classical+(972694) 0.815+0.061 | 0.702£0.026 | 0.834 £ 0.022 0.89 +0.011 0.854 £0.012
I'R°xS? =R
S0(3) Baseline™ (286) 0.742 £0.082 | 0.145+0.04 | 0.804+0.024 | 0.85+0.016 | 0.788 +0.011
Baseline™(2104) 0.778 £0.07 | 0.379£0.065 | 0.784 £0.024 | 0.848 £0.02 | 0.792 £0.013
SE@3) Ours (2514) 0.81£0.065 | 0.692+0.029 | 0.857+0.022 | 0.874+0.019 | 0.856 & 0.01
Ours™(59914) 0.896 + 0.042 | 0.826 +0.023 | 0.857+0.017 | 0.912 +0.014 | 0.883 + 0.008
Accuracies from rotated test set
T Classical ™ 0.611 £0.095 | 0.494 £0.025 | 0.506 +0.022 | 0.551£0.025 | 0.53 £0.015
SO(3) Baseline™ 0.769 £0.074 | 0.307+£0.059 | 0.782+0.024 | 0.846+0.02 | 0.786 +0.013
SE(3) Ours™ 0.88 £ 0.048 | 0.659 £0.028 | 0.83 £0.019 | 0.868 +0.018 | 0.84 £ 0.009
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Figure 6.4: Accuracies and Dice scores of all 4 brain regions individually, and
overall accuracy across all experiments.
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Figure 6.5: From top to bottom are ground-truth, predictions from Classical™,
Baseline™, and Ours™. The colors of CSF, subcortical, WM and GM are red,
blue, white, and grey respectively.

using rotations randomly sampled from an octahedral rotation group, and the
accuracies from the rotated data using high capacity models can be found at
the bottom of Table 6.2. Models with rotational group actions (Baseline™
and Ours™) are resistant to data variation, and Ours® remains the best in
performance.

6.5 Conclusion

We propose an SE(3) GCNN for DWI scan segmentation by using a natural
action of SE(3) on space R? x S?, which models the space where DWI data
is measured. As it is a homogeneous space for this action, we develop equiv-
ariant/invariant GCNNs for functions defined on it. This strategy keeps the
required network capacity small, while mitigating the need for data augmen-
tation, which is usually more expensive either in computation or in storage.
Experiments show that our method is superior to ones that discard either the
spatial symmetries on R? or the rotational symmetries on S?. Additionally,
tested with rotated data, models with rotational group actions demonstrate
again the impact of equivariance, especially for our SFE(3)-based model.
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Chapter 7

A Study on Group
Convolutions and
Equivariance for DWI
Segmentation

7.1 abstract

We present a series of Group Convolutional Networks for segmentation of Dif-
fusion Weighted Imaging data. These networks gradually incorporate group
actions that are natural for this type of data, in the form of convolutions
that provide equivariant transformations of the data. This knowledge pro-
vides a potentially important inductive bias and may alleviate the need for
data augmentation strategies. We study the effects of these actions on the
performances of the networks, by training and validating them using the dif-
fusion data from the Human Connectome project. We show how incorporating
more actions generally improves the performances of our segmentation while
limiting the number of parameters that must be learned.

7.2 Introduction

In this work, we study the influence of group actions on data and how they may
impact the architecture and performances of neural networks, especially con-
volutional neural networks (CNN). CNNs rely on assumed translational sym-
metries in data and have shown very robust performance in imaging tasks, es-
pecially medical imaging ones, and they are highly parameter-efficient thanks
to their weight-sharing property. When data offer more structure than sim-
ply translation, this can be used to build generalized CNNs. These Group
and Geometric CNNs (GCNN) have been studied intensively and applied in
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many situations in the few past years ([32, 16, 7, 5, 14] to cite a few). This
is especially the case for the task at hand - classification and segmentation of
Diffusion Weighted Imaging (DWI) data.

DWI is a non-invasive image modality that provides local information
about water diffusion in tissue by means of measuring spins displacement [45].
It provides 3-dimensional diffusion information at each location = that can be
encoded as a function f, on the 2-dimensional sphere S?. A field of these func-
tions, on a given domain, can be represented as a function f : R? x S? — R. If
a sample is rotated and translated, the acquired signal should reflect, up to the
limitations of acquisition protocol, this transformation. The group in question
is the group of 3D rigid motions, SE(3), and the space R? x S? is a homoge-
neous space under the action of SE(3): a point in R? x §? can be transformed
in any other point by a rigid transformation. This notion of homogeneous
space is at the heart of the extension of CNNS to GCNNs [14, 6].

Our task at hand is the classification/segmentation of diffusion data. The
inductive bias provided by the knowledge of these transformations may prove
important for our task, especially when the amount of annotated data is lim-
ited. The problem boils down to how to incorporate this knowledge. The
most classical approach is to use data augmentation, reflecting the expected
symmetries in the data, in the hope that the network will be able to learn it
during the training phase, learning symmetry-aware kernels.

Incorporating, on the other hand, some information about the symmetries
of the data in the model has been shown to boost the performances of these
networks [5]. But how much of this information is needed for a given task?
To provide an answer, for the DWI segmentation task, we propose several
networks, which gradually incorporate these symmetries in their architecture
and study their performances. They, in some sense, perform a group action
ablation study. We start with a “naive” CNN, then incorporate spherical
symmetries, resulting in a SO(3)-GCNN, discarding the spatial aspect of the
data. The spatial aspect is then added in the form of a standard CNN cou-
pled with spherical symmetries and then a network where roto-translational
transformations are used in almost all steps. This work demonstrates empiri-
cally the improvement in performances. The results are, however, not always
clear-cut. The GCNN built from 3D-translations on one hand and rotations
on the other hand seems to perform better than a SFE(3)-GCNN. However,
the SE(3)-network generalizes better to unseen rotated data than the previ-
ous one. The reason may lie in the particular type of data used - our DWI
scans come from the Human Connectome Project (HCP) [46] are highly pre-
processed, including a form of alignment, and this may impact the results.

In the rest of this paper, we review related work, both around CNN
and DWI classification problem. Then we introduce the theoretical setup
of GCNN. We build several networks. We then study and discuss their per-
formances.
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7.3 Related Work

Deep Learning (DL) for non-flat data, or using more complex group actions
than just translations, is currently getting more attention from the research
field. When it comes to non-flat data, such as the point-wise spherical sig-
nals in DWI, particularly relevant related works are the following. Masci et
al. [32] proposed a NN on surfaces that extracts local rotationally invariant
features. A non-rotationally invariant modification was proposed by Boscaini
et al. [7]. The above provide methods for DIL-based processing of data on
arbitrary manifolds. When the manifold, however, is a homogeneous space,
i.e., there is a group action by which any two points on the manifolds can be
reached, theory simplifies via a natural generalization of classical convolutions
in group convolution neural networks (GCNNs) [15, 5, 28]. GCNNs guar-
antee global equivariance. However, global equivariance can be complicated
and elusive when the underlying geometry is non-trivial [44]. An elementary
construction on a general manifold is proposed by Schonsheck et al. [37] via
a fixed choice of geodesic paths used to transport filters between points on
the manifold, ignoring the effects of path dependency, i.e. holonomy when
paths are geodesics. The removal of this path dependency can be obtained by
summarizing local responses over local orientations, which is what was done
by Masci et al. [32]. To explicitly deal with holonomy, Sommer et al. [42] pro-
posed a theoretical breakthrough using convolution construction on manifolds
based on stochastic processes via the frame bundle.

On the other hand, Cohen et al. [15] lifted spherical functions to the
3D-rotation group SO(3) and used a generalization of Fourier transform on
it to perform convolution. With the generalization of convolution to more
complex group actions than translation, several authors [22, 16, 47, 50, 28,
5, 1, 9, 10, 11] explored the group convolution path for Lie groups and the
homogeneous spaces of these groups. The relation between group actions,
principal bundles and related vector bundles, and convolutional architectures
is currently explored [44, 14, 2]. The latter elicidates important relations
between differential geometry of bundles and Reproducible Kernel Hilbert
Spaces. Links between partial differential equations, symmetries and GCNN
is studied in [41]. A unifying framework for equivariant DL on manifolds,
connecting both the bundle and homogeneous space viewpoint, is given in [49]
through a notion of coordinate indepencent convolutions.

Most CNNs approach for the processing of DWI signals discard its spe-
cific structure. For instance, Golkov et al. [24] built multi-layer perceptrons
in g-space for kurtosis and NODDI mappings. However, the importance of
spherical equivariant or invariant structure has been acknowledged for some
years now. The importance of the extraction of rotationally invariant features
beyond Fractional Anisotropy [4] has been recognized in series of DWI works.
For instance, Caruyer et al. [8] developed invariant polynomials of spheri-
cal harmonic (SH) expansion coefficients, and discussed their application in
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population studies. Schwab et al.[38] proposed a related construction using
eigenvalue decomposition of SH operators. Novikov et al. [35] and Zucchelli et
al. [52] argued their usefulness for understanding microstructures in relation
to DWL

Chakraborty et al. [9] proposed a rotation equivariant construction in-
spired by Cohen et al. [15] for disease classification. The same authors [3]
used a S? x Rt CNN using SHORE function representation for classification
in Parkinson Disease. Sedlar et al. [40] used a spherical U-Net for -ODF
estimation The same authors [39] used a spherical CNN for microstructure
parameter estimation, using spherical harmonics representations. Miiller et
al. [34] propose a sixth-D, 3D space and ¢-space NNs with roto-translation /
rotation equivalence properties.

7.4 Method

The networks we present will be built from the principle of expanding CNNs
to groups G and homogeneous spaces M, on which they act by extending
convolution operations to functions on groups and their homogeneous spaces.
However, we do not follow the common path of irreducible representations for
implementing convolutions/correlations over S? or SO(3).

An action of a Lie group on a space M is, for our purpose a smooth
mapping G x M — M, (g,m) — g.m such that for each g, m — g.m is a
diffeomorphism of M and such that ¢.(¢.m) = (g¢').m. The neutral element
of G acts as the identity. The orbit of m € M is the set G.m = {g.m,g € G}.
The stabilizer G,,, of an element m is the set of transformations that lets m
fixed, Gy, = {g € G,g9.m = m}. It is a subgroup of G. M is a G-homogeneous
space if it contains only one orbit, i.e, if for any m,m’ € M, there exists
g € G, with gom = m/. Given a mg in the homogeneous space M, there is
an isomorphism G/Gp,, ~ M, called the orbit map. G/Gp, is the quotient
space of G by Gy, and consists of the left cosets gGp,, of Gp,,. The inverse
of the point m by the orbit map is a coset gG,y,, with g.mg = m, called the
fiber above m.

7.4.1 Standard convolution operations

A group G acting on a space M via (g, m) — g.m also acts on functions on
M by the left translation

(Lgf)(m) = f(g~"m). (7.4.1)

We assume that each homogeneous space is endowed with a G-invariant mea-
sure that allows integration, and that each G is endowed with a left-invariant
Haar measure.
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7.4.1.1 Lifting layer
A function f : M — RY can be lifted to the group G via a kernel x : M — RX
by

K
e flg) =Y /M Fm)ilg™ m) dm (7.4.2)
i=1
This operation is equivariant: Kk * Lgf = Lg(k * f).

7.4.1.2 Group convolution layer

A feature function F : G — RY can be transformed by a convolution kernel
K:G— K by

N
K« F(g) = Z/ F(h)K;(h™'g)dh. (7.4.3)
i=17G
This operation is equivariant: K * (LyF) = Ly(K * F).

7.4.1.3 Projection Layer

If needed, feature map F' : G — R" can be projected to a function f : M — R"
by summarizing on the fibers

F(m) = jmax F(gh), for any g with g.mg =m, (7.4.4)
mo

where the max is computed component-wise. This operation is equivariant:
LipF = LiF.

7.4.1.4 Activation Functions and Separable Kernels

A point-wise activation function «, such as ReLU, is trivially equivariant
Ly(af) = aLyf. On manifolds with an underlying product structure, M =
My x My - this includes homogeneous spaces and groups - one can choose
separable kernels kK = kK, ® Ka,, and activation functions can be introduced
in (7.4.2) and (7.4.3). For instance, lifting (7.4.2) can be replaced by

K
EOEDY /M
« ( f(ml,mg)ng(g_lmg) dm2> nl(g_lml) dmy, (7.4.5)
M

which preserves equivariance. This is used in this work.

The spaces used in this work are R?, the sphere S? and the product space
R3 x S2. The groups that we consider are the group of translations of R3,
T3 ~ R3, the group SO(3) or 3D rotations, the direct product G = T3 x SO(3)
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o M Rz | S%,7 | R® x $2, (2,7)
T3, ¢ T+t

SO(3), R Rv

T3 x SO(3), (I, R) (z +t, R7)
SE(3), (R, 1) R+t (Rx + t, Rv)

Table 7.1: The groups and homogeneous spaces in this work. For each group
and each homogeneous space, typical elements are provided, as well as the
action of the group element on the space element.

and the special Euclidean group SE(3) = SO(3) x T3. Note that though
G and SFE(3) are isomorphic as manifolds, they are not as groups: in G,
(t,R).(5,S) = ({ + 5, RS) while in SE(3), (R,1).(S,5) = (RS,t + R5). This
is also reflected in their respective actions in Table (7.1), which shows the
different combinations of spaces and groups. Entries left empty are not used
or fail to be homogeneous spaces for standard group actions on them.

7.4.2 Pseudo-convolutions on S?

In our previous work [31], we proposed another way of filtering signals on
S2. Instead of lifting a signal f : S — R" to SO(3), we lift it, above each
point ¢ of S? to the rotations that let ¢ fixed, via a set of localized spherical
kernels transported along predetermined paths from a given base-point to
each point where we analyze our signal. This, in fact, means that the lifted
space is isomorphic to S? x SO(2). Then convolutions are performed on each
fibre, independently of each other and a local pooling is performed to get the
information back on S?, before being fed to a fully convolutional network for
classification. A predetermined transport is performed by moving the kernel
from a base point pg to any point g, via a transformation oy : 04 - po = ¢q. For
equivariance to hold, either the kernel is rotationally invariant, which is very
restrictive, or one should have or, = Ro, for any R € SO(3), which cannot
hold. Thus equivariance does not hold in general. Details are found in [31].
This is different from our baseline network, which imposes SO(3)-equivariance.

7.4.3 Discretization of spherical signals

The way spherical signals are numerically handled have major implications
for our networks. A DWI signal is treated as a discretization of a signal
f:R3xS?> = R. DWIs are acquired, for each voxel, at N fixed directions
p1,...,pn on S? (here N = 90) . These are represented in two different ways.

e Type 1. Ignoring the spherical structure, at each voxel =, we get a mea-
surement vector f(z) = (f(z,p1)..., f(z,py)) € RY. Thus an image is
a mapping I : R? — RY.
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e Type 2. A signal at voxel x is interpolated as a proper spherical function
f(z, ) = W(v;v1,...,un) where W is a Watson kernel [26]. An image
from this type is a mapping I : R? x S? — R.

7.4.4 Generic Networks used in this work

We present 4 constructions in which gradual levels of complexity in group
actions are introduced. This can be seen as a group-action ablation study.
The precise description of each network will be provided in Section 7.5.

7.4.4.1 T3

The S%-structure of the signal is ignored, using the Type 1 discretization.
The group being T3, we just obtain a standard CNN, ignoring rotational
information. An illustration can be found in Figure 7.1.

)
Ox+q

%)
ot

sl

Figure 7.1: Illustration of the classical CNN. In the grids shown above, which
assembles the dimensions of feature maps in the later experiments. Each voxel
in the ith layer contains C; values, indicating the numbers of channels. C}
here is the number of signal values each voxel from the original scan, thus 90.
Due to striding, the grid shrinks to 1 voxel after 3 convolutional layers, and
then is fed into a fully connected layer for classification.

7.4.4.2 S0(3)

This time the spatial structure is ignored, and each voxel provides a spher-
ical data point. Type 2 discretization is used. The GCNN takes as input
a spherical function, and will classify it by performing SO(3)-lifting, SO(3)-
convolutions and summarization. The convolved function on SO(3) is then
projected back to S? by this summarization. It is illustrated in Figure 7.2a.
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(a) (b)

Figure 7.2: Figure 7.2a illustrates the GCNN kernel of SO(3) action. A func-
tion (kernel) is moved on S? by rotation. Figure 7.2b illustrates the transla-
tional action T% on R®. Figure 7.2c shows the roto-translational action on R?,
with rotations aligned with those that are part of the S? discretization as in
Figure 7.2a. Figure 7.2a and Figure 7.2b together are the 2 decoupled layers
of a T3 x SO(3)-action convolutional layer, while Figure 7.2a and Figure 7.2c
together are the 2 separable layers of an SFE(3)-action layer.

7.4.4.3 T3 x SO(3)

Spatial and spherical structures are decoupled. This implies a standard spatial
CNN dealing with only voxel translations, and a SO(3)-GCNN part for the
directional signal. Type 2 discretization is used for spherical signals. The
decoupled R3-layer and S?-layer with group actions T3 and SO(3) respectively
can be found in Figure 7.2b and Figure 7.2a. Note that since the spatial
convolution does not incorporate rotation equivariance, it does not reflect
equivariance of the DWI measurements. l.e., one can expect that when the
brain rotates, the spatial patterns rotate as well as their spherical diffusion
signals. This model takes rotation into account in the spherical part of the
signal, but not the spatial part. The projection at the end collapses the
function in the group back to R3 by summarizing - in this case, maximizing -
over SO(3), and the resulting feature map is fed into a fully connected layer
to perform the classification task.

7.4.4.4 SE(3)

Type 2 discretization is used and the network uses the full interplay between
spatial roto-translations and corresponding rotations of the spherical signal
and is thus fully equivariant to SFE(3) transformations on the DWI data. Fig-
ure 7.2a shows for kernel for the S?-layer. When the kernel moves from one
vertex to another, it follows a specific rotation that maps the one-ring neigh-
borhood of the source vertex to the one-ring neighborhood of the target vertex.
At each vertex, the kernel has an SO(2) symmetry group structure discretized
by 5 rotations. Figure 7.2c shows the kernel for the R3-layer. It is rotated with
the same rotation matrices that moved the S?>-kernel as in Figure 7.2a. Again,
to perform the segmentation task, the projection layer collapses the function
on SE(3) back to R? by summarizing - again, maximizing - over SO(3).
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7.5 Experiments and Results

In this section, we first list all the detailed network setups, after which we
present the results of the experiments. We evaluate our method on the DWI
brain dataset from the human connectome project (HCP) [46]. We classify
the human brains into 4 regions - cerebrospinal fluid (CSF), subcortical, white
matter (WM), and grey matter (GM). An illustration of the task can be found
in Figure 7.3.

We use the pre-processed DWI data [46] and normalize each DWI scan for
the b-1000 images with the voxel-wise average of the bg. The labels provided
with the T1-image are transformed to the DWI using nearest neighbor inter-
polation (Figure 7.3b). Focal Loss [30] is used to counter the class imbalance
of the 4 brain regions. For Focal Loss, all experiments use v = 2 and use
a = (0.35,0.35,0.15,0.15) for CSF, subcortical, WM, and GM respectively.
For the Watson Kernel, all experiments that used this interpolation (Type 2
discretization) have x = 10. Batch size for all experiments is 100.

()

Figure 7.3: (a)-(c): original diffusion data, the ground-truth segmentation,
and the processed ground-truth that we are going to learn from. The label
colors for CSF, subcortical, white matter and grey matter are red, blue, white
and grey respectively. The figures are only for illustrations of the data, they
are not necessarily from the same slice of the same scan.

7.5.1 Experiment setup

To reduce the computational burden, as inputting a full DWI volume is in-
tractable, we use spatial windows of N3 voxels, with N = 1 for the SO(3)-
action network and N = 7 for the rest. In addition, due to the effect of striding
in spatial convolution, the 72 grid of voxels shrinks to 1 after 3 spatial con-
volutions. Therefore, a separable convolution layer (for both T3 x SO(3) and
SE(3) actions) is equivalent to a single SO(3) convolution layer when the grid
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50(3) Liﬂ‘ing on§? ‘50(3]Gc?nv on§? 50(3) Gc?nv onS? 50(3)Geonv on §? Pro.

| | ) ) ‘
T3 Lifting on R? ’ T3 Geonvon R? T3 Geonvon R

Figure 7.4: Architecture of the network with group action T3 x SO(3). Each
block is a convolutional layer split into 2 separable layers. The last block before
the FC layer is equivalent to a single S?-layer as explained in Section 7.5.1.
Nlustrations of ReLU actions are omitted for visualization simplicity.

shrinks to 12, since the spatial convolution becomes trivial. S? is discretized
by a regular icosahedron. SO(3) is discretized as the icosahedral rotation
group with 60 elements. Each vertex of the icosahedron is fixed by 5 rota-
tions, isomorphic to the subgroup of SO(2) consisting of rotations of angle
2knw/5, k =0...4. This is, of course, the discretization used for SO(2).

7.5.1.1 T3: Classical CNN

We use a R3conv(ReLU) —R3conv(ReLU) —R3conv(ReLU)— FC architecture
with network setups of a low capacity and a high capacity. We label the small
network (90—5—5—5—4) Classical” and the big network (90—120—120—90—4)
Classical ™.

7.5.1.2 SO(3)-Baseline

In the experiments, we use the lift(ReLU) — gconv(ReLU) — project — F'C
architecture as was used in [31], but with true SO(3)-convolution. The projec-
tion layer takes the maximum of the 5 rotations to collapse the function back
to the sphere. We experimented various sizes of the network (10—20—proj.—4
and 20 —40—proj.—4), in addition to the setup used in [31] (1—5—proj. —4).
The network that has the biggest size did not seem to improve the second
biggest one thus we omit it in this paper. Based on the size of the experi-
ments, we call the small network Baseline” and the big network Baseline*.

7.5.1.3 T3 x SO(3)-OursDecoupled

We use the architecture i ft(ReLU ) —gconv(ReLU)—gconv(ReLU )—gconv(ReLU)—
project — FC. Using separability discussed in Section 7.4.1.4, a convolution
layer (including lifting) is split into 2, and ReLU activation is added between
separable layers as well. An illustration of the architecture can be found in
Figure 7.4.

We again experiment with 2 sizes of the network - a small one and a big
one. The small network has 5—5—5—5—5—5—5—proj. — 4 kernels for each
layer, while the big network has 10 — 20 — 20 — 40 — 40 — 20 — 10 — proj. — 4.
We label them OursDecoupled™ and OursDecoupled™.
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Figure 7.5: Architecture of the network with group action SFE(3).

7.5.1.4 SE(3)-Ours

Here too we use the separable setup described in Section 7.4.1.4. Thus a layer
is again split into 2 layers - an S?-layer and an R3-layer, both for lifting and
group convolution. The S?-layer is defined as shown in Figure 7.2a. We ro-
tate the R? kernels and the S? kernels using the same actions. The rotational
actions of the kernels can be represented by 60 rotation matrices, and is equiv-
alent to the discretization of the SO(3) rotation group using the icosahedral
symmetry group, as shown in Figure 7.2c. As in Section 7.5.1.3, we use the
lift(ReLU) — gconv(ReLU) — gconv(ReLU) — gconv(ReLU) — project — FC
architecture. After the separation of the layers, the illustration is showcased
in Figure 7.5. As in Section 7.5.1.3, ReLU activations are added between
separable layers as well.

In addition, we intend to explore the impact of the equivariance we imposed
in R? in this section. As was explained above, we align the rotations of the R3
kernel with the ways the S? kernel moved on the sphere, which is discretized
by the 60 rotation symmetries of an icosahedron. At a vertex z;,7 € 1,...,12
of an icosahedron, there exists a stabilizer SO(2),, discretized by 5 equally
divided rotations that keep z; unchanged. Therefore, we also experiment a
partial equivariance in the R3 roto-translational convolution. This means at
each vertex x; of the icosahedron, we only take 1 out of the 5 rotations that
discretized SO, (2) instead of using all of them to rotate the spatial kernel.
Note that the Part models are only fully SE(3) equivariant when the kernels
have a sub-group SO(2) symmetry in them [6, Thm 1], which we do not impose
and thus equivariance is not guaranteed.

Again, we experiment with 2 sizes of the network with 5 —5—-5—-5—-5—
5—5—proj.—4 and 10 — 20 — 20 — 40 — 40 — 20 — 10 — proj. — 4 kernels
respectively. Therefore, we generate 4 experiments for this section: OursFull",
OursPart™, OursFull™, and OursPart™.

A summary of the experiments can be found in Table 7.2.

7.5.2 Results

As was done in [31], we trained all networks using 1 scan, validated using 1
scan, and tested using 50 scans. We evaluate the accuracies and Dice scores
of the classification of the 4 regions respectively, and the overall classification
accuracy across all test scans. For each class, the accuracy is calculated by
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Experiment H G ‘ #Params ‘ #Epochs
I:R3 RN
Classical” T3 13539 34
Classicalt 972694 19
I'R*xS?2>R

Baseline” 286 31
Baseline™ 50(3) 2104 31
OursDecoupled 3 2514 41
OursDecoupled ™ T° x 50(3) 59914 15
OursPart” 2514 41
OursPart™ SE(3)x 59914 15
OursFull 2514 41
OursFullt SE(3) 59914 15

Table 7.2: Criteria and properties of experiments. SFE(3)x* indicates the rota-
tions in the spatial part are only a part of the rotations used in the spherical
part.

Experiment CSF Subcortical WM GM
Class
I:R3 S RY
Classical ‘ 0.756 + 0.07 ‘ 0.376 £0.043 | 0.834 +0.011 ‘ 0.839 £ 0.02
T:R3xS2SR
Baseline 0.754+0.073 0.185+0.04 | 0.801 4+0.012 0.83 +0.011
OursDecoupled” 0.817 £ 0.051 | 0.705 4+ 0.033 | 0.867 4+ 0.009 | 0.909 4 0.007
OursPart” 0.807 £ 0.048 | 0.658 = 0.037 | 0.865 =+ 0.009 | 0.899 4 0.008
OursFull” 0.769 + 0.06 0.621 £0.038 | 0.854 +0.01 0.891 + 0.008

Table 7.3: Statistics of Dice scores from experiments using models of low
capacity.

#Correct Predictions

, and the Dice score is calculated by % for the

#ClassSamples
. #Correct Predictions
class. The overall accuracy is calculated by FAlSamples

We trained all models until they converge and before overfitting, thus
models of different capacities and different setups are stopped at different
epochs. Details can be found in Table 7.2.

The Dice scores and accuracies of models of low capacity can be found in
Table 7.3 and Table 7.4, while the Dice scores and accuracies of models of high
capacity can be found in Table 7.5 and Table 7.6. Examples of predictions
compared with the ground-truth can be found in Figure 7.9a.

7.5.2.1 The impact of the R? spatial component

It is easy to observe that the the Baseline experiments perform the worst
among all. This is an anticipated outcome since it is usually the case that
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Hxperiment CSF Subcortical WM GM Overall
Class
I:R* RN
Classical | 0.792+0.08 | 0.415+0.053 | 0.879 +0.024 | 0.789 £0.034 [ 0.806 & 0.017
I:RExS SR
Baseline® 0.742£0.082 | 0.145£0.04 [ 0.804£0.024 [ 0.85+0.016 | 0.788 +0.011
OursDecoupled” | 0.844 +0.061 | 0.741+0.033 | 0.833+0.02 | 0.934£0.013 | 0.878 = 0.009
OursPart” 0.787 +0.068 | 0.717 +0.032 | 0.848 £0.019 | 0.906 £ 0.016 | 0.868 & 0.009
OursFull 0.81+£0.065 | 0.69240.029 [ 0.857 £0.022 | 0.874 +0.019 | 0.856 & 0.01

Table 7.4: Statistics of classification accuracy from all experiments using mod-
els of low capacity.

neighboring information is an essential type of local features.

7.5.2.2 Type 1 discretization vs Type 2 discretization

The classical CNNs use Type 1 discretization while Type 2 discretization is
used for the rest of the models. The classical CNNs do not perform as well as
models that take into account the spherical geometry with spatial information,
but performs better than Baseline. However, Classical™ is not much better than
Baseline™ while having far more parameters to train, and Classical™ performs
even worse than OursDecoupled”, OursPart™, or OursFull", which have much
less training parameters.

The results of the two extreme cases - Baseline that only takes into ac-
count but ignore any spatial information and Classical that only looks into the
spatial part and discards spherical geometry - show that the voxel geometry
and neighboring voxel correlation can both capture some decent amount of in-
formation to deal with the segmentation task, but they both have something
that the other one cannot grasp, and combining the spherical geometry and
the spatial correlation can boost the performance to a promising extent.

7.5.2.3 The impact of adding an R? part to Baseline

On top of the Baseline, the easiest way to add spatial information to the purely
voxel-based framework is what was done in OursDecoupled Section 7.5.1.3 - a
GCNN on S? to learn the geometric signals in individual signals and a regular
classical CNN to take into account the local spatial information. We can see
from the results that this setup immediately boosted the performance com-
pared to the Baseline. We can also see that OursDecoupled™ performs better
than OursDecoupled, for the sake of model capacity.

7.5.2.4 The argument for OursFull not performing the best

For models of low capacity, however, we can observe from Table 7.3 and Ta-
ble 7.4 that our proposed method performs worse than OursDecoupled™. Ad-

67



7.5. EXPERIMENTS AND RESULTS

Experiment CSF Subcortical WM aM
Class
I:R3 RN
Classical” [0.804 £ 0.053 | 0.583 & 0.036 | 0.856 £ 0.011 | 0.893 % 0.009
T RBxS SR
Baseline™ 07754 £ 0.069 | 0.334 £ 0.037 | 0.805 = 0.013 | 0.841 £ 0.012
OursDecoupled™ | 0.827 £ 0.047 | 0.716 +0.044 | 0.878 = 0.009 | 0.903 % 0.01
OursPart™ 0.834 £ 0.045 | 0.752 £ 0.034 | 0.878 £ 0.009 | 0.914 % 0.007
OursFull™ 0.788 £ 0.05 | 0.746 £0.034 | 0.877 = 0.008 | 0.909 % 0.006

Table 7.5: Statistics of Dice scores from experiments using models of high
capacity.

Experiment

CSF Subcortical WM GM Overall
Class
I:R*—>R
Classical ™ | 0.815+0.061 | 0.702+0.026 | 0.834£0.022 | 0.89+0.011 [ 0.85440.012
I'R®*xS? >R
Baseline™ 0.778 £0.07 | 0.379£0.065 | 0.784 £0.024 | 0.848+£0.02 | 0.792+0.013
OursDecoupled ™ 0.865 £ 0.061 | 0.783 +£0.035 | 0.867 £ 0.017 | 0.902+£0.019 | 0.879 £0.011
OursPart™ 0.819 £0.065 | 0.816 +0.031 | 0.845+0.019 | 0.936 +0.011 | 0.888 £ 0.009
OursFull™ 0.896 +0.042 | 0.826 £0.023 | 0.857+0.017 | 0.9124+0.014 | 0.883 £ 0.008

Table 7.6: Statistics of classification accuracy from experiments using models
of high capacity.

ditionally, for models of high capacity, even though we can see that QursFull™

and OursPart™ improve from their low capacity counterparts more than QursDecoupled *,
OursFull™ does not perform as well as OursPart™ as shown in Table 7.5 and

Table 7.6. This differs from our expectation since models with full roto-
translational equivariance should be more capable of handling variances in

data, thus should have better performance. Recall that the HCP dataset[46]

contains scans that are preprocessed and aligned with axes, thus there is little

variance in rotation. In this case, enforcing SFE(3) equivariance in the model

can be futile and be even confusing for the model.

To verify this theory, we evaluated all models on augmented data. Taking
the N3 (N = 1 for Baseline models and N = 7 for the rest) grids of voxels we
extracted from the test scans, we randomly rotate each grid using rotations
sampled from the octahedral symmetry group to create a new augmented test
set. In this way, we do not need to interpolate while rotating, and the rotations
are not aligned with the ones we used in our models to rotate the kernels while
still resemble a discretization of the SO(3) group.

7.5.2.5 Experiments with synthetically rotated test set

For models with both low and high capacity, OursFull models have the best
performance among other models. OursFull” remains 0.823 accuracy, de-
creased from 0.856 while OursFull™ decreased from 0.883 to 0.84. This is
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Experiment CSF Subcortical WM GM
Class
I:R3 SRV
Classical” | 0.603+0.103 | 0.127£0.015 | 0.706 £ 0.015 | 0.57 & 0.039
T R3xS?=R
Baseline” 0.735£0.076 | 0.158 =0.037 | 0.799 = 0.013 | 0.829 £ 0.011
OursDecoupled 0.708 £ 0.073 | 0.531+0.033 | 0.801 = 0.012 | 0.851 =+ 0.006
OursPart” 0.714 £0.069 | 0.536 £ 0.035 | 0.804 £ 0.011 | 0.851 £ 0.008
OursFull 0.737 £0.065 | 0.517 +0.033 | 0.823 +0.01 | 0.867 = 0.009

Table 7.7: Statistics of dice scores from experiments using rotated data and
models of small capacity.

Experiment

CSF Subcortical WM GM Overall
Class
I:R3 =RV
Classical” [ 0.645+0.109 | 0.282+0.045 | 0.78140.04 [ 0.436£0.044 | 0.579 £0.02
I'R3’xS? >R
Baseline” 0.733+0.085 | 0.12+£0.035 | 0.802+0.024 | 0.852+0.016 | 0.786 & 0.011
OursDecoupled” 0.755 £ 0.076 | 0.528 £0.037 | 0.779+£0.02 | 0.871 +£0.013 | 0.81 & 0.008
OursPart” 0.69+0.084 | 0.599 +0.033 | 0.791+0.02 | 0.852=+0.018 | 0.809 = 0.009
OursFull 0.79 +0.067 | 0.591 +0.026 | 0.835 +0.023 | 0.84+0.022 | 0.823 +0.01

Table 7.8: Statistics of classification accuracy from experiments using rotated
data and models of low capacity.

Experiment

CSF Subcortical WM GM
Class
I:R*SRY
Classical © | 0.54+£0.105 [ 0.169+0.01 | 0.59+0.015 [ 0.617 +0.018
I'R3xS* SR
Baseline* 0.733 £0.076 [ 0.2824+0.036 | 0.799 + 0.013 [ 0.839 +£ 0.012
OursDecoupled™ | 0.702 +0.075 | 0.497 +0.037 | 0.8+0.011 | 0.829 + 0.009
OursPart™ 0.734£0.063 | 0.58+0.033 | 0.806 & 0.011 | 0.862 & 0.006
OursFull ¥ 0.74+0.06 | 0.604 +0.034 | 0.835 +0.01 | 0.877 £ 0.008

Table 7.9: Statistics of dice scores from experiments using rotated data and
models of high capacity.

Experiment

CSF Subcortical WM GM Overall
Class
I:RP=>RY
Classical * [ 0.611+0.095 | 0.494 £ 0.025 [ 0.506 £ 0.022 | 0.551 +0.025 | 0.53 +0.015
I:R°x§" =R
Baseline ™ 0.769 £ 0.074 | 0.307 +0.059 [ 0.782+0.024 [ 0.846 +0.02 | 0.786 & 0.013
OursDecoupled™ | 0.756 £ 0.082 | 0.597 £0.034 | 0.797 £0.019 | 0.81£0.019 | 0.791 £ 0.01
OursPart* 0.716 £ 0.078 | 0.635 +0.033 | 0.78 £0.021 [ 0.876 = 0.012 | 0.819 & 0.008
OursFull ¥ 0.88 & 0.048 | 0.659 £ 0.028 | 0.83 £ 0.019 [ 0.868 +0.018 | 0.84 & 0.009

Table 7.10: Statistics of classification accuracy from experiments using rotated
data and models of high capacity
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Dice scores of CSF from models of low capacity. Dice scores of subcortical from models of low capacity.
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Figure 7.6: Comparison of Dice scores of the 4 classes from the original and
rotated data using models of low capacity.

illustrated in Table 7.8 and Table 7.10. In terms of Dice scores, OursFull
performs the best for all classes but the subcortical class, and QursFull™ has
the best results for all classes, as shown in Table 7.7 and Table 7.9.

Comparison figures of the 4 classes for models with both low and high
capacity can be found in Figure 7.6 and Figure 7.7, while comparisons of
overall accuracies can be found in Figure 7.8. We can see again from the
model with no spatial equivariance (OursDecoupled), the model with partial
spatial equivariance (OursPart), and the model with full spatial equivariance
(OursFull) that the gap between the performances on original data and rotated
data shrink.

It is worth noticing that Baseline models almost do not suffer from per-
formance drop while applied with rotated data. It is an SO(3) network that
preserves rotational equivariance on S%. For a single-voxel input, the network
is very resistant to variations, but the performance of this model is limited
due to the lack of spatial interaction and thus in general worse than models
with spatial interplay.

Examples of predictions using the rotated test set can be found in Fig-
ure 7.9b. It is easily observed that the classical CNN does not generalize well
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to the data variation, while models with rotational symmetry (either SO(3),
T3 x SO(3), or SE(3)) generate better results. However, it is also noticeable
that for a challenging minority class, subcortical region, OursFull*™ performs
better than the others while other models with some rotational equivariance
do not predict a concentrated subcortical region. Zoom-in examples can be
found in Figure 7.11. Predictions from Baseline are omitted from Figure 7.11
since it does not have the same level of performance.

Dice scores of CSF from models of high capacity. Dice scores of subcortical from models of high capacity.
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Figure 7.7: Comparison of dice scores of the 4 classes from the original and
rotated data using models of high capacity.

We can see clearly from Figure 7.10 as well that the performance of classical
CNN decreases the most using rotated data, and the decrease of performance
goes down when we enforce more spatial equivariance in the model. Baseline
models decrease the least, but again, the performance is limited due to the lack
of information in R3. Furthermore, the SE(3) equivariance is implemented
separately for the spatial and spherical parts, and is with interpolation in the
spatial part, thus there are some errors introduced to it. Therefore, OursFull
models always perform the best when there is variation in the data.
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Overall accuracies from models of low capacity. Overall accuracies from models of high capacity.
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Figure 7.8: Comparison of overall accuracies from the original and rotated
data.

(a) Predictions from test set using orig- (b) Predictions from test set us-
inal data. ing rotated data.

Figure 7.9: Examples of predictions. Figure 7.9a shows the predictions from
the original test set, and Figure 7.9b shows the predictions from the aug-
mented (rotated) test set. In Figure 7.9a, from left to right are ground-
truth, Classical™, Baseline™, OursDecoupled™, OursPart*, and OursFull™.
In Figure 7.9b, from left to right are Classical™, Baseline™, OursDecoupled ™,
OursPart™, and OursFull™. The colors of CSF, subcortical, WM and GM are
red, blue, white, and grey respectively.

7.5.2.6 Rotational invariance for Type 1 discretization

Further more, we have also experimented with networks that have some ro-
tational invariance but in the classical CNN setup - viewing the DWI images
as I : R3 — RY. Taking the classical CNN setup we have in Section 7.5.1.1,
we rotate the CNN kernels in each layer using the same rotations as in Sec-
tion 7.5.1.4 to discretize SO(3). As was done above, we use the 60 rotations
from the icosahedral symmetry group as well as only 12 of them (1 at each
rotation axis) to act on the CNN kernels. In each layer, one rotation of the
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Performance decrease from models of low capacity. Performance decrease from models of high capacity.
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Figure 7.10: Logarithm of the ratio of decrease of performances using rotated
data compared to using original data.

(a) A test scan slice. (b) Another test scan slice.

Figure 7.11: Showcases of zoom-in regions from predictions of the rotated test
set. For both scan slices presented, from left to right, top to bottom, are the
ground-truth, prediction from OursDecoupled™, OursPart™, and QursFull™.

kernel is only convolved with the response of the corresponding rotation from
the last layer, thus this network is in fact 60 (or 12) independent networks,
in which they share the same weights of different rotations. At the end, we
take the average of the 60 (or 12) responses from all the rotations. With a
small trial, we discovered that, as expected, even though this type of network
does not perform as well as our spatial-directional GCNN as a whole, the per-
formance decreases little in the full icosahedral group case with 60 rotations
when tested with augmented data, and decreases more when only a subset
(12) of the group is used to rotate the kernels. See Table 7.11.

This further explains that having rotational equivariance in the model
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Rotations ‘ Data Type CSF Dice Subcortical Dice ‘ WM Dice ‘ GM Dice Overall ACC
90 —5—5—5— FC, #Param 13539

Part(12) Original 0.798 4+ 0.058 0.425 4+ 0.052 0.843 +0.01 0.875+0.01 | 0.838 £0.011

Rotated 0.71+0.074 0.306 £0.042 | 0.755 £ 0.014 | 0.796 + 0.014 | 0.75 4 0.013

Full(60) Original | 0.754 £0.065 | 0.4854+0.059 | 0.823+0.014 | 0.848+0.02 | 0.818 +0.016

Rotated 0.75 £ 0.063 0.479 + 0.059 0.8134+0.013 | 0.838 +0.02 | 0.809 +0.016

Table 7.11: Augmented CNN tested with original and rotated data.

makes it much more robust to variance in the data - which, with no need of
explanation, is inevitable when dealing with real-world raw data. Averaging
rotational copies of a classical CNN achieves the goal of dealing with variance
in data, but for data formats like DWI of which signals in voxels have some
geometric structure, our full SE(3) GCNN provides the best solution.

7.6 Discussion

The resistance to data variation that has been shown by our fully equivariant
network was demonstrated on synthetically augmented data - with 90-degree
rotations. Even though this synthetic augmentation did not cost any loss
of signals or any interpolation-caused inaccuracy, it is desirable to verify the
robustness of more complex group actions in CNNs using data with real-world
variations (e.g. subjects scanned in different positions). Acquiring this type
of data is another challenge.

7.7 Conclusion

We presented a systematic study of GCNNs of various group actions with
the application to DWI segmentation. We interpreted images of DWI scans
(I : R? xS? — R) as functions in the homogeneous spaces of groups with
different complexities of symmetries and provided a detailed analysis of how
different levels of complexities of these symmetries impact the performance
of the network. From the experiments, we conclude that 1) exploiting the
spatial-directional interactions in the data is crucial for efficient learning of
the features; 2) incorporating complex group actions of 3D rigid motions -
SE(3) - might not be essential for highly aligned and preprocessed data like
the human connectome project (HCP) [46], but it shows significantly higher
resistance to variations in data. For real-world raw data in which positions of
subjects are not perfectly aligned as in [46], our proposal shows great potential.

74



Chapter 8

Discussion and Future Work

We proposed a series of works generalizing CNNs to more complex group
actions (and their symmetries) than translation, mainly in the application
of DWI segmentation. We first proposed a framework that treats individual
voxels as functions on a general manifold, lifting functions locally to a 2D
rotation group. The pseudo-convolutions are then performed in these local
groups, after which we summarize the rotations to obtain local rotational
invariance. This framework breaks equivariance, yet the elimination of path
dependency of parallel transport provides us with robust features that allow
us to showcase performances at the same level as the state-of-the-art. We then
presented models in which true group convolutions are performed. The data
were measured on the homogeneous spaces (R, S%,R? x S?) of the groups
that they were lifted to (T3, SO(3),T? x SO(3),SE(3)). We experimented
with cases where 1) the spherical part of the data is discarded; 2) the spatial
part of the data is discarded; 3) both spherical and spatial aspects are taken
into account in the modeling. From the comparison of the three cases, we
have observed the uniquely important role each part plays in performing the
task, and the combination of both spherical and spatial aspects gives us the
best performance. Additionally, for case 3), we experimented with different
types of actions in the spatial part in which we gradually incorporated more
rotational equivariance in the model: a) translation action; b) roto-translation
in which the rotations are partly aligned with the spherical rotation actions; c)
roto-translation that has fully aligned rotation actions with the spherical part.
From the experiments, we observe that case ¢) does not seem to bring better
performance than a) and b). One possible cause for this result is that the type
of data we used is highly processed and is with a form of alignment, such that
the enforced rotational equivariance in the spatial aspect might actually have
little effect. Therefore, we synthetically rotated the test set and tested all the
models on it. The results showed that with more equivariance imposed in the
model, the more resistant the model is to this data variation.

Even though the synthetically rotated data are generated using random
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samples from an octahedral rotation group that does not introduce inter-
polation-induced artifacts, it is desirable in the future, though, to verify the
resistance of our proposed methods on real-world raw data with no manual
alignment. Acquiring this type of data, of course, becomes another challenge.
Moreover, having established generalized CNNs with natural group actions
according to the data type, we can apply them to other data modalities, e.g.
geo-spatial data, satellite data, etc, in that they have data structures that
cannot be fully modeled simply by translation action and that the analyses
of these data have potential in aiding a wide range of tasks that were mostly
done manually. It is, in like manner, desirable to perform different tasks on
diffusion data other than segmentation, e.g. tracking fibers in a brain.
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