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Abstract

A major concern of Machine Learning (ML) models is their opacity. They are deployed
in an increasing number of applications where they often operate as black boxes that
do not provide explanations for their predictions. Among others, the potential harms
associated with the lack of understanding of the models’ rationales include privacy
violations, adversarial manipulations, and unfair discrimination. As a result, the
accountability and transparency of ML models have been posed as critical desiderata
by works in policy and law, philosophy, and computer science.

In computer science, the decision-making process of ML models has been studied by
developing accountability and transparency methods. Accountability methods, such
as adversarial attacks and diagnostic datasets, expose vulnerabilities of ML models
that could lead to malicious manipulations or systematic faults in their predictions.
Transparency methods explain the rationales behind models’ predictions gaining the
trust of relevant stakeholders and potentially uncovering mistakes and unfairness in
models’ decisions. To this end, transparency methods have to meet accountability
requirements as well, e.g., being robust and faithful to the underlying rationales of a
model.

This thesis presents my research that expands our collective knowledge in the areas
of accountability and transparency of ML models developed for complex reasoning
tasks over text. First, this thesis contributes with two methods for accountable ML
models. They generate adversarial inputs and a diagnostic dataset demonstrating
significant model vulnerabilities and suggesting ways to correct those. In the area
of transparency of ML models, this thesis advances the state-of-the-art with methods
generating textual explanations that are further improved to be fluent, easy to read,
and to contain logically connected multi-chain arguments. Finally, this thesis makes
contributions in the area of diagnostics for explainability approaches with a set of
properties for evaluating existing explainability techniques and methods for enhancing
those further in produced explanations. All of the contributions are empirically tested
on complex reasoning tasks over text, including fact checking, question answering,
and natural language inference.



Resumé

En veasentlig kilde til bekymring i forskning om maskinleeringsmodeller er modellernes
uigennemskuelighed. Sddanne modeller benyttes i stigende grad til anvendelser, hvor
de opererer som “black boxes” som ikke forklarer deres forudsigelser eller beslutninger.
Blandt de potentielle farer knyttet til mangel pa forstielse for modellernes rationaler
er kreenkelser af privatlivet, fjendtlig manipulation og uretfeerdig forskelsbehandling.
Som fglge heraf er ansvarlighed (en. accountability) og gennemskuelighed (en. trans-
parency) for maskinleringsmodeller blevet foresldet som kritisk vigtige designkriterier
af forskning i politik, jura, filosofi og datalogi.

I datalogi er maskinleeringsmodellers beslutningsprocesser blevet undersggt ved
udvikling af metoder for ansvarlighed og gennemskuelighed. Flere metoder for under-
spgelse af ansvarlighed, herunder brugen af fjendtlige angreb og diagnostiske dataseet,
har pavist eksistensen af sarbarhed for modeller, og at sidanne sarbarheder kan fgre til
ondsindet manipulation af resultater, eller systematiske fejl i modellernes forudsigelser.
For at impdega dette, er det ngdvendigt, at metoder til at sikre gennemskuelighed
tillige opfylder en raekke krav for ansvarlighed, f.eks. at udvise robusthed og vare tro
mod de underliggende rationaler i modellerne.

Denne afhandling fremlegger min forskning, som udvider den samlede viden inden
for ansvarlighed og gennemskuelighed for maskinleringsmodeller, som er udviklet
til at 1gse opgaver, der involverer komplekst reesonnement om tekstdata. For det
forste bidrager afthandlingen med to ny metoder for ansvarlige maskinleringsmodeller,
herunder skabelsen fjendtlige input og et diagnostisk datasaet, som paviser vaesentlige
sarbarheder i modeller, og foreslar metoder til at afhjelpe disse sarbarheder. In-
den for gennemskuelighed af maskinleringsmodeller, bidrager afhandlingen med
metoder til automatisk skabelse af forklaringer pa skriftform, som yderligere forbedres
til at benytte flydende sprog, er letleeselige og indeholder logisk sammenhangende
argumentationskader. Sluttelig bidrager afthandlingen til diagnostik af metoder til fork-
larlighed af maskinleringsmodellers forudsigelser ved at definere en raekke egenskaber
med hvilke allerede eksisterende forklarlighedsmetoder - og metoder til forbedring
af sddanne - kan evalueres. All afhandlingens bidrag er eksperimentelt afprgvet pa



problemer, som involverer komplekst reesonnement om tekstdata, herunder faktatjek,
automatisk besvarelse af spergsmal, og fglgeslutninger i naturligt sprog.
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Executive Summary

1.1 Introduction

Recent progress in the field of machine learning and specifically in natural language
processing has been driven by the development of large models pre-trained on massive
amounts of data (Vaswani et al., 2017; Devlin et al., 2019). Notably, such models
have been used to extend the state of the art in a broad range of tasks (Wang et al.,
2018) and have been deployed in an increasing number of downstream applications
(Angwin et al., 2022; Obermeyer et al., 2019; Barocas and Selbst, 2016; Lambrecht
and Tucker, 2019). On the other hand, the models’ increased architectural complexity
has raised concerns about the decreased ability of humans to understand the opaque
decision-making processes of these models (Raji et al., 2020; Bender et al., 2021).
To this end, methods for accountable and transparent machine learning models have
been developed that verify and unveil the reasons behind the models’ predictions
(Raji et al., 2020). These methods assess critical aspects of machine learning models
beyond the achieved task performance, such as vulnerability to adversarial decision
manipulations (Kreps et al., 2022; Agarwal et al., 2019), unfair embedded biases
towards certain groups and individuals (Kiritchenko and Mohammad, 2018; Raji et al.,
2020; Ntoutsi et al., 2020), privacy violations (Carlini et al., 2019), and generalisation
to out-of-distribution samples (Koh et al., 2021). Accountability and transparency
methods can further be used as means to engender trust in a model’s decisions (Ribeiro
et al., 2016b), expand the knowledge about a downstream task (Forde et al., 2022;
Ghandeharioun et al., 2022) and debug and improve a model’s decision-making
process (Anders et al., 2022; Abid et al., 2022).

This section introduces accountability and transparency methods for machine learn-
ing models from the perspective of computer science and, in particular, for complex
reasoning tasks over text, such as fact checking, question answering, and natural
language inference. The papers included in the following chapters of this Ph.D. thesis
are cross-referenced where relevant. Section 1.2 provides a detailed overview of
the contributions of the separate publications included in this Ph.D. thesis in the
areas of accountable and transparent machine learning models. Section 1.3 offers an
introspective summary of the contributions and suggests prospects for future work.



1.1.1 Accountability

The accountability of a machine learning model is verified by methods that analyse
the model’s outputs on specifically crafted instances in order to detect and correct
for flaws in its reasoning process, such as reliance on spurious correlations. To this
end, accountability methods usually produce datasets used to inspect whether the
model’s outputs are the desired outcomes for the instances in the created dataset. The
produced datasets can be challenging (Nie et al., 2020; Atanasova et al., 2022) or
adversarial in nature (Atanasova et al., 2020c; Song et al., 2021). They can reveal
specific model vulnerabilities such as a model’s reliance on spurious features (McCoy
et al., 2019; Schuster et al., 2019), vulnerability to maliciously manipulated inputs
(Atanasova et al., 2020c; Song et al., 2021; Guo et al., 2021), lack of generalisation
to out-of-distribution samples (Koh et al., 2021), and specific reasoning skills that
a model failed to acquire (Dua et al., 2019; Talmor et al., 2020). Moreover, such
datasets can steer the development of model architectures designed to handle the
revealed model vulnerabilities (Zhao et al., 2020). They can also provide additional
training data points to enhance the performance of existing models on the challenges
presented by these datasets (Nie et al., 2020; Schuster et al., 2021).

1.1.1.1 Diagnostic Challenge Datasets

Owing to improvements in computational power and the development of effective
machine learning models, such as models with the Transformer architecture (Vaswani
et al., 2017; Devlin et al., 2019; Liu et al., 2019) and pre-trained language models
(Howard and Ruder, 2018; Devlin et al., 2019; Liu et al., 2019; Brown et al., 2020),
the time for achieving near-human performance on new tasks has decreased to a
few months (Kiela et al., 2021). Existing work, however, has questioned whether
a model’s performance on a dataset indicates it has learned meaningful features
required to solve the task underlying the dataset (Bowman and Dahl, 2021). Studies
have found that, on the contrary, machine learning models often learn to rely on
spurious correlations located in the training data (McCoy et al., 2019; Ribeiro et al.,
2020). These findings have motivated the research on challenge datasets that diagnose
whether models learn specific meaningful features and do not overfit to correlations
in the training set. Moreover, Dua et al. (2019); Nie et al. (2020); Kiela et al. (2021)
propose dynamic benchmarks where challenge datasets are collected via an iterative
human-and-model-in-the-loop procedure. In the first step of the procedure, human
annotators collect a challenge dataset for which a given model cannot predict the
correct labels. In the second step, the training split of the challenge dataset is used to
train a better-performing model. The two steps can be applied repeatedly, creating a
moving target, rather than a static benchmark that models quickly overfit to.
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Predominantly, challenge datasets are designed around particular sets of reasoning
skills such as logical reasoning (Liu et al., 2020a), linguistic capabilities (Ribeiro et al.,
2020; Saha et al., 2020), and common-sense inference (Zellers et al., 2018) (see
Section 1.1.4 for an overview of reasoning skills). There also exist challenge datasets
that test a model’s ability to detect when the provided input is insufficient to make
the correct decision (Rajpurkar et al., 2018; Atanasova et al., 2022). Other challenge
datasets are contrastive in nature and verify whether a model can detect minimal
changes in the input that lead to a change in the prediction (Gardner et al., 2020;
Kaushik et al., 2020; Sen et al., 2021).

Challenge datasets can further be categorised as model-agnostic (Talmor et al.,
2020; Saha et al., 2020; Schuster et al., 2019) or created with a model in the loop
(Nie et al., 2020). Model-agnostic datasets are usually produced manually, where
expert knowledge is utilised to construct tests for different skills. There is, however,
no guarantee that the resulting dataset will cover potential model flaws. On the other
hand, challenge datasets created with a model in the loop could cover deficiencies only
of the employed models. The latter can be produced manually, where data creators
are incentivised to deceive a given model (Wallace et al., 2019b; Nie et al., 2020) or
with automated data generation techniques (Atanasova et al., 2022; Le Bras et al.,
2020).

This thesis presents advances in the area of challenge datasets for model account-
ability with novel methodology, insights, and models’ accountability improvements.
Paper 1 (§2) presents a novel automated method for constructing a contrastive model-
in-the-loop challenge dataset to study what information models consider sufficient
for producing a prediction. In knowledge-intensive tasks such as fact checking, it is
markedly crucial to make predictions only when the presented input information is
sufficient and otherwise indicate it is not enough. The technique introduced in this
publication employs three separate models in the loop to preserve validity beyond a
single model. The latter also allows one to compare and contrast different models’
deficiencies. The introduced method is further used to improve models’ performance
on instances with insufficient evidence information.

Paper 5 (§6) presents a challenge dataset for multi-hop reasoning for the task of fact
checking. The dataset contains real-world claims with manual annotations of sets of
logically connected evidence pieces that lead to the final verdict of a claim. It enables
accountability investigations of whether a model employs multi-hop reasoning by
logically connecting evidence chunks needed for a prediction as opposed to predicting
based on a single inference step. Based on the challenge dataset, the publication
presents findings on the multi-hop reasoning capabilities of two existing models where
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an architecture designed specifically to conduct multi-hop reasoning performs the
best.

1.1.1.2 Adversarial Attacks

Adversarial attacks reveal model vulnerabilities to changes in the input that ma-
nipulate the model to produce a target prediction, different from the correct one.
Adversarial attacks can be performed at training or test time. Training-time adversarial
attacks (Qi et al., 2021; Kurita et al., 2020; Wallace et al., 2021) manipulate either
the model weights or the training data, assuming unrestricted access to the training
process of a model. Test-time adversarial attacks unveil model vulnerabilities of al-
ready trained models and can assume access to the parameters of a model — white-box
attacks (Atanasova et al., 2020c; Guo et al., 2021), or no access to them — black-box
attacks (Chen et al., 2021; Berger et al., 2021).

Adversarial attacks usually perform manipulations of the input, which are the
smallest possible changes required to achieve a target prediction. For textual inputs,
changes can be performed at character (Eger et al., 2019), word (Mozes et al., 2021;
Zang et al., 2020), or sentence level (Jia and Liang, 2017; Iyyer et al., 2018). Due to
the discrete nature of textual inputs, performing input manipulations is additionally
challenging as there is a reduced number of possible manipulations that preserve the
validity of the input. In contrast, in tasks where the input spaces are continuous, e.g.,
image and time-series analysis, it is possible to perform numerous input perturbations
that do not harm the overall realistic outlook of the input (Papernot et al., 2016;
Goodfellow et al., 2014; Szegedy et al., 2013) and are sometimes even invisible to the
human eye (Szegedy et al., 2013; Moosavi-Dezfooli et al., 2016).

The potency of adversarial attacks is commonly measured as the number of samples
where a model’s prediction can be manipulated. One example of a potent adversarial
technique is the universal adversarial attack, which degrades the performance of a
model by inserting a particular textual sequence, termed as a trigger, in all instances
(Wallace et al., 2019a; Song et al., 2021). For a more detailed overview of adversarial
attacks, refer to Xu et al. (2020); Chakraborty et al. (2021).

In Paper 2 (§3) of this thesis, I present a novel method for generating test-time
white-box adversarial attacks. It draws on the universal adversarial attack approach,
which suffers from two precluding deficiencies when applied for inference tasks such as
fact checking. First, universal adversarial attacks generate triggers that often invert the
meaning of the instances they are inserted in, thus changing also their gold standard
label. The method proposed in the paper mitigates this with a novel extension to
the universal adversarial attack approach that generates triggers preserving the label
of the original instance. Second, universal adversarial attacks produce semantically
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invalid inputs, as they simply concatenate triggers to existing samples. The method
proposed in the paper alleviates this with a conditional language model trained to
generate semantically valid statements, which include the found universal triggers.
The method is empirically tested with a model for the task of fact checking, where the
generated adversarial claims are highly effective in fooling the model and lead to a
performance decrease of 23.1 F} score points compared to the model’s performance
on the original claims. At the same time, the generated attacks constitute valid fact
checking instances as they have preserved the gold label and the semantic validity of
the input.

1.1.2 Explainability

Machine learning models have been heavily criticized for their opaque nature
(Zarsky, 2016; Pasquale, 2015). As a result, explanations of their decisions are
increasingly needed for debugging, measuring bias and fairness, instilling trust, and
making model behavior transparent in general. European law has also introduced
a requirement for "the right ...to obtain an explanation of the decision reached"
(Goodman and Flaxman, 2017). Efforts to make models’ decisions transparent have
led to a growing influx of explainability approaches. What follows next is an overview
of common types of explainability techniques. For more details, I refer the reader to
Ras et al. (2022); Molnar (2022).

1.1.2.1 Post-hoc Saliency Explanations

Post-hoc explanations reveal the decision process of an already trained model and
can be applied to various types of models and different data modalities. Saliency
explanations are the most prominent type of post-hoc explanations. They highlight
regions of the input according to the region’s importance for the prediction of a
model. Saliency explanations can be gradient-based, such as the Vanilla Gradient
(Simonyan et al., 2013), which computes the gradient of the output w.r.t. the input.
Follow-up gradient-based approaches (Kindermans et al., 2016; Springenberg et al.,
2014) improve saturation and stability problems of the former. Saliency explanations
can also be perturbation-based, e.g., Occlusion (Zeiler and Fergus, 2014), and Shapley
Value Sampling (Shapley, 1953), which estimate the contribution of input regions to a
model’s prediction by occluding regions from the input and observing the correspond-
ing changes in the model’s prediction. Finally, simplification-based explanations such
as LIME (Ribeiro et al., 2016a) train a simple self-interpretable model to approximate
the local decision boundary of the opaque model for each instance.

Contrastive explanations are another type of post-hoc explanations. They find small
changes to the input that cause a change in the prediction of a model (Stepin et al.,
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2021). Studies in social science (Lipton, 1990) argue that contrastive explanations are
more intuitive to end users as they unveil the causal factors that explain why an event
occurred instead of an alternative event. Contrastive explanations can be constructed
by manipulations either at the discrete textual input level or at a latent representation
level of a given model. Methods for contrastive explanations at the input level are
formulated as search problems where a model, e.g., a language generation model, is
trained to apply edit, replace or delete operations at different positions of the input
until a change in the prediction of a model is achieved (Wu et al., 2021; Ross et al.,
2021). By contrast, Jacovi et al. (2021) observe changes in the predictions of a model
caused by projecting its latent representations to a similar representation space where
only a particular concept, such as gender, is removed.

1.1.2.2 Natural Language Explanations

Natural language explanations (NLEs) explain model predictions with free text,
which contrary to other explanation types, is a natural means of communication
that does not require a preliminary clarification phase. Furthermore, NLEs are not
constrained to contain only input segments but can also contain generated text that
provides more explanation of the model’s rationales for the prediction. This gives
them greater expressive power in terms of the reasoning they can convey, especially
with complex reasoning tasks (see Section 1.1.4) involving rationales beyond what is
explicitly stated in the input. Existing datasets with NLEs include the tasks of natural
language inference (Camburu et al., 2018; Do et al., 2020), common sense reasoning
(Rajani et al., 2019; Zellers et al., 2019), fact checking (Alhindi et al., 2018; Kotonya
and Toni, 2020b), and relation extraction (Hancock et al., 2018; Wang* et al., 2020).
For a longer discussion of datasets with NLEs, I refer the reader to Wiegreffe and
Marasovic (2021).

NLEs are typically produced in a supervised way where models generating NLEs can
be trained jointly or separately from the models for the downstream task (Camburu
et al., 2018). Prior work has found that training the two tasks jointly leads to more
label-informed explanations (Wiegreffe et al., 2021). The explanations can also be
conditioned on the predicted label (Hase et al., 2020; Kumar and Talukdar, 2020).

With respect to the input, produced NLEs can be extractive — selected important
portions of the input text that constitute a free text explanation, or abstractive —
generated text explaining the model’s reasoning in words that do not necessarily
appear in the input. Extractive NLE techniques still produce natural text, as they
usually choose whole sentences from the input (Atanasova et al., 2020b; Thorne et al.,
2018). In knowledge-intensive tasks such as question answering and fact checking,
producing short extractive explanations from long input documents is often regarded
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as part of the task, and the performance on the explanation and the downstream task
is judged jointly with a unified measure (Thorne et al., 2018; Jiang et al., 2020; Trivedi
et al., 2019; Petroni et al., 2021). Compared to abstractive NLEs, extractive NLEs
require less training data, which makes them more suitable for low-resource scenarios.
Extractive NLEs also produce explanations that are always factual w.r.t. the input, i.e.,
they contain only information that is correct given the input. The latter cannot be
guaranteed for abstractive generated NLEs. On the other hand, abstractive NLEs can
be more coherent, provide more information about the model’s rationales, and have
less redundant information compared to extractive ones (Jolly et al., 2021).

This thesis makes important contributions to the field of explainability establishing
methods and datasets for generating NLEs given limited resources and complex
reasoning tasks such as fact checking. In Paper 3 (§4), I introduce the task of generating
NLEs for fact checking veracity predictions. Generating veracity explanations is a
challenging task, especially when considering real-world claims where training data is
limited and claim verification requires constructing fact checking evidence of multiple
arguments involving complex reasoning capabilities. In addition, most NLEs for
existing tasks contain no more than one sentence per instance. At the same time,
the explanations produced for real-world claims have several sentences, which also
indicates the complex reasoning required for veracity prediction. Paper 3 proposes a
method that generates fact checking explanations in an extractive way and jointly with
the task at hand. I find that optimising explanation generation jointly with veracity
prediction produces explanations that achieve better coverage and overall quality and
are better suited for explaining the correct veracity label than explanations learned
solely to mimic human justifications.

As extractive NLEs can lack fluency and coherence and can contain redundant
information, Paper 4 (85) introduces a method to improve the fluency and readability
of fact checking NLEs. The method performs post-editing of extracted NLEs and is
the first to explore an iterative unsupervised edit-based algorithm using only phrase-
level edits. The proposed method also leads to computationally feasible explanation
generation solutions for long text inputs. More importantly, the resulting explanations
are found to be fluent, easy to read, and concise.

Finally, Paper 5 (§6) provides a supervised extractive dataset for producing fact
checking explanations that form chains of logically connected arguments. Utilising the
dataset, the paper documents the first study on how models construct rationales to
verify political claims requiring multi-hop evidence reasoning. The main finding of the
study is that the best performance is achieved with an architecture that specifically
models multi-hop reasoning over evidence pieces in combination with in-domain
transfer learning.
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1.1.2.3 Self-Interpretable Models

A simple solution for achieving model transparency is using self-interpretable models
that produce predictions in a way that can be interpreted by a non-expert from their
inner workings. Examples of self-interpretable models are linear regression (Ge
et al., 2018), decision trees (Prentzas et al., 2019), Bayesian models (Letham et al.,
2015), and general additive models (Hastie, 2017). These models usually have
simple architectures, which struggle to achieve good performance, especially on
non-structured input such as text. On the other hand, existing work has attributed
self-interpretable capabilities to models using the attention mechanism (Wiegreffe and
Pinter, 2019; Meister et al., 2021), which achieve high performance on many tasks.
However, the use of attention weights as explanations has also met criticism (Bastings
and Filippova, 2020) as they are not always faithful to the prediction rationale of the
underlying model (Jain and Wallace, 2019; Wiegreffe and Pinter, 2019). One can
also often find a different set of attention weights resulting in the same prediction
(Serrano and Smith, 2019).

In Paper 5 (§6) of this thesis, I employ eXtra-hop attention to model the interaction
between evidence sentences for fact checking claims. The eXtra-hop attention intro-
duces a way to structure text where the important evidence sentences are linked in
a logically connected set of arguments. One of the research questions of the paper
explores whether eXtra-hop attention indicates which are the important evidence
sentences from the input document for predicting the target task of fact checking.
In fact, I find that the model assigns higher eXtra-hop attention weights to evidence
sentences employed for the prediction as opposed to the remaining sentences in the
input document.

1.1.3 Diagnostic Explainability Methods

The overwhelming influx of explainability approaches increases the number of
different explanations that can be produced for a model’s prediction (Neely et al.,
2021). An open question becomes which explainability approaches produce better-
quality explanations and which faithfully relay the reasons behind the decisions of a
model. Existing studies (DeYoung et al., 2020a; Adebayo et al., 2018, 2022; Ding and
Koehn, 2021) point that explainability approaches can be unfaithful to the rationales
used by a model and can cover potential flaws and biases in the model’s reasoning.
Such findings call for systematic diagnostics of explainability approaches to estimate
their reliability and to motivate further progress in explainability approaches.
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1.1.3.1 Explainability Diagnostics

Explainability approaches can be assessed by human judges that estimate the utility
of explanations, e.g., for guessing the label predicted by the model (Lertvittayakumjorn
and Toni, 2019; Narayanan et al., 2018). However, human studies often suffer from
low inter-annotator agreement as the evaluation protocols can be subjective and
assess how appealing explanations are to human judges instead of evaluating their
qualities.

Another way of evaluating the utility of explainability approaches is by using
automated measures for various explanation properties. One commonly assessed
explainability property is faithfulness. It estimates whether an explainability approach
faithfully reflects the rationales used in the decision-making process of a model. While
some existing work (Alvarez-Melis and Jaakkola, 2018; Kindermans et al., 2019) esti-
mates the lack of faithfulness based on a few counter-examples, Jacovi and Goldberg
(2020) recommend the use of faithfulness evaluation measures, as in DeYoung et al.
(2020a), computing rather a degree of explanation faithfulness. Another common
evaluation measure is the extent of the explanation’s agreement with human ratio-
nales, which indicates the plausibility and appeal of the rationales to human judges.
DeYoung et al. (2020a); Ding and Koehn (2021) include measures of faithfulness,
human agreement, and others in benchmarks for saliency-based explanations.

While some existing studies (Yin et al., 2022; Arras et al., 2019; Guan et al., 2019)
evaluate explainability approaches with various measures for explainability properties,
most studies are limited in scope, exploring only one or a few properties, datasets, and
models. In Paper 6 (§7) of this thesis, I construct a comprehensive list of diagnostic
properties tied with automated measures thereof. The study provides a broad overview
and a unified comparison of different groups of common explainability approaches
across three text classification tasks and three model architectures. Stemming from
the individual property results, the central finding of this work is that gradient-based
methods have the best performance across all of the models and downstream text
classification tasks considered in this work. Other explainability techniques, such
as Shapley Value Sampling (Castro et al., 2009), LIME (Ribeiro et al., 2016a), and
Occlusion (Zeiler and Fergus, 2014) take more time to compute, are considerably less
faithful to the models, and are less consistent for similar model rationales and similar
instances.

As saliency explanations provide a score for each input segment, there is a direct
mapping between the explanation and the input. The latter enables explainability
evaluation measures based on the mapping between the input and explanation. The
same measures cannot be applied to NLEs as they contain words and rationales
not explicitly present in the input. To this end, NLEs are usually evaluated using
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simulatability studies (Hase et al., 2020; Chan et al., 2022), where humans or models
verify that the explanation indicates the label predicted by the model. Wiegreffe
et al. (2021) also evaluate whether models generating NLEs pay attention to the same
input tokens as the prediction model and whether model predictions and generated
explanations are equally robust to noise introduced in the input.

1.1.3.2 Diagnostic-Guided Explainability

Besides evaluating the qualities of existing explainability approaches, diagnostic
properties of explanations can also motivate the development of explainability tech-
niques where those properties are improved. In Paper 7 (§8) of this thesis, I present the
first method that produces property-optimised explanations in an unsupervised way.
As a result, the generated explanations have improved faithfulness to the underlying
prediction method, they better indicate the confidence of the model’s prediction and
are more consistent across similar instances. A later study proposes an explainabil-
ity approach that has improved sensitivity to adversarial perturbations of important
tokens and is more consistent across similar instances (Yin et al., 2022). In addi-
tion, Thayaparan et al. (2022) propose novel differentiable combinatorial solvers that

encode property constraints for explainable multi-hop inference.

1.1.4 Complex Reasoning in Natural Language Tasks

There has been substantial progress in natural language processing of downstream
tasks where the input has a short textual form and requires a shallow-level semantic
understanding of literal cues (Wang et al., 2018). Notably, we have witnessed the
emergence of efficient natural language processing models that can be employed to
automate a wide range of these tasks (Devlin et al., 2019; Liu et al., 2019). While such
models can reach near-human performance on these tasks, shallow-level semantic
understanding of literal cues is insufficient for many real-world natural language
processing application tasks. Many real-world tasks, such as fact checking and ques-
tion answering, require a human to possess a broad range of complex reasoning
skills. Consequently, the current prevailing hypothesis in the field of natural language
processing is that models need to possess similar reasoning skills to automate these
real-world tasks. To achieve progress on these tasks and natural language processing
in general, new benchmarks with tasks that constitute a more rigorous test of language
understanding have been proposed (Wang et al., 2019).

Some examples of complex reasoning skills include reading comprehension (Ra-
jpurkar et al., 2016), multi-hop composition (Yadav et al., 2019; Jiang et al., 2020),
and logical reasoning (Liu et al., 2020a). Reading comprehension is the ability to
deeply understand long-form textual input and locate the relevant text spans needed

1.1 Introduction

11



for correct inference. In some real-world scenarios, reading comprehension also in-
volves the ability to detect when the provided text is missing information pertinent to
drawing an inference. Building on reading comprehension skills, multi-hop compo-
sition incorporates the requirement for a model to find arguments scattered across
multiple paragraphs or documents and connect them logically into a meaningful struc-
ture of arguments, e.g., a graph, that results in a correct prediction. Logical reasoning
requires the model to deduce the logical relationship between statements in two
textual inputs. Examples of logical reasoning are comparison, negation, categorical
reasoning, disjunctive reasoning, and conjunctive reasoning.

Complex reasoning tasks require a model to obtain a combination of different
complex reasoning skills to draw a correct inference. What follows next is a brief
introduction to complex reasoning tasks central to this thesis.

1.1.4.1 Fact Checking

Fact checking is a time-consuming and elaborate task performed by human fact
checkers. Automating the process is of pivotal importance for scaling the number
of verified claims in accordance with the growing amount of misinformation and
disinformation online. Most of the existing work on automating fact checking is
concerned with predicting the veracity of a claim given evidence information (Ma
et al., 2018; Mohtarami et al., 2018; Xu et al., 2018; Augenstein et al., 2019).

The reasoning skills required for automatic fact checking of claims depend on the
nature of the employed dataset. Artificially constructed datasets (Thorne et al., 2018;
Schuster et al., 2021), where claims have been written based on Wikipedia evidence,
can involve handling negations and simple lexical and semantic matching between
the evidence and the claims. Some of them are designed to test for specific skills such
as multi-hop reasoning (Jiang et al., 2020) and tabular reasoning over structured
evidence from tables in Wikipedia (Aly et al., 2021). Fact checking datasets containing
real claims and evidence can require various complex reasoning skills, including multi-
hop, logical and mathematical reasoning, but are limited in size (Alhindi et al., 2018;
Kotonya and Toni, 2020a).

Existing work has explored the accountability of fact checking models and pointed
to the following model deficiencies. Schuster et al. (2019) were the first to reveal
that fact checking models often make predictions based solely on the claim without
consulting the provided evidence. Schuster et al. (2021) show that fact checking
models exhibit a bias for significantly higher word overlap in supporting evidence-
claim pairs over refuting pairs. Finally, Atanasova et al. (2022) (Paper 1 §2) point that
fact checking models are prone to make predictions based on insufficient information.
Thorne et al. (2019a) are the first to propose hand-crafted adversarial attacks for
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fact checking systems. In the subsequent FEVER 2.0 task (Thorne et al., 2019b),
participants designed adversarial attacks for existing fact checking systems testing for
multi-hop reasoning (Niewinski et al., 2019; Hidey et al., 2020) or generated various
attacks manually (Kim and Allan, 2019). Finally, Atanasova et al. (2020c) (Paper 2 §3)
propose a method to generate highly potent and semantically coherent adversarial
attacks in an automated way.

Saliency explanations, abstractive, and extractive NLEs have been studied to enhance
the transparency of fact checking systems. In Wikipedia-based datasets, sentences from
Wikipedia documents are extracted as explanations, and the retrieval performance of
systems is measured jointly with the verification task — a label prediction is considered
correct only when the correct evidence is found (Thorne et al., 2018). In real-world
datasets, where the claims are not artificially produced but occur naturally, summaries
of long ruling comments justifying claims are used as explanations, and generated
explanations are evaluated with ROUGE scores (Atanasova et al., 2020c; Kotonya
and Toni, 2020a). The implementation of the methods producing NLEs varies widely
and can be grouped into models optimised separately or jointly with the task at hand
(Malon, 2018; Atanasova et al., 2020c) (Papers 3 §4, 4 85, 5 §6). Existing work
also proposes differentiable theorem proving approaches, which are self-interpretable
models providing logical relations between the evidence and the claim and leading to
a prediction (Krishna et al., 2021).

1.1.4.2 Question Answering

Similar to fact checking, existing work has indicated that automatic question answer-
ing models have to learn a variety of complex reasoning skills, equivalent to human
reasoning skills, in order to perform well on the task (Rogers et al., 2021; Choudhury
et al., 2021). Challenge datasets are developed to audit question answering systems
for complex reasoning skills such as multi-hop reasoning (Yadav et al., 2019), unan-
swerable questions (Rajpurkar et al., 2016), and logical reasoning (Liu et al., 2020a).
Explanations for question answering systems are produced by extracting supporting
sentences from the provided document (Yadav et al., 2020; Thayaparan et al., 2020)
(Paper 7 §8). Another way of producing explanations for question answering systems
is by generating NLEs (Rajani et al., 2019), e.g., for common-sense multiple-choice
question answering.

1.1.4.3 Natural Language Inference

Natural language inference is the task of recognising textual entailment (Dagan
et al., 2013) between two pieces of text, namely the premise and the hypothesis.
Models have to predict the relation between the two parts, which could be entailment,
contradiction, or neutral. Multiple challenge datasets have been developed to audit
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the reasoning capabilities of natural language inference models, including linguistic
(Saha et al., 2020) and logical reasoning (Tian et al., 2021). Other studies produce
challenge datasets to reveal flaws in the reasoning of automatic natural language
inference models. Gururangan et al. (2018) point that models can attain high per-
formance based only on the premise without consulting the hypothesis. Sanchez
et al. (2018) find that natural language inference models are insensitive to small
but semantically significant changes, and that their predictions can be manipulated
with simple statistical correlations between words and training labels present in the
training split. Explainability approaches for natural language inference models include
post-hoc saliency explanations as well as abstractive NLEs (Camburu et al., 2018),
which usually are single sentences explaining the rationales of a model.

1.1.5 Modelling Complex Reasoning Tasks

Lately, language models (LMs) employing the Transformer architecture (Vaswani
et al., 2017; Devlin et al., 2019) have become the core building blocks of architectures
utilised to effectively automate many machine learning problems, including complex
reasoning tasks. Such models have been the subject of rigorous studies inspecting
their capabilities to learn complex reasoning skills. Talmor et al. (2020) find that
different Transformer models exhibit qualitatively different reasoning abilities, such
as that only RoBERTa-L (Liu et al., 2019), compared to BERT (Devlin et al., 2019)
and other RoBERTa model sizes, performs well at number comparison. Kassner and
Schiitze (2020); Nie et al. (2020) find that LMs cannot detect the presence of negation
in the input text. Talmor et al. (2020) discover that LMs are unable to learn multi-hop
reasoning and even struggle to learn it with some supervision.

Several architectural improvements have been proposed to enhance the reasoning
abilities of LMs. Graph attention networks (Liu et al., 2020c; Zhou et al., 2019)
and eXtra-hop attention (Zhao et al., 2020) have been employed to improve the
multi-hop reasoning abilities of LMs. Knowledge graphs have been incorporated into
LMs to improve common-sense reasoning skills (Ilievski et al., 2021). Furthermore,
contrastive learning techniques have been explored to improve a model’s performance,
especially given contrastive challenge datasets for particular skills (Schuster et al.,
2021; Atanasova et al., 2022). The publications in this thesis consider the Transformer
architecture and its extensions to handle multi-hop reasoning (Paper 5) as well as
contrastive learning to improve a model’s performance for instances with insufficient
information (Paper 1).
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Claim: By April 9, less than 9000 people who tested positive for COVID-19
in the UK died of the virus .

Evidence: [[2020 coronavirus pandemic in the United Kingdom]] As of 9
April , there have been 65,077 confirmed cases of COVID-19 in the UK,
and 8.958 people with confirmed infection have died .

Label: SUPPORTS

I
Evidence Omission:
Delete 8.958 from Evidence

|
v v v v

BERT RoBERTa ALBERT Human Annotator

! ¢ R
JNOT ENOUGH XSUPPORTS XSUPPORTS NOT ENOUGH

INFO INFO

Figure 1.1: An example from the VitaminC test set, where the number modifier has been
omitted from the evidence. This results in insufficient evidence for predicting its
support for the claim as judged by human annotators. Two of the models still find
the remaining evidence to be sufficient.

1.2.1 Accountability for Complex Reasoning Tasks over

Text
1.2.1.1 Paper 1: Fact Checking with Insufficient Evidence

Automating the fact checking process relies on information obtained from external
sources (Thorne et al., 2018; Leippold and Diggelmann, 2020; Augenstein, 2021) (see
Section 1.1.4.1). However, the necessary information is not always available, either
due to incomplete knowledge sources, or because the claim has newly emerged and
the relevant facts are not documented yet. In this work, I posit that it is crucial for fact
checking models to make veracity predictions only when there is sufficient evidence
and otherwise indicate when it is not enough.

To this end, this work introduces the novel task of Evidence Sufficiency Predic-
tion illustrated in Figure 1.1 , which is defined as the task of identifying what
information is sufficient for making a veracity prediction by fact checking models.
I study the new task by, first, conducting a thorough empirical analysis of what models
consider to be sufficient evidence for fact checking. For the empirical analysis, I
propose a new fluency-preserving method that occludes portions of the evidence,
automatically removing constituents or entire sentences, to create incomplete evidence.
Secondly, I collect human annotations for sufficient evidence for fact checking, which
results in a novel challenge dataset, SufficientFacts, for fact checking with omitted
evidence. I observe that it is the hardest for fact checking models to detect when the
evidence is missing information for the prediction that was removed from adverbial
modifiers, followed by subordinate clauses. By contrast, it is easiest to detect missing
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CLAIM

Dissociative identity
disorder, or DID, may be
the result of memory
disruptions that have been

induced by psychological
\\ trauma.

EVIDENCE

Dissociative disorders
have been attributed to
disruptions in memory
caused by trauma or other

forms of stress.
o

Trigger Generation |
SUPPORTS — REFUTES

A

TRIGGERS
don,already,more,during,home
AN

— Il
[ GPT-2 Claim Generation ]

Dissociative disorders have been attributed to disrupted
brain activity during trauma or other forms of stress.

Figure 1.2: High level overview of the method. First, universal adversarial triggers are
discovered for flipping a source to a target label (e.g. SUPPORTS — REFUTES).
These triggers are then used to condition the GPT-2 language model to generate
novel claims with the original label, including at least one of the found triggers.

information when it is a date modifier, followed by number modifiers. Finally, I employ
the information occlusion method introduced for the empirical analysis to improve
the performance of models on the new task of Evidence Sufficiency Prediction.
I show that considering it a component task of fact checking significantly improves
fact checking performance. The performance for Evidence Sufficiency Prediction is
improved by up to 17.8 F} score, which in turn improves fact checking performance
by up to 2.6 F} score.

1.2.1.2 Paper 2: Fact Checking with Insufficient Evidence

Adversarial attacks reveal vulnerabilities and flaws of trained models (Goodfellow
et al., 2014; Szegedy et al., 2013). One attack type that has a high success rate
in fooling a provided machine learning model is the universal adversarial triggers
approach (Wallace et al., 2019a). It produces individual n-grams, termed triggers, that,
when appended to instances of a class under attack, can trick a model into predicting
a target class, different from the instances’ correct labels. However, for inference tasks
such as fact checking, these triggers often invert the meaning of instances they are
inserted into, thus also changing their gold labels. In addition, such attacks produce
nonsensical inputs, as they simply concatenate triggers to existing samples. This
paper proposes to address these two deficiencies of universal adversarial attacks, thus
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allowing for automatically generated adversarial attacks against fact checking systems
that are both semantically valid and have correct gold labels.

The core contribution of the paper is a method for automatically generating
potent adversarial examples that preserve the meaning of the source text and
improve the semantic validity of universal adversarial triggers. This is accomplished
via: 1) a novel extension to the HotFlip attack (Ebrahimi et al., 2018), which jointly
minimizes the target class loss of a fact checking model and the entailment class loss
of a natural language inference model; 2) a conditional language model trained
using GPT-2 (Radford et al., 2019), which takes trigger tokens and a piece of evidence,
and generates a semantically coherent new claim containing at least one trigger.
Figure 1.2 shows an overview of the method. The resulting triggers maintain potency
against a fact checking model while preserving the original claim label. Moreover,
the conditional language model produces semantically coherent adversarial examples
containing triggers, which lead to a decrease of 23.1 [ score points in the performance
of the fact checking model when compared to its performance on the original claims.
The resulting adversarial attacks unveil the vulnerability of fact checking models
to particular trigger words present in the input, which require the development of
appropriate defenses for ensuring robust fact checking performance.

1.2.2 Explainability for Complex Reasoning Tasks over

Text
1.2.2.1 Paper 3: Generating Fact Checking Explanations

Most existing work on automated fact checking is concerned with predicting the
veracity of claims based on metadata, social network spread, language used in claims
(Ma et al., 2018; Mohtarami et al., 2018; Xu et al., 2018), and, more recently, evidence
supporting or denying claims (Thorne et al., 2018; Stammbach and Neumann, 2019).
A crucial piece of the puzzle that is still missing is to understand how to automate the
most elaborate part of the process — generating justifications for verdicts on claims.

In this publication, I present the first study on generating natural language ve-
racity explanations, showing that they can successfully describe the reasons behind a
veracity prediction as illustrated in Table 1.1. This work frames fact checking explana-
tions as extractive summarisation to address the challenges of the task stemming from
the complex reasoning required for claim verification and the limited training data.
I find that the veracity prediction model can utilise information from the detailed
fact checking reports of professional journalists, resulting in a performance increase.
The performance can be further improved by training veracity prediction and veracity
explanation jointly. Notably, optimising the joint objective of veracity prediction and
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Claim: The last major oil spill from a drilling accident in America happened over
40 years ago in 1969.

Ruling Comments: (...) The last major oil spill from a drilling accident in America
happened over 40 years ago in 1969.

(...) The largest in volume was the Santa Barbara spill of 1969 referenced by
Murdock and Johnson, in which an estimated 100,000 barrels of oil spilled into the
Pacific Ocean, according to the API. The Santa Barbara spill was so big it ranked
seventh among the 10 largest oil spills caused by marine well blowouts in the
world, the report states. Two other U.S. spills, both in 1970, rank eighth and 10th.
Fourteen marine blowouts have taken place in the U.S. between 1969 and 2007.
Six of them took place after 1990 and spilled a total of nearly 13,700 barrels.

(...) We interviewed three scientists who said that the impact of a spill has little
to do with its volume. Scientists have proven that spills far smaller than Santa
Barbara’s have been devastating.

Justification: While the nation’s largest oil well blowout did take place in 1969,
it’s not factually correct to call it the “last major oil spill". First of all, two of the
largest blowouts in the world took place in the U. S. the following year. More
importantly, experts agree that spills far smaller in volume to the 1969 disaster
have been devastating. From a scientific perspective, Johnson’s decision to single
out the 1969 blowout as the last “major" one makes no sense.

Ruling: Half-True

Table 1.1: Example instance from the LIAR-PLUS dataset, with oracle sentences for generating
the justification highlighted.

veracity explanation produces explanations that achieve better coverage and overall
quality and serve better at explaining the correct veracity label than explanations
learned solely to mimic human justifications. Overall, this work establishes important
fundamentals in the area of transparency for models where explanations require
complex reasoning and consist of multiple arguments spanning over several sentences
and where the training resources are limited.

1.2.2.2 Paper 4: Generating Fluent Fact Checking Explanations with
Unsupervised Post-Editing

Fact-checking systems have become important tools to verify fake and misguiding
news. These systems become more trustworthy when human-readable explanations
accompany the veracity labels. Prior work (Atanasova et al., 2020c) (Paper 3 §4) has
proposed to use automatic summarisation to select a subset of sentences from the
long ruling comments (RCs) of professional journalists and used them as short layman
explanations for fact checking veracity predictions. However, with a purely extractive
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Claim| Label: False ]
EU suspends delivery of 10 million masks over quality issues.

[Explanation from Ruling Comments |

After a first batch of 1.5 million masks was shipped to 17 of the 27
member states and Britain, 600,000 items did not have European
certificates and medical standards. As part of its efforts to tackle the
COVID-19 crisis, this month the EU's executive arm started
dispatching the masks to health care workers. (R) It was set to be
distributed in weekly installments over six weeks. (D) "We have
decided to suspend future deliveries of these masks," Commission
health spokesman Stefan De Keersmaecker said. (P)

)

Post-Edited Explanation J
As part of its efforts to tackle the COVID-19 crisis, this month the
EU's executive arm started dispatching the masks to health care
workers. (R) After a first batch of 1.5 million masks was shipped to
17 of the 27 member states and Britain, 600,000 items did not have
European certificates and did not comply with (I) medical
standards. The Commission has decided to stop future deliveries of
these masks, De Keersmaecker said. (P)

Figure 1.3: Example of a post-edited explanation from PubHealth that was initially extracted
from RCs. It illustrates four post-editing steps: reordering (R), insertion (I),
deletion (D), and

approach, the sentences are cherry-picked from different parts of the corresponding
RCs, and as a result, explanations are often disjoint and non-fluent.

This work presents an iterative edit-based algorithm that only uses phrase-level
edits to perform unsupervised post-editing of disconnected extractive explana-
tions as illustrated in Figure 1.3. To the best of my knowledge, this work is the first to
explore an iterative unsupervised edit-based algorithm using only phrase-level edits.
The proposed algorithm also leads to the first computationally feasible solutions for
unsupervised post-editing of long text inputs. A scoring function with components
including fluency and semantic preservation is used to regulate the editing algorithm.
Notably, combining the iterative post-editing algorithm with grammatical correction
and paraphrasing-based post-processing leads to fluent and easy-to-read explana-
tions. The paper presents extensive experiments on the LIAR-PLUS (Wang, 2017)
and PubHealth (Kotonya and Toni, 2020a) fact checking datasets. The automated
evaluation confirms the success of the proposed method for preserving the semantics
important to perform verification of the claim and enhancing the readability of the
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Claim : Shands Hospital of Gainesville Florida
has confirmed its first case of coronavirus
Speaker : Viral Image

N\,

ﬁis post was flagged as part Shands Hospital in\
of Facebook’s efforts to  « « v« c s v v v v e a s Gainesville is part of the the
combat false news... University of Florida Health

* But a member of UF Health’s
communications team
. responded directly to the
""""""" Facebook post saying he could
state "we have no cases of the

2019 novel coronavirus to
\ date." /
Ruling: false

Figure 1.4: An illustration of multiple hops over an instance from PolitiHop. Each instance
consists of a claim, a speaker, a veracity label, and a PolitiFact article the annotated
evidence sentences. The highlighted sentences represent the evidence sentences a
model needs to connect to arrive at the correct veracity prediction.

Florida is among 12 states
reporting cases of ...

generated explanations. Finally, a manual evaluation confirms that the proposed
approach improves the fluency and conciseness of the generated explanations.

1.2.2.3 Paper 5: Multi-Hop Fact Checking of Political Claims

As noted in Section 1.1.4.1, one of the important reasoning skills required for fact
checking is multi-hop reasoning, where a set of connected evidence pieces leads to
the final verdict of a claim, as illustrated in Figure 1.4. However, existing datasets
do not provide annotations for gold evidence pages, except for FEVER (Thorne et al.,
2018), where only 17% of the claims require multi-hop reasoning and the claims are
constructed artificially.

This publication presents a study of more complex claim verification with naturally
occurring claims where rationales consist of multiple hops over interconnected
evidence chunks. To the best of my knowledge, this is the first work on multi-hop
fact checking of political claims. To this end, this study constructs a small annotated
dataset, PolitiHop, of evidence sentences for claim verification for the task. PolitiHop is
employed to analyze to what degree existing multi-hop reasoning methods are suitable
for the task. Furthermore, PolitiHop is used to investigate whether reasoning skills
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Figure 1.5: Example of the saliency scores for the words (columns) of an instance from the
Twitter Sentiment Extraction dataset. They are produced by the explainability
techniques (rows) given a Transformer model. The first row is the human
annotation of the salient words. The scores are normalized in the range [0, 1].

learned with a multi-hop model on similar datasets can be transferred to PolitiHop.
The main finding of the study is that the task of multi-hop fact checking of real-world
claims is complex and that the best performance is achieved with an architecture that
specifically models multi-hop reasoning over evidence pieces in combination with
in-domain transfer learning.

1.2.3 Diagnostic Explainability Methods

1.2.3.1 Paper 6: A Diagnostic Study of Explainability Techniques for

Text Classification

Recent developments in machine learning have introduced models that approach
human performance at the cost of increased architectural complexity (Strubell et al.,
2019). Efforts to make the rationales behind the models’ predictions transparent have
inspired an abundance of new explainability techniques. Provided with an already
trained model, they compute saliency scores for the words of an input instance as
illustrated in Figure 1.5 (see Section 1.1.2). However, there exists no definitive guide
for: (i) how to choose such a technique given a particular application task and model
architecture; and (ii) the benefits and drawbacks of using each such technique. In this
paper, I develop a comprehensive list of diagnostic properties for evaluating existing
explainability techniques.

This work presents a comprehensive list of diagnostic properties for explainabil-
ity and automatic measurement of them, allowing for their effective assessment
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P S1: ...

:;815: It [MASK]4)| me.

Question: What is Bernardo's last name?
Answer Option: Smith

S16: Show me around, and then | shall decide.
S17: Of course, Sefior Flynn.

S18: And stop[[MASK](4)| me sefior.
»S19: Not even Los Mundos is so polite.
S20: Call me Bernardo.

Explanation

O\

Target
Prediction

; S1 S15 516517

S18|S19 S20
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when removing

Faithful!
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Figure 1.6: Example instance from MultiRC with predicted target and explanation (Step 1),
where sentences with confidence > 0.5 are selected as explanations (S17, S18,
S20). Steps 2-4 illustrate the use of Faithfulness, Data Consistency, and Confidence
Indication diagnostic properties as additional learning signals. ‘[MASK](2)’ is used
in Step 2 for sentences (in red) that are not explanations, and ‘[MASK](4)—for

random words in Step 4.

in practice. The proposed list of diagnostic properties is used to study and compare
the characteristics of different groups of explainability techniques in three different
application tasks and three different model architectures. Furthermore, the list of diag-
nostic properties is employed to study the attributions of the explainability techniques
and human annotations of salient regions to compare and contrast the rationales of
humans and machine learning models. Notably, the main finding of this diagnostic
study of explainability techniques is that the investigated gradient-based explanation
generation methods perform best across tasks and model architectures. This work also
presents further detailed insights into the properties of the reviewed explainability

techniques.

0.4 0.9

False
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1.2.3.2 Paper 7: Diagnostics-Guided Explanation Generation

Extractive natural language explanation techniques shed light on a machine learn-
ing model’s rationales by producing free text explanations, which are usually whole
sentences extracted from the input (§1.1.2.2). Such techniques are typically con-
structed as models trained in a supervised way given human explanations. When
such annotations are not available, explanations are often selected as those portions
of the input that maximise a downstream task’s performance, which corresponds
to optimising an explanation’s faithfulness to a given model. Faithfulness is one of
several so-called diagnostic properties, which prior work has identified as useful for
gauging the quality of an explanation without requiring annotations (DeYoung et al.,
2020a). Other diagnostic properties are Data Consistency, which measures how similar
explanations are for similar input instances, and Confidence Indication, which shows
whether the explanation reflects the confidence of the model (Atanasova et al., 2021)
(Paper 6 §7).

The main contribution of this paper is a novel method to learn the diagnostic
properties — Faithfulness, Data Consistency, and Confidence Indication, in an
unsupervised way, directly optimising for them to improve the quality of generated
explanations as illustrated in Figure 1.6. I implement a joint task prediction and
explanation generation model, which selects rationales at sentence level. Each property
can then be included as an additional training objective in the joint model. With
experiments on three complex reasoning tasks, I find that apart from improving the
properties I optimised for, diagnostic-guided training also leads to explanations with
higher agreement with human rationales and improved downstream task performance.
Moreover, I find that jointly optimising for diagnostic properties leads to a reduced
claim/question-only bias (Schuster et al., 2019) for the target prediction, which means
that the model relies more extensively on the provided evidence. Importantly, I also
find that optimising for diagnostic properties of explanations without supervision for
explanation generation does not lead to good human agreement. This indicates the
need for human rationales to train models that make the right predictions for the right

reasons.

1.3 Summary of Contributions and Future
Work

The publications in this thesis collectively contribute to advancing the state of the
art of accountable and transparent machine learning for complex reasoning tasks over
text. In particular, they facilitate the analysis of the reasons behind the outputs of ML
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Explainability
Diagnostics
M D A M D A M D A

. Atanasova et al. (2022) Vv v v
. Atanasova et al. (2020c) Vv v v
. Atanasova et al. (2020b) v
. Jolly et al. (2021) v
. Ostrowski et al. (2021) v v v v
. Atanasova et al. (2020a) v v
7. Atanasova et al. (2021) v v

Table 1.2: Summary of contributions made by the publications in this thesis by topic — Ac-
countability Methods, Explainability and Explainability Diagnostics, and type of
contribution — Methodological (M), Dataset (D), Diagnostic Analysis (A).

Accountability Explainability

U R~ WDN R

models and assist in detecting and correcting for potential harms. Table 1.2 maps the
methodological, dataset, and analysis contributions of each paper along each of the
accountability and transparency axes.

Many of the proposed methods for auditing and explaining machine learning models
in this thesis are empirically validated on the task of fact checking as it provides a
rich test bed for testing complex reasoning over text. Fact checking is also considered
in the publications in this thesis as it is particularly critical when developing models
for this task that they are both accountable and transparent. I further test on other
complex reasoning tasks, namely natural language inference and question answering,
where appropriate datasets are available. Due to the fact-checking task’s complexity
and the methods proposed in this work being generally applicable, they could also
be easily validated on other tasks requiring complex reasoning skills, given suitable
benchmark datasets.

1.3.1 Accountability for Complex Reasoning Tasks over
Text

The contributions made in the area of accountability of machine learning mod-
els include challenge datasets for prediction with insufficient information (Paper 1
§2) and multi-hop reasoning (Paper 5 §6) as well as a dataset showing a model’s
vulnerability to adversarial manipulations (Paper 2 §3). The methodological contribu-
tions presented in my thesis enable the automated generation of these challenge and
adversarial datasets, which extends the applicability of the proposed accountability
audits for other complex reasoning tasks and machine learning models. The resulting
resources reveal important insights about the models’ capabilities and advance our
understanding of the models’ decision-making processes. Furthermore, they reveal
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model vulnerabilities that necessitate the development of appropriate complex reason-
ing models and defenses against adversarial attacks. To this end, this thesis also makes
methodological contributions that improve the reasoning capabilities of machine learn-
ing models regarding the uncovered vulnerabilities, thus leading to enhancements in
their accountability.

While challenge and adversarial datasets for complex reasoning are developed
mainly for natural language inference, I present studies improving the accountability
of fact checking systems, which have longer textual inputs and require more complex
reasoning skills with compositions thereof. Moreover, the accountability of fact check-
ing systems in deployment is imperative and requires extensive research, even more
so for critical domains such as fact checking of medical claims.

The current research landscape of challenge datasets and adversarial attacks for
complex reasoning tasks is discordant — separate studies investigate a limited number
of complex reasoning skills and reasoning flaws over one or a few models and tasks.
Hence, some prospects for future work include efforts to unify the studies and findings
on complex reasoning skills and flaws in models’ rationales across different tasks and
models. This could potentially result in benchmarks designed around the notion of
skills rather than downstream tasks, which could facilitate overall assessments of
the accountability of machine learning models. Furthermore, future interdisciplinary
synergies involving linguistics, cognitive science, and machine learning could lead to
the design of comprehensive lists of complex reasoning skills.

1.3.2 Explainability for Complex Reasoning Tasks over
Text

In regards to model transparency, this thesis pushes the state-of-the-art for generated
natural language explanations (Papers 3 §4, 4 §5, and 5 86, and 7 §8) for fact
checking systems. Generating NLEs for the veracity predictions of real-world claims is
a particularly challenging task as there are limited training resources, and it requires
multiple connected arguments to be presented in a readable and accessible way. With
this thesis, I lay the foundations for automatically generating such explanations. The
produced explanations improve our understanding of fact checking models’ decision-
making processes. They can instill trust in the models’ predictions, serve as a further
means for auditing the accountability of machine learning models, and enable end
users to expand their knowledge by leveraging information from the rationales of the
models.

There is still a lack of sufficiently large datasets for generating complex reasoning
explanations for real-world fact checking and, in general, for explanations consisting of
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multiple arguments spanning over several sentences. This limits the possible achieved
quality of generated explanations and could be addressed in future work. Moreover,
there is a need for datasets that could allow for automating real-world fact checking
explainability fully — from collecting evidence documents to producing veracity labels
and explanations.

There are many prospects for enhancing the availability of datasets for natural
language explanation generation in general. The explanations contained in existing
natural language inference datasets are often based on templates making them rather
structure-based explanations (Wiegreffe and Marasovic, 2021) and the quality of
some common-sense NLE datasets is questioned in related work (Narang et al., 2020;
Wiegreffe and Marasovic, 2021). Moreover, there are currently no existing datasets
with NLEs for tasks that require different complex reasoning skills. Such datasets could
be developed in future work to generate explanations and study models’ rationales for
the different types of complex reasoning skills required for a task.

1.3.3 Diagnostic Explainability Methods

Explainability techniques aim to reveal the rationales of machine learning mod-
els. End users make decisions to trust and rely on models’ predictions based on the
explanations produced to reveal the rationales employed by the models for their
predictions. Hence, explainability techniques have to be robust and faithful to the
underlying model as well. This thesis moves forward our collective knowledge of
the field of explanation diagnostics with a diagnostic study of post-hoc saliency-based
explainability techniques (Paper 6 §7), which are further directly optimised for in
generated explanations, thus improving explanation quality (Paper 7 §8). The insights
gained from the analysis performed in my thesis reveal which explainability techniques
perform better than others, as well as which tasks and models necessitate the develop-
ment of more robust and appropriate explainability techniques. Finally, improving the
quality of the produced explanations additionally enhances the understanding and
trust in the model’s rationales. Measuring and improving explanations’ quality instills
trust in the employed explainability approach as well.

Currently, there is limited work on measuring and ensuring the quality of NLEs
(Wiegreffe et al., 2021; Hase et al., 2020). NLEs are generated by supervised systems,
optimised to resemble human-annotated explanations, which does not guarantee that
they convey the rationales used by a model. This calls for future studies examining the
faithfulness and other properties of NLEs and improving these properties in generated
NLEs.
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Fact Checking with Insufficient
Evidence

2.1 Introduction

Computational fact checking approaches typically use deep learning models to
predict the veracity of a claim given background knowledge (Thorne et al., 2018;
Leippold and Diggelmann, 2020; Augenstein, 2021). However, the necessary evidence
is not always available, either due to incomplete knowledge sources, or because the
claim has newly emerged and the relevant facts are not documented yet. In such cases,
FC models should indicate that the information available is insufficient to predict the
label, as opposed to making a prediction informed by spurious correlations.

Prior work shows that FC models can sometimes predict the correct veracity based
on just the claim, ignoring the evidence, and that they can overly rely on features
such as the word overlap between the evidence and the claim (Schuster et al., 2019,
2021), leading to biased predictions. However, there are no previous studies on what
evidence a FC model considers to be enough for predicting a veracity label. To this end,
this work introduces the novel task of Evidence Sufficiency Prediction illustrated in
Fig. 2.1 , which we define as the task of identifying what information is sufficient
for making a veracity prediction. This task is related to FC and can operate on
instances and models from FC datasets, but is focused on evaluating the capability of
models to detect missing important information in the provided evidence for a claim.
The latter is usually not evaluated explicitly in current FC benchmarks, where joint
scores disregard a FC model’s prediction when insufficient evidence is retrieved.

We study the new task by, first, conducting a thorough empirical analysis of what
models consider to be sufficient evidence for FC. Secondly, we collect human annota-
tions for the latter, which results in a novel diagnostic dataset, SufficientFacts, for FC
with omitted evidence. Finally, we employ the method introduced for the empirical
analysis to improve the performance of models on the new task of Evidence Sufficiency
Prediction, and show that considering it a component task of FC significantly improves
FC performance.

For the empirical analysis, we propose a new fluency-preserving method that
occludes portions of evidence, automatically removing constituents or entire sen-
tences, to create incomplete evidence. We provide those as input to an ensemble of
Transformer-based FC models to obtain instances on which FC models agree vs. dis-
agree to have (in)sufficient information. We perform extensive experiments with three
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Claim: By April 9, less than 9000 people who tested positive for COVID-19
in the UK died of the virus .

Evidence: [[2020 coronavirus pandemic in the United Kingdom]] As of 9
April , there have been 65,077 confirmed cases of COVID-19 in the UK,
and 8.958 people with confirmed infection have died .

Label: SUPPORTS

I
Evidence Omission:
Delete 8.958 from Evidence

|
v v v v

BERT RoBERTa ALBERT Human Annotator

! ¢ R
JNOT ENOUGH XSUPPORTS XSUPPORTS NOT ENOUGH

INFO INFO

Figure 2.1: An example from the VitaminC test set, where the number modifier has been
omitted from the evidence. This results in there not being enough evidence for
predicting its support for the claim as judged by human annotators, while two of
the models still find the remaining evidence to be sufficient.

models — BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2020), and three textual FC datasets with different types of claims — FEVER (Thorne
et al., 2018), HoVer (Jiang et al., 2020), VitaminC (Schuster et al., 2021).

To compare model behavior with human rationales for Evidence Sufficiency Pre-
diction, we ask annotators to indicate if the occluded evidence texts still provide
enough information for a fact-check. This results in a novel diagnostic test dataset,
SufficientFacts, which contains information about the type of the omitted information,
allowing for in-depth analyses of model behavior.

Finally, to improve model performance for detecting omitted important evidence
and, in turn, FC, we propose to combine the proposed evidence omission method
with tri-training (Zhou and Li, 2005), which utilises the agreement of three different
machine learning models to label unlabeled training instances (§2.5). This results in
a novel counterfactual data augmentation schema for learning of (in)sufficient
information. We find that the proposed approach is highly effective in improving
model performance by up to 17.8 F} score on the newly introduced SufficientFacts.
This also leads to improvements of up to 2.6 F; score on the standard FC test sets for
the corresponding datasets.

2.2 Related Work

Here, we study when models trained on existing FC datasets find evidence with
omitted important information to still be sufficient for veracity prediction. Such
cases might be considered vulnerabilities of the models and can be due to models’
faulty reasoning, learned biases, etc. Hence, our work is mainly related to studies
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exploring potential biases learned by FC models and the vulnerabilities of FC models
to adversarial attacks. We further propose a method for evidence omission, which
creates counterfactual instances, which is related to studies on input-level instance re-
writing. We also use the proposed evidence omission method to collect counterfactually
augmented data (CAD) and compare that to using the collected data in a contrastive
learning (CL) loss to improve performance on Evidence Sufficiency Prediction and FC
more generally. We thus discuss the relationship between our work and prior studies
on CAD and CL. Finally, we compare our work based on deep learning models to FC
performed against knowledge bases (KBs), where fact triples can also be missing.

Fact Checking Diagnostics. Previous work has exposed various biases of FC models.
While FEVER (Thorne et al., 2018) is one of the largest datasets for FC, Schuster et al.
(2019) points out that models trained on it can verify a claim solely based on the text
of the claim, without considering the evidence. To this end, Schuster et al. (2019)
introduce a new diagnostic dataset, FeverSymmetric, of contrastively re-written claims
and evidence. They show that the models fail to detect the contrastive changes in the
text, leading to a drop of up to 57.46 F}-score, compared to 85.85 F}-score on the
original FEVER development set. Furthermore, the claims in FEVER were manually
written based on Wikipedia article sentences, and thus have a large token overlap
between the evidence and the claim, especially for supporting evidence. Hence,
Schuster et al. (2021) construct a new FC dataset, VitaminC, where they instruct the
annotators to avoid using the same words as in the evidence. Ostrowski et al. (2021)
further create PolitiHop — a dataset for claim verification of naturally occurring claims
with evidence comprised of multiple hops over interconnected evidence chunks. They
study how multi-hop vs. single inference architectures reason over the evidence sets
in PolitiHop. In addition, several works (Thorne et al., 2019a; Niewinski et al., 2019;
Hidey et al., 2020) explored the vulnerability of FC models to adversarial attacks,
e.g., by discovering universal trigger words that fool a model into wrongly changing
its prediction (Atanasova et al., 2020c). In contrast, we are interested in how much
evidence is enough for veracity prediction, studying this with three different FC models
trained on three different datasets by omitting information at the constituent and
sentence levels and comparing it to human judgments.

Instance Re-Writing. The above studies mainly perform re-writing or insertion
operations for FC evidence. Here, we employ causal interventions on the evidence by
omission to study when information is (in)sufficient for a model’s prediction. Elazar
et al. (2021) also use causal interventions that estimate the importance of a property
by removing it from a representation. By comparison, even though text-level causal
interventions are more intricate due to the discrete nature of text, we perform them
on the text itself, by following linguistic rules for optional constituents to preserve
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the semantics and the fluency of the text. Thorne and Vlachos (2021) perform re-
writing of claims by masking and then correcting separate words. They thus generate
claims supported by the evidence, particularly for claims not supported before the
factual correction. In similar vein, Wright et al. (2022) decompose long, scientific
claims into shorter, atomic claims. They then generate negative instances for those by
masking single words in claims and replacing them with antonyms retrieved from a
scientific knowledge base. In contrast, we perform omissions of evidence information
at the sentence and constituent levels and for the new task of Evidence Sufficiency
Prediction.

Contrastive Learning (CL) and Counterfactual Data Augmentation (CAD).
Most existing work of CL in NLP employs contrastive self-learning for model pre-
training (Rethmeier and Augenstein, 2021). Contrary to this, Rethmeier and Augen-
stein (2022) propose for CL to be performed jointly with the supervised objective.
We follow the latter to improve the performance of FC models in detecting when
important information is missing from the evidence, by using the original evidence
texts paired with evidence texts with omitted information as contrastive data points.
We perform contrastive self-training jointly with the supervised objective, as we use
the contrastive loss as an unsupervised training for Evidence Sufficiency Prediction.
In contrast, using it for pre-training followed by supervised training could lead to
the models forgetting the information learned during pre-training, which is needed
to improve the performance on SufficientFacts. An important factor for CL is the
augmentation of negative and positive instances, which can be challenging due to the
discrete nature of text. Related work explores augmentation through back-translation
(Sennrich et al., 2016), masked word substitution with an LM (Wu et al., 2019), graph
neighbourhood sampling (Ostendorff et al., 2022), mix-up (Chen et al., 2020), or a
combination thereof (Qu et al., 2021). In a similar vein, automated approaches for
CAD in NLP include paraphrasing (Iyyer et al., 2018), and controlled (Madaan et al.,
2021) text generation, which do not necessarily change the target label of an instance.
CAD is found to improve model robustness to data artifacts (Kaushik et al., 2020;
Teney et al., 2020) and to perform better out of domain (Samory et al., 2021). In
contrast, we use evidence omission, combined with tri-training for contrastive negative
evidence mining (§2.5).

Knowledge-Base Fact Checking. A relevant line of work conducts FC against
knowledge bases (KBs) by finding fact triple chains that are (in)consistent with the
claim (Kim and Choi, 2021). Discovering such missing triples could also be used
to detect insufficient evidence information. As KBs can contain an incomplete set
of fact triples, related work completes KBs from unstructured textual data on the
Web (Trisedya et al., 2019) or with graph embedding techniques (Kim et al., 2018).
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Dataset/Size Example

FEVER Label: REFUTES (e {SUPPORTS, REFUTES, NOT ENOUGH

145,449 train INFO})

999,999 dev  Claim: Sindh borders Indian states and is in India.

999,999 test  Evidence: [Sindh] Sindh is home to a large portion of Pak-
istan’s industrial sector and contains two of Pakistan’s com-
mercial seaports — Port Bin Qasim and the Karachi Port.

Vitamin C Label: SUPPORTS (€ {SUPPORTS, REFUTES, NOT ENOUGH
370,653 train INFO})
63,054 dev Claim: Westlife sold more than 1 m. video albums and made
55,197 test over 23.5 m. sales in the UK.
Evidence: [Westlife] According to the British Phonographic
Industry (BPI), Westlife has been certified for 13 m. albums,
1.3 m. video albums, and 9.8 m. singles, with a total of more
than 24 m. combined sales in the UK.

HoVer Label: NOT SUPPORTED (& {SUPPORTS, NOT SUP-

18,171 train  PORTS=(REFUTES+NOT ENOUGH INFO)}

1818 dev Claim: Reason Is Treason is the second single release from

4,000 test a British rock band that are not from England. The band
known for the early 90’s album Novelty are not from England
either.

Evidence: [Kasabian] Kasabian are an English rock band
formed in Leicester in 1997. [Jawbox] Jawbox was an Amer-
ican alternative rock band from Washington, D.C., United
States. [Reason Is Treason] "Reason Is Treason" is the second
single release from British rock band Kasabian. [Novelty
(album)] Novelty is an album from the early 90’s by Jawbox.

Table 2.1: Sizes and examples instances for the studied fact checking datasets (see §2.3).

This work uses machine learning models that use textual evidence as input instead of
performing an intermediate step of completing a knowledge base with needed fact
triples.

2.3 Datasets

We employ three fact checking datasets (see Table 2.1) and use the gold evidence
documents, i.e., we do not perform document or sentence retrieval (apart from for
the ablation experiment in Section 2.6.4). Thus, we avoid potential enforced biases
for the veracity prediction models if they had to learn to predict the correct support
of the evidence for the claim given wrong evidence sentences. Hence, each of the
three fact checking datasets D = {(x;, y;)|x; = (¢;,€;),i € [1,]|D|]} consists of instances
with input z; and veracity labels y;. The input is comprised of a claim ¢; and gold
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evidence e;. The veracity label y; € {0=SUPPORTS, 1=REFUTES, 2=NEI} for FEVER
and VitamiC, and y; € {0=SUPPORTING, 1=NOT SUPPORTING?} for HoVer.

FEVER (Thorne et al., 2018) contains claim-evidence pairs, where the evidence
consists of sentences from Wikipedia pages, and the claims are written manually based
on the content of those Wikipedia pages. 87% of the claims have evidence consisting
of one sentence. The dataset has a high ratio of token overlap between the claim
and the evidence, where the overlap is naturally higher for claims that are supporting
(69%), than refuting (59%) and NEI (54%) claims. The high overlap ratio can create
a bias for learning from token overlap, which can further prevent generalisation, as
also noted in related work (Schuster et al., 2021).

Vitamin C (Schuster et al., 2021) is a collection of sentences from Wikipedia
containing factual edits. For each factual edit, annotators construct a claim that
is SUPPORTED and one that is REFUTED with the old and the new version of the
evidence. When the factual edit introduces/removes facts from the evidence, claims
are constructed so that there is NOT ENOUGH INFORMATION (NEI) to support
them. Due to its contrastive nature and reduced claim-evidence overlap, the authors
demonstrate that models trained on the dataset gain a 10% accuracy improvement on
adversarial fact verification.

HoVer (Jiang et al., 2020) is designed to collect claims that need several hops
over Wikipedia evidence sentences to verify a claim. The evidence contains between
two and four sentences from different Wikipedia articles. As the test dataset is blind
and we use the gold evidence, we use the development set for testing purposes and
randomly select 10% of the training dataset for development.

2.4 Evidence Omission

To study what types of information the evidence models consider important, we
propose to conduct causal interventions for the evidence by omitting information from
it. We hypothesise that removing information important for the model to predict the
support of evidence for a claim will cause a change in its original prediction, leading
to the model indicating that there is missing information. If the removed information
is not important for the model though, removing it would not change the model’s
prediction. We then ask whether the information that is important for a model when
predicting the support of the evidence text for a claim, is actually important as judged
by human annotators. The human annotations allow for a systematic study of common
model errors, i.e., when the models still predict the correct label even if important
evidence information has been removed and when they consider the information to
be insufficient if unrelated evidence has been removed.
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Type Claim Evidence

S The Endless River is an al- [[The Endless River]] The Endless
bum by a band formed in River is a studio album by Pink
1967. Floyd. [[Pink Floyd]] Pink Floyd were

founded in 1965 by students . ..

PP Uranium-235 was discov- [[Uranium-235]] It was discovered in
ered by Arthur Jeffrey 1935 by Arthur Jeffrey Dempster.
Dempster in 2005.

NOUNM Vedam is a drama film. [[Vedam (film)]] Vedam is a 2010 In-

dian drama film written and directed
by Radhakrishna Jagarlamudi . . .

ADJM Christa McAuliffe taught [[Christa McAuliffe]] She took a teach-
social studies. ing position as a social studies teacher

at Concord High School...

ADVM Richard Rutowski heavily [[Natural Born Killers]] The film is
revised the screenplay for based on an original screenplay that
Natural Born Killers. was heavily revised by writer David

Veloz , associate producer Richard Ru-
towski . ..

NUMM Being sentenced to fed- [[Efraim Diveroli]] Diveroli was sen-
eral prison is something tenced to four years in federal prison .
that happened to Efraim
Diveroli.

DATEM Colombiana was released [[Colombiana]] Colombiana is a
1st October 2001. French action film from 1st October

2011 ...
SBAR North Vietnam existed [[North Vietnam]] North Vietnam, was

from 1945 to 1978.

a state in Southeast Asia which existed
from 1945 to 1976.

Table 2.2: Examples from the FEVER dataset of constituent types (§2.4.1) removed from the
evidence for a claim with Label (L) one of SUPPORTS (S) or REFUTES (R).

2.4.1 Evidence Omission Generation

We omit information from the evidence text at the sentence and constituent level.
Particularly, we aim to remove information from the evidence such that it does not
change its stance towards the claim from SUPPORTS to REFUTES, or vice-versa, while
preserving the grammatical correctness and fluency of the evidence. Following studies
of linguistic sentence structure (Burton-Roberts, 2016; Borjars and Burridge, 2019),
illustrated with examples in Table 2.2, we collect prepositional phrases, modifiers and
other optional sentence constructs — i.e. those constructs that can be removed from
the sentence without impairing its grammatical correctness, and where the remaining
text is semantically identical to the original one, except for the additional information
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from the removed construct (Garvin, 1958). We use the following optional sentence
constructs:

Sentences (S). In FEVER and HoVer, the evidence can consist of more than one
sentence. The separate sentences are supposed to contain information important
for the fact check, which we further verify with manual annotations as explained in
Section 2.4.2. VitaminC consists of single sentences only, and we thus only perform
constituent-level omissions for it, as described next.

Prepositional Phrases (PP) are optional phrases that are not part of a Verb Phrase
(VP), but are child nodes of the root sentence in the constituent tree (Brown et al.,
1991). These usually function as adverbs of place and consist of more than one
word.

Noun Modifiers (NOUNM) are optional elements of a phrase or clause structure
(Huddleston and Pullum, 2005). NOUNM can be a single or a group of nouns that
modify another noun.

Adjective Modifiers (ADJM) are a single or a group of adjectives that modify a
noun.

Adverb Modifiers (ADVM) are a single or a group of adverbs that modify verbs,
adjectives, or other adverbs and typically express manner, place, time, etc.

Number Modifiers (NUMM) are a single or a group of words denoting cardinality
that quantify a noun phrase.

Date Modifiers (DATEM) are a single or a group of words that express temporal
reference. To preserve fluency, from a date expression consisting of a day, a month,
and a year, we omit either the date, the date and the month, or the year.

Subordinate Clauses (SBAR) are introduced by a subordinating conjunction. Sub-
ordinate clauses depend on the main clause and complement its meaning. SBARs can
be adverb clauses, adjective clauses, and noun clauses.

For the omission process, we use two pre-trained models with high performance
from the Spacy library' — a part-of-speech (PoS) tagger with an accuracy of 97.2
and a constituency parser (Kitaev and Klein, 2018) with an F}-score of 96.3 on the
revised WSJ test set (Bies et al., 2015). During the omission process, we use the PoS
tags to find nouns, adjectives, adverbs, and numbers and use the constituency tags
to select only the modifiers. Thus, we find the NOUNM, ADJM, ADVM, and NUMM
constructs. We collect SBAR and PP constructs by finding their corresponding tags in
the constituent dependency tree. Finally, for the date, we use two regular expressions
that are common date templates used in Wikipedia articles — <month name, date,
year> or <date, month name, year>, and remove parts from the templates that

https://spacy.io/
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preserve the coherency — <date>, <year>, <month name and date>, or <year and
date>.

Overall, in this work, we perform a study of insufficient evidence for FC by removing
information from the gold evidence. As explained in Section 2.2, we perform causal
interventions on the evidence by omission to study when information is (in)sufficient
for a model’s prediction. Replacement of words is another operation that can be
applied to the evidence. We can, for example, replace different types of named entities
with pronouns, and different parts of the speech with demonstrative pronouns to
induce insufficient information. However, the replacement operation does not allow
for direct causal conclusions as any change of a word with another could potentially
lead to confounding factors of the newly introduced word and the model’s predictions.
Note that, there are some pronouns used in the evidence when they refer to the
person/object of the article. We do not treat such cases as insufficient information as
the title of the page with the name of the person/object is always prepended to the
sentence, which allows for coreference resolution. Finally, another possible operation
is the insertion of new information, which would lead to insufficient evidence when
performed on the claim. The latter, however, requires the insertion of text that
preserves the grammatical correctness and meaning of the claim, which is hard to

achieve in an automated way.

2.4.2 Manual Annotations.

Models. We train three Transformer-based FC models — BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and ALBERT (Lan et al., 2020). BERT is pre-trained with
masked language modeling and next sentence prediction objectives on the Toronto
Book Corpus (Kiros et al., 2015) and the English Wikipedia.? It is also the most widely
used pre-trained Transformer model.> RoBERTa improves upon BERT by optimising

key hyper-parameters, and is trained without the next sentence prediction objective.

RoBERTa is one of the top-performing models on the GLUE (Wang et al., 2018) and
SuperGLUE (Wang et al., 2019) benchmarks comprised of various NLP tasks. The latter
also holds for ALBERT, another Transformer architecture that improves upon BERT. It
does so with parameter-reduction techniques, which lower the memory consumption of
the model. ALBERT also employs a self-supervised pre-training loss for inter-sentence
coherence. The latter is found to be beneficial for tasks with multiple sentences, and
Schuster et al. (2021) report improved FC robustness with it on VitaminC compared
to BERT.

2https://en.wikipedia.org
3https://huggingface.co/models
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We train each model on the respective training splits of each dataset with the claim
c and the gold evidence e as input to predict the gold veracity label y: f(c,z) = §. We

optimise the supervised cross-entropy loss:

m

1 . N
L5 = - > "y’ - log(§) (2.1)
i=1

where m is the label space size.

We then use an ensemble of these three different Transformer-based FC models to
collect predictions for our new task Evidence Sufficiency Prediction, as we want to
find instances with omitted information that are more broadly applicable (e.g., those
on which the models agree). The (dis)agreements between the models also allow us
to study the differences between them in detecting omitted information. Transformer
Language Models are pre-trained on large datasets, the veracity of which can change
over time (Schuster et al., 2021). This makes it important that the FC models take
into account the facts in the given evidence. When provided with differences and
similarities in the three FC models’ predictions, future work could then also investigate
the degree to which different Transformer-based FC models encode FC-relevant world
knowledge they default to in their predictions.

Annotation Task. Next, we collect evidence with removed information as described
above. We then use the models to find which of the omitted evidence they consider
important, resulting in a prediction change to NEI. We consider instances from the
original test splits of each of the datasets, where all models predicted the veracity
correctly before the evidence omission was performed, as these are the cases where
we can observe whether evidence omission causes the veracity prediction to change
to NEI. We collect instances with omitted evidence information where the models:
(1) agree that the evidence is still enough vs. (2) insufficient; and where they (3)
disagree in their prediction. We collect a total of 400 instances at the sentence, and
600 instances at the constituent level from the test splits of the corresponding datasets,
distributed equally among the above three groups.

We employ annotators on Amazon Mechanical Turk*. We first train potential
annotators, presenting them with annotation guidelines and illustrative examples. We
then select annotators using a qualification test with nine test annotations for our task.
Each annotation had the cost of 0.10$, and annotators were paid 10$ on average per
hour. The annotation task is to determine whether the evidence is still sufficient for
predicting the label without the omitted information. If the remaining evidence is still
sufficient, we ask them for the reason — whether this is because the removed evidence

“https://www.mturk.com/
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is repeated in the remaining text or because the removed evidence is not relevant to
the veracity of the claim. Following the annotation guidelines for FEVER and HoVer,
we ask the annotators not to use any world knowledge or knowledge they might have
about the claim. For more details on the annotation task and the guidelines, we will
release the dataset with a detailed README file.

The final dataset SufficientFacts = {(z}, )|z, = (¢;,€h),i € [1,|SufficientFacts||}
consists of test instances z; with labels ;. All of the instances in SufficientFacts are
a subset of the instances in the test datasets of FEVER, VitaminC, and HoVer with
the following changes. The input 2/ is comprised of the original claim ¢; and the
evidence with omitted information e;. The tokens of ¢; are a subset of the tokens of
the original gold evidence e; of the instance. To re-iterate, the label of the originally
selected instances is either SUPPORTS or REFUTES, i.e. they have sufficient gold
evidence information, where after omitting information from the evidence, the new
label y; becomes either NEI if the majority of the annotators selected that important
information was removed, and otherwise remains the original label - SUPPORTS and
REFUTES for FEVER and VitamiC, or SUPPORTING for HoVer.

The resulting inter-annotator agreement (IAA) for SufficientFacts is 0.81 Fleiss’
r from three annotators. Due to the novelty of the introduced task of Evidence
Sufficiency Prediction, we do not have direct points of comparison for IAA. However,
we point as a reference the IAA reported for the related task of fact checking for the
HoVer dataset — 0.63 Fleiss’ , and for the FEVER dataset — 0.68 Fleiss’ x, where, for
both datasets, the annotators were thoroughly trained and highly paid. The biggest
challenges for our annotators, judging by their errors during the qualification test,
were not to use common knowledge and assumptions in their annotations, and the
general complexity of the task.

2.4.3 SufficientFacts Analysis.

Overall Agreement with Annotators. The statistics of the resulting dataset, Suf-
ficientFacts, are presented in Table 2.3. We find that all three models agree that the
remaining evidence is still sufficient (EI Agree) even when it has become insufficient
after omitting information needed for verifying the claim (NEI) in 430 out of 1000
instances. We assume that these failures of all three models to detect missing informa-
tion for FC point to the models making predictions based only on patterns observed in
claims, or to the models defaulting to world knowledge encoded in the pre-trained
Transformer models. We further find that when the models disagree about whether
the remaining information is still sufficient (Disagree), they disagree mostly about in-
stances where the omitted evidence information is needed for veracity prediction (NEI)
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Dataset Model Pred EI.I EI R NEI

EI Agree 119

FEVER NEI Agree 13 9

SENT Disagree 39 24 137
Total 113 53 434
EI Agree 51

FEVER NEI Agree 0 0

CONST Disagree 43 1 156
Total 189 4 407
EI Agree 156

HoVer NEI Agree 4 1

SENT Disagree 7 1 192
Total 43 14 543
EI Agree 55

HoVer NEI Agree 1 0

CONST Disagree 48 1 151
Total 188 7 405
EI Agree 49

VitaminC  NEI Agree 0 0

CONST Disagree 13 0 187
Total 159 5 436
EI Agree 430
NEI Agree 18 10

Total Disagree 150 27 823
Total 692 83 2225

Table 2.3: Statistics of SufficientFacts presenting the predictions of the models in the ensemble
(Model Pred: Agree Enough Information (EI Agree), Agree Not Enough Information
(NEI Agree), Disagree, and Total) vs human annotations of the same (EI — Irrelevant
(EI D), EI — Repeated (EI R), NEI). We present sentence (SENT) and constituent
omission (CONST) dataset splits separately. We embolden/underline results of the
datasets for predictions where the three models agree (NEI Agree, EI Agree) and
have the highest/lowest agreement with human annotations about EI I, EI R and
NEI predictions. We use light blue/M&aEKIBINE to denote where lower/higher results
are better.

—in 823 out of 1000 instances. By contrast, when the models agree that the remaining
evidence is insufficient, they are correct in 972 out of 1000 of the instances.
Separate Dataset Agreement with Annotators. Looking at the separate datasets,
it is the hardest for the models to identify missing evidence information needed for
the fact check (EI Agree vs. NEI) for HoVer, particularly with sentence omissions,
and the easiest for the VitaminC dataset with constituent omissions. We hypothesise
that the latter is due to the HoVer dataset having more complex claims and requiring
cross-sentence reasoning, whereas VitaminC contains contrastive instances which,
during training, guide the models to identify the parts of the evidence needed for FC.
Overall, the models fail to detect missing information more from sentences rather
than from constituents. We hypothesise that this effect can be observed partly because
models struggle to conduct multi-hop reasoning over them. Another possible reason
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Figure 2.2: SufficientFacts — fine-grained analysis by type of removed evidence inftype (§2.4.1)
vs. proportion of correct predictions of NEI/EI instances. The proportion is
computed for the separate models — BERT, RoBERTa, ALBERT, and for all three
models agreeing on the correct NEI/EI label (All). The total number of NEI/EI
instances of each type is provided under each of the types of removed evidence
information. A higher proportion of correct predictions is better.

for that is that the models could be better at verifying the type of information removed
from a sentence constituent rather than from a sentence.

Performance by Omitted Evidence Type and Model. Figure 2.2 provides a fine-
grained analysis of the performance of the models for different types of omitted
constituents. We observe that it is the hardest to detect when the evidence is missing
information for the prediction (Correctly Predicted NEI) that was removed from
adverbial modifiers (ADVM), followed by subordinate clauses (SBAR). By contrast, it is
easiest to detect missing information when it is a date modifier (DATEM), followed by
number modifiers (NUMM). BERT has the lowest rate of correctly detecting insufficient
evidence from the three models, followed by RoBERTa, whereas ALBERT performs best.
We conjecture that this is due to RoBERTa being an optimisation of BERT, and due
to ALBERT including pre-training with an inter-sentence coherence objective, which
has been shown to make the model more robust for factual verification (Schuster
et al., 2021). Even though ALBERT contains fewer parameters than BERT, it still

2.4 Evidence Omission

40



Claim: One True Thing was Evidence: One True Thing is a
|directed by a child. 11998 American drama film directed
by Carl Franklin . Carl Franklin
(born April 11, 1949) is an
American producer, film and

Evidence: One True Thing is a
1998 American drama film directed
by Carl Franklin . Carl Franklin

(born April 11, 1949) is an television director. ﬁnegative
tﬂérlré(\e/irlscizgg girr%iltfrer’ film and Evidence: One True Thing is a 1998

- |_anchor  Jl American drama film directed by
Evidence: One True Thing is a Carl Franklin . Carl Franklin (born
1998 American drama film directed | [ April 11, 1949) is an American
by Carl Franklin . Carl Franklin producer, film and television
(born April 11, 1949) is an director. negative
American producer, film and _]
television director. Todd McCarthy || Evidence: Todd McCarthy called it
called it "sensitively written and "sensitively written and fluidly

fluidly directed." positive directed.” negative

Figure 2.3: Example of augmented contrastive instances for the original (anchor) instance.
Red designates removed evidence information, where the models agree that the
remaining evidence is not sufficient, producing a negative contrastive instance.
Green designates an added distractor sentence, producing a positive instance.
The distractor sentence, selected to have high overlap with the claim but with
insufficient information, is used as another negative instance.

detects better when the evidence is insufficient. Finally, we see a natural trade-off
between correctly detecting sufficient and correctly detecting insufficient information.
In particular, some models such as ALBERT have a higher number of correct predictions
on instances without enough information (Fig. 2.2, left). However, on instances with
sufficient evidence information (Fig. 2.2, right), ALBERT has the lowest number of
correct predictions. In contrast, BERT has the worst performance on the NEI instances,
but the best performance on EI instances.

2.5 Evidence Omission Detection

To improve the performance of models in recognising when the evidence is not
enough for verifying a claim, we experiment with CAD (§2.5.2) and a CL loss (§2.5.1).
Both methods use contrastive data augmented with the proposed evidence omission
method (§2.4.1) in combination with tri-training, as illustrated in Fig. 2.3. We omit
information from the original (anchor) evidence to collect potential negative instances
with missing important evidence information compared to the original evidence (Fig.
2.3, right). From the resulting candidates, we select as negative only those predicted as
having insufficient information by the other two supervised models from the ensemble
(82.4) (e.g., RoBERTa and ALBERT predict NEI when we are training a model with
a BERT Transformer architecture). We also collect positive instances that still have
sufficient evidence information after applying a data augmentation operation. For each

2.5 Evidence Omission Detection

41



instance x;, we find one distractor sentence from the document of the gold evidence
that is the most similar to the claim by word overlap. We append the distractor
sentence to the original evidence, which serves as a positive instance (Fig. 2.3, left).
Finally, we include only the distractor sentence as a negative instance as it does not
have enough evidence contrasted both with the positive and the anchor instances. We
conjecture that the latter would serve as a training signal for avoiding the bias for

overlap between the claim and the evidence.

2.5.1 Contrastive Learning

We study self-supervised learning to train FC models that recognise when the
evidence is not enough for verifying a claim. In particular, we propose to use self-
supervised contrastive learning (CL) jointly with the supervised learning of the model
to predict the support of the evidence for a claim. Given an anchor instance z;, a
positive instance z;", and K~ negative instances x;,, k € [1, K], the objective of CL is
to make the anchor and the positive instance closer in the representation space, and
the anchor and the negative instances further apart. The anchor, positive, and negative
instances are collected and/or augmented from the training splits of the corresponding
datasets as described above. Each model, g(x) = I(h(x)) = I(e) = §, uses 12 encoding
layers to encode an input instance h(xz) = e and uses the encoding e of the last
encoding layer to predict the veracity label with a linear layer: I/(e) = §. We encode
the anchor, the positive, and the negative instances with the corresponding model g,
resulting in the anchor e;, the positive ¢;, and the negative e;; representations, and

minimise the following CL loss:

L% =log o (s(e;, efim)+ KZ logo(1—s(ei, e;57)) (2.2)
k=1

where s is a similarity function between the representation of the two instances —
cosine similarity in our case, 7 is a temperature parameter subtracted from the cosine
similarity (Ma and Collins, 2018), and K~ is the number of negatives. Note that the CL
loss is the same as Noise Contrastive Estimation (Ma and Collins, 2018) expressed as a
binary objective loss. The representation of each instance is obtained by mean pooling
of the word representations of the instance in the last layer of the model M. We include
the contrastive self-learning loss for those instances that are not annotated as NEI, as
we cannot construct contrastive negative evidence with insufficient information for
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the instances that already do not have enough information for verification. Finally, the
CL loss is optimised jointly with the supervised loss:

L5 = - >yl - log(§) (2.3)
j=1
L=1rL°+ 0%k (2.4)

where ¢; is the label prediction of model M, m the label space size, y; is the gold label
for instance z;, y; € {0=SUPPORTS, 1=REFUTES, 2=NEI} for FEVER and VitamiC,
and y; € {0=SUPPORTING, 1=NOT SUPPORTING} for HoVer.

2.5.2 Counterfactual Data Augmentation

We also experiment with counterfactually augmented evidence, using the negative
and positive instances constructed as described above (§2.5 and Fig. 2.3). As the
models have high accuracy when they agree that a piece of evidence with omitted
information is not sufficient (see agreement with human annotations in Table 2.3),
we conjecture that the counterfactually augmented instances would serve as a good
training signal for detecting (in)sufficient evidence information without incurring
annotation costs for training data. The counterfactually augmented data is thus simply
combined with the training instances of each dataset. In particular, we include in
the training set the claim and the original evidence (anchor) with the corresponding
gold label y;. We include the positive instance — original evidence with distractor
sentence appended to it, with the original gold label y;. The negative instances, i.e.,
with insufficient evidence information, are included with a gold label y; = NEI for
FEVER and VitaminC, and y; = NOT SUPPORTING for HoVer. Each model, i(c,e) = g,
receives as input the original claim ¢ and the augmented or the original evidence e
and predicts the veracity label jj. We optimise a supervised cross-entropy loss as per
Equation 2.3.

2.5.3 Baseline Ensemble

We include a simple ensemble, consisting of the three models — BERT, RoBERTa, and
ALBERT. Each ensemble contains only supervised models (§2.4.2), models trained
with CAD (§2.5.2), or models trained with CL loss (§2.5.1). We employ majority
voting, where the final prediction is the most common class among the predictions
of the three models on an instance, defaulting to the class with the highest predicted
probability if there is no most common class.
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Veracity Pred. / Orig.Test Evidence Sufficiency / Suff.Facts

Dataset ~ Model BERT ROBERTa ALBERT  ENS. BERT RoBERTa ALBERT  Ens.

Supervised 87.16 88.69 86.67 88.81 59.51 59.10 63.00 61.36
FEVER + CL 87.62 88.81 86.62 89.02 65.79 67.98 70.83 69.90
+ CAD 87.86 89.23 87.31 89.14 67.18 69.58 68.56 69.25

Supervised  80.75 83.37 76.88 8273 58.15 64.81 66.28 65.88
HoVer + CL 81.82 83.38 77.62 83.08 7491 75.41 72.83 78.05
+ CAD 81.87 83.65 79.44 83.65 74.98 77.14 76.12 79.07

Supervised 82.26 84.98 83.38 86.01 58.51 69.07 66.57 66.76

VitaminC + CL 83.00 85.54 83.48 86.22 6234 72.18 68.13 70.42

+ CAD 83.56 85.65 83.82 86.14 7293 75.79 75.13 78.60
Table 2.4: Macro F}-score test performance of models and an ensemble (Ens.) (§2.5.3)
trained on the supervised training splits of each dataset (Supervised), and in
addition with the contrastive objective (+CL) (§2.5.1) and the counterfactually
augmented data (+CAD) (§2.5.2). Results are the average of three different seed
runs. The highest results for a test dataset and a model are in bold, and the overall

highest result of a model for a test dataset are additionally underlined.

2.5.4 Experimental Details

All models are trained on the respective training splits of each dataset. We select the
checkpoint with the highest macro Fi-score on the dev sets and provide results on the
test sets. We note that for the newly introduced task Evidence Sufficiency Prediction,
we have an annotated test dataset SufficientFacts, but no training dataset. The training
is performed on the original training splits of the corresponding datasets, which have a
different label distribution from the introduced diagnostic test set. Hence, it is possible
that some of the instances in SufficientFacts are out of the original training distribution,
which would make this diagnostic dataset of rather adversarial nature.

We select the learning rate = le—5 and the temperature parameters 7=1.5 by grid
search over the performance on the dev sets from [le—5, 2e—5, 3e—5] and [0, 0.5, 1, 1.5, 2]
respectively. We use the batch sizes for corresponding models from prior work — 8 for
HoVeR, 32 for FEVER, and 16 for VitaminC.

2.6 Results and Discussion

2.6.1 Supervised Model Performance

We start by discussing the performance of models trained on the supervised splits
of the corresponding datasets to predict labels for claims based on the newly created
dataset SufficientFacts for Evidence Sufficiency Prediction, presented in Table 2.4. Re-
call that the instances in SufficientFacts had correct predictions from all models before
the evidence omission was performed (§2.4.2), i.e., the performance of the models on
the instances in SufficientFacts had 100 F}-score before the evidence omission. Hence,
the omission of information from the evidence results in a performance decrease
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from 100 to 58 Fi-score (BERT model for the HoVer dataset), i.e. a decrease of up
to 42 Fj-score. Out of the three FC models, BERT has the lowest performance on
SufficientFacts, whereas ALBERT has the highest. The latter corroborates that ALBERT
is a more robust model for fact verification, as explained in more detail in Section
2.4.2.

Further, we observe the worst performance on SufficientFacts for the HoVer dataset —
down to 58 F}-score, followed by FEVER, and with the best performance on VitaminC.
We suggest that the contrastive nature of the instances in VitaminC that contain factual
edits of the evidence, changing the support of the evidence for the claim, as described
in Section 2.3, can indeed provide a better learning signal for the models about which
parts of the evidence are important for verifying the claim.

2.6.2 Contrastive Loss and Augmented Model

Performance

Including a CL loss or CAD results in improvements for all models and datasets on
SufficientFacts by up to 17.2 Fj-score. Note that the proposed technique does not
incur additional annotation costs for training data for Evidence Sufficiency Prediction.
This corroborates that our proposed evidence omission approach combined with tri-
training improves the recognition of (in)sufficient evidence. This, in turn, improves the
performance on the original test sets by up to 3.6 F;-score. Comparing the CL loss with
counterfactually augmented data, we see that CAD improves the model performance
in more cases on SufficientFacts, except for ALBERT for the FEVER dataset. This could
be because the augmented data uses raw labels obtained with tri-learning, while the
CL loss only drives apart the negative instances from the anchor in the representation
space.

Finally, we compare the performance of CAD and CL loss that rely on the agreement
predictions of the supervised models with the simple majority voting ensembles
(§2.5.3). Single models trained with CAD and CL loss still outperform the ensembles
of the supervised models. A majority voting classifier from the models trained with
CAD and CL loss improves the performance on the original and SufficientFacts sets
even further.

2.6.3 Comparison to Related Work

We further compare the performance of our models to existing systems on the used
datasets (see Table 2.5). Note that we are particularly interested in veracity prediction
to study what evidence models consider as sufficient for factuality prediction. Thus,
in the base setting, we do not conduct evidence retrieval, as typically performed for
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Dataset Model Fy

DA (Thorne et al., 2018) 83.84

RoBERTa Supervised 88.69

FEVER 4 aL 88.68
+ Augmented 89.23

BERT (Jiang et al., 2020) 81.20

BERT Supervised 80.75

Hover + CL 81.82
+ Augmented 81.87

ALBERT (Schuster et al., 2021) 82.76

o ALBERT Supervised 83.38
vitaminG oy 83.48
+ Augmented 83.82

Table 2.5: Macro Fj-score on the original test set compared to baseline (FEVER) and SOTA
(HoVer, VitaminC) oracle results. Highest results for a dataset are in bold.

the HoVer and FEVER datasets, but train models using gold evidence (oracle). For
FEVER, existing systems report results on both tasks, hence we can only compare to
the veracity prediction results with oracle evidence available in the FEVER dataset
paper with a Decomposable Attention (DA) model (Parikh et al., 2016). For HoVer
and VitaminC, the presented results are also from the dataset papers of models trained
with oracle evidence. As there are no other reported results on these datasets, they
also represent the state-of-the-art for these two datasets. To compare to them, we pick
those of our models with the same Transformer architecture as used in the respective
dataset papers, and the best-performing model architecture for FEVER. Note that we

use the same training setting as in related work (§2.5.4) for all models and datasets.
We find that our supervised models are close in performance to prior reported results.

Furthermore, including counterfactual data augmentation and contrastive learning
leads to improvements over prior results for all three datasets, by up to 2.6 Fj-score.

2.6.4 Incorrect Evidence

So far, we studied model performance on instances with omitted information from
the gold evidence. We now probe how well the models detect missing information
given retrieved incorrect evidence, which does not contain sufficient information. The
latter is possible in real-world scenarios. The evidence we feed to the fact checking
model depends on the preceding evidence retrieval step, which can retrieve gold
evidence with varying performance. While the fact checking model is possibly trained
on gold evidence to avoid learning spurious correlations, we want to evaluate its
capability to recognise when the retrieval system has discovered incorrect evidence as
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Model BERT ROBERTa  ALBERT Ens.

FEVER

Supervised 82.18 81.88 85.03 84.24
+ CL 87.63 93.53 95.18 91.60
+ CAD 89.50 94.73 90.89 90.95

HoVer

Supervised 97.27 78.64 97.65 88.57
+ CL 99.58 99.71 99.45 99.98
+ CAD 99.65 98.52 99.30 99.97

VitaminC

Supervised 69.99 80.36 80.69 78.33
+ CL 75.77 79.32 7895 78.90

+ CAD 80.71 82.69 75.69 80.78

Table 2.6: Accuracy of models trained on the supervised training splits of each dataset (Su-
pervised), the contrastive objective in addition to training with Supervised (+CL),
and the counterfactually augmented data (+CAD). The models are evaluated on
the task of Evidence Sufficiency Prediction on datasets with extracted unrelated
evidence information (§2.6.4).

well. Note that current FC benchmarks do not consider the prediction of a veracity
model if the correct evidence is not retrieved. However, in realistic situations, we do
not know whether the evidence is correct, and FC models would still provide a veracity
for a claim. Hence, we further study the performance of models on incorrect evidence.
For each instance in the original test splits, we retrieve incorrect evidence by selecting
the closest evidence of another claim in the dataset by word overlap between the
claim and the evidence candidates. We then use the retrieved instead of the original
evidence. This results in a test set of claims with incorrect evidence of the same size
as the original test split.

Table 2.6 reports results on the test datasets incorrect evidence. As all instances in
the dataset have the new gold label of NEI, we report accuracy, which corresponds to
the ratio of the instances with a predicted NEI label. We find that the performance of
the models is improved by as much as 27 accuracy points after training with CAD or
CL, which is another indication for the effectiveness of the proposed training methods.
We also find that CAD again brings larger performance gains than CL, except for HoVer,
where the two approaches achieve very similar accuracy scores.

The extended evaluation of incorrect evidence is an important complement to the
study of missing evidence. However, the two are not necessarily directly comparable.
First, in Table 2.4, the two test datasets — the Original Test and SufficientFacts, both
have instances with and without sufficient evidence. The extended study on incorrect
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evidence in this section only has instances that do not have sufficient evidence. This
also results in our use of different measures to report results — accuracy in Table 2.6,
which is the percentage of detected incorrectly retrieved evidence, and macro F; score
in Table 2.4, which combines the performance on up to three classes in a balanced
way.

However, it is worth addressing the high performance of the models on the irrelevant
evidence dataset. We employ evidence that has word overlap with the claim, but is
not necessarily semantically similar to the claim. If the models were to only rely on
features of the claim or on surface word overlap between the claim and the evidence,
the models would have low performance on the irrelevant evidence dataset. We
train models to avoid such spurious correlations with CAD and CL loss, which make
discovering missing evidence information in irrelevant evidence easy, leading to the

observed high performance in Table 2.6.

2.6.5 Error Analysis

Lastly, we conduct an error analysis on the newly introduced SufficientFacts to
understand whether known biases in models trained on FC datasets (§2.2) also affect
predictions on SufficientFacts.

Claim-Only Prediction. Schuster et al. (2019) found that FC models often learn
spurious correlations and can predict the correct label even when no evidence is
provided, as they learn only features of the claim. We investigate whether it is
also among the reasons for incorrect predictions of the models on the SufficientFacts
dataset. We compute the percentage of instances in SufficientFacts where the models
do not predict when provided with evidence. We find that for the HoVer dataset,
the supervised BERT model does not predict an NEI label for 36% of the instances
in SufficientFacts whereas the respective number for RoBERTa is 23% and 14% for
ALBERT. This indicates that supervised models trained on HoVer learn claim-only
features for some instances. After training the models with CAD (§2.5.2) and CL
loss (§2.5.1), fewer than 1% of instances from SufficientFacts are predicted as having
enough information by each of thee models when given only the claim. This indicates
that training with CAD and CL loss decreases the claim-only bias for the HoVer dataset.
For FEVER and VitaminC, we find a lower percentage of instances (fewer than 4%) in
the corresponding SufficientFacts splits that the supervised models predict as having
enough information when given only the claim. We hypothesises that this is due to
the larger amount of training data in both datasets and due to the contrastive nature
of VitaminC, which requires the models to learn features from the evidence as well.
The percentage is again decreased after training with CAD and CL (fewer than 1%).
Finally, we find that the instances that are still not detected as having insufficient

2.6 Results and Discussion

48



1. Claim: Unison (Celine Dion album) was originally released by Atlantic Records.
Evidence: [Unison (Celine Dion album)] The album was originally released on 2 April
1990.

Dataset: FEVER, Model: BERT Gold: NEI, Sup.: SUPPORTS, +CAD: NEI, +CL: NEI

2. Claim: Jean-Jacques Dessalines was born on October 2nd, 2017.

Evidence: [Jean-Jacques Dessalines] He defeated a French army at the Battle of Vertieres.
Dataset: FEVER, Model: RoBERTa, Gold: NEI, Sup.: SUPPORTS, +CAD: NEI, +CL:
SUPPORTS

3. Claim: The Times is a website. Evidence: N/A
Dataset: FEVER, Model: RoBERTa, Gold: NEI, Sup.:REFUTES, +CAD: REFUTES, +CL:
REFUTES

4. Claim: The Bragg—Gray cavity theory was developed by Louis Harold Gray, William
Lawrence Bragg, and a man knighted in the year 1920.

Evidence: [William Henry Bragg] He was knighted in 1920.

Dataset: HoVer, Model : RoBERTa, Gold: NEI, supervised: SUPPORTS, +CAD: SUPPORTS,
+CL: SUPPORTS

Table 2.7: Example model predictions before (Sup.) and after including CAD/CL loss training.

evidence after training with CAD/CL loss are those that the model could have gained
world knowledge about during pre-training. One example of such a claim is given in
Table 2.7, row 3.

Claim-Evidence Overlap. Schuster et al. (2021) also find that FC models are
biased in predicting the SUPPORT class when the overlap between the claim and the
evidence is high. We conjecture that this is another possible reason that the instances
in SufficientFacts are hard for the models to distinguish as having missing important
evidence information as their evidence still has a high overlap with the claim. To
probe this, we compute the average overlap between the claim and the evidence,
disregarding stop words, of instances in the SufficientFacts that are predicted as having
insufficient information by the supervised models and by the models trained with CAD
and CL loss. For FEVER and HoVer, the instances predicted as NEI by the supervised
models have low overlap with the claim that increases after training with CAD and CL
loss (61% to 68% for HoVer and 63% to 65% for FEVER). An example instance where
the evidence has high overlap with the claim and is predicted as NEI only after training
with CAD and CL loss can be found in Table 2.7, row 1. The latter is an indication
that training with CAD and CL loss also reduces the overlap bias of FC models. We
do not observe a change in the overlap ratio for VitaminC, where we assume that
training with contrastive instances already prevents learning biases, including the
overlap bias.

Spurious Patterns. Finally, we investigate whether the models learn other spurious
patterns that could lead to low results on SufficientFacts. We already observed that
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for some instances, the supervised models predict that the evidence is not sufficient
after removing irrelevant information (Table 2.3), which is one indication of learned
spurious patterns. Further, when removing important information, the supervised
models still predict the same label for some instances, as they rely on other parts of
the input, which might not be important. Table 2.7 shows one example where the
supervised models did not recognise that the evidence is missing important information
(row 1), but after training with CAD or CL loss, it was detected as NEI. However, there
are still possible spurious correlations that the models learn even after training with
CAD or CL loss, e.g. the example in row 4. Another such example is in row 3, where
even after training with CAD and CL loss, the models still find the claim without any
provided evidence sufficient for predicting a refuted claim. As this example relies on
knowledge of common facts, we assume that the models rely on knowledge obtained
during pre-training or fine-tuning instead. Finally, we find that CAD can prevent the
model from learning spurious correlations more than the CL loss. This leads to more
instances having the correct prediction only after training with CAD, as in the example
in row 2.

2.7 Conclusion

We propose a new task related to fact checking, namely detecting when evidence
with omitted information is (in)sufficient. To this end, we conducted an in-depth
empirical analysis with a newly introduced fluency-preserving method for omitting
evidence information. We compared what Transformer-based models and humans find
to be sufficient information for FC, resulting in a novel dataset, SufficientFacts. Finally,
we showed that the proposed evidence omission method can be used for collecting
contrastive examples for CL. and CAD, which improved the performance of the studied
models on the Evidence Sufficiency Prediction task and on veracity prediction.

The resulting models could be applied to detect emergent false claims, which gain
popularity before any reputable source can refute them, as our proposed models can
indicate when the provided input is insufficient for making a decision and whether
to provide the user with the veracity prediction. Such models could also be used
for detecting knowledge or evidence gaps that need to be filled to refute or support
popular claims. Another possible future research direction would be to build FC
models that indicate the particular part of the claim that they are missing supporting
evidence for. Moreover, our proposed analysis and methods could be applied to other
knowledge-intensive tasks, such as question answering.
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Generating Label Cohesive
and Well-Formed Adversarial
Claims

3.1 Introduction

Adversarial examples (Goodfellow et al., 2014; Szegedy et al., 2013) are deceptive
model inputs designed to mislead an ML system into making the wrong prediction.
They expose regions of the input space that are outside the training data distribution
where the model is unstable. It is important to reveal such vulnerabilities and correct
for them, especially for tasks such as fact checking (FC).

In this paper, we explore the vulnerabilities of FC models trained on the FEVER
dataset (Thorne et al., 2018), where the inference between a claim and evidence text
is predicted. We particularly construct universal adversarial triggers (Wallace et al.,
2019a) - single n-grams appended to the input text that can shift the prediction of a
model from a source class to a target one. Such adversarial examples are of particular
concern, as they can apply to a large number of input instances.

However, we find that the triggers also change the meaning of the claim such that
the true label is in fact the target class. For example, when attacking a claim-evidence
pair with a ‘SUPPORTS’ label, a common unigram found to be a universal trigger
when switching the label to ‘REFUTES’ is ‘none’. Prepending this token to the claim
drastically changes the meaning of the claim such that the new claim is in fact a valid
‘REFUTES’ claim as opposed to an adversarial ‘SUPPORTS’ claim. Furthermore, we
find adversarial examples constructed in this way to be nonsensical, as a new token is
simply being attached to an existing claim.

Our contributions are as follows. We preserve the meaning of the source text and
improve the semantic validity of universal adversarial triggers to automatically construct
more potent adversarial examples. This is accomplished via: 1) a novel extension
to the HotFlip attack (Ebrahimi et al., 2018), where we jointly minimize the target
class loss of a FC model and the attacked class loss of a natural language inference
model; 2) a conditional language model trained using GPT-2 (Radford et al., 2019),
which takes trigger tokens and a piece of evidence, and generates a semantically
coherent new claim containing at least one trigger. The resulting triggers maintain
potency against a FC model while preserving the original claim label. Moreover, the
conditional language model produces semantically coherent adversarial examples
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EVIDENCE CLAIM

Dissociative identity
disorder, or DID, may be
the result of memory
disruptions that have been
induced by psychological

Dissociative disorders
have been attributed to
disruptions in memory
caused by trauma or other

forms of stress.

K\ \\ trauma.
Trigger Generation |
SUPPORTS — REFUTES

A

TRIGGERS
don,already,more,during,home
AN

— Il
[ GPT-2 Claim Generation ]

Dissociative disorders have been attributed to disrupted
brain activity during trauma or other forms of stress.

Figure 3.1: High level overview of our method. First, universal triggers are discovered for
flipping a source to a target label (e.g. SUPPORTS — REFUTES). These triggers
are then used to condition the GPT-2 language model to generate novel claims
with the original label, including at least one of the found triggers.

containing triggers, on which a FC model performs 23.8% worse than with the original
FEVER claims. The code for the paper is publicly available.!

3.2 Related Work

3.2.1 Adversarial Examples

Adversarial examples for NLP systems can be constructed as automatically generated
text (Ren et al., 2019) or perturbations of existing input instances (Jin et al., 2019;
Ebrahimi et al., 2018). For a detailed literature overview, see Zhang et al. (2020Db).

One potent type of adversarial techniques are universal adversarial attacks (Gao and
Oates, 2019; Wallace et al., 2019a) - single perturbation changes that can be applied
to a large number of input instances and that cause significant performance decreases
of the model under attack. Wallace et al. (2019a) find universal adversarial triggers
that can change the prediction of the model using the HotFlip algorithm (Ebrahimi
et al., 2018).

However, for NLI tasks, they also change the meaning of the instance they are
appended to, and the prediction of the model remains correct. Michel et al. (2019)
address this by exploring only perturbed instances in the neighborhood of the original

https://github.com/copenlu/fever-adversarial-attacks
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one. Their approach is for instance-dependent attacks, whereas we suggest finding
universal adversarial triggers that also preserve the original meaning of input instances.
Another approach to this are rule-based perturbations of the input (Ribeiro et al., 2018)
or imposing adversarial constraints on the produced perturbations (Dia et al., 2019).
By contrast, we extend the HotFlip method by including an auxiliary Semantic Textual
Similarity (STS) objective. We additionally use the extracted universal adversarial

triggers to generate adversarial examples with low perplexity.

3.2.2 Fact Checking

Fact checking systems consist of components to identify check-worthy claims
(Atanasova et al., 2018; Hansen et al., 2019; Wright and Augenstein, 2020), retrieve
and rank evidence documents (Yin and Roth, 2018; Allein et al., 2021), determine the
relationship between claims and evidence documents (Bowman et al., 2015; Augen-
stein et al., 2016; Baly et al., 2018), and finally predict the claims’ veracity (Thorne
et al., 2018; Augenstein et al., 2019). As this is a relatively involved task, models easily
overfit to shallow textual patterns, necessitating the need for adversarial examples to
evaluate the limits of their performance.

Thorne et al. (2019a) are the first to propose hand-crafted adversarial attacks.
They follow up on this with the FEVER 2.0 task (Thorne et al., 2019b), where par-
ticipants design adversarial attacks for existing FC systems. The first two winning
systems (Niewinski et al., 2019; Hidey et al., 2020) produce claims requiring multi-
hop reasoning, which has been shown to be challenging for fact checking models
(Ostrowski et al., 2021). The other remaining system (Kim and Allan, 2019) generates
adversarial attacks manually. We instead find universal adversarial attacks that can be
applied to most existing inputs while markedly decreasing fact checking performance.
Niewinski et al. (2019) additionally feed a pre-trained GPT-2 model with the target
label of the instance along with the text for conditional adversarial claim generation.
Conditional language generation has also been employed by Keskar et al. (2019) to
control the style, content, and the task-specific behavior of a Transformer.

3.3 Methods
3.3.1 Models

We take a RoBERTa (Liu et al., 2019) model pretrained with a LM objective and
fine-tune it to classify claim-evidence pairs from the FEVER dataset as SUPPORTS,
REFUTES, and NOT ENOUGH INFO (NEI). The evidence used is the gold evidence,
available for the SUPPORTS and REFUTES classes. For NEI claims, we use the system
of Malon (2018) to retrieve evidence sentences. To measure the semantic similarity
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between the claim before and after prepending a trigger, we use a large ROBERTa
model fine-tuned on the Semantic Textual Similarity Task.? For further details, we
refer the reader to §3.6.1.

3.3.2 Universal Adversarial Triggers Method

The Universal Adversarial Triggers method is developed to find n-gram trigger
tokens tg, which, appended to the original input z, f(z) = y, cause the model to
predict a target class § : f(to,z) = y. In our work, we generate unigram triggers,
as generating longer triggers would require additional objectives to later produce
well-formed adversarial claims. We start by initializing the triggers with the token ‘a’.
Then, we update the embeddings of the initial trigger tokens e, with embeddings e,
of candidate adversarial trigger tokens w; that minimize the loss £ for the target class
y. Following the HotFlip algorithm, we reduce the brute-force optimization problem
using a first-order Taylor approximation around the initial trigger embeddings:

argmin [ey, — €4]' Ve, L (3.1)
w; eV
where V is the vocabulary of the ROBERTa model and V,_ L is the average gradient
of the task loss accumulated for all batches. This approximation allows for a O(|V|)
space complexity of the brute-force candidate trigger search.

While HotFlip finds universal adversarial triggers that successfully fool the model
for many instances, we find that the most potent triggers are often negation words,
e.g., ‘not’, ‘neither’, ‘nowhere’. Such triggers change the meaning of the text, making
the prediction of the target class correct. Ideally, adversarial triggers would preserve
the original label of the claim. To this end, we propose to include an auxiliary STS
model objective when searching for candidate triggers. The additional objective is
used to minimize the loss £’ for the maximum similarity score (5 out of 0) between
the original claim and the claim with the prepended trigger. Thus, we arrive at the
combined optimization problem:

argmin([ew, — €a]' Ve, £ 4 [0w, — 04]' Vo, L') (3.2)

w; eV

where o,, is the STS model embedding of word w. For the initial trigger token, we use
“[MASK]” as STS selects candidates from the neighborhood of the initial token.

2https://huggingface.co/SparkBeyond/roberta-large-sts-b
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3.3.3 Claim Generation

In addition to finding highly potent adversarial triggers, it is also of interest to
generate coherent statements containing the triggers. To accomplish this, we use the
HuggingFace implementation of the GPT-2 language model (Radford et al., 2019; Wolf
et al., 2019), a large transformer-based language model trained on 40GB of text. The
objective is to generate a coherent claim, which either entails, refutes, or is unrelated
a given piece of evidence, while also including trigger words.

The language model is first fine tuned on the FEVER FC corpus with a specific input
format. FEVER consists of claims and evidence with the labels SUPPORTS, REFUTES,
or NOT ENOUGH INFO (NEI). We first concatenate evidence and claims with a special
token. Next, to encourage generation of claims with certain tokens, a sequence of
tokens separated by commas is prepended to the input. For training, the sequence
consists of a single token randomly selected from the original claim, and four random
tokens from the vocabulary. This encourages the model to only select the one token
most likely to form a coherent and correct claim. The final input format is [trigger
tokens] | | [evidence] | | [claim]. Adversarial claims are then generated by providing
an initial input of a series of five comma-separated trigger tokens plus evidence, and
progressively generating the rest of the sequence. Subsequently, the set of generated
claims is pruned to include only those which contain a trigger token, and constitute
the desired label. The latter is ensured by passing both evidence and claim through an
external NLI model trained on SNLI (Bowman et al., 2015).

3.4 Results

We present results for universal adversarial trigger generation and coherent claim
generation. Results are measured using the original FC model on claims with added
triggers and generated claims (macro F;). We also measure how well the added
triggers maintain the claim’s original label (semantic similarity score), the perplexity
(PPL) of the claims with prepended triggers, and the semantic quality of generated
claims (manual annotation). PPL is measured with a pretrained RoBERTa LM.

3.4.1 Adversarial Triggers

Table 3.1 presents the results of applying universal adversarial triggers to claims
from the source class. The top-performing triggers for each direction are found in
§3.6.2. The adversarial method with a single FC objective successfully deteriorates
model performance by a margin of 0.264 F) score overall. The biggest performance
decrease is when the adversarial triggers are constructed to flip the predicted class from
SUPPORTS to REFUTES. We also find that 8 out of 18 triggers from the top-3 triggers
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Class F, STS PPL
No Triggers
All .866 5.139 11.92 (£45.92)
S .938 5.130 12.22 (£40.34)
R .846 5.139 12.14 (£37.70)
NEI .817 5.147 14.29 (£84.45)
FC Objective
All .602 (£.289) 4.586 (£.328) 12.96 (£55.37)
S—R  .060 (£.034) 4.270 (£.295) 12.44 (+£41.74)
S—NEI .611 (4+.360) 4.502 (4+.473) 12.75 (+40.50)
R—S  .749 (£.027) 4.738 (£.052) 11.91 (£36.53)
R—NEI .715 (£.026) 4.795 (£.094) 11.77 (£36.98)
NEI—-R .685 (£+.030) 4.378 (£.232) 14.20 (£83.32)
NEI—S .793 (£.054) 4.832 (£.146) 14.72 (£93.15)
FC+STS Objectives

All .763 (£.123) 4.786 (£+.156) 12.97 (£58.30)
S—R  .702 (£.237) 4.629 (+.186) 12.62 (+41.91)
S—NEI .717 (£.161) 4.722 (+.152) 12.41 (+39.66)
R—S  .778 (£.010) 4.814 (£.141) 11.93 (£37.04)
R—NEI .779 (£.009) 4.855 (£.098) 12.20 (£37.67)
NEI—-R .780 (£.078) 4.894 (£.115) 15.27 (£111.2)
NEI—-S .821 (£.008) 4.800 (£.085) 13.42 (£82.30)

Table 3.1: Universal Adversarial Trigger method performance. Triggers are generated given
claims from a source class to fool the classifier to predict a target class (column
Class, with SUPPORTS (S), REFUTES (R), NEI). The results are averaged over the
top 10 triggers.

7

for each direction, are negation words such as ‘nothing’, ‘nobody’, ‘neither’, ‘nowhere
(see Table 3.4 in the appendix). The first of these triggers decreases the performance
of the model to 0.014 in F;. While this is a significant performance drop, these triggers
also flip the meaning of the text. The latter is again indicated by the decrease of the
semantic similarity between the claim before and after prepending a trigger token,
which is the largest for the SUPPORTS to REFUTES direction. We hypothesise that the
success of the best performing triggers is partly due to the meaning of the text being
flipped.

Including the auxiliary STS objective increases the similarity between the claim
before and after prepending the trigger for five out of six directions. Moreover, we
find that now only one out of the 18 top-3 triggers for each direction are negation
words. Intuitively, these adversarial triggers are worse at fooling the FC model as
they also have to preserve the label of the original claim. Notably, for the SUPPORTS
to REFUTES direction the trigger performance is decreased with a margin of 0.642
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Target F; Avg Quality # Examples
FC Objective

Overall 0.534 4.33 156
SUPPORTS 0.486 4.79 39
REFUTES  0.494 4.70 32
NEI 0.621 3.98 85
FC+STS Objectives
Overall 0.635 4.63 156
SUPPORTS 0.617 4.77 67
REFUTES 0.642 4.68 28
NEI 0.647 4.44 61

Table 3.2: FC performance for generated claims.

compared to the single FC objective. We conclude that including the STS objective for
generating Universal Adversarial triggers helps to preserve semantic similarity with
the original claim, but also makes it harder to both find triggers preserving the label
of the claim while substantially decreasing the performance of the model.

3.4.2 Generation

We use the method described in §3.3.3 to generate 156 claims using triggers found
with the additional STS objective, and 156 claims without. 52 claims are generated
for each class (26 flipping to one class, 26 flipping to the other). A different GPT-2
model is trained to generate claims for each specific class, with triggers specific to
attacking that class used as input. The generated claims are annotated manually (see
§3.6.5 for the procedure). The overall average claim quality is 4.48, indicating that
most generated statements are highly semantically coherent. The macro F; of the
generative model w.r.t. the intended label is 58.9 overall. For the model without the
STS objective, the macro F; is 56.6, and for the model with the STS objective, it is
60.7, meaning that using triggers found with the STS objective helps the generated
claims to retain their intended label.

We measure the performance of the original FC model on generated claims (Table
3.2). We compare between using triggers that are generated with the STS objective
(Ex2) and without (Ex1). In both cases, the adversarial claims effectively fool the FC
model, which performs 38.4% worse and 23.8% worse on Ex1 and Ex2, respectively.
Additionally, the overall sentence quality increases when the triggers are found with
the STS objective (Ex2). The FC model’s performance is higher on claims using triggers
generated with the STS objective but still significantly worse than on the original
claims. We provide examples of generated claims with their evidence in Table 3.3.
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Comparing FC performance with our generated claims vs. those from the devel-
opment set of adversarial claims from the FEVER shared task , we see similar drops
in performance (0.600 and 0.644 macro F}, respectively). While the adversarial
triggers from FEVER cause a larger performance drop, they were manually selected to
meet the label coherence and grammatical correctness requirements. Conversely, we

automatically generate claims that meet these requirements.

Evidence Triggers Generated Claim

SUPPORTS Claims

Since the 19th century, some Romani have
also migrated to the Americas.

Cyprus is a major tourist destination in the
Mediterranean.

The first Nobel Prize in Chemistry was
awarded in 1901 to Jacobus Henricus van’t
Hoff, of the Netherlands, “for his discovery
of the laws of chemical dynamics and os-
motic pressure in solutions.”

don, already, more, dur-
ing, home

foreign, biggest, major,
every, friends

later, already, quite, al-
tern, whereas

Romani have moved to the Amer-
icas during the 19th century.

Cyprus is a major tourist destina-
tion.

Henricus Van’t Hoff was already
awarded the Nobel Prize.

California Attorney General Kamala Harris
defeated Sanchez , 61.6% to 38.4%.

Uganda is in the African Great Lakes region.

Times Higher Education World University
Rankings is an annual publication of uni-
versity rankings by Times Higher Education
(THE) magazine.

REFUTES Claims

phys, incarn, not, occa-
sionally, something
unless, endorsed, picks,
pref, against

interested, reward, visit,
consumer, conclusion

Kamala Harris did not defeat
Sanchez, 61.6% to 38.4%.

Uganda is against the African
Great Lakes region.

Times Higher Education World
University Rankings is a con-
sumer magazine.

NOT ENOUGH INFO Claims

The KGB was a military service and was gov-
erned by army laws and regulations, similar
to the Soviet Army or MVD Internal Troops.

The series revolves around Frank Castle,
who uses lethal methods to fight crime as
the vigilante “the Punisher”, with Jon Bern-
thal reprising the role from Daredevil.

The Suite Life of Zack & Cody is an Ameri-
can sitcom created by Danny Kallis and Jim
Geoghan.

nowhere, only, none, no,
nothing

says, said, take, say, is

whilst, interest, applic,
someone, nevertheless

The KGB was only controlled by
a military service.

Take Me High is about Frank Cas-
tle’s use of lethal techniques to
fight crime.

The Suite Life of Zack & Cody
was created by someone who
never had the chance to work
in television.

Table 3.3: Examples of generated adversarial claims. These are all claims which the FC model
incorrectly classified.

3.5 Conclusion

We present a method for automatically generating highly potent, well-formed, label
cohesive claims for FC. We improve upon previous work on universal adversarial
triggers by determining how to construct valid claims containing a trigger word.
Our method is fully automatic, whereas previous work on generating claims for fact
checking is generally rule-based or requires manual intervention. As FC is only one
test bed for adversarial attacks, it would be interesting to test this method on other
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NLP tasks requiring semantic understanding such as question answering to better
understand shortcomings of models.
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3.6 Appendices

3.6.1 Implementation Details

Models. The RoBERTa FC model (125M parameters) is fine-tuned with a batch
size of 8, learning rate of 2e-5 and for a total of 4 epochs, where the epoch with the
best performance is saved. We used the implementation provided by HuggingFace
library. We performed a grid hyper-parameter search for the learning rate between
the values 1e-5, 2e-5, and 3e-5. The average time for training a model with one set
of hyperparameters is 155 minutes (£3). The average accuracy over the different
hyperparameter runs is 0.862(4+ 0.005) F; score on the validation set.

For the models that measure the perplexity and the semantical similarity we use
the pretrained models provided by HuggingFace— RoBERTa large model (125M pa-
rameters) fine tuned on the STS-b task and RoBERTa base model (355M parameters)
pretrained on a LM objective.

We used the HuggingFace implementation of the small GPT-2 model, which consists
of 124,439,808 parameters and is fine-tuned with a batch size of 4, learning rate of
3e-5, and for a total of 20 epochs. We perform early stopping on the loss of the model
on a set of validation data. The average validation loss is 0.910. The average runtime
for training one of the models is 31 hours and 28 minutes.

We note that, the intermediate models used in this work and described in this
section, are trained on large relatively general-purpose datasets. While, they can make
some mistakes, they work well enough and using them, we don’t have to rely on
additional human annotations for the intermediate task.

Adversarial Triggers. The adversarial triggers are generated based on instances
from the validation set. We run the algorithm for three epochs to allow for the
adversarial triggers to converge. At each epoch the initial trigger is updated with the
best performing trigger for the epoch (according to the loss of the FC or FC+STS
objective). At the last step, we select only the top 10 triggers and remove any that
have a negative loss. We choose the top 10 triggers as those are the most potent ones,
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adding more than top ten of the triggers preserves the same tendencies in the results,
but smooths them as further down the list of adversarial attacks, the triggers do not
decrease the performance of the model substantially. This is also supported by related
literature (Wallace et al., 2019a), where only the top few triggers are selected.

The adversarial triggers method is run for 28.75 (+ 1.47) minutes for with the FC
objective and 168.6 (£ 28.44) minutes for the FC+STS objective. We perform the
trigger generation with a batch size of four. We additionally normalize the loss for
each objective to be in the range [0,1] and also re-weight the losses with a wieht of
0.6 for the FC loss and a weight of 0.4 for the SST loss as when generated with an
equal weight, the SST loss tends to preserve the same initial token in all epochs.

Datasets. The datasets used for training the FC model consist of 161,249 SUPPORTS,
60,227 REFUTES, and 69,885 NEI claims for the training split; 6,207 SUPPORTS,
6,235 REFUTES, and 6,554 NEI claims for the dev set; 6,291 SUPPORTS, 5,992
REFUTES, and 6522 NEI claims. The evidence for each claim is the gold evidence
provided from the FEVER dataset, which is available for REFUTES and SUPPORTS
claims. When there is more than one annotation of different evidence sentences for
an instance, we include them as separate instances in the datasets. For NEI claims, we
use the system of Malon (2018) to retrieve evidence sentences.

3.6.2 Top Adversarial Triggers

Table 3.4 presents the top adversarial triggers for each direction found with the
Universal Adversarial Triggers method. It offers an additional way of estimating
the effectiveness of the STS objective by comparing the number of negation words
generated by the basic model (8) and the STS objective (2) in the top-3 triggers for
each direction.

3.6.3 Computing Infrastructure

All experiments were run on a shared cluster. Requested jobs consisted of 16GB of
RAM and 4 Intel Xeon Silver 4110 CPUs. We used two NVIDIA Titan RTX GPUs with
12GB of RAM for training GPT-2 and one NVIDIA Titan X GPU with 8GB of RAM for

training the FC models and finding the universal adversarial triggers.

3.6.4 Evaluation Metrics

The primary evaluation metric used was macro F; score. We used the sklearn imple-
mentation of precision_recall fscore_support, which can be found here: https:
//scikit-learn.org/stable/modules/generated/sklearn.metrics. Briefly:

__tp
tp+ fp

p

3.6 Appendices

61



Class  Trigger Fi STS PPL
FC Objective

S—R only 0.014 4.628 11.660 (36.191)
S—R nothing 0.017 4.286 13.109 (56.882)
S—R nobody 0.036 4.167 12.784 (37.390)
S—NEI neither 0.047 3.901 11.509 (31.413)
S—NEI none 0.071 4.016 13.136 (39.894)
S—NEI Neither 0.155 3.641 11.957 (44.274)
R—S some 0.687 4.694 11.902 (33.348)
R—S Sometimes 0.724 4.785 10.813 (32.058)
R—S Some 0.743 4.713 11.477 (37.243)

R—NEI recommended 0.658 4.944 12.658 (36.658)
R—NEI Recommend 0.686 4.789 10.854 (32.432)
R—NEI Supported 0.710 4.739 11.972 (40.267)

NEI—-R Only 0.624 4.668 12.939 (57.666)
NEI—R nothing 0.638 4.476 11.481 (48.781)
NEI—-R nobody 0.678 4.361 16.345 (111.60)
NEI—S nothing 0.638 4.476 18.070 (181.85)
NEI—-S existed 0.800 4.950 15.552 (79.823)
NEI—S area 0.808 4.834 13.857 (93.295)
FC+STS Objectives
S—R  never 0.048 4.267 12.745 (50.272)
S—R  every 0.637 4.612 13.714 (51.244)
S—R didn 0.719 4.986 12.416 (41.080)
S—NEI always 0.299 4.774 11.906 (35.686)
S—NEI every 0.637 4.612 12.222 (38.440)
S—NEI investors 0.696 4.920 12.920 (42.567)
R—S  over 0.761 4.741 12.139 (33.611)
R—S  about 0.765 4.826 12.052 (37.677)
R—S  her 0.774 4.513 12.624 (41.350)
R—NEI top 0.757 4.762 12.787 (39.418)
R—NEI also 0.770 5.034 11.751 (35.670)
R—NEI when 0.776 4.843 12.444 (37.658)
NEI—R only 0.562 4.677 14.372 (83.059)
NEI—R there 0.764 4.846 11.574 (42.949)
NEI-R just 0.786 4.916 16.879 (135.73)
NEI—S of 0.802 4.917 11.844 (55.871)
NEI—S is 0.815 4.931 17.507 (178.55)
NEI—»S A 0.818 4.897 12.526 (67.880)

Table 3.4: Top-3 triggers found with the Universal Adversarial Triggers methods. The triggers
are generated given claims from a source class (column Class), so that the clas-
sifier is fooled to predict a different target class. The classes are SUPPORTS (S),
REFUTES (R), NOT ENOUGH INFO (NEI).

tp
T = —
tp+ fn

2 %
F = 2XPET
p+r

where (p are true positives, fp are false positives, and fn are false negatives.

3.6.5 Manual Evaluation

After generating the claims, two independent annotators label the overall claim
quality (score of 1-5) and the true label for the claim. The inter-annotator agreement
for the quality label using Krippendorff’s alpha is 0.54 for the quality score and 0.38
for the claim label. Given this, we take the average of the two annotator’s scores for
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the final quality score and have a third expert annotator examine and select the best
label for each contested claim label.
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Part I11

Explainability for Complex Reasoning
Tasks over Text



Generating Fact Checking
Explanations

4.1 Introduction

When a potentially viral news item is rapidly or indiscriminately published by a news
outlet, the responsibility of verifying the truthfulness of the item is often passed on
to the audience. To alleviate this problem, independent teams of professional fact
checkers manually verify the veracity and credibility of common or particularly check-
worthy statements circulating the web. However, these teams have limited resources
to perform manual fact checks, thus creating a need for automating the fact checking
process.

The current research landscape in automated fact checking is comprised of systems
that estimate the veracity of claims based on available metadata and evidence pages.
Datasets like LIAR (Wang, 2017) and the multi-domain dataset MultiFC (Augenstein
et al., 2019) provide real-world benchmarks for evaluation. There are also artificial
datasets of a larger scale, e.g., the FEVER (Thorne et al., 2018) dataset based on
Wikipedia articles. As evident from the effectiveness of state-of-the-art methods for
both real-world — 0.492 macro F;j score (Augenstein et al., 2019), and artificial data -
68.46 FEVER score (label accuracy conditioned on evidence provided for ‘supported’
and ‘refuted’ claims) (Stammbach and Neumann, 2019), the task of automating fact
checking remains a significant and poignant research challenge.

A prevalent component of existing fact checking systems is a stance detection
or textual entailment model that predicts whether a piece of evidence contradicts
or supports a claim (Ma et al., 2018; Mohtarami et al., 2018; Xu et al., 2018).
Existing research, however, rarely attempts to directly optimise the selection of relevant
evidence, i.e., the self-sufficient explanation for predicting the veracity label (Thorne
et al., 2018; Stammbach and Neumann, 2019). On the other hand, Alhindi et al.
(2018) have reported a significant performance improvement of over 10% macro F;
score when the system is provided with a short human explanation of the veracity label.
Still, there are no attempts at automatically producing explanations, and automating
the most elaborate part of the process - producing the justification for the veracity
prediction - is an understudied problem.

In the field of NLP as a whole, both explainability and interpretability methods have
gained importance recently, because most state-of-the-art models are large, neural
black-box models. Interpretability, on one hand, provides an overview of the inner
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Claim: The last major oil spill from a drilling accident in America happened over
40 years ago in 1969.

Ruling Comments: (...) The last major oil spill from a drilling accident in America
happened over 40 years ago in 1969.

(...) The largest in volume was the Santa Barbara spill of 1969 referenced by
Murdock and Johnson, in which an estimated 100,000 barrels of oil spilled into the
Pacific Ocean, according to the API. The Santa Barbara spill was so big it ranked
seventh among the 10 largest oil spills caused by marine well blowouts in the
world, the report states. Two other U.S. spills, both in 1970, rank eighth and 10th.
Fourteen marine blowouts have taken place in the U.S. between 1969 and 2007.
Six of them took place after 1990 and spilled a total of nearly 13,700 barrels.

(...) We interviewed three scientists who said that the impact of a spill has little
to do with its volume. Scientists have proven that spills far smaller than Santa
Barbara’s have been devastating.

Justification: While the nation’s largest oil well blowout did take place in 1969,
it’s not factually correct to call it the “last major oil spill". First of all, two of the
largest blowouts in the world took place in the U. S. the following year. More
importantly, experts agree that spills far smaller in volume to the 1969 disaster
have been devastating. From a scientific perspective, Johnson’s decision to single
out the 1969 blowout as the last “major" one makes no sense.

Ruling: Half-True

Table 4.1: Example instance from the LIAR-PLUS dataset, with oracle sentences for generating
the justification highlighted.

workings of a trained model such that a user could, in principle, follow the same
reasoning to come up with predictions for new instances. However, with the increasing
number of neural units in published state-of-the-art models, it becomes infeasible for
users to track all decisions being made by the models. Explainability, on the other
hand, deals with providing local explanations about single data points that suggest the
most salient areas from the input or are generated textual explanations for a particular
prediction.

Saliency explanations have been studied extensively (Adebayo et al., 2018; Arras
et al., 2019; Poerner et al., 2018), however, they only uncover regions with high
contributions for the final prediction, while the reasoning process still remains behind
the scenes. An alternative method explored in this paper is to generate textual expla-
nations. In one of the few prior studies on this, the authors find that feeding generated
explanations about multiple choice question answers to the answer predicting system
improved QA performance (Rajani et al., 2019).

4.1 Introduction
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Inspired by this, we research how to generate explanations for veracity prediction.

We frame this as a summarisation task, where, provided with elaborate fact checking
reports, later referred to as ruling comments, the model has to generate veracity
explanations close to the human justifications as in the example in Table 4.1. We
then explore the benefits of training a joint model that learns to generate veracity
explanations while also predicting the veracity of a claim.

In summary, our contributions are as follows:

1. We present the first study on generating veracity explanations, showing that they
can successfully describe the reasons behind a veracity prediction.

2. We find that the performance of a veracity classification system can leverage
information from the elaborate ruling comments, and can be further improved
by training veracity prediction and veracity explanation jointly.

3. We show that optimising the joint objective of veracity prediction and veracity
explanation produces explanations that achieve better coverage and overall
quality and serve better at explaining the correct veracity label than explanations
learned solely to mimic human justifications.

4.2 Dataset

Existing fact checking websites publish claim veracity verdicts along with ruling
comments to support the verdicts. Most ruling comments span over long pages and
contain redundancies, making them hard to follow. Textual explanations, by contrast,
are succinct and provide the main arguments behind the decision. PolitiFact ! provides
a summary of a claim’s ruling comments that summarises the whole explanation in
just a few sentences.

We use the PolitiFact-based dataset LIAR-PLUS (Alhindi et al., 2018), which contains
12,836 statements with their veracity justifications. The justifications are automatically
extracted from the long ruling comments, as their location is clearly indicated at the
end of the ruling comments. Any sentences with words indicating the label, which
Alhindi et al. (2018) select to be identical or similar to the label, are removed. We
follow the same procedure to also extract the ruling comments without the summary
at hand.

We remove instances that contain fewer than three sentences in the ruling comments
as they indicate short veracity reports, where no summary is present. The final dataset
consists of 10,146 training, 1,278 validation, and 1,255 test data points. A claim’s

https://wuw.politifact.com/
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Figure 4.1: Architecture of the Explanation (left) and Fact-Checking (right) models that opti-
mise separate objectives.

ruling comments in the dataset span over 39 sentences or 904 words on average, while
the justification fits in four sentences or 89 words on average.

4.3 Method

We now describe the models we employ for training separately (1) an explanation
extraction and (2) veracity prediction, as well as (3) the joint model trained to optimise
both.

The models are based on DistilBERT (Sanh et al., 2019), which is a reduced version
of BERT (Devlin et al., 2019) performing on par with it as reported by the authors.
For each of the models described below, we take the version of DistilBERT that is
pre-trained with a language-modelling objective and further fine-tune its embeddings
for the specific task at hand.

4.3.1 Generating Explanations

Our explanation model, shown in Figure 4.1 (left) is inspired by the recent success
of utilising the transformer model architecture for extractive summarisation (Liu and
Lapata, 2019). It learns to maximize the similarity of the extracted explanation with
the human justification.

We start by greedily selecting the top & sentences from each claim’s ruling comments
that achieve the highest ROUGE-2 F score when compared to the gold justification.
We choose k£ = 4, as that is the average number of sentences in veracity justifications.
The selected sentences, referred to as oracles, serve as positive gold labels - y* €
{0,1}", where N is the total number of sentences present in the ruling comments.
Appendix 4.8.1 provides an overview of the coverage that the extracted oracles achieve
compared to the gold justification. Appendix 4.8.2 further presents examples of the
selected oracles, compared to the gold justification.

4.3 Method

68



| Explanation Input | |Fact-Checking Input |

- - DistiBERT
-T1 -s

| bl eR'<bh € R”‘/‘H \fn} eR'<>h} eR" |

XEE|XFE

XEF |XFF

(Laer = 7 * HEE,¥5) + nx HE",y5) )
A 3

Figure 4.2: Architecture of the Joint model learning Explanation (E) and Fact-Checking (F) at
the same time.

At training time, we learn a function f(X) = p%, p¥ € R that, based on the input
X, the text of the claim and the ruling comments, predicts which sentence should be
selected - {0,1}, to constitute the explanation. At inference time, we select the top
n = 4 sentences with the highest confidence scores.

Our extraction model, represented by function f(X), takes the contextual represen-
tations produced by the last layer of DistilBERT and feeds them into a feed-forward
task-specific layer - h € R". It is followed by the prediction layer p¥ ¢ RY" with
sigmoid activation. The prediction is used to optimise the cross-entropy loss function
Ly =H(P",y").

4.3.2 Veracity Prediction

For the veracity prediction model, shown in Figure 4.1 (right), we learn a function
g(X) = p’ that, based on the input X, predicts the veracity of the claim y € Yy, Yy =
{true, false, half-true, barely-true, mostly-true, pants-on-fire}.

The function g(X) takes the contextual token representations from the last layer of
DistilBERT and feeds them to a task-specific feed-forward layer h € R". It is followed
by the prediction layer with a softmax activation p” € R®. We use the prediction to
optimise a cross-entropy loss function £r = H(p”, y).

4.3.3 Joint Training

Finally, we learn a function i(X) = (p¥, p”) that, given the input X - the text of
the claim and the ruling comments, predicts both the veracity explanation p” and
the veracity label p” of a claim. The model is shown Figure 4.2. The function h(X)
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takes the contextual embeddings c” and c!” produced by the last layer of DistilBERT
and feeds them into a cross-stitch layer (Misra et al., 2016; Ruder et al., 2019),
which consists of two layers with two shared subspaces each - h}, and h?% for the
explanation task and hj. and h? for the veracity prediction task. In each of the two
layers, there is one subspace for task-specific representations and one that learns
cross-task representations. The subspaces and layers interact trough « values, creating
the linear combinations h%, and A%, where ije {1,2}:

hi , ,
~]E _ Qg OFEFp {hZET h%T} 4.1)
hp g OFF

We further combine the resulting two subspaces for each task - %, and A%, with
parameters [ to produce one representation per task:

T

= [ ff] [ B3] (4.2)
Be

where P € {E, F'} is the corresponding task.

Finally, we use the produced representation to predict p* and p?, with feed-forward
layers followed by sigmoid and softmax activations accordingly. We use the prediction
to optimise the joint loss function £y,7 = v * H(p¥,y%) + n * H(p",y"), where  and
n are used for weighted combination of the individual loss functions.

4.4 Automatic Evaluation

We first conduct an automatic evaluation of both the veracity prediction and veracity
explanation models.

4.4.1 Experiments

In Table 4.3, we compare the performance of the two proposed models for generating
extractive explanations. Explain-MT is trained jointly with a veracity prediction model,
and Explain-Extractive is trained separately. We include the Lead-4 system (Nallapati
et al., 2017) as a baseline, which selects as a summary the first four sentences from
the ruling comments. The Oracle system presents the best greedy approximation of the
justification with sentences extracted from the ruling comments. It indicates the upper
bound that could be achieved by extracting sentences from the ruling comments as an
explanation. The performance of the models is measured using ROUGE-1, ROUGE-2,
and ROUGE-L F} scores.
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In Table 4.2, we again compare two models - one trained jointly - MT-Veracity@Rul,
with the explanation generation task and one trained separately - Veracity@Rul. As
a baseline, we report the work of Wang (2017), who train a model based on the
metadata available about the claim. It is the best known model that uses only the
information available from the LIAR dataset and not the gold justification, which we
aim at generating.

We also provide two upper bounds serving as an indication of the approximate best
performance that can be achieved given the gold justification. The first is the reported
system performance from Alhindi et al. (2018), and the second - Veracity@Just, is our
veracity prediction model but trained on gold justifications. The Alhindi et al. (2018)
system is trained using a BiLSTM, while we train the Veracity@Just model using the
same model architecture as for predicting the veracity from the ruling comments with
Veracity @Rul.

Lastly, Veracity@RulOracles is the veracity model trained on the gold oracle sentences
from the ruling comments. It provides a rough estimate of how much of the important
information from the ruling comments is preserved in the oracles. The models are
evaluated with a macro F) score.

4.4.2 Experimental Setup

Our models employ the base, uncased version of the pre-trained DistilBERT model.
The models are fed with text depending on the task set-up - claim and ruling sentences
for the explanation and joint models; claim and ruling sentences, claim and oracle
sentences or claim and justification for the fact-checking model. We insert a ‘[CLS]’
token before the start of each ruling sentence (explanation model), before the claim
(fact-checking model), or at the combination of both for the joint model. The text
sequence is passed through a number of Transformer layers from DistilBERT. We use
the ‘[CLS]’ embeddings from the final contextual layer of DistilBERT and feed that in
task-specific feed-forward layers h € R", where h is 100 for the explanation task, 150
for the veracity prediction one and 100 for each of the joint cross-stitch subspaces.
Following are the task-specific prediction layers p”.

The size of h is picked with grid-search over {50, 100, 150, 200, 300}. We also
experimented with replacing the feed-forward task-specific layers with an RNN or
Transformer layer or including an activation function, which did not improve task
performance.

The models are trained for up to 3 epochs, and, following Liu and Lapata (2019),
we evaluate the performance of the fine-tuned model on the validation set at every 50
steps, after the first epoch. We then select the model with the best ROUGE-2 F} score
on the validation set, thus, performing a potential early stopping. The learning rate
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Model Val Test
Wang (2017), all metadata 0.247 0.274

Veracity@RulOracles 0.308 0.300
Veracity@Rul 0.313 0.313
MT-Veracity@Rul 0.321 0.323
Alhindi et al. (2018)@Just 0.37 0.37

Veracity@Just 0.443 0.443

Table 4.2: Results (macro F} scores) of the veracity prediction task on all of the six classes.
The models are trained using the text from the ruling oracles (@RulOracles), ruling
comment (@Rul), or the gold justification (@Just).

used is 3e-5, which is chosen with a grid search over {3e-5, 4e-5, 5e-5}. We perform
175 warm-up steps (5% of the total number of steps), after also experimenting with 0,
100, and 1000 warm-up steps. Optimisation is performed with AdamW (Loshchilov
and Hutter, 2017), and the learning rate is scheduled with a warm-up linear schedule
(Goyal et al., 2017). The batch size during training and evaluation is 8.

The maximum input words to DistilBERT are 512, while the average length of the
ruling comments is 904 words. To prevent the loss of any sentences from the ruling
comments, we apply a sliding window over the input of the text and then merge
the contextual representations of the separate sliding windows, mean averaging the
representations in the overlap of the windows. The size of the sliding window is 300,
with a stride of 60 tokens, which is the number of overlapping tokens between two
successive windows. The maximum length of the encoded sequence is 1200. We
find that these hyper-parameters have the best performance after experimenting with
different values in a grid search.

We also include a dropout layer (with 0.1 rate for the separate and 0.15 for the joint
model) after the contextual embedding provided by the transformer models and after
the first linear layer as well.

The models optimise cross-entropy loss, and the joint model optimises a weighted
combination of both losses. Weights are selected with a grid search - 0.9 for the task
of explanation generation and 0.1 for veracity prediction. The best performance is
reached with weights that bring the losses of the individual models to roughly the
same scale.

4.4.3 Results and Discussion

For each claim, our proposed joint model (see §4.3.3) provides both (i) a veracity
explanation and (ii) a veracity prediction. We compare our model’s performance with
models that learn to optimise these objectives separately, as no other joint models

4.4 Automatic Evaluation

72



Model Validation Test

ROUGE-1 ROUGE-2 ROUGE-L | ROUGE-1 ROUGE-2 ROUGE-L
Lead-4 27.92 6.94 24.26 28.11 6.96 24.38
Oracle 43.27  22.01 38.89 43.57  22.23 39.26
Explain-Extractive| 35.64 13.50 31.44 35.70 13.51 31.58
Explain-MT 35.18 1294  30.95 35.13 1290  30.93

Table 4.3: Results of the veracity explanation generation task. The results are ROUGE-N F}
scores of the generated explanation w.r.t. the gold justification.

have been proposed. Table 4.2 shows the results of veracity prediction, measured in
terms of macro F.

Judging from the performance of both Veracity@Rul and MT-Veracity@Rul, we can
assume that the task is very challenging. Even given a gold explanation (Alhindi et al.
(2018) and Veracity@Just), the macro F; remains below 0.5. This can be due to the
small size of the dataset and/or the difficulty of the task even for human annotators.
We further investigate the difficulty of the task in a human evaluation, presented in
Section 4.5.

Comparing Veracity@RulOracles and Veracity@Rul, the latter achieves a slightly
higher macro F) score, indicating that the extracted ruling oracles, while approximat-
ing the gold justification, omit information that is important for veracity prediction.
Finally, when the fact checking system is learned jointly with the veracity explanation
system - MT-Veracity@Rul, it achieves the best macro F score of the three systems.
The objective to extract explanations provides information about regions in the ruling
comments that are close to the gold explanation, which helps the veracity prediction
model to choose the correct piece of evidence.

In Table 4.3, we present an evaluation of the generated explanations, computing
ROUGE F7 score w.r.t. gold justification. Our first model, the Explain-Extractive system,
optimises the single objective of selecting explanation sentences. It outperforms the
baseline, indicating that generating veracity explanations is possible.

Explain-Extractive also outperforms the Explain-MT system. While we would expect
that training jointly with a veracity prediction objective would improve the perfor-
mance of the explanation model, as it does for the veracity prediction model, we
observe the opposite. This indicates a potential mismatch between the ruling oracles
and the salient regions for the fact checking model. We also find a potential indication
of that in the observed performance decrease when the veracity model is trained
solely on the ruling oracles compared to the one trained on all of the ruling comments.
We hypothesise that, when trained jointly with the veracity extraction component,
the explanation model starts to also take into account the actual knowledge needed
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to perform the fact check, which might not match the exact wording present in the
oracles, thus decreasing the overall performance of the explanation system. We fur-
ther investigate this in a manual evaluation of which of the systems - Explain-MT
and Explain-Extractive, generates explanations with better qualities and with more
information about the veracity label.

Finally, comparing the performance of the extractive models and the Oracle, we can
conclude that there is still room for improvement of explanation systems when only
considering extractive summarisation.

4.4.4 A Case Study

Table 4.4 presents two example explanations generated by the extractive vs. the
multi-task model. In the first example, the multi-task explanation achieves higher
ROUGE scores than the extractive one. The corresponding extractive summary contains
information that is not important for the final veracity label, which also appears to
affect the ROUGE scores of the explanation. On the other hand, the multi-task model,
trained jointly with a veracity prediction component, selects sentences that are more
important for the fact check, which in this case is also beneficial for the final ROUGE
score of the explanation.

In the second example, the multi-task explanation has lower ROUGE scores than
the extractive one. We observe that the gold justification contains some sentences
that are not relevant to the fact check, and the extractive summary is fooled to select
explanation sentences that are close to the gold summary. As a result, the explanation
does not provide enough information about the chosen veracity label. The multi-
task model, on the other hand, selects sentences that are also contributing to the
prediction of the veracity labels. Thus, its explanation turns out to be more beneficial
for the final fact check even though it has a lower ROUGE score compared to the gold

justification.

4.5 Manual Evaluation

As the ROUGE score only accounts for word-level similarity between gold and
predicted justifications, we also conduct a manual evaluation of the quality of the
produced veracity explanations.

4.5.1 Experiments

Explanation Quality. We first provide a manual evaluation of the properties of three
different types of explanations - gold justification, veracity explanation generated by
the Explain-MT, and the ones generated by Explain-Extractive. We ask three annotators
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Label: Mostly-true Claim: Says opponent U.S. Rep. Gwen Moore is Wisconsin’s
most absent member of Congress, missing nearly 17 percent of the House votes in
the second quarter of 2012.

Just: Sebring says Moore is the state’s "most absent" member of Congress and that
she missed 17 percent of the House votes in the second quarter of 2012. Indeed,
Moore missed nearly 17 percent of the votes in the second quarter. That is Moore’s
worst quarter, but it also amounts to Sebring doing some cherry-picking of data. A
longer period shows a lower percentage, but even that places Moore at the top of
the state’s eight-member delegation.

Explain-Extr: Then he turns to the ad’s main point: "Gwen Moore is Wisconsin’s
most absent member of Congress, missing nearly 17 percent of the House votes in
the second quarter of 2012." That, again, compares to the median of 2.5 percent,
according to GovTrack. Overall, the state delegation missed an average of 2.53
percent of the votes this session. But what about the other part of Sebring’s claim,
that Moore is the "most absent” member of the state delegation?

Explain-MT: Then he turns to the ad’s main point: "Gwen Moore is Wisconsin’s most
absent member of Congress, missing nearly 17 percent of the House votes in the
second quarter of 2012." If you take out the first two quarters of 2012, Moore missed
an average of 3.4 percent of the votes in the other five quarters of this session. In
the second quarter, the one cited by Sebring, the missed votes easily put Moore at
the top of the state’s eight-member House delegation. Looking at the full session,
Moore missed 112 votes, or 6.98 percent.

Label: Half-true Claim: Of the more than 1.3 million temporary mortgage modifica-
tions, over half have defaulted.

Just: In the final full week of the U.S. Senate race, how did Rubio fare on his
numbers about the mortgage modification program? Rubio said "over 1.3 million
temporary work-outs, over half have now defaulted,” referring to a temporary
mortgage modification program.

Explain-Extr: Over 1.3 million temporary work-outs, over half have now defaulted,”
he said. There have been 500,000 permanent (modifications). Rubio also said
that more than half of those 1.3 million had defaulted." Rubio: "The temporary
modifications."

Explain-MT: Rubio also said that more than half of those 1.3 million had "defaulted."
"Over 1.3 million temporary work-outs, over half have now defaulted,” he said. Of
those permanent modifications, the majority survived while almost 29,000 were
cancelled. The chart states that 699,924 trials had been cancelled — so note that is
slightly more than half.

Table 4.4: Examples of the generated explanation of the extractive (Explain-Extr) and the
multi-task model (Explain-MT) compared to the gold justification (Just).
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to rank these explanations with the ranks 1, 2, 3, (first, second, and third place)
according to four different criteria:

1. Coverage. The explanation contains important, salient information and does

not miss any important points that contribute to the fact check.

2. Non-redundancy. The summary does not contain any information that is redun-
dant/repeated/not relevant to the claim and the fact check.

3. Non-contradiction. The summary does not contain any pieces of information
that are contradictory to the claim and the fact check.

4. Overall. Rank the explanations by their overall quality.

We also allow ties, meaning that two veracity explanations can receive the same
rank if they appear the same.

For the annotation task set-up, we randomly select a small set of 40 instances
from the test set and collect the three different veracity explanations for each of
them. We did not provide the participants with information of the three different
explanations and shuffled them randomly to prevent easily creating a position bias for
the explanations. The annotators worked separately without discussing any details
about the annotation task.

Explanation Informativeness. In the second manual evaluation task, we study
how well the veracity explanations manage to address the information need of the
user and if they sufficiently describe the veracity label. We, therefore, design the
annotation task asking annotators to provide a veracity label for a claim based on
a veracity explanation coming from the justification, the Explain-MT, or the Explain-
Extractive system. The annotators have to provide a veracity label on two levels -
binary classification - true or false, and six-class classification - true, false, half-true,
barely-true, mostly-true, pants-on-fire. Each of them has to provide the label for 80
explanations, and there are two annotators per explanation.

4.5.2 Results and Discussion

Explanation Quality. Table 4.5 presents the results from the manual evaluation in
the first set-up, described in Section 4.5, where annotators ranked the explanations
according to four different criteria.

We compute Krippendorff’s « inter-annotator agreement (IAA, Hayes and Krippen-
dorff (2007)) as it is suited for ordinal values. The corresponding alpha values are
0.26 for Coverage, 0.18 for Non-redundancy, -0.1 for Non-contradiction, and 0.32 for
Overall, where 0.67 < o < 0.8 is regarded as significant, but vary a lot for different
domains.
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Annotators Just Explain-Extr Explain-MT

Coverage
All 1.48 1.89 1.68
1st 1.50 2.08 1.87
2nd 1.74 2.16 1.84
3rd 1.21 1.42 1.34
Non-redundancy
All 1.48 1.75 1.79
1st 1.34 1.84 1.76
2nd 1.71 1.97 2.08
3rd 1.40 1.42 1.53
Non-contradiction
All 1.45 1.40 1.48
Ist 1.13 1.45 1.34
2nd 2.18 1.63 1.92
3rd 1.03 1.13 1.18
Overall
All 1.58 2.03 1.90
1st 1.58 2.18 1.95
2nd 1.74 2.13 1.92
3rd 1.42 1.76 1.82

Table 4.5: Mean Average Ranks (MAR) of the explanations for each of the four evaluation
criteria. The explanations come from the gold justification (Just), the generated
explanation (Explain-Extr), and the explanation learned jointly (Explain-MT) with
the veracity prediction model. The lower MAR indicates a higher ranking, i.e., a
better quality of an explanation. For each row, the best results are in bold, and the
best results with automatically generated explanations are in blue.

We assume that the low IAA can be attributed to the fact that in ranking/comparison
tasks for manual evaluation, the agreement between annotators might be affected
by small differences in one rank position in one of the annotators as well as by the
annotator bias towards ranking explanations as ties. Taking this into account, we
choose to present the mean average recall for each of the annotators instead. Still,
we find that their preferences are not in a perfect agreement and report only what
the majority agrees upon. We also consider that the low IAA reveals that the task
might be “already too difficult for humans”. This insight proves to be important on its
own as existing machine summarisation/question answering studies involving human
evaluation do not report IAA scores (Liu and Lapata, 2019), thus, leaving essential
details about the nature of the evaluation tasks ambiguous.
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Just Explain-Extr Explain-MT

. Agree-C 0.403 0.237 0.300
N\, Agree-NS 0.065 0.250 0.188
N\, Agree-NC 0.064 0.113 0.088
N\, Disagree 0.468 0.400 0.425

Table 4.6: Manual veracity labelling, given a particular explanation from the gold justi-
fication (Just), the generated explanation (Explain-Extr), and the explanation
learned jointly (Explain-MT) with the veracity prediction model. Percentages of
the dis/agreeing annotator predictions are shown, with agreement percentages
split into: correct according to the gold label (Agree-C), incorrect (Agree-NC) or
insufficient information (Agree-NS). The first column indicates whether higher ()
or lower (N\) values are better. For each row, the best results are in bold, and the
best results with automatically generated explanations are in blue.

We find that the gold explanation is ranked the best for all criteria except for Non-
contradiction, where one of the annotators found that it contained more contradictory
information than the automatically generated explanations, but Krippendorff’s «
indicates that there is no agreement between the annotations for this criterion.

Out of the two extractive explanation systems, Explain-MT ranks best in Coverage
and Overall criteria, with 0.21 and 0.13 corresponding improvements in the ranking
position. These results contradict the automatic evaluation in Section 4.4.3, where
the explanation of Explain-MT had lower ROUGE F7 scores. This indicates that an
automatic evaluation might be insufficient in estimating the information conveyed by
the particular explanation.

On the other hand, Explain-Extr is ranked higher than Explain-MT in terms of Non-
redundancy and Non-contradiction, where the last criterion was disagreed upon, and
the rank improvement for the first one is only marginal at 0.04.

This implies that a veracity prediction objective is not necessary to produce natural-
sounding explanations (Explain-Extr), but that the latter is useful for generating better
explanations overall and with higher coverage Explain-MT.

Explanation Informativeness. Table 4.6 presents the results from the second
manual evaluation task, where annotators provided the veracity of a claim based on
an explanation from one of the systems. We here show the results for binary labels,
as annotators struggled to distinguish between 6 labels. The latter follows the same
trends and are shown in Appendix 4.8.3.

The Fleiss’ x IAA for binary prediction is: Just — 0.269, Explain-MT - 0.345, Explain-
Extr — 0.399. The highest agreement is achieved for Explain-Extr, which is supported
by the highest proportion of agreeing annotations from Table 4.6. Surprisingly, the
gold explanations from Just were most disagreed upon. Apart from that, looking at
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the agreeing annotations, gold explanations were found most sufficient in providing
information about the veracity label and also were found to explain the correct label
most of the time. They are followed by the explanations produced by Explain-MT. This
supports the findings of the first manual evaluation, where the Explain-MT ranked
better in coverage and overall quality than Explain-Extr.

4.6 Related Work

Generating Explanations. Generating textual explanations for model predictions is
an understudied problem. The first study was Camburu et al. (2018), who generate
explanations for the task of natural language inference. The authors explore three
different set-ups: prediction pipelines with explanation followed by prediction, and
prediction followed by explanation, and a joint multi-task learning setting. They find
that first generating the explanation produces better results for the explanation task,
but harms classification accuracy.

We are the first to provide a study on generating veracity explanations. We show
that the generated explanations improve veracity prediction performance, and find
that jointly optimising the veracity explanation and veracity prediction objectives
improves the coverage and the overall quality of the explanations.

Fact Checking Interpretability. Interpreting fact checking systems has been ex-
plored in a few studies. Shu et al. (2019) study the interpretability of a system that
fact checks full-length news pages by leveraging user comments from social platforms.
They propose a co-attention framework, which selects both salient user comments
and salient sentences from news articles. Yang et al. (2019) build an interpretable
fact-checking system XFake, where shallow student and self-attention, among others,
are used to highlight parts of the input. This is done solely based on the statement
without considering any supporting facts. In our work, we research models that
generate human-readable explanations, and directly optimise the quality of the pro-
duced explanations instead of using attention weights as a proxy. We use the LIAR
dataset to train such models, which contains fact checked single-sentence claims that
already contain professional justifications. As a result, we make an initial step towards
automating the generation of professional fact checking justifications.

Veracity Prediction. Several studies have built fact checking systems for the LIAR
dataset (Wang, 2017). The model proposed by Karimi et al. (2018) reaches 0.39
accuracy by using metadata, ruling comments, and justifications. Alhindi et al. (2018)
also trains a classifier, that, based on the statement and the justification, achieves
0.37 accuracy. To the best of our knowledge, Long et al. (2017) is the only system
that, without using justifications, achieves a performance above the baseline of Wang
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(2017), an accuracy of 0.415—the current state-of-the-art performance on the LIAR
dataset. Their model learns a veracity classifier with speaker profiles. While using
metadata and external speaker profiles might provide substantial information for fact
checking, they also have the potential to introduce biases towards a certain party or a
speaker.

In this study, we propose a method to generate veracity explanations that would
explain the reasons behind a certain veracity label independently of the speaker
profile. Once trained, such methods could then be applied to other fact checking
instances without human-provided explanations or even to perform end-to-end veracity
prediction and veracity explanation generation given a claim.

Substantial research on fact checking methods exists for the FEVER dataset (Thorne
et al., 2018), which comprises rewritten claims from Wikipedia. Systems typically
perform document retrieval, evidence selection, and veracity prediction. Evidence
selection is performed using keyword matching (Malon, 2018; Yoneda et al., 2018),
supervised learning (Hanselowski et al., 2018; Chakrabarty et al., 2018) or sentence
similarity scoring (Ma et al., 2018; Mohtarami et al., 2018; Xu et al., 2018). More re-
cently, the multi-domain dataset MultiFC (Augenstein et al., 2019) has been proposed,
which is also distributed with evidence pages. Unlike FEVER, it contains real-world
claims, crawled from different fact checking portals.

While FEVER and MultiFC are larger datasets for fact checking than LIAR-PLUS,
they do not contain veracity explanations and can thus not easily be used to train joint
veracity prediction and explanation generation models, hence we did not use them in
this study.

4.7 Conclusions

We presented the first study on generating veracity explanations, and we showed
that veracity prediction can be combined with veracity explanation generation and
that the multi-task set-up improves the performance of the veracity system. A manual
evaluation shows that the coverage and the overall quality of the explanation system
is also improved in the multi-task set-up.

For future work, an obvious next step is to investigate the possibility of generating
veracity explanations from evidence pages crawled from the Web. Furthermore, other
approaches of generating veracity explanations should be investigated, especially as
they could improve fluency or decrease the redundancy of the generated text.
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ROUGE-1
p R Fy

8.65 78.65 14.84| 3.53 33.76 6.16| 8.10 74.14 13.92
43.97 49.24 43.79|22.45 24.50 22.03 |39.70 44.10 39.37

Table 4.7: Comparison of sources of evidence - Ruling Comments and Ruling Oracles
comapred to the target justification summary.

ROUGE-2
p R Fy

ROUGE-L

Evidence Source P R F

Ruling
Ruling Oracle
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4.8 Appendices

4.8.1 Comparison of different sources of evidence
Table 4.7 provides an overview of the ruling comments and the ruling oracles
compared to the justification. The high recall in both ROUGE-1 and ROUGE-F achieved

by the ruling comments indicates that there is a substantial coverage, i.e. over 70% of

the words and long sequences in the justification can be found in the ruling comments.

On the other hand, there is a small coverage for the bi-grams. Selecting the oracles
from all of the ruling sentences increases ROUGE- F} scores mainly by improving the
precision.

4.8.2 Extractive Gold Oracle Examples

Table 4.8 presents examples of selected oracles that serve as gold labels during
training the extractive summarization model. The three examples represent oracles
with different degrees of matching the gold summary. The first row presents an oracle
that matches the gold summary with a ROUGE-L F; score of 60.40 compared to the
gold summary. It contains all of the important information from the gold summary
and even points precise, not rounded, numbers. The next example has a ROUGE-L

F score of 43.33, which is close to the average ROUGE-L I score for the oracles.

The oracle again conveys the main points from the gold justification, thus, being
sufficient for the claim’s explanation. Finally, the third example is of an oracle with a
ROUGE-L F; score of 25.59. The selected oracle sentences still succeed in presenting
the main points from the gold justification, which is at a more detailed level presenting
specific findings. The latter might be found as a positive consequence as it presents
the particular findings of the journalist that led to selecting the veracity label.
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Claim: “The president promised that if he spent money on a stimulus program that
unemployment would go to 5.7 percent or 6 percent. Those were his words.”
Label: Mostly-False

Just: Bramnick said “the president promised that if he spent money on a stimulus
program that unemployment would go to 5.7 percent or 6 percent. Those were his
words.” Two economic advisers estimated in a 2009 report that with the stimulus
plan, the unemployment rate would peak near 8 percent before dropping to less
than 6 percent by now. Those are critical details Bramnick’s statement ignores. To
comment on this ruling, go to NJ.com.

Oracle: “The president promised that if he spent money on a stimulus program
that unemployment would go to 5.7 percent or 6 percent. Those were his words,”
Bramnick said in a Sept. 7 interview on NJToday. But with the stimulus plan, the
report projected the nation’s jobless rate would peak near 8 percent in 2009 before
falling to about 5.5 percent by now. So the estimates in the report were wrong.

Claim: The Milwaukee County bus system has “among the highest fares in the
nation.”

Label: False

Just: Larson said the Milwaukee County bus system has “among the highest fares
in the nation.” But the system’s’ $2.25 cash fare wasn’t at the top of a national
comparison, with fares reaching as high as $4 per trip. And regular patrons who
use a Smart Card are charged just $1.75 a ride, making the Milwaukee County bus
system about on par with average costs.

Oracle: Larson said the Milwaukee County bus system has “among the highest fares
in the nation.” Patrons who get a Smart Card pay $1.75 per ride. At the time, nine
cities on that list charged more than Milwaukee’s $2.25 cash fare. The highest fare —
in Nashville — was $4 per ride.

Claim: “The Republican who was just elected governor of the great state of Florida
paid his campaign staffers, not with money, but with American Express gift cards.”

Label: Half-True

Just: First, we think many people might think Maddow was referring to all campaign
workers, but traditional campaign staffers — the people working day in and day out
on the campaign — were paid by check, like any normal job. A Republican Party
official said it was simply an easier, more efficient and quicker way to pay people.
And second, it’s not that unusual. In 2008, Obama did the same thing.

Oracle: “It’s a simpler and quicker way of compensating short-term help.” Neither
Conston nor Burgess said how many temporary campaign workers were paid in gift
cards. When asked how he was paid, Palecheck said: “Paid by check, like any normal
employee there.” In fact, President Barack Obama’s campaign did the same thing in
2008.

Table 4.8: Examples of the extracted oracle summaries (Oracle) compared to the gold justifi-

cation (Just).
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Just Explain-Extr Explain-MT

. Agree-C 0.208 0.138 0.163
N\ Agree-NS 0.065 0.250 0.188
N Agree-NC 0.052 0.100 0.075
N\, Disagree 0.675 0.513 0.575

Table 4.9: Manual classification of veracity label - true, false, half-true, barely-true, mostly-
true, pants-on-fire, given a particular explanations from the gold justification (Just),
the generated explanation (Explain-Extr) and the explanation learned jointly with
the veracity prediction model (Explain-MT). Presented are percentages of the
dis/agreeing annotator predictions, where the agreement percentages are split to:
correct according to the gold label (Agree-C) , incorrect (Agree-NC) or with not
sufficient information (Agree-NS). The first column indicates whether higher (\)
or lower (\) values are better. At each row, the best set of explanations is in bold
and the best automatic explanations are in blue.

4.8.3 Manual 6-way Veracity Prediction from
explanations

The Fleiss’ k agreement for the 6-label manual annotations is: 0.20 on the Just
explanations, 0.230 on the Explain-MT explanations, and 0.333 on the Explain-Extr
system. Table 4.9 represent the results of the manual veracity prediction with six
classes.
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Generating Fluent Fact
Checking Explanations with
Unsupervised Post-Editing

5.1 Introduction

In today’s era of social media, the spread of news is a click away, regardless of
whether it is fake or real. However, the quick propagation of fake news has repercus-
sions on peoples’ lives. To alleviate them, professional fact checkers manually verify
the veracity and credibility of news, which is time and labor-intensive, making the
process expensive and less scalable. Therefore, the need for accurate, scalable, and
explainable automatic fact checking (FC) systems is inevitable (Kotonya and Toni,
2020Db).

Current automatic fact checking systems perform veracity prediction for given claims
based on evidence documents (Thorne et al., 2018; Augenstein et al., 2019), or based
on long lists of supporting ruling comments (RCs, Wang (2017); Alhindi et al. (2018)).
RCs are in-depth explanations for predicted veracity labels, but they are challenging
to read and not useful as explanations for human readers due to their sizable content.
Recent work (Atanasova et al., 2020c; Kotonya and Toni, 2020a) has thus proposed
to use automatic summarisation to select a subset of sentences from long RCs and
used them as short layman explanations. However, with a purely extractive approach
(Atanasova et al., 2020c), the sentences are cherry-picked from different parts of the
corresponding RCs, and as a result, explanations are often disjoint and non-fluent.

While a sequence-to-sequence model trained on parallel data can partially alleviate
these problems, as Kotonya and Toni (2020a) propose, it is an expensive affair due
to the large amount of data and compute required to train these models. Therefore,
in this work, we focus on unsupervised post-editing of explanations extracted from
RCs. Recently, researchers have leveraged unsupervised post-editing to generate
paraphrases (Liu et al., 2020b) and sentence simplifications (Kumar et al., 2020).
However, they use short single sentences and perform a combination of exhaustive
word and phrase-level edits, which has limited applicability for longer text with
multiple sentences, e.g., FC explanations, due to prohibitive convergence times.

Hence, we present a novel iterative edit-based algorithm performing three edit
operations (insertion, deletion, reorder), all at the phrase level. Fig. 5.1 illustrates
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Claim| Label: False ]
EU suspends delivery of 10 million masks over quality issues.

[Explanation from Ruling Comments |

After a first batch of 1.5 million masks was shipped to 17 of the 27
member states and Britain, 600,000 items did not have European
certificates and medical standards. As part of its efforts to tackle the
COVID-19 crisis, this month the EU's executive arm started
dispatching the masks to health care workers. (R) It was set to be
distributed in weekly installments over six weeks. (D) "We have
decided to suspend future deliveries of these masks," Commission
health spokesman Stefan De Keersmaecker said. (P)

)

Post-Edited Explanation J
As part of its efforts to tackle the COVID-19 crisis, this month the
EU's executive arm started dispatching the masks to health care
workers. (R) After a first batch of 1.5 million masks was shipped to
17 of the 27 member states and Britain, 600,000 items did not have
European certificates and did not comply with (I) medical
standards. The Commission has decided to stop future deliveries of
these masks, De Keersmaecker said. (P)

Figure 5.1: Example of a post-edited explanation from PubHealth that was initially extracted
from RCs. We illustrate four post-editing steps: reordering (R), insertion (I),
deletion (D), and

how each post-editing step contributes to creating more concise, readable, fluent,
and coherent candidate explanations. Our proposed method finds the best post-
edited explanation candidate according to a scoring function, ensuring its fluency
and readability, semantic preservation, and conciseness quality(85.3.2.2). To ensure
that the candidate explanations are grammatically correct, we also perform grammar
checking (§5.3.2.4). As a second step, we apply paraphrasing to improve further the
conciseness and human readability of the explanations (85.3.2.5). Our approach is
generic and can be applied to any other application where the objective is to generate
a fluent and coherent summary.

In summary, our main contributions are:

* To the best of our knowledge, we are the first to explore an iterative unsupervised
edit-based algorithm using only phrase-level edits that leads to feasible solutions
for long text inputs.

* We show how combining an iterative algorithm with grammatical corrections,
and paraphrasing-based post-processing leads to fluent and easy-to-read expla-
nations.

5.1 Introduction
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* We conduct extensive experiments on the LIAR-PLUS (Wang, 2017) and Pub-
Health (Kotonya and Toni, 2020a) FC datasets. Our automated evaluation con-
firms the success of our proposed method in preserving the semantics important
for the fact check and enhancing the readability of the generated explanations.
Our manual evaluation confirms that our approach improves the generated

explanations’ fluency and conciseness.

5.2 Related Work

The most closely related work are explainable FC, generative approaches to explain-
ability, and post-editing for language generation.

5.2.1 Explainable Fact Checking

Recent work has produced fact-checking explanations by highlighting words in
tweets using neural attention (Lu and Li, 2020). Wu et al. (2020) propose to model
evidence documents with decision trees, which are inherently interpretable ML models.
Recently, Atanasova et al. (2020c) propose to generate free-text explanations for
political claims jointly with predicting the veracity of claims. They formulate an
extractive summarisation task to select a few important sentences from a long FC
report. Training the summarisation task jointly with veracity prediction results in
summaries that better explain the correct veracity label. Atanasova et al. (2021) also
perform extractive explanation generation guided by a set of diagnostic properties
of explanations and evaluate on the FEVER (Thorne et al., 2018) FC dataset, where
explanation sentences are extracted from Wikipedia documents.

In the domain of public health claims, Kotonya and Toni (2020a) propose to gener-
ate explanations separately from the task of veracity prediction. Mishra et al. (2020)
generate summaries of evidence documents from the Web using an attention-based
mechanism. Their summaries perform better than using the original evidence docu-
ments directly. Similarly to Atanasova et al. (2020c); Kotonya and Toni (2020a), we
present a generative approach for creating FC explanations. In contrast to related
work, we propose an unsupervised post-editing approach to improve the fluency and

readability of previously extracted FC explanations.

5.2.2 Generative Approaches to Explainability

While most work on explanation generation propose to highlight portions of the
input (DeYoung et al., 2020a), some work studies generative approaches to explain-
ability. Camburu et al. (2018) combine explanation generation and target prediction
in a pipeline or a joint model for Natural Language Inference with free-text label
explanations. Stammbach and Ash (2020) propose few-shot training for GPT-3 (Stepin
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et al., 2021) to explain a fact check from retrieved evidence snippets. GPT-3, however,
is limited-access and has high computational costs. As in our work, Kotonya and Toni
(2020a) first extract evidence sentences, which an abstractive summarisation model
then summarises. In contrast, we are the first to perform unsupervised post-editing of
explanations produced using automatic summarisation.

5.2.3 Post-Editing for Language Generation

Previous work has addressed unsupervised post-editing for multiple tasks like
paraphrase generation (Liu et al., 2020b), sentence simplification (Kumar et al., 2020)
or sentence summarisation (Schumann et al., 2020). However, all these tasks handle
inputs shorter than the long multi-sentence extractive explanations that we have.
Furthermore, they perform exhaustive edit operations at the word level and sometimes
additionally at the phrase level, which increase computing complexity. Therefore, we
present a novel method that performs a fixed number of edits only at the phrase level
followed by grammar correction and paraphrasing.

5.3 Method

Our method is comprised of two steps. First, we select sentences from RCs that
serve as extractive FC explanations (§5.3.1). We then apply unsupervised post-editing
on the extractive explanations to improve their fluency and coherence (§5.3.2).

5.3.1 Selecting Sentences for Post-Editing

Supervised Selection. To produce supervised extractive explanations, we build
models based on DistilBERT (Sanh et al., 2019) for LIAR-PLUS, and SciBERT (Beltagy
et al., 2019) for PubHealth to allow for direct comparison with Atanasova et al.
(2020c¢); Kotonya and Toni (2020a). We supervise explanation generation by k greedily
selected sentences from a claim’s RCs with the highest ROUGE-2 F; score w.r.t. the
gold justification. We choose k=4 for LIAR-PLUS and k =3 for PubHealth, the average
number of sentences in the gold justifications in the corresponding dataset. The
selected sentences are positive gold labels, y* € {0, 1}, where N is the number of RC
sentences. We also use the veracity labels y! € Y; for supervision. Following Atanasova
et al. (2020b), we learn a multi-task model g(X) = (p¥, p’'). Given input X, comprised
of a claim and the RCs, it predicts jointly the veracity explanation p” and the veracity
label p*, where p” € RY" selects sentences for explanation, i.e. {0,1}, and p!" € R"™,
with m =6 for LIAR-PLUS, and m = 4 for PubHealth. Finally, we optimise the joint
cross-entropy loss Ly =H(p%, y?) + H(p!, y").

Unsupervised Selection. We experiment with unsupervised sentence selection to
test the possibility of constructing fluent FC explanations in an entirely unsupervised
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way. We use Longformer (Beltagy et al., 2020), which was introduced for tasks
with longer input, instead of the sliding-window approach used in Atanasova et al.
(2020b), which is without cross-window attention. We train a model h(X) = p”
to predict the veracity of a claim. We optimise cross-entropy loss £ = H(p®,y*)
and select k sentences p” € R, {0, 1}, with the highest saliency scores. The
saliency score of a sentence is the sum of the saliency scores of its tokens. The
saliency of a token is the gradient of the input token w.r.t. the output (Simonyan
et al., 2013). We select sentences using the raw gradients as Atanasova et al. (2020a)
show that different gradient-based methods yield similar results. As the selection
could be noisy (Kindermans et al., 2019), we consider these experiments as only

complementary to the main supervised results.

5.3.2 Post-Editing

Our post-editing is completely unsupervised and operates on sentences obtained in
§5.3.1. It is a search algorithm that evaluates the candidate sequences p® for a given
input sequence — p” for supervised selection or p”’ for unsupervised selection. Below,
we use p” to denote both.

Given p”, we iteratively generate multiple candidates by performing phrase-level
edits (§5.3.2.1). To evaluate a candidate explanation, we define a scoring function
as a product of multiple scorers, also known as a product-of-experts model (Hinton,
2002). Our scoring function includes fluency and semantic preservation, and controls
the length of the candidate explanation (§5.3.2.2). We repeat the process for n steps
and select the last best-scoring candidate as our final output. We then use grammar
correction (85.3.2.4) and paraphrasing (§5.3.2.5) to further ensure conciseness and
human readability.

5.3.2.1 Candidate sequence generation

We generate candidate sequences by phrase-level edits. We use the off-the-shelf
syntactic parser from CoreNLP (Manning et al., 2014) to obtain the constituency tree
of a candidate sequence p“. As p® is long, we perform all operations at the phrase
level. At each step ¢, our algorithm first randomly picks one operation — insertion,
deletion, or reordering, and then randomly selects a phrase.

For insertion, our algorithm inserts a <MASK> token before the randomly selected
phrase, and uses RoBERTa to evaluate the posterior probability of a candidate word
(Li et al., 2020). This allows us to leverage the pre-training capabilities of ROBERTa
and insert high-quality words that support the context of the overall explanation.
Furthermore, inserting a <MASK> token before a phrase prevents breaking other
phrases within the explanation, thus preserving their fluency.
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The deletion operation deletes the randomly selected phrase. For the reorder
operation we randomly select one phrase, which we call reorder phrase, and randomly
select m phrases, which we call anchor phrases. We reorder each anchor with a reorder
phrase and obtain m candidate sequences. The candidates are fed to GPT-2 to select
the most fluent one with the fluency score given by Eq. 5.1.

5.3.2.2 Scoring Functions

The fluency score (f,,) measures the language fluency of a candidate sequence.
We use a pre-trained GPT-2 model (Radford et al., 2019). We use the joint likelihood
of candidate p“:

Frn(P) =TI, PSP, - P 4) (5.1)

In §5.6.1 we evaluate the achieved fluency of the generated explanations through
human evaluation. Additionally, as the fluency score measures the likelihood of the
text according to GPT-2, which is trained on 40GB of Internet text, we assume that
complex text that is not common or is not likely to appear on the Internet, would
also have lower fluency score. Hence, we expect that improving the fluency of an
explanation, would lead to more easily understood explanations. We evaluate the
latter in §5.5.1 through automated readability scores.

Length score (f;.,) This score encourages the generation of shorter sentences. We
assume that reducing the length of the generated explanation is also beneficial for
improving the readability of the explanation as it promotes shorter sentences, which
are easier to read. The score is the inverse of the sequence length — longer candidate
sentence have a lower scores. To control over-shortening, we reject explanations
with fewer than 40 tokens. The number of tokens is a hyper-parameter chosen after
fine-tuning on the validation split.

For semantic preservation, we compute similarities at both word and explanation
level between our source explanation (p”) and candidate sequence (p®) at time-
step t. The word-level semantic scorer evaluates the preserved amount of keyword
information in the candidate sequence. Similarly to Li et al. (2020), we use RoBERTa
(R) (Liu et al., 2019), a pre-trained masked language model, to compute a contextual
representation of word; in an explanation as R(p¥, p”). Here, p¥ = (p¥ ...pE) is an
input sequence of words. We then extract keywords from p” using Rake (Rose et al.,

2010) and compute a keyword-level semantic similarity score:

E _C\__ . ENT c ..C
fu(P™,p%)= oD, max, R(k,p")TR(p; , p") (5.2)

which is the lowest cosine similarity among all keywords i.e. the least matched
keyword of p”.
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The keyword-level semantic similarity preserves the semantic information of the
separate keywords in the text. It is, thus, not affected by changes in words that do
not bear significant meaning for the overall explanation. However, as this semantic
similarity is performed at keyword-level it does not account for preserving the overall
meaning of the text and the context that the keywords are used in.

Hence, we also employ an explanation-level semantic preservation scorer. It
measures the cosine similarity of two explanation vectors, which are explanation
encodings that contain the overall semantic meaning of the explanation:

f.(p¥, pY) = @7/ pE)| (5.3)

We use SBERT (Reimers and Gurevych, 2019) for obtaining embeddings for both pZ,
p®. Our overall semantic score is the product of the word level and the explanation
level semantics scores:

Fsem(P”,0°) = fu(P?, p)°.L.(p", pC)" (5.4)

where (3, and 7 are hyper-parameter weights for the separate scores. We evaluate the
semantic preservation of the post-edited explanations with automated ROUGE scores
(85.5.2) and manual human annotations (§5.6.1, §5.6.2).

Lastly, Named Entity (NE) score (f.,:) is an additional measure for meaning
preservation, since NEs hold the key information within a sentence. We identify NEs
using an off-the-shelf entity tagger (Honnibal and Montani, 2017) and count their
number in a given explanation.

Our overall scoring function is the product of individual scores, where «, 7, and ¢
are hyper-parameter weights for the different scores:

f(pC) - fflu(pc)a~fsem(pE) pC)-flen(pC)’y-fent(pc)é (55)

5.3.2.3 lterative Edit-based Algorithm

Given input explanations, our algorithm iteratively performs edit operations for n
steps to search for a highly scored candidate (p®). At each step, it computes scores
for the previous (p©~!) and candidate sequence (Eq. 5.5). It selects p© if its score is

larger than p©~! by a multiplicative factor .,
o0/ o1 > Top (5.6)

For each edit operation, we use a separate threshold value r,,. r,, allows controlling
specific operations where r,, < 1 allows the selection of candidates (p“) which have
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lower scores than p©~!. We tune all hyper-parameters, including 7,,, n, etc., using the
validation split of the LIAR-PLUS dataset.

5.3.2.4 Grammatical Correction

Once the best candidate explanation is selected, we feed it to the LanguageTool
(2022) toolkit, which detects grammatical errors like capitalization and irrelevant
punctuation, and returns a corrected version of the explanation. Furthermore, to
ensure that we have no incomplete sentences, we remove sentences without verbs in
the explanation. These two steps further ensure that the generated explanations are
fluent (further evaluated in §5.6.1).

5.3.2.5 Paraphrasing

Finally, to improve fluency and readability further, we use Pegasus (Zhang et al.,
2020a), a model pre-trained for abstractive text summarisation. It focuses on relevant
input parts to summarise the input semantics in a concise and readable way. Since we
want ourboth fluent and human-readable explanations, we leverage Pegasus without
fine-tuning on downstream tasks. This way, after applying our iterative edit-based
algorithm with grammatical error correction and paraphrasing, we obtain fluent,

coherent, and human-readable explanations.

5.4 Experiments

5.4.1 Datasets

We use two FC datasets, LIAR-PLUS (Wang, 2017) and PubHealth (Kotonya and
Toni, 2020a). These are the only real-world FC datasets that provide short veracity
justifications along with claims, RCs, and veracity labels. We provide the size of
the splits in Tab. 5.5, app. The LIAR-PLUS labels are {true, false, half-true, barely-
true, mostly-true, pants-on-fire}, and in PubHealth, {true, false, mixture, unproven}.
PubHealth is manually curated, e.g., to exclude poorly defined claims. Finally, the
claims in PubHealth are more challenging to read than those in LIAR-PLUS and other
real-world FC datasets.

5.4.2 Models

Our experiments include the following models; their hyper-parameters are given in
Appendix 5.8.2.

(Un)Supervised Top™ extracts RC sentences in an (un)supervised way (85.3.1),
which are later used as input to our method.
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(Un)Supervised Top™ +EditsN generates explanations with the iterative editing
(§5.3.2.3) and grammar correction (§5.3.2.4). The inputs are sentences extracted with
(Un)Supervised Top™.

(Un)Supervised Top™ +Edits™ +Para generates explanations by paraphrasing the
explanations from (Un)Supervised Top™ +EditsN (§5.3.2.5).

MTSum — Atanasova et al. (2020b), is a reference model that trains a multi-task
system to predict veracity labels and extract explanation N sentences, where N is the
average number of the sentences in the justifications of each dataset.

AbstrSum - Kotonya and Toni (2020a), is a baseline model that generates abstrac-
tive explanations with an average sentence length of 3.

Lead® (Nallapati et al., 2017) is a common lower-bound baseline for summarisation
models. It selects the first K sentences of the RCs.

5.4.3 Evaluation Overview

We perform both automatic and manual evaluations of the models above. We include
automatic measures for readability (§5.5.1). While the latter was not included in prior
work, we consider readability an essential quality of an explanation, and thus report it.
We further include automatic ROUGE F7 scores (overlap of the generated explanations
with the gold ones, §5.5.2) for compatibility with prior work and to ensure that
our generated explanations don’t shift much from the gold ones. In particular, we
are interested whether the ROUGE scores for the post-edited explanations are not
significantly different from the ROUGE scores of the non-edited explanations, which
would indicate preservation of the content important for FC. We note, however, that the
automatic measures are limited as they are based on word-level statistics. Especially
ROUGE scores should be taken with a grain of salt, as only exact word matches are
scored higher and paraphrases or synonyms of words in the gold summary are not
scored. Hence, we conduct a manual evaluation to further assess the quality of the
generated explanations with a user study. As manual evaluation is expensive to obtain,
the latter is, however, usually estimated based on small samples.

5.5 Automatic Evaluation

We use ROUGE F; scores to compute overlap between the generated explanations
and the gold ones, and compute readability scores to assess how challenging the
produced explanations are to read.

5.5.1 Readability Results

Metrics. Readability is desirable for FC explanations, as a challenging to read
explanation would fail to convey the reasons for the chosen veracity label and would
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Method Flescht DC|

LIAR-PLUS
Lead? 51.70 8.73
Base | ado 53.24 8.43
"7 7 "TopS(Sup.)” ~ ~ =~ 58.82°7.88
Sup. Top®+Edits® 60.21 7.75
Top®+Edits®+Par  66.34 7.42
"7 7 "TopS(Ums.)  ~ ~ ~  53.338.50
Uns. Top®+Edits® 55.25 8.46

Top®+Edits®+Par  62.13 8.11

Justification 58:81 8:23
PubHealth
Lead? 44.44 9.12
P teads 4596885
Top? (Sup.) 48.63 8.67
Sup. Top® +Edits® 53.79 8.37
__ _Top>+Edits’+Par _ 61.39 7.97
Top® (Uns.) 45.20 8.94
Uns. Top® +Edits® 50.74 8.63

Top® + Edits® +Par  60.07 8.15

Justification 49:29 9: 17

Table 5.1: Readability measures — Flesch and Dale-Chall (DC) (§5.5.1), over the test splits.

We report baseline (Base), supervised (Sup.), and unsupervised (Uns.) results
(85.3.1). We also report prior work results - MTSum’", where we have the outputs
to compute readability, and results given the gold Justification. Readability scores
for TopN+EditsN and TopN+EditsN +Par are statistically significant (p<0.05)
compared to Top" and MTSum?”, except for the score in purple.

not improve the trust of end-users. We evaluate readability with Flesch Reading

Ease (Kincaid et al., 1975) and Dale-Chall Readability Score (Powers et al., 1958).

Flesch Reading Ease gives a text a score € [1, 100], where a score € [30, 50| requires
college education and is difficult to read, a score € (50, 60] requires a 10-12% school
grade and is fairly difficult to read, a score € (60, 70] is regarded as plain English, easily
understood by 13-15-year-old students. Dale-Chall Readability Score uses a curated
list of words familiar to lower-grade students to assess the complexity of a text. It
gives a text a score € [9.0,9.9] when it is easily understood by a 13-15%-grade (college)
student, a score €[8.0, 8.9] when it is easily understood by an 11-12%-grade student, a
score €[7.0,7.9] when it is easily understood by a 9-10™-grade student. We take the
mean of the readability scores for the separate instances in the test split (see validation
in Tab. 5.11, app.). For 95% confidence intervals for the scores, see Tab. 5.9, app.
Results. Table 5.1 presents the readability results, where our iterative edit-based
algorithm consistently improves the reading ease of the explanations by up to 5.16
points, and reduces the grade requirement by up to 0.30 points. The improvements
are statistically significant (p<0.05) in both supervised and unsupervised explanations,
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except for the Dale-Chall score for the LIAR unsupervised explanations. Paraphras-
ing further improves significantly (p<0.05) the text’s reading ease by up to 9.33
points, and reduces the grade requirement by up to 0.48 points. Importantly, MTSum
(Atanasova et al., 2020b) explantions and the gold justifications are fairly difficult
to read and can require even college education to grasp the explanation, while the
explanations generated by our algorithm can be easily understood by 13-15-year-old
students according to the Flesch Reading Ease score.

Overall observations. Our results show that our method makes FC explanations
less challenging to read and makes them accessible to a broader audience of up to
10™-grade students.

5.5.2 Automatic ROUGE Scores

Metrics. To evaluate the generated explanations w.r.t. the gold justifications, we
follow Atanasova et al. (2020b); Kotonya and Toni (2020a) and use measures from
automatic text summarisation - ROUGE-1/2/L scores. These account for n-gram (1/2)
and longest (L) overlap between generated and gold justification. The scores are
recall-oriented, i.e., they calculate how many of the n-grams in the gold text appear in
the generated one.

Caveats. Here, we use ROUGE scores to verify that the generated explanations
preserve information important for the fact check, as opposed to generating completely
unrelated text. Thus, we are interested in whether the ROUGE scores of the post-edited
explanations are close but not necessarily higher than those of the input sentences se-
lected from RCs. Notably, we include paraphrasing and new word insertion to improve
the explanation’s readability, which, while bearing the same meaning, necessarily
results in lower ROUGE scores.

Results. Table 5.2 presents the ROUGE score results. First, comparing the results
for the input Top™ sentences with the intermediate and final explanations generated
by our system, we see that, while very close, the ROUGE scores tend to decrease. For
PubHealth, we also see that the intermediate explanations always have higher ROUGE
scores than our system’s final explanations. These observations corroborate two main
assumptions about our system. First, our system preserves a large portion of the
information important for explaining the veracity label, which is also present in the
justification. This is further corroborated by observing that the decrease in the ROUGE
scores is often not statistically significant (p < 0.05, except for some ROUGE-2 and
one ROUGE-L score). Second, the iterative editing and the subsequent paraphrasing
allow for the introduction of novel n-grams, which preserve the meaning of the text,
but are not explicitly present in the gold justification, which affects the word-level
ROUGE scores. We further discuss this in §5.7 and the appendix.
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Method R-11 R-21 R-L}

LIAR-PLUS
Base Lead;1 28.11 6.96 24.38

Lead 29.15 8.28 25.84
"7 T Top® (Sup) 34.42 12.36 30.58
Sup. Top’+Edits® 33.92 11.73 30.01

Top®+ EditsS + Par 33.94 11.25 30.08
"7 " Top® (Unms) 29.63 7.58 25.86
Uns. TopS+Edits’ 28.93 7.06 25.14

Top®+EditsS + Par 28.98 6.84 25.39

MTSum?® 202000  35.70 13.51 31.58

PubHealth
Lead? 29.01 10.24 24.18
Base T,ead? 23.05 6.28 19.27
Lead® 23.73 6.86 20.67
~Top® (Sup.) 29.93 12.42 26.24
Sup. Top®+Edits® 29.38 11.16 25.41
Top® +Edits® +Par 28.40 9.56 24.37
"7 Top® (Uns.) 2352 6.12 19.93
Uns. Top®+Edits® 23.09 5.56 19.44

____Top?+Edits” +Par 23.35 5.38 19.56

AbstrSum? (20202) 32.30 13.46 26.99
MTSum?® (20200  33.55 13.12 29.41

Table 5.2: ROUGE-1/2/L F scores (§5.5.2) of baseline (Base), supervised (Sup.) and usuper-
vised (Uns.) methods over the test splits. In italics, are results reported in prior
work. Underlined scores of TopN +Edits™ and Top™ +EditsN +Par are statistically
significant (p < 0.05) compared to Top™ scores, N={5,6}. For validation and
ablations (Tab. 5.12), and for confidence intervals (Tab. 5.10), see appendix.

The ROUGE scores of the explanations generated by our post-editing algorithm
when fed with sentences selected in an unsupervised way are considerably lower than
with the supervised models. Hence, supervision for extracting the most important
sentences is important to obtain explanations close to the gold ones. Finally, the
systems’ results are mostly above Lead™, with a few exceptions for the unsupervised
explanations for LIAR-PLUS.

Overall observations. We note that while automatic measures can serve as sanity
checks and point to major discrepancies between generated explanations and gold
ones, related work in generating FC explanations (Atanasova et al., 2020b) has shown
that the automatic scores to some extent disagree with human evaluation studies,
as they only capture word-level overlap and cannot reflect improvements of expla-
nation quality. Human evaluations are therefore conducted for most summarisation
models (Chen and Bansal, 2018; Tan et al., 2017), which we include in §5.6.
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5.6 Manual Evaluation

As automated ROUGE scores only account for word-level similarity between the
generated and the gold explanation, and the readability scores account only for surface-
level characteristics of the explanation, we further conduct a manual evaluation of the
quality of the produced explanations.

5.6.1 Explanation Quality

We manually evaluate two explanations: our baseline method (the input Top™
sentences) and our best approach (the final explanations produced after paraphrasing
(TopN+EditsN+Par)). We perform a manual evaluation of the test explanations
obtained from supervised selection for both datasets with two annotators for each.
Both annotators have a university-level education in English.

Metrics. We show a claim, veracity label, and two explanations to each annotator
and ask them to rank the explanations according to the following criteria. Cov-
erage means the explanation contains important and salient information for the
fact check. Non-redundancy implies the explanation does not contain any redun-
dant/repeated/not relevant information to the claim. Non-contradiction checks if
there is information contradictory to the fact check. Fluency measures the grammati-
cal correctness of the explanation and if there is a coherent story. Overall measures
the overall explanation quality. We allow annotators to give the same rank to both
explanations (Atanasova et al., 2020b). We randomly sample 40 instances' and do
not provide the annotators the explanation type.

Results. Table 5.3 presents the human evaluation results for the first task. Each row
indicates the annotator number and the number of times they ranked an explanation
higher for one criterion. Our system’s explanations achieve higher acceptance for
non-redundancy and fluency for LIAR-PLUS. The results are more pronounced for
the PubHealth dataset, where our system’s explanations were preferred in almost all
metrics by both annotators. We hypothesise that PubHealth being a manually curated
dataset leads to overall cleaner post-editing explanations, which annotators prefer.

5.6.2 Explanation Informativeness

Metrics. We also perform a manual evaluation for veracity prediction. We ask
annotators to provide a veracity label for a claim and an explanation where, as for
Explanation Quality, the explanations are either our system’s input or output. The
annotators provide a veracity label for three-way classification: true, false, and insuffi-

'Due to the increased cost and execution time of the complex annotation task, and following related
work that manually evaluates FC explanations (Atanasova et al., 2020b) and machine-generated
summaries (Liu and Lapata, 2019).
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LIAR-PLUS PubHealth

Criterion # TS TS4+[S+P Both 7T° T5+E°+P Both
Coverase 1 425 0.0 57.5 27.5 60.0 12.5
& 2 40.0 5.0 55.0 22.5 20.0 57.5
Nomredundaney 1 10-0 87.5 2.5 10.0 82.5 7.5
Y 2 75 10.0 825 7.5 75.0 17.5
Non-contradictory * 325 50 625 7.5 10.0 82.5
Y 2 10.0 7.5 82.5 20.0 15.0 65.0

Fluenc 1 40.0 57.5 2.5 35.0 52.5 12.5
y 2 77.5 15.0 7.5 20.0 72.5 7.5
Fluenc 1 57.5 425 0.0 35.0 62.5 2.5
y 2 62.5 15.0 22.5 25.0 67.5 7.5

Table 5.3: Manual annotation results of explanation quality. Each value is the proportion of
the times an annotator preferred a justification for a criterion. The preferred
method, out of the input Top" (Supervised) and the output of our method,
TopN +EditsN + Par, is emboldened, Both indicates no preference.

cient (see map to original labels in app.). We use 30 instances of each explanation
type and perform evaluation with two annotators for each dataset and instance.

Results. For LIAR-PLUS, one annotator gave the correct label 80% times for the
input and 67% times for the output explanations. The second annotator chose the
correct label 56% & 44% times correspondingly (Tab. 5.4 in app.). For PubHealth,
both annotators found each explanation useful for the task. The first annotator chose
the correct label 50% & 40% of the times for the input and output explanations.
The second annotator chose the correct label for 70% of both explanations. This
corroborates that for a clean dataset like PubHealth our explanations help for the task
of veracity prediction.

5.7 Discussion and Conclusion

Our automatic and manual evaluation results suggest two main implications of our
post-editing algorithm. First, the automatic ROUGE evaluation confirmed that the
post-editing preserves a large portion of important information contained in the gold
explanation and important for FC. Our manual veracity predictions further supports
this — the post-edited explanations are most useful for predicting the correct label (see
also Tab. 5.13, app. for examples). Hence, we conjecture that our post-editing can be
applied more generally for automated summarisation for knowledge-intensive tasks,
such as FC and question answering, where the information needed for prediction has
to be preserved.
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LIAR-PLUS PubHealth
MNM I MNM

1 TopN (Supervised) 20 5 515 15

# Explanation Type |
0
1 Top®+Edits®+Par 14 7 912 18 0
0
0

2 TopN (Supervised) 11 14 521 9
2 Top®’+Edits’+Par 13 10 7 21 9

Table 5.4: Manual evaluation results for predicting a veracity label. # refers to annotator
number, M/NM refers to number of matches/non-matches between annotator and
original labels, I refers to number of explanations that were found to be insufficient
to predict a label.

Second, with both the automatic and manual evaluation, we corroborate that our
proposed post-editing method improves several qualities of the generated explanations
— fluency, conciseness, and readability. The latter supports the usefulness of the
length and fluency scores as well as the grammatical correction and the paraphrasing
steps promoting these particular qualities of the generated explanations. Fluency,
conciseness, and readability are important prerequisites for building trust in automated
FC predictions especially for systems used in practice as Thagard (1989) find that
people generally prefer simpler, more general explanations with fewer causes. They
can also contribute to reaching a broader audience when conveying the claim’s veracity.
Conciseness and readability are also the downsides of current professional long and
in-depth RCs, which some leading FC organisations, e.g., PolitiFact, have slowly started
addressing by including short overview sections.

5.8 Appendices

5.8.1 Manual Evaluation

As explained in the Section 5.6 of the main paper, we mapped user inputs (TRUE /
FALSE) for task two to the original labels for each dataset. For Liar, we map "true",
"mostly-true", "half-true" to TRUE and "false", "pants-fire", and "barely-true" to FALSE.
In the PubHealth dataset, we map "true" to TRUE, "false" to FALSE. The "insufficient"
label is mapped to UNPROVEN. This way, once the mapping is done, we then compute
the number of matches and non-matches to get an overall accuracy for this subset.

We appointed annotators with a university-level education in English.

Additional human evaluation results are presented in Table 5.4.

5.8.2 Experimental Setup

Table 5.5 presents split size information for the used datasets.
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Dataset Train size Dev size Test size

LIAR-PLUS 10,146 1,278 1,255
PubHealth 9,817 1,227 1,235

Table 5.5: Size of the fact checking datasets used in this work (§5.4.1).

Validation Test
Method R-1 R-2 RL R-1 R-2 R-L

SciBERT, w-1, 1-1200 26.00 7.29 21.41 25.78 7.71 21.42
SciBERT, w-1, 1-1500 27.78 9.81 23.32 27.37 9.62 23.07
SciBERT, w-1, 1-1700 28.73 11.27 24.42 28.45 11.32 24.21
SciBERT, w-2, 1-1700 30.15 12.32 25.66 29.71 12.04 25.35
SciBERT, w-5, 1-1700 30.96 12.59 26.54 30.79 12.31 26.38

Table 5.6: Fine-tuning for PubHealth supervised multi-task model over positive sentence loss
weight, base model and maximum length.

5.8.2.1 Selection of Ruling Comments

For the supervised selection of RCs, as described in Section 5.3.1, we follow the
implementation of the multi-task model of Atanasova et al. (2020b). For LIAR-PLUS,
we don’t conduct fine-tuning as the model is already optimised for the dataset. For
PubHealth, we change the base model to SciBERT, as the claims in PubHealth are from
the health domain and previous work (Kotonya and Toni, 2020a) SciBERT outperforms
BERTs for the domain. Table 5.6 presents the results for the fine-tuning we performed
over the multi-task architecture with a grid-search over the maximum length limit
of the text and the weight for the positive sentences in the explanation extraction
training objective. We finally select and use explanations generated with the multi-task
model with a maximum text length of 1700, and a positive sentence weight of 5.

For the unsupervised selection of explanation sentences, we employ a Longformer
model. We construct the Longformer model with BERT as a base architecture and
conduct 2000 additional fine-tuning steps for the newly added cross-attention weights
to be optimised. We then train models for both datasets supervised by veracity
prediction. The most salient sentences are selected as the sentences that have the
highest sum of token saliencies.

Finally, we remove long sentences and questions from the RCs, where the ROUGE
score changes after filtering are illustrated in Table 5.7, which results in the Top™
sentences, that are used as input for the post-editing method.

These experiments were run on a single NVIDIA TitanRTX GPU with 24GB memory
and 4 Intel Xeon Silver 4110 CPUs. Model training took ~ 3 hours.
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Validation Test

Method R-1 R2 RL R-1 R-2 R-L
LIAR-PLUS Unsup
Top® 29.26 7.98 25.83 29.62 7.94 26.04

Filtered Top® 29.52 7.90 25.98 29.60 7.96 25.94

LIAR-PLUS SUP
Top® 34.42 12.35 30.64 34.49 12.54 30.67
Filtered Top® 34.30 12.20 30.51 34.42 12.36 30.58

PubHealth Unsup
Top® 23.78 6.23 19.95 23.13 6.08 19.63
Filtered Top® 23.94 6.13 20.04 23.52 6.12 19.93

PubHealth SUP
Top5 30.24 12.61 26.36 29.78 12.50 26.18
Filtered Top® 30.35 12.63 26.43 29.93 12.42 26.24

Table 5.7: Sentence clean-up of long sentences for LIAR-PLUS and PubHealth.

5.8.2.2 lterative Based Algorithm

We used the validation split of LIAR-PLUS to select the best hyper-parameters for
both datasets. We use the weight of 1.5, 1.2, 1.4, 0.95 for «, 1, v, 6 and 1.0 for /3 in
our scoring function. We set the thresholds as 0.94 for reordering, 0.97 for deletion,
and 1.10 for insertion. We keep all models — GPT-2, RoBERTa, and Pegasus, fixed
and do not finetune them on any in-house dataset. We run our search algorithm on a
single V100-32 GB GPU for 220 steps, which takes around 13 hours for each split for
both datasets.

5.8.3 Novelty and Copy Rate

Table 5.8 presents additional statistics for the generated explanations from the
test sets of both datasets. First, we compute how many of the words from the input
Top™ RCss are preserved in the final explanation. We find that with the final step
of the post-editing process, up to 8% of the tokens from the RCs are not found in
the final explanation. On the other hand, our post-editing approach generates up
to 10% novel words that are not previously found in the RCs. This could explain

the lower results for the ROUGE scores, which account only for exact token overlaps.

Finally, while ROUGE scores are recall-oriented, i.e., they compute how many of the
words in the gold explanation can be found in the candidate one, we compute a
precision-oriented statistic of the words in the candidate that can be found in the gold
explanation. Surprisingly, while ROUGE scores of our generated explanations decrease
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Method Copy Rate Novelty  Gold Coverage

LIAR-PLUS

Top® Sup. 100 0 29.2 £11.4
Justification 41.4 +£13.0 58.6 +-13.0 100
Top®+Edits® Sup. 98.5+1.8 1.5+1.8 30.7 +12.1
Top® +Edits® + Par Sup. 90.8 £4.8 9.2 +£4.8 32.5 +12.6
PubHealth

Top® Sup. 100 0 26.3 £21.2
Justification 47.1 £21.0 52.9 £21.0 100

Top® +Edits® Sup. 98.1 £3.4 1.8+2.0 27.8+21.3

Top®+Edits®+Par Sup. 90.4 £5.8 9.5 +£5.2  28.5 +20.2

Table 5.8: Copy rate from the Ruling Comments, Novelty w.r.t. the Ruling comments, and
Coverage % of words in the explanation that are found in the justification.

after post-processing, the reverse score increases, pointing to improvements in the
precision-oriented overlap with our method.

In addition, in LIAR/PubHealth, the average summary length is 136/142 tokens
for the extracted RCs, 89/86 for the gold justifications, 118.7/117.3 after iterative
editing, and 98.5/94.7 after paraphrasing.

5.8.4 Automatic Evaluation

In Table 5.9 and Table 5.10, we provide more detailed results over the test splits
including confidence intervals. In Table 5.11 and Table 5.12, we provide results
over the validation split of the datasets for the ROUGE and readability automatic

evaluation. We additionally provide ablation results for components of our approach.

First, applying Pegasus directly on the extracted sentences preserves a slightly larger
amount of information when compared to applying Pegasus on top of the iterative
editing approach — up to 0.96 ROUGE-L scores, but the readability scores are still
lower — up to 4.28 Flesch Reading Ease points. We also show results of the two parts
included in the Edits step — the iterative editing and the grammar correction. We find
that the grammar correction improves the ROUGE scores with up to 8 ROUGE-L score
points and up to 8 Flesch Reading Ease points.

5.8.5 Case Studies

Table 5.13 presents a case study from the PubHealth dataset. Overall, the initial
extracted RC sentences are transformed to be more concise, fluent and human-readable
by applying the iterative post-editing algorithm followed by paraphrasing. We can also
see that compared to the original explanation, the post-edited explanations contain
words that do not change the semantics of the explanation, but would not be scored as
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Method Flesch ~ Flesch CI Dale-Chall »\, Dale-Chall CI
LIAR-PLUS

. Lead? 51.70 [50.93-52.53] 8.73  [8.67-8.78]
Baselines Lead® 53.24 [52.58-53.92] 8.43 [8.38-8.47]
""""" Top® (Supervised)” ~ =~ 58.82 [58.13-59.54] = 7.88 [8.17-8.28]
Supervised  Top®+Edits® 60.21 [59.51-60.95] 7.75  [7.70-7.80]
Top® + Edits® + Par 66.34 [65.73-66.98] 7.42  [7.37-7.47]
""""" Top® (Unsupervised) =~ 53.33 [52.70-53.92] =~~~ 8.50 [8.46-8.54]
Unsupervised Top®+Edits® 55.25 [54.60-55.88] 8.46  [8.42-8.51]
_________ Top®+Edits®+Par____62.13 [61.56-62.71]  _ 8.11 [8.06-8.15]
MTSum* (20200) 58.56 [57.75-59.31] 7.99  [7.94-8.03]

Justification 58.81 [58.22-59.41] 8.23 [7.93-8.04]

PubHealth

Lead3 44.44 [43.05-45.68] 9.12 [9.05-9.19]

Lead® 45.96 [44.80-46.98] 8.85 [8.79-8.91]
""""" Top® (Supervised) ~ ~  48.63 [47.91-49.44] =~ 8.67 [8.62-8.72]
Supervised  Top® +Edits® 53.79 [53.01-54.56] 8.37 [8.31-8.42]
Top® + Edits® + Par 61.39 [60.71-62.10] 7.97 [7.92-8.03]
""""" Top® (Unsupervised) = 45.20 [44.41-46.04] =~~~ 8.94  [8.89-8.98]
Unsupervised Top®+Edits® 50.74 [49.89-51.53] 8.63 [8.57-8.68]
_________ Top®+Edits°+Par____60.07 [59.37-60.77] ____ 8.15_ _[8.09-8.20]
MTSum® (20200) 48.73 [47.81-49.66] 8.88 [8.82-8.94]

Justification 49.29 [48.27-50.40] 9.17 [9.08-9.26]

Table 5.9: Readability measures (§5.5.1) over the test splits. Readability measures include
95% confidence intervals based on 1000 random re-samples from the correspond-
ing split (85.5.1, Metrics.). We report results reported in MTSum, where we have
the outputs to compute readability. We also report results given the gold explana-
tion — Justification. Readability scores for TopN +EditsN and Top™ +Edits™ +Para
are statistically significant (p<0.05) compared to Top", and to MTSum, except

for the score in purple.

correct according to the ROUGE scores. For example, in the second instance, “Death
rates do not define an epidemic” in the post-edited explanation and “Death rates alone
don’t determine whether an outbreak is an epidemic” from the original explanation
express the same meaning, but contain both paraphrases and words without added
meaning that would decrease the final ROUGE scores. Finally, compared to the
original explanation, the post-edited explanations for both instances have preserved

the information needed for fact checking.
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R-1/

R-1CI R-2

R-2 CI

R-L " R-L CI

LIAR-PLUS

[12.47-13.67]

24.38 [23.73-24.68]
25.84 [25.35-26.30]
30.58 [30.01-31.13]
30.01 [29.43-30.60]
30.08 [29.49-30.59]
25.86 [25.52-26.47]
25.14 [24.69-25.61]
25.39 [24.95-25.87]
31.58 [30.07-31.21]

[5.48 - 6. 37]
[5.81 - 6.58]

[10.17-12.15]
[8.89-10.23]

[5.24 - 5.92]
[5.09 - 5.71]

Baselines Lead* 28.11 [27.39-28.39] 6.96 [6.52 - 7.33]
Lead® 29.15 [28.66-29.69] 8.28 [7.85 - 8.67]
""" To'p (‘sﬁpén'ns'e&)' " 3442 133.78-35.00T 12.36 [11.85-12.84]
Sup. Top '+ Edits® 33.92 [33.31-34.53] 11.73 [11.29-12.24]
Top®+Edits® +Par  33.94 [33.37-34.47] 11.25 [10.81-11.73]
""" Top® (‘Uﬁsﬁp?er‘vﬁea)' 29.63 129.03-30.07] ~ 7.58 17.53 - 8.25]
Unsup Top '+ Edits® 28.93 [28.42-29.42] 7.06 [6.74 - 7.43]
Top® +Edits®+Par  28.98 [28.50-29.52] 6.84 [6.51 - 7.16]
""" MTSum? (2020¢) =~ 35.70 134.23-35.39] 13.51
PubHealth
Lead? 29.01 - 10.24
Baselines [,cad® 23.05 [22.53-23.59] 6.28
Lead® 23.73 [22.50-23.62] 6.86
T T T T T Top® (‘sﬁpér?nEea)' ~ 29.937[28.87-30.97] 1242
Sup. Top +Edits® 29.38 [28.45-30.33] 11.16
Top®+Edits’+Par  28.40 [27.55-29.17] 9.56
T T T T T Top® (‘Uﬁsﬁﬁefvfse‘d)‘ 2352 [22.95-24.12] 6.12
Unsup Top +Edits® 23.09 [22.55-23.64] 5.56
o _To_p_-l—_E_dlts +Par  23.35 [22.85-23.86] 5.38
AbstrSum® (2020a) ~ 32.30 13.46
MTSum? (2020¢) 33.55 [29.79-31. 65] 13.12

[11.17-13. 42]

- 24.18
19.27 [18.42-19. 40]
20.67 [19.08-20.18]

[11.44-13.63] 26.24 [25.21-27.44]

25.41 [24.48-26.41]
24.37 [23.52-25.10]

[5.76 - 6.46] 19.93 [19.37-20.45]

19.44 [18.93-19.93]
19.56 [19.08-20.03]

.99
29.41 [25.27-27. 31]

Table 5.10: ROUGE-1/2/L Fj scores (§5.5.2) of supervised (Sup.) and usupervised (Unsup.)
methods over the test splits. In italics, we report results reported from prior work,
where we do not always have the outputs to compute the confidence intervals.
Underlined ROUGE scores of the Top™+EditsN
statistically significant (p < 0.05) compared to the input Top" ROUGE scores,

N={5,6}.

and TopN +Edits™ +Para are
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Method Flesch ~ Flesch CI DC DC CI
LIAR-PLUS

. Lead?* 50.89 [50.01-51.63] 8.75 [8.71-8.80]
Baselines  yoge 5301 [5241-53.64] 843 [8.39-8.47]
Top® (Supervised) 57.77 [57.15-58.38] ~7.91 17.87-7.95]

Supervised  Top®+Par 63.88 [63.31-64.45] 7.55 [7.51-7.59]
Top® +Edits™® 55.70 [55.03-56.36] 6.53 [6.50-6.56]

Top® +Edits'® +EditsGram 59.52 [58.89-60.17] 7.78 [7.73-7.83]
_________ Top®+ Edits'> + Edits ™" +Par___ 66.05 [65.53-66.01] _7.46 [7.41-7.50]
Top® (Unsupervised) 52.84 [52.27-53.36] ~8.52 [8.48-8.55]

Unsupervised Top®+Par 50.92 [50.18-51.58] 6.97 [6.94-7.01]
Top® +Edits™ 50.70 [50.13-51.27] 6.92 [6.89-6.94]

Top® +Edits'™® + EditsGram 54.76 [54.15-55.34] 8.39 [8.34-8.43]
_________ Top®+ Edits'” + Edits ™" +Par_ __ 61.80 [61.17-62.42] _8.01 [7.97-8.05]
MTSum* (2020¢) 58.08 [57.33-58.83] 8.03 [7.97-8.08]

Justification 58.90 [58.23-59.68] 8.26 [8.20-8.32]

LIAR-PLUS Test Split Ablation
. Top6+Par 64.45 [63.81-65.04] 7.52 [7.48-7.56]
Supervised 1\ "6 | Bdits!® 56.26 [55.37-57.04] 6.51 [6.48-6.55]
L TopS+Par T T T T T T 7 759.83[59.20-60.36] ~8.21 18.16-8.25]
Unsupervised 1.6+ Bdits!® 59.34 [58.72-59.91] 8.14 [8.10-8.18]
PubHealth

Lead3 44.76 [43.49-45.87] 9.12 [9.05-9.20]
_________ Lead® 4600 [44.80-46.92] 838 [8.83-8.94]
Top® (Supervised) 49.56 [48.73-50.27] ~8.63 [8.58-8.68]

Supervised  Top®+Par 47.38 [46.50-48.15] 7.07 [7.04-7.12]
Top® + Edits™ 57.53 [56.85-58.19] 8.18 [8.13-8.24]

Top® +Edits'® +EditsGram 54.30 [53.58-54.97] 8.33 [8.27-8.38]
_________ Top® +Edits'™ + Bdits“™*™ +Par_ __ 61.51 [60.89-62.19] _7.96 [7.91-8.01]
Top® (Unsupervised) 43.55 [42.51-44.52] 9.26 [9.19-9.32]

Unsupervised Top®+Par 42.70 [41.60-43.59] 7.35 [7.31-7.40]
Top® +Edits™ 56.33 [55.68-56.97] 8.35 [8.31-8.40]

Top® +Edits'™® + EditsSram 50.46 [49.62-51.23] 8.65 [8.59-8.70]
_________ Top?+Edits!™+ Edits ™ + Par 60,25 [59.56-6089] 813 [8.08-8.19]
MTSum? (20200 49.69 [48.73-50.53] 8.81 [8.75-8.88]

Justification 48.20 [47.25-49.16] 9.22 [9.15-9.32]

PubHealth - Test Split Ablation

. Top® +Par 46.23 [45.33-47.07] 7.11 [7.07-7.15]

Supervised 5 | pitst® 57.29 [56.58-57.96] 8.21 [8.16-8.26]
. Top®+Par T 42.30 [41.34-43.28] " 7.36 [7.31-7.41]
Unsupervised "5 | pitsl® 55.79 [55.16-56.44] 8.39 [8.34-8.43]

Table 5.11: Readability measures (§5.5.1) over the validation splits. Readability measures
include 95% confidence intervals (§5.5.1, Metrics.). We report results from prior

work — MTSum, where we have the outputs to compute readability.
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Method R-1 R-1CI R-2 R-2 CI R-L R-L CI
LIAR-PLUS

Base Lead® 27.52 [26.99-28.00] 6.90 [6.54-7.30] 24.01 [23.53-24.49]
Lead® 28.93 [28.39-29.43] 832 [7.92-8.76] 25.67 [25.15-26.16]

T T T Top® (Supy T T 34.35 [33.71-34.94] 1220 T11.72-12.70] 30.51 [29.97-31.09]
Sup. Top®+Par 34.51 [33.90-35.08] 11.49 [11.04-11.96] 30.68 [30.15-31.25]
Top® +Edits'™® 25.18 [24.63-25.72] 8.60 [8.23-8.98] 22.08 [21.58-22.55]

Top® +Edits'® + Edits®™™ 34.07 [33.45-34.71] 11.58 [11.14-12.05] 30.12 [29.55-30.70]

Top® +Edits® +Par 34.20 [33.62-34.78] 11.05 [10.59-11.46] 30.26 [29.71-30.83]

T 7 T Top® (Uns) T T T T 29.29 [28.79-20.78] 7.99  ~[7.64-8.37] 25.84 [25.36-26.30]
Uns. Top®+Par 22.74 [22.31-23.24] 556 [5.29-5.82] 19.50 [19.06-19.93]
Top® +Edits™ 21.46 [20.98-21.93] 567 [5.43-5.93] 18.76 [18.34-19.20]

Top® +Edits® + Edits“™™  29.02 [28.50-29.53] 7.47 [7.10-7.83] 25.52 [25.02-25.97]

Top® +Edits® +Par 29.41 [28.89-29.90] 7.26  [6.90-7.60] 25.90 [25.43-26.37]

© T T T MTSum® 202000 T 34.80 [34.13-35.39] 12.87 112.29-13.46] 30.66 [30.08-31.26]

LIAR-PLUS Test Split Ablation
Su Top®+Para 34.62 [34.02-35.23] 11.79 [11.33-12.21] 30.81 [30.26-31.35]
P- Top® +Edits™ 25.48 [25.00-26.03] 8.75 [8.41-9.09] 22.29 [21.78-22.79]
U'n; " TopS+Para 34.61 [34.08-35.19] 11.77 T11.30-12.26] 30.81 [30.20-31.38]
© Top®+Edits'® 25.48 [24.87-26.01] 8.75 [8.41-9.13] 22.29 [21.81-22.76]
PubHealth

Base, Lead” 23.18 [22.69-23.71] 555 [5.14-6.00] 18.74 [18.31-19.19]
" Lead® 23.31 [22.71-23.90] 6.07 [5.70-6.46] 19.60 [19.04-20.14]

T T TTop® Supy T T T 30.37 [29.40-31.42] 1264 11T1.51-13.77] 26.46 [25.42-27.49]
Sup. Top®+Par 22.49 [21.62-23.39] 8.96  [8.22-9.75] 19.73 [18.82-20.64]
Top® +Edits™ 29.76 [28.81-30.70] 10.75 [9.91-11.63] 25.44 [24.56-26.32]

Top® +Edits® +Edits®™™  29.62 [28.69-30.49] 11.20 [10.31-12.19] 25.54 [24.62-26.46]

Top® +Edits® +Par 28.81 [27.97-29.70] 9.67 [8.94-10.37] 24.47 [23.71-25.31]

T T TTop® (Uns) T T T 23.80 [23.27-24.31] 5.76  [5.36-6.13] 19.24 [18.74-19.70]
Uns. Top®+Par 18.28 [17.64-18.88] 4.50 [4.22-4.79] 15.50 [14.90-16.14]
Top® +Edits™ 24.44 [23.85-25.04] 597 [5.67-6.31] 20.51 [19.98-21.01]

Top® +Edits® + Edits®™®  23.74 [23.20-24.28] 5.72 [5.41-6.03] 19.76 [19.27-20.30]

Top® +Edits® +Par 23.96 [23.49-24.49] 546 [5.17-5.78] 19.98 [19.52-20.45]

T T T T MTSum® 202000 31.05 [30.08-32.09] 12.66 111.44-13.82] 26.45 [25.46-27.50]

PubHealth Test Split Ablation

Su Top® +Par 22.09 [21.24-22.95] 8.75 [7.97-9.54] 19.48 [18.60-20.36]
P Top® + Edits!® 29.46 [28.57-30.37] 10.71 [9.86-11.63] 25.53 [24.67-26.40]
'U‘n‘ " Top®+Par T T~ 18.11 [17:44-18.77] 441~ ~[4.16-4.70] 15.48 [14.92-16.10]

S.
Top® +Edits™®

18.11 [17.44-18.77]

4.41 [4.16-4.70] 15.48 [14.92-16.10]

Table 5.12: ROUGE-1/2/L F; scores (§85.5.2) of baselines (Base.), supervised (Sup.) and
usupervised (Uns.) methods over the validation splits. In italics, we report results
reported from prior work, where we do not always have the outputs to compute

the confidence intervals.
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Top®: Heavily-armed Muslims shouting “Allahu Akbar” open fire campers and hikers in a park. A heavily armed group of
Middle Eastern looking Muslim men was arrested outside Los Angeles after opening fire upon hikers and campers in a large
State Park in the area . There was no evidence found that a crime had been committed by any of the subjects who were
detained and they were released . Also, the police report described the men only as “ &les ,” not “Middle Eastern males ” or

“Muslim males .” The website that started this rumor was Superstation95, which is not a “superstation” at all but rather a
repositorymisinformation from Hal Turner, who in 2010 was sentenced to 33 months in prison for making death threats
against three federal judges. No credible news reports made any mention of the “Allahu Akbar” claim, and no witnesses stated
they had been “shot at” by the men while hiking or camping.

Top® +Edits®: Heavily-armed Muslims males shouting “Allahu Akbar” open fire in a park. A heavily armed group of
Middle Eastern looking Muslim men was arrested after opening fire upon hikers and campers in a large State Park outside
Los Angeles. There was no evidence found that a crime had been committed by any of the subjects on campers and hikers

wn

. Also, the police report described the men only as “,” not “Middle Eastern” or “Muslim.” The website that started this rumor
was Superstation95, which is not a “superstation” at all but rather a repository of misinformation from Hal Turner, who in
2010 was sentenced to 33 months in prison for making death threats against three federal judges . No credible news reports
made any mention of the “Allahu Akbar” claim, and no witnesses stated they had been “shot at”.

Top” +Edits® + Par "Allahu Akbar" open fire in a park. A heavily armed group of Middle Eastern looking
Muslim men was arrested after opening fire on hikers and campers in a large State Park outside Los Angeles. There was
no evidence that a crime had been committed by . The website that started this rumor was
Superstation95, which is not a “superstation” at all but rather a repository of misinformation from Hal Turner, who in 2010
was sentenced to 33 months in prison.

Original Explanation: Secondary reporting claiming that Muslim men fired upon hikers (and that the media covered it up)
appeared on a site that had previously inaccurately claimed Illinois had applied Sharia law to driver’s licenses, that Target
introduced “Sharia-compliant” checkout lanes, and that Muslims successfully banned Halloween at a New Jersey school.
Claim: The media covered up an incident in San Bernardino during which several Muslim men fired upon a number of
Californian hikers. Label: False

Top®: The article claims the CDC might have to stop calling COVID-19 an epidemic because the death rate is becoming so
low that it wouldn’t meet the CDC’s definition of epidemic. The latest CDC statement made public when the Facebook post

was made said deaths attributed to COVID-19 decreased from the previous week, but remained at the epidemic threshold,
and were likely to increase . Moreover death rates alone do not define an epidemic. Amid news headlines that the United
States set a daily record for the number of new coronavirus cases, an article widely shared on Facebook made a contrarian
claim . The CDC page says: “Epidemic refers to an increase, often sudden, in the number of cases of a disease above what is
Mally expected in that population in that area.”

Top® +Edits®: The article claims the CDC might have to stop calling COVID-19 an epidemic in that population because
the death rate is becoming so low that it wouldn’t meet the CDC’s definition of epidemic. The latest CDC statement an
article from the previous week said deaths decreased, but. Moreover, death rates do not define an epidemic. Amid news

headlines that the United States on Facebook set a daily record for the number of new coronavirus cases, The CDC page
when the Facebook post was made says: “Epidemic refers to an increase, often sudden, in the number of cases of a disease
attributed to COVID-19.”
Top® +Edits® + Par: , the CDC might have to stop calling COVID-19 an epidemic because the
death rate is so low that it wouldn’t meet definition of an epidemic.

Death rates do not define an epidemic. The CDC’s page on
Facebook says Epidemic refers to an increase, often sudden, in the number of cases of a disease attributed to COVID-19.
Original Explanation: Despite a dip in death rates, which are expected to rise again, the federal Centers for Disease Control
and Prevention still considers COVID-19 an epidemic. Death rates alone don’t determine whether an outbreak is an epidemic.
Claim: The CDC may have to stop calling COVID-19 an ‘epidemic’ due to a remarkably low death rate. Label: False

Table 5.13: Example explanations — extracted Top® RCs, the iterative editing, and the latter
with paraphrasing on top, taken from the test split of PubHealth. Each color
designates an edit operation — reordering, deletion, and . The
underlining designates the position in the text where the corresponding operation
will be applied in the next step — post-editing and paraphrasing.
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Multi-Hop Fact Checking of
Political Claims

6.1 Introduction

Recent progress in machine learning has seen interest in automating complex rea-
soning, where a conclusion can be reached only after following logically connected
arguments. To this end, multi-hop datasets and models have been introduced, which
learn to combine information from several sentences to arrive at an answer. While
most of them concentrate on question answering, fact checking is another task that
often requires a combination of multiple evidence pieces to predict a claim’s veracity.

Existing fact checking models usually optimize only the veracity prediction objective
and assume that the task requires a single inference step. Such models ignore that
often several linked evidence chunks have to be explicitly retrieved and combined to
make the correct veracity prediction. Moreover, they do not provide explanations of
their decision-making, which is an essential part of fact checking.

Atanasova et al. (2020b) note the importance of providing explanations for fact
checking verdicts, and propose an extractive summarization model, which optimizes a
ROUGE score metric w.r.t. a gold explanation. Gold explanations for this are obtained
from the LIAR-PLUS (Alhindi et al., 2018) dataset, which is constructed from PolitiFact'
articles written by professional fact checking journalists. However, the dataset does
not provide guidance on the several relevant evidence pieces that have to be linked
and assume that the explanation requires a single reasoning step. FEVER (Thorne
et al., 2018) is another fact checking dataset, which contains annotations of evidence
sentences from Wikipedia pages. However, it consists of manually augmented claims,
which require limited reasoning capabilities for verification as the evidence mostly
consists of one or two sentences.

To provide guidance for the multi-hop reasoning process of a claim’s verification and
facilitate progress on explainable fact checking, we introduce PolitiHop, a dataset of
500 real-world claims with manual annotations of sets of interlinked evidence chunks
from PolitiFact articles needed to predict the claims’ labels. We provide insights from
the annotation process, indicating that fact checking real-world claims is an elaborate
process requiring multiple hops over evidence chunks, where multiple evidence sets
are also possible.

https://www.politifact.com/

107



Claim : Shands Hospital of Gainesville Florida
has confirmed its first case of coronavirus
Speaker : Viral Image

N\,

ﬁis post was flagged as part Shands Hospital in\
of Facebook’s efforts to  « « v« c s v v v v e a s Gainesville is part of the the
combat false news... University of Florida Health

* But a member of UF Health’s
communications team
responded directly to the
Facebook post saying he could
state "we have no cases of the

2019 novel coronavirus to
\ date." /
Ruling: false

Figure 6.1: An illustration of multiple hops over an instance from PolitiHop. Each instance
consists of a claim, a speaker, a veracity label, and a PolitiFact article the annotated
evidence sentences. The highlighted sentences represent the evidence sentences a
model needs to connect to arrive at the correct veracity prediction.

Florida is among 12 states
reporting cases of ...

To assess the difficulty of the task, we conduct experiments with lexical baselines,
as well as a single-inference step model — BERT (Devlin et al., 2019), and a multi-hop
model — Transformer-XH (Zhao et al., 2020). Transformer-XH allows for the sharing
of information between sentences located anywhere in the document by eXtra Hop
attention and achieves the best performance. We further study whether multi-hop
reasoning learned with Transformer-XH can be transferred to PolitiHop. We find
that the model cannot leverage any reasoning skills from training on FEVER, while
training on LIAR-PLUS improves the performance on PolitiHop. We hypothesize that
this is partly due to a domain discrepancy, as FEVER is constructed from Wikipedia
and consists of claims requiring only one or two hops for verification. In contrast,
LIAR-PLUS is based on PolitiFact, same as PolitiHop.

Finally, we perform a detailed error analysis to understand the models’ shortcomings
and recognize possible areas for improvement. We find that the models perform
worse when the gold evidence sets are larger and that, surprisingly, named entity (NE)
overlap between evidence and non-evidence sentences does not have a negative effect
on either evidence retrieval or label prediction. The best results for Transformer-XH
on the dev and test sets are for a different number of hops — 2 and 6, indicating that
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having a fixed parameter for the number of hops is a downside of Transformer-XH,;
this should instead be learned for each claim. Overall, our experiments constitute a
solid basis to be used for future developments.

To summarise, our contributions are as follows:

* We document the first study on multi-hop fact checking of political claims.
* We create a dataset, PolitiHop, for the task.

* We study whether reasoning skills learned with a multi-hop model on similar
datasets can be transferred to PolitiHop.

We analyze to what degree existing multi-hop reasoning methods are suitable
for the task.

6.2 Multi-Hop Fact Checking

A multi-hop fact checking model f(X) receives as an input X = {(claim;, document;)
li € [1,|X]]}, where document; = [sentence;;|j € [1,|document;|]] is the corresponding
PolitiFact article for claim; and consists of a list of sentences. During the training
process, the model learns to (i) select which sentences from the input contain evidence
needed for the veracity prediction y{ = [y;; € {0,1}|j € [1, |document;|]] (sentence
selection task), where 1 indicates that the sentence is selected as an evidence sen-
tence; and (ii) predict the veracity label of the claim y* € {True, False, Hal f — True},
based on the extracted evidence (veracity prediction task). The sentences selected
by the model as evidence provide sufficient explanation, which allows to verify the
corresponding claim efficiently instead of reading the whole article. Each evidence set
consists of k sentences, where k € [1, mawx;cp x| (|document;|)] is a hyper-parameter of
the model. Figure 6.1 illustrates the process of multi-hop fact checking, where multiple
evidence sentences provide different information, which needs to be connected in

logical order to reach the final veracity verdict.

6.2.1 Dataset

We present PolitiHop, the first dataset for multi-hop fact checking of real-world
claims. It consists of 500 manually annotated claims in written English, split into
a training (300 instances) and a test set (200 instances). For each claim, the corre-
sponding PolitiFact article was retrieved, which consists of a discussion of each claim
and its veracity, written by a professional fact checker. The annotators then selected
sufficient sets of evidence sentences from said articles. As sometimes more than one
set can be found to describe a reason behind the veracity of a claim independently,
we further take each set in the training split as a separate instance, resulting in 733
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Statistic Test Train

#Words per article 569 (280.8) 573 (269.1)
#Sent. per article 28 (12.8) 28 (12.8)
#Evidence sent. per article 11.75 (5.56) 6.33 (2.98)
#Evidence sent. per set 2.88 (1.43) 2.59 (1.51)
#Sets per article 4.08 (1.83) 2.44 (1.28)
Label Distribution
False 149 216
Half-true 30 47
True 21 37

Table 6.1: PolitiHop dataset statistics. Test set statistics are calculated for a union of two
annotators; train instances are annotated by one annotator only, which makes
some measures different across splits. We report the mean and standard deviation
(in parentheses).

training examples. Each training example is annotated by one annotator, whereas
each test example is annotated by two. We split the training data into train and
dev datasets, where the former has 592 examples and the latter — 141. For veracity
prediction, we arrived at Krippendorf’s o and Fleiss’ x agreement values of 0.638 and
0.637, respectively. By comparison, Thorne et al. (2018) reported Fleiss’ x of 0.684
on FEVER. For the sentence prediction, we attain Krippendorf’s a of 0.437. A more
in-depth description of the annotation process can be found in the appendix.

Table 6.1 presents statistics of the dataset. The average number of evidence sen-
tences per set is above 2, which already indicates that the task is more complex than
the FEVER dataset. In FEVER, 83.2% of the claims require one sentence, whereas in
PolitiHop, only 24.8% require one sentence.

6.3 Models

We compare the performance of five different models to measure the difficulty of
automating the task.

Majority. Label prediction only. The majority baseline labels all claims as false.

Random. We pick a random number £ € [1,10] and then randomly choose &
sentences from the document as evidence. For label prediction, we randomly pick one
of the labels.

TF-IDF. For each instance x; we construct a vector v¢ = [v$|l € [0, |N¢|]] with
TF-IDF scores v§ for all n-grams N¢ found in all of the claims; and one vector
vP = [vP |m € [0,|NP|]] with TF-IDF scores v2, for all n-grams N? found in all of
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the documents, where n € [2,3]. We then train a Naive Bayes model g(V'), where
V = {v; = (v¢ - vP)|i € [0,|X]]} is the concatenation of the two feature vectors.
BERT. We first train a Transformer model (Vaswani et al., 2017), which does
not include a multi-hop mechanism, but applies a single inference step to both the
evidence retrieval and the label prediction tasks. We employ BERT (Devlin et al., 2019)
with the base pre-trained weights. Each sentence from a fact checking document is
encoded separately, combined with the claim and the author of the claim. We refer
to the encoded triple as node 7. The tokens of one node z, = {z.;|j € [1,|z/||}
are encoded with the BERT model into contextualized distributed representations:
h: = {h,;|j € [1,]z,|}. The encoded representations of all nodes are passed through

two feed-forward layers:

p(y*|7) = softmax(Linear(h,p)) (6.1)
p(y°|7) = softmaz(Linear(h,)) (6.2)
p(y"1X) =Y ply"m)p(yI7) (6.3)

The first layer predicts the veracity of the claim given a particular node 7 by using the
contextual representation of the “[CLS]” token, located at the first position (Eq. 6.1).
The second feed-forward layer learns the importance of each node in the graph
(Eq. 6.2). The outputs of these two layers are combined for the final label prediction
(Eq. 6.3). For evidence prediction, we choose k£ most important sentences, as ranked
by the second linear layer. In our experiments, we set k = 6 since this is the average
number of evidence sentences selected by a single annotator. The implementation of
the feed-forward prediction layers is the same as in Transformer-XH, described below,
and can be viewed as an ablation of Transformer-XH removing the eXtra Hop attention
layers.

Transformer-XH. Transformer-XH is a good candidate for a multi-hop model for
our setup as it has previously achieved the best multi-hop evidence retrieval results on
FEVER. It is also inspired by and improves over other multi-hop architectures (Liu et al.,
2020c; Zhou et al., 2019), and we conjecture that the results should be generalisable
for its predecessors as well. Not least, its architecture allows for ablation studies of the
multi-hop mechanism. Following previous work on applying Transformer-XH to FEVER
(Zhao et al., 2020), we encode node representations as with the BERT model and
construct a fully connected graph with them. Transformer-XH uses eXtra hop attention
layers to enable information sharing between the nodes. An eXtra hop attention
layer is a Graph Attention layer (GAT) (Velickovi¢ et al., 2018), which receives as
input a graph { X, E'} of all evidence nodes X and the edges between them FE, where
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the edges encode the attention between two nodes in the graph. Each eXtra hop
layer computes the attention between a node and its neighbors, which corresponds
to one hop of reasoning across nodes. Transformer-XH applies L eXtra hop layers to
the BERT node encodings H,, which results in new representations H; that encode
the information shared between the nodes, unlike BERT, which encodes each input
sentence separately. We use three eXtra hop layers as in (Zhao et al., 2020), which
corresponds to three-hop reasoning, and we experiment with varying the number of
hops. The representations H;, are passed to the final two linear layers for label and
evidence prediction as in BERT. The final prediction of the veracity label p(y*|{X, E'})
now can also leverage information exchanged in multiple hops between the nodes
through the edges F between them.

6.4 Experiments

We address the following research questions:
e Can multi-hop architectures successfully reason over evidence sets on PolitiHop?

* How do multi-hop vs. single inference architectures fare in an adversarial
evaluation, where named entities (NE) in evidence and non-evidence sentences
overlap?

* Does pre-training on related small in-domain or large out-of-domain datasets
improve model performance?

We further perform ablation studies to investigate the influence of different factors
on performance (see Section 6.6).

6.4.1 Experimental Setup

Metrics. We use macro F; score and accuracy for the veracity prediction task and
F and precision for the evidence retrieval task. To calculate the performance on both
tasks jointly, we use the FEVER score (Thorne et al., 2018), where the model has to
retrieve at least one full evidence set and predict the veracity label correctly for the
label prediction to count as correct. We consider a single evidence set to be sufficient
for correct label prediction. As each example from train and dev sets in PolitiHop,
and every example from LIAR-PLUS, has one evidence set, all evidence sentences need
to be retrieved for these. The employed measures for evidence retrieval allow for
comparison to related work and for relaxing the requirements on the models. We
consider the FEVER score to be the best for evaluating explainable fact checking.

Dataset settings. We consider three settings: adversarial, full article, and even
split. For full, the whole article for each claim is given as input. For even split,
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we pick all sentences from the same article, but restrict the number of non-evidence
sentences to be at most equal to the number of evidence sentences. Non-evidence
sentences are picked randomly. This results in a roughly even split between evidence
and non-evidence sentences for the test set. Since we divide train and dev datasets
into one evidence set per example, but keep all non-evidence for each, the number of
non-evidence sentences for instances in these splits is usually 2-3 times larger than the
number of evidence sentences. To examine if the investigated multi-hop models overfit
on named entity (NE) overlaps, we further construct an adversarial dataset from the
even split dataset by changing each non-evidence sentence to a random sentence from
any PolitiFact article, which contains at least one NE present in the original evidence
sentences. While such sentences can share information about a relevant NE, they are
irrelevant for the claim. We argue that this is a good testbed to understand if a fact
checking model can successfully reason over evidence sets and identify non-evidence
sentences, even if they contain relevant NEs, which are rather surface features not
indicating whether the sentence is relevant to the claim.

Training settings. We perform transfer learning, training on in-domain data (LIAR-
PLUS, PolitiHop), out-of-domain data (FEVER), or a combination thereof. See the
appendix for details on training regimes and hyper-parameters.

Note that the measures do not consider the order of the sentences in the evidence
set, and the systems do not predict that as well. We believe other measures and models
that take that into account should be explored in future work. Here we consider them
to appear in the same order as in the document. This also corresponds to the way they
were annotated.

6.5 Results

Full article setting. From the results in Table 6.2, we can observe that both BERT
and Transformer-XH greatly outperform the Random and TF-IDF baselines. Out of
BERT and Transformer-XH, neither model clearly outperforms the other on our dataset.
This is surprising as Transformer-XH outperforms the BERT baselines by a significant
margin on both FEVER and the multi-hop dataset HotpotQA (Zhao et al., 2020).
However, we observe that the best performance is achieved with Transformer-XH
trained on LIAR-PLUS, then fine-tuned on PolitiHop. It also achieves the highest
FEVER scores on PolitiHop in that setting. Further, very low FEVER scores of both
Transformer-XH and BERT indicate how challenging it is to retrieve the whole evidence
set.

Adversarial setting. We train the Transformer-XH models on the even split setting,
then evaluate it on both adversarial and even split datasets (see Table 6.3). The
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Dev Test
L-F; L-Acc|E-F; E-Prec|FEVER |L-F; L-Acc|E-F; E-Prec|FEVER

Random 34.1 38.5|229 30.2 45(24.2 27.7|14.7 122 0.7

Majority 27.3 69.5 - - -128.6 75.0 - - -

Annotator - - - - -176.3 -1 524 49.2 -

TFE-IDF 34.4 69.5 - - -1 34.0 76.0 - - -
LIAR-PLUS full articles dataset

BERT 454 709|184 13.7| 14.9|57.0 76.0|32.9 38.9 13.0

Transformer-XH | 56.2 74.5| 17.1 12.8 14.2 | 56.3 79.5| 30.3 35.8 12.0

PolitiHop full articles dataset
BERT 54,7 69.5|32.0 23.6 31.9(44.8 76.0/47.0 54.2 24.5
Transformer-XH | 61.1 76.6| 30.4 22.3 34.8|43.3 75.5|44.7 51.7 23.5

LIAR-PLUS and PolitiHop full articles
BERT 64.4 759|296 21.7| 28.4|57.8 795|451 522| 235
Transformer-XH | 64.6 78.7|32.4 23.8| 38.3|57.3 80.5(47.2 54.5| 24.5

Table 6.2: PolitiHop results for label (L), evidence (E) and joint (FEVER) performance

in the full setting. Best results with a particular training dataset (LIAR-
PLUS/PolitiHop/LIAR-PLUS and PolitiHop) are emboldened and the best results
across all set-ups are underlined.

Dev Test
L-F; L-Acc|E-F; E-Prec|FEVER |L-F; L-Acc|E-F; E-Prec| FEVER

58.1 71.6| 47.7 35.5 52.5‘62.9 82.0| 58.2 66.7| 31.0

even split

adversarial | 56.5 70.9|49.9 38.7 46.8| 56.4 77.0/63.6 76.0 33.5

Table 6.3: PolitiHop adversarial vs even split dataset results for label (L), evidence (E)
and joint (FEVER) performance for Transformer-XH trained on LIAR-PLUS and
PolitiHop on the even split setting. Best result emboldened.

model performs similarly in both settings. When compared on test sets, it achieves a
higher FEVER score on the adversarial, but dev sets FEVER score is higher on the
even split setting. Overall, the results show Transformer-XH is robust towards NE
overlap.

Out-of-domain pre-training on FEVER. In this experiment, we examine whether
pre-training Transformer-XH on the large, but out-of-domain dataset FEVER, followed
by fine-tuning on LIAR-PLUS, then on PolitiHop improves results on PolitiHop. As
can be seen from Table 6.4, it does not have a positive effect on performance in the
full setting, unlike pre-training on LIAR-PLUS. We hypothesize that the benefits of
using a larger dataset are outweighed by the downsides of it being out-of-domain. We
further quantify the domain differences between datasets. We use Jensen-Shannon
divergence (Lin, 1991), commonly employed for this purpose (Ruder and Plank, 2017).
The divergence between FEVER and PolitiHop is 0.278, while between LIAR-PLUS
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Dev Test
L-F; L-Acc|E-F; E-Prec|FEVER |L-F; L-Acc |E-F; E-Prec|FEVER

FE R+]TIAR-PLUS 48.6 70.2] 30.5 222 326599 83.0| 451 52.7 21.5
+PolitiHop

LIARTPL.‘US 64.6 78.7|32.4 23.8 38.3| 57.3 80.5|47.2 54.5 24.5

+PolitiHop

Table 6.4: PolitiHop full results for label (L), evidence (E) and joint (FEVER) performance
for Transformer-XH trained on different datasets. Best model emboldened.

and PolitiHop is 0.063, which further corroborates our hypothesis. Another reason

might be that PolitiHop has several times more input sentences compared to FEVER.

Labelling difference might matter as well: FEVER uses ‘true’, ‘false’ and ‘not enough
info’, while PolitiHop uses ‘true’, ‘false’ and ‘half-true’.

6.6 Analysis and Discussion

In Section 6.5, we documented experimental results on multi-hop fact checking of
political claims. Overall, we found that multi-hop training on Transformer-XH gives
small improvements over BERT, that pre-training on in-domain data helps, and that
Transformer-XH deals well with an adversarial test setting. Below, we aim to further
understand the impact of modeling multi-hop reasoning explicitly with a number of

ablation studies:

How the evidence set size affects performance;

Varying the hops’ number in Transformer-XH;

The impact of evidence set size on performance;

How NE overlap affects performance;

To what extent Transformer-XH pays attention to relevant evidence sentences.

Further ablation studies can be found in the appendix, namely on: impact of varying
the number of evidence sentences on evidence retrieval; how to weigh the different
loss functions (for label vs. evidence prediction); if providing supervision for evidence
sentence positions impacts performance; and to what degree high label confidence is
an indication of high performance.

Varying the number of hops in Transformer-XH. We train Transformer-XH with a
varying number of hops to see if there is any pattern in how many hops result in the
best performance. Zhao et al. (2020) perform a similar experiment and find that 3
hops are best, similar for 2-5 hops, while the decrease in performance is noticeable for
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1 and 6 hops. We experiment with hops between 1 and 7 (see Table 6.5). Evidence
retrieval performance is quite similar in each case. There are some differences for the
label prediction task: 1 and 2 hops have slightly worse performance, the 4-hop model
has the highest test score and the lowest dev score, while the exact opposite holds for
the 5-hop model. Therefore, no clear pattern can be found. One reason for this could
be the high variance of the annotated evidence sentences in PolitiHop.

Dev Test
L-F, L-Acc|E-F1 E-Prec|FEVER L-F, L-Acc|E-F1 E-Prec|FEVER

1 54.0 75.2|47.1 352 525|589 79.5(/58.7 67.6| 33.0
2 56.1 73.0/47.5 354| 53.9/59.8 78.5|58.1 66.7| 32.5
3 58.1 71.6(47.7 35.5| 525|629 82.0/58.2 66.7| 31.0
4 53.3 709470 349| 50.4/65.0 82.0/58.9 67.6| 33.0
559.6 73.0(47.7 35.5| 51.8(/553 76.5|58.7 67.3| 32.0
6 56.5 73.0/459 34.2| 504|649 815|575 66.0 35.0
7 56.3 71.6|46.4 34.6| 50.4|62.8 815|579 66.4| 33.0

Table 6.5: PolitiHop Transformer-XH results for label (L), evidence (E) and joint (FEVER)
performance for training on the LIAR-PLUS + PolitiHop even split datasets
with a varying number of hop layers. Best sentence number emboldened.

Evidence set size vs. performance. Not surprisingly, larger number of evidence

sentences leads to higher precision and lower recall, resulting in a lower FEVER score.

This is true for both models, as Table 6.6 (top) indicates. We also notice that the
smaller the number, the smaller the ratio of evidence to non-evidence sentences. For
instance, if a claim has two sets of evidence, one of size 1 and the other of size 3, then
after splitting into one example per set, there are 4 non-evidence sentences in each
of the two examples, but the one with set of size 1 has only one evidence sentence
— which decreases the evidence to non-evidence ratio and makes it more difficult to
achieve high precision.

Named entity overlap vs. performance. To measure the effect of having the same
NEs in evidence and non-evidence sentences, we computed NE overlap — a measure
of the degree to which evidence and non evidence sentences share NEs. We compute
the overlap as |[E N N|/|E U N|; E and N are sets of NEs in evidence and non-evidence
sentences, respectively. Table 6.6 (bottom) shows that a higher NE overlap results in
more confusion when retrieving evidence sentences, but it does not have a significant
influence on label prediction in the case of Transformer-XH. For BERT, higher NE
overlap leads to a bigger, negative effect on both tasks. This suggests Transformer-XH
is more robust to NE overlaps.

Attention over evidence sentences. We investigate what attention patterns
Transformer-XH learns. Ideally, attention flowing from evidence sentences should be
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Transformer-XH BERT
L-F; L-Acc|E-F; E-Prec|FEVER | L-F; L-Acc|E-F; E-Prec|FEVER

1 or 2 evidence
sentences
3+ evidence
sentences

< 40% NE overlap | 62.5 77.0|59.1 46.2| 623|620 75.4|57.7 451 59.0
> 40% NE overlap | 63.6 71.0|48.5 35.5| 60.9|47.5 66.7|46.2 33.8 49.3

Table 6.6: PolitiHop adversarial dev set performance vs. (top) evidence set size and
(bottom) NE overlap between evidence and non-evidence sentences for label (L),
evidence (E) and joint (FEVER) performance. Better model emboldened.

63.9 76.8|43.7 29.2| 74.4|535 720|413 275 62.2

60.9 66.1|67.5 56.2| 42.4|57.8 66.1| 65.8 54.8| 40.7

ev — non-ev ev — eV non-ev — non-ev non-ev — ev
1.085 1.076 0.966 0.964

Table 6.7: Attention weights in the last eXtra hop layer of Transformer-XH. The numbers are
the average ratios of the actual attention weights to average attention weight of
the given graph.

higher than from non-evidence ones since this determines how much they contribute
to the final representations of each sentence. To do this, we inspect the weights in
the final eXtra hop layer. We normalize results by measuring the ratio of the given
attention to the average attention for the given graph: 1 means average, over/under
1 means more/less than average. Table 6.7 shows average ratios for evidence vs.
non-evidence sentences. One notable finding is that attention weights from evidence
sentences are higher than average, and attention from non-evidence sentences is lower.
The Welch t-test indicates that the difference is significant with a p-value lower than
1073, So, attention weights get more importance on average, but the magnitude of
this effect is quite limited. This shows the limitations of using Transformer-XH for this
task.

6.7 Related Work

Fact checking. Several datasets have been released to assist in automating fact
checking. Vlachos and Riedel (2014) present a dataset with 106 political claim-verdict
pairs. The FakeNewsChallenge 2, provides 50K headline-article pairs and formulates
the task of fact checking as stance detection between the headline and the body of
the article. The relationship between these two tasks is further explored in Hardalov
et al. (2021). Wang (2017) extract 12.8K claims from PolitiFact constituting the

2http://www.fakenewschallenge.org/
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LIAR dataset. Alhindi et al. (2018) introduce the LIAR-PLUS dataset extending the
latter with automatically extracted summaries from PolitiFact articles. These are,
however, high-level explanations that omit evidence details. LIAR-PLUS also does not
provide annotation of particular evidence sentences from the article leading to the
final verdict and the possible different evidence sets. Augenstein et al. (2019) present
a real-world dataset constructed from 26 fact checking portals, including PolitiFact,
consisting of 35k claims paired with crawled evidence documents. Thorne et al. (2018)
present the FEVER dataset, consisting of 185K claims produced by manually re-writing
Wikipedia sentences. Furthermore, Niewinski et al. (2019) from the FEVER’2019
shared task (Thorne et al., 2019b) and Hidey et al. (2020) use adversarial attacks
to show the vulnerability of models trained on the FEVER dataset to claims that
require more than one inference step. Unlike prior work, we construct a dataset
with annotations of the different reasoning sets and the multiple hops that constitute
them.

Multi-hop datasets. Multi-hop reasoning has been mostly studied in the context
of Question Answering (QA). Yang et al. (2018) introduce HotpotQA with Wikipedia-
based question-answer pairs requiring reasoning over multiple documents and provide
gold labels for sentences supporting the answer. Welbl et al. (2018) introduce MedHop
and WikiHop datasets for reasoning over multiple documents. These are constructed
using Wikipedia and DrugBank as Knowledge Bases (KB), and are limited to entities
and relations existing in the KB. This, in turn, limits the type of questions that can be
generated. TriviaQA (Joshi et al., 2017) and SearchQA (Dunn et al., 2017) contain
multiple documents for question-answer pairs but have few examples where reasoning
over multiple paragraphs from different documents is necessary.

Multi-hop models. Chen and Durrett (2019) observe that models without multi-hop
reasoning are still able to perform well on a large portion of the test dataset. Hidey
et al. (2020) employ a pointer-based architecture, which re-ranks documents related
to a claim and jointly predicts the sequence of evidence sentences and their stance
to the claim. Asai et al. (2020) sequentially extract paragraphs from the reasoning
path conditioning on the documents extracted on the previous step. CogQA (Ding
et al., 2019) detect spans and entities of interest and then run a BERT-based Graph
Convolutional Network for ranking. Nie et al. (2019) perform semantic retrieval
of relevant paragraphs followed by span prediction in the case of QA and 3-way
classification for fact checking. Zhou et al. (2019), Liu et al. (2020c), and Zhao et al.
(2020) model documents as a graph and apply attention networks across the nodes
of the graph. We use Zhao et al. (2020)’s model due to its strong performance in
multi-hop QA on the HotpotQA dataset, in evidence-based fact checking on FEVER,
and to evaluate its performance on real-world claim evidence reasoning.
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6.8 Conclusions

In this paper, we studied the novel task of multi-hop reasoning for fact checking
of real-world political claims, which encompasses both evidence retrieval and claim
veracity prediction. We presented PolitiHop, the first political fact checking dataset
with annotated evidence sentences. We compared several models on PolitiHop and
found that the multi-hop architecture Transformer-XH slightly outperforms BERT in
most of the settings, especially in terms of evidence retrieval, where BERT is easily
fooled by named entity overlaps between the claim and evidence sentences. The
performance of Transformer-XH is further improved when retrieving more than two
evidence sentences and the number of hops larger than one, which corroborates the
assumption of the multi-hop nature of the task.

6.9 Appendices

6.9.1 Annotation Process

6.9.1.1 Annotation Pipeline

We used the PolitiFact API to retrieve the articles, along with the source pages used
in the article, the claim and the author of the claim. For each article we performed the
annotation process as follows:

1. Reading the claim and the article.

2. Picking the evidence sentences from the corresponding PolitiFact article. These
sentences should sum up the whole article while providing as much evidence as
possible.

3. Deciding on the veracity label.

4. Going to each relevant url and checking whether it contains the equivalent
textual evidence.

In Step 2, we retrieved evidence sentences sentences, where each sentence follows
from the previous one and together they constitute enough evidence to verify the
claim and provide an explanation for it.

In Step 4, we wanted to examine how often the evidence can be retrieved from
external sources, i.e. not relying on PolitiFact articles. However, we have not gathered
enough data to carry out a reliable evaluation of this and thus left the idea for future
work.

6.8 Conclusions
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Figure 6.2: Article length vs. inter-annotator agreement.

Originally, following (Thorne et al., 2018), we wanted to have a ‘not enough
evidence’ label, but due to a small frequency of this label in the annotations, as well
as due to a significant disagreement between annotators on that label, we decided
to discard it and re-label it with one of the remaining labels (false, half-true or true).
In case of conflicting label annotations, a third annotator was asked to resolve the
conflict.

6.9.1.2 Inter-Annotator Agreement

We report Inter-Annotator Agreement (IAA) agreement on the test set, where we had
two annotator annotating each instance. For the veracity prediction task, annotators’
Krippendorf’s « and Fleiss’ x are equal to 0.638 and 0.637 respectively. By comparison,
Thorne et al. (2018) reported Fleiss’ x of 0.684 on the veracity label prediction, which
is the another indication of the increased complexity when predicting veracity of
claims occurring naturally. For the sentence prediction task, when treating each ruling
article as a separate dataset and averaging over all articles, annotators achieve 0.437
Fleiss’ x and 0.437 Krippendorff’s o (we also compute IAA when treating all sentences
from all articles as one dataset, where both IAA measures drop to 0.400). Figure 6.2
confirms the intuition that annotators tend to agree more on the shorter articles, which
are easier to annotate as they contain fewer sets and fewer hops per set.
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6.9.2 Training Details

We used LIAR-PLUS and PolitiHop for training in three different settings:

1. Training on LIAR-PLUS only.

2. Training on PolitiHop only.

3. Pre-training on LIAR-PLUS and fine-tuning on PolitiHop.

4. Pre-training on FEVER, then fine-tuning on LIAR-PLUS and PolitiHop.

In the first setting, the models are trained for 4 epochs on LIAR-PLUS. In the second
setting, the models are trained for 8 epochs on PolitiHop. In the third setting, models
are trained for 4 epochs on LIAR-PLUS, followed by 4 epochs on PolitiHop. In
every setting, models are evaluated on the dev set and the model with the best label
prediction macro F} score is saved, which enables early stopping. For the fourth
setting, we pre-train the model for 2 epochs on the FEVER dataset, followed by 4
epochs on LIAR-PLUS, the fine-tune on PolitiHop for 4 epochs.

The models have been trained and evaluated using one NVIDIA TITAN RTX. We
report the results based on a single run with a random seed fixed to 42.

Both BERT and Transformer-XH are trained with the same hyperparameters as in
(Zhao et al., 2020): BERT 12 layers’ with the hidden size of 768, 3 GAT layers with the
hidden size of 64. Optimized with Adam with the learning rate of 1le-5. For the TF-IDF
baseline, we also remove English stop words using the built-in list in the Scikit-learn
library (Pedregosa et al., 2011).

Some of the experiments are ablation studies of the number of GAT layers and the
number of retrieved evidence sentences. The former varies between 1 and 7 while the
latter varies between 1 and 10.

6.9.3 Additional Results

Number of evidence sentences vs. evidence retrieval performance. One of
the challenges of generating fact checking explanations is deciding on the length
of the explanation. By design, the explanations should be short, ideally just a few
sentences. On the other hand, they have to provide a comprehensive motivation
of the fact checking verdict. Transformer-XH handles evidence retrieval by ranking
the importance of each input sentence. We, therefore, pick the most highly ranked
sentences, according to the model. By default for all experiments in Section 6.5, the
top 6 sentences are used, as it is the average length of an annotation in the PolitiHop
test set.

Table 6.8 shows how recall trades off against precision and improves as an increasing
number of sentences is selected. Test set F; grows as the number of sentences grows,
while the best train set F} is the highest for 3 sentences and it gets worse as the
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Test Dev
#S. F,; Recall Precision| F; Recall Precision
1 15.9 9.7 62.0/17.3 13.5 30.5
2 27.6 19.4 61.0|27.8 28.9 31.2
3 36.2 28.5 61.2(31.8 394 30.0
4 41.3 35.5 59.1132.3 47.0 27.1
5 44,0 41.0 55.8|31.6 52.9 24.5
6 47.2  47.2 5451324 60.9 23.8
7 49.2 52.5 52.9131.8 65.8 22.4
8 50.3 56.9 51.0/31.2 70.5 21.2
9 50.8 60.7 49.0| 30.5 74.7 20.2
10 51.0 64.1 47.3129.1 76.4 18.9

Table 6.8: PolitiHop evidence retrieval results for a model trained on LIAR-PLUS full, then
fine-tuned on PolitiHop full, with a varying number of top sentences retrieved
as evidence. Best number of sentences emboldened.

Lab Evi Joint| Lab Evi Joint

BERT | 72.2 43.7 11.3|72.0 43.5 14.5
TXH |73.7 44.4 12.1|72.6 44.6 13.4

| Dev Test

Table 6.9: LIAR-PLUS results when trained on the LIAR-PLUS full articles dataset. Best
model emboldened. The Lab(el) and Evi(dence) results are I scores, and Joint is
measured with FEVER score.

number of sentences increases. [} on dev set is much more even for different numbers,
but it peaks at 6 sentences. Generally, 6 sentences gives the best trade-off between the
performance on test and dev sets, while being short enough to be considered as short
summary of the whole article.

LIAR-PLUS. Here, we investigate training then testing on LIAR-PLUS. As Table 6.9
shows, Transformer-XH outperforms BERT by a small margin. This confirms the results
in (Zhao et al., 2020) that Transformer-XH generally performs well in multi-hop
settings.

Loss function comparison. In this experiment we compare BERT and Transformer-
XH performance on the PolitiHop full article setting when trained with three different
loss functions. The default loss function is the sum of evidence prediction loss and
label prediction loss. The EVI setting uses evidence loss only and saves the model with
the highest validation set evidence F; score. The LAB setting uses label prediction loss
only and saves the model with the highest macro I score on validation data label
prediction, just like in the default setting.
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Dev Test

Label Evidence | Joint| Label Evidence | Joint

F; Acc| F; Prec|FEVER| F; Acc| F; Prec|FEVER
BERT 64.4 75.9|29.6 21.7 28.4|57.8 79.5|45.1 52.2 23.5
Transformer-XH | 64.6 78.7 | 32.4 23.8 38.3|57.3 80.5|47.2 54.5 24.5
BERT-EVI 34.0 51.1|31.8 23.4| 26.2|40.7 63.5|/45.7 52.8 21.5
Trans-XH-EVI 56.0 68.1(34.4 25.2 33.3|59.9 75.5|46.7 54.2 21.5
BERT-LAB 59.4 72.3/19.9 14.8 14.9160.3 77.5|33.8 40.1 13.5
Trans-XH-LAB | 62.0 75.2(18.2 13.5 14.9/60.6 81.5|32.4 38.8 13.0
Random 24.2 27.7114.7 12.2 0.7]34.1 38.5|22.9 30.2 4.5

Table 6.10: PolitiHop results trained on LIAR-PLUS + PolitiHop full articles datasets. EVI
means the model was trained with loss on the evidence prediction task only. LAB
means the loss on the label prediction only. The default loss was the sum of both.
Best model emboldened.

Table 6.10 shows the best performance with the joint loss for BERT. EVI setting
hurts the label prediction while LAB setting hurts the evidence prediction, without
providing a clear boost in the second metric over the joint model. Transformer-XH
performs much worse on evidence prediction when trained using label prediction loss
only. Interestingly, there is no clear performance difference between EVI and default
settings.

Adding sentence IDs to sentence encodings. The main goal of this experiment
was to see whether providing the information about the positions of the sentences in
articles can be leveraged to improve the performance of BERT and Transformer-XH
models.

We took the models pre-trained on LIAR-PLUS without sentence positions and fine-
tuned the model on PolitiHop with sentence positions, by prepending each sentence’s
encoding with the token [unusedN], where N =sentence position. Table 6.11 shows
a significant performance boost for Transformer-XH label prediction, but not for
evidence retrieval. BERT does not exhibit any improvement, which is to be expected
as it considers each sentence in isolation, it doesn’t learn any interactions between
sentences.

Label confidence vs. performance. The goal here was to measure how confident
the models are in their label predictions and to see if higher confidence means better
performance. The results are presented in Table 6.12.

Transformer-XH is usually sure of its predictions, so not much can be observed based
on that - it does indeed have higher F; score when it is more confident, but there are
too few instances where it is not confident to make any conclusions - apart from the
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Dev Test
Label Evidence | Joint Label Evidence | Joint
F; Acc| F; Prec|FEVER| F; Acc| F; Prec|FEVER
BERT 62.4 75.2127.7 20.3 24.1|57.4 79.0|42.9 49.2 21.5
Transformer-XH | 65.2 78.0|32.2 23.6 38.366.5 84.0(47.2 54.9 26.5

Table 6.11: PolitiHop results for training on LIAR-PLUS full, then fine-tuning on PolitiHop

full with sentence ID encodings. Best model emboldened.

Transformer-XH BERT
Label Evidence | Joint Label Evidence| Joint
F, Acc| F; Prec|FEVER| F; Acc| F; Prec|FEVER
<90% [45.5 46.2|51.6 39.7| 34.6|30.9 32.6|52.9 41.6 20.9
>90%|67.2 78.3|54.1 40.7 67.0|72.5 85.7(50.9 37.8| 67.3

Table 6.12: PolitiHop adversarial dev set performance vs. label confidence.

one that it’s often sure but makes a mistake anyway. Besides, NE overlap was not

particularly high for the instances where the model got confused.

The effect is even stronger with BERT to the point where having less than 95%

confidence usually results in a bad prediction.

6.9.4 PolitiHop Example

Table 6.13 shows an example from the proposed PolitiHop dataset.
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Claim: Claim: Says 20 million Chinese converted to Islam after it’s proven that the
coronavirus doesn’t affect Muslims.

Speaker: Viral image

Label: false

Ruling Comments: [1] Amid fears about the coronavirus disease , a YouTube video
offers a novel way to inoculate yourself: convert to Islam. [2] “20m Chinese gets
converted to Islam after it is proven that corona virus did not affect the Muslims,”
reads the title of a video posted online Feb. 18 (...) [5] That’s because the footage
is from at least as far back as May 26, 2019, when it was posted on Facebook
with this caption: “Alhamdulillah welcome to our brothers in faith.” [6] On
Nov. 7, 2019, it was posted on YouTube with this title: “MashaaAllah hundreds
converted to Islam in Philippines.” [7] Both posts appeared online before the
current outbreak of the new coronavirus, COVID-19, was first reported in Wuhan,
China, on Dec. 31, 2019. [8] But even if the footage followed the outbreak, Muslims
are not immune to COVID-19, as the Facebook post claims. [9] After China, Iran
has emerged as the second focal point for the spread of COVID-19, the New York
Times reported on Feb. 24 . [10] “The Middle East is in many ways the perfect
place to spawn a pandemic, experts say, with the constant circulation of both
Muslim pilgrims and itinerant workers who might carry the virus.” [11] On Feb.
18, Newsweek reported that coronavirus “poses a serious risk to millions of inmates
in China’s Muslim prison camps.”

Table 6.13: An example from the PolitiHop dataset. Each example consists of a claim, a
speaker (author of the claim), a veracity label and a PolitiFact article with the
annotated evidence sentences. One of the evidence sets is in bold, and the other
in italics.
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Part IV

Diagnostic Explainability Methods



A Diagnostic Study of 7
Explainability Techniques for
Text Classification

7.1 Introduction

Understanding the rationales behind models’ decisions is becoming a topic of pivotal
importance, as both the architectural complexity of machine learning models and
the number of their application domains increases. Having greater insight into the
models’ reasons for making a particular prediction has already proven to be essential
for discovering potential flaws or biases in medical diagnosis (Caruana et al., 2015)
and judicial sentencing (Rich, 2016). In addition, European law has mandated “the
right ... to obtain an explanation of the decision reached” (Regulation, 2016).

Explainability methods attempt to reveal the reasons behind a model’s prediction
for a single data point, as shown in Figure 7.1. They can be produced post-hoc,
i.e., with already trained models. Such post-hoc explanation techniques can be
applicable to one specific model (Martens et al., 2008; Wagner et al., 2019) or to a
broader range thereof (Ribeiro et al., 2016a; Lundberg and Lee, 2017). They can
further be categorised as: employing model gradients (Sundararajan et al., 2017,
Simonyan et al., 2013), being perturbation based (Shapley, 1953; Zeiler and Fergus,
2014) or providing explanations through model simplifications (Ribeiro et al., 2016a;
Johansson et al., 2004). There also exist explainability methods that generate textual
explanations (Camburu et al., 2018) and are trained post-hoc or jointly with the model
at hand.

While there is a growing amount of explainability methods, we find that they can
produce varying, sometimes contradicting explanations, as illustrated in Figure 7.1.
Hence, it is important to assess existing techniques and to provide a generally applicable
and automated methodology for choosing one that is suitable for a particular model
architecture and application task (Jacovi and Goldberg, 2020). Robnik-Sikonja and
Bohanec (2018) compiles a list of property definitions for explainability techniques,
but it remains a challenge to evaluate them in practice. Several other studies have
independently proposed different setups for probing varied aspects of explainability
techniques (DeYoung et al., 2020a; Sundararajan et al., 2017). However, existing
studies evaluating explainability methods are discordant and do not compare to
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Figure 7.1: Example of the saliency scores for the words (columns) of an instance from the
Twitter Sentiment Extraction dataset. They are produced by the explainability
techniques (rows) given a Transformer model. The first row is the human
annotation of the salient words. The scores are normalized in the range [0, 1].

properties from previous studies. In our work, we consider properties from related
work and extend them to be applicable to a broader range of downstream tasks.

Furthermore, to create a thorough setup for evaluating explainability methods, one
should include at least: (i) different groups of explainability methods (explanation by
simplification, gradient-based, etc.), (ii) different downstream tasks, and (iii) different
model architectures. However, existing studies usually consider at most two of these
aspects, thus providing insights tied to a specific setup.

We propose a number of diagnostic properties for explainability methods and evalu-
ate them in a comparative study. We consider explainability methods from different
groups, all widely applicable to most ML models and application tasks. We conduct
an evaluation on three text classification tasks, which contain human annotations
of salient tokens. Such annotations are available for Natural Language Processing
(NLP) tasks, as they are relatively easy to obtain. This is in contrast to ML sub-fields
such as image analysis, for which we only found one relevant dataset — 536 manually
annotated object bounding boxes for Visual Question Answering (Subramanian et al.,
2020).

We further compare explainability methods across three of the most widely used
model architectures — CNN, LSTM, and Transformer. The Transformer model achieves
state-of-the-art performance on many text classification tasks but has a complex
architecture, hence methods to explain its predictions are strongly desirable. The
proposed properties can also be directly applied to Machine Learning (ML) subfields

7.1 Introduction
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other than NLP. The code for the paper is publicly available.!
In summary, the contributions of this work are:

* We compile a comprehensive list of diagnostic properties for explainability and
automatic measurement of them, allowing for their effective assessment in

practice.

* We study and compare the characteristics of different groups of explainabil-
ity techniques in three different application tasks and three different model
architectures.

» We study the attributions of the explainability techniques and human annotations
of salient regions to compare and contrast the rationales of humans and machine
learning models.

7.2 Related Work

Explainability methods can be divided into explanations by simplification, e.g.,
LIME (Ribeiro et al., 2016a); gradient-based explanations (Sundararajan et al., 2017);
perturbation-based explanations (Shapley, 1953; Zeiler and Fergus, 2014). Some
studies propose the generation of text serving as an explanation, e.g., (Camburu et al.,
2018; Lei et al., 2016; Atanasova et al., 2020b). For extensive overviews of existing
explainability approaches, see Arrieta et al. (2020).

Explainability methods provide explanations of different qualities, so assessing them
systematically is pivotal. A common attempt to reveal shortcomings in explainability
techniques is to reveal a model’s reasoning process with counter-examples (Alvarez-
Melis and Jaakkola, 2018; Kindermans et al., 2019; Atanasova et al., 2020c), finding
different explanations for the same output. However, single counter-examples do
not provide a measure to evaluate explainability techniques (Jacovi and Goldberg,
2020).

Another group of studies performs human evaluation of the outputs of explain-
ability methods (Lertvittayakumjorn and Toni, 2019; Narayanan et al., 2018). Such
studies exhibit low inter-annotator agreement and reflect mostly what appears to be
reasonable and appealing to the annotators, not the actual properties of the method.

The most related studies to our work design measures and properties of explain-
ability techniques. Robnik-Sikonja and Bohanec (2018) propose an extensive list of
properties. The Consistency property captures the difference between explanations
of different models that produce the same prediction; and the Stability property
measures the difference between the explanations of similar instances given a single

Ihttps://github.com/copenlu/xai-benchmark
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model. We note that similar predictions can still stem from different reasoning paths.
Instead, we propose to explore instance activations, which reveal more of the model’s
reasoning process than just the final prediction. The authors propose other properties
as well, which we find challenging to apply in practice. We construct a comprehen-
sive list of diagnostic properties tied with measures that assess the degree of each
characteristic.

Another common approach to evaluate explainability methods is to measure the
sufficiency of the most salient tokens for predicting the target label (DeYoung et al.,
2020a). We also include a sufficiency estimate, but instead of fixing a threshold for
the tokens to be removed, we measure the decrease of a model’s performance, varying
the proportion of excluded tokens. Other perturbation-based evaluation studies and
measures exist (Sundararajan et al., 2017; Adebayo et al., 2018), but we consider the
above, as it is the most widely applied.

Another direction of explainability evaluation is to compare the agreement of salient
words annotated by humans to the saliency scores assigned by explanation techniques
(DeYoung et al., 2020a). We also consider the latter and further study the agreement
across model architectures, downstream tasks, and explainability methods. While we
consider human annotations at the word level (Camburu et al., 2018; Lei et al., 2016),
there are also datasets (Clark et al., 2019; Khashabi et al., 2018) with annotations at
the sentence-level, which would require other model architectures, so we leave this
for future work.

Existing studies for evaluating explainability heavily differ in their scope. Some
concentrate on a single model architecture - BERT-LSTM (DeYoung et al., 2020a),
RNN (Arras et al., 2019), CNN (Lertvittayakumjorn and Toni, 2019), whereas a few
consider more than one model (Guan et al., 2019; Poerner et al., 2018). Some studies
concentrate on one particular dataset (Guan et al., 2019; Arras et al., 2019), while
only a few generalize their findings over downstream tasks (DeYoung et al., 2020a;
Vashishth et al., 2019). Finally, existing studies focus on one (Vashishth et al., 2019)
or a single group of explainability methods (DeYoung et al., 2020a; Adebayo et al.,
2018). Our study is the first to propose a unified comparison of different groups
of explainability techniques across three text classification tasks and three model

architectures.

7.3 Evaluating Attribution Maps

We now define a set of diagnostic properties of explainability techniques, and
propose how to quantify them. Similar notions can be found in related work (Robnik-
Sikonja and Bohanec, 2018; DeYoung et al., 2020a), and we extend them to be
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generally applicable to downstream tasks. We first introduce the prerequisite notation.
Let X = {(z;,y;,w;)|i € [1,N]} be the test dataset, where each instance consists of
a list of tokens z; = {z;;|j € [1,|z|]}, a gold label y;, and a gold saliency score for
each of the tokens in z;: w; = {w;;|j € [1, |z;]]} with each w;; € {0,1}. Let w be
an explanation technique that, given a model M, a class ¢, and a single instance
x;, computes saliency scores for each token in the input: w}! .= {w%)vcu € [1, x|}
Finally, let M = M,, ... My be models with the same architecture, each trained from
a randomly chosen seed, and let M’ = Mj, ... M}, be models of the same architecture,
but with randomly initialized weights.

Agreement with human rationales (HA). This diagnostic property measures the
degree of overlap between saliency scores provided by human annotators, specific
to the particular task, and the word saliency scores computed by an explainability
technique on each instance. The property is a simple way of approximating the quality
of the produced feature attributions. While it does not necessarily mean that the
saliency scores explain the predictions of a model, we assume that explanations with
high agreement scores would be more comprehensible for the end-user as they would
adhere more to human reasoning. With this diagnostic property, we can also compare
how the type and the performance of a model and/or dataset affect the agreement
with human rationales when observing one type of explainability technique.

During evaluation, we provide an estimate of the average agreement of the explain-
ability technique across the dataset. To this end, we start at the instance level and
compute the Average Precision (AP) of produced saliency scores w.’ , by comparing
them to the gold saliency annotations w;. Here, the label for computing the saliency
scores is the gold label: ¢ = y;. Then, we compute the average across all instances,
arriving at Mean AP (MAP):

(7.1)

MAP(w, M, X) = % > AP(wi,w) )

1€[1,N]
Confidence Indication (CI). A token from a single instance can receive several saliency
scores, indicating its contribution to the prediction of each of the classes. Thus, when
a model recognizes a highly indicative pattern of the predicted class %, the tokens
involved in the pattern would have highly positive saliency scores for this class and
highly negative saliency scores for the remaining classes. On the other hand, when the
model is not highly confident, we can assume that it is unable to recognize a strong
indication of any class, and the tokens accordingly do not have high saliency scores
for any class. Thus, the computed explanation of an instance i should indicate the
confidence p; ; of the model in its prediction.
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We propose to measure the predictive power of the produced explanations for
the confidence of the model. We start by computing the Saliency Distance (SD)
between the saliency scores for the predicted class % to the saliency scores of the other
classes K /k (Eq. 7.2). Given the distance between the saliency scores, we predict the
confidence of the class with logistic regression (LR) and finally compute the Mean
Absolute Error — MAE (Eq. 7.3), of the predicted confidence to the actual one.

SD= ) D(Wﬁj,kawﬁj,f{/k) (7.2)
JE[0,|z]]
i€[1,N]

For tasks with two classes, D is the subtraction of the saliency value for class k and the
other class. For more than two classes, D is the concatenation of the max, min, and
average across the differences of the saliency value for class k and the other classes.
Low MAE indicates that model’s confidence can be easily identified by looking at the
produced explanations.

Faithfulness (F). Since explanation techniques are employed to explain model
predictions for a single instance, an essential property is that they are faithful to
the model’s inner workings and not based on arbitrary choices. A well-established
way of measuring this property is by replacing a number of the most-salient words
with a mask token (DeYoung et al., 2020a) and observing the drop in the model’s
performance. To avoid choosing an unjustified percentage of words to be perturbed,
we produce several dataset perturbations by masking 0, 10, 20, ..., 100% of the
tokens in order of decreasing saliency, thus arriving at X«°, X« ..., X' Finally,
to produce a single number to measure faithfulness, we compute the area under the
threshold-performance curve (AUC-TP):

AUC-TP(w, M, X) =

0 (7.4)
AUC([(i, P(M(X“")) — M(X“))])

where P is a task specific performance measure and i € [0, 10,...,100]. We also
compare the AUC-TP of the saliency methods to a random saliency map to find
whether there are explanation techniques producing saliency scores without any
contribution over a random score.

Using AUC-TP, we perform an ablation analysis which is a good approximation
of whether the most salient words are also the most important ones for a model’s
prediction. However, some prior studies (Feng et al., 2018) find that models remain
confident about their prediction even after stripping most input tokens, leaving a few
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that might appear nonsensical to humans. The diagnostic properties that follow aim
to facilitate a more in-depth analysis of the alignment between the inner workings of
a model and produced saliency maps.

Rationale Consistency (RC). A desirable property of an explainability technique
is to be consistent with the similarities in the reasoning paths of several models on
a single instance. Thus, when two reasoning paths are similar, the scores provided
by an explainability technique w should also be similar, and vice versa. Note that
we are interested in similar reasoning paths as opposed to similar predictions, as
the latter does not guarantee analogous model rationales. For models with diverse
architectures, we expect rationales to be diverse as well and to cause low consistency.
Therefore, we focus on a set of models with the same architecture, trained from
different random seeds as well as the same architecture, but with randomly initialized
weights. The latter would ensure that we can have model pairs (1/,, M,) with similar
and distant rationales. We further claim that the similarity in the reasoning paths could
be measured effectively with the distance between the activation maps (averaged
across layers and neural nodes) produced by two distinct models (Eq. 7.5). The
distance between the explanation scores is computed simply by subtracting the two
(Eq. 7.6). Finally, we compute Spearman’s p between the similarity of the explanation
scores and the similarity of the attribution maps (Eq. 7.7).

D(M,, M, ;) = D(M,(z;), ) (:m)) (7.5)
D(M,, My, z;,w) = D(we M ) (7.6)
p(MS7 Manaw) = p(D(M$7 Mpwrl])’ (7.7)

D(Mg, M, x;,w)|i € [1,N])

The higher the positive correlation is, the more consistent the attribution method
would be. We choose Spearman’s p as it measures the monotonic correlation between
the two variables. On the other hand, Pearson’s p measures only the linear correlation,
and we can have a non-linear correlation between the activation difference and the
saliency score differences. When subtracting saliency scores and layer activations,
we also take the absolute value of the vector difference as the property should be
invariant to order of subtraction. An additional benefit of the property is that low
correlation scores would also help to identify explainability techniques that are not
faithful to a model’s rationales.

Dataset Consistency (DC). The next diagnostic property is similar to the above
notion of rationale consistency but focuses on consistency across instances of a dataset
as opposed to consistency across different models of the same architecture. In this case,
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Dataset Example Size Length

e-SNLI Premise: An adult dressed in black 549 367 Train 27.4 inst.
(Camburu et al., holds a stick. 9 842 Dev 5.3 expl.
2018) Hypothesis: An adult is walking 9 824 Test

away, empty-handed.
Label: contradiction

Movie Review: he is one of the most ex- 1 399 Train 834.9 inst.
Reviews citing martial artists on the big 199 Dev 56.18 expl.
(Zaidan et al., screen, continuing to perform his 199 Test

2007) own stunts and dazzling audiences

with his flashy kicks and punches.
Class: Positive

Tweet Tweet: im soo bored...im deffo miss- 21 983 Train  20.5 inst.
Sentiment ing my music channels 2 747 Dev 9.99 expl.
Extraction Class: Negative 2 748 Test

(TSE)

Table 7.1: Datasets with human-annotated saliency explanations. The Size column presents
the dataset split sizes we use in our experiments. The Length column presents the
average number of instance tokens in the test set (inst.) and the average number
of human annotated explanation tokens (expl.).

we test whether instances with similar rationales also receive similar explanations.
While Rationale Consistency compares instance explanations of the same instance
for different model rationales, Dataset Consistency compares explanations for pairs
of instances on the same model. We again measure the similarity between instances
z; and x; by comparing their activation maps, as in Eq. 7.8. The next step is to
measure the similarity of the explanations produced by an explainability technique w,
which is the difference between the saliency scores as in Eq. 7.9. Finally, we measure
Spearman’s p between the similarity in the activations and the saliency scores as in
Eq. 7.10. We again take the absolute value of the difference.

D(M,z;,x;,w) = D(wi\fyyi,wi\jyi) (7.9)

p(M, Xvw) = p(D(M, 33',;,17]‘),

(7.10)
D(M, x;,z;,w)|i,j € [1, N])

7.4 Experiments
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7.4.1 Datasets

Table 7.1 provides an overview of the used datasets. For e-SNLI, models predict
inference — contradiction, neutral, or entailment — between sentence tuples. For the
Movie Reviews dataset, models predict the sentiment — positive, negative, or neutral
— of reviews with multiple sentences. Finally, for the TSE dataset, models predict
tweets’ sentiment — positive, negative, or neutral. The e-SNLI dataset provides three
dataset splits with human-annotated rationales, which we use as training, dev, and
test sets, respectively. The Movie Reviews dataset provides rationale annotations for
nine out of ten splits. Hence, we use the ninth split as a test and the eighth split as
a dev set, while the rest are used for training. Finally, the TSE dataset only provides
rationale annotations for the training dataset, and we therefore randomly split it into
80/10/10% chunks for training, development and testing.

7.4.2 Models

We experiment with different commonly used base models, namely CNN (Fukushima,
1980), LSTM (Hochreiter and Schmidhuber, 1997), and the Transformer (Vaswani
et al., 2017) architecture BERT (Devlin et al., 2019). The selected models allow for a
comparison of the explainability techniques on diverse model architectures. Table 7.2
presents the performance of the separate models on the datasets.

For the CNN model, we use an embedding, a convolutional, a max-pooling, and
a linear layer. The embedding layer is initialized with GloVe (Pennington et al.,
2014) embeddings and is followed by a dropout layer. The convolutional layer
computes convolutions with several window sizes and multiple-output channels with
ReLU (Hahnloser et al., 2000) as an activation function. The result is compressed
down with a max-pooling layer, passed through a dropout layer, and into a fine linear
layer responsible for the prediction. The final layer has a size equal to the number of
classes in the dataset.

The LSTM model again contains an embedding layer initialized with the GloVe
embeddings. The embeddings are passed through several bidirectional LSTM layers.
The final output of the recurrent layers is passed through three linear layers and a
final dropout layer.

For the Transformer model, we fine-tune the pre-trained basic, uncased language
model (LM) (Wolf et al., 2019). The fine-tuning is performed with a linear layer on

top of the LM with a size equal to the number of classes in the corresponding task.

Further implementation details for all of the models, as well as their F scores, are
presented in 7.7.1.

2https://www.kaggle.com/c/tweet-sentiment-extraction
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Model Val Test
e-SNLI
Transformer 0.897 (£0.002) 0.892 (£0.002)
Transformer™ 0.167 (+£0.003) 0.167 (+0.003)
CNN 0.773 (4+0.003) 0.768 (£0.002)
CNNR! 0.195 (£0.038) 0.194 (£0.037)
LSTM 0.794 (40.005) 0.793 (£0.009)
LSTMR! 0.176 (£0.013) 0.176 (£0.000)
Movie Reviews
Transformer 0.859 (£+0.044) 0.856 (4+0.018)
Transformer® 0.335 (£0.003) 0.333 (+0.000)
CNN 0.831 (£0.014) 0.773 (£0.005)
CNNRL 0.343 (£0.020) 0.333 (40.001)
LSTM 0.614 (£0.017) 0.567 (£0.019)
LSTM! 0.362 (40.030) 0.363 (£0.041)
TSE
Transformer 0.772 (£0.005) 0.781 (£0.009)
Transformer® 0.165 (£0.025) 0.171 (£0.022)
CNN 0.708 (£0.007) 0.730 (40.007)
CNNRL 0.221 (£0.060) 0.226 (£0.055)
LSTM 0.701 (£0.005) 0.727 (4+0.004)
LSTMR! 0.196 (+0.070) 0.204 (+0.070)

Table 7.2: Models’ F; score on the test and the validation datasets. The results present the
average and the standard deviation of the Performance measure over five models
trained from different seeds. The random versions of the models are again five
models, but only randomly initialized, without training.

7.4.3 Explainability Techniques

We select the explainability techniques to be representative of different groups —
gradient (Sundararajan et al., 2017; Simonyan et al., 2013), perturbation (Shap-
ley, 1953; Zeiler and Fergus, 2014) and simplification based (Ribeiro et al., 2016a;
Johansson et al., 2004).

Starting with the gradient-based approaches, we select Saliency (Simonyan et al.,
2013) as many other gradient-based explainability methods build on it. It computes the
gradient of the output w.r.t. the input. We also select two widely used improvements of
the Saliency technique, namely InputXGradient (Kindermans et al., 2016), and Guided
Backpropagation (Springenberg et al., 2014). InputXGradient additionally multiplies
the gradient with the input and Guided Backpropagation overwrites the gradients of
ReLU functions so that only non-negative gradients are backpropagated.

From the perturbation-based approaches, we employ Occlusion (Zeiler and Fergus,
2014), which replaces each token with a baseline token (as per standard, we use the
value zero) and measures the change in the output. Another popular perturbation-
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based technique is the Shapley Value Sampling (Castro et al., 2009). It is based on
the Shapley Values approach that computes the average marginal contribution of
each word across all possible word perturbations. The Sampling variant allows for a
faster approximation of Shapley Values by considering only a fixed number of random
perturbations as opposed to all possible perturbations.

Finally, we select the simplification-based explanation technique LIME (Ribeiro
et al., 2016a). For each instance in the dataset, LIME trains a linear model to
approximate the local decision boundary for that instance.

Generating explanations. The saliency scores from each of the explainability
methods are generated for each of the classes in the dataset. As all of the gradient
approaches provide saliency scores for the embedding layer (the last layer that we
can compute the gradient for), we have to aggregate them to arrive at one saliency
score per input token. As we found different aggregation approaches in related
studies (Bansal et al., 2016; DeYoung et al., 2020a), we employ the two most common
methods — L2 norm and averaging (denoted as 4 and ¢2 in the explainability method
names).

7.5 Results and Discussion

We report the measures of each diagnostic property as well as FLOPs as a measure
of the computing time used by the particular method. For all diagnostic properties, we
also include the randomly assigned saliency as a baseline.

7.5.1 Results

Of the three model architectures, unsurprisingly, the Transformer model performs
best, while the CNN and the LSTM models are close in performance. It is only for the
IMDB dataset that the LSTM model performs considerably worse than the CNN, which
we attribute to the fact that the instances contain a large number of tokens, as shown
in Table 7.1. As this is not the core focus of this paper, detailed results can be found in
the supplementary material.

Overall results. Table 7.3 presents the mean of all properties across tasks and
models with all property measures normalized to be in the range [0,1]. We see that
gradient-based explainability techniques always have the best or the second-best
performance for the diagnostic properties across all three model architectures and all
three downstream tasks. Note that, InputXGrad" and GuidedBP", which are computed
with a mean aggregation of the scores, have some of the worst results. We conjecture
that this is due to the large number of values that are averaged — the mean smooths
out any differences in the values. In contrast, the L2 norm aggregation amplifies
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Model Saliency e-SNLI IMDB TSE

Random 0.201 0.517 0.185
ShapSampl 0.479 0.481 0.667
LIME 0.809 0.604 0.553
Occlusion 0.523 0.323 0.556
Transformer Saliency” 0.772 0.671 0.707

Saliency"? 0.781 0.687 0.696
InputXGrad" 0.364 0.432 0.307

InputXGrad® 0.796 0.676 0.754
GuidedBP"  0.468 0.236 0.287

GuidedBP®>  0.782 0.676 0.685

Random 0.209 0.468 0.384
ShapSampl 0.460 0.648 0.630
LIME 0.571 0.572 0.681
Occlusion 0.554 0.411 0.594
CNN Saliency” 0.853 0.712 0.595

Saliency 0.875 0.796 0.631
InputXGrad" 0.576 0.662 0.613

InputXGrad® 0.881 0.759 0.636
GuidedBP*  0.403 0.346 0.438

GuidedBP"?  0.875 0.788 0.628

Random 0.166 0.343 0.225
ShapSampl 0.606 0.605 0.526
LIME 0.759 0.233 0.630
Occlusion 0.609 0.589 0.681

Saliency® 0.800 0.583 0.704
InputXGrad" 0.432 0.481 0.441

InputXGrad” 0.820 0.685 0.693
GuidedBP"  0.492 0.553 0.410

GuidedBP”  0.805 0.660 0.720
Table 7.3: Mean of the diagnostic property measures for all tasks and models. The best result
for the particular model architecture and downstream task is in bold and the
second-best is underlined.

the presence of large and small values in the vector. From the non-gradient based
explainability methods, LIME has the best performance, where in two out of nine
cases it has the best performance. It is followed by ShapSampl and Occlusion. We
can conclude that the occlusion based methods overall have the worst performance
according to the diagnostic properties.

Furthermore, we see that the explainability methods achieve better performance
for the e-SNLI and the TSE datasets with the Transformer and LSTM architectures,
whereas the results for the IMDB dataset are the worst. We hypothesize that this is due
to the longer text of the input instances in the IMDB dataset. The scores also indicate
that the explainability techniques have the highest diagnostic property measures for
the CNN model with the e-SNLI and the IMDB datasets, followed by the LSTVM, and the
Transformer model. We suggest that the performance of the explainability tools can
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Figure 7.2: Diagnostic property evaluation for all explainability techniques, on the e-SNLI
dataset, Transformer model. The  and . signs indicate that higher, correp-
spondingly lower, values of the property measure are better.

be worse for large complex architectures with a huge number of neural nodes, like the
Transformer one, and perform better for small, linear architectures like the CNN.

Diagnostic property performance. Figures 7.2, 7.3, 7.4 show the performance
of each explainability technique for all diagnostic properties on the e-SNLI dataset.
The TSE and IMDB datasets show similar tendencies and corresponding figures can be
found in the supplementary material.

Agreement with human rationales. We observe that the best performing ex-
plainability technique for the Transformer model is InputXGrad®® followed by the
gradient-based ones with L2 norm aggregation. While for the CNN and the LSTM
models, we observe similar trends, their MAP scores are always lower than for the
Transformer, which indicates a correlation between the performance of a model and
its agreement with human rationales. Furthermore, the MAP scores of the CNN model
are higher than for the LSTM model, even though the latter achieves higher F} scores
on the e-SNLI dataset. This might indicate that the representations of the LSTM model
are less in line with human rationales. Finally, we note that the mean aggregations of
the gradient-based explainability techniques have MAP scores close to or even worse
than those from the randomly initialized models.
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Figure 7.3: Diagnostic property evaluation for all explainability techniques, on the e-SNLI
dataset, CNN model. The  and  signs indicate that higher, correpspondingly
lower, values of the property measure are better.

7.5 Results and Discussion 140



5 051 0.56 062, ,

—— Random
ShapSampl
LIME
Occlusion
—— Saliency”

Saliency!?
InputXGrad”
InputXGrad*?
—e— GuidedBPH
R & DC7Z. Guidedsp®

Figure 7.4: Diagnostic property evaluation for all explainability techniques, on the e-SNLI
dataset, LSTM model. The " and  signs indicate that higher, correpspondingly
lower, values of the property measure are better.

7.5 Results and Discussion

141



Faithfulness. We find that gradient-based techniques have the best performance
for the Faithfulness diagnostic property. On the e-SNLI dataset, it is particularly
InputXGrad®®, which performs well across all model architectures. We further find that
the CNN exhibits the highest Faithfulness scores for seven out of nine explainability
methods. We hypothesize that this is due to the simple architecture with relatively
few neural nodes compared to the recurrent nature of the LSTM model and the large
number of neural nodes in the Transformer architecture. Finally, models with high
Faithfulness scores do not necessarily have high Human agreement scores and vice
versa. This suggests that these two are indeed separate diagnostic properties, and the
first should not be confused with estimating the faithfulness of the techniques.

Confidence Indication. We find that the Confidence Indication of all models
is predicted most accurately by the ShapSampl, LIME, and Occlusion explainability
methods. This result is expected, as they compute the saliency of words based on
differences in the model’s confidence using different instance perturbations. We further
find that the CNN model’s confidence is better predicted with InputXGrad". The lowest
MAE with the balanced dataset is for the CNN and LSTM models. We hypothesize that
this could be due to these models’ overconfidence, which makes it challenging to
detect when the model is not confident of its prediction.

Rationale Consistency. There is no single universal explainability technique that
achieves the highest score for Rationale Consistency property. We see that LIME
can be good at achieving a high performance, which is expected, as it is trained to
approximate the model’s performance. The latter is beneficial, especially for models
with complex architectures like the Transformer. The gradient-based approaches
also have high Rationale Consistency scores. We find that the Occlusion technique is
the best performing for the LSTM across all tasks, as it is the simplest of the explored
explainability techniques, and does not inspect the model’s internals or try to approxi-
mate them. This might serve as an indication that LSTM models, due to their recurrent
nature, can be best explained with simple perturbation based methods that do not
examine a model’s reasoning process.

Dataset Consistency. Finally, the results for the Dataset Consistency property show
low to moderate correlations of the explainability techniques with similarities across
instances in the dataset. The correlation is present for LIME and the gradient-based
techniques, again with higher scores for the L2 aggregated gradient-based methods.

Overall. To summarise, the proposed list of diagnostic properties allows for assessing
existing explainability techniques from different perspectives and supports the choice
of the best performing one. Individual property results indicate that gradient-based
methods have the best performance. The only strong exception to the above is the
better performance of ShapSampl and LIME for the Confidence Indication diagnostic
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property. However, ShapSampl, LIME and Occlusion take considerably more time to
compute and have worse performance for all other diagnostic properties.

7.6 Conclusion

We proposed a comprehensive list of diagnostic properties for the evaluation of
explainability techniques from different perspectives. We further used them to compare
and contrast different groups of explainability techniques on three downstream tasks
and three diverse architectures. We found that gradient-based explanations are the
best for all of the three models and all of the three downstream text classification tasks
that we consider in this work. Other explainability techniques, such as ShapSampl,
LIME and Occlusion take more time to compute, and are in addition considerably
less faithful to the models and less consistent with the rationales of the models and
similarities in the datasets.
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7.7 Appendices
7.7.1 Experimental Setup

Machine Learning Models. The models used in our experiments are trained on the
training splits, and the parameters are selected according to the development split.
We conducted fine-tuning in a grid-search manner with the ranges and parameters we
describe next. We use superscripts to indicate when a parameter value was selected for
one of the datasets e-SNLI — 1, Movie Review — 2, and TSE — 3. For the CNN model, we
experimented with the following parameters: embedding dimension € {50, 100, 200,
30023}, batch size € {162, 32, 643, 128, 256!}, dropout rate € {0.05%?3, 0.1, 0.15,
0.2}, learning rate for an Adam optimizer € {0.01, 0.03, 0.00123, 0.003, 0.0001!,
0.0003}, window sizes € {[2, 3, 41%, [2, 3, 4, 5], [3, 4, 513, [3, 4, 5, 61,[4, 5, 6], [4, 5,
6, 71'}, and number of output channels € {50%2, 100, 200, 300'}. We leave the stride
and the padding parameters to their default values — one and zero.

For the LSTM model we fine-tuned over the following grid of parameters: embedding
dimension € {50, 1002, 2003, 300}, batch size € {16%3, 32, 64, 128, 256'}, dropout
rate € {0.05%, 0.1%2, 0.15, 0.2}, learning rate for an Adam optimizer € {0.01', 0.032,
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Model Time Score

e-SNLI
Transformer 244.763 (£62.022) 0.523 (£0.356)
CNN 195.041 (+53.994) 0.756 (+0.028)
LSTM 377.180 (£232.918) 0.708 (£0.205)

Movie Reviews
Transformer 3.603 (£+0.031) 0.785 (+0.226)

CNN 4.777 (£1.953) 0.756 (£+0.058)
LSTM 5.344 (+1.593) 0.584 (+0.061)
TSE
Transformer 9.393 (£1.841) 0.783 (£0.006)
CNN 2.240 (£0.544) 0.730 (+0.035)
LSTM 3.781 (£1.196) 0.713 (£0.076)

Table 7.4: Hyper-parameter tuning details. Time is the average time (mean and standard
deviation in brackets) measured in minutes required for a particular model with
all hyper-parameter combinations. Score is the mean and standard deviation of
the performance on the validation set as a function of the number of the different
hyper-parameter searches.

0.00123, 0.003, 0.0001, 0.0003}, number of LSTM layers € {13, 2, 3, 4!}, LSTM
hidden layer size € {50, 10023, 200, 300}, and size of the two linear layers € {[50,
25]2, [100, 501!, [200, 100]3}. We also experimented with other numbers of linear
layers after the recurrent ones, but having three of them, where the final was the
prediction layer, yielded the best results.

The CNN and LSTM models are trained with an early stopping over the validation
accuracy with a patience of five and a maximum number of training epochs of 100.
We also experimented with other optimizers, but none yielded improvements.

Finally, for the Transformer model we fine-tuned the pre-trained basic, uncased
LM (Wolf et al., 2019)(110M parameters) where the maximum input size is 512, and
the hidden size of each layer of the 12 layers is 768. We performed a grid-search over
learning rate of € {le — 5,2e — 5'2 3¢ — 53, 4e — 5, 5e — 5}. The models were trained
with a warm-up period where the learning rate increases linearly between 0 and 1 for
0.05% of the steps found with a grid-search. We train the models for five epochs with
an early stopping with patience of one as the Transformer models are easily fine-tuned
for a small number of epochs.

All experiments were run on a single NVIDIA TitanX GPU with 8GB, and 4GB of
RAM and 4 Intel Xeon Silver 4110 CPUs.
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The models were evaluated with macro F; score, which can be found here https:
//scikit-learn.org/stable/modules/generated/sklearn.metrics and is defined

as follows:
TP

~ TP +FP
TP

" TP +FN

2xPx*xR

"P+R

where TP is the number of true positives, FP is the number of false positives, and FN

Precision(P)

Recall(R)

1=

is the number of false negatives.

Explainability generation. When evaluating the Confidence Indication property
of the explainability measures, we train a logistic regression for 5 splits and provide
the MAE over the five test splits. As for some of the models, e.g. Transformer, the
confidence is always very high, the LR starts to predict only the average confidence.
To avoid this, we additionally randomly up-sample the training instances with a
smaller confidence, making the number of instances in each confidence interval [0.0-
0.1],...[0.9-1.0]) to be the same as the maximum number of instances found in one
of the separate intervals.

For both Rationale and Dataset Consistency properties, we consider Spearman’s
p. While Pearson’s p measures only the linear correlation between two variables (a
change in one variable should be proportional to the change in the other variable),
Spearman’s p measures the monotonic correlation (when one variable increases,
the other increases, too). In our experiments, we are interested in the monotonic
correlation as all activation differences don’t have to be linearly proportional to the
differences of the explanations and therefore measure Spearman’s p.

The Dataset Consistency property is estimated over instance pairs from the test
dataset. As computing it for all possible pairs in the dataset is computationally
expensive, we select 2 000 pairs from each dataset in order of their decreasing word
overlap and sample 2 000 from the remaining instance pairs. This ensures that we
compute the diagnostic property on a set containing tuples of similar and different
instances.

Both the Dataset Consistency property and the Rationale Consistency property
estimate the difference between the instances based on their activations. For the LSTM
model, the activations of the LSTM layers are limited to the output activation also
used for prediction as it isn’t possible to compare activations with different lengths
due to the different token lengths of the different instances. We also use min-max
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Figure 7.5: Diagnostic property evaluation for all explainability techniques, on the TSE
dataset, Transformer model. The ~ and  signs indicate that higher, corre-
spondingly lower, values of the property measure are better.

scaling of the differences in the activations and the saliencies as the saliency scores
assigned by some explainability techniques are very small.

7.7.2 Spider Figure for the IMDB dataset

Figures 7.5, 7.6, 7.7 present the diagnostic property evaluation for the TSE dataset
for the Transformer, CNN, LSTM models correspondingly. Figures 7.8, 7.9, 7.10 present
the diagnostic property evaluation for the IMDB dataset for the Transformer, CNN,
LSTM models correspondingly.

7.7.3 Detailed explainability techniques evaluation
results.

Tables 7.5, 7.6, 7.7, 7.8, and 7.9 present detailed diagnostic property results.
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Explain. e-SNLI IMDB TSE
Random 56.05 (+0.71) 49.26 (£1.94) 56.45 (4+2.37)
Transformer
ShapSampl  56.05 (+0.71) 65.84 (£11.8) 52.99 (+4.24)
LIME 48.14 (£10.8) 59.04 (£13.7) 42.17 (+7.89)
Occlusion 55.24 (£3.77) 69.00 (£6.22) 52.23 (+4.29)
Saliency" 37.98 (£2.18) 49.32 (£9.01) 39.20 (£3.06)
Saliency™ 38.01 (+2.19) 49.05 (£9.16) 39.29 (£3.14)

InputXGrad” 56.98 (+1.89) 64.47 (+8.70)
InputXGrad® 37.05 (£2.29) 50.22 (+8.85)

55.52 (£2.59)
37.04 (£2.69)

GuidedBP" 53.43 (£1.00) 67.68 (+6.94) 57.56 (4+2.60)
GuidedBP" 38.01 (£2.19) 49.47 (£8.89) 39.26 (+3.18)
CNN
ShapSampl 51.78 (£2.24) 59.69 (£+8.37) 64.72 (+1.75)
LIME 56.16 (£1.67) 59.09 (4+8.48) 65.78 (4+1.59)
Occlusion 54.32 (+£0.94) 59.86 (+7.78) 61.17 (+1.48)
Saliency" 34.26 (£1.78) 49.61 (4+5.26) 35.70 (+2.94)
Saliency™  34.16 (+£1.81) 49.04 (+5.60) 35.67 (+2.91)

InputXGrad” 47.06 (+3.82) 62.05 (+7.54)
InputXGrad® 31.55 (£2.83) 49.20 (+5.96)

64.45 (+£2.99)
35.86 (+3.22)

GuidedBP" 47.68 (£2.65) 67.03 (£4.36) 44.93 (+£1.57)
GuidedBP”  34.16 (+£1.81) 49.80 (+5.99) 35.60 (£+2.91)
LSTM
ShapSampl  51.05 (£4.47) 44.05 (£3.06) 53.97 (£6.00)

LIME 51.93 (£7.73)

Occlusion 54.73 (+£3.12)
Saliency” 38.29 (£1.77)
Saliency™ 38.26 (+1.84)

InputXGrad" 49.52 (4+1.81)
InputXGradz2 37.95 (+2.06)
GuidedBP" 44,48 (+2.12)

44.41 (£3.04)
45.01 (+3.84)
35.98 (x2.11)
36.22 (£2.04)
43.57 (£4.98)
36.03 (£1.97)
46.00 (£3.20)

GuidedBP”  38.17 (+£1.80) 35.87 (£1.99)

54.95 (£3.19)
48.68 (+2.28)
37.20 (£3.48)
37.23 (£3.50)
48.71 (£3.23)
36.75 (£3.35)
43.72 (£5.69)
37.21 (£3.48)

Table 7.6: Faithfulness-AUC for thresholds € [0, 10, 20, ..., 100]. Lower scores indicate the
ability of the saliency approach to assign higher scores to words more responsible
for the final prediction. The scores are mean of different random initializations;
the standard deviation is shown in brackets. The smallest AUC for a particular
dataset and model are in bold; the smallest AUC across all models for a dataset is
underlined. AUC worse than the randomly generated saliency are in red.
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Explain. e-SNLI IMDB TSE
Transformer
Random -0.004 (2.6e-01) -0.035 (1.4e-01) 0.003 (6.1e-01)
ShapSampl  0.310 (0.0e+00) 0.234 (3.6e-12) 0.259 (0.0e+00)
LIME 0.519 (0.0e+00) 0.269 (3.0e-31) 0.110 (2.0e-29)
Occlusion 0.215 (0.0e+00) 0.341 (2.6e-50) 0.255 (0.0e+00)
Saliency" 0.356 (0.0e+00) 0.423 (3.9e-79) 0.294 (0.0e+00)
Saliency’Z2 0.297 (0.0e+00) 0.405 (6.9e-72) 0.289 (0.0e+00)
InputXGrad" -0.102 (2.0e-202) 0.426 (2.5e-80) -0.010 (1.3e-01)
InputXGradE2 0.311 (0.0e+00) 0.397 (3.8e-69) 0.292 (0.0e+00)
GuidedBP" 0.064 (1.0e-79) -0.083 (4.2e-04) -0.005 (4.9e-01)
GuidedBP”  0.297 (0.0e+00) 0.409 (1.2e-73) 0.293 (0.0e+00)
CNN
Random -0.003 (4.0e-01) 0.426 (2.6e-106) -0.002 (7.4e-01)
ShapSampl  0.789 (0.0e+00) 0.537 (1.4e-179) 0.704 (0.0e+00)
LIME 0.790 (0.0e+00) 0.584 (1.9e-219) 0.730 (0.0e+00)
Occlusion 0.730 (0.0e+00) 0.528 (2.4e-172) 0.372 (0.0e+00)
Saliency" 0.701 (0.0e+00) 0.460 (4.5e-126) 0.320 (0.0e+00)
Saliencyé2 0.819 (0.0e+00) 0.583 (4.0e-218) 0.499 (0.0e+00)
InputXGrad" 0.136 (0.0e+00) 0.331 (1.2e-62) 0.002 (7.5e-01)
Input:XGradf2 0.816 (0.0e+00) 0.585 (8.6e-221) 0.495 (0.0e+00)
GuidedBP" 0.160 (0.0e+00) 0.373 (5.5e-80) 0.173 (6.3e-121)
GuidedBP”  0.819 (0.0e+00) 0.578 (2.4e-214) 0.498 (0.0e+00)
LSTM
Random 0.004 (1.8e-01) 0.002 (9.2e-01) 0.010 (1.8e-01)
ShapSampl  0.657 (0.0e+00) 0.382 (1.7e-63) 0.502 (0.0e-00)
LIME 0.700 (0.0e+00) 0.178 (3.3e-14) 0.540 (0.0e-00)
Occlusion 0.697 (0.0e+00) 0.498 (1.7e-113) 0.454 (0.0e-00)
Saliency" 0.645 (0.0e+00) 0.098 (3.1e-05) 0.667 (0.0e-00)
Saliencye2 0.662 (0.0e+00) 0.132 (1.8e-08) 0.596 (0.0e-00)
InputXGrad”  0.026 (1.9e-14) -0.032 (1.7e-01) 0.385 (0.0e-00)
InputXGrad’“]2 0.664 (0.0e+00) 0.133 (1.5e-08) 0.604 (0.0e-00)
GuidedBP" 0.144 (0.0e+00) 0.122 (2.0e-07) 0.295 (0.0e-00)
GuidedBP”  0.663 (0.0e+00) 0.139 (3.1e-09)  0.598 (0.0e-00)

Table 7.8: Rationale Consistency Spearman’s p correlation; p-value is in brackets. The best
results for a dataset and model are in bold and across a dataset are underlined.
Correlation lower that the randomly sampled saliency scores is in red.
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Explain. e-SNLI IMDB TSE
Transformer
Random 0.047 (2.7e-04) 0.127 (6.6e-07)/ 0.121 (2.5e-01)
ShapSampl 0.285 (1.8e-02) 0.078 (5.8e-04) 0.308 (3.4e-36)
LIME 0.372 (3.1e-90) 0.236 (4.6e-07) 0.413 (3.4e-120)
Occlusion 0.215 (9.6e-02) 0.003 (2.0e-04) 0.235 (7.3e-05)
Saliency" 0.378 (4.3e-57) 0.023 (4.3e-02) 0.253 (1.4e-20)
Saliency’Z2 0.027 (3.0e-05) -0.043 (5.6e-02) 0.260 (6.8e-21)
InputXGrad" 0.319 (3.0e-03) 0.008 (1.2e-01) 0.193 (7.5e-05)
InputXGradE2 0.399 (1.9e-78) 0.028 (2.3e-03) 0.247 (4.9e-17)
GuidedBP"  0.400 (6.7e-31) 0.017 (1.9e-01) 0.228 (5.2e-09)
GuidedBP”  0.404 (1.4e-84) 0.019 (4.3e-04)  0.255 (3.1e-20)
CNN
Random 0.018 (2.4e-01) 0.115 (1.8e-04) 0.008 (2.0e-01)
ShapSampl 0.015 (1.8e-01) -0.428 (5.3e-153) 0.037 (1.4e-01)
LIME 0.000 (4.4e-02) 0.400 (1.4e-126) 0.023 (4.0e-01)
Occlusion -0.076 (6.5e-02) -0.357 (1.9e-85) 0.041 (1.7e-01)
Saliency" 0.381 (6.9e-91) 0.431 (1.1e-146) -0.100 (3.9e-06)
Saliencyé2 0.391 (1.7e-98) 0.427 (3.5e-135) -0.100 (3.7e-06)
InputXGrad" 0.171 (5.1e-04) 0.319 (1.4e-69) 0.024 (3.5e-01)
InputXGradZ2 0.399 (1.0e-93) 0.428 (1.4e-132) -0.076 (1.2e-03)
GuidedBP"  0.091 (7.9e-02) 0.375 (5.7e-109) -0.032 (1.1e-01)
GuidedBP”  0.391 (1.7e-98) 0.432 (3.5e-140) -0.102 (1.7e-06)
LSTM

Random 0.018 (3.9e-01) 0.037 (1.8e-01) 0.016 (9.2e-03)
ShapSampl 0.398 (3.5e-81) 0.230 (8.9e-03) 0.205 (2.1e-16)
LIME 0.415 (1.2e-80) 0.079 (8.6e-04) 0.207 (4.3e-16)
Occlusion 0.363 (1.1e-37) 0.429 (7.5e-137) 0.237 (2.9e-29)
Saliency" 0.158 (1.7e-17) -0.177 (1.6e-10) 0.065 (5.8e-03)
Saliencyz2 0.160 (7.5e-19) -0.168 (2.0e-15) 0.096 (8.2e-03)
InputXGrad" 0.142 (3.3e-06) -0.152 (1.2e-14) 0.106 (2.8e-02)
InputXGrade2 0.183 (7.0e-24) -0.175 (4.7e-17) 0.089 (8.4e-03)
GuidedBP"  0.163 (1.9e-12) -0.060 (4.7e-02) 0.077 (1.2e-02)
GuidedBP” 0.169 (1.8e-12) -0.214 (5.8e-16) 0.115 (4.3e-02)

Table 7.9: Dataset Consistency results with Spearman p; p-value is in brackets. The best
results for a dataset and model are in bold and across a dataset are underlined.
Correlation lower that the randomly sampled saliency scores are in red.
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Diagnostics-Guided
Explanation Generation

8.1 Introduction

Explanations are an important complement to the predictions of a ML model. They
unveil the decisions of a model that lead to a particular prediction, which increases
user trust in the automated system and can help find its vulnerabilities. Moreover,
“The right ... to obtain an explanation of the decision reached” is enshrined in the
European law (Regulation, 2016).

In NLP, research on explanation generation has spurred the release of datasets
(Zaidan et al., 2008; Thorne et al., 2018; Khashabi et al., 2018) containing human
rationales for the correct predictions of downstream tasks in the form of word- or
sentence-level selections of the input text. Such datasets are particularly beneficial for
knowledge-intensive tasks (Petroni et al., 2021) with long sentence-level explanations,
e.g., question answering and fact-checking, where identifying the required information
is an important prerequisite for a correct prediction. They can be used to supervise and
evaluate whether a model employs the correct rationales for its predictions (DeYoung
et al., 2020a; Thorne et al., 2018; Augenstein, 2021). The goal of this paper is
to improve the sentence-level explanations generated for such complex reasoning
tasks.

When human explanation annotations are not present, a common approach (Lei
et al., 2016; Yu et al., 2019) is to train models that select regions from the input max-
imising proximity to original task performance which corresponds to the Faithfulness
property. Atanasova et al. (2020a) propose Faithfulness and other diagnostic properties
to evaluate different characteristics of explanations. These include Data Consistency,
which measures the similarity of the explanations between similar instances, and
Confidence Indication, which evaluates whether the explanation reflects the model’s
confidence, among others (see Figure 8.1 for an example).

Contributions' We present the first method to learn the aforementioned diagnostic
properties in an unsupervised way, directly optimising for them to improve the quality
of generated explanations. We implement a joint task prediction and explanation
generation model, which selects rationales at sentence level. Each property can then
be included as an additional training objective in the joint model. With experiments

!We make an extended version of the manuscript and code available on https://github.com/
copenlu/diagnostic-guided-explanations .
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Question: What is Bernardo's last name? AN
Answer Option: Smith
S1: ..
5815: It IMASKI4)| me.
S16: Show me around, and then | shall decide.
S17: Of course, Seior Flynn.
S18: And stop[[MASK](4)| me sefior.
S19: Not even Los Mundos is so polite.
S20: Call me Bernardo.

M Explanation Target

’;‘ icti Prediction

9 @ N ®
S1 S15S16[S17(S18|S19 820 False
0.1 0.3 0.2({0.7(0.5|0.4 O. 9 p=0.9

@ K I — @

Prediction is preserved || Can predict || Explanation is
when removing confidence from similar for
[MASK](2]) non-selected | | explanation. | similar(IMASKI4)

explanation sentences. Indicates input.
Faithful! Confldence'l Consistent! I
—

Figure 8.1: Example instance from MultiRC with predicted target and explanation (Step 1),
where sentences with confidence > 0.5 are selected as explanations (S17, S18,
S20). Steps 2-4 illustrate the use of Faithfulness, Data Consistency, and Confidence
Indication diagnostic properties as additional learning signals. ‘{MASK](2)’ is used
in Step 2 for sentences (in red) that are not explanations, and ‘[MASK](4)—for
random words in Step 4.

on three complex reasoning tasks, we find that apart from improving the properties
we optimised for, diagnostic-guided training also leads to explanations with higher

agreement with human rationales, and improved downstream task performance.

Moreover, we find that jointly optimising for diagnostic properties leads to reduced
claim/question-only bias (Schuster et al., 2019) for the target prediction, and means
that the model relies more extensively on the provided evidence. Importantly, we also
find that optimising for diagnostic properties of explanations without supervision for
explanation generation does not lead to good human agreement. This indicates the
need for human rationales to train models that make the right predictions for the right

reasons.

8.2 Related Work

Supervised Explanations. In an effort to guide ML models to perform human-like

reasoning and avoid learning spurious patterns (Zhang et al., 2016; Ghaeini et al.,

8.2 Related Work
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2019), multiple datasets with explanation annotations at the word and sentence
level have been proposed (Wiegreffe and Marasovic, 2021). These annotations are
also used for supervised explanation generation, e.g., in pipeline models, where the
generation task is followed by predicting the target task from the selected rationales
only (DeYoung et al., 2020b; Lehman et al., 2019). As Wiegreffe et al. (2021);
Kumar and Talukdar (2020); Jacovi and Goldberg (2021) point out, pipeline models
produce explanations without task-specific knowledge and without knowing the label
to explain. However, for completion, we include the baseline pipeline from ERASER’s
benchmark DeYoung et al. (2020b) as a reference model for our experiments.

Explanation generation can also be trained jointly with the target task (Atanasova
et al., 2020b; Li et al., 2018), which has been shown to improve the performance
for both tasks. Furthermore, Wiegreffe et al. (2021) suggest that self-rationalising
models, such as multi-task models, provide more label-informed rationales than
pipeline models. Such multi-task models can additionally learn a joint probability of
the explanation and the target task prediction on the input. This can be decomposed
into first extracting evidence, then predicting the class based on it (Zhao et al., 2020;
Zhou et al., 2019), or vice versa (Pruthi et al., 2020a). In this work, we also employ
joint conditional training. It additionally provides a good testbed for our experiments
with ablations of supervised and diagnostic property objectives, which is not possible with
a pipeline approach.

Most multi-task models encode each sentence separately, then combine their repre-
sentations, e.g., with Graph Attention Layers (Zhao et al., 2020; Zhou et al., 2019).
Glockner et al. (2020) predict the target label from each separate sentence encoding
and use the most confident sentence prediction as explanation, which also allows
for unsupervised explanation generation. We consider Glockner et al. (2020) as a
reference model, as it is the only other work that reports results on generating expla-
nations at the sentence level for three complex reasoning datasets from the ERASER
benchmark (DeYoung et al., 2020a). It also outperforms the baseline pipeline model
we include from ERASER. Unlike related multi-task models, we encode the whole input
jointly so that the resulting sentence representations are sensitive to the wider document
context. The latter proves to be especially beneficial for explanations consisting of multiple
sentences. Furthermore, while the model of Glockner et al. (2020) is limited to a fixed
and small number (up to two) of sentences per explanation, our model can predict a
variable number of sentences depending on the separate instances’ rationales.

Unsupervised Explanations. When human explanation annotations are not pro-
vided, model’s rationales can be explained with post-hoc methods based on gradi-
ents (Sundararajan et al., 2017), simplifications (Ribeiro et al., 2016a), or teacher-
student setups (Pruthi et al., 2022). Another approach is to select input tokens that

8.2 Related Work
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preserve a model’s original prediction (Lei et al., 2018; Yu et al., 2019; Bastings et al.,
2019; Paranjape et al., 2020), which corresponds to the Faithfulness property of an
explanation. However, as such explanations are not supervised by human rationales,
they do not have high overlap with human annotations (DeYoung et al., 2020a).
Rather, they explain what a model has learned, which does not always correspond to

correct rationales and can contain spurious patterns (Wang and Culotta, 2020).

8.3 Method

We propose a novel Transformer (Vaswani et al., 2017) based model to jointly
optimise sentence-level explanation generation and downstream task performance.
The joint training provides a suitable testbed for our experiments with supervised and
diagnostic property objectives for a single model. The joint training optimises two
training objectives for the two tasks at the same time. By leveraging information from
each task, the model is guided to predict the target task based on correct rationales and
to generate explanations based on the model’s information needs for target prediction.
This provides additional useful information for training each of the tasks. Conducting
joint training for these two tasks was shown to improve the performance for each of
them (Zhao et al., 2020; Atanasova et al., 2020b).

The core novelty is that the model is trained to improve the quality of its explana-
tions by using diagnostic properties of explanations as additional training signals (see
Figure 8.1). We select the properties Faithfulness, Data Consistency, and Confidence
Indication, as they can be effectively formulated as training objectives. Faithfulness is
also employed in explainability benchmarks (DeYoung et al., 2020a) and in related
work for unsupervised token-level explanation generation (Lei et al., 2016, 2018),
whereas we consider it at sentence level. Further, multiple studies (Yeh et al., 2019;
Alvarez-Melis and Jaakkola, 2018) find that explainability techniques are not robust
to insignificant and/or adversarial input perturbations, which we address with the
Data Consistency property. We do not consider Human Agreement and Rationale
Consistency, proposed in Atanasova et al. (2020a). The supervised explanation gen-
eration training employs human rationale annotations and thus addresses Human
Agreement. Rationale Consistency requires the training of a second model, which
is resource-expensive. Another property to investigate in future work is whether a
model’s prediction can be simulated by another model trained only on the explana-
tions (Hase et al., 2020; Treviso and Martins, 2020; Pruthi et al., 2020b), which also
requires training an additional model. We now describe each component in detail.

8.3 Method
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8.3.1 Joint Modelling

Let D = {(x;,y;,e:)|t € [1,#(D)]} be a classification dataset. The textual input
x; = (qi, aEOp t], s;) consists of a question or a claim, an optional answer, and several
sentences (usually above 10) s;={s; ;|7 €[1, #(s;)]} used for predicting a classification
label y; € [1, N|. Additionally, D contains human rationale annotations selected from
the sentences s; as a binary vector e; = {e; ;={0,1}|j €[1, #(s;)]}, which defines a
binary classification task for explanation extraction.

First, the joint model takes x; as input and encodes it using a Transformer model,
resulting in contextual token representations h” = encode(x;) from the final Trans-
former layer L. From h*, we select the representations of the CLS token that precedes
the question-as it is commonly used for downstream task prediction in Transformer
architectures—and the CLS token representations preceding each sentence in s;, which
we use for selecting sentences as an explanation. The selected representations are
then transformed with two separate linear layers - h“ for predicting the target, and
h¥ for generating the explanations, which have the same hidden size as the size of the
contextual representations in h’.

Given representations from h”, a N-dimensional linear layer predicts the importance
p¥ e R#() of the evidence sentences for the prediction of each class. As a final sentence
importance score, we only take the score for the predicted class p”!°l and add a sigmoid
layer on top for predicting the binary explanation selection task. Given representations
from h¢, a N-dimensional linear layer with a soft-max layer on top predicts the target
label p¢’ € R. The model then predicts the joint conditional likelihood L of the target
task and the generated explanation given the input (Eq. 8.1). This is factorised further
into first extracting the explanations conditioned on the input and then predicting the
target label (Eq. 8.2) based on the extracted explanations (assuming y; L x; | e;)).

#(D)
L= 1] r(yie|x) (8.1)
i1
#(D)
L= 1] plei|x:)p(yi|e) (8.2)

=1

We condition the label prediction on the explanation prediction by multiplying p¢’
and p”, resulting in the final prediction p“ € R. The model is trained to optimise
jointly the target task cross-entropy loss function (L) and the explanation generation
cross-entropy loss function (£z):

L= Lo y)+ Le(",e) (8.3)
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All loss terms of the diagnostic explainability properties described below are added to
£ without additional hyper-parameter weights for the separate loss terms.

8.3.2 Faithfulness (F)

The Faithfulness property guides explanation generation to select sentences pre-
serving the original prediction, (Step 2, Fig. 8.1). In more detail, we take sentence
explanation scores p”Il¢ € [0, 1] and sample from a Bernoulli distribution the sentences
which should be preserved in the input: c? ~ Bern(p®!9). Further, we make two
predictions — one, where only the selected sentences are used as an input for the
model, thus producing a new target label prediction /¥, and one where we use only
unselected sentences, producing the new target label prediction [°°. The assumption
is that a high number #(1°=°) of predictions [ matching the original [ indicate the
sufficiency (S) of the selected explanation. On the contrary, a low number #([¢=°)
of predictions (“° matching the original [“ indicate the selected explanation is com-
plete (Co) and no sentences indicating the correct label are missed. We then use the
REINFORCE (Williams, 1992) algorithm to maximise the reward:

R = #(197%) — 4(1979°) — |%(cF) — A (8.4)

The last term is an additional sparsity penalty for selecting more/less than A% of the
input sentences as an explanation, \ is a hyper-parameter.

8.3.3 Data Consistency (DC)

Data Consistency measures how similar the explanations for similar instances are.
Including it as an additional training objective can serve as regularisation for the
model to be consistent in the generated explanations. To do so, we mask K random
words in the input, where K is a hyper-parameter depending on the dataset. We use
the masked text (M) as an input for the joint model, which predicts new sentence
scores p. We then construct an £1 loss term for the property to minimise for the
absolute difference between p¥ and p=:

Lpc = |p¥ — ™M (8.5)

We use L1 instead of £2 loss as we do not want to penalise for potentially masking
important words, which would result in entirely different outlier predictions.

8.3.4 Confidence Indication (ClI)

The CI property measures whether generated explanations reflect the confidence
of the model’s predictions (Step 3, Fig. 8.1). We consider this a useful training
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objective to re-calibrate and align the prediction confidence values of both tasks. To
learn explanations that indicate prediction confidence, we aggregate the sentence
importance scores, taking their maximum, minimum, mean, and standard deviation.
We transform the four statistics with a linear layer that predicts the confidence p¢ of
the original prediction. We train the model to minimise £1 loss between p¢ and p°:

Lep = |p© —p° (8.6)

We choose L1 as opposed to £2 loss as we do not want to penalise possible outliers
due to sentences having high confidence for the opposite class.

8.4 Experiments
8.4.1 Datasets

We perform experiments on three datasets from the ERASER benchmark (DeYoung
et al., 2020a) (FEVER, MultiRC, Movies), all of which require complex reasoning and
have sentence-level rationales. For FEVER (Thorne et al., 2018), given a claim and an
evidence document, a model has to predict the veracity of a claime{support, refute}.
The evidence for predicting the veracity has to be extracted as explanation. For
MultiRC (Khashabi et al., 2018), given a question, an answer option, and a document,
a model has to predict if the answer is correct. For Movies (Zaidan et al., 2008), the
sentimente {positive, negative} of a long movie review has to be predicted. For Movies,
as in Glockner et al. (2020), we mark each sentence containing annotated explanation
at token level as an explanation. Note that, in knowledge-intensive tasks such as
fact checking and question answering also explored here, human rationales point to
regions in the text containing the information needed for prediction. Identifying the
required information becomes an important preliminary for the correct prediction
rather than a plausibility indicator (Jacovi and Goldberg, 2020), and is evaluated as
well (e.g., FEVER score, Joint Accuracy).

8.4.2 Metrics

We evaluate the effect of using diagnostic properties as additional training objectives
for explanation generation. We first measure their effect on selecting human-like expla-
nations by evaluating precision, recall, and macro F} score against human explanation
annotations provided in each dataset (§8.5.1). Second, we compute how generating
improved explanations affects the target task performance by computing accuracy
and macro F; score for the target task labels (§8.5.2). Additionally, as identifying the
required information in knowledge-intensive datasets, such as FEVER and MultiRC, is
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an important preliminary for a correct prediction, and following Thorne et al. (2018);
Glockner et al. (2020), we evaluate the joint target and explanation performance
by considering a prediction as correct only when the whole explanation is retrieved
(Acc. Full). In case of multiple possible explanations e; for one instance (ERASER pro-
vides comprehensive explanation annotations for the test sets), selecting one of them
counts as a correct prediction. Finally, as diagnostic property training objectives target
particular properties, we measure the improvements for each property (88.5.3).

8.4.3 Experimental Setting

Our core goal is to measure the relative improvement of the explanations generated
by the underlying model with (as opposed to without) diagnostic properties. We
conduct experiments for the supervised model (Sup.), including separately Faithfulness
(F), Data Consistency (DC), and Confidence Indication (CI), as well as all three (All)
as additional training signals (§8.3).

Nevertheless, we include results from two other architectures generating sentence-
level explanations that serve as a reference for explanation generation performance
on the employed datasets. Particularly, we include the best supervised sentence
explanation generation results reported in Glockner et al. (2020), and the baseline
pipeline model from ERASER, which extracts one sentence as explanation and uses
it for target prediction (see 88.2 for a detailed comparison). We also include an
additional baseline comparison for the target prediction task. The BERT Blackbox
model predicts the target task from the whole document as an input without being
supervised by human rationales. The results are as reported by Glockner et al. (2020).
In our experiments, we use BERT (Devlin et al., 2019) base-uncased as our base
architecture, following Glockner et al. (2020).

8.5 Results

8.5.1 Explanation Generation Results

In Table 8.1, we see that our supervised model performs better than Glockner et al.
(2020); DeYoung et al. (2020b). For the MultiRC dataset, where the explanation
consists of more than one sentence, our model brings an improvement of more than
30 F; points over the reference models, confirming the importance of the contex-
tual information, which performs better than encoding each explanation sentence
separately.

When using the diagnostic properties as additional training objectives, we see further
improvements in the generated explanations. The most significant improvement is
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Method F,-C Acc-C | P-E R-E F,-E | Acc-Joint

FEVER
BlaCkbOX(Glockner et al., 2020) 90.2 +0.4 90.2 +0.4
Plpehne (DeYoung et al., 2020a) 87.7 87.8 88.3 87.7 88.0 78.1
Supervised (Glockner et al., 2020) 90.7 +0.7 90.7 40.7 | 92.3 £0.1 91.6 0.1 91.9 +0.1 | 83.9 +0.1
‘Supervised” T T 89.3+0.4 89.4+03794.0 £0.1 93:8 £0.1 93.9+0.1[80.1 04"
Supervised+Data Consistency 89.7 +o0.5 89.7 +0.5 | 94.4 £0.0 94.2 +0.0 94.4 +0.0 | 80.8 +0.5
Supervised +Faithfulness 89.5 +0.4 89.6 +0.4 | 92.8 +0.2 93.7 +0.2 93.3 +0.2 | 75.4 +0.3
Supervised +Confidence Indication 87.9 +1.0 87.9 +£1.0 | 93.9 +0.1 93.7 +0.1 93.8 +0.1 | 78.5 +0.9
Supervised +All 89.6 +0.1 89.6 +0.1 | 94.4 +0.1 94.2 +0.1 94.3 +0.1 | 80.9 +0.1
MultiRC
BlaCkbOX(Glockncr et al., 2020) 673 +1.3 67.7 +1.6
Pipeline (DeYoung et al., 2020a) 63.3 65.0 66.7 30.2 41.6 0.0
Supervised (Glockner et al., 2020) 65.5 £3.6 67.7 £1.5 | 65.8 £0.2 42.3 £3.9 51.4 £28 | 7.1 £2.6
Supervised T T 710403 714403 | 78.0 £0.1 78.6 +05 783 +0.1 [ 16.2 +0.4
Supervised +Data Consistency 71.7 0.6 72.2 £0.7 | 79.9 +0.4 79.0 +0.8 79.4 +0.5 | 19.3 +0.4
Supervised +Faithfulness 71.0 £0.4 71.3 £0.4 | 78.2 £0.1 79.1 £0.2 78.6 £0.1 | 16.1 0.5
Supervised +Confidence Indication 70.6 +0.7 71.1 +0.6 | 77.9 +0.8 78.3 +0.5 78.1 +0.5 | 16.5 +1.0
Supervised +All 70.5 £1.6 71.2 £1.3 | 79.7 £1.1 79.4 +0.5 79.6 +0.7 | 18.8 +1.6
Movies
BlackbOX(Glockner et al., 2020) 901 +0.3 90.1 +0.3
Plpellne (DeYoung et al., 2020a) 860 86.0 879 605 717 407
Supervised (Glockner et al., 2020) 85.6 £3.6 85.8 £3.5 | 86.9 +2.5 62.4 £0.1 72.6 £0.9 | 43.9 +0.6
‘Supervised” T 874104 87.4+0479.6£0.6 68.9 +05 73.8 405 [59.4 06
Supervised +Data Consistency 90.0 £0.7 90.0 £0.7 | 79.5 £0.1 69.2 £0.7 74.0 £0.8 | 60.8 £1.7
Supervised +Faithfulness 89.1 +0.6 89.1 +0.6 | 80.9 +0.9 69.9 +1.3 74.9 +1.1| 62.6 +1.6
Supervised +Confidence Indication 89.9 £0.7 89.9 £0.7 | 79.7 £1.4 69.5 £0.7 74.3 £1.0 | 60.1 £2.6
Supervised +All 89.9 +0.7 89.9 +0.7 | 80.0 £1.0 69.5 £1.0 74.4 £1.0 | 60.3 +2.2

Table 8.1: Target task prediction (/7-C, Accuracy-C) and explanation generation (Precision-E,
Recall-E, Fi-E) results (mean and standard deviation over three random seed
runs). Last columns measures joint prediction of target accuracy and explanation
generation. The property with the best relative improvement over the supervised
model is in bold.

achieved with the Data Consistency property for all datasets with up to 2.5 F; points
over the underlying supervised model. We assume that the Data Consistency objective
can be considered as a regularisation for the model’s instabilities at the explanation
level. The second highest improvement is achieved with the Faithfulness property,
increasing F; by up to 1 F} point for Movies and MultiRC. We assume that the property
does not result in improvements for FEVER as it has multiple possible explanation
annotations for one instance, which can make the task of selecting one sentence as
a complete explanation ambiguous. Confidence Indication results in improvements
only on Movies. We conjecture that Confidence Indication is the least related to
promoting similarity to human rationales in the generated explanations. Moreover,
the re-calibration of the prediction confidence for both tasks possibly leads to fewer
prediction changes, explaining the low scores w.r.t. human annotations. We look into
how Confidence Indication affects the selected annotations in §8.5.3, and §8.6. Finally,
combining all diagnostic property objectives, results in a performance close to the best
performing property for each dataset.
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8.5.2 Target Prediction Results

In Table 8.1, the Supervised model, without additional property objectives, con-
sistently improves target task performance by up to 4 points in F;, compared to the
two reference models that also generate explanations, except for FEVER, where the
models already achieve high results. This can be due to the model encoding all
explanation sentences at once, which allows for a more informed prediction of the
correct target class. Our model trained jointly with the target task and explanation
prediction objective also has similar performance to the BERT Blackbox model and
even outperforms it by 4.4 F} points for the MultiRC dataset. Apart from achieving
high target prediction performance (F3-C) on the target task, our supervised model
also learns which parts of the input are most important for the prediction, which is an
important prerequisite for knowledge-intensive tasks.

We see further improvements in downstream task performance when using the
diagnostic properties as additional training objectives. Improvements of the generated
explanations usually lead to improved target prediction as they are conditioned on
the extracted evidence. Here, we again see that Data Consistency steadily improves
the target task’s performance with up to 2.5 F points. We also see improvements in
F; with Faithfulness for FEVER and MultiRC. Finally, we find that improvements in
Confidence Indication lead to an improvement for target prediction of 2.5 F; points
for Movies. Combining all objectives, results in performance close the performance of
the other properties.

We also show joint prediction results for target task and evidence. For MultiRC and
Movies, the improvements of our supervised model over Glockner et al. (2020) are
very considerable with up to 9 accuracy points; using diagnostic properties increases
results further up to 4 points in accuracy. Apart from improving the properties of
the generated explanations, this could be due to the architecture conditioning the
prediction on the explanation. The only dataset we do not see improvements for is
FEVER, where again the performance is already high, and the target prediction of our
model performs worse than Glockner et al. (2020).

8.5.3 Explanations Property Results

So far, we concentrate on the relative performance improvements compared to
human annotations. However, the diagnostic properties’ additional training objectives
are directed at generating explanations that exhibit these properties to a larger degree.
Here, we demonstrate the improvements over the explanation properties themselves
for unseen instances in the test splits. Note that this is a control experiment as we
expect the properties we optimise for to be improved.
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Dataset Method Suff. T Compl. |

Supervised 85.1 85.1

FEVER Supervised+F 97.4 83.6
.o~ Supervised 81.7 69.2
MultiRC Supervised+F  82.3 67.0
Movies Supervised 94.8 92.2

Supervised+F  96.6 91.3

Table 8.2: Sufficiency and Completeness as proportions of the instances that preserve their
prediction when evaluated on only the selected (Suff.) or the unselected (Compl.)
explanation sentences, accordingly, for training with and without the Faithfulness
objective.

Dataset Method Pred. Expl.

Sup. 0.03 (9.9¢-8) 3.68 (1.80)
Sup.+DC 0.02 (9.1e-8) 2.56 (0.97)

. Sup. 0.09 (5.6e-8) 7.83(2.87)
MultRC ¢ DG 0.05 (4.9¢-8) 3.01(0.89)

Sup. 0.04 (7.1e-8) 2.34 (1.38)
Sup.+DC 0.01 (6.2e-8) 1.72 (0.90)

Table 8.3: Mean and standard deviation (in brackets) of the difference between target (Pred.)
and explanation (Expl.) prediction confidence for similar (masked) instances.

FEVER

Movies

Faithfulness. In Table 8.2 we see that supervision from the Faithfulness property
leads to generating explanations that preserve the original label of the instance for all
datasets. For FEVER, the label is even preserved in 12% of the instances more than
with the supervised objective only. The least faithful explanations are those generated
for MultiRC, which can be explained by the low joint performance of both tasks. We
also see that even when removing the selected explanations, it is still possible to
predict the same label based on the remaining evidence. Such cases are decreased
when including the Faithfulness property. The latter phenomenon can be explained by
the fact that FEVER and Movies’ instances contain several possible explanations. We
conjecture that this might also be due to the model learning spurious correlations. We
further study this in Sec. 8.6.1.

Data Consistency. Using Data Consistency as an additional training objective
aims to regularise the model to select similar explanations for similar instances. In
Table 8.3, we find the variance of downstream task prediction confidence decreases for
all datasets with up to 0.04 points. Furthermore, the variance of generated explanation
probabilities for similar instances is decreased as well. The largest improvements
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Method FEVER MultiRC Movies

Sup. 0.10 (0.17) 0.05 (0.10) 0.12 (0.09)
Sup.+CI 0.05 (0.09) 0.04 (0.09) 0.05 (0.10)

Table 8.4: Mean and standard deviation (in brackets) difference between the model’s confi-
dence and the confidence of the generated explanations.

are for MultiRC and Movies, where the property brings the highest performance
improvement w.r.t. human annotations as well. We also find that the Movies dataset,
which has the longest inputs, has the smallest variance in explanation predictions. This
suggests that the variance in explanation prediction is more pronounced for shorter
inputs as in FEVER and MultiRC, where the property brings more improvement w.r.t.
human annotations. The variance could also depend on the dataset’s nature.

Confidence Indication. Table 8.4 shows the difference between the confidence of
the predicted target label and the confidence of the explanation sentence with the
highest importance. Including Confidence Indication as a training objective indeed
decreases the distance between the confidence of the two tasks, making it easier
to judge the confidence of the model only based on the generated explanation’s
confidence. The confidence is most prominently improved for the Movies dataset,
where it is also the dataset with the largest improvements for supervised explanation
generation with Confidence Indication objective.

8.5.4 Unsupervised Rationale Generation

We explore how well explanations can be generated without supervision from
human explanation annotations. Table 8.5 shows that the performance of the unsu-
pervised rationales is limited with an up to 47 F; point decrease for FEVER compared
to the supervised model. We assume that as our model encodes the whole input
together, this leads to a uniform importance of all sentences as they share information
through their context. While joint encoding improves the target prediction for complex
reasoning datasets especially with more than one explanation sentence, this also limits
the unsupervised learning potential of our architecture. As the model is not supervised
to select explanations close to human ones, improving the diagnostic properties has a

limited effect in improving the results w.r.t. human annotations.

8.6 Discussion
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Method FEVER MultiRC Movies

Sup. 93.9 +0.1 78.3 +0.1 73.8 +0.5
UnS. 56.1 +04 34.8 +76 50.0 +18
UnS.+DC 46.9 +0.4 38.1 +32 63.8 +1.2
UnS.+F 51.6 +03 24.4 152 64.6 +04
UnS.+CI 57.5 +04 25.4 134 60.0 +16
UnS.+All 57.3 t02 37.4 +6.4 63.6 +0.3

Table 8.5: Performance on the explanation generation task without human annotation super-
vision (UnS.).

Dataset Method F-C Acc-C
Random 26.1 +43 37.1 456
Sup. 75.6 +03 75.7 +03
Sup.+DC 68.2 +02 75.6 +0.3

FEVER Sup.+F 73.4 +04 73.9 +03
Sup.+CI 73.2 404 73.7 +0.4
Sup.+All 73.5 +02 73.8 +0.4
Sup. on whole input 89.3 +0.4 89.4 +0.3
Random 26.1 +55 31.6 +5.9
Sup. 59.4 +0.8 63.5 +0.9
Sup.+DC 54.5 +09 61.3 +1.2

MultiRC Sup.+F 57.8 +08 61.4 0.6
Sup.+CI 49.7 +o.8 60.1 +o0.2
Sup.+All 59.0 +0.3 61.0 +o0.2

Sup. on whole input 71.0 +0.3 71.4 +03

Table 8.6: Performance of the models for the downstream task when provided with the query-
answer part only.

8.6.1 Question/Claim Only Bias

Prior work has found that models can learn spurious correlations between the target
task and portions of the input text, e.g., predicting solely based on the claim to be
fact checked (Schuster et al., 2019), regardless of the provided evidence. In our
experiments, the input for FEVER and MultiRC also contains two parts - a claim or
a question-answer pair and evidence text, where the correct prediction of the target
always depends on the evidence. Suppose the models do not consider the second
part of the input when predicting the target task. In that case, efforts to improve the
generated explanations will not affect the target task prediction as it does not rely on
that part of the input.

Table 8.6 shows target task performance of models trained on the whole input, but
using only the first part of the input at test time. We find that, given the limited input,
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Question: What colors are definitely used in the picture Lucy drew?; Answer: Yellow and
purple; Label: True

Predicted: Sup True, p=.98; Sup+DC True, p=.99

E-Sup: She draws a picture of her family. She makes sure to draw her mom named Martha
wearing a purple dress, because that is her favorite. She draws many yellow feathers for
her pet bird named Andy.

E-Sup+S: She makes sure to draw her mom named Martha wearing a purple dress, because
that is her favorite. She draws many yellow feathers for her pet bird named Andy.

Claim: Zoey Deutch did not portray Rosemarie Hathaway in Vampire Academy:.; Label:
REFUTE

Predicted: Sup refute, p=.99; Sup+F refute, p=.99

E-Sup: Zoey Francis Thompson Deutch (born November 10, 1994) is an American actress.
E-Sup+F: She is known for portraying Rosemarie “Rose” Hathaway in Vampire
Academy(2014), Beverly in the Richard Link later film Everybody Wants Some!!

E-Sup/E-Sup+CI: For me, they calibrated my creativity as a child; they are masterful,
original works of art that mix moving stories with what were astonishing special effects at
the time (and they still hold up pretty well).; Label: Positive

Predicted: Sup negative, p=.99 Sup+CI positive, p=.99

Table 8.7: Example explanation predictions changed by including the diagnostic properties as
training objectives.

the performance is still considerable compared to a random prediction. For FEVER, the
performance drops only with 14 F; score points to 75.6 F; score. This could explain
the small relative improvements for FEVER when including diagnostic properties as
training objectives, where the prediction does not rely on the explanation to a large
extent.

Another interesting finding is that including diagnostic properties as training ob-
jectives decreases models’ performance when a supporting document is not provided.
We assume this indicates the properties guide the model to rely more on information
in the document than to learn spurious correlations between the question/claim and
the target only. The Data Consistency and Confidence Indication property lead to
the largest decrease in model’s performance on the limited input. This points to two
potent objectives for reducing spurious correlations.

8.6.2 Explanation Examples

Table 8.7 illustrates common effects of the diagnostic properties. We find Data
Consistency commonly improves explanations by removing sentences unrelated to
the target prediction, as in the first example from MultiRC. This is particularly useful
for MultiRC, which has multiple gold explanation sentences. For FEVER and Movies,
where one sentence is needed, the property brings smaller improvements w.r.t. human
explanation annotations.
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The second example from FEVER illustrates the effect of including Faithfulness as
an objective. Naturally, for instances classified correctly by the supervised model, their
generated explanation is improved to reflect the rationale used to predict the target.
However, when the prediction is incorrect, the effect of the Faithfulness property is
limited.

Finally, we find Confidence Indication often re-calibrates the prediction probabilities
of generated explanations and predicted target tasks, which does not change many
target predictions. This explains its limited effect as an additional training objective.
The re-calibration also influences downstream task prediction confidence, as in the last
example from the Movies dataset. This is a side effect of optimising the property while
training the target task, where both explanation and target prediction confidence can
be changed to achieve better alignment.

8.7 Conclusion

In this paper, we study the use of diagnostic properties for improving the quality of
generated explanations. We find that including them as additional training objectives
improves downstream task performance and generated explanations w.r.t. human
rationale annotations. Moreover, using only the diagnostic properties as training
objectives does not lead to a good performance compared to only using human
rationale annotations. The latter indicates the need for human rationale annotations
for supervising a model to base its predictions on the correct rationales. In future,
we plan to experiment with application tasks with longer inputs, where current
architectures have to be adjusted to make it computationally possible to encode longer

inputs.
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