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Abstract

This thesis concerns itself with shortest path algorithms for decremental and
planar embedded graphs, and constitutes a synopsis of four manuscripts:

Truly Subquadratic Exact Distance Oracles with Constant Query Time for Pla-
nar Graphs: We present a truly subquadratic size distance oracle for reporting, in
constant time, the exact shortest-path distance between any pair of vertices of an
undirected, unweighted planar graph G. For any ε > 0, our distance oracle re-
quires O(n5/3+ε) space and is capable of answering the distance between any pair
of vertices of G in worst-case time O(log(1/ε)). Previously no truly sub-quadratic
size distance oracles with constant query time for answering exact shortest paths
distance queries existed. This manuscript was accepted at ISAAC 2021.

Near-Optimal Distance Oracles for Vertex-Labeled Planar Graphs: Given an
undirected n-vertex planar graph G = (V,E, ω) with non-negative edge weight
function ω : E → R and given an assigned label to each vertex, a vertex-labeled
distance oracle is a data structure which, for any query consisting of a vertex u
and a label λ reports the distance from u to the nearest vertex with label λ. We
show that if there is a distance oracle for undirected n-vertex planar graphs with
non-negative edge weights using s(n) space and with query time q(n), then there is
a vertex-labeled distance oracle with Õ(s(n)) space and Õ(q(n)) query time. Using
the state-of-the-art distance oracle of Long and Pettie [LP21], our construction
produces a vertex-labeled distance oracle of size n1+o(1) and with query time Õ(1)
at one extreme, and of size Õ(n) and with no(1) query time at the other extreme,
as well as such oracles for the full tradeoff between space and query time obtained
in their paper. To our knowledge, this is the first non-trivial exact vertex-labeled
distance oracle for planar graphs and, for any interesting graph class other than
trees. This manuscript was accepted at ISAAC 2021.

Decremental APSP in Directed Graphs: Given an unweighted digraph G =
(V,E), undergoing a sequence of edge deletions, with m = |E|, n = |V |, we consider
the problem of maintaining all-pairs shortest paths (APSP). Whilst this problem
has been studied in a long line of research [ACM’81, FOCS’99, FOCS’01, STOC’02,
STOC’03, SWAT’04, STOC’13] and the problem of (1 + ε)-approximate, weighted
APSP was solved to near-optimal update time Õ(mn) by Bernstein [STOC’13], the
problem has mainly been studied in the context of an oblivious adversary which
fixes the update sequence before the algorithm is started. In this paper, we make
significant progress on the problem for an adaptive adversary which can perform
updates based on answers to previous queries:

• We first present a deterministic data structure that maintains the exact dis-
tances with total update time Õ(n3)1.

• We also present a deterministic data structure that maintains (1+ε)-approximate
distance estimates with total update time Õ(

√
mn2/ε) which for sparse graphs

is Õ(n2+1/2/ε).
• Finally, we present a randomized (1 + ε)-approximate data structure which

works against an adaptive adversary; its total update time is Õ(m2/3n5/3 +
n8/3/(m1/3ϵ2)) which for sparse graphs is Õ(n2+1/3/ϵ2).

Our exact data structure matches the total update time of the best randomized
data structure by Baswana et al. [STOC’02] and maintains the distance matrix in
near-optimal time. Our approximate data structures improve upon the best data
structures against an adaptive adversary which have Õ(mn2) total update time
[JACM’81, STOC’03]. This manuscript was accepted at ICALP 2021.

1We use Õ-notation to hide logarithmic factors.
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Degree of Convexity and Expected Distances in Simple Polygons: We present a
simple algorithm for computing the so-called Beer-index of a simple polygon P in
O(n2 log n) time, where n is the number of corners of P . The Beer-index is the
probability that two points chosen independently and uniformly at random in P
can see each other. Given a finite set M of m points in P , we also show how the
number of pairs in M that see each other can be computed in O(n log n+m log2 n+
m log n logm) time, which is close to optimal. We likewise study the problem of
computing the expected geodesic distance between two random points in P . We
show how the expected L1-distance can be computed in optimal O(n) time by a
conceptually very simple algorithm. We then describe an algorithm that outputs
an expression for the expected L2-distance in O(n2 log2 n) time. This manuscript
is unpublished.
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Resumé

Denne afhandling beskæftiger sig med korteste-vej algoritmer for dekrementelle
og plane indlejrede grafer. Den er en synopsis af fire manuskripter:

Afstandsorakler med polynomielt subkvadratisk pladsforbrug og konstant fore-
spørgselstid for plane grafer: Vi præsenterer et afstandsorakel af polynomiel subkva-
dratisk størrelse der tillader rapportering, i konstant tid, af den nøjagtige korteste-
vej afstand mellem par af knuder af en ikke-orienteret, uvægtet plan graf G. For
ethvert ε > 0 kræver vores afstandsorakel O(n5/3+ε) plads og er i stand til at be-
svare afstandsforespørgsler om den korteste-vej for ethvert par af knuder på G i
tid højst O(log(1/ε)). Tidligere eksisterede der ingen afstandsorakler med polyno-
mielt subkvadratisk størrelse og konstant forespørgselstid. Dette manuskript blev
accepteret ved ISAAC 2021.

Næroptimale afstandsorakler for plane grafer med knudemærkater: Givet en uo-
rienteret plan graf G = (V,E, ω) med n knuder og ikke-negativ kantvægtfunktion
ω : E 7→ R samt en etiket tildelt hver knude, er et afstandsorakel for plane grafer
med knudemærkater en datastruktur, der givet en forespørgsel bestående af en knu-
de u og en etiket λ rapporterer den korteste vej afstand fra u til nærmeste knude med
etiket λ. Vi viser, at hvis der er et afstandsorakel for ikke-orienterede plane grafer
med n knuder, ikke-negative kantvægte, der har pladsforbrug s(n) og forespørgsels-
tid q(n), så eksisterer der et afstandsorakel for plane grafer med knudemærkater, der
bruger Õ(s(n)) plads og med Õ(q(n)) forespørgselstid. Ved brug af afstandsorak-
let fra Long og Pettie [LP21], giver vores konstruktion et afstandsorakel for plane
grafer med knudemærkater der bruger n1+o(1) plads og med Õ(1) forespørgselstid
i en ende af spektret og Õ(n) pladsforbrug og no(1) forespørgselstid i den anden
ende af spektret. Dette er, så vidt vi ved, det første ikke-trivielle afstandsorakel for
plane grafer med knudemærkater for en interessant grafklasse udover træer. Dette
manuskript blev accepteret ved ISAAC 2021.

Dekrementel APSP in orienterede grafer imod en adaptiv modstander: Givet en
orienteret graf G = (V,E), der gennemgår en online sekvens af kantsletninger med
m kanter i begyndelsen, og hvor n = |V |, kigger vi på vedligeholdelse af korteste
veje i G. Vi studerer problemet med antagelse af en adaptiv modstander, hvor denne
kan basere opdateringssekvensen baseret på outputtet af datastrukturforespørgsler.
Vi præsenterer tre nye datastrukturer der virker under forskellige antagelser:

• Vi præsenterer først en deterministisk datastruktur, der vedligeholder nøjag-
tige afstande med samlet opdateringstid Õ(n3).

• Vi præsenterer også en deterministisk datastruktur, der vedligholder (1 + ε)-
approksimative afstandsestimater med samlet opdateringstid Õ(

√
mn2/ε) som

for tilstrækkeligt små grafer svarer til Õ(n2+1/2/ε).

• Til sidst præsenterer vi en randomiseret (1 + ε)-approksimativ datastruk-
tur, som virker imod en adaptiv modstander; dennes samlede opdateringstid
er Õ(m2/3n5/3 + n8/3/(m1/3ϵ2)) som for tilstrækkeligt små grafer svarer til
Õ(n2+1/3).

Vores nøjagtige datastruktur matcher den samlede opdateringstid for den bedste
randomiserede datastruktur af Baswana et al. og vedligeholder afstandsmatricen
i nær-optimal tid. Vores approksimative datastrukturer forbedrer de bedste data-
strukturer i der antager en adaptiv modstander; denne har Õ(mn2) samlet opdate-
ringstid. Dette manuskript blev accepteret på ICALP 2021.

Konveksitetsgrad og forventede afstande i simple polygoner: Vi præsenterer en
simpel algoritme til beregning af den såkaldte Beer-indeks i et simpelt polygon P i
O(n2 log n) tid, hvor n er antallet af hjørner af P . Beer-indekset er sandsynligheden
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for, at to punkter valgt uafhængigt og uniformt tilfældigt i P kan se hinanden.
Givet en endelig mængde M af m punkter i P , viser vi også, hvordan antallet af
par i M , der kan se hinanden, kan beregnes i O(n log n + m log2 n + m log n logm)
tid, som er tæt på optimalt. Vi studerer ligeledes problemet med at beregne den
forventede geodætiske afstand mellem to tilfældigt valgte punkter i P . Vi viser
hvordan den forventede L1-afstand kan beregnes i optimal O(n) tid ved hjælp af
en begrebsmæssigt meget simpel algoritme. Vi beskriver derefter en algoritme, der
udskriver et udtryk for den forventede L2-afstand for to tilfældigt valgte punkter i
P i O(n2 log2 n) tid. Dette manuscript er endnu ikke udgivet.
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Preface

This thesis concerns itself with shortest-path algorithms for dynamic and planar embed-
ded graphs. It provides a synopsis of four articles, of which the first three are published
at conferences and where the last is an unpublished manuscript. In the body of this
thesis an overview of each article and the results they convey is given, by defining the
problems they attempt to solve, related work to put the results in a context and finally a
brief technical overview might be given, hopefully providing the reader with some idea on
the approaches taken. Some parts of this thesis was simply lifted from the manuscripts
and altered where applicable to fit the pedagogic ambitions of this thesis, while others
are original. The idea is to provide a context in which to place the results as well as to
give high-level and hopefully somewhat intuitive overview of some techniques used and
challenges encountered, while skipping over some of the tedious details presented in the
manuscripts - albeit this is admittedly a highly subjective matter. Note that while the
full manuscripts are included in appendices, they may not be be completely identical to
the published versions. The topics covered in this thesis are: Distance oracles for planar
grahs, vertex-labeled distance oracles for planar grahs, decremental dynamic APSP and
measures polygons. The manuscripts considered are found in Appendices A, B, C and
D.
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1 Preliminaries

Let G = (V,E) be a graph. If G is edge-weighted, it furthermore has an assignment
ω : E 7→ D that maps edges to some range D, where typically D ⊂ R. In this case we
write G = (V,E, ω). For a graph H we denote by V (H) and E(H) the vertex and edge
set of H, and overload this notation for faces of graphs as well. Thus if f is a face of
some graph, V (f) are the vertices on the face f . We denote by u⇝G v the shortest path
from u to v in G and by dG(u, v) the length of this shortest path. When the context is
clear, we will omit the subscripts and simply write u ⇝ v and d(u, v). We furthermore
let f(n) ∈ Õ(g(n)) if there is some k s.t. f(n) ∈ O(g(n) logk g(n)), i.e. Õ(g(n)) hides
polylog factors of g(n).

1.1 Dynamic graph algoritms

A dynamic graph algorithm is an algorithm that maintains information about a graph
that is subject to updates, for instance insertions and deletions of edges or vertices. We
say that a dynamic graph problem, respectively an algorithm for solving it, is decremental
if it only allows for deletions, incremental if it only allows for insertions and fully-dynamic
if it allows for both in the dynamic graph. In the above cases, we shall simply refer to the
graph as being decremental, incremental or fully dynamic. Incremental and decremental
graphs are referred to as being partially-dynamic. A dynamic graph algorithm aims to
efficiently process a sequence of online updates interspersed with queries about some
property of the underlying dynamic graph, in our case shortest path distances.

Performance guarantees The performance of dynamic graph algorithms can be mea-
sured in various ways. For instance, in the incremental, respectively decremental case,
where only edge deletions, respectively insertions, are allowed, it may seem natural to
measure the performance in terms of the total update time, that is, the total number
of steps used by the algorithm until the edge set becomes maximal, respectively empty.
This provides an amortized guarantee. Other measure are then naturally the worst case
update time, the expected update time, and the expected total running time.

Adversarial models Dynamic graph algorithms assume various adversarial models.
This is in particular the case for the decremental algorithms of Section 4. The adversarial
model defines the assumptions under which the sequence of updates and queries are
assumed to be made to a dynamic algorithm by the user, referred to as the adversary. We
say that a performance guarantee, e.g. on the total running time, of a dynamic algorithm
holds against an oblivious adversary if the guarantee is stated with the assumption that
the adversary must define the sequence of updates before the algorithm starts. In this
case, the sequence of updates must therefore necessarily be independent of any random
bits used by the algorithm. This is a weaker notion than that of an adaptive adversary,
who is allowed to create the update sequence “on the go”, e.g. based on answers to
previous queries made to the algorithm. Depending on the data structure, these choices
may not be independent of the random choices made, which may result in the data
structure performing poorly. One key advantage of an algorithm that works against an
adaptive adversary is that it can be used as a black box, regardless of whether the user
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of it bases their sequence of updates based on the output of the algorithm. We point out
that deterministic data structures always work against an adaptive adversary.

1.2 Machine models

In sections Section 2, Section 3 and Section 4 we assume the standard word-RAM model
[Hag98] for computations. Section Section 5 assumes the real RAM model which can be
thought of as an extension of the integer word-RAM model [Hoo22]. The main difference
from the word-RAM model is that, it in addition has access to real registers. Numbers
represented in real registers can be assumed to be real values (of infinite precision)
and accordingly the model assumes certain operations on real values that each can be
executed in unit time. One example is that this allows for the representation for a sum
of square roots, which for instance could represent the distance of a path in Euclidean
space. Some care has to be taken in the definition of this model, since for the model
to be interesting, it turns out that certain types of operations must be disallowed, as it
would otherwise imply a collapse of important complexity classes model.

2 Distance Oracles for Planar Graphs

In the following we consider the problem of resolving shortest path queries in planar
graphs:

Problem 2.1. Given a graph G = (V,E) describe a compact data structure which effi-
ciently supports queries u, v ∈ V that report the shortest path distance from u to v.

A distance oracle is a compact data structure that given a pair of vertices is capable of
efficiently reporting the length of the shortest path going between them. By “efficiently”,
we usually mean answering distance queries in constant or sub poly-logarithmic time in
the size of the input graph, and by compact, we refer to keeping the space usage as low
as possible.

2.1 Related work

A naive approaches to solving the problem would be to represent the distances by an
n× n distance matrix, as this allows for answering distance queries in constant time by
looking up the entry corresponding to the pair. The obvious drawback of this approach,
however, is the large space requirement of Θ(n2) which is impractical for larger graphs.
At the other extreme, one could imagine to to lazily compute the shortest path distance
from scratch with each query, for instance with Dijkstra’s algorithm. This approach only
uses memory for storing the input graph and running the shortest path algorithm, and
has no requirement for preprocessing. However, the high query time makes this approach
infeasible for many applications where a small query time is of importance.

Lower bounds It is well known that there are graphs for which no distance oracle
with o(n2) bits of space and O(1) query time exists. More generally, Thorup and Zwick
showed that for any k ∈ N, there are dense graphs for which any distance oracle with
stretch at most 2k − 1 and constant query time requires ω(n1+1/k) bits of space[TZ05];
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this is conditioned on the widely believed girth conjecture of Erdős [Erd65] which has
been proven for small values of k. In the context of distance oracles, stretch refers to the
multiplicative approximation error of the reported distances, that is, a distance oracle
which reports an estimate d̃G(u, v) for which d̃G(u, v) ≤ t ·dG(u, v) is said to have stretch
t. We refer to a distance oracle with stretch t = 1 as an exact distance oracle and as
an approximate distance oracle otherwise. Furthermore Pǎtraşcu and Roditty [PR14]
showed that there are sparse graphs on O(n polylog n) edges for which constant query-
time distance oracles with stretch less than 2 must be of size Ω(n2 polylog n), assuming
the set intersection conjecture.

Planar graphs The lower bounds mentioned above provide evidence that a trivial
lookup table is essentially the best possible data structure for constant query time in
general graphs. It is therefore natural to consider the study of distance oracles in more
restricted settings, for instance for certain classes of graphs or when we relax the require-
ment that exact distances be reported. This section of the thesis concerns itself with the
special case of exact distance oracles for planar graphs. To the knowledge of the authors
there are no non-trivial lower bounds for distance oracles for planar graphs (with the
exception of conditional lower bounds), and thus the “holy grail” for distance oracles for
planar graphs would be a distance oracle of near-linear size with constant query time. In
the following we provide notable as well as recent developments for subquadratic space
exact distance oracles for planar graphs:

Many constructions in the literature of distance oracles for planar graphs provide
tradeoffs between query time and size [Dji96; Ari+96; Cab12; CX00; FR06; MS12;
Nus11]. However, all of these distance oracles use essentially quadratic space for poly-
logarithmic query time. As a matter of fact, it was, until recently, a major open problem
whether a size O(n2−ε) exact distance oracle with poly-logarithmic query-time could be
constructed for an n-vertex planar graph where ε > 0 is a constant. This was answered
in the affirmative by Cohen-Addad et al. [CDW17] who presented a construction of size
O(n5/3) distance oracle with query time O(log n), as well as a space/query-time tradeoff
allowing for construction of size S distance oracles with query time O

(
(n5/2(S3/2) log n

)

for S ≥ n3/2. Their results were inspired by the, then novel, abstract Voronoi diagram
techniques introduced by Cabello [Cab18] who gave the first truly sub-quadratic time
algorithm for computing the diameter of planar graphs. By devising an elegant point-
location structure for the abstract Voronoi diagrams, Gawrychowski et al. [Gaw+18c]
managed to further improve on this bound: They presented a size O(n3/2) distance ora-
cle with O(log n) query time, as well as a tradeoff allowing for size O(S) distance oracles
with query time O(max

{
1, n3/2 polylog n/S

}
) for n ≤ S ≤ n2. Recently, Charalam-

popoulos et al. [Cha+19] presented constructions that are near-optimal. They described
the following oracles for edge-weighted planar digraphs; one of size O(n1+ε polylog n)
with O(log1/ε n) query time, another of size O(n polylog n) with O(nε polylog n) query
time and one of size n1+o(1) with query-time no(1) for constant ε > 0. They achieved
this by combining the very same point location structure of [Gaw+18c] with a clever
recursion scheme. This was improved slightly by Long and Pettie et al. [LP21], their
construction being the state-of-the-art at the time of the writing.

It should be emphasized that all of the truly subquadratic-size exact distance oracles
so far require at least poly-logarithmic query time. Considering oracles with constant
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query time, the biggest improvement in space over the trivial look-up result is less than a
log n-factor even when restricted to unweighted undirected planar graphs [Wul13; Cha12;
Wul10]. For a less recent, but more comprehensive treatment of developments and tech-
niques employed in the field of distance oracles, we refer to the survey of Sommer [Som14].
We finally note that, despite the large body of work on distance oracles for planar graphs,
it has remained an open question to determine whether an exact distance oracle with of
size O(n2−ε) with constant query-time can be constructed for some constant ε > 0. We
answer this in the affirmative.

2.2 Contributions

Our result is summarized in the following theorem

Theorem 2.2. Let G = (V,E) be an undirected unweighted n-vertex planar graph. For
any ε > 0 there exists a data structure requiring O(n5/3+ε) space that, for any s, t ∈ V ,
reports the shortest path distance between s and t in G in time O(log 1/ε).

We remark that this differs from the result as stated here slightly differs from pub-
lished version, due to an erratum, see Section 2.4.

We also present another (denser) subquadratic distance oracle of size O(n7/4) and
remark that it can be distributed into a distance labeling scheme with size O(n3/4) per
label, such that the distance between any two vertices s, t can be computed in O(1) time
given just the labels of s and t.

2.3 Technical overview

In the following we give a brief overview of the techniques used in our constructions. We
first introduce the decomposition framework for graphs used and introduce the notion
of patterns along with some properties, which will be useful for characterizing shortest
paths that cross separators in the decomposition framework. We then describe the query
scheme used for the (denser) construction.

r-divisions It is well known that any planar graph admits a decomposition into O(n/r)
connected subgraphs, called regions, each of size O(r), where the boundary of each region
(i.e., the vertices that have neighbors outside the region in G) is a cycle h, with only
a constant number of such cycles. To readers familiar with the concept, this is just
an r-division with few holes, but without the important property that each region has
just O(

√
r) boundary vertices. This is because one cannot triangulate unweighted graphs

without changing the distances, as triangulating to preserve distances would entail adding
edges with infinite weights. A hole of a subgraph R of G is simply a face of R which is not
a face of G. For a hole h of G, we denote by V (h) the vertices of G that are embedded
in the non-strict interior of the cycle h in G and by bh0 , b

h
1 , ... the vertices of h as they are

encountered when walking along the edge of h in the clockwise direction. Here, we refer
to bh0 as the canonical vertex of h, simply by the merit that it is a distinguished vertex
from which we start the walk of h.

4
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Figure 1: Illustration of a pattern.

Patterns The concept of patterns were first used by [Wul13] and later by by [LP19]
(here it was referred to as a “distance tuple”). Consider a vector storing the distances
from a vertex u to the vertices of a (perhaps non-simple) C. The pattern of u w.r.t.
C is simply the discrete derivative of this vector. That is, the sequence obtained by
taking the difference between every pair of consecutive values. This notion is illustrated
in Section 2.3.

Definition 2.3. (Pattern) Let H be a graph, h any hole of H and u ∈ V (H). The pattern
of u (w.r.t. h in H) is a vector ph,H(u) satisfying ph,H(u)[i] = dH(u, bhi ) − dH(u, bhi−1)
for all i.

We note that when G is unweighted, ph,H(u)[i] ∈ {0,−1, 1}. A simple but useful
observation is that distances from s ∈ V (h) to any vertex in H are completely deter-
mined by the pattern of s w.r.t. h, since h is a separator. This follows from a simple
telescoping sums-argument when taking the prefix sum of ph,H . Hence, we can represent
the distances from any such vertex s to any vertex of h by just storing the distance from
s to the canonical vertex and a pointer to the pattern of s with respect to h.

Parter [LP19] used this technique to achieve improved bounds for diameter compu-
tation for planar graphs by showing that in unweighted undirected planar graphs the
number of patterns is actually quite small. More precisely, they show that the VC-
dimension of a set corresponding to all patterns is at most 3. By the Sauer-Shelah
lemma [Sau72], this implies that the number of distinct patterns w.r.t. a face (hole)
f (h) is O(|V (f)|3) (O(|V (h)|3). Notably this is independent of the size of the graph.
We next wish to outline how this observation can be used to break the quadratic space
barrier. We first introduce the notion of distance from a vertex to a pattern:

Definition 2.4. (pattern to vertex distance) Let R be a region in a graph G. Let h be
a hole of R and b = bh0 , b

h
1 , . . . , b

h
k be the vertices encountered when performing the walk

of h. Let p be any pattern w.r.t. h. For a vertex v ∈ R we define dG(p, v), the distance
between p and v, to be mink

i=0

{
dG(bhi , v) +

∑i
j=0 p[j]

}
.

While this definition is simple, it is somewhat unnatural because the distance from
a pattern to a vertex does not necessarily correspond to the length of any specific path
in the graph. However, the distance between s and any vertex t ∈ R turns out to be the
sum of the distance between s and the canonical vertex vh and the distance from the
pattern of s with respect to h to t, which is apparent from this lemma:
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s

bhl

t

bh0

bhk

Figure 2: Illustration Lemma 2.5 and a simple query and for s, t ∈ V . If s knows its
distance to bh0 and the pattern it induces w.r.t. h, and t knows its distance to h w.r.t.
the pattern, we can apply Lemma 2.5 to recover d(s, t).

Lemma 2.5. Let R be a region of a graph G. Let h be a hole of R. For every u ∈ V (h)
and every v ∈ R, dG(u, v) = dG(u, b0) + dG(ph,G(u), v)).

Proof. By definition of pattern and by a telescoping sum, for every 0 ≤ i ≤ k, d(u, bi) =
d(u, b0) +

∑i
j=0 p[j]. Let bℓ be any vertex of w(h) on a shortest u-to-v path (bℓ exists

since u ∈ V (h) and v ∈ R). By choice of bℓ,

d(u, v) = d(u, bℓ) + d(bℓ, v)

= min
0≤i≤k

{d(u, bi) + d(bi, v)}

= min
0≤i≤k



d(u, b0) +

i∑

j=0

p[j] + d(bi, v)





= d(u, b0) + d(p, v)

.

This provides a means of recovering distances for shortest paths that cross the sepa-
rator corresponding to h in G.

Simple query scheme In this section we outline the query scheme for the denser
construction. Consider some r-division R1, R2, . . . of the input graph, and consider query
vertices of u, v ∈ V (G). We can characterize d(u, v) in terms of the r-divison by noting
that u ∈ Ri, v ∈ Rj where either i = j or i ̸= j. In the case in which i = j we can afford
to store all pairwise distances and resolve the query by a tabular lookup. Otherwise,
w.l.o.g. v is in V (h) where h is a hole of Ri. Since h separates u and v in G, we get
that d(u, v) = mini

{
dG(u, bhi ) + dG(bhi , v)

}
. If we assume we stored the vertex to bh0 and

a pointer to the pattern of u w.r.t. h in G as well as the distance from the pattern to
v, it then follows by Lemma 2.5, that we can resolve the query in constant time. The
query is illustrated in. Figure 2. Storing information about which region vertices belong
to uses O(n) overall space. Storing distances to patterns of all holes in a region uses
O(n/r · r4) = O(nr3) space. Storing distances to canonical vertices as well as pointers
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to the pattern for each vertex of each region uses O(n/r · n) = O(n2/r) space. Finally,
storing pairwise distances for vertices in all regions uses O(n/r · r2) space. Most of these
terms are subsumed by others, so overall the distance oracle requires O(n2/r + nr3).
These ideas alone already imply an oracle with space Õ(n7/4) and constant query time.
Combining these ideas with recursion and the notion of distances between patterns yields
the improved space bound of Theorem 2.2.

Differences from previous oracles As we previously mentioned, breaking the quadratic
space barrier for constant query time has remained a long standing open question and
can therefore be considered an important result in its own right. The main difference be-
tween the approach taken in our recursive oracle and the approaches used in all existing
distance oracles we are aware of, are that all existing distance oracles, both exact and
approximate, and both for general graphs and planar graphs, recover the distance from
s to t by identifying a vertex or vertices on some (possibly approximate) shortest path
between s and t, for which distances have been stored in the preprocessing stage. These
vertices are usually referred to as landmarks, portals, hubs, beacons, seeds, or transit
nodes (cf. [Som14]). Our oracle, on the other hand, reports the exact shortest path
without identifying vertices on the shortest path from s to t.

2.4 Errata

We remark the since the time of publishing, colleagues of ours have made us aware of
two errors in this result; none of which, however, seem to be of a critical nature.

The first error pertains to the balancing of parameters in the recursive construction;
specifically we were made aware that the space analysis provided in the published version
should be O(kn5/3+ε) for any ε > 0 instead of the claimed O(n5/3+ε) in the published
version; here ε is a parameter which controls the recursion depth (and fanout) of the
decomposition. They furthermore provided a new analysis for the space used by the
construction, achieving the claimed space usage O(n5/3+ε) and O(log 1/ε) query time,
which Theorem 2.2 does reflect.

The second error pertains to the choice of graph to which we apply the lemma of
[LP19] as to bound the number of patterns. Consider a region R and a hole h of R.
We wish to bound the number of distinct patterns for vertices of V (h). To do so, we
consider the graph G−(R−h), but a problem arises since it is claimed that h is a face of
G− (R− h). This is not always the case, however; consider e.g. a case in which R = h.
The solution is to consider the union of the portion of G corresponding to the interior of
G contained in the hole h as well as h itself. Thus h may not be a simple face, but this is
not a problem when defining the pattern of a vertex w.r.t. by considering the sequence
bh0 , b

h
0 , . . ., in which case the vertices that make h non-simple are simply encountered at

most twice.
The colleagues who made us aware of this are thanked in the acknowledments; cor-

rections will be made accordingly, and venues notified.

2.5 Future work

Future directions of research would first and foremost be the search for a construction
for distance oracles of size Õ(n5/3−ρ) for 0 < ρ ≤ 2/3 and constant query time. Since
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our construction inherently relies on the notion of patterns and the bound provided by
Li and Parter [LP19], showing any bound O(r3−ρ) for 0 < ρ would immediately yield an
improvement to our construction. An alternative proof for the number of patterns that
go beyond the VC-dimension argument is given by Mozes et al. [Wal22]. Their proof
instead relies on the cut-cycle duality. They furthermore show tight bounds, i.e. of Θ(r2)
patterns, for restricted families of planar graphs. We remark that there are currently no
lower bounds for any family of planar graphs that go beyond Θ(r2), and constructing
examples that admit this number is quite an easy task (consider a grid graph).

Approaching the problem from the other direction, i.e. by showing any super-linear
lower bound on the space required by such a construction, is also of interest.

Finally, one could consider more general or restricted families of graphs, by e.g.
considering undirected or weighted graphs, or by generalizing the current construction
to, say, K3,3 or K5-minor-free graphs.

3 Vertex-Labeled Distance Oracles for Planar Graphs

Continuing in the vein of Section 2, we now turn to a more general problem of resolving
shortest path queries, where in addition to the input graph, each vertex is furthermore
assigned a label:

Problem 3.1. Given an undirected n-vertex planar graph G = (V,E, ω) and a labeling
l : V → L, describe a compact data structure which given a query consisting of (u, λ) ∈
V ×L efficiently reports the shortest path distance from u to the nearest vertex with label
λ in G.

A data structure resolving the above problem is referred to as a vertex-labeled distance
oracle. To give some practical motivation, the graph could represent a road network, the
vertex the location of the hungry querier who is traveling by car and the label of interest
being “restaurant”.

3.1 Related work

We note that above problem is a generalization of that of Problem 2.1 since vertex-to-
vertex distance queries can be answered by a vertex-labeled distance oracle if each vertex
is given its own unique label. A trivial solution to Problem 3.1 which offers constant
query time is that of a look-up table that simply stores the answers to all possible queries.
This approach uses space O(n|L|), which may be quadratic in n. To our knowledge, there
were previously no non-trivial upper bound for vertex-labeled distance oracles for any
interesting graph classes other than trees [Gaw+18b; Tsu18].

Approximations Vertex-labeled distance oracles have received considerably more at-
tention in the approximate setting. With (1 + ε) multiplicative approximation, it is
known how to get Õ(n) space and Õ(1) query time both for undirected [LMN13] and di-
rected planar graphs [MS18] and it has been shown how oracles with such guarantees can
be maintained dynamically under label changes to vertices using Õ(1) time per vertex
relabel. For general graphs, vertex-labeled distance oracles with constant approximation
have been presented [Her+11; Che12; Pro18a] with state of the art being an oracle with
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O(kn|L|1/k) space, 4k − 5 multiplicative approximation, and O(log k) query time, for
any k ∈ N.

Lower bounds The lower bounds described in Section 2.1 also apply here. For the
more general case considered here, Probst Gutenberg [Pro18b] showed that for undi-
rected, unweighted graphs, any O(polylog n) stretch distance oracle of size S has query
time at least Ω

(
log logL

log(S/n)+log logn

)
.

3.2 Contributions

Our contribution, is that for undirected edge-weighted planar graphs, the vertex-labeled
distance oracle problem can be reduced to the distance oracle problem in the sense that
(up to log-factors), any space/query time tradeoff for distance oracles also holds for
vertex-labeled distance oracles. We now state our reduction and its corollary:

Theorem 3.2. If there is an distance oracle for n-vertex undirected edge-weighted pla-
nar graphs with s(n) space, q(n) query time, and t(n) preprocessing time, then there is
an exact vertex-labeled distance oracle for such graphs using s(n) + O(n log2 n) space,
O(q(n) log n + log3 n) time for queries, and t(n) + poly(n) time for preprocessing.

Plugging in the distance oracle of Long and Pettie et al. [LP21] gives the following
corollary which can be seen as a generalization of their result:

Corollary 3.3. For n-vertex undirected edge-weighted planar graphs, there exist exact
vertex-labeled distance oracles with the following tradeoffs between space and query time:

1. n1+o(1) space and Õ(1) query time,

2. Õ(n) space and no(1) query time.

All oracles have preprocessing time polynomial in n.

Up to logarithmic factors, the full tradeoff between space and query time in their
paper similarly extends to vertex-labeled distance oracles in undirected edge-weighted
planar graphs. We note that a strength of our result being a reduction is that any
future progress on distance oracles in undirected planar graphs immediately translates
to vertex-labeled distance oracles.

3.3 Technical overview

Consider any fundamental cycle C = p1 ∪ p2 ∪ {e} of G and a query pair (u, λ) ∈
V × L. Denote by uλ the vertex with label λ closest to u. The overall idea behind
the construction is to efficiently identify a small (constant-size) subset W of witnesses
on V (C) s.t. if s = u ⇝ uλ intersects C, then there is some vertex w ∈ W for which
d(u ⇝ uλ) = d(u ⇝ w) + d(w ⇝ uλ). Otherwise s is fully contained in the component
corresponding to either the non-strict interior or non-strict exterior of C containing
u, in which case we can apply the approach recursively to this component. This is
illustrated in Figure 3. Across all levels of recursion, this yields a logarithmic-sized set
Wλ, of witnesses, granted that the fundamental cycle separator balances the components

9



p2

p1

e

u

uλ

(a) C ∩ s = ∅

p2

p1

e

u uλ

(b) C ∩ s ̸= ∅

Figure 3: Fundamental cycle C and s.

in which they live across all levels. We note that it is well-known how to efficiently
compute such a decomposition using fundamental cycle-separators. The closest vertex
is then given by arg minw∈Wλ

{d(u,Wλ)}, which now reduces to an instance of Problem
2.1, since queries of this type can be resolved by a regular distance oracle. The above
now becomes one, where given u ∈ V and λ ∈ L, we wish to identify witnesses in V (C)
s.t. one of these certify the shortest path from u to any vertex with label λ, s.t. it
intersects C. Specifically, we describe a data structure OG,p which given a simple path
p in G does this for a path and not a cycle separator of G, and so we may simply query
OG,p1 and OG,p2 (the paths that constitute C) and treat their union of outputs as the
set of witnesses:

Lemma 3.4. Let G = (V,E, ω) be an undirected, planar embedded, edge-weighted graph
with labeling l : V → L and let p be a shortest path in G. There is a data structure
OG,p using O(|V | log |V |) space which given u ∈ V and λ ∈ L returns a subset C ⊂ V of
constant size, s.t. if v is the vertex with label λ closest to u and v ⇝ u intersects p, then
v ∈ C. Each such query takes time at most O(log2 |V |).

Define by Sλ = {v ∈ V | l(v) = λ} and consider a simple path p in G. In fact, the
data structure of Lemma 3.4 is a union of (sub)data structures OG,p,λ that provide the
same guarantees, but concern itself only with Sλ. A query (u, λ) is then simply forwarded
to the appropriate data structure.

Label sequences

From a high-level point-of-view, we therefore are interested in a labeling of p according
to the following definition:

Definition 3.5. Let G = (V,E) be a graph, p = p1, . . . , pk a sequence of vertices
and S ⊆ V . The label-sequence of p w.r.t. S is a sequence MG,S,p ∈ Sk satisfying
MG,S,p(i) = arg mins∈S distG(s, pi). The alternation number on p w.r.t. S in G is de-
fined as |MG,S,p| =

∑k−1
i=1 [MG,S,p(i) ̸= MG,S,p(i + 1)].

Let us consider the label-sequence of p = p1, ... w.r.t. Sλ. MG,Sλ,p maps indices of
p to its closest vertex of label λ. On one hand, this is helpful if we can now efficiently
identify a set of witnesses containing pi∗ where

i∗ = arg min
i∈{1,...,|p|}

{d(u, v) + d(v,MG,Sλ,p(i))}
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p

(a) (b)

Figure 4: (a) Abstract representation of the path p and vertices Sλ; each color corre-
sponds to a vertex with label λ. b) The color of a vertex of p indicates the vertex of Sλ

it maps to when applying MG,Sλ,p. The dotted lines indicate the shortest paths from a
vertex of Sλ to vertices corresponding to its pre-image under MG,Sλ,p.

p′′

p′

(a) (b)

Figure 5: (a) Abstract representation of the paths p1 and p2 after incision, as well as
vertices Sλ. b) The color of a vertex of p indicates the vertex of Sλ it maps to when
applying MG,Sλ,p1 and MG,Sλ,p2 . Note that the non-crossing property entails that vertices
of Sλ enclosed by shortest paths of others can not “escape”, which restricts the number
of alternations on p.

as then we are almost done; but there too is the issue of label sequences having alternation
numbers as high as Θ(n), since the fundamental cycle separator may be proportional
to the size of V . This is illustrated in Figure 4. This is a problem since each data
(sub)strucure, OG,p,λ, of Lemma 3.4 conceptually works by identifying pi∗ in a data
structure whose size is proportional to the alternation number of the sequence. Storing
this at even one level therefore may use as much as Θ(n|L|) space which is no better than
using the naive approach. One part of our solution to this is performing an “incision” in
G along p and exploiting the non-crossing property of shortest paths. The incision step
corresponds to replacing p with two copies p′ and p′′ of p, s.t. they constitute a single new
face of G. We refer to the graph G with the incision along p by Gp. Each edge incident to
some vertex of p in G, prior to the incision, is now connected to the copy of that vertex,
corresponding to the “side” of p from which the edge was emanating. The behaviour
of label sequences of p′ and p′′ after the incision is illustrated in Figure 5. Intuitively
this imposes an ordering on vertices of Sλ w.r.t. their shortest paths to V (p1) ∪ V (p2).
We show that this ordering actually implies that the sequence MG,Sλ,p (when repeatedly
replacing maximal substrings of identical symbols by a single occurence) is a Davenport
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Schinzel-sequence or order 2, which in our case implies the following corollary:

Corollary 3.6. Let G be an undirected, weighted planar graph, S ⊆ V and p be a simple
path whose vertices belong to the same face of G. Then |MG,S,p| = O(|S|).

Since Sλ ∩ Sλ′ = ∅ for λ ̸= λ′ ∈ L, we have that
∑

λ |MG,Sλ,p| = O(n) over all data
structures, which is an improvement by a factor of |L|.

The point location data structure

We finally provide an overview of how to we determine the subset of V (p) containing
pi∗ . Our point location structure is quite similar to one found in [Gaw+18c] but with
some modifications to improve space usage in our setting; these will not be described
here, but they involve using standard persistence tricks of [Dri+89] and top-trees due to
[Als+05]. We furthermore perform some modifications to the query procedure, due to
the aforementioned changes. The main idea is to use point location in Voronoi diagrams,
and the following definitions in this section will largely be made in a manner similar to
those of of [Gaw+18c], but are included as they are essential for understanding the point
location data structure of Lemma 3.4.

Voronoi Diagrams Given a planar graph G = (V,E, ω), S ⊆ V , the Voronoi diagram
of S in G, denoted by VD(S) in G is a partition of V into disjoint sets, Vor(u), referred
to as Voronoi cells, with one such set for each u ∈ S. The set Vor(u) is defined to be

{
v ∈ V | d(u, v) < d(u′, v) for all u′ ∈ S \ {u}

}
,

that is the set of vertices that are closer to u than any other site in terms of d(·, ·).

Duals of Voronoi Diagrams It will also be useful to work with a dual representation
of Voronoi diagrams. Let VD∗

0 be the subgraph of G∗ s.t. E(VD∗
0) is the subset of

edges of G∗ where uv∗ ∈ VD∗
0 iff u and v belong to different Voronoi cells in VD. Let

VD∗
1 be the graph obtained by repeatedly contracting edges of VD∗

0 incident to degree
2 vertices until no such vertex remains2. We refer to the vertices of VD∗

1 as Voronoi
vertices, and each face of the resulting graph VD∗

1 can be thought of as corresponding
to some Voronoi cell in the sense that its edges enclose exactly the vertices of some
Voronoi cell in the embedding of the primal. We shall restrict ourself to the case in
which all vertices of S lie on a single face h. In particular, h∗ is a Voronoi vertex,
since each site is a vertex on the boundary of h in the primal. Finally, let VD∗ be the
graph obtained by replacing h∗ with multiple copies, one for each edge. We note that
since there are |S| Voronoi sites (and thus faces in VD∗), the number of Voronoi vertices
in VD∗ is O(|S|) due to Euler’s formula. Furthermore, [Gaw+18c] show that when
assuming unique shortest paths and a triangulated input graph, VD∗ is a ternary tree.
It follows that the primal face corresponding to a Voronoi vertex f∗ consists of exactly
three vertices, each belonging to different Voronoi cells. We refer to the number of sites
in a Voronoi diagram as its complexity.

2Formally, given a degree 2 vertex v with incident edges vw, vw′, we replace these edges by ww′,
concatenate their arcs and embed ww′ using this arc in the embedding.
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u

Figure 6: Abstract representation of a centroid and a point-location query u, belonging
to the Voronoi cell containing the purple subtree.

Centroid decompositions Finally a centroid decomposition, T ∗, can be computed
from VD∗ s.t. each node of T ∗ corresponds to a Voronoi vertex f∗ and the children of
f∗ in T ∗ correspond to the subtrees resulting from splitting the tree at f∗, and s.t. the
number of vertices of each child is at most a constant fraction of that of the parent.
We remark that VD∗(S) can be computed by connecting all sites to a super-source
and running a single-source shortest paths algorithm, and its centroid decomposition in
time proportional to |V (VD∗(S))|. Point location in Voronoi diagrams is then the task
of determining V or(u), which can be done by recursively identifying to which subtree
of the centroid decomposition the dual cell containing u belongs and recursing on the
subtree until a leaf node corresponding to V or(u) is found. Such a step is illustrated in
Figure 6. As the centroid decomposition is a balanced tree, this can be done in O(logS)
steps. In the case of [Gaw+18c], they can afford to store many centroid decompositions
partially due to using sparse separators, using as their set of sites the separator vertices
(that is, after removing the strict interior or exterior of the separator from G, in which
case the separator vertices now belong to the same face (hole) of the resulting graph),
but as we already argued this will not suffice for our purposes. Instead we wish to use the
fact that the alternation number is small (by Corollary 3.6) and show that it is sufficient
to consider a small number, O(Sλ), of sites.

Handling a query We note that the shortest path u to uλ in G may enter p from
either side, with one side corresponding to p′ and the other p′′. If we let pi be the
first intersection vertex, we thus either have: dG(u, uλ) = dGp(u, p′i) + dGp(p′′i , uλ) or
dG(u, uλ) = dGp(u, p′′i ) + dGp(p′i, uλ)

We w.l.o.g. show how to handle the case in which the second first holds, as the other
case is symmetric. We create an augmented version of Gp, by inserting at most |Sλ| extra
vertices to the face whose vertices are V (p1) ∪ V (p2), with one such for each maximal
subsequence consisting of the same symbol of MGp,Sλ,p′′ . Let r be the vertex added for
the maximal subsequence with indices k ≤ l, then for each j s.t. k ≤ j ≤ l, we then
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u

p′i

p′′iMGp,Sλ,p′′(i)

r

Figure 7: Abstract representation of a centroid decomposition for handling the case where
u ⇝ uλ enters p at the side corresponding to p′ and leaves at the side corresponding
to p′′. The Voronoi sites form a path of length O(|Sλ|) on the same face. Here r
a vertex corresponding to MGp,Sλ,p′′(i), which is a maximal subsequence of length 1,
with ω(r, p′i) = dGp(MGp,Sλ,p′′(i), p

′′
i ). Here, u belongs to the Voronoi cell of the site r

and dGp(u, p′i) + ω(r, p′i) = dGp(u, p′i) + dGp(p′′i ,MGp,Sλ
) = dG(u, pi) + dG(pi,MG,Sλ

) =
dG(u,MG,Sλ

) = dG(u, uλ).

add an edge from r to p′j with the weight dGp(p′′j ,MGp,Sλ,p′′(j)). This creates a fan-like
topology for each such r, which is illustrated in Figure 7. Denote by R the set of added
vertices. They all lie on a common face f , see again Figure 7; we compute and store
the centroid decomposition from R ∪ (V (p′) ∩ V (f)) the size of which is O(Sλ). Now,
to identify i s.t. dGp(u, p′i) + dGp(p′i, uλ) is minimized, we can simply query for u in the
centroid decomposition, which is also illustrated in Figure 7.

The preprocessing is done for each λ ∈ L and for both types of crossings, and upon a
query (u, λ), point location is done in the two centroid decompositions corresponding to
λ. If u⇝ uλ intersects p one of the witnesses will be p∗i . We use

∑
λO(|Sλ|) = O(n) space

to represent all such centroid decompositions. As aforementioned, the point location
in centroid decompositions use O(log |Sλ|) steps. We can resolve each such step in
O(log |V |) time, so the point location query spends O(log2 |V |) overall.

4 Decremental Dynamic APSP

We now consider the problem of maintaining decremental all-pairs shortest-paths where
the goal is to efficiently maintain shortest paths and distances between all pairs of vertices
in a decremental directed, unweighted graph.

Problem 4.1. Given an directed unweighthed graph G = (V,E), efficiently maintain G
subject to the following operations:
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• Dist(u, v): report the shortest path distance dG(u, v) from u to v in the current
version of G,

• Delete(u, v): deletes an edge (u, v) from E if it is present.

We furthermore consider Problem 4.1 also in a relaxed version where we only aim
to maintain approximate distance estimates. We denote by d̃G(u, v) a distance estimate
for the distance from u to v and we say that an APSP algorithm is t-approximate or
has an approximation ratio (or stretch) of t > 1 if for any u, v ∈ V , we have that
dG(u, v) ≤ d̃G(u, v) ≤ t · dG(u, v). This thesis will be concerned with both the exact and
the (1 + ε)-approximate version of the problem.

4.1 Related work

The naive approach towards maintaining APSP dynamically is to recompute the shortest
path distances for all pairs of vertices in G after each update using the best static
algorithm. We can then maintain distances explicitly, s.t. the query time is constant,
and so, the time for a single update becomes Õ(mn) for APSP and Õ(m) for SSSP. At the
other end of the spectrum one could achieve optimal update time by simply updating the
input graph and only running the algorithm whenever a query is processed. Running a
static algorithm each time, however, fails to reuse any information between updates and
therefore often yields a high query time, motivating more efficient dynamic approaches
that do this. In the following, we outline a few of these:

In 1981, Even and Shiloach [ES81] gave a deterministic data structure for maintaining
a shortest path tree to a given depth d in undirected, unweighted decremental graphs
in total time O(md). Henzinger and King [HK95] and King [Kin99] later adapted this
to directed graphs with integer weights. By using their structure for each vertex one
can maintain decremental all-pairs shortest paths in total time O(mn2W ), where the
edge weights are integers in the range [1,W ]. They subsequently improved this to total
update time Õ(mn2.5

√
W ) [Kin99] for W = ω(n). Demetrescu and Italiano [DI06] made

slight progress by showing that the restriction to integral edge weights could be dropped.
Finally, the same authors presented a data structure with total update time Õ(mn2)
which is the state-of-the-art for any data structure against an adaptive adversary up to
today [DI04]. In fact, their algorithm extends to a fully-dynamic algorithm with Õ(n2)
amortized update time. It is also capable of handling insertions and deletions of vertices
with up to n− 1 incident edges. The data structure was later simplified and generalized
by Thorup [Tho04].

Baswana, Hariharan, and Sen gave an oblivious Monte-Carlo construction for main-
taining decremental APSP with total update time Õ(n3) for unweighted graphs [BHS02].
They further showed that their data structure could be adapted to maintain approximate
APSP in weighted graphs with total update time of Õ(

√
mn2/ε) and stretch (1 + ε).

Bernstein described a (1 + ε)-approximate algorithm with total running time Õ(mn
log(W )/ε) by using a clever approach of shortcutting paths [Ber16]. Whilst his algo-
rithm achieves near-optimal running time, again, this algorithm has the issue of assuming
an oblivious adversary. Karczmarz and Łącki [KŁ20] showed how to maintain approx-
imate APSP deterministically in decremental graphs with stretch (1 + ε) in total time
Õ(n3 log(W )/ε). They also presented the first non-trivial algorithm for incremental
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graphs, achieving total update time Õ(mn4/3 log(W )/ε) [KL19]. Very recently Bern-
stein, Probst Gutenberg and Saranurak [BGS22] described a deterministic data-structure
which maintains (1 + ε)-approximate decremental SSSP in near-linear time, implying a
algorithm for maintaining APSP decrementally with nm1+o(1) total update time.

4.2 Contributions

We present three data structures. The first being a deterministic data structure for the
exact variant of the problem with near-optimal Õ(n3) total update time. It matches the
best randomized algorithm by Baswana et al. [BHS02] and improves the previous best
bound of Õ(mn2) obtained by running an ES-tree from every source [ES81] or using the
data structure of [DI04] (this, however, also works in weighted graphs) and improves
over all but the sparsest graph domains. Our data structure is near-optimal in the sense
that we also show an Ω(n3) lower bound on the total update time of any decremental
data structure that explicitly maintains the distance matrix:

Theorem 4.2. Let G be an unweighted directed graph. There exists a deterministic data
structure for maintaining decremental APSP in total time of O(n3 log3 n). At any point,
a shortest path distance query can be answered in constant time and the shortest path
between any query pair can be reported in time proportional to the length of the path.

Our second data structure deterministically maintains APSP with stretch (1 + ε).
This constitutes the first deterministic data structure that solves the problem in subcubic
time with small approximation error (except for graphs that are not extremely dense):

Theorem 4.3. Let G be an unweighted directed graph. For any ε > 0, there exists
a deterministic data structure for maintaining decremental approximate APSP in total
time O(

√
mn2 log2(n)/ε). At any point, a (1 + ε)-approximate shortest path distance

query can be answered in constant time and a (1 + ε)-approximate shortest path between
the query pair can be reported in time proportional to the length of the path.

The third data structure achievies a better time bound but uses randomization.
However, the data structure can assume an adaptive adversary:

Theorem 4.4. Let G be an unweighted directed graph. For any ε > 0, there exists
a data structure for maintaining decremental approximate APSP in expected total time
Õ(m2/3n5/3/ε+ n8/3/(m1/3ε2)). This bound holds w.h.p. and and assuming an adaptive
adversary. At any point, a (1 + ε)-approximate shortest path distance query can be
answered in constant time.

Note however, that the third structure does not allow for path-reporting. We sum-
marize our results as well as previous state-of-the-art results in Table 1.

4.3 Technical overview

Our overall approach for the deterministic data structures is similar to that of Baswana
et al. [BHS02] but with a key difference that allows us to avoid using a randomized
hitting set and instead rely on deterministic separators. The idea of the construction by
Baswana et al. relies on a well-known result which says that if we sample a subset Hρ

i
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Time Stretch Adversary Reference
O(mn2) exact deterministic [ES81; DI04]
Õ(n3) exact deterministic Appendix C
Õ(n3) exact adaptive [BHS02]

Table 1: Our results and previous state-of-the-art results for decremental APSP in the
exact setting.

Time Stretch Adversary Reference
Õ(
√
mn2/ε) (1 + ε) deterministic Appendix C

Õ(m2/3n5/3/ε +
n8/3/(m1/3ε2))

(1 + ε) adaptive Appendix C

Õ(
√
mn2/ε) (1 + ε) oblivious [BHS02]

Õ(nm) (1 + ε) oblivious [Ber16]
nm1+o(1) (1 + ε) deterministic [BGS22]

Table 2: Our results and previous state-of-the-art results for decremental APSP in the
approximate setting.

of the vertices of size Õ(n/ρi) (where ρ is some constant strictly larger than 1), each
with uniform probability, then, w.h.p. we "hit" each shortest-path of length [ρi, ρi+1)
between any pair of vertices in any version of the graph G.

Phrased differently, given vertices u, v ∈ V , we have that if a shortest path from u to v
is of length ℓ ∈ [ρi, ρi+1), then there is some vertex w ∈ Hρ

i , such that the concatenation
of a shortest path from u to w and a shortest path from w to v is of length ℓ. For each
such w, we say w is a witness for the tuple (u, v) for distance ℓ.

Now for each u, v ∈ V , if the initial distance from u, v was ℓ ∈ [ρi, ρi+1), we can
check Hρ

i to find a witness w. If the length of the path from u to w to v is increased,
we can continue our scanning of Hρ

i to see whether another witness exists. If there is no
witness w ∈ Hρ

i left at some stage, we know that there is no path of length ℓ left in G
w.h.p. and increase our guess by setting ℓ 7→ ℓ + 1.

Sampling initially a hitting set Hρ
i for every i ∈ [0, logρ n], we can find the "right"

hitting set for each distance ℓ. Observe now that for each tuple (u, v) ∈ V 2, we have to
scan a hitting set of size Õ(n/ρi) for ρi+1 − ρi ∼ ρi+1 levels before the hitting set index
i is increased which only occurs O(log n) times, thus we only spend time Õ(n) for each
vertex tuple (u, v). Thus, the total running time of the searches for witnesses can be
bound by Õ(n3).

Overview of Theorem 4.2

Our construction is similar in the sense that we maintain witnesses for each distance
scale [ρi, ρi+1) for every i ∈ [0, logρ n] such that each distance ℓ is in one such distance
scale. The key difference is that instead of using a randomized global hitting set Hρ

i
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dG(s, t) ∈ (d; dρ]

s

w
w′

t

dG(s, w) ∈ (dρ−1; d]

dG(w,w
′) ∈ (dρ−2; dρ−1]

dG(w
′, t) ∈ (dρ−2; dρ−1]

Ss Sw

Figure 8: Illustration of separators and path “hierarchy”. Here Ss is part of the local
separator for s and Sw for w. The path u ⇝ v travels through a witness vertex w, and
w ⇝ v travels through w′. If the length of the path w′ ⇝ v is increased by ∆, the
distance estimates of all 2-hop-paths that use w′ ⇝ v as a sub-path are increased by
that amount. In this case, the estimate for w ⇝ w′ ⇝ v is increased and is propagated
to the next level where subsequently the estimate for s⇝ w ⇝ v is increased.

for a distance scale [ρi, ρi+1), our construction relies on deterministically maintaining a
small local vertex separator Si(u) for every vertex u ∈ V of size Õ(n/ρi) separating all
shortest paths starting in u with a distance in [ρi, ρi+1).

More precisely, for each distance scale [ρi, ρi+1) and vertex u ∈ V , we maintain a
separator Si(u) that satisfies the invariant that every shortest path from u to a vertex
v at distance at least ρi is intersected by a vertex in Si(u). If this invariant is violated
after an adversarial update, then we find such a vertex v and need to add additional
vertices to Si(u) during the time step. The challenge is to take these additional separator
vertices such that the total size of Si(u) is not increased beyond Õ(n/ρi). The separator
procedure makes use of sparse layers of BFS trees and here is where we rely on the
assumption that the graph is unweighted. We defer the details of the separator procedure
to a later section and continue our discussion of the APSP data structure.

Since we need to detect whether vertices have distance less than ρi from u or not
in G, we further have to use a bottom-up approach to compute distances after an edge
deletion, i.e. we start with the smallest possible distance range and update all distances
in this range and then update larger distances using the information already computed.
This issue did not arise in Baswana et al. [BHS02] but can be handled by a careful
approach. The distances computed for one distance scale include all distances to and
from witnesses for the next larger distance scale.

It is now easy to see that the scanning for witnesses can be implemented in the same
time as in the analysis sketched above by scanning the list of local separator vertices
which serve as witnesses instead of the hitting set. Further, we can maintain local vertex
separators using careful arguments in total time Õ(mn) giving our result in Theorem 4.2.

Overview of Theorem 4.3

In order to improve the running time for sparse graphs, we can further focus on only
considering distances that are roughly at a (1 + ϵ)-multiplicative factor from each other.
More concretly, instead of increasing the expected distance from ℓ to ℓ + 1 when we
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cannot find a witness for some path from u to v for distance ℓ, we can increase the next
expected distance level ℓ′ to ∼ (1+ ϵ)ℓ and consider every vertex w a witness if there is a
path u⇝ w ⇝ v of length at most ℓ′. Thus, we handle fewer distances and can thereby
reduce the time to maintain distances that are at least d in total time Õ(n3/d + mn).
Again, a careful approach is necessary to ensure that approximations do not add up over
distance scales.

This is no faster than the data structure for exact distances when d is small so in
order to get Theorem 4.3, we use the O(mnd) data structure of Even and Shiloach [ES81]
to maintain distances up to d. Picking d such that mnd = n3/d gives the result of The-
orem 4.3 (the term Õ(mn) vanishes since it is subsumed by the two other terms, also we
assumed ϵ > 0 to be a constant to simplify the presentation).

Maintaining Separators

We now sketch how to deterministically maintain the “small” local separator for a vertex
s ∈ V with some useful invariants. Let S be the local separator for s. The first invariant
that will be useful is that any vertex t ∈ V that is reachable from s in G \ S, is “close”
to s or roughly within distance d. As edges are deleted from G, the distances from s to
such vertices t may increase. If a vertex t moves too far away from s, the invariant is
re-established by growing BFS trees in parallel, one layer at a time, from s in G \ S and
from t in the graph obtained from G \ S by reversing the orientations of all edges. The
search halts when a layer (corresponding to the leaves of the BFS tree at the current
iteration) that is “thin” is found, and its vertices are added to S; vertices that are on
the opposite side of the separator than s are cut off as they must all be too far away
from s. Here, "thin" refers to a BFS layer such that the number of vertices added to the
separator is only a factor Õ(1/d) times the number of vertices cut off. It is well known
that such a layer exists. Summing up, it follows that |S| = Õ(n/d) at all times. By
marking vertices as they are searched (according to the side of the BFS layer on which
they are found), the vertices that are “cut off” from s by the augmented separator will
never be searched again, and the cost of searching the edges of either side of the search
can be charged to sum of the degree of these vertices, for a total update time of O(m).
This is illustrated in Figure 9. For our randomized data structure, we need an additional
property that essentially allows us to take a snapshot of the current separator and use
it in later updates rather than having to repeatedly update the separator. This will be
key to getting an improved randomized time bound.

Overview of Theorem 4.4

The randomized approximate data structure of Theorem 4.4 follows the same overall
approach but is technically more involved. Instead of keeping track of all 2-hop paths
u ⇝ s ⇝ v3 for every s ∈ Si(u), the randomized data structure samples a subset of
these by picking each vertex of Si(u) independently with some probability p. It only
keeps track of approximate shortest path distances going through this subset rather

3Note that such a path may have more than one intermediate vertex, but it is useful to think of
it as a path of two weighted edges/hops (u, s) and (s, v) since this is what is maintained by the data
structure.
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Figure 9: Maintenance of separators. The green vertices are vertices that have been
searched, and the vertices on the dotted line are in the separator. (a) w is a witness for
u⇝ v. (b) w moves too far away from u. (c) The parallel search is initiated from u and
w and is highlighted in magenta with Lu and Lw corresponding to the BFS layers. (d)
w′ is the new witness for u⇝ v.

than the full set Si(u). This will speed up the above since the subset of the separator we
need to scan is smaller by a factor p. However, this approach fails once no short 2-hop
path intersects the sampled subset. At this point, w.h.p. there should only be short
2-hop paths through O(log n/p) vertices of Si(u) so also in this case, the subset can be
kept small. However, scanning linearly through Si(u) to find this small subset will take
Õ(n/d) time and happen over all pairs (u, v).

Our solution is roughly the following. Suppose no sampled vertex certifies an approx-
imate short path from u to v. Then v scans linearly through Si(u) to find the small size
O(log n/p) subset S′

i(u). Consider the set W of vertices w such that dG(w, v) is small
compared to d, i.e., dG(w, v) ≤ ϵd for some small constant ϵ > 0. Then we show that the
small subset S′

i(u) found for v can also be used for each vertex w ∈W . The intuition is
that for any vertex s ∈ Si(u) \ S′

i(u), the approximate shortest path distance from u to
w through s must be large since otherwise we get a short path u⇝ s⇝ w ⇝ v from u
to v through s, contradicting that s /∈ S′

i(u).
It follows that if |W | is large, the Õ(n/d) cost of scanning Si(u) can be distributed

among a large number of vertices of W . Dealing with the case where |W | is small is
more technical so we omit it here.

The way we deal with an adaptive adversary is roughly as follows. Consider a deter-
ministic data structure that behaves like the randomized data structure above, except
that it maintains 2-hop paths u⇝ s⇝ v for all Si(u) rather than only through a sampled
subset. The slack from the approximation allows us to round up all “short” approximate
distances to the same value. Hence, as long as the randomized data structure has short
2-hop paths, it maintains exactly the same approximate distances as the deterministic
structure and hence the approximate distances output to the adversary is independent
of the random bits used.

5 Degree of Convexity and Expected Distances in Polygons

We study real-valued functions defined on pairs of points in a simple polygon P , and
want to describe algorithms for computing the expected value when picking a pair of
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points uniformly and independently at random from some subset of P .

Problem 5.1. Given a simple polygon P , M ⊆ M and f : P × P 7→ R, descibe an
algorithm wich computes the expected value of f when applied to a pair of points of
chosen uniformly and independently at random from M .

Here, M can either be a given finite set of points in P or all points in P , i.e., M = P .
For a pair of points p, q ∈ P , the functions we will consider are:

• the indicator [pq ⊂ P ] ∈ {0, 1}, i.e., whether p and q can see each other in P , and

• the length of the geodesic shortest path from p to q in P in the L1- or L2-metric.

We also touch upon the problem of counting numbers of visible pairs and the number of
edges in visibility graphs.

5.1 Related work and contributions

Beer index Letting M = P and f(p, q) = [pq ⊂ P ] be the visibility indicator w.r.t.
P , we obtain the probability, B(P ), that two points p, q, chosen uniformly and indepen-
dently at random in P , see each other,

B(P ) =
1

|P |2
∫

p∈P

∫

q∈P
[pq ⊂ P ]dq dp,

where | · | denotes the area. This is referred to as the Beer index, and is one of the of
the well-known characterizations for the degree of convexity a polygon P . The problem
of partitioning a polygon into components that are close to convex is useful in many
practical settings, as such partitions provide similar benefits as convex partitions, while
the number of components can be significantly smaller when the components are allowed
to be slightly non-convex [Gho+13; LA06]. This motivates ways to quantify the degree
of convexity and algorithms for computing these measures.

Buchin, Kostitsyna, Löffler and Silveira [Buc+19] described an algorithm that out-
puts B(P ), again for a given polygon P which may have holes. The claimed running
time of the algorithm is O(n2), but as it is described in the paper [Buc+19], it may
output B(P ) as a sum of Ω(n4) closed-form expressions and thus likewise have a running
time of Ω(n4). An erratum has been sent to the authors who are aware, and we refer to
the appendix of our unpublished manuscript where we give such a counter-example.

For a given simple polygon P with n corners, we describe an algorithm outputting
B(P ) as a sum of O(n2) closed-form expressions using O(n2 log n) time. The algorithm
is a divide-and-conquer algorithm, and the main idea is to split P along a diagonal
uv into two parts P1 and P2 with roughly equally many corners. We compute the
contribution to B(P ) from pairs of points that see each other across the diagonal uv and
then recursively add the contributions of pairs of points that are either both in P1 or
both in P2. The algorithm is arguably simpler than the algorithm from [Buc+19] and
presumably also the unpublished, faster algorithm by the same authors, both of which
rely on geometric duality, whereas our algorithm deals exclusively with primitive objects
in the usual primal space.

Theorem 5.2. Given a simple polygon P with n corners, there is an algorithm that
returns the Beer-index B(P ) as a sum of O(n2) closed-form expressions. The algorithm
runs in time O(n2 log n) and uses O(n2) space.
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Counting visible pairs of points Very recently, Buchin, Custers, van der Hoog,
Löffler, Popov, Roeloffzen and Staals [Buc+22] studied the problem of computing the
number of visible pairs among m points in a simple polygon P with n corners. If m
is not much larger than n, they suggest to use a data structure by Hershberger and
Suri [HS95] to test if each pair is visible in O(log n) time. This results in an algorithm
with running time O(n+m2 log n). For the case that m is large, they describe algorithms
with running times O(nm3/2 +m3/2 logm) and O(n+m3/2+ε log n logm) for any ε > 0,
respectively. We present an algorithm for counting the number of visible pairs among m
points in O(n log n + m log2 n + m log n logm) time, so it is superior to the algorithms
from [Buc+22] in all cases.

Theorem 5.3. Given a simple polygon P with n corners and a set M of m point in
P , the number of pairs of points in M that can see each other can be computed in
O(n log n + m log2 n + m log n logm) time.

Finding the edges of the visibility graph of a given polygon is one of the classical
problems in computational geometry. Lee [Lee78] described a simple and well-known
algorithm with running time O(n2 log n) already in 1979, where n is the number of
corners. The algorithm works by performing a rotational sweep around all corners.
The same algorithm was described by Sharir and Schorr [SS86], and it also appears
in the book [Ber+08]. Asano, Asano, Guibas, Hershberger and Imai [Asa+86] and
Welzl [Wel85] gave algorithms with running time O(n2). Hershberger [Her89] gave an
output-sensitive algorithm using O(k) time to compute the visibility graph of a trian-
gulated polygon, where k is the number of edges in the visibility graph. Together with
Chazelle’s algorithm for triangulating a polygon in O(n) time, this yields an optimal
algorithm with time O(n+ k). When the set M of points in P are the corners of P , our
algorithm from Theorem 5.3 returns the size of the visibility graph of a simple polygon
in O(n log2 n) time. To the best of our knowledge, this is the first algorithm that counts
the number of visibility edges faster than the size of the graph. Note that the number
k/
(
n
2

)
∈ [0, 1] can be considered a discrete variant of the Beer-index.

Corollary 5.4. Given a simple polygon P , the number k of edges in the visibility graph
of P can be computed in O(n log2 n) time.

Expected distance The problem of determining the expected distance between two
points picked independently and uniformly at random from a given domain has a long
history. Czuber’s book from 1884 [Czu84] contains calculations of the values for equi-
lateral triangles, squares and rectangles. Bäsel [Bäs21] recently derived formulas for the
expected distance, as well as higher moments, in regular n-gons for n = 3, 4, 5, 6, 8, 10, 12.
The paper likewise contains more historical information about these problems. In an-
other recent paper, Bonnet, Gusakova, Thäle and Zaporozhets [Bon+21] proved that the
expected distance between two points in a convex body in the plane with perimeter 1 is
between 7/60 and 1/6, and that these bounds are tight. They also provide bounds for
higher dimensional convex bodies.

As a warmup for computing the expected distances in simple polygons, we consider
the conceptually simpler problem of computing the sum of L1-distances between all pairs
of points from a finite set M ⊂ Rd, i.e., with no polygon involved. We give a very simple
algorithm computing the sum in O(d · n log n) time.
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Problem Time Space Reference
Beer-index O(n2 log n) O(n2) Appendix D
L1-distance O(n) O(n) Appendix D
L2-distance O(n2 log2 n) O(n2) Appendix D

Table 3: Our results for computing expected distances and the Beer index in a simple
polygon.

Theorem 5.5. Given a set M of n points in Rd, the sum of pairwise distances in the
L1-metric between points in M can be computed in O(d · n log n) time.

Hsu [Hsu90] studied the algorithmic problems of computing the expected distance
between two random points in a given polygon. He gave a O(n2) time algorithm for
the expected geodesic L1-distance in a simple polygon and a O(n3) time algorithm for
the expected L2-distance in a convex polygon. In this paper, we describe a very simple
algorithm for computing the expected geodesic L1-distance in O(n) time and the L2-
distance in O(n2 log2 n) time in a simple polygon. To the best of our knowledge, no
algorithm has been described before for computing the expected L2-distance in simple
polygons in general. Table 3 summarizes our results on computing the Beer- and Wiener-
index of a simple polygon.

Theorem 5.6. Given a simple polygon P with n corners, there is an algorithm for
computing the expected geodesic L1-distance between two random points in P using O(n)
time and space.

Theorem 5.7. Let P be a simple polygon. There is an algorithm which outputs an
expression representing the expected geodesic L2 distance of P in O(n2 log2 n) time using
O(n2) space. Each term of the expression is a simple integral of constant size. The
number of terms in the expression is O(n2).

This characterization can then be used to approximate the expected geodesic L2-
distance. This relies simply on approximating the certain kind of “simple” integrals that
correspond to each term in the expression of Theorem 5.7. It is unknown to the authors
whether the terms admit a closed solution, however. This is captured in the following
corollary:

Corollary 5.8. Let P be a simple polygon and assume that there is a procedure O that
d-approximates simple integrals in time O(t(d)) pr. integral. Then there is an algorithm
which d-approximates the expected geodesic L2-distance in time O(n2 log2 n · t(d)).

More attention has been given to the problem of computing the average distance
between two vertices in a graph G. This known as the Wiener-index of G, and it
is a fundamental measure with important applications in mathematical chemestry and
appears in thousands of publications. Note that the Wiener-index is equivalent to the
sum of pairwise distances. For more information on the problem, see the papers [Cab19;
Gaw+18a].
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5.2 Technical overview

In the following we give a brief overview of the ideas for computing the Beer index
and Geodesic shortest path distances. Consider a polygon P with n corners, and some
diagonal uv splitting P into “upper” and “lower” polygons P1 and P2 across some diagonal
uv. If we let X and Y be stochastic variables that assumes points of P uniformly at
random. We then have that

E(d(X,Y )) =

∫

x∈P

∫

y∈P
f(x, y)dy dx (1)

= E(d(XP1 , YP1)) + E(d(XP2 , YP2)) +

∫

x∈P1

∫

y∈P2

d(x, y)dy dx. (2)

for some appropriate choice of f . Choosing the diagonal s.t. the number of corners
are split into roughly the same number in each subpolygon yields a recursion depth of
O(log n). For p, q ∈ P , we denote in this section by p ⇝ q the unique shortest path
contained in P from p to q. We can thus consider the following three cases of paths:

Observation 5.9. Given p1 ∈ P1 and p2 ∈ P2, there is an unique intersection point
with p1 ⇝ p2 and the diagonal. The segment of this shortest path intersects the diagonal
at some unique angle. Furthermore, either

1) p1 ⇝ p2 is a single segment crossing the diagonal, or

2) p1 ⇝ p2 consists of two or more segments and either has the form

2a) p1 ⇝ rt ⇝ p2 where rt is the segment crossing the diagonal and p1 ̸= r and
p2 ̸= t, or

2b) p1 ⇝ rp2 where rp2 is the segment crossing the diagonal and p1 ̸= r, or

2c) p1r ⇝ p2 where p1r is the segment crossing the diagonal and p2 ̸= r.

These cases are illustrated in Figure 10. We will use this to characterize the third
term of Equation (2).

Beer index In the case of the Beer index, i.e. when f is the visibility indicator function,
we note that the only the points that satisfy case 1) of Observation 5.9 contribute to
Equation (2). This case can be thought of as considering the set of all trapezoids defined
by corners of P an an angle φ ∈ [0;π]. This is shown in Figure 11a.

Each trapezoid is defined by two corners g and h of P . Therefore trapezoids may
appear and disappear as φ is increased according to when g and h becomes visible or
invisible from uv at the angle ϕ; thus each trapezoid exists in some φ ∈ [φ1;φ2] ⊆ [0;π].
This is illustrated in Figure 11b. Our approach is then to characterize the contribution
for each trapezoid by an integral parametrized by φ and providing closed forms for all
trapezoids and to report the terms of their sum. Since a trapezoid is defined by the pair
g, h of corners, there can be at most O(n2) of trapezoids over all choices of angles. This
gives us Theorem 5.2.
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Figure 10: Visualization of cases, for pairs (p1, p2) and (p′1, p
′
2) where (p1, p2) ∼ (p′1, p

′
2)

and s ∈ uv. (a) pairs of case 1) that see one another through s at an angle of φ, (b)
pairs of case 2a) whose shortest path go through a diagonal rst, (c) pairs of case 2b)
whose shortest path goes along rs but intersects no corner of P2. Case 2c) is symmetric
to case 2b) and omitted here.
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Figure 11: (a) All trapezoids crossing uv at an angle φ. (b) A trapezoid defined for
corners g, h exists in some interval [φ1;φ2] of angles.
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Expected geodesic L2 distance To compute the expected geodesic distance we can
account for the contribution of case 1) by using the previous characterization but substi-
tuting the indicator function for the shortest geodesic L2 distance, d(p, q) = ||p ⇝ q||2.
This is simply the sum of the L2 norm of each segment of p ⇝ q. Accounting for the
contributions for pairs corresponding to cases 2a), 2b) and 2c) then fully characterizes
the expected distance. To this end, we use a shortest path decomposition which parti-
tions P into simple regions, that then can be used to characterize the pairs of each case.
Each of these regions can then be expressed as one of few “simple” integrals, whose sum
(of O(n2) terms) completely characterizes the third term of Equation (2). At the time
of writing it is unknown to the author whether these admit closed form expressions, for
which reason the statement of Corollary 5.8 is added.

5.3 Future work

At the time of the writing, we believe that the characterization of Observation 5.9 im-
plies that recursion is actually not necessary for our construction, and does not aid the
description. We also believe we know how to extend a subset of the contributions to work
for polygons with holes. An interesting direction is to determine whether the integrals
of Theorem 5.7 admit a closed form, albeit we deem that it is unlikely that this is the
case.

26



References

[Als+05] Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Tho-
rup. „Maintaining information in fully dynamic trees with top trees“. In:
Acm Transactions on Algorithms (talg) 1.2 (2005), pp. 243–264 (cit. on
p. 12).

[Ari+96] Srinivasa Arikati, Danny Z. Chen, L. Paul Chew, Gautam Das, Michiel
Smid, and Christos D. Zaroliagis. „Planar spanners and approximate short-
est path queries among obstacles in the plane“. In: Algorithms — ESA ’96.
Ed. by Josep Diaz and Maria Serna. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1996, pp. 514–528. isbn: 978-3-540-70667-0 (cit. on p. 3).

[Asa+86] Takao Asano, Tetsuo Asano, Leonidas J. Guibas, John Hershberger, and
Hiroshi Imai. „Visibility of Disjoint Polygons“. In: Algorithmica 1.1 (1986),
pp. 49–63 (cit. on p. 22).

[Bäs21] Uwe Bäsel. The moments of the distance between two random points in a
regular polygon. 2021 (cit. on p. 22).

[Ber+08] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Over-
mars. Computational geometry: algorithms and applications, 3rd Edition.
Springer, 2008. isbn: 9783540779735 (cit. on p. 22).

[Ber16] Aaron Bernstein. „Maintaining shortest paths under deletions in weighted
directed graphs“. In: SIAM Journal on Computing 45.2 (2016), pp. 548–574
(cit. on pp. 15, 17).

[BGS22] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Sara-
nurak. „Deterministic decremental sssp and approximate min-cost flow in
almost-linear time“. In: 2021 IEEE 62nd Annual Symposium on Founda-
tions of Computer Science (FOCS). IEEE. 2022, pp. 1000–1008 (cit. on
pp. 16, 17).

[BHS02] Surender Baswana, Ramesh Hariharan, and Sandeep Sen. „Improved decre-
mental algorithms for maintaining transitive closure and all-pairs shortest
paths“. In: Proceedings of the thiry-fourth annual ACM symposium on The-
ory of computing. ACM. 2002, pp. 117–123 (cit. on pp. 15–18).

[Bon+21] Gilles Bonnet, Anna Gusakova, Christoph Thäle, and Dmitry Zaporozhets.
„Sharp inequalities for the mean distance of random points in convex bod-
ies“. In: Advances in Mathematics 386 (2021), pp. 1–27 (cit. on p. 22).

[Buc+19] Kevin Buchin, Irina Kostitsyna, Maarten Löffler, and Rodrigo I. Silveira.
„Region-Based Approximation of Probability Distributions (for Visibility
Between Imprecise Points Among Obstacles)“. In: Algorithmica 81.7 (2019),
pp. 2682–2715 (cit. on p. 21).

[Buc+22] Kevin Buchin, Bram Custers, Ivor van der Hoog, Maarten Löffler, Alek-
sandr Popov, Marcel Roeloffzen, and Frank Staals. Segment Visibility Count-
ing Queries in Polygons. 2022 (cit. on p. 22).

[Cab12] Sergio Cabello. „Many Distances in Planar Graphs“. In: Algorithmica 62.1-2
(Feb. 2012), pp. 361–381. issn: 0178-4617 (cit. on p. 3).

27



[Cab18] Sergio Cabello. „Subquadratic Algorithms for the Diameter and the Sum of
Pairwise Distances in Planar Graphs“. In: ACM Transactions on Algorithms
15.2 (Dec. 2018), pp. 1–38. issn: 15496325 (cit. on p. 3).

[Cab19] Sergio Cabello. „Subquadratic Algorithms for the Diameter and the Sum
of Pairwise Distances in Planar Graphs“. In: ACM Trans. Algorithms 15.2
(2019), 21:1–21:38 (cit. on p. 23).

[CDW17] Vincent Cohen-Addad, Soren Dahlgaard, and Christian Wulff-Nilsen. „Fast
and Compact Exact Distance Oracle for Planar Graphs“. In: 2017 IEEE
58th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, Oct. 2017, pp. 962–973. isbn: 978-1-5386-3464-6 (cit. on p. 3).

[Cha+19] Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, and Oren
Weimann. „Almost Optimal Distance Oracles for Planar Graphs“. In: Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on Theory of Com-
puting. STOC 2019. Phoenix, AZ, USA: Association for Computing Ma-
chinery, 2019, pp. 138–151. isbn: 9781450367059 (cit. on p. 3).

[Cha12] Timothy M. Chan. „All-pairs shortest paths for unweighted undirected
graphs in o(mn) time“. In: ACM Trans. Algorithms 8.4 (2012), 34:1–34:17
(cit. on p. 4).

[Che12] Shiri Chechik. „Improved Distance Oracles and Spanners for Vertex-Labeled
Graphs“. In: Algorithms – ESA 2012. Ed. by Leah Epstein and Paolo Fer-
ragina. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 325–336.
isbn: 978-3-642-33090-2 (cit. on p. 8).

[CX00] Danny Z. Chen and Jinhui Xu. „Shortest Path Queries in Planar Graphs“.
In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory
of Computing. STOC 2000. Portland, Oregon, USA: Association for Com-
puting Machinery, 2000, pp. 469–478. isbn: 1581131844 (cit. on p. 3).

[Czu84] Emanuel Czuber. Geometrische Wahrscheinlichkeiten und Mittelwerte. 1884
(cit. on p. 22).

[DI04] Camil Demetrescu and Giuseppe F Italiano. „A new approach to dynamic
all pairs shortest paths“. In: Journal of the ACM (JACM) 51.6 (2004),
pp. 968–992 (cit. on pp. 15–17).

[DI06] Camil Demetrescu and Giuseppe F Italiano. „Fully dynamic all pairs short-
est paths with real edge weights“. In: Journal of Computer and System
Sciences 72.5 (2006), pp. 813–837 (cit. on p. 15).

[Dji96] Hristo Djidjev. „On-Line Algorithms for Shortest Path Problems on Planar
Digraphs“. In: Proceedings of the 22nd International Workshop on Graph-
Theoretic Concepts in Computer Science. WG 1996. Berlin, Heidelberg:
Springer-Verlag, 1996, pp. 151–165. isbn: 3540625593 (cit. on p. 3).

[Dri+89] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan.
„Making data structures persistent“. In: Journal of Computer and System
Sciences 38.1 (1989), pp. 86–124. issn: 0022-0000 (cit. on p. 12).

[Erd65] P Erdös. „On some extremal problems in graph theory“. In: Israel Journal
of Mathematics 3.2 (June 1965), pp. 113–116. issn: 0021-2172 (cit. on p. 3).

28



[ES81] Shimon Even and Yossi Shiloach. „An on-line edge-deletion problem“. In:
Journal of the ACM (JACM) 28.1 (1981), pp. 1–4 (cit. on pp. 15–17, 19).

[FR06] Jittat Fakcharoenphol and Satish Rao. „Planar graphs, negative weight
edges, shortest paths, and near linear time“. In: Journal of Computer and
System Sciences 72.5 (Aug. 2006), pp. 868–889. issn: 00220000 (cit. on
p. 3).

[Gaw+18a] Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren
Weimann. „Voronoi Diagrams on Planar Graphs, and Computing the Diam-
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Appendix B starts from the next page, and includes the ArXiV version of the ISAAC
2021 accept “Truly Subquadratic Exact Distance Oracles with Constant Query”, see
https://doi.org/10.48550/arXiv.2009.14716.
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1 Introduction

Efficiently answering shortest path distance queries between pairs of vertices in a graph is a fun-
damental algorithmic problem with numerous important applications. Given an n-vertex graph
G = (V,E) a distance oracle is a compact data-structure capable of efficiently answering shortest
path distance queries between pairs of vertices u, v ∈ V . Ideally one would like the data structure
to be of linear size and the query time to be constant. However, it is well known that there are
graphs for which no distance oracle with o(n2) bits of space and O(1) query time exists. In fact,
even resorting to approximation, Pǎtraşcu and Roditty [20] showed that there are sparse graphs on
O(n polylog n) edges for which constant query-time distance oracles with stretch less than 2 must
be of size Ω(n2 polylog n), assuming the set intersection conjecture. These impossibility results
make it natural to consider the probelms in restricted classes of graphs.

In this paper we consider exact distance oracles for planar graphs. Distance oracles for planar
graphs are well motivated by important real-world applications, notably in routing, navigation
of road and sea maps as well as in the context of computational geometry. To the best of our
knowledge there are no non-trivial lower bounds for (static) distance oracles for planar graphs,
and thus achieving the “holy grail” of a linear-size distance oracle with constant query time may
be possible. Indeed, there has been numerous works over at least three decades developing exact
distance oracles for planar graph [10, 2, 3, 8, 11, 18, 19]. However, only recently Cohen-Addad et
al. [9] gave the first oracle with truly subquadratic space and polylogarithmic query time. Their
result was inspired by Cabello’s [4] breakthrough result, who gave the first truly sub-quadratic
time algorithm for computing the diameter of planar graphs by a novel use of Voronoi diagrams.
The approach of [9] was subsequently improved by [12, 7], who gave an elegant point-location
mechanism for Voronoi diagrams in planar graphs, and combined it with a clever recursive scheme
to obtain exact distance oracles for directed weighted planar graphs with O(n1+ε polylog n) space
and O(log1/ε n) query time for any small constant ε. We note that even though the oracle of [7] gets
quite close to optimal, it remains wide open to support exact queries in constant time using truly
subquadratic space, even in the most basic case of unweighted undirected planar graphs [25, 5, 24].

Allowing approximate answers does help in planar graphs. Many results reporting (1 + ε)-
approximate distances with various tradeoffs exist, all with (nearly) linear size and polylogarithmic,
or even O(1/ε) query-time [23, 15, 14, 26]. Gu and Xu[13] presented a size O(n polylog n) distance
oracle capable of reporting (1 + ε)-approximate distances in time O(1). While their query time
is a constant independent of ε, the preprocessing time and space are nearly linear, but with an
exponential dependency on (1/ε). This exponential dependency was recently improved to polyno-
mial [6].

Thus, despite the large body of work on distance oracles for planar graphs, it has remained an
open question to determine whether an exact distance oracle with of size O(n2−ε) with constant
query-time can be constructed for some constant ε > 0.

Our results and techniques. We answer this question in the affirmative. Our result is presented
in the following theorem:

Theorem 1. Let G = (V,E) be an undirected unweighted n-vertex planar graph. For any ε > 0
there exists a data-structure requiring O(n5/3+ε) space that, for any s, t ∈ V , reports the shortest
path distance between s and t in G in time O(log(1/ε)).
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We remark that the simple distance oracle we present in Section 4 can be distributed into
a distance labeling scheme with size O(n3/4) per label, such that the distance between any two
vertices s, t can be computed in O(1) time given just the labels of s and t.

The main concept we use to obtain our result is that of a pattern capturing distances between
a vertex and a cycle. This concept was used by [25] , and weas called “distance tuple” by and
[17]. Consider a vector storing the distances from a vertex u to the vertices of a cycle β in their
cyclic order. The pattern of u w.r.t. β is simply the discrete derivative of this vector. That is, the
vector obtained by taking the difference between every pair of consecutive values. Li and Parter [17]
observed that when the input graph is planar, the number of different patterns w.r.t. a face with r
vertices is O(r3) regardless of the size of the graph. We next outline how this observation can be
used to break the quadratic space barrier.

Roughly speaking, any planar graph can be decomposed into O(n/r) subgraphs, called regions,
of size r each, where the boundary of each region (i.e., the vertices that have neighbors outside
the region) is a single cycle h.1 Applying Li and Parter’s observation in this setting, the number
of different patterns for the hole of each region R is O(r3). Hence, we can represent the distances
from any vertex s /∈ R to h by just storing the distance from s to an arbitrarily chosen canonical
vertex vh of h, and a pointer to the pattern of s with respect to h. This requires just O(n) space
plus O(r3 ·r) for storing all the patterns for h. Summing over all O(n/r) regions, the space required
is O(n2/r + nr3). We define the notion of distance from a pattern to a vertex (see Definition 2).
While this definition is simple, it is somewhat unnatural because the distance from a pattern to a
vertex does not necessarily correspond to the length of any specific path in the graph! However,
the distance between s and any vertex t ∈ R is just the sum of the distance between s and the
canonical vertex vh and the distance from the pattern of s with respect to h to t.

We therefore store the distances from each of the O(r3) possible patterns of R to each vertex
of R. This requires O(r3 · r) space per region, so O(nr3) space overall. This way we can report
the distance between s and t in constant time by (i) retrieving the pattern p of s w.r.t. h, and (ii)
adding the distance from s to the canonical vertex vh of h and the distance from the pattern p to t.
These ideas alone already imply an oracle with space Õ(n7/4) and constant query time. Combining
these ideas with recursion yields the improved space bound of Theorem 1.

As we argued in the introduction, breaking the quadratic space barrier for constant query time
is important and significant result in its own right. We highlight the following difference between
the approach taken in our recursive oracle and the approaches used in all existing distance oracles
we are aware of. To the best of our knowledge, all existing distance oracles, both exact and
approximate, and both for general graphs and planar graphs, recover the distance from s to t by
identifying a vertex or vertices on some (possibly approximate) shortest path between s and t, for
which distances have been stored in the preprocessing stage. These vertices are usually referred
to as landmarks, portals, hubs, beacons, seeds, or transit nodes [22]. Our oracle, on the other
hand, reports the exact shortest path without identifying vertices on the shortest path from s to
t. Instead, it ”zooms in” on t by recovering distances to the canonical vertices of a sequence of
subgraphs of decreasing size that terminates at a constant size graph containing t. We emphasize
that none of these canonical vertices necessarily lies on a shortest path from s to t. This property
may be viewed as a disadvantage if we also want to report the shortest path, but when reporting

1In fact, a constant humber of cycles. To readers familiar with the concept, this is just an r-division with a few
holes, but without the important feature that each region has just O(

√
r) boundary vertices. This is because one

cannot triangulate unweighted graphs without changing the distances.
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multiple edges on long paths, constant query time is no longer relevant. On the other hand, it may
be that just reporting the distance is easier than also reporting an internal vertex on a shortest
path. Hence, it may be that developing oracles based on this new approach may lead to further
advances on the way to linear size distance oracles for planar graphs with constant query time, and
in other related problems.

2 Preliminaries

Let G be a graph. We denote by V (G) and E(G) the vertex and edge-set of G, and denote by
n = |V (G)| the number of vertices of G. For a subset S of edges or vertices we denote by G[S] the
subgraph of G induced on S. We denote by u  H v a shortest path from u to v in the subgraph
H, by dH(u, v) the length of u H v, and define u v ≡ u G v.

The following definitions will be useful when talking about decompositions of G. A region R of
G is an edge-induced subgraph of G, and its boundary ∂R is the vertices of R that are adjacent to
some vertex of V (G) \ V (R) in G. Vertices of V (R) \ ∂R are called interior vertices of R. Observe
that for a region R and for u ∈ R and v ∈ V \V (R), any path from u to v in G must intersect ∂R.

It will be useful to assume some global strict order on a vertex set V s.t. for any U ⊆ V there
is a minimum vertex minU ∈ U w.r.t this order. We refer to this as the canonical vertex of U .

Faces and holes: We assume the reader is familiar with the the basic definitions of planarity
and of planar embeddings. The edges of a plane graph induce maximal open portion of the plane
that do not intersect any edges. A face of the graph is the closure of one such portion of the plane.
We refer to the edges bounding a face as the boundary of that face. Given a face f , V (f) is the
set of vertices on the boundary of f . We denote by w(f) the facial walk of f which is the sequence
of vertices encountered when walking along f starting at minV (f) and going in the clockwise
direction. Note that f may be non-simple, so some vertices may appear multiple times in w(f).

A hole h in a region R of a graph G is a face of R which is not a face in G. We say that a
vertex u ∈ V (G) \ V (R) is inside hole h if u lies in the region of the plane corresponding to the
face h of R. We denote by V ◦(h) = {u ∈ V (G) | u is inside h} all the vertices that are inside h.

Decompositions of unweighted planar graphs. An r-division is a widely used decomposition
of planar graphs into regions with small boundary. We use the r-divisions with a few holes as studied
in [16], which works for triangulated biconnected graphs:

Lemma 1. (r-division with few holes for triangulated graphs [16]) Let G be a biconnected, trian-
gulated n-vertex planar embedded graph, and let 0 < r ≤ n. G can be decomposed into Θ(n/r)
connected regions, each of which with O(r) vertices and O(

√
r) boundary vertices. Each region has

a constant number of holes. Every boundary vertex lies on some hole, and each hole has O(
√
r)

vertices.

The fact that the boundaries of regions are small (only O(
√
r) boundary vertices for a region

with r vertices) is the basis for many efficient algorithms and data structures for planar graphs.
Unweighted planar graphs posses additional structure (in comparison to weighted planar graphs),
which may also be useful algorithmically. See for example the unit-Monge property in [1], or the
limited number of patterns [25, 17], which we use in this work. However, exploiting such additional
structure in conjunction with a decomposition into regions with small boundaries has been elusive
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because of the seemingly technical requirement in Lemma 1 that the graph be triangulated and
biconnected.

Any graph can be triangulated and biconnected by adding to each face f an artificial vertex
and infinitely weighted artificial edges from the artificial vertex to each vertex of V (f). This
transformation preserves planarity and shortest paths, and ensures that the graph consists only of
simple faces of size 3. However, the graph is no longer unweighted. We refer to an artificial vertex
(edge) of G as a vertex (edge) which was added in the triangulation step, and a natural vertex (edge)
of G as a vertex (edge) which is not artificial. In order to exploit the structure of the unweighted
input graph we will remove the artificial edges and vertices after computing the decomposition using
Lemma 1. On the one hand the graph is again unweighted. On the other hand, while the number
of boundary vertices in each region remains O(

√
r), the holes may now contain new non-boundary

vertices, and the total size of the holes in each region may be Θ(r). We note, however, that the
deletion of artificial edges and vertices does not disconnect regions [16]. We therefore restate the
decomposition lemma for unweighted graphs that are not necessarily triangulated or biconnected.

Lemma 2. (r-division with few holes for non-triangulated graphs) Let G be a n-vertex planar
embedded graph G, and let 0 < r ≤ n. G can be decomposed into Θ(n/r) connected regions, each
of which with O(r) vertices and O(

√
r) boundary vertices. Each region has a constant number of

holes, and each boundary vertex lies on some hole.

Recursive r-divisions. Our second construction relies on a recursive r-division which is a re-
cursive decomposition of G into r-divisions for varying values of r. Specifically, for a decreasing
sequence r = r1, r2, . . ., where n ≥ r1 > r2 > . . . ≥ 1, we want ri-divisions for all i = 1, 2, . . ., such
that each region in the ri division is the union of regions in the ri+1-division on the next level.
We associate with the recursive r-division a decomposition tree, Tr, which is a rooted tree whose
nodes correspond to the regions of the recursive decomposition of G. We will refer to nodes and
their corresponding regions interchangeably. The root node corresponds to all of G. A node x
of Tr at depth i corresponds to a region of the ri-division, and its children are the regions of the
ri+1-division whose union is the region corresponding to x. We denote by T i

r all the nodes at level
i. It was shown in [16] that recursive r-divisions can be computed efficiently:

Lemma 3. (Recursive r-division) Given a biconnected, triangulated n-vertex planar graph G and
an exponentially decreasing sequence r = n ≥ r1, r2, . . . ≥ 1, a decomposition tree, Tr can be
computed in linear time s.t T i

r corresponds to an ri-division of G with few holes for each i.

3 Patterns

Both [25] and [17] introduce a notion of a “distance tuple” which can be thought of as a vector
of shortest-path distances from a vertex to consecutive vertices of some hole. We introduce the
following similar notion of a pattern (See Figure 1 for an illustration):

Definition 1. (Pattern) Let G be a graph. Let H be a subgraph of G. Let u be a vertex in H, and let
β = b0, b1, . . . , bk be a path in H. The pattern of u (w.r.t. β in H) is a vector pβ,H(u) ∈ {−1, 0, 1}k
satisfying pβ,H(u)[i] = dH(u, bi)− dH(u, bi−1) for 1 ≤ i ≤ k. For a region R in G, a hole h of R,
and a vertex u ∈ V ◦(h), we write ph,G(u) instead of pw(h),G(u).
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pf∗ (s) = [0, 0, 1, 1,−1, 0, ...]

G

SP tree from S in G

10

f∗

Figure 1: Illustration of the pattern of the vertex s w.r.t. f∗ in an undirected graph. In this case
f∗ is the external face of the embedding. The numeric labels indicate the shortest path distances
from s to each bi where bi ∈ V (f∗) for 1 ≤ i ≤ 6.

Definition 2. (pattern to vertex distance) Let R be a region in a graph G. Let h be a hole of R.
Let b0, b1, . . . , bk be the vertices of w(h) in their cyclic order. Let p be some pattern w.r.t. h (i.e.,
p = ph(u) for some u ∈ V ◦(h)). For a vertex v ∈ R we define dG(p, v) the distance between p and

v to be minki=0

{
dG(bi, v) +

∑i
j=0 p[j]

}
.

Lemma 4. Let R be a region of a graph G. Let h be a hole of R. For every u ∈ V ◦(h) and every
v ∈ R, dG(u, v) = dG(u, b0) + dG(ph(u), v)).

Proof. By definition of pattern and by a telescoping sum, for every 0 ≤ i ≤ k, dG(u, bi) =
dG(u, b0) +

∑i
j=0 p[j]. Let bℓ be any vertex of w(h) on a shortest u-to-v path (bℓ exists since u ∈

V ◦(h) and v ∈ R). By choice of bℓ, dG(u, v) = dG(u, bℓ)+dG(bℓ, v) = min0≤i≤k {dG(u, bi) + dG(bi, v)} =
min0≤i≤k

{
dG(u, b0) +

∑i
j=0 p[j] + dG(bi, v)

}
= dG(u, b0) + dG(p, v).

Bounding the number of patterns As mentioned, In a recent paper, Li and Parter [17]
achieve improved bounds for diameter computation for planar graphs by showing that in unweighted
undirected planar graphs the number of patterns is quite small. More specifically, they show that the
VC-dimension of a set corresponding to all patterns is at most 3. By the Sauer-Shelah lemma [21],
this implies that the number of distinct patterns w.r.t. a face f is in O(|S|3). Their result is stated
in the following lemma:

Lemma 5. (Pattern compression) [17] Let G′ = (V,E) be an n-vertex unweighted undirected planar
graph, let f be a face in G′, and let S be a set of consecutive vertices on f . Then the number of
distinct patterns w.r.t. S, | ∪u∈V

{
pS,G′(u)

}
|, is bounded by O(|S|3).

We observe that the bound of Lemma 5 also holds for patterns w.r.t. the entire set of vertices
on a hole h of a region R even when distances are defined in the entire graph G.

Corollary 1. Let R be a region in an n-vertex unweighted undirected planar graph G, and let h
be a hole of R. Then the number of distinct patterns w.r.t. h, | ∪u∈V ◦[h] {ph,G(u)} |, is bounded by
O(|h|3).
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Proof. Since h is a hole of R, h is a face of G− (R−h). By Lemma 5, |∪v∈V ◦[h]
{
ph,G−(R−h)(v)

}
| =

O(|h|3). The corollary follows since for every two vertices u, u′ ∈ V ◦(h), ph,G−(R−h)(u) = ph,G−(R−h)(u
′)

implies ph,G(u) = ph,G(u
′).

For the remainder of the paper we only deal with distances in G and with patterns in G, so we
will omit the subscript G, and write d(·, ·) and ph(·) instead of d(·, ·) and ph,G(·).

4 O(n7/4) space distance oracle

Before presenting our main result, we describe a simpler construction which yields a distance oracle
with a larger space requirement of O(n7/4) and O(1) query time:

Preprocessing. The preprocessing consists of computing an r-division R of G with a parameter
r to be determined later. For every vertex v of G and every region R of R, we store the hole h of
R s.t. v is in V ◦(h). This requires O(n · n/r) = O(n2/r) space.

For every region R ∈ R, for every hole h of R, we maintain the O(r3) patterns of the vertices
in V ◦(h) w.r.t. h as follows. Let k denote the size of the boundary walk w(h) of h. let vh be the
canonical (i.e., first) vertex of w(h). We maintain the patterns seen so far in a ternary tree A whose
edges are labeled by {−1, 0, 1}. The depth of A is k−1, and the labels along each root-to-leaf path
correspond to a unique pattern, which we associate with that leaf. For every vertex v ∈ V ◦(h),
we compute the pattern ph(v) and we make sure that ph(v) is represented in the tree A by adding
the corresponding labeled edges that are not yet present in A. After all the vertices in V ◦(h) were
handled, the tree A has O(r3) leaves. For each leaf of A with an associated pattern p, we compute
and store (i) the distance from p to each vertex of R. This requires O(r4) time and space for all
leaves of A, so a total of O(n/r · r4) = O(nr3) space for storing all this information over all regions.

For each vertex v ∈ V ◦(h) we store (ii) a pointer to (the leaf of A that is associated with) the
pattern ph,G(v), as well as (iii) the distance d(v, vh) between v and the canonical vertex of h. The
total space required to store all these pointers and distances is O(n · n/r) = O(n2/r).

To complete the preprocessing we also store (iv) for each region R ∈ R, the distance d(u, v) for
all pairs of vertices u, v ∈ R. This takes O(n/r · r2) additional space, which is dominated by the
above terms.

The total space required by the oracle is thus O(n2/r)+O(nr3). This is minimized for r = n1/4,
resulting in an O(n7/4)-space data structure.

We note that once this information has been computed we no longer need to store the entire
tree A. Rather, it suffices to only store just the list of leaves of A and the distances stored with
each of them. In particular, we no longer need to remember what is the actual pattern associated
with each leaf, we only need to know the distances from this pattern to the vertices of the region
R. In the current scheme this has no asymptotic effect on the size of the data structure, since each
pattern is of size O(r), and we anyway store the O(r) distances from each pattern to all vertices of
R. However, in the recursive scheme in the next section this observation will become useful.

Query. To answer a query for the distance between vertices s and t we proceed as follows. If s
and t are in the same regions, we simply return the distance d(s, t) stored in item (iv). Otherwise,
let R be the region containing t, and let h be the hole of R such that s ∈ V ◦(h). Let vh be
the canonical vertex of h. We return d(s, vh) + d(ph,G(s), t). The correctness is immediate from
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Lemma 4. We note that d(s, vh) is stored in item (iii), a pointer to ph,G(s) is stored in item (ii),
and d(ph,G(s), t) is stored in item (i). The query is illustrated in Figure 4.

s

bl

t
s →G bl

bl → Rt

R

vh

s →G vh

Figure 2: Illustration of the query in Section 4. By Lemma 4 the query returns d(s, b0)+dR(p, t) =
d(s, bℓ) + dR(bℓ, t) = d(s, t) where bℓ is some boundary vertex of R on s t.

As aforementioned this oracle can be distributed into a distance labeling of size O(n3/4) per
label such that the distance between any two vertices s, t can be computed in O(1) time given just
the labels of s and t.

5 O(n5/3+ε) space distance oracle

A bottleneck in the above approach comes from having to store, for each pattern p of a hole h of a
region R, the distances from p to all vertices of R. Instead, we use a recursive r-division, in which
we store for p, only the distances to the canonical vertex of a hole h′ of each child region R′ of R
instead of all the vertices in the region. For this information to be useful we also store the pattern
induced by p on the hole h′, which is defined as follows.

Definition 3. (Pattern induced by a pattern) Let R be a region in a graph G. Let h be a hole of
R and ph be a pattern of h (w.r.t. a vertex or another pattern). Let R′ be a child region of R. Let
vh′ = b0, b1, . . . , bk be the vertices of the boundary walk of a hole of h′ of R′. The pattern induced
by ph on h′ is the vector ph′ satisfying ph′ [i] = d(p, bi)− d(p, bi−1) for 1 ≤ i ≤ k.

Lemma 6. Consider the settings of Definition 3. If ph = ph(u) for some u ∈ V ◦(h), then ph′ =
ph′(u).

Proof. By Lemma 4, for every 0 ≤ i ≤ k, d(u, bi) − d(u, vh) = d(p, bi). Hence for all 1 ≤ i ≤ k,
ph′ [i] = d(p, bi) − d(p, bi−1) = d(u, bi) − d(u, vh) − (d(u, bi−1) − d(u, vh)) = d(u, bi) − d(u, bi−1),
which is, by definition, ph′(u)[i].

Preprocessing. We first compute a r = (r0, r1, . . . , rk, rk+1)-division of G for r to be determined
later, and denote by Tr the associated decomposition tree. For convenience, we let r0 = n, rk+1 = 1
and define C(R) = {R′ | R′ is a child of R in Tr}. In the following we let Ph denote the set {ph(u) :
u ∈ G}. We store the following:

1. For each u ∈ V (G) we store a list of regions R0 ⊃ R1 ⊃ · · · ⊃ Rk containing u, where Ri ∈ T i
r .

(Recall that T i
r is the set of all nodes of Tr at level i).
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2. For each u ∈ G, for each 0 ≤ i ≤ k − 1, for each region R ∈ T i
r containing u, for each child

region R′ ⊂ R at level-(i + 1), let h be the hole of R′ such that u ∈ V ◦(h). We associate
with the pair (u,R′) (i) a pointer to ph(u), (ii) the canonical vertex vh, and (ii) the distance
d(u, vh)).

3. For each 1 ≤ i ≤ k, for each R ∈ T i
r , for each hole h in R, for each p ∈ Ph and for each

R′ ∈ C(R), let h′ be the hole of R′ such that vh ∈ V ◦(h′). We associate with the pair (p,R′)
(i) a pointer to the pattern ph′(p) induced by p on h′, (ii) the canonical vertex vh′ , and (iii)
the distance d(p, vh′)).

Space analysis. Storing 1 requires space O(kn). To bound the space for item 2, we note that
the number of regions at level i to which a vertes u belongs is bounded by the degree of u. Since
the average vertex degree in a planar graph is at most 6, the average number of regions at level
i to which u belongs is at most 6. Each such region has ri/ri+1 subregions at level-(i + 1), so
storing 2 requires space O(n

∑k−1
i=0 ri/ri+1) = O(n2/r) + O(n

∑k−1
i=1 ri/ri+1). Storing 3 requires

space O(
∑k

i=1(n/ri) · r3i · ri/ri+1) = O(n
∑k

i=1 r
3
i /ri+1). The total space is thus, O(nk + n2/r +

n
∑k

i=1 r
3
i /ri+1).

Query. Algorithm 1 show pseudocode describing the query procedure. To process a query d(s, t)
the query procedure first determines the largest value i for which s and t belong to the same region
in T i

r . Note that such a region must always exists as the root of Tr is all of G. This level can
be found in O(k) time by traversing Tr, starting from a leaf region containing s and a leaf region
containing t.

Let Rt be the level-(i + 1) region stored for t in item 1. Note that, t ∈ Rt, and, by choice of i,
s /∈ Rt. Hence, s is in some hole h of Rt. We retrieve the pattern ph(s) and the distance d(s, vh)
associated with (s,Rt) in item 2. We then proceed iteratively ”zooming” into increasingly smaller
regions containing t.

We show that the algorithm maintains the invariant that, at the beginning of each iteration, we
have a level-i region Rt containing t, the variable d stores d(s, vh), where h is the hole of Rt such
that s ∈ V ◦(h), and the variable p stores (a pointer) to the pattern ph(t). Thus, when we reach
the singleton region containing t, the variable d stores d(s, t).

Algorithm 1 Query procedure for the O(n5/3+ε) construction.

1: procedure Query(s, t)
2: i← the largest i s.t. the region Ri stored in item 1 for t contains both s and t
3: Rt ← level (i+ 1) region stored in item 1 for t
4: (p, d)← the tuple associated with (s,Rt)
5: i← i+ 1
6: while i ≤ k do
7: R′

t ← level (i+ 1) subregion of Rt stored in item 1 for t
8: (p′, d′)← the tuple associated with (p,R′

t)
9: d← d+ d′ ; p← p′ ; Rt ← R′

t ; i← i+ 1

10: return d
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We have already established that the invariant is maintained just before the loop is entered for
the first time. In each iteration of the loop we retrieve R′

t, a level-(i+1) subregion or Rt containing
t (available in item 1), and retrieve d′ ← d(p, vh′) and p′ ← ph′(p) (associated with the pair (p,R′

t)
in item 3). By Lemma 4, d + d′ = d(s, vh) + d(ph(u), vh′) = d(s, vh′). By Lemma 6, p′ = ph′(t).
Hence, after the assignements in Line 9, the invariant is restored.

The time complexity of the query is clearly O(k).

Choosing parameters: Recall that the space requirement is O(nk + n2/r + n
∑k

i=1 r
3
i /ri+1).

Picking each ri s.t. ri/ri+1 = rε1 results in rk = Θ(1) when k = Θ(1/ε), and in a query time of
O(1/ε). Choosing r1 = n1/3+ε, the total space used becomes

O

(
n

k∑

i=1

r3i /ri+1

)
= O(nr21r

ε
1) = O(n1+2/3+2ε+ε/3+ε2) = O(n5/3+ε′)

for a suitable choice of ε′.
One can decrease the sizes of regions more aggressively to get the query time of k = O(log(1/ε))

of Theorem 1. To this end we choose r such that r3i /ri+1 = n2/3+ε, and r1 = n1/3. Then the
space requirement is O(n5/3 + nkn2/3+ε) = O(kn5/3+ε). It is not hard to verify that one gets

ri = O(n1/3−ε 3i−2−1
2 ), so rk = O(1) with k = O(log(1/ε)).

As a last remark we note that the smallest interesting choice of ε in Theorem 1 is Θ(1/ log n),
giving O(n5/3) space and O(log log n) query-time, which is a faster query-time than was previously
known for this amount of space [9, 7].

References

[1] A. Abboud, P. Gawrychowski, S. Mozes, and O. Weimann. Near-Optimal Compression for
the Planar Graph Metric. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 530–549. Society for Industrial and Applied Mathematics,
Philadelphia, PA, jan 2018.

[2] S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and C. D. Zaroliagis. Planar spanners
and approximate shortest path queries among obstacles in the plane. In J. Diaz and M. Serna,
editors, Algorithms — ESA ’96, pages 514–528, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg.

[3] S. Cabello. Many Distances in Planar Graphs. Algorithmica, 62(1-2):361–381, feb 2012.

[4] S. Cabello. Subquadratic Algorithms for the Diameter and the Sum of Pairwise Distances in
Planar Graphs. ACM Transactions on Algorithms, 15(2):1–38, dec 2018.

[5] T. M. Chan. All-pairs shortest paths for unweighted undirected graphs in o(mn) time. ACM
Trans. Algorithms, 8(4):34:1–34:17, 2012.

[6] T. M. Chan and D. Skrepetos. Faster Approximate Diameter and Distance Oracles in Planar
Graphs. Algorithmica, 81(8):3075–3098, aug 2019.

9



[7] P. Charalampopoulos, P. Gawrychowski, S. Mozes, and O. Weimann. Almost optimal distance
oracles for planar graphs. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, pages 138–151, New York, NY, USA, 2019. Association for
Computing Machinery.

[8] D. Z. Chen and J. Xu. Shortest path queries in planar graphs. In Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, STOC 2000, pages 469–478, New
York, NY, USA, 2000. Association for Computing Machinery.

[9] V. Cohen-Addad, S. Dahlgaard, and C. Wulff-Nilsen. Fast and Compact Exact Distance Oracle
for Planar Graphs. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 962–973. IEEE, oct 2017.

[10] H. Djidjev. On-line algorithms for shortest path problems on planar digraphs. In Proceedings
of the 22nd International Workshop on Graph-Theoretic Concepts in Computer Science, WG
1996, pages 151–165, Berlin, Heidelberg, 1996. Springer-Verlag.

[11] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths, and near
linear time. Journal of Computer and System Sciences, 72(5):868–889, aug 2006.

[12] P. Gawrychowski, S. Mozes, O. Weimann, and C. Wulff-Nilsen. Better tradeoffs for exact
distance oracles in planar graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, pages 515–529, USA, 2018. Society for In-
dustrial and Applied Mathematics.

[13] Q. Gu and G. Xu. Constant query time (1+ ǫ) -approximate distance oracle for planar graphs.
In 26th ISAAC, pages 625–636, 2015.

[14] K.-i. Kawarabayashi, P. N. Klein, and C. Sommer. Linear-Space Approximate Distance Oracles
for Planar, Bounded-Genus, and Minor-Free Graphs. apr 2011.

[15] P. Klein. Preprocessing an undirected planar network to enable fast approximate distance
queries. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’02, pages 820–827, USA, 2002. Society for Industrial and Applied Mathematics.

[16] P. N. Klein, S. Mozes, and C. Sommer. Structured recursive separator decompositions for
planar graphs in linear time. In Proceedings of the 45th annual ACM symposium on Symposium
on theory of computing - STOC ’13, page 505, New York, New York, USA, 2013. ACM Press.

[17] J. Li and M. Parter. Planar diameter via metric compression. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, pages 152–163, New York,
NY, USA, 2019. Association for Computing Machinery.

[18] S. Mozes and C. Sommer. Exact distance oracles for planar graphs. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pages
209–222, USA, 2012. Society for Industrial and Applied Mathematics.

[19] Y. Nussbaum. Improved distance queries in planar graphs. In Proceedings of the 12th Inter-
national Conference on Algorithms and Data Structures, WADS 2011, pages 642–653, Berlin,
Heidelberg, 2011. Springer-Verlag.

10
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Near-Optimal Distance Oracles for Vertex-Labeled Planar

Graphs
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Abstract

Given an undirected n-vertex planar graph G = (V,E, ω) with non-negative edge weight
function ω : E → R and given an assigned label to each vertex, a vertex-labeled distance
oracle is a data structure which for any query consisting of a vertex u and a label λ reports
the shortest path distance from u to the nearest vertex with label λ. We show that if there
is a distance oracle for undirected n-vertex planar graphs with non-negative edge weights
using s(n) space and with query time q(n), then there is a vertex-labeled distance oracle
with Õ(s(n))1 space and Õ(q(n)) query time. Using the state-of-the-art distance oracle
of Long and Pettie [12], our construction produces a vertex-labeled distance oracle using
n1+o(1) space and query time Õ(1) at one extreme, Õ(n) space and no(1) query time at the
other extreme, as well as such oracles for the full tradeoff between space and query time
obtained in their paper. This is the first non-trivial exact vertex-labeled distance oracle for
planar graphs and, to our knowledge, for any interesting graph class other than trees.
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1We use Õ-notation to suppress poly(logn)-factors.
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1 Introduction

Efficiently answering shortest path distance queries between pairs of vertices in a graph is a fun-
damental algorithmic problem with a wide range of applications. An algorithm like Dijkstra’s
can answer such a query in near-linear time in the size of the graph. If we allow for precom-
putations, we can break this bound, for instance by simply storing the answers to all possible
queries in a look-up table. However, a fast query time should preferably not come at the cost
of a large space requirement. A distance oracle is a compact data structure that can answer a
shortest path distance query in constant or close to constant time.

A lot of research has focused on approximate distance oracles which allow for some approx-
imation in the distances output. This is reasonable since there are graphs for which the trivial
look-up table approach is the best possible for exact distances. However, for restricted classes
of graphs, it may be possible to obtain exact oracles with a much better tradeoff between space
and query time. Indeed, for any planar n-vertex digraph, there is an exact distance oracle with
space close to linear in n and query time close to constant [7, 2, 12].

A related problem is that of obtaining a vertex-labeled distance oracle. Here, we are given
a graph with each vertex assigned a label. A query consists of a pair (u, λ) of a vertex u and a
label λ and the output should be the distance from u to the nearest vertex with label λ. Each
vertex is given only one label but the same label may be assigned to multiple vertices. To give
some practical motivation, if the graph represents a road network, a label λ could represent
supermarkets and the output of query (u, λ) gives the distance to the nearest supermarket from
the location represented by u.

Note that this is a generalization of the distance oracle problem since vertex-to-vertex distance
queries can be answered by a vertex-labeled distance oracle if each vertex is given its own unique
label. If L is the set of labels, a trivial vertex-labeled distance oracle with constant query time
is a look-up table that simply stores the answers to all possible queries, requiring space O(n|L|).
This bound can be as high as quadratic in n.

Our main result, which we shall state formally later in this section, is that for undirected
edge-weighted planar graphs, the vertex-labeled distance oracle problem can be reduced to the
more restricted distance oracle problem in the sense that up to log n-factors, any space/query
time tradeoff for distance oracles also holds for vertex-labeled distance oracles. Hence, the
tradeoff from [12] translates to vertex-labeled distance oracles, assuming that the planar graph
is undirected. To the best of our knowledge, this is the first non-trivial upper bound for vertex-
labeled distance oracles in any interesting graph class other than trees [8, 15]. A strength of our
result is that any future progress on distance oracles in undirected planar graphs immediately
translates to vertex-labeled distance oracles.

1.1 Related work on vertex-labeled distance oracles

Vertex-labeled distance oracles have received considerably more attention in the approximate
setting. With (1 + ε) multiplicative approximation, it is known how to get Õ(n) space and Õ(1)
query time both for undirected [11] and directed planar graphs [13] and it has been shown how
oracles with such guarantees can be maintained dynamically under label changes to vertices
using Õ(1) time per vertex relabel.

For general graphs, vertex-labeled distance oracles with constant approximation have been
presented [9, 3, 14] with state of the art being an oracle with O(kn|L|1/k) space, 4k − 5 multi-
plicative approximation, and O(log k) query time, for any k ∈ N.

1.2 Our contributions

We now state our reduction and its corollary:

Theorem 1. If there is an exact distance oracle for n-vertex undirected edge-weighted pla-
nar graphs with s(n) space, q(n) query time, and t(n) preprocessing time, then there exists
an exact vertex-labeled distance oracle for such graphs with s(n) + O(n log2 n) space, and with
O(q(n) log n+ log3 n) query time, and t(n) + poly(n) preprocessing time.
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Plugging in the distance oracle of Long and Pettie et al. [12] gives the following corollary
which can be seen as a generalization of their result:

Corollary 1. For n-vertex undirected edge-weighted planar graphs, there exist exact vertex-
labeled distance oracles with the following tradeoffs between space and query time:

1. n1+o(1) space and Õ(1) query time,

2. Õ(n) space and no(1) query time.

All oracles have preprocessing time polynomial in n.

Up to logarithmic factors, the full tradeoff between space and query time in their paper
similarly extends to vertex-labeled distance oracles in undirected edge-weighted planar graphs.

The rest of the paper is organized as follows. In Section 2, we introduce basic definitions and
notation and present tools from the literature that we will need for our oracle. In Section 3 we
state the key lemmas but defer their proofs until later sections, and thus immediately present our
reduction by describing how to obtain a vertex-labeled distance oracle given a distance oracle
as a black box. In Section 4, we present a point location structure similar to [7] but with some
important modifications to improve space in our setting.

2 Preliminaries

Let G = (V,E, ω) be a graph with edge weight function ω : E → R ∪ {∞}. We denote by
V (G) = V and E(G) = E the vertex and edge-set of G, respectively, and by n = |V (G)| the
number of vertices of G. A graph G′ is said to be a subgraph of G if V (G′) ⊆ V (G) and
E(G′) ⊆ E(G). We denote by u G v a shortest path from u to v in G, by dG(u, v) the weight
of u  G v, and write u  v = u  G v and d(u, v) = dG(u, v) when G is clear from context.
For a shortest path p = u v = (u = p1), p2, . . . , (pk = v) we define vertex pi to occur before pj
on p if i < j and similarly for edges pipi+1 and pjpj+1. Thus statements such as “the first/last
vertex/edge on p satisfying some property P” will always be made w.r.t. this ordering. We also
write p ◦ p′ to denote the concatenation of paths (or edges) p and p′, assuming the last vertex
of p equals the first vertex of p′. Given u, v, v′ ∈ V ; we say that v is closer than v′ to u in G if
dG(u, v) < dG(u, v′) or dG(u, v) = dG(u, v) and v < v′, assuming some lexicographic ordering
on vertices. We denote by V (p), respectively E(p), the set of vertices, respectively edges, on a
path p.

Assume in the following that G is undirected. G is said to be connected, respectively bi-
connected, if any pair of vertices are connected by at least one, respectively two, vertex-disjoint
paths. For a rooted spanning tree T in G and for any edge e = uv not in T , we define the
fundamental cycle of uv w.r.t. T as the cycle obtained as the concatenation of uv and the two
paths of T from the root to u and v, respectively.

2.1 Planar graphs and embeddings

An embedding of a planar graph G assigns to each vertex a point in the plane and to each edge
a simple arc such that its endpoints coincide with those of the points assigned to its vertices. A
planar embedding of G is an embedding such that no two vertices are assigned the same point
and such that no pair of arcs coincide in points other than those corresponding to vertices they
share. A graph is said to be planar if it admits a planar embedding. When we talk about a
planar graph we assume that it is planar embedded and hence some implicit, underlying planar
embedding of the graph. When it is clear from the context we shall refer interchangeably to
a planar graph and its embedding, its edges and arcs and its vertices and points. Thus the
term graph can refer to its embedding, an edge to its corresponding arc and a vertex to its
corresponding point in the embedding.
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Assumptions about the input Unless stated otherwise, we shall always assume that G
refers to a graph which is weighted, undirected and planar with some underlying embedding.
Furthermore, we shall make the structural assumption that G is triangulated. Triangulation can
be achieved by standard techniques, i.e. adding to each face f an artificial vertex and artificial
edges from the artificial vertex to each vertex of V (f) with infinite weight. This transformation
preserves planarity, shortest paths and ensures that the input graph consists only of simple faces.
We also assume that shortest paths in the input graph are unique; this can be ensured for any
input graph by either randomly perturbing edge weights or with e.g. the deterministic approach
in [6] which gives only an O(1)-factor overhead in running time. Finally, it will be useful to state
the following lemma when talking about separators in a graph with unique shortest paths:

Lemma 1. Let u, v, x, y ∈ V (G). Then u  v and x  y share at most one edge-maximal
subpath.

Proof. Assume that x  y intersects u  v and let a resp. b be the first resp. last intersection
along u v. Since G is undirected, uniqueness of shortest paths implies that a b is a subpath
of u v shared by x y.

Edge orderings, path turns and path intersections For an edge e = uv of a planar
embedded graph H, we let <He be the clockwise ordering of edges of H incident to v starting at
e (ignoring edge orientations). Hence <He is a strict total order of these edges and e is the first
edge in this order.

For vertices u, v ∈ V (H), x ∈ V (u v) \ {u, v} and y ∈ V (H) \ V (u v), let pq be the last
edge shared by u  v and x  y. Furthermore let qz resp. qz′ be the edge following pq in the
traversal of u v and x y, respectively. We say that x y emanates from the left of u v
if qz′ <Hpq qz, and otherwise it emanates from the right. We dually say that y  x intersects
u v from the left (right) if x y emanates from the left (right).

Given a face f of H, vertices u ∈ V (f), and v, v′ ∈ V , let H ′f be a copy of H with an artificial
vertex f∗ embedded in the interior of f along with an additional edge f∗u. Define the paths
pv = f∗u ◦ u  H′f

v and pv′ = f∗u ◦ u  H′f
v′ and assume that neither path is a prefix of

the other. By assumption and Lemma 1, pv and pv′ share exactly one edge-maximal subpath
f∗  x. We say that u  H v makes a left turn w.r.t u  H v′ from f if x  v emanates from
the left of pv, and otherwise it makes a right turn; we will omit mention of f when the context
is clear. Note that the notion of a turn is symmetric in the sense that u H v makes a left turn
w.r.t u H v′ iff u H v′ makes a right turn w.r.t u H v.

2.2 Voronoi Diagrams

The definitions in this subsection will largely be made in a manner identical to those of [7], but are
included as they are essential to a point location structure which will be presented in Section 4.
Given a planar graph G = (V,E, ω), S ⊆ V , the Voronoi diagram of S in G, denoted by VD(S)
in G is a partition of V into disjoint sets, Vor(u), referred to as Voronoi cells, with one such set
for each u ∈ S. The set Vor(u) is defined to be {v ∈ V | d(u, v) < d(u′, v) for all u′ ∈ S \ {u}},
that is the set of vertices that are closer to u than any other site in terms of d(·, ·). We shall
simply write VD when the context is clear.

It will also be useful to work with a dual representation of Voronoi diagrams. Let VD∗0 be the
subgraph of G∗ s.t. E(VD∗0) is the subset of edges of G∗ where uv∗ ∈ VD∗0 iff u and v belong to
different Voronoi cells in VD. Let VD∗1 be the graph obtained by repeatedly contracting edges of
VD∗0 incident to degree 2 vertices until no such vertex remains2. We refer to the vertices of VD∗1
as Voronoi vertices, and each face of the resulting graph VD∗1 can be thought of as corresponding
to some Voronoi cell in the sense that its edges enclose exactly the vertices of some Voronoi cell in
the embedding of the primal. We shall restrict ourself to the case in which all vertices of S lie on
a single face h. In particular, h∗ is a Voronoi vertex, since each site is a vertex on the boundary

2Formally, given a degree 2 vertex v with incident edges vw, vw′, we replace these edges by ww′, concatenate
their arcs and embed ww′ using this arc in the embedding.
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of h in the primal. Finally, let VD∗ be the graph obtained by replacing h∗ with multiple copies,
one for each edge. We note that since there are |S| Voronoi sites (and thus faces in VD∗), the
number of Voronoi vertices in VD∗ is O(|S|) due to Euler’s formula. Furthermore, [7] show that
when assuming unique shortest paths and a triangulated input graph, VD∗ is a ternary tree.
It follows that the primal face corresponding to a Voronoi vertex f∗ consists of exactly three
vertices, each belonging to different Voronoi cells. We refer to the number of sites in a Voronoi
diagram as its complexity.

Finally, they also note that a centroid decomposition, T ∗, can be computed from VD∗ s.t.
each node of T ∗ corresponds to a Voronoi vertex f∗ and the children of f∗ in T ∗ correspond to
the subtrees resulting from splitting the tree at f∗, and s.t. the number of vertices of each child
is at most a constant fraction of that of the parent. We remark that VD∗(S) can be computed
by connecting all sites to a super-source and running a single-source shortest paths algorithm,
and its centroid decomposition in time proportional to |V (VD∗(S))|.

2.3 Separators and decompositions

In the following, we will outline the graph decomposition framework used by our construction.
As part of the preprocessing step, we will recursively partition the input graph using balanced
fundamental cycle separators until the resulting graphs are of constant size. We shall associate
with the recursive decomposition of G a binary decomposition tree, T , which is a rooted tree
whose nodes correspond to the regions of the recursive decomposition of G. We will refer to
nodes and their corresponding regions interchangeably. The root node of T corresponds to all
of G. The following lemma states the invariants of the decomposition that will be used in our
construction:

Lemma 2. Let G = (V,E, ω) be an undirected, planar embedded, edge-weighted, triangulated
graph and let T be a spanning tree3 of G. Then there is an Õ(n) time algorithm that returns a
binary decomposition tree T of G s.t.

1. for any non-leaf node G′ ∈ T , its children G′l, respectively G′r corresponds to the non-strict
interior, respectively non-strict exterior of some fundamental cycle in G′ w.r.t. T ,

2. for any child node, it contains at most a constant fraction of the faces of its parent,

3. for any leaf node it contains a constant number of faces of G,

4. for all nodes at depth i, Ti,
∑
G′∈Ti |V (G′)| = O(n)

Properties 1-3 follow from recursively applying a classic linear time algorithm for finding
fundamental cycles. Property 4 follows from employing standard techniques that involve con-
tracting degree-two vertices of the separators found at each level of recursion and weighting the
resulting edges accordingly. This transformation results in a decomposition where the sum of
faces of all regions at any level is preserved. We stress that our construction does not rely on the
usual sparse simple cycle separators (of size O(

√
n)) but rather fundamental cycle separators of

size O(n).

3 The vertex labeled distance oracle

In this section we describe our reduction which shows our main result. The reduction can be
described assuming Lemma 2 and the existence of the point location structure which we will
state in the following lemma, the proof of which is deferred to Section 4:

Lemma 3. Let G = (V,E, ω) be an undirected, planar embedded, edge-weighted graph with
labeling l : V → L and let p be a shortest path in G. There is a data structure OG,p with
O(|V | log |V |) space which given u ∈ V and λ ∈ L returns a subset C ⊂ V of constant size, s.t.
if v is the vertex with label λ closest to u and v  u intersects p, then v ∈ C. Each such query
takes time at most O(log2 |V |).

3For our purposes, the spanning tree will be a shortest path tree.
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3.1 Preprocessing

Given the input graph G = (V,E, ω), the preprocessing phase initially computes the decompo-
sition tree, T , of Lemma 2. Associated with each non-leaf node G′ ∈ T is a fundamental cycle
separator of ab ∈ E(G′) w.r.t. the shortest path tree T rooted at some c ∈ V (G′). For such
a G′ we shall refer to S1(G′) = c  G′ a and S2(G′) = c  G′ b. Thus the fundamental cycle
separator is given by S1(G′) ◦ ab ◦ S2(G′). The preprocessing phase proceeds as follows: For all
non-leaf nodes G′ ∈ T , compute and store data structures OG′,S1(G′) and OG′,S2(G′) of Lemma 3.
Finally, a distance oracle D with O(s(|V |)) space capable of reporting vertex-to-vertex shortest
path distances in time O(t(|V |)) is computed for G and stored alongside the decomposition tree
and the point location structures.

Space complexity The decomposition tree T can be represented with O(|V | log |V |) space
and D with O(s(n)) space. For each node G′ ∈ T , we store data structures S1(G′) and S2(G′),
so by Lemma 2 and 3, we get

∞∑

i=0

∑

G′∈Ti
|V (G′)| log |V (G′)| =

c logn∑

i=0

O(|V | log |V |) = O(|V | log2 |V |)

for a total space complexity of O(s(|V |) + |V | log2 |V |).

3.2 Query

Let G′ ∈ T and consider the query dG′(u, λ). If G′ is a leaf node, the query is resolved in time
O(t(n)) by querying D once for each vertex of G′. If G′ is a non-leaf node, the query is handled
as follows: First, data structures OG′,S1(G′) and OG′,S2(G′) are queried with u and λ, resulting in
two “candidate sets”, C1 and C2, one for each query. By Lemma 3, C1∪C2 contains the nearest
vertex with label λ for which u G′ v

′ intersects either S1 or S2 if such a vertex exists. Compute
dG′ = min {dG(u, c) | c ∈ C1 ∪ C2} ∪ {∞} by querying D once for each vertex of C1 ∪ C2. The
query then recursively resolves dG′′ = dG′′(u, λ) where G′′ is a child of G′ in T containing u.
Finally, the query returns min {dG′ , dG′′}.

Algorithm 1 Query procedure for the distance oracle.

1: procedure Query(u, λ,G′)
2: if G′ is a leaf node in T then
3: return min {dG′(u, v) | v ∈ V (G′) and l(v) = λ}
4: else
5: C1 ← OG′,S1(G′)(u, λ); C2 ← OG′,S2(G′)(u, λ)
6: G′′ ← A child of G′ in T containing u
7: dG′ ← min {dG(u, c) | c ∈ C1 ∪ C2} ∪ {∞}
8: dG′′ ← Query(u, λ,G′′)
9: return min {dG′ , dG′′}

Correctness Denote by v the vertex of G with label λ nearest to u in G′, and consider the
case in which u G′ v intersects S1(G′) or S2(G′). In this case, v ∈ C by Lemma 3 and C 6= ∅,
so

dG′ = min {dG(u, c) | c ∈ C} = dG(u, v) = dG′(u, v) = dG′(u, λ) ≤ dG′′
with the inequality following from definition of v. Note that in case u is a vertex of either S1

or S2, the correct estimate is returned at the current level, but for a simpler description, the
recursion proceeds anyways. Otherwise u ′G v intersects neither S1 and S2 in which case, the
path must be fully contained in the (unique) child node, G′′, of G′ containing u. In this case,
the query reports dG′′ = dG′′(u, λ) = dG′′(u, v) ≤ dG′ , showing the correctness.
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Time complexity At each level of the recursion, OG′,S1(G′) and OG′,S2(G′) are queried in

time O(log2 |V |). Furthermore, D is queried |C| = O(1) times in total time O(1) · O(t(|V |)) =
O(t(|V |)). By Lemma 2, the query is recursively resolved on a problem instance which is a
constant fraction smaller at each level of recursion, giving rise to the recurrence relation T (n) =
T (n/a) +O(t(n) + log2 n). When G′ is a leaf node, then by Lemma 2, G′ consists of a constant
number of faces, described by the base case T (n) = O(t(n)) when n ≤ b for sufficiently small b.
It is easily verified that a solution to the recurrence is bounded by O(log3 n + t(n) log n). This
shows the main theorem, and the rest of this paper is devoted to proving Lemma 3.

4 The point location data structure

Our point-location data-structure uses techniques similar to those of [7] for point location in
additively weighted Voronoi diagrams, but with some crucial differences in order to save space.

Both structures rely on being able to determine left/right turns of shortest paths in shortest
path trees rooted at sites in G, but to facilitate this, the data structure of [7] explicitly stores
an (augmented) shortest path tree rooted at each site as well as a data structure for answering
least common ancestor (LCA) queries. The point location structure thus requires Θ(|S|n) space
where S is the number of sites, and since S may be large as Θ(

√
n) (corresponding to the size of a

sparse balanced separator in a planar graph), this translates to Θ(n3/2) space for their problem.
This will not work in our case since the number of sites can in fact be as high as Θ(n), leading
to a quadratic space bound.

The second issue with applying the techniques from [7] directly to our setting, is that it
requires us to store a Voronoi diagram for each label, for each shortest path. Each vertex of
the path separator would then be a site in the stored Voronoi diagram but as each separator
may be large, i.e. Θ(n), we may use as much as Θ(n|L|) space over all labels of L for a single
separator. What we need is for the number of sites involved for a label λ to be proportional to
the number of vertices with label λ; this would give a near-linear bound on the number of sites
when summing over all λ ∈ L across all levels of the recursive decomposition. We address these
issues in the following sections.

4.1 MSSP structure

To compactly represent shortest path trees, our point location structure uses an augmented
version of the multiple-source shortest-path (MSSP) data structure of Klein [10]. It cleverly
uses the persistence techniques of [5] in conjunction with top trees [1] to obtain an implicit
representation of shortest path trees rooted at each site. Top-trees allow for shortest path
distance queries and least-common ancestor (LCA) queries in time O(log n) per query while
using O(n log n) space, and can easily be augmented to support turn queries, as we shall see
shortly. To be used as a black box, the MSSP structure relies on being initialized from a face
of G. In our construction, we wish to use it for querying left/right turns of paths and distances
from vertices residing on shortest paths of fundamental cycle separators, and thus some further
preprocessing is required. The guarantees of the augmented MSSP structure used for the point
location structure are summarized in the following lemma:

Lemma 4. Let G = (V,E, ω) be an edge-weighted planar graph, f be a face of G and let Tu
denote the shortest path tree rooted at u. Then there exists a data structure MSSP(G, f) with
O(n log n) space which given u ∈ V (f) and c, v ∈ V supports queries

1. Dist(u, v): report dG(u, v),

2. LCA(u, c, v): report the least common ancestor of v, c in Tu,

3. Turn(u, c, v): report whether u Tu c makes a left or right turn w.r.t. u Tu v or if one
is a prefix of the other.

in time O(log n) per query. The data structure can be preprocessed in O(n log n) time.
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Figure 1: Illustration of the proof of Lemma 6. The concatenation of u  vi1 , vi1  vi3 , and
the reverse of u vi3 forms a cycle C and v  vi2 intersects u vi3 in x. Note that w.l.o.g. C
is not necessarily simple, that v  vi2 may intersect the cycle more than once and that v may
be a vertex of C.

Descriptions of Dist and LCA are available in [10] and [1], and a description of how to
implement Turn is provided in Appendix 5 in terms of the vocabulary and interface specified
in [1] for completeness. A top-tree representing any shortest path tree rooted at a vertex on f
can be accessed in time O(log n) by using persistence in the MSSP structure. Lemma 4 then
readily follows from applying the bound of Lemma 8 in Appendix 5.

4.2 Label sequences

To address the second issue, we first need to make the following definition and state some of its
properties when applied in the context of planar graphs:

Definition 1. Let G = (V,E) be a graph, p = p1, . . . , pk a sequence of vertices and S ⊆ V . The
label-sequence of p w.r.t. S is a sequence MG,S,p ∈ Sk satisfying MG,S,p(i) = arg mins∈S distG(s, pi).

The alternation number on p w.r.t. S in G is defined as |MG,S,p| =
∑k−1
i=1 [MG,S,p(i) 6= MG,S,p(i+

1)].

When G, S and p are clear from the context, we shall simply write M , and also note that the
sequence is well-defined due the tie-breaking scheme chosen in the preliminaries. The alternation
number can be thought of as the number of times consecutive vertices on p change which vertex
they are closest to among S when “moving along” p.

When G is an undirected planar graph and p is a shortest path in G, it can be observed4 that
M is essentially a Davenport-Schinzel sequence of order 2, and it immediately follows that the
alternation number is “small” in the sense it is proportional to S while being agnostic towards
the length of p altogether.

Definition 2 (Davenport-Schinzel [4]). A sequence u1, u2, . . . , uk over an alphabet Σ on n sym-
bols is said to be a (n, s)-Davenport-Schinzel sequence if

1. ui 6= ui+1 for all 1 ≤ i < k and

2. There do not exist s+ 2 indices 1 ≤ i1 < i2 < . . . < is+2 ≤ k for which ui1 = ui3 = . . . =
uis+1

= u and ui2 = ui4 = . . . = uis+2
= v for u 6= v ∈ Σ.

Lemma 5 (Davenport-Schinzel [4]). Let U be a (n, 2)-Davenport-Schinzel sequence of length m.
Then |U | ≤ 2n− 1.

For a sequence of S = u1, u2, . . . , uk over an alphabet Σ, the contraction of S is the sub-
sequence obtained from S by replacing every maximal substring s, s, . . . , s of S consisting of
identical symbols s by a single occurence of s. As an example with Σ = {0, 1, 2}, the contraction
of 0, 0, 1, 2, 2, 1, 1, 0, 1, 0, 0, 2 is 0, 1, 2, 1, 0, 1, 0, 2.

4We thank the anonymous reviewer for this observation which saved a tedious proof.
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Lemma 6. Let G be an undirected, weighted planar graph, let S ⊆ V , and let p be a shortest
path of G contained in (the boundary of) a face of G. Then the contraction of M is a (|S|, 2)-
Davenport-Schinzel sequence.

Proof. Define v1, . . . , vk = p and assume for the sake of contradiction that for some 1 ≤ i1 < i2 <
i3 < i4 ≤ k and u, v ∈ S with u 6= v, it holds that u = M(i1) = M(i3) and v = M(i2) = M(i4).
Then the concatenation of u  vi1 , vi1  vi3 , and the reverse of u  vi3 forms a cycle. Thus,
either v  vi2 intersects u vi1 ∪u vi3 or v  vi4 intersects u vi1 ∪u vi3 ; see Figure 1a
and 1b. By symmetry, we only need to consider the former case. If v  vi2 intersects u  vi3
in some vertex x then v  x has the same weight as u  x. By the “closer than”-relation,
u = M(i3) = M(i2) = v, contradicting our assumption that u 6= v. A similar contradiction is
obtained if v  vi2 intersects u vi1 .

Corollary 2. Let G, S and p be as in Lemma 6. Then |MG,S,p| = O(|S|).

We remark that M can be readily computed in polynomial time by adding a super-source
connected to each vertex of S and running an SSSP algorithm. Furthermore M can be repre-
sented with O(S) space, by storing only the indices for which M(i) 6= M(i + 1) and M(i) for
each such index.

We will now describe how to achieve O(n) space for storing Voronoi diagrams for all labels
λ ∈ L at any level of the recursive decomposition. We do so by modifying the preprocessing
steps and query scheme of [7] in a manner suitable for application of Lemma 6 and Corollary 2.

4.3 Preprocessing

Let us briefly recall the statement of Lemma 3; that is, we let G be an undirected, edge-weighted,
planar embedded graph with associated labeling l : V → L and let p = p1  pk be a shortest
path in G. Given a query (u, λ) ∈ V ×L, we want to identify a small “candidate” set of vertices
C ⊆ V such that if v is the vertex with label λ closest to u and u v intersects p, then v ∈ C.

Here, we first describe how to compute a data structure which provides the guarantees of
Lemma 3, but restricts itself to the case only where u  v intersects p from the left. The
description of the data structure for handling paths that intersect p from the right is symmetric
(e.g. by swapping the endpoints of p). Lemma 3 thus readily follows from the existence of such
structures.

First, a copy, Gp, of G is stored and an incision is added along p in Gp. This results in a
planar embedded graph Gp, which has exactly one more face than G. Define by p′ = p′1, . . . , p

′
l

and p′′ = p′′1 , . . . , p
′′
l the resulting paths along the incision, where p′1 = p′′1 and p′l = p′′l . We

denote by fp the face whose boundary vertices are V (p′) ∪ V (p′′). An illustration of this is
provided in Figure 2a and 2b.

Next, the MSSP data structure of Lemma 4, MSSP(Gp, fp), is computed and stored as part
of the point-location data structure. This structure will be used for the point location query.

Centroid decompositions of Voronoi diagrams The following preprocessing is now done
for each label λ ∈ L: First a copy, Gλp , of Gp is made. Next, MGp,Sλ,p′ is computed for
Sλ = {v ∈ V | l(v) = λ}. For convenience we assume that M(0) = nil. The preprocessing phase
now consists of modifying Gλp before computing the Voronoi diagram and the associated centroid
decomposition associated with λ as follows: For i← 1, . . . , l, whenever M(i) 6= M(i− 1), a new
vertex is added to Gλp and embedded in fp along the curve formed by the deleted arc of the
embedding of p. Denoting by ri the most recently added vertex after iteration i, edge p′iri with
ω(p′iri) = dG(M(i), p′i) is added to Gλp and embedded for all i. Once again, it is fairly easy to see

that Gλp is planar embedded. See Figure 2c for an illustration of this. Denote by ai and bi the
endpoints of the first and last edges added incident to ri (w.r.t. the order in which they were
added). Denote by f ′p that has {ri, ai, bi | 1 ≤ i ≤ l} ∪ V (p′′) as its boundary vertices. Now the
Voronoi diagram, its dual and subsequently its corresponding centroid decomposition, T ∗p,λ, is

computed in (the now modified) Gλp using R = {ri | 1 ≤ i ≤ l} as Voronoi sites, see Figure 2d.
The intuition is that each site in R corresponds to a contiguous subsequence M(k), . . . ,M(l)
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p1 pl

(a) G before incision. Here p as indicated by the
dashed line.

p1 plfp?

(b) The resulting graph Gp after the incision; p is
replaced by two paths p′ and p′′ that enclose the
face fp.

r1 r2 r3
a1 b1/a2

b2/a3
b3

f ′
p?

(c) The face f ′
p resulting from adding edges to ri.

Here b1 = a2 and b2 = a3

r1 r2 r3f ′
p?

(d) The Voronoi diagram is represented by a col-
ored shortest-path tree for each site ri.

Figure 2: Preprocessing steps for the point-location structure.

of M for which M(j) = M(j + 1) = v where v is the vertex with label λ closest to p′j for
k ≤ j < l. This implies that the number of sites is proportional to the number of vertices with
label λ instead of the length of the original separator p: By Lemma 2, |M | = O(|Sλ|) and since
|R| = |M | it follows that |R| = O(|Sλ|) bounds the complexity of T ∗p,λ, which is stored as part of
the data structure. As aforementioned, each centroid c ∈ T ∗p,λ corresponds to some degree three
Voronoi vertex, f∗c , with vertices, {x1, x2, x3} in the corresponding primal face fc s.t. each xj
belongs to a different Voronoi site rij for j ∈ {1, 2, 3}. For each such j, the centroid c stores
a pointer to its corresponding face fc, the first vertex pkj of p′ on rij  G′p xj and the weight
ω(pkjrij ).

Space complexity The space used for storing the MSSP structure is O(|V | log |V |) by Lemma
4. For each centroid, we store a constant amount of data, so the space required for storing the
centroid decompositions is

∑

λ∈L
O(1) · |T ∗p′,λ| =

∑

λ∈L
O(|Sλ|) = O(V )

since Sλ ∩ Sλ′ = ∅ for λ 6= λ′ ∈ L as each vertex has exactly one label. The total space used is
thus O(|V | log |V |).

4.4 Handling a point location query

We now show how to handle a point location query. Note that in the following, we can assume
that the vertices of p′ appear in increasing order of their indices when traversing the boundary
of fp in a clockwise direction. Recall that given u ∈ V and λ ∈ L, we wish to find a subset
C ⊂ V of constant size, s.t. if v is the closest vertex with label λ where u v intersects p from
the left, then v ∈ C. The query works by identifying a subset P ⊆ V (p′) s.t. for some p′k ∈ P it
holds that MGp,Sλ,p′(k) = v. We first show how to identify the subset by recursively querying
the centroid decomposition T ∗p,λ according to the following lemma, which we note is modified
version of the query in [7]:

Lemma 7. Given a query (u, λ) ∈ V ×L, consider the centroid decomposition tree T ∗p,λ computed

from Gλp in the preprocessing. Let c be a centroid c ∈ T ∗p,λ corresponding to some Voronoi vertex,
f∗c , with associated primal triangle containing vertices {x0, x1, x2} = V (fc) where xj belongs
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x0

x2

x1

ri0 ri1

ri2

pk1

pk2

e∗0

e∗1

e∗2

u

pk0

R+, P+R−, P−

p′

T ∗1

Figure 3: Illustration of Lemma 7. The dashed green lines represent Voronoi edges in the centroid
decomposition and the red lines the primal shortest paths to the primal vertices of the centroid.
In this case, j∗ = 1, so u is contained in primal faces spanned by the subtree T ∗1 contained in
the region highlighted in yellow.

to the Voronoi cell of rij for j ∈ {0, 1, 2} and i0 < i1 < i2. Furthermore let e∗j be the dual
edge incident to f∗c , s.t. ej = xjx(j+1) mod 3, let pkj be the successor of rij on rij  Gλp

xj, let

Pj = pkj  Gp u, and let T ∗j be the subtree of T ∗p,λ attached to c by e∗j for j ∈ {0, 1, 2}. Finally,
let j∗ = arg minj∈{0,1,2}{dGp(pkj , u) + ω(rijpkj )} = arg minj∈{0,1,2}{dGλp (rij , u)}. Then

1. If pkj∗  Gp u emanates from the left of Pj∗ or u ∈ Pj∗ , then the site closest to u in

Gλp belongs to R− = {r(i(j∗−1) mod 3
, . . . , rij∗} and the second vertex on the shortest path

from that site to u in Gλp belongs to P− = {p(i(j∗−1) mod 3
, . . . , pij∗ }; furthermore, T ∗j∗ is

the centroid decomposition tree for Gλp when restricted to shortest paths from sites in R−

through successors in P−.

2. otherwise, the site closest to u in Gλp belongs to R+ = {rij∗ , . . . , ri(j∗+1) mod 3
} and the sec-

ond vertex on the shortest path from that site to u belongs to P+ = {pij∗ , . . . , pi(j∗+1) mod 3
};

furthermore, T ∗(j∗+1) mod 3 is the centroid decomposition tree for Gλp when restricted to

shortest paths from sites in R+ through successors in P+.

Proof. By symmetry, we only consider the first case since the second case occurs when pkj∗  Gp

u emanates from the right of Pj∗ and the first case also includes the case where u ∈ Pj∗ .
By the choice of j∗, pkj∗  Gp u cannot intersect any of the paths Pj′ with j′ ∈ {(j∗ − 1)

mod 3, (j∗+1) mod 3} since these two paths are subpaths of shortest paths from sites rij′ 6= rij∗
in Gλp and we assume unique shortest paths. Let x be the first vertex of pkj∗  Gp u such
that either x = u or the path emanates from the left of Pj∗ at x. The rest of pkj∗  Gp u
following x will not intersect Pj∗ again due to uniqueness of shortest paths. Thus u belongs
to the region of the plane enclosed by paths P(j∗−1) mod 3, Pj∗ , edge e(j∗−1) mod 3, and path
pk(j∗−1) mod 3

, . . . , pkj∗ . Note that T ∗j∗ is the subtree of T ∗p′,λ spanning the primal faces contained

in this region. Hence, T ∗j∗ is the centroid decomposition tree for Gλp when restricted to shortest
paths from sites in R− through successors in P−.

For an illustration of Lemma 7, see Figure 3. The Lemma implies a fast recursive point
location scheme. On query (u, λ), obtain centroid c from T ∗p′,λ. Since weights of edges from
sites have been precomputed, MSSP(Gp, fp) is applied to find j∗. MSSP(Gp, fp) is also used to
determine if pkj∗  Gp u emanates from the left of Pj∗ and hence whether the first or second
case of the lemma applies. The point location structure now recurses on a subset of sites and
vertices of p′ and on a subtree of T ∗p′,λ, depending on which case applies.
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The recursion stops when reaching a subtree corresponding to a bisector for two sites. The
vertices of V with label λ corresponding to these two sites are reported as the set C, yielding
the desired bound.

Time complexity The O(log2 |V |) query time bound of Lemma 3 follows since there are
O(log |V |) recursion levels and in each step, a constant number of queries to MSSP(Gp, fp) are
executed, each taking O(log |V |) time.
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Appendix A

A description of how to implement Turn in Lemma 4 is provided here in terms of the terminology
and the interface specified in [1]. Readers that are not familiar with the terminology and interface
pertaining to top-trees are referred to [1].

Lemma 8. Let G = (V,E, ω) be a weighted planar graph, and let T be the root-cluster of a
top-tree corresponding to some tree T in G. Then in addition to Dist and LCA, we can support
Turn queries: For u, c, v ∈ V , report whether u  c makes a left or right turn w.r.t. u  T v,
or if one is a prefix of the other in time O(log n) per query.

Proof. A description of how to perform LCA queries is found in [1]. Assume that u, c, v ∈ T
and w.l.o.g. that u is strictly more rootward in T than v. First use T to determine the LCA c′

of (v, c). If c′ is on both u  c and u  v one path is a prefix of the other. Otherwise invoke
expose(u, c′) and traverse T until a leaf of T corresponding to the edge, ev ∈ E(T ) is reached,
which connects c′ to the subtree containing v in T . This can be done in time O(log n). The same
is done for (u, c′) and (c, c′), exposing edges eu, ec ∈ T . Now, if ec = ev or ec = eu, c must be on
u T v. Otherwise it is easily checked, by maintaining a cyclic order of edges in the adjacency
list of c′, in constant time, whether ec emanates to the left or right of the subpath euev and
hence u T v. The total time spent is O(log n).
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Appendix C

Appendix C starts from the next page, and includes the version of the ICALP 2021
accept “Decremental APSP in Directed Graphs Versus an Adaptive Adversary” in which
the LIPICS typesetting options have been disabled to improve the readability, see https:
//doi.org/10.4230/LIPIcs.ICALP.2021.64.
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Decremental APSP in Unweighted Digraphs Versus an
Adaptive Adversary
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Abstract

Given an unweighted digraph G = (V, E), undergoing a sequence of edge deletions,
with m = |E|, n = |V |, we consider the problem of maintaining all-pairs shortest paths
(APSP). Whilst this problem has been studied in a long line of research [ACM’81,
FOCS’99, FOCS’01, STOC’02, STOC’03, SWAT’04, STOC’13] and the problem of (1+
ϵ)-approximate, weighted APSP was solved to near-optimal update time Õ(mn) by
Bernstein [STOC’13], the problem has mainly been studied in the context of an oblivious
adversary which fixes the update sequence before the algorithm is started. In this paper,
we make significant progress on the problem for an adaptive adversary which can perform
updates based on answers to previous queries:

• We first present a deterministic data structure that maintains the exact distances
with total update time Õ(n3)1.

• We also present a deterministic data structure that maintains (1 + ϵ)-approximate
distance estimates with total update time Õ(

√
mn2/ϵ) which for sparse graphs is

Õ(n2+1/2/ϵ).
• Finally, we present a randomized (1 + ϵ)-approximate data structure which works

against an adaptive adversary; its total update time is Õ(m2/3n5/3+n8/3/(m1/3ϵ2))
which for sparse graphs is Õ(n2+1/3/ϵ2).

Our exact data structure matches the total update time of the best randomized data
structure by Baswana et al. [STOC’02] and maintains the distance matrix in near-
optimal time. Our approximate data structures improve upon the best data struc-
tures against an adaptive adversary which have Õ(mn2) total update time [JACM’81,
STOC’03].
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1We use Õ-notation to hide logarithmic factors.
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1 Introduction
Shortest paths is a classical algorithmic problem dating back to the 1950s. The two main
variants are the all-pairs shortest paths (APSP) problem and the single-source shortest paths
(SSSP) problem, both of which have been extensively studied in various models, including
the partially and fully-dynamic setting.

A dynamic graph algorithm is an algorithm that maintains information about a graph
that is subject to updates such as insertions and deletions of edges or vertices. Such a
graph can model real-world networks that change over time, such as road networks where
traffic changes and roads are blocked from time to time. We say that a dynamic graph
problem is decremental if it only allows deletions, incremental if it only allows insertions
and fully-dynamic if it allows both. Incremental and decremental graphs are referred to as
being partially-dynamic. A dynamic graph algorithm aims to efficiently process a sequence
of online updates interspersed with queries about some property of the underlying dynamic
graph.

1.1 Problem Definition
In this paper, we consider the decremental all-pairs shortest-paths problem where the goal is
to efficiently maintain shortest path distances between all pairs of vertices in a decremental
directed graph G = (V, E). We shall restrict our attention to the case where G is unweighted.
Letting m denote the initial number of edges and n = |V |, we want a data-structure which
for any u, v ∈ V supports the following operations:

• Dist(u, v): reports the distance dG(u, v) from u to v in the current version of G,

• Delete(u, v): deletes an edge (u, v) from E.

We furthermore consider the problem also in its relaxed version where we only aim to
maintain approximate distance estimates which can then be queried. We denote by d̃G(u, v)
a distance estimate for the distance from u to v and we say that an APSP algorithm has
an approximation ratio (or stretch) of t > 1 if for any u, v ∈ V , we have that dG(u, v) ≤
d̃G(u, v) ≤ t · dG(u, v). This paper will be concerned with both the exact and the (1 + ϵ)-
approximate version of the problem.

Another focus of this article is the adversarial model; the adversarial model defines the
model under which the sequence of updates and queries are assumed to be made by an
adversary. We say that a performance guarantee of an algorithm works against an oblivious
adversary if the adversary must define the sequence of updates before the algorithm starts
for the guarantee to hold. Thus the sequence of updates is independent of any random
bits used by the algorithm. This is opposed to algorithms that work against an adaptive
adversary, where the adversary is allowed to create the update sequence “on the go”, e.g.
based on answers to previous queries made to the data structure. Depending on the data
structure, these choices may not be independent of the random choices made, which may
result in the data structure performing poorly. One key advantage of a data structure that
works against an adaptive adversary is that it can be used inside an algorithm as a black
box, regardless of whether that algorithm adapts its updates to answers to queries. We
point out that deterministic data structures always work against an adaptive adversary.
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The performance of a partially-dynamic algorithm is usually measured in terms of the
total update time. That is, the accumulated time it takes to process all updates (edge
deletions). The query time, on the other hand, is the time to answer a single distance query.
A natural goal is to minimize the total update time while keeping the stretch and query
time small. Since all the structures presented in this paper explicitly maintain a distance
matrix, the query time is constant.

1.2 Prior Work
The naive approach to dynamic APSP is to recompute the shortest path distances after each
update using the best static algorithm. The query time is then constant and the time for a
single update is Õ(mn) for APSP and Õ(m) for SSSP. At the other end of the spectrum one
could achieve optimal update time by simply updating the input graph and only running
an SSSP algorithm whenever a query is processed. Running a static algorithm each time,
however, fails to reuse any information between updates whatsoever and gives a high query
time, motivating more efficient dynamic approaches that do this.

In 1981, Even and Shiloach [6] gave a deterministic data-structure for maintaining a
shortest path tree to given depth d in an undirected, unweighted decremental graph in total
time O(md). Henzinger and King [7] and King [10] later adapted this to directed graphs
with integer weights. Running their structure for each vertex solves the decremental all-pairs
shortest paths problem in O(mn2W ) time, where edge weights are integers in [1, W ].

Henzinger and King were the first to improve upon this bound, giving an algorithm with
total update time Õ(mn2.5√W ) [10] which is an improvement for W = ω(n). Demetrescu
and Italiano [4] improved this data structure slightly and showed that the restriction to
integral edge weights can be removed. Finally, the same authors [3] presented a data struc-
ture with total update time Õ(mn2) which is the state of the art for any data structure
against an adaptive adversary up to today. In fact, their algorithm can be extended to a
fully-dynamic algorithm with Õ(n2) amortized update time and which can handle vertex
updates2. We also point out that this data structure was later simplified and generalized
by Thorup [11].

Around the same time Baswana, Hariharan, and Sen [1] gave an oblivious Monte-Carlo
construction with total update time Õ(n3) for unweighted graphs. Further, they showed
that their data structure could be adapted to give an (1 + ϵ)-approximate APSP algo-
rithm for weighted graphs with total update time of Õ(

√
mn2/ε). In the exact setting,

the oblivious adversary assumption is only required when paths are to be reported rather
than just shortest path distances which are unique. Finally, Bernstein presented a (1 + ϵ)-
approximate algorithm with total running time Õ(mn log(W )/ϵ) by using a clever approach
of shortcutting paths [2]. Whilst his algorithm achieves near-optimal running time, again,
the algorithm has to assume an oblivious adversary.

More recently, Karczmarz and Łącki [9] gave a deterministic (1 + ϵ)-approximate APSP
algorithm for decremental graphs that runs in total time Õ(n3 log(W )/ϵ). They also pre-
sented the first non-trivial algorithm for incremental graphs [8] achieving total update time
Õ(mn4/3 log(W )/ϵ).

We refer the reader to the full version of the paper [5] for a more comprehensive treatment
2In this case, vertex updates refers to insertions or deletions of vertices with up to n − 1 incident edges.
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of related work which also includes algorithms for undirected graphs and algorithms with
larger stretch.

1.3 Our Contributions
In this paper, we present three new data structures for the all-pairs shortest paths problem.
Our first theorem gives a deterministic data structure for the exact variant of the problem
with near-optimal Õ(n3) total update time. It also matches the best randomized algorithm
by Baswana et al. [1] and constitutes a significant improvement over the previous best
deterministic bound of Õ(mn2) which is obtained by running an ES-tree [6] from every
source or by the data structure Italiano et al. [3] (that also works in weighted graphs) and
improves over all but the sparsest graph densities.

Our exact data structure is near-optimal as there is an Ω(n3) lower bound on the total
update time of any decremental data structure that explicitly maintains the distance matrix.
The lower bound follows by considering an initial undirected, unweighted graph consisting
of a simple path v0, v1, v2, . . . , vn−1 plus additional edges (vi, vi+2) for each even i ≤ n− 3.
Deleting these additional edges in any order creates Ω(n3) distance matrix changes in total.

Theorem 1. Let G be an unweighted directed graph with n vertices and initially m edges.
Then there exists a deterministic data structure which maintains all-pairs shortest path dis-
tances in G undergoing an online sequence of edge deletions using a total time of O(n3 log3 n).
The n× n distance matrix is explicitly maintained so that at any point, a shortest path dis-
tance query can be answered in constant time. The data structure can report a shortest path
between any query pair in time proportional to the length of the path.

Our second result is concerned with maintaining (1 + ϵ)-approximate all-pairs short-
est path distances. This constitutes the first deterministic data structure that solves the
problem in subcubic time with small approximation error (except for graphs that are not
extremely dense).

Theorem 2. Let G be an unweighted directed graph with n vertices and initially m edges.
Then given ϵ > 0, there exists a deterministic data structure that maintains all-pairs (1+ϵ)-
approximate shortest path distances in G undergoing an online sequence of edge deletions
using a total time of O(

√
mn2 log2(n)/ϵ). At any point, a (1 + ϵ)-approximate shortest path

distance query can be answered in constant time and a (1 + ϵ)-approximate shortest path
between the query pair can be reported in time proportional to the length of the path.

Our third result gives a data structure achieving a better time bound. While we use
randomization to achieve the improved time bound, our algorithm again works against an
adaptive adversary.

Theorem 3. Let G be an unweighted directed graph with n vertices and initially m edges.
Then given any ϵ > 0, there exists a Las Vegas data structure that maintains all-pairs
(1 + ϵ)-approximate shortest path distances in G under an online sequence of edge deletions
using a total expected time of Õ(m2/3n5/3/ϵ + n8/3/(m1/3ϵ2)). This bound holds w.h.p. and
the data structure works against an adaptive adversary. At any point, a (1+ ϵ)-approximate
shortest path distance query can be answered in constant time.

We summarize our results as well as previous state-of-the-art results in Table 1.
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Time Approximation Adversary/ Determinis-
tic

Reference

O(mn2) exact deterministic [6, 3]
Õ(n3) exact deterministic New Result
Õ(n3) exact adaptive [1]
Õ(
√

mn2/ϵ) (1 + ϵ) deterministic New Result
Õ(m2/3n5/3/ϵ+
n8/3/(m1/3ϵ2))

(1 + ϵ) adaptive New Result

Õ(
√

mn2/ϵ) (1 + ϵ) oblivious [1]
Õ(nm) (1 + ϵ) oblivious [2]

Table 1: Our results and previous state-of-the-art results for decremental APSP.

1.4 Overview
Our overall approach for the deterministic data structures is similar to that of Baswana
et al. [1] but with a key difference that allows us to avoid using a randomized hitting set
and instead rely on deterministic separators. The idea of the construction by Baswana et
al. relies on a well-known result which says that if we sample a subset Hρ

i of the vertices of
size Õ(n/ρi) (where ρ is some constant strictly larger than 1), each with uniform probability,
then, w.h.p. we "hit" each shortest-path of length [ρi, ρi+1) between any pair of vertices in
any version of the graph G.

Phrased differently, given vertices u, v ∈ V , we have that if a shortest path from u to v
is of length ℓ ∈ [ρi, ρi+1), then there is some vertex w ∈ Hρ

i , such that the concatenation of
a shortest path from u to w and a shortest path from w to v is of length ℓ. For each such
w, we say w is a witness for the tuple (u, v) for distance ℓ.

Now for each u, v ∈ V , if the initial distance from u, v was ℓ ∈ [ρi, ρi+1), we can check
Hρ

i to find a witness w. If the length of the path from u to w to v is increased, we can
continue our scanning of Hρ

i to see whether another witness exists. If there is no witness
w ∈ Hρ

i left at some stage, we know that there is no path of length ℓ left in G w.h.p. and
increase our guess by setting ℓ 7→ ℓ + 1.

Sampling initially a hitting set Hρ
i for every i ∈ [0, logρ n], we can find the "right" hitting

set for each distance ℓ. Observe now that for each tuple (u, v) ∈ V 2, we have to scan a
hitting set of size Õ(n/ρi) for ρi+1−ρi ∼ ρi+1 levels before the hitting set index i is increased
which only occurs O(log n) times, thus we only spend time Õ(n) for each vertex tuple (u, v).
Thus, the total running time of the searches for witnesses can be bound by Õ(n3).

The Deterministic Exact Data Structure. Our construction is similar in the sense
that we maintain witnesses for each distance scale [ρi, ρi+1) for every i ∈ [0, logρ n] such
that each distance ℓ is in one such distance scale. The key difference is that instead of using
a randomized global hitting set Hρ

i for a distance scale [ρi, ρi+1), our construction relies on
deterministically maintaining a small local vertex separator Si(u) for every vertex u ∈ V of
size Õ(n/ρi) separating all shortest paths starting in u with a distance in [ρi, ρi+1).

More precisely, for each distance scale [ρi, ρi+1) and vertex u ∈ V , we maintain a sep-
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arator Si(u) that satisfies the invariant that every shortest path from u to a vertex v at
distance at least ρi is intersected by a vertex in Si(u). If this invariant is violated after an
adversarial update, then we find such a vertex v and need to add additional vertices to Si(u)
during the time step. The challenge is to take these additional separator vertices such that
the total size of Si(u) is not increased beyond Õ(n/ρi). The separator procedure makes use
of sparse layers of BFS trees and here is where we rely on the assumption that the graph is
unweighted. We defer the details of the separator procedure to a later section and continue
our discussion of the APSP data structure.

Since we need to detect whether vertices have distance less than ρi from u or not in G,
we further have to use a bottom-up approach to compute distances after an edge deletion,
i.e. we start with the smallest possible distance range and update all distances in this range
and then update larger distances using the information already computed. This issue did
not arise in Baswana et al. [1] but can be handled by a careful approach. The distances
computed for one distance scale include all distances to and from witnesses for the next
larger distance scale.

It is now easy to see that the scanning for witnesses can be implemented in the same
time as in the analysis sketched above by scanning the list of local separator vertices which
serve as witnesses instead of the hitting set. Further, we can maintain local vertex separa-
tors using careful arguments in total time Õ(mn) giving our result in Theorem 1.

dG(u, v) ∈ [ρi; ρi+1]

u

w

w′

v

dG(u, w) ∈ [ρ−1; ρ)

dG(w,w
′) ∈ [ρ−2; ρ−1)

dG(w
′, v) ∈ [ρ−2; ρ−1)

Si(u) Si−1(w)

Figure 1: Illustration of separators and path “hierarchy”. Here u⇝ v goes through a witness
w, and w ⇝ v goes through w′. If the length of the path w′ ⇝ v is increased by ∆, the
distance estimates of all 2-hop-paths that use w′ ⇝ v as a sub-path are increased by that
amount. In this case, the estimate for w ⇝ w′ ⇝ v is increased and is propagated to the
next level where subsequently the estimate for u⇝ w ⇝ v is possibly increased.

The Deterministic Approximate Data Structure. In order to improve the running
time for sparse graphs, we can further focus on only considering distances that are roughly
at a (1 + ϵ)-multiplicative factor from each other. More concretly, instead of increasing the
expected distance from ℓ to ℓ + 1 when we cannot find a witness for some path from u to v
for distance ℓ, we can increase the next expected distance level ℓ′ to ∼ (1 + ϵ)ℓ and consider
every vertex w a witness if there is a path u ⇝ w ⇝ v of length at most ℓ′. Thus, we
handle fewer distances and can thereby reduce the time to maintain distances that are at
least d in total time Õ(n3/d + mn). Again, a careful approach is necessary to ensure that
approximations do not add up over distance scales.
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This is no faster than the data structure for exact distances when d is small so in order
to get Theorem 2, we use the O(mnd) data structure of Even and Shiloach [6] to maintain
distances up to d. Picking d such that mnd = n3/d gives the result of Theorem 2 (the term
Õ(mn) vanishes since it is subsumed by the two other terms, also we assumed ϵ > 0 to be
a constant to simplify the presentation).

Maintaining Separators. We now sketch how to deterministically maintain a “small”
local separator for a vertex s ∈ V with some useful invariants.

Let S be the local separator for s. The first invariant that will be useful is that any
vertex t ∈ V that is reachable from s in G \ S, is “close” to s or roughly within distance
d. As edges are deleted from G, the distances from s to such vertices t may increase. If a
vertex t moves too far away from s, the invariant is re-established by growing BFS trees in
parallel, one layer at a time, from s in G\S and from t in the graph obtained from G\S by
reversing the orientations of all edges. The search halts when a layer (corresponding to the
leaves of the BFS tree at the current iteration) that is “thin” is found, and its vertices are
added to S; vertices that are on the opposite side of the separator than s are cut off as they
must all be too far away from s. Here, "thin" refers to a BFS layer such that the number
of vertices added to the separator is only a factor Õ(1/d) times the number of vertices cut
off. It is well known that such a layer exists (cfr. Lemma 2 for the details). Summing up, it
follows that |S| = Õ(n/d) at all times. By marking vertices as they are searched (according
to the side of the BFS layer on which they are found), the vertices that are “cut off” from
s by the augmented separator will never be searched again, and the cost of searching the
edges of either side of the search can be charged to sum of the degree of these vertices, for
a total update time of O(m).

For our randomized data structure, we need an additional property that essentially
allows us to take a snapshot of the current separator and use it in later updates rather
than having to repeatedly update the separator. This will be key to getting an improved
randomized time bound. Details can be found in Lemma 3 which states our separator result.

The Randomized Approximate Data Structure. The randomized approximate data
structure of Theorem 3 follows the same overall approach but is technically more involved.
Instead of keeping track of all 2-hop paths u⇝ s⇝ v3 for every s ∈ Si(u), the randomized
data structure samples a subset of these by picking each vertex of Si(u) independently with
some probability p. It only keeps track of approximate shortest path distances going through
this subset rather than the full set Si(u). This will speed up the above since the subset of
the separator we need to scan is smaller by a factor p. However, this approach fails once no
short 2-hop path intersects the sampled subset. At this point, w.h.p. there should only be
short 2-hop paths through O(log n/p) vertices of Si(u) so also in this case, the subset can
be kept small. However, scanning linearly through Si(u) to find this small subset will take
Õ(n/d) time and happen over all pairs (u, v).

Our solution is roughly the following. Suppose no sampled vertex certifies an approx-
imate short path from u to v. Then v scans linearly through Si(u) to find the small size
O(log n/p) subset S′

i(u). Consider the set W of vertices w such that dG(w, v) is small com-
3Note that such a path may have more than one intermediate vertex, but it is useful to think of it as a

path of two weighted edges/hops (u, s) and (s, v) since this is what is maintained by the data structure.

7



pared to d, i.e., dG(w, v) ≤ ϵd for some small constant ϵ > 0. Then we show that the small
subset S′

i(u) found for v can also be used for each vertex w ∈ W . The intuition is that for
any vertex s ∈ Si(u) \ S′

i(u), the approximate shortest path distance from u to w through
s must be large since otherwise we get a short path u ⇝ s ⇝ w ⇝ v from u to v through
s, contradicting that s /∈ S′

i(u).
It follows that if |W | is large, the Õ(n/d) cost of scanning Si(u) can be distributed

among a large number of vertices of W . Dealing with the case where |W | is small is more
technical so we omit it here.

The way we deal with an adaptive adversary is roughly as follows. Consider a determin-
istic data structure that behaves like the randomized data structure above, except that it
maintains 2-hop paths u⇝ s⇝ v for all Si(u) rather than only through a sampled subset.
The slack from the approximation allows us to round up all “short” approximate distances
to the same value. Hence, as long as the randomized data structure has short 2-hop paths, it
maintains exactly the same approximate distances as the deterministic structure and hence
the approximate distances output to the adversary is independent of the random bits used.

2 Definitions and Notation
In the following, let G = (V, E) be a directed unweighted graph. The graph Grev is obtained
from G by reversing the orientation of each edge. For any two vertices u, v ∈ V , we denote
by u⇝ v a shortest path from u to v in G and let dG(u, v) denote the length of such a path.
We extend this notation to sets so that, e.g., dG(u, V ′) = min{dG(u, v)|v ∈ V ′} for V ′ ⊆ V .

We define a BFS-layer to mean the set of nodes at some fixed distance from some v in
G. An in-tree in G is a BFS tree in Grev.

We will need notation to refer to dynamically changing data at specific points in time.
Consider a sequence of updates to some object X where each update takes place at a time
step t ∈ N. We denote by X(t) the object just after update t. Here, X could be a graph, a
shortest path distance, etc.

For handling small distances, we rely on the data-structure of Even and Shiloach [6], the
properties of which we will state in the following lemma:

Lemma 1 ([6]). Given a directed unweighted graph G undergoing a sequence of edge dele-
tions, a source vertex s ∈ V , and d > 0, a shortest path tree in G rooted at s can be
maintained up to distance d in total time O(md). The structure requires O(m) space and
can be constructed in time O(m + n).

3 Maintaining Separators
Lemma 3 below provides a key tool used in all of our data structures. It gives an efficient
data structure that maintains a growing separator set S of small size in a decremental graph
G. To prove it, we need the following well-known result.

Lemma 2. Given a directed unweighted n-vertex graph G = (V, E), given d1, d2 ∈ N0 with
d2 − d1 + 1 ≥ lg n , and given vertices u, v ∈ V with dG(u, v) ≥ d2, a BFS tree in G with
root u contains a layer L ⊆ V with d1 ≤ dG(u, L) ≤ d2 and |L| ≤ |L−| lg n/(d2 − d1 + 1)
where L− = {w ∈ V |dG(u, w) < dG(u, L)} is the union of layers closer to u than L.
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Proof. Denote by Li the ith layer of the BFS tree from u. For each i, let L<i = ∪j<iLj .
Let q = (d2 − d1 + 1)/ lg n. Assume for contradiction that L does not exist. Then for
i = d1, . . . , d2, |Li| > |L<i|/q so |L<i+1| = |Li| + |L<i| > (1 + 1/q)|L<i|. Since q ≥ 1, we
have (1 + 1/q)q ≥ 2 so

|L<d2+1| > (1 + 1/q)d2−d1+1|L<d1 | ≥ 2(d2−d1+1)/q = n,

contradicting that there are only n vertices in G.

We now state and prove Lemma 3. It gives an efficient data structure that maintains a
growing separator set S of small size in a decremental graph G with the following guarantees.
Let s be a fixed vertex and let d be some given threshold distance. Then at every time step,
vertices reachable from s in G\S are of distance slightly less than d from s in G. Conversely,
for vertices v not reachable from s in G\S, we have dG(s, v) = Ω(d); furthermore, if dG(s, v)
is larger than d by some small constant factor then any shortest path s ⇝ v in G can be
decomposed into s⇝ w ⇝ v such that w ∈ S, dG(s, w) ≤ d, and dG(w, v) ≤ d. In fact, the
lemma states that w can be chosen in St0 where t0 is the first time step in which dG(s, v)
became (slightly) larger than d; note that this is a stronger statement since S is growing
over time.

Lemma 3. separatorLemma Let G = (V, E) be an n-vertex unweighted digraph undergoing
a sequence of edge deletions, let s ∈ V be a source, and let d ∈ N with d > 33 lg n. Let
O be a data structure that maintains for each v ∈ V a distance estimate d̃(s, v) ≥ dG(s, v)
such that if dG(s, v) ≤ d then d̃(s, v) ≤ 4

3dG(s, v). Whenever an estimate d̃(s, v) grows to a
value of at least 32

33d, O outputs v. Then there is a data structure S with access to O which
maintains a growing set S ⊆ V such that for each v ∈ V ,

1. if v is reachable from s in G \ S then dG(s, v) < 32
33d and otherwise dG(s, v) > 2

3d,

2. if t0 is a time step in which d < d
(t0)
G (s, v) ≤ 34

33d then for every time step t1 ≥ t0 in
which d

(t1)
G (s, v) ≤ 34

33d, any shortest s-to-v path P in G(t1) intersects S(t0) and for the
first such intersection vertex w along P , d

(t1)
G (s, w) ≤ d, and d

(t1)
G (w, v) ≤ d.

At any time, |S| = O(n log n/d) and S has total update time O(m), excluding the time spent
by O.

Proof. Let ϵ = 1
33 . For each v ∈ V , let d̂(v) be obtained from the degree of v in the initial

graph G by rounding up to the nearest multiple of ∆ = ⌈m/n⌉. In the description of S
below, processing one edge takes at most one unit of time.

Data structure S initializes S = ∅ and unmarks all vertices of V . Whenever O outputs
an unmarked vertex v (marked output vertices are ignored), S runs a modified BFS from
s in GS = G \ S which for each vertex w spends d̂(w) time to process its outgoing edges;
this can always be achieved by busy-waiting at w if needed. In parallel, S runs a similar
modified BFS from v in G′

S = (G \ S)rev4. The search from s halts if a layer Ls is found
such that 2

3d < dGS
(s, Ls) ≤ (2

3 + ϵ)d and |Ls| = O((x log n)/d) (for a suitable hidden
4By "parallel", we mean that S alternates between spending one unit of time in one search, then one unit

of time in the other search, and so on.
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constant to be specified) where x is the number of vertices visited by the search, excluding
Ls. Similarly, the search from v halts if a layer Lv is found such that dG′

S
(v, Lv) < ϵd

and |Lv| = O((y log n)/d) (again, for a suitable hidden constant) where y is the number of
vertices visited by the search excluding Lv. Let L be the first of the two layers found. S
halts both searches when L is found. Then L is added to S and all vertices visited by the
search from v in G′

S are marked. The hidden constants are chosen such that the existence
of L follows from Lemma 2; this lemma applies since by assumption, ϵd > lg n.

Observe that when O outputs v, we have dG(s, v) ≥ (1 − ϵ)d/(4/3) = (2
3 + 2ϵ)d as

otherwise we have dG(s, v) ≤ d and hence d̃(s, v) ≤ 4
3dG(s, v) < (1− ϵ)d = 32

33d. This shows
the existence of Ls and Lv and that no vertex or edge is visited by both searches. We have
dGS

(s, v) ≥ dG(s, v) ≥ (2
3 + 2ϵ)d and dGS

(s, Ls) > 2
3d and for every w ∈ Lv,

dGS
(s, w) ≥ dGS

(s, v)− dGS
(w, v) ≥

(2
3 + 2ϵ

)
d− dG′

S
(v, w) =

(2
3 + 2ϵ

)
d− dG′

S
(v, Lv)

>

(2
3 + ϵ

)
d,

implying that dGS
(s, Lv) > (2

3 + ϵ)d. Hence dGS
(s, L) ≥ min{dGS

(s, Ls), dGS
(s, Lv)} > 2

3d.
Showing part 1: Let v ∈ V and consider any point during the sequence of updates.
Assume first that v is reachable from s in GS . Then O has not yet output v. For suppose
otherwise. If v was unmarked when it was output by O, the above procedure would separate
v from s with S, making v unreachable from s in GS . Conversely, if v was marked, v would
already be unreachable from s in GS since a vertex is only marked when it is separated
from s in GS . In both cases, we have a contradiction. It follows that O did not output v so
dG(s, v) ≤ d̃(s, v) < 32

33d, as desired.
Now, assume that v is not reachable from s in GS . We may assume that there is a

shortest path P from s to v in G since otherwise dG(s, v) = ∞ > 2
3d. Let w be the first

vertex of S along P . It suffices to show that for the prefix P ′ of P from s to w, |P ′| > 2
3d. At

some earlier point in time, the procedure added w to S; just prior to this, P ′ was contained
in GS so from the above, |P ′| > 2

3d, as desired.
Showing part 2: Let t0 ≤ t1 satisfy the second part of the lemma. Since d

(t0)
G (s, v) > d by

assumption, the first part of the lemma implies that v is not reachable from s in G
(t0)
S and

hence v is also not reachable from s in G
(t1)
S .

Let P be a shortest path from s to v in G(t1). From what we have just shown, P

must intersect S(t0). Let w be the first vertex of S(t0) along P . Then clearly, d
(t1)
G (s, v) =

d
(t1)
G (s, w)+d

(t1)
G (w, v). Since the vertex w′ preceding w on P is reachable from s in G

(t0)
S , the

first part of the lemma implies that d
(t0)
G (s, w) ≤ d

(t0)
G (s, w′)+1 < 32

33d+1 and d
(t0)
G (s, w) > 2

3d.
The latter implies that d

(t1)
G (w, v) = d

(t1)
G (s, v)−d

(t1)
G (s, w) ≤ 34

33d−d
(t0)
G (s, w) < 34

33d− 2
3d < d,

showing one of the two inequalities in the second part of the lemma.
We show the other inequality by contradiction so assume that d

(t1)
G (s, w) > d. Then

d
(t1)
G (s, w) ≥ d+1 so by the above dG(s, w) would have increased by more than d+1−(32

33d+
1) = 1

33d from time step t0 to t1. Combining this with d
(t1)
G (s, v) = d

(t1)
G (s, w) + d

(t1)
G (w, v),

d
(t0)
G (w, v) ≤ d

(t1)
G (w, v), and the triangle inequality, we get

d
(t1)
G (s, v)− d

(t0)
G (s, v) ≥ d

(t1)
G (s, w) + d

(t1)
G (w, v)− (d(t0)

G (s, w) + d
(t0)
G (w, v)) >

1
33d
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This contradicts the assumption d < d
(t0)
G (s, v) ≤ d

(t1)
G (s, v) ≤ 34

33d. We conclude that
d

(t1)
G (s, w) ≤ d and d

(t1)
G (w, v) ≤ d which shows the second part of the lemma.

Bounding |S| and running time: To bound, |S|, consider the two parallel searches from
s and from v, respectively, in some update. As argued earlier, there cannot be an edge or
vertex visited by both searches. Let X resp. Y be the set of vertices visited by the BFS
from s resp. v, excluding Ls resp. Lv and let x = |X| and y = |Y |.

Assume first that L = Ls. Then all vertices in Y ∪ Lv become unreachable in GS once
L has been added to S. For each w ∈ V , d̂(w)/∆ ≥ 1. Since each BFS spends d̂(w) time to
process edges incident to w and since the two searches run in parallel, we have

|L| = O((x log n)/d) = O

(
log n

d

∑

w∈X

d̂(w)
∆

)
= O


 log n

d

∑

w∈Y ∪Lv

d̂(w)
∆




Now, assume that L = Lv. Then all vertices of Y ∪ Lv become unreachable in GS once
L has been added to S so again,

|L| = O((y log n/d) = O


 log n

d

∑

w∈Y ∪Lv

d̂(w)
∆




In both cases, the cost |L| of adding L to S can be paid for by charging each vertex w
no longer reachable from s in GS a cost of O( log n

d d̂(w)/∆). Since a vertex is only charged
once during the course of the algorithm, we get that for the final separator S (and hence
for each intermediate separator),

|S| = O

(
log n

d

∑

w∈V

d̂(w)
∆

)
= O

(
log n

d

∑

w∈V

d(w) + ∆
∆

)
= O

( log n(m + n⌈m/n⌉)
d⌈m/n⌉

)

= O

(
n log n

d

)

where the last bound follows since we may assume that all vertices are initially reachable
from s in G, implying m ≥ n − 1 and hence ⌈m/n⌉ = Θ(m/n). This shows the desired
bound on |S|.

The running time cost of any two parallel searches can be charged to the total degree of
the vertices that get marked since they all become unreachable in GS (this is the vertex set
Y above). Since a marked vertex is never visited again by a BFS search, the total running
time of parallel searches over all updates is O(m), as desired.

The lemma is somewhat technical and its full strength is only needed for the randomized
data structure. For the deterministic data structures, the second part of the lemma will
only be applied to the current time step t1 = t0 so it can be simplified to:

2. if d < dG(s, v) ≤ 34
33d then any shortest s-to-v path P in G intersects S and for the

first such intersection vertex w along P , dG(s, w) ≤ d, and dG(w, v) ≤ d.

4 Deterministic Decremental APSP
In this section, we present our deterministic data structures for the exact resp. (1 + ϵ)-
approximate decremental APSP problem and show Theorems 1 and 2. In the following, let
G = (V, E) denote the decremental graph.
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4.1 Exact distances
Let ρ = 34

33 and Di = ρi for i = 0, . . . , ⌊logρ n⌋. For each i and each u ∈ V , we give a data
structure Di(u) which for any query vertex v maintains a value d̃i(u, v) ≥ dG(u, v) with
equality if dG(u, v) ∈ (Di, Di+1]. In each update, these data structures will be updated in
order of increasing i.

Handling all-pairs shortest path distances up to at most 33 lg n can be done in O(mn log n)
time using the data structure of Even and Shiloach so we only consider i such that Di >
33 lg n. This allows us to apply Lemma 3. Consider such an i and assume that we already
have data structures for all values smaller than i.

Data structure Di(u) maintains a separator set Si(u) using an instance Si(u) of the data
structure of Lemma 3 with s = u and d = Di; inductively, we have an exact data structure
for distances smaller than d and this data structure plays the role of O with d̃ = dG. At the
beginning of each update, Si(u) updates Si(u). Then for each v, if O reports that d̃(u, v)
has increased from a value of at most Di to a value strictly greater than Di, Di(u) initializes
Si(u, v) to be the current separator set Si(u); Di(u) then initializes a priority queue Qi(u, v)
where elements are all s ∈ Si(u, v) with corresponding keys d̃i−1(u, s) + d̃i−1(s, v). During
updates, whenever Di−1(u) resp. Di−1(s) reports that d̃i−1(u, s) resp. d̃i−1(s, v) increases,
the key value of s in Qi(u, v) increases by the same amount. Note that after initialization,
Si(u, v) remains fixed and so does Qi(u, v) (except for key value changes).

For each vertex v, Di(u) maintains d̃i(u, v) as the min key value in Qi(u, v) after Qi(u, v)
has been initialized; prior to this, d̃i(u, v) = ∞. This completes the description of each
Di(u).

The overall data structure D maintains a priority queue Q(u, v) for each vertex pair (u, v)
with an element for each i of key value d̃i(u, v). For i in increasing order, D updates Di(u) for
each u. Whenever a data structure Di(u) increases a value d̃i(u, v), the corresponding key
in Q(u, v) is increased accordingly. On a query (u, v), D reports the min key value in Q(u, v).

Correctness: We prove that for each i, each time step t1, and each vertex pair (u, v),
d̃i(u, v) ≥ dG(u, v) with equality if dG(u, v) ∈ (Di, Di+1]. The inequality is clear since every
estimate corresponds to the length of some path in the current graph. The equality part is
shown by induction on i.

The base cases where Di < 33 lg n are clear so pick i with Di ≥ 33 lg n and d
(t1)
G (u, v) ∈

(Di, Di+1] and assume that correctness holds for all vertex pairs and time steps for i−1. Let
t0 ≤ t1 be the first time step such that d

(t0)
G (u, v) ∈ (Di, Di+1]. Note that Si(u, v) = Si(u)(t0).

The induction hypothesis and the second part of Lemma 3 combined with the observation
that no key value in Qi(u, v) is below dG(u, v), it follows that the min key value in Qi(u, v)
equals d

(t1)
G (u, v). This shows correctness.

Running time: Consider an i ∈ {0, . . . , ⌊logρ n⌋} with Di ≥ 33 lg n and a vertex u ∈ V .
We will show that maintaining Di(u) takes O(n2 log2 n) time using a standard binary heap.
Total time over all i and u will thus be O(n3 log3 n). This dominates the O(n3 log2 n) time
to maintain priority queues Q(u, v) and the O(mn log n) time for the data structure of Even
and Shiloach for small values of i.

Maintaining Si(u) takes a total of O(m) time by Lemma 3. The total number of elements
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in priority queues Qi(u, v) over all v ∈ Si(u, v) is O(n2 log n/Di), again by Lemma 3. The
number of increase-key operations for a single priority queue element s of Qi(u, v) is O(Di)
which takes a total of O(Di log n) time. Over all elements of priority queues Qi(u, v), this
is O(n2 log2 n).

Reporting paths: It is easy to extend our data structure to efficiently answer queries for
shortest paths (rather than only shortest path distances) between any vertex pair (u, v).
Associated with the min element of Q(u, v) is a vertex s such that for the associated index
i, d̃i(u, v) = dG(u, v) = dG(u, s) + dG(s, v), d̃i−1(u, s) = dG(u, s), and d̃i−1(s, v) = dG(s, v).
Hence, by recursively querying for pairs (u, s) and (s, v), a shortest u-to-v path in G is
reported in time proportional to its length.

4.2 Approximate distances
Let ϵ > 0 be given. We now present our deterministic data structure for the (1 + ϵ)-
approximate variant of the problem.

The data structure is quite similar to the one for the exact variant so we only describe
the changes needed. For i > 0 and u ∈ V , we describe data structure Di(u) and assume
that we have data structures for values less than i. As before, we only consider i with
Di ≥ 33 lg n.

Let ϵ′ > 0 be a value depending on ϵ such that (1 + ϵ′)c = ρ for some c ∈ N; we will
specify ϵ′ later. For j = 0, . . . , c = log1+ϵ′ ρ, let di,j = Di(1 + ϵ′)j . This partitions each
interval (Di, Di+1] into c sub-intervals (Di(1 + ϵ′)j , Di(1 + ϵ′)j+1] for j = 0, . . . , c− 1.
Di(u) maintains Si(u) as in the exact version. For each v ∈ V , Di(u) maintains an

initially empty set Si(u, v). Once Di−1(u) reports that d̃i−1(u, v) increased from a value of
at most Di(1 + ϵ′)i to a value strictly greater than Di(1 + ϵ′)i, Di(u) sets Si(u, v) equal to
the current set Si(u).

For each j = 0, . . . , c − 1, a data structure Di,j(u) maintains the following set for each
vertex v:

Qi,j(u, v) =
{

s ∈ Si(u, v) | d̃i−1(u, s) + d̃i−1(s, v) ≤ (1 + ϵ′)idi,j

}
.

Qi,j(u, v) is maintained by Di,j(u) as a queue in which every s ∈ Qi,j(u, v) has key
d̃i−1(u, s) + d̃i−1(s, v) and where s is removed from Qi,j(u, v) (or increased to ∞) when this
value exceeds (1 + ϵ′)idi,j .

For each vertex v, define d̃i,j(u, v) = (1+ϵ′)idi,j if Qi,j(u, v) contains at least one element
and otherwise d̃i,j(u, v) =∞.

Data structure Di(u) maintains a min-priority queue Qi(u, v) for each vertex v with an
element of key value d̃i,j(u, v) for each j. On query v, it outputs d̃i(u, v) = min{k, d̃i−1(u, v)}
where k is the min-key value of this queue, i.e., d̃i(u, v) = min{d̃i−1(u, v), minj d̃i,j(u, v)}.

The overall data structure D works in the same manner as for the exact data structure.

Correctness: Consider any point during the sequence of edge deletions. We will show that
for suitable choice of ϵ′, the estimate d̃(u, v) that D outputs satisfies dG(u, v) ≤ d̃(u, v) ≤
(1 + ϵ)dG(u, v) for every vertex pair (u, v).
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We first show that dG(u, v) ≤ d̃(u, v). It suffices to prove by induction on i ≥ 0 that
dG(u, v) ≤ d̃i(u, v). The proof holds for small i such that Di < 33 lg n since then we use
the data structure of Even and Shiloach, implying d̃i(u, v) = dG(u, v). Now, consider an i
such that Di ≥ 33 lg n and assume that the claim holds for smaller values than i. We have
d̃i(u, v) = min{d̃i−1(u, v), minj d̃i,j(u, v)} and d̃i,j(u, v) ≥ (1+ϵ′)idi,j ≥ d̃i−1(u, s)+d̃i−1(s, v)
for each s ∈ Qi,j(u, v). Additionally, if Qi,j(v) = ∅ then d̃i,j(u, v) = ∞. The induction
hypothesis now implies d̃i(u, v) ≥ dG(u, v), showing the induction step. Thus, dG(u, v) ≤
d̃(u, v).

To show that d̃(u, v) ≤ (1 + ϵ)dG(u, v), we prove by induction on i ≥ 0 that during
all updates and for all vertex pairs (u, v), if dG(u, v) ∈ (0, Di+1] then d̃i(u, v) ≤ (1 +
ϵ′)idG(u, v). If we can show this then picking ϵ′ ≤ ln(1 + ϵ)/(⌊logρ n⌋) gives d̃(u, v) ≤
(1 + ϵ′)⌊logρ n⌋dG(u, v) ≤ eϵ′⌊logρ n⌋dG(u, v) ≤ (1 + ϵ)dG(u, v) for every vertex pair (u, v).

We only need to consider i with Di ≥ 33 lg n since otherwise, we use the data structure
of Even and Shiloach. Assume inductively that the claim holds for values less than i.

Let t1 be the current time step and consider a vertex pair (u, v) with d
(t1)
G (u, v) ∈

(0, Di+1]. By the induction hypothesis, we may assume that d
(t1)
G (u, v) ∈ (Di, Di+1]. We

may further assume that d̃
(t1)
i−1(u, v) > Di(1 + ϵ′)i since otherwise,

d̃
(t1)
i (u, v) ≤ d̃

(t1)
i−1(u, v) ≤ Di(1 + ϵ′)i < (1 + ϵ′)id

(t1)
G (u, v).

Let t0 ≤ t1 be the first time step where d̃
(t0)
i−1(u, v) > Di(1 + ϵ′)i. We must have

d
(t0)
G (u, v) > Di since otherwise, the induction hypothesis would imply d̃

(t0)
i−1(u, v) ≤ d

(t0)
G (u, v)(1+

ϵ′)i−1 ≤ Di(1 + ϵ′)i−1, contradicting the choice of t0. Since also d
(t0)
G (u, v) ≤ d

(t1)
G (u, v) ≤

Di+1, Lemma 3 implies that there is a vertex s ∈ S
(t0)
i (u) = S

(t0)
i (u, v) = S

(t1)
i (u, v) such

that d
(t1)
G (u, v) = d

(t1)
G (u, s) + d

(t1)
G (s, v), d

(t1)
G (u, s) ≤ Di, and d

(t1)
G (s, v) ≤ Di.

Pick j such that d
(t1)
G (u, v) ∈ (di,j , di,j+1]. By the induction hypothesis,

d̃
(t1)
i−1(u, s) + d̃

(t1)
i−1(s, v) ≤ (1 + ϵ′)i−1d

(t1)
G (u, v) ≤ (1 + ϵ′)i−1di,j+1 = (1 + ϵ′)idi,j .

Hence, Qi,j(u, v) is non-empty at time step t1 so d̃
(t1)
i (u, v) ≤ d̃

(t1)
i,j (u, v) = (1 + ϵ′)idi,j ≤

(1 + ϵ′)id
(t1)
G (u, v). This shows the induction step.

Running time: The analysis is similar to the one for exact distances. Pick an i ∈
{0, . . . , ⌊logρ n⌋} with Di ≥ 33 lg n. The total time to maintain Si(u) over all u is O(mn).

Observe that each approximate distance d̃i−1(u1, u2) is of the form (1 + ϵ′)i′
di′,j for i′ ≤

i−1. Since each element s in a queue Qi,j(u, v) has key value d̃i−1(u, s)+d̃i−1(s, v), it follows
that the number of increase-key operations applied to s in Qi,j(u, v) is O(log1+ϵ′ Di) =
O(log Di/ϵ′) = O(log n/ϵ′). For our purpose, a simplified queue Qi,j(u, v) suffices which
keeps a counter of the number of elements of key value at most (1 + ϵ′)idi,j ; this follows
since the min key value is at most (1 + ϵ′)idi,j if and only if the counter is strictly greater
than 0. Every queue operation for Qi,j(u, v) can then be supported in O(1) time. The
number of elements in Qi,j(u, v) over all u, v, and j is O(cn3 log n/Di) = O(n3 log n/(Diϵ

′))
by Lemma 3. This gives a total time bound of O(mn+n3 log2 n/(Di(ϵ′)2)). This dominates
the time spent on maintaining priority queues Qi(u, v).

14



Recall from above that ϵ′ ≤ ln(1 + ϵ)/(⌊logρ n⌋). The only additional constraint on ϵ′ is
that (1 + ϵ′)c = ρ for some c ∈ N. This can be achieved with ϵ′ = Θ(ln(1 + ϵ)/(⌊logρ n⌋)).
Hence, we get a time bound of O(mn + n3 log4 n/(Diϵ

2)).
Note that this bound is no better than the exact data structure for small Di. We thus

consider a hybrid data structure that only applies our data structure when Di is above some
distance threshold d and otherwise applies the data structure of Even and Shiloach which
takes a total of O(mnd) time. Summing over all Di > d and applying a geometric sums
argument, the total time for our hybrid data structure is

O(mnd +
∑

i:Di>d

n3 log4 n/(Diϵ
2))) = O(mnd + n3 log4 n/(dϵ2)))

Setting d = n log2 n/(ϵ
√

m) gives Theorem 2. Showing the bound for reporting approximate
shortest paths in the theorem is done in the same way as in Section 4.1.

5 Randomized Decremental APSP
In this section, we provide a high-level overview of the randomized (1 + ϵ)-approximate
data structure and analysis to achieve the result presented in Theorem 3. Building on this
overview we will then prove the theorem.

Let us start by focusing on maintaining approximate distances close to the value Di

from a single vertex u and for now we assume an oblivious adversary.

Maintaining a sampled separator subset: Instead of maintaining each separator Si,j(u, v)
(with associated with priority queue Qi,j(u, v)) as the full vertex separator Si(u), we obtain
a speed-up by only maintaining a sampled subset of Si(u). As long as this sampled subset
certifies that there is a short two-hop path from u to v, the data structure proceeds as in
the previous section. When this is no longer the case, there might still be a short two-hop
path from u to v through a non-sampled vertex s in the full separator set Si(u). However,
since there are no more sampled candidates, the expected number of vertices of Si(u) that
provide a short two-hop path is small and we can update Si,j(u, v) to be this small subset.
It follows that in expectation, Si,j(u, v) can be kept small at all times, which is needed to
give a speed-up.

A speed-up using shallow in-trees: The problem with the data structure sketched
above is that the entire set Si(u) had to be scanned in order to update Si,j(u, v) which
means that the data structure will not be faster than our deterministic structure from the
previous section. To deal with this, consider the following modification. The set Si,j(u, v) is
updated as before by scanning over the entire set Si(u). Now, an in-tree T (v) is grown from
v of radius at most ϵ′Di. Each vertex v′ in T (v) then inherits the set of v, i.e., Si,j(u, v′) is
updated to the set Si,j(u, v) and this update is fast since Si,j(u, v) is small in expectation.
This works since v is a proxy for v′ in the sense that a short two-hop path from u to v′ via
Si,j(u, v) can be extended with a short suffix from T (v), giving a short two-hop path from u
to v via Si,j(u, v) (as T (v) is an in-tree of small radius). Now, the time spent on the single
scan of Si(u) can be distributed among all vertices of T (v) and the number of such vertices
must be at least ϵ′Di + 1 (if not, v would be within distance ϵ′Di from u).
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Unfortunately, the time analysis for the above procedure breaks down if the in-trees
grown during the sequence of updates overlap too much. We now sketch how to deal with
this. Mark vertices of each in-tree grown so far. When the BFS procedure grows a new
in-tree T (v), this procedure is modified by having it backtrack at previously marked vertices
which thus become leaves of T (v); this set of marked leaves will be referred to as L in the
detailed description below.

Case 1, dealing with a large in-tree: If the number of unmarked vertices visited in T (v)
is greater than ϵ′Di, the above procedure and analysis can be applied; this is referred to as
Case 1 in the detailed description below.

Case 2, dealing with a small in-tree: Otherwise, we are in Case 2; here we recall that
T (v) has small radius and observe that the only way to enter T (v) from G \T (v) is through
L. Hence, for every vertex s in the union ∪v′∈LSi,j(u, v′), there is a good two-hop path from
u to v through s. But since we know that there is only a small number of such vertices left
(in expectation), this union must be small. Furthermore, the union must contain a good
separator for every vertex in T (v) (again because T (v) has small radius and because T (v)
must be entered through L) and we thus have an efficient way to update Si,j(u, w) for all
w ∈ T (v).

Handling an adaptive adversary: Above we assumed an oblivious adversary. When the
adversary is adaptive, we need to be more careful since the approximate distances reported
might reveal information about which vertices have been sampled. To deal with this, we
round up every two-hop distance on a given distance scale to the same upper bound value
(this will only increase the weight of each two-hop path by a small factor so that the output
to a query will still be (1+ϵ)-approximate). Hence, the rounded up approximate weight of a
two-hop path u⇝ s⇝ v is the same for every choice of "good" separator vertex s regardless
of whether it was sampled or not. It follows that our randomized structure outputs the same
distance estimates as a slower deterministic algorithm that maintains the full separator sets.
Hence, our randomized algorithm works against an adaptive adversary, as desired.

5.1 The data structure

We now make the the overview formal. First, redefine ρ = 34− 1
2

33 = 67
66 and pick ϵ′ such that

(1 + ϵ′)c = ρ for some c ∈ N and such that ρ(1 + ϵ′) ≤ 34
33 . For each u and i such that

Di ≥ 33 lg n, a separator Si(u) is maintained with a data structure Si(u) as in Section 4.
We extend the range of index j by 1 so that j ∈ {0, . . . , c + 1}. Each structure Di,j(u)

maintains a growing set Mi,j(u) of marked vertices; this set is initially empty. In the
following, let Ui,j(u) = V \ Mi,j(u) denote the set of unmarked vertices and let GUi,j(u)
denote the graph with vertex set V and containing the edges of G having at least one
unmarked endpoint.

In each update, Di,j(u) maintains Si,j(u, v) and Qi,j(u, v) for v ∈ V in the following way.
For each v ∈ V and every vertex s added to Si(u) in the current update, s is added to

Si,j(u, v) with some probability p to be fixed later. Note that only vertices v for which s
is actually added to Si,j(u, v) need to be processed. In the full version of the paper [5], we
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Figure 2: The two cases in the description of the randomized algorithm. Case 1: black
vertices of Si(u) form the subset of vertices s with d̃i−1(u, s) + d̃i−1(s, v) ≤ di,j(1 + ϵ′)2i.
For each v′ ∈ V (T (v)), Qi,j(u, v′) is set to be this subset (with key values adjusted). 2-hop
paths from u to v through the subset are shown. Case 2: Vertices of L are shown in white
inside T (v). Dotted regions are trees touching T (v). For a w ∈ L, black vertices of Si(u)
form the set Qi,j(u, w) and 2-hop paths from u to w through this set are shown. Q is the
union of these sets over all w ∈ L. For each v′ ∈ V (T (v)) \ L, Qi,j(u, v′) is a subset of Q.

employ a different sampling scheme that avoids having to flip a coin for every vertex v ∈ V
in every update.

For vertices v such that v ∈ Mi,j(u) or such that both v ∈ Ui,j(u) and d̃i−1(u, v) ≤
Di(1 + ϵ′)2i, no further processing is done.

Now, assume that v ∈ Ui,j(u) and that d̃i−1(u, v) > Di(1+ϵ′)2i. If this inequality did not
hold in the previous update, each (sampled) vertex of Si,j(u, v) is added to a new min-queue
Qi,j(u, v) with key values as in the previous section. Conversely, if the inequality did hold
in the previous update, each new (sampled) vertex added to Si,j(u, v) in the current update
is added to Qi,j(u, v).

If the min key value of Qi,j(u, v) is greater than di,j(1 + ϵ′)2i, Di,j(u) grows an in-tree
T (v) from v in GUi,j(u) up to radius ϵ′Di.

There are now two cases (see Figure 2): |V (T (v)) \ Mi,j(u)| > ϵ′Di and |V (T (v)) \
Mi,j(u)| ≤ ϵ′Di.

Case 1: If |V (T (v)) \Mi,j(u)| > ϵ′Di then Di,j(u) scans once over Si(u) to find the subset
of vertices s ∈ Si(u) for which d̃i−1(u, s) + d̃i−1(s, v) ≤ di,j(1 + ϵ′)2i. For each v′ ∈
V (T (v)), Qi,j(u, v′) is set to contain exactly this subset of vertices s but with key
value d̃i−1(u, s) + d̃i−1(s, v′).

Case 2: If |V (T (v)) \ Mi,j(u)| ≤ ϵ′Di then let L = V (T (v)) ∩ Mi,j(u) and let Q =
∪v′∈LQi,j(u, v′). For each v′ ∈ V (T (v)) \ L, Di,j(u, v) sets Qi,j(u, v′) to contain
the elements s ∈ Q with d̃i−1(u, s) + d̃i−1(s, v) ≤ di,j(1 + ϵ′)2i; their key values are
d̃i−1(u, s) + d̃i−1(s, v′).

In both cases, Di,j(u) then marks all vertices of T (v), i.e., Mi,j(u)←Mi,j(u)∪V (T (v)).
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Approximate distances d̃i,j(u, v) are maintained by Di,j(u) in a way similar to that in
Section 4.2: d̃i,j(u, v) = (1+ ϵ′)2idi,j if the min key value of Qi,j(u, v) is at most (1+ ϵ′)2idi,j

and otherwise d̃i,j(u, v) =∞.
Data structures Di(u) as well as the overall data structure D work exactly as in Sec-

tion 4.2.

5.2 Correctness
Consider any point during the sequence of edge deletions. We will show that for suitable
choice of ϵ′, we have dG(u, v) ≤ d̃(u, v) ≤ (1 + ϵ)dG(u, v).

We do this by proving that during all updates and for all vertex pairs (u, v), if dG(u, v) ∈
(0, Di+1(1 + ϵ′)] then d̃i(u, v) ≤ (1 + ϵ′)2idG(u, v). By picking ϵ′ = ln(1 + ϵ)/(2⌊logρ n⌋), this
will give dG(u, v) ≤ d̃G(u, v) ≤ (1+ϵ′)2⌊logρ n⌋dG(u, v) ≤ e2⌊logρ n⌋ϵ′

dG(u, v) ≤ (1+ϵ)dG(u, v),
as desired.

The proof is by induction on i. The claim is clear for i with Di < 33 lg n since then
we use the data structure of Even and Shiloach. Now, consider an i with Di ≥ 33 lg n and
assume that the claim holds for values less than i. By the induction hypothesis, we only need
to consider pairs (u, v) with dG(u, v) ∈ (Di(1 + ϵ′), Di+1(1 + ϵ′)], i.e., dG(u, v) ∈ (di,j , di,j+1]
with j > 0.

We first show the following invariant for marked vertices that holds prior to each update
over the entire sequence of updates:

Invariant 1. At the end of each update, for every w ∈Mi,j(u) with dG(u, w) ∈ (di,j , di,j+1],
each shortest u-to-w path in G intersects a vertex s ∈ Qi,j(u, w) such that dG(u, s) ≤ Di

and dG(s, w) ≤ Di.

Proof. The invariant is shown by induction on the rank of w in the order in which vertices
are marked. Note that this is a proof by induction inside a step of the main proof by
induction on i; in addition to the induction hypothesis stated above, we may thus assume
that the invariant holds for values less than i. Additionally, for the current value of i, we
may assume by induction that the invariant holds for vertices of lower rank than w.

Let t1 be a time step with w ∈ Mi,j(u)(t1) and d
(t1)
G (u, w) ∈ (di,j , di,j+1], let t0 ≤ t1

be the time step in which w was marked, and let r be the vertex from which an in-tree
T (r) ∋ w was grown in time step t0. Let P be a shortest u-to-w path in G(t1).

We must have d̃
(t0)
i−1(u, r) > Di(1 + ϵ′)2i since otherwise, no processing would be done

for r in time step t0, contradicting that T (r) is grown in that time step. We also have
d

(t0)
G (u, r) > Di(1+ϵ′) since otherwise the induction hypothesis would give the contradiction

Di(1 + ϵ′) ≥ d
(t0)
G (u, r) ≥ d̃

(t0)
i−1(u, r)/(1 + ϵ′)2(i−1) > Di(1 + ϵ′)2i−2(i−1) = Di(1 + ϵ′)2.

By the triangle inequality and the fact that w ∈ T (r) and T (r) has radius at most
ϵ′Di, we get d

(t0)
G (u, w) ≥ d

(t0)
G (u, r) − d

(t0)
G (w, r) > Di(1 + ϵ′) − ϵ′Di = Di. Hence, Di <

d
(t0)
G (u, w) ≤ d

(t1)
G (u, w) ≤ di,j+1 ≤ 34

33Di so by Lemma 3, P intersects S
(t0)
i (u) and for

the first such intersection vertex s along P , d
(t0)
G (u, s) ≤ d

(t1)
G (u, s) ≤ Di and d

(t0)
G (s, w) ≤

d
(t1)
G (s, w) ≤ Di. We consider the two cases in the description of Di,j(u) (see Figure 3): Case

1: It suffices to show that s ∈ Q
(t1)
i,j (u, w). We have d

(t0)
G (s, r) ≤ d

(t0)
G (s, w) + d

(t0)
G (w, r) ≤
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Figure 3: The two cases in the proof of Invariant 1. The path P is marked in bold.

(1 + ϵ′)Di. By the induction hypothesis,

d̃
(t0)
i−1(u, s) + d̃

(t0)
i−1(s, r) ≤ (1 + ϵ′)2(i−1)d

(t0)
G (u, r)

≤ (1 + ϵ′)2i−2(d(t0)
G (u, w) + ϵ′Di)

≤ (1 + ϵ′)2i−2(d(t1)
G (u, w) + ϵ′Di)

≤ (1 + ϵ′)2i−2(di,j+1 + ϵ′di,j+1)
= (1 + ϵ′)2idi,j ,

so s ∈ Q
(t0)
i,j (u, w) = Q

(t1)
i,j (u, w), showing maintenance of the invariant.

Case 2: We first show that P must intersect the set L formed when growing T (r) in time
step t0. Since we are in Case 2, every leaf of T (r) either belongs to L or has no ingoing
edges from vertices not in T (r); otherwise, T (r) would contain more than ϵ′Di vertices since
it is grown up to radius ϵ′Di. Hence, the only way that P could not intersect L would be
if P were fully contained in T (r). But this is not possible since then T (r) would contain
at least |P |+ 1 ≥ di,j + 1 > Di ≥ ϵ′Di unmarked vertices at the beginning of time step t0,
contradicting that we are in Case 2.

Thus, P intersects L and we have w /∈ L since w was an unmarked vertex of T (r)
when growing this tree. Let x be the last vertex of P belonging to L. Since x was marked
earlier than w, the induction hypothesis implies that the subpath of P from u to x in-
tersects Q

(t1)
i,j (u, x) = Q

(t0)
i,j (u, x) in a vertex sx such that d

(t0)
G (u, sx) ≤ d

(t1)
G (u, sx) ≤ Di

and d
(t0)
G (sx, x) ≤ d

(t1)
G (sx, x) ≤ Di. The latter implies d

(t0)
G (sx, r) ≤ (1 + ϵ′)Di. By the

induction hypothesis, d̃
(t0)
i−1(u, sx) + d̃

(t0)
i−1(sx, r) ≤ (1 + ϵ′)2(i−1)(d(t0)

G (u, sx) + d
(t0)
G (sx, r)) =

(1 + ϵ′)2(i−1)d
(t0)
G (u, r) which by the same calculations as in Case 1 is at most (1 + ϵ′)2idi,j .

Inspecting the execution of Di,j(u) in Case 2, it follows that sx ∈ Q
(t0)
i,j (u, w) = Q

(t1)
i,j (u, w).

We have sx ∈ Q
(t0)
i,j (u, x) ⊆ S

(t0)
i (u). Since s is the first vertex of S

(t0)
i (u) along P , P can

thus be decomposed into u ⇝ s ⇝ sx ⇝ x ⇝ w and we get d
(t1)
G (u, sx) ≤ Di (as shown

above) and d
(t1)
G (sx, w) ≤ d

(t1)
G (s, w) ≤ Di. This shows maintenance of the invariant with sx

in place of s.

Now, we continue with our proof by induction on i. Consider any vertex pair (u, v)
at the end of an update with dG(u, v) ∈ (di,j , di,j+1] and j > 0. If v /∈ Mi,j(u) and
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d̃i−1(u, v) ≤ (1 + ϵ′)2iDi then dG(u, v) ≤ d̃i,j(u, v) ≤ (1 + ϵ′)2iDi < (1 + ϵ′)2idG(u, v), as
desired.

Now assume that v /∈ Mi,j(u) and d̃i−1(u, v) > (1 + ϵ′)2iDi. Since v was not marked
in the current update, the min key value of Qi,j(u, v) at the end of the update is at most
di,j(1 + ϵ′)2i so dG(u, v) ≤ d̃i,j(u, v) ≤ (1 + ϵ′)2idi,j < (1 + ϵ′)2idG(u, v), as desired.

Finally assume that v ∈ Mi,j(u). By Invariant 1, there is an s ∈ Qi,j(u, v) such that
dG(u, v) = dG(u, s) + dG(s, v), dG(u, s) ≤ Di, and dG(s, v) ≤ Di. By the induction hypoth-
esis, dG(u, v) ≤ d̃i(u, v) ≤ d̃i−1(u, s) + d̃i−1(s, v) ≤ (1 + ϵ′)2(i−1)dG(u, v), as desired. This
completes the inductive proof and correctness follows.

5.3 Running time
Maintaining separators Si(u) over all u and i takes O(mn logρ n) = O(mn log n) time by
Lemma 3. For the remaining time analysis, we focus on a single data structure Di,j(u).
It is useful in the following to regard this structure as handling an adversarial sequence of
updates consisting of changes to approximate distances maintained by structures Di′(v) for
i′ < i and v ∈ V . We will give an expected time bound for Di,j(u) and we shall rely on the
following key lemma; the proof can be found in the full version of the paper [5].

Lemma 4. Let r ∈ V . If at some point in the sequence of updates, Di,j(u) grows an in-tree
from r then at the end of that update, the expected number of vertices s ∈ Si(u) satisfying
d̃i−1(u, s) + d̃i−1(s, r) ≤ Di(1 + ϵ′)2i is O(ln n/p). This bound holds against an adaptive
adversary.

Corollary 1. When a vertex v is marked, E[|Qi,j(u, v)|] = O(ln n/p) and this bound holds
against an adaptive adversary.

Proof. Consider the update in which v is marked and let r be the root of the in-tree T (r)
containing v. If |T (r)| ≥ ϵ′Di then Qi,j(u, v) = Qi,j(u, r) ⊆ Si(u) and all s ∈ Qi,j(u, r)
satisfy the inequality of Lemma 4. In the case where |T (r)| < ϵ′Di, let Q be as defined
in the description of the data structure. Then vertices s ∈ Q ⊆ Si(u) are only added to
Qi,j(u, v) if they satisfy the inequality of Lemma 4. The corollary now follows.

Now, we can bound the time spent by Di,j(u). The total time spent on growing in-trees
is O(m) since every edge (w1, w2) visited must have w1 /∈ Mi,j(u) at the beginning of the
BFS search and w1 ∈Mi,j(u) immediately afterwards and a vertex can never be unmarked.
This also bounds the time spent on marking vertices.

The total expected number of sampled vertices added to Qi,j(u, v) prior to v being
marked is at most xp where x is the size of the set Si(u) after the final update. By Lemma 3,
x = O(n log n/Di). By Corollary 1, the expected size of Qi,j(u, v) after v is marked is
O(ln n/p). Using the same argument as in the running time analysis of Section 4.2, the
number of increase-key operations applied to a single element of Qi,j(u, v) is O(log n/ϵ′).
Hence, the total expected time spent on operations on Qi,j(u, v) is O((n log n · p/Di +
log n/p) log3 n/ϵ).

Whenever Di,j(u) grows an in-tree T (r) with |V (T (r)) \ Mi,j(u, v)| > ϵ′Di, scanning
Si(u) takes O(n log n/Di) time by Lemma 3. Since all vertices of V (T (r)) \Mi,j(u, v) are
marked just after T (r) is grown and since vertices are never unmarked, the number of such
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trees over the course of the updates is at most n/(ϵ′Di) so the total time for all these scans
is O(n2 log2 n/(ϵD2

i )).
Whenever Di,j(u) grows an in-tree T (r) with |V (T (r)) \ Mi,j(u, v)| ≤ ϵ′Di, the set

∪x∈LQi,j(u, x) needs to be computed. Note that for each x ∈ L, E[|Qi,j(u, x)|] = O(log n/p)
by Corollary 1. At least one edge (y, x) ingoing to x belongs to T (r) and this edge is not part
of any later grown in-tree since x is marked immediately after T (r) is grown. We charge a
cost of O(log n/p) to (y, x) for computing Qi,j(u, x). Over all x ∈ L, this pays for computing
∪x∈LQi,j(u, x) and we get a total expected time bound for this part of O(m log n/p).

Summing the above over all u, v, i, and j, we get a total expected time bound for our
data structure of

Õ(mn/ϵ +
∑

i

∑

j

(n3 · p/(Diϵ) + n2/(pϵ) + n3/(ϵD2
i ) + mn/p).

Since this bound is only fast for sufficiently large i, we pick a distance threshold d and
apply the algorithm of Even and Shiloach for distances of at most d and our data structure
for distances above d. By a geometric sums argument, our hybrid algorithm has a expected
total time bound of

Õ(mnd + mn/ϵ + n3 · p/(dϵ2) + n2/(pϵ2) + n3/(ϵ2d2) + mn/(pϵ))
= Õ(mnd + n3 · p/(dϵ2) + n2/(pϵ2) + n3/(d2ϵ2) + mn/(pϵ))

Setting the second and fifth terms equal to each other, we get p = Θ̃(
√

mϵd/n) and the time
bound simplifies to

Õ(mnd +
√

mn2/(
√

dϵ3/2) + n3/(
√

mdϵ5/2) + n3/(d2ϵ2)).

We balance the first two terms by setting d = Θ̃(n2/3/(m1/3ϵ)) and we get a time bound of

Õ(m2/3n5/3n/ϵ + n8/3/(m1/3ϵ2)),

which shows the time bound of Theorem 3.
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Abstract

We present a simple algorithm for computing the so-called Beer-index of a simple polygon P in
O(n2 logn) time, where n is the number of corners of P . The Beer-index is the probability that two
points chosen independently and uniformly at random in P can see each other. Given a finite set M
of m points in P , we also show how the number of pairs in M that see each other can be computed in
O(n logn+m log2 n+m logn logm) time, which is close to optimal.

We likewise study the problem of computing the expected geodesic distance between two random
points in P . We show how the expected L1-distance can be computed in optimal O(n) time by a
conceptually very simple algorithm. We then describe an algorithm that outputs an expression for the
expected L2-distance in O(n2 log2 n) time.

1 Introduction

In this paper, we consider a function defined for pairs of points in a simple polygon P , and we want to compute
the expected value of the function when choosing two points uniformly and independently at random from
some set M ⊂ P . Here, M can either be a given finite set of points in P or all points in P , i.e., M = P . For
a pair of points p, q ∈ P , the functions we will consider are:

• the indicator [pq ⊂ P ] ∈ {0, 1}, i.e., whether p and q can see each other in P , and

• the length of the geodesic shortest path from p to q in P in the L1- or L2-metric.

Beer-index. With M = P and the first function [pq ⊂ P ], we obtain the probability B(P ) that two points
p, q, chosen uniformly and independently at random in P , see each other,

B(P ) :=
1

|P |2
∫

p∈P

∫

q∈P

[pq ⊂ P ] dq dp,

where | · | denotes the area. Throughout the paper, our integrals are defined with respect to Lebesgue
measure.

One of the well-known characterizations of a polygon P being convex is that all pairs of points in P can
see each other. Thus, the number B(P ) ∈ [0, 1] quantifies the degree to which this holds, so it is a natural
measure for the degree of convexity of P . The problem of partitioning a polygon into components that are
close to convex is useful in many practical settings, as such partitions provide similar benefits as convex
partitions, while the number of components can be significantly smaller when the components are allowed
to be slightly non-convex [12, 19]. This motivates ways to quatify the degree of convexity and algorithms for
computing these measures. Stern [25] was the first to introduced the measure B(P ), using the equivalent
form

B(P ) =
1

|P |2
∫

p∈P

|visP (p)|dp,

where visP (p) is the visibility polygon of the point p, i.e., the region of points in P that p can see. Stern
suggested that B(P ) be estimated by measuring |visP (p)| for every grid point p in P on a rectangular grid.
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Rote [23] showed that B(P ) can be expressed as a sum of O(n9) closed-form expressions. Here, P is a
polygon which may have holes, and n is the number of corners. Using a bound from [17], Rote later observed
that the number is in fact bounded by O(n7).

Buchin, Kostitsyna, Löffler and Silveira [5] described an algorithm that outputs B(P ), again for a given
polygon P which may have holes. They claimed the running time of the algorithm to be O(n2). Unfortu-
nately, as the algorithm is described in the paper [5], it may output B(P ) as a sum of Ω(n4) closed-form
expressions and thus likewise have a running time of Ω(n4). In Appendix A, we show that even when P
is a simple polygon, i.e., when P has no holes, the running time of the algorithm may be Ω(n4). We have
made the authors aware of this mistake, and they have informally described a different algorithm to us in
private communication which seems to have a running time of O(n2 log n). However, at the time of writing,
the algorithm has apparently not been written down in detail.

For a given simple polygon P with n corners, we describe an algorithm outputting B(P ) as a sum of O(n2)
closed-form expressions using O(n2 log n) time. The algorithm is a divide-and-conquer algorithm, and the
main idea is to split P along a diagonal uv into two parts P1 and P2 with roughly equally many corners. We
compute the contribution to B(P ) from pairs of points that see each other across the diagonal uv and then
recursively add the contributions of pairs of points that are either both in P1 or both in P2. The algorithm
is arguably simpler than the algorithm from [5] and presumably also the unpublished, faster algorithm by
the same authors, both of which rely on geometric duality, whereas our algorithm deals exclusively with
primitive objects in the usual primal space.

Theorem 1. Given a simple polygon P with n corners, there is an algorithm that returns the Beer-index
B(P ) as a sum of O(n2) closed-form expressions. The algorithm runs in time O(n2 log n) and uses O(n2)
space.

Counting visible pairs of points. Very recently, Buchin, Custers, van der Hoog, Löffler, Popov, Roelof-
fzen and Staals [4] studied the problem of computing the number of visible pairs among m points in a
simple polygon P with n corners. If m is not much larger than n, they suggest to use a data structure by
Hershberger and Suri [15] to test if each pair is visible in O(log n) time. This results in an algorithm with
running time O(n + m2 log n). For the case that m is large, they describe algorithms with running times
O(nm3/2 + m3/2 logm) and O(n + m3/2+ε log n logm) for any ε > 0, respectively. We present an algorithm
for counting the number of visible pairs among m points in O(n log n + m log2 n + m log n logm) time, so it
is superior to the algorithms from [4] in all cases.

Theorem 2. Given a simple polygon P with n corners and a set M of m point in P , the number of pairs
of points in M that can see each other can be computed in O(n log n + m log2 n + m log n logm) time.

Finding the edges of the visibility graph of a given polygon is one of the classical problems in compu-
tational geometry. Lee [18] described a simple and well-known algorithm with running time O(n2 log n)
already in 1979, where n is the number of corners. The algorithm works by performing a rotational sweep
around all corners. The same algorithm was described by Sharir and Schorr [24], and it also appears in the
book [2]. Asano, Asano, Guibas, Hershberger and Imai [1] and Welzl [26] gave algorithms with running time
O(n2). Hershberger [14] gave an output-sensitive algorithm using O(k) time to compute the visibility graph
of a triangulated polygon, where k is the number of edges in the visibility graph. Together with Chazelle’s
algorithm for triangulating a polygon in O(n) time, this yields an optimal algorithm with time O(n + k).
When the set M of points in P are the corners of P , our algorithm from Theorem 2 returns the size of
the visibility graph of a simple polygon in O(n log2 n) time. To the best of our knowledge, this is the first
algorithm that counts the number of visibility edges faster than the size of the graph. Note that the number
k/
(
n
2

)
∈ [0, 1] can be considered a discrete variant of the Beer-index.

Corollary 3. Given a simple polygon P , the number k of edges in the visibility graph of P can be computed
in O(n log2 n) time.
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Problem Time Space Reference
Beer-index O(n2 log n) O(n2) Section 3
L1-distance O(n) O(n) Section 2

L2-distance O(n2 log2 n) O(n2) Section 5

Table 1: Our results for computing expected distances and the Beer index in a simple polygon.

Expected distances. The problem of determining the expected distance between two points picked inde-
pendently and uniformly at random from a given domain has a long history. Czuber’s book from 1884 [10]
contains calculations of the values for equilateral triangles, squares and rectangles. Bäsel [6] recently derived
formulas for the expected distance, as well as higher moments, in regular n-gons for n = 3, 4, 5, 6, 8, 10, 12.
The paper likewise contains more historical information about these problems. In another recent paper,
Bonnet, Gusakova, Thäle and Zaporozhets [3] proved that the expected distance between two points in a
convex body in the plane with perimeter 1 is between 7/60 and 1/6, and that these bounds are tight. They
also provide bounds for higher dimensional convex bodies.

As a warmup for computing the expected distances in simple polygons, we consider the conceptually
simpler problem of computing the sum of L1-distances between all pairs of points from a finite set M ⊂ Rd,
i.e., with no polygon involved. We give a very simple algorithm computing the sum in O(d · n log n) time.

Theorem 4. Given a set M of n points in Rd, the sum of pairwise distances in the L1-metric between points
in M can be computed in O(d · n log n) time.

Hsu [16] studied the algorithmic problems of computing the expected distance between two random
points in a given polygon. He gave a O(n2) time algorithm for the expected geodesic L1-distance in a simple
polygon and a O(n3) time algorithm for the expected L2-distance in a convex polygon. In this paper, we
describe a very simple algorithm for computing the expected geodesic L1-distance in O(n) time and the
L2-distance in O(n2 log2 n) time in a simple polygon. To the best of our knowledge, no algorithm has been
described before for computing the expected L2-distance in simple polygons in general. Table 1 summarizes
our results on computing the Beer- and Wiener-index of a simple polygon.

Theorem 5. Given a simple polygon P with n corners, there is an algorithm for computing the expected
geodesic L1-distance between two random points in P using O(n) time and space.

Theorem 6. Let P be a simple polygon. There is an algorithm which outputs an expression representing
the expected geodesic L2 distance of P in O(n2 log2 n) time using O(n2) space. Each term of the expression
is a simple integral of constant size. The number of terms in the expression is O(n2).

This characterization can then be used to approximate the expected geodesic L2-distance. This relies
simply on approximating the certain kind of “simple” integrals that correspond to each term in the expression
of Theorem 6. It is unknown to the authors whether the terms admit a closed solution, however. This is
captured in the following corollary:

Corollary 7. Let P be a simple polygon and assume that there is a procedure O that d-approximates simple
integrals in time O(t(d)) pr. integral. Then there is an algorithm which d-approximates the expected geodesic
L2-distance in time O(n2 log2 n · t(d)).

More attention has been given to the problem of computing the average distance between two vertices
in a graph G. This known as the Wiener-index of G, and it is a fundamental measure with important
applications in mathematical chemestry and appears in thousands of publications. Note that the Wiener-
index is equivalent to the sum of pairwise distances. For more information on the problem, see the papers [7,
11].
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pπ(i),1

pπ(i+1),1

S

Figure 1: The number of shortest paths that cross the slab S is (n− i) · i.

2 Expected distances in the L1-metric

2.1 Finite set of points in Rd

As a warmup, consider n points M = {p1, p2, . . . , pn} ⊆ Rd. Let πk be a permutation of ⟨1, 2, · · · , n⟩
satisfying pπk(i),k ≤ pπk(i+1),k for all 1 ≤ i < n, where pi,k denotes the kth coordinate of pi. Then it is easily
seen that for 1 ≤ i ≤ n, we have

i−1∑

j=1

|pπ(i),k − pπ(j),k| =
i−1∑

j=1

j · (pπ(j+1),k − pπ(j),k),

and it follows that

n∑

i=1

i−1∑

j=1

|pπ(i),k − pπ(j),k| =
n∑

i=1

i−1∑

j=1

j · (pπ(j+1),k − pπ(j),k)

=

n−1∑

i=1

(n− i) · i · (pπ(i+1),k − pπ(i),k). (1)

In the planar case d = 2, this formula has the following geometric interpretation. Let us consider the slab
S between the vertical lines through pπ(i),1 and pπ(i+1),1 and count how many pairs of points are separated
by S; see Figure 1. As there are i points to the left of S and n − i points to the right, there are (n − i) · i
such pairs, and the shortest path between all these pairs cross S. Summing over all values of i, we get
the total difference of x-coordinates over all pairs of points. This can easily be generalized to an arbitrary
dimension d.

By definition of the L1 norm, and by replacing the sum of (2) with (1) in the following, we get

n∑

i=1

i−1∑

j=1

||pi − pj ||1 =
n∑

i=1

i−1∑

j=1

d∑

k=1

|pi,k − pj,k|

=

d∑

k=1

n∑

i=1

i−1∑

j=1

|pi,k − pj,k| (2)

=
d∑

k=1

n−1∑

i=1

(n− i) · i · (pπ(i+1),k − pπ(i),k).
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The above implies that the sum of all pairwise distances may be computed in time O(d · n log n) by sorting
the coordinates according to their kth coordinate and evaluating the inner sum for each k, which establishes
Theorem 4.

2.2 Expected L1-distance in a polygon

We are given a simple polygon P with n corners. Let us assume for simplicity that no two corners of P
have the same x-coordinates or the same y-coordinates. Note that shortest paths in the L1-metric can be
realised as a union of horizontal and vertical segments. For points a, b ∈ P , denote by a⇝ b such a shortest
path from a to b. As in our warmup-case of points in Rd from Section 2, we find the expected distance by
computing the contribution from horizontal and vertical segments separately.

Let ∆1(p) (resp. ∆2(p)) be the segments of a path p that are horizontal (resp. vertical) and define
∆+

i (a, b) =
∑

s∈∆i(a⇝b) ∥s∥1. Define for A,B ⊂ P the notation

Di(A,B) =

∫

(p,p′)∈A×B

∆+
i (p, p′) d(p, p′).

We now observe
∫

(p,p′)∈P 2

|p⇝ p′|d(p, p′) =

∫

(p,p′)∈P 2

(
∆+

1 (p, p′) + ∆+
2 (p, p′)

)
d(p, p′)

= D1(P, P ) + D2(P, P ).

We explain how to compute D1(P, P ) in O(n) time, and D2(P, P ) can be computed in an analogous way,
leading to an algorithm for computing the expected L1-distance with linear running time. We first construct
a vertical trapezoidation of P : For each corner c of P , we add the maximal vertical segment contained in
P and containing c; see Figure 2. These vertical segments partition P into trapezoids, each which has a
pair of vertical edges. Some trapezoids degenerate into triangles. The trapezoids induce a tree T , where the
vertices are the trapezoids and two vertices are connected by an edge if the trapezoids share a vertical edge.
We choose an arbitrary root r of T , which induce parent-child relationships among neighbouring pairs of
trapezoids in T . Define p(t) to be the parent of t and c(t) to be the set of children of t.

For each trapezoid t which is not the root, let l(t) be vertical edge of t that separates t from the parent
p(t). Furthermore, let P [t] ⊂ P be the region consisting of t and all decendants of t. Define

Li(t) =

∫

p∈P [t]

∆+
i (p, l(t)) dp.

We now show how we can compute the numbers D1(P [t], P [t]), L1(t) and |P [t]| for all trapezoids t in
O(n) time in total. We have then in particular computed D1(P, P ) = D1(P [r], P [r]).

It is trivial to evaluate each of the numbers D1(P [t], P [t]), L1(t) and |P [t]| = |t| for a leaf t of T in O(1)
time, since t has complexity O(1), so suppose now that t is not a leaf.

By our general position assumption, a trapezoid t has at most four children. Assuming that the val-
ues D1(P [t′], P [t′]), L1(t′) and |P [t′]| have been computed for each of the children t′ of t, we show how
D1(P [t], P [t]), L1(t) and |P [t]| can be computed in O(1) time. The claim that we can compute the numbers
for all t in O(n) time then follows.

The area |P [t]| can be simply computed as

|P [t]| = |t|+
∑

t′∈c(t)

|P [t′]|.

We now explain how to exaluate L1(t), so suppose that t ̸= r. We have

L1(t) =

∫

p∈t

∆+
1 (p, l(t)) dp +

∑

t′∈c(t)

∫

p∈P [t′]
∆+

1 (p, l(t)) dp.
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p(t)tt′

t′′

l(t)

p′

p′′

r

Figure 2: A vertical trapezoidation of a simple polygon P and the tree it induces. Case (i) and (ii) in the computation
of L1(t) are shown as shortest paths from points p′ ∈ P [t′] and p′′ ∈ P [t′′] for children t′ and t′′ of t, respectively, to
the segment l(t).

Clearly, the first term can be evaluated in O(1) time, as the trapezoid t has complexity O(1). There are
two cases when evaluating the integral in the sum in the second term: (i) t′ and p(t) are on the same side of
t, and (ii) t′ and p(t) are on different sides of t; see Figure 2. In case (i), the shortest path from from a point
p ∈ P [t′] to l(t) first follow a shortest path to l(t′) and then follow a vertical segment to l(t), so we have

∫

p∈P [t′]
∆+

1 (p, l(t)) dp =

∫

p∈P [t′]
∆+

1 (p, l(t′)) dp = L1(t′).

In case (ii), we have

∫

p∈P [t′]
∆+

1 (p, l(t)) dp =

∫

p∈P [t′]
(∆+

1 (p, l(t′)) + w(t)) dp = L1(t′) + |P [t′]|w(t),

where w(t) is the width of t.
In order to evaluate D1(P [t], P [t]), we observe

D1(P [t], P [t]) = D1(t, t) +
∑

t′∈c(t)

D1(P [t′], t) +
∑

t′,t′′∈c(t)

D1(P [t′], P [t′′]).

Again, the first term takes O(1) to evaluate as t has complexity O(1). To evaluate the sum in the second
term, we observe

D1(P [t′], t) =

∫

(p′,p)∈P [t′]×t

∆+
1 (p′, p) d(p′, p)

=

∫

(p′,p)∈P [t′]×t

(∆+
1 (p′, l(t′)) + ∆+

1 (p, l(t′))) d(p′, p)

= L1(t′) |t|+ |P [t′]|
∫

p∈t

∆+
1 (p, l(t′)) dp.

Again, the integral in the final expression can be evaluated in O(1) time, so the same holds for D1(P [t′], t).
Consider now a term of the form D1(P [t′], P [t′′]). If t′ = t′′, the number D1(P [t′], P [t′′]) has already

been computed, so suppose t′ ̸= t′′. We have two cases: (i) t′ and t′′ are on the same side of t and (ii) t′ and
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t′′ are on different sides. In case (i), we get

D1(P [t′], P [t′′]) =

∫

(p′,p′′)∈P [t′]×P [t′′]
∆+

1 (p′, p′′) d(p′, p′′)

=

∫

(p′,p′′)∈P [t′]×P [t′′]
(∆+

1 (p′, l(t′)) + ∆+
1 (p′′, l(t′′))) d(p′, p′′)

= |P [t′]|L1(t′′) + L1(t′) |P [t′′]| .

In case (ii), we get

D1(P [t′], P [t′′]) =

∫

(p′,p′′)∈P [t′]×P [t′′]
∆+

1 (p′, p′′) d(p′, p′′)

=

∫

(p′,p′′)∈P [t′]×P [t′′]
(∆+

1 (p′, l(t′)) + w(t) + ∆+
1 (p′′, l(t′′))) d(p′, p′′)

= |P [t′]|L1(t′′) + L1(t′) |P [t′′]|+ |P [t′]| |P [t′′]|w(t).

Since a trapezoidation of P can be computed in O(n) time using Chazelle’s algorithm [8], we get The-
orem 5. Instead of Chazelle’s algorithm, which is known for being complicated, we can also use a simpler
sweep-line algorithm [2] and obtain an algorithm running in time O(n log n).

3 Beer-index

Our algorithms for computing Beer and Wiener indices in a simple polygon P are divide-and-conquer algo-
rithms. Assume without loss of generality that P has area 1 and let n be the number of corners of P . We
first triangulate P , for instance using the simple algorithm from [2] running in O(n log n) time, or the more
complicated algorithm from [8] running in O(n) time. It is well known that there exists a diagonal d in the
triangulation that splits P into two sub-polygons P1 and P2, each consisting of at least ⌊n−1

3 ⌋ and at most
⌊ 2n−5

3 ⌋ triangles. By partitioning P1 and P2 recursively, we obtain a balanced hierarchical decomposition of
P representated as a balanced binary tree T . Here, the root of T represents the diagonal d, the left and right
subtrees represent P1 and P2, respectively, and the leafs represent the individual triangles. The contribution
from a single triangle ∆ is simply ∫

p∈∆

∫

q∈∆

dq dp = |∆|2,

i.e. the squared area of ∆.
The triangulation of P induces a dual graph G which is a tree with maximum degree 3, and the diagonal

d can be chosen as incident to the triangle corresponding to the centroid of G. We can therefore find d in
O(n) time by a simple traversal of G, which yields an algorithm for constructing the tree T in O(n log n)
time. By a more refined approach, T can also be computed in O(n) time [13].

Once the diagonal d has been chosen, we proceed as follows. Note that if p and q are points in P that
see each other, then either (i) the segment pq intersects d, (ii) pq is contained in P1, or (iii) pq is contained
in P2. We therefore first compute the contribution to the Beer index of P from pairs of points seeing each
other across d. We then recursively compute the contribution from pairs of points on each side of d, i.e.,
in each of the sub-polygons P1 and P2. The base case is when we reach a triangle of area x, where we add
x2 to the Beer index. As we will see, we can compute the contribution of points seeing each other across d
in O(n2) time, resulting in the running time recurrence t(n) = O(n2) + t(k) + t(n − k) for k ∈ [n/3, 2n/3],
which gives the bound t(n) = O(n2 log n).

Recall that d is a diagonal splitting P into two polygons P1 and P2 with roughly equally many corners.
Assume without loss of generality that the diagonal d is horizontal. Let P1 be the part below d and P2 the
part above d. We want to compute the contribution to the Beer index of the pairs of points that see each
other across d and then recurse on P1 and P2. Let d = uv, so that u and v are the left and right endpoints
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vd
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c.next
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c.bot

e
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Figure 3: The polygon vis(d, φ) shown in gray with a trapezoid R in darker gray. The pointers stored with the
corner c are shown. The left and right pivots of the trapezoid R are c and f , respectively, and the top and bottom
edges are gh and ef , respectively.

of d, respectively. We define the angle of a segment pq to be the counterclockwise angle from d to pq, which
we express as a number in the interval [0, π). We say that two points p, q look across d if p and q see each
other and d ∩ pq ̸= ∅. We will compute the contribution Bd to the Beer index of all pairs of points p, q that
look across d where p ∈ P1 and q ∈ P2. The total contribution from pairs of points looking across d is then
2Bd, because we should also account for the symmetric case that p ∈ P2 and q ∈ P1.

Rotational sweep. In order to compute this contribution, Bd, we perform a rotational sweep from all
points on the entire segment d simultaneously. That is, we let an angle φ run from 0 to π and as φ increases,
we compute the contribution to the Beer-index of the pairs of points p ∈ P1 and q ∈ P2 that look across d
and such that the angle of pq is φ. A point y in P is said to be visible from d at an angle of φ if there exists
a point x on d such that x and y see each other and the angle of xy is φ.

Define visP (d, φ) = vis(d, φ) to be the points of P visible from d at an angle of φ. We now partition
vis(d, φ) into trapezoids, as demonstrated in Figure 3: For each corner c of P visible from d at an angle of
φ, we cut vis(d, φ) along the maximal line segment containing c, contained in vis(d, φ) and with angle φ. A
trapezoid R has a pair of parallel edges with angle φ, each of which contains a corner of P . These corners
are called the left and right pivot of R, respectively. The other edges of R are contained in edges of P , and
these are called the top and bottom edges of R, respectively, so that the bottom edge is in P1 and the top
edge is in P2. As indicated in Figure 3, we will represent the trapezoids by storing certain pointers together
with the corners of P .

Events. The events of the rotational sweep are the angles φ at which the combinatorial structure of the
trapezoids of vis(d, φ) change. This can happen because a corner becomes visible or invisible from d, or
because two corners on opposite sides of d are visible from the same point on d at an angle of φ. Whenever
a change happens, we will compute a contribution to the Beer index from the trapezoids that stop existing
at the event. It then follows that we compute the contribution Bd of all pairs that see each other across d,
since every pair appears in a trapezoid that will eventually stop existing.

When a corner of P becomes visible from d, an old trapezoid will be replaced by two new ones, and we
call it an appearance event. Likewise, when a corner of P becomes invisible from d, two old trapezoids will
be replaced by one new, and we call it a disappearance event.

A third type of event occurs when the angle φ coincides with the angle of a diagonal ab crossing d.
Here, both corners a and b keep being visible before and after the event, but swap order, and the incident
trapezoids must be updated. Figure 4 shows examples of appearance, disappearance and swap events.
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Figure 4: Different types of events in order of φ. (a) Appearance of p. (b) Swap of r and q. (c) Disappearance of
q. (d) Appearance of s. (e) Disappearance of t.

The angles φ = 0 and φ = π are exceptional in that for φ = 0, the first trapezoid is created and for
φ = π, the last trapezoid is removed.

Note that when a corner c becomes visible, it is because an edge e stops blocking c from being visible.
Likewise, when a corner c stops being visible, it is because an edge e starts blocking c from being visible.
Therefore, appearance and disappearance events happen when c and an endpoint c′ of e are both visible at
an angle of φ from the same point on and to the same side of d. Likewise, the swap events happen when
two corners c and c′ are both visible at an angle of φ from the same point on d, but this time c and c′ are
on opposite sides of d. We conclude that each event corresponds to a diagonal of P (recall that the edges of
P are also diagonals by definition).

Computing diagonals. In order to keep track of the events, we compute the set D of all diagonals of
P before starting the divide-and-conquer process, and we sort the segments D by angle. We can compute
the diagonals by running a simple rotating sweep-line algorithm centered at each corner [2], which takes
O(n2 log n) time in total, including sorting all the diagonals in the end.

For each diagonal ab, we will also need to know the edges we see from a when looking towards b and vice
versa. Let η(a, b) be the edge of P we see immediately to the left of b when looking from a; see Figure 5 for
an illustration. In the special case that ab is an edge of P , we define η(a, b) := ab if P is to the right of ab.
We keep track of the two edges η(a, b) and η(b, a) for each diagonal ab, and we call them the η-edges of the
diagonal. We can easily define the η-edges while finding the diagonals with a rotational sweep around each
corner.

We construct three subsets D1,D2,Dd ⊆ D such that D1 and D2 are the diagonals with both endpoints
in P1 and P2, respectively. When computing the contributions to the Beer index in the polygons P1 and P2

recursively, we then pass on the sets D1 and D2 as arguments in the recursive calls. We define Dd as the
diagonals whose extensions intersect d. Note that the extension of a diagonal ℓ intersects d if and only if the
η-edges of ℓ are on different sides of d or ℓ shares an endpoint with d.

For each of the diagonals in D1 in P1, one of the η-edges can be an edge in the other polygon P2 (which,
as noted before, can happen when the extension of the diagonal crosses d). In that case, we update the
η-edge to be d, so that the η-edges are correctly defined with respect to the smaller polygon P1. We do the
same for the diagonals D2, so that the η-edges are correct within P2.
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Figure 5: The η-edges for a diagonal ab.

Handling events. When we set out to compute the contribution Bd, we know all events e1, . . . , ek. Here,
ei is defined by two corners ei = aibi, and the events are sorted according to angle, where the first event e1
is the diagonal d. Furthermore, a1 = bk = u and ak = b1 = v, so that the diagonal d itself corresponds to
two special events that start and stop the rotational sweep. Note that these events happen for the angles
φ = 0 and φ = π, respectively.

As the angle φ runs from 0 to π, we maintain the trapezoids of the decomposition of vis(d, φ) using a
linked list L; see Figure 3. Each entry in L is a corner c of P which is visible from d at the angle φ. We
store pointers c.next and c.prev to the neighbouring corners, as described in the following. Before the sweep
starts, these pointers are all set to nil and L will be empty. When handling the first event e1 = uv, we
set L.head := u, L.tail := v, u.next := v and v.prev := u, and until the last event ek, it will be the case
that L.head = u and L.tail = v. To define the pointer next and prev in general, consider any trapezoid R
of vis(d, φ) and let the left and right pivots be g and h, respectively. Then we will have g.next = h and
h.prev = g. At the last event ek, the list L becomes empty again, as the last trapezoid disappears.

With each corner c in L, we furthermore store pointers to the top and bottom edges of the trapezoid to
the right of c (which has c as the left pivot). We denote these pointers c.top and c.bot, respectively.

The pointers stored with the corners must be updated at each event. This happens according to a few
cases, as shown in Figure 4. Consider an appearance event where a corner s becomes visible since φ reaches
the angle of a diagonal st. Suppose that st is contained in P1, as in Figure 4 (d). Then a new trapezoid is
created with s and t as left and right pivots, and η(s, t) and η(t, s) as top and bottom edges, respectively.
The trapezoid that had t as right pivot before the event is replaced by a similar trapezoid, but with s as left
pivot instead of t. The case where st is contained in P2 is analogous, but with ‘right’ and ‘left’ swapped, as
well as η(s, t) and η(t, s) swapped.

Consider a disappearance event, where a corner q stops being visible since φ reaches the angle of a
diagonal pq. Suppose that pq is contained in P2, as in Figure 4 (c). A trapezoid with q and p as left and
right pivots disappears, and the trapezoid that had q as right pivot before the event is replaced by a similar
trapezoid with p as right pivot. Again, the case where pq is contained in P1 is analogous.

In a swap event, φ reaches the angle of a diagonal rq, where r and q are corners of P1 and P2, respectively,
as in Figure 4 (b). Here, a trapezoid with q and r as left and right pivots disappears and is replaced by a
trapezoid with q and r replaced. Furthermore, there were trapezoids before the event with q and r as their
right and left pivots, respectively, which are replaced by similar trapezoids, but now with r and q as pivots.

Any trapezoid R exists in some interval of angles [φ1, φ2] ⊆ [0, π]; see Figure 7. This means that R is
created when φ = φ1 and disappears again when φ = φ2. We can then parameterize R by φ for φ ∈ [φ1, φ2].
We compute the contribution from all pairs of points in R(φ) that look across d at the angle φ and integrate
over the interval φ ∈ [φ1, φ2]. This will be explained in the following paragraph.

Contribution of one trapezoid. In order to evaluate the contribution of one trapezoid, we will use
a transformation of coordinates. The contribution will then be an integral over the determinant of the
associated Jacobian matrix. In the usual coordinate system, we evaluate the Beer index by integrating over
quadruples (x1, y1, x2, y2), corresponding to pairs of points (x1, y1), (x2, y2) that can see each other in P .
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Figure 6: A trapezoid that appears at the angle φ1 and disappears at φ2.

V0

V1

Vρ = V0 · (1− ρ) + V1 · ρ
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ℓ
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eb

u v
(hℓ(ρ), 0) (hr(ρ), 0)

Figure 7: Left: Interpolation between the defining vectors V0 and V1. Right: For all points (h, 0) on the segment
uv in the trapezoid, we integrate over all points above and below in the direction of Vρ.
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Consider a trapezoid R and assume without loss of generality that the diagonal uv is on the x-axis. The
trapezoid R exists in a range [φ0, φ1] of angles that are defined by vectors V0 and V1, respectively. For
ρ ∈ [0, 1], we define a corresponding interpolated vector Vρ = V0 · (1 − ρ) + V1 · ρ, which corresponds to
the time where the left and right edges of R are parallel to Vρ. Our new coordinates are (ρ, h, t, b), and the
cooresponding usual coordinates are given by the transformation

F (ρ, h, t, b) = (h + t · x(Vρ), t · y(Vρ), h + b · x(Vρ), b · y(Vρ)),

where x(·) and y(·) denote the x- and y-coordinates, respectively.
We thus have the Jacobian

JF =




t · x(V1 − V0) 1 x(Vρ) 0
t · y(V1 − V0) 0 y(Vρ) 0
b · x(V1 − V0) 1 0 x(Vρ)
b · y(V1 − V0) 0 0 y(Vρ)


 .

We now describe the bounds of the integral that we evaluate in order to compute the contribution to the
Beer index of the trapezoid R. Let et and eb be the top and bottom edges bounding R. Let hℓ(ρ) be the
x-coordinate of the intersection of uv with the line through pℓ with direction Vρ and define hr(ρ) analogously
for the point pr. For a value h ∈ [hℓ(ρ), hr(ρ)], let T (ρ, h) ≥ 0 be the number such that (h, 0) + T (ρ, h) · Vρ

is a point on et. Similarly, define B(ρ, h) ≤ 0 such that (h, 0) + B(ρ, h) · Vρ is on eb. The contribution of R
can then be expressed as ∫ 1

0

∫ hr(ρ)

hℓ(ρ)

∫ 0

B(ρ,h)

∫ T (ρ,h)

0

|det JF |dtdbdhdρ.

Using Maple [21], we have computed a closed-form formula for this integral depending on the coordinates
of the endpoints of et, eb, the pivots pℓ, pr and corners defining the vectors V0, V1. Without loss of generality,
we assumed that x(pℓ) = 0. Unfortunately, the formula is very long: When output to a file, it takes up
around 16 MB of space, so it seems quite impractical to use this formula directly. A more practical option
is to compute a formula for the three innermost integrals, which has a much shorter form, and then use
numerical integration to integrate over ρ to find an approximation of the value of the full integral.

An alternative transformation of coordinates, which is perhaps more appealing at first sight, is to use
the angle φ as a parameter instead of the interpolation factor ρ, so that the integral has the form

∫ φ1

φ0
. . . dφ.

This, however, has the downside that trigonometric functions will appear in the Jacobian, and square roots
will appear in the bounds of the two innermost integrals. We used this parameterization in our first attempt
to evaluate the contribution of a trapezoid, but were unable to find a formula using Maple.

4 Counting visible pairs

In this section, we describe an algorithm for computing the number of visible pairs among a set M of m
points contained in a simple polygon P with n corners. Like in our algorithm for the Beer index, we choose
a diagonal uv of P that separates P into two sub-polygons P1 and P2 with nearly equal numbers of corners.
We then count the number k of pairs in M that see each other across uv and then recurse on P1 and P2.
We are able to compute k in time O(n+m log n+m logm). This results in an algorithm with running time
O(n log n + m log2 n + m log n logm).

Our algorithm relies on the principle of geometric duality [2]. Here, a point p = (a, b) is mapped to a line
p∗ : y = ax− b and a line ℓ : y = cx+ d is mapped to a point ℓ∗ = (c,−d). Assume without loss of generality
that the splitting diagonal uv is on the y-axis. For a segment s, denote by l(s) the line containing s. For
each point p ∈ M and every point q ∈ uv that p sees, we draw the point l(pq)∗ in the dual; see Figure 8.
Since p sees an interval of uv and all the lines l(pq)∗ pass through the same point p, these dual points form
a segment sp. Our algorithm relies on the following observation:

Lemma 8. If p1, p2 ∈ M are on different sides of uv and the segments sp1
and sp2

intersect, then p1 and
p2 see each other across uv.
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Figure 8: Left: We find the visible parts of the diagonal uv from the three points p, q, r. Right: We map the
visibility segments to the dual space and identify the segment d = pr as the intersection d∗.

Proof. The intersection point r∗ of sp1 and sp2 corresponds to a line r in primal space that contains visibility
segments from both p1 and p2 to uv. Therefore, p1 and p2 see each other across uv.

When p ∈M is in P1, we color the segment sp blue. Otherwise, when p is in P2, we color sp red. Then the
number of pairs that see each other across uv is exactly the number of intersections between a red and a blue
segment in the dual space. Chazelle, Edelsbrunner, Guibas and Sharir [9] gave an algorithm for counting
such bichromatic intersections in O(m logm) time. Palazzi and Snoeyink [22] and Mantler and Snoeyink [20]
described simpler algorithms with the same running time.

In order to construct the segments sp efficiently, we use a datastructure described by Guibas, Hershberger,
Leven, Sharir and Tarjan [13]. Given the segment uv in P , we can preprocess P in O(n) time so that given
a query point p, we can compute the part of uv that is visible from p in O(log n) time. The authors assumed
that P was given together with a triangulation, presumably because the paper appeared before it was known
that a triangulation can be found in O(n) time [8]. We therefore use O(n + m log n + m logm) time on
preprocessing, constructing the segments sp for all p ∈M , and counting the intersections. In order to handle
the recursive calls, we need to find the sets M1 = M ∩ P1 and M2 = M ∩ P2. This can be done by creating
a data structure supporting ray shooting queries in P in O(log n) time, as described by Hershberger and
Suri [15]. For each point m ∈ M , we shoot a ray vertically up and check if the point where we hit the
boundary is in P1 or P2. The data structure takes O(n) time to construct. Taking the recursive calls into
account, this results in an algorithm with total running time O(n log n + m log2 n + m log n logm), proving
Theorem 2.

5 Expected distances in the L2-metric

We now show how to compute the expected geodesic L2 distance in a simple polygon P . For x, y ∈ P , we
denote in this section by x ⇝ y the unique shortest path in P from x to y in the L2-metric. As before,
consider a polygon P and the diagonal uv splitting P into upper and lower polygons P1 and P2. Let
d(x, y) = |x⇝ y|2 be the length of the path. Furthermore, let X and Y be stochastic variables that assumes
points of P uniformly at random. We then have that

E(d(X,Y )) =

∫

x∈P

∫

y∈P

d(x, y) dy dx (3)

= E(d(XP1
, YP1

)) + E(d(XP2
, YP2

)) +

∫

x∈P1

∫

y∈P2

d(x, y) dy dx. (4)
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Figure 9: Visualization of cases and equivalence classes, where (p1, p2) ∼ (p′1, p
′
2). (a) Case 2a) where the areas

highlighted in green correspond to Kr,t. (b) Case 2b) where the area and subpath highlighted in green corresponds
to Kr,φ. Case 2c) is symmetric to case 2b) and omitted here.

The following observation will be useful in characterizing the second term of eq. (4); see Figure 9:

Observation 9. Given p1 ∈ P1 and p2 ∈ P2, there is an unique intersection point with p1 ⇝ p2 and the
diagonal. The segment of this shortest path intersects the diagonal at some unique angle. Furthermore, either

1) p1 ⇝ p2 is a single segment crossing the diagonal, or

2) p1 ⇝ p2 consists of two or more segments and either has the form

2a) p1 ⇝ rt⇝ p2 where rt is the segment crossing the diagonal and p1 ̸= r and p2 ̸= t, or

2b) p1 ⇝ rp2 where rp2 is the segment crossing the diagonal and p1 ̸= r, or

2c) p1r ⇝ p2 where p1r is the segment crossing the diagonal and p2 ̸= r.

Denote by A ⊆ P1 ×P2 and B ⊆ P1 ×P2 the pairs of vertices of P satisfying 1) and 2), respectively. We
rewrite the third term of Equation (4) to obtain

∫

(p1,p2)∈P1×P2

d(p1, p2) d(x, y) =

∫

(p1,p2)∈A

d(p1, p2) d(p1, p2) (5)

+

∫

(p1,p2)∈B

d(p1, p2) d(p1, p2) (6)

Case 1. An expression for the first term in the RHS of Equation (5) can be computed using the algorithm
of Section 3 but using the L2-metric as the measurable map instead of the visibility indicator. Hence we
need only account for the contribution that stems from pairs of points that are not visible from one another
in P , that is the term of Equation (6). This will be accounted for in the following:

Case 2. Denote by C,D,E ⊆ B the pairs satisfying 2a), 2b) and 2c) respectively. We then have
∫

(p1,p2)∈B

d(p1, p2) d(p1, p2) =

∫

(p1,p2)∈C

d(p1, p2) d(p1, p2) (7)

+

∫

(p1,p2)∈D

d(p1, p2) d(p1, p2) (8)

+

∫

(p1,p2)∈E

d(p1, p2) d(p1, p2). (9)
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The following definition can be thought of as the set of points in P that go through c on their shortest path
to s, and will be useful in characterizing integrals over the above domains:

Definition 10. For any corner c and point s of P visible from c, we define KP
c (s) = {p ∈ P | c ∈ p⇝ s}.

Case 2a. Now, if (p1, p2) ∈ C, we have that p1 ⇝ p2 = p1 ⇝ rt ⇝ p2 where r is a corner of P1 and t of
P2. In other words, we can express C as a partition into equivalence classes {Kr,t | r ∈ V (P1), t ∈ V (P2)},
where V (·) denotes the corners of a polygon. The equivalence classes are defined so that (p1, p2) ∼ (p′1, p

′
2) if

and only if the shortest paths p1 ⇝ p2 and p′1 ⇝ p′2 both contain the diagonal rt, which crosses the splitting
diagonal uv. We can now write Kr,t as a cartesian product KP

r (t)×KP
t (r) ⊆ C, so we may rewrite the RHS

of Equation (7) as
∫

(p1,p2)∈C

d(p1, p2) d(p1, p2) (10)

=
∑

r∈V (P1)

∑

t∈V (P2)

(∫

p1∈KP
r (t)

∫

p2∈KP
t (r)

d(p1, p2) dp2 dp1

)
. (11)

Case 2b and 2c. Otherwise, consider the case in which (p1, p2) ∈ D. The case in which (p1, p2) ∈ E is
symmetric. Then p1 ⇝ p2 has the form p1 ⇝ rp2, where r is a corner of P1 and rp2 intersects uv. Let sφr be
the segment going from the diagonal uv at an angle of φ to r, where sφ ∈ uv. Again, we can characterize D
by a partition into equivalence classes {Kt,φ | φ ∈ (π; 2π), r ∈ V (P1)} where Kr,φ = KP

r (sφ)×KP
sφ(r) ⊆ D

such that (p1, p2) ∼ (p′1, p
′
2) if and only if the last segment of p1 ⇝ p2 and p′1 ⇝ p′2 start at the same corner,

r, of P1 and intersects the diagonal with the same angle φ. We hence get
∫

(p1,p2)∈D

d(p1, p2) d(p1, p2) (12)

=
∑

r∈V (P1)

(∫ 2π

π

∫

p1∈KP
r (sφ)

∫

p2∈KP
sφ

(r)

d(p1, p2) dp2 dp1 dφ

)
. (13)

Continuing in this fashion, we note that for each choice of r ∈ V (P1), and edges e1 ∈ E(P1) and e2 ∈ E(P2),
there is a unique, maximal interval Ire1,e2 of angles such that the maximal line segment in P through r
at angles in Ire1,e2 has one endpoint lying on e1 and the other on e2. Specifically, Ire1,e2 is the empty set
when e1 is not visible e2 through r in P . Let Ire1,e2 = (φ1,r

e1,e2 ;φ2,r
e1,e2) and note that the family Ir ={

Ire1,e2 | e1 ∈ V (P1), e2 ∈ V (P2)
}

is a partition of (π; 2π). So we can rewrite the RHS of eq. (13) as

∑

r∈V (P1)

∑

I∈Ir

(∫

φ∈I

∫

KP
r (sφ)

∫

KP
sφ

(r)

d(p1, p2) dp2 dp1 dφ

)
. (14)

We note that since P is simple, we have |Ir| = O(|E(P1)| + |E(P2)|) = O(|E(P )|), which is easily seen as
each segment appears and disappears at most once when performing a rotational sweep around r.

Shortest path decompositions. In this section we introduce notions and definitions that will be helpful
for characterizing integrals of Equation (11) and Equation (14) in a manner that is is amenable for compu-
tation. We first introduce the notion of a shortest-path decomposition of P , which will partition the graph
into triangles suitable for integration.

Consider the directed shortest path tree T (s) rooted at s in P for some s ∈ uv. We observe that
T (s) = ∪w∈V (P )(s ⇝ w), i.e. the tree is the union of the shortest paths to all corners of P from s. If
we augment P with T (s) producing P ∪ T (s), this splits P into regions with boundaries comprising one
polygon edge and at least two shortest path-edges. If we furthermore augment T (s) by adding, for each
(directed) edge qr of T (s), an edge starting at r such that it coincides with the infinite extension of qr in its
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Figure 10: Shortest path tree T (s) and its shortest path decomposition of P1 for various choices of s.

s

r
l

k

Figure 11: Triangles at the subtree at r rooted at s corresponding to κs(sr).

out-direction, and going to its first intersection point with the boundary of P . This also adds an artificial
corner to P at the intersection point. We refer to the union of an original edge qr and its extension rt, such
that t is the artificial corner, as an extended edge. Note that there can be no crossings between extended
edges due to the triangle inequality, so it follows that each region now forms a triangle whose sides comprise
two extended edges and one edge of P . This is illustrated in fig. 10 for various choices of s. Now consider
any edge qr of T (s), that is, q is the predecessor of r. Denote by l and k be the corners of P adjacent to r.
If l and k are on opposite sides of the infinite extension of qr in both directions, it follows from the triangle
inequality that r is a leaf of T (s). Otherwise, l and k are on the same side of the infinite extension, in which
case, each adjacent pair of outgoing extended edges from r in T (s) are sides of the same triangle. If they are
on the left (right) side, we consider the ordering es,ri of the outgoing extended edges of r in T (s) such that
es,ri precedes es,ri+1 in the (counter) clockwise cyclic order, with es,r1 being the unique edge coinciding with a
segment of P and es,r|N+(r)| being the extension from qr added in the augmentation step in the description

of T (s). We denote by ∆s,r
i the triangle defined by the extended edges es,ri , es,ri+1 emanating from r in T (s),

and let ∆s,r = ∪i∆s,r
i . For any edge qr of T (s), we now define the following set which can be thought of as

the union of triangles associated with the subtree rooted at r in T (s):

Definition 11. Let P be a simple polygon, s be a point of P and qr be any edge of T (s). We define

κs(qr) =

{
∅ if r is a leaf

∆s,r ∪ (∪iκs(e
s,r
i )) otherwise

This notion is illustrated in Figure 11, and shall prove helpful when characterizing integrals of Equa-
tion (11) and Equation (14). We first prove the following lemma, which shows that KP

r (s) corresponds to
κs(sr):

Lemma 12. Let P be a simple polygon, r be a corner of P and s be a point visible from r. Then KP
r (s) =

κs(sr) µ-almost everywhere.
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Proof. If r is a leaf node of T (s), then KP
r (s) and κs(sr) both forms null sets, so assume without loss of

generality that the edges rl and rk of P incident on r are both on the left of the infinite extension of es,r1 .
The case in which they are on the right is symmetric. Now, by assumption s ⇝ p has the form sr ⇝ p
where r is a corner of P1. Denote by rr′ the edge which follows sr on s ⇝ p and by rr′′ the edge of T (s)
which extends sr and consider the counter-clockwise cyclic ordering of edges incident on r in P ∪ T (s): We
will show that rr′ appears after rr′′ and before both of rk and rl in the ordering. Since s⇝ p is a shortest
path, by the triangle inequality, it can coincide with rr′′ at most once, which happens at r. Since rr′′ is a
diagonal of P1∪V (T (s)) and as P is simple, it follows that rr′ ⇝ p is fully contained in one of the polygonal
pieces that result from splitting P1 along rr′. Since κs(sr) induces a decomposition of this polygonal piece,
this will imply that KP

r (s) ⊆ κs(sr) which shows one direction of the equality.
Assume therefore, for the sake of contradiction, that rr′ does not appear as aforementioned in the cyclic

ordering, but it is an edge of T (s). Note that s⇝ r′, by assumption, can not be a single edge, and that our
assumption now states that the edge rr′ follows sr and precedes rr′′ in the aforementioned cyclic ordering.
Since s ⇝ r′ is a shortest path, there must be at least two edges of P that intersect the line segment sr′,
occluding s from r′, but this is not the case for sr nor rr′ since the latter two were edges of T (s). We
now restrict our attention to the triangle ∆(s, r, r′) ⊂ P , and consider paths that start at s and end in r′.
Clearly, our assumed shortest path s, r, r′ is contained in (the non-strict interior of) ∆(s, r, r′), but we note
that since no edge of P intersects sr or rr′, this implies that there is a convex chain C ∈ ∆(s, r, r′) starting
at s and ending at r′ such that |C| < |sr|+ |rr′| contradicting that s, r, r′ is shortest-path.

Next assume that p ∈ κs(sr). Then clearly p ⇝ s has the form p ⇝ rs (observe that those that do not
form a null-set) where s lies on uv, so p ∈ KP

r (s), and hence KP
r (s) = κs(sr) µ-almost everywhere.

Corollary 13. Let P be a simple polygon, r be a corner of P and s be a point visible from r. Then

1.
∫
p∈κs(sr)

d(s, p) dµ(p) =
∫
p∈KP

r (s)
d(s, p) dµ(p) and

2. µ(κs(sr)) = µ(KP
r (s)).

We define quantities Ws(qr) and As(qr), corresponding to the contribution stemming from all triangles
associated with the subtree rooted at r in T (s), and the sum of their areas, respectively. We define these
functions with respect to edges and not vertices for notational convenience. In the following, we let ei = es,ri .
If r is a leaf of T (s), we define Ws(qr) = 0 and As(qr) = 0. Otherwise

Ws(qr) =

|N+(r)|−1∑

i=1

(∫

p∈∆s,r
i

d(p, r) dµ(p)

)
+

|N+(r)|∑

i=1

(Ws(ei) + As(ei) · d(ei))

and accordingly

As(qr) =

|N+(r)|−1∑

i=1

(As(ei) + µ(∆s,r
i )) .

where N+ is with respect to T (s). The above notion is summarized in the following lemma:

Lemma 14. Let P be a simply polygon and r and t be points of P such that r sees t and s ∈ rt. Then for
any edge qr of T (s), we have

∫
p∈κs(qr)

d(r, p) dµ(p) = Ws(qr) and µ(κs(qr)) = As(qr).

Proof. We proceed by structural induction on T (s). If r′ is a leaf node, we have Ws(rr
′) = A(rr′) =

µ(∆r,r′) = 0. Otherwise, assume, inductively, that
∫
p∈κs(rr′)

d(r, p) dµ(p) = Ws(rr
′) and µ(κs(rr

′)) =

As(rr
′) where rr′ is any outgoing edge of r in T (s). Again, we let ei = es,ri . Then by the induction
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hypothesis, we have

As(qr) =
∑

i

(As(ei) + µ(∆s,r
i ))

=
∑

i

(µ(κs(ei)) + µ(∆s,r
i ))

=
∑

i

µ(κs(ei)) +
∑

i

µ(∆s,r
i )

=
∑

i

µ(κs(ei)) + µ(∆s,r)

= µ(κs(qr))

which is what we wanted to show about As. The fourth equality is due to the fact that µ(∆s,r
i ∩∆s,r

j ) = 0 for
i ̸= j. The fifth equality follows since κs(qr) = ∆s,r ∪ (∪iκs(e

s,r
i )), and since also µ(∆s,r ∩ (∪iκs(e

s,r
i ))) = 0.

The first term of Ws(qr) accounts for each triangle associated with edges going out from r in T+(s). So
for the first term, we get

|N+(r)|−1∑

i=1

(∫

p∈∆s,r
i

d(p, r) dµ(p)

)
=

∫

p∈∆s,r

d(p, r) dµ(p)

and furthermore, by applying the induction hypothesis to the second term, we get

|N+(r)|∑

i=1

(Ws(ei) + As(ei) · d(ei)) =

|N+(r)|∑

i=1

(∫

p∈κs(ei)

d(head(ei), p) dµ(p) + µ(κs(ei)) · d(ei)

)

=

|N+(r)|∑

i=1

(∫

p∈κs(ei)

d(head(ei), p) + d(ei) dµ(p)

)

=

|N+(r)|∑

i=1

(∫

p∈κs(ei)

d(head(ei), p) + d(tail(ei),head(ei)) dµ(p)

)

=

|N+(r)|∑

i=1

(∫

p∈κs(ei)

d(tail(ei), p) dµ(p)

)

=

|N+(r)|∑

i=1

(∫

p∈κs(ei)

d(r, p) dµ(p)

)

=

∫

p∈∪iκs(ei)

d(r, p) dµ(p)

where the fourth equality follows since r = tail(ei), and r, head(ei), p is a shortest path. The sixth equality is
due to the fact that µ(κs(ei)∩κs(ej)) = 0 for i ̸= j. Using the aforementioned reasoning about the definition
of κs, gathering the terms yields

Ws(qr) =

∫

p∈∆s,r

d(p, r) dµ(p) +

∫

p∈∪iκs(ei)

d(r, p) dµ(p) =

∫

p∈κs(qr)

d(p, r) dµ(p)

which is what we wanted.

The following somewhat trivial observation will be useful in proving the subsequent lemma:

Observation 15. Let p ∈ P and A,B ⊂ P such that there is a c ∈ P such that c ∈ a⇝ b for µ-almost all
(a, b) ∈ A×B. Then

∫
A×B

d(a, b) d(µ× µ)(a, b) = µ(B) ·
∫
A
d(a, c) dµ(a) + µ(A) ·

∫
B
d(c, b) dµ(b).
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Proof.
∫

A×B

d(a, b) d(µ× µ)(a, b) =

∫

A

∫

B

d(a, b) dµ(b) dµ(a)

=

∫

A

∫

B

d(a, c) + d(c, b) dµ(b) dµ(a)

=

∫

A

∫

B

d(a, c) dµ(b) dµ(a) +

∫

A

∫

B

d(c, b) dµ(b) dµ(a)

=

∫

B

∫

A

d(a, c) dµ(a) dµ(b) +

∫

A

∫

B

d(c, b) dµ(b) dµ(a)

= µ(B) ·
∫

A

d(a, c) dµ(a) + µ(A) ·
∫

B

d(c, b) dµ(b).

We can now characterize the integrals of Equation (11) and Equation (14) in terms of Ws and As:

Corollary 16. Let P be a simply polygon and r and t be points of P such that r sees t and s ∈ rt. Then

As(st) ·Ws(sr) + As(sr) ·Ws(st) =

∫

p1∈KP
r (t)

∫

p2∈KP
t (r)

d(p1, p2) dµ(p2) dµ(p1)

Proof. By applying Lemma 14, Corollary 13 and Observation 15, we get

As(st) ·Ws(sr) + As(sr) ·Ws(st)

= µ(κs(st)) ·
∫

p∈κs(sr)

d(s, p) dµ(p) + µ(κs(sr)) ·
∫

p∈κs(st)

d(s, p) dµ(p)

= µ(KP
t (r)) ·

∫

p∈KP
r (t)

d(s, p) dµ(p) + µ(KP
r (t)) ·

∫

p∈KP
t (r)

d(s, p) dµ(p)

=

∫

p1∈KP
r (t)

∫

p2∈KP
t (r)

d(p1, p2) dµ(p2) dµ(p1).

Characterizing Equation (11) and Equation (14). The above corollary implies that computing the
contributions corresponding to integrals of Equation (11) suffices to characterize quantities As(st), As(sr) and
Ws(st), Ws(sr). We shall show how to do this, but first we address the issue of computing the contribution
of Equation (14). Recall that in this case, KP

sφ(r) is simply a line segment starting at sφ and going to its
intersection point with e2 as defined by the associated interval of angles Ire1,e2 . Denote by eφ this endpoint.

Then since KP
sφ(r) = reφ \ rsφ, we can rewrite the innermost integral of Equation (14) as

∫

reφ\rsφ
d(p1, p2) dµ(p2) =

∫

reφ

d(p1, p2) dµ(p2)−
∫

rsφ

d(p1, p2) dµ(p2), (15)

and substitute back into Equation (14) to obtain

∫

I

∫

KP
r (sφ)

(∫

reφ

d(p1, p2) dµ(p2)−
∫

rsφ

d(p1, p2) dµ(p2)

)
dµ(p1) dµ(φ) (16)

=

∫

I

∫

KP
r (sφ)

∫

reφ

d(p1, p2) dµ(p2) dµ(p1) dµ(φ) (17)

−
∫

I

∫

KP
r (sφ)

∫

rsφ

d(p1, p2) dµ(p2) dµ(p1) dµ(φ). (18)
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This shows that the integral of Equation (15) can be expressed in terms of the similar integrals that are the
terms of Equations (17) and (18). We note that in particular, for any point sφ as defined in the above, it
holds that sφ sees e1 through r by definition. The following observation and lemma will allow us to rewrite
integrals of the form found in Equations (17) and (18):

Observation 17. Let P be a simple polygon, e a segment and r a corner of P . Let S be the set of points
that see e through r. For any s ∈ S denote by is the intersection of the extension of sr with e, and by es
the edge which immediately precedes ris in the cyclic order of edges incident to r. Then for any s ̸= s′ ∈ S
where is and i′s are not endpoints of e, we have es = es′ and this edge is es,rj where j is the largest s.t. es,rj

is the edge which immediately precedes ris.

Lemma 18. Let P be a simple polygon, e a segment and r a corner of P . Let S be the set of points that see
e through r. For any s ∈ S denote by is the intersection of the extension of sr with e, and by es the edge
which immediately precedes ris in the cyclic order of edges incident to r. Let cs be any point of S which is
colinear with es Then for any s ∈ S s.t. is is not an endpoint of e, we have κs(sr) \ κcs(csr) = ∆(es,rj , ris)
where j is the largest s.t. es,rj is the edge which immediately precedes ris.

Proof. We note that es,tj is incident on one endpoint of e in T (s) ∪ P . We apply Definition 11 to get

κs(sr) \ κcs(csr) = ∆s,r ∪ (∪iκs(e
s,r
i )) \∆cs,r ∪ (∪iκcs(ecs,ri )) (19)

= (∆s,r \ (∆cs,r ∪ (∪iκcs(ecs,ri )))) ∪ ((∪iκs(e
s,r
i )) \ (∆cs,r ∪ (∪iκcs(ecs,ri )))) (20)

= (∆s,r \∆cs,r) ∪ ((∪iκs(e
s,r
i )) \ (∪iκcs(ecs,ri ))) (21)

= ∆s,r \∆cs,r (22)

= ∪i∆s,r
i \ ∪i∆cs,r

i (23)

=
(
∪j−1
i=1∆s,r

i ∪∆s,r
j

)
\ ∪j−1

i=1∆cs,r
i (24)

= ∆s,r
j (25)

= ∆(es,rj , es,rj+1) (26)

= ∆(es,rj , ris) (27)

where Equation (21) follows from ∆s,r ∩ (∪iκcs(ecs,ri )) = ∅ and (∪iκs(e
s,r
r ))∩∆cs,r = ∅, Equation (22) from

the fact that ∪iκs(e
s,r
i ) ⊆ ∪iκcs(ecs,ri ), Equation (24) holds since ∆s,r has one triangle ∆s,r

j more than ∆cs,r

and finally Equation (25) follows due to es,ri sharing endpoints (and therefore extended edges) with ecs,ri for
1 ≤ i ≤ j − 1.

Again consider w.l.o.g. the integral of Equation (17). Applying Lemma 12, we get

∫

I

∫

KP
r (sφ)

∫

reφ

d(p1, p2) dµ(p2) dµ(p1) dµ(φ) =

∫

I

∫

κsφ (rsφ)

∫

reφ

d(p1, p2) dµ(p2) dµ(p1) dµ(φ).

By Observation 17 all sφ for φ ∈ I have the same preceding edge ri in the cyclic ordering since they all see
e1 through r. Note that i ∈ e1. Let c denote the intersection point of the extension of ir and e2, which
is guaranteed to exists by definition of I. Furthermore let iφ denote the intersection of the extension of
sφr and e1. By adding and subtracting the same appropriate term on the RHS of the above and applying
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Lemma 18, we get

∫

I

∫

κsφ (rsφ)

∫

reφ

d(p1, p2) dµ(p2) dµ(p1) dµ(φ) (28)

+

∫

I

∫

κc(cr)

∫

reφ

d(p1, p2) dµ(p2) dµ(p1) dµ(φ) (29)

−
∫

I

∫

κc(cr)

∫

reφ

d(p1, p2) dµ(p2) dµ(p1) dµ(φ) (30)

=

∫

I

∫

κsφ (rsφ)\κc(cr)

∫

reφ

d(p1, p2) dµ(p2) dµ(p1) dµ(φ) (31)

+

∫

I

∫

κc(cr)

∫

reφ

d(p1, p2) dµ(p2) dµ(p1) dµ(φ) (32)

=

∫

I

∫

∆(ri,riφ)

∫

reφ

d(p1, p2) dµ(p2) dµ(p1) dµ(φ) (33)

+

∫

I

∫

κc(cr)

∫

reφ

d(p1, p2) dµ(p2) dµ(p1) dµ(φ). (34)

We can rewrite the term of Equation (34) to get

∫

I

∫

κc(cr)

∫

reφ

d(p1, p2) dµ(p2) dµ(p1) dµ(φ) (35)

=

∫

I

∫

κc(cr)

∫

reφ

d(p1, r) + d(r, p2) dµ(p2) dµ(p1) dµ(φ) (36)

=

∫

I

∫

κc(cr)

∫

reφ

d(p1, r) dµ(p2) dµ(p1) dµ(φ) +

∫

I

∫

κc(cr)

∫

reφ

d(r, p2) dµ(p2) dµ(p1) dµ(φ) (37)

=

∫

I

∫

reφ

∫

κc(cr)

d(p1, r) dµ(p1) dµ(p2) dµ(φ) +

∫

κc(cr)

∫

I

∫

reφ

d(r, p2) dµ(p2) dµ(φ) dµ(p1) (38)

= Wc(cr)

∫

I

∫

reφ

dµ(p2) dµ(φ) + Ac(cr)

∫

I

∫

reφ

d(r, p2) dµ(p2).dµ(φ) (39)

In fact, the second term of Equation (39) provides the analytic format which describes how to compute
contributions corresponding to triangles of T (s). We note that reφ is an linear combination of reφ0

and reφ1

where φ0 and φ1 are the smallest, respectively, largest value assumed by φ ∈ I. So by the change-of-variables
theorem we can apply the transformation F (α, β) = (α·(β ·reφ0

+(1−β)·reφ0
)+(1−α)·(β ·reφ1

+(1−β ·reφ1
))

to get

Wc(cr)

∫ 1

0

∫ 1

0

|det JF |dβ ds + Ac(cr)

∫ 1

0

∫ 1

0

d(r, F (α, β))|det JF |dβ dα (40)

and thus resolving the contribution amounts to determining values Wc(cr) and Ac(cr) and evaluating the
integrals described above. Let us next consider the term of Equation (33). Again, since ∆(ri, riφ) is the
union of all linear combinations s · ri+ (1− s) · riφ, we can apply change-of-variable with the transformation
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with F ′(γ, δ) = (γ · (δ · ri + (1− δ) · ri) + (1− γ) · (δ · riφ1 + (1− δ) · riφ1)) and F to get

∫

I

∫

∆(ri,riφ)

∫

reφ

d(p1, p2) dµ(p2) dµ(p1) dµ(φ) (41)

=

∫

I

∫

reφ

∫

∆(ri,riφ)

d(p1, p2) dµ(p1) dµ(p2) dµ(φ) (42)

=

∫

I

∫

reφ

∫ ζ(φ)

0

∫ 1

0

d(F ′(γ, δ), p2)|det JF ′ |dδ dγ dµ(p2) dµ(φ) (43)

=

∫ 1

0

∫ 1

0

∫ ζ−1(α)

0

∫ 1

0

d(F ′(γ, δ), F (α, β))|det JF ′ |dδ dγ|det JF |dβ dα (44)

where ζ(φ) = ||iφ− iφ0 ||/||iφ1 − iφ0 || and the last step follows from ζ being a bijection. Since Equation (18)
has the same form, it follows that the integral corresponding to each contribution of Equations (11) and (14)
is the sum of a constant number of terms, where each term is either a integral over simple functions and
domains, or the product of such a “simple” integral and the quantity As(sr) or Ws(sr) for appropriate choice
of s and r. For any choice of s that sees r, we can apply Observation 17, Lemma 18 and Lemma 14 to get
that As(sr) and Ws(sr) is the sum of Ac(cr) where c corresponds to an extended edge incident on r. This
is captured in the following corollary:

Corollary 19. Let P be a simple polygon, e a segment and r a corner of P . Let S be the set of points that
see e through r. For any s ∈ S denote by is the intersection of the extension of sr with e, and by es the edge
which immediately precedes ris in the cyclic order of edges incident to r. Let c be any vertex of S colinear
with es. Then for any s ∈ S where is is not an endpoint of e, we have Ws(sr) = Wr(cr)+

∫
∆(ris,es)

d(p, r) dp

and As(sr) = Ar(cr) + µ(∆(ris, es)).

It follows that for any corner r of P and any s that sees r, As(sr) can be expressed as a sum of two
terms, where the first term is one of at most O(n) different values Ar

1, A
r
2, . . . specific to r and the second

is the contribution corresponding to the triangle formed by the extended edge and the extension of sr. The
contribution of this triangle has the form of the second term of Equation (39). If we treat each such value
for all r as a symbol for the value it represents, rather than an actual value, we can replace occurrences of
As(sr) with the appropriate Ar

i in Observation 15 and Equation (39). Then by Corollary 19 we increase the
total number of total terms by at most a constant factor, and this implies Theorem 6:

Proof of Theorem 6. For each corner c of P we compute a list of corners visible from c. We do this so
they appear in the clockwise order around c s.t. the first corner is the endpoint of the edge adjacent to c
in P whose right side faces the interior of P . We can then use the ray-shooting procedure of Hershberger
and Suri [15] to determine the diagonals of P that cross uv of Equation (11) as well as extended edges to
determine the partition of (π; 2π) of Equation (14). There can be at most O(n2) terms for diagonals and as
previously argued, at most O(n) terms for each partitions of (π; 2π) for each of n corners of P , for a total of
O(n2) terms. As argued, each of these terms are of constant size, and comprises simple integrals as well as
symbols of from an alphabet of size O(n2). The above takes total time O(n log n) yielding a total running
time of O(n log2 n) across all levels.

To compute the actual numerical value of the geodesic L2 distance, we can assume an algorithm O which
can evaluate the described types of integrals in time O(t(d)) s.t. the output is a d-approximation within the
exact value. Then d = 1 and t(d) = O(1) would for instance be the case, if the integrals admit a closed
form (recall that each integral is of constant size with a constant number of terms); it is however unclear
to the authors whether this can be done. For all practical purposes, it seems that an approximation will
suffice due to the limited precision offered by the word-RAM model when evaluating simple functions like
square roots and logarithms. We do, however, assume that no Ar

i values are known a priori, but remark that
each of these value can be computed in time O(n2 log n · t(d)) by employing a simple dynamic programming
approach, which implies Corollary 7.
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A Counterexample to a claim from [5]

The algorithm for computing the Beer-index of a polygon with holes from [5] works as follows. We consider
a convex polygon P and a family H1, . . . ,Hk of obstacles, and we want to find the probability that for
two points p, q chosen uniformly and independently at random in P , the line segment pq is disjoint from
all obstacles. Note that this is just a slight reformulation of the problem of computing the Beer-index of a
polygon with holes.

We partition P \ ⋃Hi into trapezoids T1, . . . , Tt. We now compute the Beer-index as the sum of two
entities: (i) the probability that two random points p, q are in the same trapezoid, and (ii) the probability
that two random points p, q are in different trapezoids and the segment pq is disjoint from all obstacles. For
the second case, we compute the contribution for each pair Ti, Tj of trapezoids and sum over all these pairs.

Let us consider a fixed pair Ti, Tj of trapezoids. For each pair si1, s
i
2 of two segments of Ti and each pair

sj1, s
j
2 of two segments of Tj , we do as follows. Using geometric duality, we map each line intersecting all

four segments si1, s
i
2, s

j
1, s

j
2 to a point in the dual space, and these points together form a convex polygon

L∗. Likewise, the dual points of the set of lines intersecting an obstacle Hl form an “hourglass-shaped”
unbounded region H∗

l in the dual space. We now compute the overlay of L∗ with all the regions H∗
l . This

results in an arrangement S∗ of the plane. Each cell C of S∗ contained in L∗ corresponds to a set of lines
in primal space that all cross the four segments si1, s

i
2, s

j
1, s

j
2. Furthermore, the visibility from Ti to Tj is

either not blocked along any of these lines or blocked for all the lines by one or more obstacles. It is then
described in the paper how to compute the contribution to the Beer-index of all pairs of points p ∈ T1,
q ∈ T2, where the dual point l(pq)∗ is in C. The time it takes to compute this contribution is proportional
to the complexity of C.

Running over all cells C contained in L∗, we obtain that computing the contribution for all pairs of points
p ∈ T1, q ∈ T2, where l(pq) intersects si1, s

i
2, s

j
1, s

j
2, can be done in O(n2) time, where n is the total complexity

of P and the obstacles. Since there are O(1) choices of the four segments si1, s
i
2, s

j
1, s

j
2, the contribution from

all pairs p ∈ T1, q ∈ T2 can then also be computed in time O(n2).
It is then erroneously claimed in Lemma 3 that the total size of the arrangements S∗, as we sum over

all pairs of trapezoids Ti, Tj , is also O(n2). This is not true. For Ω(n2) of the pairs, the complexity may
be Ω(n2), resulting in a total complexity of Ω(n4). This can even be the case for simple polygons, as the
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polygon in Figure 12 shows. The polygon is simply a rectangle with some spikes removed along the top
edge. The obstacles will therefore be the removed spikes. Note that a line can intersect any consecutive
interval of obstacles and no other obstacle, so there are Ω(n2) subsets of obstacles that can be intersected.
The arrangement of the hour-glasses H∗

l therefore has complexity Ω(n2). It then follows that for Ω(n2) pairs
of trapezoids Ti, Tj , the arrangement S∗ has complexity Ω(n2), resulting in a running time of Ω(n4).

Figure 12: For polygons of this type, the algorithm from [5] has running time Ω(n4).
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