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Abstract
Online learning problems have received a lot of attention in the past couple of
decades. In particular, multi-armed bandits have been extensively studied as they
are a simple representation of the trade-off between exploration and exploitation.
Originally, the literature made either the strong assumption that the environment
was stochastic or no assumption about the nature of the environment and treated
it as worst-case data. In practice however, it may be unreasonable to assume that
the environment is stochastic and algorithms tailored for stochastic environments
can fail arbitrarily badly as soon as the stochasticity assumptions are broken. Us-
ing algorithms tailored for worst-case data prevents this issue, but at the cost of
a weaker performance. For those reasons, the past decade has seen the emergence
of the study of algorithms that are efficient when faced with easy data while being
simultaneously robust to worst-case sequences of data. These best-of-both-worlds
algorithms have been extensively studied in the multi-armed bandit setting, where
Zimmert and Seldin (2019) introduced the Tsallis-Inf algorithm, an algorithm capable
of achieving an optimal rate against both adversarial and stochastically constrained
adversarial environments.

Many online learning problems have only been studied in either the stochastic
or the adversarial regime separately. Achieving best-of-both-worlds results for these
problems may present extra challenges, as the conditions of the problem may impact
the stochastic and the adversarial regimes differently. In this work, we consider
different variations of the bandits problem where the trade-off between exploration
and exploitation is affected differently in the adversarial and the stochastic regimes.
We propose new algorithms and provide theoretical guarantees for their performance
in both environments.

First, we consider a variant of the bandit problem where the learner can decou-
ple exploration and exploitation by choosing one arm to play blindly and one arm
to observe without suffering the associated loss in each round. We propose an algo-
rithm based on Tsallis-Inf which recovers optimal regret guarantees in the adversarial
regime and simultaneously provides a time independent regret bound in the stochas-
tic regime, which is an improvement compared to the results for stochastic bandits
whose regret scales with time.

We then consider another variation of the multi-armed bandits problem, where
the learner has to pay a cost each time she decides to switch the action she plays.
We propose an algorithm, based on Tsallis-Inf, that achieves the optimal rate in the
adversarial regime, and an improved rate in the stochastically constrained adversarial
regime. Furthermore, we generalize the analysis to sequences of switching costs that
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change each time a switch is performed.
Finally, we consider the problem of online learning with feedback graphs. We

propose an algorithm based on EXP3, which enjoys a near-optimal performance in
both the adversarial and the stochastic regimes. We also generalize to sequences of
graphs that change over time.
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Resumé
Problemer indenfor online learning har fået meget opmærksomhed i de sidste årtier.
Specielt har flerarmede tyveknægte været studeret eftersom de repræsenterer en afve-
jning mellem udforskning og udnytning. Oprindeligt lavede det meste af litteraturen
den stærke antagelse at omgivelserne var stokastisk eller også lavede den ingen an-
tagelser om omgivelserne og antog at det var worst-case data. I praksis er det imi-
dlertid urimeligt at antage at omgivelserne er stokastisk og at algoritmer tilpasset
stokastiske omgivelser fejler arbitrært dårligt lige så snart de stokastiske antagelser
brydes. Ved brug af algoritmer tilpasset worst-case omgivelser undgår man dette,
men på bekostning af en ringere ydeevne. Af disse årsager har det sidste årti set
forskning i algoritmer der er effektive med nem data, samtidig med at de er robuste
over for worst-case data. Disse algoritmer, som er det bedste af begge verdener, er
blevet grundigt undersøgt i flerarmede tyveknægt-sammenhængen, hvor Zimmert et
al. (2019) introducerede Tsallis-Inf-algoritmen, en algoritme i stand til at opnå op-
timal ydeevne over for både modstridende og stokastisk begrænsede modarbejdende
omgivelser.

Mange problemer indenfor online learning er kun studeret separat i enten det
stokastiske eller modarbejdende scenarie. Det kan være ekstra svært at opnå best-of-
both-worlds ydeevne da problemets betingelser kan påvirke de stokastiske og modar-
bejdende scenarier forskelligt. Her kigger vi på forskellige variationer af tyveknægt-
problemet hvor afvejningen mellem udforskning og udnyttelse påvirkes forskelligt
i det modarbejdende og det stokastiske scenarie. Vi foreslår nye algoritmer og
giver teoretiske garantier for deres ydeevne i både modarbejdende og stokastiske
omgivelser.

Først ser vi på en variant af tyveknægt-problemet, hvor algoritmen kan afkoble
udforskning og udnyttelse, ved at vælge én arm at spille blindt på og én arm til at ob-
servere, uden at lide det associerede tab hver runde. Vi foreslår en algoritme, baseret
på Tsallis-Inf, som genvinder den optimale ydeevne i det modarbejdende scenarie og
samtidig giver en tidsuafhængig regret-begrænsning i det stokastiske scenarie, hvilket
er en forbedring sammenlignet med resultater for stokastiske tyveknægte.

Herefter betragter vi en anden variation af det flerarmede tyveknægt-problem,
hvor der er en omkostning for algoritmen hver gang den beslutter sig for at skifte
handling. Vi foreslår en algoritme der opnår optimal ydeevne i det modarbejdende
scenarie og en forbedret ydeevne i det stokastisk begrænsede modarbejdende scenarie.
Ydermere generaliserer vi analysen til sekvenser af omkostningsskift der ændrer sig
hver gang der skiftes handling.

Til sidst kigger vi på online learning-problemet med feedbackgrafer. Vi fores-
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lår en algoritme baseret på EXP3 som opnår en nær-optimal ydeevne i både det
modarbejdende og det stokastiske regime. Vi generaliserer også disse resultater til
sekvenser af grafer der ændrer sig over tid.

v



Acknowledgements
While I have pictured myself pursuing a Ph.D. for nearly as long as I can remember,
I was far from imagining what this journey would be like. Luckily, I had the chance
of being surrounded by amazing people without which this journey would not have
been the same. My first word has to go to my supervisor Yevgeny Seldin, thanks
to whom I discovered the fascinating world of bandits. Yevgeny has been a great
support in these past few years and I am extremely grateful for everything that I
have learned. My experience would not have been the same without my colleagues
from the Delta group and in particular my fellow Ph.D. students Yi-Shan, Saeed,
Yunlian, Hippolyte and Yijie. Both scientifically and personally, you have been an
extremely valuable part of those years in Denmark. I am so proud of all the work we
have accomplished and I cannot wait to see you all graduate. I am also very grateful
to Nicolò Cesa-Bianchi for the chance to visit his group in Milan. I will never forget
the warm welcome that I received from everyone, and I am beyond happy with the
work that we produced with my awesome co-author Dirk van der Hoeven. I hope
that we will see each other soon for some gelato al pistacchio salato.

Finally, this work is dedicated to my family and friends, close and afar. Your support
has been invaluable and I hope that this work makes you as proud as I am.

Thank you all, merci à tous.
Chloé

vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Resumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction 1
1.1 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Tsallis-INF for Decoupled Exploration and Exploitation in Multi-
armed Bandits 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Problem Setting and Notation . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Decoupling Exploration and Exploitation in Follow the Regularized

Leader Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Proofs of the Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 An Algorithm for Stochastic and Adversarial Bandits with Switch-
ing Costs 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Problem Setting and Notations . . . . . . . . . . . . . . . . . . . . . 36
3.3 Using Blocks to Control Switching Frequency . . . . . . . . . . . . . 37
3.4 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



3.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 A Near-Optimal Best-of-Both-Worlds Algorithm for Online Learn-
ing with Feedback Graphs 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Problem Setting and Definitions . . . . . . . . . . . . . . . . . . . . . 75
4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4 Adversarial Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5 Stochastic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6 Extension to Time Varying Feedback Graphs . . . . . . . . . . . . . . 83
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Summary and Discussion 109
List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

viii



Chapter 1

Introduction

Online learning is a well-studied framework when it comes to sequential learning
(see Slivkins (2019); Orabona (2019) and Lattimore and Svepesvári (2020) for recent
surveys). This framework is often described as a game between a learner and the
environment, wherein the learner is repeatedly faced with selecting an action in a list
and suffering the associated loss generated by the environment. The objective of the
learner is to minimize her cumulative loss, done by using feedback provided by the
environment in order to improve the decisions she takes over time. This framework
is simple enough to be thoroughly studied by theoreticians, and flexible enough to
represent a wide range of practical problems. Nearly a century ago Thompson (1933)
attempted to optimize the design of medical trials using this framework and in recent
years it has become particularly well suited to handle the increasing amount of data
available online. Applications include personalized advertisement, recommendation
systems, investments and portfolio selection or routing problems. This framework
can also be used as a building block in more complex problems such as Monte-Carlo
tree search or even reinforcement learning and robotics.

There are several degrees of variation in this framework. One is the amount of
feedback accessible to the learner in each round. If the learner is in a full information
setting, meaning that she is allowed to observe the feedback related to all actions
independently of what was played, the learner can exploit the previously gathered
feedback to improve future predictions (Littlestone and Warmuth, 1994; Freund and
Schapire, 1997; Cesa-Bianchi and Lugosi, 2006). On the opposite side of the spec-
trum, the learner may only be allowed to observe the feedback associated with the
action that she played. In such a case, the optimal action for the learner depends
on a trade-off between exploiting the previously gathered feedback, and choosing to
explore a potentially less promising action in order to gather feedback about the
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Chapter 1 | Introduction

action. This setting is referred to as multi-armed bandits (Auer, 2002; Auer et al.,
2002b).

While both full-information and bandit problems have been extensively studied in
the literature, many practical problems do not simply fit into one of those categories.
Constraints such as delays in observing feedback (Thune et al., 2019; Zimmert and
Seldin, 2020; Masoudian et al., 2022), costs for switching between actions (Dekel
et al., 2012) or access to side observations, possibly at a cost, (Seldin et al., 2014;
Alon et al., 2015; Thune and Seldin, 2018) modify the balance between exploration
and exploitation and require tailored solutions.

Online learning problems present another degree of variation in the assumptions
made about the environment. The environment controls the choice of the loss vectors
associated with the actions the learner has to choose from. Most machine learning
models require the environment to behave stochastically in order to generalize results,
as it is necessary for the training data to follow the same underlying distribution as
future data. In online learning there is no such distinction between exploration and
exploitation phases and thus it is possible to derive algorithms that are robust to
sequences of losses that may change arbitrarily as the model continues to learn and
evolve. The study of adversarial and stochastic online learning problems originally
stayed rather separated, as they relied on drastically different approaches. However
in real-life applications it may be difficult to ensure that sequentially acquired data
fulfills stochasticity assumptions and, if one uses an algorithm tailored for stochastic
environments with data that does not comply to that assumption, the algorithm can
fail to learn anything. One solution may seem to rely on robust algorithms tailored
for worst-case data. The downside to this approach is that robust algorithms may
learn slowly even in the presence of easy data. Recently there has been a focus
towards developing algorithms that adapt to both easy and worst-case data simulta-
neously and without requiring knowledge of the regime. Some of these algorithms can
also have extra guarantees in intermediate regimes. This includes the stochastically
constrained adversarial regime which is a generalization of the stochastic environ-
ment where the losses are generated according to underlying distributions that may
change over time as long as they keep the gaps between the expected loss of each
arm constant over time.

For the multi-armed bandits problem, different approaches attempted to merge
algorithms for stochastic and adversarial regimes (Bubeck and Slivkins, 2012; Seldin
and Slivkins, 2014; Auer and Chiang, 2016; Seldin and Lugosi, 2017; Wei and Luo,
2018), but this came at the cost of logarithmic factors in at least one of the regimes.
Finally, Zimmert and Seldin (2019, 2021) introduced the Tsallis-Inf algorithm, which
achieved an optimal rate for both the adversarial and the stochastically constrained
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Chapter 1 | Introduction

adversarial regimes simultaneously.
In the full information setting, Cesa-Bianchi et al. (2007); de Rooij et al. (2014);

Gaillard et al. (2014); Sani et al. (2014); Koolen and van Erven (2015); Luo and
Schapire (2015) investigated how to achieve best-of-both-worlds guarantees, and
Mourtada and Gaïffas (2019) showed that the Hedge algorithm, which was opti-
mal against adversarial sequences of losses, is also capable of achieving an optimal
rate against stochastic sequences of losses when it is tuned with the appropriate
learning rate.

The study of best-of-both-worlds problems now expands to many online learn-
ing problems that were previously only studied in the adversarial or the stochastic
regimes separately. In the present work, we consider several online learning problems.
Each of these problems is based on the multi-armed bandits framework and modifies
one key aspect of the problem setting which affects the trade-off between exploration
and exploitation. We provide and analyse best-of-both-worlds algorithms and gain a
better understanding of the relation between the different regimes of losses and the
exploration versus exploitation trade-off.

1.1 Outline of the Thesis
This thesis is structured with the following chapters.

In Chapter 2 we consider a variation of the multi-armed bandits problem where
the learner is allowed to decouple exploration and exploitation by choosing two ac-
tions per round. The first action is played blindly and the loss associated with the
second action is observed without being suffered by the learner. This framework can
be used to represent problems where observations are queried independently of what
the learner is playing. This problem was originally studied in Avner et al. (2012).
The authors showed that the decoupling strategy does not help in the adversarial
regime and the lower bound Ω(

√
KT ) of standard multi-armed bandits also holds

in the decoupled setting. They provided an algorithm which enjoys near-optimal
Õ(

√
KT ) guarantees against adversarial sequences, while also achieving an improved

rate of Õ
(√

Kmax
{
0, 4

3
− 1

3
logK(T )

}
T
)

in the stochastic regime. We propose a new algo-
rithm based on Follow The Regularized Leader (FTRL), which enjoys a rate-optimal
O(

√
KT ) pseudo-regret bound in the adversarial regime, while simultaneously enjoy-

ing a time-independent bound in the stochastically constrained adversarial regime,
improving upon the results of Avner et al. in both regimes.

In Chapter 3 we consider another variation of the multi-armed bandits problem
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Chapter 1 | Introduction

where the learner has to pay an extra cost each time she decides to switch the
action she plays. In the adversarial regime Dekel et al. (2013) proposed a lower
bound of Ω

(
(λK)1/3T 2/3 +

√
KT

)
for all λ ≥ 0, where λ is the switching cost.

Dekel et al. (2012) proved an upper bound of O
(
(K lnK)1/3T 2/3

)
in the case where

λ = 1 for an algorithm derived from EXP3. In the stochastic regime Gao et al.
(2019) and Esfandiari et al. (2021) also assumed that λ = 1 and achieved the
optimal distribution-dependent regret of O

(
(lnT )

∑
i :∆i>0∆

−1
i

)
, which matches the

lower bound for stochastic multi-armed bandits without switching costs (Lai and
Robbins, 1985). We propose the first algorithm that adapts to both the adversarial
and the stochastically constrained adversarial regimes and extend the analysis
by removing the assumption that λ = 1. In the adversarial regime we derive an
optimal bound Θ

(
(λK)1/3T 2/3 +

√
KT

)
for any value of λ ≥ 0. In the stochastically

constrained adversarial regime, which includes the stochastic regime as a special
case, we obtain the refined bound O

((
(λK)2/3T 1/3 + lnT

)∑
i 6=i∗ ∆

−1
i

)
where i∗ is

a unique optimal arm. Furthermore, we generalize the analysis by considering the
version of the problem where the switching costs change each time a switch is taken.

In Chapter 4 we consider the problem of online learning with feedback graphs.
This framework interpolates between full information and bandit problems by provid-
ing the learner with a graph that expresses what feedback the learner may observe
when she plays a certain arm. This problem has been studied in the adversarial
regime in Alon et al. (2015, 2017), wherein a lower bound in Ω(

√
αT ) and a near

matching Õ(
√
αT ) upper bound were derived, where α is the independence num-

ber of the graph. In the stochastic regime Buccapatnam et al. (2014, 2017) pro-
posed a graph and problem dependent lower bound Ω(c∗ lnT ) and almost matching
O(c∗ lnT ) + O(K) upper bound. Erez and Koren (2021) propose the first best-of-
both-worlds algorithm for this problem, which enjoys a O

(√
χT
(

ln(KT )
)2) pseudo-

regret bound in the adversarial regime and an O
((

ln(KT )
)4∑

k
lnT
∆k

) pseudo-regret
bound in the stochastic regime, where χ is the clique covering number of the feedback
graph, which fulfills α ≤ χ. We propose an algorithm that achieves an Õ(

√
αT ) upper

bound against adversarial sequences of losses and O
(
(lnT )2 maxS∈I(G)

∑
i∈S ∆

−1
i

)
against stochastic sequences of losses, improving upon the results of Erez and Koren
(2021) in both regimes.

We finish this work with a discussion of these results in Chapter 5.
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Chapter 1 | Introduction

1.2 Main Contributions
The main contributions of this work are:

• We present an algorithm based on Tsallis-Inf for the problem of decoupled
exploration and exploitation for multi-armed bandits. We analyse its regret
in both the adversarial and the stochastically constrained regimes for differ-
ent values of the regularization parameter α. We show that our algorithm
achieves the optimal rate Θ

(√
KT

)
up to constants in the adversarial regime

for any value of α ∈ (0, 1), while simultaneously achieving refined bounds in
the stochastically constrained adversarial regime for any α ∈

(
0; 2

3

]
.

• Crucially, we show that the algorithm requires α ∈
(
1
2
; 2
3

]
to achieve an anytime

bound in the stochastically constrained adversarial regime, which scales as
O
(∑

i:∆i>0

√
K

∆i

)
. The tightest constants are obtained for α = 2

3
.

• We consider a general version of multi-armed bandits with switching costs,
where the switching cost is a constant λ > 0. We present an algorithm based
on Tsallis-Inf which achieves an optimal rate Θ

(
(λK)1/3T 2/3

)
up to constants

in the adversarial regime, and refined guarantees scaling as O
((
(λK)2/3T 1/3 +

lnT
)∑

i 6=i∗ ∆
−1
i

)
in the stochastically constrained adversarial regime. To the

best of our knowledge, this algorithm is the first to consider this problem in a
best-of-both-worlds setting and to be analysed in the stochastically constrained
adversarial regime.

• We generalize the notion of switching costs further by analysing our algorithm
in the setting where switching costs may change each time a switch is taken.

• We generalize the analysis of the Tsallis-Inf algorithm to multi-armed bandits
where the loss vectors are not restricted to the [0, 1] interval. We consider a
setting where the range of the losses is allowed to fluctuate over time as long
as the learner knows the range of the loss vector at the beginning of the round.

• We propose an algorithm based on EXP3 for the problem of best-of-both-worlds
online learning with feedback graphs, and show that it enjoys near-optimal
regret guarantees against both adversarial and stochastic sequences of losses.

• We propose a novel exploration scheme. This greedy exploration scheme has a
polynomial running time in the number of arms, while ensuring that it produces
an exploration set that is both a dominating set and a strongly independent
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Chapter 1 | Introduction

set (which is a generalization of the independence set for directed graphs), even
though computing graph related quantities such as the independence number
are NP-hard problems.

• We derive a refined upper bound for undirected graphs in the adversarial regime
which improve by a logarithm T factor .

• Some techniques used in our analysis improve upon the original analysis of
the EXP3++ algorithm in the stochastic regime, refining a dependency on an
additive C1

∑
i:∆i>0

K
∆3

i
to a C2

K
∆2

min
, where C1 and C2 contain constants and

logarithmic factors dependent on K and ∆.

• We generalize our results to sequences of graphs with a fixed set of vertices but
sets of edges that change over time. We do so without affecting the run-time
of the algorithm or requiring knowledge of the independence number of the
graphs. This comes at the small cost of a multiplicative

√
K factor in a time-

independent additive factor in the bound in the stochastic regime and does not
affect the bound in the adversarial regime.

• We use a skipping technique to improve the bound when a sub-logarithmic
number of graphs in the sequence of feedback graphs have a significantly larger
strong independence number than the rest of the graphs by handling those
rounds separately in the analysis.

The presented algorithms require no prior knowledge of the nature of the envi-
ronment or of the time horizon.
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Chapter 2

Tsallis-INF for Decoupled
Exploration and Exploitation in
Multi-armed Bandits

The work presented in this chapter is based on a paper that has been published as:

Chloé Rouyer and Yevgeny Seldin. Tsallis-INF for decoupled exploration and
exploitation in multi-armed bandits. In Proceedings of the International Conference
on Computational Learning Theory (COLT), 2020.
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Chapter 2 | Tsallis-INF for Decoupled Exploration and Exploitation in Multi-armed Bandits

Abstract
We consider a variation of the multi-armed bandit problem, introduced by Avner
et al. (2012), in which the forecaster is allowed to choose one arm to explore and
one arm to exploit at every round. The loss of the exploited arm is blindly suffered
by the forecaster, while the loss of the explored arm is observed without being suf-
fered. The goal of the learner is to minimize the regret. We derive a new algorithm
using regularization by Tsallis entropy to achieve best of both worlds guarantees.
In the adversarial setting we show that the algorithm achieves the minimax opti-
mal O(

√
KT ) regret bound, slightly improving on the result of Avner et al.. In

the stochastic regime the algorithm achieves a time-independent regret bound, sig-
nificantly improving on the result of Avner et al.. The algorithm also achieves the
same time-independent regret bound in the more general stochastically constrained
adversarial regime introduced by Wei and Luo (2018).

2.1 Introduction
The multi-armed bandit problem is a central and most basic framework for studying
the exploration-exploitation trade-off (Thompson, 1933; Robbins, 1952; Lai and Rob-
bins, 1985; Auer et al., 2002a,b; Slivkins, 2019; Lattimore and Svepesvári, 2020). In
the multi-armed bandit game a player repeatedly chooses actions (also called arms)
from a set of K actions and observes and suffers the loss of the selected action. This
can be contrasted with the full information setting, where after selecting an action
the player observes losses of all actions, not just the selected one (Cesa-Bianchi and
Lugosi, 2006). The losses may be generated adversarially or stochastically, depend-
ing on problem setup. The goal of the learner is to find an action selection strategy
minimizing the regret, which is the difference between the cumulative loss of the
player and of the best fixed action in hindsight.

We focus on a variation of the multi-armed bandit problem introduced by Avner
et al. (2012), in which at each round the learner is allowed to choose one action to
play blindly and one action to observe without suffering its loss. The two actions
may, but need not be identical. Thus, exploration is decoupled from exploitation.
Practical settings having this structure are full information problems with restricted
data access, where in principle the loss of any action could be accessed, but each
observation, including the one of the selected action, is associated with a cost and
the player can only afford one observation per round.

The decoupled setting takes an important place in the space of online learning

8



Chapter 2 | Tsallis-INF for Decoupled Exploration and Exploitation in Multi-armed Bandits

problems. On the one hand, it is a bridge between full information and bandit
setups. In particular, as we discuss below, in the adversarial regime the problem
is as hard as a bandit problem, but in the stochastic regime the regret scaling is
time-independent, as in full information problems. Seldin et al. (2014) expand this
bridge further by introducing multi-armed bandits with paid observations, where
a learner can make an arbitrary number of observations at corresponding costs,
which provides a continuous interpolation between full information and bandits. On
the other hand, the decoupled setting is a bridge between exploration-exploitation
and pure exploration problems (Even-Dar et al., 2006; Mannor and Tsitsiklis, 2004;
Bubeck et al., 2011). In particular, one could think about doing pure exploration
with the observations, but this is not an optimal strategy for the decoupled setting.

Avner et al. (2012) have shown that in the adversarial regime there is a lower
bound of Ω(

√
KT ) for the regret in the decoupled setting. Thus, in the worst case

the adversary can make the regret as large as in the standard multi-armed bandits.
However, they have also shown that in some situations, in particular when one arm
dominates all other arms, the regret can be reduced. More specifically, they have
proposed an EXP3-style algorithm with the same exploitation strategy as EXP3,
but modified exploration strategy, which achieves an O(

√
KT lnK) regret bound in

the worst case adversarial regime and an improved O(
√
T lnK) regret bound in an

adversarial regime with one dominating arm. A similar improvement in dependence
on the number of arms was also shown by Seldin et al. (2014) for bandits with
paid observations. Avner et al. have also analyzed their algorithm in the stochastic
setting, showing that in a configuration with a single best arm (which would thus
be dominating) the regret grows as O(

√
T lnK). However, the analysis required a

different tuning of the learning rate for the stochastic setting than for the adversarial
one and, therefore, prior knowledge of the regime was essential. The stochastic regret
bound was also highly suboptimal, since a simple approach of playing Follow the
Leader for exploitation and uniform distribution for exploration leads to a time-
independent expected regret bound of O(

∑
i:∆i>0

K
∆i
) in the stochastic setting.

Traditionally algorithms for multi-armed bandits and their variations, including
the algorithm of Avner et al., were relying on prior knowledge of the nature of the
environment, but following the work of Bubeck and Slivkins (2012) there has been
a growing interest in algorithms that perform well in both settings without this
knowledge (Seldin and Slivkins, 2014; Auer and Chiang, 2016; Seldin and Lugosi,
2017; Wei and Luo, 2018). Eventually, Zimmert and Seldin (2019) have used Tsallis
entropy regularizer with power 1

2
to derive an algorithm that achieves the optimal

regret bounds for multi-armed bandits in both settings with no prior knowledge of the
regime. We follow this line of work and propose an algorithm for multi-armed bandits

9
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with decoupled exploration and exploitation that achieves refined regret guarantees
in both adversarial and stochastic regimes and requires no prior knowledge of the
regime. Specifically, we make the following contributions:

• We propose a new algorithm for decoupled exploration and exploitation in
multi-armed bandits based on Follow the Regularized Leader framework with
regularization by Tsallis entropy.

• We show that in the adversarial regime the algorithm achieves O(
√
KT ) regret

upper bound, improving by a multiplicative factor of
√

lnK on the worst-case
upper bound of Avner et al. and matching their worst-case lower bound within
constants.

• We show that the same algorithm achieves a time independent O(
∑

i:∆i>0

√
K

∆i
)

regret bound in stochastic regime, considerably improving on the result of
Avner et al.. (The result holds under a technical assumption that the best arm
is unique.)

• The same regret bound is achieved in a more general stochastically constrained
adversarial regime introduced by Wei and Luo (2018) (also under the assump-
tion on uniqueness of the best arm).

• The algorithm requires no prior knowledge of the nature of the environment.

• Interestingly, the results are achieved with Tsallis entropy regulariser with
power α = 2

3
, whereas the optimal power for standard multi-armed bandits

is α = 1
2
. We show that power α = 1

2
does not achieve time-independent

stochastic regret bounds in the decoupled setting and, therefore, inferior to
α = 2

3
.

The assumption on uniqueness of the best arm in the stochastic and stochasti-
cally constrained adversarial regimes underlies the prior work of Zimmert and Seldin
(2019). We conjecture that it can be eliminated.

The paper is structured in the following way. In Section 2.3 we introduce the Fol-
low the Regularized Leader framework and the approach used to decouple exploration
and exploitation. The algorithm and main results are presented in Section 2.4 and
their proofs can be found in Section 2.5. We conclude with discussion in Section 2.6.

10
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2.2 Problem Setting and Notation
We consider a repeated game with K arms. At each round t = 1, 2, . . . of the game
the environment picks a loss vector `t ∈ [0, 1]K and the learner picks an action At to
exploit and an action Bt to explore. The two actions may, but need not be identical.
Then the learner blindly suffers `t,At and observes `t,Bt without suffering its loss.

In the adversarial setting, the environment chooses `t arbitrarily.
In the stochastic setting the losses are drawn from distributions with fixed means,

i.e., for all i we have E [`t,i] = µi independently of t.
We also consider a more general stochastically constrained adversarial setting

(Wei and Luo, 2018; Zimmert and Seldin, 2019). In this setting the losses are drawn
from distributions with fixed gaps, while the baseline means are allowed to fluctuate,
i.e., for all i, j we have E [`t,i − `t,j] = ∆i,j independently of t. The stochastic setting
is a special case of the stochastically constrained adversary with ∆i,j = µi − µj.
All results in the paper are presented for stochastically constrained adversaries and
extend to stochastic environments as a special case.

We measure the performance of an algorithm in terms of pseudo-regret:

RT := E

[
T∑
t=1

`t,At

]
− min

i
E

[
T∑
t=1

`t,i

]
= E

[
T∑
t=1

(
`t,At − `t,i∗T

)]
,

where i∗T = arg mini E
[∑T

t=1 `t,i

]
is the best action in hindsight. In the oblivious

adversarial regime the losses are independent of the player’s actions and the pseudo-
regret coincides with the notion of expected regret (Bubeck and Cesa-Bianchi, 2012).

In the stochastically constrained adversarial setting we let i∗ = arg mini∆i,1

denote an optimal arm (we can take any arm j as the second argument of ∆i,j in
the definition of i∗). Then we have i∗T = i∗ for all T . We define ∆i = ∆i,i∗ to be the
gaps to the best arm and rewrite the pseudo-regret in the stochastically constrained
adversarial setting as

RT =
T∑
t=1

∑
i 6=i∗

E [pt,i] ∆i. (2.1)

2.3 Decoupling Exploration and Exploitation in
Follow the Regularized Leader Framework

The algorithm that we present is based on follow the regularized leader (FTRL)
framework (Shalev-Shwartz, 2012). Following Zimmert and Seldin (2019), we use

11
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the regularizer
Ψt(w) = − 1

ηt

∑
i

wα
i − αwi

α(1− α)
, (2.2)

which is a slight modification of the negative Tsallis entropy with power α defined
by Hα(w) := 1

1−α
(1 −

∑
iw

α
i ) (Tsallis, 1988). We focus on α ∈ (0, 1), but one of

the interesting properties of the above regularizer is that in the limits α → 0 and
α → 1 it recovers the log-barrier and the negative entropy regularizers, respectively
(Zimmert and Seldin, 2019). In particular, the EXP3 algorithm with losses (Auer
et al., 2002b; Bubeck and Cesa-Bianchi, 2012) can be seen as a limit case of FTRL
with regularization by Tsallis entropy with α → 1. As we are in a bandit setting and
only observe one element of the loss vector at each round, we construct an unbiased
estimate ˜̀

t of the loss vector `t by using importance-weighted sampling

∀t ∈ [T ], i ∈ [K], ˜̀
t,i =

`t,i1 [Bt = i]

qt,i
,

where qt is the distribution for sampling the exploratory action Bt and 1 is the
indicator function.

We define the Decoupled-Tsallis-INF algorithm for an arbitrary exploration dis-
tribution qt in Algorithm 1.

Algorithm 1: Decoupled-Tsallis-INF
Input : Learning rates η1 ≥ η2 ≥ · · · > 0.
Initialize: L̃0 = 0K

for t = 1, 2, . . . do
pt = arg minp∈∆K−1

{〈
p, L̃t−1

〉
− 1

ηt

∑K
i=1

pαi −αpi
α(1−α)

}
Construct exploration distribution qt
Sample At according to pt, play it and suffer `t,At .
Sample Bt according to qt and observe `t,Bt .

∀ i ∈ [K] : ˜̀
t,i =

`t,i1{Bt=i}
qt,i

=

{
`t,i
qt,i

, if Bt = i,

0, otherwise.
∀ i ∈ [K] : L̃t(i) = L̃t−1(i) + ˜̀

t,i.
end

In order to analyse the algorithm, we decompose the pseudo-regret into a stabil-
ity and penalty components (Lattimore and Svepesvári, 2020; Zimmert and Seldin,

12
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2019),

RT = E

[
T∑
t=1

`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
︸ ︷︷ ︸

stability

+E

[
T∑
t=1

Φt(−L̃t−1)− Φt(−L̃t)− `t,i∗T

]
︸ ︷︷ ︸

penalty

,

(2.3)
where i∗T is the best action in hindsight, and the potential function is defined by

Φt(−L) = max
w∈∆K−1

{
〈w,−L〉+ 1

ηt

K∑
i=1

wα
i − αwi

α(1− α)

}
.

In order to achieve a tight bound on the pseudo-regret, one has to derive tight
bounds on the stability and penalty. Recall that L̃t is an unbiased estimate of Lt and
observe that the penalty term does not depend on the query distribution qt. The
stability term of the regret of Algorithm 1 satisfies the following lemma.

Lemma 2.1. For any α ∈ (0, 1) and any positive learning rate value, the stability
term of the regret of Decoupled-Tsallis-INF with an arbitrary exploration distribution
qt satisfies:

E

[
T∑
t=1

`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤

T∑
t=1

E

[
K∑
i=1

ηt
2

(pt,i)
2−α

qt,i

]
.

A proof of the lemma is provided in Section 2.7.2.2. We can see that the bound
depends on the choice of exploration distribution qt, and that picking qt = pt recovers
the bound for the stability term of the regret of Tsallis-INF for multi-armed bandits
(Zimmert and Seldin, 2019). In the decoupled case we have the freedom of picking
qt 6= pt, so we select the distribution qt which minimizes the bound on the stability
term in Lemma 2.1.

Lemma 2.2. The right hand side of the bound in Lemma 2.1 is minimized by the
distribution qt defined by

∀t ∈ [T ], i ∈ [K], qt,i =
(pt,i)

1−α/2∑K
j=1(pt,j)

1−α/2
.

We provide a proof of this Lemma in Section 2.7.3. In the previous section,
we have mentioned that in the limit of α → 1 Tsallis-INF converges to the EXP3
algorithm. By taking α = 1 in Lemma 2.2 we recover the exploration distribution
used by Avner et al. (2012): qt,i =

√
pt,i/‖pt‖1/2.

13
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2.4 Main Results
In the rest of the paper, we consider that the exploration distribution qt of Decoupled-
Tsallis-INF is the one defined in Lemma 2.2. In this section, we present bounds on
pseudo-regret of that algorithm. The first theorem bounds the regret of Decoupled-
Tsallis-INF in adversarial regime.

Theorem 2.1. In the adversarial regime, for any α ∈ (0, 1) the pseudo-regret of
Decoupled-Tsallis-INF with learning rate ηt =

2K1/2−α
√
t

and with qt given by Lemma
2.2 satisfies:

RT ≤
(
2 +

1

2α(1− α)

)√
KT + 1.

We provide a proof of the theorem in Section 2.5.1. Avner et al. (2012) have
derived a regret lower bound of Ω(

√
KT ) for the adversarial regime, which means that

our algorithm is minimax optimal within constants. For comparison, the algorithm
proposed by Avner et al. is suboptimal by a multiplicative factor of

√
logK. In

the next theorem we bound the regret of Decoupled-Tsallis-INF in the stochastically
constrained adversarial setting.

Theorem 2.2. In the stochastically constrained adversarial regime with a unique best
action i∗, the pseudo-regret of Decoupled-Tsallis-INF with α ∈ (0; 2/3], ηt = 2K1/2−α

√
t

and with qt given by Lemma 2.2 satisfies

RT ≤ O

((∑
i 6=i∗

T∑
t=T0+1

∆
α

α−1

i

√
K

t
1

2(α−1)

)
+

√
K

∆min

)
,

where T0 = maxi 6=i∗

⌈(
8
∆i

)2⌉
. This bound is time-independent if and only if α > 1/2.

When α ∈ (1/2, 2/3] the pseudo-regret satisfies,

RT ≤
∑
i 6=i∗

(
C(α)

√
K

∆i

)
+

68
√
K

∆min
+ 11

√
K,

where

C(α) =
2− 2α

2α− 1

 1

2α(1− α)
+

(
1− (1−α)

4

)− 2−α
1−α

+ 1

2−1+α/2
+ 2


1

1−α (
α

α
1−α − α

1
1−α

)
8

2α−1
α−1 .
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A proof of the theorem is given in Section 2.5.2. The assumption on uniqueness
of the best arm is a technical detail required in the analysis. The same assumption
had to be used by Zimmert and Seldin (2019) in the analysis of Tsallis-INF. We
conjecture that the assumption can be eliminated. The function C(α) is well defined
on the interval (1/2, 2/3], and numerical evaluation shows that it is monotonically
decreasing on the interval and minimized by α = 2/3. It is possible to derive a
pseudo-regret bound for α ∈ (2/3, 1), however, for α > 2/3 the dependency on K
scales with K2−1/α >

√
K, without achieving a refined dependency on neither t nor

∆.
The following corollary combines adversarial and stochastically constrained ad-

versarial analysis (and stochastic regime as a special case of the latter).

Corollary 2.1. With α = 2/3, ηt =
2K1/2−α

√
t

= 2K−1/6
√
t

, and qt given by Lemma 2.2
Decoupled-Tsallis-INF achieves pseudo-regret bounds

RT ≤ 5
√
KT + 1

in the adversarial regime and

RT ≤
∑
i 6=i∗

20
√
K

∆i

+
68
√
K

∆min
+ 11

√
K

in stochastically constrained adversarial regimes with a unique best arm i∗. The two
regret bounds hold simultaneously and with no need in prior knowledge of the regime.

The result is a direct application of Theorem 2.1 and the second part of Theo-
rem 2.2. We note that unlike in the multi-armed bandit case, where α = 1/2 is the
optimal value both for adversarial and stochastically constrained adversarial regime,
in the decoupled case there is a trade-off between the optimal values of α in the two
regimes. However, the price of switching from the optimal α = 1/2 to α = 2/3 in the
former is a minor multiplicative factor of 5

4
, whereas in the latter choosing α = 2/3

allows to get rid of the dependency of the regret on the time horizon.

2.5 Proofs of the Theorems
Using the decomposition of the regret presented in Equation (2.3), we present bounds
for the stability and penalty terms. We take advantage of the decoupling to refine
the bound of Zimmert and Seldin (2019) on the stability term. The penalty term
takes no advantage of the decoupling and we reuse the bound derived by Zimmert
and Seldin.

15



Chapter 2 | Tsallis-INF for Decoupled Exploration and Exploitation in Multi-armed Bandits

Lemma 2.3. For any α ∈ (0, 1) and any positive learning rate value, the stabil-
ity term of the regret bound of Decoupled-Tsallis-INF with qt given by Lemma 2.2
satisfies:

1.

E

[
T∑
t=1

`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤

T∑
t=1

ηt
2
Kα.

2. If further ηt ≤ 1
4
, then for any j:

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤ ηt

2

(
Kα/2 + c(α) + 1

)∑
i 6=j

E [pt,i]
1−α/2 ,

where c(α) =
(
1− (1−α)

4

)− 2−α
1−α .

We present a proof of the lemma in Section 2.7.2.2. Note that for α ∈ (0, 1), we
have c(α) ∈ [1, 2].

Lemma 2.4. For any α ∈ (0, 1), and non-increasing learning rate sequence ηt, the
penalty term of the regret bound of Decoupled-Tsallis-INF with qt given by Lemma
2.2 satisfies:

1. E
[∑T

t=1 Φt(−L̃t−1)− Φt(−L̃t)− `t,i∗T

]
≤ (K1−α−1)(1−T−α)

(1−α)αηT
+ 1.

2. Furthermore, if ηt = 2β√
t

for some β > 0, then the penalty further satisfies:

E

[
T∑
t=1

Φt(−L̃t−1)− Φt(−L̃t)− `t,i∗T

]
≤
∑

i 6=i∗
∑T

t=1
E[pt,i]α√

t
+K1−α

4α(1− α)β
.

A proof of the lemma is in Section 2.7.2.3.

2.5.1 Proof of Theorem 2.1
The proof of the theorem is based on application of the first parts of Lemmas 2.3
and 2.4.
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Proof of Theorem 2.1. We use the first part of Lemma 2.3 to bound the stability
term. We remind that the learning rate is ηt =

2K1/2−α
√
t

.

E

[
T∑
t=1

`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤

T∑
t=1

ηt
2
Kα =

T∑
t=1

K1/2−α

√
t

Kα ≤ 2
√
KT.

Similarly, we use the first part of Lemma 2.4 to bound the penalty term:

E

[
T∑
t=1

Φt(−L̃t−1)− Φt(−L̃t)− `t,i∗T

]
≤(K1−α − 1)(1− T−α)

α(1− α)2K1/2−α

√
1
T

+ 1

≤ 1

2α(1− α)

K1−α

K1/2−α

√
1
T

+ 1

≤ 1

2α(1− α)

√
KT + 1.

Summing the stability and the penalty terms finishes the proof.

2.5.2 Proof of Theorem 2.2
The following two lemmas are needed in order to take advantage of the self-bounding
technique and obtain a time-independent bound. They are proven in Section 2.7.1.

Lemma 2.5. For α ∈ (0, 1), c > 0 and d ∈ (0, 1], we have

max
x∈[0,∞)

cxα − dx = c
1

1−αd
α

α−1

(
α

α
1−α − α

1
1−α

)
.

Lemma 2.6. Let T0 = maxi 6=i∗

⌈(
8
∆i

)2⌉
and S(T ) = 1

∆
− α

α−1
i

∑T
t=T0+1

1

t
− 1

2(α−1)
for any

i 6= i∗. The series S(T ) converges for T → ∞ if and only if α > 1
2
. Furthermore,

for α > 1
2
, we have:

lim
T→∞

S(T ) ≤ 2− 2α

2α− 1

8
2α−1
α−1

∆i

.

With the two lemmas at hand we move on to the proof. The proof strategy is
the following. We define a time step T0 from which we can achieve a refined upper
bound for the instantaneous stability term introduced in Lemma 2.3. For t ≤ T0, the
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proof is the same as in the adversarial setting, which gives a contribution of order
O(

√
KT0) = O

( √
K

∆min

)
.

Now, we focus on the part of the bound for t > T0. Let B be an upper bound on
the regret, RT ≤ B. In the stochastically constrained adversarial regime we can use
the alternative way of writing the regret given in equation (2.1) (what Zimmert and
Seldin call the self-bounding property of the regret) to obtain

RT = 2B −
T∑
t=1

∑
i 6=i∗

E[pt,i]∆i.

For t > T0 we derive a refined bound for instantaneous contributions to the right
hand side. By using the second parts of Lemmas 2.3 and 2.4 the instantaneous
contributions to B can be bounded by

∑
i 6=i∗ CE [pt,i]

α /
√
t for some constant C

when α ≤ 2/3. The overall instantaneous contribution to the right hand side is then
bounded by

∑
i 6=i∗

(
2CE [pt,i]

α /
√
t− E[pt,i]∆i

)
. By taking xi = E [pt,i] and using

Lemma 2.5 we then bound the instantaneous contributions by∑
i 6=i∗

(
2Cxα

i√
t

−∆ixi

)
≤
∑
i 6=i∗

max
xi∈[0,∞)

(
2Cxα

i√
t

−∆ixi

)
≤
∑
i 6=i∗

C ′∆
α

α−1

i t
1

2(α−1)

for some other constant C ′. Note that the bound is meaningful only for ∆i > 0.
This is why we need the assumption on uniqueness of the best arm. Summing the
instantaneous contributions over t from T0 to T completes the proof. The sum of
the series of instantaneous contributions converges if and only if 1

2(1−α)
> 1, which

means that the bound is time independent if and only if α > 1
2
.

Proof of Theorem 2.2. We bound the stability and the penalty terms. Concerning
the stability term, we want to use the second part of Lemma 2.3 when t is large
enough. We choose the threshold T0 = maxi 6=i∗

⌈(
8
∆i

)2⌉
≥ 64. This choice allows us

to use the second part of Lemma 2.3 because for all t > T0 we have ηt =
2K1/2−α

√
t

≤
2√
t
≤ 1

4
. We use the second part Lemma 2.3 where we select j = i∗ when t > T0, and

we use the first part of Lemma 2.3 when t ≤ T0.
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Thus, we have:

stability = E

[
T∑
t=1

`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]

=

T0∑
t=1

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
+

T∑
t=T0+1

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤

T0∑
t=1

K1/2−α

√
t

Kα +
T∑

t=T0+1

K1/2−α

√
t

(
Kα/2 + c(α) + 1

)(∑
i 6=i∗

E [pt,i]
1−α/2

)

≤ 2
√

KT0 +
∑
i 6=i∗

T∑
t=T0+1

(
c(α)+1

2α/2 + 1
)
K1/2−α/2

√
t

E [pt,i]
1−α/2 ,

where we used that
∑T0

t=1
1√
t
≤ 2

√
T0, and Kα/2 ≥ 2α/2.

To bound the penalty term, we use the second part of Lemma 2.4 with β =
K1/2−α.

penalty ≤ 1

4α(1− α)K1/2−α

∑
i 6=i∗

T∑
t=1

E[pt,i]α√
t

+

√
K

4α(1− α)

≤ Kα−1/2

4α(1− α)

(∑
i 6=i∗

T∑
t=T0+1

E[pt,i]α√
t

+
∑
i 6=i∗

T0∑
t=1

E[pt,i]α√
t

)
+

√
K

4α(1− α)

≤

(
Kα−1/2

4α(1− α)

∑
i 6=i∗

T∑
t=T0+1

E[pt,i]α√
t

)
+

(
Kα−1/2

4α(1− α)

T0∑
t=1

K1−α

√
t

)
+

√
K

4α(1− α)

≤

(
Kα−1/2

4α(1− α)

∑
i 6=i∗

T∑
t=T0+1

E[pt,i]α√
t

)
+

√
KT0

2α(1− α)
+

√
K

4α(1− α)
,

where we have used that
∑

i 6=i∗ E [pt,i]
α ≤ (K− 1)

(
1

K−1

)α
= (K− 1)1−α ≤ K1−α and∑T0

t=1
1√
t
≤ 2

√
T0.

We make two observations regarding the powers: for α ≤ 2/3 we have 1/2−α/2 ≥
α− 1/2, so for all K ≥ 2 it holds that Kα−1/2 ≤ K1/2−α/2. Furthermore, for α ≤ 2/3
we have α ≤ 1 − α/2, and as for all t ∈ [T ] and i ∈ [K] we have E[pt,i] ≤ 1 and
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E[pt,i]1−α/2 ≤ E[pt,i]α. Thus, we have:

stability ≤ 2
√

KT0 +
∑
i 6=i∗

T∑
t=T0+1

(
c(α)+1

2α/2 + 1
)
K1/2−α/2

√
t

E [pt,i]
α ,

and

penalty ≤

(
K1/2−α/2

4α(1− α)

∑
i 6=i∗

T∑
t=T0+1

E[pt,i]α√
t

)
+

√
KT0

2α(1− α)
+

√
K

4α(1− α)
.

We combine the two bounds and use alternative way of writing the regret in the
stochastically constrained adversarial regime (the self-bounding technique) to obtain

RT = 2RT −
∑
i 6=i∗

T∑
t=1

E[pt,i]∆i

≤
∑
i 6=i∗

T∑
t=T0+1

((
1

2α(1− α)
+

c(α) + 1

2(α/2)−1
+ 2

)
K1/2−α/2

√
t

E[pt,i]α − E[pt,i]∆i

)

+

(
1

α(1− α)
+ 4

)√
KT0 +

√
K

2α(1− α)

≤
∑
i 6=i∗

T∑
t=T0+1

max
x∈[0,∞)K

((
1

2α(1− α)
+

c(α) + 1

2(α/2)−1
+ 2

)
K1/2−α/2

√
t

xα
i − xi∆i

)

+

(
1

α(1− α)
+ 4

)√
KT0 +

√
K

2α(1− α)
.

In the last step we take xi = E [pt,i] and drop the constraint that pt is a probability
distribution. Using Lemma 2.5, for any i 6= i∗ and t > T0, we have

max
x∈[0,∞)

((
1

2α(1− α)
+

c(α) + 1

2(α/2)−1
+ 2

)
K1/2−α/2

√
t

xα − x∆i

)
≤ ∆

α
α−1

i

√
K

t−
1

2(α−1)

(
1

2α(1− α)
+

c(α) + 1

2(α/2)−1
+ 2

) 1
1−α (

α
α

1−α − α
1

1−α

)
.

Using C̃(α) =
(

1
2α(1−α)

+ c(α)+1

2(α/2)−1 + 2
) 1

1−α
(
α

α
1−α − α

1
1−α

)
, we can incorporate

this result in the regret bound and deduce that:
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RT ≤
∑
i 6=i∗

T∑
t=T0+1

(
C̃(α)∆

α
α−1

i

√
K

t−
1

2(α−1)

)
+

(
1

α(1− α)
+ 4

)√
KT0 +

√
K

2α(1− α)
,

which gives the first statement of the lemma. Finally, we use Lemma 2.6 to deduce
that the bound is time-independent if and only if α > 1/2. Furthermore, by definition
of T0 we have

√
T0 ≤ 8

∆min
+ 1.

We deduce that when α ∈ (1/2, 2/3], the pseudo-regret is upper bounded as:

RT ≤
∑
i 6=i∗

(
C̃(α)

2− 2α

2α− 1
8

2α−1
α−1

√
K

∆i

)
+

(
1

α(1− α)
+ 4

)√
KT0 +

√
K

2α(1− α)

≤
∑
i 6=i∗

(
C(α)

√
K

∆i

)
+ 68

√
K

∆min
+ 11

√
K,

where C(α) = C̃(α)2−2α
2α−1

8
2α−1
α−1 . This gives the second statement of the theorem.

2.6 Discussion
We have derived an algorithm for the problem of decoupled exploration and ex-
ploitation in multi-armed bandits. We have shown that it achieves the minimax
optimal O(

√
KT ) regret bound in the adversarial regime and simultaneously a time-

independent O
(∑

i 6=i∗

√
K

∆i

)
regret bound in the stochastically constrained adversar-

ial regime. The results improve on the work of Avner et al. (2012) in both regimes
without requiring prior knowledge of the regime.

As we have mentioned, the decoupled setting is an important bridge between
full information and bandit problems, as well as a bridge between pure exploration
and exploration-exploitation trade-off. An interesting direction for future research
would be to use our techniques to improve results along these two directions. One
possibility is to apply our regularization and exploration technique to tighten best of
both worlds guarantees for prediction with limited advice (Seldin et al., 2014; Thune
and Seldin, 2018). Another direction is to explore the relations with pure exploration
problems. Abbasi-Yadkori et al. (2018) have shown that in the pure exploration
setting it is impossible to achieve simultaneous optimality in both adversarial and
stochastic settings. An interesting question is whether the decoupled formulation can
be used to reformulate the objective and to achieve some alternative results there.
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2.7 Appendix

2.7.1 Proofs of Auxiliary Lemmas
Proof of Lemma 2.5. Let f(x) = cxα − dx. We can calculate its first and second
order derivatives and get f ′(x) = αcxα−1 − d and f ′′(x) = α(α− 1)cxα−2 ≤ 0. Thus
the solution of f(x) = 0 give the maximum of f .

f ′(x̃) = 0 ⇔ αcx̃α−1 = d ⇔ x̃ =

(
d

αc

) 1
α−1

.

Finally, we calculate f(x̃).

max
x∈[0,∞)

cxα − dx = f(x̃) = c

(
d

αc

) α
α−1

− d

(
d

αc

) 1
α−1

= c
1

1−αd
α

α−1

(
α

α
1−α − α

1
1−α

)
.

Proof of Lemma 2.6. Consider the series s(T ) =
∑T

t=T0+1
1

t
− 1

2(α−1)
. We first show

that when α > 1/2, the series converges and upper bound its limit. Then, we show
that the series diverges when α ≤ 1/2.

When α > 1/2, we have −1
2(α−1)

> 1 so the Riemann’s series
∑∞

t=1
1

t
− 1

2(α−1)
con-

verges. This is an upper bound on s(T ), which converges as well. However, when we
derive the upper bound on limT→∞ s(T ), we want to take advantage of the fact that
we sum for t ≥ T0 + 1. We have:

lim
T→∞

T∑
t=T0+1

1

t−
1

2(α−1)

≤ lim
T→∞

∫ T

T0

1

t−
1

2(α−1)

dt

= lim
T→∞

T 1+ 1
2(α−1) − T

1+ 1
2(α−1)

0

1 + 1
2(α−1)

≤ −T
1+ 1

2(α−1)

0

1 + 1
2(α−1)

where in the last step we use the fact that 1 + 1
2(α−1)

= 2α−1
2α−2

is negative. This also

imply that as T0 ≥
(

8
∆min

)2
, we can upper bound T

1+ 1
2(α−1)

0 by
((

8
∆min

)2) 2α−1
2α−2

=
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(
8

∆min

) 2α−1
α−1 ≤

(
8
∆i

) 2α−1
α−1 for any i 6= i∗, because 2α−1

2(α−1)
≤ 0 when α > 1/2. Incorpo-

rating this result in S(T ) finishes this part of the proof.
For the second part of the proof, when α ≤ 1/2, we have:

T∑
t=T0+1

1

t−
1

2(α−1)

≥
T∑

t=T0+1

1

t

≥
∫ T+1

T0+1

1

t
dt

= log(T + 1)− log(T0 + 1),

which diverges because T0 is a constant. Thus for any α ∈ (0, 1/2], the we cannot
obtain a time independent upper bound on S(T ).

2.7.2 Analysing the Follow the Regularized Leader frame-
work

We first introduce some tools needed to work in this framework and then derive
bounds on the stability and the penalty terms.

2.7.2.1 Follow the Regularized Leader and Tsallis Entropy

Follow the Regularized Leader (FTRL) has been widely used in online learning in
the past few years. We use Tsallis entropy as our regularizer, defined as:

Ψt(w) = − 1

ηt

∑
i

wα
i − αwi

α(1− α)
, (2.4)

and its convex conjugate is defined as:

Ψ∗
t (y) = max

x∈RK
{〈x, y〉 −Ψt(x)} = max

x∈RK

{
〈x, y〉+ 1

ηt

∑
i

wα
i − αwi

α(1− α)

}
.

We let ∆K−1 denote a probability simplex over K vertices and define I∆K−1(x) ={
0, if x ∈ ∆K−1

∞, otherwise
. Using results from convex analysis (Rockafellar, 1970), Ψt is a

convex differentiable function with an invertible gradient (∇Ψ)−1 so we have

∇(Ψt + I∆K−1)∗(y) = argmax
x∈∆K−1

{〈x, y〉 −Ψt(x)} .
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Note that ∇(Ψ + I∆K−1)∗(y) ∈ ∆K−1. We define the potential function Φt as

Φt := (Ψt + I∆K−1)∗ = max
w∈∆K−1

{
〈w,−L〉+ 1

ηt

K∑
i=1

wα
i − αwi

α(1− α)

}
.

This means that Φt is the restriction of Ψ∗
t on the probability simplex. Furthermore,

the weights pt of the Decoupled-Tsallis-INF algorithm fulfil:

pt = ∇Φt(−L̃t−1) = arg maxp∈∆K−1

{〈
p,−L̃t−1

〉
+

1

ηt

K∑
i=1

pαi − αpi
α(1− α)

}

= arg minp∈∆K−1

{〈
p, L̃t−1

〉
− 1

ηt

K∑
i=1

pαi − αpi
α(1− α)

}
.

2.7.2.2 Analysing the Stability term

The analysis of the stability term follows from Zimmert and Seldin (2019, Lemma
11) once we have identified that even if the algorithm does not observe the loss of
action At, we can use the fact that ˜̀

t is an unbiased estimate of `t to deduce that:

E [`t,At ] = E
[

E
Bt∼qt

[
˜̀
t,At

]]
= E

[
E

Bt∼qt

[〈
pt, ˜̀t

〉]]
= E

[〈
pt, ˜̀t

〉]
, (2.5)

which follows from E
Bt∼qt

[
˜̀
t,At

]
= `t,At as it is an unbiased estimate, At being sampled

according to pt, and using the law of total expectation in the last step. Using this
transformation, the analysis of the instantaneous stability using tools from convex
analysis in Zimmert and Seldin (2019, Lemma 11) gives that:

Lemma 2.7. Using that pt = ∇Φt(−L̃t−1) where L̃t = L̃t−1+ ˜̀
t for some ˜̀

t unbiased
estimate of `t. For any x ∈ [0,∞), the instantaneous stability of the pseudo-regret of
Algorithm 1 satisfies

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤ E

[
K∑
i=1

max
p̃i∈[pt,i,∇Ψ∗(∇Ψt(pt)−˜̀

t+x1K)i]

ηt
2
(˜̀t,i − x)2(p̃i)

2−α

]
.
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Proof of Lemma 2.7.

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
= E

[〈
pt, ˜̀t

〉
+ Φt(−L̃t)− Φt(−L̃t−1)

]
= E

[〈
pt, ˜̀t

〉
+ Φt(∇Ψt(pt)− ˜̀

t)− Φt(∇Ψt(pt))
]

= E
[〈

pt, ˜̀t − x1K

〉
+ Φt(∇Ψt(pt)− ˜̀

t + x1K)− Φt(∇Ψt(pt))
]

≤ E
[〈

pt, ˜̀t − x1K

〉
+Ψ∗

t (∇Ψt(pt)− ˜̀
t + x1K)−Ψ∗

t (∇Ψt(pt))
]

(2.6)

≤ E
[
DΨ∗

t
(∇Ψt(pt)− ˜̀

t + x1K ,∇Ψt(pt))
]

where the first step follows from Equation (2.5). Then, we used the fact that −L̃t−1 =
∇Ψt(pt) by definition, and the definition of Φt to add x1K . Finally, we recall that Ψ∗

t

is the unrestricted version of Φt. On step 2.6, we recognize the Bregman divergence of
Ψt, and using Taylor’s expansion, there is some z ∈ conv(∇Ψt(pt)− ˜̀

t+x1K ,∇Ψt(pt))
such that

DΨ∗
t
(∇Ψt(pt)− ˜̀

t + x1K ,∇Ψt(pt)) =
1

2
‖˜̀t − x1K‖2∇2Ψt(z)

.

We deduce that:

E
[
DΨ∗

t
(∇Ψt(pt)− ˜̀

t + x1K ,∇Ψt(pt))
]

≤ E
[

max
z∈conv(∇Ψt(pt)−˜̀

t+x1K ,∇Ψt(pt))

1

2
‖˜̀t − x1K‖2∇2Ψt(z)

]
≤ E

[
K∑
i=1

max
p̃i∈[pt,i,∇Ψ∗(∇Ψt(pt)−˜̀

t+x1K)i]

ηt
2
(˜̀t,i − x)2(p̃i)

2−α

]
.

where we used the fact that ∇Ψt(pt) is in the probability simplex so Φt(∇Ψt(pt)) =

Ψ∗
t (∇Ψt(pt)), and finally the fact that ∇2Ψt(p) = diag

(
pα−2
i

ηt

)
i=1,...,K

.

Using the base of the stability analysis in Lemma 2.7 which follows from Zimmert
and Seldin (2019), we can move on to the stability bounds. First, we focus on
bounding the stability term when the distribution to query the arm to observe is
arbitrary.
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Proof of Lemma 2.1. Let’s start by bounding the instantaneous stability at a fixed
round t. We start from Lemma 2.7 with x = 0. We recall that ∇Ψ∗(∇Ψt(pt)− ˜̀

t) ≤
∇Ψ∗(∇Ψt(pt)) = pt because the losses are non-negative, and ∇Ψ∗

t is monotonically
increasing.

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤ E

[
K∑
i=1

ηt
2
(˜̀t,i)

2(pt,i)
2−α

]

≤ E

[
K∑
i=1

ηt
2

(`t,i)
2

qt,i
(pt,i)

2−α

]

≤ E

[
K∑
i=1

ηt
2

(pt,i)
2−α

qt,i

]
,

where we used the definition of ˜̀
t and that E [1 {Bt = i}] = qt,i. The last steps

relies on the fact that the losses are bounded in the [0, 1] interval. Finally, summing
for t = 1 to T finishes the proof.

In order to derive the proof of Lemma 2.3, we first need to bound the weights
estimators p̃ from Lemma 2.7. The proof follows from Zimmert and Seldin (2019,
Proof of Lemma 16), with a refinement when α = 2/3.

Lemma 2.8. Let p ∈ ∆K−1 and p̃ = ∇Ψ∗
t (∇Ψt(p) − `). If ηt ≤ 1/4, then for all

`i ≥ −1 it holds that p̃2−α
i ≤ c(α)p2−α

i , where c(α) = (1− (1−α)
4

)−
2−α
1−α .

Proof of Lemma 2.8. ∇Ψt is the inverse of ∇Ψ∗
t , which gives

∇Ψt(p̃) = ∇Ψt(p)− `.

Using our lower bound on `, we deduce that in each dimension:

∇Ψt(p)i −∇Ψt(p̃)i = `i ≥ −1,

pα−1
i − 1

(1− α)ηt
− p̃α−1

i − 1

(1− α)ηt
≤ 1,

p̃1−α
i ≤ p1−α

i

1− ηt(1− α)p1−α
i

≤ p1−α
i

1− ηt(1− α)
,

p̃2−α
i ≤ p2−α

i

(1− ηt(1− α))
2−α
1−α

.
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Now we need to upper bound (1−ηt(1−α))−
2−α
1−α . This function is monotonically

decreasing when α ∈ [0, 1], we get the upper bound:

(1− ηt(1− α))−
2−α
1−α ≤

(
1− (1− α)

4

)− 2−α
1−α

= c(α).

Using those results and Lemma 2.2, we can move on to the proof of Lemma 2.3.
The first part of this lemma is a direct application of Lemma 2.1.

Proof of Lemma 2.3.

First statement of the Lemma Using Lemma 2.1 and the distribution given in
Lemma 2.2, we can bound the instantaneous stability at round t by:

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤ E

[
K∑
i=1

ηt
2

(pt,i)
2−α

qt,i

]

= E

[
K∑
i=1

ηt
2

(pt,i)
2−α

(pt,i)1−α/2

K∑
j=1

(pt,j)
1−α/2

]

= E

ηt
2

(
K∑
i=1

(pt,i)
1−α/2

)2
 .

We can upper bound the expectation by replacing pt by the distribution which
maximizes the expression. Because f(x) = x2 is an increasing function for x ∈ R+,
this expression is maximized when

∑K
i=1(pt,i)

1−α/2 is maximized. As 1 − α/2 ≤ 1,
using the uniform distribution maximizes this term, and we get that:

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤ E

ηt
2

(
K∑
i=1

K−1+α/2

)2


≤ E
[ηt
2

(
Kα/2

)2]
≤ ηt

2
Kα.

Finally, summing on t finishes this part of the proof.
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Second statement of the Lemma Now we move on to the second part of the
lemma. This time, we start from Lemma 2.7, where we choose x = 1t [Bt = j] `t,j.
Now the analysis depends on whether Bt 6= j or Bt = j. In the first case, we have
x = 0, and the expression is maximized when p̃i = pt,i, because the losses are non-
negative, and ∇Ψ∗

t is monotonically increasing. In the second case, we have Bt = j,
which means that for i 6= j, ˜̀

t,i − x = 0 − x ≥ −1 and we can apply Lemma 2.8

and bound p̃2−α
i by c(α)p2−α

i , where c(α) =
(
1− (1−α)

4

)− 2−α
1−α . Otherwise we have

˜̀
t,j − x ≥ 0, and using the fact that ∇Ψ∗

t is monotonically increasing to deduce that
p̃j = pt,j. Combining all cases, we have:

E

[
K∑
i=1

max
p̃∈[pt,i,∇Ψ∗(∇Ψt(pt)−˜̀

t+x1K)i]

ηt
2
(˜̀t,i − x)2(p̃i)

2−α

]

≤
∑
i 6=j

ηt
2
E

[
1 [Bt = i]

K∑
k=1

(˜̀t,k)
2(pt,k)

2−α

]

+ E

[
1 [Bt = j]

((∑
i 6=j

ηt
2
(˜̀t,i − `t,j)

2c(α)(pt,i)
2−α

)
+

ηt
2
(˜̀t,j − `t,j)

2(pt,j)
2−α

)]

≤
∑
i 6=j

ηt
2
E

[
qt,i

(
`t,i
qt,i

)2
(pt,i)

2−α

qt,i

]

+ E

[(∑
i 6=j

ηtc(α)

2
(`t,j)

2(pt,i)
2−αqt,j

)
+

ηt
2

(
`t,j
qt,j

− `t,j

)2

(pt,j)
2−αqt,j

]
,

where in both equations, the first term concerns the cases where Bt 6= j, and the
second term the case where Bt = j. In the second term, the index j is taken out of
the sum as it is treated differently. Continuing the derivation above we have

≤
∑
i 6=j

ηt
2
E
[
(pt,i)

2−α

qt,i

]

+ E

[(∑
i 6=j

ηtc(α)

2
(`t,j)

2(pt,i)
2−αqt,j

)
+

ηt
2

1

(qt,j)2
(`t,j)

2(1− qt,j)
2(pt,j)

2−αqt,j

]

≤
∑
i 6=j

ηt
2
E
[
(pt,i)

2−α

qt,i

]
+ E

[(∑
i 6=j

ηtc(α)

2
(pt,i)

2−αqt,j

)
+

ηt
2

(pt,j)
2−α

qt,j
(1− qt,j)

2

]
.
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Now, let’s consider each term separately. We can replace qt by its definition from
Lemma 2.2, ∀i ∈ [K], qt,i =

(pt,i)
1−α/2∑K

k=1(pt,k)
1−α/2 . Note that 1−α/2 ≤ 1 so

∑K
j=1(pt,j)

1−α/2 ≤

K
(

1
K

)1−α/2
= Kα/2. In the previous expression, the first term is bounded as:

∑
i 6=j

ηt
2
E
[
(pt,i)

2−α

qt,i

]
≤
∑
i 6=j

ηt
2
E

[
(pt,i)

1−α/2

K∑
k=1

(pt,k)
1−α/2

]
≤ ηt

2
Kα/2

∑
i 6=j

E
[
(pt,i)

1−α/2
]
.

In order to bound the third term, we observe that (1−qt,j)
2 ≤ 1−qt,j =

∑
i 6=j qt,i.

This gives:

E
[
ηt
2

(pt,j)
2−α

qt,j
(1− qt,j)

2

]
= E

[
ηt
2
(1− qt,j)

2(pt,j)
1−α/2

K∑
k=1

(pt,k)
1−α/2

]

≤ E

[
ηt
2

∑
i 6=j

qt,i

(
K∑
k=1

(pt,k)
1−α/2

)]

≤ E

[
ηt
2

∑
i 6=j

(pt,i)
1−α/2∑K

k=1(pt,k)
1−α/2

(
K∑
k=1

(pt,k)
1−α/2

)]

≤ E

[
ηt
2

∑
i 6=j

(pt,i)
1−α/2

]
.

Finally, the second term can be bounded as:

E

[∑
i 6=j

ηtc(α)

2
(pt,i)

2−αqt,j

]
≤ c(α)E

[
ηt
2

∑
i 6=j

(pt,i)
1−α/2

]
.

The final bound relies on the fact that ∀t, i : 0 ≤ pt,i ≤ 1, so (pt,i)
2−α ≤

√
(pt,i)2−α =

(pt,i)
1−α/2.

Combining those terms and using Jensen’s inequality finishes the proof of the
lemma.

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤ ηt

2

(
Kα/2 + c(α) + 1

)∑
i 6=j

E [pt,i]
1−α/2 .
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2.7.2.3 Analysing the Penalty Term

The analysis of the penalty term follows from the work of Zimmert and Seldin (2019,
Lemma 12).

Proof of Lemma 2.4. Algorithm 1 is part of the TSALLIS-INF framework introduced
by Zimmert and Seldin (2019). Furthermore, by assumption the learning rate ηt is
non increasing, and we have ∀i ∈ [K], ξi = 1, which implies that the regularizer Ψt

that we use is symmetric. This means that both statements ofZimmert and Seldin
(2019, Lemma 12) apply. The first statement of Lemma 2.4 follows directly from the
first statement of Zimmert and Seldin (2019, Lemma 12).

Concerning the second statement, we consider the second statement from Zim-
mert and Seldin (2019, Lemma 12) for x = ∞. By assumption, we have ηt =

2β√
t

for
some constant β > 0.

penalty ≤ 1

α(1− α)

∑
i 6=i∗

(
E [p1,i]

α

η1
+

T∑
t=2

(η−1
t − η−1

t−1)E [pt,i]
α

)

=
1

α(1− α)β

∑
i 6=i∗

(
1

2
E [p1,i]

α +
T∑
t=2

1

2
(
√
t−

√
t− 1))E [pt,i]

α

)

=
1

4α(1− α)β

∑
i 6=i∗

(
2E [p1,i]

α +
T∑
t=2

(2
√
t− 2

√
t− 1))E [pt,i]

α

)

+
1

4α(1− α)β

∑
i 6=i∗

(
T∑
t=1

E[pt,i]α√
t

−
T∑
t=1

E[pt,i]α√
t

)

=
1

4α(1− α)β

∑
i 6=i∗

(
T∑
t=1

E[pt,i]α√
t

+ 2E [p1,i]
α

)

+
1

4α(1− α)β

∑
i 6=i∗

(
T∑
t=2

(
2
√
t− 2

√
t− 1− 1√

t

)
E [pt,i]

α

)

Now we can simplify the last parts of the expression by using the uniform distribu-
tion on [K]\{i∗} which upper bounds

∑
i 6=i∗ E [pt,i]

α ≤ (K−1)
(

1
K−1

)α
= (K−1)1−α ≤

K1−α, and using that p1 is the uniform distribution. The previous equation is upper
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bounded by

≤ 1

4α(1− α)β

((∑
i 6=i∗

T∑
t=1

E[pt,i]α√
t

)
+

(
2 +

T∑
t=2

(
2
√
t− 2

√
t− 1− 1√

t

))
K1−α

)

≤ 1

4α(1− α)β

((∑
i 6=i∗

T∑
t=1

E[pt,i]α√
t

)
+K1−α

)

=
1

4α(1− α)β

∑
i 6=i∗

T∑
t=1

E[pt,i]α√
t

+
K1−α

4α(1− α)β
,

where we telescoped the sum, and used the fact that 2
√
T ≤ 1 +

∑T
t=1

1√
t
.

2.7.3 Choosing the Distribution for Exploration
Given the bound on the stability derived in Lemma 2.1, choosing qt is an optimization
problem.

Proof of Lemma 2.2. Note that for each round t, we derive a new distribution qt, so
we can focus on each round separately. Furthermore, ηt

2
is a constant and cannot

influence the choice of the distribution qt. For any round t, qt is the solution of the
constrained optimization problem:

minimize
K∑
i=1

(pt,i)
2−α

qt,i

subject to
K∑
i=1

qt,i = 1,

∀i ∈ [K], 0 ≤ qt,i ≤ 1.

We drop the second constraint, solve the minimization problem using a La-
grangian, and verify that we obtain a solution that fulfils the second constraint.
Consider the Lagrangian function L(qt, λ) =

∑K
i=1

(pt,i)
2−α

qt,i
+ λ

(∑K
i=1 qt,i − 1

)
. Min-

imizing the Lagrangian gives solutions of the shape:

∀i ∈ [K], qt,i = ±

√
p2−α
t,i

√
λ

.
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All that remains is to pick the positive values of qt,i, and select
√
λ =

∑K
i=1

√
p2−α
t,i .

This ensures that both constraints are fulfilled. The distributions that minimize the
bound in Lemma 2.1 are given by

∀t ∈ [T ], i ∈ [K], qt,i =
(pt,i)

1−α/2∑K
j=1(pt,j)

1−α/2
.
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Chapter 3

An Algorithm for Stochastic and
Adversarial Bandits with
Switching Costs

The work presented in this chapter is based on a paper that has been published as:

Chloé Rouyer, Yevgeny Seldin, and Nicolò Cesa-Bianchi. An algorithm for
stochastic and adversarial bandits with switching costs. In Proceedings of the
International Conference on Machine Learning (ICML), 2021.
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Abstract
We propose an algorithm for stochastic and adversarial multiarmed bandits with
switching costs, where the algorithm pays a price λ every time it switches the arm
being played. Our algorithm is based on adaptation of the Tsallis-INF algorithm
of Zimmert and Seldin (2021) and requires no prior knowledge of the regime or
time horizon. In the oblivious adversarial setting it achieves the minimax opti-
mal regret bound of O

(
(λK)1/3T 2/3 +

√
KT

)
, where T is the time horizon and

K is the number of arms. In the stochastically constrained adversarial regime,
which includes the stochastic regime as a special case, it achieves a regret bound
of O

((
(λK)2/3T 1/3 + lnT

)∑
i 6=i∗ ∆

−1
i

)
, where ∆i are the suboptimality gaps and i∗

is a unique optimal arm. In the special case of λ = 0 (no switching costs), this bound
is also minimax optimal within constants. We also explore variants of the problem,
where switching cost is allowed to change over time. We provide experimental eval-
uation showing competitiveness of our algorithm with the relevant baselines in the
stochastic, stochastically constrained adversarial, and adversarial regimes with fixed
switching cost.

3.1 Introduction
Multiarmed bandits are the reference framework for the study of a wide range of
sequential decision-making problems, including recommendation, dynamic content
optimization, digital auctions, clinical trials, and more. In this framework the algo-
rithm repeatedly picks actions, a.k.a. arms, and, after each selection, observes the
loss or reward of the corresponding action. In many application domains, algorithms
have to pay a penalty λ > 0 each time they play an arm different from the one played
in the previous round. Such switching cost may occur in the form of a transaction
cost in financial trading, or a reconfiguration cost in industrial environments.

So far, the problem of bandits with switching costs has been studied using algo-
rithms whose optimality depends on the nature of the source of losses (or, equiva-
lently, rewards) for the K arms. In the oblivious adversarial case, when losses are
generated by an arbitrary deterministic source, Dekel et al. (2012) used a simple
variant of the Exp3 algorithm to prove an upper bound of O

(
(K lnK)1/3T 2/3

)
for

λ = 1 (i.e., unit switching cost) — see also (Blum and Mansour, 2007) for an ear-
lier, slightly weaker result. A result by Dekel et al. (2013) implies a lower bound of
Ω
(
(λK)1/3T 2/3 +

√
KT

)
for all λ ≥ 0. Note the phase transition: if λ > 0, then the

regret asymptotically grows as T 2/3, as opposed to
√
T when there is no switching
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cost.
In the stochastic case, where losses of each arm are generated by an i.i.d. pro-

cess, Gao et al. (2019) and Esfandiari et al. (2021) used arm elimination algorithms
to prove that O(lnT ) switches are sufficient to achieve the optimal distribution-
dependent regret of O

(
(lnT )

∑
i :∆i>0∆

−1
i

)
, where ∆i is the suboptimality gap of

arm i. Hence, in the stochastic case the introduction of switching costs does not lead
to a qualitative change of the minimax regret rate.

In practical applications, it is desirable to have algorithms that require no prior
knowledge about the nature of the loss generation process and maintain robustness in
the adversarial regime simultaneously with the ability to achieve lower regret in the
stochastic case. A number of such algorithms have been developed for the standard
multiarmed bandits (Bubeck and Slivkins, 2012; Seldin and Slivkins, 2014; Auer
and Chiang, 2016; Seldin and Lugosi, 2017; Wei and Luo, 2018; Zimmert and Seldin,
2019, 2021; Masoudian and Seldin, 2021) and the ideas have been extended to several
other domains, including combinatorial bandits (Zimmert et al., 2019), decoupled
exploration and exploitation (Rouyer and Seldin, 2020), and episodic MDPs (Jin
and Luo, 2020). We aim at designing algorithms with similar properties for bandits
with switching costs.

Main contributions
Our starting point is the Tsallis-INF algorithm of Zimmert and Seldin (2021), which
was shown to achieve minimax regret rates in both stochastic and adversarial regimes
for standard bandits. We introduce a modification of this algorithm, which we call
Tsallis-Switch, to take care of the switching costs. In the adversarial regime, the re-
gret bound of Tsallis-Switch matches (within constants) the minimax optimal regret
bound Θ

(
(λK)1/3T 2/3 +

√
KT

)
for any value of λ ≥ 0. In the stochastically con-

strained adversarial regime, which includes the stochastic regime as a special case,
we prove a bound O

((
(λK)2/3T 1/3 + lnT

)∑
i 6=i∗ ∆

−1
i

)
, where i∗ is a unique optimal

arm. Note that, in the special case of λ = 0 (no switching costs), we recover (up
to constant factors) the minimax optimal bounds of Tsallis-INF for both regimes.
Similarly to Tsallis-INF, our algorithm is fully oblivious to both the regime and the
time horizon T .

Tsallis-Switch, which runs Tsallis-INF as a subroutine, uses the standard tool to
control the frequency of arm switching: game rounds are grouped into consecutive
blocks B1, B2, . . ., and Tsallis-Switch runs Tsallis-INF over the blocks, preventing it
from switching arms within each block. The number of switches is thus bounded by
the number of blocks. Since T is unknown, we use block sizes of increasing length.
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As a new arm is drawn only at the beginning of each block, the effective range of
the losses experienced by Tsallis-INF grows with time. Therefore, we modify the
analysis of Tsallis-INF to accommodate losses of varying range. This extension may
potentially be of independent interest.

3.2 Problem Setting and Notations
We consider a repeated game with K arms and a switching cost λ ≥ 0. At each
round t = 1, 2, . . . of the game, the environment picks a loss vector `t ∈ [0, 1]K , and
the algorithm chooses an arm Jt ∈ [K] to play. The learner then incurs the loss
`t,Jt , which is observed. If Jt 6= Jt−1, then the learner also suffers an extra penalty
of λ. The penalty λ is known to the learner. We use the same setting as Dekel et al.
(2013), and assume that J0 = 0, which means that there is always a switch at the
first round.

We consider two regimes for the losses. In the oblivious adversarial regime, the
loss vectors `t are arbitrarily generated by the environment and do not depend on the
actions taken by the learner. We also work in the stochastically constrained adver-
sarial regime. This setting, introduced by Wei and Luo (2018), generalizes the widely
studied stochastic regime by allowing losses to be drawn from distributions with fixed
gaps. It means that at for all i, E [`t,i] can fluctuate with t, but E [`t,i − `t,j] = ∆i,j

remains constant over time for all pairs i, j. The suboptimality gaps are then defined
as ∆i = ∆i,1 − min

j
∆j,1.

We define the pseudo-regret with switching costs as follows,

RS(T, λ) = E

[
T∑
t=1

`t,Jt

]
− min

i
E

[
T∑
t=1

`t,i

]
+ λ

T∑
t=1

P(Jt−1 6= Jt)

= RT + λST . (3.1)

We recognize that RT = RS(T, 0) is the classical definition of the pseudo regret (with-
out switching costs), while ST counts the expected number of switches. Furthermore,
we recall that in the stochastically constrained adversarial regime, the pseudo-regret
can be rewritten in terms of the sub-optimality gaps, as:

RT =
T∑
t=1

K∑
i=1

E [pt,i] ∆i, (3.2)

where pt,i is the probability of playing action i at round t.
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Algorithm 2: Tsallis-Switch
Input: Learning rates η1 ≥ η2 ≥ · · · > 0.
Block lengths |B1|, |B2|, . . . .
Initialize: C̃0 = 0K

for n = 1, 2, . . . do

pn = arg min
p∈∆K−1

{〈
p, C̃n−1

〉
−

K∑
i=1

4
√
pi − 2pi

ηn

}
.

Sample In ∼ pn and play it for all rounds t ∈ Bn.
Observe and suffer cn,In =

∑
t∈Bn

`t,In .

∀i ∈ [K] : c̃n,i =

{
cn,i

pn,i
, if In = i,

0, otherwise.
∀ i ∈ [K] : C̃n(i) = C̃n−1(i) + c̃n,i.

end for

3.3 Using Blocks to Control Switching Frequency
In order to control ST , we limit the number of action switches that the algorithm
makes by dividing the game rounds into blocks and forcing the algorithm to play the
same action for all the rounds within a block. Given a sequence of blocks (Bn)n≥1 of
lengths |Bn|, and a time horizon T , we define N as the smallest integer, such that∑N

n=1 |Bn| ≥ T , and we truncate the last block, such that the cumulative length of
the first N blocks sum up to T .

As ST ≤ N , we bound N and the pseudo-regret RT (without the switching costs)
over the N blocks. Let cn,i =

∑
s∈Bn

`s,i be the cumulative loss of action i in block
n. Since `t,i ∈ [0, 1], we have cn,i ∈

[
0, |Bn|

]
. We use In to refer to the action played

by the algorithm in block n. Then, for all t ∈ Bn, we have Jt = In and

RT = E

[
N∑

n=1

cn,In

]
− min

j
E

[
N∑

n=1

cn,j

]
.

3.4 The Algorithm
Our Tsallis-Switch algorithm (see Algorithm 2) calls Tsallis-INF at the beginning of
each block to obtain an action, plays the proposed action in each round within the
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block, and then feeds back to Tsallis-INF the total loss suffered by the action over
the block. As blocks have varying lengths, we adapt the Tsallis-INF algorithm and
its analysis to losses of varying range.

3.5 Main Results
We start by considering the case where the switching cost λ is a fixed parameter
given to the algorithm. Since λ is known in advance, it can be used to tune the block
lengths.

Theorem 3.1. Let λ ≥ 0 be the switching cost. Define blocks with lengths |Bn| =
max {dane, 1}, where an = 3λ

2

√
n
K

. The pseudo-regret of Tsallis-Switch with learning
rate ηn = 2

an+1

√
2
n

executed over the blocks in any adversarial environment satisfies:

R(T, λ) ≤ 5.25(λK)1/3T 2/3 + 6.4
√
KT + 3

√
2K + 5.25λ+ 6.25.

Furthermore, in any stochastically constrained adversarial regime with a unique best
arm i∗, the pseudo-regret additionally satisfies:

R(T, λ) ≤
(
66(λK)2/3T 1/3 + 32 lnT

)∑
i 6=i∗

1

∆i

+
(
160λ2/3T 1/3K1/6 + 160λ+ 49λ2 + 32

)∑
i 6=i∗

1

∆i

+
544λ√
K

+ λ+ 66.

A proof is provided in Section 3.6. For λ = 0 (no switching costs) both regret
bounds match within constants the corresponding bounds of Tsallis-INF for multi-
armed bandits with no switching costs. Furthermore, in the adversarial regime the
algorithm achieves the optimal regret rate for all values of λ. In the stochastically
constrained adversarial regime, for λ > 0 the regret grows as T 1/3 rather than log-
arithmically in T . This is also the case for the stochastic regime, which is a special
case. While the algorithm does not achieve the logarithmic regret rate in the stochas-
tic regime, as do the algorithms of Gao et al. (2019) and Esfandiari et al. (2021),
it still exploits the simplicity of the regime and reduces the regret rate from T 2/3

to T 1/3. Additionally, in contrast to the work of Gao et al. (2019) and Esfandiari
et al. (2021), the stochastic regret guarantee holds simultaneously with the adversar-
ial regret guarantee, and the algorithm requires no knowledge of the time horizon.
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We also note that we are unaware of specialized lower bounds for the more general
stochastically constrained adversarial regime with switching costs, and it is unknown
whether the corresponding regret guarantee is minimax optimal.

Theorem 3.1 is based on the following generalized analysis of the Tsallis-INF algo-
rithm that accommodates losses of varying range. The result may be of independent
interest.

Theorem 3.2. Consider a multi-armed bandit problem where the loss vector at round
t belongs to [0, bt]

K and bt is revealed to the algorithm before round t. Then the
pseudo-regret of Tsallis-Switch in any adversarial environment for any positive and
non-decreasing sequence of learning rates (ηt)t≥1 satisfies

RT ≤
√
K

(
T∑
t=1

ηt
2
b2t +

4

ηT

)
+ 1. (3.3)

Furthermore, in the stochastically constrained adversarial regime with a unique best
arm i∗, the pseudo regret also satisfies

RT ≤
T∑
t=1

∑
i 6=i∗

(
7
2
ηtb

2
t + 2c

(
η−1
t − η−1

t−1

))2
4∆ibt

+

T0∑
t=1

ηtb
2
t + 2, (3.4)

where c =

{
2, if ∀t : 5ηt

4
b2t ≥ 2

(
η−1
t − η−1

t−1

)
,

4, otherwise.

In particular, if bt = B for all rounds t, we have the following more interpretable
result.

Corollary 3.1. Consider a multi-armed bandit problem with loss vectors belonging
to [0, B]K. Then the pseudo-regret of Tsallis-INF with ηt = 2

B
√
t

satisfies RT ≤
4B

√
KT+1 in any adversarial regime. Furthermore, in the stochastically constrained

adversarial regime with a unique best arm i∗, the pseudo regret additionally satisfies

RT ≤21B(lnT + 1)
∑
i 6=i∗

1

∆i

+ 8
√
B + 2.

3.5.1 Varying Switching Cost
Now we consider a setting, where the switching cost may change after each switch.
The learner is given the n-th switching cost λn right after the n − 1-th switch is
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taken, and we allow the length of the block |Bn| to depend on it. In this setting, the
cumulative expected switching cost becomes

S
(
T, (λn)n≥1

)
=

N∑
n=1

λnP(In 6= In−1),

where, as before, N is the smallest number of blocks to cover T rounds. We construct
blocks, such that the terms RT and S

(
T, (λn)n≥1

)
remain balanced.

Theorem 3.3. Let (λn)n≥1 be a sequence of non-negative switching costs. The
pseudo-regret with switching costs of Tsallis-Switch executed with block lengths |Bn| =

max




√
λn

√∑n
s=1 λs+

√
K√
s

√
K

 , 1

 and ηn = 2
√
2K

3an
, where an =

(∑n
s=1 λs+

√
K/s

)
, sat-

isfies:

R(T, λ) ≤
N∑

n=1

7λn + 12
√
KN + 2, (3.5)

where N is the smallest integer such that
∑N

n=1 |Bn| ≥ T . Furthermore, in the
stochastically constrained adversarial regime with a unique best arm i∗, the pseudo
regret additionally satisfies

R
(
T, (λn)n≥1

)
≤

N∑
n=1

∑
i 6=i∗

(
11λn + λn+1 +

10
√
2√

n

)2
4∆i|Bn|

+

N0∑
n=1

(
2
√
2λn√
K

)
+ 4
√
2N0 + λ1 + 2,

where N0 is the smallest n ≤ N such that for all n ≥ N0, ηn|Bn| ≤ 1
4
. If such an

integer does not exist, then N0 = N .

A proof is provided in Appendix 3.9.4. Note that for λn = λ, the bound (3.5)
for the adversarial setting is of the same order as the corresponding bound in Theo-
rem 3.1.

If λn is not monotone, then controlling the first term in the regret bound for
the stochastically constrained adversarial regime is challenging, because the block
length |Bn| in the denominator does not depend on λn+1 in the numerator. Below,
we provide a specialization of the regret bound assuming that the switching costs
increase as λn = nα for some α > 0.
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Corollary 3.2. Assume that for n ≥ 1, λn = nα for some α > 0. Then the regret
bound for the stochastically constrained adversarial regime with a unique best arm i∗

in Theorem 3.3 satisfies

R
(
T, (λn)n≥1

)
≤ O

(∑
i 6=i∗

K
2α+2
2α+3T

2α+1
2α+3 +K

2α
2α+3T

4α
2α+3

∆i

)
.

A proof is provided in Appendix 3.9.4. At the limit α → 0, the bound scales as
O
(
K2/3T 1/3

∑
i 6=i∗

1
∆i

)
, which matches the pseudo-regret bound in the stochastically

constrained adversarial regime in Theorem 3.1 with λ = 1. Note also that the bound
remains sublinear in T , as long as α < 3

2
. In other words, with a switching cost as

high as λn = n3/2−ε, for any ε > 0, Tsallis-Switch still has sublinear regret.

3.6 Proofs
We start by introducing some preliminary definitions and results. Recall that the
pseudo-regret can be decomposed into a sum of stability and penalty terms (Latti-
more and Svepesvári, 2020; Zimmert and Seldin, 2021). Let Φn be defined as:

Φn(C) = max
p∈∆K−1

{
〈p, C〉+

∑
i

4
√
pi − 2pi

ηn

}
.

Note that the distribution pn used by Tsallis-Switch to draw action In for block Bn

satisfies pn = ∇Φn(−C̃n−1). We can write:

E

[
N∑

n=1

cn,In

]
− min

j
E

[
N∑

n=1

cn,j

]
=E

[
N∑

n=1

cn,In + Φn(−C̃n)− Φn(−C̃n−1)

]
︸ ︷︷ ︸

stability

+ E

[
N∑

n=1

Φn(−C̃n−1)− Φn(−C̃n)− cn,i∗N

]
︸ ︷︷ ︸

penalty

,

(3.6)

where i∗N is any arm with smallest cumulative loss over the N blocks (i.e., a best arm
in hindsight).

We start by introducing bounds on the stability and the penalty parts of the
regret. The results generalize the corresponding results of Zimmert and Seldin (2021)
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to handle losses that take values in varying ranges and may be larger than 1. The
proofs are provided in Section 3.9.2. Note the multiplicative factor b2n in the stability
term.

Lemma 3.1. For any sequence of positive learning rates (ηn)n≥1 and any sequence
of bounds (bn)n≥1 on the losses at round n, the stability term of the regret bound of
Tsallis-Switch satisfies:

E

[
N∑

n=1

cn,In + Φn(−C̃n)− Φn(−C̃n−1)

]
≤

N∑
n=1

ηn
2
b2n

K∑
i=1

√
E [pn,i].

Furthermore, if ηnbn ≤ 1
4
, then for any fixed j:

E
[
cn,In + Φn(−C̃n)− Φn(−C̃n−1)

]
≤ ηn

2
b2n
∑
i 6=j

(√
E [pn,i] + 2.5E [pn,i]

)
.

In particular, if there exists N0 such that for all n ≥ N0, ηnbn ≤ 1
4
, then:

E

[
N∑

n=1

cn,In + Φn(−C̃n)− Φn(−C̃n−1)

]
≤

N∑
n=1

ηn
2
b2n
∑
i 6=j

(√
E [pn,i] + 2.5E [pn,i]

)

+

N0∑
n=1

ηn
2
b2n.

The penalty term is not affected by the change of the range of the losses.

Lemma 3.2. For any non-increasing positive learning rate sequence (ηn)n≥1, the
penalty term of the regret bound of Tsallis-Switch satisfies:

E

[
N∑

n=1

Φn(−C̃n−1)− Φn(−C̃n)− cn,i∗N

]
≤ 4

√
K

ηN
+ 1.

Furthermore, if we define η0, such that η−1
0 = 0, then

E

[
N∑

n=1

Φn(−C̃n−1)− Φn(−C̃n)− cn,i∗N

]

≤ 4
N∑

n=1

(η−1
n − η−1

n−1)
∑
i 6=i∗N

(√
E [pn,i]−

1

2
E [pn,i]

)
+ 1.

42



Chapter 3 | An Algorithm for Stochastic and Adversarial Bandits with Switching Costs

We also present a bound for the cumulative switching cost, which is the key to
obtain refined guarantees in the stochastically constrained adversarial regime.

Lemma 3.3. Consider a sequence of switching costs (λn)n≥1. Then for any fixed j,
the cumulative switching cost satisfies

S
(
T, (λn)n≥1

)
≤ λ1 +

N∑
n=1

(λn + λn+1)
∑
i 6=j

P(In = i).

Proof of Lemma 3.3. By convention, there is always a switch at round 1. For sub-
sequent rounds, when there is a switch at round n at least one of In−1 or In is not
equal to j. Thus, we have:

P(In−1 6= In) ≤
∑
i 6=j

P(In−1 = i) + P(In = i),

and the cumulative switching cost satisfies

S
(
T, (λn)n≥1

)
= λ1 +

N∑
n=2

λnP(In−1 6= In)

≤ λ1 +
N∑

n=2

λn

(∑
i 6=j

P(In−1 = i) + P(In = i)

)

≤ λ1 +
N∑

n=1

∑
i 6=j

(λn + λn+1)P(In = i),

which concludes the proof.

Armed with these results, we can move on to the proof of Theorem 3.1.

Proof of Theorem 3.1. In order to apply our results to blocks, we first calculate an
upper bound on the number of blocks N . The length of the n-th block is defined as
|Bn| = max

{⌈
3λ

√
n

2
√
K

⌉
, 1
}

. The sequence (Bn)n≥1 satisfies |Bn| ≥ b(n) for b(n) = 3λ
√
n

2
√
K

and is non-decreasing. Let N∗ = K1/3(T/λ)2/3 and observe that:

bN∗c+1∑
n=1

|Bn| ≥
bN∗c+1∑
n=1

3λ
√
n

2
√
K

≥
∫ bN∗c+1

0

3λ
√
n

2
√
K

≥
∫ N∗

0

3λ
√
n

2
√
K

=
λ√
K

(N∗)3/2 ≥ T.

Thus, we can upper bound N by K1/3(T/λ)2/3 + 1.
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Proof of the adversarial bound. We start by focusing on the bound in the
adversarial regime. To do so, we need to control the stability and penalty terms in
(3.6), and also the number of switches. As we already said, the number of switches
is bounded by the number of blocks, ST ≤ N ≤ K1/3(T/λ)2/3 + 1, and thus the
cumulative switching cost satisfies λST ≤ λN ≤ K1/3T 2/3λ1/3 + λ.

Next, we bound the quantity ηn|Bn|2 for all n ≤ N :

ηn
2
|Bn|2 ≤

√
2√
n

(
3λ

√
n

2
√
K

+ 1

)
≤ 3λ√

2K
+

√
2√
n
. (3.7)

Note that even though the last block BN may be truncated, we can upper bound its
length by the non-truncated length of that block.

Then, we bound the inverse of the learning rate at round N ,

1

ηN
≤

√
N

2
√
2

(
3λ

√
N

2
√
K

+ 1

)
≤ 3

√
2

8

λN√
K

+

√
2

4

√
N.

In order to bound the pseudo-regret over the N blocks, we apply inequality (3.3)
from Theorem 3.2. We then add the cumulative switching cost and use the upper
bound on N derived earlier,

R(T, λ) ≤ 3
√
2λN + 3

√
2KN + λN + 1

= (3
√
2 + 1)λN + 3

√
2KN + 1

≤ 5.25λ1/3K1/3T 2/3 + 3
√
2
K2/3T 1/3

λ1/3
+ 3

√
2K + 5.25λ+ 6.25.

For small λ the term K2/3(T/λ)1/3 dominates the expression. However, when λ ≤
2
3

√
K
T

, then for all n ≤ T we have 3λ
√
n

2
√
K

≤
√

n
T
≤ 1, which means that |Bn| = 1. In

this case the algorithm is not using blocks and we have λST ≤ λT ≤ 2
3

√
KT . As we

also have an ≤ 1, we get
√
2√
n
≤ ηn ≤ 2

√
2√
n

. In this case we use Lemmas 3.1 and 3.2 to
bound the stability and the penalty terms and obtain that stability and penalty are
both bounded by 2

√
2KN . Thus, overall, for λ ≤ 2

3

√
K
T

we have R(T, λ) ≤ 6.4
√
KT ,

and for λ ≥ 2
3

√
K
T

we have K2/3(T/λ)1/3 ≤ 1.15
√
KT .

Piecing together all parts of the bound finishes the proof.

Proof of the stochastically constrained adversarial bound. We now derive
refined guarantees in the stochastically constrained adversarial regime with a unique
best arm i∗. We start by deriving bounds for the stability and penalty terms in (3.6).
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Let N0 be a constant, such that for n ≥ N0 we have ηn|Bn| ≤ 1
4
. We note that

ηn|Bn| ≤ 2
√
2√
n

, so picking N0 = 128 works. For the stability term we use the second
part of Lemma 3.1 with j = i∗. Using (3.7) to bound ηn

2
|Bn|2 we obtain that the

stability term is upper bounded by

stab ≤
N∑

n=1

(
3
√
2λ

2
√
K

+

√
2√
n

)∑
i 6=i∗

(√
E [pn,i] + 2.5E [pn,i]

)
+

N0∑
n=1

(
3
√
2

2

λ√
K

+

√
2√
n

)
.

For the penalty term, we first bound the difference between the inverse of two con-
secutive learning rates.

η−1
n − η−1

n−1 =

(
3λ

√
n

2
√
K

+ 1

) √
n

2
√
2
−
(
3λ

√
n− 1

2
√
K

+ 1

) √
n− 1

2
√
2

=
3
√
2λ

8
√
K

+

√
n−

√
n− 1

2
√
2

≤ 3
√
2λ

8
√
K

+

√
2

4
√
n
.

Now we use the second part of Lemma 3.2 to bound the penalty term as follows
N∑

n=1

(
3
√
2λ

2
√
K

+

√
2√
n

)∑
i 6=i∗

(√
E [pn,i]−

1

2
E [pn,i]

)
+ 1.

Summing the two bounds, and using that for all n, i, E [pn,i] ≤
√
E [pn,i], we have:

RT ≤
N∑

n=1

((
6
√
2λ√
K

+
4
√
2√
n

)∑
i 6=i∗

√
E [pn,i]

)
+

3
√
2λ

2
√
K

N0 + 2
√

2N0 + 1.

Now we use the self-bounding technique (Zimmert and Seldin, 2021), which states
that if L and U are such that L ≤ R ≤ U , then R ≤ 2U − L. For the lower bound
L, we use the following identity for the regret

RT =
N∑

n=1

|Bn|
∑
i 6=i∗

∆iE [pn,i] ,

where BN is truncated, so that |B1|+ · · ·+ |BN | = T . Using the previous expression
for the upper bound U , we get:

RT ≤
N∑

n=1

(
12
√
2λ√
K

+
8
√
2√
n

)∑
i 6=i∗

√
E [pn,i]−

N∑
n=1

|Bn|
∑
i 6=i∗

∆iE [pn,i] +
544λ√
K

+ 66.
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We bound the cumulative switching cost using Lemma 3.3:

λST ≤ λ+
N∑

n=1

∑
i 6=i∗

2λE [pn,i] .

We add those two bounds together to obtain a bound on the regret with switching
costs. Note (again) that E [pn,i] ≤

√
E [pn,i] for all n and i, and that

√
2√
K

≤ 1. Thus,
we can upper bound the pseudo-regret with switching costs as:

R(T, λ) ≤
N∑

n=1

∑
i 6=i∗

((
14λ+

8
√
2√
n

)√
E [pn,i]−∆i|Bn|E [pn,i]

)
+

544λ√
K

+ λ+ 66.

Now we note that each term in the inner sum is an expression of the form a
√
x− bx,

which for x ∈ [0,∞] is maximized at x = a2

4b
. Put attention that the cumulative

switching cost is part of the optimization problem. So, for any i and any n < N , we
have:(

14λ+
8
√
2√
n

)√
E [pn,i]−∆i|Bn|E [pn,i] ≤

(
14λ+ 8

√
2√
n

)2
4∆i|Bn|

≤ (14λ)2

4∆i

(
3λ

√
n

2
√
K

) + 2
14λ

(
8
√
2√
n

)
4∆i

+

(
8
√
2√
n

)2
4∆i

(3.8)

≤ 33λ
√
K

∆i

√
n

+
80λ

∆i

√
n
+

32

∆in
, (3.9)

where in the first term of (3.8) we have lower bounded |Bn| by bn and in the last two
terms by 1. As the last block may be truncated, for n = N we bound |BN | in the
first term in (3.9) by 1, leading to(

14λ+
8
√
2√
N

)√
E [pN,i]−∆i|BN |E [pN,i] ≤

49λ2

∆i

+
80λ

∆i

√
n
+

32

∆in
,

All that remains is to sum over n. For the first term in (3.9) we have:

49λ2

∆i

+
N−1∑
n=1

33λ
√
K

∆i

√
n

≤ 66
λ
√

K(N − 1)

∆i

+
49λ2

∆i

≤ 66
λ2/3T 1/3K2/3

∆i

+
49λ2

∆i

.
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Similarly, the second term in (3.9) gives:

N∑
n=1

80λ

∆i

√
n
≤ 160

λ
√
N

∆i

≤ 160
λ2/3T 1/3K1/6 + λ

∆i

.

For the last term in (3.9), we use the fact that N ≤ T and we have:

N∑
n=1

32

∆in
≤ 32 lnT

∆i

+
32

∆i

.

Putting everything together finishes the proof.

3.7 Experiments
We compare the performance of Tsallis-Switch to different baselines, both in the
stochastic and in the stochastically constrained adversarial regime. We compare
Tsallis-Switch with block lengths chosen as in Theorem 3.1 against Tsallis-INF with-
out blocks, and against the BaSE algorithm of Gao et al. (2019), which achieves a
regret of O

(∑
i 6=i∗

logT
∆i

)
with O (logT ) switches in the stochastic regime. We use

T to tune the parameters of BaSE, and we consider both arithmetic and geometric
blocks —see (Gao et al., 2019) for details.

We also include in our baselines the EXP3 algorithm with a time-varying learning
rate, and the block version of EXP3, where the blocks have length λ2/3 T 1/3

K1/3 . Both
block length and learning rate are chosen according to the analysis of EXP3 in the
adversarial regime.

In the experiments, we fix the number of arms K = 8, and set the expected loss of
a suboptimal arm to 0.5. We generate binary losses using two sets of parameters: an
“easy” setting, where the gaps ∆ = 0.2 are large and the switching costs λ = 0.025
are small. A “hard” setting, where the gaps ∆ = 0.05 are small and the switching
costs λ = 1 are large. For each experiment, we plot the pseudo-regret, the number
of switches, and the pseudo-regret with switching cost. This allows us to observe the
trade-off between the pseudo-regret and the number of switches.

In the first experiment (Figure 3.1) we use stochastic i.i.d. data with the easy
setting (∆ = 0.2 and λ = 0.025). As the gaps are large, even the methods that do
not use blocks are not making many switches, and the best performance is achieved
by Tsallis-INF without blocks. In Figure 3.2 we use the hard setting (∆ = 0.05 and
λ = 1). In this case, we see a trade-off between achieving a small pseudo-regret and
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Figure 3.1: Stochastic losses, ∆ = 0.2 and λ = 0.025 (easy setting).

limiting the cumulative switching cost. The small value of ∆ forces a larger number
of switches, and because the cost of switching is now large, the cumulative switching
cost dominates the pseudo-regret with switching cost.

In Figure 3.3, we test a stochastic setting with small gaps and zero switching cost.
In this case, we observe that Tsallis-Inf and Tsallis-Switch outperform both EXP3
and the BaSE algorithms. Note that here Tsallis-Switch and Tsallis-Inf have very
similar performances, though not identical due to a slight difference in the tuning of
learning rates.

We present a wider range of experiments in Appendix 3.9.5. We show that
our algorithm outperforms the BaSE algorithm in the stochastically constrained
adversarial regime. Being an elimination-based algorithm, BaSE also fails in the
adversarial regime.

3.8 Discussion
We introduced Tsallis-Switch, the first algorithm for multiarmed bandits with switch-
ing costs that provides adversarial pseudo-regret guarantees simultaneously with im-
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Figure 3.2: Stochastic losses, ∆ = 0.05 and λ = 1 (hard setting).

Figure 3.3: Stochastic losses and no switching cost, λ = 0 and ∆ = 0.05. As the
switching costs are 0, the pseudo-regret and the pseudo-regret with switching costs
are equal.
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proved pseudo-regret guarantees in the stochastic regime, as well as the more general
stochastically constrained adversarial regime. The adversarial regret bound matches
the minimax lower bound within constants, and guarantees T 2/3 scaling of the regret
in time. The stochastic and stochastically constrained adversarial bounds reduce
the dependence of the regret on time down to T 1/3. Our experiments demonstrate
that Tsallis-Switch is competitive with the relevant benchmarks over a range of set-
tings: in the stochastic setting, it is competitive with state-of-the-art algorithms
for stochastic bandits with switching costs, and outperforms state-of-the-art adver-
sarial algorithms. In the adversarial setting, it is competitive with state-of-the-art
adversarial algorithms and significantly outperforms the stochastic ones.

Our work opens multiple directions for future research. For example, it is known
that in the stochastic setting with switching costs it is possible to achieve logarith-
mic regret scaling, but it is unknown whether it is achievable simultaneously with
the adversarial regret guarantee. It is also unknown whether logarithmic regret scal-
ing is achievable for the more general stochastically constrained adversarial regime
with switching costs (even with no simultaneous requirement of an adversarial re-
gret guarantee). Elimination of the assumption on uniqueness of the best arm in
the stochastically constrained adversarial regime is another challenging direction to
work on. Unfortunately, for now it is unknown how to eliminate this assumption
even in the analysis of the Tsallis-INF algorithm for multiarmed bandits without
switching costs. But while in the setting without switching costs the assumption has
been empirically shown to be an artifact of the analysis having no negative impact
on the regret (Zimmert and Seldin, 2021), in the setting with switching costs treat-
ing multiple best arms is more challenging, because switching between best arms is
costly.

3.9 Appendix

3.9.1 Properties of the Potential Function
We recall several properties of the potential function provided by Zimmert and Seldin
(2021, Appendix C), which we use in our proofs. We use v = (vi)i=1,...,K to denote
a column vector v ∈ RK with elements v1, . . . , vK , and diag(v) to denote a K ×K
matrix with v1, . . . , vK on the diagonal and 0 elsewhere. For a positive semidefinite
matrix M we use || · ||M =

√
〈·,M ·〉 to denote the canonical norm with respect to
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M . The potential function is defined as

Ψn(p) = −
∑
i

4
√
pi − 2pi

ηn

and we have

∇Ψn(p) = −

(
2p

−1/2
i − 2

ηn

)
i=1,...,K

and

∇2Ψn(p) = diag

(p
−3/2
i

ηn

)
i=1,...,K

 .

For C ≤ 0, the convex conjugate and the gradient of the convex conjugate are

Ψ∗
n(C) = max

p

{
〈p, C〉+

∑
i

4
√
pi − 2pi

ηn

}
, (3.10)

∇Ψ∗
n(C) = arg max

p

{
〈p, C〉+

∑
i

4
√
pi − 2pi

ηn

}
=

((
−ηn

2
Ci + 1

)−2
)

i=1,...,K

.

(3.11)
We use ∆K−1 to denote the probability simplex over K points and I∆K−1(x) ={
0 if x ∈ ∆K−1

−∞ otherwise
. We also use:

Φn(C) = (Ψn + I∆K−1)∗ (C) = max
p∈∆K−1

{
〈p, C〉+

∑
i

4
√
pi − 2pi

ηn

}
,

and

∇Φn(C) = arg max
p∈∆K−1

{
〈p, C〉+

∑
i

4
√
pi − 2pi

ηn

}
.

Φn is a constrained version of Ψ∗
n, where p is restricted to the probability simplex.

Following Zimmert and Seldin (2021, Section 4.3), there exists a Lagrange multiplier
ν such that:

pn = ∇Φn(−C̃n−1) = ∇Ψ∗
n(−C̃n−1 + ν1K). (3.12)

It is important to note that Ψn is a Legendre function, which implies that its
gradient is invertible and ∇(Ψn)

−1 = ∇(Ψ∗
n). By the Inverse Function theorem

∇2Ψ∗
n

(
∇Ψn(w)

)
=
(
∇2Ψn(w)

)−1
. (3.13)
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The Bregman divergence associated with a Legendre function f is defined by:

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 . (3.14)

By Taylor’s theorem,
Df (x, y) ≤

1

2
‖x− y‖2∇2f(z) (3.15)

for some z ∈ conv(x, y).

3.9.2 Proofs of the Lemmas
Here we provide a proof of the bound on the stability term in Lemma 3.1. The scaling
of the stability term directly depends on the bound on the losses, so we adapt the
bound for sequences of losses that are not in the [0, 1] interval. Lemma 3.2 follows
directly from Zimmert and Seldin (2021, Lemma 12). We focus on the case where
α = 1

2
and in the second part of the lemma we pick x = ∞.

3.9.2.1 Bounding the Stability

The proof of Lemma 3.1 closely follows the proof of the corresponding result by
Zimmert and Seldin (2021, Lemma 11). The main adaptation that we make is to
take care of the losses that take values in [0, bn] intervals rather than [0, 1] intervals.

In order to prove Lemma 3.1, we first need to adapt Zimmert and Seldin (2021,
Lemma 17) to properly scale with the range bn. Furthermore, we take advantage of
the fact that α = 1

2
in order to derive a tighter multiplicative constant.

Lemma 3.4. Let p ∈ ∆K−1 and p̃ = ∇Ψ∗
n(∇Ψn(p) − c). If ηnbn ≤ 1

4
and α = 1

2
,

then for all c ∈ RK with ci ≤ −bn for all i, it holds that p̃3/2i ≤ 1.5p
3/2
i for all i.

Note that we obtain a slightly better constant factor 1.5 rather than factor 2 in
the more general analysis by Zimmert and Seldin (2021, Lemma 17).

Proof. Since ∇Ψn is the inverse of ∇Ψ∗
n, we have:
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∇Ψn(p)i −∇Ψn(p̃)i = ci ≥ −bn,

p
−1/2
i − 1

1
2
ηn

− p̃
−1/2
i − 1

1
2
ηn

≤ bn,

p
−1/2
i − 1

(1
2
ηn

− p̃
−1/2
i − 1

1
2
ηn

≤ bn,

p
−1/2
i − 1
1
2
ηnbn

− p̃
−1/2
i − 1
1
2
ηnbn

≤ 1,

p̃
1/2
i ≤ p

1/2
i

1− ηnbn
1
2
p
1/2
i

≤ p
1/2
i

1− ηnbn
1
2

,

p̃
3/2
i ≤ p

3/2
i(

1− 1
2
ηnbn

)3 .
It remains to bound

(
1− 1

2
ηnbn

)−3. Using the fact that ηnbn ≤ 1
4
, we have:(

1− 1

2
ηnbn

)−3

≤
(
1− 1

8

)−3

≤ 83

73
≤ 1.5.

With this Lemma at hand, we can move on to the proof of Lemma 3.1. We first
verify that the bound still holds for losses outside of the [0, 1] interval, and then we
observe how the bound scales in terms of the bounds bn.

Proof of Lemma 3.1. The beginning of the proof is useful for both statements of the
Lemma.

By definition, we have pn = ∇Φn(−C̃n−1) and cn,In = 〈pn, c̃n〉. We also have
Φn(C + x1K) = Φn(C) + x, because

Φn(C + x1K) = max
p∈∆K−1

{
〈p, C + x1K〉+

∑
i

4
√
pi − 2pi

ηn

}

= max
p∈∆K−1

{
〈p, C〉+ 〈p, x1K〉+

∑
i

4
√
pi − 2pi

ηn

}

= max
p∈∆K−1

{
〈p, C〉+ x+

∑
i

4
√
pi − 2pi

ηn

}
= Φn(C) + x.
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Using Equation 3.12, there exists a constant λn, such that ∇Ψn(pn) = −C̃n−1+λn1K .
Hence, for any x ∈ R:

E
[
cn,In + Φn(−C̃n) + Φn(−C̃n−1)

]
= E

[
〈pn, c̃n〉+ Φn(−C̃n) + Φn(−C̃n−1)

]
= E [〈pn, c̃n〉+ Φn(∇Ψn(pn)− c̃n) + Φn(∇Ψn(pn))]

= E [〈pn, c̃n − x1K〉+ Φn(∇Ψn(pn)− c̃n + x1K) + Φn(∇Ψn(pn))]

≤ E [〈pn, c̃n − x1K〉+Ψ∗
n(∇Ψn(pn)− c̃n + x1K) + Ψ∗

n(∇Ψn(pn))] (3.16)
= E

[
DΨ∗

n
(∇Ψn(pn)− c̃n + x1K ,∇Ψn(pn))

]
≤ E

[
max

z∈conv(∇Φn(pn),∇Ψn(pn)−c̃n+x1K)

1

2
‖c̃n − x1K‖2∇2Ψ∗

n(z)

]
(3.17)

= E
[

max
p∈conv(pn,∇Ψ∗

n(∇Ψn(pn)−c̃n+x1K))

1

2
‖c̃n − x1K‖2∇2Ψn(p)−1

]
(3.18)

≤ E

[
K∑
i=1

max
p∈[pn,i,∇Ψ∗

n(∇Ψn(pn)−c̃n+x1K))i]

ηn
2
(c̃n,i − x)2 p

3/2
i

]
,

where Equation (3.16) uses that Φn(x) ≤ Ψ∗
n(x), because Φn is a constrained ver-

sion of Ψ∗
n, and Φn(∇Ψn(pn)) = Ψ∗

n(∇Ψn(pn)), because arg maxp∈RK 〈p,∇Ψn(pn)〉 −
Ψn(p) = pn and pn is in the probability simplex, so the constraint in Φn is in-
active. Equation (3.17) follows from Equation (3.15), and Equation (3.18) from
Equation (3.13).

First part of the Lemma In order to prove the first part of the Lemma, we set
x = 0 and observe that ∇Ψ∗

n (∇Ψn(pn)− c̃n)i ≤ ∇Ψ∗
n (∇Ψn(pn))i = pn,i, because the

losses are non-negative and ∇Ψ∗
n(C) = arg maxp

{
〈p, C〉+

∑
i
4
√
pi−2pi
ηn

}
is a mono-

tonically increasing function of C. This observation implies that the highest value of
[pn,i,∇Ψ∗

n(∇Ψn(pn)− c̃n + x1K))i] is pn,i. Since the importance weighted losses are
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0 for the arms that were not played, we have:

E

[
K∑
i=1

max
p∈[pn,i,∇Ψ∗

n(∇Ψn(pn)−c̃n+x1K))i]

ηn
2
c̃2n,ip

3/2
i

]
= E

[
K∑
i=1

ηn
2
c̃2n,ip

3/2
n,i

]

= E

[
K∑
i=1

ηn
2

c2n,i
p2n,i

1(In = i)p
3/2
n,i

]

= E

[
K∑
i=1

ηn
2
b2np

1/2
n,i

]

≤ ηn
2
b2n

K∑
i=1

E [pn,i]
1/2 ,

where we use the fact that c2n,i ≤ b2n, and that En

[
1(In = i)

]
= pn,i, where 1(In = i)

is the indicator function of the event {In = i} and the expectation is taken with
respect to all randomness prior to round n. We use Jensen’s inequality in the last
inequality. Finally, summing on n finishes this part of the proof.

Second part of the Lemma We now set x = 1n[In = j]cn,j, where 1n[·] is
conditioned on all randomness previous to block n. In the calculation below, for the
events In ∈ [K]\ {j}, we have x = 0 and use the same derivation as in the previous
case. When In = j, for i 6= j we have c̃n,i−x = −x ≥ −bn, and for j we have c̃n,j−x ≥
0. For i 6= j we use Lemma 3.4 to bound (∇Ψ∗

n(∇Ψn(pn)− c̃n + x1K))i)
3/2 ≤ 1.5p

3/2
n,i

and for j we use ∇Ψ∗
n(∇Ψn(pn)− c̃n)j ≤ ∇Ψ∗

n(∇Ψn(pn))j = pn,j. Therefore, we can
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write

E

[
K∑
i=1

max
p∈[pn,i,∇Ψ∗

n(∇Ψn(pn)−c̃n+x1K))i]

ηn
2
(c̃n,i − x)2 p

3/2
i

]

≤
∑
i 6=j

ηnb
2
n

2
E [pn,i]

1/2

+ E

[
1n[In = j](j)

(
ηn
2

(
cn,j
pn,j

− cn,j

)2

p
3/2
n,j +

∑
i 6=j

ηn
2
c2n,j1.5p

3/2
n,i

)]

≤
∑
i 6=j

ηnb
2
n

2
E [pn,i]

1/2 + E

[
ηnb

2
n

2
(1− pn,j)

2 p
1/2
n,j +

∑
i 6=j

1.5

2
ηnb

2
np

3/2
n,i pn,j

]

≤ ηnb
2
n

2

∑
i 6=j

(
E [pn,i]

1/2 + 2.5E [pn,i]
)
,

where in the last step we used the fact that (1− pn,j)
2 p

1/2
n,j ≤ (1− pn,j) =

∑
i 6=j pn,i

for the middle term and p
1/2
n,i pn,j ≤ 1 for the last term.

3.9.3 Proof of Theorem 3.2 and its Corollary
A side result of our analysis generalizes the analysis of Tsallis-INF (Zimmert and
Seldin, 2021) to loss sequences that are not in the [0, 1]K range.

We start with the proof of Theorem 3.2.

Proof of Theorem 3.2.

The Adversarial Regime The sequence of learning rates (ηt)t≥1 is positive and
non decreasing. Therefore, we can apply the first parts of Lemmas 3.1 and 3.2, and
since

∑K
i=1

√
E [pn,i] ≤

√
K, we directly obtain the result:

RT = stability + penalty ≤
T∑
t=1

ηt
2
b2t
√
K +

4
√
K

ηT
+ 1.

The Stochastically Constrained Adversarial Regime Now we derive refined
guarantees in the stochastically constrained adversarial regime with a unique best
arm i∗. We start by deriving bounds for the stability and the penalty.
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Let T0 be a constant such that for all t ≥ T0 we have ηtbt ≤ 1
4
. Then by the last

part of Lemma 3.1 with j = i∗ we have:

stab ≤
T∑
t=1

ηt
2
b2t
∑
i 6=i∗

(√
E [pt,i] + 2.5E [pt,i]

)
+

T0∑
t=1

ηt
2
b2t .

For the penalty, we use the second part of Lemma 3.2:

pen ≤
∑
i 6=i∗T

T∑
t=1

4
(
η−1
t − η−1

t−1

)(√
E [pt,i]−

1

2
E [pt,i]

)
+ 1.

We put the two bounds together and first group the
√

E [pt,i] terms and E [pt,i] terms.

RT ≤
T∑
t=1

∑
i 6=i∗

(ηt
2
b2t + 4

(
η−1
t − η−1

t−1

))√
E [pt,i]

+
T∑
t=1

∑
i 6=i∗

(
5

4
ηtb

2
t − 2

(
η−1
t − η−1

t−1

))
E [pt,i]

+

T0∑
t=1

ηt
2
b2t + 1.

If 5ηt
4
b2t ≥ 2

(
η−1
t − η−1

t−1

)
for all t, then the factor in front of E [pt,i] is positive and by

upper bounding E [pt,i] by
√

E [pt,i] and grouping the first and the second summations
we obtain

RT ≤
T∑
t=1

∑
i 6=i∗

(
7

4
ηtb

2
t + 2

(
η−1
t − η−1

t−1

))√
E [pt,i] +

T0∑
t=1

ηt
2
b2t + 1.

Otherwise, we upper bound the negative contribution −2
(
η−1
t − η−1

t−1

)
E [pt,i] by zero

and E [pt,i] by
√

E [pt,i] and obtain

RT ≤
T∑
t=1

∑
i 6=i∗

(
7

4
ηtb

2
t + 4

(
η−1
t − η−1

t−1

))√
E [pt,i] +

T0∑
t=1

ηt
2
b2t + 1.

Overall, we have

RT ≤
T∑
t=1

∑
i 6=i∗

(
7

4
ηtb

2
t + c

(
η−1
t − η−1

t−1

))√
E [pt,i] +

T0∑
t=1

ηt
2
b2t + 1,
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where

c =

{
2, if 5ηt

4
b2t ≥ 2

(
η−1
t − η−1

t−1

)
for all t,

4, otherwise.

Now we use the self-bounding technique (Zimmert and Seldin, 2021). The self-
bounding technique states that if L and U are such that L ≤ R ≤ U , then R ≤
2U − L. We use the lower bound stated in the theorem, and the upper bound from
the previous expression, and we get:

RT ≤
T∑
t=1

∑
i 6=i∗

((
7

2
ηtb

2
t + 2c

(
η−1
t − η−1

t−1

))√
E [pt,i]−∆ibtE [pt,i]

)
+

T0∑
t=1

ηtb
2
t + 2

≤
T∑
t=1

∑
i 6=i∗

(
7
2
ηtb

2
t + 2c

(
η−1
t − η−1

t−1

))2
4∆ibt

+

T0∑
t=1

ηtb
2
t + 2,

where we used the fact that each term in the first summation is an expression of the
form a

√
x− bx, which for x ≥ 0 is bounded by a2

4b
.

In Corollary 3.1 we consider a special case, where the losses at each round are
bounded by a constant B.

Proof of Corollary 3.1. The learning rate ηt =
2

B
√
t

is a positive and non-increasing
sequence, which allows us to use the results of Theorem 3.2.

The Adversarial Regime In the adversarial regime, we can directly use the learn-
ing rate in the first part of Theorem 3.2 and get:

RT ≤
T∑
t=1

ηt
2
B2

√
K +

4
√
K

ηT
+ 1 ≤ 4B

√
KT + 1.

The Stochastically Constrained Adversarial Regime In order to use the
second part of Theorem 3.2, we need to bound the difference between two successive
learning rates.

η−1
t − η−1

t−1 =
B

2

(√
t−

√
t− 1

)
≤ B

2
√
t
.

We pick T0 = 64, which satisfies that for all t ≥ T0, we have ηtB = 2√
T
≤ 1

4
. We note

that
5ηt
4
B2 − 2

(
η−1
t − η−1

t−1

)
≥ 5B

2
√
t
− 2B

2
√
t
≥ 0.
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Thus, we have:

RT ≤
T∑
t=1

∑
i 6=i∗

81B

4∆it
+
√

BT0 + 2 ≤
∑
i 6=i∗

21B ((lnT ) + 1)

∆i

+ 8
√
B + 2.

3.9.4 Proofs of Results with Time-Varying Switching Cost
In this regime, the block lengths and the learning rates depend on the sequence of
switching costs (λn)n=1,2,....

Proof of Theorem 3.3. The switching costs are positive, which means that the learn-
ing rate ηn = 2

√
2
√
K

3
(∑n

s=1 λs+
√
K√
s

) is positive and non-decreasing. Thus, we can apply

Theorem 3.2 and Lemmas 3.1 and 3.2 through the rest of the proof. We recall that

the length of the n-th block is defined as |Bn| = max




√
λn

√∑n
s=1 λs+

√
K√
s

√
K

 , 1

.

Thus, we can bound ηn
2
|Bn|2 as:

ηn
2
|Bn|2 ≤

√
2
√
K

3
(∑n

s=1 λs +
√
K√
s

)
√

λn

√∑n
s=1 λs +

√
K√
s√

K
+ 1

2

≤
√
2
√
K

3
(∑n

s=1 λs +
√
K√
s

)
√

λn

√∑n
s=1 λs +

√
K√
s√

K

2

+
2
√
2
√
K

3
(∑n

s=1 λs +
√
K√
s

)
√

λn

√∑n
s=1 λs +

√
K√
s√

K


+

√
2
√
K

3
(∑n

s=1 λs +
√
K√
s

)
≤
√
2λn

3
√
K

+
2
√
2
√
λn

3 (K1/4n1/4)
+

√
2

3
√
n

≤
√
2λn√
K

+

√
2√
n
,
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where we use that 1∑n
s=1 λs+

√
K√
s

≤ 1√
Kn

and we deduce that
√
λn√∑n

s=1 λs+
√
K√
s

≤ λn√
K
+ 1√

n

by considering the cases λn ≥
√
K√
n

and λn ≤
√
K√
n

.

The Adversarial Regime The weighted switching cost on N blocks is upper
bounded by

∑N
n=1 λn. To bound the pseudo-regret, we can directly apply Theorem

3.2 and get that:

RT ≤
N∑

n=1

ηn
2
|Bn|2

√
K +

4
√
K

ηN
+ 1

≤
N∑

n=1

√
2

(
λn +

√
K√
n

)
+ 4

√
K

3
(∑n

s=1 λs +
√
K√
s

)
2
√
2
√
K

+ 1

≤ 4
√
2

N∑
n=1

λn + 8
√
2
√
KN + 1.

Combining the pseudo regret and the weighted switching cost finishes this part of
the proof.

The Stochastically Constrained Adversarial Regime We start by deriving
a bound for the stability term. Let N0 be the smallest number, such that for all
n ≥ N0, we have ηn|Bn| ≤ 1

4
. Then, using the last part of Lemma 3.1, we have:

stab ≤
N∑

n=1

(√
2λn√
K

+

√
2√
n

)∑
i 6=i∗

(√
E [pn,i] + 2.5E [pn,i]

)
+

N0∑
n=1

(√
2λn√
K

+

√
2√
n

)
.

We now bound the penalty term. We first need to bound the difference between two
successive learning rates.

η−1
n − η−1

n−1 =
3

2
√
2
√
K

(
n∑

s=1

λs +

√
K√
s

−
n−1∑
s=1

λs +

√
K√
s

)

=
3

2
√
2
√
K

(
λn +

√
K√
n

)
.

Then, we apply the second part of Lemma 3.2 and get:

penalty ≤
∑
i 6=i∗

(
3
√
2√
K

(
λn +

√
K√
n

))(√
E [pn,i]− 0.5E [pn,i]

)
+ 1.
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Adding these expressions together and using the self-bounding technique, we have:

RT ≤
N∑

n=1

10
√
2

(
λn√
K

+
1√
n

)∑
i 6=i∗

√
E [pn,i]−

∑
i 6=i∗

N∑
n=1

∆i|Bn|E [pn,i]

+

N0∑
n=1

(
2
√
2λn√
K

)
+ 4
√

2N0 + 2.

Finally, we use Lemma 3.3 to bound the number of switches, and the fact that√
E [pn,i] ≥ E [pn,i], which gives:

R
(
T, (λn)n≥1

)
≤

N∑
n=1

∑
i 6=i∗

((
11λn + λn+1 +

10
√
2√

n

)√
E [pn,i]−∆i|Bn|E [pn,i]

)

+

N0∑
n=1

(
2
√
2λn√
K

)
+ 4
√
2N0 + λ1 + 2.

We then observe that for each term in the first summation, we can upper bound
the expression by replacing E [pn,i] by xn,i ∈ [0,∞) and maximizing each term inde-
pendently on [0,∞).

Thus, we have:

R
(
T, (λn)n≥1

)
≤

N∑
n=1

∑
i 6=i∗

(
11λn + λn+1 +

10
√
2√

n

)2
4∆i|Bn|

+

N0∑
n=1

(
2
√
2λn√
K

)
+4
√
2N0+λ1+2.

We move on to the corollary with a parametric form of switching costs.

Proof of Corollary 3.2. In this setting, we assume that the sequence of switching
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costs satisfies λn = nα for α > 0. We start by upper bounding N0.

ηn|Bn| ≤
2
√
2
√
K

3
(∑n

s=1 λs +
√
K√
s

)
√

λn

√∑n
s=1 λs +

√
K√
s√

K
+ 1


≤ 2

√
2
√
λn

3
√∑n

s=1 λs +
√
K√
s

+
2
√
2
√
K

3 (
∑n

s=1 λs)

≤ 2
√
2nα/2

3
√

nα+1

α+1

+
2
√
2

3
√
n

≤ 2
√
2

3
√
n

(√
α + 1 + 1

)
,

which is a decreasing sequence of n. For all n ≥ 32
9

(√
α + 1 + 1

)2, we have ηn|Bn| ≤
1
4
, thus we pick N0 =

⌈
32
9

(√
α + 1 + 1

)2 ⌉.
Now we move on to bounding the terms

(
11λn+λn+1+

10
√
2√

n

)2

4∆i|Bn| . Here, the switching
costs are increasing, λn+1 ≥ λn, and we have:(

11λn + λn+1 +
10

√
2√

n

)2
4∆i|Bn|

≤

(
12λn+1 +

10
√
2√

n

)2
4∆i|Bn|

≤

(
122λn+1 + 240λn+1

√
2√
n
+ 200

n

)
4∆i|Bn|

.

When n < N the block has not been truncated and the first term is upper bounded
as:

122λ2
n+1

4∆i|Bn|
≤ 36

√
α + 1 (n+ 1)2α

√
K

∆inα+1/2
≤ 36 · 4α

√
α + 1 (n)α−1/2

√
K

∆i

,

where |Bn| ≥ nα+1/2
√
K
√
α+1

, and for all n ≥ 1, we have (n+1)2

n
≤ 4n. For the case where

n = N , we can only lower bound |BN | by 1, and we get:

122λ2
N+1

4∆i|BN |
≤ 36(N + 1)2α

∆i

.

The second and third terms are directly upper bounded by lower bounding the block
length by 1:

240λn+1

√
2√

n

4∆i|Bn|
≤ 60

√
2
(n+ 1)α√

n∆i

≤ 60
√
2 · 2α (n)

α−1/2

∆i

,
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and
200
n

4∆i|Bn|
≤ 50

n∆i

.

We now sum over n, from 1 to N − 1, and get:

N−1∑
n=1

nα−1/2 ≤ 1 +

∫ N

1

nα−1/2 ≤ 1 + (α + 1/2)Nα+1/2,

which is an upper bound which considers the case where α − 1
2
≤ 0 and where

α− 1
2
≥ 0. We finish the proof by combining these results, and we get:

R
(
T, (λn)n≥1

)
≤

N∑
n=1

∑
i 6=i∗

(
11λn + λn+1 +

10
√
2√

n

)2
4∆i|Bn|

+

N0∑
n=1

(
2
√
2λn√
K

)
+ 4
√
2N0 + λ1 + 2

≤
∑
i 6=i∗

(
36 · 4α

√
α + 1

(
α + 1

2

)
Nα+1/2

√
K

∆i

+
36 · 4α

√
α + 1

√
K

∆i

)
+

36 (N + 1)2α

∆i

+
∑
i 6=i∗

(
60
√
2 · 2α

(
α + 1

2

)
Nα+1/2

∆i

+
60
√
2 · 2α

∆i

)
+

60
√
2 · 2αNα−1/2

∆i

+
∑
i 6=i∗

50 lnN

∆i

+
50

∆i

+
2
√
2
(

32
9

(√
α + 1 + 1

)2
+ 2
)α+1

(α + 1)
√
K

+ 11
(√

α + 1
)
+ 20.

We now upper bound N . We first note that the length of the n-th block is lower
bounded by nα/2

√∑n
s=1 s

α
√
K

. Using the fact that α > 0, we can lower bound
∑n

s=1 s
α ≥∫ n

0
sαds = nα+1

α+1
. Thus, we have |Bn| ≥ nα+1/2√

(α+1)K
. Since the block length is an

increasing function, for any N̄ we have:

N̄∑
n=1

|Bn| ≥
∫ N̄

0

nα+1/2√
(α + 1)K

=
N̄α+3/2(

α + 3
2

)√
(α + 1)K

.

We observe that N̄ =
(
α + 3

2

) 2
2α+3 (α + 1)

1
2α+3 K

1
2α+3T

2
2α+3 satisfies

N̄α+3/2(
α+ 3

2

)√
(α+1)K

= T . Thus, we are sure that N is upper bounded by
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(
α + 3

2

) 2
2α+3 (α + 1)

1
2α+3 K

1
2α+3T

2
2α+3 + 1. All that remains is to upper bound

N in the pseudo-regret bound.

R
(
T, (λn)n≥1

)
≤
∑
i 6=i∗

36 · 4α
√
α + 1

(
α + 1

2

) (
α + 3

2

) 2α+1
2α+3 (α + 1)

α+1/2
2α+3 T

2α+1
2α+3K

2α+2
2α+3

∆i

+
∑
i 6=i∗

36 (α + 2) · 4α
√
α + 1

√
K

∆i

+
36 (N + 1)2α

∆i

+
∑
i 6=i∗

60
√
2 · 2α

(
α + 1

2

)
Nα+1/2

∆i

+
60
√
2 · 2α

∆i

+
60
√
2 · 2αNα−1/2

∆i

+
∑
i 6=i∗

50 lnT

∆i

+
50

∆i

+
2
√
2
(

32
9

(√
α + 1 + 1

)2
+ 2
)α+1

(α + 1)
√
K

+ 11
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3.9.5 Supplementary Experiments
In this section, we present additional experiments highlighting the robustness of
Tsallis-Switch. In all the experiments we take K = 8. Similar results were observed
for other values of K.

First, we consider stochastically constrained adversarial sequences. We take a
setting, inspired by Zimmert and Seldin (2021), where the environment alternates
between two phases. In the first one, the expected loss of the best arm is 0, and the
expected loss of the suboptimal arms is ∆. In the second phase, the expected loss of
the best arm is 1−∆, and the expected loss of suboptimal arms is 1. At all rounds, the
gap between the expected loss of the best arm and any other arm remains constant.
In this experiment, the environment generates phases of exponentially increasing
length with he ith phase starting at index 1.6i. We observe in Figures 3.4 and 3.5
that the BaSE algorithm with arithmetic blocks is not robust in this regime. BaSE
algorithm with geometric blocks performs really well against this sequence. Tsallis-
Switch performs well in both experiments, achieving a regret with switching costs
similar to algorithms without blocks when the switching cost is small, and a much
better performance when switching becomes costly.

In the second experiment we construct an adversarial sequence that easily breaks
BaSE with both arithmetic and geometric grids. We also observe the behavior of
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Figure 3.4: Stochastically constrained adversarial losses, ∆ = 0.2 and λ = 0.025.

Figure 3.5: Stochastically constrained adversarial losses. ∆ = 0.05 and λ = 1.

Remark 3.1. The shaded area represents one standard deviation above and below the
average measured on 10 repetitions of the experiment. On Figure 3.4, the standard
deviation of Batched Bandits is large because the algorithm eliminates the optimal
arms in some of the runs of the experiment, but not all of them.
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Figure 3.6: Regret against a deterministic adversarial sequence described in the text
with λ = 1. The shaded area represents one standard deviation above and below
the average measured on 10 repetitions of the experiment. The curves for batched
bandits with arithmetic blocks and batched bandits with geometric blocks almost
coincide and they are the highest ones.

the other algorithms in this context. The sequence of losses is constructed in the
following way: in the first

√
KT ln(KT ) rounds, one arm suffers a loss of 0, while

all the other arms suffer a loss of 1. After the
√
KT ln(KT ) rounds the losses are

reversed, so the first arm suffers a loss of 1 and all other arms suffer a loss of 0. In
Figure 3.6 we observe that the BaSE algorithm with both arithmetic and geometric
grid suffers linear regret, as it, with high probability, eliminates the best arm based
on the first rounds. We can see that with this sequence, Tsallis-Switch achieves both
a very low regret and a low number of switches, even though at the end of the game,
K − 1 arms have the same performance, and only one is suboptimal.

In the last experiment we test robustness of Tsallis-Switch in a stochastic setting
with several best arms and a stochastically constrained adversarial setting with sev-
eral best arms. We take ∆ = 0.2 and λ = 1 and change the number of optimal arms
from 1 to 7 while keeping the total number of arms K = 8. We recall that Zim-
mert and Seldin (2021) experimentally observed that in a stochastic setting without
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Figure 3.7: The performance of Tsallis-Switch under stochastic losses and several
optimal arms. K = 8, ∆ = 0.2 and λ = 1. The shaded area represents one standard
deviation above and below the average measured on 10 repetitions of the experiment.

switching costs the regret of Tsallis-INF decreases with the increase of the number
of best arms, suggesting that the requirement on uniqueness of the best arm is an
artifact of the analysis, rather than a real limitation of the algorithm. In Figures 3.7
and 3.8 we observe that in the setting with switching costs the picture is different,
because switching between best arms is costly. We note that Tsallis-Switch still has
the adversarial regret guarantee of O

(
(λK)1/3T 2/3 +

√
KT

)
in both settings, so the

regret is still under control, but there is a clear increase in the regret as the number
of optimal arms grows beyond 1. Therefore, the experiments seem to suggest that
the improved regret scaling with T 1/3 only holds under the assumption on uniqueness
of the best arm and elimination of this assumption will require modification of the
algorithm.
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Figure 3.8: The performance of Tsallis-Switch under stochastically constrained ad-
versarial losses and several optimal arms. K = 8, ∆ = 0.2 and λ = 1. The shaded
area represents one standard deviation above and below the average measured on 10
repetitions of the experiment.
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Chapter 4

A Near-Optimal
Best-of-Both-Worlds Algorithm for
Online Learning with Feedback
Graphs

The work presented in this chapter is based on a paper that has been published as:

Chloé Rouyer, Dirk van der Hoeven, Nicolò Cesa-Bianchi, and Yevgeny Seldin.
A near-optimal best-of-both-worlds algorithm for online learning with feedback
graphs. In Advances in Neural Information Processing Systems (NeurIPS), 2022.
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Abstract
We consider online learning with feedback graphs, a sequential decision-making
framework where the learner’s feedback is determined by a directed graph over the ac-
tion set. We present a computationally efficient algorithm for learning in this frame-
work that simultaneously achieves near-optimal regret bounds in both stochastic
and adversarial environments. The bound against oblivious adversaries is Õ(

√
αT ),

where T is the time horizon and α is the independence number of the feedback graph.
The bound against stochastic environments is O

(
(lnT )2 maxS∈I(G)

∑
i∈S ∆

−1
i

)
where

I (G) is the family of all independent sets in a suitably defined undirected version of
the graph and ∆i are the suboptimality gaps. The algorithm combines ideas from
the EXP3++ algorithm for stochastic and adversarial bandits and the EXP3.G al-
gorithm for feedback graphs with a novel exploration scheme. The scheme, which
exploits the structure of the graph to reduce exploration, is key to obtain best-of-
both-worlds guarantees with feedback graphs. We also extend our algorithm and
results to a setting where the feedback graphs are allowed to change over time.

4.1 Introduction
Online learning is a general framework for studying sequential decision-making in
unknown environments (see, for example, (Cesa-Bianchi and Lugosi, 2006; Bubeck
and Cesa-Bianchi, 2012; Orabona, 2019)). We consider a setting where, at each
round, the player chooses an action (a.k.a. arm) from a fixed set of K actions and
incurs the loss associated with the chosen action. The performance of the learner is
quantified in terms of regret, which is the difference between the total loss incurred by
the learner over the duration of the game, and the smallest cumulative loss obtained
by a player that would only ever play the same action throughout the game.

The smallest achievable regret is determined by a number of parameters. One of
these parameters is the amount of feedback that the learner receives at each round.
There is a whole spectrum of problems, characterized by the amount of feedback
received by the learner. At the one extreme of this spectrum is the bandit setting,
where the learner only observes the loss of the action taken. At the other extreme
is the full information setting, where the learner observes the full loss vector at the
end of each round, irrespective of the action played.

There are two common ways to interpolate between full information and ban-
dit feedback. One is to allow the learner to make a limited number of additional
observations without restricting how the additional observations are selected. Then

70



Chapter 4 | A Best-of-Both-Worlds Algorithm for Online Learning with Feedback Graphs

no additional observations correspond to the bandit setting and K − 1 additional
observations correspond to the full information setting. This way of interpolation
was proposed by Seldin et al. (2014) in two variants, "prediction with limited advice"
and "multiarmed bandits with paid observations". It was also studied by Thune and
Seldin (2018).

The second way of interpolation, which we focus on in this paper, is via feedback
graphs (Alon et al., 2017). In this setting observations of the learner are governed by
a feedback graph on the actions. When an action is played, the learner observes the
losses of all of its neighbors in the feedback graph. A complete graph corresponds to
the full information setting, whereas a graph containing only self-loops corresponds
to the bandit setting. This setting has multiple variants, depending on whether the
graph is directed or undirected, observed or unobserved, static or dynamic.

Another important parameter characterizing online learning problems is the type
of environment. The two primary types that we focus on are stochastic and ad-
versarial environments. In stochastic environments each action is associated with a
fixed, but unknown distribution, and in each round the loss of each action is sampled
independently from the corresponding distribution. In adversarial environments the
loss sequence is chosen arbitrarily. We consider oblivious adversarial environments,
where the loss sequences are chosen independently of the actions taken by the learner.

For a long time stochastic and adversarial environments where studied separately,
but in practice the exact nature of environment is rarely known. In recent years
this has led to a growing interest in “best-of-both-worlds” algorithms that are ro-
bust against adversarial loss sequences and, at the same time, provide tighter regret
guarantees in the stochastic regime. Most work has focused on the bandit setting
(Bubeck and Slivkins, 2012; Seldin and Slivkins, 2014; Auer and Chiang, 2016; Seldin
and Lugosi, 2017; Wei and Luo, 2018), where the Tsallis-INF algorithm proposed by
Zimmert and Seldin (2019, 2021) was shown to achieve the optimal regret rates in
both stochastic and adversarial regimes, as well as a number of intermediate regimes.
The analysis was further improved by Masoudian and Seldin (2021) and Ito (2021).
In the full information setting Mourtada and Gaïffas (2019) have shown that the well-
known Hedge algorithm originally designed for the adversarial setting (Littlestone
and Warmuth, 1994) also achieves the optimal stochastic regret. Best-of-both-world
results also spilled over to other domains, including additional approaches to full
information games and online convex optimization (Koolen et al., 2016; Van Erven
et al., 2021; Negrea et al., 2021), decoupled exploration and exploitation (Rouyer and
Seldin, 2020), combinatorial bandits (Zimmert et al., 2019), bandits with switching
costs (Rouyer et al., 2021), MDPs (Jin and Luo, 2020; Jin et al., 2021), and linear
bandits (Lee et al., 2021).
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In the context of online learning with feedback graphs the only best-of-both-
worlds result known to us is by Erez and Koren (2021) for undirected graphs. They
present an intricate algorithm based on the Follow The Regularized Leader (FTRL)
framework with a regularization function that is a product of the Tsallis and Shan-
non entropies. The algorithm simultaneously enjoys an O

(√
χT
(

ln(KT )
)2) pseudo-

regret bound in the adversarial regime and an O
((

ln(KT )
)4∑

k
lnT
∆k

) pseudo-regret
bound in the stochastic regime, where T is the number of prediction rounds, χ is the
clique covering number of the undirected feedback graph, and the summation in the
second bound is on the smallest non-zero gap within each clique.

It is tempting to apply an FTRL-based algorithm with Tsallis entropy regular-
ization to online learning with feedback graphs, since Tsallis entropy with power
a = 1/2 leads to the optimal Tsallis-INF algorithm for the bandit setting (Zimmert
and Seldin, 2021) and Tsallis entropy with power a = 1 leads to the Hedge algo-
rithm, which is optimal in the full information setting. However, as also noted by
Erez and Koren (2021), extension of the analysis to online learning with feedback
graphs when the power a ∈ (1/2, 1) is not straightforward and, so far, there was
no success in this direction. Furthermore, at the moment it is unclear whether it
is possible to derive bounds that take further advantage of the graph structure and
depend on the independence number of the graph when a < 1.

Our contribution We significantly extend and improve on the bounds of Erez
and Koren (2021). Our results hold for directed graphs (with self-loops), depend
on the independence number of the graph, have a better dependence on T in the
stochastic regime, and extend to time-varying feedback graphs. Our approach takes
advantage of the common structure shared by two exponential weights algorithms:
EXP3.G (Alon et al., 2015) and EXP3++ (Seldin and Slivkins, 2014; Seldin and Lu-
gosi, 2017), to obtain near-optimal best-of-both-worlds guarantees. By using similar
ideas as in the proof of the regret bound of EXP3.G, the proposed algorithm adapts to
the independence number of the graph. We derive a min

{
O
(√

lnK
√

ln (KT )
√
αT
)
,

O(
√
α̃T lnK)

}
pseudo-regret bound against adversarial sequences of losses, where

α is the independence number of the graph and α̃ is its strong independence num-
ber, which is a graph dependent quantity smaller than the clique covering number.
For undirected graphs, independence number and strong independence number are
equal and the result matches the best known lower bound Ω(

√
αT ) within logarith-

mic factors (Alon et al., 2017). In the stochastic setting we use the idea of injected
exploration from EXP3++ to estimate the suboptimality gaps of each arm. By in-
troducing a novel dynamic exploration set and an appropriate exploration rate, we
derive an almost optimal regret bound in the stochastic setting. Along the way, we
also improve the regret bound of EXP3++ in the stochastic bandit setting. Our
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exploration set is constructed by sorting the arms by ascending gap estimates, and
then adding a new arm to the exploration set if the arm cannot be observed by play-
ing another arm previously added to the set. If we play each arm i in the exploration
set at a rate 1/∆̂2

i , where ∆̂i is the gap estimate, then all arms j in the graph are
observed with probability at least 1/∆̂2

j .
To present our main result we introduce some notations. Let G = (V,E) be a

directed feedback graph with independence number α (where the independence num-
ber is computed on G ignoring edge directions). We define a strongly independent
set on G as an independent set on the subgraph G′ = (V,E ′), where (i, j) ∈ E ′ if
and only if (i, j) ∈ E and (j, i) ∈ E. We use α̃ to denote the strong independence
number of G, and I(G) to denote the collection of all the strongly independent sets
in G. We note that α = α̃ for undirected graphs and α ≤ α̃ for directed graphs.
Now we can present an informal statement of our main result.

Theorem 4.1 (Informal). Given a directed feedback graph G = (V,E) with in-
dependence number α and strong independence number α̃, there exists an al-
gorithm (Algorithm 3) whose pseudo-regret can simultaneously be bounded by
min

{
O(

√
α̃T lnK), O

(√
lnK

√
ln (KT )

√
αT
)}

against adversarial loss sequences
and by O

(
(lnT )2 maxS∈I(G)

∑
i∈S ∆

−1
i

)
against stochastic loss sequences.

We emphasize that Algorithm 3 requires neither prior knowledge of the type of
the environment (adversarial or stochastic), nor the time horizon.

4.1.1 Additional Related Work
The study of bandits with feedback graphs was initiated by Mannor and Shamir
(2011) in the adversarial regime and by Caron et al. (2012) in the stochastic regime.
In the adversarial regime, the optimal regret rates for arbitrary directed graphs
were characterized (up to log factors) by Alon et al. (2015). They showed an
Ω(T ) lower bound for graphs that have non-observable nodes (i.e., with an empty
in-neighborhood). For graphs with observable nodes, they derived pseudo-regret
bounds of order O

(√
αT log(KT )

)
when all nodes are strongly observable (i.e., they

have a self-loop or their in-neighborhood contains all of the other nodes) and of order
O
(
(δ lnK)1/3T 2/3

)
for weakly observable graphs (where each non-strongly observable

node is in the out-neighborhood of some observable node). Here α is the indepen-
dence number of the graph and δ is the dominating number of the weakly observable
portion of the graph. Van der Hoeven et al. (2021) derived results for the multiclass
classification with feedback graphs setting. The setting where the graph can adver-
sarially change over time has been studied by Alon et al. (2017) in the case of directed
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graphs with self-loops. For learners that are allowed to observe the feedback graph at
the beginning of each round, they achieved a bound of O

(
lnK

√
ln(KT )

∑T
t=1 αt

)
,

where αt is the independence number of the graph at time t. For the case of undi-
rected graphs, they proved a refined bound O

(√
lnK

∑T
t=1 αt

)
that holds even when

the learner can only observe the graph at the end of each round. Note that, as
shown by Cohen et al. (2016), in order to take advantage of the graph structure in
the adversarial regime, it not sufficient to observe the neighborhood of the played
action at the end of each round.

In the stochastic regime, Buccapatnam et al. (2014, 2017) considered a fixed,
possibly directed, feedback graph. They derived an asymptotic lower bound showing
that the regret scales as Ω(c∗ lnT ), where c∗—which is related to the domination
number of the graph—is the solution to a linear program expressing the trade-off
between the loss incurred from playing an action and the observations that can be
gathered from playing that action. They proposed an algorithm that can achieve a
matching O

(
c∗ lnT +Kd

)
pseudo-regret bound, where d is the maximum degree in

the feedback graph. In the case of graphs that change over time, Cohen et al. (2016)
derived an O(

∑
i∈S(lnT )/∆i) bound, where S is a set containing an order of α arms

(up to log factors), and α is an upper bound on the independence number of the
graphs in the sequence. They achieved this result without requiring to observe the
graphs fully, and having only access to the neighbourhood of the arm played at the
end of the round. Both of these approaches are based on arm elimination algorithms,
which—by construction—are not suitable for best-of-both-worlds guarantees. The
proof strategy of Cohen et al. (2016) was adapted by Lykouris et al. (2020) to provide
refined bounds for both UCB-N and Thompson Sampling-N, which are variants of
UCB1 (Auer et al., 2002b) and Thompson Sampling (Thompson, 1933). In both
cases, Lykouris et al. (2020) considered undirected feedback graphs and obtained
pseudo-regret bounds that scale as O

(
maxInd∈I(G)

∑
i∈Ind ln(KT )(lnT )/∆i

)
, where

I(G) is the collection of all the independence sets of the graph.
Concurrently to our work, several other papers in online learning with feedback

graphs have appeared. Ito et al. (2022) derive an algorithm with nearly optimal
regret bounds in both the stochastic and adversarial setting. While their results are
more general than ours (they do not require self-loops in the feedback graph), their
regret bounds in the stochastic regime are worse that ours, of order ln(T )3

∆min
, where

∆min is the minimum suboptimality gap. Similarly to Erez and Koren (2021), the
algorithm of Ito et al. (2022) is based on the FTRL framework. They use the entropic
regularization, which makes their algorithm equivalent to EXP3 (Auer et al., 2002b).
Moreover, Ito et al. (2022) rely on the self-bounding technique of Zimmert et al.
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(2019) together with an intricate tuning to simultaneously obtain regret bounds in the
stochastic regime and the adversarial regime, as well as in intermediate ones. In the
stochastic regime, Marinov et al. (2022) provide an improved characterization of the
difficulty of online learning with feedback graphs in both finite-time and asymptotic
cases. Finally, Esposito et al. (2022) study the more general model of stochastic
feedback graphs.

4.2 Problem Setting and Definitions
Problem Setting We consider a sequential decision-making game, where in each
round t = 1, 2, . . ., the learner repeatedly plays an action It ∈ V , where |V | = K,
receives a feedback based on a feedback graph G = (V,E), and suffers a loss `t,It .
We consider directed feedback graphs with self-loops, meaning that (i, i) ∈ E for
each vertex i ∈ V . The feedback received by the learner at the end of round t
is
{
(i, `t,i) : i ∈ Nout(It)

}
, where Nout(i) = {j ∈ V : (i, j) ∈ E} is the out-

neighbourhood of i. Similarly, we define N in(i) = {j ∈ V : (j, i) ∈ E} to be the
in-neighborhood of i. For each arm i ∈ V , `t,i ∈ [0, 1] for t ≥ 1. In the adversarial
regime the losses are generated arbitrarily by an oblivious adversary. In the stochastic
regime they are independently drawn from a fixed but unknown distribution with
expectation E[`1,i]. The performance of the learner is measured in terms of the
pseudo-regret:

RT = E

[
T∑
t=1

`t,It

]
− min

i∈V
E

[
T∑
t=1

`t,i

]
.

In the stochastic regime, we define the best arm i∗ as the arm with the smallest
expected loss, i.e. i∗ = arg mini∈V E[`1,i]. The pseudo-regret can then be expressed
in terms of the suboptimality gaps ∆i = E[`1,i − `1,i∗ ],

RT =
T∑
t=1

∑
i∈V

E [pt,i] ∆i, (4.1)

where pt,i is the probability that the learner plays action i at round t. We define
the smallest suboptimality gap ∆min = mini:∆i>0 {∆i}, and for all i, we define ∆̄i =
max {∆min,∆i}, so that ∆̄i∗ = ∆min. We use Et to express expectation conditioned
on all randomness up to round t.

Properties of Graphs Recall that a dominating set in G is a subset D ⊆ V , such
that for all i ∈ V there exists j ∈ D, such that (j, i) ∈ E. An independent set in G
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is a subset S ⊆ V , such that for all i, j ∈ S, (i, j) 6∈ E and (j, i) 6∈ E. We define the
independence number α(G) as the size of the largest independent set in the graph G.
For clarity, we restate below here the definition of the strong independence number
which was already mentioned in the introduction.

Definition 4.1. Let G = (V,E) be a directed graph. We define a strongly indepen-
dent set on G as an independent set on the subgraph G′ = (V,E ′), where (i, j) ∈ E ′

if and only if (i, j) ∈ E and (j, i) ∈ E. Furthermore, we define α̃(G) as the indepen-
dence number of the subgraph G′.

We use I(G) to denote a collection of all the strongly independent sets in G. We
note that α = α̃ for undirected graphs and α ≤ α̃ for directed graphs.

4.3 Algorithm
We present the EXP3.G++ algorithm (Algorithm 3), which is a combination of
the EXP3.G algorithm of Alon et al. (2015) and the EXP3++ algorithm of Seldin
and Lugosi (2017) with a novel exploration scheme described in Algorithm 4. This
scheme ensures that the additional feedback the learner obtains (relative to the bandit
setting) is used nearly optimally.

To understand the motivation behind the novel exploration scheme, note that
in the stochastic setting EXP3.G++ needs to ensure that the loss of each arm is
observed sufficiently often. However, if we would play each arm too often, the regret
would scale with the number of arms, rather than with the independence number or
some other graph-theoretic quantity. To avoid that, we exploit the central property
of feedback graphs: since we can gather information on certain arms by playing
adjacent arms in the graph, we can restrict exploration to a subset of nodes and
yet obtain sufficient information on all the arms. We exploit this observation, to
design a strategy for selecting an exploration set St at each round t. St is defined in
terms of estimated suboptimality gaps ∆̂t,i, which are maintained by EXP3.G++.
Crucially, the exploration set ensures that, with high probability, the empirical gaps
are reliable estimates of the true suboptimality gaps ∆i. In turn, this ensures that
we observe the loss of each arm sufficiently often.

The construction of the exploration set St is detailed in Algorithm 4, which is
used by EXP3.G++ to update the exploration rates εt,i according to Equation (4.2).
Algorithm 4 starts by sorting the arms according to their gap estimates in ascending
order. The exploration set is then greedily constructed by sequentially selecting the
next arm with the smallest ∆̂t,i, and discarding all the arms in the out-neighborhood
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Algorithm 3: EXP3.G++
Input: Feedback graph G = (V,E),
Learning rates η1 ≥ η2 ≥ · · · > 0; exploration rates εt,i for i ∈ V ,
see Equation (4.2)
Initialize: L̃0 = 0K , L̂0 = 0K and O0 = 0K .
Play each arm once to initialize L̂ and O
for t = K + 1, K + 2, . . . do

∀i ∈ V : UCBt,i = min

{
1,

L̂t−1,i

Ot−1,i

+

√
γ ln (tK1/γ)

2Ot−1,i

}

∀i ∈ V : LCBt,i = max

{
0,

L̂t−1,i

Ot−1,i

−

√
γ ln (tK1/γ)

2Ot−1,i

}
∀i ∈ V : ∆̂t,i = max {0,LCBt,i − minj UCBt,j}
∀i ∈ V : update εt,i based on the gap estimates ∆̂t

∀i ∈ V : qt,i =
exp(−ηtL̃t,i)∑
i∈V exp(−ηtL̃t,j)

, pt,i =

(
1−

∑
j∈V

εt,j

)
qt,i + εt,i

Sample It ∼ pt and play it
Observe {(j, `t,j) : j ∈ Nout(It)} and suffer `t,It .

∀i ∈ V : ˜̀t,i =
`t,i1 [i ∈ Nout(It)]

Pt,i

, where Pt,i =
∑

j∈N in(i) pt,j

∀ i ∈ V : L̃t,i = L̃t−1,i + ˜̀
t,i

∀i ∈ V : L̂t,i = L̂t−1,i + `t,i1 [i ∈ Nout(It)] and Ot,i = Ot−1,i + 1 [i ∈ Nout(It)]
end for

of that arm. The exploration set can be constructed in O(K3) time, but note that
we only need to recompute it only when the order of the estimated suboptimality
gaps changes. The exploration set St has several useful properties, as shown in
Proposition 4.1 below.

Proposition 4.1. Let G = (V,E) be a directed feedback graph on K arms with self-
loops, and let ∆̂1, . . . , ∆̂K be a sequence of suboptimality gaps estimates. Let S be
the exploration set constructed by Algorithm 4 based on the sequence of suboptimality
gaps. Then S is a dominating set of G with the following property: for all i ∈ V
there exists j ∈ S, such that i ∈ Nout(j) and ∆̂j ≤ ∆̂i. Furthermore, S is also a
strongly independent set of G.

Proof. Let S be the output of Algorithm 4. Since G contains self-loops, if i ∈ S, then
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Algorithm 4: Exploration Set Construction
Input: K arms with associated gaps: ∆1,∆2, . . .
Initialize: Exploration set S = ∅.
Let Λ be the list of arms sorted in ascending order of their associated gaps.
for i ∈ Λ do

Add i to S
for j ∈ Nout(i) do

remove j from Λ
end for

end for
Output: S

i ∈ Nout(i) and ∆̂i ≤ ∆̂i. If i 6∈ S, then i was removed from Λ because i ∈ Nout(j)
for some j that, in a previous iteration, was added to S. Since j was considered
before i, we must have ∆̂j ≤ ∆̂i. Now, for all i, j ∈ S , we know by construction
that j 6∈ Nout(i). Thus (i, j) is not a directed edge in G, and so S is a strongly
independent set in G.

We define the exploration rates at round t in terms of the exploration set St,
which is constructed using the aforementioned procedure. For all arms i in V ,

εt,i = min

{
1

2K
,
1

2

√
λ lnK

tK2
, ξt,i

}
, (4.2)

for some constant λ ∈ [1, K] and where ξt,i depends on whether i ∈ St or not:

ξt,i =

{
(β ln t)/(t∆̂2

t,i), if i ∈ St,

4/t2, otherwise,
(4.3)

where β > 0 is a constant. The role of ξt,i changes depending on whether we are
in an adversarial or stochastic environment. In an adversarial environment, we use
4/t2 ≤ ξt,i to ensure that we sample each arm with a small positive probability,
which is essential to bound the second-order term in the regret bound in terms of
the independence number. Note that εt,i ≤ 1

2

√
λ lnK
tK2 , so choosing λ = α ensures that

the cost of exploration is bounded by Õ(
√
αT ). In the stochastic environment, the

construction of the exploration set and the choice of ξt,i ensure that, at each round
t, each i ∈ V is observed with probability at least (β ln t)/(t∆̂2

t,i), independently of
whether i is in the exploration set at round t.
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Formally, our procedure ensures that we can lower bound the probability with
which any arm is observed. In the algorithm we use Pt,i = P [i ∈ Nout(It)] to denote
the probability that arm i is observed at round t. We can lower bound this quantity
by only considering the minimum rate at which each arm is observed according to
the exploration rate εt,i and our construction of the exploration sets. We use ot,i to
denote that quantity, and we have for all t and i,

Pt,i ≥ ot,i = min

{
1

2K
,
1

2

√
λ lnK

tK2
,
β ln t

t∆̂2
t,i

}
. (4.4)

The definition of ot,i uses that St is a dominating set. The difference between εt,i and
ot,i is key to take advantage of the graph structure. First, we need to lower bound
ot,i to ensure that enough observations (counted by Ot,i in Algorithm 3) are made for
each arm, such that our gap estimates are reliable. Simultaneously, we upper bound
εt,i to ensure that the extra exploration is not too costly. Here we benefit from the
fact that St is a strongly independent set on G.

We ensure that all arms get sufficiently many observations and derive the fol-
lowing concentration bounds on the gap estimates ∆̂t,i computed by Algorithm 3.
Concentration of the gap estimates around the true gaps is crucial for bounding the
regret in the stochastic setting.

Lemma 4.1. If Algorithm 3 is run with parameters γ ≥ 3, β ≥ 64(γ + 1) ≥ 256,
and exploration rates εt,i, such that for all t ≥ 1 and i ∈ V , Pt,i satisfies equation
(4.4) for some λ ∈ [1, K], then for all i ∈ V and t ≥ 1,

P
[
∆̂t,i ≥ ∆i

]
≤ 1

Ktγ−1
.

Furthermore, for any arm i with ∆i > 0 let tmin(i) := max
{
t ≥ 0 : 1

2

√
λ lnK
tK2 ≤ β ln t

t∆2
i

}
.

Then for any arm i with ∆i > 0 and t ≥ tmin(i),

P
[
∆̂t,i ≤

1

2
∆i

]
≤
(

ln t

t∆2
i

)γ−2

+
2

Ktγ−1
+ 2

(
1

t

) β
10

. (4.5)

A proof of the lemma is provided in Section 4.8.3.
We run the algorithm with γ = 4 and β = 64(γ + 1) = 320 which is a different

parameterization from the EXP3++ algorithm (Seldin and Lugosi, 2017), which uses
γ = 3 and β = 256. Picking a larger value of γ means that the confidence intervals are
slightly larger, which allows us to obtain a better dependency on the suboptimality
gaps.
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Indeed, under the same assumptions as in Lemma 4.1, if γ = 4 and t ≥ tmin(i),
we have that (ln t)2

t
≤ λ∆4

i lnK

4K2β2 , implying(
ln t

t∆2
i

)2

=
(ln t)2

t2∆4
i

=
(ln t)2

t

1

t∆4
i

≤ λ∆4
i lnK

4K2β2

1

t∆4
i

=
1

t

λ lnK

4K2β2
.

4.4 Adversarial Analysis
Our result for the adversarial regime generalizes the analysis of both Alon et al.
(2017) and Alon et al. (2015) as we derive a bound that depends on the both the
independence number and the strong independence number simultaneously. In order
to do so, we define the quantity:

θt :=
∑
i∈V

pt,i
Pt,i

, (4.6)

which is the sum of the ratios of the probability of playing an arm to the probability
of observing its loss. Bounding this sum of ratios is key to obtain a dependency on
graph quantities, and Alon et al. (2017) and Alon et al. (2015) respectively bound
equation (4.6) in terms of the strong independence number (Lemma 4.8) and the
independence number (Lemma 4.7) at the cost of a logarithmic factor. By defining
the learning rate in terms of θ, it is possible to obtain both bounds simultaneously.
Theorem 4.2. Assume that Algorithm 3 is run with a directed feedback graph
G = (V,E), with learning rate ηt =

√
lnK

2
∑t−1

s=K θs
and the exploration rate defined

in (4.2)–(4.3) with γ = 4, and β = 320. For any λ ∈ [1,min (α̃, α lnT )], the pseudo-
regret against any oblivious loss sequence satisfies

RT ≤ min
{
4
√
α̃T lnK, 9

√
lnK

√
ln (KT )

√
αT
}
+ 2K,

where K = |V |, α is the independence number of G and α̃ is its strong independence
number.

On undirected graphs, the first part of the bound is always smaller, and it matches
the bound of Alon et al. (2017). This implies that in the adversarial regime we are
not paying a price for the extra guarantees that we derive in the stochastic regime.
On directed graphs, if the difference between α and α̃ is large, the second half of the
bound may be advantageous. Furthermore, we note that the extra logarithmic factor
is only of order

√
ln(T ), which is a slight improvement on the lnT dependency of

Alon et al. (2015).
We give a sketch of the proof here and defer the detailed proof to Appendix 4.8.2.
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Proof sketch. We separate the first K rounds, in which the algorithm plays deter-
ministically, from the remaining rounds, where we bound separately the contributions
to the regret from the exponential weights and from the extra exploration. To bound
the contribution of the extra exploration, we use that εt,i ≤ 1

2

√
λ lnK
tK2 for all t and i,

meaning that the extra exploration contributes at most O(
√
λT lnK) to the regret.

For bounding the contribution of the exponential weights to the regret, we follow
the standard analysis of EXP3 with time varying learning rate (Bubeck and Cesa-
Bianchi, 2012). We bound the second order term by exploiting the fact that pt,i and
qt,i are close to each other because εt,i ≤ 1

2K
for all t and i. This allows us to bound

the second order term in terms of θt, which simplifies with the learning rate. This
quantity can be bounded by the strong independence number of the graph (Lemma
10 Alon et al. (2017)) or the independence number of the graph at the cost of a
logarithmic factor (Lemma 5 Alon et al. (2015)), which gives the two parts of the
bound.

4.5 Stochastic Analysis
In the stochastic regime, tuning λ affects the tightness of the bound. If the learner
has knowledge of the independence and strong independence numbers but does not
know the time horizon, picking λ = α is a safe choice to ensure that Theorem 4.2
holds.

Our result for the stochastic regime is given in the following theorem.

Theorem 4.3. Let G = (V,E) be a directed feedback graph with K = |V | and inde-
pendence number α and strong independence number α̃. Under the same conditions
as in Theorem 4.2 and choosing λ = α, the pseudo-regret of Algorithm 3 against any
stochastic stochastic loss sequence, satisfies:

RT ≤ max
Ind∈I(G)

{ ∑
i∈Ind :∆i>0

4β (lnT )2

∆i

}
+ 2α lnT

+
∑

i:∆i>0

16K

∆i

+
1020βK

∆2
min

(
ln
(

βK

∆min

))3/2

,

where I(G) is the collection of all strongly independent subsets of G.

We remark that the last two terms do not depend on T . Moreover, the leading
coefficient of the term scaling with (lnT )2 sums over an independence set (as opposed
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to summing over the entire action set). The lower bound for this problem scales
as Ω(c∗ lnT ), where c∗ is a graph dependent quantity which takes the size of the
suboptimality gaps into account (Buccapatnam et al., 2014). Compared to that,
our result is suboptimal by a logarithmic factor and our dependency on the strong
independence number of G is weaker. The algorithms of Buccapatnam et al. (2014,
2017) and Cohen et al. (2016) almost match the lower bound, but their elimination
based structure prevents them from being applicable in best-of-both-worlds settings.
In the undirected case, we obtain the same dependence on T and on the set of arms
as the UCB-N algorithm analysed by Lykouris et al. (2020).

We provide a sketch of the proof here. The detailed version can be found in
Appendix 4.8.4.

Proof sketch. Let tmin = maxi:∆i>0 {tmin(i)} = max
{
t ≥ 0 : 1

2

√
α lnK
tK2 ≤ β ln t

t∆2
min

}
.

The pseudo-regret can be decomposed by treating the first tmin rounds like in the ad-
versarial case, and by using a refined bound for the stochastic regime in the remaining
rounds.

RT = Rtmin +
T∑

t=tmin

∑
i :∆i>0

∆iE [pt,i] ≤ Rtmin +
T∑

t=tmin

∑
i :∆i>0

∆i

(
E [qt,i] + E [εt,i]

)
. (4.7)

Note that tmin is time independent: tmin = c
∆4

min

(
ln
(

c
∆4

min

))2
for a positive constant

c, therefore,

Rtmin = C0

√
α tmin log (tmin) = C1

K

∆2
min

(
ln
(

K

∆min

))
, (4.8)

where the first equality follows from the second part of the bound presented in
Theorem 4.2 and C0, C1 are universal constants. After the initial tmin rounds, enough
observations on all arms have been gathered to ensure with high probability that the
gap estimates of all arms are close to their true gaps, as stated in Lemma 4.1. These
concentration inequalities allow us to show that the two following propositions hold.

Proposition 4.2 (informal). The contribution of the exponential weights to the
pseudo-regret can be bounded as:

T∑
t=tmin

∑
i :∆i>0

∆iE [qt,i] ≤ C2

∑
i :∆i>0

K

∆i

+O (α lnT )

for a universal constant C2.
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Proposition 4.3 (informal). The contribution of the extra exploration to the pseudo-
regret can be bounded as:

T∑
t=tmin

∑
i :∆i>0

∆iE [εt,i] = O

(
max

Ind∈I(G)

{ ∑
i∈Ind :∆i>0

ln2 T

∆i

}
+ α lnT

)
.

Formal statements and proofs of the above propositions are in Appendix 4.8.4.
These propositions ensure that after tmin steps the exponential weights of all subop-
timal arms i are small, the extra exploration εt,i achieves the correct rate, and that
the sum of the probabilities that the suboptimality gap estimates fail in any of the
rounds is of order O(α lnT ). Applying these propositions to Equation (4.7) finishes
the proof.

Our approach to bound the pseudo-regret in the initial rounds differs from the
one of Seldin and Lugosi (2017) as we take advantage of the adversarial bound
in these rounds. (Mourtada and Gaïffas (2019) used a similar approach to derive
best-of-both-worlds guarantees for the Hedge algorithm.) This refinement improves
upon the result of Seldin and Lugosi (2017) by replacing

∑
i:∆i>0

1
∆3

i
with 1

∆2
min

(numerical constants ignored) in the time-independent part of the bound.

For instances where the independence number and the strong independence num-
ber are close to each other, in particular in the case of undirected graphs, the analysis
of the initial rounds can be improved by using the first part of Theorem 4.2, which
depends on α̃ rather than the second part, which depends on α when bounding the
regret on the initial tmin rounds.

Corollary 4.1. Let G = (V,E) be a directed feedback graph with K = |V | and a
strong independence number α̃. Under the same conditions as in Theorem 4.2, the
pseudo-regret of Algorithm 3 against any stochastic stochastic loss sequence, satisfies:

RT ≤ max
Ind∈I(G)

{ ∑
i∈Ind :∆i>0

4β (lnT )2

∆i

}
+ 2α̃ lnT +

∑
i :∆i>0

16K

∆i

+
161βK

∆2
min

ln
(√

βK

∆min

)
.

4.6 Extension to Time Varying Feedback Graphs
The results presented in Theorem 4.3 and Corollary 4.1 assume that the learner
has knowledge of the independence and strong independence numbers of the graph.
Computing those numbers are NP-hard problems, which could lead to prohibitively
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large computation times. This is particularly true if one considers a natural extension
of our results to the setting where the feedback graphs are allowed to change over
time.

We consider a setting where an oblivious adversary chooses a feedback graph at
each round and the algorithm observes the graph at the beginning of the round. In
the stochastic regime, the knowledge of the full feedback graph is required at the
beginning of the round in order to construct the exploration set.

As we do not know the independence numbers ahead of time, we tune the ex-
ploration rates defined in equation (4.2) with λ = 1 to ensure that the exploration
is never too large. This exploration rate allows us to apply Lemma 4.1 with λ = 1,
and derive the following result.

Theorem 4.4. Assume that Algorithm 3 is run on a sequence of arbitrarily generated
feedback graphs G1, G2, . . . with learning rate ηt =

√
lnK

2
∑t−1

s=K θs
and exploration rates

defined in (4.2) and (4.3) with λ = 1, γ = 4 and β = 320. Then the pseudo-regret
against any oblivious loss sequence satisfies

RT ≤ min

4

√√√√ T∑
t=1

α̃t lnK, 9
√

lnK
√

ln (KT )

√√√√ T∑
t=1

αt

+ 2K,

where for all t ≥ 1, αt and α̃t are the independence and strong independence numbers
of Gt. Simultaneously, the pseudo-regret against stochastic losses satisfies:

RT ≤ inf
0≤n≤T

{
max

S⊂V :|S|=Ãn

{ ∑
i∈S:∆i>0

4β ln2 T

∆i

}
+ n

}

+ 2 lnT +
∑

i:∆i>0

16K

∆i

+
161βK3/2

∆2
min

ln
(√

βK

∆min

)
.,

where Ãn is the nth largest element in the set containing the strong independence
number of all the Gt, for t ≤ T .

A proof of this theorem is provided in Appendix 4.8.5.
In the adversarial regime, adapting to graphs that change over time is seamless

and does not come at any cost, as using a sequence of fixed graphs exactly recovers the
bound of Theorem 4.2. In the stochastic regime, using λ = 1 allows us to obtain the
same tight constants as in Corollary 4.1, and only comes at the cost of a multiplicative√
K factor in the last term of the bound. Furthermore, the first term of the bound

is a sum over the Ãn arms that have the smallest non-zero suboptimality gaps. In
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the case of undirected graphs, if we upper bound the infimum by taking n = 0,
we have α̃0 = maxt>1 {α(Gt)}, which matches the dependency on gaps achieved by
Cohen et al. (2016), who got an O

(
maxS⊂V \{i∗}:|S|=O(α)

∑
i∈S

lnT
∆i

)
bound. This trick

is particularly useful if most of the graphs have a small strong independence number
and very few have a large independence number, as we can consider the graphs that
have a large independence number separately at the cost of an additive constant and
in return the dominating term will scale with the strong independence number of the
remaining graphs, which may be much smaller.

4.7 Conclusion
Erez and Koren (2021) left open the following questions: is it possible to achieve
best-of-both-worlds regret bounds in terms of the independence number, and can
the dependence on T in their regret bounds be improved? We partially answered
these questions with the EXP3.G++ algorithm and derived near-optimal best-of-
both-worlds guarantees for directed feedback graphs. Our regret bounds depend
on the independence number of the feedback graphs and improve upon the results
of Erez and Koren (2021) by poly-logarithmic factors in both the adversarial and
stochastic regimes. Furthermore, we extended our results to time-varying feedback
graphs with a computationally efficient algorithm.

4.8 Appendix

4.8.1 Tools to Bound Series
We use the following lemmas to bound series.

Lemma 4.2 (Lemma 11 (Seldin and Lugosi, 2017)). For γ ≥ 2 and m ≥ 1:
n∑

k=m

1

kγ
≤ 1

2mγ−1
.

Lemma 4.3 (Lemma 8 (Seldin et al., 2014)). For any sequence of non-negative
numbers a1, a2, . . . , such that a1 > 0 and any power γ ∈ (0, 1) we have:

T∑
t=1

at(∑t
s=1 as

)γ ≤ 1

1− γ

(
T∑
t=1

at

)1−γ

.
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We also require a variation of this bound to handle the case where the denom-
inator of the sum only sums up to index t − 1. The proof of this Lemma follows
from Gaillard et al. (2014, Lemma 14) that we generalized to adapt to sequences of
at that are not restricted to the [0, 1] interval.

Lemma 4.4. For any sequence a1, a2, . . . , such that as ∈ [1, K] for all s, we have:

T∑
t=1

at√
K +

∑
s<t as

≤ 2

√√√√ T∑
t=1

at +
√
K.

Proof. Let st =
∑t

n=1 at, and define s0 := 0. We want to bound
∑T

t=1
at√

K+
∑

s<t as
=∑T

t=1
at√

K+st−1
, where 1√

K+s
is a decreasing function of s. Thus we have:

T∑
t=1

at√
K + st−1

=
T∑
t=1

at√
K + st

+
T∑
t=1

at

(
1√

K + st−1

− 1√
K + st

)

≤
T∑
t=1

at√
st

+K
T∑
t=1

(
1√

K + st−1

− 1√
K + st

)

≤
T∑
t=1

at√
st

+K
1√

K + s0

≤ 2
√
st +

√
K,

where we use Lemma 4.3 in the last step.

Lemma 4.5 (Lemma 3 (Thune and Seldin, 2018)). For c > 0 we have
∞∑
t=1

e−c
√
t ≤ 2

c2
and

∞∑
t=1

e−ct ≤ 1

c
.

4.8.2 Analysis of the Adversarial Regime
We follow the proof structure of Theorem 2 from Alon et al. (2015), and use Lemma
7 from Seldin and Slivkins (2014) where Xt,i = ˜̀

t,i for all t, i as a base for the analysis
of EXP3.
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Lemma 4.6 (Lemma 7 (Seldin and Slivkins, 2014)). For any K sequences of non-
negative numbers X1,i, X2,i, . . . indexed by i ∈ [K], and any non-increasing positive
sequence η1, η2, . . . , for qt,i =

exp(−ηt
∑t−1

s=1 Xs,i)∑
j∈[K] exp(−ηt

∑t−1
s=1 Xs,j)

(assuming for t = 1 the sum in
the exponent is 0) we have:

T∑
t=1

K∑
i=1

qt,iXt,i − min
k∈[K]

T∑
t=1

Xt,k ≤
lnK

ηT
+

T∑
t=1

ηt
2

∑
i∈[K]

qt,iX
2
t,i

 .

We then consider two ways to take advantage of the graph structure. In the first
case, we rely on Lemma 5 from Alon et al. (2015) in order to derive a bound that
scales with the independence number.

Lemma 4.7 (Lemma 5 (Alon et al., 2015)). Let G = (V,E) be a directed graph with
|V | = K, in which each node i ∈ V is assigned a positive weight wi. Assume that∑

i∈V wi ≤ 1, and that wi ≥ ε for all i ∈ V for some constant 0 < ε < 1
2
. Then

∑
i∈V

wi

wi +
∑

j∈N in(i)wj

≤ 4α ln
(
4K

αε

)
,

where α = α(G) is the independence number of G.

In the second case, we want to derive a bound that scales with the strong inde-
pendence number of the graph. To do so, we rely on Lemma 10 from Alon et al.
(2017). That Lemma depends on a different graph dependent quantity: the max-
imum acyclic subgraph of a feedback graph G, which is defined by Alon et al. as
follows. We show that we can upper bound the maximum acyclic subgraph of any
graph G in terms of its strong independence number.

Definition 4.2. Given a directed graph G = (V,E), an acyclic subgraph of G is any
G′ = (V ′, E ′) such that V ′ ⊆ V and E ′ = E ∩ (V ′ × V ′), with no (directed) cycles.
We denote by mas(G) = |V ′| the maximum size of such a V ′.

A key property of the maximum acyclic subgraph is that for any graph G, α(G) ≤
mas(G) and for undirected graphs, α(G) = mas(G) (Alon et al., 2017). We now
show that for any directed graph G, the maximum acyclic subset of G can be upper
bounded by its strong independence number.

Proposition 4.4. Let G = (V,E) be a directed graph. mas(G) ≤ α̃(G).
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Proof. Let G′ = (V ′, E ′) be an acyclic subgraph of G, where V ′ ⊆ V and E ′ =
E ∩ (V ′ × V ′). For any i, j ∈ V ′, we know that (i, j) 6∈ E ′ or (j, i) 6∈ E ′, otherwise i
and j would be part of a cycle which contradicts the definition of G′. Thus i and j
are strongly independent and V ′ is a strongly independent set. As this holds for all
acyclic subgraphs of G, we deduce that mas(G) ≤ α̃(G) which finishes the proof.

This characterization allows us to use the following lemma and derive bounds
that scale with the strong independence number.

Lemma 4.8 (Lemma 10 Alon et al. (2017)). let G = (V,E) be a directed graph with
vertex set V = {1, . . . , K}, and arc set V . Then, for any distribution p over V we
have:

K∑
i=1

pi
pi +

∑
j∈N in(i) pj

≤ mas(G).

With those results, we can move on to the proof of Theorem 4.2.

Proof of Theorem 4.2. Without loss of generality, we assume that K ≥ 2.
Recall that the algorithm initializes by playing each arm once, which adds at

most K to the regret. The EXP3 part of the analysis starts from round K + 1.
We can upper trivially upper bound the first K rounds by 1 and then analyse the
algorithm from round t = K + 1. Precisely, we bound the pseudo-regret as:

RT = E

[
T∑
t=1

`t,It

]
− min

i
E

[
T∑
t=1

`t,i

]

≤ K + E

[
T∑

t=K+1

`t,It

]
− min

i
E

[
T∑

t=K+1

`t,i

]

= K + E

[
T∑

t=K+1

K∑
i=1

pt,iEt

[
˜̀
t,i

]
−

T∑
t=K+1

Et

[
˜̀
t,i∗

]]

≤ K + E

[
T∑

t=K+1

K∑
i=1

qt,iEt

[
˜̀
t,i

]
−

T∑
t=K+1

Et

[
˜̀
t,i∗

]]
+ E

[
T∑

t=K+1

K∑
i=1

εt,iEt

[
˜̀
t,i

]]
,

(4.9)

where i∗ = arg min
{∑T

t=K+1 Et

[
˜̀
t,i∗

]}
, and Et

[
˜̀
t,i

]
= `t,i. Equation (4.9) follows

from pt,i ≤ qt,i + εt,i. We can consider the contribution of qt,i and εt,i separately.
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We recall that the learning rate is defined from index t ≥ K + 1 by:

ηt =

√
lnK

2
∑t−1

s=K θs
, where θt =

∑
i∈V

pt,i
Pt,i

.

As the quantities pt,i are not defined for t ≥ K, we set θK := K to ensure that
the learning rate is well defined and non-increasing at all the rounds where we use
exponential weights. As the learning rate is a random variable, we have:

RT ≤ K + E

[
T∑

t=K+1

K∑
i=1

qt,iEt

[
˜̀
t,i

]
−

T∑
t=K+1

Et

[
˜̀
t,i∗

]]
+ E

[
T∑

t=K+1

K∑
i=1

εt,iEt

[
˜̀
t,i

]]

≤ K + E
[
Et

[
lnK

ηT

]]
+ E

[
T∑

t=K+1

Et

[∑
i∈V

ηt
2

qt,i
Pt,i

]]
+ E

[
T∑

t=K+1

K∑
i=1

Et

[
εt,i ˜̀t,i

]]
.

(4.10)

We now want to bound each term as a function of the θt.
The first term becomes:

E
[
Et

[
lnK

ηT

]]
≤

√
2 lnK E

Et


√√√√T−1∑

s=K

θs

 .

To bound the second term, we first note that using 1
2K

as an upper bound on εt,
we ensure that for all t and i, pt,i ≥ (1−

∑
j∈V εt,j)qt,i ≥ 1

2
qt,i which gives:∑

i∈V

qt,i
Pt,i

≤ 2
∑
i∈V

pt,i
Pt,i

= 2θt.

Then, the second term can be bounded as:

E

[
T∑

t=K+1

Et

[∑
i∈V

ηt
2

qt,i
Pt,i

]]
≤ E

[
T∑

t=K+1

Et

[
ηt
∑
i∈V

pt,i
Pt,i

]]

≤
√

lnK E

 T∑
t=K+1

Et

 θt√
2
∑t−1

s=K θs


≤

√
2 lnK E

Et


√√√√ T∑

t=K+1

θt

+
√
K, (4.11)
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where equation (4.11) follows from Lemma 4.4.
For the last term, we recall that we bounded εt,i ≤ 1

2

√
λ lnK
tK2 , and we have:

E

[
T∑

t=K+1

K∑
i=1

εt,iEt

[
˜̀
t,i

]]
≤

T∑
t=K+1

E

[
K∑
i=1

1

2

√
λ lnK

tK2
Et

[
˜̀
t,i

]]

≤
T∑
t=1

1

2

√
λ lnK

t

≤
√
λT lnK.

Using those three bounds in equation 4.10 gives:

RT ≤ 2K + 2
√
2 lnK E

Et


√√√√ T∑

t=K+1

θt

+
√
λT lnK. (4.12)

All that remains is to bound θ and λ. To obtain the first part of the bound, we
use Proposition 4.4 and Lemma 4.8, and deduce that for all t ≤ K + 1 :

θt ≤ α̃ , which gives

√√√√ T∑
t=K+1

θt ≤
√
α̃T . (4.13)

Using λ ≤ α̃, we deduce that:

RT ≤ 2K + 2
√
2 lnK

√
α̃T +

√
α̃T lnK

≤ 4
√
α̃T lnK + 2K. (4.14)

For the second part of the bound, we use Lemma 4.7 and recall that for all t and
i, εt,i ≥ 4

t2
. We deduce the following upper bound:

θt ≤ 4α ln
(
t2K

α

)
≤ 8α ln (KT ) , which gives

√√√√ T∑
t=K+1

θt ≤
√

8αT ln (KT ).

Using λ ≤ α lnT , we deduce that:

RT ≤ 2K + 2
√
2 lnK

√
8αT ln (KT ) +

√
lnK

√
lnT

√
αT

≤ 9
√

lnK
√

ln (KT )
√
αT + 2K, (4.15)

Taking the minimum between equations (4.14) and (4.15) finishes the proof.

90



Chapter 4 | A Best-of-Both-Worlds Algorithm for Online Learning with Feedback Graphs

4.8.3 Properties of the Gaps Estimates
In this section, we provide upper and lower high probability bounds for the estimates
of the suboptimality gaps. We decompose the proof of Lemma 4.1 in two parts.

4.8.3.1 Upper bound

We start by deriving a high probability upper bound. For this bound, we have to
be careful with the fact that the gap estimates are clipped in the [0, 1] interval. We
first upper derive bounds on UCB and LCB.

Lemma 4.9. The confidence intervals satisfy:

P [UCBt,i ≤ µi] ≤
1

KT γ−1

and P [LCBt,i ≥ µi] ≤
1

KT γ−1
.

Proof. Let UCBt and LCBt be the non clipped versions of the UCBt and LCBt. In
other words, for all i and t:

UCBt,i =
L̂t−1,i

Ot−1,i

+

√
γ ln (tK1/γ)

2Ot−1,i

and LCBt,i =
L̂t−1,i

Ot−1,i

−

√
γ ln (tK1/γ)

2Ot−1,i

.

Then, through standard UCB analysis using Hoeffding’s inequality (see for example
Seldin and Lugosi (2017)), we have:

P
[
UCBt,i ≤ µi

]
≤ 1

KT γ−1

and P
[
LCBt,i ≥ µi

]
≤ 1

KT γ−1
.

By definition, we have UCBt,i = min
{
1,UCBt,i

}
≤ UCBt,i and LCBt,i =

max
{
0,LCBt,i

}
≥ LCBt,i, so:

P [UCBt,i ≤ µi] ≤ P
[
UCBt,i ≤ µi

]
≤ 1

KT γ−1

and P [LCBt,i ≥ µi] ≤ P
[
LCBt,i ≥ µi

]
≤ 1

KT γ−1
.
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Using this result, we can move on to bound the gap estimates.

Proof of the first part of Lemma 4.1.
We recall that ∆̂t,i = max {0,LCBt,i − minj 6=i UCBt,j}. Then using Lemma 4.9, we
have:

P
[
∆̂t,i ≥ ∆i

]
= P

[
LCBt,i − min

j 6=i
UCBt,j ≥ ∆i

]
≤ P

[
LCBt,i − min

j 6=i
UCBt,j ≥ ∆i

]
≤ P [LCBt,i ≥ µi] +

∑
j 6=i

P [UCBt,j ≤ µj]

≤ K
1

Ktγ−1
=

1

tγ−1
,

where the first step takes advantage of the fact that ∆i > 0 for all i, allowing to
remove the maximum. The second step relies on ∆i ≤ ∆̄i, and we finish the proof
with a union bound and applying Lemma 4.9.

4.8.3.2 Lower bound

To derive a lower bound on the gap estimates and prove the second part of Lemma 4.1,
we start by proving some intermediate results. recall that we use ot,i to lower bound
the probability of observing the loss of arm i at round t, and that by construction
we have for all t, i:

ot,i = min

{
1

2K
,
1

2

√
λ lnK

tK2
,
β ln t

t∆̂2
t,i

}
.

We also recall that for all i such that ∆i > 0, we defined tmin(i) as:

tmin(i) = max

{
t ≥ 0 :

1

2

√
λ lnK

tK2
≤ β ln t

t∆2
i

}
.

A lower bound for ot,i. As ∆̂t,i is a random variable, we derive a high probability
lower bounds on ot,i.
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Definition 4.3. We define the following events:

E(i, t) =
{
∀s ∈ [K + 1, t] : os,i ≥

β ln t

t∆2
i

}
,

E(i∗, i, t) =
{
∀s ∈ [K + 1, t] : os,i∗ ≥

β ln t

t∆2
i

}
,

where i∗ is an optimal arm and i a suboptimal arm.
Note that the second event lower bounds the rate at which observations on opti-

mal arm i∗ are gathered in terms of the gap with the suboptimal arm i.
Lemma 4.10. For any i suboptimal arm and i∗ optimal arm, and t ≥ tmin(i) and
γ ≥ 3, we have:

P
[
E(i, t)

]
≤
(

ln t

t∆2
i

)γ−2

,

P
[
E(i∗, i, t)

]
≤
(

ln t

t∆2
i

)γ−2

.

Proof of Lemma 4.10. The proof is very similar for the two inequalities. By defini-
tion for all s and i, we have ∆̂s,i ≤ 1. Thus, β ln s

s∆̂2
s,i

≥ β ln s
s

. Then for s ∈
[
K + 1,

t∆2
i

ln t

]
,

we have β ln s
s

≥ β ln s ln t
t∆2

i
≥ β ln t

t∆2
i

, as s > K ≥ 2, so ln s ≥ 1. Furthermore, as t ≥ tmin(i)

then for all s ∈ [K + 1, t], we have 1
2

√
λ lnK
sK2 ≥ 1

2

√
λ lnK
tK2 ≥ β ln t

t∆2
i

and 1
2K

≥ β ln t
t∆2

i
. We

deduce:

P
[
E(i, t)

]
= P

[
∃s ∈

[
t∆2

i

ln t
, t

]
: os,i ≤

β ln t

t∆2
i

]
≤ P

[
∃s ∈

[
t∆2

i

ln t
, t

]
: ∆̂s,i ≥ ∆i

]
(4.16)

≤
∑

s=
t∆2

i
ln t

1

sγ−1

≤ 1

2

(
ln t

t∆2
i

)γ−2

,

where the last summation follows from Lemma 4.2. The proof of the second inequality
is similar, Equation (4.16) only requiring the extra step:

P
[
∃s ∈

[
t∆2

i∗

ln t
, t

]
: ∆̂s,i ≥ ∆i

]
≤ P

[
∃s ∈

[
t∆2

i∗

ln t
, t

]
: ∆̂s,i ≥ ∆i∗

]
,
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which follows from ∆i ≥ ∆min = ∆i∗ as i is a suboptimal arm and i∗ is an optimal
arm.

A lower bound for Ot,i We now want to lower bound the number of observations
of an arm up to round t. We rely on the following concentration inequality.
Theorem 4.5 (Theorem 8 (Seldin and Lugosi, 2017)). Let X1, . . . , Xn be Bernoulli
random variables adapted to filtration F1, . . . ,Fn (in particular, Xs may depend on
X1, . . . , Xs−1). Let Eλ be the event Eλ = {∀s : E [Xs|Fs−1] ≥ λ}. Then,

P

[(
n∑

s=1

Xs ≤
1

2
nλ

)
∧ Eλ

]
≤ e−nλ/8.

We recall that the first K rounds of the algorithm are deterministic, and that each
arm is observed at least once. We use O[K+1:t],i to refer to the number of observations
from rounds K + 1 to t, and we note that Ot,i ≥ O[K+1:t],i + 1. We have:

P
[
Ot,i ≤

β ln t

2∆2
i

]
≤ P

[
O[K+1:t],i ≤

β ln t

2∆2
i

− 1

]
≤ P

[
O[K+1:t],i ≤

β ln t

2∆2
i

t−K

t

]
,

where the second step follows from, β ln t
2∆2

i
− 1 ≤ β ln t

2∆2
i

t−K
t

⇔ Kβ ln t
2t∆2

i
≤ 1, which is true

for t ≥ tmin(i) as
Kβ ln t

2t∆2
i

≤ Kβ ln t

2∆2
i

∆4
iλ lnK

4K2β2 ln2 t
≤ ∆2

i lnK

8 ln t
≤ ∆2

i

8
≤ 1.

We can apply Theorem 4.5 on the t − K random variables 1 [i ∈ Nout(Is)] for s ∈
[K + 1, t] and we get:

P
[
Ot,i ≤

β ln t

2∆2
i

]
≤ P

[(
O[K+1:t],i ≤

β ln t

2∆2
i

t−K

t

)
∧ Et,i

]
+ P

[
Et,i
]

≤ e
− t−K

t
β ln t

8∆2
i +

1

2

(
ln t

t∆2
i

)γ−2

≤ e
− 3

4
β ln t

8∆2
i +

1

2

(
ln t

t∆2
i

)γ−2

≤
(
1

t

)β/10

+
1

2

(
ln t

t∆2
i

)γ−2

,

where we use that t ≥ tmin(i) ≥ 4K, so t−K
t

≥ 3
4
.
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A lower bound for ∆̂t,i Using Lemma 4.9, we know that the upper and lower
confidence bounds satisfy: P [UCBt,i∗ ≤ µi∗ ∨ LCBt,i ≥ µi] ≤ 2

Ktγ−1 . Then assuming
that UCBt,i∗ ≥ µi∗ and LCBt,i ≤ µi, we have:

∆̂t,i ≥LCBt,i − min
j 6=i

UCBt,i

≥LCBt,i − UCBt,i∗

≥ L̂t−1,i

Ot−1,i

−

√
γ ln (tK1/γ)

2Ot−1,i

− L̂t−1,i∗

Ot−1,i∗
−

√
γ ln (tK1/γ)

2Ot−1,i∗

=
L̂t−1,i

Ot−1,i

+

√
γ ln (tK1/γ)

2Ot−1,i

− 2

√
γ ln (tK1/γ)

2Ot−1,i

−

(
L̂t−1,i∗

Ot−1,i∗
−

√
γ ln (tK1/γ)

2Ot−1,i∗

)
− 2

√
γ ln (tK1/γ)

2Ot−1,i∗

=UCBt,i − LCBt,i∗ − 2

√
γ ln (tK1/γ)

2Ot−1,i

− 2

√
γ ln (tK1/γ)

2Ot−1,i∗

≥∆i − 2

√
γ ln (tK1/γ)

2Ot−1,i

− 2

√
γ ln (tK1/γ)

2Ot−1,i∗
.

Using the previously derived high probability bounds, assuming that Ot,i ≥ β ln t
2∆2

i
and

Ot,i∗ ≥ β ln t
2∆2

i
, and using that t ≥ tmin(i) ≥ K, we have:

∆̂t,i ≥∆i − 2

√
γ ln (tK1/γ)

2Ot−1,i

− 2

√
γ ln (tK1/γ)

2Ot−1,i∗

≥∆i − 4

√
2∆2

i γ ln (tK1/γ)

2β ln t

≥∆i − 4

√
∆2

i (γ + 1) ln (tK1/γ)

β ln t
(4.17)

=∆i

(
1− 4

√
γ + 1

β

)
,

where equation (4.17) follows from t ≥ K, so γ ln
(
tK1/γ

)
= γ ln (tγK) ≤ ln (tγt) =

(γ + 1) ln t. Using that β ≥ 64 (γ + 1), we have:
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P
[
∆̂t,i ≤

1

2
∆i

]
≤
(

ln t

t∆2
i

)γ−2

+
2

Ktγ−1
+ 2

(
1

t

)β/10

.

4.8.4 Analysis of the Stochastic Regime
In the stochastic regime, we decompose the regret bound into three terms that we
bound separately. First, during the initial tmin = maxi:∆i>0 {tmin(i)} rounds we use
the adversarial bound. Then, in the remaining rounds we bound the contribution of
the exponential weights and of the exploration separately.

4.8.4.1 Control over the Initial Rounds

We start by deriving a time independent upper bound on tmin(i) for all vertices i
such that ∆i > 0.

Proposition 4.5. For any constant c > e2, we have:

max
t

{
t ≤ c(ln t)2

}
≤ 25c (ln c)2.

Proof. First, we note that for t = 3,

c(ln t)2 ≥ e2(ln 3)2 ≥ 3 = t,

so the inequality is fulfilled at t = 3.
Furthermore, (c(ln t)2)′ = 2c ln t

t
is a decreasing function of t for t ≥ e and such

that limt→∞ 2c ln t
t

= 0, whereas (t)′ = 1 is constant. Thus, maxt {t ≤ c(ln t)2} exists
and is solution of

t = c (ln t)2 .

Let’s upper bound this t. We denote by W−1 the product log function. Then we
have:

t =c (ln t)2

√
t =

√
c ln t

√
t =2

√
c ln(

√
t)

x =b ln(x) b = 2
√
c, x =

√
t

x =− bW−1

(
−1

b

)
for b ≥ e.
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By Chatzigeorgiou (2013, Theorem 1), we have for b ≥ e:

−bW−1

(
−1

b

)
=− bW−1

(
− exp

(
− ln

(
b

e

)
− 1

))
≤b

(
1 +

√
2 ln

(
b

e

)
+ ln

(
b

e

))
.

Thus, we have that for c ≥ e2,

t ≤4c

(
1 +

√
2 ln

(
2
√
c

e

)
+ ln

(
2
√
c

e

))2

≤4c (1 + 2 ln c)2

≤25c (ln c)2,

where the last step follows from (1 + 2 ln c)2 ≤ (1
2

ln(e2) + 2(ln c))2 ≤ (2.5 ln c)2 =

6.25 (ln c)2.

Proposition 4.6. Under the conditions of Lemma 4.1 with γ = 4, β = 320 and
λ ∈ [1, K], the contribution of the initial tmin rounds to the regret can be bounded as:

Rtmin ≤ min

{
160βK

∆2
min

√
α̃

λ
ln
(√

βK

∆min

)
,
1019βK

∆2
min

√
α

λ

(
ln
(

βK

∆min

))3/2
}

+ 2K.

Proof. By definition, we have tmin = max
{
t ≥ 0 : 1

2

√
λ lnK
tK2 ≤ β ln t

t∆2
min

}
. By proposi-

tion 4.5, we have that tmin ≤ 25d (ln d)2, where d = 4β2K2

λ lnK∆4
min

.
Then, we can use the first half Theorem 4.2 and deduce that:

Rtmin ≤ 4
√

α̃ lnK tmin + 2K

≤ 4
√
α̃ lnK 25d ln(d) + 2K

= 4

√
α̃ lnK 25

4β2K2

λ lnK∆4
min

ln
(

4β2K2

λ lnK∆4
min

)
+ 2K

≤ 160βK

∆2
min

√
α̃

λ
ln
(√

βK

∆min

)
+ 2K.
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For the second part of the bound, we use the second part of Theorem 4.2, and
we deduce:

Rtmin

≤ 9
√
αtmin

√
ln(Ktmin)

√
lnK + 2K

≤ 9
√
α lnK 25d ln(d)

√
ln (25Kd2) + 2K (4.18)

≤ 9

√
α lnK 25

4β2K2

λ lnK∆4
min

ln
(

4β2K2

λ lnK∆4
min

)√√√√ln

(
25K

(
4β2K2

λ lnK∆4
min

)2
)

+ 2K

≤ 9 ∗ 5 ∗ 2 βK

∆2
min

√
α

λ
ln
(

4β2K2

λ lnK∆4
min

)√
ln
(
400β4K5

∆8
min

)
+ 2K (4.19)

≤ 1019βK

∆2
min

√
α

λ

(
ln
(

βK

∆min

))3/2

+ 2K.

where the equation (4.18) uses that for d > 1 we have d (ln d)2 ≤ d2, and equation
(4.19) uses that 400 ≤ 3204 ≤ β4.

4.8.4.2 Control over the Exponential Weights

Proposition 4.2 introduced in the proof sketch of Theorem 4.3 is based on the fol-
lowing result.

Proposition 4.7. Under the conditions of Lemma 4.1 with γ = 4, β = 320 and
λ ∈ [1, K], the sum of exponential weights with sequence of learning rates η1, η2, . . .
of each suboptimal arm i can be bounded as:

T∑
t=tmin(i)

E [qt,i] ≤
T∑

t=tmin(i)

(
e−

1
2
tηt∆i +

1

t

(
λ lnK

4K2β2
+

1

K

))

To prove this result, we can follow the same derivation as in Seldin and Lugosi
(2017). We want to bound the qt,i for all i such that ∆i > 0 and t ≥ tmin(i). First,
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we note that

qt,i =
exp(−ηtL̃t,i)∑
j∈V exp(−ηtL̃t,j)

=
exp(−ηt(L̃t,i − L̃t,i∗))∑

j∈V exp(−ηt(L̃t,j − L̃t,i∗)))

≤ exp(−ηt(L̃t,i − L̃t,i∗))

:= exp(−ηt∆̃t,i),

where i∗ is the best arm, and where the inequality holds because one term of the sum
is exp(−ηt(L̃t,i∗ − L̃t,i∗)) = 1 and the other terms are positive, so the denominator is
greater than 1. We now want to want to ensure that ∆̃t,i := L̃t,i − L̃t,i∗ is close to
t∆i. To do so, we want to apply a variant of Bernstein’s inequality on the martingale
sequence difference t∆i − ∆̃t,i =

∑t
s=1Xs, where each single term of the sequence is

defined as Xs = ∆i − (˜̀s,i − ˜̀
s,i∗).

Theorem 4.6 (Bernstein’s inequality for martingales). Let X1, . . . , Xn be a mar-
tingale difference sequence with respect to filtration F1, . . . ,Fn, where each Xj is
bounded from above, and let Si =

∑i
j=1Xj be the associated martingale. Let

νn =
∑n

j=1 E [(Xj)
2|Fj−1] and κn = max1≤j≤n {Xj}. Then, for any δ > 0:

P

[(
Sn ≥

√
2ν ln

(
1

δ

)
+

κ ln
(
1
δ

)
3

)
∧ (νn ≤ ν) ∧ (κn ≤ κ)

]
≤ δ.

In order to apply the this theorem, we need to bound max1≤s≤n {Xs} and∑n
s=1 E [(Xs)

2|Fs−1].
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Control of max1≤s≤t {Xs} For each s we have:

Xs = ∆i − (˜̀s,i − ˜̀
s,i∗)

≤ 1 + ˜̀
s,i∗

≤ 1 +
1

Pt,i∗

≤ 1 + max

{
2K, 2

√
sK2

λ lnK
,
s∆̂2

s,i∗

β ln s

}
(4.20)

≤ 1.25max

{
2K, 2

√
sK2

λ lnK
,
s∆̂2

s,i∗

β ln s

}

where equation (4.20) holds by definition of ot,i∗ . Using the same argument as in the
proof of Lemma 4.1, we know that t ≥ tmin(i), and if s ≤ t∆2

i

ln t
then s∆̂2

i

ln s
≤ s

β
≤ t∆2

i

β ln t

then:

P

[
∃s ≤ t : max

{
2K, 2

√
sK2

λ lnK
,
s∆̂2

s,i∗

β ln s

}
≥ t∆2

i

β ln t

]

= P
[
∃s ∈

[
t∆2

i

ln t
, t

]
: ∆s,i∗ ≥ ∆i

]
≤ P

[
∃s ∈

[
t∆2

i

ln t
, t

]
: ∆s,i∗ ≥ ∆i∗

]
,

because ∆i ≥ ∆min = ∆̄i∗ . Let κt = max1≤s≤t {Xs}, and we deduce:

P
[
κt ≥

1.25t∆2
i

β ln t

]
≤ P

[
∃s ∈

[
t∆2

i

ln t
, t

]
: ∆s,i∗ ≥ ∆i∗

]
.

Control of νt =
∑t

s=1 E [(Xs)
2|Fs−1] We start by looking at each individual ele-

ment of the sum.

E
[
(Xs)

2|Fs−1

]
= E

[
(∆i − (˜̀s,i − ˜̀

s,i∗))
2|Fs−1

]
≤ E

[
(˜̀s,i − ˜̀

s,i∗)
2|Fs−1

]
≤ E

[
˜̀2
s,i|Fs−1

]
+ E

[
˜̀2
s,i∗|Fs−1

]
,
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where the last equation holds, because for all non-negative a and b, we have: (a−b)2 ≤
a2 + b2.

Then, note that:

E[˜̀2s,i|Fs−1] ≤
1

Pt,i

,

so

E
[
(Xs)

2|Fs−1

]
≤ 1

Ps,i

+
1

Ps,i∗
.

Using the same argument as before to bound 1
Ps,i∗

and 1
Ps,i

, we have:

P

[
t∑

s=1

E
[
(Xs)

2|Fs−1

]
≥ 2t2∆2

i

β ln t

]
≤ P

[
∃s ∈

[
t∆2

i

ln t
, t

]
: ∆s,i∗ ≥ ∆i∗

]
+ P

[
∃s ∈

[
t∆2

i

ln t
, t

]
: ∆s,i∗ ≥ ∆i∗

]
.

Noting that the bounds on κt and νt depend on the same events, we deduce that:

P
[(

κt ≥
1.25t∆2

i

β ln t

)
∨
(
νt ≥

2t2∆2
i

β ln t

)]
≤ P

[
∃s ∈

[
t∆2

i

ln t
, t

]
: ∆s,i ≥ ∆i

]
+ P

[
∃s ∈

[
t∆2

i

ln t
, t

]
: ∆s,i∗ ≥ ∆i∗

]
≤1

t

λ lnK

4K2β2
,

where for the last step we use that for all j, k ∈ V and γ = 4,

P
[
∃s ∈

[
t∆2

k

ln t
, t

]
: ∆s,j ≥ ∆j

]
≤

t∑
s=

t∆2
k

ln t

P
[
∆s,j ≥ ∆j

]

≤
t∑

s=
t∆2

k
ln t

1

s3

≤ 1

2

(
ln t

t∆2
k

)2

≤ 1

t

λ lnK

8K2β2
,

and the last step follows by definition of tmin.
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Control of ∆̃t,i We have that:

P
[
∆̃t,i ≤

1

2
t∆i

]
= P

[
t∆i − ∆̃t,i ≥

1

2
t∆i

]
≤ P

[(
t∆i − ∆̃t,i ≥

1

2
t∆i

)
∧
(
κt ≤

1.25t∆2
i

β ln t

)
∧
(
νt ≤

4t2∆2
i

β ln t

)]
+ P

[(
κt ≥

1.25t∆2
i

β ln t

)
∨
(
νt ≥

2t2∆2
i

β ln t

)]
We set ν =

2t2∆2
i

β ln t
, κ =

1.25t∆2
i

β ln t
, δ = 1

Kt
, and we recall that β = 320. Then:

√
2ν ln

(
1

δ

)
+

κ ln
(
1
δ

)
3

=

√
2
2t2∆2

i

β ln t
ln (Kt) +

1.25t∆2
i

β ln t
ln (Kt)

3

≤

√
8
t2∆2

i

β ln t
ln (t) +

1.25t∆2
i

β ln t
ln t

3
(4.21)

≤ t∆i

(
2
√
2√
β

+
2.5

3β

)
≤ 1

2
t∆i,

where equation (4.21) is due to t ≥ tmin(i) ≥ K, so ln (Kt) ≤ 2 ln t. We can then use
Theorem 4.6 and get:

P
[
∆̃t,i ≤

1

2
t∆i

]
≤ 1

t

λ lnK

4K2β2
+

1

Kt
=

1

t

(
λ lnK

4K2β2
+

1

K

)
.

Using this bound, summing on t gives

T∑
t=tmin(i)

E [qt,i] ≤
T∑

t=tmin(i)

E
[
e−

1
2
tηt∆i1

[
∆̃t,i ≥

1

2
t∆i

]
+ 1

[
∆̃t,i ≤

1

2
t∆i

]]

≤
T∑

t=tmin(i)

(
e−

1
2
tηt∆i +

1

t

(
λ lnK

4K2β2
+

1

K

))
,

which finishes the proof.
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4.8.4.3 Control over the Exploration

We now provide a more general version of Proposition 4.3.

Proposition 4.8. Let S1, S2, . . . be a sequence of exploration sets generated by play-
ing algorithm 3 the conditions of Lemma 4.1 with γ = 4, β = 320 and λ ∈ [1, K].
Then, the contribution of the extra exploration can be bounded as:

T∑
t=tmin

∑
i :∆i>0

∆iE [εt,i] ≤
T∑

t=tmin

E

[ ∑
i∈St:∆i>0

4β ln t

t∆i

]
+

λ lnT lnK

4Kβ2
+ 12K + 3.

Proof. By definition of ξt,i, we can decompose the contribution of the extra explo-
ration as follows.

T∑
t=tmin

E [εt,i]
∑

i:∆i>0

∆i ≤
T∑

t=tmin

∑
i:∆i>0

∆iE [min {1, ξt,i}]

≤
T∑

t=tmin

E

[ ∑
i∈St:∆i≥0

∆iE

[
min

{
1,

β ln t

t∆̂2
t,i

}]]

+
T∑

t=tmin

∑
i:∆i>0

∆i
4

t2
,

where in the first step we use the min term to ensure that we have an upper bound
on this quantity in the cases where the bounds on ∆̂t,i do not hold. The last step
consists in upper bounding the exploration of arms that are not in St by adding 4

t2

to all arms, and in counting E
[
β ln t

t∆̂2
t,i

]
only for arms i that are in the exploration set

St.
Thus the second term is bounded as:

T∑
t=tmin

∑
i:∆i>0

∆i
4

t2
≤ K

T∑
t=1

4

t2
≤ 8K. (4.22)

103



Chapter 4 | A Best-of-Both-Worlds Algorithm for Online Learning with Feedback Graphs

In order to bound the first term, we recall that for t ≥ tmin, for any i ∈ V :

E

[
min

{
1,

β ln t

t∆̂2
t,i

}]
≤ E

[
β ln t

t∆̂2
t,i

1

[
∆̂t,i ≥

1

2
∆i

]
+ 1

[
∆̂t,i ≤

1

2
∆i

]]

≤ 4β ln t

t∆2
i

+ P
[
∆̂t,i ≤

1

2
∆i

]
≤ 4β ln t

t∆2
i

+

(
ln t

t∆2
i

)γ−2

+
2

Ktγ−1
+ 2

(
1

t

) β
10

≤ 4β ln t

t∆2
i

+
1

t

λ lnK

4K2β2
+

2

Kt3
+ 2

(
1

t

)2

,

which gives:
T∑

t=tmin

E

[ ∑
i∈St:∆i>0

∆iE

[
min

{
1,

β ln t

t∆̂2
t,i

}]]

≤
T∑

t=tmin

E

[ ∑
i∈St:∆i>0

∆i

(
β ln t

t∆2
i

+
1

t

λ lnK

4K2β2
+

2

Kt3
+ 2

(
1

t

)2
)]

≤
T∑

t=tmin

E

[ ∑
i∈St:∆i>0

4β ln t

t∆i

]
+

λ lnT lnK

4Kβ2
+ 3 + 4K.

4.8.4.4 Proof of Theorem 4.3 and Corollary 4.1

The proof of Theorem 4.3 follows from the propositions in this section.

Proof of Theorem 4.3. We want to bound the pseudo-regret of algorithm 3 run with
parameters defined in Lemma 4.1 with γ = 4, β = 320 and λ = α. The pseudo-regret
can be decomposed by treating the first tmin rounds like in the adversarial case, and
by using a refined bound in the stochastic regime.

RT = Rtmin +
∑

i :∆i>0

T∑
t=tmin

∆iE [pt,i]

≤ Rtmin +
∑

i :∆i>0

∆i

T∑
t=tmin

(
E [qt,i] + E [εt,i]

)
, (4.23)
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First, we apply the second part of Proposition 4.6 with λ = α, and deduce that:

Rtmin ≤ 1019βK

∆2
min

(
ln
(

βK

∆min

))3/2

+ 2K. (4.24)

Then we bound the contribution of exponential weights by applying Proposition
4.7 with λ = α and ηt =

√
lnK

2
∑t−1

s=K θs
. By definition of θs,

∑t−1
s=K θs ≤ tK, so ηt ≥√

lnK
2tK

. This gives:

T∑
t=tmin(i)

E [qt,i] ≤
T∑

t=tmin(i)

(
e−

1
2
tηt∆i +

1

t

(
α lnK

4K2β2
+

1

K

))

≤
T∑

t=tmin(i)

(
e−∆i

√
ln K
8K

√
t +

1

t

(
α lnK

4K2β2
+

1

K

))

≤ 16K

∆2
i

+ lnT

(
α lnK

4K2β2
+

1

K

)
,

and then: ∑
i:∆i>0

∆i

T∑
t=tmin

E [qt,i] ≤
∑

i:∆i>0

∆i

(
6K

∆2
i

+ lnT

(
α lnK

4K2β2
+

1

K

))
≤ lnT

(
α lnK

4Kβ2
+ 1

)
+
∑

i:∆i≥0

16K

∆i

, (4.25)

where the last step follows from Lemma 4.5. Furthermore, we bound the contribution
of the extra exploration by applying Proposition 4.8 with λ = α, which gives:∑
i :∆i>0

∆i

T∑
t=tmin(i)

E [εt,i] ≤
T∑
t=1

E

[ ∑
i∈St:∆i>0

4β ln t

t∆i

]
+

α lnK

4Kβ2
lnT + 12K + 3

≤ max
Ind∈I(G)

{ ∑
i∈Ind:∆i>0

4β ln2 T

∆i

}
+

α lnK

4Kβ2
lnT + 12K + 3,

(4.26)
where the last step follows from Proposition 4.1: by definition, for all t, St is a
strongly independent set on G, and we can upper bound by taking the maximum
over all the strongly independent sets of G.

Finally, summing over equations (4.24), (4.25) and (4.26) and noting that 14K+
3 ≤ βK

∆2
min

and 2α lnK
4Kβ2 + 1 ≤ 2α finishes the proof.
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The Corollary 4.1 follows the same structure.

Proof of Corollary 4.1. We decompose the regret following equation (4.23), where
tmin is defined using λ = α̃.

Rtmin
is bounded the first part of Proposition 4.5, which gives:

Rtmin
≤ 160βK

∆2
min

√
α̃

λ
ln
(√

βK

∆min

)
+ 2K. (4.27)

Then
∑

i :∆i>0∆i

∑T
t=tmin

E [qt,i] is bounded by Proposition 4.7 with λ = α̃, and using
the derivation leading to (4.25), which gives:

∑
i :∆i>0

∆i

T∑
t=tmin

E [qt,i] ≤ lnT

(
α̃ lnK

4Kβ2
+ 1

)
+
∑

i:∆i≥0

16K

∆i

, (4.28)

and
∑

i :∆i>0∆i

∑T
t=tmin

E [εt,i] follows from the derivation leading to (4.26), which
gives:

∑
i :∆i>0

∆i

T∑
t=tmin(i)

E [εt,i] ≤ max
Ind∈I(G)

{ ∑
i∈Ind:∆i>0

4β ln2 T

∆i

}
+

α̃ lnK

4Kβ2
lnT + 12K + 3,

(4.29)

Finally, summing equations (4.27), (4.28) and (4.29) finishes the proof.

4.8.5 Extension to Graphs that Change over Time
Proof of Theorem 4.4.
Adversarial Regime
In the adversarial regime, the proof follows the analysis with a fixed feedback graph
up to equation (4.12), which gives:

RT ≤ 2K + 2
√
2 lnK E

Et


√√√√ T∑

t=K+1

θt

+
√
T lnK, (4.30)

for λ = 1. All that remains is to bound
∑T

t=K+1 θt. For the first part of the bound,
we use Lemma 4.8 and Proposition 4.4 to deduce that for all t ≥ K + 1:

θt ≤ α̃t,
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and using this bound on θ in equation (4.30) gives:

RT ≤ 4

√√√√lnK

T∑
t=1

α̃t + 2K. (4.31)

For the second part of the bound, we recall that for all t ≥ K+1 the exploration
parameter is lower bounded and fulfills pt,i ≥ εt,i ≥ 4

t2
≥ 4

T 2 . Thus we can apply
Lemma 4.7 at each round t ≥ K + 1, which gives:

θt =
∑
i∈V

pt,i
Pt,i

≤ 8αt ln (KT ) .

using this bound on θ in equation (4.30) gives:

RT ≤ 9
√

lnK
√

ln(KT )

√√√√ T∑
t=1

αt + 2K. (4.32)

Taking the minimum over equations (4.31) and (4.32) finishes the proof.

Stochastic Regime
The structure of the proof follows from Theorem 4.3. We decompose the regret
following equation (4.23), where tmin is chosen using λ = 1.

RT ≤ Rtmin +
∑

i :∆i>0

∆i

T∑
t=tmin

(
E [qt,i] + E [εt,i]

)
.

Rtmin
is bounded using the same approach as for Corollary 4.1, but using the time

varying version of the bound given in equation (4.31). We bound α̃t ≤ K at each
round, which gives:

Rtmin
≤ 160βK3/2

∆2
min

ln
(√

βK

∆min

)
+ 2K. (4.33)

Then the second term is bounded by Proposition 4.7 with λ = 1, and using the
derivation leading to equation (4.25), which gives:

∑
i :∆i>0

∆i

T∑
t=tmin

E [qt,i] ≤ lnT

(
lnK

4Kβ2
+ 1

)
+
∑

i:∆i≥0

16K

∆i

, (4.34)
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The last term follows Proposition 4.8 with λ = 1, which gives:

T∑
t=tmin

E

[ ∑
i∈St:∆i≥0

∆iE [εt,i]

]
≤

T∑
t=1

E

[ ∑
i∈St:∆i≥0

4β ln t

t∆i

]
+

lnT lnK

4Kβ2
+ 12K + 3.

We recall that because
∑

i∈St:∆i≥0∆iE [εt,i] ≤ 1 for all t, we can skip rounds that
have the largest upper bound on St by upper bounding the contribution of such
rounds by 1. Let Ãn be the nth largest element in the set containing the strong
independence number of Gt, with t ∈ [1, T ]. Then we can upper bound the first term
in Proposition 4.8 as:

T∑
t=1

E

[ ∑
i∈St:∆i≥0

4β ln t

t∆i

]
≤ inf

0≤n≤T

{
max

S⊂V :|S|=Ãn

{ ∑
i∈S:∆i>0

4β ln2 T

∆i

}
+ n

}
.

This gives

T∑
t=tmin

E

[ ∑
i∈St:∆i≥0

∆iE [εt,i]

]
≤ inf

0≤n≤T

{
max

S⊂V :|S|=α̃n

{ ∑
i∈S:∆i>0

4β ln2 T

∆i

}
+ n

}

+
lnT lnK

4Kβ2
+ 12K + 3. (4.35)

We finish the proof by summing on equations (4.33), (4.34) and (4.35).

RT ≤160βK3/2

∆2
min

ln
(√

βK

∆min

)
+ 2K + max

S⊂V :|S|=α̃

{ ∑
i∈S:∆i>0

4β ln2 T

∆i

}

+ lnT

(
lnK

2Kβ2
+ 1

)
+
∑

i:∆i>0

16K

∆i

+ 12K + 3

≤ inf
0≤n≤T

{
max

S⊂V :|S|=α̃n

{ ∑
i∈S:∆i>0

4β ln2 T

∆i

}
+ n

}

+ 2 lnT +
∑

i:∆i>0

16K

∆i

+
161βK3/2

∆2
min

ln
(√

βK

∆min

)
.
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Chapter 5

Summary and Discussion

In Chapter 2, we studied the problem of decoupling exploration and exploitation in
multi-armed bandits. We proposed an algorithm based on Tsallis-Inf that achieved
a tight bound in the adversarial regime, as well as a time-independent bound in
the stochastically constrained adversarial regime given a correct parametrization
of the regularization function with α ∈

(
1
2
; 2
3

]
. Using two arms with their own

distributions allows the learner to bypass the normal trade-off between exploration
and exploitation, giving the algorithm the opportunity to simultaneously explore
and exploit more. Whether this result can be improved further to eliminate the

√
K

factor in the stochastic regime without affecting the adversarial result remains an
open question.

In Chapter 3, we considered the problem of multi-armed bandits with switching
costs. We introduced an algorithm which enjoys an optimal rate in the adversarial
regime as well as refined bounds in the stochastically constrained adversarial regime
that scales as O

(
λ2/3K2/3T 1/3

∑
i 6=i∗ ∆

−1
i

)
. This result left a significant gap with

existing O(logT
∑

i 6=i∗ ∆
−1
i ) results in the stochastic regime with a fixed switching

cost λ = 1 (Gao et al., 2019; Esfandiari et al., 2021). Since then, Amir et al.
(2022) have derived a lower bound showing that if an algorithm achieves an optimal
rate of O

(
K1/3T 2/3

)
against adversarial sequences of losses, then this algorithm

must suffer at least Ω̃
(

min
{

1
∆2

min
, K1/3T 2/3

})
pseudo-regret against a sequence

of stochastically constrained adversarial losses with minimal sub-optimality gap
∆min. This bound opens many questions regarding the difficulty of the problem in
intermediate regimes, and of the possible trade-off between them.

In Chapter 4, we investigated the problem of online learning with feedback graphs.
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Our approach combines the EXP3.G and EXP3++ algorithms with a novel arm-
dependent extra exploration, which is tuned by taking advantage of the graph struc-
ture. Our algorithm enjoys near-optimal guarantees in both the adversarial and
the stochastic regime, and generalizes to sequences of graphs that change over time.
Improving upon the current results poses interesting challenges. One consideration
is to improve upon our exploration set construction by solving a linear program
instead, which could balance the cost and the benefit of playing each arm. Bucca-
patnam et al. (2014, 2017) study this approach in the stochastic regime. However,
the biggest challenge comes from closing the suboptimality gaps in terms of T in the
stochastic regime. Concurrently with our work, Ito et al. (2022) studied the same
problem and proposed a different algorithm also based on EXP3.G. They derived
more general results that have a weaker dependency on T but that depend on the
independence number of the graph rather than its strong independence number. It is
uncertain whether obtaining optimal best-of-both-worlds results for this problem can
be achieved using the regularization function of the EXP3 algorithm, but changing
the regularization function could come at the cost of bounds not scaling with the
optimal graph dependent quantity.
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